Ecole doctorale

Université e
Physique, chimie-physique

ceswsbrs UNIVERSITE DE STRASBOURG

Université de Strasbourg

ECOLE DOCTORALE 182

ICPMS UMR 7504

THESE présentée par :

Vincent HARDEL

Soutenue le : 14 novembre 2024

Pour obtenir le grade de : Docteur de 'université de Strasbourg

Discipline/ Spécialité : Physique

CLASSICAL ANALOGS
OF

QUANTUM DYNAMICS

THESE dirigée par :

Mr Giovanni MANFREDI Directeur de Recherches, CNRS
RAPPORTEURS :

Mr David GUERY-ODELIN Professeur, Université Toulouse III - Paul Sabatier

Mr Thomas DURT Professeur, Centrale Méditerranée

AUTRES MEMBRES DU JURY :
Mr Cyriaque GENET Directeur de Recherches, CNRS
Mme Sabine KLAPP Professeur, Technische Universitdt Berlin






To my parents, family, and friends.






ACKNOWLEDGEMENTS

First and foremost, I express my deepest gratitude to my supervisor, Giovanni Manfredi,
for his unwavering support and insightful critiques throughout my research journey. His
guidance has been invaluable in shaping this work. I am also profoundly grateful to
Paul-Antoine Hervieux, whose scientific curiosity sparked enriching discussions that sig-
nificantly contributed to the development of this manuscript.

I extend my sincere appreciation to my reviewers, Thomas Durt and David Guéry-Odelin,
for their dedicated efforts in evaluating my PhD thesis. Their detailed comments have
been instrumental in refining my research, and I am truly grateful for their engagement
during the defense, which led to a stimulating and constructive discussion. Additionally,
I would like to thank Sabine Klapp for her participation in this jury and for making the
journey from Berlin to Strasbourg for the occasion. Finally, I am deeply thankful to
Cyriaque Genet for graciously assuming the role of jury president.

I would also like to express my gratitude to Rémi Goerlich, with whom I thoroughly
enjoyed working on quantum-classical analogies and discussing the experimental aspects
of our research.

Completing this work would have been far more challenging without the supportive and
welcoming environment of the QDyno group. For that, I am immensely thankful to all its
members: Denis, Adrien, and Jean-Gabriel, the pioneers of the team, as well as Benjamin,
Sébastien, Yannick, and Pierre, who joined later. This group has been more than just
colleagues—we have become friends, and I will cherish the unforgettable memories we
have created together over the years. I would also like to extend my thanks to Paul-Louis
and Andrea, who joined the team just a few months ago, as well as to Damien and Lorry.
And, of course, a special mention to the team’s coffee machine, which was undoubtedly
a key player in the success of my PhD.

J’aimerais remercier mes amis de Nouvelle-Calédonie, Max, Jason, Bastien, Julien, Pablo
et Killian—qui ont traversé la France pour assister & ma présentation. Je suis également
reconnaissant envers les amis que j’ai rencontrés a Strasbourg, en particulier Yona et
Anaélle, pour leur soutien et leur amitié.

Enfin, il m’est impossible de ne pas exprimer ma profonde gratitude envers ma famille
pour leur soutien indéfectible au cours de ces derniéres années, et bien au-dela. Je
remercie de tout cceur ma mére et mon pére, qui n’ont pas hésité a traverser le monde
pour étre présents lors de ma soutenance. Je suis également reconnaissant envers ma
sceur Emilie et son compagnon Clément qui m’ont donné mes neveux Ky-Mani et Noa,
qui m’apportent tant de joie malgré la distance qui nous sépare. Je tiens aussi a exprimer
toute ma gratitude & ma grand-mére Huguette, pour I'amour qu’elle m’a donné tout au
long de ces années. J’aurais aimé que mon grand-pére Jean puisse lire cet ouvrage ; je le
remercie de m’avoir permis de devenir la personne que je suis aujourd’hui.






PUBLICATION AND CONFERENCE LIST

LIST OF PUBLICATIONS

Quantum Equilibrium:

e V. Hardel, P.-A. Hervieux and G. Manfredi. Relaxation to quantum equilibrium
and the Born rule in Nelson’s stochastic dynamics, November 2023

DOI: https://doi.org/10.1007/s10701-023-00730-w

Classical analogues of quantum dynamics:

e V. Hardel, G. Manfredi, P.-A. Hervieux, and R. Goerlich. Shortcuts to adiabaticity
in harmonic traps : A quantum-classical analog, May 2024

DOI: https://doi-org.scd-rproxy.u-strasbg.fr/10.1103/PhysRevE.110.054138

POSTER SESSIONS AND CONFERENCES

e 2021: Summer School, From the first to the second quantum revolution : Theory
and applications (Peyresq): oral presentation

e 2022: Conference, (Institut Charles Sadron et Institut de Physique et de Chimie
des Matériaux de Strasbourg): oral presentation

e 2023: Conference, Centenaire de Louis de Broglie (Sorbonne, Paris): poster session

e 2024: Conference, Out of equilibrium nanothermodynamics with levitated particles

(Saclay): Poster session


https://doi.org/10.1007/s10701-023-00730-w
https://doi-org.scd-rproxy.u-strasbg.fr/10.1103/PhysRevE.110.054138




CONTENTS

Quote 1
Introduction 3
I Theoretical background in stochastic mechanics 11
1 Brownian motion and Langevin equation 17
1.1 Introduction to the Brownian motion . . . . . . .. .. ... ... ..... 18
1.1.1 Historical approach to the Brownian motion . . . . . .. ... ... 18

1.1.2 Brown’s observations . . . . . . . . . ... ... . e 18

1.2 Einstein’s approach to the Brownian motion . . . . . . ... ... ... .. 19
1.2.1 Diffusion of particles suspended in a fluid . ... ... ... .... 19

1.2.2  Heuristic derivation of Fokker-Planck equation . . . ... ... .. 20

1.2.3 Einstein’s relation . . . .. ... .. ... ... . 0., 21

1.3 Langevin’s approach to the Brownian motion . . . ... ... ... . ... 22
1.3.1 Coarse-graining of the system . . . . ... .. ... ... .. .... 22

1.3.2  Langevin equation . . . . .. .. .. ... ..o 23

1.3.3 Statistical properties of the Langevin force . . . . . .. ... .. .. 25

1.4 Solutions for the free Brownian particle . . .. .. ... ... ... .... 26
1.4.1  Solution for the velocity momenta . . . . ... ... ... ... .. 26

1.4.2  Solution for the position momenta . . . . ... ... ... ... .. 27

1.5 Overdamped limit of the Langevin equation . . . . ... ... .. .. ... 28
1.6 Fokker-Planck equation . . . . ... ... .. ... ... . 29
1.6.1 Temporal evolution of the probability density . . .. ... ... .. 29

1.6.2  Stationary solution of Smoluchowski equation . . . . . .. ... .. 29

1.7 Stochastic differential equation . . . . . ... ... ... ... ... ... 30
1.8 Conclusion. . . . . . . . . e e e 31
References . . . . . . . . . . e 33

2 Stochastic quantum mechanics 35
2.1 Introduction . . . . . . . . . . .. 36
2.2 Time reversibility for stochastic processes . . . . .. .. ... .. ... .. 37
2.2.1 Forward and backward processes . . .. ... ... ... ...... 37

2.2.2  Forward and backward derivatives . . . ... ... ... ...... 38

2.2.3 Relation between the forward and backward processes . . .. . .. 39

2.3 Definition of an acceleration law . . . . . . . . ... ... .. ........ 40

2.3.1 Acceleration law in phase-space . . . . . .. .. ... ... ..... 40



CONTENT

I1

2.3.2  Acceleration law of Nelson . . . . . ... ... ... .. .......
2.4 Nelson description of quantum systems . . . . . .. ... ... .......
2.4.1 Physical background . . . . .. ... oo
2.4.2  Derivation of the Schrédinger equation . . . . . .. .. .. ... ..
2.5 Numerical resolution of the Nelson equation . . . . .. ... ... ... ..
2.5.1 Discretization of the variables . . . . . . .. ... ... .......
2.5.2  Second-order Helfand-Greenside method . . . . .. ... ... ...
2.5.3 Methodology . . . . . . .. .
2.6 Numerical examples . . . . . . ... o
2.6.1 Free Gaussian wavepacket . . . . . . ... ... L.
2.6.2 Potential barrier . . . ... ... Lo
2.7 Conclusion. . . . . . . . . . e e
References . . . . . . . . . e e

Application of Nelson’s mechanics

Relaxation to quantum equilibrium

3.1 Introduction . . . . . . . . . . . e
3.2 Reminder of Nelson’s stochastic quantization . . . ... ... ... .. ..
3.3 Quantum equilibrium . . . . .. ..o
3.4 Simulationresults. . . . . ... L
3.4.1 Double-slit experiment . . . . . . . . .. ... ... 0.
3.4.2 Harmonic oscillator . . . . . . .. ... .. ... .. ... .
3.4.3  Uniform gravity field . . . . . .. ... ... 0 0o oL
3.5 Conclusion . . . . . .. L L
References . . . . . . . o L e
Quantum-classical analogues for optimisation
4.1 Introduction . . . . . . . . . . . e e
4.2  Quantum-classical analogy . . . . . . .. ... L oL
4.2.1 Fundamentals of the analogy . . .. ... ... ...........
4.2.2 Example: STEP protocol . .. ... ... ... .. .........
4.3 Optimal quantum protocols . . . . . . .. ... .. ... ... ... ...,
4.3.1 Optimisation method for classical systems . . . . . ... ... ...
4.3.2  Application of the method for quantum systems . . . . . . . .. ..
4.4 Optimization results . . . . . . . .. L
4.4.1 Cumulative energy as cost function . . . . .. ... ... ... ...
4.4.2 Dynamical phase as cost function . . . . . . ... .. ... ... ..
4.5 Conclusion. . . . . . . . . e
References . . . . . . . . . . e
Extension to open quantum systems

5.1 Imtroduction . . . . . . . .. L e
5.2 Kostin’sapproach . . . . . . ...
5.2.1 Stochastic version of Schrédinger equation . . . . . .. .. .. ...
5.2.2  Solving the SLE for the harmonic oscillator . . . . .. ... .. ..
5.3 Schuch’s approach . . . . . . . .. ... ..
5.3.1 Modification of the Madelung equations . . . ... ... ... ...
5.3.2 Application to the classical analogues . . ... .. .. .......

41

65

69
70
72
73
74
75
78
86
91
96

99
100
101
101
103
104
106
108
110
110
113
120
123




CONTENTS

5.4 Ruggiero’'s approach . . . . . ... .. o Lo 142
5.4.1 Theoretical aspects . . . . . . . . .. . ... o e 142

5.4.2 Thermodynamical aspects and classical analogs . . . . .. ... .. 147

5.5 Conclusion. . . . . . . .. e 154
References . . . . . . . oL 156
Conclusion 159
Appendices 167
A Langevin equation from a classical Caldeira-Leggett model 169
B Relation between forward and backward processes 173
C Crank-Nicolson method 177
D Computational methods for gradient estimation of phase 181
E Derivation of the Airy coefficients 185
F Classical work-optimal protocol 187
G Stochastic leapfrog algorithm 191
H Madelung’s strategy 193
I Energetics for overdamped dynamics 199
J Optical trapping of microscopic particles 201
K Iterative methods and Thomas algorithm 207
Bibliography 213
Résumé de thése (Frangais) 223

X1






QUOTE

Solving a particular physical problem has many similarities with making a trip. First,
we have to decide which route to take. Most of the times getting the one recommended
by a prestigious guide is enough. Sometimes other routes are even faster or allow us to
see beautiful views of the countryside while driving. FEventually, we can find unezxpected
roadblocks in the selected route and alternatives are mandatory. A good knowledge of a
particular territory implies that we are able to use different routes. When we know many
routes (and the connections between them), traveling along this particular region has no
mystery to us. In classical mechanics, for example, most of the times the recommended
route is taking the Newtonian one. In other occasions, because of the specific characteris-
tics of the trip, it is better to take the Lagrangian, the Hamiltonian or the Hamilton-Jacobi
routes. Quantum mechanics is not different. Many times practical problems are solved
with the formalisms associated to the so-called standard route, also known as the orthodoz
or Copenhagen route. The standard route itself has many subroutes. For example, the
quantum harmonic oscillator problem is cleanly and easily studied with the raising and
lowering operators of the (Heisenberg) matriz formulation, while many other problems
are better addressed directly with the (Schridinger) wave function formalism. Another
relevant route is the Feynman path integral formulation which is rarely the easiest way
to approach a nonrelativistic quantum problem, but which has innumerable and very suc-
cessful applications in quantum statistics and quantum field theory. Certainly, having a
good knowledge of all possible routes (and their connections) in the quantum territory is
very helpful when facing a particular quantum problem. However, there are routes that do
not appear usually in the guides. One of these unexplained routes is Bohmian mechanics.

ALBERT BENSENY, in Applied Bohmian mechanics [1].

[1] Benseny, A.; Albareda, G., et al. The Furopean Physical Journal D 2014, 68, 286.
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INTRODUCTION

La science remplace du visible compliqué par de
linvisible simple.

— J. Perrin

CONTEXT

The boundary between classical and quantum systems has long been a topic of interest
for physicists, offering deep insights into the fundamental nature of physical reality.
Classical mechanics, governed by deterministic laws such as Newton’s law, has been
highly successful in describing macroscopic phenomena, where objects follow predictable,
well-defined trajectories.

However, when studying systems involving a large number of particles, such as gases or
liquids, the deterministic approach of classical mechanics becomes inadequate due to the
sheer number of particles involved, of the order of Avogadro’s number.

As a result, scientists developed new approaches to model these types of systems, where
the description is no longer based on the motion of a single particle but on the statis-
tical behavior of a large number of particles. This led to the development of statistical
mechanics, which incorporates uncertainty into the description of physical systems. The
system is then characterized by a probability distribution that provides the chances of
finding a particle in a particular state. This probabilistic framework offers a more prac-
tical way to describe the behavior of systems with many particles. In theory, with an
infinitely powerful computer, it would be possible to track the motion of every particle
in the system and to achieve a deterministic description. However, in practice, this is
not feasible, making the probabilistic description provided by statistical mechanics the
best available approach.

In the early years of university, one important course is statistical mechanics, which is
generally taught for systems in equilibrium where the probability distribution is station-
ary. Later in their studies, students learn that the world is not always in equilibrium and
that the probability distribution can change over time. This introduces non-equilibrium
statistical mechanics, where the goal is to describe the behavior of systems that are not in
equilibrium. It is a very active field of research, aiming to understand how systems evolve
over time, how they reach equilibrium, and even how to control this process. This field
is usually introduced within the framework of stochastic mechanics, where the system’s
evolution is described by a stochastic process, incorporating randomness. Consequently,
a single trajectory is not sufficient to describe the system; instead, one must consider
a distribution of trajectories, which provides the probability of finding the system in a
specific state at a given time.



INTRODUCTION

We transition from a purely deterministic description of systems to a probabilistic one.
This probabilistic nature arises from our limited knowledge of the state of every particle
in the system and our inability to track the motion of each particle.

At the same time, another crucial course is quantum mechanics, the theory describing
the behavior of matter at microscopic scales. In this course, students learn that the
description of particles departs from the concept of trajectories, as the state of a particle
is fully described by an object called the wavefunction. According to the Copenhagen
interpretation, the wavefunction is a mathematical tool that provides the ampitude of
probability of finding a particle in a particular state (Born’s rule). Thus, quantum
mechanics is inherently a probabilistic theory, where the outcome of an experiment is
not deterministic but probabilistic.

While the same term probability is used in both statistical mechanics and quantum me-
chanics, the interpretation is different. In statistical mechanics, probability arises from
our lack of knowledge about the state of the system and is a tool used to simplify model-
ing. In contrast, in quantum mechanics, probability is intrinsic to the nature of particles.
This distinction is fundamental to the two theories. Quantum theory does not provide
the origin of this probability; it is assumed to be a fundamental property of particles.
Despite these differences, there are some similarities in the way probabilities are treated
in both contexts. In both cases, the probability is the solution of a first-order differential
equation, the diffusion equation in statistical mechanics and the Schrodinger equation in
quantum mechanics (for a free particle):

8;; =DV?*P  and %‘f = z'%v%.

However, a key difference is that in quantum mechanics, the diffusion coefficient" is imag-
inary, while in statistical mechanics, it is real. This difference is fundamental because, in
quantum mechanics, the wavefunction represents the probability amplitude, and the ac-
tual probability is the square of this wavefunction. This distinction leads to interference
effects in quantum mechanics, which are absent in statistical mechanics.

However, there are formulations of quantum mechanics that offer alternative interpreta-
tions of probabilities. Notably, Bohmian mechanics, developed by Louis de Broglie and
later David Bohm, provides a deterministic description of quantum mechanics, but at
the cost of making it non-local in space. This formulation reintroduces the concept of
trajectories for quantum particles, guided by the wavefunction. These trajectories obey
deterministic equations of motion, with the probability arising from the uncertainty of
the initial conditions of the system. The particle trajectories are distributed randomly
according to the probability distribution given by the square of the wavefunction. This
perspective closely resembles the Newtonian viewpoint, where particles are described by
deterministic trajectories.

There is another formulation, similar in concept to Bohmian mechanics but with a differ-
ent set of axioms, which introduces probability in yet another way. This is the Nelsonian
formulation, where particles are still described by trajectories, but these trajectories are
stochastic. Here, probabilities emerge not only due to the lack of knowledge of the initial
conditions but also from the intrinsic randomness of the trajectories themselves. How-
ever, this formulation does not provide an origin for these fluctuations; they are simply
assumed to exist. Nelson suggested that, similar to the Langevin description of Brown-

'In fact, the Laplacian term in the Schrédinger equation is dispersive, as the diffusion coefficient
is imaginary. Rather than damping the amplitude of the wavefunction, as a real coefficient would, it
instead induces dispersion.




ian motion, the Nelsonian theory could be an effective theory, pointing toward a deeper
underlying theory of quantum mechanics.

These approaches are generally not often used in current research, as the standard formu-
lation of quantum mechanics is highly effective and provides an excellent description of
physical phenomena. Many authors discuss these alternative formulations from a philo-
sophical perspective, but since they are equivalent to the standard formulation, they are
rarely applied in practice. However, although ontological questions may be interesting
to explore, we will see throughout this thesis that changing the point of view can lead to
powerful tools for describing quantum systems, which might not naturally emerge from
the standard formulation. The ability to derive new techniques for controlling quantum
systems would add value to these alternative formulations of quantum mechanics and
offer practical benefits. Clearly, this does not aim to replace the standard formulation
but to complement it and provide new insights into quantum systems.

This thesis will specifically explore such potential advancements by applying one of these
alternative frameworks: the Nelson formalism.

OBJECTIVES AND CHALLENGES

The main goal of this thesis is to develop new tools for understanding, controlling, and
manipulating quantum systems, both for fundamental research and practical applica-
tions. We will explore powerful optimization methods for classical systems and see how
they can be adapted for quantum systems using the Nelsonian formalism, which helps
establish classical analogues of quantum systems.

The problematics we will address are:

What is the Nelsonian formulation of quantum mechanics, and how does it differ
from the standard approach?

How can its mathematical similarity to stochastic mechanics help to xestablish a
quantum - classical analogy?

How does this analogy allow us to transfer classical optimization methods to the
quantum domain?

How can we extend these methods to control open quantum systems?

A key challenge in this work is to create a solid mathematical connection between classical
and quantum systems, ensuring that methods developed for classical systems can be
effectively applied to quantum ones. This requires a strong grasp of both classical and
quantum mechanics, as well as the mathematical tools used to describe them.

We will primarily focus on the control of the quantum harmonic oscillator, a simple
and fundamental system in quantum mechanics that can be easily manipulated. The
optimization methods we develop will be particularly useful for controlling such systems.
We aim to design protocols for the harmonic potential parameters that allow us to reach
a target state faster than adiabatic processes while minimizing a specific cost, depending
on the desired optimization. The effectiveness of our methods will be demonstrated by
comparing them to other control techniques across different cost functions, illustrating
the versatility and efficiency of our approach. To our knowledge, no other technique has
proven optimal for a general cost function.




INTRODUCTION

Controlling the dynamics of quantum systems opens up numerous practical applications.
For instance, it can improve the performance of quantum computers, enhance the effi-
ciency of quantum sensors, and aid in the development of new quantum technologies.
Such control is essential for the progress of quantum technologies, and the methods in-
troduced in this thesis could serve as valuable tools for achieving this goal.

The final step of this work will be to extend these control methods to open quantum
systems, a challenging task due to their complexity compared to closed systems. These
methods could lay the groundwork for new ways to control open quantum systems, with
implications for a variety of applications, from thermal machines to quantum informa-
tion processing. As technology advances and devices like nano-process chips and nano-
thermal engines become miniaturized, understanding thermodynamic relationships at
the microscopic level—such as heat dissipation and work efficiency—becomes crucial due
to quantum effects. Quantum heat engines (QHEs), which convert thermal energy into
mechanical work using quantum systems like single particles or qubits, play a significant
role in quantum thermodynamics and nanotechnology. A key open question is whether
quantum effects can enhance QHE performance, and the development of new control
protocols for open quantum systems could provide initial insights into this problem.

STRUCTURE OF THE MANUSCRIPT

The manuscript is structured into two main parts. Part. | provides the theoretical foun-
dation by presenting the Langevin and Nelson theories, which are central to understand-
ing the dynamics of classical and quantum particles, respectively. Part. [I then applies
these theories to study quantum systems in various contexts, covering both foundational
questions and practical applications.

Part. | is organized into two chapters. In Chap. |, we introduce classical Brownian
motion, starting with its historical background from Brown to Einstein and Langevin.
We then develop the necessary mathematical framework, focusing on the Langevin and
Fokker-Planck equations, which describe the stochastic dynamics of particles. A detailed
analysis of the overdamped regime of Brownian motion and the role of Wiener processes,
which are key in stochastic calculus, sets the stage for exploring quantum analogs in
Part.

In Chap. 2, we shift our focus to quantum mechanics and introduce Nelson’s stochastic
formalism, which describes quantum particles through well-defined stochastic trajecto-
ries. We derive the formalism used to describe quantum systems within the Nelsonian
framework, highlighting the similarities and differences with the standard formulation of
quantum mechanics. Examples of quantum systems described by the Nelsonian formal-
ism are then provided, demonstrating its advantages, particularly in describing tunneling
phenomena, where it offers an intuitive perspective on the time required for a particle to
cross a barrier.

With these theoretical tools in place, Part [, consisting of three chapters, aims to apply
Nelson’s theory from two perspectives: a fundamental one and a practical one.

Chap. 3 explores one of the foundational assumptions of quantum mechanics: Born’s rule.
We show that this assumption is not necessary within the Nelsonian formalism, where the
probability density is not necessarily tied to the squared modulus of the wavefunction.
We then introduce the concept of quantum equilibrium, a state where Born’s rule is
satisfied, and demonstrate that if a system is initially not in quantum equilibrium, it will




eventually reach it over time. We investigate the convergence of a quantum system to
quantum equilibrium and calculate the time required to reach this state for three different
quantum systems, comparing it to the characteristic times of each system. The goal is to
estimate the order of magnitude of the convergence time to determine whether it might
be possible to observe this process experimentally, assuming an initial state that is out
of equilibrium.

Following this theoretical discussion, Chap. 4 shifts the focus to practical applications.
Highlighting the mathematical similarities between the Nelson equation and the over-
damped Langevin equation, we demonstrate that the Nelsonian formalism can be used
to develop a new technique for the control of quantum systems, leveraging classical ana-
logues of the quantum system. Specifically, this technique enables the efficient transition
of a quantum system from an initial to a final stationary state in less time than required
by an adiabatic (quasi-static) process. We apply this method to control the stiffness of
a harmonic potential and derive the optimal protocol to reach a target stiffness, mini-
mizing both the duration of the process and an arbitrary cost function, which is kept
general in the derivation. We then apply the technique to two different cost functions:
the cumulative energy over the protocol and the evolution of the dynamical phase of the
wavefunction during the protocol. Finally, we compare our protocols to those derived
from other techniques to demonstrate the efficiency of our approach.

Finally, in Chap. 5, we explore the extension of the Nelsonian formalism to open quan-
tum systems. Our goal is to apply the techniques from the previous chapter to control
open quantum systems, with the aim of creating optimal cycles for quantum engines.
To achieve this, we examine three different effective theories of open quantum systems
and derive the corresponding Nelson equations for each. We demonstrate that these ap-
proaches are promising and could potentially be used for the control of open quantum
systems.

We conclude the thesis by summarizing the main results and discussing potential future
research directions in this field.







PART 1

THEORETICAL BACKGROUND
IN STOCHASTIC MECHANICS







PREFACE OF PART 1

Since traveling was onerous (and expensive), and
eating, hunting, and wenching generally did not fill
the 17th century gentleman’s day, two possibilities
remained to occupy the empty hours, praying and
gambling; many preferred the latter.

— E. W. Montroll

Although calculations of probability were undertaken in Roman times, according to
Libri [2], it was in Dante’s Divine Comedy, written at the beginning of the 14th century,
that one of the earliest explicit enumerations of the different probabilities associated with
the result of throwing three dice was presented [3|. The theory of probability was born
from the need to understand the games of chance and the first book on probability theory
was written by Cardano [4] in 1526. It was not until the 17th century that the first math-
ematical foundations of probability theory were laid in the exchange of letters between
Pascal and Fermat [5]. Since then, the theory of probability has been developed and has
become a fundamental tool in many fields of science, including physics. In physics, the
concept of probability has two distinct origins. Firstly, in statistical mechanics, probabil-
ities are employed due to the lack of complete knowledge about all the degrees of freedom
within a system. This approach is necessary because it is practically impossible to track
every particle’s position and momentum in a macroscopic system. Consequently, statis-
tical mechanics uses probabilities to describe the average behaviour of a large number
of particles, providing a statistical understanding of thermodynamic properties such as
temperature and pressure. A classic example is that of Boltzmann [6] in the 1870s, who
employed the Maxwell-Boltzmann distribution to describe the probability of finding a
molecule with a certain speed in a perfect gas. Secondly, probabilities emerge from the
intrinsic uncertainty inherent in quantum systems. These are governed by the principles
of standard quantum mechanics, where particles exhibit wave-like behaviour and their
properties, such as position and momentum, are fundamentally uncertain. This intrinsic
uncertainty is quantified by probability distributions derived from the wavefunction, as
articulated by the Heisenberg uncertainty principle. These distributions reflect a funda-
mental aspect of nature. In this part, we will consider both situations. In Chapter 1, we
will provide an overview of statistical mechanics, particularly the stochastic mechanics
through the Langevin equation and the Fokker-Planck equation. In Chapter 2, we will
examine the foundations of quantum mechanics and demonstrate how it is possible to
derive the Schrodinger equation from Nelson’s mechanics, a stochastic approach to quan-
tum mechanics.
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CHAPTER 1

BROWNIAN MOTION AND LANGEVIN EQUATION

These motions were such as to satisfy me, after
frequently repeated observation, that they arose

neither from currents in the fluid, nor from its

gradual evaporation, but belonged to the particle
itself

— R. Brown

In this chapter, we introduce the fundamental concepts of Brownian motion, tracing its
historical development and mathematical modeling. We begin in Sec. by providing an
overview of Brown’s observations and the significance of Brownian motion in physics. In
Sec. , we discuss Einstein’s theoretical explanation of Brownian motion, deriving the
diffusion equation and introducing the Einstein relation that connects the diffusion co-
efficient to measurable physical quantities. Langevin’s dynamical approach is presented
in Sec. , where we formulate the Langevin equation and discuss the coarse-graining
technique used to model the random forces acting on a Brownian particle. In Sec. 1.4,
we solve the Langevin equation for a free Brownian particle, analyzing the behavior of
velocity and position momenta over time. The overdamped limit of the Langevin equa-
tion is explored in Sec. 1.5, leading to a simplified description focusing on the particle’s
position. We then introduce the Fokker-Planck equation in Sec. 1.6, discussing its deriva-
tion from the Langevin equation and its role in describing the temporal evolution of the
probability density. Finally, in Sec. 1.8, we summarize the key findings of the chapter,
emphasizing the equivalence between the Langevin and Fokker-Planck approaches and
their importance in the study of stochastic processes and Brownian motion.

Contents




1.1.1

1.1.2

CHAPTER 1

INTRODUCTION TO THE BROWNIAN MOTION

Historical approach to the Brownian motion

Brownian motion, also known as pedesis, is a fundamental physical phenomenon first
observed in 1827 by the botanist Robert Brown [7]. It describes the erratic and random
motion of microscopic particles when suspended in a fluid (liquid or gas). These seem-
ingly chaotic motions result from collisions with the much smaller, fast-moving molecules
of the fluid, which are themselves in constant thermal motion. Brownian motion repre-
sents a fundamental concept within the field of statistical mechanics, and plays a pivotal
role in numerous scientific disciplines, including physics, chemistry, biology, and finance.
The concept of stochastic modelling, which forms the basis of our understanding of
Brownian motion, emerged at the end of the 18th century, primarily in the field of eco-
nomics. The prediction of financial market risks necessitated a probabilistic description
of economic processes and the control of risks and odd outcomes in gambling games, as
elucidated in [8]. A notable contribution to this field was made by Louis Bachelier in
his 1900 Ph.D. thesis [9], which was completed under the supervision of the renowned
mathematician Henri Poincaré. Bachelier’s thesis included numerous results pertaining
to stochastic processes, notably providing an early solution to the Brownian motion prob-
lem, although this was not recognised as such at the time. The theoretical foundation
for Brownian motion was subsequently reinforced by Albert Einstein in 1905 [10] and
independently by Marian Smoluchowski. They provided the first mathematical models
for this physical system, which explained that the random motion of particles like pollen
grains in a fluid is due to unpredictable collisions with solvent molecules. Although each
collision is individually insignificant, collectively they result in the macroscopic random
motion observed. In 1908, Jean Perrin, a French physicist, played a pivotal role in exper-
imentally validating Einstein’s theoretical predictions [11]. His meticulous experiments
provided empirical evidence for the molecular-kinetic theory of heat, thereby supporting
the existence of atoms and molecules. Perrin’s work not only validated the existence
of Brownian motion but also led to his receipt of the Nobel Prize in Physics in 1926.
Paul Langevin [12] made a significant contribution to the field of physics by develop-
ing a more comprehensive description of Brownian motion. In 1908, he introduced the
Langevin equation, which describes the evolution of the velocity of a particle under the
influence of frictional and random forces. This equation provides a more detailed under-
standing of the dynamics involved in Brownian motion and is a cornerstone in the field
of stochastic processes. It was in 1920 that Norbert Wiener [13], an American mathe-
matician, provided a precise mathematical description of Brownian motion, which led to
the eponymous Wiener process being named after him.

The phenomenon of Brownian motion offers profound insights into the behaviour of
particles in diverse systems and contributes to advancements across multiple scientific
and mathematical disciplines. In the following sections, we will present a mathematical
description of Brownian motion and present the Langevin equation in detail.

Brown’s observations

During its experimental observation, Brown noted several properties about the motion
of the pollen particles. The most important ones are listed:

While continuous, the motion is erratic, irreqular and appears to be not differen-
tiable so that non global velocity can be defined.
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Even when particles are close to each other, they move independently, the interac-
tion between them looks purely elastic.

The motion is universal, i.e. neither the molecular composition of the fluid nor the
nature of particles affect the existance of the motion.

When the temperature of the fluid increases, its viscosity decreases or the mass of
the particle decreases, the motion of the particles becomes more intense.

The motion of the particle nerver stops, the system is out-of-equilibrium.

These observations only form a qualitative description of the Brownian motion. For a
quantitative description, we need to introduce a mathematical framework, as Einstein
and Langevin did in the early 20th century.

| EINSTEIN’S APPROACH TO THE BROWNIAN MOTION

As previously mentioned, Einstein provided the first mathematical model for Brownian
motion in one of his historical articles published in 1905. He did not directly explain
Brown’s observations but suggested that the phenomenon could be related to the kinetic
theory of heat and the incessant collisions of fluid molecules with the suspended particles.
Einstein considered an ensemble of particles suspended in a liquid, suggesting that water
might be a suitable medium. He postulated that the particles perform an irregular motion
due to the collision with the molecules of the liquid. He did not want to treat each particle
individually, but to describe the particles globally with a probabilistic approach. With
this article, he sought to address two questions: how far does a Brownian particle travel
mn a given time interval and how Brownian motion is related to other physical quantities?
Indeed, if the theoretical predictions of Einstein were to be verified, it would suggest that
the classical thermodynamic approach may not be entirely valid on a microscopic level.
As its approach was based on hypotheses involving the atomic nature of matter, it would
provide strong evidence for the existence of atoms and molecules. He then wanted to
express the parameters of its approach to physical and measurable quantities, so that his
theory could be tested experimentally.

Diffusion of particles suspended in a fluid

For the sake of simplicity, we will suppose that the system is in a one-dimensional space,
so that the positions of the particles are described by a single variable x. Let us denote by
p(z,t) the probability density of finding a particle at position x at time ¢. Under certain
assumptions, such as the Markovian nature of the process—a concept that will be defined
later—Einstein demonstrated that the probability density satisfies a partial differential
equation, which is a deterministic equation. This equation is a diffusion equation of the

form
2

0 0
—plz,t) = D—p(x,t 1.1
where D is the diffusion coefficient, having the dimension [D] =L? T—!. This last pa-
rameter is a direct measure of the intensity of the Brownian motion ¢.e. the greater
it is, the more intense the motion is. This result establishes a clear link between the
Brownian motion and the diffusion of particles in a fluid. If we assume that all particles
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are initially at the same position xp, with p(x,0) = d(z — x¢), then the solution to the
diffusion equation at times t > tq is given by the Gaussian distribution

B 1 exn [ (v — 0)?
Pl ) = 2702 (t) p< 202(t) ) (12

The variance of the distribution is represented by the equation o2 = ((z(t) — 20)?) =
2Dt, which denotes the spread of particles in space. This spread increases linearly over
time, a characteristic of diffusive motion. The variance essentially measures the extent
to which particles undergoing Brownian motion disperse over time. This dispersion is
monitored by the diffusion constant D. Moreover, the variance of the distribution is the
average value of (z — )2, which signifies the average squared distance from the initial
position zg. Thus, the diffusion coefficient D directly correlates with the expectation
value over all possible particle trajectories. Furthermore, the variance provides insight
into the distance a Brownian particle can travel over a given time interval t. This rela-
tionship highlights the interconnection between the diffusion process, which is inherently
irreversible, and Brownian motion, which arises from random collisions of particles. The
irreversibility of diffusion is directly linked to the random forces exerted on the Brownian
particle due to collisions with water molecules. In summary, the variance in the distribu-
tion offers a comprehensive view of particle spread in diffusive motion, bridging the gap
between microscopic random collisions and macroscopic diffusion characteristics.

1.2.2 Heuristic derivation of Fokker-Planck equation

Let us consider a simple model that describes the random motion of a Brownian particle
in a one-dimensional space and that allows to derive the Fokker-Planck equation: the
random walker. We discretize the space in a lattice with a spacing Az and the time in
discrete steps of At. The probability of finding a particle at position x; = iAx at time
t" = nAt is denoted by P(x;,t") = P, for i € Z and t € N. The random walker model
is based on the following assumptions:

Markovian assumption: the probability of the particle moving from z; to z; at time
t"*+1 depends only on the position of the particle at time ¢” and not on its previous
positions.

Locality assumption: The particle can jump to adjacent positions or stay at the
same position between two successive time steps (nearest neighbours).

Homogeneity assumption: the transition probabilities are constant in space and
time.

The probabilities associated with these movements between time " and "' are defined
as follows. The probability that:

e the particle remains at x; is a,
e the particle moves from x; 1 to x; is b,
e the particle moves from z;11 to x; c.

The system is represented in Fig. 1.1. Given that the total probability must sum to one,
we have:
a+b+c=1 (1.3)
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PMY =P} +aP] + 1
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FIGURE 1.1: The random walker model.

Additionally, we assume symmetry in the transition probabilities, such that
b=c. (1.4)

To derive the equation governing the evolution of P(x;,t"), we consider the probability
balance at position z}'. The probability of finding the particle at x; at time t"tl s
given by the sum of the probabilities of the particle arriving at z; from x;_1, x;11, and
remaining at x;:

P = aP! + P, + P! ,. (1.5)

Using Eq. (1.3) and Eq. (1.1), we can rewrite the probability balance equation as
Pt — P =[Py + Py, —2P] (1.6)

We recognise the finite difference expression of the time derivative (left-hand side) and

the Laplacian (right-hand side) of P. Dividing by At and taking the limit At — 0 and

Az — 0, assuming ¢ (Az)2/At remains finite, we obtain the Fokker-Planck equation
OP(z,t) DBQP(a;,t)

ot 0z2 (1.7)

where A2
T

D=c"" 1.8

N (1.8)

is the diffusion coefficient. This equation describes the time evolution of the probability
distribution P(z,t) for finding a particle at position x at time ¢ in a diffusive process.

1.2.3 Einstein’s relation

The second objective of Einstein was to relate the Brownian motion to other physical
quantities in order to test experimentally his theory. To achieve this, he needed to express
the parameters of the system, knowing the diffusion coefficient, in terms of macroscopic
quantities. These are the fluid temperature T, its viscosity n, the mass m of the particle
and the radius of the particles a. It is common to introduce the friction coefficient, defined
as v = 6mna, which is a measure of the resistance of the fluid to the motion of the particles.
Finstein began by assuming that, despite the particles being large molecules, they can
be described by applying statistical mechanics. It is also supposed that the particles
are not interacting with each other, as they are so few in the experiments that they can
be considered isolated from each other. Consequently, if one considers an ensemble of
Brownian particles in suspension in water, it is then possible to treat them as an ideal
gas that exerts a partial pressure of P = nkgT, with n being the number of particles
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per unit volume and kp the Boltzmann constant. It can then be assumed that a force F'
causes a gradient of pressure, with the equilibrium condition being that F'n = kgT0.n.
Furthermore, the Stock’s law states that when a particle is in motion in a liquid, it is
subject to a friction force proportional to its velocity, that is to say f = —m~yv, where
the velocity is noted v. By combining these two equations, one can write the Newton’s
equation of motion as ma = —m~yv + F. If we suppose a steady state, then it turns out
that v = F/m~y = kgT'0,n/vy. The final step consists of a flux balance. The force F
generates a flux of particles Jp = nv, where n is the particle number density and v is
the particle velocity. According to Fick’s law, the pressure gradient generates another
flux Fp = —D0.n, where D is the diffusion coefficient. Because equilibrium is assumed,
both fluxes compensate each other, so that Jp + Jp = 0. By identification, one obtains
the Einstein relation.

ksT  RT
M~y 6mnaN,’

where R = kN, is the ideal gas constant and A, the Avogadro number. It is clear
that D represents a balance between the fluctuations in particle motion due to ran-
dom forces (through kT') and the frictional forces that tend to impede particle motion
(through «). The Einstein relation represents a specific instance of the more general
fluctuation-dissipation theorem, which was derived approximately fifty years later. With
the expression of the diffusion coefficient, we can now rewrite the expression of the vari-
ance of the distribution of the particles as 02(t) = 2Dt = 2RTt/6wanN,. As the o2 is a
quantity that can be measured in an experiment, it is possible to determine the Avogadro
constant, which was not known at the time. Finally, Einstein’s theory provides the value
of the diffusion coefficient and an initial understanding of the nature of the erratic motion
of Brownian particles. However, it does not provide information about the dynamics of
the particles. If one considers the typical displacement Vo2 of the particles after a time

Vo2 W 1 . . .
N T In the limit of zero time interval, the

D=

(1.9)

interval At, then one can write that
displacement of the particles becomes infinite. Consequently, in order to describe the
motion of the particles, it is necessary to consider non-differentiable trajectories, as is
the case with stochastic processes. This is the objective of the Langevin equation, which
will be presented in the subsequent section.

| LANGEVIN’S APPROACH TO THE BROWNIAN MOTION

In 1908, Paul Langevin proposed a model of Brownian motion based on the dynamics
of the macroscopic Brownian particle. However, given that the interactions with the
fluid’s particles are microscopic and that a significant number of collisions occur before a
macroscopic displacement of the Brownian particle, it is necessary to model the motion
of the Brownian particle using a probabilistic approach.

Coarse-graining of the system

In modelling the motion of a Brownian particle (BP) in a fluid, it is assumed that the
BP’s degrees of freedom change slowly over time in comparison to the rapid microscopic
motion of the fluid particles. The force exerted on the Brownian particle (BP) by the fluid
can be approximated as an average force derived from the collisions between the fluid
particles and the BP. This process is known as coarse-graining, whereby the fast-moving
interactions of the fluid particles are averaged out to provide a simplified, mesoscopic
description of the BP’s motion. This averaging process occurs over a specific time interval,
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denoted as Tgatn, which represents the characteristic time scale of the microscopic motion
of the fluid particles. The selection of this value is of great consequence. It is essential
that the chosen time interval is sufficiently long to allow for the averaging out of the
rapid degrees of freedom of the fluid particles, while still ensuring that the motion of the
BP is not significantly affected. In most cases, the shortest time scale, denoted as 7y, is
associated with the solvent particles colliding with the BP. This typically occurs around
10~'2 seconds. The average velocity of the BP reaches its equilibrium value over a time
scale, denoted as 7, which is inversely proportional to the damping coefficient, ~y, of the
BP in the fluid. The system can be described in different ways, depending on the value
of Tath selected. If Tp,tn is selected to be larger than g, the motion of the BP can be
described in terms of its position only, as proposed by Einstein. Conversly, if mg.¢n < 73,
the Brownian particle’s motion is described by both its position and velocity. This is
the principle of coarse-graining, which results in the appearance of a random force in the
Langevin equation.

The relevant time scales in the system are then:

the time scale of the fluid particles’ degrees of freedom, that is represented by 75,

the time scale of the BP’s velocity relaxation, denoted as 73, that is defined as the
inverse of the damping coefficient ~,

the coarse-graining time scale, denoted as Tgath, that is employed for the description
of the BP by its positional data alone (Einstein’s approach or overdamped regime),

the coarse-graining time scale, denoted as Téath, that is employed to describe the
BP by its position and velocity, (Langevin’s approach or underdamped /inertial
regime).

For accurate modeling, one has 74, <« T;];jath <Lmp =1/« Tgath. A visual representation
of these different time scales is shown in Fig.

The following section will present the Langevin equation, which describes the motion of
the Brownian particle in a fluid. The action of the fluid particle is modelled by a random
force, which is the result of the coarse-graining of the system. The Langevin equation is
employed in numerous fields of physics, as it can be utilized to describe a diverse range
of systems, from colloidal particles to biomolecules [14]. A straightforward derivation of
the Langevin equation is provided in Appendix A, where the coupling of the Brownian
particle with the fluid is treated in a manner analogous to that of the Caldeira-Leggett
model |15, 16].

Langevin equation

As previously stated, the collision between the BP and the fluid particles results in an
ever-changing and random force acting on the BP, even when the fluid is in equilibrium.
It follows that the position x and velocity v of the BP should be modelled by a stochastic
process [17] whose dynamics is driven by the random force emerging from the coarse-
graining of the system. The equation of motion for the one-dimensional BP will be
derived herewith; the generalisation to three-dimensional space is straightforward. As
is the case with any classical system, the equation of motion is obtained by means of
Newton’s second law. In order to do so, it is necessary to express all the different forces
acting on the BP.

Let us suppose that a force F'(z,t), deriving from a potential V' (z,t) that depends
on the position of the BP and possibly on time, acts on the BP.

23



CHAPTER 1

Solvent particles
(mass m)

Solvent
(structureless medium)

N
N
R
\
N
H~'

Coarse-graining (Langevin)

Coarse-graining (Einstein)

FIGURE 1.2: The above visual representation depicts the various time scales involved in the
coarse-graining process of a Brownian particle (BP) of mass M in a fluid composed of particles
of mass m. The degrees of freedom of the fluid particles change over a time interval, designated
as Ty, which is exceedingly small in comparison to the time scale of the BP’s degrees of freedom,
represented by 7g for the velocity. The averaging of the fluid particles’ motion is realised over a
time interval, designated as Tpatn, Which is dependent upon the desired level of detail required
to describe the motion of the Brownian particle. If the time scale of the bath is equal to the
Langevin time scale, 7., , then the Brownian particle (BP) is described by both its velocity
and its position. This is known as the Langevin description. Conversely, if Tatn = Tgath, then
only the position of the BP is relevant, and the description is known as the Einstein description.
Note that as v — oo, only the Einstein description remains.

If the BP has a velocity v relative to the fluid, it encounters a larger number of fluid
particles coming from the direction of its motion than from the opposite direction.
Moreover, this imbalance is amplified as the velocity v, increases. It is therefore
necessary to introduce a friction force that acts against the direction of motion and
increases in magnitude with the velocity. The simplest assumption is that this force
is proportional to the velocity. This is the same force as the viscous force —M~v
exerted by a Newtonian fluid on a moving particle. This expression is proportional
to the viscosity, resistance, of the fluid, which is precisely the relationship observed
in Sec.

The last force is the fluctuating random force that arises from the coarse-graining
of the collisions between the BP and the fluid particles. This force is known as
the Langevin force F,(t), and it is assumed to be independent of the position and
velocity of the BP.

It should be noted that as the friction force and the random force originate from the same
microscopic phenomenon, a relationship between them is to be expected. The equation
of motion of the BP is then given by

Newton friction random

Mo(t) = F(x(t),t) — Myo(t) + Fi(t), (1.10)
&(t) = v(t),

where the dot denotes the derivative with respect to time. This is the Langevin equation,
which is a linear random differential equation. It should be noted that the solutions x
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and v will also be stochastic processes. Consequently, each realisation of the Langevin
approach, even with the same initial conditions, will result in a different solution. Then,
the general behaviour of the BP is not given by one stochastic trajectory, but rather by
averaged quantities obtained by averaging over a multitude of realisations of the Langevin
equation Eq. ( ). These include the mean position and the mean velocity, the mean
square displacement, the mean square velocity, the correlation functions, and so forth.
In the following, the mean values over the possible fluid’s microscopic configuration will
be denoted by the symbol (-). At this point, it is necessary to specify the statistical
properties of the Langevin force Fi,.

Statistical properties of the Langevin force

Given that the position and velocity of the BP are measured in the frame of the fluid,
which is assumed to be at rest, the BP must be motionless on average when no external
force acts on it. In this case, it is necessary that the average value of the Langevin force,
denoted by Fi,(t), vanishes. Additionally, since it is assumed that the Langevin force is
independent of the BP’s position and velocity, this must hold true even if the particle is
moving. Thus, we have

(FL,(t)) =0 (1.11)

in all cases. Moreover, the stochastic process must be stationary, that is to say, its
statistical properties must remain the same when subjected to time translation. This
consequently implies that the autocorrelation function of the Langevin force is solely
dependent on the time difference,

(FL(t+7)FL(t + 7)) = (FL@t)FL(t)) . (1.12)

There are numerous potential autocorrelation functions, but the most prevalent is the
white noise, which is a Gaussian process with a Dirac distribution as its autocorrelation
function. The term Gaussian process denotes that at each time point, F1,(t) follows a nor-
mal distribution. The term white noise signifies that the Langevin force is uncorrelated
in time, that is to say, the correlation function is a Dirac distribution.

(FL(t)FL(')) = 2D5(t —t') (1.13)

where D represents the intensity of the Langevin force. In some cases, it is more appro-
priate to work with an autocorrelation function that is correlated in time, with a finite
correlation time 7.. In this case, the autocorrelation function is given by

(FL(t)FL(t")) = 2Dé. (t — 1) (1.14)

where 4. (t — t’) is a function peaked around ¢ = ¢’ with a width 7. and has an integral
equal to one. We call this type of noise coloured noise, 1/7. corresponding to the fre-
quence of colour. Generally, 6, is taken as a Gaussian function. Note that if 7. — 0, we
recover the limit of the white noise. In the following, we will restrict to the case of the
white noise.

In summary, the Langevin force that we will consider is fully characterized by the fol-
lowing properties:

e Stationarity: The stochastic process is stationary, meaning that its statistical prop-
erties, such as the mean and variance, are invariant under time translation.
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e Gaussianity: The process is Gaussian, meaning that at each time point, Ff(t)
follows a normal distribution, and all moments of order higher than two are zero.

o Markovianity: The process is Markovian, where the future evolution of the system
depends only on its current state, not on its history.

o White Noise: The Langevin force is uncorrelated in time, with an autocorrelation
function represented by a Dirac delta function, (Fy,(¢)Fy(t')) = 2D4(t — ).

| SOLUTIONS FOR THE FREE BROWNIAN PARTICLE

Let us assume that the BP is not subjected to any forces other than friction and the
random force, i.e. F(x,t) = 0. It is interesting to study the relaxation of the velocities
and positions of the BP in this case, as it will give us information about the diffusion
process of the BP. The Langevin equation Eq. ( ) becomes

(1.15)

{M@(t) = —Mryo(t) + FL(1),
i(t) = v(t).

and the velocity is, in this case, an Ornstein-Uhlenbeck process [18], as the only forces are
the friction, linear in v, and the white noise. Then, the process is stationary, Markovian
and Gaussian.

Solution for the velocity momenta

If we denote the initial velocity of the BP by wvg, the solution of the first equation of
Eq. (1.15) is given by

t
v(t) = voe "t + % /0 dr e T R (7). (1.16)

and it is possible to compute the mean velocity (v(t)) and the mean square velocity
(v%(t)). As the mean of the random force is zero, we have

(v(t)) = voe™ " (1.17)

and it is clear that the mean velocity relaxes exponentially to zero with a characteristic
time 73 = 1/~. It corresponds to the time needed by the BP to forgets its initial velocity.
The velocity variance is given by

D o
o2(t) = ([o() ~ (w®)) = 3 (L), (1.18)

Initially it is zero, since the velocity of the BP is perfectly known at t = 0. At very small
times (with respect to 7g) it increases linearly with time, indicating that D is a diffusion
coefficient in the velocity space, until it reaches a plateau at D /M~ for large times. Since
the mean velocity is also zero at large times, the variance of the velocity is equal to the
mean square velocity. It follows that the mean kinetic energy of the BP at large time is

(B(1)) := 5 M (1))

D

= 1.19
e (1.19)
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When the system is in equilibrium, according to the equipartition of energy, the average
kinetic energy must be equal to kgT'/2, where kp is the Boltzmann constant and T is
the temperature of the fluid. Thus we have a definition of D as

D = M~kgT. (1.20)

This relation connects the amplitude of the random force, represented by the diffusion
coefficient, to the damping coefficient, v, which accounts for the friction with the fluid.
This is an example of the fluctuation-dissipation theorem.

Solution for the position momenta

If we now consider the second equation of Eq. ( ), we can calculate the mean position
(z(t)) and the mean square displacement (z?(t)), or the variance ([z — (z(t))]*). The
solution of the equation is given by

t

vo —t 1 —y(t—T)

x(t) =x0+ —(1—e7 +/ dr <1—e K >FL(T). (1.21)
v ( ) M~ Jo

From this equation, it is clear that the position of the BP is also a stochastic process.

The mean position is given by

(x(t)) = w0 + %(1 —e ), (1.22)

For small times we get (z(t)) = z¢ + vot, which is the expected behaviour of a free
particle, a ballistic motion. For large times, it converges exponentially to zg + vo/7.
Another interesting quantity is the variance of the position with respect to its initial
position. This is given by <[x(t) — :1:0]2>. We know that & = v, so integrating this
equation over time gives z(t) — zg = fg d7 v(7). The mean square displacement is then
given by

<[:c(t)—x0]2>:/0 dm /0 dry (v(11)v(T2)) (1.23)
- Qt/o dr (1 . 5) (v()0(0)) (1.24)

where we used that the velocity process is stationary, and integrated by part. The
quantity (v(7)v(0)) is the autocorrelation of the velocities. Since we are considering the
case of the free particle, it is possible to have an explicit expression for the mean square
displacement. Using Eq. (1.10) in this expression, or Eq. (1.21), it is given by

2kgT

([x(t) — 20)?) = VA2 [yt — (1—e)]. (1.25)
In the short time limit, still with respect to 75, the mean square displacement increases as
a second order polynomial, ([z(t) — z]?) = kgTt*/M. We observe the ballistic motion
of a free particle, as the BP does not have the time to undergo a collision with the fluid
particle. At large times, the mean square displacement (MSD) increases linearly with
time, <[x(t) - :Co]2> = 2kgTt/M~ = 2D,t. This is a purely diffusive regime, signature
of a diffusive motion in the position space associated with a diffusion coefficient D, =
kgT/M~, which is no more than the Einstein relation. Note that the MSD has no

finite limit as time goes to infinity, so the position process is not stationary. Finally, by
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combining Eq. (1.24) and Eq. (1.25) in the large time limit, one can write the well-known
Green-Kubo relation

o () —m)?) e
D, = lim D200 _/0 dr (u()0(0). (1.26)

This is another example of fluctuation-dissipation theorem, since at equilibrium it relates
the diffusion of the BP to a response function, which is the autocorrelation function of the
velocities, i.e. a measure of the dissipation. Finally, the position process is a Gaussian
and Markovian process, but it is not stationary.

We have seen that the Einstein relation can be recovered from the Langevin equation by
considering the processus in position space. However, the Langevin approach is based on
a description of the BP in phase space, where both position and velocity are considered.
We have seen in Sec. that Einstein only considered the position of the BP and not the
velocity. We will see below that the Langevin equation is more general than Einstein’s
approach, and that it is possible to recover Einstein’s description from the Langevin
equation.

OVERDAMPED LIMIT OF THE LANGEVIN EQUATION

If a stochastic equation of motion for the position only is desired, it is necessary to elimi-
nate the velocity derivative from the Langevin equation, which corresponds to suppressing
the second derivative of the position. This is possible by considering the overdamped
limit, where the inertia of the BP is negligible compared to the frictional force. This is
the case when the mass of the BP is small or when the damping coefficient is very large.
In fact, Mo is the term that takes into account the inertia of the BP in the Langevin
equation. As mentioned after Eq. (1.17), 1/ is the time scale over which the BP loses
information about its initial velocity. Then, for v¢ > 1, the velocity of the BP has
reached a quasi-steady state and its variation is negligible’ compared to its amplitude,
0/v < v. Neglecting the inertia term in the Langevin equation Eq. ( ), we obtain the
overdamped Langevin equation

Mri(t) = F(z(t),t) + FL(t). (1.27)

which is a random differential equation of the first order in the position. This changes
the time scale used to coarse-grain the system from T]Ié‘ to Tg, which is much bigger. This
allows us to focus only on the position of the BP and not on the speed, the latter being
ill-defined. Eq. (1.27) is called the overdamped Langevin equation because we made the
approximation of large damping coefficient. Dividing Eq. (1.27) by M+ and introducing
the diffusion coefficient D = D/(M~)?, the overdamped Langevin equation has the

form
i) = A}yF@(t),t) + Fa(b). (1.28)

where Fg is still a Gaussian white noise, but whose intensity is

kT

Dp = “2=
E M

(1.29)

so that the diffusion coefficient is the same as in the Einstein approach.

LIf the force is time-dependent, its characteristic frequency also needs to be small compared to 7.
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| FOKKER-PLANCK EQUATION

As mentioned in 1.3, the Langevin equation gives the dynamics of a single BP using
random forces, leading to a stochastic and non-deterministic equation of motion: if we
solve the Langevin equation many times with exactly the same initial conditions, we
will not get the same time evolution. There is another approach to treat the BM, closer
to Einstein’s approach, where the BP is described by a probability density function.
The equation desribing the temporal evolution of the probability density is called the
Fokker-Planck equation, named after Adriaan Fokker [19] and Max Planck [20], when
the dynamics of the BP is assumed to be Markovian. This is a linear partial differential
equation, of the first order in time, and it can be derived in many ways, in particular it is
a special case of the Kramers-Moyal expansion [21, 22|. In the following, we will not give
the derivation of the Fokker-Planck equation, but we will give its form and concentrate
on the overdamped approximation.

1.6.1 Temporal evolution of the probability density

The probability of finding the BP in position in the interval [z, + dz] and velocity in
the interval [v,v 4+ dv], at time ¢, is given by P(z,v,t)dzdv. It can be shown that the
probability density P(z,v,t) satisfies the Fokker-Planck equation

F(x,t)
M

OtP(x,v,t) = —v0y P(z,v,t) + 0y [(’yv - >P(x,v,t)] + DO?P(z,v,t) (1.30)
as long as the random force F1, of the Langevin, equation is a white noise, since the
process is then Markovian. In this special case of a dynamics in the phase space (z,v),
this equation is also called the Klein-Kramers equation. If we consider the overdamped
limit, the probability density no longer depends on v and the Fokker-Planck equation

becomes
F(x,t)

M~

OiP(x,t) = —am[ P(x,t)] + Dgd2P(z,t) (1.31)
which is called the Smoluchowski equation [23]. See [24-26| for a rigorous mathematical
proof of the convergence of the Klein-Kramers equation to the Smoluchowski equation.
This equation is equivalent to the convection-diffusion equation without source term.
Note that, for both Eq. (1.30) and Eq. (1.31), in the limit of no diffusion, we recover the
continuity equation, with the first-order derivative terms of the right-hand sides being
the associated probability current. If we consider the special case where the BP is free,
i.e. F(z,t) = 0, we then recover exactly the diffusion Eq. (1.1) obtained in Einstein’s
approach.

Stationary solution of Smoluchowski equation

If we write the force F' as the gradient of a potential, F'(x,t) = —0,V (z,t), it is straight-
forward to see that a stationary solution of the Smoluchowski , given by Eq. (1.31), is
nothing more than the Boltzmann distribution

1
Poy(z) = Ee—V@)/kBT (1.32)
where Z is the partition function that is computed by normalising the probability density
to unity. This distribution is the one we would get if we solved the Langevin equation for a
very long time for many independent BPs and realised a histogram of the positions of the
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different BPs, since both approaches, Langevin and Fokker-Planck, are equivalent [27].
They use a different point of view on the system but the macroscopic quantities that
they provide are the same.

STOCHASTIC DIFFERENTIAL EQUATION

Throughout this chapter, we have referred to the Langevin equation as a random differ-
ential equation (RDE). We derived it by starting from the standard differential equation
of motion for a particle, i.e., Newton’s law, and introducing a random force. In the
overdamped limit, the position of the Brownian particle (BP) is described by

o(t) = b(x(t),t) + C(1), (1.33)

where b(z(t),t) and ((t) represent the deterministic and random contributions, respec-
tively. We identified ((¢) as Gaussian white noise, characterized by its autocorrelation
function:

(C(B)C(t)) = 2D5(t — 1), (1.34)

where D denotes the noise amplitude. This traditional approach assumes that it is
mathematically valid to express the derivative of the position in this form. However, from
a rigorous mathematical standpoint, the derivative of the position is not well-defined. The
appropriate mathematical framework to address such processes is Itd calculus [28]. Tt
can be shown that the Langevin equation can be associated to a stochastic differential
equation (SDE), which involves the increment of the position rather than its derivative.
The SDE corresponding to the overdamped Langevin equation is

da(t) = b(z(t), t)dt + dW (¢), (1.35)

where dx(t) = x(t + dt) — x(t) represents the position increment over the time interval
dt, and W (t) is a Wiener process. The Wiener process is a stochastic process that can
be interpreted as the integral of white noise, with increments that are Gaussian random
variables with zero mean and variance dt. Specifically, we have

(AW (1)) =0, (1.36)

and
(AW (t)?) = 2Ddt. (1.37)

The SDE provides a more rigorous framework for handling stochastic processes and is
widely adopted in the field of stochastic analysis. This approach is more general than
the RDE formulation, as, according to the Wong-Zakai theorem [29], it is possible to
associate an SDE with an RDE under certain conditions (though the converse is not
always true). Finally, the probability density associated with Eq. (1.35) is governed by
the Fokker-Planck equation:

OpP(x,t) = =0, [b(x,t)P(z,t)] + DO*P(x,t), (1.38)

which is identical to the Smoluchowski equation given by Eq. (1.31). The Fokker-Planck
equation derived from an SDE is always equivalent to the probability density associated
with the corresponding RDE. In the subsequent chapters, we will use the SDE framework.
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| CONCLUSION

In this chapter, we have explored the phenomenon of Brownian motion from its historical
origins to the mathematical models that describe it. Brownian motion, initially observed
by Robert Brown in 1827, is a fundamental process characterized by the random, erratic
motion of particles suspended in a fluid. This motion arises from collisions between the
particles and the fast-moving molecules of the surrounding fluid, a concept that has been
foundational in various scientific disciplines, including physics, chemistry, biology, and
finance.

The historical development of the theory behind Brownian motion involved significant
contributions from several key figures. Louis Bachelier provided an early probabilistic
approach in his 1900 thesis, and Albert Einstein’s 1905 work offered the first quantitative
explanation, linking the phenomenon to the molecular theory of heat. Finstein’s model
established the relationship between Brownian motion and diffusion, culminating in the
derivation of the diffusion equation and the Einstein relation, which connects the diffusion
coefficient to measurable physical quantities. Paul Langevin further advanced the under-
standing of Brownian motion by introducing a dynamical approach in 1908. His Langevin
equation provides a random differential equation that describes the velocity and position
of a Brownian particle under the influence of random forces. This approach captures
the probabilistic nature of the system, accounting for the random collisions with fluid
molecules that drive the motion. We have also discussed the coarse-graining technique,
which simplifies the description of Brownian motion by averaging out the fast degrees of
freedom of the fluid particles. The resulting Langevin equation describes the system’s
behavior over a more extended time scale and is essential in fields such as statistical
mechanics and stochastic processes. Moreover, we explored the solutions of the Langevin
equation, both for the velocity and position of the Brownian particle, and introduced
the concept of the overdamped limit, where the inertia of the particle is negligible. This
leads to the overdamped Langevin equation, which focuses on the position of the particle
alone and is closely related to Einstein’s approach. Finally, we introduced the Fokker-
Planck equation, which describes the time evolution of the probability density function
of the particle’s position and velocity. In the overdamped limit, this equation reduces to
the Smoluchowski equation, which further simplifies the description of the system. We
showed that both the Langevin and Fokker-Planck approaches are equivalent and lead
to the same macroscopic predictions.

In conclusion, the study of Brownian motion has provided profound insights into the
behavior of particles at the microscopic level, establishing a crucial link between random
molecular collisions and macroscopic diffusion processes. The mathematical frameworks
developed to describe this phenomenon, including the Einstein relation, Langevin equa-
tion, and Fokker-Planck equation, continue to be fundamental tools in the study of
stochastic processes and statistical mechanics. These models do not only enhance our
understanding of physical systems but also find applications in a wide range of scientific
and engineering disciplines.

In the following chapter, we aim to extend this mathematical formalism to describe
quantum systems, which requires us to explore modifications that render the formalism
time-reversible, in contrast to the inherently irreversible nature of classical Brownian
motion, as it is an open system.
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KEY TAKEAWAYS

This chapter has been devoted to introducing the basic tool of the mathematical
description of Brownian motion. We have seen that the Brownian particle can be
described in two different but equivalent ways. The first is based on the Langevin
equation, which is a random differential equation describing the motion of the
BP in phase space. The second is based on the Fokker-Planck equation, which
is a partial differential equation describing the time evolution of the probability
density of the BP.

The Langevin equation includes a random force, the Langevin force, which we will
consider as Gaussian white noise. It is possible to neglect the inertial effect of the
BP, leading to an overdamped Langevin equation

i(t) = M%F(x(tm + Fa(t)

with Fg is a Gaussian white noise with intensity
Dg = kgT /M~
and satisfying
(Fe(t)) =0  and  (Fp(t)Fr(t)) = 2DRd(t —t').

The associated Fokker-Planck equation is the Smoluchowski equation, which is a
partial differential equation describing the temporal evolution of the probability
density of the BP in the position space

0,P(z,t) = —B, [F ](\Z“

P(x,t)] + Dpd?P(z,t).

It is possible to rewrite the Langevin equation in the form of a stochastic differential
equation, which is more rigorous from a mathematical point of view. The SDE
associated with the overdamped Langevin equation is

1

do(t) = 37 F(a(t), ) + AW (0),

where the W is a Wiener process satisfying to
(AW(t)) =0 and  (dW(t)?) = 2Dgdt.

These equations are the basic tools for describing the Brownian motion of a particle
in a fluid. They are the starting point for the study of the dynamics of Brownian
particles, and will be used below in the case of the quantum dynamics of a particle
in a potential.
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CHAPTER 2

STOCHASTIC QUANTUM MECHANICS

In science one tries to tell people, in such a way as
to be understood by everyone, something that no
one ever knew before. But in the case of poetry, it’s
the exact opposite!

— Paul Dirac

In this chapter, we introduce the Nelson formalism in quantum mechanics, which pro-
vides a stochastic approach to describe quantum systems using time-reversible stochastic
processes. We begin in Sec. by discussing the challenges of applying stochastic meth-
ods to closed quantum systems and introducing the concept of time-reversible stochastic
processes, leading to Nelson’s stochastic mechanics. In Sec. 2.2, we define forward and
backward processes and their associated derivatives, establishing the foundation for time-
reversible stochastic descriptions. Next, in Sec. , we introduce an acceleration law in
configuration space, analogous to Newton’s second law, which incorporates dynamics into
the stochastic framework. Applying these concepts to quantum systems in Sec. , we
derive the Schrodinger equation from the acceleration law and establish the connection to
standard quantum mechanics. In Sec. , we discuss numerical methods for solving the
Nelson equation, focusing on the second-order Helfand-Greenside method and outlining
the computational methodology. We illustrate the application of the Nelson formalism
in Sec. with numerical examples involving a free Gaussian wavepacket and a particle
encountering a potential barrier, demonstrating how the approach can reproduce key
quantum phenomena such as tunneling and the Heisenberg uncertainty principle. Fi-
nally, in Sec. 2.7, we summarize the key points and discuss the implications of the Nelson
formalism in quantum mechanics.
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CHAPTER 2

INTRODUCTION

In the previous chapter, we introduced the basic concepts needed to describe the dy-
namics of a system influenced by randomness. The goal of this study is to apply these
mathematical ideas to describe a closed quantum system. At first, it might seem un-
usual to use a stochastic approach for a quantum system because quantum mechanics is
usually time-reversible. This means that the Schrodinger equation, which governs quan-
tum mechanics, remains unchanged when time is reversed, as long as the time reversal
operator’ and the system’s Hamiltonian commute. On the other hand, the stochastic
approach, often used to describe systems like Brownian motion, typically does not have
this time-reversibility. This is because it includes random elements in the equations and
is usually applied to systems that are not in equilibrium. However, as Schrodinger sug-
gested in 1931 [30], it is possible to make a stochastic description of a system that is
time-reversible at the level of probability density. This idea is the foundation of Nelson
stochastic mechanics [31]. This quantum theory is related to the de Broglie-Bohm inter-
pretation of quantum mechanics, as discussed in Refs.[32-34]. In the de Broglie-Bohm
theory, quantum particles are thought to have definite positions and are guided by the
wave function. Louis de Broglie first presented these ideas at the Solvay Conference in
1927, as detailed in Ref.|35]. Before we go deeper into Nelson’s formalism, it is helpful
to look at the de Broglie-Bohm pilot-wave theory since it is closely related to Nelson’s
mechanics. Understanding this theory will give us a better grasp of Nelson’s approach.
In both theories, particles are assumed to have well-defined positions, with each particle
being guided by the wavefunction 1, which is why it is called a pilot wave. In the de
Broglie-Bohm theory, it is assumed that the wave function v satisfies the Schrédinger
equation

i (x,t) = Hy(x, ), (2.1)

where £ is the reduced Planck constant and H is the Hamiltonian of the system con-
sidered. However, as we will see, this is not the case in the Nelson approach. In this
approach, the wave function alone is not sufficient to fully describe a quantum system.
To complete the description, the positions of the particles, considered hidden from the
observer’s point of view, must also be specified. Therefore, it is essential to write the
equation for the trajectories. This can be done by introducing the probability current
associated with the wave function, defined as

jlz,t) = %Im W(x,t)am(x,t)] , (2.2)

where m is the mass of the quantum particle, Im refers to the imaginary part, and 1
denotes the complex conjugate of 1. It can be shown from the Schréodinger equation that
1 and j satisfy the continuity equation

i, DI + 0uj(, £) = 0. (2.3)

The probability current allows us to define a velocity, similar to how it is done in fluid
dynamics. This velocity is simply the ratio of the current to the density:

j(z,t)
t) = ——. 2.4
= e 24
If we express the wave function in polar form
(@, t) = Rz, t)e 50, (2.5)

!The operator that changes ¢ into —t and conjugates the wavefunction.
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where R(x,t) = /|¢(z,t)|? is the amplitude and S(x,t) is the phase, then the current
becomes

) h
jlx,t) = E]z/;(x,t)\anS. (2.6)
and the velocity field is
h
v(x,t) = E%S(m,t). (2.7)

To find the particle’s trajectory x(t), we can evaluate the velocity field at x(¢) and
integrate Eq. (2.7) with respect to time, given an initial condition z¢. The velocity is the
time derivative of the position, leading to the de Broglie guiding equation:

dz = 1,9 dt, (2.8)
m

which describes the change in position dx over a time interval d¢. Here, the phase S of
the wave function serves as a guiding principle for the trajectories. Thus, to calculate
the particle’s path, the wave function must first be determined. It should be noted that
de Broglie-Bohm’s theory is deterministic: if the initial position is known, the particle’s
future position can be predicted. The probabilistic nature of quantum mechanics arises
from our uncertainty about the initial position. Now that we have explained the concept
of a well-defined trajectory, we will present the stochastic version of the de Broglie-Bohm
theory, known as Nelson’s theory of quantum mechanics. As we will see, there are many
similarities between the two theories. A comparison of the guiding equation Eq. (2.8)
with Nelson’s equation will highlight them in the following sections.

| TIME REVERSIBILITY FOR STOCHASTIC PROCESSES

We aim to describe the dynamics of a quantum system in terms of stochastic processes.
We have seen that the de Broglie equation describes the evolution of the positions of
quantum particles, similar to how the overdamped Langevin equation describes classical
Brownian particles (where the equation of the motion describes the change of position
over time). We might expect to obtain a generalization” of the guiding equation that
includes a stochastic term, turning the position into a random process whose probability
distribution follows a Fokker-Planck equation, assuming no memory effects as is typical
for closed quantum systems. Along the chapter, we will focus on the dynamics of a single
quantum particle in configuration space, i.e., considering only the particle’s position and
not its velocity. The goal is to construct a stochastic process whose probability density is
time-reversible, then to develop the Nelson formalism from it and verify that it reproduces
the results of quantum mechanics.

Forward and backward processes
Let us write the equation of motion for the particle as
da(t) = b(x(t), t)dt + dW(¢), (2.9)

where x is the position of the particle. This equation consists of two terms: a determinis-
tic term b(x,t), which can be interpreted as the mean velocity of the particle and acts as
the force applied to the particle, and a stochastic term dW (t) = W (t+dt) — W (t), which

2Nelson approach is not a generalization of de Broglie-Bohm theory as both theories do not share the
same initial axiomatic.
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is a Gaussian process, meaning its distribution is Gaussian. Here, W (t) is a Wiener
process with the same properties as the one mentioned in Chap. |. This equation gives
the increment of position dz = z(t + dt) — z(t) corresponding to a time interval d¢. In
the case of the de Broglie guiding equation, b is proportional to the gradient of the phase
of the wavefunction, and the Wiener process is null. As we are dealing with a random
process, we can average over the realizations of the Wiener process. We still have that
(dW(t)) = 0 and (dW (t)dW (t')) = 2Dqdt, where Dq is the diffusion coefficient, which
will be discussed later. These considerations apply to a positive time increment dt, and
Eq. (2.9) is referred to as the forward process. We can also consider the associated
backward process, defined as

da* (t) = b*(x(t), £)dt + dW™*(¢), (2.10)

with the * referring to the backward process. The difference here is that dz*(t) =
x(t) — x(t — dt), meaning that we approach x(t) from the future. In this case, b*, the
backward mean velocity or drift, is evaluated at (). The Wiener process W* shares the
same properties as W. To ensure time reversibility, we need to impose that the probability
density of the forward process is the same as that of the backward process, making it
a solution to both the forward and backward Fokker-Planck equations. Imposing this
condition implies that the drifts b and b* are not independent but are related by an
equation that we will need to derive.

Forward and backward derivatives

The drifts b and b* are analogous to the mean velocity of the particle in the forward and
backward processes, respectively. However, since the position is not differentiable with
respect to time, we need to introduce a new type of derivative to define the concept of
velocity. Similar to the material derivative in fluid mechanics’, we can define the forward
derivative [36] of a function of the position = and the time ¢ as

1
Df(x,t) = lim — (f(x(t + At),t + At) — f(z(t),t) | z(t) = x), (2.11)
At—0 At
where we introduced the conditional expectation notation (- | z(¢) = x) to indicate that
the expectation is taken over the realizations of the Wiener process that satisfy z(t) = z.
Similarly, the backward derivative is defined as

D* () = lim — (F(a(t),t) — Fla(t — Ab),t— AL) | o(t) = 2) . (2.12)
At—0 At

The computation of the conditional expectation is done using the conditional probability
density P(xz,t | 2/,t"), which gives the probability of finding the particle at position x
at time ¢, given that it was at position z’ at time ¢’. The conditional expectation is
assumed to follow both the forward and backward Fokker-Planck equations, just like
the probability density. Using the statistical properties of the Wiener process, it is
straightforward to show that the derivatives can be written as

Df(a,1) = dyf () + b, )0, (1) + DA f (x, 1), (2.13)

3In fluid mechanics, the material derivative along a line of flow is defined as Df(z,t) =
AlimO At f(2(t + At), t + At) — f(2(t),)]a(t)=z leading to Df(z,t) = 9, f(z,t) + v(t)0u f(x,t), where
—
v(t) is the velocity of the fluid.
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and
D" f(2,1) = 00 (2,8) + b (2, )0 f (2, 1) — DQd2f (). (2.14)

These expressions are obtained by performing a Taylor expansion of the function f around
x(t) to the first order in A¢, which corresponds to the second order in Az as (dW?) ~ At.
We see that the difference between the forward and backward derivatives is the sign of
the diffusion term. If the Wiener process were not present, the forward and backward
derivatives would be identical, and we would recover the classical material derivative. If
we apply this definition to the position z, we obtain the forward and backward velocity
fields as

Dz = b(z,1t) and Dz = b*(x,t), (2.15)

and since b # b*, we see that the forward and backward derivatives are not the same,
which is consistent with the non-differentiability of the trajectory.

2.2.3| Relation between the forward and backward processes

In Appendix B, we provide an explicit demonstration of the relationship between the
forward and backward drifts by deriving the backward derivative in terms of forward
process quantities. We find that the drifts are related by the equation

b*(x,t) = b(x,t) — 2Dq0, In P(x,t), (2.16)

which is a direct consequence of the requirement that both forward and backward pro-
cesses share the same probability density. The Fokker-Planck equation associated with
the forward process is given by

P = —0,(bP) + DQO2P, (2.17)
and the one associated with the backward process is
P = —0,(b*P) — DQO2P. (2.18)

It is straightforward to see that the relation between b and b* allows us to derive one
equation from the other. The sum of the two Fokker-Planck equations cancels out the
diffusion terms and gives the equation

P + 9,(vP) =0, (2.19)
where we define the velocity field as

b(z,t) + b*(x,1)
2

as the mean of the forward and backward drifts. This equation is the continuity equa-
tion for the probability density P, and it closely resembles the one obtained from the
Schrédinger equation. In the case of thermal Brownian motion, the velocity field v
would correspond to an externally applied field, as b would be directly proportional to
the force applied to the particle. If we subtract the two Fokker-Planck equations, the
time derivative of the probability density cancels out, and we obtain the equation

v(x,t) =

= b(x,t) — Dq0y In P(x,t), (2.20)

8, (wP) = Do, P, (2.21)

where we define the drift difference as

b(xz,t) — b*(x,t)
2

u(z,t) = = Dq0, In P(z,1), (2.22)
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which we call the osmotic velocity field, in reference to Einstein’s theory of Brownian
motion, where the velocity acquired by a Brownian particle (BP) in equilibrium with an
applied force has the same form". Morevoer, Eq. ( ) is very similar to the Fick’s law.
Eq. (2.21) is equivalent to Eq. (2.16) and shows that the connection between b and b* is
mediated by the probability density P. We see that the two new velocity fields, v and wu,
both depend on the density. We can combine v and u to recover the drifts b and b* as
b=v+u and b* =v —u.

| DEFINITION OF AN ACCELERATION LAW

The considerations in the previous section were based on the kinematics of stochastic
motion. We discussed the necessity of ensuring time reversibility in a stochastic descrip-
tion of motion. To complete this kinematic description with a dynamic one, we need to
introduce the concept of acceleration for the particle. The configuration space descrip-
tion of the motion, like the overdamped Langevin equation, is a non-inertial description.
However, quantum mechanics involves inertial aspects, as indicated by the presence of
mass in the Schrédinger equation. Therefore, it is essential to introduce an acceleration
law.

2.3.1 Acceleration law in phase-space

Let us revisit the Ornstein-Uhlenbeck process discussed in the previous chapter to moti-
vate the introduction of an acceleration law. The equation of motion for the particle is
given by

mdv(t) = [F(z(t),t) — myv(t)]dt + dW(t), (2.23)

where v is the velocity of the particle, F' is the force applied to the particle, v is the
friction coefficient, and dW is a Wiener process. If we use the definitions of the forward
and backward derivatives introduced in the previous section and apply them to the
velocity, we obtain

mDv = F — m~yv, (2.24)

and
mD*v = F 4+ myv. (2.25)

If we sum the two equations, we obtain

Dv+D*v F
SR 2.26
a 5 — (2.26)
which is Newton’s second law for conservative forces in the case of the Ornstein-Uhlenbeck

process. The quantity a can be viewed as the mean acceleration of the particle.

2.3.2 Acceleration law of Nelson

Inspired by this result, we can define the acceleration of the particle in configuration
space. Since the mean forward and backward velocities of the particle are given by Dz
and D*z, it is possible to use these to define the mean acceleration. We must ensure

4The osmotic velocity ensures the time reversibility of Nelson’s dynamics by effectively compensating
for the fluctuations experienced by the particle.
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that it is time-reversible, i.e., that the forward and backward mean accelerations are the
same. Several choices are possible; one possibility is to use

o= %(DD* +D*D)a = %(Db* + D), (2.27)
which is consistent with the mean acceleration of the Ornstein-Uhlenbeck process while
remaining within the configuration space approach. We will not explore other possibili-
ties, such as a = (DD + D*D*)z, because the choice in Eq. (2.27) allows us to recover
standard quantum mechanics, as we will demonstrate later. However, Ref. [37] compares
the consequences of different choices. Replacing the forward and backward derivatives
and drifts with their expressions in terms of v and u leads to the acceleration law

a = 0w + v0,v — udu — D@gu. (2.28)

| NELSON DESCRIPTION OF QUANTUM SYSTEMS

In the previous section, we discussed the implications of imposing time reversibility on
a system whose dynamics are governed by a stochastic equation in configuration space.
Now, we will apply these concepts to the description of a quantum system. We will see
that Nelson’s theory of quantum mechanics allows us to derive the Schréodinger equation
as a consequence of these considerations [38, 39]. Note that a similar approach was
developed by Fényes in 1952 in an independent work [40].

2.4.1 Physical background

Nelson, like de Broglie, assumed that it is possible to define trajectories for quantum
particles. These trajectories are hidden from the observer, and the wavefunction alone
is insufficient to fully describe the quantum system. The quantum particle undergoes a
random motion whose origin will not be debated in this work, as this stochastic approach
will only be used as a mathematical tool for controlling quantum systems. To describe
the dynamics of the quantum particle, Nelson rejected the phase-space description’ of
motion in favor of a configuration space approach. He then postulated that the equation
of motion is given by Eq. (2.9), which we recall here for clarity:

da(t) = b(z(t), )dt + dW (1), (2.29)

where the process is assumed to be Markovian. We will refer to this as Nelson’s equation.
To determine the amplitude of the Wiener process W, we need to specify the value
of the diffusion coefficient Dg. We know that quantum effects become less significant
as the mass increases. Thus, we can assume that the diffusion coefficient is inversely
proportional to the mass m of the quantum particle, leading to

h

5He argued that if we were to use a phase-space description, it would require the inclusion of a
friction force. A particle in rectilinear uniform motion would experience this dissipative force, leading
to a gradual decrease in its velocity. Conversely, a particle at rest would not be subject to this friction,
contradicting the principle of relativity, which states that the laws of physics are the same in all inertial
frames. Therefore, motion at rest cannot be distinguished from uniform motion.

5This choice is not unique, and other choices are possible as shown in Ref. [41].
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where h, identified as the reduced Planck constant, sets the scale at which quantum
effects become significant. The statistical properties of W are then

@W@)=0 and (AW ()dW (L +dt)) = 2Dqdt. (2.31)

The key distinction between classical stochastic mechanics and Nelson’s equation is that
the deterministic term, denoted as b, is not externally prescribed as in the case of an
external force applied to a classical system. Instead, it is regarded as an intrinsic quan-
tity of the model, similar to the de Broglie-Bohm approach, where the gradient of the
phase drives the trajectories, as shown in Eq. (2.8). In Sec. , we explained that the
external force allows the definition of the mean acceleration of the particle. However, it
does not accelerate the particle, as its influence is observed at the level of the velocity.
This is because Nelson’s equation takes the form of an overdamped Langevin equation,
representing a large friction limit" within the context of classical stochastic mechanics.

Derivation of the Schrodinger equation

In Sec. 2.2, we discussed the mathematical requirements to obtain a process whose prob-
ability density P satisfies both the forward and backward equations. We introduced
two mean velocity fields, v(z,t) and u(z,t), given by Eq. (2.20) and Eq. (2.22) respec-
tively, such that P satisfies the continuity equation Eq. ( ) and Newton’s second law
Eq. ( ) holds for externally prescribed forces. From these equations, it is possible to
derive the Schrédinger equation, as we will show below. To do so, let us express the
external force F'(z,t) as the gradient of a potential V(x,t):

F(x,t) = =0,V (x,1), (2.32)

and assume that v(z,t) can be written as the gradient of a velocity potential S(x,t):
h
v(z,t) = —0,5(x, t). (2.33)
m

Substituting Eq. (2.32) and Eq. (2.33) into the acceleration law Eq. (2.28), and integrating
with respect to x, we obtain the quantum Hamilton-Jacobi equation (HJE):

hd,S (x,t) + Z(@xsm, 1))* + V(z,t) + Vg(z,t) = 0. (2.34)

Classically, the HJE is an equation of analytical mechanics, derived after a transformation
of the system’s Hamiltonian in phase-space. It simplifies the resolution of the equations
of motion and provides an alternative description of particle motion®, which can be re-
garded as wave-like, thus connecting more closely with quantum mechanics [43, 44]. This
equation is a first-order, non-linear partial differential equation. In quantum mechanics,
it has the same form as in classical mechanics, but with an additional potential term
called the quantum potential Vg, defined as

2 92 T
V(1) = —Znaf V;it’;). (2.35)

"This might seem paradoxical, given that quantum mechanics is a frictionless theoretical framework.
81t is also used in other fields, such as mathematics in dynamic programming, where it is a special
case of the Hamilton-Jacobi-Bellman equation [42].
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This potential was initially introduced in the de Broglie-Bohm formulation [32, 33], but
it can also be derived from the standard formulation by writing the Madelung’s equa-
tions”. This extra potential depends on the curvature of the amplitude of the probability
density [49], but it is independent of the magnitude itself. It is a non-local potential [50]
responsible for quantum effects, such as quantum interferences [51]|. For example, it can
explain the Aharanov-Bohm effect [52]. In the limit # — 0, this term vanishes, and the
quantum Hamilton-Jacobi equation reduces to the classical Hamilton-Jacobi equation,
whose solution S can be called the Hamilton’s principal function, or the action [53|. The
concept of the quantum potential highlights the departure of quantum mechanics from
classical mechanics, emphasizing the wave-like nature of particles and the role of the
wavefunction’s structure in determining the dynamics of quantum systems.

From the continuity equation Eq. (2.19) and the quantum HJE Eq. (2.341), we can derive
the Schrodinger equation. Indeed, by combining the function S and the probability
density P as a complex function

w(% t) = P(l’, t)eiS(Lt)? (236>

it is possible to show that the Schrodinger equation

ihopp(z,t) = —;;laiw(x,t) + V(z,t)y(z,t) (2.37)

is satisfied by this function. The solution of Eq. (2.37) will be referred to as the wavefunc-
tion, as in standard quantum mechanics. Using the form Eq. ( ), it is straightforward
to rewrite the forward drift in Nelson’s theory as

b(x,t) = %8x5(x,t) + Dq0yIn P(x,t) = %ax(Re—f—Im) Iny(x,t). (2.38)

It is important to note that in Nelson’s theory, the Schrodinger equation is a consequence
of the theory, not an assumption as in the de Broglie-Bohm approach. One interesting
subtlety to discuss is the quantization condition. If the Hamilton-Jacobi equation is
derived from the Schrodinger equation, S' is defined as the phase of the wavefunction, with
values lying within an interval of 2r. However, in Nelson’s approach, S is introduced as a
velocity potential, with no such restriction on its values. The wavefunction is constructed
from S and the probability density, and the quantization condition is not imposed on
S, it is a continuous function. Then, although both equations take the same form, the
solutions of Eq. ( ) are not exactly the same as those of the standard Schrodinger
equation, as the conditions on the multivaluedness of the wavefunction are not imposed
in the same manner. See Ref. [54] for a deeper discussion on this point.

This distinction is important when considering the numerical resolution of Nelson’s equa-
tion, as we will see in the next section. Finally, Nelson’s equation is a stochastic equation
that describes the trajectory of a single particle. Various interpretations can be given
to this trajectory, and whether it has a true physical significance is not the focus of this
work. It is interesting to note that the wavefunction of a quantum system describes the
probability of finding the particle at a given position, while Nelson’s equation provides
a possible trajectory for this particle. However, a single trajectory by itself provides

9This is a reformulation of the Schrédinger equation in terms of the probability density and the
velocity field (gradient of the phase) of the wavefunction. It consists of two coupled equations: one is the
continuity equation, and the other is the Euler equation or the quantum Hamilton-Jacobi equation [45].
This reformulation allows quantum mechanics to be expressed in terms of hydrodynamic variables, similar
to the Navier-Stokes equation in fluid mechanics [46, 47]. See Ref. [32, 48] for more details.
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limited information about the quantum system; it is the ensemble of trajectories that is
pertinent. Therefore, to describe a quantum system using Nelson’s approach, we need to
solve Nelson’s equation multiple times, with different initial conditions, to obtain a sta-
tistical description of the quantum system. We expect that the ensemble of trajectories
will yield results consistent with the wavefunction.

| NUMERICAL RESOLUTION OF THE NELSON EQUATION

In this section, we will describe a numerical method for solving the Nelson equation. For
simplicity, we will assume that the wavefunction of the quantum system is known ana-
lytically. If the wavefunction is not known, we must first solve the Schrédinger equation
and address the numerical challenges associated with computing the gradient of its phase.
The procedure for this is detailed in Appendix D. If the wavefunction is known, we can
derive an analytical expression for the forward drift b that appears in the Nelson equation
Eq. ( ), enabling us to compute the trajectories of the quantum particles. To achieve
this, we will use the Helfand-Greenside method [55], also known as Heun’s method, a
numerical scheme specifically adapted for stochastic differential equations. While other
approaches, such as the Euler-Maruyama method or the Wright algorithm, are possible,
we will not discuss them here. Due to the stochastic nature of the problem, standard
numerical methods, like the Runge-Kutta methods, are not suitable, as we will explain
below.

Discretization of the variables

Throughout the remainder of this chapter, we will use a system of units where A = 1
and m = 1. In this system, the Nelson diffusion coefficient given by Eq. (2.30) simplifies
to Dq = 1/2. As mentioned at the end of the previous section, we will solve the Nelson
equation for different initial conditions to obtain a statistical description of the quan-
tum system. This approach is equivalent to considering an ensemble of N independent
particles, each following the Nelson equation. These particles will be indexed by n. To
proceed, we need to discretize both time and space. There are two grids for space: a
fixed grid and a moving grid. The fixed grid is evenly spaced with N, increments of
Az, and the positions are denoted by x;. The moving grid consists of the positions of
each particle at a given time. The wavefunction, which is a solution of the Schrédinger
equation, is defined on the fixed grid. When solving the Nelson equation, we evaluate the
wavefunction and the drift b at the positions of the particles, which are on the moving
grid. Time is divided into N; values, t;, with 0 < ¢ < N; — 1, uniformly spaced with
increments At. The position of a particle at time ¢; is denoted as z(t;) = z;, and the
function b, with arguments x(¢;) and t;, is written as b; = b(z;,t;). An increment of
position dz(t;) = dx; corresponds to the difference x; 1 — ;.

Second-order Helfand-Greenside method

Deterministic differential equation To solve differential equations, it is common to
use numerical schemes such as finite differences or Runge-Kutta methods [56, 57|. For a
deterministic equation of the form

da(t) = bz (t))dt, (2.39)
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the solution can be expressed as

2t + At) = 2(6) + /t T b(x(t) + /t " dty ba(t) + )) (2.40)

and it is possible to truncate the integral at the desired order in At, leading to
1
x(t + At) = z(t) + Atb(z(t)) + iAth(x(t))b’(a;(t)) (2.41)

for the second order. The aim of the Runge-Kutta method is to express z(t + At) as
a linear combination of the values of b at specific points, thereby eliminating derivative
terms. The solution can be written as

x(t + At) = x(t) + (A1g1 + A2g2)At, (2.42)
where g1 and gy are linear combinations of b, defined as

g1 = b(z(1)), (2.43)
g2 = b(z(t) + Bg1At), (2.44)

with A1 + A2 = 1 and Ay = 1/2. A Taylor expansion of Eq. (2.13) and Eq. (2.41) in
Eq. (2.12) shows that it recovers Eq. (2.11).

Stochastic differential equation If we now add a Wiener process to the differential
equation, we obtain a stochastic differential equation of the form

da(t) = b(z(t))dt + dW (1), (2.45)

with (W(t)) = 0 and (W (t)W (t')) = 2Dq(t —t'). The variable x becomes a stochastic
process, and its values do not exactly describe the system’s dynamics; rather, its prob-
ability density does. This means that numerical schemes used to solve Eq. (2.15) must
recover the statistical properties of x rather than its exact values at specific mesh points.
However, the Wiener process introduces subtleties when adopting the same procedure
as in the Runge-Kutta approach: the stochastic term cannot be written as an integer
power of At in a Taylor expansion, as the variance of the Wiener process is proportional
to the time increment. To address this issue, the Helfand-Greenside method [58, 59] was
developed. This method is a stochastic extension of Runge-Kutta, where the coefficient
g contains randomly generated terms labeled as Z;, with statistical properties (Z;) = 0
and (Z;Z;) = 0;;. A formal solution of Eq. (2.15) can be written as

t+At t1
.1‘(t + At) :x(t) + /t " dt1 b(l’(t) + /t dts b(x(t) + - ) + wo(t1)>

(2.46)
+ wo(At),
where wy is a Wiener process. Expanding the right-hand side leads to
1
x(t + At) =x(t) + Atb(x(t)) + iAth(x(t))b’(x(t))
(2.47)

t+At
+w0(At)+b’(m(t))/t Aty woltr) + - .

The difference with Eq. (2.11) lies in the second line of the right-hand side, which contains
the Wiener process, involving terms of order At'/2 or higher when averaged. Without
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delving into the detailed procedure, truncating the expansion at the second order yields
a scheme that recovers the statistical properties of Eq. ( ) and does not involve the
derivatives of the drift:

ZL‘(t + At) = IL‘(t) + At(Algl =+ Aggg) + )\0\/ 2DQAt Zo, (248)

where g1 and go are defined as

g1 = b($(t) + )\1\/2DQAt Zl), (2.49)
g2 = b(z(t) + Bg1At + Xo\/2DqAt Zs), (2.50)

and the coefficients involved in the expansion must satisfy

A+ Ay =1, (2.51)

BAy = % (2.52)

MN=1, (2.53)

Ao(A1A1 + Ag)g) = % (2.54)
A¢A§+aA2A%::%, (2.55)

with Zp, Z1, and Zs being three random variables following a normal distribution. In
the following, we will use

Ay = Ay = -, (2.56)
p=1, (2.57)
o= =1, (2.58)
A1 =0. (2.59)

Methodology

Before providing numerical examples of the Nelson dynamics, let us summarize the entire
procedure to solve a quantum problem using the Nelson formalism.

» Choose an initial guiding wavefunction ¥ (x,0) and the fixed spatial grid.

» Solve the Schrédinger equation. We assume an analytical solution for simplicity. If
this is not the case, solve it numerically using the Crank-Nicolson scheme [60] (see
Appendix ).

» Compute the real and imaginary parts of the wavefunction ¢ (z,t) and compute
b(x,t) using Eq. (2.38).

» Generate N independent particles, each with an initial position z,(0) randomly
chosen according to the probability density P(z,0) = |4 (x,0)|*. If the shape of
the initial wavefunction is not simple, it is possible to use the inverse transform
sampling method [61] to generate the initial positions.

» Compute the trajectories of the particles using the second-order Helfand-Greenside
method. Since it is necessary to evaluate the drift b(x,t) on the moving grid, spline
interpolation [62] can be used to interpolate the drift from the fixed grid.
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Standard Quantum Mechanics

Choose initial
wavefunction

Yo(z)

Descretization of
space and time
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time-dependent
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Schrédinger equation
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b(z,1)

(Cranck-Nicholson scheme)

/ Compute phase

and density

FIGURE 2.1: Diagram of the methodology to compute the drift of the Nelson equation.

» Verify that the probability density P(x,t) obtained from the positions of the par-
ticles matches the squared modulus of the wavefunction by creating a histogram of
the particle positions and interpolating the probability density from it using spline
interpolation.

» Use the trajectories to compute the statistical properties of the quantum system,
such as the mean position or the variance.

To provide a more visual understanding of the methodology, Fig. and Fig. illustrate
the flowcharts for solving the Schrédinger equation and the Nelson equation, respectively.
These diagrams summarize the steps required to tackle a quantum problem using the
Nelson formalism. In the next section, we will apply this methodology to numerically
study the quantum dynamics of a different system, for which we have an analytical
expression for the wavefunction.

| NUMERICAL EXAMPLES

In this section, we will apply the methodology described in the previous section to two
different quantum systems. The first system is a free Gaussian wavepacket, for which
we have an analytical solution of the wavefunction. The second system is a potential
barrier, for which we can have an approximated analytical solution of the wavefunction.

2.6.1 Free Gaussian wavepacket

We consider the free Schrédinger equation in one dimension, given by
h2
ihop(z,t) = ———02(z, 1), (2.60)
2m
with a Gaussian wavepacket as the initial condition

w(w,O)—< : >1/46Xp (—W> (2.61)

2 2
2mog 4o

47



CHAPTER 2

Stochastic dynamics
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FIGURE 2.2: Flowchart of the algorithm to solve the stochastic Nelson equation.
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where p is the mean position of the wavepacket and o is the standard deviation. We
consider that the wavevector of the wavepacket is zero, which is the same as being in the
reference frame of the particle. In the following, we will show the shape of the Nelson’s
trajectories and use them to recover known results of the standard quantum mechanics.
In particular, we will use the trajectories to show that the Heisenberg uncertainty prin-
ciple is verified while we deal with particles possesing an exact position. To do so, we
will use a theorem demonstrated by Shucker [63], saying that the limit
z(t) — x(0)

p= lim
t—o0

(2.62)

exists for almost every sample path of the Nelson process guided by a free Gaussian

wavefunction. Moreover, it says that the values of p are distributed according to the
Fourier transform 1y of the initial wavefunction, i.e.

- 2

P(p) = ‘wo(pﬂ)) (2.63)

This encourages to interpret p as the own constant momentum of the trajectory, and to

use it as the momentum involved in the position-momentum uncertainty relation. We
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will work with units such that & = 1 and m = 1. Moreover, we choose o9 = 1/v/2 and
1 = 0. The initial wavefunction is then given by

(@, 0) = <71T)1/4 exp <”;> (2.64)

It is straightforward to show that the wavefunction at time ¢ is given by

V(1) = <71T> 1/4\/% exp (—Mﬁ) (2.65)

and using Eq. (2.38) we can compute the drift b(x,t) as

(t—1x
= 2.
b(z,t) T (2.66)
The Nelson equation is then given by
(t—1)
dz(t) = x(t)dt + dW (). (2.67)

1+t

We solve this equation for N = 10% independent trajectories with the following numerical
parameters: the time step is At = 1072 for N; = 103 time iterations, so that the final
time is tr = 10. We plot the results in Fig. . The trajectories are depicted on the
central panel, in black lines, the horizontal axis being the time ¢. Initially, the positions
are distributed according to |4 (,0)|* as shown on the left panel: where the histogram
of the position, in orange, fits the squared modulus of the initial wavefunction, in dashed
red line. We see that all along the time evolution, this is still the case. Indeed, on the
right panel we show the histogram of the positons also matches the squared modulus of
the final wavefunction. For each trajectory we can compute the values of the momentum
p. As, numerically, we are forced to use finite time, the values of p are approximated. In
the limit of large time, the initial position becomes negligeable in Eq. ( ) and we can
approximate the momentum of the n'® trajectory (™ as p(® ~ z("(t;)/t;. In Fig.

we compare the distributions of the values of p for the N = 10* trajectories for two final
times t; = 5 (left panel) and ¢ = 10 (right panel). In dashed green lines we show the
squared modulus of the Fourier transform of the initial wavefunction. We see that the
distribution of the momentum is closer to the theoretical prediction for ¢y = 10 than for
tr = 5. It ensures that ¢y = 10 is large enough to obtain the correct distribution of the
momentum and to be a good approximation to the limit of Eq. (2.62), while ¢y = 5 is not.
We can use the trajectories to compute the statistical properties of the quantum system.
We will compute the variance on position and momentum and verify the uncertainty
relation for ¢ty = 100. To compute statistical quantities, we use the ensemble average over
of this quantity the trajectories. For example, the average of the momentum is given by

T N g

To verify the uncertainty relation, we compute the variance A(z(t¢)) and A(p) of the
position and the momentum at the final time. Note that even if the p-distribution
is the Fourier transform of the initial wavefunction, A(p) corresponds to the final p
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F1GURE 2.3: Evolution of particle trajectories under the Nelson equation. The central panel
displays the trajectories of the first N = 103 particles as a function of time ¢, where the initial
positions are sampled according to the distribution |1)(x,0)|>. The left panel shows the initial
position distribution at ¢ = 0, where the orange histogram represents the numerical results,
and the red dashed line corresponds to the theoretical distribution |¢(z,0)|?. The right panel
illustrates the final position distribution at ¢y = 10, with the orange histogram and red dashed
line representing the numerical and theoretical distributions |¢(z,ts)|?, respectively. The close
agreement between the histograms and the theoretical distributions indicates that the numerical
solution accurately follows the expected quantum mechanical behavior.

dispersion as the moment variance is independent of the time in the case of a free Gaussian
wavepacket'’. They are given by

1

N
7 2 (@) — (x(t))” (2.69)

i=1

A(z(ty)) =

and

N 2
(i) 1 x(™(tr)
Alp) = A - B S YA . 2.70
w=a(") = (v (e (270)
We find A(z(t¢)) = 70.456 and A(p) = 0.706, so that their product is indeed larger to
h/2 = 0.5 and the uncertainty relation is verified. But we can go further, as a stronger

form of the uncertainty inequality has been demonstrated by Golin in Ref. [64]. It says
that

2

A(x(tr))A(p) > \/Cov2(a:,p) + hz (2.71)

10T his is straightforward to show it by computing Uf, = —h? <¢|aﬁ\¢> . and using the Gaussian form
of the wavefunction given by Eq. (2.65)
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FIGURE 2.4: Comparison of momentum distributions for N = 10 trajectories at different final
times. The left panel shows the momentum distribution at ¢; = 5, while the right panel shows
it at ty = 10. The green histograms represent the numerically obtained momentum distribu-
tions, and the dashed green lines correspond to the theoretical prediction given by the squared
modulus of the Fourier transform of the initial wavefunction. The closer agreement between the
histogram and the theoretical curve at £y = 10 indicates that the distribution of momentum
better approximates the theoretical prediction for larger final times. This comparison ensures
that the final time ¢; = 10, used in the main simulation, is sufficiently large to approximate the
correct momentum distribution.

where Cov(z,p) is the covariance of the position and the momentum and is defined as

N o)
Cov(z,p) = ﬁ . (37(") (te) — <w(tf)>> <(tf) - <p>>- (2.72)
=1

ty

We finally obtain Cov(z,p) = 49.736, so that A(x(t))A(p) = 49.740 > 49.738 =
(Cov?(x,p) + h%/4)"/? and the stronger form of the uncertainty relation is also verified.
We see that it is possible to find the statistical properties of the quantum system using
the Nelson trajectories, instead of computing it from averages with the wavefunction.

2.6.2 Potential barrier

In quantum mechanics, the potential barrier system that allows us to study the quantum
tunneling effect and the wavefunction reflection. In one dimension x, it is common to
assume that a free particle arrives from the left side of the barrier (z < 0). If the system
were classical, the particle would be reflected by the barrier and would not be able to
pass through it, if its energy is lower than the potential energy of the barrier. However,
in quantum mechanics, the wavefunction can tunnel through the barrier, and the particle
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can be found on the right side of the barrier (z > 0) with a non-zero probability. This
is an interesting problem as theoretical physicists noted the relevance of the tunneling
effect, more precisely they questioned a definition for the tunneling time [65, 66], which
is the time associated to the passage of a particle through the barrier. While experiments
tried to measure the time by a particle spent traversing the barrier while tunneling [67],
no clear consensus exists about this definition, as there is no time operator in quantum
mechanics. Then, a lot of different proposal for the time spent by a particle in the classical
forbiden region of the potential barrier have been proposed [68-70]. Nelson’s approach
can be used to study this problem, as it gives a trajectory for the particle, and hence also
a natural definition of the tunneling time. This kind of approach has been proposed in
Ref. [71] where they use the collective motion of electrons flow in SGM (Scanning Gate
Microscopy) to propose a ray-tracing approach and obtain effective quantum trajectories
to describe the physics of the electrons in graphene junctions. Note that in this case, the
potential barrier is given by the Lorentzian shape of the SGM tip. In the following, we
will investigate the simple case of a rectangular potential barrier of height Vy and width
d. The Schrédinger equation is given by

MO, 0) = — 02, 1) + V(o). (273

where the potential barrier is given by

0 if z<0
V(z) =W[O(x)—O(x—-d)]=¢W if 0<z<d (2.74)
0 if z>d

with Vjy the height of the barrier, d the width and © the Heaviside step function. The
barrier is centered at x = d/2. We want to consider a Gaussian wavepacket arriving
on the barrier. However Eq. (2.73) does not have an analytical solution. To adress this
issue, as proposed in Ref [72], we can decompose the wavefunction on the eigenstates @y,
of the Hamiltonian such as

V(1) = / dk A(k)eH0 5y ()i ERt/h (2.75)
—0o

where A(k) is the weight of the eigenstate ¢y, in the wavefunction, xq is the initial mean

position of the wavepacket and Ej, the eingenenergy of the k' eigenfunction, defined as

the energy of free wave propagating with a wavevector k, such as

R2k?

Ej, = (2.76)

om

. To obtain an initial Gaussian wavefunction, A(k) is also chosen to be a Gaussian as
A(k) = Ne~(k—ko)*/40” (2.77)

where N is a constant that ensures the normalisation of the wavefunction, kg the mean
wavevector of the wavefunction, i.e. the mode that contributes most. Then o is the
width of the distribution of the modes and gives the modes around kg that contributes
to ¥. The width of ¢(z,0) is inversely proporitional to o. The mean energy of the
wavepacket is given by E = %(k‘g + 02) = By, + E, where Ej, is the energy of the
mode kg and E, = h;—?ff is the energy contribution of the width of the distribution of the
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modes. If we suppose that F < Vj, we are in the tunneling situation. The eigenstates of
the Hamiltonian are defined by part in three different regions: the region I where z < 0,
the region II where 0 < x < d and the region III where z > d. In total ', it is given as

e*T Lope™T if 2 <0
op(z) = < cpe™ +dpe™™ it 0<x<d (2.78)
te* it x>d

where r;, and t; are the reflection and transmission amplitude coefficients, ¢, and dj
are the amplitude of the wavefunction in the barrier and xx = /2m(Vy — E)/h. This
amplitude coefficient can be computed by imposing the continuity of the wavefunction
and its derivative at x = 0 and « = d. They are given by

Tk —i(k* + k2) sinh(ryd)
t 2% ikd
" =5 e d (2.79)
Ck k(ky + ik)e™"
d, k(kk — ik‘)e”kd
where )
= ) 2.80
P 2kky, cosh(kid) + i(k2 — k?) sinh(kyd) (280)
Fig. shows the shape of the potential barrier and a schematic view of the eigenfunction

in the three regions, for a given k. To illustrate how Nelson’s theory can be employed
to estimate key quantities in quantum scattering problems through particle trajectories,
we start by computing these trajectories by solving the Nelson equation, using the wave-
function given by Eq. ( ) as a guiding function whose shape is represented on Fig.

for different times. In this study, we consider a system with N = 10% particles, using the
same system of units as in previous sections, with 2~ = 1 and m = 1. The parameters
under consideration are the ratio between the potential height and the mean energy of
the wavefunction, Vp/FE, and the potential width d, which is expressed in units of 1/kq.
Fig. presents the trajectories of the first thousand particles, under the conditions
Vo = 3E, d = 1/kg with kg = 5, 0 = 0.5, and xg = —5. The left panel of the figure
depicts the initial spatial distribution of the particles, shown in orange, which aligns
with the squared modulus of the initial wavefunction, represented by the dashed red line.
The right panel illustrates the final spatial distribution of the particles, also in orange,
fitting the squared modulus of the final wavefunction, again indicated by the dashed
red line. The inset in central panal provides a closer look at the particle trajectories in
two scenarios: one where the particle is reflected by the potential barrier and another
where it tunnels through the barrier. For short times, both paths look like free particle
motion. Then they are distorted close to the barrier. Note that the trajectories are
reflected before they actually reach the barrier at = 0 because they are guided by the
(non-local) wavefunction, which generates the Bohm potential. As a result, the particles
feel the influence of the barrier before they encounter it. The transmitted trajectory
looks like a free particle motion again. We see in the central panel that the interferences
present in the wavefunction are also manifested in the particle trajectories, as the parti-
cles’ paths are influenced by the wavefunction. This phenomenon is particularly evident

1 As we consider a continuity of modes, it is possible that modes k whose energy Ej is higher than Vj
are involved. In this case, we use ki = i4/2m(Ey; — Vb)/h, cosh(iz) = cos(x) and sinh(iz) = isin(z) to
compute the eigenfunctions.
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FIGURE 2.5: Schematic representation of the potential barrier and the corresponding eigen-
function in the three regions: region I where z < 0, region II where 0 < z < d, and region III
where 2 > d. The potential barrier is depicted as a step potential, and the eigenfunction o (z)
is illustrated in each region for a given wavevector k. In region I, the eigenfunction consists of
an incident wave and a reflected wave, in region II it is a combination of exponentially decaying
and growing solutions, and in region III, it consists of a transmitted wave. The coefficients 7y,
tr, ¢k, and dy correspond to the reflection, transmission, and amplitude of the wavefunction in
the barrier, respectively. These coefficients are determined by ensuring the continuity of the
wavefunction and its derivative at the boundaries z = 0 and x = d.

in the regions around ¢ = 1.00, where alternating regions of intense black and white are
observed, corresponding to areas of constructive and destructive interference. From the
trajectories, we can see that it is straightforward to obtain two interesting quantities: the
ratio between the number of trajectories that crosses the barrier and the total number
trajectories, and the time needed for a trajectory to cross the barrier.

Transmission Coefficient The transmission coefficient for a given mode k is defined
as the squared modulus of the transmission amplitude, as given by the second expression
in Eq. (2.79), i.e.,

1
2
Te= 4l = — v (2.81)
D O (o)

In the scenario where the contribution of the width of the wavefpacket, E, = h%a?/2m,
is negligible compared to the compribution of a mean mode, Ey, = h?k3/2m, the total
transmission coefficient can be approximated by the transmission coefficient correspond-
ing to the mode kg. However, if this condition does not hold, the total transmission
coefficient is determined by the ratio of the integral of the squared modulus of the trans-
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FIGURE 2.6: Time evolution of the squared modulus of the wavefunction | (x,t)|?, for V; = 3E,
o = 0.5 and d = 1/ky with kg = 5, used as a guiding function in solving the Nelson equation
for estimating key quantities in quantum scattering problems. The figure displays the shape of
[t(x,t)|? at different times, showing how the wavefunction evolves from an initial state at t = 0
to later times ¢t = 0.50, ¢ = 1.00, ¢t = 1.50, and ¢ = 2.00. This wavefunction serves as the guiding
function in the computation of particle trajectories, providing insight into the dynamics of the
scattering process. Initially, the wavefunction is a Gaussian wavepacket centered at x = —5, and
as time progresses, it encounters the potential barrier at = 0 (in dark red). At ¢ = 1.00 there is
the apparition of interference fringes, resulting of the superposition of the incident and reflected
waves. The wavefunction is then split into two parts: one that is reflected by the barrier and
another that tunnels through it.

mitted amplitude at long times to the integral of the squared modulus of the initial
incoming wave packet. Given that the weight function A(k) is normalized to unity, the
total transmission coefficient is expressed as

2 —+o0 2 2
2 [t [T dk [t AR)] +o00 2 a2
T'= lim ~=72 ; 7 = T oo 2 :/ dk T~ (F=ko)"/207 (2.89)
f_oo dz [¢i(x,0)] f_oo dk |A(k)] —c0

This quantity can also be obtained using particle trajectories by counting the number of
particles that traverse the barrier, V¢, and comparing it to the total number of particles,
N. We can then compare the transmission coefficient obtained from these trajectories
with the theoretical prediction. In Fig. , this ratio is shown for various values of
Vo/E. Two scenarios are considered: one where E, is negligible compared to Ej, (left
panel), and another where it is not (right panel). The parameters selected are kg = 5
and ¢ = 0.5 (so that E,/Ex, = 1072), and kg = 1 and o = 1 (so that E, = Ej,),
respectively. Additionally, two barrier widths are considered: d = 1/kg and d = 5/kg. In
all cases, Ny/N, represented by the blue circled and red squared points, converges toward
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FIGURE 2.7: Trajectories of the first thousand particles in a system with N = 10* particles,
under the conditions Vy = 3E, d = 1/kg with kg = 5, 0 = 0.5, and x9g = —5. The left panel
shows the initial spatial distribution of particles (orange histogram), which matches the squared
modulus of the initial wavefunction (dashed red line). The right panel illustrates the final spatial
distribution of the particles, again represented by an orange histogram, which aligns with the
squared modulus of the final wavefunction (dashed red line). The central panel displays the
particle trajectories over time, where the interference patterns of the wavefunction are visible in
the trajectories as alternating regions of constructive and destructive interference. The potential
barrier is represented in dark red at x = 0. The inset provides a detailed view of particle
trajectories in two scenarios: one where the particle is reflected by the potential barrier and
another where it tunnels through the barrier.

the theoretical prediction, represented by small dotted lines and given by Eq. (2.81) for
the transmission coefficient associated to the single mode ko and Eq. (2.82) for the total
transmission coefficient, obtained by the summation over all the modes involved in the
wavepacket. In the left panel, these points closely follow the curves given by Tj,. In
the right panel, they align well with the curves representing the total transmission coef-
ficient but deviate significantly from the dotted line, which represents the transmission
coefficient associated with the mode kg. This figure demonstrates that particles tend
to tunnel more effectively through a barrier of large width when FE, is not negligible,
as more high-energy modes contribute to the tunneling process. This scenario will be
explored further in next paragraph.

Tunneling Time The tunneling time refers to the duration a particle spends within
the classically forbidden region of a potential barrier. It provides important insights into
the time taken by a particle to cross the barrier. Using the classical definition of the time
spent by a particle in a certain region, as discussed in Ref. [73, 74|, we can define the
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FIiGURE 2.8: Comparison of the transmission coefficient from particle trajectories with the
theoretical prediction for different values of Vy/E. The left panel shows a case where F, is small
compared to Ej,, with parameters kg = 5 and ¢ = 0.5. The right panel shows a case where
E, = FEy,, with kg = 1 and 0 = 1. Two barrier widths are considered: d = 1/ky (blue curves
and circles) and d = 5/kq (red curves and squares). The blue circles and red squares represent
the ratio Ny/N from the particle trajectories, which converge to the transmission coefficient
predicted by conventional theory, from equation , shown as solid and dashed lines. The
dotted lines represent the single-mode transmission, T%,. In the left panel, they overlap with the
solid and dashed lines because kg is the dominant mode, while in the right panel, they deviate
significantly due to the involvement of more modes in the wavepacket. The figure shows that
particles tunnel more effectively through a wide barrier when E, is not negligible, as higher-
energy modes contribute to the tunneling process.

tunneling time 7, for each trajectory n that successfully crosses the barrier at the final
time as

= /:f At O(zn(£)O(d — n(t)), (2.83)

where the mean tunneling time is then obtained as the sample average of these individual
tunneling times, i.e.,

(1) == 7 (2.84)

Here, we assume that the trajectories labeled from n = 1 to n = N; correspond to those
that have successfully tunneled through the barrier. By collecting these transmitted
trajectories, a statistical distribution of the tunneling times can be constructed, allowing
for the computation of its mean value. We calculate the tunneling time first for a fixed
barrier width d = 6/kg, varying the ratio Vj/E from 1 to 12 (see Fig. 2.9), and then
for a fixed value of V/E = 3 while varying d from 2/kg to 14/ko (see Fig. ), both
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FIiGURE 2.9: Distribution of tunneling times 7 for different potential heights V) = F, 4F,
8E, and 12F, with a fixed barrier width d = 6/ky. The histogram bin number is chosen accord
to Sturges’s formula. The distribution of tunneling times fits well with a gamma distribution
represented by solid lines. The inset shows the mean tunneling time (7) as a function of the ratio
WVo/E, fitted by a decreasing exponential function. As Vj/E increases, the mean tunneling time
decreases, and the distribution of tunneling times becomes narrower, consistent with theoretical
expectations. The parameters used are kg = 1, 0 = 1, and ¢y = —10.

cases with kg = 1 and ¢ = 1. In both figures, the tunneling time of the NV; transmitted
trajectories is computed, and the corresponding histograms are plotted. We observe that
the distribution of the tunneling time, denoted P(7), follows a gamma distribution

1
- B°T(a)

where a and 5 represent the shape and scale parameters of the distribution, respectively,
and I' is the Euler gamma function. The mean tunneling time is given by (1) = a3, with
the variance expressed as AT = o3%. In Fig. 2.9, the mean tunneling time, fitted with
a decreasing exponential function, decreases as the ratio Vj/E increases, consistent with
the expectations outlined in Ref. [72]. Additionally, the distribution of the tunneling
time becomes narrower for larger values of Vp/E. In Fig. , the mean tunneling time
increases with the barrier width d, as particles must traverse a greater distance to cross
the barrier, while the distribution of tunneling times broadens. The inset of the figure
shows that for large d, the mean tunneling time is proportional to d (see the balck dashed
line that fits the bullets), following a WKB-like approximation as discussed in Ref. [75].
This approximation assumes that within the region 0 < x < d, the wavefunction can be

P(7) T 1e™T/8, (2.85)

approximated by
Y(z,t) =~ pWVEB(2) ~ exp(—kz). (2.86)
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FIGURE 2.10: Distribution of tunneling times 7 for different barrier widths d = 2/ko, 6/ko,
10/ko, and 14/ko, with Vo = 3E. The tunneling time distributions fit well with a gamma
distribution. The inset shows the mean tunneling time (7) as a function of the barrier width
d, which follows a linear trend for larger d, consistent with the WKB-like approximation. The
parameters used are kg = 1, 0 = 1, and zg = —10.

This form of the wavefunction leads to a drift coefficient b in the Nelson equation given
by b = —hk/m, which in turn yields a Fokker-Planck equation of the form

P = <h"””am + haﬁ) P, (2.87)
m 2m

with a solution

P(z,t) ~exp | -~ "/ (2.88)

where 7. = d/hk is the time required for the particle to cross the barrier, and mp = md?/h
is the characteristic time associated with the diffusion of the density. The mean tunneling
time is thus given by (7) = 7. This approximation holds for large values of kd, where
T < Tp, rendering the diffusion effects negligible. However, we observe that for d = 4/ky,
the mean tunneling time deviates from the WKB approximation. Finally, as highlighted
in Ref. [76], it is noteworthy that the distribution of tunneling times exhibits properties
that reveal the wave-particle duality in the tunneling phenomenon. Specifically, if the
parameter « is kept constant, we find that A7 o (7), which mirrors the statistical
properties of the photon number in a Glauber coherent state of light [77]. Conversely, if
[ remains constant, we have At o \/W , aligning with the statistical properties of the
position of a Brownian particle, as discussed in Chap.
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It is important to note that the tunneling time is not an observable in the strict quantum
mechanical sense, as it does not correspond to the eigenvalue of an operator. However,
it may be associated with characteristic times of observables that are intrinsically linked
to the tunneling process.

CONCLUSION

In this chapter, we explored the Nelson formalism of quantum mechanics, which provides
a framework for describing quantum particles with well-defined trajectories, similar to
the de Broglie-Bohm theory. However, the two theories differ in several key aspects.
In both approaches, the wavefunction of the system satisfies the Schrédinger equation,
but in Nelson’s theory, this equation is derived from an acceleration law, whereas in
the de Broglie-Bohm theory, it is assumed as a postulate (even if for Nelson’s approach,
the conditions on the multivaluedness of the wavefunction are not imposed in the same
manner).

Moreover, while de Broglie-Bohm’s dynamics is purely deterministic, with randomness
arising from the unknown initial conditions of particle trajectories, Nelson’s approach in-
troduces intrinsic stochasticity. In Nelson’s formalism, the motion of the particle includes
a Wiener process term, which provides an additional interpretation to the probabilistic
nature of quantum systems. This stochastic component is absent in the de Broglie-Bohm
theory.

Nelson’s formalism can also be more suitable for solving certain types of problems. For
instance, it is particularly useful for calculating tunneling times (as discussed earlier) or
tackling Kramers-like problems, such as the mean first passage time in a bi-stable poten-
tial. Nelson’s theory is well-suited for these cases, as it can leverage techniques already
developed in classical stochastic mechanics (e.g., for overdamped Langevin dynamics,
Kramers’ problem is well-known, see Ref. [21, 78] for details). In the same spirit, as
we will see in Chap. 4, stochastic trajectories allow the creation of classical analogues
of quantum systems and the application of optimization techniques originally developed
for classical systems to quantum systems. For a detailled discussion of the differences
between the two theories, see Ref. [79].

Importantly, neither Nelson’s nor de Broglie-Bohm’s theory conflicts with Bell’s theo-
rem [80], as both theories remain non-local. The wavefunction, which is defined over
the entire space, guides the particle’s motion, maintaining the non-local character of
quantum mechanics. We showed how Nelson’s approach introduces randomness into the
motion of particles, which is responsible for the probabilistic nature of quantum theory.
The Nelson equation, discussed in detail, combines both predictable (deterministic) and
random (stochastic) elements to describe particle motion in a quantum system. We have
demonstrated that Nelson’s formalism is equivalent to standard quantum mechanics,
as the wavefunction solution to the Schrédinger equation can be constructed by ensur-
ing that the probability density satisfies both the forward and backward Fokker-Planck
equations.

To illustrate how the formalism works in practice, we applied Nelson’s theory to two
examples: a free Gaussian wave packet and a particle encountering a potential barrier.
These examples helped us understand quantum phenomena, such as tunneling, in terms
of trajectories. In particular, we explored how a particle can pass through a barrier
that, according to classical mechanics, should not be passed as the particle does not
have enough energy. These cases demonstrated how Nelson’s approach can be used to
calculate not only particle trajectories but also important statistical properties, such as
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the momentum distribution and the tunneling time, which agree with the predictions of
quantum theory.

Overall, the Nelson formalism offers an alternative perspective on quantum mechanics,
focusing on an ensemble of effective particle trajectories while remaining consistent with
the broader framework of quantum theory.

While our study was restricted to spinless particles, it is possible to extend Nelson’s
theory to particles with spin [81, 82]. Additionally, stochastic mechanics can be seen as
a reformulation of Feynman’s path integral theory [83], and the Nelson equation can be
derived from a variational approach [36].
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KEY TAKEAWAYS

This chapter has been devoted to developing the Nelson formalism of quantum
mechanics. We have demonstrated that this approach introduces the concept of
trajectories for quantum particles, in a manner similar to the de Broglie-Bohm
theory. The trajectories are determined by solving the Nelson equation

dz(t) = b(z(t), t)dt + dW (¢),

where the term b represents the mean velocity, defined as

h
b= —0,5+ Dq0;Inp,
m

with S being the phase of the wavefunction and p the probability density, such
that

Bz, 1) = /p(@, £ exp(iS(a, 1)),
The stochastic term W (t) is a Wiener process that introduces the probabilistic
nature of the theory, with its statistical properties given by
(W(t)) =0,
(W ()W (t+dr)) = 2Dqdr,

where Dq = h/2m is the diffusion coefficient of the stochastic process. The wave-
function still satisfies the Schrodinger equation

2
ihdp = —h—agz/; + Vi,
2m

but it can be useful to express it as the Madelung equations by separating the
real and imaginary parts of the equation, resulting in a continuity equation and a
quantum Hamilton-Jacobi equation

h
Op + —0:(pd,S) =0,
m
1 2 .
oS + %(815) +V + VQ =0.

with

1 0;/p

2m /p
the non-local quantum potential, responsible of the quatum interferences. The
continuity equation can further be rewritten as a diffusion equation

Vo =

Oip + 0:(bp) = Ddp,

which corresponds to the Fokker-Planck equation associated with Nelson’s equa-
tion.
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PREFACE OF PART 11

A human being is a part of the whole called by us
universe, a part limited in time and space. He
experiences himself, his thoughts and feeling as

something separated from the rest, a kind of optical
delusion of his consciousness. This delusion is a
kind of prison for us, restricting us to our personal
desires and to affection for a few persons mearest to
us. Our task must be to free ourselves from this
prison by widening our circle of compassion to
embrace all living creatures and the whole of nature
in its beauty.

— A. Einstein

In the first part of this thesis, we introduced two important theoretical frameworks: the

Langevin theory and the Nelson theory. These represent classical and quantum perspec-
tives that, at first glance, may seem quite different. This part focuses on the Nelson
formulation of Quantum Mechanics and its applications. The aim is to demonstrate how
this theory can address fundamental questions in Quantum Mechanics, while also pro-
viding a practical tool for optimizing the dynamics of quantum systems.
To begin, in Chap. 3, we will explore the foundations of the Born rule in Quantum Me-
chanics, particularly within the framework of the Nelson approach. The Born rule is
a fundamental principle in Quantum Mechanics, and we will investigate how Nelson’s
theory can provide insight into the emergence and understanding of this rule. Under-
standing the Born rule is crucial, as it dictates how probabilities are assigned to different
outcomes in quantum experiments.
Following this, the second half of this part, covered in the last two chapters, shifts to-
ward the practical applications of Nelson’s theory for optimizing the behavior of quantum
systems. In Chap. 4, we will focus on the dynamics of a quantum harmonic oscillator,
deriving a quantum-classical analogy from Nelson’s stochastic interpretation of quantum
mechanics. This analogy will help us explore how to optimize the motion and behav-
ior of the oscillator, potentially leading to more efficient control over quantum systems,
based on optimization techniques that have already been developed for classical systems.
Finally, in Chap. 5, we will attempt to extend this framework to open quantum sys-
tems, where the system interacts with its environment. We will study various effective
approaches to model this situation and examine how classical analogies can be extended
to open systems. This would allow the use of optimization techniques from classical
stochastic thermodynamics to develop quantum heat engines by optimizing the system
parameters’ cycles (such as temperature or stiffness).






CHAPTER 3

RELAXATION TO QUANTUM EQUILIBRIUM

The belief that there is only one truth and that
oneself is in possession of it seems to me the root of
all the evil that is in the world.

— M. Born

In this chapter, we investigate the relaxation to quantum equilibrium within Nelson’s
stochastic quantization framework, focusing on the emergence of the Born rule in quan-
tum mechanics. By numerically simulating the dynamics of quantum systems initialized
in non-equilibrium states that violate the Born rule, we study the convergence towards
quantum equilibrium for three canonical systems: the double-slit experiment, the har-
monic oscillator, and quantum particles in a gravitational field. Our results show that,
in the cases of the double-slit experiment and the harmonic oscillator, the relaxation to
quantum equilibrium occurs faster than the appearance of quantum interference patterns,
suggesting that observable quantum phenomena are equilibrium phenomena. However,
for quantum particles in a gravitational field, we find that quantum interference can
emerge before the system reaches quantum equilibrium, opening the possibility of ob-
serving deviations from the Born rule in such systems. The chapter is organized as
follows. In Sec. , we introduce the foundational questions surrounding the Born rule
and its role in quantum mechanics. Sec. provides a brief recall of Nelson’s stochastic
quantization. In Sec. , we discuss how to quantify the distance to quantum equi-
librium and the relaxation towards it. Sec. presents numerical simulations for the
double-slit experiment, the harmonic oscillator, and quantum particles in a gravitational
field. Finally, conclusions are drawn in Sec.
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CHAPTER 3

INTRODUCTION

Quantum mechanics (QM) has raised innumerable foundational questions since its for-
malization in the early twentieth century. Most of those questions arise from two "weird"
properties of QM, which single it out from earlier physical theories: (i) QM is an intrin-
sically probabilistic theory, meaning that its outcomes can only be predicted on average,
and (ii) quantum probabilities do not follow the same rules as classical ones, inasmuch as
in QM probability amplitudes are additive, and not the probabilities themselves'. This
fact is encapsulated into Born’s rule [85], which defines quantum probabilities as the
squared modulus of complex amplitudes.

The first of these properties was the source of much controversy at the dawn of QM,
because earlier fundamental theories were all deterministic. Being capable of predicting
with virtually perfect accuracy a physical event (e.g., an eclipse or the passage of a comet)
was seen as the hallmark of a rigorous physical theory, the kind of achievement that gave
Newton’s and Maxwell’s theories all their prestige. Besides, just a few years earlier,
Boltzmann had shown how to bridge the gap between reversible macroscopic motion at
the molecular level and irreversible heat and matter diffusion at the macroscopic scale. It
was natural, then, to assume that also the randomness of QM could one day be explained
in a similar fashion.

However, it is the second property that poses the hardest foundational questions — and
is also at the heart of the spooky action at a distance first highlighted in the celebrated
Einstein-Podolsky-Rosen (EPR) paper [86], and later confirmed in many experiments,
mainly based on John Bell’s extension to spin states of the original EPR argument [87].
Born’s rule is at the heart of these "weird" features of QM and, for this reason, deserves
some special attention. Indeed, Born’s rule stands alone in the mathematical machinery
of QM, and is employed only when one needs to translate the abstract wavefunction
into an actual prediction about probabilities of outcomes. We also note that, while
the Schrodinger equation is linear in the wavefunction, Born’s rule, which is quadratic,
reinstates some nonlinearity into the theory.

It is well-known that in some nonlocal hidden-variable theories [88|, such as the Bohm-
de Broglie version of QM (also known as Bohmian mechanics), the Born rule needs
not necessarily be satisfied”. In the Bohm-de Broglie mechanics [32], if an ensemble of
trajectories satisfies Born’s rule at a certain initial time ¢ = 0, i.e. if P(x,t = 0) =
|ip(2,t = 0)|* (where P is the probability density of the position variable 2 and 1 is the
wavefunction), then this property will always be satisfied for any subsequent time ¢ > 0.
But the equations of the Bohm-de Broglie mechanics remain perfectly valid also when
one takes P(z,t = 0) # |[¢(x,t = 0)|?, i.e., if Born’s rule is violated. In that case, the
two quantities P(x,t) and |¢(z,t)|* will remain distinct for all later times.

In the context of the Bohm-de Broglie mechanics, Valentini [89] suggested that the Born
rule is the analogue of thermal equilibrium in classical statistical mechanics. In the latter,
non-equilibrium states are possible during transient evolutions, but the system eventu-
ally relaxes to its thermal equilibrium, given for instance by a Maxwellian probability
distribution. In the same fashion, Valentini postulated that the Bohm-de Broglie distri-
bution of positions may in general differ from that given by Born’s rule, and only relaxes

'Tt is possible to formulate QM in terms of ordinary probabilities, provided that these are allowed to
take negative values (see, for instance, Ref. [84] and references therein). This is another manifestation
of the weirdness of quantum theory.

2Strictly speaking, actual ensembles in experiments only have a finite number of particles N, so that
these theories always violate the Born rule. Here, we mean that the latter may be violated even in the
limit N — oo.
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RELAXATION TO QUANTUM EQUILIBRIUM

to it in a finite (albeit fast) timescale. Hence, the standard distribution that satisfies
Born’s rule corresponds to a sort of quantum equilibrium defined by P = \w\z, although
quantum non-equilibrium states with P # W\Q may also exist during short transients
(this is referred to as "subquantum dynamic" by Valentini). The possibility of finding
signatures of subquantum dynamics in the primordial universe was also suggested [90,
91].

Just like in standard statistical mechanics, quantum-equilibrium distributions are much
more probable than non-equilibrium ones (they are typical, in a technical sense”’) and
therefore should be observed most of the time, which is of course the case in all known
experiments. From a dynamical point of view, non-equilibrium distributions will typi-
cally converge to quantum equilibrium. Earlier numerical simulations |96] showed that
relaxation to equilibrium is indeed observed, provided some coarse graining procedure is
applied.

An alternative, and perhaps more appropriate, avenue to study such convergence to quan-
tum equilibrium is to resort to Nelson’s stochastic quantization |31, 97, 98]. As detailed
in the next section, Nelson’s dynamics is similar to the Bohm-de Broglie mechanics, with
the important difference that the equations of motion are not deterministic, but rather
stochastic with a diffusion coefficient equal to i/2m, where & is the reduced Planck con-
stant and m the mass. Nelson’s theory reproduces standard QM when the Born rule is
satisfied at the initial time. When this is not the case, the distribution P will converge
to the Born rule value ]1/1\2, without any need for an artificial coarse graining procedure,
thanks to the stochastic nature of the dynamics. Hence, Nelson’s approach appears to be
particularly adapted to investigate subquantum physics and the relaxation to quantum
equilibrium.

Of course, one would also need to postulate a mechanism through which a quantum
particle could find itself at quantum non-equilibrium. Although we do not have a theory
for such a mechanism, we may conjecture that fundamental processes — such as beta
decay or particle-antiparticle pair production — generate quantum particles that are, at
least at the very early stages, out of quantum equilibrium. Indeed, during such processes
the quantum particles are created ex nihilo and may not have had enough time to relax to
the Born rule. We will not try to justify or explore any further this speculative conjecture.
Our purpose here is merely to investigate what happens if, for whatever reason, Born’s
rule is at some point violated.

Within this framework, an important question is whether quantum thermalization occurs
faster than any typical quantum effect, such as interference. If this is the case, it would
mean that all typically quantum phenomena are "equilibrium" phenomena and hence
indistinguishable from standard QM. In the opposite case (i.e., quantum interference
occurring before relaxation), one could hope to observe some anomaly in the interference
pattern due to subquantum corrections. If true, this would be an appealing prediction
for future experiments.

In this chapter, we investigate this topic by means of numerical simulations of Nelson’s
stochastic dynamics, for three relevant cases: (i) a standard double-slit interference setup,
(ii) a harmonic oscillator, and (iii) quantum particles in a gravity field, such as ultracold
neutrons in the gravitational field of the Earth [99]. The next section is devoted to a
brief description of Nelson’s approach to QM. In Sec. 3.3, we illustrate how to quantify
the distance to quantum equilibrium and the relaxation towards it. Sec. includes the
numerical results for the three physical systems mentioned above. Finally, conclusions

3For a definition of typicality in statistical mechanics, see [92, 93], and in the Bohm-de Broglie theory,
see [94, 95].
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are drawn in Sec.

REMINDER OF NELSON’S STOCHASTIC QUANTIZATION

In the Bohm-de Broglie theory [32], particles have a well-defined position x(t), and their
trajectories evolve according to a deterministic law of the type:
dz(t)
dt

= u(x,t), (3.1)

where the velocity u(z,t) is related to the phase of the wavefunction, which satisfies the
standard time-dependent Schrédinger equation. In particular, writing the wavefunction
in polar coordinates

Y(a,t) = R(x,t) 5@,

where R(z,t) is the amplitude and S(x,t) is the phase, one has that v = hd,S/m. Note
that, in the present work, we will always consider one-dimensional problems.
In contrast, in Nelson’s dynamics [31, 97| the particles obey a Langevin equation

da(t) = b(z(t), t)dt + dW (¢), (3.2)

where b(z(t),t) is the deterministic velocity and W(¢) is a stochastic Wiener process.
The latter is characterized by a zero mean (dW) = 0 and a finite variance

(AW?) = Dg = e (3.3)

2m’

with D¢ the quantum diffusion coefficient. The origin of such Brownian motion with
diffusion coefficient D¢g was not specified by Nelson, and here we just assume the pres-
ence of some universal force agitating all quantum particles. We also note that similar
stochastic theories have been discussed by Bohm and Hiley [100]|, Peruzzi and Rimini
[101], as well as Bohm and Vigier [102].
In Nelson’s theory, the total velocity b(z,t) is written as the sum of two terms:

b, 1) = Zaism b+ QDQ(% In R(z, 1), (3.4)
where the first term (drift velocity) is proportional to the gradient of the phase and is
identical to the velocity of the Bohm-de Broglie model, while the second term (osmotic
velocity) depends on the amplitude R.

The wavefunction follows the standard Schrédinger equation ihdy)(x, t) = Hy (z,t), with
Hamiltonian H = p? /2m + V(m,t). Hence, the phase S obeys the following quantum
Hamilton-Jacobi equation:

E_‘_Qm % —+V =0. (3.5)

p05 B (08\' B &R
2mR 0x?

Finally, the stochastic Langevin Eq. (3.2) can also be expressed as an equivalent Fokker-
Planck equation for the probability density P(z,t):

oP 0 o0*p

— + — |b(z,t)P] = Do = 3.6

L b)) = Do O (3.0
In summary, Nelson’s theory is captured in the Eq. (3.2) (stochastic process), Eq. (3.1)

(definition of the velocity), and Eq. (3.5) (quantum Hamilton-Jacobi).
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When the initial particle distribution P(x,0) is identical to the squared amplitude of
the wavefunction [¢(z,0)|* = R2(z,0), Nelson’s dynamics is equivalent to the standard
quantum theory and reproduces the same results as the time-dependent Schrédinger
equation. Like the Bohm-de Broglie theory, it can be seen as a nonlocal hidden variable
theory, where the hidden variable is the position of the particles, but it differs from the
Bohm-de Broglie mechanics inasmuch as it is non-deterministic. However, it is important
to stress that, despite Eq. (3.2) being a stochastic process, the whole Nelsonian dynamics
is reversible in time [31], as it should be to guarantee the equivalence with the Schréodinger
equation. This can easily be seen from the Fokker-Planck Eq. (3.0), by noting that the
osmotic velocity exactly cancels the diffusion term.

QUANTUM EQUILIBRIUM

In the standard formulation of QM, the Born rule is a crucial postulate: the probability
density of finding a particle at a position x at time t is given by the squared modulus
of the wavefunction [¢(xz,t)|*. However, this postulate is not needed in the Nelson and
Bohm-de Broglie formalisms, where the wavefunction is viewed as a field that guides
the dynamics of the particles and is not necessarily linked to the probability of finding
a particle in a certain region of space. Hence, it is perfectly consistent within these
approaches to consider cases where P(z,t) # |[¢(x,t)|?, in which case the predictions of
standard QM would differ from those of the Nelson * and Bohm-de Broglie theories.

As suggested by Valentini [103], the Born rule may correspond to a situation of quantum
equilibrium, analogue to the thermal equilibrium of classical mechanics. According to this
view, non-equilibrium states with P(x,t) # |¢(x,t) ]2 can exist, but they relax to quantum
equilibrium on a very short timescale, so that they are difficult to observe in practice.
Valentini developed these ideas in the context of the Bohm-de Broglie mechanics which,
being deterministic, requires some form of coarse graining to observe such relaxation
[96]. But in Nelson’s theory the approach to equilibrium should occur more naturally,
thanks to the stochastic nature of the motion. This fact was first analyzed in detail by
Petroni and Guerra [104], building on earlier work by Bohm and Vigier [102], although
the convergence to quantum equilibrium may not be proven in general for any initial
condition and potential. More recently, Hatifi et al. [105] have studied analytically and
numerically the relaxation to quantum equilibrium, in relation with the experiments of
Couder et al. on bouncing oil droplets as an analogue of quantum motion [106, 107].

The aim of the present work is to investigate, by means of numerical simulations, whether
quantum thermalization occurs faster than any typical quantum effect, such as interfer-
ence. In order to do so, one first needs to reconstruct the probability density P(x,t) of
he particles at each time. This is done by partitioning the space x € R into bins of size
Az, such that each bin contains a sufficiently large number of particles, and constructing

“In Chap. 2, we built Nelson’s theory by introducing the wavefunction as the square root of the
probability density multiplied by a complex phase. We then showed that this wavefunction is a solution
of the Schrédinger equation. This established the equivalence between Nelson’s theory and standard
quantum mechanics. A necessary result was that the squared modulus of the wavefunction represents
the probability density, which means that Born’s rule holds. However, once Nelson’s theory is set up,
we can relax this condition. We can assume that the wavefunction is an intrinsic quantity that follows
the Schrodinger equation and guides the particles, but is independent of the probability density. This
allows us to initially distribute the particle positions according to a probability density that does not
have to be |w\2. Assuming this breaks the equivalence with standard quantum mechanics. However, we
will show that the probability density converges to \1&\2 after some time, ensuring that Born’s rule holds
after this period. At that point, the equivalence between the two approaches is restored.
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the corresponding histogram. The stochastic Nelson Eq. (3.2) is solved using a second-
order Helfand-Greenside’s method [55, 108, 109]. In order to reduce the statistical noise,
the simulations are repeated independently many times and the results are averaged to
reconstruct the probability density. In order to compute the velocity b(x,t), we need
to solve the Schrodinger equation to obtain the phase S and amplitude R of the wave-
function. In the three examples considered in this work, the solution could be obtained
analytically or semi-analytically, as detailed in the next section.

The probability density P(x,t) must then be compared to the squared modulus of the
wavefunction |1)(z,t)|> = R2. For this, we need to define a distance between these two
quantities. Out of the many possibilities, one can use the L, distance between two
functions f and g, defined as

Lylf.9] (t) = (/ [l - ot (5.7

In particular, the L; distance was advocated by Petroni and Guerra [104] as the appro-
priate tool to quantify the relaxation to quantum equilibrium. The infinite distance Lo
can be seen as its limit when p — oo and is given by

Leolf, g)(t) = max |f(z,1) — g(x,1)]. (3.8)

Other criteria can also be defined, such as the entropy-like function used by Valentini

[110]:
dz f(z,#)In <§g3> (3.9)

which is related to the Kullback-Leibler divergence, also called relative entropy [111].
Taking f = P and g = |(x, )%, all these distances vanish when the Born rule is
satisfied, i.e. at quantum equilibrium. Of course, in order to estimate the relaxation time,
it will be necessary to define a somewhat arbitrary threshold below which the distance is
assumed to be practically zero. Finally, using the entropy-like quantity Eq. (3.9), Hatifi
et al. [105] were able to prove a H-theorem which ensures that a generic probability
distribution P(z,t) converges to |1)(z,t)|* as t — oo (with some caveats, as will be seen
in the next section).

+o0

H = Lulf.q) (1 =/

—00

SIMULATION RESULTS

The main question we try to answer in this work is whether quantum thermalization
occurs faster than any other typical quantum effects, such as the appearance of interfer-
ences. If that were the case, it would mean that all quantum phenomena are “equilib-
rium" phenomena and hence indistinguishable from standard QM. In the opposite case,
one could hope to observe some anomaly in the interference pattern due to subquantum
corrections, which would be an appealing prediction for future experiments.

In this section, we will use the distance functionals defined in Sec. to estimate the
time of relaxation to quantum equilibrium, and compare it with the time of appearance of
quantum effects. This problem will be investigated for three emblematic physical systems:
the double-slit experiment, the harmonic oscillator, and the evolution of a wavepacket in
a linear potential representing the gravity field of the Earth.
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FIGURE 3.1: Left panel: Initial densities for the wavefunction |¢(z,t)|* (red continuous line)
and the particles P(x,0) (brown dashed line). Here, P is the sum of two Dirac delta functions
centered at +a, while |1(z,t)|* is the sum of two Gaussians of width o = 0.3a. Right panel:
Same quantities at time ¢ = 0.09 7, when quantum equilibrium is not yet attained.

Double-slit experiment

We consider a standard double-slit experiment, where the two slits have an aperture of
width ¢ and are separated by a distance 2a, see Fig. . We shall use units in which
h =m = a = 1, so that the only free parameter is the width ¢ and actually represents
the ratio o/a. This choice also defines a timescale 7 = ma?/h (= 1, in these units).

In order to model the configuration of a double-slit experiment, we take an initial wave-
function that is the sum of two Gaussians of width ¢ and centered at x = +a:

1 2 /9,2 2 /9,2
— —(z+a)?/20 —(z—a)?/20
Y(z,0) = [2 (1 e—02/02)]1/2 (e +e ) . (3.10)

As we want to investigate the relaxation to quantum equilibrium, the initial particle
distribution should not satisfy the Born rule, i.e. P(x,0) # |1(z,0)|*. Hence, we assume
that all particles are concentrated at the same position, at the centre of each slit:

d(x —a)+d(xz+a)
2 Y

P(x,0) = (3.11)
where ¢ denotes the Dirac delta function. This initial configuration is plotted in Fig.

(left panel), while the right panel of the same figure shows both |¢)(z, )|* and P(z,t) at a
later time when the system has evolved but has not yet reached the quantum equilibrium.
The free evolution of this initial wavefunction can be computed analytically [55], yielding
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the following square modulus at time t:

g

o2 (x +a 2
|w(x7t)|2 = 512 [eX {_ 4( ﬁ2t2 }
2\/7r(a4 + EE) (1 +ea?/o?) Ot T

2 2 2(,.2 2 2htax
o(z —a) o (xz* 4+ a”) SO
+exp{—0_4 n o) } +2exp{—04 n = }cos (()_4+ 2

m? m? m?

(3.12)

The particle density P is obtained numerically by solving the stochastic Nelson Eq. (3.2)
for a large number NV of trajectories. In order to do so, one needs the expression of the ve-
locity term b that appears in the Nelson equation, which is obtained by injectingEq. ( )
into Eq. Eq. (3.1). We obtain [55]:

h —(0% —ilt o? — il (2 4 a)?
b(xz,t) = (Re+1Im) <(4h,2t’;1) (x + a) exp —( m) ¥
moot 4+ T 2<U4+W)

o2 — i) (1 — q)?
+(z — a) exp —( m)(22 ) ] (3.13)
i)

2 .ht 2 2 iht\(o N2
(0 — i) (z + a) L exp _(O’ i) (z — a) 7
2(a4+ h2t2) 2<a4+ h2t2>

m? m?

X [exp —

where (Re+Im) denotes the sum of the real and imaginary parts of the expression be-
tween parenthesis. Then, at each instant ¢, we construct a histogram of the particle
positions, and finally interpolate the histogram to obtain the density P(x,t). This pro-
cedure is illustrated in Fig.

Given the analytical expression of |w|2 and the numerically-computed density P, it is
possible to compare these two objects using the distances Lx defined in Sec. 3.3. These
quantities are represented as a function of time in Fig. , for the case ¢ = 0.3a. For
all cases, the distance between P and \¢|2 decreases to zero for long times, signalling the
convergence to the quantum equilibrium and the emergence of the Born rule. Due to
numerical errors occurring during the computation of P, the minimal distance is never
zero, but approximately 1072 — 1073, depending on the adopted measure. It is also
interesting to note that the qualitative behavior is similar for all distances, so that they
can be fitted with the same type of function in order to extract the relaxation time 7.
Numerically, one can show that a good candidate for the fitting function is

Lx(t) = oy exp (—age™’), (3.14)

where a1, a9, and ag are free fitting parameters, to be determined for each distance and
each value of . From this expression, we define the quantum relaxation time 7, as the
time at which the tangent of the curve Lx(t) at ¢t = 0 intersects the abscissa axis, which
gives: 74 = 1/(aza3).

Next, we need a suitable definition of a “typical" quantum time 7y, defined as the time
of appearance of quantum interferences, in order to compare it with the relaxation time
Tq- Interferences occur because the two initial Gaussian wavepackets spread in space,
and after a certain time they overlap in the region between the two slits. As illustrated
in Fig. 3.4, we define 7t as the time when the first maximum appears in between the two
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FIGURE 3.2: Trajectories of N = 1000 particles (left side, black curves) initially distributed
at the center of each slit. The histogram of the distribution of the positions (right side, orange
segments) at the end of the evolution is interpolated to obtain the corresponding density P(z,t)
(right side, dashed brown line).

original wavepackets. Further maxima appear at later times, until the full interference
pattern is formed.

We now have all the elements to compare 7, and 7y for different values of . The ratio
o/a has to be smaller than unity to ensure that there is no significant overlap between
the two Gaussian wavepackets at the initial time, but not too small because we want to
ensure that P and |w\2 are significantly different. Hence, we will consider values of o/a
in the interval [0.2,0.7]. The computed values of 7y and 74, for different distances Ly,
are shown in Fig. as a function of the initial width o.

The important result of Fig. is that, whatever the value of o, it is not possible to find
a situation where the interference occurs before the system has converged to the quantum
equilibrium. In other words, for the double slit experiment, all typically quantum physical
phenomena occur after the Born rule has been established. Or, to put it differently, the
subquantum dynamics displays no quantum effects such as interferences.

A possible extension of the study presented in this section would be to consider three
or more slits and check if it possibly increases the relaxation time beyond the quantum
interference time. Experimental investigations in this direction have been performed
recently [112, 113]. However, in the present work, we will rather focus on two other
configurations: the harmonic oscillator and a linear potential truncated by a perfectly
reflecting wall.

®Indeed, a Taylor expansion of Eq. (3.14) near t = 0 yields: Lx(t) ~ Lx(0) (1 — azast).
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FIGURE 3.3: Semi-logarithmic plots of the various functionals (see Sec. 3.3) used to quantify
the distance between the probability density P and the squared modulus of the wavefunction
[1|°, as a function of the time ¢ (in units of 7), for o = 0.3a.

3.4.2 Harmonic oscillator

The harmonic oscillator is perhaps the most important and studied system in quantum
mechanics and is crucial to the development of quantum field theory. It is both interesting
in itself and a common approximation to many physical systems. Here, we will further
investigate the interplay between the establishment of the Born rule (quantum relaxation)
and the appearance of typical quantum effects.

We consider the Schrédinger equation

2 2
ih%@b(x,t) _ (-haw + 1mw2x2> Wz, b), (3.15)

where m is the mass of the particle and w the frequency of the oscillator. Normalizing
space to xgp = y/h/(mw) and time to ty = 2/w, the Schrédinger equation becomes

2

i%@/}(x,t) = <—88372 + :Jc2> P(x,t). (3.16)

This system of units amounts to taking w = 2, h =1 and m = 1/2, so that the quantum
diffusion coefficient is Dg = h/2m = 1 and the ground state energy Eo = mw?/2 = 1.

We want to study the convergence to the quantum equilibrium when the initial particle
probability density P is given by a Dirac distribution centred at the bottom of the har-
monic potential (z = 0). The initial wavefunction is also a Gaussian of given width, but
not necessarily the ground state of the system, hence it will display breathing oscillations
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FIGURE 3.4: Squared modulus of the wavefunction for o = 0.09a, at times ¢t = 0 (left panel),
t = 0.127 (middle panel), and ¢t = 0.67 (right panel). Initially, only two peaks exist, one for each
Gaussian wavepacket. At ¢ = 0.127, a third peak has appeared between the two initial ones: this
event defines the interference time 7i,;. At later times, several new peaks appear and form the
full interference pattern.

while remaining Gaussian for all times. A similar study, but only considering a ground
state wavefunction for the Schrodinger equation, was performed by Hatifi et al. [105].

In practice, our initial condition is as follows:

b(x,0) = (2;2>iexp{— v +i[a0x2+ﬁo]} and P(z,0) =d(z),  (3.17)

2
of 4o

where og, ag and By are appropriate constants that define the wavefunction’s width and
phase. At any time t > 0, the wavefunction will keep the same functional form, so that
it can be written as:

V(@ t) = (2%0—12@)) % exp {—%”;2(0 L ifa(t)a? + B(t)] } , (3.18)

with initial conditions «(0) = ayp, 5(0) = By and o(0) = 0g. Note that the ground state
corresponds to ag = fp = 0 and 09 = 1/ V2.

Injecting this ansatz into the Schrodinger Eq. (3.16), we obtain a system of first-order
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FIGURE 3.5: Time of appearance of the interferences 7,4 (red dots) and times of convergence
to quantum equilibrium T(‘lx (shades of blue dots) associated with the different distances defined
in Sec. 3.3, as a function of the initial width o/a. All of the different times can be nicely fitted
with a hyperbolic tangent function (dashed lines) of the type: 74(0) = 51 tanh(ﬁgch + 53) + Ba,
where the (§; are fitting parameters. For every value of ¢ and for every distance Ly, quantum
equilibrium (Born’s rule) is reached before the appearance of quantum interferences.

differential equations, where the dot denotes differentiation with respect to time:

1

a(t) = 020 403(t) — 1,
: 1
B(t) = 5o (3.19)

(t) = da(t)o(t).

The solution to the above equations completely determines the wavefunction ¢ (x,t), and
hence the term b(z,t) in Nelson’s equation Eq. (3.4): b(z,t) = [a(t) — 1/0?(t)]z, so that
the Nelson equation can be written as

da(t) = [4a(t) - 021(t)] zdt + dW (D). (3.20)

The corresponding Fokker-Planck equation can be obtained using the Kramers-Moyal
expansion [21, 22| and reads as:

2
%P(x,t) _ 8‘1{— [4a(t) - 021@] :L‘P(x,t)} + %P(m,t). (3.21)
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Supposing that the probability density is also Gaussian (which is an exact ansatz):

Plat) = 1@) exp (9"2) , (3.22)

271'0123 20?’(75)

and injecting the above density into Eq. (3.21), one obtains that op(t) should obey the
following equation

. 1 1
The convergence to the quantum equilibrium can be studied by investigating the con-
vergence of op(t) to o(t). To do so, we introduce the new variable v(t) = [o(t)/op(1)]?,
which, from Eq. (3.19) and Eq. (3.23), must be a solution of the Riccati equation

(0 = 230

[1—~(®)]. (3.24)

Hence, one needs to first solve the system of Eq. (3.19) to obtain o(t) and then inject
it into Eq. (3.24) in order to obtain ~(t). Introducing B(t) = 1/c%(t), the solution to
Eq. (3.21) can be obtained pseudo-analytically and reads as [114]:

(1) , —2 [t drB(r)
t)y=1+ , with t)y=e “Jo 3.25
() 2f0t dr B(1)¢(T) #(t) (3.25)

with the initial conditions By = 1/0¢ and v(0) = oo, which corresponds to the situation
where P is initially a Dirac delta function. Moreover, the system of Eq. ( ) possesses
the analytical solution [115]:

1 8By
B = 50 = B a— (BE - 1) cos(@t)’ (3:26)

In Fig. 3.6, we present the solution of Eq. (3.19) and Eq. (3.21) for the initial conditions
a(0) = 0,5(0) = 0, B(0) = v/2 and v(0) = oo, meaning, respectively, no initial phase, a
wavefunction that is not the ground state of the harmonic oscillator, and a §-distributed
probability P(x,0). The phase function A and the width B of the wavefunction are both
periodic in time, with period T' = (7/2)ty = 7/w, equal to half the natural period of the
harmonic oscillator 27 /w (this is because they are quadratic quantities in x). In contrast,
the ratio v = [0/ p]? relaxes to v = 1 over a timescale 7. When this has occurred, then
both P and |1/)|2 are Gaussian functions of the same width and the Born rule is satisfied.
The purpose here is to compute 74 for different values of g, i.e. different initial widths of
the wavefunction, and to check whether or not it is possible to find a situation where the
period of quantum oscillations 7" is shorter than the relaxation time 7. In the following,
we will consider different initial widths op = \/2/ By of the wavefunction from 0.25 to 4,
in units of zy. Note that, for the ground state, one has: o9 = 1.

This can be done using several methods, like arbitrarily defining a cutoff value, so that
the relaxation time is defined as the time when ~ reaches such value. Here, we shall use
a similar, but subtler, technique. We first compute the root mean-square deviation of ~
over a sliding window in time [116]. We construct a window, centred at the data point
i, which contains n 4 1 other data points between i —n/2 and i +n/2, and compute the
mean square deviation ©; of v inside this window using the expression

|
0= —— > (-3 327
j=i—n/2
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FIGURE 3.6: Left panel: Time evolution of the phase functions a(t) and 5(t¢), and the width
o(t) of the wavefunction ¥. a(t) and o(t) are periodic with period T = (7/2)to, while 5(¢) is
monotonously decreasing, in accordance with the second Eq. (3.19). Right panel: Time evolutions
of the ratio v(t) = [0(t) /o p(t)]? and of the function ¢(t) appearing in Eq. (3.25); v and ¢ converge
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respectively to unity and zero over a relaxation timescale denoted 7.

82




RELAXATION TO QUANTUM EQUILIBRIUM

10+2 o) = 0.94 o) = 1.63
10+1
|
1
10+() \
| 1
1 Ll
D ., 1 1
107" 1
< 1 1
1 \
o)) \
10 \ \
\ \\
\
\

103\ \

9 ........ ‘ A ‘

AN A

10—4 S i\

0 7o 1 T 2 0 w1 T 2 0 O
t(to) t(to) t(to)

FIGURE 3.7: Evolution of y(t) (blue dashed curve) and its mean-square deviation O(t) (red
solid curve) as a function of time (in units of ¢y), for three different values of the initial wave-
function width o¢. The cutoff value # = 5 x 10~% is represented as a horizontal line which cuts
the curve ©(t) at t = 7, defining the relaxation time. We note that 7, is always smaller than
the period T = (7/2)to of the harmonic oscillator (also represented on the abscissa axis), but
increases when o( increases.

where v; = v(t;) and §; = Z;fzg 7; is the mean value of ~y inside the window. Typically,

we take n = 10. Hence, as y(t) approaches a constant value (here, v = 1), the function

© will tend to zero. By choosing a threshold 6, one can define the relaxation time 74 as
the time for which © < 6.

To visualize this procedure, the evolutions of v and © (dashed blue) are represented in
Fig. 3.7, for three values of the initial width oy = 0.94, 1.63, and 5.54. The convergence
time is represented on the horizontal axis as the abscissa of the black dot, which is
the point corresponding to © = @, where in the present case # = 5 x 10~%. For the
different values of o, the behavior of (¢) differs slightly, but the curve is always strictly
decreasing, and no ambiguity arises for the determination of 7.

One may wonder about the dependence of the relaxation time on the threshold value
6, but, as it appears in Fig. , © decays fast close to the convergence time, so one
can expect this effect to be minor. To check this point, 74 was computed using different
values of threshold, ranging from # = 1072 to § = 5 x 10~* and its dependence on the
initial width o is plotted in Fig. 3.8. For every threshold and for every value of og, the
relaxation time 74 is smaller than the period of quantum oscillations 7. In particular,
we note the two limiting cases: (i) For op — 0, then 7, — 0: this is rather natural, as
it corresponds to the case where P and \1/1\2 already have the same vanishing width at
t = 0; (ii) For large o9, 7q¢ — m/4 = T'/2, in other words relaxation is completed in half
an oscillation period.
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FiGURE 3.8: Evolution of the quantum relaxation time 74 with respect to the initial width og
of the wavefunction, for different thresholds @, ranging from 1.0 x 1072 to 5.0 x 10~* (shades
of red dots). For each threshold, the value of 7, increases with oy and saturates at 7, = 7/4
(dotted red line). Hence, the convergence time is always at least twice as small as the quantum
oscillator period T' = 7/2 (blue dashed line).

The limit 74 — 7/4, obtained for large initial dispersions, can be recovered analytically
as follows. For large g, corresponding to small By, the function B(t) = 1/02(t) becomes
[see Eq. (3.20)]:

2By By

~ = 3.28
1+ cos(4t)  cos?(2t)’ (3:28)

B(t)

so that, from Eq. (3.25): ¢(t) ~ exp[—Bytan(2t)] = exp[—tan(2t)/o%] which goes to
zero when t — /4.

All in all, these results show that relaxation to quantum equilibrium (Born’s rule) occurs
much faster than an oscillation period of the quantum oscillator, and is completed at the
latest over half such a period. As in the double-slit case, the system will always reach
the quantum equilibrium before quantum phenomena become observable, preventing the
possibility of observing a situation where the Born rule does not hold.

So far, we considered wavefunctions that are Gaussians, albeit not necessarily the ground
state of the harmonic oscillator. To end this section, we now turn to the case where
represents an excited state. In this case, the wavefunction possesses nodes (zeroes),
leading to singularities (asymptotes) in the velocity field b(z,t), which becomes infinite
at the location of the nodes. These singularities constitute infinite barriers that the
trajectories cannot cross. For instance, for the first excited state of the oscillator, there
is one singularity at z = 0, where lim,_,q+ b(z) = £oo. Hence, a particle approaching
zero from the right (z > 0) will develop an ever increasing velocity directed in the
positive x direction, and will never manage to cross the origin. Similarly, for a particle
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FIGURE 3.9: Particle probability density P(z,t) (dashed blue line) and squared wavefunction
[t)” (red solid line) at times ¢ = 0 (left panel) and ¢ = 1 (right panel). Time is expressed in units
of ty and space in units of zy. The wavefunction corresponds to the first excited state of the
harmonic oscillator. The initial particle distribution is a Dirac delta function centred at x = —1
and cannot cross the barrier located at the origin. The time step is dt = 107%.

approaching zero from the left (z < 0).

This is illustrated in Fig. 3.9, where the initial distribution P is a Dirac delta function
located at x = —1, in the centre of the left lobe of the wavefunction density. At ¢t = 1
(right panel), the initial particle distribution has considerably spread, but it has not
crossed the barrier at x = 0. We note that this result is in disagreement with a similar
simulation of Hatifi et al. [105], who found numerically that the barrier is eventually
crossed and full relaxation is observed. Nevertheless, some important differences exist:
firstly, Hatifi et al. [105] simulate a single trajectory and appeal to the ergodic theorem
to reconstruct the particle density P; secondly, their final simulation time tg,, = 1000 is
much longer than ours (this is because they have to average on time slices to compensate
for the presence of a single trajectory). But the main difference is in the time step, which
is dt = 0.01 in their simulation and dt = 10™* in ours. Indeed, if the time step is large
enough, the particle can sometimes cross the barrier, because it cannot "see" it during
times shorter than d¢. This is confirmed by three long-time simulations using different
values of dt (see Fig. ), which show that, as the time step decreases, fewer and fewer
particles cross the barrier. Hence, in the limit d¢ — 0, no crossings should be observed.

The result of Fig. may seem in contradiction with what was claimed earlier, namely
that the relaxation time 74 is smaller than any typical quantum timescale. In Fig. 3.9,
relaxation never occurs, so effectively 74 — oo. To better understand this issue, we have
performed one further simulation (see Fig. ) for an initial wavefunction that is equal
to the first excited state ¥ (x), plus a small perturbation proportional to the ground state
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FIGURE 3.10: Particle probability density P(x,t) (blue histograms) and squared wavefunction
|w|2 (red solid line) at times ¢ = 50, for three values of the time step: d¢ = 0.1 (left panel),
dt = 1073 (middle panel), and dt = 1075 (right panel). Time is expressed in units of tq and
space in units of xg. The wavefunction corresponds to the first excited state of the harmonic
oscillator and the particles are initially all located at x = 1. For the smallest time step virtually
no particles have crossed the barrier situated at x = 0.

Yo(z): ¥(x,0) = cos(0.1°)y; (z) + sin(0.1°)1o(x) (note that sin(0.1°) ~ 0.0017 <« 1). In
this case, relaxation takes place again and occurs on a timescale 74 ~ 2.8, shorter than
the oscillator period 27 /w = 7ty (remember that w = 2/ty in our units). In summary, the
relaxation time 7, is indeed always smaller than the typical oscillator timescale, except
in the special case of an initial wavefunction that is an eigenstate of the system and
possesses one or more nodes.

Uniform gravity field
3.4.3.1| Ultracold neutron experiments

Let us now consider the case of a particle in a constant field, like the one generated
by the gravitational attraction of the Earth. This type of problems are motivated by
ongoing experiments on the gravitational response of antimatter, in which anti-hydrogen
atoms fall in the gravity field of the Earth and are annihilated at the lower surface of the
device [117, 118|. By measuring the duration of the fall, it will be possible to estimate
the gravitational acceleration of antimatter g, and check whether it is identical to that
of standard matter g.

When the quantum nature of the anti-hydrogen atoms is taken into account, more sub-
tle phenomena can arise, leading to the quantum reflection of the atoms at the surface
through the Casimir-Polder potential [119] and the subsequent formation of an interfer-
ence pattern. Exploiting this effect can considerably improve the estimation of g, because
of the great precision with which frequency differences can be measured [120-122].
Similar experiments were performed over two decades ago using free-falling ultracold
neutrons confined between a lower reflecting mirror and an upper absorbing surface
[99], and led to the observation of the quantized gravitational energy levels of the neu-
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FIGURE 3.11: Time evolution of the distance Ly (¢) for an initial state that is a superposition of
the ground state 9o (z) and the first excited state 9 (x): ¥(x,0) = sin(0.1°)1po(x)+cos(0.1°)11 ()
(the corresponding density is shown in the inset). Initially, the particles are localized at @ = 1
(blue vertical line in the inset). Time is expressed in units of ¢, and space in units of xg.
Relaxation is completed for t = 7, ~ 2.8y, shorter than the oscillator period 27 /w = wty.

trons. These techniques were further used to realize high-precision gravity-resonance
spectroscopy studies on ultracold neutrons [123|, which were recently exploited to search
for anomalous gravitational interactions [124]. Gravitational experiments that use cold
hydrogen atoms are also envisaged [125]

Here, we will focus on the relaxation to quantum equilibrium of a quantum particle
(typically, a neutron) falling in the gravitational field of the Earth from a height h.
The initial wavefunction is a Gaussian of width ( centered at x = h, where x is the
coordinate representing the altitude with respect to the lower reflecting mirror, whereas
the particles are initialized as a Dirac delta function at the same height h. After bouncing
on the mirror, the wavefunction develops quantum interferences. Our purpose will be
again to investigate whether quantum relaxation and the establishment of the Born rule
occurs before or after the formation of the quantum interference pattern.

3.4.3.2| Gravitational quantum states

Assuming a constant gravitational force at the surface of the Earth, the corresponding
gravitational potential is mgx, where m is the mass of the neutron, g the free-fall accel-
eration, and x the altitude with respect to the reflecting mirror, located at x = 0. The
corresponding wavefunction is a solution of the time-dependent Schrodinger equation

.0 K2 02
zhaw(x,t) = <_2m@x2 + mgx) U(x,t), (3.29)
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with boundary conditions ¢(x = 0,t) = (x — oo,t) = 0, for all times. The system is
then bound and admits a discrete set of eigenstates. The initial wavefunction is given by

2.0) = O(r) 2t oxp | E
1/}< 70) - @( >(27T<2)% P |: 4<2 :| : (330)

with ©(x) the Heaviside function, ensuring that the wavefunction is strictly zero for
x < 0. We choose ¢ < h, so that the wavefunction is correctly normalized.
The eigenstates x, of the problem are obtained by solving the stationary Schrédinger

equation
h? 02
<_2m(9:1:2 + mgaz) Xn () = EnXn(z). (3.31)
We further define dimensionless units of length, energy and time as follows:
EIRNE h2mg?\ 3 , 2 \ 3 @32)
€rn = €0 = Mgxrog = - — = . .
0 2m2g ) 0 gxo 9 ) 0 €0 m92

Using these units, the eigenfunctions read as:

(o) =0 =, (3.33)
where Ai(x) denotes the first Airy function and Ai’(z) its derivative. Because the eigenen-
ergies are obtained by imposing x,(0) = 0, they correspond to the zeros of the Airy
function Ai, which are well-known and have been tabulated [126]. It is also possible
to convert each F, to a corresponding “eigenaltitude" h, above the mirror surface, by
setting F,, equal to the potential energy mgh,, leading to: h, = E, /mg. The presence
of an upper absorbing plate ensures that only a finite number ny. of eigenstates can
be present simultaneously in the device. The first ten eigenfunctions are represented in
Fig. , together with the eigenenergies/eigenaltitudes and the gravitational potential
mgx.

Using the eigenbasis Eq. (3.33), the solution to the Schréodinger equation Eq. (3.29) can
be written as

Mmax
G(a,t) =) cnxnla)e (3.34)
n=0
where the ¢, are the coefficients of the expansion [127]. Their expression can be obtained
semi-analytically under the assumption that the width ( of the wavepacket is small
compared to its altitude h [128]:

87m(2)1 2
Cn = MAi(h — E, + () exp{<2 <h —E,+ 344) } (3.35)

Some details of the derivation are given in the Appendix

3.4.3.3| Relaxation to quantum equilibrium

In order to investigate the relaxation to quantum equilibrium, we take an initial proba-
bility distribution P that does not follow the Born rule, but is rather given by a Dirac
delta function: P(z,0) = d(z — h), so that all particles are at the same altitude h from
the mirror. In the forthcoming simulations the altitude varies from A = 1.50 — which is
lower than the ground-state eigenaltitude (hg = 2.34) — to h = 5. The width of the initial
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FIGURE 3.12: Representation of the first ten gravitational quantum states x, (red solid lines),
which are given by the same Airy function Ai(x) shifted of an amount equal to E,,, where E,,
is the n-th energy eigenvalue; see Eq. ( ) for the full formula. The horizontal axis represents
the altitude z, in units of z¢. The blue line represents the gravitational potential mgz.

wavefunction is fixed and equal to ¢ = 0.09. A schematic representation of the initial
system, along with a typical random trajectory obtained by solving Nelson’s stochastic
equation, is shown in Fig.

The trajectories of N = 1000 particles initially distributed at a height h = 2.00 from the
mirror are shown in Fig. . The histogram of the distribution of the positions at the
end of the evolution is interpolated to obtain the corresponding density P(x,t).

The Ly distance as a function of time is shown in Fig. (upper panel) and displays a
peculiar behaviour. First, it decreases rather abruptly until a time 71, then it increases up
to time 79, and finally decreases again for ¢t > 7». In order to understand this behaviour,
the squared modulus of the wavefunction ]w\z and the probability density P are also
shown in Fig. (lower panels) for three different times ¢ = 0.005, ¢ = 0.07 and ¢ = 0.5,
corresponding to three different phases of the evolution: (i) ¢ < 7, (ii) 71 < t < 72, and
(iii) ¢ > 7. During the first phase, both |1/)|2 and P remain approximately Gaussian
and their distance is progressively reduced, as it was found for the harmonic oscillator
in Sec. . However, after 7, interferencexs start building up in \1/J|2, but not in P, so
that the distance between such two functions increases again. For ¢ > 7o, the interference
pattern is fully formed and the particle distribution again converges towards ]1/1]2.
Finally, for even longer times, of the order of the relaxation time 74 ~ 0.5, the Ly distance
goes to zero and the Born rule is eventually satisfied (Fig. , upper panel). Hence,
it appears that some quantum interference phenomena do occur before the quantum
relaxation is fully completed, in particular during the intermediate phase where 71 <
t < 719, where the distributions W\Q and P start diverging again. During that phase, the
interference pattern forms too quickly for the particle distribution to catch up with the
wavefunction. This type of effect was not observed in the two other situations (double
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