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Quote

Solving a particular physical problem has many similarities with making a trip. First,
we have to decide which route to take. Most of the times getting the one recommended
by a prestigious guide is enough. Sometimes other routes are even faster or allow us to
see beautiful views of the countryside while driving. Eventually, we can find unexpected
roadblocks in the selected route and alternatives are mandatory. A good knowledge of a
particular territory implies that we are able to use different routes. When we know many
routes (and the connections between them), traveling along this particular region has no
mystery to us. In classical mechanics, for example, most of the times the recommended
route is taking the Newtonian one. In other occasions, because of the specific characteris-
tics of the trip, it is better to take the Lagrangian, the Hamiltonian or the Hamilton-Jacobi
routes. Quantum mechanics is not different. Many times practical problems are solved
with the formalisms associated to the so-called standard route, also known as the orthodox
or Copenhagen route. The standard route itself has many subroutes. For example, the
quantum harmonic oscillator problem is cleanly and easily studied with the raising and
lowering operators of the (Heisenberg) matrix formulation, while many other problems
are better addressed directly with the (Schrödinger) wave function formalism. Another
relevant route is the Feynman path integral formulation which is rarely the easiest way
to approach a nonrelativistic quantum problem, but which has innumerable and very suc-
cessful applications in quantum statistics and quantum field theory. Certainly, having a
good knowledge of all possible routes (and their connections) in the quantum territory is
very helpful when facing a particular quantum problem. However, there are routes that do
not appear usually in the guides. One of these unexplained routes is Bohmian mechanics.

Albert Benseny, in Applied Bohmian mechanics [1].

[1] Benseny, A.; Albareda, G., et al. The European Physical Journal D 2014, 68, 286.
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Introduction

La science remplace du visible compliqué par de
l’invisible simple.

— J. Perrin

Context

The boundary between classical and quantum systems has long been a topic of interest
for physicists, offering deep insights into the fundamental nature of physical reality.
Classical mechanics, governed by deterministic laws such as Newton’s law, has been
highly successful in describing macroscopic phenomena, where objects follow predictable,
well-defined trajectories.
However, when studying systems involving a large number of particles, such as gases or
liquids, the deterministic approach of classical mechanics becomes inadequate due to the
sheer number of particles involved, of the order of Avogadro’s number.
As a result, scientists developed new approaches to model these types of systems, where
the description is no longer based on the motion of a single particle but on the statis-
tical behavior of a large number of particles. This led to the development of statistical
mechanics, which incorporates uncertainty into the description of physical systems. The
system is then characterized by a probability distribution that provides the chances of
finding a particle in a particular state. This probabilistic framework offers a more prac-
tical way to describe the behavior of systems with many particles. In theory, with an
infinitely powerful computer, it would be possible to track the motion of every particle
in the system and to achieve a deterministic description. However, in practice, this is
not feasible, making the probabilistic description provided by statistical mechanics the
best available approach.
In the early years of university, one important course is statistical mechanics, which is
generally taught for systems in equilibrium where the probability distribution is station-
ary. Later in their studies, students learn that the world is not always in equilibrium and
that the probability distribution can change over time. This introduces non-equilibrium
statistical mechanics, where the goal is to describe the behavior of systems that are not in
equilibrium. It is a very active field of research, aiming to understand how systems evolve
over time, how they reach equilibrium, and even how to control this process. This field
is usually introduced within the framework of stochastic mechanics, where the system’s
evolution is described by a stochastic process, incorporating randomness. Consequently,
a single trajectory is not sufficient to describe the system; instead, one must consider
a distribution of trajectories, which provides the probability of finding the system in a
specific state at a given time.



Introduction

We transition from a purely deterministic description of systems to a probabilistic one.
This probabilistic nature arises from our limited knowledge of the state of every particle
in the system and our inability to track the motion of each particle.
At the same time, another crucial course is quantum mechanics, the theory describing
the behavior of matter at microscopic scales. In this course, students learn that the
description of particles departs from the concept of trajectories, as the state of a particle
is fully described by an object called the wavefunction. According to the Copenhagen
interpretation, the wavefunction is a mathematical tool that provides the ampitude of
probability of finding a particle in a particular state (Born’s rule). Thus, quantum
mechanics is inherently a probabilistic theory, where the outcome of an experiment is
not deterministic but probabilistic.
While the same term probability is used in both statistical mechanics and quantum me-
chanics, the interpretation is different. In statistical mechanics, probability arises from
our lack of knowledge about the state of the system and is a tool used to simplify model-
ing. In contrast, in quantum mechanics, probability is intrinsic to the nature of particles.
This distinction is fundamental to the two theories. Quantum theory does not provide
the origin of this probability; it is assumed to be a fundamental property of particles.
Despite these differences, there are some similarities in the way probabilities are treated
in both contexts. In both cases, the probability is the solution of a first-order differential
equation, the diffusion equation in statistical mechanics and the Schrödinger equation in
quantum mechanics (for a free particle):

∂P

∂t
= D∇2P and

∂ψ

∂t
= i

~
2m
∇2ψ.

However, a key difference is that in quantum mechanics, the diffusion coefficient1 is imag-
inary, while in statistical mechanics, it is real. This difference is fundamental because, in
quantum mechanics, the wavefunction represents the probability amplitude, and the ac-
tual probability is the square of this wavefunction. This distinction leads to interference
effects in quantum mechanics, which are absent in statistical mechanics.
However, there are formulations of quantum mechanics that offer alternative interpreta-
tions of probabilities. Notably, Bohmian mechanics, developed by Louis de Broglie and
later David Bohm, provides a deterministic description of quantum mechanics, but at
the cost of making it non-local in space. This formulation reintroduces the concept of
trajectories for quantum particles, guided by the wavefunction. These trajectories obey
deterministic equations of motion, with the probability arising from the uncertainty of
the initial conditions of the system. The particle trajectories are distributed randomly
according to the probability distribution given by the square of the wavefunction. This
perspective closely resembles the Newtonian viewpoint, where particles are described by
deterministic trajectories.
There is another formulation, similar in concept to Bohmian mechanics but with a differ-
ent set of axioms, which introduces probability in yet another way. This is the Nelsonian
formulation, where particles are still described by trajectories, but these trajectories are
stochastic. Here, probabilities emerge not only due to the lack of knowledge of the initial
conditions but also from the intrinsic randomness of the trajectories themselves. How-
ever, this formulation does not provide an origin for these fluctuations; they are simply
assumed to exist. Nelson suggested that, similar to the Langevin description of Brown-

1In fact, the Laplacian term in the Schrödinger equation is dispersive, as the diffusion coefficient
is imaginary. Rather than damping the amplitude of the wavefunction, as a real coefficient would, it
instead induces dispersion.
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ian motion, the Nelsonian theory could be an effective theory, pointing toward a deeper
underlying theory of quantum mechanics.
These approaches are generally not often used in current research, as the standard formu-
lation of quantum mechanics is highly effective and provides an excellent description of
physical phenomena. Many authors discuss these alternative formulations from a philo-
sophical perspective, but since they are equivalent to the standard formulation, they are
rarely applied in practice. However, although ontological questions may be interesting
to explore, we will see throughout this thesis that changing the point of view can lead to
powerful tools for describing quantum systems, which might not naturally emerge from
the standard formulation. The ability to derive new techniques for controlling quantum
systems would add value to these alternative formulations of quantum mechanics and
offer practical benefits. Clearly, this does not aim to replace the standard formulation
but to complement it and provide new insights into quantum systems.
This thesis will specifically explore such potential advancements by applying one of these
alternative frameworks: the Nelson formalism.

Objectives and challenges

The main goal of this thesis is to develop new tools for understanding, controlling, and
manipulating quantum systems, both for fundamental research and practical applica-
tions. We will explore powerful optimization methods for classical systems and see how
they can be adapted for quantum systems using the Nelsonian formalism, which helps
establish classical analogues of quantum systems.

The problematics we will address are:

ã What is the Nelsonian formulation of quantum mechanics, and how does it differ
from the standard approach?

ã How can its mathematical similarity to stochastic mechanics help to xestablish a
quantum - classical analogy?

ã How does this analogy allow us to transfer classical optimization methods to the
quantum domain?

ã How can we extend these methods to control open quantum systems?

A key challenge in this work is to create a solid mathematical connection between classical
and quantum systems, ensuring that methods developed for classical systems can be
effectively applied to quantum ones. This requires a strong grasp of both classical and
quantum mechanics, as well as the mathematical tools used to describe them.

We will primarily focus on the control of the quantum harmonic oscillator, a simple
and fundamental system in quantum mechanics that can be easily manipulated. The
optimization methods we develop will be particularly useful for controlling such systems.
We aim to design protocols for the harmonic potential parameters that allow us to reach
a target state faster than adiabatic processes while minimizing a specific cost, depending
on the desired optimization. The effectiveness of our methods will be demonstrated by
comparing them to other control techniques across different cost functions, illustrating
the versatility and efficiency of our approach. To our knowledge, no other technique has
proven optimal for a general cost function.

7
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Controlling the dynamics of quantum systems opens up numerous practical applications.
For instance, it can improve the performance of quantum computers, enhance the effi-
ciency of quantum sensors, and aid in the development of new quantum technologies.
Such control is essential for the progress of quantum technologies, and the methods in-
troduced in this thesis could serve as valuable tools for achieving this goal.

The final step of this work will be to extend these control methods to open quantum
systems, a challenging task due to their complexity compared to closed systems. These
methods could lay the groundwork for new ways to control open quantum systems, with
implications for a variety of applications, from thermal machines to quantum informa-
tion processing. As technology advances and devices like nano-process chips and nano-
thermal engines become miniaturized, understanding thermodynamic relationships at
the microscopic level—such as heat dissipation and work efficiency—becomes crucial due
to quantum effects. Quantum heat engines (QHEs), which convert thermal energy into
mechanical work using quantum systems like single particles or qubits, play a significant
role in quantum thermodynamics and nanotechnology. A key open question is whether
quantum effects can enhance QHE performance, and the development of new control
protocols for open quantum systems could provide initial insights into this problem.

Structure of the Manuscript

The manuscript is structured into two main parts. Part. I provides the theoretical foun-
dation by presenting the Langevin and Nelson theories, which are central to understand-
ing the dynamics of classical and quantum particles, respectively. Part. II then applies
these theories to study quantum systems in various contexts, covering both foundational
questions and practical applications.

Part. I is organized into two chapters. In Chap. 1, we introduce classical Brownian
motion, starting with its historical background from Brown to Einstein and Langevin.
We then develop the necessary mathematical framework, focusing on the Langevin and
Fokker-Planck equations, which describe the stochastic dynamics of particles. A detailed
analysis of the overdamped regime of Brownian motion and the role of Wiener processes,
which are key in stochastic calculus, sets the stage for exploring quantum analogs in
Part. II.
In Chap. 2, we shift our focus to quantum mechanics and introduce Nelson’s stochastic
formalism, which describes quantum particles through well-defined stochastic trajecto-
ries. We derive the formalism used to describe quantum systems within the Nelsonian
framework, highlighting the similarities and differences with the standard formulation of
quantum mechanics. Examples of quantum systems described by the Nelsonian formal-
ism are then provided, demonstrating its advantages, particularly in describing tunneling
phenomena, where it offers an intuitive perspective on the time required for a particle to
cross a barrier.

With these theoretical tools in place, Part II, consisting of three chapters, aims to apply
Nelson’s theory from two perspectives: a fundamental one and a practical one.
Chap. 3 explores one of the foundational assumptions of quantum mechanics: Born’s rule.
We show that this assumption is not necessary within the Nelsonian formalism, where the
probability density is not necessarily tied to the squared modulus of the wavefunction.
We then introduce the concept of quantum equilibrium, a state where Born’s rule is
satisfied, and demonstrate that if a system is initially not in quantum equilibrium, it will

8



eventually reach it over time. We investigate the convergence of a quantum system to
quantum equilibrium and calculate the time required to reach this state for three different
quantum systems, comparing it to the characteristic times of each system. The goal is to
estimate the order of magnitude of the convergence time to determine whether it might
be possible to observe this process experimentally, assuming an initial state that is out
of equilibrium.
Following this theoretical discussion, Chap. 4 shifts the focus to practical applications.
Highlighting the mathematical similarities between the Nelson equation and the over-
damped Langevin equation, we demonstrate that the Nelsonian formalism can be used
to develop a new technique for the control of quantum systems, leveraging classical ana-
logues of the quantum system. Specifically, this technique enables the efficient transition
of a quantum system from an initial to a final stationary state in less time than required
by an adiabatic (quasi-static) process. We apply this method to control the stiffness of
a harmonic potential and derive the optimal protocol to reach a target stiffness, mini-
mizing both the duration of the process and an arbitrary cost function, which is kept
general in the derivation. We then apply the technique to two different cost functions:
the cumulative energy over the protocol and the evolution of the dynamical phase of the
wavefunction during the protocol. Finally, we compare our protocols to those derived
from other techniques to demonstrate the efficiency of our approach.
Finally, in Chap. 5, we explore the extension of the Nelsonian formalism to open quan-
tum systems. Our goal is to apply the techniques from the previous chapter to control
open quantum systems, with the aim of creating optimal cycles for quantum engines.
To achieve this, we examine three different effective theories of open quantum systems
and derive the corresponding Nelson equations for each. We demonstrate that these ap-
proaches are promising and could potentially be used for the control of open quantum
systems.
We conclude the thesis by summarizing the main results and discussing potential future
research directions in this field.

9





PART I

Theoretical background
in stochastic mechanics





Preface of Part I

Since traveling was onerous (and expensive), and
eating, hunting, and wenching generally did not fill
the 17th century gentleman’s day, two possibilities
remained to occupy the empty hours, praying and

gambling; many preferred the latter.
— E. W. Montroll

Although calculations of probability were undertaken in Roman times, according to
Libri [2], it was in Dante’s Divine Comedy, written at the beginning of the 14th century,
that one of the earliest explicit enumerations of the different probabilities associated with
the result of throwing three dice was presented [3]. The theory of probability was born
from the need to understand the games of chance and the first book on probability theory
was written by Cardano [4] in 1526. It was not until the 17th century that the first math-
ematical foundations of probability theory were laid in the exchange of letters between
Pascal and Fermat [5]. Since then, the theory of probability has been developed and has
become a fundamental tool in many fields of science, including physics. In physics, the
concept of probability has two distinct origins. Firstly, in statistical mechanics, probabil-
ities are employed due to the lack of complete knowledge about all the degrees of freedom
within a system. This approach is necessary because it is practically impossible to track
every particle’s position and momentum in a macroscopic system. Consequently, statis-
tical mechanics uses probabilities to describe the average behaviour of a large number
of particles, providing a statistical understanding of thermodynamic properties such as
temperature and pressure. A classic example is that of Boltzmann [6] in the 1870s, who
employed the Maxwell-Boltzmann distribution to describe the probability of finding a
molecule with a certain speed in a perfect gas. Secondly, probabilities emerge from the
intrinsic uncertainty inherent in quantum systems. These are governed by the principles
of standard quantum mechanics, where particles exhibit wave-like behaviour and their
properties, such as position and momentum, are fundamentally uncertain. This intrinsic
uncertainty is quantified by probability distributions derived from the wavefunction, as
articulated by the Heisenberg uncertainty principle. These distributions reflect a funda-
mental aspect of nature. In this part, we will consider both situations. In Chapter 1, we
will provide an overview of statistical mechanics, particularly the stochastic mechanics
through the Langevin equation and the Fokker-Planck equation. In Chapter 2, we will
examine the foundations of quantum mechanics and demonstrate how it is possible to
derive the Schrödinger equation from Nelson’s mechanics, a stochastic approach to quan-
tum mechanics.
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CHAPTER 1

Brownian motion and Langevin equation

These motions were such as to satisfy me, after
frequently repeated observation, that they arose
neither from currents in the fluid, nor from its
gradual evaporation, but belonged to the particle

itself
— R. Brown

In this chapter, we introduce the fundamental concepts of Brownian motion, tracing its
historical development and mathematical modeling. We begin in Sec. 1.1 by providing an
overview of Brown’s observations and the significance of Brownian motion in physics. In
Sec. 1.2, we discuss Einstein’s theoretical explanation of Brownian motion, deriving the
diffusion equation and introducing the Einstein relation that connects the diffusion co-
efficient to measurable physical quantities. Langevin’s dynamical approach is presented
in Sec. 1.3, where we formulate the Langevin equation and discuss the coarse-graining
technique used to model the random forces acting on a Brownian particle. In Sec. 1.4,
we solve the Langevin equation for a free Brownian particle, analyzing the behavior of
velocity and position momenta over time. The overdamped limit of the Langevin equa-
tion is explored in Sec. 1.5, leading to a simplified description focusing on the particle’s
position. We then introduce the Fokker-Planck equation in Sec. 1.6, discussing its deriva-
tion from the Langevin equation and its role in describing the temporal evolution of the
probability density. Finally, in Sec. 1.8, we summarize the key findings of the chapter,
emphasizing the equivalence between the Langevin and Fokker-Planck approaches and
their importance in the study of stochastic processes and Brownian motion.
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Chapter 1

1.1 Introduction to the Brownian motion

1.1.1 Historical approach to the Brownian motion

Brownian motion, also known as pedesis, is a fundamental physical phenomenon first
observed in 1827 by the botanist Robert Brown [7]. It describes the erratic and random
motion of microscopic particles when suspended in a fluid (liquid or gas). These seem-
ingly chaotic motions result from collisions with the much smaller, fast-moving molecules
of the fluid, which are themselves in constant thermal motion. Brownian motion repre-
sents a fundamental concept within the field of statistical mechanics, and plays a pivotal
role in numerous scientific disciplines, including physics, chemistry, biology, and finance.
The concept of stochastic modelling, which forms the basis of our understanding of
Brownian motion, emerged at the end of the 18th century, primarily in the field of eco-
nomics. The prediction of financial market risks necessitated a probabilistic description
of economic processes and the control of risks and odd outcomes in gambling games, as
elucidated in [8]. A notable contribution to this field was made by Louis Bachelier in
his 1900 Ph.D. thesis [9], which was completed under the supervision of the renowned
mathematician Henri Poincaré. Bachelier’s thesis included numerous results pertaining
to stochastic processes, notably providing an early solution to the Brownian motion prob-
lem, although this was not recognised as such at the time. The theoretical foundation
for Brownian motion was subsequently reinforced by Albert Einstein in 1905 [10] and
independently by Marian Smoluchowski. They provided the first mathematical models
for this physical system, which explained that the random motion of particles like pollen
grains in a fluid is due to unpredictable collisions with solvent molecules. Although each
collision is individually insignificant, collectively they result in the macroscopic random
motion observed. In 1908, Jean Perrin, a French physicist, played a pivotal role in exper-
imentally validating Einstein’s theoretical predictions [11]. His meticulous experiments
provided empirical evidence for the molecular-kinetic theory of heat, thereby supporting
the existence of atoms and molecules. Perrin’s work not only validated the existence
of Brownian motion but also led to his receipt of the Nobel Prize in Physics in 1926.
Paul Langevin [12] made a significant contribution to the field of physics by develop-
ing a more comprehensive description of Brownian motion. In 1908, he introduced the
Langevin equation, which describes the evolution of the velocity of a particle under the
influence of frictional and random forces. This equation provides a more detailed under-
standing of the dynamics involved in Brownian motion and is a cornerstone in the field
of stochastic processes. It was in 1920 that Norbert Wiener [13], an American mathe-
matician, provided a precise mathematical description of Brownian motion, which led to
the eponymous Wiener process being named after him.
The phenomenon of Brownian motion offers profound insights into the behaviour of
particles in diverse systems and contributes to advancements across multiple scientific
and mathematical disciplines. In the following sections, we will present a mathematical
description of Brownian motion and present the Langevin equation in detail.

1.1.2 Brown’s observations

During its experimental observation, Brown noted several properties about the motion
of the pollen particles. The most important ones are listed:

â While continuous, the motion is erratic, irregular and appears to be not differen-
tiable so that non global velocity can be defined.
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â Even when particles are close to each other, they move independently, the interac-
tion between them looks purely elastic.

â The motion is universal, i.e. neither the molecular composition of the fluid nor the
nature of particles affect the existance of the motion.

â When the temperature of the fluid increases, its viscosity decreases or the mass of
the particle decreases, the motion of the particles becomes more intense.

â The motion of the particle nerver stops, the system is out-of-equilibrium.

These observations only form a qualitative description of the Brownian motion. For a
quantitative description, we need to introduce a mathematical framework, as Einstein
and Langevin did in the early 20th century.

1.2 Einstein’s approach to the Brownian motion

As previously mentioned, Einstein provided the first mathematical model for Brownian
motion in one of his historical articles published in 1905. He did not directly explain
Brown’s observations but suggested that the phenomenon could be related to the kinetic
theory of heat and the incessant collisions of fluid molecules with the suspended particles.
Einstein considered an ensemble of particles suspended in a liquid, suggesting that water
might be a suitable medium. He postulated that the particles perform an irregular motion
due to the collision with the molecules of the liquid. He did not want to treat each particle
individually, but to describe the particles globally with a probabilistic approach. With
this article, he sought to address two questions: how far does a Brownian particle travel
in a given time interval and how Brownian motion is related to other physical quantities?
Indeed, if the theoretical predictions of Einstein were to be verified, it would suggest that
the classical thermodynamic approach may not be entirely valid on a microscopic level.
As its approach was based on hypotheses involving the atomic nature of matter, it would
provide strong evidence for the existence of atoms and molecules. He then wanted to
express the parameters of its approach to physical and measurable quantities, so that his
theory could be tested experimentally.

1.2.1 Diffusion of particles suspended in a fluid

For the sake of simplicity, we will suppose that the system is in a one-dimensional space,
so that the positions of the particles are described by a single variable x. Let us denote by
p(x, t) the probability density of finding a particle at position x at time t. Under certain
assumptions, such as the Markovian nature of the process—a concept that will be defined
later—Einstein demonstrated that the probability density satisfies a partial differential
equation, which is a deterministic equation. This equation is a diffusion equation of the
form

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t) (1.1)

where D is the diffusion coefficient, having the dimension [D] =L2 T−1. This last pa-
rameter is a direct measure of the intensity of the Brownian motion i.e. the greater
it is, the more intense the motion is. This result establishes a clear link between the
Brownian motion and the diffusion of particles in a fluid. If we assume that all particles
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are initially at the same position x0, with p(x, 0) = δ(x − x0), then the solution to the
diffusion equation at times t > t0 is given by the Gaussian distribution

p(x, t) =
1√

2πσ2(t)
exp

(
−(x− x0)2

2σ2(t)

)
. (1.2)

The variance of the distribution is represented by the equation σ2 =
〈
(x(t)− x0)2

〉
=

2Dt, which denotes the spread of particles in space. This spread increases linearly over
time, a characteristic of diffusive motion. The variance essentially measures the extent
to which particles undergoing Brownian motion disperse over time. This dispersion is
monitored by the diffusion constant D. Moreover, the variance of the distribution is the
average value of (x − x0)2, which signifies the average squared distance from the initial
position x0. Thus, the diffusion coefficient D directly correlates with the expectation
value over all possible particle trajectories. Furthermore, the variance provides insight
into the distance a Brownian particle can travel over a given time interval t. This rela-
tionship highlights the interconnection between the diffusion process, which is inherently
irreversible, and Brownian motion, which arises from random collisions of particles. The
irreversibility of diffusion is directly linked to the random forces exerted on the Brownian
particle due to collisions with water molecules. In summary, the variance in the distribu-
tion offers a comprehensive view of particle spread in diffusive motion, bridging the gap
between microscopic random collisions and macroscopic diffusion characteristics.

1.2.2 Heuristic derivation of Fokker-Planck equation

Let us consider a simple model that describes the random motion of a Brownian particle
in a one-dimensional space and that allows to derive the Fokker-Planck equation: the
random walker. We discretize the space in a lattice with a spacing ∆x and the time in
discrete steps of ∆t. The probability of finding a particle at position xi = i∆x at time
tn = n∆t is denoted by P (xi, t

n) = Pni , for i ∈ Z and t ∈ N. The random walker model
is based on the following assumptions:

â Markovian assumption: the probability of the particle moving from xi to xj at time
tn+1 depends only on the position of the particle at time tn and not on its previous
positions.

â Locality assumption: The particle can jump to adjacent positions or stay at the
same position between two successive time steps (nearest neighbours).

â Homogeneity assumption: the transition probabilities are constant in space and
time.

The probabilities associated with these movements between time tn and tn+1 are defined
as follows. The probability that:

• the particle remains at xi is a,

• the particle moves from xi−1 to xi is b,

• the particle moves from xi+1 to xi c.

The system is represented in Fig. 1.1. Given that the total probability must sum to one,
we have:

a+ b+ c = 1. (1.3)
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Figure 1.1: The random walker model.

Additionally, we assume symmetry in the transition probabilities, such that

b = c. (1.4)

To derive the equation governing the evolution of P (xi, t
n), we consider the probability

balance at position xni . The probability of finding the particle at xi at time tn+1 is
given by the sum of the probabilities of the particle arriving at xi from xi−1, xi+1, and
remaining at xi:

Pn+1
i = aPni + bPni−1 + cPni+1. (1.5)

Using Eq. (1.3) and Eq. (1.4), we can rewrite the probability balance equation as

Pn+1
i − Pni = c

[
Pni−1 + Pni+1 − 2Pni

]
(1.6)

We recognise the finite difference expression of the time derivative (left-hand side) and
the Laplacian (right-hand side) of P . Dividing by ∆t and taking the limit ∆t → 0 and
∆x→ 0, assuming c (∆x)2/∆t remains finite, we obtain the Fokker-Planck equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
(1.7)

where

D = c
∆x2

∆t
(1.8)

is the diffusion coefficient. This equation describes the time evolution of the probability
distribution P (x, t) for finding a particle at position x at time t in a diffusive process.

1.2.3 Einstein’s relation

The second objective of Einstein was to relate the Brownian motion to other physical
quantities in order to test experimentally his theory. To achieve this, he needed to express
the parameters of the system, knowing the diffusion coefficient, in terms of macroscopic
quantities. These are the fluid temperature T , its viscosity η, the mass m of the particle
and the radius of the particles a. It is common to introduce the friction coefficient, defined
as γ = 6πηa, which is a measure of the resistance of the fluid to the motion of the particles.
Einstein began by assuming that, despite the particles being large molecules, they can
be described by applying statistical mechanics. It is also supposed that the particles
are not interacting with each other, as they are so few in the experiments that they can
be considered isolated from each other. Consequently, if one considers an ensemble of
Brownian particles in suspension in water, it is then possible to treat them as an ideal
gas that exerts a partial pressure of P = nkBT , with n being the number of particles
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per unit volume and kB the Boltzmann constant. It can then be assumed that a force F
causes a gradient of pressure, with the equilibrium condition being that Fn = kBT∂xn.
Furthermore, the Stock’s law states that when a particle is in motion in a liquid, it is
subject to a friction force proportional to its velocity, that is to say f = −mγv, where
the velocity is noted v. By combining these two equations, one can write the Newton’s
equation of motion as ma = −mγv + F . If we suppose a steady state, then it turns out
that v = F/mγ = kBT∂xn/γ. The final step consists of a flux balance. The force F
generates a flux of particles JF = nv, where n is the particle number density and v is
the particle velocity. According to Fick’s law, the pressure gradient generates another
flux FP = −D∂xn, where D is the diffusion coefficient. Because equilibrium is assumed,
both fluxes compensate each other, so that JF + JP = 0. By identification, one obtains
the Einstein relation.

D =
kBT

Mγ
=

RT

6πηaNa
, (1.9)

where R = kBNa is the ideal gas constant and Na the Avogadro number. It is clear
that D represents a balance between the fluctuations in particle motion due to ran-
dom forces (through κT ) and the frictional forces that tend to impede particle motion
(through γ). The Einstein relation represents a specific instance of the more general
fluctuation-dissipation theorem, which was derived approximately fifty years later. With
the expression of the diffusion coefficient, we can now rewrite the expression of the vari-
ance of the distribution of the particles as σ2(t) = 2Dt = 2RTt/6πaηNa. As the σ2 is a
quantity that can be measured in an experiment, it is possible to determine the Avogadro
constant, which was not known at the time. Finally, Einstein’s theory provides the value
of the diffusion coefficient and an initial understanding of the nature of the erratic motion
of Brownian particles. However, it does not provide information about the dynamics of
the particles. If one considers the typical displacement

√
σ2 of the particles after a time

interval ∆t, then one can write that
√
σ2

∆t ∼ 1√
∆t

. In the limit of zero time interval, the
displacement of the particles becomes infinite. Consequently, in order to describe the
motion of the particles, it is necessary to consider non-differentiable trajectories, as is
the case with stochastic processes. This is the objective of the Langevin equation, which
will be presented in the subsequent section.

1.3 Langevin’s approach to the Brownian motion

In 1908, Paul Langevin proposed a model of Brownian motion based on the dynamics
of the macroscopic Brownian particle. However, given that the interactions with the
fluid’s particles are microscopic and that a significant number of collisions occur before a
macroscopic displacement of the Brownian particle, it is necessary to model the motion
of the Brownian particle using a probabilistic approach.

1.3.1 Coarse-graining of the system

In modelling the motion of a Brownian particle (BP) in a fluid, it is assumed that the
BP’s degrees of freedom change slowly over time in comparison to the rapid microscopic
motion of the fluid particles. The force exerted on the Brownian particle (BP) by the fluid
can be approximated as an average force derived from the collisions between the fluid
particles and the BP. This process is known as coarse-graining, whereby the fast-moving
interactions of the fluid particles are averaged out to provide a simplified, mesoscopic
description of the BP’s motion. This averaging process occurs over a specific time interval,
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denoted as τBath, which represents the characteristic time scale of the microscopic motion
of the fluid particles. The selection of this value is of great consequence. It is essential
that the chosen time interval is sufficiently long to allow for the averaging out of the
rapid degrees of freedom of the fluid particles, while still ensuring that the motion of the
BP is not significantly affected. In most cases, the shortest time scale, denoted as τs, is
associated with the solvent particles colliding with the BP. This typically occurs around
10−12 seconds. The average velocity of the BP reaches its equilibrium value over a time
scale, denoted as τB, which is inversely proportional to the damping coefficient, γ, of the
BP in the fluid. The system can be described in different ways, depending on the value
of τBath selected. If τBath is selected to be larger than τB, the motion of the BP can be
described in terms of its position only, as proposed by Einstein. Conversly, if τBath < τB,
the Brownian particle’s motion is described by both its position and velocity. This is
the principle of coarse-graining, which results in the appearance of a random force in the
Langevin equation.
The relevant time scales in the system are then:

â the time scale of the fluid particles’ degrees of freedom, that is represented by τs,

â the time scale of the BP’s velocity relaxation, denoted as τB, that is defined as the
inverse of the damping coefficient γ,

â the coarse-graining time scale, denoted as τE
Bath, that is employed for the description

of the BP by its positional data alone (Einstein’s approach or overdamped regime),

â the coarse-graining time scale, denoted as τL
Bath, that is employed to describe the

BP by its position and velocity, (Langevin’s approach or underdamped/inertial
regime).

For accurate modeling, one has τs � τL
Bath � τB = 1/γ � τE

Bath. A visual representation
of these different time scales is shown in Fig. 1.2.
The following section will present the Langevin equation, which describes the motion of
the Brownian particle in a fluid. The action of the fluid particle is modelled by a random
force, which is the result of the coarse-graining of the system. The Langevin equation is
employed in numerous fields of physics, as it can be utilized to describe a diverse range
of systems, from colloidal particles to biomolecules [14]. A straightforward derivation of
the Langevin equation is provided in Appendix A, where the coupling of the Brownian
particle with the fluid is treated in a manner analogous to that of the Caldeira-Leggett
model [15, 16].

1.3.2 Langevin equation

As previously stated, the collision between the BP and the fluid particles results in an
ever-changing and random force acting on the BP, even when the fluid is in equilibrium.
It follows that the position x and velocity v of the BP should be modelled by a stochastic
process [17] whose dynamics is driven by the random force emerging from the coarse-
graining of the system. The equation of motion for the one-dimensional BP will be
derived herewith; the generalisation to three-dimensional space is straightforward. As
is the case with any classical system, the equation of motion is obtained by means of
Newton’s second law. In order to do so, it is necessary to express all the different forces
acting on the BP.

â Let us suppose that a force F (x, t), deriving from a potential V (x, t) that depends
on the position of the BP and possibly on time, acts on the BP.
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Coarse-graining (Einstein)

Coarse-graining (Langevin)

Solvent 
(structureless medium)

Solvent particles
(mass m)

Brownian particle

Figure 1.2: The above visual representation depicts the various time scales involved in the
coarse-graining process of a Brownian particle (BP) of mass M in a fluid composed of particles
of mass m. The degrees of freedom of the fluid particles change over a time interval, designated
as τs, which is exceedingly small in comparison to the time scale of the BP’s degrees of freedom,
represented by τB for the velocity. The averaging of the fluid particles’ motion is realised over a
time interval, designated as τBath, which is dependent upon the desired level of detail required
to describe the motion of the Brownian particle. If the time scale of the bath is equal to the
Langevin time scale, τLBath, then the Brownian particle (BP) is described by both its velocity
and its position. This is known as the Langevin description. Conversely, if τBath = τEBath, then
only the position of the BP is relevant, and the description is known as the Einstein description.
Note that as γ →∞, only the Einstein description remains.

â If the BP has a velocity v relative to the fluid, it encounters a larger number of fluid
particles coming from the direction of its motion than from the opposite direction.
Moreover, this imbalance is amplified as the velocity v, increases. It is therefore
necessary to introduce a friction force that acts against the direction of motion and
increases in magnitude with the velocity. The simplest assumption is that this force
is proportional to the velocity. This is the same force as the viscous force −Mγv
exerted by a Newtonian fluid on a moving particle. This expression is proportional
to the viscosity, resistance, of the fluid, which is precisely the relationship observed
in Sec. 1.2.3.

â The last force is the fluctuating random force that arises from the coarse-graining
of the collisions between the BP and the fluid particles. This force is known as
the Langevin force FL(t), and it is assumed to be independent of the position and
velocity of the BP.

It should be noted that as the friction force and the random force originate from the same
microscopic phenomenon, a relationship between them is to be expected. The equation
of motion of the BP is then given by




Mv̇(t) =

Newton

F (x(t), t)−
friction

Mγv(t) +
random

FL(t) ,

ẋ(t) = v(t),

(1.10)

where the dot denotes the derivative with respect to time. This is the Langevin equation,
which is a linear random differential equation. It should be noted that the solutions x
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and v will also be stochastic processes. Consequently, each realisation of the Langevin
approach, even with the same initial conditions, will result in a different solution. Then,
the general behaviour of the BP is not given by one stochastic trajectory, but rather by
averaged quantities obtained by averaging over a multitude of realisations of the Langevin
equation Eq. (1.10). These include the mean position and the mean velocity, the mean
square displacement, the mean square velocity, the correlation functions, and so forth.
In the following, the mean values over the possible fluid’s microscopic configuration will
be denoted by the symbol 〈·〉. At this point, it is necessary to specify the statistical
properties of the Langevin force FL.

1.3.3 Statistical properties of the Langevin force

Given that the position and velocity of the BP are measured in the frame of the fluid,
which is assumed to be at rest, the BP must be motionless on average when no external
force acts on it. In this case, it is necessary that the average value of the Langevin force,
denoted by FL(t), vanishes. Additionally, since it is assumed that the Langevin force is
independent of the BP’s position and velocity, this must hold true even if the particle is
moving. Thus, we have

〈FL(t)〉 = 0 (1.11)

in all cases. Moreover, the stochastic process must be stationary, that is to say, its
statistical properties must remain the same when subjected to time translation. This
consequently implies that the autocorrelation function of the Langevin force is solely
dependent on the time difference,

〈
FL(t+ τ)FL(t′ + τ)

〉
=
〈
FL(t)FL(t′)

〉
. (1.12)

There are numerous potential autocorrelation functions, but the most prevalent is the
white noise, which is a Gaussian process with a Dirac distribution as its autocorrelation
function. The term Gaussian process denotes that at each time point, FL(t) follows a nor-
mal distribution. The term white noise signifies that the Langevin force is uncorrelated
in time, that is to say, the correlation function is a Dirac distribution.

〈
FL(t)FL(t′)

〉
= 2Dδ(t− t′) (1.13)

where D represents the intensity of the Langevin force. In some cases, it is more appro-
priate to work with an autocorrelation function that is correlated in time, with a finite
correlation time τc. In this case, the autocorrelation function is given by

〈
FL(t)FL(t′)

〉
= 2Dδτc(t− t′) (1.14)

where δτc(t− t′) is a function peaked around t = t′ with a width τc and has an integral
equal to one. We call this type of noise coloured noise, 1/τc corresponding to the fre-
quence of colour. Generally, δτc is taken as a Gaussian function. Note that if τc → 0, we
recover the limit of the white noise. In the following, we will restrict to the case of the
white noise.

In summary, the Langevin force that we will consider is fully characterized by the fol-
lowing properties:

• Stationarity : The stochastic process is stationary, meaning that its statistical prop-
erties, such as the mean and variance, are invariant under time translation.
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• Gaussianity : The process is Gaussian, meaning that at each time point, FL(t)
follows a normal distribution, and all moments of order higher than two are zero.

• Markovianity : The process is Markovian, where the future evolution of the system
depends only on its current state, not on its history.

• White Noise: The Langevin force is uncorrelated in time, with an autocorrelation
function represented by a Dirac delta function, 〈FL(t)FL(t′)〉 = 2Dδ(t− t′).

1.4 Solutions for the free Brownian particle

Let us assume that the BP is not subjected to any forces other than friction and the
random force, i.e. F (x, t) = 0. It is interesting to study the relaxation of the velocities
and positions of the BP in this case, as it will give us information about the diffusion
process of the BP. The Langevin equation Eq. (1.10) becomes

{
Mv̇(t) = −Mγv(t) + FL(t),

ẋ(t) = v(t).
(1.15)

and the velocity is, in this case, an Ornstein-Uhlenbeck process [18], as the only forces are
the friction, linear in v, and the white noise. Then, the process is stationary, Markovian
and Gaussian.

1.4.1 Solution for the velocity momenta

If we denote the initial velocity of the BP by v0, the solution of the first equation of
Eq. (1.15) is given by

v(t) = v0e
−γt +

1

M

∫ t

0
dτ e−γ(t−τ)FL(τ). (1.16)

and it is possible to compute the mean velocity 〈v(t)〉 and the mean square velocity〈
v2(t)

〉
. As the mean of the random force is zero, we have

〈v(t)〉 = v0e
−γt (1.17)

and it is clear that the mean velocity relaxes exponentially to zero with a characteristic
time τB = 1/γ. It corresponds to the time needed by the BP to forgets its initial velocity.
The velocity variance is given by

σ2
v(t) =

〈
[v(t)− 〈v(t)〉]2

〉
=

D

M2γ

(
1− e−2γt

)
. (1.18)

Initially it is zero, since the velocity of the BP is perfectly known at t = 0. At very small
times (with respect to τB) it increases linearly with time, indicating that D is a diffusion
coefficient in the velocity space, until it reaches a plateau at D/Mγ for large times. Since
the mean velocity is also zero at large times, the variance of the velocity is equal to the
mean square velocity. It follows that the mean kinetic energy of the BP at large time is

〈EK(t)〉 :=
1

2
M
〈
v2(t)

〉
=

D

2Mγ
. (1.19)
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When the system is in equilibrium, according to the equipartition of energy, the average
kinetic energy must be equal to kBT/2, where kB is the Boltzmann constant and T is
the temperature of the fluid. Thus we have a definition of D as

D = MγkBT. (1.20)

This relation connects the amplitude of the random force, represented by the diffusion
coefficient, to the damping coefficient, γ, which accounts for the friction with the fluid.
This is an example of the fluctuation-dissipation theorem.

1.4.2 Solution for the position momenta

If we now consider the second equation of Eq. (1.15), we can calculate the mean position
〈x(t)〉 and the mean square displacement

〈
x2(t)

〉
, or the variance

〈
[x− 〈x(t)〉]2

〉
. The

solution of the equation is given by

x(t) = x0 +
v0

γ

(
1− e−γt

)
+

1

Mγ

∫ t

0
dτ
(

1− e−γ(t−τ)
)
FL(τ). (1.21)

From this equation, it is clear that the position of the BP is also a stochastic process.
The mean position is given by

〈x(t)〉 = x0 +
v0

γ

(
1− e−γt

)
. (1.22)

For small times we get 〈x(t)〉 = x0 + v0t, which is the expected behaviour of a free
particle, a ballistic motion. For large times, it converges exponentially to x0 + v0/γ.
Another interesting quantity is the variance of the position with respect to its initial
position. This is given by

〈
[x(t)− x0]2

〉
. We know that ẋ = v, so integrating this

equation over time gives x(t)− x0 =
∫ t

0 dτ v(τ). The mean square displacement is then
given by

〈
[x(t)− x0]2

〉
=

∫ t

0
dτ1

∫ t

0
dτ2 〈v(τ1)v(τ2)〉 (1.23)

= 2t

∫ t

0
dτ
(

1− τ

t

)
〈v(τ)v(0)〉 (1.24)

where we used that the velocity process is stationary, and integrated by part. The
quantity 〈v(τ)v(0)〉 is the autocorrelation of the velocities. Since we are considering the
case of the free particle, it is possible to have an explicit expression for the mean square
displacement. Using Eq. (1.16) in this expression, or Eq. (1.21), it is given by

〈
[x(t)− x0]2

〉
=

2kBT

Mγ2

[
γt−

(
1− e−γt

)]
. (1.25)

In the short time limit, still with respect to τB, the mean square displacement increases as
a second order polynomial,

〈
[x(t)− x0]2

〉
= kBTt

2/M . We observe the ballistic motion
of a free particle, as the BP does not have the time to undergo a collision with the fluid
particle. At large times, the mean square displacement (MSD) increases linearly with
time,

〈
[x(t)− x0]2

〉
= 2kBTt/Mγ = 2Dxt. This is a purely diffusive regime, signature

of a diffusive motion in the position space associated with a diffusion coefficient Dx =
kBT/Mγ, which is no more than the Einstein relation. Note that the MSD has no
finite limit as time goes to infinity, so the position process is not stationary. Finally, by
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combining Eq. (1.24) and Eq. (1.25) in the large time limit, one can write the well-known
Green-Kubo relation

Dx = lim
t→+∞

〈
[x(t)− x0]2

〉

2t
=

∫ +∞

0
dτ 〈v(τ)v(0)〉 . (1.26)

This is another example of fluctuation-dissipation theorem, since at equilibrium it relates
the diffusion of the BP to a response function, which is the autocorrelation function of the
velocities, i.e. a measure of the dissipation. Finally, the position process is a Gaussian
and Markovian process, but it is not stationary.
We have seen that the Einstein relation can be recovered from the Langevin equation by
considering the processus in position space. However, the Langevin approach is based on
a description of the BP in phase space, where both position and velocity are considered.
We have seen in Sec. 1.2 that Einstein only considered the position of the BP and not the
velocity. We will see below that the Langevin equation is more general than Einstein’s
approach, and that it is possible to recover Einstein’s description from the Langevin
equation.

1.5 Overdamped limit of the Langevin equation

If a stochastic equation of motion for the position only is desired, it is necessary to elimi-
nate the velocity derivative from the Langevin equation, which corresponds to suppressing
the second derivative of the position. This is possible by considering the overdamped
limit, where the inertia of the BP is negligible compared to the frictional force. This is
the case when the mass of the BP is small or when the damping coefficient is very large.
In fact, Mv̇ is the term that takes into account the inertia of the BP in the Langevin
equation. As mentioned after Eq. (1.17), 1/γ is the time scale over which the BP loses
information about its initial velocity. Then, for γt � 1, the velocity of the BP has
reached a quasi-steady state and its variation is negligible1 compared to its amplitude,
v̇/γ � v. Neglecting the inertia term in the Langevin equation Eq. (1.10), we obtain the
overdamped Langevin equation

Mγẋ(t) = F (x(t), t) + FL(t). (1.27)

which is a random differential equation of the first order in the position. This changes
the time scale used to coarse-grain the system from τL

B to τE
B , which is much bigger. This

allows us to focus only on the position of the BP and not on the speed, the latter being
ill-defined. Eq. (1.27) is called the overdamped Langevin equation because we made the
approximation of large damping coefficient. Dividing Eq. (1.27) by Mγ and introducing
the diffusion coefficient DE = D/(Mγ)2, the overdamped Langevin equation has the
form

ẋ(t) =
1

Mγ
F (x(t), t) + FE(t). (1.28)

where FE is still a Gaussian white noise, but whose intensity is

DE =
kBT

Mγ
(1.29)

so that the diffusion coefficient is the same as in the Einstein approach.
1If the force is time-dependent, its characteristic frequency also needs to be small compared to γ.
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1.6 Fokker-Planck equation

As mentioned in 1.3, the Langevin equation gives the dynamics of a single BP using
random forces, leading to a stochastic and non-deterministic equation of motion: if we
solve the Langevin equation many times with exactly the same initial conditions, we
will not get the same time evolution. There is another approach to treat the BM, closer
to Einstein’s approach, where the BP is described by a probability density function.
The equation desribing the temporal evolution of the probability density is called the
Fokker-Planck equation, named after Adriaan Fokker [19] and Max Planck [20], when
the dynamics of the BP is assumed to be Markovian. This is a linear partial differential
equation, of the first order in time, and it can be derived in many ways, in particular it is
a special case of the Kramers-Moyal expansion [21, 22]. In the following, we will not give
the derivation of the Fokker-Planck equation, but we will give its form and concentrate
on the overdamped approximation.

1.6.1 Temporal evolution of the probability density

The probability of finding the BP in position in the interval [x, x + dx] and velocity in
the interval [v, v + dv], at time t, is given by P (x, v, t)dxdv. It can be shown that the
probability density P (x, v, t) satisfies the Fokker-Planck equation

∂tP (x, v, t) = −v∂xP (x, v, t) + ∂v

[(
γv − F (x, t)

M

)
P (x, v, t)

]
+D∂2

vP (x, v, t) (1.30)

as long as the random force FL of the Langevin, equation is a white noise, since the
process is then Markovian. In this special case of a dynamics in the phase space (x, v),
this equation is also called the Klein-Kramers equation. If we consider the overdamped
limit, the probability density no longer depends on v and the Fokker-Planck equation
becomes

∂tP (x, t) = −∂x
[
F (x, t)

Mγ
P (x, t)

]
+DE∂

2
xP (x, t) (1.31)

which is called the Smoluchowski equation [23]. See [24–26] for a rigorous mathematical
proof of the convergence of the Klein-Kramers equation to the Smoluchowski equation.
This equation is equivalent to the convection-diffusion equation without source term.
Note that, for both Eq. (1.30) and Eq. (1.31), in the limit of no diffusion, we recover the
continuity equation, with the first-order derivative terms of the right-hand sides being
the associated probability current. If we consider the special case where the BP is free,
i.e. F (x, t) = 0, we then recover exactly the diffusion Eq. (1.1) obtained in Einstein’s
approach.

1.6.2 Stationary solution of Smoluchowski equation

If we write the force F as the gradient of a potential, F (x, t) = −∂xV (x, t), it is straight-
forward to see that a stationary solution of the Smoluchowski , given by Eq. (1.31), is
nothing more than the Boltzmann distribution

Peq(x) =
1

Z
e−V (x)/kBT (1.32)

where Z is the partition function that is computed by normalising the probability density
to unity. This distribution is the one we would get if we solved the Langevin equation for a
very long time for many independent BPs and realised a histogram of the positions of the
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different BPs, since both approaches, Langevin and Fokker-Planck, are equivalent [27].
They use a different point of view on the system but the macroscopic quantities that
they provide are the same.

1.7 Stochastic differential equation

Throughout this chapter, we have referred to the Langevin equation as a random differ-
ential equation (RDE). We derived it by starting from the standard differential equation
of motion for a particle, i.e., Newton’s law, and introducing a random force. In the
overdamped limit, the position of the Brownian particle (BP) is described by

ẋ(t) = b(x(t), t) + ζ(t), (1.33)

where b(x(t), t) and ζ(t) represent the deterministic and random contributions, respec-
tively. We identified ζ(t) as Gaussian white noise, characterized by its autocorrelation
function:

〈ζ(t)ζ(t′)〉 = 2Dδ(t− t′), (1.34)

where D denotes the noise amplitude. This traditional approach assumes that it is
mathematically valid to express the derivative of the position in this form. However, from
a rigorous mathematical standpoint, the derivative of the position is not well-defined. The
appropriate mathematical framework to address such processes is Itô calculus [28]. It
can be shown that the Langevin equation can be associated to a stochastic differential
equation (SDE), which involves the increment of the position rather than its derivative.
The SDE corresponding to the overdamped Langevin equation is

dx(t) = b(x(t), t)dt+ dW (t), (1.35)

where dx(t) = x(t + dt) − x(t) represents the position increment over the time interval
dt, and W (t) is a Wiener process. The Wiener process is a stochastic process that can
be interpreted as the integral of white noise, with increments that are Gaussian random
variables with zero mean and variance dt. Specifically, we have

〈dW (t)〉 = 0, (1.36)

and
〈dW (t)2〉 = 2Ddt. (1.37)

The SDE provides a more rigorous framework for handling stochastic processes and is
widely adopted in the field of stochastic analysis. This approach is more general than
the RDE formulation, as, according to the Wong-Zakai theorem [29], it is possible to
associate an SDE with an RDE under certain conditions (though the converse is not
always true). Finally, the probability density associated with Eq. (1.35) is governed by
the Fokker-Planck equation:

∂tP (x, t) = −∂x [b(x, t)P (x, t)] +D∂2
xP (x, t), (1.38)

which is identical to the Smoluchowski equation given by Eq. (1.31). The Fokker-Planck
equation derived from an SDE is always equivalent to the probability density associated
with the corresponding RDE. In the subsequent chapters, we will use the SDE framework.
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1.8 Conclusion

In this chapter, we have explored the phenomenon of Brownian motion from its historical
origins to the mathematical models that describe it. Brownian motion, initially observed
by Robert Brown in 1827, is a fundamental process characterized by the random, erratic
motion of particles suspended in a fluid. This motion arises from collisions between the
particles and the fast-moving molecules of the surrounding fluid, a concept that has been
foundational in various scientific disciplines, including physics, chemistry, biology, and
finance.
The historical development of the theory behind Brownian motion involved significant
contributions from several key figures. Louis Bachelier provided an early probabilistic
approach in his 1900 thesis, and Albert Einstein’s 1905 work offered the first quantitative
explanation, linking the phenomenon to the molecular theory of heat. Einstein’s model
established the relationship between Brownian motion and diffusion, culminating in the
derivation of the diffusion equation and the Einstein relation, which connects the diffusion
coefficient to measurable physical quantities. Paul Langevin further advanced the under-
standing of Brownian motion by introducing a dynamical approach in 1908. His Langevin
equation provides a random differential equation that describes the velocity and position
of a Brownian particle under the influence of random forces. This approach captures
the probabilistic nature of the system, accounting for the random collisions with fluid
molecules that drive the motion. We have also discussed the coarse-graining technique,
which simplifies the description of Brownian motion by averaging out the fast degrees of
freedom of the fluid particles. The resulting Langevin equation describes the system’s
behavior over a more extended time scale and is essential in fields such as statistical
mechanics and stochastic processes. Moreover, we explored the solutions of the Langevin
equation, both for the velocity and position of the Brownian particle, and introduced
the concept of the overdamped limit, where the inertia of the particle is negligible. This
leads to the overdamped Langevin equation, which focuses on the position of the particle
alone and is closely related to Einstein’s approach. Finally, we introduced the Fokker-
Planck equation, which describes the time evolution of the probability density function
of the particle’s position and velocity. In the overdamped limit, this equation reduces to
the Smoluchowski equation, which further simplifies the description of the system. We
showed that both the Langevin and Fokker-Planck approaches are equivalent and lead
to the same macroscopic predictions.
In conclusion, the study of Brownian motion has provided profound insights into the
behavior of particles at the microscopic level, establishing a crucial link between random
molecular collisions and macroscopic diffusion processes. The mathematical frameworks
developed to describe this phenomenon, including the Einstein relation, Langevin equa-
tion, and Fokker-Planck equation, continue to be fundamental tools in the study of
stochastic processes and statistical mechanics. These models do not only enhance our
understanding of physical systems but also find applications in a wide range of scientific
and engineering disciplines.
In the following chapter, we aim to extend this mathematical formalism to describe
quantum systems, which requires us to explore modifications that render the formalism
time-reversible, in contrast to the inherently irreversible nature of classical Brownian
motion, as it is an open system.
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Key Takeaways

This chapter has been devoted to introducing the basic tool of the mathematical
description of Brownian motion. We have seen that the Brownian particle can be
described in two different but equivalent ways. The first is based on the Langevin
equation, which is a random differential equation describing the motion of the
BP in phase space. The second is based on the Fokker-Planck equation, which
is a partial differential equation describing the time evolution of the probability
density of the BP.

The Langevin equation includes a random force, the Langevin force, which we will
consider as Gaussian white noise. It is possible to neglect the inertial effect of the
BP, leading to an overdamped Langevin equation

ẋ(t) =
1

Mγ
F (x(t), t) + FE(t)

with FE is a Gaussian white noise with intensity

DE = kBT/Mγ

and satisfying

〈FE(t)〉 = 0 and 〈FE(t)FE(t′)〉 = 2DEδ(t− t′).

The associated Fokker-Planck equation is the Smoluchowski equation, which is a
partial differential equation describing the temporal evolution of the probability
density of the BP in the position space

∂tP (x, t) = −∂x
[
F (x, t)

Mγ
P (x, t)

]
+DE∂

2
xP (x, t).

It is possible to rewrite the Langevin equation in the form of a stochastic differential
equation, which is more rigorous from a mathematical point of view. The SDE
associated with the overdamped Langevin equation is

dx(t) =
1

Mγ
F (x(t), t)dt+ dW (t),

where the W is a Wiener process satisfying to

〈dW (t)〉 = 0 and 〈dW (t)2〉 = 2DEdt.

These equations are the basic tools for describing the Brownian motion of a particle
in a fluid. They are the starting point for the study of the dynamics of Brownian
particles, and will be used below in the case of the quantum dynamics of a particle
in a potential.
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CHAPTER 2

Stochastic quantum mechanics

In science one tries to tell people, in such a way as
to be understood by everyone, something that no

one ever knew before. But in the case of poetry, it’s
the exact opposite!

— Paul Dirac

In this chapter, we introduce the Nelson formalism in quantum mechanics, which pro-
vides a stochastic approach to describe quantum systems using time-reversible stochastic
processes. We begin in Sec. 2.1 by discussing the challenges of applying stochastic meth-
ods to closed quantum systems and introducing the concept of time-reversible stochastic
processes, leading to Nelson’s stochastic mechanics. In Sec. 2.2, we define forward and
backward processes and their associated derivatives, establishing the foundation for time-
reversible stochastic descriptions. Next, in Sec. 2.3, we introduce an acceleration law in
configuration space, analogous to Newton’s second law, which incorporates dynamics into
the stochastic framework. Applying these concepts to quantum systems in Sec. 2.4, we
derive the Schrödinger equation from the acceleration law and establish the connection to
standard quantum mechanics. In Sec. 2.5, we discuss numerical methods for solving the
Nelson equation, focusing on the second-order Helfand-Greenside method and outlining
the computational methodology. We illustrate the application of the Nelson formalism
in Sec. 2.6 with numerical examples involving a free Gaussian wavepacket and a particle
encountering a potential barrier, demonstrating how the approach can reproduce key
quantum phenomena such as tunneling and the Heisenberg uncertainty principle. Fi-
nally, in Sec. 2.7, we summarize the key points and discuss the implications of the Nelson
formalism in quantum mechanics.
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Chapter 2

2.1 Introduction

In the previous chapter, we introduced the basic concepts needed to describe the dy-
namics of a system influenced by randomness. The goal of this study is to apply these
mathematical ideas to describe a closed quantum system. At first, it might seem un-
usual to use a stochastic approach for a quantum system because quantum mechanics is
usually time-reversible. This means that the Schrödinger equation, which governs quan-
tum mechanics, remains unchanged when time is reversed, as long as the time reversal
operator1 and the system’s Hamiltonian commute. On the other hand, the stochastic
approach, often used to describe systems like Brownian motion, typically does not have
this time-reversibility. This is because it includes random elements in the equations and
is usually applied to systems that are not in equilibrium. However, as Schrödinger sug-
gested in 1931 [30], it is possible to make a stochastic description of a system that is
time-reversible at the level of probability density. This idea is the foundation of Nelson
stochastic mechanics [31]. This quantum theory is related to the de Broglie-Bohm inter-
pretation of quantum mechanics, as discussed in Refs.[32–34]. In the de Broglie-Bohm
theory, quantum particles are thought to have definite positions and are guided by the
wave function. Louis de Broglie first presented these ideas at the Solvay Conference in
1927, as detailed in Ref.[35]. Before we go deeper into Nelson’s formalism, it is helpful
to look at the de Broglie-Bohm pilot-wave theory since it is closely related to Nelson’s
mechanics. Understanding this theory will give us a better grasp of Nelson’s approach.
In both theories, particles are assumed to have well-defined positions, with each particle
being guided by the wavefunction ψ, which is why it is called a pilot wave. In the de
Broglie-Bohm theory, it is assumed that the wave function ψ satisfies the Schrödinger
equation

i~∂tψ(x, t) = Ĥψ(x, t), (2.1)

where ~ is the reduced Planck constant and Ĥ is the Hamiltonian of the system con-
sidered. However, as we will see, this is not the case in the Nelson approach. In this
approach, the wave function alone is not sufficient to fully describe a quantum system.
To complete the description, the positions of the particles, considered hidden from the
observer’s point of view, must also be specified. Therefore, it is essential to write the
equation for the trajectories. This can be done by introducing the probability current
associated with the wave function, defined as

j(x, t) =
~
m

Im
[
ψ̄(x, t)∂xψ(x, t)

]
, (2.2)

where m is the mass of the quantum particle, Im refers to the imaginary part, and ψ̄
denotes the complex conjugate of ψ. It can be shown from the Schrödinger equation that
ψ and j satisfy the continuity equation

∂t|ψ(x, t)|2 + ∂xj(x, t) = 0. (2.3)

The probability current allows us to define a velocity, similar to how it is done in fluid
dynamics. This velocity is simply the ratio of the current to the density:

v(x, t) =
j(x, t)

|ψ(x, t)|2 . (2.4)

If we express the wave function in polar form

ψ(x, t) = R(x, t)eiS(x,t)/, (2.5)
1The operator that changes t into −t and conjugates the wavefunction.
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where R(x, t) =
√
|ψ(x, t)|2 is the amplitude and S(x, t) is the phase, then the current

becomes
j(x, t) =

~
m
|ψ(x, t)|2∂xS. (2.6)

and the velocity field is

v(x, t) =
~
m
∂xS(x, t). (2.7)

To find the particle’s trajectory x(t), we can evaluate the velocity field at x(t) and
integrate Eq. (2.7) with respect to time, given an initial condition x0. The velocity is the
time derivative of the position, leading to the de Broglie guiding equation:

dx =
~
m
∂xS dt, (2.8)

which describes the change in position dx over a time interval dt. Here, the phase S of
the wave function serves as a guiding principle for the trajectories. Thus, to calculate
the particle’s path, the wave function must first be determined. It should be noted that
de Broglie-Bohm’s theory is deterministic: if the initial position is known, the particle’s
future position can be predicted. The probabilistic nature of quantum mechanics arises
from our uncertainty about the initial position. Now that we have explained the concept
of a well-defined trajectory, we will present the stochastic version of the de Broglie-Bohm
theory, known as Nelson’s theory of quantum mechanics. As we will see, there are many
similarities between the two theories. A comparison of the guiding equation Eq. (2.8)
with Nelson’s equation will highlight them in the following sections.

2.2 Time reversibility for stochastic processes

We aim to describe the dynamics of a quantum system in terms of stochastic processes.
We have seen that the de Broglie equation describes the evolution of the positions of
quantum particles, similar to how the overdamped Langevin equation describes classical
Brownian particles (where the equation of the motion describes the change of position
over time). We might expect to obtain a generalization2 of the guiding equation that
includes a stochastic term, turning the position into a random process whose probability
distribution follows a Fokker-Planck equation, assuming no memory effects as is typical
for closed quantum systems. Along the chapter, we will focus on the dynamics of a single
quantum particle in configuration space, i.e., considering only the particle’s position and
not its velocity. The goal is to construct a stochastic process whose probability density is
time-reversible, then to develop the Nelson formalism from it and verify that it reproduces
the results of quantum mechanics.

2.2.1 Forward and backward processes

Let us write the equation of motion for the particle as

dx(t) = b(x(t), t)dt+ dW (t), (2.9)

where x is the position of the particle. This equation consists of two terms: a determinis-
tic term b(x, t), which can be interpreted as the mean velocity of the particle and acts as
the force applied to the particle, and a stochastic term dW (t) = W (t+dt)−W (t), which

2Nelson approach is not a generalization of de Broglie-Bohm theory as both theories do not share the
same initial axiomatic.
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is a Gaussian process, meaning its distribution is Gaussian. Here, W (t) is a Wiener
process with the same properties as the one mentioned in Chap. 1. This equation gives
the increment of position dx = x(t + dt) − x(t) corresponding to a time interval dt. In
the case of the de Broglie guiding equation, b is proportional to the gradient of the phase
of the wavefunction, and the Wiener process is null. As we are dealing with a random
process, we can average over the realizations of the Wiener process. We still have that
〈dW (t)〉 = 0 and 〈dW (t)dW (t′)〉 = 2DQdt, where DQ is the diffusion coefficient, which
will be discussed later. These considerations apply to a positive time increment dt, and
Eq. (2.9) is referred to as the forward process. We can also consider the associated
backward process, defined as

dx∗(t) = b∗(x(t), t)dt+ dW ∗(t), (2.10)

with the ∗ referring to the backward process. The difference here is that dx∗(t) =
x(t) − x(t − dt), meaning that we approach x(t) from the future. In this case, b∗, the
backward mean velocity or drift, is evaluated at x(t). The Wiener process W ∗ shares the
same properties asW . To ensure time reversibility, we need to impose that the probability
density of the forward process is the same as that of the backward process, making it
a solution to both the forward and backward Fokker-Planck equations. Imposing this
condition implies that the drifts b and b∗ are not independent but are related by an
equation that we will need to derive.

2.2.2 Forward and backward derivatives

The drifts b and b∗ are analogous to the mean velocity of the particle in the forward and
backward processes, respectively. However, since the position is not differentiable with
respect to time, we need to introduce a new type of derivative to define the concept of
velocity. Similar to the material derivative in fluid mechanics3, we can define the forward
derivative [36] of a function of the position x and the time t as

Df(x, t) = lim
∆t→0

1

∆t
〈f(x(t+ ∆t), t+ ∆t)− f(x(t), t) | x(t) = x〉 , (2.11)

where we introduced the conditional expectation notation 〈· | x(t) = x〉 to indicate that
the expectation is taken over the realizations of the Wiener process that satisfy x(t) = x.
Similarly, the backward derivative is defined as

D∗f(x, t) = lim
∆t→0

1

∆t
〈f(x(t), t)− f(x(t−∆t), t−∆t) | x(t) = x〉 . (2.12)

The computation of the conditional expectation is done using the conditional probability
density P (x, t | x′, t′), which gives the probability of finding the particle at position x
at time t, given that it was at position x′ at time t′. The conditional expectation is
assumed to follow both the forward and backward Fokker-Planck equations, just like
the probability density. Using the statistical properties of the Wiener process, it is
straightforward to show that the derivatives can be written as

Df(x, t) = ∂tf(x, t) + b(x, t)∂xf(x, t) +DQ∂
2
xf(x, t), (2.13)

3In fluid mechanics, the material derivative along a line of flow is defined as Df(x, t) =
lim

∆t→0
∆t−1[f(x(t+ ∆t), t+ ∆t)− f(x(t), t)]x(t)=x, leading to Df(x, t) = ∂tf(x, t) + v(t)∂xf(x, t), where

v(t) is the velocity of the fluid.
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and
D∗f(x, t) = ∂tf(x, t) + b∗(x, t)∂xf(x, t)−DQ∂

2
xf(x, t). (2.14)

These expressions are obtained by performing a Taylor expansion of the function f around
x(t) to the first order in ∆t, which corresponds to the second order in ∆x as

〈
dW 2

〉
∼ ∆t.

We see that the difference between the forward and backward derivatives is the sign of
the diffusion term. If the Wiener process were not present, the forward and backward
derivatives would be identical, and we would recover the classical material derivative. If
we apply this definition to the position x, we obtain the forward and backward velocity
fields as

Dx = b(x, t) and D∗x = b∗(x, t), (2.15)

and since b 6= b∗, we see that the forward and backward derivatives are not the same,
which is consistent with the non-differentiability of the trajectory.

2.2.3 Relation between the forward and backward processes

In Appendix B, we provide an explicit demonstration of the relationship between the
forward and backward drifts by deriving the backward derivative in terms of forward
process quantities. We find that the drifts are related by the equation

b∗(x, t) = b(x, t)− 2DQ∂x lnP (x, t), (2.16)

which is a direct consequence of the requirement that both forward and backward pro-
cesses share the same probability density. The Fokker-Planck equation associated with
the forward process is given by

∂tP = −∂x(bP ) +DQ∂
2
xP, (2.17)

and the one associated with the backward process is

∂tP = −∂x(b∗P )−DQ∂
2
xP. (2.18)

It is straightforward to see that the relation between b and b∗ allows us to derive one
equation from the other. The sum of the two Fokker-Planck equations cancels out the
diffusion terms and gives the equation

∂tP + ∂x(vP ) = 0, (2.19)

where we define the velocity field as

v(x, t) =
b(x, t) + b∗(x, t)

2
= b(x, t)−DQ∂x lnP (x, t), (2.20)

as the mean of the forward and backward drifts. This equation is the continuity equa-
tion for the probability density P , and it closely resembles the one obtained from the
Schrödinger equation. In the case of thermal Brownian motion, the velocity field v
would correspond to an externally applied field, as b would be directly proportional to
the force applied to the particle. If we subtract the two Fokker-Planck equations, the
time derivative of the probability density cancels out, and we obtain the equation

∂x(uP ) = DQ∂xP, (2.21)

where we define the drift difference as

u(x, t) =
b(x, t)− b∗(x, t)

2
= DQ∂x lnP (x, t), (2.22)
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which we call the osmotic velocity field, in reference to Einstein’s theory of Brownian
motion, where the velocity acquired by a Brownian particle (BP) in equilibrium with an
applied force has the same form4. Morevoer, Eq. (2.22) is very similar to the Fick’s law.
Eq. (2.21) is equivalent to Eq. (2.16) and shows that the connection between b and b∗ is
mediated by the probability density P . We see that the two new velocity fields, v and u,
both depend on the density. We can combine v and u to recover the drifts b and b∗ as
b = v + u and b∗ = v − u.

2.3 Definition of an acceleration law

The considerations in the previous section were based on the kinematics of stochastic
motion. We discussed the necessity of ensuring time reversibility in a stochastic descrip-
tion of motion. To complete this kinematic description with a dynamic one, we need to
introduce the concept of acceleration for the particle. The configuration space descrip-
tion of the motion, like the overdamped Langevin equation, is a non-inertial description.
However, quantum mechanics involves inertial aspects, as indicated by the presence of
mass in the Schrödinger equation. Therefore, it is essential to introduce an acceleration
law.

2.3.1 Acceleration law in phase-space

Let us revisit the Ornstein-Uhlenbeck process discussed in the previous chapter to moti-
vate the introduction of an acceleration law. The equation of motion for the particle is
given by

mdv(t) = [F (x(t), t)−mγv(t)]dt+ dW (t), (2.23)

where v is the velocity of the particle, F is the force applied to the particle, γ is the
friction coefficient, and dW is a Wiener process. If we use the definitions of the forward
and backward derivatives introduced in the previous section and apply them to the
velocity, we obtain

mDv = F −mγv, (2.24)

and
mD∗v = F +mγv. (2.25)

If we sum the two equations, we obtain

a =
Dv +D∗v

2
=
F

m
, (2.26)

which is Newton’s second law for conservative forces in the case of the Ornstein-Uhlenbeck
process. The quantity a can be viewed as the mean acceleration of the particle.

2.3.2 Acceleration law of Nelson

Inspired by this result, we can define the acceleration of the particle in configuration
space. Since the mean forward and backward velocities of the particle are given by Dx
and D∗x, it is possible to use these to define the mean acceleration. We must ensure

4The osmotic velocity ensures the time reversibility of Nelson’s dynamics by effectively compensating
for the fluctuations experienced by the particle.
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that it is time-reversible, i.e., that the forward and backward mean accelerations are the
same. Several choices are possible; one possibility is to use

a =
1

2
(DD∗ +D∗D)x =

1

2
(Db∗ +D∗b), (2.27)

which is consistent with the mean acceleration of the Ornstein-Uhlenbeck process while
remaining within the configuration space approach. We will not explore other possibili-
ties, such as a = 1

2(DD +D∗D∗)x, because the choice in Eq. (2.27) allows us to recover
standard quantum mechanics, as we will demonstrate later. However, Ref. [37] compares
the consequences of different choices. Replacing the forward and backward derivatives
and drifts with their expressions in terms of v and u leads to the acceleration law

a = ∂tv + v∂xv − u∂xu−D∂2
xu. (2.28)

2.4 Nelson description of quantum systems

In the previous section, we discussed the implications of imposing time reversibility on
a system whose dynamics are governed by a stochastic equation in configuration space.
Now, we will apply these concepts to the description of a quantum system. We will see
that Nelson’s theory of quantum mechanics allows us to derive the Schrödinger equation
as a consequence of these considerations [38, 39]. Note that a similar approach was
developed by Fényes in 1952 in an independent work [40].

2.4.1 Physical background

Nelson, like de Broglie, assumed that it is possible to define trajectories for quantum
particles. These trajectories are hidden from the observer, and the wavefunction alone
is insufficient to fully describe the quantum system. The quantum particle undergoes a
random motion whose origin will not be debated in this work, as this stochastic approach
will only be used as a mathematical tool for controlling quantum systems. To describe
the dynamics of the quantum particle, Nelson rejected the phase-space description5 of
motion in favor of a configuration space approach. He then postulated that the equation
of motion is given by Eq. (2.9), which we recall here for clarity:

dx(t) = b(x(t), t)dt+ dW (t), (2.29)

where the process is assumed to be Markovian. We will refer to this as Nelson’s equation.
To determine the amplitude of the Wiener process W , we need to specify the value
of the diffusion coefficient DQ. We know that quantum effects become less significant
as the mass increases. Thus, we can assume that the diffusion coefficient is inversely
proportional to the mass m of the quantum particle, leading to6

DQ =
~

2m
, (2.30)

5He argued that if we were to use a phase-space description, it would require the inclusion of a
friction force. A particle in rectilinear uniform motion would experience this dissipative force, leading
to a gradual decrease in its velocity. Conversely, a particle at rest would not be subject to this friction,
contradicting the principle of relativity, which states that the laws of physics are the same in all inertial
frames. Therefore, motion at rest cannot be distinguished from uniform motion.

6This choice is not unique, and other choices are possible as shown in Ref. [41].
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where ~, identified as the reduced Planck constant, sets the scale at which quantum
effects become significant. The statistical properties of W are then

〈dW (t)〉 = 0 and 〈dW (t)dW (t+ dt)〉 = 2DQdt. (2.31)

The key distinction between classical stochastic mechanics and Nelson’s equation is that
the deterministic term, denoted as b, is not externally prescribed as in the case of an
external force applied to a classical system. Instead, it is regarded as an intrinsic quan-
tity of the model, similar to the de Broglie-Bohm approach, where the gradient of the
phase drives the trajectories, as shown in Eq. (2.8). In Sec. 2.3.2, we explained that the
external force allows the definition of the mean acceleration of the particle. However, it
does not accelerate the particle, as its influence is observed at the level of the velocity.
This is because Nelson’s equation takes the form of an overdamped Langevin equation,
representing a large friction limit7 within the context of classical stochastic mechanics.

2.4.2 Derivation of the Schrödinger equation

In Sec. 2.2, we discussed the mathematical requirements to obtain a process whose prob-
ability density P satisfies both the forward and backward equations. We introduced
two mean velocity fields, v(x, t) and u(x, t), given by Eq. (2.20) and Eq. (2.22) respec-
tively, such that P satisfies the continuity equation Eq. (2.19) and Newton’s second law
Eq. (2.28) holds for externally prescribed forces. From these equations, it is possible to
derive the Schrödinger equation, as we will show below. To do so, let us express the
external force F (x, t) as the gradient of a potential V (x, t):

F (x, t) = −∂xV (x, t), (2.32)

and assume that v(x, t) can be written as the gradient of a velocity potential S(x, t):

v(x, t) =
~
m
∂xS(x, t). (2.33)

Substituting Eq. (2.32) and Eq. (2.33) into the acceleration law Eq. (2.28), and integrating
with respect to x, we obtain the quantum Hamilton-Jacobi equation (HJE):

~∂tS(x, t) +
~2

2m
(∂xS(x, t))2 + V (x, t) + VQ(x, t) = 0. (2.34)

Classically, the HJE is an equation of analytical mechanics, derived after a transformation
of the system’s Hamiltonian in phase-space. It simplifies the resolution of the equations
of motion and provides an alternative description of particle motion8, which can be re-
garded as wave-like, thus connecting more closely with quantum mechanics [43, 44]. This
equation is a first-order, non-linear partial differential equation. In quantum mechanics,
it has the same form as in classical mechanics, but with an additional potential term
called the quantum potential VQ, defined as

VQ(x, t) = − ~2

2m

∂2
x

√
P (x, t)√
P (x, t)

. (2.35)

7This might seem paradoxical, given that quantum mechanics is a frictionless theoretical framework.
8It is also used in other fields, such as mathematics in dynamic programming, where it is a special

case of the Hamilton-Jacobi-Bellman equation [42].
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This potential was initially introduced in the de Broglie-Bohm formulation [32, 33], but
it can also be derived from the standard formulation by writing the Madelung’s equa-
tions9. This extra potential depends on the curvature of the amplitude of the probability
density [49], but it is independent of the magnitude itself. It is a non-local potential [50]
responsible for quantum effects, such as quantum interferences [51]. For example, it can
explain the Aharanov-Bohm effect [52]. In the limit ~ → 0, this term vanishes, and the
quantum Hamilton-Jacobi equation reduces to the classical Hamilton-Jacobi equation,
whose solution S can be called the Hamilton’s principal function, or the action [53]. The
concept of the quantum potential highlights the departure of quantum mechanics from
classical mechanics, emphasizing the wave-like nature of particles and the role of the
wavefunction’s structure in determining the dynamics of quantum systems.
From the continuity equation Eq. (2.19) and the quantum HJE Eq. (2.34), we can derive
the Schrödinger equation. Indeed, by combining the function S and the probability
density P as a complex function

ψ(x, t) =
√
P (x, t)eiS(x,t), (2.36)

it is possible to show that the Schrödinger equation

i~∂tψ(x, t) = − ~2

2m
∂2
xψ(x, t) + V (x, t)ψ(x, t) (2.37)

is satisfied by this function. The solution of Eq. (2.37) will be referred to as the wavefunc-
tion, as in standard quantum mechanics. Using the form Eq. (2.36), it is straightforward
to rewrite the forward drift in Nelson’s theory as

b(x, t) =
~
m
∂xS(x, t) +DQ∂x lnP (x, t) =

~
m
∂x(Re + Im) lnψ(x, t). (2.38)

It is important to note that in Nelson’s theory, the Schrödinger equation is a consequence
of the theory, not an assumption as in the de Broglie-Bohm approach. One interesting
subtlety to discuss is the quantization condition. If the Hamilton-Jacobi equation is
derived from the Schrödinger equation, S is defined as the phase of the wavefunction, with
values lying within an interval of 2π. However, in Nelson’s approach, S is introduced as a
velocity potential, with no such restriction on its values. The wavefunction is constructed
from S and the probability density, and the quantization condition is not imposed on
S, it is a continuous function. Then, although both equations take the same form, the
solutions of Eq. (2.37) are not exactly the same as those of the standard Schrödinger
equation, as the conditions on the multivaluedness of the wavefunction are not imposed
in the same manner. See Ref. [54] for a deeper discussion on this point.
This distinction is important when considering the numerical resolution of Nelson’s equa-
tion, as we will see in the next section. Finally, Nelson’s equation is a stochastic equation
that describes the trajectory of a single particle. Various interpretations can be given
to this trajectory, and whether it has a true physical significance is not the focus of this
work. It is interesting to note that the wavefunction of a quantum system describes the
probability of finding the particle at a given position, while Nelson’s equation provides
a possible trajectory for this particle. However, a single trajectory by itself provides

9This is a reformulation of the Schrödinger equation in terms of the probability density and the
velocity field (gradient of the phase) of the wavefunction. It consists of two coupled equations: one is the
continuity equation, and the other is the Euler equation or the quantum Hamilton-Jacobi equation [45].
This reformulation allows quantum mechanics to be expressed in terms of hydrodynamic variables, similar
to the Navier-Stokes equation in fluid mechanics [46, 47]. See Ref. [32, 48] for more details.
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limited information about the quantum system; it is the ensemble of trajectories that is
pertinent. Therefore, to describe a quantum system using Nelson’s approach, we need to
solve Nelson’s equation multiple times, with different initial conditions, to obtain a sta-
tistical description of the quantum system. We expect that the ensemble of trajectories
will yield results consistent with the wavefunction.

2.5 Numerical resolution of the Nelson equation

In this section, we will describe a numerical method for solving the Nelson equation. For
simplicity, we will assume that the wavefunction of the quantum system is known ana-
lytically. If the wavefunction is not known, we must first solve the Schrödinger equation
and address the numerical challenges associated with computing the gradient of its phase.
The procedure for this is detailed in Appendix D. If the wavefunction is known, we can
derive an analytical expression for the forward drift b that appears in the Nelson equation
Eq. (2.29), enabling us to compute the trajectories of the quantum particles. To achieve
this, we will use the Helfand-Greenside method [55], also known as Heun’s method, a
numerical scheme specifically adapted for stochastic differential equations. While other
approaches, such as the Euler-Maruyama method or the Wright algorithm, are possible,
we will not discuss them here. Due to the stochastic nature of the problem, standard
numerical methods, like the Runge-Kutta methods, are not suitable, as we will explain
below.

2.5.1 Discretization of the variables

Throughout the remainder of this chapter, we will use a system of units where ~ = 1
and m = 1. In this system, the Nelson diffusion coefficient given by Eq. (2.30) simplifies
to DQ = 1/2. As mentioned at the end of the previous section, we will solve the Nelson
equation for different initial conditions to obtain a statistical description of the quan-
tum system. This approach is equivalent to considering an ensemble of N independent
particles, each following the Nelson equation. These particles will be indexed by n. To
proceed, we need to discretize both time and space. There are two grids for space: a
fixed grid and a moving grid. The fixed grid is evenly spaced with Nx increments of
∆x, and the positions are denoted by xj . The moving grid consists of the positions of
each particle at a given time. The wavefunction, which is a solution of the Schrödinger
equation, is defined on the fixed grid. When solving the Nelson equation, we evaluate the
wavefunction and the drift b at the positions of the particles, which are on the moving
grid. Time is divided into Nt values, ti, with 0 ≤ i ≤ Nt − 1, uniformly spaced with
increments ∆t. The position of a particle at time ti is denoted as x(ti) = xi, and the
function b, with arguments x(ti) and ti, is written as bi = b(xi, ti). An increment of
position dx(ti) = dxi corresponds to the difference xi+1 − xi.

2.5.2 Second-order Helfand-Greenside method

Deterministic differential equation To solve differential equations, it is common to
use numerical schemes such as finite differences or Runge-Kutta methods [56, 57]. For a
deterministic equation of the form

dx(t) = b(x(t))dt, (2.39)
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the solution can be expressed as

x(t+ ∆t) = x(t) +

∫ t+∆t

t
dt1 b

(
x(t) +

∫ t1

t
dt2 b(x(t) + · · · )

)
, (2.40)

and it is possible to truncate the integral at the desired order in ∆t, leading to

x(t+ ∆t) = x(t) + ∆tb(x(t)) +
1

2
∆t2b(x(t))b′(x(t)) (2.41)

for the second order. The aim of the Runge-Kutta method is to express x(t + ∆t) as
a linear combination of the values of b at specific points, thereby eliminating derivative
terms. The solution can be written as

x(t+ ∆t) = x(t) + (A1g1 +A2g2)∆t, (2.42)

where g1 and g2 are linear combinations of b, defined as

g1 = b(x(t)), (2.43)
g2 = b(x(t) + βg1∆t), (2.44)

with A1 + A2 = 1 and A2β = 1/2. A Taylor expansion of Eq. (2.43) and Eq. (2.44) in
Eq. (2.42) shows that it recovers Eq. (2.41).

Stochastic differential equation If we now add a Wiener process to the differential
equation, we obtain a stochastic differential equation of the form

dx(t) = b(x(t))dt+ dW (t), (2.45)

with 〈W (t)〉 = 0 and 〈W (t)W (t′)〉 = 2DQ(t − t′). The variable x becomes a stochastic
process, and its values do not exactly describe the system’s dynamics; rather, its prob-
ability density does. This means that numerical schemes used to solve Eq. (2.45) must
recover the statistical properties of x rather than its exact values at specific mesh points.
However, the Wiener process introduces subtleties when adopting the same procedure
as in the Runge-Kutta approach: the stochastic term cannot be written as an integer
power of ∆t in a Taylor expansion, as the variance of the Wiener process is proportional
to the time increment. To address this issue, the Helfand-Greenside method [58, 59] was
developed. This method is a stochastic extension of Runge-Kutta, where the coefficient
g contains randomly generated terms labeled as Zi, with statistical properties 〈Zi〉 = 0
and 〈ZiZj〉 = δij . A formal solution of Eq. (2.45) can be written as

x(t+ ∆t) =x(t) +

∫ t+∆t

t
dt1 b

(
x(t) +

∫ t1

t
dt2 b(x(t) + · · · ) + w0(t1)

)

+ w0(∆t),

(2.46)

where w0 is a Wiener process. Expanding the right-hand side leads to

x(t+ ∆t) =x(t) + ∆tb(x(t)) +
1

2
∆t2b(x(t))b′(x(t))

+ w0(∆t) + b′(x(t))

∫ t+∆t

t
dt1 w0(t1) + · · · .

(2.47)

The difference with Eq. (2.41) lies in the second line of the right-hand side, which contains
the Wiener process, involving terms of order ∆t1/2 or higher when averaged. Without
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delving into the detailed procedure, truncating the expansion at the second order yields
a scheme that recovers the statistical properties of Eq. (2.47) and does not involve the
derivatives of the drift:

x(t+ ∆t) = x(t) + ∆t(A1g1 +A2g2) + λ0

√
2DQ∆t Z0, (2.48)

where g1 and g2 are defined as

g1 = b(x(t) + λ1

√
2DQ∆t Z1), (2.49)

g2 = b(x(t) + βg1∆t+ λ2

√
2DQ∆t Z2), (2.50)

and the coefficients involved in the expansion must satisfy

A1 +A2 = 1, (2.51)

βA2 =
1

2
, (2.52)

λ2
0 = 1, (2.53)

λ0(A1λ1 +A2λ2) =
1

2
, (2.54)

A1λ
2
1 +A2λ

2
2 =

1

2
, (2.55)

with Z0, Z1, and Z2 being three random variables following a normal distribution. In
the following, we will use

A1 = A2 =
1

2
, (2.56)

β = 1, (2.57)
λ0 = λ2 = 1, (2.58)

λ1 = 0. (2.59)

2.5.3 Methodology

Before providing numerical examples of the Nelson dynamics, let us summarize the entire
procedure to solve a quantum problem using the Nelson formalism.

ä Choose an initial guiding wavefunction ψ(x, 0) and the fixed spatial grid.

ä Solve the Schrödinger equation. We assume an analytical solution for simplicity. If
this is not the case, solve it numerically using the Crank-Nicolson scheme [60] (see
Appendix C).

ä Compute the real and imaginary parts of the wavefunction ψ(x, t) and compute
b(x, t) using Eq. (2.38).

ä Generate N independent particles, each with an initial position xn(0) randomly
chosen according to the probability density P (x, 0) = |ψ(x, 0)|2. If the shape of
the initial wavefunction is not simple, it is possible to use the inverse transform
sampling method [61] to generate the initial positions.

ä Compute the trajectories of the particles using the second-order Helfand-Greenside
method. Since it is necessary to evaluate the drift b(x, t) on the moving grid, spline
interpolation [62] can be used to interpolate the drift from the fixed grid.
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Figure 2.1: Diagram of the methodology to compute the drift of the Nelson equation.

ä Verify that the probability density P (x, t) obtained from the positions of the par-
ticles matches the squared modulus of the wavefunction by creating a histogram of
the particle positions and interpolating the probability density from it using spline
interpolation.

ä Use the trajectories to compute the statistical properties of the quantum system,
such as the mean position or the variance.

To provide a more visual understanding of the methodology, Fig. 2.1 and Fig. 2.2 illustrate
the flowcharts for solving the Schrödinger equation and the Nelson equation, respectively.
These diagrams summarize the steps required to tackle a quantum problem using the
Nelson formalism. In the next section, we will apply this methodology to numerically
study the quantum dynamics of a different system, for which we have an analytical
expression for the wavefunction.

2.6 Numerical examples

In this section, we will apply the methodology described in the previous section to two
different quantum systems. The first system is a free Gaussian wavepacket, for which
we have an analytical solution of the wavefunction. The second system is a potential
barrier, for which we can have an approximated analytical solution of the wavefunction.

2.6.1 Free Gaussian wavepacket

We consider the free Schrödinger equation in one dimension, given by

i~∂tψ(x, t) = − ~2

2m
∂2
xψ(x, t), (2.60)

with a Gaussian wavepacket as the initial condition

ψ(x, 0) =

(
1

2πσ2
0

)1/4

exp

(
−(x− µ)2

4σ2
0

)
, (2.61)
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Figure 2.2: Flowchart of the algorithm to solve the stochastic Nelson equation.

where µ is the mean position of the wavepacket and σ0 is the standard deviation. We
consider that the wavevector of the wavepacket is zero, which is the same as being in the
reference frame of the particle. In the following, we will show the shape of the Nelson’s
trajectories and use them to recover known results of the standard quantum mechanics.
In particular, we will use the trajectories to show that the Heisenberg uncertainty prin-
ciple is verified while we deal with particles possesing an exact position. To do so, we
will use a theorem demonstrated by Shucker [63], saying that the limit

p = lim
t→∞

x(t)− x(0)

t
(2.62)

exists for almost every sample path of the Nelson process guided by a free Gaussian
wavefunction. Moreover, it says that the values of p are distributed according to the
Fourier transform ψ̃0 of the initial wavefunction, i.e.

P (p) =
∣∣∣ψ̃0(p, 0)

∣∣∣
2
. (2.63)

This encourages to interpret p as the own constant momentum of the trajectory, and to
use it as the momentum involved in the position-momentum uncertainty relation. We
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will work with units such that ~ = 1 and m = 1. Moreover, we choose σ0 = 1/
√

2 and
µ = 0. The initial wavefunction is then given by

ψ(x, 0) =

(
1

π

)1/4

exp

(
−x

2

2

)
. (2.64)

It is straightforward to show that the wavefunction at time t is given by

ψ(x, t) =

(
1

π

)1/4 1√
1 + it

exp

(
− (1− it)

2(1 + t2)
x2

)
(2.65)

and using Eq. (2.38) we can compute the drift b(x, t) as

b(x, t) =
(t− 1)x

1 + t2
. (2.66)

The Nelson equation is then given by

dx(t) =
(t− 1)

1 + t2
x(t)dt+ dW (t). (2.67)

We solve this equation for N = 104 independent trajectories with the following numerical
parameters: the time step is ∆t = 10−2 for Nt = 103 time iterations, so that the final
time is tf = 10. We plot the results in Fig. 2.3. The trajectories are depicted on the
central panel, in black lines, the horizontal axis being the time t. Initially, the positions
are distributed according to |ψ(x, 0)|2 as shown on the left panel: where the histogram
of the position, in orange, fits the squared modulus of the initial wavefunction, in dashed
red line. We see that all along the time evolution, this is still the case. Indeed, on the
right panel we show the histogram of the positons also matches the squared modulus of
the final wavefunction. For each trajectory we can compute the values of the momentum
p. As, numerically, we are forced to use finite time, the values of p are approximated. In
the limit of large time, the initial position becomes negligeable in Eq. (2.62) and we can
approximate the momentum of the nth trajectory x(n) as p(n) ≈ x(n)(tf)/tf . In Fig. 2.4
we compare the distributions of the values of p for the N = 104 trajectories for two final
times tf = 5 (left panel) and tf = 10 (right panel). In dashed green lines we show the
squared modulus of the Fourier transform of the initial wavefunction. We see that the
distribution of the momentum is closer to the theoretical prediction for tf = 10 than for
tf = 5. It ensures that tf = 10 is large enough to obtain the correct distribution of the
momentum and to be a good approximation to the limit of Eq. (2.62), while tf = 5 is not.
We can use the trajectories to compute the statistical properties of the quantum system.
We will compute the variance on position and momentum and verify the uncertainty
relation for tf = 100. To compute statistical quantities, we use the ensemble average over
of this quantity the trajectories. For example, the average of the momentum is given by

〈p〉 =

〈
x(tf)

tf

〉
=

1

N

N∑

n=1

x(n)(tf)

tf
. (2.68)

To verify the uncertainty relation, we compute the variance ∆(x(tf)) and ∆(p) of the
position and the momentum at the final time. Note that even if the p-distribution
is the Fourier transform of the initial wavefunction, ∆(p) corresponds to the final p
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Figure 2.3: Evolution of particle trajectories under the Nelson equation. The central panel
displays the trajectories of the first N = 103 particles as a function of time t, where the initial
positions are sampled according to the distribution |ψ(x, 0)|2. The left panel shows the initial
position distribution at t = 0, where the orange histogram represents the numerical results,
and the red dashed line corresponds to the theoretical distribution |ψ(x, 0)|2. The right panel
illustrates the final position distribution at tf = 10, with the orange histogram and red dashed
line representing the numerical and theoretical distributions |ψ(x, tf )|2, respectively. The close
agreement between the histograms and the theoretical distributions indicates that the numerical
solution accurately follows the expected quantum mechanical behavior.

dispersion as the moment variance is independent of the time in the case of a free Gaussian
wavepacket10. They are given by

∆(x(tf)) =

√√√√ 1

N − 1

N∑

i=1

(
x(n)(tf)− 〈x(tf)〉

)2 (2.69)

and

∆(p) = ∆

(
x(tf)

tf

)
=

√√√√ 1

N − 1

N∑

i=1

(
x(n)(tf)

tf
− 〈p〉

)2

. (2.70)

We find ∆(x(tf)) = 70.456 and ∆(p) = 0.706, so that their product is indeed larger to
~/2 = 0.5 and the uncertainty relation is verified. But we can go further, as a stronger
form of the uncertainty inequality has been demonstrated by Golin in Ref. [64]. It says
that

∆(x(tf))∆(p) ≥
√

Cov2(x, p) +
~2

4
(2.71)

10This is straightforward to show it by computing σ2
p = −~2

〈
ψ|∂2

x|ψ
〉
. and using the Gaussian form

of the wavefunction given by Eq. (2.65)
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Figure 2.4: Comparison of momentum distributions for N = 104 trajectories at different final
times. The left panel shows the momentum distribution at tf = 5, while the right panel shows
it at tf = 10. The green histograms represent the numerically obtained momentum distribu-
tions, and the dashed green lines correspond to the theoretical prediction given by the squared
modulus of the Fourier transform of the initial wavefunction. The closer agreement between the
histogram and the theoretical curve at tf = 10 indicates that the distribution of momentum
better approximates the theoretical prediction for larger final times. This comparison ensures
that the final time tf = 10, used in the main simulation, is sufficiently large to approximate the
correct momentum distribution.

where Cov(x, p) is the covariance of the position and the momentum and is defined as

Cov(x, p) =
1

N − 1

N∑

i=1

(
x(n)(tf)− 〈x(tf)〉

)(x(n)(tf)

tf
− 〈p〉

)
. (2.72)

We finally obtain Cov(x, p) = 49.736, so that ∆(x(tf))∆(p) = 49.740 > 49.738 =
(Cov2(x, p) + ~2/4)1/2 and the stronger form of the uncertainty relation is also verified.
We see that it is possible to find the statistical properties of the quantum system using
the Nelson trajectories, instead of computing it from averages with the wavefunction.

2.6.2 Potential barrier

In quantum mechanics, the potential barrier system that allows us to study the quantum
tunneling effect and the wavefunction reflection. In one dimension x, it is common to
assume that a free particle arrives from the left side of the barrier (x < 0). If the system
were classical, the particle would be reflected by the barrier and would not be able to
pass through it, if its energy is lower than the potential energy of the barrier. However,
in quantum mechanics, the wavefunction can tunnel through the barrier, and the particle
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can be found on the right side of the barrier (x > 0) with a non-zero probability. This
is an interesting problem as theoretical physicists noted the relevance of the tunneling
effect, more precisely they questioned a definition for the tunneling time [65, 66], which
is the time associated to the passage of a particle through the barrier. While experiments
tried to measure the time by a particle spent traversing the barrier while tunneling [67],
no clear consensus exists about this definition, as there is no time operator in quantum
mechanics. Then, a lot of different proposal for the time spent by a particle in the classical
forbiden region of the potential barrier have been proposed [68–70]. Nelson’s approach
can be used to study this problem, as it gives a trajectory for the particle, and hence also
a natural definition of the tunneling time. This kind of approach has been proposed in
Ref. [71] where they use the collective motion of electrons flow in SGM (Scanning Gate
Microscopy) to propose a ray-tracing approach and obtain effective quantum trajectories
to describe the physics of the electrons in graphene junctions. Note that in this case, the
potential barrier is given by the Lorentzian shape of the SGM tip. In the following, we
will investigate the simple case of a rectangular potential barrier of height V0 and width
d. The Schrödinger equation is given by

i~∂tψ(x, t) = − ~2

2m
∂2
xψ(x, t) + V (x, t)ψ(x, t), (2.73)

where the potential barrier is given by

V (x) = V0[Θ(x)−Θ(x− d)] =





0 if x < 0

V0 if 0 ≤ x ≤ d
0 if x > d

(2.74)

with V0 the height of the barrier, d the width and Θ the Heaviside step function. The
barrier is centered at x = d/2. We want to consider a Gaussian wavepacket arriving
on the barrier. However Eq. (2.73) does not have an analytical solution. To adress this
issue, as proposed in Ref [72], we can decompose the wavefunction on the eigenstates ϕk
of the Hamiltonian such as

ψ(x, t) =

∫ +∞

−∞
dk A(k)e−ikx0ϕk(x)eiEkt/~ (2.75)

where A(k) is the weight of the eigenstate ϕk in the wavefunction, x0 is the initial mean
position of the wavepacket and Ek the eingenenergy of the kth eigenfunction, defined as
the energy of free wave propagating with a wavevector k, such as

Ek =
~2k2

2m
. (2.76)

. To obtain an initial Gaussian wavefunction, A(k) is also chosen to be a Gaussian as

A(k) = Ne−(k−k0)2/4σ2
(2.77)

where N is a constant that ensures the normalisation of the wavefunction, k0 the mean
wavevector of the wavefunction, i.e. the mode that contributes most. Then σ is the
width of the distribution of the modes and gives the modes around k0 that contributes
to ψ. The width of ψ(x, 0) is inversely proporitional to σ. The mean energy of the
wavepacket is given by E = ~2

2m

(
k2

0 + σ2
)

= Ek0 + Eσ where Ek0 is the energy of the
mode k0 and Eσ = ~2σ2

2m is the energy contribution of the width of the distribution of the
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modes. If we suppose that E < V0, we are in the tunneling situation. The eigenstates of
the Hamiltonian are defined by part in three different regions: the region I where x < 0,
the region II where 0 ≤ x ≤ d and the region III where x > d. In total11, it is given as

ϕk(x) =





eikx + rke
−ikx if x < 0

cke
κkx + dke

−κkx if 0 ≤ x ≤ d
tke

ikx if x > d

(2.78)

where rk and tk are the reflection and transmission amplitude coefficients, ck and dk
are the amplitude of the wavefunction in the barrier and κk =

√
2m(V0 − Ek)/~. This

amplitude coefficient can be computed by imposing the continuity of the wavefunction
and its derivative at x = 0 and x = d. They are given by




rk

tk

ck

dk




= βk




−i(k2 + κ2
k) sinh(κkd)

2kκke
ikd

k(κk + ik)e−κkd

k(κk − ik)eκkd




(2.79)

where
βk =

1

2kκk cosh(κkd) + i(κ2
k − k2) sinh(κkd)

. (2.80)

Fig. 2.5 shows the shape of the potential barrier and a schematic view of the eigenfunction
in the three regions, for a given k. To illustrate how Nelson’s theory can be employed
to estimate key quantities in quantum scattering problems through particle trajectories,
we start by computing these trajectories by solving the Nelson equation, using the wave-
function given by Eq. (2.75) as a guiding function whose shape is represented on Fig. 2.6
for different times. In this study, we consider a system with N = 104 particles, using the
same system of units as in previous sections, with ~ = 1 and m = 1. The parameters
under consideration are the ratio between the potential height and the mean energy of
the wavefunction, V0/E, and the potential width d, which is expressed in units of 1/k0.
Fig. 2.7 presents the trajectories of the first thousand particles, under the conditions
V0 = 3E, d = 1/k0 with k0 = 5, σ = 0.5, and x0 = −5. The left panel of the figure
depicts the initial spatial distribution of the particles, shown in orange, which aligns
with the squared modulus of the initial wavefunction, represented by the dashed red line.
The right panel illustrates the final spatial distribution of the particles, also in orange,
fitting the squared modulus of the final wavefunction, again indicated by the dashed
red line. The inset in central panal provides a closer look at the particle trajectories in
two scenarios: one where the particle is reflected by the potential barrier and another
where it tunnels through the barrier. For short times, both paths look like free particle
motion. Then they are distorted close to the barrier. Note that the trajectories are
reflected before they actually reach the barrier at x = 0 because they are guided by the
(non-local) wavefunction, which generates the Bohm potential. As a result, the particles
feel the influence of the barrier before they encounter it. The transmitted trajectory
looks like a free particle motion again. We see in the central panel that the interferences
present in the wavefunction are also manifested in the particle trajectories, as the parti-
cles’ paths are influenced by the wavefunction. This phenomenon is particularly evident

11As we consider a continuity of modes, it is possible that modes k whose energy Ek is higher than V0

are involved. In this case, we use κk = i
√

2m(Ek − V0)/~, cosh(ix) = cos(x) and sinh(ix) = i sin(x) to
compute the eigenfunctions.
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Figure 2.5: Schematic representation of the potential barrier and the corresponding eigen-
function in the three regions: region I where x < 0, region II where 0 ≤ x ≤ d, and region III
where x > d. The potential barrier is depicted as a step potential, and the eigenfunction ϕk(x)
is illustrated in each region for a given wavevector k. In region I, the eigenfunction consists of
an incident wave and a reflected wave, in region II it is a combination of exponentially decaying
and growing solutions, and in region III, it consists of a transmitted wave. The coefficients rk,
tk, ck, and dk correspond to the reflection, transmission, and amplitude of the wavefunction in
the barrier, respectively. These coefficients are determined by ensuring the continuity of the
wavefunction and its derivative at the boundaries x = 0 and x = d.

in the regions around t = 1.00, where alternating regions of intense black and white are
observed, corresponding to areas of constructive and destructive interference. From the
trajectories, we can see that it is straightforward to obtain two interesting quantities: the
ratio between the number of trajectories that crosses the barrier and the total number
trajectories, and the time needed for a trajectory to cross the barrier.

Transmission Coefficient The transmission coefficient for a given mode k is defined
as the squared modulus of the transmission amplitude, as given by the second expression
in Eq. (2.79), i.e.,

Tk = |tk|2 =
1

1 +
V 2

0 sinh2 (
√
κkd)

4Ek(V0−Ek)

. (2.81)

In the scenario where the contribution of the width of the wavefpacket, Eσ = ~2σ2/2m,
is negligible compared to the compribution of a mean mode, Ek0 = ~2k2

0/2m, the total
transmission coefficient can be approximated by the transmission coefficient correspond-
ing to the mode k0. However, if this condition does not hold, the total transmission
coefficient is determined by the ratio of the integral of the squared modulus of the trans-
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Figure 2.6: Time evolution of the squared modulus of the wavefunction |ψ(x, t)|2, for V0 = 3E,
σ = 0.5 and d = 1/k0 with k0 = 5, used as a guiding function in solving the Nelson equation
for estimating key quantities in quantum scattering problems. The figure displays the shape of
|ψ(x, t)|2 at different times, showing how the wavefunction evolves from an initial state at t = 0
to later times t = 0.50, t = 1.00, t = 1.50, and t = 2.00. This wavefunction serves as the guiding
function in the computation of particle trajectories, providing insight into the dynamics of the
scattering process. Initially, the wavefunction is a Gaussian wavepacket centered at x = −5, and
as time progresses, it encounters the potential barrier at x = 0 (in dark red). At t = 1.00 there is
the apparition of interference fringes, resulting of the superposition of the incident and reflected
waves. The wavefunction is then split into two parts: one that is reflected by the barrier and
another that tunnels through it.

mitted amplitude at long times to the integral of the squared modulus of the initial
incoming wave packet. Given that the weight function A(k) is normalized to unity, the
total transmission coefficient is expressed as

T = lim
t→∞

∫ +∞
−∞ dx

∣∣ψt(x, t)
∣∣2

∫ +∞
−∞ dx |ψi(x, 0)|2

=

∫ +∞
−∞ dk |tk|2|A(k)|2
∫ +∞
−∞ dk |A(k)|2

=

∫ +∞

−∞
dk Tke

−(k−k0)2/2σ2
. (2.82)

This quantity can also be obtained using particle trajectories by counting the number of
particles that traverse the barrier, Nt, and comparing it to the total number of particles,
N . We can then compare the transmission coefficient obtained from these trajectories
with the theoretical prediction. In Fig. 2.8, this ratio is shown for various values of
V0/E. Two scenarios are considered: one where Eσ is negligible compared to Ek0 (left
panel), and another where it is not (right panel). The parameters selected are k0 = 5
and σ = 0.5 (so that Eσ/Ek0 = 10−2), and k0 = 1 and σ = 1 (so that Eσ = Ek0),
respectively. Additionally, two barrier widths are considered: d = 1/k0 and d = 5/k0. In
all cases, Nt/N , represented by the blue circled and red squared points, converges toward
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Figure 2.7: Trajectories of the first thousand particles in a system with N = 104 particles,
under the conditions V0 = 3E, d = 1/k0 with k0 = 5, σ = 0.5, and x0 = −5. The left panel
shows the initial spatial distribution of particles (orange histogram), which matches the squared
modulus of the initial wavefunction (dashed red line). The right panel illustrates the final spatial
distribution of the particles, again represented by an orange histogram, which aligns with the
squared modulus of the final wavefunction (dashed red line). The central panel displays the
particle trajectories over time, where the interference patterns of the wavefunction are visible in
the trajectories as alternating regions of constructive and destructive interference. The potential
barrier is represented in dark red at x = 0. The inset provides a detailed view of particle
trajectories in two scenarios: one where the particle is reflected by the potential barrier and
another where it tunnels through the barrier.

the theoretical prediction, represented by small dotted lines and given by Eq. (2.81) for
the transmission coefficient associated to the single mode k0 and Eq. (2.82) for the total
transmission coefficient, obtained by the summation over all the modes involved in the
wavepacket. In the left panel, these points closely follow the curves given by Tk0 . In
the right panel, they align well with the curves representing the total transmission coef-
ficient but deviate significantly from the dotted line, which represents the transmission
coefficient associated with the mode k0. This figure demonstrates that particles tend
to tunnel more effectively through a barrier of large width when Eσ is not negligible,
as more high-energy modes contribute to the tunneling process. This scenario will be
explored further in next paragraph.

Tunneling Time The tunneling time refers to the duration a particle spends within
the classically forbidden region of a potential barrier. It provides important insights into
the time taken by a particle to cross the barrier. Using the classical definition of the time
spent by a particle in a certain region, as discussed in Ref. [73, 74], we can define the
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Figure 2.8: Comparison of the transmission coefficient from particle trajectories with the
theoretical prediction for different values of V0/E. The left panel shows a case where Eσ is small
compared to Ek0 , with parameters k0 = 5 and σ = 0.5. The right panel shows a case where
Eσ = Ek0 , with k0 = 1 and σ = 1. Two barrier widths are considered: d = 1/k0 (blue curves
and circles) and d = 5/k0 (red curves and squares). The blue circles and red squares represent
the ratio Nt/N from the particle trajectories, which converge to the transmission coefficient
predicted by conventional theory, from equation 2.82, shown as solid and dashed lines. The
dotted lines represent the single-mode transmission, Tk0 . In the left panel, they overlap with the
solid and dashed lines because k0 is the dominant mode, while in the right panel, they deviate
significantly due to the involvement of more modes in the wavepacket. The figure shows that
particles tunnel more effectively through a wide barrier when Eσ is not negligible, as higher-
energy modes contribute to the tunneling process.

tunneling time τn for each trajectory n that successfully crosses the barrier at the final
time as

τn =

∫ tf

ti

dt Θ(xn(t))Θ(d− xn(t)), (2.83)

where the mean tunneling time is then obtained as the sample average of these individual
tunneling times, i.e.,

〈τ〉 =
1

Nt

Nt∑

n=1

τn. (2.84)

Here, we assume that the trajectories labeled from n = 1 to n = Nt correspond to those
that have successfully tunneled through the barrier. By collecting these transmitted
trajectories, a statistical distribution of the tunneling times can be constructed, allowing
for the computation of its mean value. We calculate the tunneling time first for a fixed
barrier width d = 6/k0, varying the ratio V0/E from 1 to 12 (see Fig. 2.9), and then
for a fixed value of V0/E = 3 while varying d from 2/k0 to 14/k0 (see Fig. 2.10), both
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Figure 2.9: Distribution of tunneling times τ for different potential heights V0 = E, 4E,
8E, and 12E, with a fixed barrier width d = 6/k0. The histogram bin number is chosen accord
to Sturges’s formula. The distribution of tunneling times fits well with a gamma distribution
represented by solid lines. The inset shows the mean tunneling time 〈τ〉 as a function of the ratio
V0/E, fitted by a decreasing exponential function. As V0/E increases, the mean tunneling time
decreases, and the distribution of tunneling times becomes narrower, consistent with theoretical
expectations. The parameters used are k0 = 1, σ = 1, and x0 = −10.

cases with k0 = 1 and σ = 1. In both figures, the tunneling time of the Nt transmitted
trajectories is computed, and the corresponding histograms are plotted. We observe that
the distribution of the tunneling time, denoted P (τ), follows a gamma distribution

P (τ) =
1

βαΓ(α)
τα−1e−τ/β , (2.85)

where α and β represent the shape and scale parameters of the distribution, respectively,
and Γ is the Euler gamma function. The mean tunneling time is given by 〈τ〉 = αβ, with
the variance expressed as ∆τ = αβ2. In Fig. 2.9, the mean tunneling time, fitted with
a decreasing exponential function, decreases as the ratio V0/E increases, consistent with
the expectations outlined in Ref. [72]. Additionally, the distribution of the tunneling
time becomes narrower for larger values of V0/E. In Fig. 2.10, the mean tunneling time
increases with the barrier width d, as particles must traverse a greater distance to cross
the barrier, while the distribution of tunneling times broadens. The inset of the figure
shows that for large d, the mean tunneling time is proportional to d (see the balck dashed
line that fits the bullets), following a WKB-like approximation as discussed in Ref. [75].
This approximation assumes that within the region 0 ≤ x ≤ d, the wavefunction can be
approximated by

ψ(x, t) ≈ ψWKB(x) ∼ exp(−κx). (2.86)
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Figure 2.10: Distribution of tunneling times τ for different barrier widths d = 2/k0, 6/k0,
10/k0, and 14/k0, with V0 = 3E. The tunneling time distributions fit well with a gamma
distribution. The inset shows the mean tunneling time 〈τ〉 as a function of the barrier width
d, which follows a linear trend for larger d, consistent with the WKB-like approximation. The
parameters used are k0 = 1, σ = 1, and x0 = −10.

This form of the wavefunction leads to a drift coefficient b in the Nelson equation given
by b = −~κ/m, which in turn yields a Fokker-Planck equation of the form

∂tP =

(
~κ
m
∂x +

~
2m

∂2
x

)
P, (2.87)

with a solution

P (x, t) ∼ exp


−

(
x
d − 1 + t

τc

)2

t
τD


 , (2.88)

where τc = d/~κ is the time required for the particle to cross the barrier, and τD = md2/~
is the characteristic time associated with the diffusion of the density. The mean tunneling
time is thus given by 〈τ〉 = τc. This approximation holds for large values of κd, where
τc � τD, rendering the diffusion effects negligible. However, we observe that for d = 4/k0,
the mean tunneling time deviates from the WKB approximation. Finally, as highlighted
in Ref. [76], it is noteworthy that the distribution of tunneling times exhibits properties
that reveal the wave-particle duality in the tunneling phenomenon. Specifically, if the
parameter α is kept constant, we find that ∆τ ∝ 〈τ〉, which mirrors the statistical
properties of the photon number in a Glauber coherent state of light [77]. Conversely, if
β remains constant, we have ∆τ ∝

√
〈τ〉, aligning with the statistical properties of the

position of a Brownian particle, as discussed in Chap. 1.
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It is important to note that the tunneling time is not an observable in the strict quantum
mechanical sense, as it does not correspond to the eigenvalue of an operator. However,
it may be associated with characteristic times of observables that are intrinsically linked
to the tunneling process.

2.7 Conclusion

In this chapter, we explored the Nelson formalism of quantum mechanics, which provides
a framework for describing quantum particles with well-defined trajectories, similar to
the de Broglie-Bohm theory. However, the two theories differ in several key aspects.
In both approaches, the wavefunction of the system satisfies the Schrödinger equation,
but in Nelson’s theory, this equation is derived from an acceleration law, whereas in
the de Broglie-Bohm theory, it is assumed as a postulate (even if for Nelson’s approach,
the conditions on the multivaluedness of the wavefunction are not imposed in the same
manner).
Moreover, while de Broglie-Bohm’s dynamics is purely deterministic, with randomness
arising from the unknown initial conditions of particle trajectories, Nelson’s approach in-
troduces intrinsic stochasticity. In Nelson’s formalism, the motion of the particle includes
a Wiener process term, which provides an additional interpretation to the probabilistic
nature of quantum systems. This stochastic component is absent in the de Broglie-Bohm
theory.
Nelson’s formalism can also be more suitable for solving certain types of problems. For
instance, it is particularly useful for calculating tunneling times (as discussed earlier) or
tackling Kramers-like problems, such as the mean first passage time in a bi-stable poten-
tial. Nelson’s theory is well-suited for these cases, as it can leverage techniques already
developed in classical stochastic mechanics (e.g., for overdamped Langevin dynamics,
Kramers’ problem is well-known, see Ref. [21, 78] for details). In the same spirit, as
we will see in Chap. 4, stochastic trajectories allow the creation of classical analogues
of quantum systems and the application of optimization techniques originally developed
for classical systems to quantum systems. For a detailled discussion of the differences
between the two theories, see Ref. [79].
Importantly, neither Nelson’s nor de Broglie-Bohm’s theory conflicts with Bell’s theo-
rem [80], as both theories remain non-local. The wavefunction, which is defined over
the entire space, guides the particle’s motion, maintaining the non-local character of
quantum mechanics. We showed how Nelson’s approach introduces randomness into the
motion of particles, which is responsible for the probabilistic nature of quantum theory.
The Nelson equation, discussed in detail, combines both predictable (deterministic) and
random (stochastic) elements to describe particle motion in a quantum system. We have
demonstrated that Nelson’s formalism is equivalent to standard quantum mechanics,
as the wavefunction solution to the Schrödinger equation can be constructed by ensur-
ing that the probability density satisfies both the forward and backward Fokker-Planck
equations.
To illustrate how the formalism works in practice, we applied Nelson’s theory to two
examples: a free Gaussian wave packet and a particle encountering a potential barrier.
These examples helped us understand quantum phenomena, such as tunneling, in terms
of trajectories. In particular, we explored how a particle can pass through a barrier
that, according to classical mechanics, should not be passed as the particle does not
have enough energy. These cases demonstrated how Nelson’s approach can be used to
calculate not only particle trajectories but also important statistical properties, such as
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the momentum distribution and the tunneling time, which agree with the predictions of
quantum theory.
Overall, the Nelson formalism offers an alternative perspective on quantum mechanics,
focusing on an ensemble of effective particle trajectories while remaining consistent with
the broader framework of quantum theory.
While our study was restricted to spinless particles, it is possible to extend Nelson’s
theory to particles with spin [81, 82]. Additionally, stochastic mechanics can be seen as
a reformulation of Feynman’s path integral theory [83], and the Nelson equation can be
derived from a variational approach [36].
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Key Takeaways

This chapter has been devoted to developing the Nelson formalism of quantum
mechanics. We have demonstrated that this approach introduces the concept of
trajectories for quantum particles, in a manner similar to the de Broglie-Bohm
theory. The trajectories are determined by solving the Nelson equation

dx(t) = b(x(t), t)dt+ dW (t),

where the term b represents the mean velocity, defined as

b =
~
m
∂xS +DQ∂x ln ρ,

with S being the phase of the wavefunction and ρ the probability density, such
that

ψ(x, t) =
√
ρ(x, t) exp(iS(x, t)).

The stochastic term W (t) is a Wiener process that introduces the probabilistic
nature of the theory, with its statistical properties given by

{
〈W (t)〉 = 0,

〈W (t)W (t+ dτ)〉 = 2DQdτ,

where DQ = ~/2m is the diffusion coefficient of the stochastic process. The wave-
function still satisfies the Schrödinger equation

i~∂tψ = − ~2

2m
∂2
xψ + V ψ,

but it can be useful to express it as the Madelung equations by separating the
real and imaginary parts of the equation, resulting in a continuity equation and a
quantum Hamilton-Jacobi equation





∂tρ+
~
m
∂x(ρ∂xS) = 0,

∂tS +
1

2m
(∂xS)2 + V + VQ = 0.

with

VQ = − ~2

2m

∂2
x
√
ρ

√
ρ

the non-local quantum potential, responsible of the quatum interferences. The
continuity equation can further be rewritten as a diffusion equation

∂tρ+ ∂x(bρ) = DQ∂
2
xρ,

which corresponds to the Fokker-Planck equation associated with Nelson’s equa-
tion.
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Preface of Part II

A human being is a part of the whole called by us
universe, a part limited in time and space. He
experiences himself, his thoughts and feeling as

something separated from the rest, a kind of optical
delusion of his consciousness. This delusion is a

kind of prison for us, restricting us to our personal
desires and to affection for a few persons nearest to

us. Our task must be to free ourselves from this
prison by widening our circle of compassion to

embrace all living creatures and the whole of nature
in its beauty.

— A. Einstein

In the first part of this thesis, we introduced two important theoretical frameworks: the
Langevin theory and the Nelson theory. These represent classical and quantum perspec-
tives that, at first glance, may seem quite different. This part focuses on the Nelson
formulation of Quantum Mechanics and its applications. The aim is to demonstrate how
this theory can address fundamental questions in Quantum Mechanics, while also pro-
viding a practical tool for optimizing the dynamics of quantum systems.
To begin, in Chap. 3, we will explore the foundations of the Born rule in Quantum Me-
chanics, particularly within the framework of the Nelson approach. The Born rule is
a fundamental principle in Quantum Mechanics, and we will investigate how Nelson’s
theory can provide insight into the emergence and understanding of this rule. Under-
standing the Born rule is crucial, as it dictates how probabilities are assigned to different
outcomes in quantum experiments.
Following this, the second half of this part, covered in the last two chapters, shifts to-
ward the practical applications of Nelson’s theory for optimizing the behavior of quantum
systems. In Chap. 4, we will focus on the dynamics of a quantum harmonic oscillator,
deriving a quantum-classical analogy from Nelson’s stochastic interpretation of quantum
mechanics. This analogy will help us explore how to optimize the motion and behav-
ior of the oscillator, potentially leading to more efficient control over quantum systems,
based on optimization techniques that have already been developed for classical systems.
Finally, in Chap. 5, we will attempt to extend this framework to open quantum sys-
tems, where the system interacts with its environment. We will study various effective
approaches to model this situation and examine how classical analogies can be extended
to open systems. This would allow the use of optimization techniques from classical
stochastic thermodynamics to develop quantum heat engines by optimizing the system
parameters’ cycles (such as temperature or stiffness).





CHAPTER 3

Relaxation to quantum equilibrium

The belief that there is only one truth and that
oneself is in possession of it seems to me the root of

all the evil that is in the world.
— M. Born

In this chapter, we investigate the relaxation to quantum equilibrium within Nelson’s
stochastic quantization framework, focusing on the emergence of the Born rule in quan-
tum mechanics. By numerically simulating the dynamics of quantum systems initialized
in non-equilibrium states that violate the Born rule, we study the convergence towards
quantum equilibrium for three canonical systems: the double-slit experiment, the har-
monic oscillator, and quantum particles in a gravitational field. Our results show that,
in the cases of the double-slit experiment and the harmonic oscillator, the relaxation to
quantum equilibrium occurs faster than the appearance of quantum interference patterns,
suggesting that observable quantum phenomena are equilibrium phenomena. However,
for quantum particles in a gravitational field, we find that quantum interference can
emerge before the system reaches quantum equilibrium, opening the possibility of ob-
serving deviations from the Born rule in such systems. The chapter is organized as
follows. In Sec. 3.1, we introduce the foundational questions surrounding the Born rule
and its role in quantum mechanics. Sec. 3.2 provides a brief recall of Nelson’s stochastic
quantization. In Sec. 3.3, we discuss how to quantify the distance to quantum equi-
librium and the relaxation towards it. Sec. 3.4 presents numerical simulations for the
double-slit experiment, the harmonic oscillator, and quantum particles in a gravitational
field. Finally, conclusions are drawn in Sec. 3.5.
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Chapter 3

3.1 Introduction

Quantum mechanics (QM) has raised innumerable foundational questions since its for-
malization in the early twentieth century. Most of those questions arise from two "weird"
properties of QM, which single it out from earlier physical theories: (i) QM is an intrin-
sically probabilistic theory, meaning that its outcomes can only be predicted on average,
and (ii) quantum probabilities do not follow the same rules as classical ones, inasmuch as
in QM probability amplitudes are additive, and not the probabilities themselves1. This
fact is encapsulated into Born’s rule [85], which defines quantum probabilities as the
squared modulus of complex amplitudes.
The first of these properties was the source of much controversy at the dawn of QM,
because earlier fundamental theories were all deterministic. Being capable of predicting
with virtually perfect accuracy a physical event (e.g., an eclipse or the passage of a comet)
was seen as the hallmark of a rigorous physical theory, the kind of achievement that gave
Newton’s and Maxwell’s theories all their prestige. Besides, just a few years earlier,
Boltzmann had shown how to bridge the gap between reversible macroscopic motion at
the molecular level and irreversible heat and matter diffusion at the macroscopic scale. It
was natural, then, to assume that also the randomness of QM could one day be explained
in a similar fashion.
However, it is the second property that poses the hardest foundational questions – and
is also at the heart of the spooky action at a distance first highlighted in the celebrated
Einstein-Podolsky-Rosen (EPR) paper [86], and later confirmed in many experiments,
mainly based on John Bell’s extension to spin states of the original EPR argument [87].
Born’s rule is at the heart of these "weird" features of QM and, for this reason, deserves
some special attention. Indeed, Born’s rule stands alone in the mathematical machinery
of QM, and is employed only when one needs to translate the abstract wavefunction
into an actual prediction about probabilities of outcomes. We also note that, while
the Schrödinger equation is linear in the wavefunction, Born’s rule, which is quadratic,
reinstates some nonlinearity into the theory.
It is well-known that in some nonlocal hidden-variable theories [88], such as the Bohm-
de Broglie version of QM (also known as Bohmian mechanics), the Born rule needs
not necessarily be satisfied2. In the Bohm-de Broglie mechanics [32], if an ensemble of
trajectories satisfies Born’s rule at a certain initial time t = 0, i.e. if P (x, t = 0) =
|ψ(x, t = 0)|2 (where P is the probability density of the position variable x and ψ is the
wavefunction), then this property will always be satisfied for any subsequent time t > 0.
But the equations of the Bohm-de Broglie mechanics remain perfectly valid also when
one takes P (x, t = 0) 6= |ψ(x, t = 0)|2, i.e., if Born’s rule is violated. In that case, the
two quantities P (x, t) and |ψ(x, t)|2 will remain distinct for all later times.
In the context of the Bohm-de Broglie mechanics, Valentini [89] suggested that the Born
rule is the analogue of thermal equilibrium in classical statistical mechanics. In the latter,
non-equilibrium states are possible during transient evolutions, but the system eventu-
ally relaxes to its thermal equilibrium, given for instance by a Maxwellian probability
distribution. In the same fashion, Valentini postulated that the Bohm-de Broglie distri-
bution of positions may in general differ from that given by Born’s rule, and only relaxes

1It is possible to formulate QM in terms of ordinary probabilities, provided that these are allowed to
take negative values (see, for instance, Ref. [84] and references therein). This is another manifestation
of the weirdness of quantum theory.

2Strictly speaking, actual ensembles in experiments only have a finite number of particles N , so that
these theories always violate the Born rule. Here, we mean that the latter may be violated even in the
limit N →∞.
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to it in a finite (albeit fast) timescale. Hence, the standard distribution that satisfies
Born’s rule corresponds to a sort of quantum equilibrium defined by P = |ψ|2, although
quantum non-equilibrium states with P 6= |ψ|2 may also exist during short transients
(this is referred to as "subquantum dynamic" by Valentini). The possibility of finding
signatures of subquantum dynamics in the primordial universe was also suggested [90,
91].
Just like in standard statistical mechanics, quantum-equilibrium distributions are much
more probable than non-equilibrium ones (they are typical, in a technical sense3) and
therefore should be observed most of the time, which is of course the case in all known
experiments. From a dynamical point of view, non-equilibrium distributions will typi-
cally converge to quantum equilibrium. Earlier numerical simulations [96] showed that
relaxation to equilibrium is indeed observed, provided some coarse graining procedure is
applied.
An alternative, and perhaps more appropriate, avenue to study such convergence to quan-
tum equilibrium is to resort to Nelson’s stochastic quantization [31, 97, 98]. As detailed
in the next section, Nelson’s dynamics is similar to the Bohm-de Broglie mechanics, with
the important difference that the equations of motion are not deterministic, but rather
stochastic with a diffusion coefficient equal to ~/2m, where ~ is the reduced Planck con-
stant and m the mass. Nelson’s theory reproduces standard QM when the Born rule is
satisfied at the initial time. When this is not the case, the distribution P will converge
to the Born rule value |ψ|2, without any need for an artificial coarse graining procedure,
thanks to the stochastic nature of the dynamics. Hence, Nelson’s approach appears to be
particularly adapted to investigate subquantum physics and the relaxation to quantum
equilibrium.
Of course, one would also need to postulate a mechanism through which a quantum
particle could find itself at quantum non-equilibrium. Although we do not have a theory
for such a mechanism, we may conjecture that fundamental processes – such as beta
decay or particle-antiparticle pair production – generate quantum particles that are, at
least at the very early stages, out of quantum equilibrium. Indeed, during such processes
the quantum particles are created ex nihilo and may not have had enough time to relax to
the Born rule. We will not try to justify or explore any further this speculative conjecture.
Our purpose here is merely to investigate what happens if, for whatever reason, Born’s
rule is at some point violated.
Within this framework, an important question is whether quantum thermalization occurs
faster than any typical quantum effect, such as interference. If this is the case, it would
mean that all typically quantum phenomena are "equilibrium" phenomena and hence
indistinguishable from standard QM. In the opposite case (i.e., quantum interference
occurring before relaxation), one could hope to observe some anomaly in the interference
pattern due to subquantum corrections. If true, this would be an appealing prediction
for future experiments.
In this chapter, we investigate this topic by means of numerical simulations of Nelson’s
stochastic dynamics, for three relevant cases: (i) a standard double-slit interference setup,
(ii) a harmonic oscillator, and (iii) quantum particles in a gravity field, such as ultracold
neutrons in the gravitational field of the Earth [99]. The next section is devoted to a
brief description of Nelson’s approach to QM. In Sec. 3.3, we illustrate how to quantify
the distance to quantum equilibrium and the relaxation towards it. Sec. 3.4 includes the
numerical results for the three physical systems mentioned above. Finally, conclusions

3For a definition of typicality in statistical mechanics, see [92, 93], and in the Bohm-de Broglie theory,
see [94, 95].
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are drawn in Sec. 3.5.

3.2 Reminder of Nelson’s stochastic quantization

In the Bohm-de Broglie theory [32], particles have a well-defined position x(t), and their
trajectories evolve according to a deterministic law of the type:

dx(t)

dt
= u(x, t), (3.1)

where the velocity u(x, t) is related to the phase of the wavefunction, which satisfies the
standard time-dependent Schrödinger equation. In particular, writing the wavefunction
in polar coordinates

ψ(x, t) = R(x, t) eiS(x,t),

where R(x, t) is the amplitude and S(x, t) is the phase, one has that u = ~∂xS/m. Note
that, in the present work, we will always consider one-dimensional problems.
In contrast, in Nelson’s dynamics [31, 97] the particles obey a Langevin equation

dx(t) = b(x(t), t)dt+ dW (t), (3.2)

where b(x(t), t) is the deterministic velocity and W (t) is a stochastic Wiener process.
The latter is characterized by a zero mean 〈dW 〉 = 0 and a finite variance

〈dW 2〉 = DQ ≡
~

2m
, (3.3)

with DQ the quantum diffusion coefficient. The origin of such Brownian motion with
diffusion coefficient DQ was not specified by Nelson, and here we just assume the pres-
ence of some universal force agitating all quantum particles. We also note that similar
stochastic theories have been discussed by Bohm and Hiley [100], Peruzzi and Rimini
[101], as well as Bohm and Vigier [102].
In Nelson’s theory, the total velocity b(x, t) is written as the sum of two terms:

b(x, t) =
~
m

∂

∂x
S(x, t) + 2DQ

∂

∂x
lnR(x, t), (3.4)

where the first term (drift velocity) is proportional to the gradient of the phase and is
identical to the velocity of the Bohm-de Broglie model, while the second term (osmotic
velocity) depends on the amplitude R.
The wavefunction follows the standard Schrödinger equation i~∂tψ(x, t) = Ĥψ(x, t), with
Hamiltonian Ĥ = p̂2/2m + V̂ (x, t). Hence, the phase S obeys the following quantum
Hamilton-Jacobi equation:

~
∂S

∂t
+

~2

2m

(
∂S

∂x

)2

− ~2

2mR

∂2R

∂x2
+ V = 0. (3.5)

Finally, the stochastic Langevin Eq. (3.2) can also be expressed as an equivalent Fokker-
Planck equation for the probability density P (x, t):

∂P

∂t
+

∂

∂x
[b(x, t)P ] = DQ

∂2P

∂x2
. (3.6)

In summary, Nelson’s theory is captured in the Eq. (3.2) (stochastic process), Eq. (3.4)
(definition of the velocity), and Eq. (3.5) (quantum Hamilton-Jacobi).
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When the initial particle distribution P (x, 0) is identical to the squared amplitude of
the wavefunction |ψ(x, 0)|2 = R2(x, 0), Nelson’s dynamics is equivalent to the standard
quantum theory and reproduces the same results as the time-dependent Schrödinger
equation. Like the Bohm-de Broglie theory, it can be seen as a nonlocal hidden variable
theory, where the hidden variable is the position of the particles, but it differs from the
Bohm-de Broglie mechanics inasmuch as it is non-deterministic. However, it is important
to stress that, despite Eq. (3.2) being a stochastic process, the whole Nelsonian dynamics
is reversible in time [31], as it should be to guarantee the equivalence with the Schrödinger
equation. This can easily be seen from the Fokker-Planck Eq. (3.6), by noting that the
osmotic velocity exactly cancels the diffusion term.

3.3 Quantum equilibrium

In the standard formulation of QM, the Born rule is a crucial postulate: the probability
density of finding a particle at a position x at time t is given by the squared modulus
of the wavefunction |ψ(x, t)|2. However, this postulate is not needed in the Nelson and
Bohm-de Broglie formalisms, where the wavefunction is viewed as a field that guides
the dynamics of the particles and is not necessarily linked to the probability of finding
a particle in a certain region of space. Hence, it is perfectly consistent within these
approaches to consider cases where P (x, t) 6= |ψ(x, t)|2, in which case the predictions of
standard QM would differ from those of the Nelson 4 and Bohm-de Broglie theories.
As suggested by Valentini [103], the Born rule may correspond to a situation of quantum
equilibrium, analogue to the thermal equilibrium of classical mechanics. According to this
view, non-equilibrium states with P (x, t) 6= |ψ(x, t)|2 can exist, but they relax to quantum
equilibrium on a very short timescale, so that they are difficult to observe in practice.
Valentini developed these ideas in the context of the Bohm-de Broglie mechanics which,
being deterministic, requires some form of coarse graining to observe such relaxation
[96]. But in Nelson’s theory the approach to equilibrium should occur more naturally,
thanks to the stochastic nature of the motion. This fact was first analyzed in detail by
Petroni and Guerra [104], building on earlier work by Bohm and Vigier [102], although
the convergence to quantum equilibrium may not be proven in general for any initial
condition and potential. More recently, Hatifi et al. [105] have studied analytically and
numerically the relaxation to quantum equilibrium, in relation with the experiments of
Couder et al. on bouncing oil droplets as an analogue of quantum motion [106, 107].
The aim of the present work is to investigate, by means of numerical simulations, whether
quantum thermalization occurs faster than any typical quantum effect, such as interfer-
ence. In order to do so, one first needs to reconstruct the probability density P (x, t) of
he particles at each time. This is done by partitioning the space x ∈ R into bins of size
∆x, such that each bin contains a sufficiently large number of particles, and constructing

4In Chap. 2, we built Nelson’s theory by introducing the wavefunction as the square root of the
probability density multiplied by a complex phase. We then showed that this wavefunction is a solution
of the Schrödinger equation. This established the equivalence between Nelson’s theory and standard
quantum mechanics. A necessary result was that the squared modulus of the wavefunction represents
the probability density, which means that Born’s rule holds. However, once Nelson’s theory is set up,
we can relax this condition. We can assume that the wavefunction is an intrinsic quantity that follows
the Schrödinger equation and guides the particles, but is independent of the probability density. This
allows us to initially distribute the particle positions according to a probability density that does not
have to be |ψ|2. Assuming this breaks the equivalence with standard quantum mechanics. However, we
will show that the probability density converges to |ψ|2 after some time, ensuring that Born’s rule holds
after this period. At that point, the equivalence between the two approaches is restored.
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the corresponding histogram. The stochastic Nelson Eq. (3.2) is solved using a second-
order Helfand-Greenside’s method [55, 108, 109]. In order to reduce the statistical noise,
the simulations are repeated independently many times and the results are averaged to
reconstruct the probability density. In order to compute the velocity b(x, t), we need
to solve the Schrödinger equation to obtain the phase S and amplitude R of the wave-
function. In the three examples considered in this work, the solution could be obtained
analytically or semi-analytically, as detailed in the next section.
The probability density P (x, t) must then be compared to the squared modulus of the
wavefunction |ψ(x, t)|2 = R2. For this, we need to define a distance between these two
quantities. Out of the many possibilities, one can use the Lp distance between two
functions f and g, defined as

Lp[f, g] (t) = p

√∫ +∞

−∞
dx |f(x, t)− g(x, t)|p. (3.7)

In particular, the L1 distance was advocated by Petroni and Guerra [104] as the appro-
priate tool to quantify the relaxation to quantum equilibrium. The infinite distance L∞
can be seen as its limit when p→∞ and is given by

L∞[f, g](t) = max
x
|f(x, t)− g(x, t)|. (3.8)

Other criteria can also be defined, such as the entropy-like function used by Valentini
[110]:

H ≡ LH [f, g] (t) =

∫ +∞

−∞
dx f(x, t) ln

(
f(x, t)

g(x, t)

)
, (3.9)

which is related to the Kullback-Leibler divergence, also called relative entropy [111].
Taking f = P and g = |ψ(x, t)|2, all these distances vanish when the Born rule is
satisfied, i.e. at quantum equilibrium. Of course, in order to estimate the relaxation time,
it will be necessary to define a somewhat arbitrary threshold below which the distance is
assumed to be practically zero. Finally, using the entropy-like quantity Eq. (3.9), Hatifi
et al. [105] were able to prove a H-theorem which ensures that a generic probability
distribution P (x, t) converges to |ψ(x, t)|2 as t→∞ (with some caveats, as will be seen
in the next section).

3.4 Simulation results

The main question we try to answer in this work is whether quantum thermalization
occurs faster than any other typical quantum effects, such as the appearance of interfer-
ences. If that were the case, it would mean that all quantum phenomena are “equilib-
rium" phenomena and hence indistinguishable from standard QM. In the opposite case,
one could hope to observe some anomaly in the interference pattern due to subquantum
corrections, which would be an appealing prediction for future experiments.
In this section, we will use the distance functionals defined in Sec. 3.3 to estimate the
time of relaxation to quantum equilibrium, and compare it with the time of appearance of
quantum effects. This problem will be investigated for three emblematic physical systems:
the double-slit experiment, the harmonic oscillator, and the evolution of a wavepacket in
a linear potential representing the gravity field of the Earth.
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Figure 3.1: Left panel: Initial densities for the wavefunction |ψ(x, t)|2 (red continuous line)
and the particles P (x, 0) (brown dashed line). Here, P is the sum of two Dirac delta functions
centered at ±a, while |ψ(x, t)|2 is the sum of two Gaussians of width σ = 0.3 a. Right panel:
Same quantities at time t = 0.09 τ , when quantum equilibrium is not yet attained.

3.4.1 Double-slit experiment

We consider a standard double-slit experiment, where the two slits have an aperture of
width σ and are separated by a distance 2a, see Fig. 3.1. We shall use units in which
~ = m = a = 1, so that the only free parameter is the width σ and actually represents
the ratio σ/a. This choice also defines a timescale τ = ma2/~ (= 1, in these units).
In order to model the configuration of a double-slit experiment, we take an initial wave-
function that is the sum of two Gaussians of width σ and centered at x = ±a:

ψ(x, 0) =
1

[
2
√
πσ
(
1 + e−a2/σ2

)]1/2
(

e−(x+a)2/2σ2
+ e−(x−a)2/2σ2

)
. (3.10)

As we want to investigate the relaxation to quantum equilibrium, the initial particle
distribution should not satisfy the Born rule, i.e. P (x, 0) 6= |ψ(x, 0)|2. Hence, we assume
that all particles are concentrated at the same position, at the centre of each slit:

P (x, 0) =
δ(x− a) + δ(x+ a)

2
, (3.11)

where δ denotes the Dirac delta function. This initial configuration is plotted in Fig. 3.1
(left panel), while the right panel of the same figure shows both |ψ(x, t)|2 and P (x, t) at a
later time when the system has evolved but has not yet reached the quantum equilibrium.
The free evolution of this initial wavefunction can be computed analytically [55], yielding
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the following square modulus at time t:

|ψ(x, t)|2 =
σ

2
√
π(σ4 + ~2t2

m2 )
(
1 + e−a2/σ2

)

[
exp

{
−σ

2(x+ a)2

σ4 + ~2t2

m2

}

+ exp

{
−σ

2(x− a)2

σ4 + ~2t2

m2

}
+ 2 exp

{
−σ

2(x2 + a2)

σ4 + ~2t2

m2

}
cos

(
2~tax
m

σ4 + ~2t2

m2

)]
.

(3.12)

The particle density P is obtained numerically by solving the stochastic Nelson Eq. (3.2)
for a large number N of trajectories. In order to do so, one needs the expression of the ve-
locity term b that appears in the Nelson equation, which is obtained by injectingEq. (3.12)
into Eq. Eq. (3.4). We obtain [55]:

b(x, t) = (Re + Im)

(
~
m

−
(
σ2 − i~tm

)

σ4 + ~2t2

m2

[
(x+ a) exp



−

(
σ2 − i~tm

)
(x+ a)2

2
(
σ4 + ~2t2

m2

)





+(x− a) exp



−

(
σ2 − i~tm

)
(x− a)2

2
(
σ4 + ~2t2

m2

)





]

×
[

exp



−

(
σ2 − i~tm

)
(x+ a)2

2
(
σ4 + ~2t2

m2

)



+ exp



−

(
σ2 − i~tm

)
(x− a)2

2
(
σ4 + ~2t2

m2

)





])
,

(3.13)

where (Re + Im) denotes the sum of the real and imaginary parts of the expression be-
tween parenthesis. Then, at each instant t, we construct a histogram of the particle
positions, and finally interpolate the histogram to obtain the density P (x, t). This pro-
cedure is illustrated in Fig. 3.2.
Given the analytical expression of |ψ|2 and the numerically-computed density P , it is
possible to compare these two objects using the distances LX defined in Sec. 3.3. These
quantities are represented as a function of time in Fig. 3.3, for the case σ = 0.3a. For
all cases, the distance between P and |ψ|2 decreases to zero for long times, signalling the
convergence to the quantum equilibrium and the emergence of the Born rule. Due to
numerical errors occurring during the computation of P , the minimal distance is never
zero, but approximately 10−2 − 10−3, depending on the adopted measure. It is also
interesting to note that the qualitative behavior is similar for all distances, so that they
can be fitted with the same type of function in order to extract the relaxation time τq.
Numerically, one can show that a good candidate for the fitting function is

LX(t) = α1 exp
(
−α2eα3t

)
, (3.14)

where α1, α2, and α3 are free fitting parameters, to be determined for each distance and
each value of σ. From this expression, we define the quantum relaxation time τq as the
time at which the tangent of the curve LX(t) at t = 0 intersects the abscissa axis, which
gives: τq = 1/(α2α3).5

Next, we need a suitable definition of a “typical" quantum time τint, defined as the time
of appearance of quantum interferences, in order to compare it with the relaxation time
τq. Interferences occur because the two initial Gaussian wavepackets spread in space,
and after a certain time they overlap in the region between the two slits. As illustrated
in Fig. 3.4, we define τint as the time when the first maximum appears in between the two
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Figure 3.2: Trajectories of N = 1000 particles (left side, black curves) initially distributed
at the center of each slit. The histogram of the distribution of the positions (right side, orange
segments) at the end of the evolution is interpolated to obtain the corresponding density P (x, t)
(right side, dashed brown line).

original wavepackets. Further maxima appear at later times, until the full interference
pattern is formed.
We now have all the elements to compare τq and τint for different values of σ. The ratio
σ/a has to be smaller than unity to ensure that there is no significant overlap between
the two Gaussian wavepackets at the initial time, but not too small because we want to
ensure that P and |ψ|2 are significantly different. Hence, we will consider values of σ/a
in the interval [0.2, 0.7]. The computed values of τint and τq, for different distances LX ,
are shown in Fig. 3.5 as a function of the initial width σ.
The important result of Fig. 3.5 is that, whatever the value of σ, it is not possible to find
a situation where the interference occurs before the system has converged to the quantum
equilibrium. In other words, for the double slit experiment, all typically quantum physical
phenomena occur after the Born rule has been established. Or, to put it differently, the
subquantum dynamics displays no quantum effects such as interferences.
A possible extension of the study presented in this section would be to consider three
or more slits and check if it possibly increases the relaxation time beyond the quantum
interference time. Experimental investigations in this direction have been performed
recently [112, 113]. However, in the present work, we will rather focus on two other
configurations: the harmonic oscillator and a linear potential truncated by a perfectly
reflecting wall.

5Indeed, a Taylor expansion of Eq. (3.14) near t = 0 yields: LX(t) ' LX(0) (1− α2α3t).
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Figure 3.3: Semi-logarithmic plots of the various functionals (see Sec. 3.3) used to quantify
the distance between the probability density P and the squared modulus of the wavefunction
|ψ|2, as a function of the time t (in units of τ), for σ = 0.3a.

3.4.2 Harmonic oscillator

The harmonic oscillator is perhaps the most important and studied system in quantum
mechanics and is crucial to the development of quantum field theory. It is both interesting
in itself and a common approximation to many physical systems. Here, we will further
investigate the interplay between the establishment of the Born rule (quantum relaxation)
and the appearance of typical quantum effects.
We consider the Schrödinger equation

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+

1

2
mω2x2

)
ψ(x, t), (3.15)

where m is the mass of the particle and ω the frequency of the oscillator. Normalizing
space to x0 ≡

√
~/(mω) and time to t0 ≡ 2/ω, the Schrödinger equation becomes

i
∂

∂t
ψ(x, t) =

(
− ∂2

∂x2
+ x2

)
ψ(x, t). (3.16)

This system of units amounts to taking ω = 2, ~ = 1 and m = 1/2, so that the quantum
diffusion coefficient is DQ = ~/2m = 1 and the ground state energy E0 = mω2/2 = 1.
We want to study the convergence to the quantum equilibrium when the initial particle
probability density P is given by a Dirac distribution centred at the bottom of the har-
monic potential (x = 0). The initial wavefunction is also a Gaussian of given width, but
not necessarily the ground state of the system, hence it will display breathing oscillations
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Figure 3.4: Squared modulus of the wavefunction for σ = 0.09a, at times t = 0 (left panel),
t = 0.12τ (middle panel), and t = 0.6τ (right panel). Initially, only two peaks exist, one for each
Gaussian wavepacket. At t = 0.12τ , a third peak has appeared between the two initial ones: this
event defines the interference time τint. At later times, several new peaks appear and form the
full interference pattern.

while remaining Gaussian for all times. A similar study, but only considering a ground
state wavefunction for the Schrödinger equation, was performed by Hatifi et al. [105].

In practice, our initial condition is as follows:

ψ(x, 0) =

(
1

2πσ2
0

) 1
4

exp

{
− x2

4σ2
0

+ i
[
α0x

2 + β0

]}
and P (x, 0) = δ(x), (3.17)

where σ0, α0 and β0 are appropriate constants that define the wavefunction’s width and
phase. At any time t > 0, the wavefunction will keep the same functional form, so that
it can be written as:

ψ(x, t) =

(
1

2πσ2(t)

) 1
4

exp

{
− x2

4σ2(t)
+ i
[
α(t)x2 + β(t)

]}
, (3.18)

with initial conditions α(0) = α0, β(0) = β0 and σ(0) = σ0. Note that the ground state
corresponds to α0 = β0 = 0 and σ0 = 1/

√
2.

Injecting this ansatz into the Schrödinger Eq. (3.16), we obtain a system of first-order
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Figure 3.5: Time of appearance of the interferences τint (red dots) and times of convergence
to quantum equilibrium τXq (shades of blue dots) associated with the different distances defined
in Sec. 3.3, as a function of the initial width σ/a. All of the different times can be nicely fitted
with a hyperbolic tangent function (dashed lines) of the type: τq(σ) = β1 tanh

(
β2σ

2 + β3
)

+ β4,
where the βi are fitting parameters. For every value of σ and for every distance LX, quantum
equilibrium (Born’s rule) is reached before the appearance of quantum interferences.

differential equations, where the dot denotes differentiation with respect to time:




α̇(t) =
1

4σ2(t)
− 4α2(t)− 1,

β̇(t) = − 1

2σ2(t)
,

σ̇(t) = 4α(t)σ(t).

(3.19)

The solution to the above equations completely determines the wavefunction ψ(x, t), and
hence the term b(x, t) in Nelson’s equation Eq. (3.4): b(x, t) = [α(t)− 1/σ2(t)]x, so that
the Nelson equation can be written as

dx(t) =

[
4α(t)− 1

σ2(t)

]
xdt+ dW (t). (3.20)

The corresponding Fokker-Planck equation can be obtained using the Kramers-Moyal
expansion [21, 22] and reads as:

∂

∂t
P (x, t) =

∂

∂x

{
−
[
4α(t)− 1

σ2(t)

]
xP (x, t)

}
+

∂2

∂x2
P (x, t). (3.21)
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Supposing that the probability density is also Gaussian (which is an exact ansatz ):

P (x, t) =
1√

2πσ2
P (t)

exp

(
x2

2σ2
P (t)

)
, (3.22)

and injecting the above density into Eq. (3.21), one obtains that σP (t) should obey the
following equation

σ̇P (t) = σP (t)

[
4α(t)− 1

σ2(t)

]
+

1

σP (t)
. (3.23)

The convergence to the quantum equilibrium can be studied by investigating the con-
vergence of σP (t) to σ(t). To do so, we introduce the new variable γ(t) = [σ(t)/σP (t)]2,
which, from Eq. (3.19) and Eq. (3.23), must be a solution of the Riccati equation

γ̇(t) =
2γ(t)

σ2(t)
[1− γ(t)]. (3.24)

Hence, one needs to first solve the system of Eq. (3.19) to obtain σ(t) and then inject
it into Eq. (3.24) in order to obtain γ(t). Introducing B(t) = 1/σ2(t), the solution to
Eq. (3.24) can be obtained pseudo-analytically and reads as [114]:

γ(t) = 1 +
φ(t)

2
∫ t

0 dτ B(τ)φ(τ)
, with φ(t) = e−2

∫ t
0 dτB(τ) (3.25)

with the initial conditions B0 = 1/σ2
0 and γ(0) =∞, which corresponds to the situation

where P is initially a Dirac delta function. Moreover, the system of Eq. (3.19) possesses
the analytical solution [115]:

B(t) =
1

σ2(t)
=

8B0

B2
0 + 4− (B4

0 − 4) cos(4t)
. (3.26)

In Fig. 3.6, we present the solution of Eq. (3.19) and Eq. (3.24) for the initial conditions
α(0) = 0, β(0) = 0, B(0) =

√
2 and γ(0) = ∞, meaning, respectively, no initial phase, a

wavefunction that is not the ground state of the harmonic oscillator, and a δ-distributed
probability P (x, 0). The phase function A and the width B of the wavefunction are both
periodic in time, with period T = (π/2)t0 = π/ω, equal to half the natural period of the
harmonic oscillator 2π/ω (this is because they are quadratic quantities in x). In contrast,
the ratio γ = [σ/σP ]2 relaxes to γ = 1 over a timescale τq. When this has occurred, then
both P and |ψ|2 are Gaussian functions of the same width and the Born rule is satisfied.
The purpose here is to compute τq for different values of σ0, i.e. different initial widths of
the wavefunction, and to check whether or not it is possible to find a situation where the
period of quantum oscillations T is shorter than the relaxation time τq. In the following,
we will consider different initial widths σ0 =

√
2/B0 of the wavefunction from 0.25 to 4,

in units of x0. Note that, for the ground state, one has: σ0 = 1.
This can be done using several methods, like arbitrarily defining a cutoff value, so that
the relaxation time is defined as the time when γ reaches such value. Here, we shall use
a similar, but subtler, technique. We first compute the root mean-square deviation of γ
over a sliding window in time [116]. We construct a window, centred at the data point
i, which contains n+ 1 other data points between i− n/2 and i+ n/2, and compute the
mean square deviation Θi of γ inside this window using the expression

Θ2
i =

1

n+ 1

i+n/2∑

j=i−n/2
(γj − γ̄i)2, (3.27)
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Figure 3.6: Left panel: Time evolution of the phase functions α(t) and β(t), and the width
σ(t) of the wavefunction ψ. α(t) and σ(t) are periodic with period T = (π/2)t0, while β(t) is
monotonously decreasing, in accordance with the second Eq. (3.19). Right panel: Time evolutions
of the ratio γ(t) = [σ(t)/σP (t)]2 and of the function φ(t) appearing in Eq. (3.25); γ and φ converge
respectively to unity and zero over a relaxation timescale denoted τq.
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Figure 3.7: Evolution of γ(t) (blue dashed curve) and its mean-square deviation Θ(t) (red
solid curve) as a function of time (in units of t0), for three different values of the initial wave-
function width σ0. The cutoff value θ = 5× 10−4 is represented as a horizontal line which cuts
the curve Θ(t) at t = τq, defining the relaxation time. We note that τq is always smaller than
the period T = (π/2)t0 of the harmonic oscillator (also represented on the abscissa axis), but
increases when σ0 increases.

where γi = γ(ti) and γ̄i =
∑i+n/2

i−n/2 γj is the mean value of γ inside the window. Typically,
we take n = 10. Hence, as γ(t) approaches a constant value (here, γ = 1), the function
Θ will tend to zero. By choosing a threshold θ, one can define the relaxation time τq as
the time for which Θ < θ.
To visualize this procedure, the evolutions of γ and Θ (dashed blue) are represented in
Fig. 3.7, for three values of the initial width σ0 = 0.94, 1.63, and 5.54. The convergence
time is represented on the horizontal axis as the abscissa of the black dot, which is
the point corresponding to Θ = θ, where in the present case θ = 5 × 10−4. For the
different values of σ0, the behavior of γ(t) differs slightly, but the curve is always strictly
decreasing, and no ambiguity arises for the determination of τq.
One may wonder about the dependence of the relaxation time on the threshold value
θ, but, as it appears in Fig. 3.7, Θ decays fast close to the convergence time, so one
can expect this effect to be minor. To check this point, τq was computed using different
values of threshold, ranging from θ = 10−2 to θ = 5 × 10−4 and its dependence on the
initial width σ0 is plotted in Fig. 3.8. For every threshold and for every value of σ0, the
relaxation time τq is smaller than the period of quantum oscillations T . In particular,
we note the two limiting cases: (i) For σ0 → 0, then τq → 0: this is rather natural, as
it corresponds to the case where P and |ψ|2 already have the same vanishing width at
t = 0; (ii) For large σ0, τq → π/4 = T/2, in other words relaxation is completed in half
an oscillation period.
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Figure 3.8: Evolution of the quantum relaxation time τq with respect to the initial width σ0
of the wavefunction, for different thresholds θ, ranging from 1.0 × 10−2 to 5.0 × 10−4 (shades
of red dots). For each threshold, the value of τq increases with σ0 and saturates at τq = π/4
(dotted red line). Hence, the convergence time is always at least twice as small as the quantum
oscillator period T = π/2 (blue dashed line).

The limit τq → π/4, obtained for large initial dispersions, can be recovered analytically
as follows. For large σ0, corresponding to small B0, the function B(t) = 1/σ2(t) becomes
[see Eq. (3.26)]:

B(t) ' 2B0

1 + cos(4t)
=

B0

cos2(2t)
, (3.28)

so that, from Eq. (3.25): φ(t) ' exp[−B0 tan(2t)] = exp
[
− tan(2t)/σ2

0

]
which goes to

zero when t→ π/4.
All in all, these results show that relaxation to quantum equilibrium (Born’s rule) occurs
much faster than an oscillation period of the quantum oscillator, and is completed at the
latest over half such a period. As in the double-slit case, the system will always reach
the quantum equilibrium before quantum phenomena become observable, preventing the
possibility of observing a situation where the Born rule does not hold.
So far, we considered wavefunctions that are Gaussians, albeit not necessarily the ground
state of the harmonic oscillator. To end this section, we now turn to the case where ψ
represents an excited state. In this case, the wavefunction possesses nodes (zeroes),
leading to singularities (asymptotes) in the velocity field b(x, t), which becomes infinite
at the location of the nodes. These singularities constitute infinite barriers that the
trajectories cannot cross. For instance, for the first excited state of the oscillator, there
is one singularity at x = 0, where limx→0± b(x) = ±∞. Hence, a particle approaching
zero from the right (x > 0) will develop an ever increasing velocity directed in the
positive x direction, and will never manage to cross the origin. Similarly, for a particle
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Figure 3.9: Particle probability density P (x, t) (dashed blue line) and squared wavefunction
|ψ|2 (red solid line) at times t = 0 (left panel) and t = 1 (right panel). Time is expressed in units
of t0 and space in units of x0. The wavefunction corresponds to the first excited state of the
harmonic oscillator. The initial particle distribution is a Dirac delta function centred at x = −1
and cannot cross the barrier located at the origin. The time step is dt = 10−4.

approaching zero from the left (x < 0).
This is illustrated in Fig. 3.9, where the initial distribution P is a Dirac delta function
located at x = −1, in the centre of the left lobe of the wavefunction density. At t = 1
(right panel), the initial particle distribution has considerably spread, but it has not
crossed the barrier at x = 0. We note that this result is in disagreement with a similar
simulation of Hatifi et al. [105], who found numerically that the barrier is eventually
crossed and full relaxation is observed. Nevertheless, some important differences exist:
firstly, Hatifi et al. [105] simulate a single trajectory and appeal to the ergodic theorem
to reconstruct the particle density P ; secondly, their final simulation time tfinal = 1000 is
much longer than ours (this is because they have to average on time slices to compensate
for the presence of a single trajectory). But the main difference is in the time step, which
is dt = 0.01 in their simulation and dt = 10−4 in ours. Indeed, if the time step is large
enough, the particle can sometimes cross the barrier, because it cannot "see" it during
times shorter than dt. This is confirmed by three long-time simulations using different
values of dt (see Fig. 3.10), which show that, as the time step decreases, fewer and fewer
particles cross the barrier. Hence, in the limit dt→ 0, no crossings should be observed.
The result of Fig. 3.9 may seem in contradiction with what was claimed earlier, namely
that the relaxation time τq is smaller than any typical quantum timescale. In Fig. 3.9,
relaxation never occurs, so effectively τq →∞. To better understand this issue, we have
performed one further simulation (see Fig. 3.11) for an initial wavefunction that is equal
to the first excited state ψ1(x), plus a small perturbation proportional to the ground state
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Figure 3.10: Particle probability density P (x, t) (blue histograms) and squared wavefunction
|ψ|2 (red solid line) at times t = 50, for three values of the time step: dt = 0.1 (left panel),
dt = 10−3 (middle panel), and dt = 10−6 (right panel). Time is expressed in units of t0 and
space in units of x0. The wavefunction corresponds to the first excited state of the harmonic
oscillator and the particles are initially all located at x = 1. For the smallest time step virtually
no particles have crossed the barrier situated at x = 0.

ψ0(x): ψ(x, 0) = cos(0.1◦)ψ1(x) + sin(0.1◦)ψ0(x) (note that sin(0.1◦) ≈ 0.0017� 1). In
this case, relaxation takes place again and occurs on a timescale τq ≈ 2.8t0, shorter than
the oscillator period 2π/ω = πt0 (remember that ω = 2/t0 in our units). In summary, the
relaxation time τq is indeed always smaller than the typical oscillator timescale, except
in the special case of an initial wavefunction that is an eigenstate of the system and
possesses one or more nodes.

3.4.3 Uniform gravity field

3.4.3.1 Ultracold neutron experiments

Let us now consider the case of a particle in a constant field, like the one generated
by the gravitational attraction of the Earth. This type of problems are motivated by
ongoing experiments on the gravitational response of antimatter, in which anti-hydrogen
atoms fall in the gravity field of the Earth and are annihilated at the lower surface of the
device [117, 118]. By measuring the duration of the fall, it will be possible to estimate
the gravitational acceleration of antimatter ḡ, and check whether it is identical to that
of standard matter g.
When the quantum nature of the anti-hydrogen atoms is taken into account, more sub-
tle phenomena can arise, leading to the quantum reflection of the atoms at the surface
through the Casimir-Polder potential [119] and the subsequent formation of an interfer-
ence pattern. Exploiting this effect can considerably improve the estimation of ḡ, because
of the great precision with which frequency differences can be measured [120–122].
Similar experiments were performed over two decades ago using free-falling ultracold
neutrons confined between a lower reflecting mirror and an upper absorbing surface
[99], and led to the observation of the quantized gravitational energy levels of the neu-
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Figure 3.11: Time evolution of the distance LH(t) for an initial state that is a superposition of
the ground state ψ0(x) and the first excited state ψ1(x): ψ(x, 0) = sin(0.1◦)ψ0(x)+cos(0.1◦)ψ1(x)
(the corresponding density is shown in the inset). Initially, the particles are localized at x = 1
(blue vertical line in the inset). Time is expressed in units of t0 and space in units of x0.
Relaxation is completed for t = τq ≈ 2.8t0, shorter than the oscillator period 2π/ω = πt0.

trons. These techniques were further used to realize high-precision gravity-resonance
spectroscopy studies on ultracold neutrons [123], which were recently exploited to search
for anomalous gravitational interactions [124]. Gravitational experiments that use cold
hydrogen atoms are also envisaged [125]
Here, we will focus on the relaxation to quantum equilibrium of a quantum particle
(typically, a neutron) falling in the gravitational field of the Earth from a height h.
The initial wavefunction is a Gaussian of width ζ centered at x = h, where x is the
coordinate representing the altitude with respect to the lower reflecting mirror, whereas
the particles are initialized as a Dirac delta function at the same height h. After bouncing
on the mirror, the wavefunction develops quantum interferences. Our purpose will be
again to investigate whether quantum relaxation and the establishment of the Born rule
occurs before or after the formation of the quantum interference pattern.

3.4.3.2 Gravitational quantum states

Assuming a constant gravitational force at the surface of the Earth, the corresponding
gravitational potential is mgx, where m is the mass of the neutron, g the free-fall accel-
eration, and x the altitude with respect to the reflecting mirror, located at x = 0. The
corresponding wavefunction is a solution of the time-dependent Schrödinger equation

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+mgx

)
ψ(x, t), (3.29)
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with boundary conditions ψ(x = 0, t) = ψ(x → ∞, t) = 0, for all times. The system is
then bound and admits a discrete set of eigenstates. The initial wavefunction is given by

ψ(x, 0) = Θ(x)
1

(2πζ2)
1
4

exp

[
−(x− h)2

4ζ2

]
, (3.30)

with Θ(x) the Heaviside function, ensuring that the wavefunction is strictly zero for
x ≤ 0. We choose ζ � h, so that the wavefunction is correctly normalized.
The eigenstates χn of the problem are obtained by solving the stationary Schrödinger
equation (

− ~2

2m

∂2

∂x2
+mgx

)
χn(x) = Enχn(x). (3.31)

We further define dimensionless units of length, energy and time as follows:

x0 =

(
~2

2m2g

) 1
3

, ε0 = mgx0 =

(
~2mg2

2

) 1
3

, t0 =
~
ε0

=

(
2~
mg2

) 1
3

. (3.32)

Using these units, the eigenfunctions read as:

χn(x) = Θ(x)
Ai(x− En)

Ai′(−En)
, (3.33)

where Ai(x) denotes the first Airy function and Ai′(x) its derivative. Because the eigenen-
ergies are obtained by imposing χn(0) = 0, they correspond to the zeros of the Airy
function Ai, which are well-known and have been tabulated [126]. It is also possible
to convert each En to a corresponding “eigenaltitude" hn above the mirror surface, by
setting En equal to the potential energy mghn, leading to: hn = En/mg. The presence
of an upper absorbing plate ensures that only a finite number nmax of eigenstates can
be present simultaneously in the device. The first ten eigenfunctions are represented in
Fig. 3.12, together with the eigenenergies/eigenaltitudes and the gravitational potential
mgx.
Using the eigenbasis Eq. (3.33), the solution to the Schrödinger equation Eq. (3.29) can
be written as

ψ(x, t) =

nmax∑

n=0

cnχn(x)e−iEnt, (3.34)

where the cn are the coefficients of the expansion [127]. Their expression can be obtained
semi-analytically under the assumption that the width ζ of the wavepacket is small
compared to its altitude h [128]:

cn =
(8πζ2)

1
4

Ai′(−En)
Ai
(
h− En + ζ4

)
exp

{
ζ2

(
h− En +

2

3
ζ4

)}
. (3.35)

Some details of the derivation are given in the Appendix E.

3.4.3.3 Relaxation to quantum equilibrium

In order to investigate the relaxation to quantum equilibrium, we take an initial proba-
bility distribution P that does not follow the Born rule, but is rather given by a Dirac
delta function: P (x, 0) = δ(x − h), so that all particles are at the same altitude h from
the mirror. In the forthcoming simulations the altitude varies from h = 1.50 – which is
lower than the ground-state eigenaltitude (h0 = 2.34) – to h = 5. The width of the initial
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Figure 3.12: Representation of the first ten gravitational quantum states χn (red solid lines),
which are given by the same Airy function Ai(x) shifted of an amount equal to En, where En
is the n-th energy eigenvalue; see Eq. (3.33) for the full formula. The horizontal axis represents
the altitude x, in units of x0. The blue line represents the gravitational potential mgx.

wavefunction is fixed and equal to ζ = 0.09. A schematic representation of the initial
system, along with a typical random trajectory obtained by solving Nelson’s stochastic
equation, is shown in Fig. 3.13.
The trajectories of N = 1000 particles initially distributed at a height h = 2.00 from the
mirror are shown in Fig. 3.14. The histogram of the distribution of the positions at the
end of the evolution is interpolated to obtain the corresponding density P (x, t).
The LH distance as a function of time is shown in Fig. 3.15 (upper panel) and displays a
peculiar behaviour. First, it decreases rather abruptly until a time τ1, then it increases up
to time τ2, and finally decreases again for t > τ2. In order to understand this behaviour,
the squared modulus of the wavefunction |ψ|2 and the probability density P are also
shown in Fig. 3.15 (lower panels) for three different times t = 0.005, t = 0.07 and t = 0.5,
corresponding to three different phases of the evolution: (i) t < τ1, (ii) τ1 < t < τ2, and
(iii) t > τ2. During the first phase, both |ψ|2 and P remain approximately Gaussian
and their distance is progressively reduced, as it was found for the harmonic oscillator
in Sec. 3.4.2. However, after τ1, interferencexs start building up in |ψ|2, but not in P , so
that the distance between such two functions increases again. For t > τ2, the interference
pattern is fully formed and the particle distribution again converges towards |ψ|2.
Finally, for even longer times, of the order of the relaxation time τq ≈ 0.5, the LH distance
goes to zero and the Born rule is eventually satisfied (Fig. 3.15, upper panel). Hence,
it appears that some quantum interference phenomena do occur before the quantum
relaxation is fully completed, in particular during the intermediate phase where τ1 <
t < τ2, where the distributions |ψ|2 and P start diverging again. During that phase, the
interference pattern forms too quickly for the particle distribution to catch up with the
wavefunction. This type of effect was not observed in the two other situations (double
slit and harmonic oscillator) that were analysed earlier in the present work.
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Figure 3.13: Schematic view of the physical system under study. The initial wavefunction
(grey curve on the left) is a Gaussian of width ζ, centered at an altitude h from the mirror
(hatched horizontal line at the bottom). The different eigenaltitudes (dashed horizontal lines)
are represented for n = 0, 1, · · ·nmax, where nmax is the highest-energy state allowed by the upper
absorbing plate. The trajectory of a typical particle (blue line), initially located at x = h, shows
the presence of bounces, not only at the level of the mirror, but also in correspondence of the
various eigenaltitudes.

In order to show that the time τ1 (when the distance between |ψ|2 and P starts increasing
again) actually coincides with the time of appearance of the early interference pattern
τint, we need a recipe to estimate the latter. The procedure runs as follows. First, we
normalize the squared modulus of the wavefunction so that its maximum is equal to
unity, and search for extrema in the region 0 < |ψ|2/max |ψ|2 < 0.6, thus focussing
on the tail of the wavefunction (shaded green area in Fig. 3.16). Then, we define the
prominence of a peak as the height between two neighbouring extrema (a maximum
and a minimum). We consider that interference occurs when at least two peaks have
appeared with prominence larger than a threshold value p. This defines the appearance
time of the interference pattern, τint. This procedure is illustrated in Fig. 3.16, where
the wavefunction at the interference time is plotted for three values of p.
Now, we can compare the interference time τint with the time τ1 at which the LH distance
starts increasing. The result is plotted in Fig. 3.17, including error bars accounting for
different choices of the prominence p. As expected, these two times are very similar,
confirming that the increasing distance between |ψ|2 and P between τ1 and τ2 is due to
the formation of an early interference pattern in the former, but not in the latter.
In summary, simulations of a quantum particle falling in a uniform gravitational field
have shown that quantum interference phenomena could indeed be observed before the
Born rule is satisfied, in contrast to what was found for the double slit and harmonic
cases. This opens the way to possible experimental verifications of the Born rule using
gravitational quantum states of ultracold neutrons [99] or hydrogen atoms [125], which,
in the case of neutrons, have reached extremely high accuracy levels [124]. We recall
that we expressed our results in units of x0 = 5.87µm for distances and t0 = 1.09 ms
for times, see Eq. (3.32). Hence, for the case of Fig. 3.15, a significant discrepancy from
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Figure 3.14: Trajectories of N = 1000 particles (left side, black curves) initially distributed
at a height h = 2.00 from the mirror. The histogram of the distribution of the positions (right
side, orange segments) at the end of the evolution is interpolated to obtain the corresponding
density P (x, t) (right side, dashed brown line).

the Born rule should still be observable around t ≈ 0.2t0 ≈ 0.2ms, if all neutrons were
initially perfectly localized at an altitude h = 1.5x0 ≈ 8.8µm. This level of accuracy in
the time resolution should be attainable with current experimental setups.

3.5 Conclusion

The Born rule was introduced by Born in 1926 in order to provide an interpretation of
the wavefunction that appears in the Schrödinger equation. Interestingly, in the original
paper by Born [85], the rule appears in a note added in proofs, and is expressed in
words rather than mathematically.6 Such simple rule stands alone with respect to the
mathematical machinery of quantum mechanics, but is of course extremely important,
as it bridges the gap between the abstract mathematical theory and the interpretation
of actual experiments.
A question that has been raised by several researchers is whether the Born rule should
be considered as fundamental, or rather an approximation. In particular, Valentini [89,
96] suggested that the Born rule plays the same role as thermal equilibrium in classi-
cal statistical mechanics. Just like an out-of-equilibrium classical system quickly relaxes
towards a Maxwell-Boltzmann equilibrium, a quantum system may exist in a “subquan-
tum" state where the Born rule is not satisfied. We always observe the validity of the

6The footnote reads as [85]: Anmerkung bei der Korrektur: Genauere Uberlegung zeigt, daß die
Wahrscheinlichkeit dem Quadrat der ψ proportional ist. (Note added in proofs: More careful considera-
tion shows that the probability is proportional to the square of ψ).
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Figure 3.15: Upper panel: Time evolution of the distance LH(t) for an initial state with
h = 1.5 and ζ = 0.09. The shaded colours represent the three different phases of the evolution
described in the main text. The two vertical dashed lines show the times τ1 and τ2 between which
the LH distance increases. The dashed horizontal line corresponds to the level below which LH

cannot go, for reasons due to the numerical integration (errors due to the finite number of
particles and the interpolation method). Full convergence – hence establishment of the Born
rule – is achieved for a relaxation time τq ≈ 0.5, significantly larger than τ2. Lower panels:
Squared modulus of the wavefunction |ψ|2 (red solid curve) and particle distribution P (blue
dashed curve) at three different times, t = 0.005 (left), t = 0.07 (middle), and t = 0.5 (right) (in
units of t0), corresponding to the three regions visible in the upper panel.

Born rule only because this relaxation to quantum equilibrium is extremely fast.
Nelson’s stochastic version of quantum mechanics provides an ideal arena to test such
subquantum dynamics, as it allows to initialize the system in an out-of-equilibrium state
that does not respect the Born rule. Due to the random nature of Nelson’s dynamics, the
Born rule is quickly attained over a timescale that depends on the system under study.
(The same is true for the Bohm-de Broglie theory, but the latter being deterministic, it
requires some sort of coarse graining in order to recover Born’s rule).
In the present work, we have investigated numerically this relaxation to quantum equi-
librium for three relevant cases: a standard double-slit interference setup, a harmonic
oscillator, and a quantum particle in a uniform gravity field, such as ultracold neutrons
in the gravitational field of the Earth. For all cases, the Nelson stochastic trajectories
are initially localized at a definite position, thereby violating the Born rule.
For the double slit and harmonic oscillator, we found that typical quantum phenomena,
such as interferences, always occur well after the establishment of the Born rule. In
contrast, for the case of quantum particles free-falling in the gravity field of the Earth,
an interference pattern is observed before the completion of the quantum relaxation. The
different behavior in the latter case is likely to arise from the nonlinearity induced by the

92



Relaxation to quantum equilibrium

Figure 3.16: Normalized squared modulus of the wavefunction as a function of the distance
x from the lower mirror, for an initial height h = 1.50 (in units of x0) and three values of the
prominence: p = 0.0025 (left panel), p = 0.05 (middle panel), and p = 0.152 (right panel).
Interference is said to occur when at least two peaks are present in the green shaded region and
have a prominence higher than p. The peaks are highlighted by a red cross on the curves. The
corresponding interference time τint depends on the chosen value of p and is also indicated on
the figure.

reflecting mirror. If that is the case, a similar behaviour should be observed for generic
non-quadratic Hamiltonians.
These findings may pave the way to experiments that are capable of discriminating stan-
dard quantum mechanics, where the Born rule is always verified, from Nelson’s theory,
for which an early subquantum dynamics may be present before full quantum relaxation
has occurred.
One may argue that particles in our labs had a long and violent astrophysical history
since the Big Bang, with ample time to relax to quantum equilibrium, so that it would
be extremely difficult to observe any deviations from the Born rule at the present epoch.
This is the line of argument followed by Valentini [103] in the context of the Bohm-de
Broglie theory.
However, one might speculate on different scenarios. For instance, we could think of a
decay-type experiment (beta or alpha decay, neutron or proton emission, etc.) in which
a quantum particle (electron, positron, helium nucleus, neutron, proton...) is created
from a fundamental process arising – for instance, but not exclusively – from the weak
interaction. In this case, the particle might be born in a non-equilibrium situation where
Born’s rule has not had enough time to be established. Another example is the creation of
a particle-antiparticle pair (e.g., electron-positron) from a photon. This occurs in nuclear
physics when a high-energy photon interacts with the nucleus, enabling the production of
an electron-positron pair without violating the conservation of momentum. Just after the
pair creation, the electron or positron should be in a non-equilibrium state. Of course,
these are somewhat speculative proposals, but the findings put forward in this work at
least suggest a viable way to test the existence of a subquantum dynamics in laboratory
experiments.
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Figure 3.17: Ratio of the interference time τint and the time of increase of the LH distance τ1
(black squares) for different altitudes h and an intermediate value of the prominence, p = 0.05,
see Fig. 3.16. The “error bars" are obtained using the upper and lower values p = 0.0152 and
p = 0.0025. All ratios are close to unity, indicating that the two times relate to the same physical
phenomenon.
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Key Takeaways

This chapter explored the relaxation to quantum equilibrium within Nelson’s
stochastic quantization framework, focusing on the emergence and implications
of the Born rule in quantum mechanics.

• Quantum Equilibrium: P (x, t) = |ψ(x, t)|2 (Born rule)

• Nelsons’s Stochastic Quantization: Initially distribute particles accord-
ing to P (x, 0) 6= |ψ(x, 0)|2. Trajectories evolve according to

dx(t) = b(x(t), t) dt+ dW (t).

• Measuring Convergence to Quantum Equilibrium: To quantify the
distance between P (x, t) and |ψ(x, t)|2 and study the relaxation process,
several measures were used:

– p norm:

Lp =

(∫ +∞

−∞

∣∣P (x, t)− |ψ(x, t)|2
∣∣p dx

)1/p

.

– Inifinite norm (L∞):

L∞ = max
x

∣∣P (x, t)− |ψ(x, t)|2
∣∣ .

– Relative Entropy (LH):

LH =

∫ +∞

−∞
P (x, t) ln

(
P (x, t)

|ψ(x, t)|2
)

dx.

Allows to determine the relaxation time τq to quantum equilibrium.

• Systems studied:

7 Double-Slit Experiment
Characteristic time: apparition of the intereference pattern τint.

Result : τq < τint

7 Harmonic Oscillator:
Characteristic time: oscillation period T

Result : τq < T

3 Quantum Particles in a Gravitational Field:
Characteristic time: apparition of the intereference pattern τint

Result : τq > τint

In conclusion, while relaxation to quantum equilibrium is generally rapid, the
interplay between relaxation dynamics and the emergence of quantum phenomena
varies across systems. It seems possible to observ deviations from the Born rule
in certain setups, such as particles in a gravitational field.
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CHAPTER 4

Quantum-classical analogues for
optimisation

Le vrai point d’honneur n’est pas d’être toujours
dans le vrai. Il est d’oser, de proposer des idées

neuves, et ensuite de les vérifier.
— P-G. de Gennes

In this chapter, we develop a method to optimize the dynamics of a quantum harmonic
oscillator by leveraging a quantum-classical analogy based on Nelson’s stochastic for-
mulation of quantum mechanics. Our goal is to transition the system from an initial
stationary state to a final stationary state in the shortest possible time while minimizing
a specified cost function. By establishing an analogy between the quantum harmonic
oscillator and the classical overdamped dynamics of a Brownian particle in a harmonic
potential, we apply a variational principle to derive optimal protocols for the control
parameter, which is the stiffness of the potential. We consider two cost functions: the
cumulative energy over time and the dynamical phase of the wavefunction. The latter
allows us to construct protocols that are adiabatically optimal, minimizing the devia-
tion from an adiabatic process for a given duration. Our numerical results demonstrate
that the proposed optimal protocols can outperform existing methods, providing efficient
shortcuts to adiabaticity in closed quantum systems. We begin in Sec. 4.1 by introduc-
ing the importance of optimization in quantum systems and outlining the objectives of
this work. Sec. 4.2 presents the fundamentals of the quantum-classical analogy based
on Nelson’s stochastic mechanics, illustrating it with a simple numerical example. In
Sec. 4.3, we describe the variational method used to derive optimal quantum protocols
and explain how it is applied to minimize general cost functionals. Sec. 4.4 then pro-
vides numerical results for optimal protocols obtained using two different cost functions:
the cumulative energy over time and the dynamical phase of the wavefunction. Finally,
Sec. 4.5 summarizes our findings and discusses potential directions for future research.
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4.1 Introduction

Optimization problems play an important role in both classical and quantum physics,
providing an elegant framework for describing natural phenomena. Concepts such as
Fermat’s principle and the stationary-action principle, which serve as foundational pillars
of physics, are deeply rooted in optimization principles. Optimization techniques are also
crucial for efficient resource utilization, improving theoretical models, and controlling and
manipulating the state of a physical system.
The central question in optimization research revolves around bringing a system from
an initial state to a desired final state while minimizing a certain quantity, known as
the cost function. A very diverse array of systems can be explored through the lens
of optimization, ranging from Kramers-like problems with double well potentials [129]
to trapped ions [130], cavity quantum electrodynamics [131], superconducting circuits
[132], spin-orbit coupling [133], nitrogen-vacancy centers [134], many-body and spin-
chain models [135], and even metrology applications [136]. Various methods can be
employed depending on the specific circumstances. Optimization techniques based on
variational principles are often utilized, such as in the quantum brachistochrone problem
[137, 138] or in the context of Bose-Einstein condensates trapped in harmonic potentials
[139, 140]. Additionally, optimization methods based on optimal control theory have
gained prominence in recent years [141–145].
In this chapter, we focus on the case of the time-dependent quantum harmonic oscillator,
a system of paramount importance across multiple fields of physics. Specifically, we will
examine protocols for manipulating the stiffness of the potential in order to efficiently
transition the system from one steady-state to another in a time shorter than that re-
quired by an adiabatic (i.e., quasi-static) process. This concept is known as shortcut to
adiabaticity (STA) (for recent reviews, see [146, 147]). While many of the basic ideas
were put forward about two decades ago, with various approaches such as counterdia-
batic driving [148–150], inverse engineering [151, 152], scaling laws [153], and others [154–
161] being introduced, the development of STA methods has gained much momentum in
recent years [162–165].
Here, we will employ an approach recently proposed for the classical overdamped dy-
namics of a Brownian particle confined in a harmonic trap and in contact with a heat
bath at given temperature [166]. This method, based on a variational principle, allowed
us to optimize the transfer from one thermal equilibrium to another, by minimizing both
the duration of the transfer and the expended work. The trade-off between duration and
work could be modulated at will by tuning a single Lagrange multiplier.
The main purpose of the present chapter is to develop a quantum-classical analogy that
allows us to exploit the aforementioned method in order to control and optimize the
dynamics of a quantum harmonic oscillator. Indeed, analogies may serve as powerful tools
in physics. For instance, the experiments conducted by Couder in 2005 [106] established
a hydrodynamic analogy to the behavior of quantum particles, as described by the pilot
wave theory introduced by de Broglie [167] and later developed by Bohm [32]. With this
approach, it was possible to demonstrate the existence of quantum-like diffraction using
a fully classical experimental setup [168].
The analogy to be presented here is based on an alternative formulation of quantum
mechanics originally due to Nelson [31, 97, 98]. In Nelson’s representation, the quantum
evolution is governed by a first-order stochastic equation, supplemented by Schrödinger’s
equation for the wave guiding the trajectory in a manner similar to the Bohm-de Broglie
theory. Nelson’s stochastic equation bears a close resemblance to the Langevin equation
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that governs the overdamped motion of a classical Brownian particle, thus suggesting
the potential for a fruitful quantum-classical analogy. Such an analogy has already been
considered in recent years for an open quantum system [169]. In the present chapter, we
will demonstrate that this approach is particularly well-suited for solving optimization
problems for closed quantum systems.
The objective of this chapter is to devise a protocol that transitions the system from a
given stationary state to another in the shortest possible time, while minimizing a spec-
ified cost function throughout the temporal evolution. In classical stochastic thermody-
namics, it is common to minimize the work done on the system, which also corresponds
to minimizing the dissipated heat [151, 166, 170, 171]. However, for closed Hamiltonian
systems, such work is simply equal to the difference between the final and the initial
energies, and therefore it is not a pertinent quantity to minimize [162].
In the ensuing sections, we will outline a method – based on Nelson’s dynamics and the
quantum-classical analogy mentioned above – which allows us to minimize a generic cost
function, usually written as the sum of the duration of the protocol plus a functional F of
the control parameters. As relevant examples, we will choose for F either the cumulative
energy of the system over time or the dynamical phase of the wavefunction. The latter
case allows us to construct protocols that are “adiabatically optimal", i.e. protocols that,
for a given duration, minimize their distance (in a precise mathematical sense) from an
adiabatic process.
In Section 4.2, we will detail the basic features of the classical analog of the time-
dependent quantum harmonic oscillator using Nelson’s stochastic formulation, illustrat-
ing the analogy with a simple numerical example. In Section 4.3, we will show how
this analogy can be applied to the quantum harmonic oscillator. We will also describe
a general method to obtain a protocol that is optimal in regards of both its duration
and another cost functional to be specified at will. In Sec 4.4 we will present numerical
results for optimal protocols obtained using two different cost functions as illustrative
examples. Conclusions and perspectives for future work will be detailed in Sec. 4.5.

4.2 Quantum-classical analogy

4.2.1 Fundamentals of the analogy

A one-dimensional particle of mass m trapped in a time-dependent harmonic potential
obeys the Schrödinger equation

i~
∂

∂t
ψ(x, t) = Ĥ(t)ψ ≡

(
− ~2

2m

∂2

∂x2
+

1

2
κ(t)x2

)
ψ(x, t), (4.1)

where ~ is Planck’s constant, κ(t) is the time-dependent stiffness of the potential, and
ψ(x, t) is the wavefunction of the system at time t and position x. The optimization
procedure developed in this work consists in designing a protocol κ(t) which brings the
system from an initial stationary state ψi(x) at time ti to a final (also stationary) state
ψf(x) at time tf , in the shortest possible time ∆t = tf − ti, while minimizing a given cost
function [162, 172, 173].
The derivation of these optimal protocols will be based on Nelson’s formulation of quan-
tum mechanics. In this approach, similarly to the Bohm-de Broglie formalism, quantum
particles are supposed to have a well-defined position x(t) evolving in time. Unlike the
deterministic trajectories followed by quantum objects in the Bohm-de Broglie theory,
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Nelson’s theory postulates that each trajectory obeys the stochastic differential equation

dx(t) = b(x(t), t)dt+
√

2D dW (t), (4.2)

where b(x, t) is the deterministic drift velocity, D = ~/2m is the diffusion coefficient, and
dW (t) is the Wiener increment for a Markov process: 〈dW (t)〉 = 0, 〈dW (t) dW (t′)〉 =
t−t′. The origin of the stochastic nature of the dynamic of quantum particles is postulated
but not explained by Nelson’s theory. The key point in Nelson’s approach is to define
the drift coefficient as

b(x, t) =
~
m

∂S(x, t)

∂x
+

~
2m

∂ ln ρ(x, t)

∂x
, (4.3)

where S(x, t) and ρ(x, t) are respectively the phase and squared modulus of the wave-
function ψ(x, t), expressed in polar form as ψ =

√
ρ exp(iS). This definition of b(x, t)

ensures that the probability distribution of a large ensemble of trajectories x(t) obeying
Nelson’s equation (4.2) converges to the square-modulus of the wavefunction, following
Born’s rule [174]. If the initial probabilistic distribution of the trajectories follows Born’s
rule at t = 0, it will do so for all successive times t > 0. Hence, Nelson’s theory repro-
duces the same results as the standard quantum mechanics based on the Schrödinger
equation.
For the ground state of the harmonic oscillator, the Gaussian form of the wavefunction
yields a simple form for the drift term of Eq. (4.3), as we now show. Due to the quadratic
nature of the Hamiltonian in Eq. (4.1), if the initial wavefunction ψi(x, t = 0) is Gaussian,
then it remains Gaussian for all times t > 0, and can be written as

ψ(x, t) =
1

4
√

2πs(t)
exp

[
− x2

4s(t)
+ iα(t)x2 + iβ(t)

]
, (4.4)

where s(t) = 〈x(t)2〉 is the time-dependent variance of the density, while α(t) and β(t)
are the dynamical and geometrical phases of the wavefunction, respectively. For the
wavefunction to be a solution of Eq. (4.1), the time-dependent coefficients α(t) and β(t)
must satisfy the following relations:

α(t) =
m

4~
ṡ(t)

s(t)
, β̇(t) = − ~

4ms(t)
, (4.5)

where the dot denotes differentiation with respect to the time t. The variance s(t) is
related to the standard deviation σ =

√
2s, which must obey the following Ermakov

equation [175]:

σ̈(t) +
κ(t)

m
σ(t) =

4D2

σ3(t)
. (4.6)

The coupled equations (4.5)-(4.6) provide a full, exact solution of the Schrödinger equa-
tion in the Gaussian form (4.4).
From Eqs. (4.3) and (4.4), one obtains immediately Nelson’s drift velocity:

b(x, t) =
~
m

(
2α(t)− 1

2s(t)

)
x, (4.7)

which, importantly, is linear in x. Therefore, we can rewrite Nelson’s stochastic equation
(4.2) as

dx(t) =
~
m

(
2α(t)− 1

2s(t)

)
x(t) dt+

√
2D dW (t). (4.8)
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The above Nelson equation (4.8) bears a striking resemblance with the Langevin equation
for a classical overdamped Brownian particle in a harmonic potential of stiffness κ̄(t) and
same diffusion coefficient D, which we write here as:

dx(t) = − κ̄(t)

γ
x(t)dt+

√
2D dW (t), (4.9)

where γ is the usual Stokes drag coefficient, which we keep for dimensional reasons in
the classical equation, but will disappear in the quantum results. The equations (4.8)
and (4.9) are identical if we define the classical stiffness as:

κ̄(t) = γ
~
m

(
2α(t)− 1

2s(t)

)
. (4.10)

Hence, our physical analogy is based on the mathematical equivalence between Nelson’s
equation (4.8) for a quantum particle in a harmonic oscillator and the Langevin equation
(4.9) for a classical Brownian particle. In addition, for the classical Langevin equation,
the variance s(t) obeys the following closed evolution equation [176, 177]

ds(t)

dt
=

2

γ
[Dγ − κ̄(t)s(t)]. (4.11)

To complete the analogy, we need to specify the relationship between the stiffness κ(t)
of the quantum oscillator and the the stiffness κ̄(t) appearing in the classical stochastic
process. Taking the time derivative of Eq. (4.10) and using Eqs. (4.5) and (4.11), we
arrive, after some algebra, at the following expression for the quantum stiffness

κ(t) =
~2

2ms2(t)
+
m

γ
˙̄κ(t)− m

γ2
κ̄2(t), (4.12)

written in terms of the classical stiffness κ̄(t) and its time derivative. Equation (4.12)
serves as a crucial link in establishing the quantum-classical analogy, acting as a bridge
between the quantum system and its classical analog.
Finally, from Eq. (4.11) it results that, at equilibrium: κ̄eq = Dγ/seq for the classical
case. For the quantum case, from Eq. (4.12) we obtain

κeq =
m

γ2
κ̄2

eq =
D2m

s2
eq

, (4.13)

which does not depend on the classical parameter γ, as expected.
Our strategy will be to suggest a classical protocol κ̄(t) and use Eq. (4.12) to obtain the
corresponding quantum protocol. By construction, the evolution of the variance s(t) will
be identical for both cases and given by Eq. (4.11). Therefore, if we can devise a classical
protocol that brings the variance from an initial equilibrium state with s(ti) = si to a
final equilibrium state with s(tf) = sf , then the corresponding quantum protocol will do
the same.

4.2.2 Example: STEP protocol

To illustrate the quantum-classical analogy, we examine a sudden protocol (frequently
referred to as STEP) which consists in an abrupt change of the classical stiffness from κ̄i

to κ̄f . However, because of the presence of a first derivative in Eq. (4.12), it is necessary
to smooth out such STEP protocol. The smoothed STEP is then defined as follows [178]

κ̄(t) =
κ̄f + κ̄i

2
+
κ̄f − κ̄i

2
tanh

(
t− τ
ε

)
. (4.14)
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The classical stiffness is centered at t = τ and becomes steeper and steeper as ε → 0.
For simplicity, we have used units for which: κi = 2, ~ = γ = 1, m = 1/2, so that the
quantum diffusion coefficient is D = ~/2m = 1. In these units, time is measured in units
of 2/ωi and the variance in units of ~/mωi, where ωi =

√
κi/m is the initial angular

frequency of the harmonic potential. In the examples below, we have used κ̄i = 2 and
κ̄f = 4, which in virtue of Eq. (4.13) yields: κi = 2 and κf = 8, and variances si = 0.5
and sf = 0.25.
In Fig. 4.1 (bottom panel), we show the classical and quantum protocols for two values
of the width ε = 0.1 and ε = 1. For the smoother classical protocol (ε = 1, dashed black
curve), the quantum protocol (shown in the inset) has a similar shape as its classical
counterpart, although its initial and final values are different, in accordance with Eq.
(4.13). In contrast, the steeper classical protocol (ε = 0.1, solid orange curve) yields an
oscillating quantum protocol (inset). These oscillations become stronger as ε → 0. The
time evolution of the variance s(t) (top panel of Fig. 4.1) – which, as stated above, is by
construction the same for the classical and quantum cases – shows that the variance of
the system is smoothly brought from its initial value to its final value, even for the case
(ε = 0.1) where the quantum protocol is strongly oscillating.
It is clear from Fig. 4.1 that the steeper protocol achieves the transition more quickly,
but let us try to quantify this speed-up more accurately. Classically, the relaxation time
for a STEP protocol is given by the final stiffness κ̄f , and reads as: τrel = γ/κ̄f . Rewriting
this in terms of the quantum quantities, we get: τrel =

√
m/κf = ω−1

f , where γ, being
a purely classical parameter, has naturally disappeared. Hence, the relaxation time is
the inverse of the final oscillator frequency. In the present case, we have, in our units,
τrel = ω−1

f = 0.25 (2ω−1
i ).

Now, it is important to understand that, for the quantum oscillator (which is conserva-
tive), this is not really a relaxation time. If we apply a STEP protocol directly on the
quantum stiffness κ, the quantum system will oscillate indefinitely, with no damping.
The standard way to implement the transition without oscillations would be to proceed
adiabatically, which takes an infinite time. Hence, any quantum protocols, like those of
Fig. 4.1, that take a finite time to complete, already do much better than the adiabatic
one. In the figure, the slower protocol takes about ≈ 6 (2ω−1

i ) to achieve the transition,
while the faster protocol takes ≈ 0.75 (2ω−1

i ). This speeding up is achieved through the
special temporal profile of the quantum protocol κ(t), which was obtained thanks to the
quantum-classical analogy.
But the classical STEP protocol will never be able to go faster than the relaxation time
τrel = ω−1

f , which therefore constitutes a fundamental limit also for the quantum protocol,
as the evolution of the variance is by construction the same for both. In the next section,
we will develop a method to construct optimal protocols that break this limit, and allow
relaxation on a timescale shorter than ω−1

f . Therefore, these optimal protocols not only
outperform the adiabatic process (τrel = ∞), but also do better than “naive" protocols
such as STEP, for which τrel = ω−1

f . In addition, they also minimize some other quantity
of physical interest, such as the cumulative energy over time.

4.3 Optimal quantum protocols

As mentioned in the preceding sections, our objective is to transition a quantum system
from an initial state, ψi, to a final state, ψf , in the shortest possible time, ∆t, while
minimizing a certain cost function. For the time being, we keep this cost function as
general as possible. The initial and final states are supposed to be the ground states in
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Figure 4.1: Top Panel: Evolution of the variance s(t) as a function of time (measured in units
of 2ω−1i ), for ε = 1 (black dashed lines) and ε = 0.1 (orange solid lines). The variance decreases
from si = 0.5 to sf = 0.25, in units of ~/mωi as detailed in the main text. The larger value of
ε correspond to the smoother protocol. Bottom panel: Time evolution of the quantum stiffness
κ(t) (main plot) associated to the classical STEP protocol κ̄(t) (inset), for the same values of ε.
When the classical STEP is smooth (ε = 1, black dashed lines), the quantum protocol is also
smooth and follows the same behavior as the classical one. In contrast, when the classical STEP
protocol varies abruptly (ε = 0.1, orange solid lines), an oscillation appears at mid-time in the
quantum protocol.
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the respective harmonic potentials at ti and tf . For a classical Brownian particle in a
thermal bath, several methods already exist for finding the optimal protocol, especially
when the cost function is the work done on the system [151, 166, 170].
In the following subsection, we will present the work of Ref. [166] which consitutes the
basis of our work, based on a variational principle. Then, in the next subsection we will
show how this method can be applied to the quantum case thanks to the classical analogy
developed in Sec. 4.2, and how it can be used to find optimal protocols for the quantum
harmonic oscillator. Along this subsection, we will explore various cost functions and,
for each of them, find the optimal protocol.

4.3.1 Optimisation method for classical systems

We assume a classical Brownian particle whose dynamics is described by the overdamped
Langevin equation, as Eq. (4.9). The particle is trapped in an harmonic potential whose
stiffness κ̄(t) is modulated over time. As the probability distribution of the particle’s
position is Gaussian, with the variance s(t) evolving according to Eq. (4.11). Then,
the system is fully described by the path (s(t), κ̄(t)) followed by the variance and the
stiffness.
We seek a manner to change the stiffness from an initial value κ̄i to a final value κ̄f such
as the state of the system evolves from an initial thermal equilibrium to a final thermal
equilibrium. The equilibrium conditions are given by the stationary solution of Eq. (4.11),
leading to seqκ̄eq = Dγ, D being the diffusion coefficient and γ the friction, involved in
Eq. (4.9). A possible manner to vary the stiffness is to do so adiabatically, which means
that the system is always in an equilibrium state. However, the time duration of this
protocol is very large, and we want to find a way to reduce it.
In Sec. 4.2.2, we discussed the STEP protocol case, which consists on an abrupt change
of stiffness. This protocol is a shortcut to adiabaticity, as it allows to reach the final
equilibrium state in a finite time. However, the time duration of the STEP protocol
(given by the relaxation time γ/κ̄f of the variance) is not the shortest time possible for
the transition, and this protocol does not ensure the minimisation of any desired cost
function.
Then, we desire to find an optimisation method to minimise the time duration of the
transition, while keeping a cost function (which is a functional of the stiffness), noted
F [κ̄], as low as possible. Ref. [166] provides such method, based on a variational principle,
by defining a functional

J [κ̄] = ∆t[κ̄] + λF [κ̄]. (4.15)

The Lagrange multiplier λ is the trade-off between the time duration and the cost func-
tion. Minimising this functional leads to the optimal protocol κ̄(t), which is the solution
of the Euler-Lagrange equation δJ/δκ̄ = 0. Taking the limit λ → ∞ leads to the opti-
mal protocol that minimises the cost function allowing the time duration to be as long
as necessary (adiabatic limit), while taking λ → 0 leads to the optimal protocol that
minimises the time without taking into account the cost function.
In the next subsection, we will apply this method to the quantum harmonic oscillator,
using the quantum-classical analogy developed in Sec. 4.2, and keep the cost function F
as general as possible. Here, for the sake of illustration, we will consider tht the cost
function is the average expended work W (t) over time. It is a common cost function in
classical stochastic thermodynamics. According to Ref. [179], the average work done on
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the system over time is given by

∆W =

∫ tf

ti

dt
1

2
s(t) ˙̄κ(t) (4.16)

See Appendix I for the detailed derivation of this expression.

To use the Euler-Lagrange equation, we need to express the Lagrangian associated to
the functional J . To do so, we assume that the variance is a monotonic function of the
time, and we can use it as the independent variable, instead of the time. The stiffness
then writes κ̄(s), such as κ̄(t) = κ̄(s(t)) (note that, for simplicity of notation, we use the
same variable name for a function of t and the corresponding function of s). It allows to
express the time duration and the work as functionals of κ̄:

∆t[κ̄] =
1

2

∫ sf

si

ds
γ

[Dγ − sκ̄(s)]
(4.17)

and
∆W =

1

2

∫ sf

si

ds κ̄(s). (4.18)

The Lagrangian, defined as the integrand of the J-integral, is then given by

L[κ̄] =
γ

[Dγ − sκ̄(s)]
+ λκ̄(s) (4.19)

where we remove the common 1/2 prefactor, and the Euler-Lagrange equation reads

γ

[Dγ − sκ̄(s)]
= λ. (4.20)

This is an algebraic equation, so no control on the boundary conditions is possible. The
solution is analytical and is given by

κ̄(s) =
Dγ

s
+

√
γ

λs
. (4.21)

We indeed recover the adiabatic limit for λ→∞. Inserting this solution Eq. (4.11) gives
the evolution of the variance s(t), such as

s(t) =

(√
si −

t√
γλ

)2

. (4.22)

It allows to go back to the time evolution of the stiffness κ̄(t), leading to the optimal
protocol

κ̄(t) =
Dγ +

√
γsi
λ − t

λ(√
si − t√

λγ

)2 . (4.23)

From this expression, as well as Eq. (4.21), we see that the optimal protocol does not
satisfy the equilibrium condition at the initial and final times. Discontinuities are needed
to ensure them, leading to extra-work contributions, associated to abrupt changes of
stiffness.
If we desire to get rid of these discontinuities, we have to smooth the optimal protocol.
For that purpose, we have to control the derivative of the stiffness, and we can add a
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term to the Lagrangian, such as L now depends on both the stiffness and its (variance)
derivative, noted κ̄′, as

L[κ̄, κ̄′] =
γ

Dγ − sκ̄(s)
+ µκ̄′2(t) (4.24)

with µ another Lagrange mutliplier, that monitors the smoothness of the protocol, no-
tably at the edges of the time interval. In the limit µ → 0, we recover the previous
Lagrangian. The Euler-Lagrange is modified as

2µκ̄′′(s) =
γs

(Dγ − sκ̄(s))2
− λ. (4.25)

As it is a second-order ordinary differential equation, the two equilibrium conditions can
be imposed for the optimal protocol, solution of previous equation. Analytical, numerical
and experimental verifications of this optimisation method have been given in Ref [166].
We will not discuss them, as we just wanted to present the method developped for the
classical harmonic oscillator. Brief explanations about the experimental parameters of
the experiment and the realisation the optical harmonic trapping are given in Appendix J.
The objective of the rest of the chapter is to apply the method to the quantum harmonic
oscillator case.

4.3.2 Application of the method for quantum systems

In order to find the optimal quantum protocol, we can process as for the classical case.
First, we need to define the functional to be minimized J [κ, κ̇], which is a function of the
control parameter (stiffness of the oscillator) and its time derivative. This functional will
be written as the sum of the total duration of the protocol, denoted ∆t[κ], plus another
functional to be minimized, denoted F [κ, κ̇] (our cost function), the latter associated
with a Lagrange multiplier λ. Then, the optimal protocol κopt is found as the solution
of the Euler-Lagrange equation derived from the total functional J . In practice, it will
be necessary to add a third functional G[κ̇], and its Lagrange multiplier µ, in order to
ensure that the boundary conditions on κ(t) are satisfied.
One has the choice to express the above functionals either in terms of the classical stiffness
κ or the quantum stiffness κ̄, and then derive the corresponding Euler-Lagrange equations
accordingly. In practice, as we shall see, it will be easier to express all functionals as a
function of κ̄ (and its time derivative) using Eq. (4.12). For simplicity of notation, we will
use the same symbols (J , F and G) for the functionals, irrespective of their arguments.
Let us first express the time duration as a functional. We adopt the method developed
in Ref. [166], which consists in using the variance s as an independent variable, instead
of the time t 1. Each protocol can then be characterized by a trajectory in the stiffness-
variance space (κ, s). This allows us to express the protocols as a function of s instead
of t, so that we write: κ(s) = κ(t(s)) and κ̄(s) = κ̄(t(s)). Using Eq. (4.11) one obtains
for the time duration functional

∆t[κ̄] =
1

2

∫ sf

si

ds
γ

Dγ − sκ̄(s)
. (4.26)

Note that the above functional depends on the classical protocol κ̄(s), and not the quan-
tum one κ(s).
Since we are interested in the dynamics of the quantum system, the yet-unspecified cost
functional F is usually expressed in terms of κ, the stiffness of the quantum harmonic

1This is possible only if s(t) is a monotonic function of t.
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oscillator. However it is easy to express it in terms of κ̄, by using Eq. (4.12) rewritten
in the s-domain:

κ(s) =
~2

2ms2
+

2m

γ2
[Dγ − sκ̄(s)]κ̄′(s)− m

γ2
κ̄2(s), (4.27)

where the prime denotes the derivative with respect to s. Then, we can write F in
integral form as: F [κ̄, κ̄′] =

∫ sf
si

ds f(s, κ̄(s), κ̄′(s)), where f is a function obtained by
transforming the quantum stiffness to the classical stiffness using Eq. (4.27).
The need for another functional G[κ′] results from the requirement to avoid strong gradi-
ents in κ(s). As was noted in Ref. [166], without this term the resulting optimal protocol
displays jumps, i.e. infinite gradients, at the initial and final times. Mathematically, this
is because, in the absence of this term, the Euler-Lagrange equation is an algebraic one,
so that one cannot fix the boundary conditions on the solution, and instead has to “stitch"
them artificially as jumps. That was not an issue for the overdamped dynamics stud-
ied in Ref. [166], because a system with vanishing inertia remains at equilibrium when
the stiffness is suddenly changed. But here the situation is different, as the underlying
problem is the standard Schrödinger equation, which does include inertia. Hence, if the
boundary conditions are not satisfied at t = tf , then the system will continue to evolve
and deviate from the target stationary state. A way to ensure that boundary conditions
are indeed satisfied is to render the Euler-Lagrange equation a second-order differential
equation [180]. This can be achieved by adding the following functional

G[κ̄′] =

∫ sf

si

ds
∣∣κ̄′(s)

∣∣2 , (4.28)

with the corresponding Lagrange multiplier µ. Note that we expressed G[κ̄′] in terms
of the classical stiffness, to be consistent with the other functionals ∆t and F . But
limiting the gradient of κ̄(s) also limits the gradient of κ(s), in virtue of Eq. (4.27). We
also recall that the boundary conditions are those for which the variance is stationary
at the boundaries, i.e. ṡi,f = 0. From Eq. (4.11), this is equivalent to imposing that
κ̄i,f si,f = Dγ.
In summary, the total functional to be minimized is J = ∆t+ λF + µG, or explicitly:

J [κ̄, κ̄′] =
1

2

∫ sf

si

ds
γ

Dγ − sκ̄(s)
+ λ

∫ sf

si

ds f(s, κ̄(s), κ̄′(s)) + µ

∫ sf

si

ds
∣∣κ̄′(s)

∣∣2 . (4.29)

It is important to understand that λ and µ play very different roles. While λ corresponds
to the weight given to the cost functional we want to minimize on physical grounds, µ is
present only to ensure that the equilibrium conditions are satisfied. Nevertheless, both
Lagrange multipliers have an impact on the resulting optimal solution. The Lagrangian
associated to Eq. (4.29) is

L[s, κ̄, κ̄′] =
γ

Dγ − sκ̄ + λf + µ
∣∣κ̄′
∣∣2 , (4.30)

where we removed the factor 1/2 from the first term, because it can be included in the
Lagrange multipliers λ and µ. The optimal protocol is obtained by solving the Euler-
Lagrange equation associated with L, which reads as

2µκ̄′′ =
γs

[Dγ − sκ̄(s)]2
+ λ

∂f

∂κ̄
− λ d

ds

∂f

∂κ̄′
. (4.31)

This equation is, as expected, a second-order differential equation for κ̄(s) and the two
boundary conditions κ̄i,f = Dγ/si,f can thus be imposed.
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4.4 Optimization results

Some protocols have already been studied in the past for the case where the cost function
is the work done on the system [170], i.e.: F ≡ W =

∫ tf
ti
〈ψ|∂tĤ(t)|ψ〉dt. It was shown

that the optimal protocol is highly degenerate [151], with the minimal work simply
corresponding to the difference between the final and initial energies of the system [162]:
Wopt = Ef−Ei. In particular, for any protocol that satisfies the right boundary conditions
– so that the initial and final states are both stationary – the work done on the system
will be the optimal one, irrespective of the duration of the protocol [162]. This is not
too surprising, as the quantum oscillator system is conservative, and therefore the energy
expended to go from one stationary state to another should only depend on these states,
and not on the path connecting them. For these reasons, the work W does not appear to
be the pertinent cost functional to be minimized. The advantage of the method described
in the preceding section is that it allows us to select any cost functional, and find the
corresponding protocol that minimizes it for a given duration ∆t. Here, we will consider
two different functional forms of F and find the optimal protocol for each of them.
In all the forthcoming simulations, we employ units in which ~ = γ = 1, m = 0.5,
and then D = 1. The variance increases in time from si = 1 to sf = 2, so that the
classical equilibria correspond to κ̄i = Dγ/si = 1 and κ̄f = Dγ/sf = 0.5. The quantum
equilibrium conditions are such that: κi = mD2/s2

i = 0.5 and κf = mD2/s2
f = 0.125.

The classical relaxation time is then: τrel =
√
m/κf = ω−1

f = 2. All optimal protocols
considered in the next two subsections are such that ∆t < τrel (except for one case where
∆t = 2.1), confirming that they can outperform the STEP protocols, as discussed in Sec.
4.2.2.
Finally, in the Appendix F, we will also treat the case of the classical optimal protocol
developed in Ref. [166], and discuss how it can be translated into an analog quantum
protocol.

4.4.1 Cumulative energy as cost function

First, we take the integral of the energy as the cost function, which, when divided by
the total duration, corresponds to the time-averaged energy furnished to the system,
a quantity of clear physical interest, both theoretically and for experimental applica-
tions. As the wavefunction is supposed to be Gaussian at all times, see Eq. (4.4), it is
straightforward to write the energy as

E(t) = 〈ψ|Ĥ(t)|ψ〉 =
m

4s(t)

(
1

2
ṡ2(t) +

2s2(t)κ(t)

m
+ 2D2

)
, (4.32)

where Ĥ(t) is defined in Eq. (4.1). We define the functional F ≡ FE as the integral of
the energy. After changing variable from t to s and writing κ(s) in terms of κ̄(s) using
Eq. (4.27), we obtain

FE [κ̄, κ̄′] =
m

4γ

∫ sf

si

ds

[
Dγ − sκ̄(s)

s
+

3D2γ2 − s2κ̄2(s)

s(Dγ − sκ̄(s))
+ 2sκ̄′(s)

]
. (4.33)

The corresponding Lagrangian is then

L[s, κ̄, κ̄′] =
γ

Dγ − sκ̄ +
λ

γ

[
Dγ − sκ̄

s
+

3D2γ2 − s2κ̄2

s(Dγ − sκ̄)
+ 2sκ̄′

]
+ µ|κ̄′|2, (4.34)

where the factor m/4 was absorbed in the Lagrange multiplier λ. The resulting Euler-
Lagrange equation is a second-order nonlinear differential equation for κ̄(s), and the
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initial and final values of the classical protocol can be imposed according to Eq. (4.13).
The Euler-Lagrange equation is

2µγ κ̄′′ =
γ2s+ 3D2γ2λ− s2κ̄2λ

(Dγ − sκ̄)2
− 2sκ̄λ

Dγ − sκ̄ − 3λ, (4.35)

and it can be solved numerically using an iterative method such as Thomas’s algo-
rithm [181]. Note that, had we not added the Lagrange multiplier µ, Eq. (4.35) would be
an algebraic equation, and it would be possible to fix the correct boundary conditions.
The solutions of Eq. (4.35) are represented in Fig. 4.2, for two distinct situations: a case
where µ is kept fixed (left panels) and a case where λ is kept fixed (right panels). For
the first case (µ = 0.1 fixed), three solutions, corresponding to λ = 0.01, 0.10, and 1.00
are represented, thus showing the impact of varying the Lagrange multiplier associated
with the cost function FE . The classical protocols are depicted in the upper panels of
the figure, and the associated quantum protocols in the lower panels. The equilibrium
conditions at the initial and final times are fulfilled, as expected, and all protocols are
continuous functions of the variance s. Moreover, as µ is constant, the derivatives of each
protocol at the boundaries of the s domain are the same. Each classical protocol exhibits
a minimal value, which decreases as λ increases while its quantum associated protocol has
both minimum and maximum values, whose amplitude increases as λ increases. Hence,
both protocols can become negative, corresponding to a repulsive harmonic potential,
when λ is large enough. This feature, while notable, is not necessarily problematic and
has been previously reported in the literature [151, 162, 182].
The right panels of Fig. 4.2 show the solutions when λ = 1 is kept constant while µ varies,
taking the values 0.1, 0.5 and 1.00. The shapes of the curves are similar to the preceding
case, but it is notable that the larger µ, the smaller the gradient of the protocol around
si and sf , as expected because the functional G limits the derivative of κ̄(s). Moreover,
the range of values taken by the protocols increases as µ decreases, and they can become
negative for small values of µ. Caution should be taken for even smaller values of µ,
which lead to large values of the quantum protocol, both positive and negative. The
same remark can also be made for very large values of λ.
All the above results were given in the s-domain, i.e. as a function of the variance. In
order to go back to the time representation, one needs to solve Eq. (4.11) for t:

t(s) = ti +
γ

2

∫ s

si

dy

Dγ − sκ̄(y)
, (4.36)

which can also be used to obtain the total duration ∆t = tf − ti. The time-dependent
solutions κ̄(t) = κ̄(s(t)) and κ(t) = κ(s(t)) are depicted in Fig. 4.3, together with the
time evolution of the energy of the system, whose integral is the cost functional FE
associated to λ. The curves corresponds to the same values of λ and µ as in Fig. 4.2,
with total durations ∆t = 0.95, 0.87 and 0.82 (left panels, µ fixed) and ∆t = 0.82, 1.27
and 1.58 (right panels, λ fixed). We recall that here the classical relaxation time is equal
to τrel =

√
m/κf = ω−1

f = 2, and therefore ∆t < τrel everywhere.
When the Lagrange multiplier λ, corresponding to the functional FE =

∫ ti
ti

dt E(t), is
increased, then the energy integral decreases, as seen in the inset of Fig. 4.3(e). This is
natural, as the role of the λ-term is precisely to limit the value of the cumulative energy
over time. However, we also observe that the time duration ∆t decreases for increasing
λ, while the opposite occurred for classical systems [166]. This may seem surprising, as
increasing λ should reduce the value of the functional FE while increasing ∆t (energy-
time trade-off). But, in contrast to the classical overdamped case, here there are two
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Figure 4.2: Energy-optimal protocols in the s-domain, where the variance increases from
si = 1 to sf = 2. Left panels: Classical protocols κ̄(s) (a) and quantum protocols κ(s) (c), for
a fixed value of µ = 0.10, and λ = 0.01 (solid orange lines), 0.10 (dashed grey lines) and 1.00
(dot-dashed black lines). Right panels: Classical protocols κ̄(s) (b) and quantum protocols κ(s)
(d) for a fixed value of λ = 1, and µ = 0.1 (solid orange lines), 0.50 (dashed grey lines) and 1.00
(dot-dashed black lines). Note that the quantum protocol can become negative for sufficiently
large values of λ or sufficiently small values of µ.
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Lagrange multipliers, so the trade-off is actually among three functionals, FE , ∆t, and
G, which makes the whole situation more complex.
Conversely, the time duration increases as µ increases, which is more in line with a trade-
off between G and ∆t. At the same time, the cumulative energy over time increases with
increasing µ, as seen in the inset of Fig. 4.3(f).
For all cases, the behavior of the variance appears very similar when plotted against time
normalized to the duration ∆t. As expected, s(t) is strictly increasing in time and has
vanishing derivatives close to the initial and final times. The energy E(t) follows closely
the evolution of κ(t), which indicates that the potential energy is the preponderant
contribution to the total energy of the system. It is important to note that, when µ
becomes small enough, the energy might become negative, as seen in Fig. 4.3(f), although
its time integral remains strictly positive, ensuring that the functional FE is positive.
It is interesting to compare our results with other protocols, such as the ones that
minimizes the work done on the system, proposed by Chen et al. [162]. This proto-
col is obtained from the Ermakov equation (4.6) rewritten in terms of the scale factor
q(t) =

√
s(t)/si, which reads as: q̈ + κ(t)

m q = κi/q
3. This equation can be inverted to

obtain the stiffness as a function of the scale factor: κ = κi/q
4 −mq̈/q. The protocol

is then obtained by imposing a suitable temporal profile for q(t). The authors of [162]
chose a polynomial of fifth degree: q(t) = (a−1)(6T 5−15T 4 +10T 3 +1), where T = t/tf
and a = (κi/κf)

1/4, so that q(ti) = 1, q(tf) = a, and its first and second derivatives are
zero at the initial and final times. We recall that imposing such boundary conditions is
sufficient to minimize the external work, which becomes equal to the difference between
the final and initial energies.
To compare Chen’s polynomial protocol to our optimal protocol, we can fix a value of λ,
for instance λ = 10, and vary the value of µ. For each protocol, we compute the energy
integral FE =

∫ tf
ti
E(t)dt, as in Eq. (4.33), and the time duration ∆t, Eq. (4.26). The

results are shown in Fig. 4.4 for both our protocol (black squares) and Chen’s (triangles).
It appears that our protocol performs better, in terms of the integral of the energy, than
the polynomial protocol for small values of ∆t (gray area in Fig. 4.4). For larger ∆t,
the opposite is true, which can be explained by noticing that the long-duration regime
corresponds to large values of µ. Indeed, the total functional J = ∆t + λF + µG, see
Eq. (4.29), can be minimized by minimizing either F or G. If the Lagrange multiplier
µ is large, then G dominates, and the variational procedure will end up minimizing J
by essentially minimizing G instead of F . However, this is not a significant constraint
for our purposes, since our aim is to minimize the energy integral for short durations,
which correspond to small values of µ. In the inset of the same figure 4.4, we also plot
the cumulative energy over time divided by ∆t, which represents the average energy of
the system. Again, our optimal protocol is the one that minimizes the averaged energy
for short durations.

4.4.2 Dynamical phase as cost function

As a second example, we consider the following functional to be optimized: Fα =∫ tf
ti

dt α2(t), where α(t) is the dynamical phase given in Eq. (4.4). Before carrying
out the optimization procedure, we provide some justification about the importance and
meaning of such functional. According to Eq. (4.5), α(t) is proportional to the time
derivative of the variance. During an adiabatic process, ṡ(t) ≈ 0, because the process is
infinitely slow, and therefore α(t) ≈ 0. Hence, the integral Fα =

∫ tf
ti

dt α2(t) represents
the departure from adiabaticity, and by minimizing such quantity we therefore minimize
the “distance" of the optimal protocol from an adiabatic one.
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Figure 4.3: Energy-optimal protocols in the time domain, where the variance increases from
si = 1 to sf = 2. The time is normalized to the total duration of the protocol ∆t, which is different
for each pair of Lagrange multipliers (λ, µ). Left panels: variance s(t) (a), quantum protocols
κ(t) (c), and instantaneous energy E(t) (e), for a fixed value of µ = 0.10, and λ = 0.01 (solid
orange lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed black lines). These values correspond
to time durations: ∆t = 0.95, 0.87 and 0.82. Right panels: variance s(t) (b), quantum protocols
κ(t) (d), and instantaneous energy E(t) (f), for a fixed value of λ = 1, and µ = 0.1 (solid orange
lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed black lines). These values correspond to
time durations: ∆t = 0.82, 1.27 and 1.58. Note that, although the various protocols are quite
different, the behavior of the variance is almost identical when time is scaled to the total duration
∆t. The boundary values of the quantum protocols correspond to the conditions: s2i,fκi,f = mD2.
The energy E(t) is quite similar to the quantum stiffness κ(t), indicating that the potential energy
is the predominant contribution to the total energy of the system. The insets in (e) and (f) show
the cumulative energy over time for the three protocols represented in the same panels.
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Figure 4.4: Cumulative energy of the system over time
∫ tf
ti

dt E(t) as a function of the total
time duration ∆t of the protocol. The black squares corresponds to the optimal protocol, solution
of the Euler-Lagrange equation (4.35), while the orange triangles correspond to the polynomial
protocol of Ref. [162]. In the gray shaded region, the optimal protocols display lower cumulative
energy than the polynomial ones. The different times durations are obtained by varying the
Lagrange multiplier µ, while keeping λ = 10 fixed. The dashed lines are empirical fits to the
numerical data. The inset shows the same plots for the time-averaged energy, given by the
integral of the energy divided by the time duration.
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A visual way to represent the dynamical phase is to consider the Wigner function
W (x, p, t) [183] corresponding to the Gaussian wave packet of Eq. (4.4). The Wigner
function is a quantum pseudo-probability density in the phase space (x, p). As the wave-
function is the exponential of a quadratic polynomial, its Wigner function is non-negative,
and can be written as [184]

W (x, p, t) = A exp

(
− x2

2s(t)
− 2s(t)

~2
[p− 2α(t)~x]2

)
, (4.37)

where A is a normalization constant ensuring that
∫

R2 W dxdp = 1. Note that W (x, p, t)
peaks around the straight line in phase space p0(x, t) = 2α(t)~x = ~∂xS(x, t), where
S(x, t) is the total phase of the Gaussian wavefunction (4.4). When α = 0, the Wigner
function is symmetric with respect to both the position and momentum axes; when α 6= 0,
it is tilted of an angle θ such that tan θ = 2α~/(mωi) (obtained by expressing p and x in
our normalized units). During an adiabatic protocol, W (x, p, t) remains symmetric and
only changes its aspect ratio. For instance, during an expansion (sf > si), it becomes
wider in x and narrower in p. Instead, during a faster-than-adiabatic process, W first
gets tilted of an angle θ, then expands by increasing its spatial variance, and finally
recovers a symmetric shape with α = 0. This is illustrated in Fig. 4.5, where we show
the phase space portraits for the optimal and adiabatic protocols at several instants in
time. It is clear that the acceleration in the optimal protocol is achieved by tilting the
Wigner function of a certain angle before coming back to a symmetric configuration at
the end of the protocol.
Turning back to the minimization procedure, the Fα functional is given by, after changing
variable from t to s and expressing the integrand in terms of κ̄(s),

Fα[s, κ̄] =

∫ tf

ti

dt α2(t) =
m2

8γ~2

∫ sf

si

ds
Dγ − sκ̄(s)

s2
, (4.38)

where we have used Eq. (4.11). The total Lagrangian is

L[s, κ̄, κ̄′] =
γ

Dγ − sκ̄(s)
+ λ

m2

8γ~2

Dγ − sκ̄(s)

s2
+ µκ̄′2, (4.39)

leading to the following Euler-Lagrange equation:

2µ κ̄′′ =
γs

(Dγ − sκ̄)2
− m2λ

8γ~2s
. (4.40)

Again, this is a second-order non-linear ordinary differential equation, whose initial and
final conditions κ̄i,f can be imposed to ensure the equilibrium conditions.
We use the same parameters as in Sec. 4.4.1, notably si = 1 and sf = 2. In Fig.
4.6 we represent the classical and quantum protocols for two cases: (i) a fixed value of
µ = 0.10 and λ varying in the range λ ∈ [0.01, 0.10, 1.00] (left panels), and (ii) a fixed
value of λ = 1.00 and µ varying in the range µ ∈ [0.10, 0.50, 1.00] (right panels). These
correspond to the following time durations: ∆t = 0.95, 0.97, and 1.00 (fixed µ, left) and
∆t = 1.00, 1.67, and 2.10 (fixed λ, right). We recall that the classical relaxation time is
equal to τrel =

√
m/κf = ω−1

f = 2. The general behaviors of the protocols look similar to
those obtained in Sec. 4.4.1 for the energy cost function, probably because the solutions
are somewhat dominated by the µ term. A notable difference is that the time duration
is less sensitive to the values of the Lagrange multipliers. Also, the duration increases
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Figure 4.5: Wigner functions W (x, p, t) at several instants indicated on the vertical time
axis. The left panels refer to the phase-optimal protocol (with λ = µ = 1), while the right panels
correspond to an adiabatic protocol. The variance grows from si = 1 to sf = 2. The Wigner
function of the adiabatic protocol remains symmetric with respect to both the x and p axes,
and slowly reduces its width in p while increasing its width in x. In contrast, the phase-optimal
Wigner function first becomes elongated along the straight line p = 2α~x, before reaching the
same final state in a time much shorter than the adiabatic protocol.
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Figure 4.6: Phase-optimal protocols in the s-domain, where the variance increases from si = 1
to sf = 2. Left panels: Classical protocols κ̄(s) (a) and quantum protocols κ(s) (c), for a fixed
value of µ = 0.10 and λ = 0.01 (solid orange lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed
black lines). Right panels: Classical protocols κ̄(s) (b) and quantum protocols κ(s) (d) for a fixed
value of λ = 1 and for µ = 0.1 (solid orange lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed
black lines). Note that the quantum protocol can become negative for sufficiently large values of
λ or sufficiently small values of µ.
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as λ increases, in contrast to what was observed for the energy-optimal protocols of Sec.
4.4.1.
The temporal evolution of the variance, the quantum stiffness, and the dynamical phase
are depicted in Fig. 4.7, where the time has been normalized to the total duration of each
protocol. In accordance with the above discussion on theWigner functions, the dynamical
phase vanishes at the initial and final times and is maximal around ∆t/2. We also note
that the maximum of α2(t) and its time integral are smaller for the longer time durations
of the protocols, i.e., those protocols that are closer to adiabaticity, in agreement with our
earlier interpretation of the functional Fα as quantifying the departure from adiabaticity.
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Figure 4.7: Phase-optimal protocols in the time domain, where the variance increases from
si = 1 to sf = 2. The time is normalized to the total duration of the protocol ∆t, which is different
for each pair of Lagrange multipliers (λ, µ. Left panels: variance s(t) (a), quantum protocols κ(t)
(c), and instantaneous energy E(t) (e), for a fixed value of µ = 0.10 and λ = 0.01 (solid orange
lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed black lines). These values correspond to
time durations: ∆t = 0.95, 0.97 and 1.00. Right panels: variance s(t) (b), quantum protocols
κ(t) (d), and instantaneous energy E(t) (f), for a fixed value of λ = 1 and µ = 0.1 (solid orange
lines), 0.50 (dashed grey lines) and 1.00 (dot-dashed black lines). These values correspond to time
durations: ∆t = 1.00, 1.67 and 2.10. The boundary values of the quantum protocols correspond
to the conditions: s2i,fκi,f = mD2. The insets in (e) and (f) show the integral of α2(t) over
time for the three protocols represented in the same panels. Note that the shortest durations
correspond to the largest values of the phase α(t).

In Fig. 4.8, we compare our results to the same polynomial protocol described in Sec.
4.4.1, by representing the values of the functional Fα for different time durations ∆t
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for both protocols. Here, we fix λ = 10 and vary µ from 0.001 to 2.50, in order to
obtain different time durations for the optimal protocol. The optimal protocol displays
significantly lower values of the cost function Fα for short durations, which is the regime
of interest. For longer durations, the two protocols behave very similarly in this respect.
The above result is important, inasmuch as it shows that, for the same time duration
∆t, our optimal protocol is closer to adiabaticity than the polynomial protocol of Ref.
[162]. Both protocols constitute shortcuts to adiabaticity, but the one we propose here
is, in a precise sense, “adiabatically optimal".
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Figure 4.8: Integral of the square of the dynamical phase
∫ tf
ti

dt α2(t) as a function of the total
time duration ∆t of the protocol. The black squares corresponds to the optimal protocol, solution
of the Euler-Lagrange equation (4.40), while the orange triangles correspond to the polynomial
protocol of Ref. [162]. In the grey shaded region the optimal protocols perform better than the
polynomial ones. The different times durations are obtained by varying the Lagrange multiplier
µ (from 0.001 to 2.5), while keeping λ = 10 fixed. The dashed lines are empirical fits to the
numerical data.

4.5 Conclusion

To bring a classical or quantum system from a stationary state to another, the simplest
strategy is to vary an external parameter very slowly, i.e. adiabatically. By doing so,
the system will be at steady state at each instant of the evolution, but the transition will
take an infinite time. The growing field of research known as “shortcuts to adiabaticity"

120



Quantum-classical analogues for optimisation

tries to accomplish the same transition within a finite duration.
In the present chapter, we proposed a new strategy to achieve faster-than-adiabatic
transitions. The main idea is based on Nelson’s representation of quantum mechanics as
a classical stochastic process. In the case of a time-dependent harmonic oscillator this
quantum-classical analogy is particularly simple and fruitful. Using Nelson’s procedure,
the Schrödinger equation is rewritten as an overdamped Langevin equation with a linear
harmonic force of stiffness κ̄(t), which is related to the stiffness of the quantum oscillator
κ(t) through Eq. (4.12). Thanks to this mathematical analogy, it is possible to translate
the classical protocols developed for an overdamped oscillator into quantum protocols
for a system with finite inertia.
In particular, we utilized our experience on optimal classical protocols to devise quantum
protocols that minimize both the time duration and some other arbitrary cost function.
For instance, the cost function can be the cumulative energy over time. Even more
interestingly, we showed that minimizing the dynamical phase of the wavefunction (again,
together with the time duration) amounts to minimizing the distance of the protocol from
an adiabatic one. Hence, we could devise a family of protocol that are “adiabatically
optimal": for a given finite duration ∆t, they are as close as possible to an adiabatic
(i.e., infinitely slow) process.
The proposed method is rather versatile, inasmuch as the cost functional to be minimized
can be chosen at will. Nevertheless, some functionals may lead to complicated Euler-
Lagrange equations, which are difficult to solve numerically. This occurs because the cost
functional F that has a physical relevance is expressed in terms of the quantum stiffness
κ and its time derivative, but must be rewritten in terms of the classical stiffness κ̄
before performing the minimization procedure. This can transform relatively a simple
functional F [κ, κ̇] into a rather complicated functional of κ̄ and ˙̄κ.
The original method proposed in this chapter, although limited here to the ground state
of the harmonic potential, opens up many possible avenues for future research. For
instance, as shown in [162], the same procedure also works for transitioning an excited
state of the harmonic oscillator ψn(x), which transforms according to the scale factor
defined earlier as: q(t) =

√
s(t)/si. In contrast, for anharmonic systems, the Gaussian

wavefunction is no longer an exact solution. However, a Gaussian ansatz can be used as
an approximate solution, leading to a modified Ermakov equation, similar to Eq. (4.6),
which can be used as the basis for a generalization of the present theory. Similarly, one
may consider many-body problems in the mean field approximation, either with contact
interactions (Gross-Pitaevskii equation for Bose-Einstein condensates) [185] or Coulomb
interactions (Schrödinger-Poisson equations for a quantum electron gas) [186]. These are
nonlinear Schrödinger equations that are amenable to the Nelson representation utilized
in the present chapter. For weak coupling, the exact solution can be approximated by a
Gaussian wavefunction, leading again to a modified Ermakov equation. For the Gross-
Pitaevskii case, an interesting goal would be to control the system by modulating the
scattering length, which can be done experimentally by varying an external magnetic
field. A further avenue for future research is to extend the present method to the case
of an open quantum system in contact with a bath at finite temperature. To do this, it
would be necessary to extend Nelson’s formalism, for instance by adding a thermal noise
to Eq. (4.2), for which several attempts have already been proposed [187, 188].
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Key Takeaways

In this chapter, we developed a method to optimize the dynamics of a quantum
harmonic oscillator by leveraging a quantum-classical analogy.

• Quantum-Classical Analogy:

– Nelson (Gaussian wavefunction of variance s):

dx(t) = − ~
m

[
2α(t)− 1

2s(t)

]
x(t)dt+

√
2DdW (t)

– Classical overdamped Langevin (harmonic oscillator):

dx(t) = −1

γ
κ̄(t)x(t)dt+

√
2DdW (t)

– Relationship Between Quantum and Classical Stiffnesses:

quantum stiffness︷︸︸︷
κ(t) =

~2

2ms2(t)
+

classical stiffness︷ ︸︸ ︷
m

γ
˙̄κ(t)− m

γ2
κ̄2(t),

• Variational Optimization Method:

– Evolve the quantum harmonic oscillator from an initial variance si to a
final variance sf (fundamental states).

– Minimise the time duration ∆t and given cost functionals F [κ]

The total functional to be minimized is:

J [κ̄, κ̄′] =

time duration︷ ︸︸ ︷
∆t[κ̄] +

cost︷ ︸︸ ︷
λF [κ̄, κ̄′] +

smoothing︷ ︸︸ ︷
µG[κ̄′] ,

Go in s-domain using ṡ = Dγ − sκ̄(s), solve Euler-Lagrange equation:

2µ κ̄′′(s) =
γs

[Dγ − sκ̄(s)]2
+ λ

∂f

∂κ̄
− λ d

ds

(
∂f

∂κ̄′

)
,

(f : integrand of the cost functional F )

Gives optimal classical protocol:

=⇒ bridge equation to get quantum protocol κ(s) + go back to time domain

• Cost Function Flexibility:

– versatile method, allowing for different cost functions to be minimized

– considered the cumulative energy and the dynamical phase of the wave-
function as cost functions

– compared the optimal protocol to a polynomial protocol from literature
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CHAPTER 5

Extension to open quantum systems

What we observe is not nature itself, but nature
exposed to our method of questioning.

— W. K. Heisenberg

This chapter aims to extend classical analogies for protocols involving stiffness and tem-
perature to open quantum systems, with a view toward optimizing cycles and possibly
developing quantum heat engines. It explores three key approaches to modeling open
quantum systems, paving the way for extending these analogies. In Sec. 5.1, we ad-
dress the challenges of traditional methods and propose simplified strategies for system-
environment interactions. Sec. 5.2 covers the Kostin approach, combining the Heisenberg
and Langevin equations to derive the Schrödinger-Langevin equation, incorporating fric-
tion and random forces. The equation’s solutions and noise properties are discussed.
Sec. 5.3 introduces the Schuch approach, which modifies the Madelung equations to
account for irreversibility, offering a framework for thermal diffusion and extending clas-
sical analogies. In Sec. 5.4, the Ruggiero approach blends Nelson’s stochastic mechanics
with the underdamped Langevin equation, analyzing thermodynamic aspects and the
overdamped limit. Finally, Sec. 5.5 compares these methods, noting that while none
fully succeeds in extending classical analogies, they explore promising paths, particularly
Schuch’s method, which offers a foundation for further research.
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Chapter 5

5.1 Introduction

In the previous chapters, we have focused on closed quantum systems, where the sys-
tem is assumed to be isolated from the rest of the Universe, resulting in unitary and
time-reversible dynamics. However, in many practical situations, the system of interest
interacts with its surroundings, which we will refer to as the environment. In such cases,
the system is no longer isolated, and we refer to it as an open quantum system. There
are various approaches to describe the dynamics of open quantum systems. One of the
most widely used frameworks is the Lindblad master equation, which is well-suited for
Markovian interactions where memory effects of the environment can be neglected [189].
The Lindblad equation is fundamental in many fields of physics and provides a robust
method to model the time evolution of the system’s density matrix when connected to a
bath of environmental degrees of freedom. The Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form [190, 191] is often used in these scenarios. For non-Markovian interactions,
where memory effects are significant, alternative approaches such as the Redfield equa-
tion [192] or techniques developed by Shibata [193], Nakajima [194], and Zwanzig [195]
can be more appropriate. These methods account for the influence of the environment
over extended timescales and allow for a more detailed analysis of the system’s dynamics.
The quantum master equation is a fundamental tool in studying open quantum systems.
It describes the evolution of the system, accounting for its coupling to the environment,
and enables us to study the system’s behavior in the presence of noise. This differen-
tial equation governs the time evolution of the system’s density matrix and provides
insights into both dissipative and decoherence processes. Another important approach
is the Caldeira-Leggett model, where the system is coupled to a bath of harmonic oscil-
lators, and the environmental degrees of freedom are averaged out to derive an effective
dynamics for the system [15, 16, 196].
While considering environmental degrees of freedom leads to a more realistic representa-
tion of the system, it also requires significant computational resources. This is particu-
larly challenging when accurate modeling of each individual interaction is necessary.
To address the computational challenges of these methods, alternative effective models
offer a more practical solution. These approaches focus on capturing the overall influence
of the environment on the system without modeling each individual interaction with
every environmental degree of freedom [197]. By simplifying the complex interactions
into effective descriptions, these methods significantly reduce the computational cost
compared to detailed master equation approaches. This makes them particularly suitable
for large-scale or complex systems where computational resources are limited. There
exists a multitude of effective descriptions [198–200], but this thesis will focus on three
approaches that align well with the Nelson formalism.
In Sec. 5.2 we will introduce the Kostin approach [201, 202], which combines the Heisen-
berg equation with the Langevin equation to describe open quantum systems. This
method introduces friction and fluctuation terms into the Schrödinger equation, lead-
ing to a stochastic and non-linear version of the equation, called Schrödinger-Langevin
equation1. In Sec. 5.3, we will present the Schuch approach [211], which modifies the
Madelung equations to introduce irreversibility into the dynamics of the system. We
will derive an extension of the classical analogues discussed in Chap. 4. We will finish
with a purely Nelson-based method, the Ruggiero approach [187], which decomposes the

1The Refs. [198–201, 203–210] present several approaches leading non-linear Schrödinger equations,
close to the Schrödinger-Langevin equation discussed in this chapter, that aim to describe open quantum
systems.
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quantum trajectories into a classical motion governed by the Langevin equation and a
quantum motion following the Nelson equation.

5.2 Kostin’s approach

In this section, we will discuss an approach to describe open quantum system that com-
bines the Schrödinger equation with the Langevin equation. It has been introduced by
Kostin [201], and then developped by Katz [202], leading to a stochastic version of the
Schrödinger equation that involves two extra terms: a friction and a random. It aims at
introducing irreversibility into the dynamics of the system and to describe the effect of
the environment on the system. We will focus on the case of the harmonic oscillator, for
which the solution of the stochastic Schrödinger equation is known.

5.2.1 Stochastic version of Schrödinger equation

5.2.1.1 Heisenberg-Langevin equation

Kostin’s approach [201] aims to effectively incorporate the interaction between a sys-
tem and its environment. This is similar to the classical Brownian motion discussed in
Chap. 1, where Newton’s equation is modified into the Langevin equation by adding a
friction term and a random force to account for the environment’s influence on the par-
ticle. Kostin’s idea is to apply a similar modification, but at the quantum level, directly
to the position X̂ and momentum P̂ operators.
In the Heisenberg picture, the quantum dynamics of a system is described by the Heisen-
berg equations for the position and momentum operators, which are given by

∂tX̂ =
1

m
P̂ , (5.1)

∂tP̂ = −∂xV̂ . (5.2)

Here, V represents the potential energy of the system. To include the effects of friction
and diffusion in equation (5.2), one can introduce additional operators. According to
Ref. [212], this modification arises naturally from the Caldeira-Leggett model, where the
quantum system is coupled to a bath of harmonic oscillators. This coupling leads to the
modified equations

∂tX̂ =
1

m
P̂ , (5.3)

∂tP̂ = −∂xV̂ − γP̂ + ŴT, (5.4)

where γ is the friction coefficient, and ŴT is a random force dependent only on time. This
random force can be expressed as the gradient of a potential V̂T = X̂ŴT. These equations
together form the Heisenberg-Langevin equation, incorporating both the deterministic
and stochastic influences of the environment on the quantum system.

5.2.1.2 Schrödinger-Langevin equation

We seek a Schrödinger equation associated with Eq. (5.3) and Eq. (5.4), giving the
dynamics of a thermal wavefunction still noted ψ, of the form

i~∂tψ = − ~2

2m
∂2
xψ + V ψ + Vγψ − xWTψ, (5.5)
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where Vγ is an extra potential generated by the friction term in the Heisenberg-Langevin
equations. Note that we drop the hat of the operator as we wrote the Schrödinger
equation in the position representation. Before discussing the physics of the thermal
wavefunction, notably its differences between the wavefunction of a thermal system and
its link with the density matrix, we have to find the expression of Vγ , as VT is already
known if we assume WT to be a noise. Noting 〈ψ|·|ψ〉 the expectation value over the
state ψ, one gets for Eq. (5.4)

〈ψ|∂tP̂ |ψ〉 = −〈ψ|∂xV̂ |ψ〉 − γ 〈ψ|P̂ |ψ〉+ 〈ψ|V̂T|ψ〉 . (5.6)

Note that two types of expectations will be involved: the expectation with respect to the
state ψ and the expectation with respect to the values of the random force, simply noted
〈·〉T. Differentiation of the expectation value of the momentum over the state ψ gives

∂t 〈ψ|P̂ |ψ〉 = (∂t 〈ψ|)P̂ |ψ〉+ 〈ψ| P̂ (∂t |ψ〉), (5.7)

and using the Schrödinger equation, we obtain after some algebra

∂t 〈ψ|P̂ |ψ〉 = −〈ψ|∂xV̂ |ψ〉 − 〈ψ|∂xV̂γ |ψ〉 − 〈ψ|∂xV̂T|ψ〉 . (5.8)

According to the Ehrenfest theorem, the expectation of the momentum is the momentum
of the wavefunction, then equating Eq. (5.7) and Eq. (5.8) gives

〈ψ|∂xV̂γ |ψ〉 = γ 〈ψ|P̂ |ψ〉 . (5.9)

The expectation of P̂ can be written as

〈ψ|P̂ |ψ〉 = − i~
2

∫
dx (ψ∗∂xψ − ψ∂xψ∗) = − i~

2

∫
dx

(
∂xψ

ψ
− ∂xψ

∗

ψ∗

)
|ψ|2 (5.10)

so that the integrand is a real function. Moreover, the expectation of the potential energy
is given by 〈ψ|∂xV̂γ |ψ〉 =

∫
dx ∂xVγ |ψ|2 so that

− i~
2

∫
dx

(
∂xψ

ψ
− ∂xψ

∗

ψ∗

)
|ψ|2 = γ

∫
dx ∂xVγ |ψ|2 (5.11)

for every ψ. This is possible only if the integrand is zero, so that we obtain the expression
of Vγ , using the properties of the logarithm function and integrating with respect to x,
as

Vγ = − iγ~
2

ln

(
ψ

ψ∗

)
+ C(t) (5.12)

with C(t) the constant of integration to be fixed. To do so, we have to impose that
the mean energy (over the state ψ) is equal to the mean kinetic energy plus the mean
potential energy and the mean random force, as Vγ is a friction-like term, that does not
contribute explicitly to the energy2. This gives that the expectation of this term is zero,
so that

Vγ = − iγ~
2

[
ln

ψ

ψ∗
−
〈

ln
ψ

ψ∗

〉

ψ

]
. (5.13)

This leads to the Schrödinger-Langevin equation (SLE)

i~∂tψ = − ~2

2m
∂2
xψ + V ψ − iγ~

2

[
ln

ψ

ψ∗
−
〈

ln
ψ

ψ∗

〉

ψ

]
ψ − xWTψ. (5.14)

2As in classical mechanics, the friction does not derive from a potential and it contributes to the total
energy by its influence over the dynamics of the position and momentum.
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The two extra terms arise as extra-potential terms: the friction yields an imaginary
potential, non-local and non-linear in the wavefunction, and a random term that gives a
stochastic dynamics to the wavefunction. The SLE is then a non-linear, non-local, and
non-deterministic differential equation. Moreover, as the average is over the solution ψ of
the SLE, the equation is self-consistent. Nevertheless, the friction is introduced in a way
that it is linear in the velocity of the particle: the term −i ln(ψ/ψ∗) is the real phase of the
wavefunction, so that its gradient is the velocity field of the particle. There exist manners
to derive the SLE that involve a non-linear friction term (non-Markovian), see Ref. [210,
213]. The non-linearity of the equation invalidates the superposition principle. While
the complexity of the SLE is increased, certain properties of the Schrödinger equation
are preserved, such as the conservation of the norm of the wavefunction [214] and the
uncertainty principle [215]. Moreover, only two parameters are added in this effective
approach: the friction γ and the amplitude DT of the thermal noise. Furthermore, there
is no numerical difficulty in solving the SLE. While no direct connection between the
SLE and the master equations of the Lindblad form is known, the difference in difficulty
between both approaches is significant, encouraging the use of effective models such as
the SLE to study open quantum systems [216, 217].
The random term WT, being a noise, means that each realization of the SLE results in
a different solution for the thermal wavefunction ψ. As mentioned, there are two types
of averages: one over the state and one over the noise. Due to the statistical nature
of interactions between the quantum system and its environment, the system must be
described by a mixed state. This includes probabilistic information not only about the
observable measurements but also about the state itself. The overall expectation value
of an observable Â is then given by

〈
〈ψ|Â|ψ〉

〉
T

= lim
N→∞

1

N

N∑

n=1

〈
ψ(n)

∣∣∣Â
∣∣∣ψ(n)

〉
, (5.15)

where ψ(n) corresponds to the pure state solution of the n-th realization of the SLE.
Solutions of the SLE in the free case, i.e., V = 0, and in the harmonic case have been
studied in Refs. [218] and applied to atomic diffusion in solids in Ref. [219].
Note that we keep refer to ψ as the (thermal) wavefunction, but it is not the same object
as in quantum mechanics for isolated systems. Here, it is more a mathematical object
constructed in the same manner as the standard wavefunction and it is the solution of
an equation close to the original Schrödinger equation.

5.2.1.3 Statistical properties of the noise for the harmonic oscillator

The noise operator ŴT arises from the coarse-graining of the bath’s momentum and
position operators. Due to the non-commutative nature of these quantum operators,
the noise differs from the classical case. This effect is reflected in the expression for
the amplitude of the noise, the diffusion coefficient DT, which is modified compared to
its classical counterpart [202, 218, 220, 221]. Here, we still assume that the noise is a
Gaussian white noise with zero mean, such that

〈
ŴT(t)ŴT(t′)

〉
T

= 2DTδ(t− t′), (5.16)

where the diffusion coefficient DT is related to the friction coefficient γ and the temper-
ature T of the bath, according to Ref. [202, 218] by

DT =
~ω
2
mγ

[
coth

(
~ω

2kBT

)
− 1

]
. (5.17)

131



Chapter 5

This expression shows that in the high-temperature limit, one obtains DT ≈ mγkBT ,
which corresponds to the classical limit. Moreover, in the low-temperature limit, the
diffusion coefficient tends to zero, and the stochasticity of the Schrödinger-Langevin
Equation (SLE) disappears. It is possible to show that this choice of diffusion coefficient
implies the Boltzmann weights when equilibrium is reached [202], as will be explained in
the following subsection. Other possibilities are considered in the literature, see Ref. [222]
for a white noise with a different amplitude, or Ref. [202, 220, 221, 223] for a colored
noise.
According to equations (5.16) and (5.17), the noise operator is an operator that commutes
with all other operators, meaning it is proportional to the identity operator. We will see
that equation (5.17) allows for the recovery of the Boltzmann distribution for equilibrium
thermal states.

5.2.2 Solving the SLE for the harmonic oscillator

We consider the harmonic oscillator with frequency ω. The Schrödinger-Langevin Equa-
tion (SLE) for the harmonic oscillator is given by

i~∂tψ = − ~2

2m
∂2
xψ +

1

2
mω2x2ψ + γ~

[
S − 〈S〉ψ

]
ψ − xWTψ, (5.18)

where the logarithmic term is replaced by the phase S of the wavefunction (from the
polar form of ψ). Using Madelung’s transformation of the wavefunction, we obtain the
following equations of motion for the probability density ρ and the velocity field S:

∂tρ = − ~
m
∂x(ρ∂xS), (5.19)

~∂tS = − ~2

2m
(∂xS)2 − 1

2
mω2x2 − VQ − γ~

[
S − 〈S〉ψ

]
+ xWT (5.20)

where we used the notation 〈S〉ψ ≡ 〈ψ|S|ψ〉. The Hamilton-Jacobi equation is modified
by two additional terms: the friction term and the random noise, which makes the phase
stochastic. However, the continuity equation remains unchanged compared to the zero-
temperature case, but as S is stochastic, its solution will differ from the zero-temperature
case.
We can then write the Nelson stochastic process associated with the SLE as

dx =
~
m

(
∂xS(x(t), t) +

1

2
∂x ln ρ(x(t), t)

)
dt+ dWQ(t). (5.21)

To go further, we need to find the expression of the wavefunction. We assume the ansatz
of the Gaussian wavefunction as

ψ(x, t) =
1

[2πσ2(t)]1/4
exp

{
− [x− µ(t)]2

4σ2(t)
+ i
(
α(t)[x− µ(t)]2 + k(t)[x− µ(t)]

+θ(t)

})
,

(5.22)

where µ ≡ 〈x〉ψ, σ2 ≡
〈
(x− µ)2

〉
ψ
. It is necessary that µ 6= 0 because, due to the noise,

the wavefunction is not symmetric at every time with respect to the origin. We have five
parameters: the mean position µ, the variance σ2, the geometric phase θ, the dynamical
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phase α, and the mean momentum p = ~k. Inserting this ansatz into the SLE (or into
Madelung’s equations) gives the following equations of motion for the parameters:

∂tp = −mω2µ− γp+WT, (5.23)

∂tµ =
p

m
, (5.24)

which correspond to the classical Langevin equation if p is the momentum and µ is the
position of the particle. The equations for the variance and the phases are

∂tσ =
2~ασ
m

, (5.25)

∂tα =
~

8mσ4
− 2~α2

m
− γα− mω2

2~
, (5.26)

∂tθ =
~

2m

[
p2

~2
+

1

2σ2

]
− mω2µ2

2~
− γασ2 +

µ

~
WT. (5.27)

By combining Eq. (5.25) and Eq. (5.26), we can show that the variance satisfies the
damped Ermakov-Milne-Pinney equation:

∂2
t σ + γ∂tσ + ω2σ =

D2
Q

σ3
. (5.28)

From Eq. (5.22), we find that the drift of the Nelson process is given by

dx(t) =
~
m

([
1

2σ2(t)
+ 2α(t)

]
(x(t)− µ(t)) +

p

~

)
dt+ dWQ(t). (5.29)

The width is then damped over time and converges, when ∂tσ = 0 and ∂2
t σ = 0, to

the width of the ground state
√
~/2mω. We then see that the wave packet converges

to a Gaussian wave packet with a width equal to that of the ground state of the zero-
temperature harmonic oscillator. However, the center and momentum of the wave packet
follow the classical Langevin equation, so the wavefunction is not equal to the ground
state. It is a coherent state (we will discuss coherent states in more detail in section
Sec. 5.4), which can be written as a superposition of all the eigenstates of the zero-
temperature harmonic oscillator. According to the choice of the diffusion coefficient
Eq. (5.17), the weight pn associated with the n-th eigenstate is a Boltzmann weight,
equal to exp(−En/kBT ), where En is the energy of the n-th eigenstate and T is the
temperature.
The difference between Eq. (5.29) and Eq. (4.9) is the presence of the term p/~, which
is not proportional to x− µ. This means that the equation cannot be written as κ̄(x−
µ)dt+ dWQ(t), where κ̄ would have been analogous to a classical stiffness, so the Nelson
equation is no longer mathematically equivalent to the overdamped Langevin equation
describing a classical Brownian particle in a harmonic trap. This would only be the case
if p = 0. However, if this were the case, according to Eq. (5.23) and Eq. (5.24), we
would have µ = 0 and WT = 0, which is not possible. There exist several formulations
of the SLE that do not involve the stochastic noise WT, see Refs. [224–227]. Further
investigation would be needed to extend the classical analogy to this approach, either by
exploring approaches to SLE with no stochastic term or by finding a way to include the
p/~ term in the classical analogy.
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Conclusion

The Schrödinger-Langevin Equation (SLE) introduces friction and noise into the quan-
tum dynamics of a harmonic oscillator, resulting in a stochastic phase and a modified
wave packet that resembles a coherent state with a Boltzmann distribution. This ap-
proach offers a valuable perspective on quantum systems at finite temperatures, but
further investigation is needed to address issues like the inclusion of the p/~ term in the
classical analogy.

To summarize

Modification of Heisenberg equation: Langevin equation for operators
Schrödinger-Langevin equation:

i~∂tψ = − ~2

2m
∂2
xψ + V ψ + γ~

[
ln

ψ

ψ∗
−
〈

ln
ψ

ψ∗

〉

ψ

]
ψ − xWTψ

3 Provides natural definition for mixed states

3 Well-known effective equation for open quantum systems

• Stochastic phase

7 Difficult to define a classical equivalent to quantum stiffness

In the next section, we will explore a different approach that is similar in some aspects
but derived differently. Unlike the SLE, this method breaks reversibility at the conti-
nuity equation level, and the phase is not stochastic, with no noise directly affecting
the wavefunction’s dynamics into the stochastic dynamics of quantum systems at finite
temperatures.

5.3 Schuch’s approach

In section 5.2, we included the effects of the environment in the Heisenberg equations
of motion for the position and momentum operators. This led us to the Schrödinger-
Langevin Equation (SLE) and the Madelung equations for the density and phase.
Another way to approach this is to start by changing the Madelung equations directly and
then derive a Schrödinger-Langevin-like equation. This is the method proposed by Schuch
[211]. The goal is to introduce irreversibility in the continuity and Hamilton-Jacobi
equations, given by Eq. (2.19) and Eq. (2.34), and then derive a modified Schrödinger
equation and the associated Nelson equation.
We will investigate this approach in the case of the harmonic oscillator.

5.3.1 Modification of the Madelung equations

5.3.1.1 Non-modified equations

We recall the Madelung equations for the density ρ and the phase S of the wavefunction
ψ =

√
ρeiS in the case of the harmonic oscillator of frequency ω. The continuity equation

reads

∂tρ+
~
m
∂x(ρ∂xS) = 0, (5.30)
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which can be written as a Fokker-Planck equation as

∂tρ+ ∂x(bρ) = DQ∂
2
xρ (5.31)

with DQ = ~/2m and

b =
~
m
∂xS +DQ∂x ln ρ. (5.32)

The Hamilton-Jacobi equation is given by

~∂tS +
~2

2m
(∂xS)2 +

1

2
mω2x2 − ~2

2m

∂2
x
√
ρ

√
ρ

= 0. (5.33)

5.3.1.2 Modification of the Hamilton-Jacobi equations

It is possible to start by modifying the Hamilton-Jacobi equation. Taking the gradient
of Eq. (5.33) gives

[∂t + v∂x]v = − 1

m
∂x[V + VQ], (5.34)

where v is the velocity field of the particle, given by v = ~∂xS/m. This equation is the
Euler equation describing the motion of a fluid in fluid dynamics theory. The operator
∂t + v∂x can be seen as the derivative in a frame of reference moving with the fluid, and
the right-hand side −∂x[V + VQ] represents the force felt by the fluid.
To introduce features of open systems into the dynamics, a simple option is to add a
friction force −γv to the Euler equation, similar to what is done in classical mechanics.
This leads to3

[∂t + v∂x]v = − 1

m
∂x[V + VQ]− γv. (5.35)

Integrating this equation gives the modified Hamilton-Jacobi equation:

~∂tS +
~2

2m
(∂xS)2 + V + VQ + γ~S = 0. (5.36)

At this stage, the dynamics is still deterministic because the continuity equation remains
unchanged. However, this approach has been studied in the literature as a way to in-
clude environmental effects in the system’s dynamics, see Ref. [206]. To fully introduce
irreversibility, we need to go further and modify the continuity equation.

5.3.1.3 Modification of the continuity equation

We want to break the deterministic character of the dynamics. One way to do this is to
introduce a new term in the continuity equation. The simplest way is to add a diffusion
term, the Laplacian of the density, associated with a thermal diffusion coefficient DT.
The continuity equation then becomes a Fokker-Planck equation of the form

∂tρ+ ∂x(bρ) = DQ∂
2
xρ+DT∂

2
xρ, (5.37)

3If we also introduce a stochastic force, we can show that this recovers the SLE equation from the
previous section.
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or4

∂tρ+
~
m
∂x(ρ∂xS) = DT∂

2
xρ. (5.38)

This suggests introducing another Wiener process, associated with the thermal agitation,
into the Nelson equation as

dx(t) = b(x(t), t)dt+ dWQ(t) + dWT(t). (5.39)

where b being the same as in the close systems case. Indeed, for an isolated system,
we wanted to ensure the time reversibility of the dynamics, then we had to include the
osmotic velocity DQ∂x ln ρ in b to counter-balance the diffusion. In the case of open
systems, the thermal diffusion has to give a non-reversible dynamics, so no modification
on the drift is needed. This stochastic differential equation is similar to the one discussed
in Ref. [228] for the classical case of an overdamped Brownian particle affected by thermal
noise and another noise from radiation pressure. From this observation, we can imagine
to extend the classical analogues for open quantum systems in a similar way as was done
in Chap. 4.

5.3.1.4 Derivation of the Schrödinger equation

For closed systems, the probability density ρ is equal to the product of the wavefunc-
tion ψ and its complex conjugate ψ∗. Usually, we derive the continuity equation by
knowing the Schrödinger equation, either by taking its imaginary part or by combining
the Schrödinger equation with its complex conjugate. Here, we want to do the reverse:
finding the Schrödinger equation from the continuity equation. This method has been
studied in Ref. [229], and is explained in Appendix H. It involves writing the density as
ρ = ψψ∗ and assuming that the phase is S ∝ i log(ψ/ψ∗), where ψ will be identified as
the wavefunction. By inserting this expression into the continuity equation, it is possible
to separate ψ and ψ∗ and obtain the Schrödinger equation for each. This procedure
works perfectly for the zero-temperature case, but it is subtler for the thermal case. The
Laplacian of ψψ∗ is not separable into ψ and ψ∗, as it contains a cross-term. A solution
is to assume that the density is a Gaussian function, which is an exact solution in the
case of the harmonic oscillator. Doing so, we write the density as

ρ(x, t) =
1√

2πσ2(t)
exp

{
− x2

2σ2(t)

}
, (5.40)

and the following relation holds:

−D∂2
xρ = γ

(
ln ρ− 〈ln ρ〉ψ

)
ρ, (5.41)

where the brackets 〈·〉ψ denote the average over the state ψ (whose squared modulus is
ρ). Here, we have introduced the friction coefficient γ, which must be equal to

γ =
2DT

σ2(t)
(5.42)

4Eq. (5.38) motivates the introduction of an extra term in the velocity field v as

v(x, t) =
~
m
∂xS(x, t)−DT∂x ln ρ(x, t).

The velocity field is composed of a convection field vc = ~∂xS/m and a diffusion field vd = −DT∂x ln ρ.
This is similar to the distinction between drift and osmotic velocity in the Nelson approach at zero
temperature.
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to ensure the validity of Eq. (5.41). This means that the friction or the thermal diffusion
coefficient must be time-dependent. Under this separability condition, the Schrödinger
equation reads5

i~∂tψ = − ~2

2m
∂2
xψ + V ψ − iγ~

[
lnψ − 〈lnψ〉ψ

]
ψ. (5.43)

We refer to this equation as the deterministic Schrödinger-Langevin equation (dSLE),
even though no stochastic term is involved. As in the previous section, we have an extra-
potential term that is non-local and non-linear in the wavefunction. The difference is
that it is complex, so both the real and imaginary parts of the equation are modified.
The associated Hamiltonian is consequently non-Hermitian, which could cause issues,
especially concerning the real-valuedness of observables and the normalizability of the
wavefunction. However, because of the substraction of the mean value of ψ in the Hamil-
tonian, the mean energy Eψ = 〈H〉ψ remains real and is exactly the same as the one
obtained from the Schrödinger equation of the closed system. The wavefunction also re-
mains normalized due to the substraction of 〈ρ〉 in the continuity equation. Indeed, it is
straightforward to compute d

dtρ and see that the new term contributes to this derivative
as −γ

∫
dx (log ρ−〈log ρ〉)ρ, which is obviously zero since

∫
dx ρ log ρ = 〈log ρ〉. Similar

approaches to treat open quantum systems with a non-linear Schrödinger equation have
been studied in the literature [230, 231], where imaginary terms in the Hamiltonian were
also present, and the normalizability of ψ was ensured by substracting the mean value
of the non-linear terms.
It is possible to find the modifications to the Hamilton-Jacobi equation by equating the
real parts of both sides of the Schrödinger equation. Doing so, we obtain

~∂tS +
~2

2m
(∂xS)2 + V + VQ + ~γ

[
S − 〈S〉ψ

]
= 0. (5.44)

To better understand the meaning of the non-linearity, we can write the Euler equation
by taking the gradient of the Hamilton-Jacobi equation. Still noting v = ~∂xS/m, we
get

[∂t + v∂x]v = − 1

m
∂x[V + VQ]− γv. (5.45)

The new term corresponds to a friction force −γv in the Euler equation, exactly as in
Eq. (5.35). We did not introduce it by assuming a friction potential ; it is a consequence
of modifying the continuity equation.

5.3.1.5 Gaussian solution for SLE

It is possible to solve the Schrödinger-Langevin equation (SLE) by assuming that the
wavefunction is a Gaussian function, as in the previous section. We write it as

ψ(x, t) =
1

(2πσ2(t))1/4
exp

{
− x2

4σ2(t)
+ i
[
α(t)x2 + θ(t)

]}
. (5.46)

Here, σ2 is the variance of the wavefunction, α is the dynamical phase, and θ is the
geometric phase. Unlike the previous section, since there is no random noise in the SLE,
we can assume that the mean position is zero, so the Gaussian packet is centered at the
minimum of the potential. This reduces the number of parameters to three.

5We assumed the Gaussian shape for the density to write the separability condition. In fact, any
density satisfying Eq. (5.41) is sufficient.
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Inserting this expression into Eq. (5.43) gives the following equations of motion for the
parameters σ, α, and θ:

∂tσ =

[
2~α
m

+
γ

2

]
σ, (5.47)

∂tα =
~

8mσ4
− 2~α2

m
− mω2

2~
− γα, (5.48)

∂tθ = − ~
4mσ2

+ γασ2. (5.49)

In the limit γ → 0, and thereforeDT → 0, we recover the Eq. (4.5) for the case without an
environment. Combining the equations of motion for σ and α gives a modified Ermakov
equation [232]:

∂2
t σ + Ω2σ =

D2
Q

σ3
, (5.50)

where we introduced the shifted squared frequency Ω2 = ω2 − γ2

4 as an effect of the
interaction with the environment, and used the quantum diffusion coefficientDQ = ~/2m.

For ∂2
t σ = 0, the width converges to

[
D2

Q

ω2−γ2/4

]1/4

.

This modeling of the effect of the environment does not give the same results as those
obtained in the previous section, since the modified Ermakov equation followed by the
width is different and has different stationary limits. However, in both cases, the limit
γ → 0 gives the same results, as described by Eq. (4.6), which corresponds to the situation
without an environment.
These equations are the starting point for the study of the open quantum system. The
next step is to extend the classical analogues to this model, as we did in Chap. 4.

5.3.2 Application to the classical analogues

5.3.2.1 Classical-quantum analogy for the harmonic oscillator

In the case of the harmonic oscillator, we derived the classical analogs for the zero-
temperature case by writing the Nelson equation associated with the wavefunction of the
system. To do this, we recall that the phase of Eq. (5.46) is given by

S(x, t) = α(t)x2 + θ(t), (5.51)

and its density by

ρ(x, t) =
1√

2πσ2(t)
exp

{
− x2

2σ2(t)

}
. (5.52)

The Nelson trajectories x(t) are given by the drift term of the Nelson equation, as recalled
in Eq. (5.32). The Nelson equation is then

dx(t) =

[
2~
m
α(t)− DQ

σ2(t)

]
x(t)dt+ dWQ(t) + dWT(t). (5.53)

We rewrite the time-dependent coefficient as a function only of the variance σ(t) to
express α(t) in terms of it. From equation (5.47), we can write

α(t) =
m

2~

(
˙σ(t)

σ(t)
− γ

2

)
, (5.54)
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and the Nelson equation becomes

dx(t) =

[
˙σ(t)

σ(t)
− γ

2
− DQ

σ2(t)

]
x(t)dt+ dWQ(t) + dWT(t). (5.55)

Compared to the previous section, the drift is now proportional to the position x(t),
allowing the introduction of a stiffness κ̄ analogous to the stiffness of a classical harmonic
oscillator in the case of classical overdamped Brownian motion. We then write the Nelson
equation as

dx(t) = − κ̄(t)

γ̄
x(t)dt+ dWQ(t) + dWT(t), (5.56)

where γ̄ is a classical friction-like coefficient, and dWT(t) is the Wiener process associated
with a thermal diffusion coefficient DT. By comparing both equations, we define the
time-dependent classical stiffness κ̄(t) associated with the quantum stiffness κ(t) as

κ̄(t) = −γ̄
[
σ̇

σ
− γ

2
− DQ

σ2

]
. (5.57)

We recall that γ̄ is an effective friction coefficient without any direct physical meaning.
As in Chap. 4, we set γ̄ = 1. To use the classical-quantum analogy, it is important to
express the quantum stiffness κ(t) = mω2(t) in terms of the classical one. To do this, we
can use the Ermakov equation, given by (5.50), and invert (5.57) to obtain expressions
for σ̇ and σ̈ in terms of κ̄(t).
Introducing the variance s(t) = σ2(t), from Eq. (5.57), we show that its temporal evolu-
tion is given by

ṡ = 2(DQ − sκ̄) + γs, (5.58)

which involves the classical stiffness instead of the quantum one. From the modified
Ermakov equation Eq. (5.50), and after a few calculations, we obtain the modified bridge
equation, expressing the quantum stiffness in terms of the classical one as

κ(t) =
2mD2

Q

s2(t)
+m ˙̄κ(t)−mκ̄2(t) +mγκ̄(t). (5.59)

This equation is a generalization of Eq. (4.12) for this model to include the effect of
the environment. The difference between the two equations is the presence of the term
mγκ̄(t), which is not present in the zero-temperature case. It involves the friction coef-
ficient γ, so we recover the zero-temperature bridge equation in the limit γ → 0.
Thus, the classical-quantum analogy is complete.

5.3.2.2 Extension of the optimisation method

We aim to use the same methods as in Chap. 4 to take the system from an initial state
(si, κi) to a final state (sf , κf).
We have not yet investigated this problem, but the method would be the same: we need
to find the optimal protocol κ(t) that minimizes the duration of the protocol and a given
cost functional F [κ, κ̇]. Using the change of variable s = s(t) = σ2(t) allows us to rewrite
the bridge equation in the s-domain as

κ̂(s) =
2mD2

Q

s2
+ 2m

[
DQ − sˆ̄κ

]
ˆ̄κ′(s)−mˆ̄κ2(s) +mγ

[
ˆ̄κ(s) + sˆ̄κ′(s)

]
. (5.60)
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The duration of the protocol, given by ∆t =
∫ tf
ti

dt, now writes as

∆t =

∫ sf

si

ds

ṡ
=

∫ sf

si

ds

2
[
DQ − sˆ̄κ(s)

]
+ γs

. (5.61)

The difference from the expression obtained in Chap. 4 is the presence of the term γs
in the denominator. This term is equal to twice the thermal diffusion coefficient since
DT = γs/2, so we get

∆t =

∫ sf

si

ds

2
[
DQ +DT − sˆ̄κ(s)

] . (5.62)

If we had an expression for DT in terms of the temperature, we could use the same
method as in Chap. 4 to find the optimal protocol, whether it is based on stiffness
or temperature. This would allow us to design cycles to create a quantum heat engine,
composed of optimal isochoric (constant stiffness) and isothermal (constant temperature)
transformations.
The aim of the next section is to find an expression for the thermal diffusion coefficient
in terms of the temperature.

5.3.2.3 Model of thermal diffusion coefficient

At this point, we have introduced DT as a thermal diffusion coefficient, but we have not
yet provided a model for it. We aim to link it to the temperature T of the environ-
ment. We introduce the inverse thermal energy β = 1/kBT . It is known [233] that the
equilibrium distribution ρH for the quantum harmonic oscillator is given by the Hillery
distribution:

ρH(x) =

√
β̂mω2

2π
exp

{
−β̂V (x)

}
, (5.63)

with

β̂ =
2

~ω
tanh

(
β~ω

2

)
, (5.64)

being an effective inverse temperature that depends on both the temperature of the
environment and the frequency of the oscillator. The variance of this distribution is
given by

σ2
H =

~
2mω

coth

(
β~ω

2

)
. (5.65)

To relate the variance to the thermal diffusion coefficient, we use the relation previously
established: DT = γσ2/2. We then obtain the thermal diffusion coefficient in terms of
the friction, the frequency of the oscillator, and the temperature as

DT =
DQγ

2ω
coth

(
β~ω

2

)
. (5.66)

However, we want an expression for DT that is independent of the friction coefficient γ,
since γ is defined as a function of DT. To achieve this, we take the stationary limit of
the Ermakov equation (5.50), where ∂2

t σ = 0. This gives

γ = 2ω

√
1− tanh2

(
β~ω

2

)
, (5.67)
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and the thermal diffusion coefficient becomes

DT = DQ

√
coth2

(
β~ω

2

)
− 1, (5.68)

which depends only on the temperature and the frequency of the oscillator. It follows
that, at equilibrium, the variance s = σ2 satisfies the relation

s2κ = m
(
D2

Q +D2
T

)
or σ2 =

√
D2

Q +D2
T

ω2
, (5.69)

where we have reintroduced the quantum stiffness κ = mω2. This relation can be com-
pared to the zero-temperature equilibrium relation given by Eq. (4.13) in Chap. 4.
Note that, compared to Eq. (5.17), the thermal diffusion coefficient has a different dimen-
sion. This is because, in Sec. 5.2, it represents diffusion in momentum space, while here it
represents diffusion in position space, introduced at the level of the position distribution
in the continuity equation. It is similar to the distinction between underdamped and
overdamped diffusion coefficients. Both coefficients tend to zero at low temperatures and
to the classical diffusion coefficient at high temperatures. Indeed, for β → 0, the fric-
tion coefficient becomes γ = 2ω, and the thermal diffusion coefficient tends to 2/(mγβ),
which corresponds to the Einstein relation for the diffusion coefficient.

Conclusion

We have seen that this approach to treat the interaction of a quantum harmonic os-
cillator with an environment introduces irreversibility in the dynamics. The continuity
equation is modified by introducing a thermal diffusion coefficient, which is related to
the temperature of the environment. The Hamilton-Jacobi equation is also modified by
adding a friction term. This leads to a modified Schrödinger equation with a complex,
non-linear term.
With these changes, the classical-quantum analogy is complete, allowing us to use the
same methods as in the previous chapter to transition the system from an initial state
to a final state. We have also derived an expression for the thermal diffusion coefficient
in terms of the temperature of the environment and the frequency of the oscillator. This
section was based on the formalism developed in Ref. [197], and we used it to extend clas-
sical analogs to the case of an open quantum system. Additionally, we proposed a model
for the thermal diffusion coefficient that is consistent with the equilibrium distribution
of the harmonic oscillator.

To summarize

Modification of the continuity equation (add thermal diffusion term)
Deterministic Schrödinger-Langevin equation:

i~∂tψ = − ~2

2m
∂2
xψ + V ψ − iγ~

[
lnψ − 〈lnψ〉ψ

]
ψ

3 Directly incorporates irreversibility into continuity equation

3 Easier to develop classical analogues than other approaches.

• Damped phase (HJE) and thermal diffusion term (FPE)

7 Restricted to the harmonic oscillator and Gaussian wavefunctions
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In the next section, we will introduce a further approach to treat open quantum systems,
known as the Ruggiero approach, which combines Nelson’s stochastic mechanics with the
Langevin equation.

5.4 Ruggiero’s approach

The Ruggiero approach [187] is a method for describing open quantum systems by com-
bining Nelson’s stochastic mechanics with the Langevin equation, for th special case of
the harmonic oscillator. The goal is to introduce thermal effects into the Nelson formal-
ism. As in the previous sections we will use the harmonic oscillator as a model system.
For simplicity, we will briefly recall the Nelson formalism for the harmonic oscillator
before introducing temperature. Specifically, we will consider the zero-temperature case,
focusing on the scenario where the guiding wavefunction is a pure coherent state. Next,
we will see how this representation of position can be extended to a mixture of states.
Using this new form of the process, we will then address the case of an oscillator coupled to
a bath at a given temperature. Finally, we will solve the equations of motion numerically
to verify the validity of the results.

5.4.1 Theoretical aspects

5.4.1.1 Coherent guiding for harmonic oscillator

A coherent state of the harmonic oscillator [234] is a quantum state that behaves sim-
ilarly to a classical harmonic oscillator. It was the first example of quantum dynamics
introduced by Erwin Schrödinger [235] in 1926 and played an important role [236] in
Heisenberg’s discovery of the uncertainty relation [237] in 1927.
For each solution q(t) and p(t) (representing the position and momentum, respectively)
of the classical equations of motion for a harmonic oscillator with frequency ω,

q̇(t) =
p(t)

m
(5.70)

and
ṗ(t) = −mω2q(t), (5.71)

with given initial conditions q0 = q(0) and p0 = p(0), there exists a corresponding
coherent state denoted by a complex number α, whose wave function is ψα(x, t). The
complex quantum number α is defined by the initial conditions as

α =
mωq0 + ip0√

2m~ω
. (5.72)

From this point on, we will denote qα(t) and pα(t) as the classical trajectory associated
with the initial condition linked to α. The wave function ψα(x, t) is given by

ψα(x, t) =
(mω
π~

)1/4
exp

[
−mω

2~
(x− qα(t))2 + i

pα(t)

~
(x− qα(t)) + iθ(t)

]
, (5.73)

where

θ(t) =
1

2~

∫ t

0

[
p2
α(t)

m
−mω2q2

α(t)

]
dt− ωt

2
(5.74)
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is a phase that depends only on time. In the following, all quantities that depend on the
chosen coherent state will be indexed by α. If we choose ψα as the guiding wave function
in the Nelson equation, the stochastic process for the position x can be shown to be

dxα(t) =

[
−ω(xα(t)− qα(t)) +

pα(t)

m

]
dt+ dWQ(t), (5.75)

where WQ(t) is a Wiener process associated with quantum fluctuations. It is possible
to rewrite Eq. (5.75) in a more intuitive way, which will be useful when we introduce
temperature. Suppose that we set qα(t) = 0 and pα(t) = 0. The coherent wave function
then becomes the ground state wave function of the harmonic oscillator:

ψ0(x) =
(mω
π~

)1/4
exp

[
−mω

2~
x2
]
. (5.76)

The stochastic process corresponding to this guiding wave function is denoted by x0(t)
and obeys the Nelson equation

dx0(t) = −ωx0(t)dt+ dWQ(t). (5.77)

Next, we introduce the three-dimensional process (qα(t), pα(t), x0(t)), where qα(t) and
pα(t) are solutions of Eq. (5.70) and Eq. (5.71). It is straightforward to see that from
the set of equations Eq. (5.70), Eq. (5.71), and Eq. (5.77), the process defined by

xα(t) = qα(t) + x0(t) (5.78)

satisfies the process in Eq. (5.75). The Nelson stochastic process guided by a quantum
harmonic oscillator coherent state α can then be rewritten as the sum of the classical
motion (qα(t), pα(t)) and the quantum motion of the harmonic oscillator in its ground
state, x0(t).
At this point, we have not yet included temperature in the system and have only consid-
ered the case of a pure state. The aim of the next section is to understand how to treat
the case of a thermal mixture using this representation.

5.4.1.2 Thermal mixture of coherent statess

In quantum statistical mechanics, thermodynamic equilibrium states are represented by
the density matrix

ρβ =
1

Z
exp

(
−βĤ

)
, (5.79)

where Z is the partition function, β is the inverse thermal energy of the system, and Ĥ
is the Hamiltonian of the quantum system. It is possible to decompose ρβ in the basis of
coherent states of the quantum harmonic oscillator [238]. This decomposition is known
as the Glauber representation [77]. The weight of each coherent state α in the mixture
is given by the Glauber distribution

P (α) = c0~ω0 exp
(
−c0~ω0|α|2

)
, (5.80)

where

c0 =
exp (β~ω0)− 1

~ω0
. (5.81)
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The term c0 in Eq. (5.81) acts as an effective temperature for the coherent motion and
tends to β in the high-temperature limit. It introduces quantum effects on the classical
motion (q, p), as it involves ~. The density matrix is written as

ρβ =

∫
d2α

π
P (α) |α〉〈α| , (5.82)

where |α〉〈α| is the density matrix associated with the pure coherent state |α〉, with wave
function ψα(x) = 〈x|α〉. Note the double integration on α, as it is a complex number.
Using (5.72), P can be rewritten as a function of the phase-space variables q and p:

P (q, p) =
c0ω0

2π
exp

(
−c0

[
1

2
mω2

0q
2 +

p2

2m

])
. (5.83)

To describe the equilibrium state in the Nelson stochastic framework, we need to con-
struct the stochastic analog of Eq. (5.82). This can be done using the representation
given by Eq. (5.78). For a pure state α, since x0(t) and qα(t) are statistically indepen-
dent, the probability density ρα(x, t) associated with the stochastic variable xα(t) can be
written as a convolution product:

ρα(x, t) =

∫
du

∫
dv ρα(u, v, t)ρ0(x− u), (5.84)

where ρα(u, v, t) = δ(u − q(t))δ(v − p(t)) is the phase-space probability density of the
classical and deterministic process, and ρ0(x0) is the probability density of the Nelson
process where the guiding wave function is the ground state of the harmonic oscillator.

Proof:
Let X and Y be two independent random variables, with probability densities ρX and ρY ,
respectively. Since X and Y are independent, the joint probability density factorizes as
ρXY (x, y) = ρX(x)ρY (y). We define Z as the sum of these random variables, Z = X + Y .
Let ρZ be the associated density. Using the law of total probability, the density of Z can
be rewritten as

ρZ(z) = ρX+Y (z)

=

∫ +∞

−∞
dx ρXY (x, z − x)

=

∫ +∞

−∞
dx ρX(x)ρY (z − x)

= ρX ? ρY (z).

Thus, the probability density of Z is simply the convolution product of the probability
densities of X and Y .

For the thermal mixture at equilibrium, which is a mixture of all the different coherent
states weighted by Eq. (5.83), we replace the sharp density ρα(u, v, t) with the spread-out
probability density of the coherent states. The probability density of the process x then
becomes

ρβ(x) =

∫
du

∫
dv P (u, v)ρ0(x− u). (5.85)

In conclusion, Eq. (5.85) is the stochastic analog of the density matrix Eq. (5.82) in the
position representation, which is what we were looking for.
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Due to the mathematical analogy between Eq. (5.84) and Eq. (5.85), it is possible to
obtain a representation of the thermal mixture process xβ(t), where β indicates the
temperature of the mixture, in the form

xβ(t) = qβ(t) + x0(t), (5.86)

where qβ(t) is the configuration component of the phase-space process (qβ(t), pβ(t)) with
the probability density P (q, p).
In summary, we have found a representation of the process xβ(t) corresponding to a
mixture of states that is analogous in form to the representation given by Eq. (5.78).
The associated equilibrium probability density (5.85) is simply the convolution of the
coherent state weight Eq. (5.83) and the Nelson probability density.
However, the system described by xβ(t) represents the time evolution of an isolated
quantum oscillator initially prepared in a mixed state. What we want to consider is an
open system, meaning a system in contact with a thermal reservoir.

5.4.1.3 Open system

We consider the case of a harmonic oscillator in contact with a reservoir. The total system
consists of the oscillator and its environment, making it a more complex system than
previously considered. Our objective is to describe the oscillator while eliminating the
degrees of freedom of the reservoir, without losing the quantum features of the problem,
using the stochastic representation of the coherent states.
For a classical Brownian oscillator, the thermal effects of the bath are introduced by
adding friction and a random force to the equations of motion, resulting in the Langevin
equation. As shown before, the stochastic process of a coherent state can be regarded
as the classical deterministic trajectory surrounded by quantum noise. This allows us to
include the effect of the bath in the classical part, resulting in the Langevin equation,
while keeping the Nelson process unchanged:

dq(t) =
p(t)

m
dt, (5.87)

dp(t) = −
[
mω2q(t) + γp(t)

]
dt+ dWT(t), (5.88)

dx0(t) = −ωx0(t)dt+ dWQ(t), (5.89)

where γ is the friction coefficient of the bath, and WT(t) and WQ(t) are two independent
Wiener processes associated with the diffusion coefficientsDT andDQ, respectively. Note
that the coherent motion (q, p) is still decoupled from the Nelsonian motion x0. The total
process followed by the harmonic oscillator is given by

x(t) = q(t) + x0(t). (5.90)

Even though Eq. (5.87) and Eq. (5.88) form the Langevin equation, the distribution of
coherent states Eq. (5.83) involves an effective temperature c0. This means that the
temperature felt by the coherent motion is not the actual temperature of the system,
but the effective one. As a result, the diffusion coefficient of WT changes from mγ/β to
DT = mγ/c0.
We now have two independent processes: an underdamped Langevin process and a Nelson
process. In Fig. 5.1, we give a simplified phase-space representation of the different
processes.
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Figure 5.1: Simplified phase-space representation of the Langevin and Nelson processes,
respectively (q, p) and x0. The total process x can be viewed a trajectory in the phase space of
the Langevin process (black curve), for which each point is associated with a Nelson process ,
existing in its own phase space (grey circle). This is a visual representation, if we wanted a more
realistic representation, the Langevin process would be a non-smoothed ellipse spiral.

Due to the simplicity of the harmonic oscillator, it is possible to find the expression for
the distribution of the position at equilibrium. Without going into detailed calculations,
the equilibrium distribution of the particle is

P eq(x) =

(
β̃mω2

2π

)1/2

exp

(
− β̃mω

2

2
x2

)
, (5.91)

where

β̃ =
2

~ω
tanh

(
β~ω

2

)
. (5.92)

As for c0, it acts as an effective inverse temperature, but for the total motion x, while c0 is
the effective inverse temperature for the classical coherent motion (q, p). The distribution
is Gaussian, with a width given by

σ =
1√
β̃mω2

, (5.93)

that corresponds to the Wigner equilibrium distribution for the harmonic oscillator [233]
in the canonical ensemble. This approach to including temperature in the Nelson for-
malism is consistent with the known results.
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5.4.2 Thermodynamical aspects and classical analogs

5.4.2.1 Thermodynamics from trajectories

Equations (5.87), (5.88), (5.89), and (5.90) form the foundation for describing open quan-
tum systems using the Nelson formalism. This approach is particularly useful because it
allows us to apply tools from stochastic thermodynamics, originally developed for clas-
sical systems, to the study of open quantum systems. Specifically, this method provides
a direct way to define the system’s entropy through the concept of path entropy. Path
entropy, initially introduced in Ref. [239] for classical overdamped Langevin dynamics, is
linked to the trajectory of a Brownian particle. It is associated with a single trajectory
x(t) and is defined as the logarithm of the probability of the particle’s trajectory:

s(t) = −kB lnP (x(t), t). (5.94)

By averaging over all possible trajectories, we recover the standard definition of non-
equilibrium Gibbs mean entropy:

S(t) = −kB
∫

dx P (x, t) lnP (x, t) = 〈s(t)〉 , (5.95)

where 〈·〉 is the expectation value taken over the possible values of x. Path entropy
depends on the initial position distribution and thus contains information about the
entire space of possible trajectories. This definition of entropy and the Nelson framework
are particularly valuable because they allow us to:

â Verify the laws of thermodynamics: we can compute the mean entropy, the mean
energy, the free energy difference between two equilibrium states of the system, and
the mean heat production.

â Investigate the generalization to quantum systems of out-of-equilibrium thermo-
dynamics, such as the Jarzynski relation [240] and more generally, the fluctuation
theorems [241, 242] that hold for classical systems.

â Design protocols to change the temperature of the system, change the stiffness of
the oscillator, minimize the entropy production, minimize the heat production, etc.,
and explore thermodynamic cycles and heat engines in the quantum regime.

We have not yet investigated these possibilities within the Nelson framework, but ex-
ploring these aspects of open quantum systems is the aim of future work.
Nevertheless, the definition of path entropy given by Eq. (5.94) is particularly interesting.
The equilibrium distribution of the system, Eq. (5.91), takes the form

P eq(x) =
1

Z
e−β̃V (x), (5.96)

where V is the potential energy of the harmonic oscillator. This corresponds to the
Boltzmann distribution if β̃ were the real inverse temperature of the system. The entropy
of the system at equilibrium is then given by

s(x) = −kB lnP eq(x) = kB

(
β̃V (x) + lnZ

)
, (5.97)

which suggests defining the free energy of the system as

F =
1

β̃
lnZ, (5.98)
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Figure 5.2: Stochastic trajectories of the system for the case where the stiffness of the
harmonic oscillator is abruptly changed from ωi to ωf . The system is initially in the equilibrium
state associated with ωi and evolves to the equilibrium state associated with ωf . Initially and
finally, the histogram (orange) of the positions are fitted by the Hillery distribution (dashed red).
The middle panel show the trajectories at intermediate times (black lines).

a form quite close to the classical one for the canonical ensemble, where Z is the partition
function, such that

Z =

∫
dx e−β̃V (x), (5.99)

and
F = 〈V 〉 − T̃ S, (5.100)

with T̃ = kB/β̃ and S the mean entropy, defined by Eq. (5.95), at equilibrium. We
performed straightforward numerical calculations to gain a practical perspective on this
approach. We considered the special case where the stiffness of the harmonic oscillator
is abruptly changed from ωi to ωf , while the system is initially in the equilibrium state
associated with ωi (STEP protocol on the stiffness). This leads to a non-equilibrium
evolution until reaching the equilibrium state associated with ωf . We computed the
entropy of the system over time and calculated the free energy difference between the
two equilibrium states. We also computed the stochastic trajectories of the system, as
shown in Fig. 5.2. We also computed the energy of the system, but its definition is still
open to debate. Since the total process x(t) is the sum of two independent processes,
q(t) and x0(t), the energy of the system could be defined as the sum of the energies of
both processes. In this case, the mean energy of the system would be

E(t) =
1

2m

〈
p2(t)

〉
q,p

+
1

2
mω2

〈
q2(t)

〉
q,p

+
~ω
2
, (5.101)

where 〈·〉q,p refers to the expectation value over all possible values of q and p. The last
term is the zero-point energy of the harmonic oscillator.
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Figure 5.3: Time evolution of the system’s energy and entropy. Time is expressed in units
of
√
~/(mωf) and lengths in units of 1/ωf . We take ~ = m = ωf = 1. The left panel shows

the energy of the system based on the mean energy of x, along with the path mean entropy.
The right panel displays the mean energy in terms of (p, q). The insets in both panels show the
associated variances: σ for the left panel and σp and σq for the right panel. Although the mean
energy values differ, the variances reach a plateau in both cases, indicating that the system has
reached an equilibrium state. At intermediate times, the system is out of equilibrium. As the
stiffness decreases, both the entropy and the energy of the system increase.

However, the definition of the free energy suggests defining the mean energy as the
average of V (x), with the expectation value taken over the values of x, leading to

E(t) =
1

2
mω2

〈
x2(t)

〉
. (5.102)

In the simple case of an abrupt change in stiffness, the different densities of the system,
associated with (q, p) and x, are all Gaussian with zero means. We will denote the
variances by σ2

q =
〈
q2
〉

(p,q)
, σ2

p =
〈
p2
〉

(p,q)
, and σ2 =

〈
x2
〉
. The mean entropy of the

system can be written in terms of the variance of x as

S(t) =
kB

2

(
1 + ln

[
2πσ2(t)

])
. (5.103)

Numerically, it is possible to compute the different variances by interpolating the q, p,
and x histograms with Gaussians. This allows us to plot the time evolution of the entropy
and the energy of the system, as shown in Fig. 5.3. In the left panel, the energy of the
system is shown based on the mean energy of x. The path mean entropy is also depicted
on the same graph. In the right panel, the mean energy in terms of (p, q) is displayed.
The insets of both panels show the associated variances: σ for the left panel and σp
and σq for the right panel. Although the values of the mean energy differ, we see that
the variances reach a plateau in both situations, indicating that the system has reached
an equilibrium state. At intermediate times, the system is out of equilibrium. As the
stiffness decreases, both the entropy and the energy of the system increase.
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Calculating the difference in free energy between the two equilibrium states, we find that

∆F =
1

2
m
(
ω2

i − ω2
f

)
−
(
S(tf)

β̃f

− S(ti)

β̃i

)
(5.104)

=
1

β̃f

ln

(
β̃fmω

2
f

2π

)
− 1

β̃i

ln

(
β̃imω

2
i

2π

)
. (5.105)

Note that while we assumed that T is constant over time, β̃ varies as ω changes, ac-
cording to Eq. (5.92). Therefore, even during an isothermal transformation, the effective
temperature of the system changes.

5.4.2.2 Overdamped limit in the thermal motion

If we investigate the overdamped limit of the Langevin equation, given by Eq. (5.87) and
Eq. (5.88), we can obtain a full position description of the harmonic oscillator’s motion.
We know that the relaxation times for thermal motion are τp ∼ 1/γ for the momentum
and τq ∼ γ/ω2 for the position. Moreover, the relaxation time for purely quantum motion
is τx0 ∼ 1/ω. If we consider the case where ω/γ � 1, we obtain τp � τx0 � τq, meaning
that the thermal motion is overdamped, but it is possible to choose a time scale between
τx0 and τq where the quantum motion is still relevant. Then, we have

dq(t) = −ω
2

γ
q(t)dt+ dW ′T(t), (5.106)

where W ′T is a Wiener process whose diffusion coefficient becomes

D′T =
1

mγc0
. (5.107)

The quantum part is still given by Eq. (5.89). The total process verifies the equation of
motion

dx(t) = −
[
ω2

γ
q(t) + ωx0(t)

]
dt+ dW ′T(t) + dWQ(t). (5.108)

This shows that the two Wiener processesWT andWQ combine in the overdamped limit,
with the amplitude of the thermal one being slightly modified. The sumW ′T +WQ is still
a Wiener process. We expect to recover the classical overdamped Langevin equation in
the limit of high temperature and the Nelson equation in the limit of low temperature.
To verify this, we can compute the autocorrelation function of the system’s position,
which is given by

〈x(t)x(0)〉 = 〈q(t)q(0)〉+ 〈x0(t)x0(0)〉

=
1

mω2c0
exp

(
−ω

2t

γ

)
+

~
2mω

exp(−ωt).
(5.109)

We see that if β → 0, then c0 → 0 and 〈x(t)x(0)〉 ∼ 〈q(t)q(0)〉, while if β → ∞, then
c0 →∞ so that 〈x(t)x(0)〉 ∼ 〈x0(t)x0(0)〉. Therefore, we can write the following limits:

lim
β→0

x(t) = q(t), (5.110)

lim
β→∞

x(t) = x0(t). (5.111)
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This shows that for these two temperature regimes, the process x becomes a Markovian
Gaussian process, as q and x0 are. However, in the general case, the sum of q and x0

does not have to be Markovian, although it is still Gaussian. Indeed, q and x0 cannot
be expressed in terms of x only; they are coupled in Eq. (5.108).
If we want to extend the classical analogues shown in Chap. 4, we would prefer to express
dx in terms of x only and make it Markovian. To do so, it is possible to interpolate x(t)
with a Markovian process, denoted xM. According to Ref. [187], the process xM is given
by

dxM(t) = − ω
2

γM
xM(t)dt+ dWM(t), (5.112)

where
DM = D′T +DQ (5.113)

is the diffusion coefficient of the Wiener process WM, and γM is the friction associated
with it by

DM =
1

mγMβM
. (5.114)

Here, βM is the inverse thermal energy. Eq. (5.112) is the overdamped Langevin equation
for a particle in a harmonic oscillator of frequency ω, in a bath with friction coefficient
γM and at a temperature given by 1/βM. The autocorrelation of this protocol is given
by

〈
xM(t)xM(0)

〉
=

1

mω2βM
exp
(
−βMσMmω2t

)
. (5.115)

To see the difference between the Markovian and non-Markovian processes, we plot the
autocorrelation functions of both in Fig. 5.4. We see that in both the high and low
temperature limits, the autocorrelation functions match perfectly. This is not the case
for intermediate temperatures, where they are only close for small t (compared to 1/ω).
The Markovian process is then a good candidate for studying the system’s dynamics in
the large friction regime and in the low and high temperature limits. For example, if we
study a quantum system weakly coupled to a thermal bath, we can use the Markovian
process xM as a good approximation for the position.
This almost concludes this section devoted to Ruggiero’s approach to describing open
quantum systems.

5.4.2.3 Relation to the Schrödinger-Langevin equation

We will see that Ruggiero’s approach allows to recover the Schrödinger-Langevin equa-
tion, given by Eq. (5.43). To do so, we follow the same method as Ref. [187] which is
a similar strategy as when deriving the Schrödinger equation from the Nelson equation.
We need to write the time-evolution equation for the probability density associated with
the process x(t) = q(t) + x0(t). However, the sum of two Markovian processes is not
necessarily Markovian itself. Therefore, the equation for the probability density of x(t)
is not a Fokker-Planck equation, and it is not possible to derive the desired equation
directly from the quantities involved in the Nelson equation.
In Ref. [187], the authors showed that if one chooses a fixed path λ for the thermal motion
(pλ, qλ), then qλ is a continuous function of time and is no longer a random process. Thus,
xλ(t) = qλ(t) + x0(t) is simply the sum of a deterministic process and a Markov process.
The equation for the probability density of xλ(t) is then a Fokker-Planck equation of the
form

∂tPλ(x, t) = −∂xjλ(x, t), (5.116)
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Figure 5.4: Time evolution of the system’s energy and entropy. Time is expressed in units of√
~/(mωf) and lengths in units of 1/ωf . We take ~ = m = ωf = 1.Autocorrelation functions of

the non-Markovian (solid lines) and Markovian processes (dashed lines) for three different tem-
perature regimes, with respect to the energy of the harmonic oscillator: low (yellow), intermediate
(orange) and high (brown). In both the high and low temperature limits, the autocorrelation
functions match perfectly. For intermediate temperatures, they are only close for small t (com-
pared to 1/ω).

where the diffusion term is included in the current density jλ(x, t) = vλ(x, t)Pλ(x, t).
Here, vλ is the current velocity of the process xλ(t), given by

vλ(x(t), t) =
pλ(t)

m
. (5.117)

Using the tools of stochastic calculus described in Chap. 2, we obtain an acceleration law
of the form

maλ(t) = −mω2x− γpλ(t) +WT,λ(t), (5.118)

where WT,λ is the noise term that gives the path λ. If we assume that vλ derives from a
velocity potential such that

vλ = − 1

m
∂xSλ(x, t), (5.119)

and introduce the λ-dependent wave function ψλ(x, t) as

ψλ(x, t) =
√
Pλ(x, t) exp

(
i

~
Sλ(x, t)

)
, (5.120)

then the Schrödinger-like equation for the open system is obtained following the same
steps as in the Nelson case. The equation is

i~∂tψλ(x, t) =− ~2

2m
∂2
xψλ(x, t) + V (x)ψλ(x, t)

+
γ

m
(Sλ(x, t)− 〈Sλ(x, t)〉)ψλ(x, t)− xWT,λ(t)ψλ(x, t).

(5.121)
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If we now consider WT,λ as a Wiener process, we obtain the Schrödinger-Langevin equa-
tion for the open system and can drop the λ index, leading to

i~∂tψ =

[
− ~2

2m
∂2
x +

1

2
mω2x2 +

γ

m

(
S − 〈S〉ψ

)
− xWT

]
ψ. (5.122)

This equation is the Schrödinger-Langevin equation for the open system. It is interesting
to note that the term γ(S − 〈S〉) is a non-Hermitian term, which is responsible for the
dissipation in the system. The term −xWT is the noise term, which accounts for the
fluctuations in the system. The Schrödinger-Langevin equation obtained is the same as
the one obtained in Sec. 5.2, meaning that there might exists a deeper connexion between
approaches, while one is obtained from an operator point-of-view and the other from the
Nelson formulation.

Conclusion

This approach, while it allows us to compute the equilibrium distribution of the system
and thermodynamic quantities of the systems, cannot create classical analogs as in the
case of closed quantum systems. The reason is that the total motion is decomposed
as the sum of two independent processes, a Langevin process and a Nelson process.
Consequently, it is not possible, even in the case of the harmonic oscillator, to write the
drift term in terms of one of the processes only; it always involves both. It might be
possible to find a way to overcome this limitation, and it might be the aim of future
works to find a way to do so.
Nevertheless, this approach to open quantum systems provides a new perspective on
the dynamics of these systems and their thermodynamic properties. By considering the
system as a combination of two independent processes, we can gain insights into the
behavior of open quantum systems and their interactions with the environment. This
approach could lead to new developments in the field of open quantum systems and their
applications in various domains.

To summarize

Combines underdamped Langevin dynamics and Nelson’s dynamics:
Position process formulation:

Thermal quantum motion︷ ︸︸ ︷
dx(t) =

underdamped Langevin dynamics︷ ︸︸ ︷
dq(t) +

Nelson dynamics︷ ︸︸ ︷
dx0(t)

3 Stochastic thermodynamic tools can be used

3 Recovers Schrödinger-Langevin equation

3 Provides natural definition for mixed states and density matrix

7 Split in two processes makes it difficult to develop classical analogues

Future work could focus on finding methods to unify these processes or develop new
frameworks that allow for the creation of classical analogs in open quantum systems.
Additionally, further investigation into the Schrödinger-Langevin equation could provide
deeper insights into the dynamics of open systems and their thermodynamic properties.
Understanding these aspects could lead to significant advancements in the field of open
quantum systems and their applications in various domains.
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5.5 Conclusion

In this chapter, we looked at three different ways to describe open quantum systems: the
first method from Kostin, the second from Schuch, and the third from Ruggiero. Both
the first and third methods lead to the same Schrödinger-Langevin equation. This is
useful because it helps us understand how the environment affects the system in a clear
way. These methods give us important insights into how open quantum systems behave
and interact with their surroundings.
Our original goal was to use these methods to create classical analogues of quantum
systems. However, we ran into some problems that made this difficult. In the Ruggiero
approach, breaking the motion into two independent processes—a Langevin process and
a Nelson process—makes it hard to describe the drift term using just one process. In the
Kostin approach, the mean momentum involved in the drift makes it difficult to define
a classical equivalent of quantum stiffness. These challenges make it tough to create
classical analogues for open quantum systems using these methods.
In contrast, the second method by Schuch is more suitable for creating classical analogues
and is easier to work with. We explored this method in detail and found it to be effective
in extending classical analogues to open quantum systems. This approach offers a new
way of looking at the dynamics and thermodynamics of open quantum systems. Using
Schuch’s method, we could model how the system interacts with its environment more
accurately and create useful classical analogues that match our theoretical expectations.
In summary, while the first and third methods provide a simple and insightful way to
study the effects of the environment on quantum systems, Schuch’s method is currently
better for extending classical analogues. Future work could focus on overcoming the
limitations of the first and third methods, like finding a unified process to express the drift
term. We believe that the Kostin and Ruggiero approaches could have a great potential
in the elaboration of new optmisations techniques for the open quantum systems. The
overall goal would be to create optimal cycles for open quantum systems, leading to
quantum engines, by optimizing different parts of these cycles (such as isothermal or
isochoric protocols) based on methods from classical analogues.
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Key Takeaways

Want to extend classical analogues to open quantum systems:
Goal: create optimal cycles for quantum engines.

Effective models for open quantum systems:

• Kostin Approach (Heisenberg)

Modification of the Heisenberg equation: Langevin equation for operators

Schrödinger-Langevin equation:

i~∂tψ = − ~2

2m
∂2
xψ + V ψ + γ~

[
ln

ψ

ψ∗
−
〈

ln
ψ

ψ∗

〉

ψ

]
ψ − xWTψ

3 Provides natural definition for mixed states

3 Well-known effective equation for open quantum systems

– Stochastic phase

7 Difficult to define a classical equivalent to quantum stiffness

• Schuch Approach (Continuity)

Modification of the continuity equation (add thermal diffusion term)

Modified Schrödinger equation:

i~∂tψ = − ~2

2m
∂2
xψ + V ψ − iγ~

[
lnψ − 〈lnψ〉ψ

]
ψ

3 Directly incorporates irreversibility into continuity equation

3 Easier to develop classical analogues than other approaches.

– Damped phase (HJE) and thermal diffusion term (FPE)

7 Restricted to the harmonic oscillator and Gaussian wavefunctions

• Ruggiero Approach (Nelson)

Combines underdamped Langevin dynamics and Nelson’s dynamics:

Position process formulation:

Thermal quantum motion︷ ︸︸ ︷
dx(t) =

underdamped Langevin dynamics︷ ︸︸ ︷
dq(t) +

Nelson dynamics︷ ︸︸ ︷
dx0(t)

3 Stochastic thermodynamic tools can be used

3 Recovers Schrödinger-Langevin equation

3 Provides natural definition for mixed states and density matrix

7 Split in two processes makes it difficult to develop classical analogues

Further work needed to overcome limitations and develop new optimization tech-
niques for open quantum systems.
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Conclusion and perspectives

I would rather have questions that can’t be answered
than answers that can’t be questioned.

— R. P. Feynman

Summary of the Thesis

This thesis investigated the connections between classical and quantum systems, with
a particular emphasis on how classical models and techniques can enhance our under-
standing and control of quantum behavior. The work was based on Nelson’s stochastic
mechanics, which describes quantum particles in terms of stochastic trajectories. This
theory was used to explore various aspects of quantum mechanics, from fundamental
concepts to practical applications.

In Chap. 1 and Chap. 2, we presented the theoretical tools necessary to understand
the core of this thesis. We introduced the classical stochastic formalism, focusing on
the Langevin and Fokker-Planck equations, and discussed the overdamped limits. This
framework allowed us to introduce Nelson’s theory, which describes quantum particles
using a stochastic formalism similar to that of classical particles, while noting subtle
differences, such as the reversibility of the process.
We discussed the advantages of Nelson’s theory, emphasizing that it can simplify the so-
lution of certain quantum problems that are challenging in standard quantum mechanics.
This was illustrated by the example of tunneling time, a concept that is well-defined in
Nelson’s theory but more difficult to establish within the conventional quantum mechan-
ical framework.

These discussions set the stage for the main part of the thesis, where we apply Nelson’s
theory to the description of quantum systems, spanning the final three chapters of the
manuscript. We demonstrated that Nelson’s theory can be applied to both fundamental
aspects of quantum mechanics and practical applications.
Chap. 3 was dedicated to the fundamental aspects of Nelson’s theory. We discussed the
Born rule, i.e. the fact that the squared modulus of the wavefunction is the probablility
density, and introduced the concept of quantum equilibrium, a concept absent in standard
quantum mechanics. This was followed by a discussion on the relaxation time of a
quantum system, demonstrating that, for certain systems, the relaxation time can be
comparable to the timescales relevant for measurements. A notable example is the free fall
of a quantum particle in the gravitational field of the Earth , an experimentally accessible
system. This led to the conclusion that if a system is not in quantum equilibrium, it
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may exhibit unusual behavior before reaching equilibrium, particularly in scenarios such
as high-energy particle collisions where new particles are created.

While this theoretical discussion was of interest as it highlights how Nelson’s theory can
explore concepts beyond standard quantum mechanics, it was not the primary focus
of the thesis. The main objective was to utilize Nelson’s theory to address practical
problems in quantum mechanics, which is the subject of the final two chapters.

In Chap. 4, we established a correspondence between classical and quantum systems,
specifically for the harmonic oscillator. We derived a classical equivalent for the stiffness
of a quantum harmonic oscillator. Subsequently, by employing well-established opti-
mization techniques from classical systems, we derived optimal protocols for controlling
quantum systems, enabling transitions from an initial to a target state in an optimal
manner—that is, minimizing both the duration of the transition and a general cost asso-
ciated with the process. This method was illustrated with two examples, demonstrating
that the optimal protocols we derived outperform well-known protocols from the litera-
ture. We emphasized that this approach is versatile, capable of adapting to various cost
functions, which is a powerful characteristic for the control of quantum systems.

In the final chapter of the thesis, Chap. 5, we addressed the problem of open quan-
tum systems, which interact with their surroundings, such as an environment or heat
bath. Our aim was to extend the classical analogies of quantum systems to include open
systems. To this end, we studied three effective approaches to describe open quantum
systems and attempted to derive their classical analogues by adapting Nelson’s formal-
ism to the open systems framework. Several challenges arose when trying to establish
these classical analogues; however, we demonstrated that each model exhibits unique and
intriguing properties that warrant further investigation.
One of the most promising models was the Ruggiero model, which is based on Nelson’s
theory and allows for the recovery of the Schrödinger-Langevin equation derived in the
Kostin approach. This model facilitated the introduction of stochastic thermodynamics
within the context of open quantum systems in the framework of Nelson’s theory. Despite
its potential, the derivation of classical analogues within this model is not straightforward.
On the other hand, the Schuch approach also presents notable features, with its classical
analogues being easier to derive. However, due to time constraints, we were unable to
explore this model in greater depth.

Future Directions

The work presented in this thesis paves the way for several avenues of future research.
Up to this point, we have primarily considered the case of the harmonic oscillator, a
simple system that nonetheless provides a good approximation for more realistic systems.
However, to further validate the usefulness of our methods, it would be beneficial to
extend our results to more complex systems.
In fact, whenever the Nelson drift and the Langevin force share the same form (linear
in position in the harmonic Gaussian case), it is possible to derive a classical analogue.
This suggests that it may be feasible to find classical analogues for a broader range of
quantum systems beyond the harmonic oscillator.
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Beyond the harmonic oscillator

A natural next step would be to consider anharmonic oscillators, which are more chal-
lenging to solve can be approached using the same techniques as the harmonic case.
Under the Hartree approximation, an effective harmonic potential can be constructed to
describe the system’s dynamics. This effective potential could then be used to derive the
classical analogues for systems such as the quartic oscillator.

Bose-Einstein Condensates and Many-Body Systems

Another promising direction for future research is the consideration of many-body sys-
tems, which are inherently more complex than single-particle systems. These systems
could be effectively described using the mean-field approximation, similar to the approach
taken in the Gross-Pitaevskii equation (GPE) for Bose-Einstein condensates (BEC) or the
Schrödinger-Poisson equations for a quantum electron gas. These equations are nonlin-
ear Schrödinger equations and share similarities with the Schrödinger-Langevin equation
used in the present work.
In the case of the BEC, the GPE is given by

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ + g|ψ|2ψ,

where V is the external potential, g is the interaction strength between particles, and ψ is
the wavefunction of the BEC. For weak coupling, the exact solution can be approximated
by a Gaussian wavefunction, leading to a modified Ermakov equation. This suggests
that the methods developed in this thesis could be extended to many-body systems,
potentially offering valuable insights into the behavior of interacting particles.
With this framework, one could explore the collective behavior of quantum particles and
study the emergence of complex phenomena. For instance, the dynamics of the BEC
in a harmonic trap could be analyzed, or the interaction strength g could be controlled
in time to investigate its effect on the system’s dynamics. Such an approach could lead
to the development of optimal protocols for g that enhance the dynamics of the BEC,
providing new perspectives on the behavior and control of quantum matter.

Quantum engines and and optimal cycles

We concluded the thesis by discussing the extension of Nelson’s theory and the opti-
mization methods to open quantum systems. The ultimate goal would be to apply these
methods to control the thermodynamic properties of such systems, specifically focus-
ing on quantities like entropy production during system evolution, which can be defined
within the framework of the Ruggiero model.
In addition, through the study of Schuch’s model, we derived classical analogues for
the harmonic oscillator. If optimal protocols for the stiffness of the potential (which
corresponds to controlling the volume of the system) are found, and these methods
can be extended to derive protocols on the system’s temperature—affecting the thermal
diffusion coefficient—it would be possible to develop optimal cycles for quantum engines.
Such cycles would involve both temperature and volume (related to the stiffness of the
harmonic oscillator), resembling Stirling cycles in classical thermodynamics. Each branch
of these cycles could be optimized using classical analogies (see Fig. A1 for a visual
representation of this type of cycle). Investigating the optimization of quantum engines
through classical techniques may yield new insights into the efficiency and performance
of quantum machines.
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Figure A1: Representation of a Stirling-like cycle in the pressure (P ) - volume (V ) plane.
The cycle consists of four branches: two isochoric processes (vertical lines, associated with an
optimal variation of the temperature), where the volumes V1 and V2 correspond to the inverse
stiffnesses κ−11 and κ−12 of a trapping potential, and two isothermal processes (during which the
volume is optimally changed). The work done by the engine is represented by the area enclosed
by the cycle. The efficiency of the engine is given by the ratio of the work performed by the
engine to the heat absorbed.

Once achieved, this could lead to the realization of quantum engines whose efficiency is
optimized using the methods developed in this thesis, enabling the conversion of heat
into work with minimal energy loss.

Controlling the colour of the noise

Independent of the project on thermal engines, it is valuable to develop new classi-
cal methods for controlling the state of a system over time. Within the framework of
stochastic physics, instead of focusing on protocols that modify the parameters of the
system’s potential, one could control the interaction with the environment—essentially,
the noise. It is commonly assumed that Gaussian white noise sufficiently describes the
interaction between a Brownian particle and its surroundings. However, this approach
relies on certain approximations, notably neglecting memory effects in these interac-
tions. To overcome these limitations, other types of noise, such as colored noise, must
be considered. Moreover, the “color” of the noise can become a tunable parameter in the
model, allowing for the development of protocols that control the system’s state evolution
over time. In this way, optimal protocols can be designed based on the noise color (as
demonstrated in Ref. [228]).
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Once this method is well-established, it could be applied to quantum systems by leverag-
ing the analogies discussed earlier. Indeed, throughout the derivation of Nelson’s theory,
we assumed that the noise is a Wiener process, which is essentially white noise. There
exist Nelson-like theories involving colored noise (see Ref. [249]), which could potentially
extend the methods developed in this thesis to the case of colored noise and enable the
derivation of optimal protocols for controlling the noise’s color.

Conclusion

Overall, this thesis has demonstrated that non-standard formulation of quantum physics,
such as Nelson’s theory, offer valuable insights into quantum systems and can lead to novel
methods for their control, without necessarily engaging with the ontological questions of
the theory. This opens up numerous possibilities for further research, spanning multiple
directions and a wide range of applications. Extensive future investigations are required
to fully realize the potential of these methods and to develop new techniques for the
control of quantum systems. The results presented in this thesis represent only the
beginning of a long journey, and we hope that the methods developed here will inspire
new research in the fields of quantum control and quantum thermodynamics.
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APPENDIX A

Langevin equation from a classical
Caldeira-Leggett model

Et j’ai pris la décision quasiment instantanément
d’essayer de comprendre ce qu’il y avait dans ces

ouvrages
— P. A. Hervieux

In this appendix, we will investigate the question of how a microscopical descritpion of
the interactions between the solvant particles and the Brownian particle can lead to the
Langevin equation [221]. In addition, we will directly show how the irreversibility of the
motion of the Brownian particle arises from the reversible microscopic laws.

To begin, let us denote the mas of the Brownian particle by M , its position and momen-
tum at time t by x(t) and p(t). We supposed that it is in a potential U(x) that depends
on the position of the BP. This last is imerged in a fluid modeled a thermostat composed
of N harmonic oscillators, labelled by the index i and located at the positions ri, with
momentums pi, angular frequencies ωi, and of same masses m. The coupling between
the BP and the harmonic oscillators are supposed to be bilinear in the positions and
characterized by the coupling constants ci. While this is not a real coupling to model
the interactions of the particles of the fluid with the BP, it is sufficient to reproduce the
correct phenomenology, notably to recover the Langevin equation for the dynamics of
the BP. The total hamiltonian is given by the sum of the BP hamiltonian

HBP =
p2

2M
+ U(x). (A.1)

and the thermostat hamiltonian is

HT =

N∑

i=1

(
p2
i

2m
+

1

2
mω2

i r
2
i

)
. (A.2)

The coupling between both systems is given by the term

Hint = −
N∑

i=1

cirix. (A.3)

The total hamiltonian is then the sum of the three terms, but it is interesting to rewrite
it in a more suggestive form. Indeed, it is possible to put the coupling directly in the
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thermostat hamiltonian by renormalizing the potential of the BP. The total hamiltonian
can then be written as

Htot =
p2

2M
+ V (x) +

N∑

i=1

(
p2
i

2m
+

1

2
mω2

i

[
ri −

ci
mω2

i

x

]2
)

(A.4)

with V (x) = U(x) +
∑N

i=1
c2i

2mω2
i
x2 being the renormalized potential of the BP. This

form of the hamiltonian is interesting because it shows that the BP is coupled to the
thermostat through a renormalized potential. This feature gives the system a mean-field
character, as the interaction is of infinite range when N →∞. This is a consequence of
the bilinear coupling between the BP and the harmonic oscillators. To find the equation
of motion of the system, we need to write the Hamilton equations for the BP and the
thermostat. From Eq. (A.4), we find

ẋ =
p

M
, ṗ = −∂V (x)

∂x
+

N∑

i=1

ci

(
ri −

ci
mω2

i

x

)
, (A.5)

ṙi =
pi
m
, ṗi = −mω2

i ri + cix. (A.6)

and combining both equations of Eq. (A.6), we find the equation of motion for the
thermostat being

r̈i(t) + ω2
i ri(t) =

ci
m
x(t). (A.7)

that corresponds to an harmonic oscillator linearly coupled to the BP. The solution of
this equation can be obtained using the Green function method. The solution is given
by

ri(t) = ri(0) cos(ωit) +
pi(0)

mωi
sin(ωit) +

ci
m

∫ t

0
ds x(s)

sin(ωi(t− s))
ωi

. (A.8)

where ri(0) and pi(0) correspond to the initial values of ri and pi. The solution can
be rewritten so that it is easier to interpret. After integration by part of last term of
Eq. (A.8), we find

ri(t) =
ci
mω2

i

x(t) +

(
ri(0)− ci

mω2
i

x(0)

)
cos(ωit) +

pi(0)

mωi
sin(ωit)

− ci
mω2

i

∫ t

0
ds ẋ(s) cos(ωi(t− s))

(A.9)

where we made appear the velocity of the BP in the integral term. If we now insert this
solution into Eq. (A.5), we find

ṗ =− ∂V

∂x
−
∫ t

0
dx ẋ(s)

(
N∑

i=1

c2
i

mω2
i

cos(ωi[t− s])
)

+
N∑

i=1

ci

(
ci
mω2

i

x(t) +

[
ri(0)− ci

mω2
i

x(0)

]
cos(ωit) +

pi(0)

mωi
sin(ωit)

)
.

(A.10)

Introducing ζ(t) =
∑N

i=1
ci
mω2

i
cos(ωit) and FB(t) =

∑N
i=1 ci

(
ri(0)− ci

mω2
i
x(0)

)
cos(ωit) +

ci
pi(0)
mωi

sin(ωit), we can rewrite the equation of motion of the BP as

ṗ(t) = −∂V
∂x

∣∣∣∣
x=x(t)

− 1

M

∫ t

0
ds ζ(t− s)ṗ(s) + FB(t). (A.11)
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At this point, this evolution equation for the velocity is exact and originates from the
total Hamiltonian. The integral term can be interpreted as a memory kernel for the
previous values of velocity. In other words, because of this term, the velocity of the
BP depends on its own past value, and the dynamics is not Markovian. As it generates
a force opposed to the motion, proportional to the velocity, it is straightforward to
interpret it as a non local friction force. The last term FB(t) is totally determinisitic,
as it depends on the initial values of the bath degrees of freedom as well on the BP
initial position. However, as there are a very large number N of harmonic oscillators, it
is impossible to have a complete knowledge of the initial conditions of the bath, rather
a statistical knowledge. It is then possible to describe them satistically and to suppose
that they follow a probability density. If the bath is initially at the equilibrium, at the
temperature T , then the probability density is given by the Boltzmann distribution, from
the expression of the (renormalised) Hamiltonian of the bath, one gets

ρ({xi}, {pi}, t = 0) ∝ exp

(
− 1

kBT

N∑

i=1

[
p2
i

2m
+

1

2
mω2

i (ri −
ci
mω2

i

x(0))2

])
. (A.12)

Doing so, the term FB(t) becomes a random variable and can be viewed as being a
noise. Then, Eq. (A.11) becomes a stochastic equation. The averaged quantities can be
computed considering this probability distribution. From Eq. (A.12), it is clear that

〈pi(0)〉 = 0 and 〈ri(0)〉 =
ci
ω2
i

x(0) (A.13)

and using the expression of the noise, we find

〈FB(t)〉 = 0 and
〈
FB(t)FB(t′)

〉
= kBTζ(t− t′). (A.14)

This last relation is an example of fluctuation-dissipation theorem, as it relates the noise
to the friction. The name comes from the fact that the noise is due to the fluctuations of
the bath, and the friction is due to the dissipation of the energy of the BP in the bath.
At this point, the noise is not supposed to be a white noise, as Eq. (A.14) shows. If one
wants to recover the standard Langevin equation from Eq. (A.11), one needs make the
friction term local in time and obtain a δ-correlated noise. This necessitated a separation
of the time scales between the BP and the bath degrees of freedom. Indeed, the friction
term in the Langevin equation Eq. (A.11) proportional to

∫ t
0 ds ζ(t − s)p(s). As the

friction kernel ζ is a function of the bath degrees of freedom only, it is natural to suppose
that the time interval for which the friction kernel takes significant values is rougthly
[−τs, τs] with τs the time scale of the bath. On the other hand, the time scale at which
the momentum of the BP changes is τB. As we assumed that τB � τs, we can make
the approximation

∫ t
0 ds ζ(t− s)p(s) ≈

∫ t
0 ds ζ(t− s)p(t) ≈ γp(t) with γ =

∫∞
0 ds ζ(s),

or reversly ζ(t) = γδ(t). This is the Markovian approximation, and it is equivalent to
suppose that the time scale of the bath is much smaller than the time scale of the BP,
so that all the memory effects cancel. The Langevin equation finally becomes

ṗ(t) = −∂V
∂x

∣∣∣∣
x=x(t)

− 1

M
γp(t) + FB(t). (A.15)

with
〈FB(t)〉 = 0 and

〈
FB(t)FB(t′)

〉
= 2γkBTδ(t− t′). (A.16)

which is the Langevin equation with a Gaussian white noise.
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APPENDIX B

Relation between forward and backward
processes

Faut pas prendre tout ce qu’il dit au sérieux . . .
— G. Manfredi

In this appendix, we demonstrate the form of the backward derivative, introduced in
Chap. 2. It will justify the relation between the forward and the backward drifts. Recall
that the forward derivative of a function f of the position x and of the time t is defined
by Eq. (2.13) as

Df = ∂tf + b∂xf +DQ∂
2
xf. (B.1)

We want to demonstrate the form of the backward derivative D∗f given by Eq. (2.14).
In order to do so, we first have to demonstrate a usefull relation.

Derivative of the average of a product

Let f(x, t) and g(x, t) be two functions of the position x and of the time t. We want to
demonstrate that the derivative of the average of the product of these two functions is
expressed in terms of forward and backward derivatives [243] as

d

dt
〈f(x, t)g(x, t)〉 = 〈Df(x, t)g(x, t)〉+ 〈f(x, t)D∗g(x, t)〉 (B.2)

where the average 〈·〉 is taken over the possible values of the Wiener process. As done in
Ref. [187], we will use the notation f(t) := f(x(t), t) and g(t) := g(x(t), t) to simplificate
the notation. We will make the assumptioin that both f and g are smooth functions that
vanishes at the space-time boundaries. Proving Eq. (B.2) is equivalent to proving that

〈f(tf)g(tf)− f(t0)g(t0)〉 =

∫ tf

t0

dt 〈Df(t)g(t) + f(t)D∗g(t)〉 . (B.3)

Let us divide the time in n steps of size ∆t = tf/n, such that ti = i∆t for 0 ≤ i ≤ n and
with t0 the initial time and tf is the final time.
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Using the trick of the sum of the differences, we can write the left-hand side of Eq. (B.3)
as

〈f(tf)g(tf)− f(t0)g(t0)〉

= lim
n→∞

n∑

i=1

〈f(ti+1)g(ti)− f(ti)g(ti−1)〉

= lim
n→∞

n∑

i=1

〈
[g(ti+1)− g(ti)]

f(ti) + f(ti−1)

2
+
g(ti+1) + g(ti)

2
[f(ti)− f(ti−1)]

〉

and using the fact that 〈〈·|x(t) = x〉〉 = 〈·〉, we can write, under the assumption of smooth
functions, that

lim
n→∞

〈
[g(ti+1)− g(ti)]

f(ti) + f(ti−1)

2

〉
= lim
n→∞

tf − t0
n
〈Dg(ti)f(ti)〉

and

lim
n→∞

〈
g(ti+1) + g(ti)

2
[f(ti)− f(ti−1)]

〉
= lim
n→∞

tf − t0
n
〈g(ti)D∗f(ti)〉 .

yielding to

〈f(tf)g(tf)− f(t0)g(t0)〉 = lim
n→∞

n∑

i=1

tf − t0
n
〈Dg(ti)f(ti) + g(ti)D∗f(ti)〉

=

∫ tf

t0

dt 〈Dg(t)f(t) + g(t)D∗f(t)〉 .

This relation relates the forward and backward derivatives of two functions in terms of
the average of their product, on the boundaries of the time interval. We will now use
this relation to demonstrate the form of the backward derivative.

Expression of the backward derivative

If we suppose that f and g vanish at the boundaries of the time interval, the left-hand
side of Eq. (B.2) is simply zero. Then, we can write that

∫ tf

t0

dt 〈Dg(t)f(t)〉 = −
∫ tf

t0

dt 〈g(t)D∗f(t)〉 . (B.4)

Calculation Writing explicitly the averages, we have
∫ tf

t0

dt

∫ +∞

−∞
dx Dg(x, t)f(x, t)P (x, t) = −

∫ tf

t0

dt

∫ +∞

−∞
dx g(x, t)D∗f(x, t)P (x, t).
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Using the definition of the forward, we can write, omiting to write the arguments of the
functions for the sake of readibility, that

∫ tf

t0

dt

∫ +∞

−∞
dx
[
∂tg + b∂xg +DQ∂

2
xg
]
fP

=

∫ tf

t0

dt

∫ +∞

−∞
dx
[
−∂t(fP )− ∂x(bfP ) +DQ∂

2
x(fP )

]
g.

where with did an integration by parts on the time for the first term, on the space for the
second term and two integration by part on the last term, so that g is the prefactor of all
the terms. Then, one gets

∫ tf

t0

dt

∫ +∞

−∞
dx
[
−∂t(fP )− ∂x(bfP ) +DQ∂

2
x(fP )

]
g = −

∫ tf

t0

dt

∫ +∞

−∞
dx D∗fgP

which is valid for any function g. This implies that the integrands are equal, yielding to

∂t(fP ) + ∂x(bfP )−DQ∂
2
x(fP ) = −D∗fP.

Diving by the probability density, we get the expression of the backward derivative

D∗f = ∂tf + (b− 2DQ∂x logP )∂xf −DQ∂
2
xf.

This shows that the backward derivative given by

D∗f(x, t) = ∂tf(x, t) + b∗(x, t)∂xf(x, t)−DQ∂
2
xf(x, t) (B.5)

where the backward drift b∗ is given by

b∗(x, t) = b(x, t)− 2DQ∂x logP (x, t). (B.6)

We recover that if f(x, t) = x, then D∗x = b∗.
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APPENDIX C

Crank-Nicolson method

C’est exhubilarant.
— D. Jankovic

This appendix is dedicated to the Crank-Nicolson numerical scheme [60], which is used
to solve the time-dependent Schrödinger equation:

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t), (C.1)

where Ĥ is the Hamiltonian of the system. It is well-known in quantum mechanics that
the time-dependent solution is given by the application of the propagator operator Û on
the initial wavefunction, assuming a time-independent Hamiltonian. Thus, we have:

ψ(x, t) = Û(t)ψ(x, 0) = e−iĤtψ(x, 0), (C.2)

where we are using atomic units, so ~ = 1. Note that the propagator is a unitary
operator, Û Û † = Û †Û = 1, ensuring a unitary evolution of the system, which means
that the norm of the wavefunction is conserved over time, i.e., |ψ(x, t)|2 = |ψ(x, 0)|2. We
represent ψ(x, t) by its values at a set of grid points. The spatial domain is divided into
J points, and for j ∈ [0, J ], we write xj = x0 +j∆x, where x0 represents the first point of
the grid, and ∆x is the step between two consecutive points: ∆x = xj+1−xj . Similarly,
the time domain is divided into N values, denoted as tn = n∆t, with n ∈ [0, N ] and
∆t = tn+1 − tn. The wavefunction is now written as

ψ(xj , tn) = ψnj . (C.3)

After applying this discretization to the time evolution given by Eq. (C.2), we obtain

ψn+1
j = Û(∆t)ψnj = e−iĤ∆tψnj . (C.4)

Because the evolution is unitary and preserves the norm, any approximation of Û(∆t)
must also be unitary. Simply expanding the propagator using a Taylor series does not
maintain unitarity. To derive a unitary approximation, we start by splitting Û(∆t) as

ψn+1
j = e−

iĤ∆t
2 e−

iĤ∆t
2 ψnj , (C.5)

and multiplying from the left by Û †(∆t
2 ) leads to

e
iĤ∆t

2 ψn+1
j = e−

iĤ∆t
2 ψnj . (C.6)
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Now, we can expand both exponential functions into Taylor series and truncate after the
second term: (

1 +
iĤ∆t

2

)
ψn+1
j =

(
1− iĤ∆t

2

)
ψnj . (C.7)

Thus, we obtain a unitary method to approximate Û , known as Cayley’s form:

Û(∆t) ≈ 1− iĤ∆t
2

1 + iĤ∆t
2

. (C.8)

We know that Ĥ can be written as

Ĥ = −1

2

∂2

∂x2
+ V (x), (C.9)

so, noting V (xj) = Vj and using a finite difference method for the second derivative,

∂2ψnj
∂x2

≈
ψnj+1 + ψnj−1 − 2ψnj

∆x2
, (C.10)

we obtain

ψn+1
j − i∆t

2

[
ψn+1
j+1 + ψn+1

j−1 − 2ψn+1
j

∆x2
− Vjψn+1

j

]

= ψnj +
i∆t

2

[
ψnj+1 + ψnj−1 − 2ψnj

∆x2
− Vjψnj

]
,

(C.11)

which is known as the Crank-Nicolson method.
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APPENDIX D

Computational methods for gradient
estimation of phase

: (){: | : &}; :

— Benjamin Bakri, a.k.a. Obi-Wan Kenobi

In the Nelson’s model, the phase of the wave function is a quantity that guides the particle
possible trajectories. The phase is a complex quantity, and its gradient is required to
calculate the drift given by Eq. (2.38). As the phase in standard quantum mechanics is
not continuous, as it takes its values in the interval (−π, π], its gradient might exhibit
divergences at the discontinuity points. In this appendix, we present two numerical
method to obtain a continuous phase from the wavefunction, a simple one that uses the
arctangent function and a more sophisticated one that is based on building the phase on
a spatial grid following a recursive law.
The wavefunction is a complex function, so can be written in polar form as

ψ(x, t) =
√
P (x, t) exp

{
i

~
S(x, t)

}
(D.1)

where P (x, t) is the probability density and S(x, t) is the phase. By definition, the phase
of a complex number is defined as

S(x, t) = arctan

(
Im(ψ(x, t))

Re(ψ(x, t))

)
(D.2)

where Im and Re are the imaginary and real parts of the wavefunction, respectively.
Then, using the chain rule, the gradient of the phase can be written as

∂xS(x, t) =
∂x Im(ψ(x, t)) Re(ψ(x, t))− Im(ψ(x, t))∂x Re(ψ(x, t))

Re2(ψ(x, t)) + Im2(ψ(x, t))
. (D.3)

This approach is simple as it only necessitates the calculation of the real and imaginary
parts of the wavefunction, and their derivatives. The discontinuities of the phase are
then avoided.
However, if one desires to have a continuous expression of the phase, and not only its
derivatives, a more sophisticated method is required to extract S. Two possibilities exist.
We compute the phase using Eq. (D.2) and remove the discontinuities by adding ±2kπ for
each discontinuity point. This can be done by the python code given in the Listing D.1.
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Listing D.1: Python code to remove discontinuities in the phase of a wavefunction
1 import numpy as np
2
3 x = np.linspace (-3,3,1000)
4 psi = np.exp(1j*x**3)
5
6 # Python method to calculate the phase of a complex number
7 # between -pi and pi
8 phase = np.angle(psi)
9

10 # Loop over the phase array
11 for i in range(1,len(phase )):
12 # Difference between two consecutive elements > than pi
13 # -2pi from the rest of the array
14 if phase[i]-phase[i-1]>np.pi:
15 phase[i:] -= 2*np.pi
16 # Difference between two consecutive elements < than -pi
17 # +2pi to the rest of the array
18 if phase[i]-phase[i-1]<-np.pi:
19 phase[i:] +=2*np.pi

The other possibility is to follow the procedure given in Ref. [202] and to construct the
phase on a grid by following a recursive law. The grid is divided into Nx points, spaced
by a space increment ∆x and the phase is calculated at each point xj , j ∈ [0, Nx− 1] by
using the previous value of the phase. As the time does not play any role here, we drop
it from the argument of the phase. The recursive law is given by

S(x+ ∆x) = S(x) + ∆S(x) (D.4)

where
∆S(x) = arctan

(
Im(ψ(x+ ∆x))

Re(ψ(x+ ∆x))

)
− arctan

(
Im(ψ(x))

Re(ψ(x))

)
. (D.5)

Starting from a reference point x0, this leads to

S(xj) = S(x0) +

j−1∑

k=0

∆S(xk). (D.6)

If the phase is calculated on a grid, the gradient can be obtained by a simple finite dif-
ference scheme. Moreover the value of the phase on the reference point does not matter
as the gradient cancels it. There is a subtlety in this method: at the nodes of the wave-
function, the phase is not defined. The method given by Eq. (D) yields to a pahse sift of
π at the level of the nodes, so to a discontinuity of the phase. These discontinuities do
not originate from the multi-valuedness of the phase, but from the fact that the phase is
not defined at the nodes. These discontinuities have not to be removed.

In Fig. A1, we summarize these two methods for calculating the phase of the wavefunc-
tion. In the left panel, we show the phase of the wavefunction ψ(x) = exp

(
ix3
)
calculated

using the arctangent method (dark blue) and the recursive method (blue). The phases
are shown in units of 2π. We observe that the arctangent method exhibits discontinuities
at the nodes of the wavefunction, whereas the recursive method does not. In the right
panel, we present a situation where the wavefunction has several nodes: specifically, the
case of the fifth eigenstate of the harmonic oscillator. The phase calculated using the
recursive method is shown in blue. Here, the phase exhibits discontinuities of 0.5 × 2π
at the nodes of the wavefunction.
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Figure A1: Illustration of the two methods for calculating the phase of the wavefunction.
On the left, the phase of the wavefunction ψ(x) = exp

(
ix3
)
is calculated using the arctangent

method (dark blue) and the recursive method (blue). The phases are shown in units of 2π. It is
observed that the arctangent method exhibits discontinuities at the nodes of the wavefunction,
whereas the recursive method does not. On the right, a case where the wavefunction has several
nodes is shown: the fifth eigenstate of the harmonic oscillator. The phase calculated using the
recursive method is shown in blue. The phase exhibits discontinuities of 0.5 [2π] at the nodes of
the wavefunction.
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APPENDIX E

Derivation of the Airy coefficients

Oh! γ, κ ! ~ω. C’est null-space
— A. Andoche

We sketch here the procedure used in Ref. [122] to decompose the wavefunction

Ψ(x, 0) =
1

(2πζ2)1/4
exp

[
−(x− h)2

4ζ2

]

on the basis of the eigenfunctions of the Hamiltonian (3.31):

χn(x) = Θ(x)
Ai(x− En)

Ai′(−En)
.

Writing Ψ(x, 0) =
∑

n cnχn(x), the problem is reduced to finding an expression of the
coefficients

cn = 〈χn|ψ〉 =
1

(2πζ2)
1
4

∫ ∞

0
dx χ∗n(x) e

− (x−h)2

4ζ2 ,

where the asterisk denotes complex conjugation.
When the width ζ of the Gaussian is small enough with respect to h, the lower bound
of the integral can be replaced by −∞ and the cn have an analytical expression:

cn =
1

(2πζ2)
1
4 Ai′(−En)

∫ +∞

−∞
dx Ai(x− En)e

− (x−h)2

4ζ2

=
2ζ

(2πζ2)
1
4 Ai′(−En)

∫ +∞

−∞
du Ai(2ζu+ h− En)e−u

2

=
(8πζ2)

1
4

Ai′(−En)
Ai(h− En + ζ4) exp

{
ζ2

(
h− En +

2

3
ζ4

)}
,

which is just the expression of Eq. (3.35). Note that we used the following identity:
∫ +∞

−∞
du e−u

2
Ai(2au+ b) =

√
πea

2b+ 2
3
a6

Ai(b+ a4).
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APPENDIX F

Classical work-optimal protocol

C’est zéro.
— J. Polonyi

In order to illustrate the quantum-classical analogy, and to show the importance of adding
the functional G[κ̄′] to the total functional to be minimized, we propose to study a sim-
ple and well-documented case: the classical work-optimal protocol developed in [166].
A Brownian particle is trapped in a harmonic potential whose stiffness κ̄(t) can vary in
time. The particle is immersed in a fluid of damping coefficient γ and thermal diffusion
coefficient D = kBT/γ, where T is the temperature of the fluid. In Ref. [166], the
objective was to find the optimal manner to vary κ̄(t) so that both the duration of the
transition and the work done on the system are minimal. The position of the Brow-
nian particle follows a Gaussian probability distribution of variance s(t), which obeys
Eq. (4.11). Changing the independent variable from the time t to the variance s, we can
write the time duration ∆t as in Eq. (4.26) and the work done on the system as [166,
179, 244]: W = 1

2

∫ tf
ti

dt ˙̄κ(t)〈x2〉 = −1
2

∫ sf
si

ds κ̄(s) + 1
2(sf κ̄f − siκ̄i). Hence, the functional

to be minimized is

J [κ̄] =

∫ sf

si

ds
γ

Dγ − sκ̄(s)
− λ

∫ sf

si

ds κ̄(s), (F.1)

with λ a Lagrange multiplier. It is straightforward to find the solution of the associated
Euler-Lagrange equation [166]:

sκ̄(s) = Dγ ∓
√
γs

λ
, (F.2)

where the upper and lower signs correspond to the cases of the compression or expansion,
respectively. Note that, as the Euler-Lagrange equation is purely algebraic, the boundary
conditions cannot be fixed at will. Hence, in the classical case, the solution (F.2) must
be supplemented by “jumps" at the initial and final times [166].
The associated quantum protocol is obtained using Eq. (4.27), yielding:

κ(s) = mD2/s2, (F.3)

which is independent of λ. Surprisingly, this solution coincides with the equilibrium
solution (4.13), which means that it represents an adiabatic process for the quantum
oscillator, albeit with a finite duration that can be obtained from Eq. (4.26): ∆t =√
γλ(
√
si ±
√
sf). The variance can be computed solving Eq. (4.11), yielding

s(t) = (
√
si ± t/

√
γλ)2, (F.4)
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and the classical and quantum protocols are, respectively,

κ̄(t) =
Dγ +

√
γsi/λ± t/λ

(
√
si ± t/

√
γλ)2

; κ(t) =
mD2

(
√
si ± t/

√
γλ)4

. (F.5)

Note that, if the time is expressed in units of total time duration ∆t, then κ(t/∆t) is
indeed independent of the Lagrange multiplier λ.
As mentioned above, the quantum solution is at equilibrium at each instant. However,
since the classical equilibrium conditions do not hold, si,f κ̄i,f 6= Dγ, the time derivative
of the variance at the initial and final times is not zero. From the point of view of the
classical system this is not a problem, because the overdamped dynamics displays no
inertia, so that one can change the stiffness abruptly to bring it to the equilibrium value
compatible with sf [166]. But for the (inertial) Schrödinger equation, if ṡ 6= 0 at t = tf ,
then the system will continue to evolve in time after tf .
It is therefore necessary to ensure that Dγ − sκ̄ = 0, both at t = ti and t = tf . In order
to do that, the Euler-Lagrangian equation should be a second-order differential equation,
instead of an algebraic one as was the case for the functional of Eq. (F.1). This is the
reason why one needs to add a second functional of the form G[κ̄′] =

∫ sf
si

ds |κ̄′(s)|2,
associated with the Lagrange multiplier µ, which leads to the following Euler-Lagrange
equations

2µ κ̄′′(s) =
γs

[Dγ − sκ̄(s)]2
− λ. (F.6)

This being a second-order differential equation, the boundary conditions at ti and tf can
be imposed consistently with the requirement that: si,f κ̄i,f = Dγ.
The various results, both for the analytical solution (F.2)-(F.5) (with jumps) and the
smooth numerical solution of Eq. (F.6), are presented in Fig. A1 for the variance s(t)
(top panels), the classical protocols κ̄(t) (middle panels), and the quantum protocols κ(t)
(bottom panels). In the left panels, we take µ = 0 (no smoothing) and vary λ from 0.1
to 10, while the right panels keep λ = 1 fixed, while µ varies from 0.01 to 0.1. It is clear
(top left and bottom left panels) that the variance s(t) and the quantum protocol κ(t)
do not depend on λ, as suggested by Eqs. (F.3) and (F.5). Instead, the classical protocol
depends on λ, in accordance with Eq. (F.2). It is also evident that the classical protocol
displays discontinuities at the initial and final times (which disappear in the adiabatic
limit λ→∞), while the quantum protocol does not.
In the protocols with µ > 0 (right panels of Fig. A1), the variance varies smoothly at the
initial and final times, as expected, and the classical protocols display no discontinuities at
the boundaries. Hence, the equilibrium conditions are fulfilled and the system’s variance
will remain at its final value at the end of the transition. Finally, we note that the
quantum protocol develops large spikes near ti and tf for small values of µ. Hence,
although it must converge to the non-smoothed one for µ → 0, it appears to do so in a
singular way, displaying large positive and negative spikes at the boundaries.
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Figure A1: Classical work-optimal protocols. The left panels represent, from top to bottom,
the time evolution of the variance (a), the classical protocol (c), and the quantum protocol (e), for
the case µ = 0, which displays jumps at the initial and final times (the initial and final conditions
are represented by red dots). The different curves are obtained with λ = 0.1 (orange solid lines),
1.00 (grey dashed lines) and 10.00 (black dash-dotted lines). Note that the variance (a) and the
quantum protocol (e) do not depend on λ. The right panels represent, from top to bottom, the
time evolution of the variance (b), the classical protocol (d), and the quantum protocol (f), for
fixed λ = 1, and finite values of µ: µ = 0.10 (orange solid lines), 0.05 (grey solid lines) and 0.01
(black solid lines). Note that these finite-µ protocols are continuous and smooth at the initial
and final times. For comparison, the dashed grey line represents the classical (discontinuous)
protocol with µ = 0.
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APPENDIX G

Stochastic leapfrog algorithm

Ah non, hein!
— A. Bocci

We use a stochastic version of the leapfrog algorithm to solve the Langevin equation
(5.87, 5.88). No demonstration for the forms of the different appearing quantities is
given, because it would necessitate a whole report. We just give the procedure that
has to be implemented to solve the equations. The time increment is denoted ∆t and
kB is the Boltzmann constant and T the temperature of the brownian system. All the
parameters are those presented in section 5.2. The method is the following:

1· We choose the initial values of q and p. Then, considering step n, we compute
Xn−1(∆t/2) by taking a sample from a normal distribution N (0, σ2

1), where the
width is given by

σ2
1 =

kBT

mγ2
C

(
γ∆t

2

)
(G.1)

with the function C defined as

C

(
γ∆t

2

)
= γ∆t− 3 + 4e−γ∆t/2 − e−γ∆t. (G.2)

2· We compute the force F from the value of the harmonic potential V using

F (x) = −∂V (x)

∂x
. (G.3)

3· We then compute Yv by taking a sample from a normal distributionN (0, σ2
2), where

the width is defined according to

σ2
2 =

kBT

m
B

(
γ∆t

2

)
C

(
γ∆t

2

)
(G.4)

with the function B defined by

B

(
γ∆

2

)
= γ∆t

(
eγ∆t − 1

)
− 4
(

eγ∆t/2 − 1
)2
. (G.5)
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Then, we can compute

Vn

(
−γ∆t

2

)
= γXn−1/2

(
γ∆t

2

)D
(
γ∆t

2

)

C
(
γ∆t

2

) + Yv. (G.6)

We repeat the same procedure for Vn(∆t/2), using this time a normal distribution
N (0, ρ2

1), where

ρ2
1 = −kBT

m

(
e−γ∆t − 1

)
. (G.7)

After that, we compute the velocity at step n+ 1/2 using

v(tn+1/2) =

v(tn−1/2)e−γ∆t +
F (x(tn))

mγ

(
1− e−γ∆t

)
+ Vn

(
∆t

2

)
− e−γ∆tVn

(
∆t

2

)
.

(G.8)

4· We take a sample from a normal distribution N (0, ρ2
2) to obtain Yx, where the

width of the gaussian is

ρ2
2 = −kBT

mγ2
B

(
−γ∆t

2

)(
e−γ∆t − 1

)
(G.9)

and then we compute

Xn+1/2

(
−∆t

2

)
=

1

γ
Vn

(
∆t

2

)D
(
−γ∆t

2

)

e−γ∆t − 1
+ Yx. (G.10)

Finally, sample Xn+1/2(∆t/2) using the normal distribution N (0, σ2
1) and compute

x(tn+1) =

x(tn) +
1

γ
v(tn+1/2)

(
eγ∆t/2 − eγ∆t/2

)
+Xn+1/2

(
∆t

2

)
−Xn+1/2

(−∆t

2

)
.

(G.11)
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Madelung’s strategy

La passion et les rêves sont comme le temps, rien
ne peut les arrêter, et il en sera ainsi tant qu’il y
aura des hommes prêts à donner un sens au mot

"Liberté"
— Gol. D. Roger

From Madelung’s equations to the Schrödinger equa-
tion

Change of variable

In this appendix, we will show how to obtain the Schrödinger equation from the Madelung
equations,following the method of [229]. This will illustrate the method that can be used
to obtain the Schrödinger-Langevin equation from the modified continuity equation. We
recall that the continuity equation gives the temporal evolution of the density ρ(x, t) in
terms of the spacial derivative of velocity field v(x, t), so that

∂tρ(x, t) + ∂x(ρ(x, t)v(x, t)) = 0. (H.1)

Let us suppose that the density and the velocity field can be written in terms of two
complex functions α(x, t) and β(x, t), so that

ρ(x, t) = α(x, t)β(x, t) and v(x, t) = C∂x log
α(x, t)

β(x, t)
(H.2)

where C is a complex constant. It comes that ρv can be written as ρv = C(β∂xα−α∂xβ).
We can then rewrite the continuity equation as

α
[
∂tβ − C∂2

xβ
]

+ β
[
∂tα− C∂2

xα
]

= 0 (H.3)

This equation can be rewritten as a fraction equation

∂tα+ C∂2
xα

∂tβ − C∂2
xβ

= −α
β
. (H.4)

The previous equation is equivalent to equating the numerator and denumerator of both
left and righ hand sides, to within a given function f so that

{
∂tα+ C∂2

xα+ αf(x, t) = 0,

∂tβ − C∂2
xβ − βf(x, t) = 0.

(H.5)
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To go further, we need to express the function f and the constant C.

Schrödinger equation

To express the function f and the constant C, we will first demonstrate a result of
Quantum Mechanics that will be useful to us. Consider an observable φ(x, t) of the
system. Its expectation value is given by φ̄ =

∫
dx φ(x, t)ρ(x, t). We will prove that the

expectation value of the derivative of φ is the derivative of the expectation value of φ, so
that dφ

dt = d
dt φ̄.

Indeed, we have

dφ̄

dt
=

d

dt

∫
dx φρ (H.6)

=

∫
dx [ρ∂tφ+ φ∂tρ] (H.7)

=

∫
dx

[
ρ

(
dφ

dt
− v∂xφ

)
− φ∂x(ρv)

]
(H.8)

=

∫
dx

[
ρ

dφ

dt
− ∂x(ρvφ)

]
(H.9)

=

∫
dx ρ

dφ

dt
(H.10)

=
dφ

dt
. (H.11)

Then, if one take a look at the classical Newton equation, one see that mdv̄
dt = −∂xV ,

with V the potential energy and m the mass of the particle.

Using the previous relation, one can write the derivative of the mean velocity as

dv̄

dt
=

dv

dt
(H.12)

=
d

dt

∫
dx vρ (H.13)

=
d

dt

∫
dx (β∂xα− α∂xβ) (H.14)

= C

∫
dx (∂tβ∂xα+ β∂x∂tα− ∂tα∂xβ − α∂x∂tβ) (H.15)

= 2C

∫
dx (∂tβ∂xα− ∂tα∂xβ) (H.16)

= 2C

∫
dx
(
[C∂2xβ + fβ]∂xα+ [C∂2xα+ fα]∂xβ

)
(H.17)

= 2C

∫
dx
(
C[∂2xβ∂xα+ ∂2xα∂xβ] + f [β∂xα+ α∂xβ]

)
(H.18)

= 0 + 2C

∫
dx f∂x(αβ) (H.19)

= −2C

∫
dx αβ∂xf (H.20)

= −2C

∫
dx ρ∂xf (H.21)

= −2C∂xf. (H.22)

194



Madelung’s strategy

and this allows to write that −2mC∂xf = −∂xV , one can finally identify the function f
to the potential energy V , so that

f(x, t) =
V (x, t)

2mC
. (H.23)

We now need to express the constant C. In fact, it is straighforward to see that if α is
taken to be the wavefunction ψ and β its conugate ψ∗, then taking 2mC = ~/i allows to
write the Schrödinger equation. Indeed, under the assumption that α = ψ and β = ψ∗,
one can rewrite (H.5) as





∂tψ +
~

2im
∂2
xψ +

i

~
V ψ = 0,

∂tψ
∗ − ~

2im
∂2
xψ
∗ − i

~
V ψ∗ = 0.

(H.24)

Mutliplying the firest line by i~ and the second by i~, one finally gets




i~∂tψ = − ~2

2m
∂2
xψ + V ψ,

−i~∂tψ∗ = − ~2

2m
∂2
xψ
∗ + V ψ∗,

(H.25)

which are the Schrödinger equations for the wavefunction ψ and its conjugate ψ∗.

Hamilton-Jacobi equation

From now, it seems that we did not use the Hamilton-Jacobi equation. However, it is
becasue this equation is a direct consequence of the change of variable we made, and we
can recover it using (H.5). We recall that v = C∂x log α

β , and if we note S = C log α
β , we

can write that v = ∂xS =, so S is proportional to the phase of the wavefunction. We are
looking for the time evoltion of S. One can write that

∂tS = ∂t

(
C log

α

β

)
(H.26)

= C

(
∂tα

α
− ∂tβ

β

)
(H.27)

= −C
(
C∂2

xα+ fα

α
+
C∂2

xβ + fβ

β

)
(H.28)

= −C
(

2f + C

[
∂2
xα

α
+
∂2
xβ

β

])
. (H.29)

We know that the Hamilton-Jacobi equation involves the quantum potential VQ =

− ~2

2m
∂2
x
√
ρ√
ρ , the square of the derivative of the face 1

2m(∂xS)2, and the potential energy
V . The term 2Cf directly gives the potential energy, then the other term should give
the quantum potential and the square of the derivative of the phase. Let us write the
quantum potential in term of α and β. One gets

VQ = − ~2

2m

∂2
x
√
ρ

√
ρ

(H.30)

= − ~2

2m

∂2
x

√
αβ√
αβ

(H.31)

(H.32)
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and let us compute the first and seconde derivatives of
√
αβ. One finds

∂x
√
αβ =

1

2

(√
β

α
∂xα+

√
α

β
α∂xβ

)
(H.33)

(H.34)

and

∂2
x

√
αβ =

1

2

√
β

α
∂2
xα+

1

2

√
α

β
∂2
xβ −

1

4

√
β

α2
(∂xα)2 − 1

4

√
α

β2
(∂xβ)2 +

1

2

∂xα∂xβ√
αβ

(H.35)

and then, divinding by
√
αβ, one gets

∂2
x

√
αβ√
αβ

=
1

2

(
∂2
xα

α
+
∂2
xβ

β

)
− 1

4

(
(∂xα)2

α2
+

(∂xβ)2

β2

)
+

1

2

∂xα∂xβ

αβ
. (H.36)

It comes that

∂2
xα

α
+
∂2
xβ

β
= 2

∂2
x

√
αβ√
αβ

+
1

2

(∂xα)2

α2
+

1

2

(∂xβ)2

β2
− ∂xα∂xβ

αβ
. (H.37)

(H.38)

After injecting that in the expression of ∂tS, one gets, after using 2f = V/mC and
C = ~/2im,

∂tS = −V
m
− C2

(
2
∂2
x

√
αβ√
αβ

+
1

2

(∂xα)2

α2
+

1

2

(∂xβ)2

β2
− ∂xα∂xβ

αβ

)
(H.39)

= −V + VQ

m
− C2

2

(
(∂xα)2

α2
+

(∂xβ)2

β2

)
+ C2∂xα∂xβ

αβ
. (H.40)

(H.41)

The final step consists on expressing (∂xS)2 in terms of α and β. One gets

∂xS = C∂t log
α

β
(H.42)

= C

(
∂xα

α
− ∂xβ

β

)
(H.43)

(H.44)

and then

(∂xS)2 = C2

(
(∂xα)2

α2
+

(∂xβ)2

β2
− 2

∂xα∂xβ

αβ

)
(H.45)

= C2

(
(∂xα)2

α2
+

(∂xβ)2

β2

)
− 2C2∂xα∂xβ

αβ
. (H.46)

which corresponds to the last term that appears in the preivous expression of ∂tS. It
comes that

∂tS = −V
m
− VQ

m
− 1

2
(∂xS)2. (H.47)

This is an equation that looks very close to the Hamilton-Jacobi equation. To ensure
that it is the Hamilton-Jacobi equation, we need to make appear the phase S of the
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wavefunction. If we write α = ψ =
√
ρ exp(iS/~) and β = ψ∗ =

√
ρ exp(−iS/~), we can

write that S = C log α
β = 2iCS/~ = S/m, so that

∂tS +
1

2m
(∂xS)2 + V + VQ = 0, (H.48)

and this is exactly the Hamilton-Jacobi equation, Eq. (5.33).

Derivation of Schrödinger-Langevin equation

We will employ the same procedure than in the previous appendix, but we will use the
modified continuity equation, Eq. (5.38) instead of the continuity equation, Eq. (5.30).
We will then obtain a modified Schrödinger equation, the Schrödinger-Langevin equation,
and we will see that the Hamilton-Jacobi equation is also modified. We recall the modified
continuity equation (Fokker–Planck equation) being

∂tρ+
1

m
∂x(ρ∂xS)−D∂2

xρ = 0. (H.49)

We separate ρ and S as in the previous appendix, so that ρ = αβ and S = C log α
β .

Similarly to (H.3), the Fokker-Planck equation can be rewritten as

α
[
∂tβ − (C +D)∂2

xβ
]

+ β
[
∂tα− (C +D)∂2

xα
]
−D∂xα∂xβ = 0. (H.50)

but in this case, one can see that the last term couples α and β, and it is no more
possible to separate this equation into two independent equation, as we did with (H.5).
One should then wonder about a manner to decouple α and β to make it possible to
recover the same type of system of equations. It is known that in the case of Gaussian
distribution, it is possible to write that −D∂2

xρ = γ(log ρ − 〈log ρ〉)ρ with γ = D/σ2
x,

where σx is the variance of the distribution. Then, if one is restricted to the case of
Gaussian distribution, it is possible to separate α and β by using this expression. One
find that the Fokker-Planck equation can be rewritten as

∂tρ+
1

m
∂x(ρ∂xS) + γ(log(ρ)− 〈log ρ〉)ρ = 0 (H.51)

and this time (H.3) becomes

α
(
∂tβ − C∂2

xβ + γβ[log β − 〈log β〉]
)
+β
(
∂tα− C∂2

xα+ γα[logα− 〈logα〉]
)

= 0 (H.52)

leading to the system of decoupled equations
{
∂tα+ C∂2

xα+ γα[logα− 〈logα〉] + fα = 0,

∂tβ − C∂2
xβ + γβ[log β − 〈log β〉]− fβ = 0.

(H.53)

Using the same values for the different quantities as in the previous appendix, one can
write that f = V/mC, and 2mC = ~/i, so that the new Schrödinger equations become





i~∂tψ = − ~2

2m
∂2
xψ + V ψ − iγ~[logψ − 〈logψ〉]ψ,

−i~∂tψ∗ = − ~2

2m
∂2
xψ
∗ + V ψ∗ + iγ~[logψ∗ − 〈logψ∗〉]ψ∗,

(H.54)

they are also called Schrödinger-Langevin equations. The Hamilton-Jacobi equation can
be obtained by equaling the real parts of the left and right hand sides, so that

∂tS +
1

2m
(∂xS)2 + V + VQ + γ[S − 〈S〉] = 0. (H.55)
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APPENDIX I

Energetics for overdamped dynamics

C’est homéomorphe à un trivia.
— P. Guichard

In this appendix, we derive the expression for the average work expended due to the time-
dependent change of the stiffness of a harmonic oscillator, as introduced in Sec. 4.3.1.
We consider an overdamped Brownian particle of mass m moving in a viscous medium
with drag coefficient γ.
The particle is trapped in a harmonic potential with time-dependent stiffness κ̄(t). The
overdamped Langevin equation for the particle’s position is given by

γẋ(t) = −∂xV (x(t), t) + ξ(t), (I.1)

where ξ(t) is a white noise term representing thermal fluctuations.
We are interested in the stochastic motion of the particle from the energetic viewpoint;
that is, we consider the stochastic energetics of the particle.
Let us begin with a time-independent potential U(x). The Langevin equation represents
a balance of forces:

− γẋ+ ξ − ∂xU = 0, (I.2)

where the first two terms represent the interaction between the system and the envi-
ronment (friction and random force), and the last term is associated with the system’s
potential energy, its internal energy (in the sense independent of the environement).
If the position changes by dx in a time interval dt, multiplying the previous equation by
−dx, we get

−
[
− γẋ+ ξ

]
dx+ dU = 0. (I.3)

Here, dU = ∂xUdx is the change in the internal energy. The term in brackets represents
the energy exchange between the system and the environment due to friction and ther-
mal fluctuations. As mentioned in Ref [179], the the term ξdx is the multiplication of
two fluctuating quantities and it has to be understood in the sense of the Stratonovich
calculus. Since the potential is time-independent, there is no work done on the system
by changing the potential. We can identify the term in brackets as the heat exchanged
with the environment, leading to the definition of the heat absorbed by the system, δQ,
as

δQ = (−γẋ+ ξ) dx. (I.4)

This leads to dU = δQ, which is a stochastic version of the first law of thermodynamics
in the case where no work is done on the system. The heat is the energy lost by the
system to the environment.
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Now, let us consider the case of a time-dependent potential U = U(x, t). The Langevin
equation remains the same, but the change in internal energy now includes a time-
dependent term. According to the chain rule, we can write

dU = ∂xUdx+ ∂tUdt. (I.5)

Using the definition of heat from (I.4), the Eq. (I.2) is modified as

dU = δQ+ ∂tUdt. (I.6)

The last term corresponds to the energy given to the system by changing the potential
and can be identified as the work done on the system:

δW = ∂tUdt. (I.7)

Thus, the stochastic form of the first law of thermodynamics becomes dU = δQ + δW .
The heat δQ, given by (I.4), is the energy exchanged with the environment, and the work
δW , given by (I.7), is the energy supplied to (or extracted from) the system due to the
time-dependent potential.
Integrating over time, we obtain the total work done on the system along one trajectory
as

W =

∫
δW =

∫ tf

ti

dt ∂tU =
1

2

∫ tf

ti

dt κ̇(t)x2(t). (I.8)

The macroscopic average of the expended work over the protocol is obtained by averaging
(I.8) over all possible trajectories, that is, over all realizations of the noise. We get

∆W =
1

2

∫ tf

ti

dt κ̇(t)
〈
x2(t)

〉
. (I.9)

As mentioned in Sec. 4.3.1, the probability distribution of x is Gaussian with variance〈
x2(t)

〉
= s(t). The average expended work is finally given by

∆W =
1

2

∫ tf

ti

dt κ̇(t)s(t), (I.10)

which corresponds to the expression given in Eq. (4.16).
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APPENDIX J

Optical trapping of microscopic particles

Christ on a bike.
— Herr Keiser Hartmann

This appendix provides details on how a (classical) overdamped Brownian particle can
be trapped in a harmonic potential. This illustrates how time-dependent stiffness can
be generated and how the optimal protocols derived in Chap. 4 can be implemented.
Specifically, we will describe how an optical trap is created using optical forces to confine
a particle in a harmonic potential.

Concept of the Experiment

The experiments are conducted at the ISIS institute (Institut de Science et d’Ingénierie
Supramoléculaires) in Strasbourg. A micro-sphere, referred to as the particle, with a
radius of approximately R ≈ 500 nm, is optically trapped using a laser with a wavelength
of λ ≈ 785 nm. The optical trap is approximated as harmonic (details on how this is
achieved will follow). The particle is immersed in water at room temperature, with a
drag coefficient of γ ≈ 0.4 µm2/s.
The position of the microsphere, x(t), along the optical axis of the trap is recorded at each
time using a second laser. For more details, see Ref. [245]. We will show that the trap
stiffness, κ̄(t), is proportional to the intensity of the trapping laser, I(t). By modulating
the laser intensity over time, we can create a time-dependent stiffness protocol, κ̄(t). By
performing a series of N identical protocols on the trapped microsphere, it is possible to
build a statistical ensemble of trajectories that yields a probability density function of
the particle’s position, x.

Harmonic potential from optical force

Lorentz Force

The sphere used in the experiment is a dielectric sphere. While its total charge is zero,
an external electric field E, such as the one generated by the laser, displaces the electric
charges from their equilibrium positions, causing the sphere to acquire a polarization
density P . This polarization corresponds to the dipole density induced by the laser, as
depicted in Fig. A1.
If the electric field varies with time, the polarization density gives rise to a current
density j, which is related to the polarization by ∂tP = j. From the continuity equation
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Figure A1: Polarization of a dielectric sphere under an external electric field E. The left
panel shows the equilibrium state with no external field. The right panel illustrates the situation
with an external field applied, resulting in the displacement of charges and the emergence of a
polarization vector P .

∂tρ + ∇ · j = 0, we find that the charge density ρ is given by the divergence of the
polarization density

ρ = −∇ · P . (J.1)

The sphere is thus sensitive to the electromagnetic fields of the laser through its polar-
ization density and the associated current density. The force exerted on the sphere is the
Lorentz force

F (r, t) =

∫

V
d3r′

[
ρ(r′, t)E(r′, t) + j(r′, t)×B(r′, t)

]
, (J.2)

where r is the position of the sphere’s center, and the integration is performed over the
volume of the sphere. For simplicity, we will omit the arguments of the functions. Using
the expressions for P and j, we can express the force as

F =

∫

V
d3r [(P · ∇)E + ∂tP ×B]−

∫

∂V
(dS · P )E. (J.3)

Assuming the point dipole approximation, we can write P (r′, t) = p(t)δ(r′ − r), where
p is the dipole moment of the sphere. If the sphere’s radius is small compared to the
laser wavelength, the surface term can be neglected, as no significant current density is
present at the surface. After some vector calculus and using Maxwell’s equations, the
force simplifies to

F = (∇E)p + ∂t(p×B), (J.4)

where the µ-th component of the first term is given by [(∇E)p]µ = (∂µEν)pν , using
Einstein’s summation convention. The second term is a time derivative and cancels out
when averaging over time. Denoting the time-averaged force as 〈F 〉 and introducing the
complex notation for the electric field E = E0e

i(k·x−ωt) and the dipole p = pei(k·r−ωt),
where k is the wavevector and ω is the frequency, we obtain

〈F 〉 = 〈(∇E)p〉 =
1

2
Re
(
p∗ ·∇E

)
. (J.5)

In the linear response framework, the dipole moment is proportional to the electric field,
p = αE, where α = αR + iαI is a complex number representing the polarizability of the
sphere. After some calculations, we find

〈F 〉 =
αR

4
∇|E|2 +N1αI 〈S〉+N2αI∇× 〈L〉 , (J.6)
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where N1 and N2 are constants involving the wavevector k = |k|. The first term is a
conservative force, as it derives from an optical potential

Uopt = −αR

4
|E|2 = − αR

2cε0
I, (J.7)

where I = cε0|E|2
2 is the intensity of the electric field, and c and ε0 are the speed of light

and vacuum permittivity, respectively. The optical force exerted on the sphere is

Fopt = −∇Uopt =
αR

4
∇|E|2 =

αR

2cε0
∇I. (J.8)

Its magnitude depends on both the intensity of the electric field and the real part of the
polarizability αR. The second and third terms introduce the Poynting vector S = E×B
and the average spin density of the field 〈L〉 ∝ Im(E∗ ·B). These two forces are non-
conservative, and the last one can usually be neglected compared to the others. The
force generated by the Poynting vector is commonly referred to as *radiation pressure*.
For a transparent sphere, it can be shown (see Ref. [246]) that the imaginary part of
the polarizability is proportional to the square of its real part, αI ∝ α2

R, and αR ∝ R3.
This implies that for larger particles (large R), the contribution of radiation pressure to
the Lorentz force increases and may dominate over the conservative force. To isolate the
contribution of the conservative force, the size of the particle and the intensity of the
laser must be optimized. In practice, the laser intensity is adjusted to ensure that the
radiation pressure contribution remains negligible.

Optical Trap

When the sphere is trapped at the focus of the laser, it is common to consider a focused
beam, typically a Gaussian beam.
This is typically achieved by focusing an incident Gaussian beam of intensity Iinc using
an optical element, as shown in Fig. A2. The incident beam is Gaussian in the transverse
directions, resembling a cylinder of constant radius before focusing. We assume that the
wavevector along the optical axis z, denoted kz, is much larger than those in the transverse
directions: kz � kx and kz � ky. Additionally, we assume that the beam is linearly
polarized along the x-axis, meaning the electric field propagates along the optical axis
(in the z direction). After focusing, the electric field remains Gaussian in the transverse
directions, but the beam radius, denoted ζ(z), varies with z. Using r2 = x2 + y2, and
taking z = 0 as the point where the beam radius is minimized, the intensity of the field
can be written as:

I(r, z) = I0

[
ζ0

ζ(z)

]2

exp

(
−2

r2

ζ2(z)

)
, (J.9)

which is the well-known equation for a paraxial Gaussian beam (see Ref. [247] for further
details). Here, I0 is the intensity at z = 0 and r = 0, it is proportional to the intensity
Iinc of the incident beam. The radius of the beam is given by:

ζ(z) = ζ0

√
1 +

(
z

z0

)2

, (J.10)

where ζ0 is the beam radius at z = 0, and z0 = kζ2
0/2 is the Rayleigh range [248]. The

properties of the Gaussian beam are summarized in Fig. A2.
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Figure A2: Schematic of a focused Gaussian beam. The incident electric field E is polarized
along the x-axis and propagates along the z-axis. It is focussed by an optical element, resulting
in a Gaussian beam with a radius ζ(z) that depends on the position z. At z = 0, the beam has
a radius ζ0 that is minimal. For z small as compared the Rayleigh range s0, the beam can be
approximated as harmonic.

By Taylor expanding around z = 0, we get ζ(z) ≈ ζ0(1 + z2/2z2
0), and the intensity of

the field becomes:

I(r, z) = I0

(
1− 2r2

ζ2
0

− z2

z2
0

)
. (J.11)

From this expression, we can compute the optical potential generated by the laser using
Eq. (J.7), yielding:

Uopt(r, z) = −U0

(
1− 2r2

ζ2
0

− z2

z2
0

)
, (J.12)

where U0 = αRI0
2cε0

. The optical potential can be approximated as harmonic in both the
transverse directions and along the optical axis. The stiffness of the harmonic trap along
the optical axis is given by:

κz =
U0

2z2
0

=
αRI0

cε0z2
0

. (J.13)

This is the stiffness considered in Chap. 4. To design protocols based on stiffness modu-
lation, the laser intensity must be varied over time. However, this must be done carefully
to ensure that the optical force remains the dominant contribution to the Lorentz force.
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APPENDIX K

Iterative methods and Thomas algorithm

What else?
— G. T. Clooney

Context

This manuscript aims to elucidate the numerical methodology employed for the resolution
of the ensuing differential equation:

2ε
d2κ(s)

ds2
=

s

[1− sκ(s)]2
− 2λκ(s). (K.1)

The parameters of significance are designated as ε and λ, wherein the former governs the
variation of κ, while the latter regulates its magnitude. The function κ is intrinsically
contingent upon the independent variable s. Given the second-order nature of Equation
(K.1), the imposition of boundary conditions becomes obligatory: we opt to enforce
κ0 = 1

s0
and κf = 1

sf
. The inaugural stage of the numerical resolution process entails the

specification of the discrete computational lattice: we postulate m discrete values for s,
denoted by the integers i = 1, ...,m, uniformly segregated at intervals of ∆s, resulting in
si = s0 + i∆s. The corresponding values of κ at these discrete junctures are symbolically
represented as κi = κ(si).
The numerical solution of (K.1) is achieved through an iterative procedure. In the context
of the n-th iterative step, the introduction of the parameter α > 0 is indispensable to
ensure the convergence of the iterative process:

− ακn+1
i + ε

(
d2κ

ds2

)n+1

i

=
si

[1− siκni ]2
− 2λκni − ακni . (K.2)

It is noteworthy that the outcome remains unaffected by the presence of α in (K.2), as it
nullifies upon the convergence of κn+1

i = κni . The second derivative is then approximated
with the standard finite-difference formula

(
d2κ

ds2

)n+1

i

≈ κn+1
i+1 − 2κn+1

i + κn+1
i−1

∆s2
. (K.3)

Injecting (K.3) in (K.2) and rearranging the terms, one obtains tridiagonal systems of
equations

− κn+1
i−1 +

(
2 +

α∆s2

2ε

)
κn+1
i − κn+1

i+1 = −∆s2

2ε

(
si

[1− siκni ]2
− (2λ+ α)κni

)
. (K.4)
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Thomas algorithm

A tridiagonal system for n unknowns may be written as

aixi−1 + bixi + cixi+1 = di (K.5)

where a1 = cm = 0, or in matrix form Mx = d,




b1 c1 0 · · · 0

a2 b2 c2 · · · 0

0 a3 b3
. . .

...
...

. . . . . . . . . cm−1

0 · · · 0 am bm







x1

x2

x3

...
xm




=




d1

d2

d3

...
dm




(K.6)

where M is a tridiagonal Toeplitz matrix. This system can be solved by using Gaussian
elimination, or Thomas algorithm. A first sweep eliminates the ai’s, and then an (ab-
breviated) backward substitution produces the solution: it is a two-steps procedure. In
more details, the first can be called forward elimination: we transform the given tridi-
agonal matrix into an upper triangular matrix by eliminating the off-diagonal elements
below the main diagonal. This step involves applying a sequence of row operations to the
matrix. The second can be called backward substitution: the tridiagonal matrix becomes
upper triangular. The next step is to perform backward substitution to solve for the
unknown vector. This involves substituting the computed values back into the system of
equations.
Thomas’ algorithm is not stable in general, but is so in several special cases, such as when
the matrix is diagonally dominant (either by rows or columns) or symmetric positive
definite.

Forward elimination The forward step consists on creating new coefficients, the
primed ones, from the coefficients of the tridiagonal matrix, so that it creates a new
matrix where the ai’s coefficients are eliminated. Concretely, we introduce

c′i =





ci

bi
, i = 1,

ci

bi − aic′i−1

, i = 2, 3, . . . ,m− 1

(K.7)

and

d′i =





di

bi
, i = 1,

di − aid′i−1

bi − aic′i−1

, i = 2, 3, . . . ,m.

(K.8)

Backward substitution The solution is then obtained by back substitution:

xi =

{
d′i, i = m,

d′i − c′ixi+1, i = m− 1,m− 2, . . . , 1.
(K.9)
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Code

For the case of the equation (K.4), it is clear that ai, bi and ci are independent of the
iterative step n while di dependent on it, and that

ai =

{
0 i = 1

−1, i = 2, . . . ,m
, ci =

{
0 i = m

−1, i = 1, . . . ,m− 1
(K.10)

and, for every i between 1 and m,

bi = 2 +
α∆s2

2ε
, and dni = −∆s2

2ε

(
si

[1− siκni ]2
− (2λ+ α)κni

)
. (K.11)

With all these informations, it is possible to write a script that solves the system.
The following code is a Python implementation of the Thomas algorithm for the reso-
lution of the tridiagonal system of equations (K.4). The code is written in a way that
it can be easily adapted to other tridiagonal systems of equations. The code is given in
Listing K.1.

Listing K.1: Iterative methods and Thomas algorithm
1 import matplotlib.pyplot as plt
2 import numpy as np
3 import matplotlib as mpl
4 from scipy.integrate import simpson
5
6 """ Define the plotting parameters """
7 mpl.rcParams.update ({’axes.grid’ : True ,
8 ’grid.color’ : ’black’,
9 ’grid.linestyle ’ : ’-.’ ,

10 ’grid.linewidth ’ : 0.3 ,
11 ’text.usetex ’ : True ,
12 ’figure.figsize ’ : [14,10],
13 ’figure.dpi’ : 100 ,
14 ’font.size’ : 28 ,
15 ’lines.linewidth ’ : 4 ,
16 ’lines.markersize ’: 2
17 })
18
19
20 """ Define the parameters """
21 # Initial value of s
22 s0 = 1
23 # Final value of s
24 sf = 2
25 # Initial value of k
26 k0 = 1/s0
27 # Final value of k
28 kf = 1/sf
29
30 # Array of s values
31 s = np.linspace(s0, sf , 1000)
32 # Step size
33 ds = s[1] - s[0]
34 # Lagrange multiplier: amplitude
35 lam = 0.81
36 # Lagrange multiplier: variation
37 eps = -1e-5
38 # Assure convergence of the iterative scheme
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39 alp = -10
40 # ds^2 / (2* epsilon)
41 dseps = ds**2 / (2* eps)
42
43 """ Define the tridiagonal matrix elements """
44 # Lower diagonal
45 a = -1
46 # Diagonal
47 b = 2 + alp * dseps
48 # Upper diagonal
49 c = -1
50 # Initial guess for k(s)
51 k = 1/s + 1/(lam*s)**0.5
52 # Next values for k(s)
53 knew = np.copy(k)
54
55
56 # Right hand side of the linear system
57 d = -dseps * (s/(1-s*k + 1e -10)**2 - 2*lam*k - alp*k)
58
59 # New coefficient c’ of the Thomas algorithm
60 cp = np.zeros_like(s)
61 # New coefficient d’ of the Thomas algorithm
62 dp = np.zeros_like(s)
63
64 # Iteration counter
65 n = 0
66 # Maximum number of iterations
67 nmax = 10000
68
69 """ Begin iterations: Thomas algorithm """
70 while True:
71 # Initial condition for the Thomas algorithm
72 cp[0] = 0
73 # Boundary condition k0
74 dp[0] = k0
75
76 # Forward sweep of the Thomas algorithm
77 for i in range(1,len(s)):
78 # c’ = c / (b - a*c)
79 cp[i] = c/(b - a*cp[i-1])
80 # d’ = (d - a*d’) / (b - a*c)
81 dp[i] = (d[i] - a*dp[i -1])/(b - a*cp[i-1])
82
83 # Boundary condition kf
84 knew[-1] = kf
85 # Backward sweep of the Thomas algorithm
86 for i in range(len(s)-2,-1,-1):
87 knew[i] = dp[i] - cp[i]*knew[i+1]
88
89 # Error of the iteration
90 error = simpson ((k-knew )**2, s)
91 # Update k(s)
92 k = np.copy(knew)
93 # Update the right hand side of the linear system
94 d = -dseps * (s/(1-s*k + 1e -10)**2 - 2*lam*k - alp*k)
95 # Update the iteration counter
96 n += 1
97
98 print("Iteration: %i \t Error: %1.5f" %(n, error ))
99 # Convergence criterion
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100 if error < 1e-6 :
101 # Break the loop if the error is small enough
102 break
103 # Break the loop if the maximum number of iterations is reached
104 if n > nmax:
105 # Print a warning message
106 print("Not converging")
107 break
108
109 """ Plot the results """
110 plt.plot(s, k, label=’k(s)’)
111 plt.plot(s, 1/s + 1/( lam*s)**0.5 , ls=’--’, label=’k(s) analytical ’)
112 plt.legend ()
113 plt.show()
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Introduction

Contexte

La frontière entre les systèmes classiques et quantiques a longtemps été un sujet d’intérêt
pour les physiciens, offrant des perspectives profondes sur la nature fondamentale de la
réalité physique. La mécanique classique, régie par des lois déterministes, comme les lois
de Newton, a connu un grand succès dans la description des phénomènes macroscopiques,
où les objets suivent des trajectoires prévisibles et bien définies.
Cependant, lorsque l’on étudie des systèmes impliquant un grand nombre de particules,
tels que les gaz ou les liquides, l’approche déterministe de la mécanique classique devient
inadéquate en raison du nombre extrêmement élevé de particules impliquées, de l’ordre
du nombre d’Avogadro.
Par conséquent, les scientifiques ont développé de nouvelles approches pour modéliser
ces types de systèmes, où la description n’est plus basée sur le mouvement d’une seule
particule mais plutôt sur le comportement statistique d’un grand nombre de particules.
Cela a conduit au développement de la physique statistique, qui intègre de l’incertitude
dans la description des systèmes physiques. Le système est alors caractérisé par une
distribution de probabilité qui donne les chances de trouver une particule dans un état
particulier. En théorie, avec un ordinateur infiniment puissant, il serait possible de suivre
le mouvement de chaque particule du système et d’obtenir une description déterministe.
En pratique, cela n’est pas faisable, ce qui rend la description probabiliste fournie par la
physique statistique la plus adaptée pour ces systèmes.
Au début de l’université, la physique statistique est généralement enseignée pour des
systèmes à l’équilibre où la distribution de probabilité est stationnaire. Plus tard on ex-
plique aux étudiants que le monde n’est pas toujours à l’équilibre et que la distribution
de probabilité peut changer au cours du temps. Cela introduit la physique statistique
hors d’équilibre, où le but est de décrire le comportement des systèmes qui ne sont pas
à l’équilibre. C’est un domaine de recherche très actif, cherchant à comprendre comment
les systèmes évoluent dans le temps, comment ils atteignent l’équilibre et même comment
contrôler ce processus. Ce domaine est généralement introduit dans le cadre de la phy-
sique stochastique, où l’évolution du système est décrite par un processus stochastique,
incorporant le hasard. Par conséquent, une seule trajectoire ne suffit pas à décrire le
système ; au lieu de cela, il faut considérer une distribution de trajectoires, qui donne la
probabilité de trouver le système dans un état donné à un moment donné.
En parallèle à l’université, un autre cours important est la mécnique quantique, la théorie
décrivant le comportement de la matière à des échelles microscopiques. Dans ce cours, les
étudiants apprennent que la description des particules s’écarte du concept de trajectoires,
car l’état d’une particule est entièrement décrit par un objet appelé la fonction d’onde.
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Selon Copenhague, la fonction d’onde est un outil mathématique qui donne l’amplitude
de probabilité de trouver une particule dans un état particulier (règle de Born). Ainsi, la
mécanique quantique est intrinsèquement une théorie probabiliste, où le résultat d’une
expérience n’est pas déterministe mais probabiliste.
Bien que le même terme probabilité soit utilisé à la fois en physique statistique et en
mécanique quantique, l’interprétation est différente. En physique statistique, la proba-
bilité provient de notre manque de connaissance sur l’état du système et sert d’outil
pour simplifier la modélisation. En revanche, en mécanique quantique, la probabilité
est intrinsèque à la nature des particules. Cette distinction est fondamentale pour les
deux théories. La théorie quantique ne donne pas l’origine de cette probabilité ; elle est
supposée être une propriété fondamentale des particules.
Malgré ces différences, il existe certaines similitudes dans la manière dont les probabilités
sont traitées dans les deux contextes. Dans les deux cas, la probabilité est la solution d’une
équation différentielle du premier ordre en temps, l’équation de diffusion en physique
statistique et l’équation de Schrödinger en mécanique quantique. Pour une particule
libre elles sont données par

∂P

∂t
= D∇2P et

∂ψ

∂t
= i

~
2m
∇2ψ.

Cependant, une différence clé est qu’en mécanique quantique, le coefficient de diffusion1

est imaginaire, tandis qu’en physique statistique, il est réel. Cette différence est fon-
damentale car, en mécanique quantique, la fonction d’onde représente l’amplitude de
probabilité, et la probabilité réelle est le carré de cette fonction d’onde. Cette distinction
conduit à des effets d’interférence en mécanique quantique, qui sont absents en physique
statistique.
Cependant, il existe des formulations de la mécanique quantique qui offrent des in-
terprétations alternatives des probabilités. Notamment, la mécanique bohmienne, dé-
veloppée par Louis de Broglie puis David Bohm, fournit une description déterministe de
la mécanique quantique, mais au prix de la rendre non-locale dans l’espace. Cette formu-
lation réintroduit le concept de trajectoires pour les particules quantiques, guidées par la
fonction d’onde. Ces trajectoires obéissent à des équations de mouvement déterministes,
avec la probabilité provenant de l’incertitude des conditions initiales du système. Les tra-
jectoires des particules sont distribuées aléatoirement selon la distribution de probabilité
donnée par le carré de la fonction d’onde. Cette perspective ressemble au point de vue
newtonien, où les particules sont décrites par des trajectoires déterministes.
Il existe une autre formulation, similaire dans son concept à la mécanique bohmienne mais
avec un ensemble différent d’axiomes, qui introduit la probabilité d’une autre manière.
Il s’agit de la formulation nelsonienne, où les particules sont toujours décrites par des
trajectoires, mais ces trajectoires sont stochastiques et non plus déterministe. Ici, les
probabilités émergent non seulement en raison du manque de connaissance des conditions
initiales, mais également de l’aléa intrinsèque des trajectoires elles-mêmes. Cependant,
cette formulation ne fournit pas d’origine pour ces fluctuations ; elles sont simplement
supposées exister. Nelson a suggéré que, de manière similaire à la description de Langevin
du mouvement brownien, la théorie nelsonienne pourrait être une théorie effective d’une
théorie sous-jacente plus profonde de la mécanique quantique.
Ces approches ne sont généralement pas les plus utilisées dans la recherche actuelle, car la
formulation standard de la mécanique quantique est très efficace et fournit une excellente

1En réalité, le terme laplacien dans l’équation de Schrödinger est dispersif, car le coefficient de diffusion
est imaginaire. Plutôt que d’amortir l’amplitude de la fonction d’onde, comme le ferait un coefficient
réel, il induit au contraire une dispersion.
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description des phénomènes physiques. Certains auteurs discutent de ces formulations
alternatives d’un point de vue philosophique, mais comme elles sont équivalentes à la
formulation standard, elles sont rarement appliquées en pratique. Cependant, bien que
les questions ontologiques puissent être intéressantes à explorer, nous verrons tout au
long de cette thèse que changer de point de vue peut conduire au développeent d’ outils
puissants pour les contrôle des systèmes quantiques, qui ne pourraient pas naturellement
émerger de la formulation standard. La capacité à dériver de nouvelles techniques pour
contrôler les systèmes quantiques ajouterait de la valeur à ces formulations alternatives
de la mécanique quantique et offrirait des avantages pratiques. Il est clair que cela n’a
pas pour but de remplacer la formulation standard, mais de la compléter et de fournir
de nouvelles perspectives sur les systèmes quantiques.
Cette thèse explorera spécifiquement de tels développements potentiels en appliquant
l’un de ces cadres alternatifs : le formalisme de Nelson.

Objectifs et défis

Le principal objectif de cette thèse est de développer de nouveaux outils pour comprendre,
contrôler et manipuler les systèmes quantiques, à la fois pour la recherche fondamentale et
les applications pratiques. Nous étudierons des méthodes d’optimisation pour les systèmes
classiques et verrons comment elles peuvent être appliquées aux systèmes quantiques
grâce à l’élaboration d’analogue classique - quantique, rendue possible par l’utilisation
du formalisme nelsonien.

Les problématiques abordée dans cette thèse sont les suivantes :

ã Comment est dérivée la mécanique de Nelson et en quoi diffère-t-elle de l’approche
standard ?

ã Comment sa proximité mathématique avec la physique stochastique peut-elle aider
à établir une analogie quantique - classique ?

ã Comment cette analogie permet-elle de transférer des méthodes d’optimisation clas-
siques vers le domaine quantique ?

ã Comment pouvons-nous étendre ces méthodes pour contrôler les systèmes quanti-
ques ouverts ?

Un défi important de ce travail est de créer une connexion mathématique solide entre
les systèmes classiques et quantiques, garantissant que les méthodes développées pour les
systèmes classiques puissent être appliquées de manière efficace aux systèmes quantiques.
Cela nécessite une compréhension approfondie à la fois de la mécanique classique et de
la mécanique quantique, ainsi que des outils mathématiques utilisés pour les décrire.

Nous nous concentrerons principalement sur le contrôle de l’oscillateur harmonique quan-
tique, un système simple et fondamental en mécanique quantique qui peut être facile-
ment manipulé. Les méthodes d’optimisation que nous développerons seront particu-
lièrement utiles pour contrôler de tels systèmes. Nous allons considérer des protocoles
sur les paramètres du potentiel harmonique, en particulier sur la raideur du potentiel,
afin d’atteindre un état cible plus rapidement que les processus adiabatiques tout en
minimisant un certain coût, donné par une fonctioin de coût. L’efficacité de nos métho-
des sera démontrée en les comparant à d’autres techniques de contrôle pour différentes
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fonctions de coût, illustrant la versatilité et l’efficacité de notre approche. À notre con-
naissance, aucune autre technique n’a prouvé son optimalité pour une fonction de coût
générale.
Le contrôle de la dynamique des systèmes quantiques ouvre de nombreuses applications
pratiques. Par exemple, il peut améliorer les performances des ordinateurs quantiques,
augmenter l’efficacité des capteurs quantiques et contribuer au développement de nouvel-
les technologies quantiques. Un tel contrôle est essentiel pour le progrès des technologies
quantiques, et les méthodes introduites dans cette thèse pourraient servir d’outils pré-
cieux pour atteindre cet objectif.

La dernière étape de ce travail sera d’étendre ces méthodes de contrôle aux systèmes
quantiques ouverts, une tâche difficile en raison de leur complexité par rapport aux sy-
stèmes fermés. Ces méthodes pourraient poser les bases de nouvelles façons de contrôler
les systèmes quantiques ouverts, avec des implications pour une variété d’applications, des
machines thermiques au traitement de l’information quantique. À mesure que la technolo-
gie avance et que des dispositifs tels que les puces nano-processeurs et les nano-machines
thermiques se miniaturisent, la compréhension des relations thermodynamiques à l’échelle
microscopique—telles que la dissipation de chaleur et l’efficacité du travail—devient cru-
ciale en raison des effets quantiques. Les machines thermiques quantiques, qui convertis-
sent l’énergie thermique en travail à l’aide de systèmes quantiques tels que des particules
uniques ou des qubits, jouent un rôle important en thermodynamique quantique et en
nanotechnologie. Une question ouverte clé est de savoir si les effets quantiques peuvent
améliorer les performances des machines thermiques, et le développement de nouveaux
protocoles de contrôle pour les systèmes quantiques ouverts pourrait fournir des premières
pistes de réponse à ce problème.

Structure du Manuscrit

Le manuscrit est structuré en deux parties. La partie 1 fournit les fondements théoriques
en présentant les théories de Langevin et de Nelson, qui sont centrales pour comprendre
la dynamique des particules classiques et quantiques, respectivement. Dans la partie 2,
on applique ensuite ces théories à l’étude des systèmes quantiques dans divers contextes,
couvrant à la fois les questions fondamentales et les applications pratiques.

La première partie est organisée en deux chapitres. Dans le chapitre 1, nous introdui-
sons le mouvement brownien classique, en commençant par son contexte historique, de
Brown à Einstein et Langevin. Nous développons ensuite le cadre mathématique né-
cessaire, en nous concentrant sur les équations de Langevin et de Fokker-Planck, qui
décrivent la dynamique stochastique des particules. Une analyse détaillée du régime de
sur-amortissement du mouvement brownien et du rôle des processus de Wiener, qui sont
essentiels dans le calcul stochastique, prépare le terrain pour explorer les analogues quan-
tiques dans la seconde partie.
Dans le chapitre 2, nous nous tournons vers la mécanique quantique et introduisons
le formalisme stochastique de Nelson, qui décrit les particules quantiques en termes de
trajectoires stochastiques. Nous dérivons le formalisme utilisé pour décrire les systèmes
quantiques dans le cadre de Nelson, en soulignant les similarités et les différences avec la
formulation standard de la mécanique quantique. Des exemples de systèmes quantiques
décrits par le formalisme de Nelson sont ensuite étudiés, démontrant ses avantages, en
particulier dans la description des phénomènes de tunneling, où il offre une définition
naturelle du le temps nécessaire pour qu’une particule traverse une barrière de potentielle.
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Une fois ces outils théorique établis, la partie 2, composée de trois chapitres, vise à
appliquer la théorie de Nelson sous deux perspectives : une perspective fondamentale et
une perspective pratique.
Le troisième chapitre explore l’une des hypothèses fondamentales de la mécanique quan-
tique : la règle de Born. Nous montrons que cette hypothèse n’est pas nécessaire dans le
formalisme de Nelson, où la densité de probabilité n’est pas nécessairement liée au carré
du module de la fonction d’onde. Nous introduisons ensuite le concept d’équilibre quan-
tique, un état où la règle de Born est satisfaite, et démontrons que si un système n’est
initialement pas à l’équilibre quantique, il finira par y parvenir au cours du temps. Nous
étudions la convergence d’un système quantique vers l’équilibre quantique et calculons le
temps nécessaire pour atteindre cet état pour trois systèmes quantiques différents, en le
comparant aux temps caractéristiques de chaque système. L’objectif est d’estimer l’ordre
de grandeur du temps de convergence afin de déterminer s’il serait possible d’observer ce
processus expérimentalement, en supposant un état initial hors équilibre.
Suite à cette discussion théorique, le chapitre 4 se concentre sur les applications pra-
tiques. En mettant en avant les similarités mathématiques entre l’équation de Nelson
et l’équation de Langevin en régime sur-amorti, nous démontrons que le formalisme de
Nelson peut être utilisé pour développer une nouvelle technique de contrôle des systèmes
quantiques, en exploitant les analogues classiques du système quantique. Plus précisé-
ment, cette technique permet de faire passer efficacement un système quantique d’un
état stationnaire initial à un état final en moins de temps qu’un processus adiabatique
(quasi-statique). Nous appliquons cette méthode pour contrôler la raideur d’un potentiel
harmonique et dérivons le protocole optimal pour atteindre une raideur cible, en mini-
misant à la fois la durée du processus et une fonction de coût arbitraire, qui est maintenue
générale dans la dérivation. Nous appliquons ensuite la méthode pour deux fonctions de
coût : l’énergie cumulée lors de l’évolution du système, et l’évolution de la phase dynami-
que de la fonction d’onde au cours du protocole. Enfin, nous comparons nos protocoles
à ceux dérivés d’autres techniques pour démontrer l’efficacité de notre approche.
Finalement, dans le cinquième et dernier chapitre, nous explorons l’extension du for-
malisme de Nelson aux systèmes quantiques ouverts. Notre objectif est d’appliquer les
techniques du chapitre précédent pour contrôler les systèmes quantiques ouverts, dans
le but de créer des cycles optimaux pour des machines thermiques quantiques. Pour ce
faire, nous examinons trois théories effectives différentes des systèmes quantiques ouverts
et en dérivons les équations de Nelson correspondantes. Bien qu’aucun résultat final
ne soit présenté, nous démontrons que ces approches sont prometteuses et pourraient
potentiellement être utilisées pour le contrôle des systèmes quantiques ouverts.
Nous concluons la thèse en résumant les principaux résultats et en discutant des pistes
de recherche futures potentielles dans ce domaine.

A Mouvement brownien et équation de Langevin

Ce chapitre a été consacré à l’étude du mouvement brownien, un phénomène stochasti-
que qui a été étudié en détail par Einstein et Langevin au début du XXe siècle. Nous
avons commencé par une introduction historique au mouvement brownien, en expliquant
comment Brown a découvert ce phénomène en observant des grains de pollen dans l’eau.
Nous avons ensuite discuté des contributions d’Einstein et de Langevin, qui ont fourni
une explication théorique du mouvement brownien en introduisant des équations décri-
vant la dynamique stochastique des particules et leur probabilité de présence, connues
sous le nom d’équations de Langevin et de Fokker-Planck.
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Le mouvement brownien est un phénomène stochastique découvert par Robert Brown
en 1827. Brown, un botaniste écossais, a observé des grains de pollen dans l’eau et a
noté qu’ils se déplaçaient de manière aléatoire. Il a observé que les grains de pollen
se déplaçaient de manière erratique, changeant de direction de manière imprévisible.
Ce mouvement aléatoire a été attribué à l’agitation thermique des molécules d’eau, qui
entraîne des collisions aléatoires avec les grains de pollen. Brown a observé que les grains
de pollen étaient constamment en mouvement, même s’ils étaient initialement immobiles.
Ce mouvement aléatoire a été nommé mouvement brownien en l’honneur de Brown, qui
a été le premier à l’observer.
La physique stochastique a été développée pour expliquer le mouvement brownien, en
utilisant des équations qui décrivent la dynamique des particules en mouvement. Ces
équations, connues sous le nom d’équations de Langevin et de Fokker-Planck, décrivent
l’évolution temporelle de la densité de probabilité des particules.

A.1 Description d’Einstein

Einstein a proposé un modèle mathématique pour le mouvement brownien, sans donner
une explication directe des observations de Brown. Il a envisagé un ensemble de par-
ticules en suspension dans un liquide, soumis à un mouvement irrégulier à cause des
collisions avec les molécules du liquide. Il a utilisé une approche probabiliste pour décrire
ce phénomène et répondre à deux questions : « jusqu’où une particule brownienne peut-
elle se déplacer dans un temps donné ? » et « comment ce mouvement est-il lié à d’autres
quantités physiques ? » Son modèle vise à prouver l’existence des atomes et molécules,
en reliant les paramètres théoriques à des grandeurs mesurables.
Einstein a démontré que la densité de probabilité p(x, t) de trouver une particule à une
position x à un instant t satisfait une équation de diffusion :

∂tP (x, t) = D∂2xP (x, t)

où D est le coefficient de diffusion. Si toutes les particules sont initialement à x0, la
solution de cette équation est une distribution gaussienne :

P (x, t) =
1√

2πσ2(t)
exp

(
−(x− x0)2

2σ2(t)

)

avec une variance σ2 = 2Dt, qui montre que les particules se dispersent de manière
linéaire dans le temps. Ce résultat relie le mouvement brownien et la diffusion.
Einstein a également cherché à relier le mouvement brownien à des quantités physiques
comme la température T , la viscosité η, la masse m et le rayon a des particules. En
introduisant le coefficient de friction γ = 6πηa, il a établi la relation d’Einstein :

D =
kBT

Mγ
=

RT

6πηaNa

où R est la constante des gaz parfaits et Na le nombre d’Avogadro. Cette relation relie
les fluctuations dues au mouvement brownien et les forces de friction qui freinent ce
mouvement. Elle permet de mesurer des grandeurs comme le nombre d’Avogadro et de
mieux comprendre le mouvement erratique des particules browniennes.

A.2 Description de Langevin

En 1908, Paul Langevin a proposé un modèle du mouvement brownien basé sur la dyna-
mique des particules macroscopiques. Les interactions avec les particules du fluide étant
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microscopiques et nombreuses avant un déplacement visible de la particule brownienne,
une approche probabiliste est nécessaire.
Pour modéliser le mouvement d’une particule brownienne (PB) dans un fluide, on suppose
que ses degrés de liberté changent lentement comparés aux mouvements rapides des
particules du fluide. La force exercée sur la PB est la moyenne des collisions entre la PB et
les particules du fluide, un processus appelé coarse-graining, qui permet une description
simplifiée. Ce lissage temporel se fait sur un intervalle de temps, noté τBath, qui doit
être suffisamment long pour moyenner les mouvements rapides tout en respectant la
dynamique de la PB. Les principales échelles de temps sont :

ã τs : temps des collisions entre les particules du fluide et la PB,

ã τB : temps de relaxation de la vitesse de la PB (inverse du coefficient de friction γ),

ã τEBath : temps utilisé pour décrire uniquement la position (approche d’Einstein),

ã τLBath : temps utilisé pour décrire la position et la vitesse (approche de Langevin).

En pratique, on a τs � τLBath � τB � τEBath. Le choix de τBath détermine si l’on modélise
uniquement la position (Einstein) ou la position et la vitesse (Langevin).
L’équation de Langevin décrit le mouvement d’une PB en prenant en compte trois forces
principales :

ã Une force externe F (x, t),

ã Une force de friction −Mγv, proportionnelle à la vitesse et opposée au mouvement,

ã Une force aléatoire FL(t), due aux collisions entre la PB et le fluide.

L’équation de Langevin s’écrit alors :
{
Mv̇(t) = F (x(t), t)−Mγv(t) + FL(t),

ẋ(t) = v(t),

où v̇(t) et ẋ(t) représentent les dérivées temporelles de la vitesse et de la position. Les
solutions de cette équation sont des processus stochastiques : chaque simulation du mou-
vement donne un résultat différent. On étudie donc des valeurs moyennes telles que la
position et la vitesse moyennes, ou encore le déplacement quadratique moyen.
La force de Langevin FL(t) suit certaines propriétés statistiques :

ã Gaussienneté : la distribution de probabilité de FL(t) est gaussienne,

ã Moyenne nulle : 〈FL(t)〉 = 0,

ã Stationnarité : l’autocorrélation de FL(t) dépend uniquement de la différence de
temps entre deux instants:

〈
FL(t)FL(t′)

〉
= 2Dδ(t− t′)

où D est l’intensité de la force, et δ(t−t′) est une fonction delta de Dirac, indiquant
que la force est non corrélée dans le temps, un processus appelé « bruit blanc ». Si
une corrélation temporelle existe, on parle alors de « bruit coloré ».

Nous avons ensuite discuté des propriétés du mouvement brownien dans le cas particulier
de la particule libre. En particulier, nous avons étudié le déplacement quadratique moyen
(MSD)

〈
x2(t)

〉
de la particule, qui est une mesure de la distance moyenne parcourue par

la particule au carré. Pour une particule libre, le MSD croît linéairement avec le temps,
avec une pente donnée par le coefficient de diffusion D :

〈
x2(t)

〉
= 2Dt.
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A.3 Régime de sur-amortissement

Nous avons étudié le régime de sur-amortissement, où la force de friction domine le
mouvement de la particule. Dans ce régime, l’équation de Langevin se simplifie en une
équation de Langevin sur-amortie sur la position de la particule,

ẋ(t) =
F (x(t), t)

Mγ
+ FE(t),

où FE(t) est un bruit blanc gaussien d’intensité DE = kBT/Mγ. Cette équation va être
fondamental pour le reste de la thèse car c’est l’équation qui servira de base pour le
formalisme de Nelson, et le développement des analogues classiques - quantiques.
Pour conclure, nous avons donné l’équation que satisfait la densité de probabilité P (x, t)
dans le régime de sur-amortissement, l’équation de Fokker-Planck :

∂tP (x, t) = −∂x
[
F (x, t)

Mγ
P (x, t)

]
+DE∂

2
xP (x, t).

A.4 Conclusion

Dans ce chapitre, nous avons exploré le mouvement brownien depuis ses origines histo-
riques jusqu’aux modèles mathématiques qui le décrivent. Ce phénomène joue un rôle
fondamental dans plusieurs disciplines scientifiques, telles que la physique, la chimie, la
biologie et même la finance.
Nous avons ensuite exploré le concept de régime sur-amorti, où l’inertie de la particule
devient négligeable. Cela conduit à l’équation de Langevin sur-amortie, qui se concentre
uniquement sur la position de la particule, se rapprochant de l’approche d’Einstein. Enfin,
nous avons introduit l’équation de Fokker-Planck, décrivant l’évolution de la densité de
probabilité de la position et de la vitesse de la particule. Dans le régime sur-amorti, cette
équation se réduit à l’équation de Smoluchowski, simplifiant encore la description du
système.
Dans le chapitre suivant, nous étendons ce formalisme mathématique pour décrire les
systèmes quantiques, en explorant des modifications permettant de rendre le formalisme
réversible dans le temps, contrairement à la nature irréversible du mouvement brownien
classique.

B Formulation stochastique de la mécanique quantique

Dans ce chapitre, nous présentons le formalisme de Nelson en mécanique quantique,
qui propose une approche stochastique pour décrire les systèmes quantiques à l’aide
de processus stochastiques réversibles dans le temps. Nous commençons par discuter
des défis liés à l’application des méthodes stochastiques aux systèmes quantiques fermés,
puis introduisons la notion de processus stochastiques réversibles, menant à la mécanique
stochastique de Nelson.
Nous définissons ensuite les processus directs et inverses ainsi que leurs dérivées associées,
posant ainsi les bases d’une description stochastique réversible dans le temps. Puis, nous
introduisons une loi d’accélération dans l’espace des configurations, analogue à la seconde
loi de Newton, intégrant la dynamique dans ce cadre stochastique.
En appliquant ces concepts aux systèmes quantiques, nous dérivons l’équation de Schrö-
dinger à partir de cette loi d’accélération et établissons le lien avec la mécanique quantique
standard. Ensuite, nous abordons les méthodes numériques pour résoudre l’équation de
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Nelson, en nous concentrant sur la méthode d’Helfand-Greenside de second ordre et en
détaillant la méthodologie de calcul.
Nous illustrons l’application du formalisme de Nelson avec des exemples numériques, no-
tamment une gaussienne libre et une particule face à une barrière de potentiel, montrant
ainsi que cette approche permet de reproduire des phénomènes quantiques clés tels que
l’effet tunnel et le principe d’incertitude de Heisenberg.
Enfin, nous résumons les points essentiels et discutons des implications du formalisme de
Nelson en mécanique quantique.

B.1 Equation de Nelson

Comme de Broglie, Nelson supposait qu’il est possible de définir des trajectoires pour
les particules quantiques, bien que celles-ci soient cachées à l’observateur. La fonction
d’onde seule n’est donc pas suffisante pour décrire complètement le système quantique.
La particule quantique suit un mouvement aléatoire, dont l’origine n’est pas débattue ici,
car cette approche stochastique est utilisée comme un outil mathématique pour contrôler
les systèmes quantiques.
Il a postulé que l’équation de mouvement est donnée par une équation de Langevin
sur-amortie,

dx(t) = b(x(t), t)dt+ dW (t),

que l’on appelle l’équation de Nelson. Ici, b peut être vu comme la vitesse moyenne du
processus et W est un processus de Wiener, le terme responsable du caractère stocha-
stique des trajectoires. Dans ce chapitre, on a dérivé l’expression de la vitesse moyenne
comme étant

b(x, t) =
~

2m
∂xS(x, t) +DQ∂x lnP (x, t)

avec S est la phase de la fonction d’onde et P la densité de probabilité. Le terme DQ est
le coefficient de diffusion associé au processus de Wiener. Pour déterminer l’amplitude
du processus de Wiener W , on suppose que le coefficient de diffusion DQ est inversement
proportionnel à la masse m de la particule, ce qui donne :

DQ =
~

2m
,

où ~ est la constante de Planck réduite. Les propriétés statistiques de W sont alors :

〈dW (t)〉 = 0 et 〈dW (t)dW (t+ dt)〉 = 2DQdt.

La principale différence entre la mécanique stochastique classique et celle de Nelson est
que le terme déterministe b n’est pas imposé par une force extérieure, mais est une
quantité intrinsèque du modèle, similaire à l’approche de de Broglie-Bohm.

B.2 Equation de Schrödinger

Nous avons discuté des conditions nécessaires pour obtenir un processus dont la densité
de probabilité P satisfait à la fois les équations de Fokker-Planck directe et inverse dans
le temps. Si on suppose qu’une force externe F (x, t) dérivée d’un potentiel V (x, t) agit
sur le système, et que le champs de vitesse v(x, t) est le fradient de la phase S(x, t) i.e.

v(x, t) =
~
m
∂xS(x, t),
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on a pu obtenir l’équation de Hamilton-Jacobi quantique :

~∂tS(x, t) +
~2

2m
(∂xS(x, t))2 + V (x, t) + VQ(x, t) = 0,

où le potentiel quantique VQ est défini par :

VQ(x, t) = − ~2

2m

∂2x
√
P (x, t)√
P (x, t)

.

Ce potentiel, introduit dans la formulation de de Broglie-Bohm, est responsable des effets
quantiques comme les interférences. Lorsque ~→ 0, ce terme disparaît, et l’équation de
Hamilton-Jacobi quantique se réduit à son équivalent classique.
À partir de l’équation de continuité et de l’équation de Hamilton-Jacobi quantique, on
peut dériver l’équation de Schrödinger. En combinant la fonction S et la densité de
probabilité P sous la forme d’une fonction complexe, la fonction d’onde du système,

ψ(x, t) =
√
P (x, t)eiS(x,t),

on peut montrer que l’équation de Schrödinger

i~∂tψ(x, t) = − ~2

2m
∂2xψ(x, t) + V (x, t)ψ(x, t)

est satisfaite par cette fonction. Dans la théorie de Nelson, l’équation de Schrödinger dé-
coule naturellement, contrairement à l’approche de de Broglie-Bohm où elle est postulée.
Enfin, pour décrire un système quantique avec l’approche de Nelson, il faut résoudre plu-
sieurs fois l’équation de Nelson avec des conditions initiales différentes afin d’obtenir assez
de statistiques pour déterminer les propriétés du système. Cela nécessite des méthodes
numériques efficaces pour résoudre l’équation de Nelson, comme la méthode d’Helfand-
Greenside de second ordre, qui est une méthode de type Runge-Kutta mais généralisée
au cas des équations stochastiques.
Le chapitre s’est conclu sur des exemples numériques illustrant l’application du forma-
lisme de Nelson à des systèmes quantiques simples, montrant que cette approche per-
met de reproduire des phénomènes quantiques clés tels que l’effet tunnel et le principe
d’incertitude de Heisenberg.

B.3 Conclusion

Ce chapitre a clos la première partie de la thèse, portant sur les fondements théoriques
de la mécanique stochastique. Nous avons introduit le formalisme de Nelson, qui fournit
une approche stochastique pour décrire les systèmes quantiques à l’aide de processus
stochastiques réversibles dans le temps. Nous avons dérivé l’équation de Nelson, qui décrit
le mouvement stochastique des particules quantiques, et montré comment l’équation de
Schrödinger peut être obtenue à partir de cette équation. Nous avons également discuté
des méthodes numériques pour résoudre l’équation de Nelson et illustré l’application de
ce formalisme à des exemples numériques. Ce chapitre a posé les bases pour la deuxième
partie de la thèse, qui explore l’application de la mécanique stochastique à la description
et au contrôle des systèmes quantiques.
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C Convergence à l’équilibre quantique

Dans ce chapitre, nous explorons la relaxation vers l’équilibre quantique dans le cadre
de la quantification stochastique de Nelson, en nous concentrant sur l’émergence de la
règle de Born en mécanique quantique. En simulant numériquement la dynamique de
systèmes quantiques initialisés dans des états hors équilibre, qui violent la règle de Born,
nous étudions la convergence vers l’équilibre quantique pour trois systèmes canoniques
: l’expérience des doubles fentes, l’oscillateur harmonique et les particules quantiques
dans un champ gravitationnel. Nos résultats montrent que, dans les cas de l’expérience
des doubles fentes et de l’oscillateur harmonique, la relaxation vers l’équilibre quanti-
que se produit plus rapidement que l’apparition des schémas d’interférence quantique,
suggérant que les phénomènes quantiques observables sont des phénomènes d’équilibre.
Cependant, pour les particules quantiques dans un champ gravitationnel, nous observons
que l’interférence quantique peut apparaître avant que le système n’atteigne l’équilibre
quantique, ouvrant la possibilité d’observer des écarts par rapport à la règle de Born
dans ces systèmes.

C.1 Equilibre quantique

Dans la formulation standard de la mécanique quantique (MQ), la règle de Born est un
postulat essentiel : la densité de probabilité de trouver une particule à une position x à un
instant t est donnée par le carré du module de la fonction d’onde |ψ(x, t)|2. Cependant,
ce postulat n’est pas nécessaire dans les formalismes de Nelson et Bohm-de Broglie, où la
fonction d’onde est considérée comme un champ qui guide la dynamique des particules,
sans être nécessairement liée à la probabilité de trouver une particule dans une certaine
région de l’espace. Dans ces approches, il est donc parfaitement cohérent d’envisager des
situations où P (x, t) 6= |ψ(x, t)|2, ce qui conduirait à des prédictions différentes de celles
de la MQ standard.
Comme suggéré par Valentini, la règle de Born pourrait correspondre à une situation
d’« équilibre quantique », analogue à l’équilibre thermique en mécanique classique. Se-
lon cette hypothèse, des états hors équilibre, avec P (x, t) 6= |ψ(x, t)|2, peuvent exister,
mais ils se relaxeraient vers l’équilibre quantique sur une très courte échelle de temps,
rendant ces états difficiles à observer. Valentini a développé ces idées dans le cadre de la
mécanique Bohm-de Broglie, qui, étant déterministe, nécessite une forme de *coarse grai-
ning* pour observer cette relaxation. Cependant, dans la théorie de Nelson, la relaxation
vers l’équilibre devrait se produire plus naturellement, grâce à la nature stochastique du
mouvement.
L’objectif de ce travail est d’étudier, par des simulations numériques, si la thermalisation
quantique se produit plus rapidement que les effets quantiques typiques, tels que les
interférences. Pour cela, il est nécessaire de reconstruire la densité de probabilité P (x, t)
des particules à chaque instant. Cela se fait en divisant l’espace x ∈ R en intervalles de
taille ∆x, puis en construisant l’histogramme correspondant. L’équation stochastique de
Nelson est résolue en utilisant une méthode de Helfand-Greenside de second ordre. Pour
réduire le bruit statistique, les simulations sont répétées plusieurs fois indépendamment
et les résultats sont moyennés pour reconstruire la densité de probabilité.
Il est ensuite nécessaire de comparer la densité de probabilité P (x, t) avec le carré du
module de la fonction d’onde |ψ(x, t)|2 = R2. Pour ce faire, on peut définir une distance
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entre ces deux quantités, comme la distance Lp entre deux fonctions f et g, définie par :

Lp[f, g] (t) = p

√∫ +∞

−∞
dx |f(x, t)− g(x, t)|p.

En particulier, la distance L1 a été proposée par Petroni et Guerra comme un outil
approprié pour quantifier la relaxation vers l’équilibre quantique. La distance infinie L∞,
qui est la limite lorsque p→∞, est donnée par :

L∞[f, g](t) = max
x
|f(x, t)− g(x, t)|.

Une autre mesure possible est une fonction de type entropie, utilisée par Valentini, définie
par :

H ≡ LH [f, g] (t) =

∫ +∞

−∞
dx f(x, t) ln

(
f(x, t)

g(x, t)

)
,

qui est liée à la divergence de Kullback-Leibler, aussi appelée entropie relative.
En prenant f = P et g = |ψ(x, t)|2, ces distances s’annulent lorsque la règle de Born
est satisfaite, i.e. à l’équilibre quantique. Pour estimer le temps de relaxation, il sera
nécessaire de définir un seuil arbitraire en dessous duquel la distance est considérée comme
pratiquement nulle.
Enfin, en utilisant la quantité entropique, Hatifi et al. ont pu prouver un théorème H
qui assure qu’une distribution de probabilité générique P (x, t) converge vers |ψ(x, t)|2
lorsque t→∞ (avec certaines réserves, comme le montrera la section suivante).

C.2 Résultats numériques

Dans cette section, nous examinons la question centrale de savoir si la thermalisation
quantique se produit plus rapidement que les autres effets quantiques typiques, comme
l’apparition des interférences. Si c’était le cas, cela signifierait que tous les phénomènes
quantiques sont des phénomènes d’équilibre, donc indiscernables de ceux prédits par la
mécanique quantique (MQ) standard. Dans le cas contraire, on pourrait espérer observer
des anomalies dans les motifs d’interférence dues à des corrections sous-quantiques, ce
qui constituerait une prédiction intéressante pour de futures expériences.
Nous utilisons les distances fonctionnelles définies dans la section précédente pour esti-
mer le temps de relaxation vers l’équilibre quantique, et le comparons avec le temps
d’apparition des effets quantiques pour trois systèmes physiques emblématiques : l’expérience
des doubles fentes, l’oscillateur harmonique et l’évolution d’un paquet d’ondes dans un
potentiel linéaire représentant le champ gravitationnel terrestre.

C.2.1 Expérience des doubles fentes

Nous considérons une expérience classique des doubles fentes, où les deux fentes ont une
ouverture de largeur σ et sont séparées par une distance 2a. Les unités sont choisies de
manière à ce que ~ = m = a = 1, et σ représente donc le rapport σ/a. Cela définit une
échelle de temps τ = ma2/~ (qui vaut 1 dans ces unités).
Pour modéliser cette configuration, nous utilisons une fonction d’onde initiale constituée
de deux Gaussiennes centrées sur x = ±a, avec une largeur σ. L’évolution libre de cette
fonction d’onde peut être calculée analytiquement, tandis que la densité de particules
P est obtenue numériquement en résolvant l’équation stochastique de Nelson pour un
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grand nombre de trajectoires. Les distances fonctionnelles entre P et |ψ|2 sont ensuite
calculées et tracées en fonction du temps.
Les résultats montrent que, quelle que soit la largeur initiale σ, la relaxation vers l’équilibre
quantique se produit toujours avant l’apparition des interférences quantiques. Cela signi-
fie que les phénomènes quantiques observés sont des phénomènes d’équilibre.

C.2.2 Oscillateur harmonique

Nous étudions ici l’oscillateur harmonique, un système fondamental en MQ, en nous
concentrant sur la convergence vers l’équilibre quantique. L’oscillateur harmonique est
décrit par une fonction d’onde gaussienne oscillante, et la relaxation est étudiée en suivant
l’évolution de la largeur σ(t) de la fonction d’onde.
Les résultats montrent que le temps de relaxation τq est toujours inférieur à la période
d’oscillation de l’oscillateur harmonique. Cela implique que la relaxation vers l’équilibre
quantique se produit avant que les oscillations quantiques ne soient pleinement observa-
bles.

C.2.3 Champ gravitationnel uniforme

Enfin, nous considérons une particule quantique tombant dans le champ gravitationnel
de la Terre, un problème motivé par des expériences récentes sur les neutrons ultrafroids.
On suppose que la particule est initialement à une hauteur h au-dessus d’un miroir
réfléchissant, et que les particules sont distribuées selon une fonction delta de Dirac à la
même hauteur. Les particules tombent ensuite sous l’effet de la gravité, et la densité de
probabilité P est reconstruite à chaque instant.
La fonction d’onde initiale est une gaussienne centrée à une hauteur h au-dessus d’un
miroir réfléchissant, et de largeur ζ, tel que

ψ(x, 0) = Θ(x)
1

(2πζ2)
1
4

exp

[
−(x− h)2

4ζ2

]
.

Elle est calculée à chaque instant postérieurs en la décomposant sur la base des fonctions
de Airy ξn,

ψ(x, t) =
∑

n=0

cnχn(x)e−iEnt,

les coefficients de la décomposition étant connues sous une certine approximation.

cn =
(8πζ2)

1
4

Ai′(−En)
Ai
(
h− En + ζ4

)
exp

{
ζ2
(
h− En +

2

3
ζ4
)}

.

Les résultats des simulations montrent un comportement particulier de la relaxation.
Après une phase initiale de convergence, les distances entre P et |ψ|2 augmentent tem-
porairement lorsque des motifs d’interférences apparaissent dans la fonction d’onde. Ce
phénomène suggère que, dans ce système, les interférences quantiques peuvent apparaître
avant que la relaxation vers l’équilibre quantique soit complète. Ce résultat contraste avec
les observations faites pour les deux autres systèmes. S’il est possible de créer des situa-
tions où un système quantique est être hors équilibre quantique (par exemple, on peut
le suppose lors des premiers instant de la création d’une particule) cela pourrait ouvrir
la voie à des vérifications expérimentales de la règle de Born dans des états quantiques
gravitationnels.
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En conclusion, ces simulations montrent que, dans certains systèmes, les phénomènes
d’interférences quantiques peuvent se produire avant la relaxation complète vers l’équilibre
quantique, offrant ainsi des perspectives intéressantes pour de futures études expérimen-
tales.

D Analogues classiques - quantiques

Dans ce chapitre, nous proposons une méthode pour optimiser la dynamique d’un oscil-
lateur harmonique quantique en utilisant une analogie quantique-classique basée sur la
formulation stochastique de Nelson en mécanique quantique. Notre objectif est de faire
passer le système d’un état stationnaire initial à un état stationnaire final en un temps
minimal, tout en réduisant un certain coût. En établissant une analogie entre l’oscillateur
harmonique quantique et la dynamique classique suramortie d’une particule brownienne
dans un potentiel harmonique, nous appliquons un principe variationnel pour dériver des
protocoles optimaux pour le paramètre de contrôle, qui est la raideur du potentiel.
Nous considérons deux fonctions de coût : l’énergie cumulée dans le temps et la phase
dynamique de la fonction d’onde. Cette dernière nous permet de concevoir des protocoles
optimaux du point de vue adiabatique, minimisant les écarts par rapport à un processus
adiabatique pour une durée donnée. Nos résultats numériques montrent que les proto-
coles optimaux proposés surpassent les méthodes existantes, offrant ainsi des raccourcis
efficaces vers l’adiabaticité dans des systèmes quantiques fermés.

D.1 Analogie quantique-classique

Une particule unidimensionnelle de masse m piégée dans un potentiel harmonique dé-
pendant du temps obéit à l’équation de Schrödinger :

i~
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+

1

2
κ(t)x2

)
ψ(x, t),

où ~ est la constante de Planck, κ(t) la raideur du potentiel harmonique en fonction du
temps, et ψ(x, t) la fonction d’onde du système à l’instant t et à la position x. Le but de
cette étude est de concevoir un protocole κ(t) qui permet de faire évoluer le système d’un
état stationnaire initial ψi(x) à un état stationnaire final ψf(x) en un temps minimal tout
en minimisant une fonction de coût donnée.
La dérivation des protocoles optimaux repose sur la formulation stochastique de la méca-
nique quantique de Nelson. Contrairement aux trajectoires déterministes en mécanique
de Bohm-de Broglie, la théorie de Nelson postule que chaque trajectoire suit l’équation
différentielle stochastique suivante :

dx(t) = b(x(t), t)dt+
√

2D dW (t),

où b(x, t) est la vitesse de dérive déterministe, D = ~/2m est le coefficient de diffusion, et
dW (t) est une variation de Wiener caractéristique d’un processus de Markov : 〈dW (t)〉 =
0, 〈dW (t)dW (t′)〉 = δ(t− t′).
Le terme de dérive b(x, t) dans l’approche de Nelson est défini comme :

b(x, t) =
~
m

∂S(x, t)

∂x
+

~
2m

∂ ln ρ(x, t)

∂x
,

où S(x, t) et ρ(x, t) sont respectivement la phase et le module carré de la fonction d’onde
ψ(x, t), exprimée sous forme polaire : ψ(x, t) =

√
ρ(x, t) exp(iS(x, t)). Cette définition

de la dérive garantit que la distribution des trajectoires quantiques suit la règle de Born.
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Pour l’état fondamental de l’oscillateur harmonique, la fonction d’onde gaussienne impli-
que une forme simple pour le terme de dérive. Si l’état initial ψi(x, t = 0) est gaussien, il
reste gaussien pour tout t > 0 et peut s’écrire :

ψ(x, t) =
1

4
√

2πs(t)
exp

(
− x2

4s(t)
+ iα(t)x2 + iβ(t)

)
,

où s(t) = 〈x(t)2〉 est la variance dépendant du temps, et α(t) et β(t) sont les phases
dynamiques et géométriques de la fonction d’onde. Pour que cette fonction soit solution
de l’équation de Schrödinger, α(t) et β(t) doivent obéir aux relations suivantes :

α(t) =
m

4~
ṡ(t)

s(t)
, β̇(t) = − ~

4ms(t)
,

où le point désigne la dérivée par rapport au temps. La variance s(t) doit obéir à l’équation
d’Ermakov

σ̈(t) +
κ(t)

m
σ(t) =

4D2

σ3(t)
.

On obtient la vitesse que la vitesse moyenne du processus est

b(x, t) =
~
m

(
2α(t)− 1

2s(t)

)
x.

L’équation de Nelson devient alors

dx(t) =
~
m

(
2α(t)− 1

2s(t)

)
x(t)dt+

√
2D dW (t).

Cette équation est mathématiquement analogue à l’équation de Langevin pour une par-
ticule brownienne suramortie dans un potentiel harmonique de raideur κ̄(t) :

dx(t) = − κ̄(t)

γ
x(t)dt+

√
2D dW (t),

où γ est le coefficient de friction de Stokes, qui n’apparaît que dans l’équation classique.
Les deux équations sont identiques si l’on définit la raideur classique κ̄(t) par :

κ̄(t) = γ
~
m

(
2α(t)− 1

2s(t)

)
.

Cette relation entre la raideur quantique κ(t) et la raideur classique κ̄(t) est donnée par
:

κ(t) =
~2

2ms2(t)
+
m

γ
˙̄κ(t)− m

γ2
κ̄2(t).

Enfin, à l’équilibre, la raideur quantique κeq est :

κeq =
D2m

s2eq
,

ce qui ne dépend pas du paramètre classique γ.
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D.2 Protocoles optimaux pour la raideur

Dans cette section, nous développons une méthode pour trouver des protocoles optimaux
pour un oscillateur harmonique quantique, afin de passer d’un état initial ψi à un état
final ψf en minimisant une fonction de coût et en respectant les conditions aux limites.
La méthode consiste à minimiser une fonctionnelle J [κ̄] = ∆t[κ̄] + λF [κ̄], où ∆t est
la durée du protocol et F la fonctionnelle de coût. Le term λ est un mutliplicateur de
Lagrange, utilisé pour déterminer le poids que l’on souhaite donner au coût (vis-à-vis
de la durée) dans la procédure de minimisation. En utilisant le principe variationnel,
on obtient un protocole optimal κ̄(t) qui minimise le coût en fonction de la durée du
protocole.

D.2.1 Application à l’oscillateur harmonique quantique

Pour écrire la fonctionnelle à minimiser, on peut re-paramétrer le système en utilisant la
variance s(t), supposée monotone dans le temps, à la place de t. On peut montrer qu’elle
satisfait à l’équation différentielle

ṡ =
2

γ
(Dγ − sκ̄).

En s’appuyant sur l’analogie entre les systèmes quantiques et classiques, le protocole
optimal pour l’oscillateur harmonique quantique est obtenu à partir de la raideur classique
κ̄(s), via l’équation :

κ(s) =
~2

2ms2
+

2m

γ2
[Dγ − sκ̄(s)]κ̄′(s)− m

γ2
κ̄2(s).

La durée du protocole est exprimée comme une fonctionnelle de κ̄(s) :

∆t[κ̄] =
1

2

∫ sf

si

γ

Dγ − sκ̄(s)
ds.

La fonctionnelle de coût peut s’écrire sous forme intégrale comme

F [κ̄] =

∫ sf

si

f(s, κ̄(s), κ̄′(s))ds,

La fonctionnelle totale à minimiser pour obtenir le protocole optimal est donc

J [κ̄, κ̄′] =
1

2

∫ sf

si

[
γ

Dγ − sκ̄(s)
+ λf(s, κ̄(s), κ̄′(s)) + µ

∣∣κ̄′(s)
∣∣2
]

ds.

Le terme µ |κ̄′(s)|2 est ajouté pour garantir que les conditions aux limites sur κ(t) sont
satisfaites tout en s’assurant de la continuité du protocol.

D.2.2 Résolution de l’équation d’Euler-Lagrange

L’équation d’Euler-Lagrange associée au fonctionnel total est une équation différentielle
du second ordre :

2µκ̄′′ =
γs

[Dγ − sκ̄(s)]2
+ λ

∂f

∂κ̄
− λ d

ds

∂f

∂κ̄′
.

Cette équation permet de déterminer le protocole optimal κ̄(s), qui est ensuite transformé
en protocole quantique κ(t) grâce à l’analogie quantique-classique.
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En résumé, cette approche fournit un cadre pour optimiser la transition entre deux états
quantiques stationnaires en minimisant un coût donné, tout en respectant les conditions
aux limites et en lissant les variations brusques du protocole. Les résultats numériques
montrent que les protocoles optimaux proposés surpassent les méthodes existantes, of-
frant ainsi des raccourcis efficaces vers l’adiabaticité dans des systèmes quantiques fermés.

D.3 Résultats de l’optimisation

Nous avons exploré plusieurs protocoles dans le cadre de l’oscillateur harmonique quan-
tique en utilisant différentes fonctions de coût. Les résultats obtenus montrent que les
protocoles optimaux peuvent être dérivés pour diverses fonctions de coût, avec des per-
formances améliorées par rapport à des protocoles standards, tels que les protocoles
polynomiaux précédemment proposés.

D.3.1 Fonction de coût basée sur l’énergie cumulée

Dans cette première étude, la fonction de coût correspond à l’énergie cumulée, qui est
physiquement pertinente, notamment dans les applications expérimentales. L’intégrale
de l’énergie moyenne sur la durée totale du protocole est exprimée par :

E(t) = 〈ψ|Ĥ(t)|ψ〉 =
m

4s(t)

(
1

2
ṡ2(t) +

2s2(t)κ(t)

m
+ 2D2

)
.

Le fonctionnel à minimiser est ensuite donné par :

FE [κ̄, κ̄′] =
m

4γ

∫ sf

si

ds

[
Dγ − sκ̄(s)

s
+

3D2γ2 − s2κ̄2(s)
s(Dγ − sκ̄(s))

+ 2sκ̄′(s)
]
.

Les solutions de l’équation d’Euler-Lagrange ont été calculées pour différents paramètres
de Lagrange. Les protocoles obtenus montrent que les valeurs optimales de la raideur
quantique κ(t) peuvent être très différentes en fonction de la pondération des termes
dans le fonctionnel à minimiser, ce qui permet d’adapter les protocoles pour des durées
de transition variées.

D.3.2 Fonction de coût basée sur la phase dynamique

Le second exemple utilise la phase dynamique α(t) comme fonction de coût. La mini-
misation de cette phase est liée à la distance du protocole par rapport à un processus
adiabatique, où α(t) est proportionnelle à la dérivée temporelle de la variance. Le fonc-
tionnel à minimiser est ici :

Fα[s, κ̄] =

∫ tf

ti

dt α2(t) =
m2

8γ~2

∫ sf

si

ds
Dγ − sκ̄(s)

s2
.

Le protocole optimal obtenu minimise la phase dynamique, se rapprochant ainsi d’un
processus adiabatique tout en réduisant la durée de la transition. La représentation des
fonctions de Wigner dans l’espace des phases illustre également ce phénomène, montrant
que la fonction de Wigner s’incline au cours du processus, mais retrouve une symétrie à
la fin du protocole, contrairement à un processus adiabatique standard.
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D.3.3 Comparaison avec les protocoles polynomiaux

Nous avons comparé nos résultats avec les protocoles polynomiaux connus dans la littera-
ture, qui minimisent le travail effectué sur le système. Nos protocoles optimaux donnent
des coût inférieur que ces derniers pour des durées de transition courtes, en minimisant
de manière plus efficace l’énergie cumulée ou la phase dynamique. Ces résultats montrent
que nos méthodes peuvent offrir des solutions plus efficaces pour des transitions rapides
tout en maintenant un contrôle précis des conditions aux limites.

E Systèmes quantiques ouverts

Ce chapitre vise à étendre les analogies classiques concernant la raideur et la température
aux systèmes quantiques ouverts, dans le but d’optimiser des cycles et de potentiellement
développer des moteurs thermiques quantiques. Il explore trois approches principales
pour modéliser les systèmes quantiques ouverts, ouvrant ainsi la voie à l’extension de ces
analogies.

E.1 Approche de Kostin

L’approche de Kostin propose une version stochastique de l’équation de Schrödinger
pour décrire les systèmes quantiques ouverts en introduisant la friction et le bruit ther-
mique, similaire au mouvement brownien classique. Cela modifie les équations de Hei-
senberg en ajoutant un terme de friction et une force aléatoire, aboutissant à l’équation
de Schrödinger-Langevin (SLE).
L’équation de Schrödinger est modifiée pour inclure les effets de friction et de bruit
aléatoire:

i~∂tψ = − ~2

2m
∂2xψ + V ψ − iγ~

2

[
ln

ψ

ψ∗
− 〈ln ψ

ψ∗
〉ψ
]
ψ − xWTψ

où γ est le coefficient de friction etWT est une force aléatoire avec une diffusion thermique
DT.
Le bruit thermique est caractérisé par le coefficient de diffusion:

DT =
~ω
2
mγ

[
coth

(
~ω

2kBT

)
− 1

]

À haute température, cela se rapproche du cas classique DT ≈ mγkBT .
Pour un oscillateur harmonique, la SLE devient:

i~∂tψ = − ~2

2m
∂2xψ +

1

2
mω2x2ψ − iγ~

2

[
ln

ψ

ψ∗
− 〈ln ψ

ψ∗
〉ψ
]
ψ − xWTψ

L’ansatz de la fonction d’onde gaussienne donne des équations différentielles similaires
aux équations de Langevin classiques pour la position µ(t) et le moment p(t):

∂tp = −mω2µ− γp+WT, ∂tµ =
p

m

La variance σ(t) obéit à une équation d’Ermakov-Milne-Pinney amortie:

∂2t σ + γ∂tσ + ω2σ =
~2

4m2σ3

L’équation de Schrödinger-Langevin offre un cadre pour modéliser des systèmes quanti-
ques à température finie, introduisant une dynamique stochastique avec des états thermi-
ques, mais pose des défis pour établir une analogie complète avec la dynamique classique.
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E.2 Approche de Schuch

Dans cette approche, Schuch propose de modifier les équations de Madelung, qui dé-
crivent la densité ρ et la phase S de la fonction d’onde ψ =

√
ρeiS , afin d’introduire

l’irréversibilité dans les équations de continuité et de Hamilton-Jacobi. Cette approche
permet de dériver une équation de Schrödinger-Langevin modifiée.

E.2.1 Équations non modifiées

L’équation de continuité s’écrit :

∂tρ+
~
m
∂x (ρ∂xS) = 0, (1)

qui peut aussi s’écrire sous forme d’équation de Fokker-Planck :

∂tρ+ ∂x(bρ) = DQ∂
2
xρ, (2)

avec DQ = ~
2m et b = ~

m∂xS +DQ∂x ln ρ.
L’équation de Hamilton-Jacobi est :

~∂tS +
~2

2m
(∂xS)2 +

1

2
mω2x2 − ~2

2m

∂2x
√
ρ

√
ρ

= 0. (3)

E.2.2 Modifications proposées

Modification de l’équation de Hamilton-Jacobi Schuch propose d’ajouter une
force de frottement dans l’équation d’Euler dérivée de l’équation de Hamilton-Jacobi :

[∂t + v∂x]v = − 1

m
∂x(V + VQ)− γv, (4)

ce qui modifie l’équation de Hamilton-Jacobi comme suit :

~∂tS +
~2

2m
(∂xS)2 + V + VQ + γ~S = 0. (5)

Modification de l’équation de continuité L’irréversibilité est introduite en ajou-
tant un terme de diffusion thermique dans l’équation de continuité :

∂tρ+ ∂x (ρ∂xS) = DT∂
2
xρ, (6)

avec DT comme coefficient de diffusion thermique.
En combinant ces modifications, on obtient une version déterministe de l’équation de
Schrödinger-Langevin :

i~∂tψ = − ~2

2m
∂2xψ + V ψ − iγ~

[
lnψ − 〈lnψ〉ψ

]
ψ. (7)

En supposant une solution gaussienne pour la fonction d’onde,

ψ(x, t) =
1√

2πσ2(t)
exp

(
− x2

4σ2(t)
+ i
[
α(t)x2 + θ(t)

])
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, les équations du mouvement pour σ, α, et θ deviennent :

∂tσ =

[
2~α
m

+
γ

2

]
σ, (8)

∂tα =
~

8mσ4
− 2~α2

m
− mω2

2~
− γα, (9)

∂tθ = − ~
4mσ2

+ γασ2. (10)

En combinant ces équations, on obtient une équation d’Ermakov modifiée :

∂2t σ + Ω2σ =
D2
Q

σ3
, (11)

avec Ω2 = ω2 − γ2

4 .
Le coefficient de diffusion thermique est relié à la température T de l’environnement par
la relation :

DT = DQ

√
coth2

(
β~ω

2

)
− 1, (12)

où β = 1
kBT

est l’inverse de l’énergie thermique.
Cette approche permet d’introduire l’irréversibilité dans la dynamique des systèmes quan-
tiques ouverts, notamment en modifiant les équations de continuité et de Hamilton-
Jacobi. L’équation de Schrödinger résultante contient un terme non linéaire et complexe,
mais elle permet de maintenir la normalisation de la fonction d’onde et de calculer des
analogies classiques.

E.3 Approche de Ruggiero

L’approche de Ruggiero combine la mécanique stochastique de Nelson avec l’équation
de Langevin pour décrire les systèmes quantiques ouverts, en particulier pour le cas de
l’oscillateur harmonique. L’objectif est d’introduire les effets thermiques dans le forma-
lisme de Nelson en utilisant l’oscillateur harmonique comme système modèle.

E.3.1 Aspects théoriques

Guidage cohérent pour l’oscillateur harmonique Un état cohérent de l’oscillateur
harmonique est un état quantique qui se comporte de manière similaire à un oscillateur
harmonique classique. Pour chaque solution q(t) et p(t) des équations classiques du mou-
vement pour un oscillateur harmonique de fréquence ω :

q̇(t) =
p(t)

m
(13)

et
ṗ(t) = −mω2q(t), (14)

il existe un état cohérent correspondant, noté par un nombre complexe α, dont la fonction
d’onde est ψα(x, t). Ce nombre complexe α est défini par les conditions initiales comme
suit :

α =
mωq0 + ip0√

2m~ω
. (15)
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La fonction d’onde ψα(x, t) est donnée par :

ψα(x, t) =
(mω
π~

)1/4
exp

[
−mω

2~
(x− qα(t))2 + i

pα(t)

~
(x− qα(t)) + iθ(t)

]
, (16)

où θ(t) est une phase dépendant du temps.
Le processus stochastique associé à la position x guidé par l’état cohérent est donné par
l’équation de Nelson :

dxα(t) =

[
−ω(xα(t)− qα(t)) +

pα(t)

m

]
dt+ dWQ(t), (17)

où WQ(t) est un processus Wiener associé aux fluctuations quantiques.

Mélange thermique d’états cohérents En physique statistique quantique, les états
d’équilibre thermodynamique sont représentés par une matrice de densité. Il est possible
de décomposer cette matrice de densité dans la base des états cohérents de l’oscillateur
harmonique. Le poids de chaque état cohérent α dans le mélange est donné par la distri-
bution de Glauber.
Pour décrire l’état d’équilibre dans le cadre stochastique de Nelson, on construit l’analogue
stochastique de la matrice de densité en utilisant une représentation des processus comme
une somme de deux composantes indépendantes : une motion classique et une motion
quantique dans son état fondamental.

E.3.2 Systèmes ouverts

Nous considérons le cas d’un oscillateur harmonique en contact avec un réservoir ther-
mique. Le mouvement thermique est décrit par une équation de Langevin, alors que la
partie quantique est décrite par le processus de Nelson :

dq(t) =
p(t)

m
dt, (18)

dp(t) = −
[
mω2q(t) + γp(t)

]
dt+ dWT(t), (19)

dx0(t) = −ωx0(t)dt+ dWQ(t). (20)

Le processus total exécuté par l’oscillateur harmonique est donné par :

x(t) = q(t) + x0(t), (21)

où q(t) décrit la motion classique, et x0(t) la motion quantique.

E.3.3 Aspects thermodynamiques et analogies classiques

Cette approche permet d’utiliser des outils de thermodynamique stochastique pour ana-
lyser les systèmes quantiques ouverts. On peut ainsi calculer l’entropie, l’énergie moyenne
et d’autres grandeurs thermodynamiques.

Entropie et énergie L’entropie associée à une trajectoire x(t) est définie comme :

s(t) = −kB lnP (x(t), t), (22)
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et l’entropie moyenne du système est :

S(t) = −kB
∫

dx P (x, t) lnP (x, t). (23)

On peut également définir l’énergie moyenne en termes de x :

E(t) =
1

2
mω2

〈
x2(t)

〉
. (24)

Limite suramortie du mouvement thermique Dans la limite suramortie de l’équation
de Langevin, il est possible d’obtenir une description complète du mouvement de l’oscillateur
harmonique. Le processus total peut être interpolé par un processus de Langevin sura-
morti.
L’approche de Ruggiero permet de combiner la dynamique de Nelson avec les équations
de Langevin pour décrire les systèmes quantiques ouverts. Cependant, la séparation en
deux processus indépendants rend difficile le développement d’analogies classiques. Cette
approche ouvre néanmoins de nouvelles perspectives pour l’étude des systèmes quantiques
ouverts et de leurs propriétés thermodynamiques.
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Conclusion

Résumé de la thèse

Cette thèse explore les liens entre les systèmes classiques et quantiques, en s’appuyant
sur la mécanique stochastique de Nelson pour étudier les particules quantiques à travers
des trajectoires stochastiques. En mettant en parallèle des modèles classiques avec des
systèmes quantiques, nous avons montré comment ces techniques peuvent simplifier la
résolution de problèmes complexes.
Dans les premiers chapitres, nous avons introduit la théorie classique stochastique et la
théorie de Nelson, en soulignant leurs différences, telles que la réversibilité des processus.
Ensuite, nous avons étudié les systèmes quantiques fermés, à la fois d’un point de vue
fondamental en discutant le concept d’équilibre quantique, mais également d’un point de
vu pratique, en utilisant cette approche. Un des points forts de la thèse est l’établissement
d’analogies classiques pour des systèmes quantiques, notamment l’oscillateur harmonique.
Nous avons développé des protocoles optimaux permettant de contrôler ces systèmes tout
en minimisant la durée et les coûts énergétiques.
Dans le chapitre final, nous avons exploré des modèles de systèmes quantiques ouverts
qui introduit des concepts de thermodynamique stochastique dans le cadre de la théorie
de Nelson. Bien que certains modèles permettent des analogies classiques plus facilement,
d’autres, comme le modèle de Schuch, nécessitent des investigations supplémentaires.

Perspectives

Les résultats obtenus ouvrent la voie à plusieurs pistes de recherche. Une extension na-
turelle serait d’appliquer ces méthodes à des systèmes plus complexes, tels que les os-
cillateurs anharmoniques ou les systèmes à plusieurs corps, comme les condensats de
Bose-Einstein. Nous avons également proposé l’idée d’optimiser des cycles thermodyna-
miques dans des moteurs quantiques, en utilisant à la fois le contrôle de la température
et de la raideur du potentiel.

Conclusion

La thèse démontre que la mécanique stochastique de Nelson peut fournir des outils puis-
sants pour le contrôle des systèmes quantiques. Bien qu’il reste encore de nombreux
aspects à explorer, cette approche offre des perspectives intéressantes dans les domaines
du contrôle quantique et de la thermodynamique quantique.
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Demain, dès l’aube...

Demain, dès l’aube, à l’heure où blanchit la campagne,
Je partirai. Vois-tu, je sais que tu m’attends.
J’irai par la forêt, j’irai par la montagne.
Je ne puis demeurer loin de toi plus longtemps.

Je marcherai les yeux fixés sur mes pensées,
Sans rien voir au dehors, sans entendre aucun bruit,
Seul, inconnu, le dos courbé, les mains croisées,
Triste, et le jour pour moi sera comme la nuit.

Je ne regarderai ni l’or du soir qui tombe,
Ni les voiles au loin descendant vers Harfleur,
Et quand j’arriverai, je mettrai sur ta tombe
Un bouquet de houx vert et de bruyère en fleur.

V. Hugo, Les Contemplations, 1847

Hiems Viridans

Au milieu des pétales, des roses enneigées
Et des flocons voluptueux,
Des violettes, lilas, et parfums enchantés,
Qui trainent à plis somptueux,
Sous un pi-ano blanc, où comme sous l’hiver
Le son ambitieux est glacial,
Où des fleurs, tombant, dans leurs cercueils de verre,
Nous livrent le soupir final,

Une femme sans corps, épanche comme un fleuve
Sur le blanc d’ouest désaltéré,
Une senteur, dorée, dont la toile s’abreuve,
Essence auburn de la Beauté.

Semblable aux étoiles, lumières de la nuit,
Les yeux clos sous son regard fier,
Dont le rythme, souple, de la profonde harmonie
Se fond dans les souvenirs d’hier.

V. Hardel, 2015
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Résumé 

Cette thèse se concentre sur une formulation stochastique de la mécanique quantique connue sous le 
nom de mécanique de Nelson, que l’on a utilisée pour étudier la règle de Born. Cette théorie offre un 
cadre unique pour comprendre la dynamique quantique à travers des analogies classiques, en établissant 
notamment des parallèles entre l’évolution stochastique des particules browniennes et les systèmes 
quantiques. Nous avons appliqué cette approche pour optimiser les transitions des systèmes quantiques, 
tels que l’oscillateur harmonique quantique, en minimisant les coûts énergétiques et les temps de 
transition. 

À partir de ces résultats, la thèse explore l’extension de ces méthodes à des systèmes quantiques plus 
complexes, y compris les systèmes ouverts soumis à la décohérence et les systèmes multi-corps tels que 
les condensats de Bose-Einstein. Ce travail instaure les bases du développement de nouvelles techniques 
d’optimisation et de stratégies de contrôle pour les systèmes quantiques, pouvant potentiellement 
conduire à des applications innovantes en thermodynamique quantique et en contrôle de systèmes. 

Mots-clés : fondements de la Mécanique Quantique, mécanique stochastique de Nelson, optimisation, 
systèmes quantiques ouverts, dynamique de Langevin, méthodes variationnelles. 

 

Abstract 

This thesis focuses on a stochastic formulation of quantum mechanics known as Nelson's mechanics, 
which we used to study the Born rule. This theory provides a unique framework for understanding 
quantum dynamics through classical analogies, particularly by drawing parallels between the stochastic 
evolution of Brownian particles and quantum systems. We applied this approach to optimize the 
transitions of quantum systems, such as the quantum harmonic oscillator, by minimizing energy costs 
and transition times. 

Building on these results, the thesis explores extending these methods to more complex quantum 
systems, including open systems subject to decoherence and multi-body systems like Bose-Einstein 
condensates. This work lays the foundation for developing new optimization techniques and control 
strategies for quantum systems, potentially leading to innovative applications in quantum 
thermodynamics and system control. 

 

Key words: foundations of quantum mechanics, Nelson stochastic quantization, Optimization, Open           
quantum systems, Langevin dynamics, Variational methods. 
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