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Chapter I - Introduction



1. Biological context - nuclear receptor proteins

The proper and efficient functioning of living cells relies on the intricate regulation of gene
expression (Cramer 2019). This process is vital for maintaining cellular homeostasis in
response to constant changes in cell environment. In eucaryotic cells, protein gene transcription
is carried out sequentially, comprising three main stages: initiation, elongation and termination.
Each of these steps is regulated by a variety of proteins, namely general transcription factors
(GTFs), activators and co-activators (Maston, Evans, and Green 2006). For the transcription to
begin, various activators and coactivators must bind to specific upstream regions of the DNA,
and their function is to regulate and facilitate chromatin remodelling, as well as to assemble
additional proteins necessary for the initiation of transcription. Activators, also named
transcription factors (TFs), are sequence-specific DNA-binding proteins that are classified
based on their DNA-binding domain structural organization. One superclass of transcription
factors named “Zinc-coordinating DNA-binding domains”, has either cysteines, histidines, or
both, coordinating zinc ions. Belonging to this superclass, along with nine others, is the class

of proteins called nuclear receptors (NRs) (Wingender, Schoeps, and Donitz 2013).

2. Roles and classification of NRs

Nuclear receptor proteins are found in all metazoans classes, from sponges to vertebrates
(Miglioli et al. 2021). They govern the transcription of a large variety of genes necessary for
driving key biological processes, including development, cell proliferation and apoptosis (J. P.
Renaud and Moras 2000a). They are also critical determinants of everyday health via their roles
in metabolism and circadian rhythms (Ray 2022).

In humans, there are 48 nuclear receptor proteins. They modulate transcription by
selectively binding small-molecule lipophilic ligands, thus providing a direct link between
signalling molecules and gene transcription (Rastinejad et al. 2013). Their natural ligands are
small hydrophobic molecules, such as hormones, vitamins, sterols, bile- and fatty acids. NRs

that have no identified natural ligands are called nuclear orphan receptors (19 out of 48 human



NRs), but they also exert active regulation of numerous genes (Tao et al. 2020). The question
remains open whether this is due to their intrinsic activation activity, making them ligand-
independent (“constitutively active”), or due to unknown metabolites acting as their ligands
(Tao et al. 2020). Due to their large number of proteins, their different functions and ligands,
there are several classifications of NRs based on different criteria. Here we adopt the
classification based on sequence alignment and phylogenetic tree analysis of NRs shown in

Table 1 (Germain et al. 2006; Owen and Zelent 2000; Weikum, Liu, and Ortlund 2018a).
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Table 1. Nuclear receptor classification. Adapted from (Weikum et al., 2018).

Family = Name Abbreviation Gene name Ligand

0B Dosage-sensitive sex reversal-adrenal hypoplasia congenital critical DAX1 NROBI Orphan
region on the X chromosome, Gene 1

Short heterodimeric partner SHP NROB2 Orphan SHP NROB2 Orphan

1A Thyroid hormone receptor-a TRa THRA Thyroid hormones
Thyroid hormone receptor-f TR THRB Thyroid hormones

1B Retinoic acid receptor-o RARa RARA Retinoic acids
Retinoic acid receptor-f3 RARB RARB Retinoic acids
Retinoic acid receptor-y RARy RARG Retinoic acids

1C Peroxisome proliferator-activated receptor-o PPARa PPARA Fatty acids
Peroxisome proliferator-activated receptor-f3 PPARB PPARD Fatty acids
Peroxisome proliferator-activated receptor-y PPARYy PPARG Fatty acids

1D Reverse-Erb-o REV-ERBa REV-ERBa NRIDI Heme
Reverse-Erb- REV-ERBf REV-ERBp NRI1D2 Heme

1F Retinoic acid-related orphan-a RORa RORA Sterols
Retinoic acid-related orphan-f RORS RORB Sterols
Retinoic acid-related orphan-y RORy RORC Sterols

1H Farnesoid X receptor FXRa NRIH4 Bile Acids
Farnesoid X receptor-f§ FXRB NRIH5P Orphan
Liver X receptor-o LXRa NRIH3 Oxysterols
Liver X receptor-f§ LXRp NRIH2 Oxysterols

11 Vitamin D receptor VDR VDR 1a,25-dihydroxyvitamin D3
Pregnane X receptor PXR NR112 PXR NRII2 Endobiotics and xenobiotics
Constitutive androstane receptor NRII3 Xenobiotics

2A Hepatocyte nuclear Factor-4-o. HNF4a HNF44 Fatty acids
Hepatocyte nuclear Factor-4-y HNF4y HNF4G Fatty acids

2B Retinoid X receptor-o RXRo RXRA 9-Cis retinoic acid
Retinoid X receptor-f RXRp RXRB 9-Cis retinoic acid
Retinoid X receptor-y RXRy RXRG 9-Cis retinoic acid

2C Testicular Receptor 2 TR2 NR2CI Orphan
Testicular Receptor 4 TR4 NR2C2 Orphan

2E Tailless homolog orphan receptor TLX NR2EI Orphan
Photoreceptor-cell-specific nuclear receptor PNR NR2E3 Orphan

2F Chicken ovalbumin upstream promoter-transcription factor o COUP-TFa NR2F1 Orphan
Chicken ovalbumin upstream promoter-transcription factor COUP-TFB NR2F2 Orphan
Chicken ovalbumin upstream promoter-transcription factor y COUP-TFy NR2F6 Orphan

3A Estrogen receptor-o ERa ESRI Estrogens
Estrogen receptor-f§ Erp ESR2 Estrogens

3B Estrogen-related receptor-o ERRo ESRRA Orphan
Estrogen-related receptor-f ERRB ESRRB Orphan
Estrogen-related receptor-y ERRy ESRRC Orphan

3C Androgen receptor AR AR Androgens
Glucocorticoid receptor GR NR3CI Glucocorticoids
Mineralocorticoid receptor MR NR3C2 Mineralocorticoids and

glucocorticoids

Progesterone receptor PR PGR Progesterone

4A Nerve growth Factor NGF1-B NR4A41 Orphan
Nurr-related Factor 1 NURRI NR4A2 Unsaturated fatty acids
Neuron-derived orphan Receptor 1 NOR-1 NR4A43 Orphan

SA Steroidogenic Factor 1 SF-1 NR5A41 Phospholipids
Liver receptor Homolog-1 LRH-1 NR5A42 Phospholipids

6A Germ cell nuclear factor GCNF NR6A41 Orphan
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3. Structural organisation

Nuclear receptors are multi-domain proteins that have a shared modular structure where
different regions corresponding to autonomous domains execute different functions. This
canonical structural and functional organisation is represented in Fig. 1A, where the canonical
organization starts with the A/B N terminal domain also called the Activating Function 1 (AF-
1) domain; followed by the C, or DNA binding domain (DBD), the hinge region D and
terminating with the E or ligand binding domain (LBD), also called the Activating Function 2
(AF-2) domain. The F domain is not present in all nuclear receptor proteins. Nuclear receptors
generally function as homo- or hetero-dimers. In Fig. 1B, the domain structures of several
nuclear receptor proteins are represented to illustrate the diversity of specific domains, in

particular the length of the A/B domain.

I A/B II—C—iFD :l £ i

B
Nuclear Amino
Receptor Acids LXR LBD
_ RXR LBD
SHP [ N | 260
A [ ] e
LXRb [ ] ] 460
voR 15— —
PPARa NN [ 43 LxmDeD
RXRa [ | 462
HNFaa 403

SN i 1 B E—
e se4

con S—

Figure 1. Representation of nuclear receptor modular organisation. A) Sequential order of modular
domains. (The F domain is not represented since it is not common to all receptors) B) Examples of nuclear
receptors, their sequence versatility and length. C) Full-length NR structure of LXR-RXR heterodimer
(PDB: 4NQA). The colours of the structure match the colours of domains in the schematic representation.
Figure from (Weikum et al., 2018)
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3.1. A/B domain

The N-terminal A/B domain of nuclear receptors is an intrinsically disordered, sequence
variable domain with lengths ranging from 8 to 600 residues, depending on the NR protein
(Fig. 1A, B) (Warnmark et al. 2003). Many nuclear receptors have several isoforms, which are
derived from alternative splicing of a single gene. Differences between isoforms are mainly
found in the A/B domain. It is revealed that the ordering of this domain is not substantially
changed upon ligand binding (Goswami et al. 2014). The A/B domain contains the autonomous
AF-1 activation function that mediates the recruitment of multiple transcriptional coregulatory
proteins in gene regulation (Shamilov and Aneskievich 2019). NRs recruit coregulator proteins
mediated by the AF-1 domain in ligand-independent manner. The AF-1 surface is known to
bind coregulators which enable cooperative function between AF-1 and AF-2 regions and thus
cooperatively enhance transactivation (Bugge et al. 2009; Pawlak, Lefebvre, and Staels 2012).
In addition, coregulator-linked interactions with the N-terminal and C-terminal domains were
found for AR, ER and PR (Table 1) (Warnmark et al. 2003).

The A/B domains are frequently targeted by phosphorylation and other post-
translational, covalent modifications, such as SUMOylation, which confer distinct functional
properties of nuclear receptors. In the case of ligand-activated receptors, AF-1 modifications
generally have a tissue-specific modulatory effect on their transcriptional properties
(Gronemeyer, Gustafsson, and Laudet 2004). Studies show that receptors like RAR can be
phosphorylated by cyclin-dependent kinases, a process that is important for both ligand-
dependent and ligand-independent transactivation (Bour et al. 2005a; Gaillard et al. 2006). For
example, phosphorylation of the A/B domain of GR by p38 MAPK was shown to induce stable
tertiary structure formation in this domain, hence favouring its interaction with coregulatory
proteins (Huppunen, Wohlfahrt, and Aarnisalo 2004; Nader et al. 2010). Due to it being an
intrinsically disordered (ID) domain, no crystallographic structures of the N-terminal domain
have been resolved. However, one experimental study, by cryo-electron microscopy (cryo-EM)
shows full-length androgen receptor (AR) homodimer bound to DNA and two coactivator

proteins. The N-terminal domains are experimentally characterised as being wrapped around

13



the LBDs of the dimer, providing a platform for coactivator binding (Yu et al. 2020). Kumar
and Thompson proposed that, since the A/B domain is structured when involved in
transcriptional activation, it can rapidly and reversibly adopt various configurations that are

available for binding by coregulator proteins (R. Kumar and Thompson 2012).

3.2. C domain

The DNA-binding domain (DBD), or the C domain, enables specific recognition of, and
binding to target DNA sequences (Claessens and Gewirth 2004). It is, structurally and
functionally, a highly conserved domain consisting of 60-70 amino acids that are organised as
a globular domain of two a-helices with short anti-parallel B-strands, see Fig. 2 (Pohl and
Tomlinson 2020). It contains two zinc finger motifs, in which zinc ions are coordinated by four
highly conserved cysteine residues (Fig. 2A). These two zinc finger motives are responsible
for DNA sequence recognition (Freedman et al. 1988). The C domain contains several
sequence elements, named P-, D-, T- and A-boxes (Novac and Heinzel 2004). The P-box
consist of key residues that enable the accurate identification of the major groove of specific
DNA sequences (Fig. 2B). D-box is responsible for DNA-dependent dimerization and, more
precisely, for the half-site spacing. Additional T- and A-boxes, which are at the C-terminal
extension (CTE) of this domain (or sometimes even in the D domain), contain amino acid
residues that are essential for the creation of functional dimers. Studies have shown that the
dimerization of DNA-binding domains takes place simultaneously with their interaction with

DNA, rendering DNA an allosteric effector (Claessens and Gewirth 2004).
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Figure 2. DNA binding domain. A) Schematic representation of the DNA-binding domain with two zinc
fingers, and B) the structure of steroid receptor GR (glucocorticoid receptor) homodimer DBD, bound to
DNA double helix, through interactions in major groove. P- and D-boxes are coloured in light blue. The
rest of GR domain is coloured in dark blue, and the DNA in light orange. C) One-letter code sequence of
the P- and D-boxes for the GR receptor. Figure A) adapted from Claessens & Gewirth, 2004.
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In order to regulate transcription, nuclear receptors bind DNA by recognising specific
sequences called hormone response elements (HREs). HREs are organised in ‘half-sites’, and
can take on different patterns of organisation of the consensus recognition motif. This
recognition motif contains nucleotide sequences 5'-AGGTCA-3' or 5'-AGAACA-3". The
specificity of NR binding to a particular promoter region is related to the placement of these
repeats (Evans and Mangelsdorf 2014). They are organised as one (for monomeric receptors)
or two (for dimeric receptors) repeats. Two repeats can be direct or inverted, see Fig. 3. For
example, the steroid hormone receptors bind to direct or inverted repeats, while other
heterodimeric nuclear receptors bind direct repeats. For the NRs that bind direct repeats, the
space between the core recognition motifs dictates the binding specificity. The spacing between
repeats can be 1 - 5 base pairs, denominated ID1 - ID5, or DR1 - DRS. If there is no spacing
(no nucleotides) between direct or inverted repeats, they are called tandem and palindrome
repeats, respectively. The discrimination between these hexamers is mainly due to differences
in the structure of the response elements, allowing the intercalation of water molecules between
the DNA and DBD residues, thus destabilising the complex when there is an incorrect match
(Gewirth and Sigler 1995). One classification of nuclear receptors is based on the organisation
of half-sites to which they bind. The class I and class II receptors bind to two half-sites
organised as inverted repeats (IRs) of different sequences. Class III receptors bind to direct

repeats (DRs), while class IV receptors typically bind to unique half-sites as monomers.
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Figure 3. Representation of NR - DNA binding. Schematic representation of NR binding to DNA
sequences called repose elements. DR: Direct repeats; IR: Inverted repeats. Examples of nuclear
receptors: SR: steroid receptors. RXR: Retinoid X receptor, in heterodimer, where X is another NR.
DOR: orphan receptors without known ligands. Monomeric orphan receptor is for example NGF1-B.
Figure adapted from Pastori, V., Pozzi, S., Labedz, A., Ahmed, S., & Ronchi, A. E. (2022).
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3.3. D domain

The D domain, also referred to as the hinge region, connects the DNA and ligand-binding
domains, facilitating the receptor's structural flexibility (Novac and Heinzel 2004). This region
had been initially seen as a flexible region with no particular function, however several nuclear
receptor studies have revealed different functions. The D domain contains the nuclear receptor
localisation signal (NLS). It also provides the ability to bind to DNA through the T- and A-
boxes, which are found in the conserved N-terminal of this domain. Even though these two box
elements are in the hinge region, they are ascribed the function of the DNA-binding domain.
The T- and A-boxes are involved in NR dimerisation and half-site recognition (DNA minor
groove), respectively. The hinge region of thyroid receptor is seen to accommodate corepressor
proteins that inactivate the nuclear receptor. The hinge region is also known to accommodate
some residue mutations that impede ligand binding when bound to the DNA, and, therefore,

by extension prevent corepressor protein release (Safer et al. 1998).

3.4. E domain

The ligand-binding domain (LBD) is a multifunction domain comprised of around 250 residues
and is structurally highly conserved within and between species (Mitsis et al. 2019). Nuclear
receptors share a similar overall conformation of LBDs, consisting of 11 - 13 alpha-helices,
and a small beta sheet, ordered in a 'three-layered sandwich' (Moras and Gronemeyer 1998).
The canonical structure of this domain has been resolved by crystallographic experiments many
times (Fig. 4). Variations of the canonical structure involve certain receptors, such that they
present an additional helix between H1 and H3. The 'sandwich'-like structure has the first layer
made of helices H1 - H3, the second layer is composed of helices H4, H5, H6, H8 and H9, and
the final layer composed of helices H7, H10 and H11. The H12 is the C-terminal flexible helix,
also known as the AF-2, contributes to the NR functionality by its flexibility. The structure is
assembled around a hydrophobic core, or pocket, which can accommodate various lipophilic

ligands (Rastinejad et al. 2013).
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The ligand-binding domains, although similar in their architecture, have a varying sequence in
the ligand-binding pocket (LBP), which makes them highly variable in size and specificity

(Fig. 5). This contributes to the specificity of each nuclear receptor for its endogenous ligands.

N - terminal

C - terminal

~  Q-loop

Figure 4. Ligand binding domain. Ligand-binding domain of structure of the nuclear receptor retinoid
X receptor (PDB ID 1MZN). Structure contains 12 alpha helical elements (in cyan), one beta sheet (in
pink). The Omega-loop is flexible.
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GR FXR PPARy

Figure 5. Ligand binding pockets of three nuclear receptors. LBPs of (GR, FXR, and PPARgamma
are in blue, represented for comparison of their size. Figure from (Weikum et al., 2018)

4. Mechanisms of transcription regulation
4.1. Transcriptional activation

The LBD is implicated in multiple functions - ligand binding, protein dimerization and the co-
regulatory protein binding, through the ligand-dependent transactivation function, AF-2
(Germain and Bourguet 2013). The structural changes seen in the LBD upon ligand binding
concern the increase in the compactness of the domain and a specific change in the position of
the C-terminal helix HI12. The helix adopts a distinct transcriptionally 'active conformation’,
characterised by numerous crystallographic structures (Fig. 6). The active conformation of H12
makes it more stable, positioned adjacent to helices H3, H4 and H11. The interface made of
these helices constitutes a platform for coactivator protein binding, after the release of
corepressor protein. This model of receptor activation in which H12 closes on the ligand-
binding site in response to ligand binding, rendering the receptor active and ready to

accommodate coactivator protein is termed 'the mousetrap model' (J.-P. Renaud et al. 1995).
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peptide

C - terminal

Figure 6. Conformational change of the LBD helix 12 upon ligand and coactivator peptide binding.
Crystallographic structures PDB ID (from left to right): 6HN6, 1FBY, 1FM9. LBD is in dark blue, H12
residues in cyan, ligand (9-cis-retinoic acid) and coactivator peptide (steroid receptor coactivator SRC1)
in beige.

Today, this model is considered to be an oversimplification of the receptor activation. The first
structural studies of NRs rendered a static image of the function of individual domains, and
while this has been an incredible achievement, many complementary experimental studies,
including those of full-length nuclear receptor complexes suggest a more complex view of NR
regulation (Orlov et al. 2012; Chandra et al. 2008). This is the case, for example, for NRs that
are activated by different ligands acting in a tissue-specific fashion that impacts their function,
comparing to NRs with only one specific ligand (Holzer, Markov, and Laudet 2017).

It is clear that not all understanding can be inferred from 3D crystal structures. Indeed,
there is a growing awareness that the local conformational changes revealed by structural
studies are just one piece of the regulatory puzzle. Ligand binding has a profound effect on the

structural dynamics of NRs (de Vera et al. 2017; Hughes et al. 2012a; B A Johnson et al. 2000;
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Kallenberger et al. 2003; le Maire et al. 2010) and there are examples where the binding of
dissimilar ligands results in similar structures of the LBD/ligand complex as determined by X-
ray crystallography, but the regulatory consequences are distinct. This suggests a contribution
of structural dynamics to selective targeting of different regulatory pathways (Nwachukwu et
al. 2016; Choi et al. 2010; 2011; Chrisman et al. 2018; Nettles et al. 2008; Zheng et al. 2018).

So, adding to the foundations of the mouse trap model is a more dynamical view of the
activation. Dynamical models describe nuclear receptors as a dynamic ensemble of
conformations, where ligand binding shifts the population of these conformations, influencing
receptor activity (Khan et al. 2022). This model captures the receptor's intrinsic flexibility and
accommodates observations that different ligands stabilize distinct conformations with varying
transcriptional outcomes.

Furthermore, the allosteric modulation of NRs is a topic of interest where novel
mechanisms trigger an allosteric response at the level of the LBD or spanning across domains,
to a transcriptionally active receptor. These include (non)canonical ligand binding (Cossins
and Lawson 2015; Meijer et al. 2019), interactions with different proteins (Fernandez 2018) or
DNA (A. K. M. Patel et al. 2023), and post-translational modifications (PTMs). One example
of PTM triggered allostery is found in the RAR nuclear receptor, whose primary regulator is
retinoic acid. Phosphorylation of the ligand binding domain has been shown to modulate
downstream phosphorylation of the regulatory A/B domain and thus nuclear signalling
(Gaillard et al. 2006; Bour et al. 2005b; Samarut et al. 2011a). Molecular dynamics simulations
showed that phosphorylation of the RARy (and RAR) receptors of this family leads to changes
in the dynamic properties of the protein without producing significant conformational
rearrangements (Chebaro et al. 2013; 2017). Along with these studies, the whole genome
sequencing helped understand how epigenetics can dictate NR binding sites, which are not only
found in gene promoter regions, but in the regions between genes, acting as enhancers, and

regulate the transcription of target genes (D. X. Zhang and Glass 2013).
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4.2. Transcriptional repression

The repressive conformation of nuclear receptors is characterised by specific structural features
that distinguish it from the active state. The most prominent, and the most studied, structural
change happens at the LBD level and involves the region carrying the activation function 2
(AF-2) region. In most cases, in the absence of ligand, the AF-2 H12 helix adopts a position
different from the transcriptionally active conformation, where it is against the LBD making a
hydrophobic platform with helices H3 and H4 for coactivator protein binding. Instead, the AF-
2 favours interactions with corepressor proteins. In order to ensure a stable repressive
configuration, the helix 12 can either adopt a conformation where it is stabilized against LBD,
while creating a surface that is highly compatible with corepressors, or experience a higher
degree of dynamics, resulting in movements where it can take multiple conformations,
including being extended in solution. This is most often translated as the absence of electron
density for this region, or a secondary structure that is stabilised by crystal contacts. One
example of distinct active and repressive conformations is the retinoid X receptor alpha
(RXRa) (Fig. 6).

While the detailed mechanism of molecular switching between an active and repressed
form is not known in detail, and coupled with the fact that there are relatively few structures of
nuclear receptors in their inactive form, crystallographic structures show a distinction between
the "unligated", or "apo" form, and the “ligand-bound” or “holo” form (Torchia, Glass, and
Rosenfeld 1998a). Furthermore, the mechanism of NR repression is not necessarily universal
for different NRs, unlike NR ligand-dependent activation. The most straightforward
mechanism, which was first discovered, is that in the presence of activating ligand, NRs are
associated with coactivators, and in the absence of ligands, they are associated with
corepressors (Fig. 7) (McKenna, Lanz, and O’Malley 1999; Nagy 2004). A significant
characteristic of these interactions is that both corepressors and coactivators bind to
overlapping surfaces of LBDs, rendering their binding mutually exclusive. This way, both
states are seen as structured conformations actively repressing or activating transcription. The

majority of nuclear receptors are in the cytoplasm in their unbounded form, precluded from
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interactions with chromatin, while some NRs, such as the thyroid hormone receptor (TR) and
retinoic acid receptor (RAR), still bind DNA in their repressive states, but their interactions

with corepressor proteins actively inhibit transcription.
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Figure 7. Schematic of nuclear receptor activation by small molecule agonist. Adapted from Wikipedia.

Over the years, cases of repression emerged that do not follow this pattern (Santos,
Fairall, and Schwabe 2011). Mechanisms have been proposed to explain cases of gene
repression by NRs in their ligand-bound form. In the case of glucocorticoid receptor (GR) and
thyroid hormone receptor (TR), their binding to DNA is solely to prevent other NRs from
binding and competing for their place on promoters (Subramaniam, Cairns, and Okret 1998).
In addition, it has been found that coregulators can reverse roles and a corepressor complex
can activate transcription, depending on promoter binding (Tagami, Park, and Jameson 1999).

The need for diverse mechanisms of NR activity regulation, and especially repression, becomes
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evident when considering the number and importance of genes whose transcription they
modulate. More specifically, given the absence of a recognised category of endogenous
antagonists, it is not unexpected that the control of repression encompasses a large variety of
mechanisms (Nagy 2004). Additionally, post-translational modifications (PTMs), such as
phosphorylation or ubiquitination, can modulate the stability and dynamics of both active and
the repressive states (Rosenfeld, Lunyak, and Glass 2006). In conclusion, nuclear receptors

exhibit conformations with varying affinity for corepressors and DNA.

4.3. Coregulator proteins

Since nuclear receptor proteins have no intrinsic enzymatic activity, they rely on other proteins
to carry out their function and facilitate the transcriptional regulation of target genes.
Coregulator proteins, or cofactors, are essential for enabling nuclear receptors (NRs) to
modulate transcription. They significantly contribute to the stabilization of large complexes of
NRs along with the basal transcription machinery at the promoter region through a series of
molecular interactions (Raj Kumar, Johnson, and Thompson 2004a; Millard et al. 2013).
Coregulators are large proteins that can count more than 2500 residues, and whose structures
are often characterised by intrinsically disordered (ID) regions. This supports their role in
flexible and dynamic interaction with different partners and participation in signalling complexes.
The ID regions, which are subjected to covalent PTMs, primarily phosphorylation, acetylation,
and ubiquitination, probably allow coregulators to adopt different conformations when binding
to different nuclear receptors or other coregulators. Forming transient, dynamic interactions
with many interactants would be an essential feature for rapid assembly and disassembly of
large complexes. More than 300 coregulator proteins are known (“dkNET | dkNET Data
Archive: NURSA (Nuclear Receptor Signaling Atlas)” 2024), data from 2020). Most
coregulators belong to the group responsible for covalently modifying histones or
transcriptional machinery through PTMs, through ATP-dependent activity, ubiquitination and
SUMOylation. The second group physically bridges nuclear receptors with other essential

components of the transcriptional machinery (Kishimoto et al. 2006; Lonard and O’Malley
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2007; Rosenfeld, Lunyak, and Glass 2006; Torchia, Glass, and Rosenfeld 1998b). These
coregulators primarily function in two distinct capacities, either as coactivators or as

corepressors of the transcriptional process.

4.3.1. Coactivators

Coactivators are proteins that enhance the transcription process. They contain a characteristic
leucine-rich recognition motif defined by a consensus amino acid sequence of LXXLL, which
is responsible for the interaction with nuclear receptors. This motif is a part of a longer helix
that carries residues implicated in a charge clamp, where two charged amino acids of the
coactivator interact with two charged amino acids from helices H3 and H12 (Weikum, Liu, and
Ortlund 2018a). Their enzymatic activity encompasses chromatin and nucleosome
remodelling. For example, the acetylation of histones tails by histone acetylases (HATs) on
sites H3K9 and H4K20, the methylation on site H3K4, and phosphorylation of linker histones.
These modifications weaken the -electrostatic interaction between the positively
charged histone tails and the negatively charged backbone of the DNA, resulting in chromatin
decondensation, which opens the way for transcriptional activation. Examples of coactivators
include protein complexes such as the cAMP response element binding protein (CBP/p300),
as well as the CBP association factor known as p/CAF, both of which exhibit intrinsic HAT
activity. Other important coactivators encompass members of various families, including the
p160s/Steroid Receptor Coactivator (SRC-1) complex, coactivator associated arginine
methyltransferase (CARM), and protein arginine methyltransferase (PRMT) families. The
binding of coactivator complexes to NRs allows the association of the pre-initiation complex
(PIC) in the correct position and its stabilization. This complex contains RNA polymerase 11
general transcription factors (GTFs), necessary for transcription (J. P. Renaud and Moras

2000b).
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4.3.2. Corepressors

In contrast, NR corepressor proteins, which repress transcription, are characterized by the motif
LXX I/H IXXX I/L, alternatively referred to as the Cornr-box (X. Hu and Lazar 1999). The
two most extensively studied nuclear receptor corepressors are the Silencing mediator of
retinoid and thyroid hormone receptors (SMRT) and the Nuclear receptor corepressor (NCoR),
which are large homologous proteins that function as a structural platform, facilitating the
binding of multiple cofactors. These hub proteins engage in complex assembly with histone
deacetylase enzymes (HDACs). The activity of HDACs closes the chromatin around
nucleosomes, physically preventing gene transcription. The interaction between a nuclear
receptor and a corepressor can be enhanced by the addition of an inverse agonist ligand, which
is disrupted when an agonist ligand binds to the receptor, underscoring the dynamic nature of
these molecular interactions. The majority of LBD crystal structures in complex with
corepressor peptides have synthetic antagonists bound, in order to enhance their interaction or

stabilise the H12 in a position suitable for corepressor binding (H. Zhang et al. 2011).

4.4. Dimerisation

Nuclear receptor dimerization is a critical mechanism that enhances the transcriptional
regulation of genes. NRs can assemble in homo- or hetero-dimers. The receptor RXR plays an
important role since it can both homodimerize and act as a common dimerisation partner for
other NRs. Dimerisation at the LBD level essentially helps stabilize the dimer, while
dimerization at the DBD helps DNA specific sequence recognition. LBD dimerisation
interfaces have been mainly determined through crystallographic studies, showing that the
topologically conserved dimerization surface is comprised of helices H7, H9 and H10-11,
including the loops H8-9 and L.9-10 (Germain and Bourguet 2013). The sequence specificity
determines the binding specificity of different receptors. The group of steroid receptors (AR,

PR, GR, and MR) represents an exception to this established dimerization interface, but
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bioinformatic tools can help decipher their alternative homodimer binding surfaces (Bianchetti

etal. 2018).

5. Peroxisome proliferator - activated receptors (PPARS)

Peroxisome proliferator - activated receptors, commonly referred to as PPARs belong to
subgroup 1 of the NR superfamily, along with receptors TR (thyroid hormone receptors), RAR
(retinoic acid receptors), REV-ERB (reverse-Erb), ROR (retinoic acid related orphan receptor),
FXR (farnesoid X receptor), LXR (liver X receptor) and VDR (vitamin D receptor) (Weikum,
Liu, and Ortlund 2018b). Within the PPAR subfamily, there exist three distinct isotypes
(subtypes): PPARa (NR1C1), PPARB/S (NR1C2) and PPARy (NR1C3), encoded by different
genes. Even though they play a central role in lipid metabolism, they are named after their
ability to bind peroxisome proliferators, in the first study from 1990 (Issemann and Green
1990). Peroxisome proliferators (PPs) are a class of structurally diverse endogenous substances
and exogenous chemicals that increase the number and size of peroxisomes (M. Jiang and Yang
2014). Exogenic PPs are proven to have cancerogenic effect in rodent models and are used for
different purposes, such as herbicides, plasticizers, and industrial solvents (Abdelmalak, Yang,
and Ray 2024). Peroxisomes are single - membrane cytoplasmic organelles, which assure
several metabolic functions such as f-oxidation of fatty acids, ether phospholipid and bile acid
synthesis, and glyoxylate detoxification (Wanders et al. 2023).

Due to the considerable size of their ligand binding pockets, PPARs can accommodate
a large number of various ligands. The endogenous ligands of PPARs are long chain saturated,
mono- (MUFA) and polyunsaturated (PUFA) fatty acids (FA), as well as and their lipophilic
derivatives, called eicosanoids, highlighting the connection between these receptors and lipid
metabolism (Gervois et al. 2000). Three PPAR isotypes differ in tissue expression, together
controlling the expression of genes involved in lipid and glucose metabolism, in development,
and inflammatory response (Berger and Moller 2002). PPARa is primarily expressed in tissues
having high FA oxidation rate, such as liver, heart, skeletal muscle, white adipose tissue and
kidney. It promotes FA uptake in these tissues, through mitochondrial and peroxisomal -
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oxidation, producing acetyl-CoA and ATP the latter affecting the indirect modulation of
glucose metabolism. High-affinity PPARa agonists, called fibrates have been used for treating
dyslipidaemia (unhealthy levels of one or more kinds of lipid in blood). The PPARJ/5 is the
least studied isotype, found predominantly in skeletal and cardiac muscles, where it controls
the metabolic switch from glucose to FA utilization, and decreases lipid accumulation. Trials
on treatments for dyslipidaemia and type 2 diabetes mellitus targeting PPARP/S have been
discontinued due to safety concerns, warranting further studies (Lamas Bervejillo and Ferreira

2019).

5.1. Peroxisome proliferator - activated receptor gamma (PPARY)

Peroxisome proliferator - activated receptor gamma (PPARY) was initially discovered based on
its similarity to PPARa. PPARY protein is coded by the PPARG gene, found on chromosome
3. It has two separate promoters and different 5' exons resulting in at least four mRNAs. The
isoform PPARY2, which has 505 residues, is considered to be the full-length protein. It has
molecular mass of 57.62 kDa (UniProt 2024). PPARYy is primarily expressed in brown and
white adipose tissue where it plays a crucial role in regulating adipogenesis and glucose
metabolism by promoting the differentiation of pre-adipocytes into mature adipocytes. It
stimulates glucose uptake by regulating the secretion of adipocytokines - the mediators of
insulin action (Janani and Ranjitha Kumari 2015). PPARY is present in macrophages, dendritic-
and T-cells, where it acts as an immune-modulator, specifically as a repressor of inflammation.
Furthermore, it has a dual role in cancer - it can act as a tumor suppressor and as an initiator,
depending on cancer type (Hernandez-Quiles, Broekema, and Kalkhoven 2021a). Therefore,
PPARy represents a target for treatment of type 2 diabetes mellitus, cancer, inflammation and
hypertension (Berger and Moller 2002).

With a ligand binding pocket of about 1300 A3, PPARYy can accommodate a variety of
lipophilic ligands - polyunsaturated fatty acids (PUFAs) and their oxidised derivatives called

eicosanoids. Fatty acids, such as linoleic, docosahexaenoic, and eicosatetraenoic acids, bind
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PPARy at pM levels. PPARy governs hormone- and nutrient-mediated responses, by
accommodating different ligands: eicosanoids (ex. prostalglandins), nitrated fatty acids,
flavonoids, nutrients such as glutamine and arginine (Marion-Letellier, Savoye, and Ghosh
2016a). Man-made compounds with an agonistic effect on PPARY are phtalates and bisphenols.
PPARYy is a cognate receptor for thiazolidinediones (such as rosiglitazone and pioglitazone),
which are a class of anti-hyperglycaemic drugs developed for the treatment of type 2 diabetes.
However, their use has been challenged due to serious side - effects (Dubois et al. 2020).
PPARYy is localized both in the cytoplasm and in the cell nucleus, where it exerts its
function of nuclear repressor. Nuclear - cytoplasmic shuttling of PPARY in the cell is largely
determined by ligand concentration (Umemoto and Fujiki 2012). In absence of ligand, PPARY
interacts with corepressor complexes, such as NCoR or SMRT, which recruit chromatin-
modifying enzymes (HDACs) and actively repress transcription. After binding an agonist
ligand, PPARYy forms a heterodimer with the receptor retinoid X receptor (RXR)(Fig. 8). The
heterodimer can recruit coactivators such as PPARY coactivator 1-a (PGC-1a) or E1A binding
protein p300 (EP300), which carry HAT enzymatic activity. DNA binding occurs on the
peroxisome proliferator response element (PPRE) gene promoter, which are usually direct
hexamer repeats spaced by 1 (DR1) or 2 (DR2) nucleotides, leading to regulation of gene
transcription (Schoonjans, Staels, and Auwerx 1996). Binding profiles have indicated that
PPARYy binds to thousands of PPRE sites in the genome (many of which are located far from
proximal promoters) and that the PPARy binding is cell-dependent (binding differs between
cell types and adipocytes from different anatomical locations) (Nielsen et al. 2008; Siersbaek
et al. 2012). Additional level of PPARY regulation of activity is at the epigenetic level.
Covalent post-translational modifications, such as phosphorylation or SUMOylation can
modulate the activity of PPARY. One particular PTM, the over-phosphorylation of Ser273 by
cyclin-dependent kinase 5 (CDKS) leads to suppression of genes that promote insulin
sensitivity (Choi et al. 2010). This turn of events results in insulin resistance, increasing the

risk of type 2 diabetes and cardiovascular diseases.
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The PPARY ligand binding domain has the canonical NR structure, composed of 12 o
helices, one 2 or 3-strand 3 sheet, and a small additional o helix H2" (Fig. 9). To date, there
are over 300 resolved structures in the PDB, of the ligand binding domain (residues 230 - 505),
with or without RXR receptor, and with the resolution as high as 1.42 A. In addition, we find
3 crystallographic structures of the full-length receptor (residues 102 - 5005 minus the N-
terminal domain). Most of the LBD structures depict the active state of the protein, in the
presence of natural or synthetic ligands, or through the stabilisation of the H12 by crystal
contacts. In some of these structures, the omega loop structure is not resolved, indicating its
flexibility. The inactive conformation of the PPARy remains controversial. One structure of
PPARy LBD bound to an antagonist and SMRT corepressor peptide does not have H12 electron
density (PDB ID: 7SQA). The structure which binds covalent synthetic inverse agonist (PDB
ID: 60NI) can be seen as having the helix H12 inside the ligand binding pocket. We will not
discuss the physiological importance of such structures, but we will note that the true "apo"
form of PPARy LBD, which would represent an inactive conformation, are scarce (PDB IDs:
7WOX chain B, and 2PRG chain B). The structures of “apo” PPARY in the Protein Data Bank
generally have H12 stabilised in a position that is not considered transcriptionally active (Fig.
9). Concerning the full-length repressive conformation of PPARY, studies showed that the AF-
1 of N-terminal domain inhibits PPARY activity, through the (MAP) kinase-mediated
phosphorylation (E. Hu et al. 1996), and a recent study (from BioRxiv) found that this
inhibition happens through the interaction of NTD with the 3 sheet and H12 of the LBD, which
could compete for coactivator binding (Mosure et al. 2024).

The conformational dynamics of PPARy was first studied using NMR experiments,
which showed that more than half of the pics were missing in "apo" structure compared to an
agonist - bound form. This further suggested that adding the agonist (here rosiglitazone) led to
the stabilisation of the domain, and that the domain activation of this is a result of a population
shift of a dynamic ensemble of conformations, rather than a switch from an inactive to an active
conformation (of the helix H12) (Bruce A. Johnson et al. 2000). Further studies of hydrogen-

deuterium exchange (HDX) coupled mass-spectrometry (MS), NMR and fluorescence
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anisotropy, revealed high flexibility of H12, the last portion of helix Hl1land the loop H11-
H12, which were stabilized solely in response to ligand binding (Bruning et al. 2007; Hughes
et al. 2012b). Sampling of PPARy apo state was also done using molecular dynamics
simulations. Studies by Fratev and colleagues (Fratev 2016; Fratev et al. 2015) by accelerated
MD (aMD) and metadynamics (metaD), of ~12us, indicate that the C-terminal H12 can adopt
an antagonist conformation in mainly 2 clusters, starting from active conformations, and one
cluster shows H12 conformation similar to the one found in two 'apo' crystallographic
structures. Another combined experimental - MD study by (Chrisman et al. 2018a) showed the
that helix 12 and the coregulator-binding surface are a dynamic structural ensemble, and reveal
several clusters of H12 conformational state, in apo and corepressor - bound form, among

others.
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Figure 8. Crystallographic structure of the full-length PPARgamma and RXRalpha heterodimer bound
to DNA DR1. A) PPARg bounds roziglitazone, and (RXRa 9-cis)-retinoic acid. PPARg in pink, RXRa

in violet, DNA in gray. Ligand and coactivator peptide for PPARg are in white. B) Dimerization
interface between PPARg and RXRa. Structure PDB ID: 1FM9.
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Figure 9. Schematic representation of the PPARgamma ligand binding domain. PPARs have an
additional H2' helix. PDB ID: 7WOX.

6. Objectives of the thesis
6.1 Experimental and Computational study of protein dynamics

Advances in both experimental techniques and computational methods have been contributing
to an evolution in the thought about the relation between protein structure and function. The
traditional view of protein function is strongly associated with specific structures presumably
at the global energy minimum. But methods such as NMR, SAXS measurements and molecular
dynamics simulations force the reflection away from single structures to the role of structural

ensembles in biological function. Changes in protein conformational ensembles are implicated
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in many different physiological processes, as well as disease (Tompa 2016). For example,
recurrent mutations of PPARy were found to activate the PPARY/RXRa pathway in luminal
bladder cancer (Natacha Rochel et al. 2019). Mutations were found throughout the protein -
including N-terminal, DNA-binding and ligand-binding domains, and most of them enhance
protein activity. Structure-function and molecular dynamics studies of some of PPARY variants
with mutations in the ligand-binding domain allowed for the identification of structural
dynamic elements that underpin the gain-of-function of PPARG mutants that lead to pro-
tumorigenic PPARY/RXRa pathway activation in luminal bladder tumours.

The atomic level understanding of molecular mechanisms of biological activity, both
physiological and pathological, has been largely dominated by the structural analysis of
implicated biomolecules. However, there is a growing realization that understanding can be
significantly improved by including consideration of the underlying structural dynamics,
particularly those of collective motions (Ponzoni and Bahar 2018; Bahar et al. 2015; Seo et al.
2014; Shukla, Shukla, and Tripathi 2018). These trends underscore a shift towards a more
dynamic understanding of biological structures, emphasizing the importance of movement,
flexibility, and temporal changes in biomolecular function. Advances in technology and
computational methods are key drivers of these developments, providing unprecedented detail
and insight into the complexity of life at the molecular level.

It remains a major scientific challenge to quantify changes in structural dynamics and
understand how these changes are coupled to different physiological mechanisms. The most
used method for studying structural dynamics in proteins is solution NMR (Salvi, Abyzov, and
Blackledge 2017; Walinda, Morimoto, and Sugase 2018). However, this approach is often
limited to proteins under 50 kDa, although new labelling techniques have been pushing the size
limit upwards. Spectroscopic techniques, such as far-IR and terahertz (THz) spectroscopies
(both time dependent and absorption) are emerging as attractive for studying biophysical
processes (Khoury and Hellwig 2017), but their application has remained limited to isolated
proteins and peptides, as discussed in the next section.

The objective of this thesis is to develop new approaches to measure physical properties

directly related to changes in low frequency collective structural dynamics of proteins. Toward
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this end, we plan to develop an integrated far infrared absorption spectroscopy — molecular
dynamics simulation approach. Far infrared absorption spectroscopies probe the low frequency
region of the vibrational spectrum and reveal the collective vibrational modes in the spectral
region from 0.06 THz (2 cm™) to 10 THz (333 cm™), a frequency region that is accessible to
vibrational analysis based on molecular mechanics and dynamics calculations. Our hypothesis
is that spectroscopic techniques such as far-IR absorption spectroscopy, when combined with
molecular modelling and structural and biophysical analysis, can be used to advance our
understanding of the structural dynamic response of proteins to ligand binding, even when the
structural changes are minimal or non-existent (Cooper and Dryden 1984b). Not limited by
protein size, the establishment and integration of far-IR spectroscopy with other biophysical
approaches will provide an innovative means to quantify a low-frequency vibrational
fingerprint of the protein as well as changes to this fingerprint as a function of ligand binding
and complexation. We will be able to study a much wider range of proteins and their complexes
than current approaches (i.e. NMR) permit.

This project is founded upon work studying ligand binding and allostery in the MAGI1
PDZ domain (Cote et al. 2017a). In that work, far-IR absorption spectroscopy and molecular
dynamics simulations were combined to study the structural dynamic response of this PDZ
domain to the binding of a small peptide ligand. These first results demonstrated the potential
of combining far-IR experiments and molecular dynamics (MD) simulations for the study of
ligand binding by proteins. We believe that, through the development of far-IR/modelling
approaches, we will be able to uniquely characterize low-frequency motions and exploit this
information in novel ways to target proteins which can be considered in drug development
projects. The first work also made clear certain developments were in order, including moving
towards more complex systems and the consideration of ensembles of conformations rather
than single conformations and improvements in simulation technology for interpreting
spectroscopic data.

Concerning the computational approach, normal mode (NM) analysis is a technique
that continues to contribute to new technologies. NMs explore the collective motions within a

molecule by examining its vibrational modes. These modes represent the natural, low-
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frequency movements that the molecule can undergo without significant changes in its
structure.

Some of the notable techniques where normal mode analysis has been used includes
cryo-electron microscopy (cryo-EM). Cryo-EM has become a critical tool for determining the
structures of large macromolecular complexes at near-atomic resolutions and more recently
has been providing insights in the dynamics of biological assemblies through the elucidation
of the subject molecules in different conformations. An essential computational tool
underpinning these applications is normal mode analysis (Harastani et al. 2022; Grudinin,
Laine, and Hoffmann 2020). Single molecule fluorescence, smFRET, enables the study of
dynamic processes at the single-molecule level, providing detailed information about
conformational changes and interactions in real-time. Normal mode analysis has been
employed in the interpretation of the experiments (Gabba et al. 2014).

Normal modes can play a significant role when they are employed in conjunction with
molecular dynamics simulations, for example being an integral part of enhanced sampling
algorithms that improve the exploration of conformational space. One such approach is the
Molecular Dynamics with Excited Normal Modes (MDeNM) method (Costa et al. 2023).
MDeNM is an enhanced sampling method that combines molecular dynamics simulations with
normal mode analysis (NMA) to accelerate sampling. It uses a few low-frequency normal
modes to guide the dynamics and has been shown to explore protein conformational space
more effectively than standard MD. With these methods, one is able to study large scale
conformational changes, such as domain movements, binding events, allosteric regulation, or
folding processes.

In the next chapter, we present the methods used in the course of this thesis, followed
by chapter III, which presents our ensemble approach to calculating properties from normal
mode analysis. Chapter III serves as a prelude to the applications presented in the subsequent
chapters. Chapter IV presents the results obtained in a large study of PPARy in apo WT, holo
WT and two mutant forms, using the combined far-IR/molecular dynamics approach. The
objective was to investigate the effects of different perturbations to the underlying low

frequency collective motions, which are often attributed to important physiological function.
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Chapter V presents results for a theoretical study on the effects of polarization on the collective
motions of proteins. Polarization was introduced via the Drude polarizable force field (Lopes,
Huang, Shim, Luo, Li, Roux, and Mackerell 2013). The final chapter presents conclusions and

perspectives.

37



Chapter II - Methodology
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1. Molecular modelling

According to A. Leach. « molecular modelling represents a simplified description of a system
or a process (...) devised to facilitate calculations and prediction of behaviour of molecules an
molecular systems. » (Leach 2001a). A system is the portion or the subset of the physical world
that we are modelling. It is described by its constituents and the interactions between them
(Haile 1997). In order to observe, and further analyse them, we must first model them - meaning
we have to assign numerical values to the constituents of our system. The art of modelling lies
in the ability to make a system simpler than reality, to exclude the constituents that have little
to no impact on the results. The system's behaviour will remain consistent with physical reality,
in the scope of a restricted set of input conditions. One set of methods used for describing

properties of molecular systems is molecular mechanics (Allinger 1982).

2. Molecular mechanics

Molecular mechanics (MM) is a computational method which describes molecular systems
using classical mechanics principles. Its advantage lies in the simplified and, therefore, less
computationally expensive, calculations, compared to quantum mechanics (QM). Despite the
advancement in the computing capacities, it is still largely used for quick calculations,
applications to large systems and for simulating longer molecular dynamics. In all-atom MM,
atoms are represented as particles (no separation of nuclei and electrons), connected to other
atoms via springs (Hooke's law), which undergo vibrational motion. The specific parameters
describing atoms and bonds are derived from experimental data, empirical or ab initio
(quantum mechanical) calculations, and will be described in the next paragraph. Molecular
mechanics calculations are used, primarily, for calculating the potential energy of molecular
systems, energy minimization, molecular dynamics simulations, or even in molecular docking
studies. We will describe it in terms of potential energy, energy minimization and normal mode

analysis.
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2.1. Potential energy function: All - Atom Additive Force Field

The basis of molecular mechanics that characterizes the dynamical behaviour of molecules of
biological interest is the potential energy surface. The potential energy surface (PES) represents
the energy of a system as a function of atomic positions, i.e. how the energy changes for
different molecular conformations. The first information we get from the PES are relative
stabilities of different conformations of our system. The most accurate PES of a molecular
system can be obtained by quantum calculations. However, historically, the capacities for doing
these complex calculations were limited by computer power, so the first models that would
represent the PES were created as a way of simplifying and approximating the systems that
were studied. The model that is applied for calculating the potential surface is given in the form
of potential energy function (U), also called force field (FF). A force field is a sum of individual
bonded and non — bonded terms, as a function of atomic coordinates, describing inter- and

intramolecular interactions of the atoms in a system (Eq.1).

U= Ebonded +E non—bonded (1)

Since the development of the approach, different force fields have been developed with
some common features such as the use of harmonic potentials with a force constant that restores
the equilibrium positions for bonds and valence angles (an angle between three atoms). Here,
we will consider the all atom force field developed for the CHARMM program, called
ALLATOMS36 (A. D. MacKerell, Jr, et al. 1998), in its integral form (Eq. 2):
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2.1.1. Bonded terms

The reference to bonded terms implicates groups of atoms separated by one, two or three bonds

(Fig. 10, Eq. 3).

U= Zbonds kr (T— 7.0)2 + Zangles k@ (9 - 90)2 +
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The terms modelled by a harmonic potential include atomic bonds (), valence angles (), Urey-
Bradley (S), and improper angle (w), torsional dihedral angles (¢) are modelled by a periodic
function, and the torsional correction for backbone atoms (CMAP ¢,y) is an energy
contribution rather than a continuous function. Variables with subscript represent the respective
equilibrium values. Each term has a force constant associated: k-, ko, kus, k¢ , and ke. In this
way, the energy of individual terms increases with the deviation of the values from their
respective equilibriums. The only term not represented by a harmonic potential is the dihedral
angle, which has sinusoidal expression, where n represents the periodicity of the dihedral angle,
and o is the phase shift. The improper angle is maintaining the planarity of atoms, and it is
described as an angle between an atom an imaginary plane composed of three adjacent atoms.

For atoms 1-2-3, the Urey — Bradley term describes quadratic function of the distance between
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atoms 1 and 3, separated by two covalent bonds. The protein main chain has an additional term
called CMAP correction, which keeps the backbone dihedral values of ¢ and y consistent with
the allowed values from Ramachandran plots. The values for these terms were determined
using structural and vibrational data of model compounds, and further refined by iterative
process of adjusting according to interaction parameters, the structures, vibrational spectra, and

energy surfaces of the model compounds (A. D. Jr. MacKerell et al. 1998).
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Figure 10. Different contributions of the potential energy function. The atoms are represented as balls and
bonds as springs. The bonds are approximated by a harmonic oscillator (all except the dihedral bond), but
for the sake of simplicity, they are represented as straight lines.
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2.1.2. Non - bonded terms

Non-bonded terms include two terms, the Coulombic interactions between the point charges
(gi and ¢g;) and the Lennard-Jones (LJ) 6-12 potential term, which defines the repulsion and the

attractive van der Waals dispersion (Fig. 10, Eq. 4).

Oij H Oij ° 4iq;
- @) (@] ]
non-bonded pairs rij rij 4'7-[‘90 8rij
l I | |
Lennard Jones potential electrostatic term

The non-bonded calculations are calculated over all atom pairs, within a set cut-off distance,
except for the covalently bound atoms (1-2 interactions), and pairs separated by two bonds (1-
3 interactions). The electrostatic interaction can be attractive or repulsive, depending on the
charges ¢i and g;. It approaches 0 when the 7y, the interatomic distance, increases. The term €
is the relative dielectric constant (set to 1 in explicit solvent simulations), and €o is the
permittivity of vacuum. The Lennard — Jones term is also an expression of interaction energy
as a function of interatomic distance and has both an attractive interaction (r°) and a repulsive
interaction (r'?). The ¢; is the depth of the energy well, and r; is the distance between atoms i

and j. The oj; represents the atomic distance 7; where the LJ value is zero.

2.2. Potential energy function: All - Atom Polarizable Force Field

The accuracy of force fields governs the quality of the results of describing a molecular system
and running simulations. The additive FF has a number of implicit approximations in its
formulation and any inaccuracies do not necessarily stem from insufficient parameters, but they
rather highlight the inherent limitation of their functional form. For that reason, there has been
a considerable effort in improving the functional form of empirical energy FFs. One such
improvement was introduced was to try and account for polarization, which is missing from

the standard additive force field because the partial charges are fixed. One formulation for
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including polarization is in the form of a Drude polarizable force field, which is built upon the
additive FF previously described. This polarizable force field introduces a term based on Drude
oscillator, or "charge-on-springs", and accounts for electronic polarization, which is the way
atomic or molecular dipoles adjust in response to their surroundings (Lopes, Huang, Shim,
Luo, Li, Roux, and MacKerell 2013; Vanommeslaeghe and MacKerell 2015a). In addition, the
Drude FF includes virtual "lone pair" particles that allow a better representation of hydrogen

bond acceptors (Fig. 11).

2.2.1. Atomic polarizability
2.2.1.1. Drude particle

In this FF, there is a "Drude particle" carrying negative charge gp,; connected to the core of the
polarizable atom, i, via harmonic potential (or a spring) with force constant kp. The following

term is added to the classical CHARMM36m force field formulation:

_9piqj
D,i _r]”

4p,idp,j 1 2
+Zi<j||rDl—D]) + 2 Zpolarizable kD ”rD,i - ri” (5)

pi =7, atoms

U drude = Zl<]
47TD ||r

The position rp,; of the Drude particle is able to move freely depending on the electrostatic

potential environment, emulating the deformation of the atom’s electron cloud in response to

LP
\ Y,
Uz
P U3z
L
0O — L~

/ \LP

Figure 11. Representation of the Drude oscillator model. Two atoms of carbon and oxygen are
represented in light blue, and their charges (qc and qo), in addition to their respective Drude particles
qDc and gDo are represented. 'LP' - lone pair. Three arrows and values a1, 022, and o33 are the tensor
components of the anisotropic polarizability along three axes.
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that environment. The isotropic atomic polarizability, a (A%), is a constant that depends on how
easily its electron cloud can be distorted by an external field. The isotropic atomic polarizability
of a given atom is achieved by distributing the atomic charge g between the core atom (qa) and
its Drude particle (qp), such that the q = qa + qp. The atomic polarizability is calculated through

the following expression:

_ B

= 6
e ©)
The value of the force constant kp is set to a constant value of 1000 kcal.mol™'.A~? for all
Drude—atom pairs. The atomic dipole moment g, in response to the electric field E, can be

calculated using:

2

qrE
= — 7
k= (7)

The first generation Drude FF had a problem of unrealistic over polarization, which arises when
two atoms are physically close and the induced dipole moment being a linear function of the
electric field. This can cause the Drude particle of one atom to become "trapped" in the potential
well of a nearby atom. Furthermore, the effect on polarization is greater along the axis formed
by two adjacent atoms than along the perpendicular axis. In order to suppress these effects, a
specific constraint was introduced to the first generation Drude potential energy function. This
was the "HardWall' modification, which places a "hard limit" on how close the Drude particles
can approach, thus preventing the distance between charges from going to zero and having
infinite electrostatic forces that would therefore arise. If a Drude particle moves beyond the
HardWall limit set to 0.2 A, the relative velocity of the particle is scaled down, even though it
still continues to move outwards. The velocity of the core atom is adjusted to maintain overall
momentum during MD simulation integration (Vanommeslaecghe and MacKerell 2015b).

A second adjustment of the Drude FF is the implementation of the explicit dipole -
dipole interaction for atoms within three bonds. Non-bonded interactions between 1-2 (one

bond) and 1-3 (two bonds) atom pairs were only implicitly represented by bond-stretching and
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angle-bending terms in the additive FF. The interactions of atom pairs 1- 4 and beyond are
represented by classical Coulomb interactions. The interactions of the Drude oscillators, i.e.
no core atom - core atom or core atom - Drude for 1-2, 1-3, corresponding to 1-2 and 1-3 pairs
are represented through scaling of electrostatic terms by a Thole-like screening function Sy,
which reduces dipole-dipole interactions as distances decrease (Thole 1981). The function Sj

depends on the distance r;; between Drude particles i and j in the following manner:

—(tittj) rij
t: +t;) 1;; ASURR P
Sij (rif) =1-11+ (21(% e (“iaj)1/6 (8)
al’aj

where 7 is the distance between atoms i and j, o; and «; are respective atomic polarizabilities.
The atomistic Thole factor, # (or #), is a damping constant associated with atom i (j) and is

defined individually for each atom.

2.2.1.2. Anisotropic polarizability

To include anisotropy (until now it was all isotropy), the Drude model includes two more
extensions that further improve the representation of hydrogen bond acceptors. One concerns
the anisotropy of the charge distribution and the second the polarizability. First term, the
anisotropy of the charge distribution, describes the uneven spatial distribution of charges in a
molecule. It is represented by lone pairs (LP), massless, negatively charged point charges that
are exclusively added to electronegative atoms. Essentially, LPs represent virtual sites carrying
negative charge. (Harder et al. 2006)

The second term accounts for anisotropy of the polarizability, which is the variation in
how easily the electron cloud can distort in different directions in response to an external
electric field. To explain anisotropy, recall that isotropic polarizability is described by a
harmonic self-polarization term, Usr, that is calculated on the basis of the harmonic bond
energy between the Drude oscillators and their core atoms. While the Useir term was represented

by a displacement d, and an isotropic scalar force constant kp,
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. . 1
Ugery ™" (d) = S kpd? 9)

anisotropic polarizability, which varies with direction, is represented by a tensor (matrix), Kp,

with off-diagonal elements set to zero. (Fig 11., tensor components)

enisotropic _ %([Kﬁ) a? + [KD]as? + [Kgg)]%z) (10)

The combination of lone pairs and anisotropic polarization improves the accuracy of describing

hydrogen bonding.

2.3. Long - range interactions

The long-range non-bonded interactions are the most computationally demanding, since their
number scales with N?, as opposed to the number of bonded interactions (involving bonds,
angles, and dihedrals) which is proportional to the number of atoms (V). To accelerate these
calculations, we generally disregard interactions between atoms separated by the distance
greater than a predefined cufoff distance. Two most common methods used for implementing
the cutoff in the calculations of energy, while maintaining energy smoothness, are called shift
and switch truncation functions which, by their algorithmic construction « turn off » the
interaction in a continuous way so that the interaction is zero at the cutoff distance (Bernard R.
Brooks et al. 1983).

The difficulty here is that terminating interactions at a certain cutoff distance results in
the neglect of long-range interactions arise from electrostatics, in particular. Numerous studies
have shown the importance of long-range electrostatic interactions in biomolecular systems
(Zuegg and Gready 1999; Ahsan, Pindi, and Senapati 2020).

The inclusion of the long-range electrostatic interactions in molecular dynamics
simulations employs, for the most part, the use of an algorithm based on the Ewald summation
method. The most currently used implementation is called Particle Mesh Ewald (York,
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Darden, and Pedersen 1993). The method splits the electrostatic interaction into two parts, a
short-range contribution and a long-range contribution. For this, we use the implementation of

the Particle Mesh algorithm.

2.4. Solvent representation

For the sake of a better representation of biological systems, it is preferable to study protein
systems in aqueous solution, instead of using the gas-phase simulations. The representation of
water molecules is of great importance, since it plays an important role in the structure and
dynamics of biological molecules. Two common ways of modelling solvent are explicit solvent
and implicit solvent models. In our simulations, we use the explicit solvent, which represents

water molecules as individual particles.

gp (e)=-1.72

1=0.09 A
o I qU ({’) = 1'72

1=096 A
[=024 A

N

f=104.52°

@

qu(e)=- 111

qr (e) =0.56

Figure 12. Explicit solvent models: TIP3P and SWM4 NDP. Both models have the same geometry.
TIP3P is the model on the left, and SWMP4 NDP (Drude model) is on the right. The Drude model has
2 additional terms: the Drude particle (D), and the 'M' site (M).

In the additive force field simulations, we are using the TIP3P ("Transferable Intermolecular
Potential functions" 3-point) water model, meaning it represents water molecules using three
interaction sites corresponding to the positions of the oxygen atom and the two hydrogen atoms

(Fig 3)(Jorgensen 1981). The corresponding Drude model for water molecules is the 4-point
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SWM4 - NDP ("simple water model with negative Drude polarization") (Lamoureux et al.
2006), which is essentially a rigid configuration of HOH particles, with two additional
elements. Firstly, the model includes a negatively charged 'M site' of the oxygen, placed along
the axis of symmetry of the molecule. Secondly, the Drude particle is attached to the oxygen
atom, carrying a charge qp = -1.72, that is equal in magnitude, but opposite in sign, to the
charge of the oxygen atom (qo = 1.72). The total charge of the oxygen atom (between oxygen
and its Drude particle) is zero, which is an important aspect of the model's design, and together
these two terms contribute to the accurate representation of dipole and quadrupole moments of
water (Lemkul, Huang, Roux, and Alexander D. MacKerell 2016). The polarizability is
represented by the Drude particle, and the permanent dipole by the M-site charge (qu =-1.11)

and 2 hydrogen partial charges (2 x qu = 0.56).

2.5. Energy minimization

Energy minimization is a method employed to find a minimum-energy conformation of a
molecular system. Energy minimization is used to optimize the molecular coordinates, or
geometry. For most applications, it is used to relieve strain in conformations that are generally
present in experimental structures, resolving structural conflicts like bond angles or torsion
strain and steric clashes. Considering the complexity of a potential energy surface, finding a
minimum-energy structure is not an easy task. The potential energy surface describes the way
potential energy varies with respect to coordinates. The potential energy is a multidimensional
function of atomic coordinates; 3N - 6 internal or 3N Cartesian coordinates for an N atom
system. The nonlinear nature of the potential energy function results in potential energy surface
with multiple minima, most that are called local minima and one global energy minimum,
characterized by having the lowest energy of the system. Energy minimization algorithms can
determine local minima. These algorithms are in general characterized as first-derivative
algorithms (i.e., algorithms that use only the first derivative of the potential), second derivative
algorithms (i.e., algorithms that use both the first and second derivative of the potential). The

first derivative of the potential energy function (the gradient) describes the rate of change of

49



energy with respect to atomic positions, or the slope. At both the global minimum and all local
minima, as well as at any other stationary points such as saddle points or maxima, the first
derivative of the energy with respect to the coordinates is zero. It also related to the force, since
the force is the negative gradient of the potential (Eq. 11) (McCammon and Stephen 1987).
The second derivative matrix, representing the curvature of the potential energy surface, has
all positive values, at a minimum point.

F = -VU (11)

2.5.1. Steepest descent method

Steepest descent (SD) method is a first-derivative minimization algorithm that is generally used
in the initial stages of preparation to relieve bad contacts that may be present in an experimental
structure (Wiberg 1965). At each step, the gradient of the potential (the vector of the first

derivative) is calculated.

s = —-Zk (12)

| gl

Here, si is the 3N-dimensional unit vector, and gx is the potential energy gradient vector
component of the coordinate k. Next, a change is added to all the coordinates, in a direction

opposite to the gradient. Starting from a point rx, the displacement is added using:

Trer = T + A4Sk (13)

where the Ay is the displacement parameter. The size of the displacement, or how far to move
along the gradient, is determined through different approaches. The algorithm gradually
changes atomic coordinates as the system moves closer to the minimum point. Both the
gradients and the directions of successive steps are orthogonal. Despite having a poor
convergence and accuracy, coming from oscillating around a minimum, this algorithm is

computationally fast, and useful as a first step in minimizing a structure.
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Figure 13. Representation of different energy minimization algorithms. Steepest descent (SD) requires
the most steps, while conjugate gradient (CG) requires fewer steps, but is more computationally costly.
Newton Raphson (NR) can minimize quadratic function in one step, but it is more most costly
computationally. Image adapted from Leach, 2001.

2.5.2. Conjugate gradient

Conjugate gradient (CD) algorithm (Williams and Schleyer 1968) also uses the first-derivative
information. It uses the gradient from the previous minimization step, in addition to the current
gradient, to determine the next displacement direction vy, as their linear combination:

Vy = Gk + VikVk-1 (14)
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where j can be calculated using:

9k -Gk
= — (15)
Vi 9r-1- Gr-1
The following position is obtained through:
Teyr = T + 4y (16)

For an N-dimensional quadratic surface, the algorithm reaches the minimum in N steps. This
algorithm is more computationally demanding than the steepest descent, but it converges more

quickly and produces a lower energy once it has converged.

2.5.3. Adopted-Basis Newton-Raphson

The Adopted-Basis Newton-Raphson (ABNR) is a variant of the Newton-Raphson algorithm
that uses the second-derivative of the potential energy function (Bernard R. Brooks et al. 1983).
The Newton-Raphson algorithm, starting from a point rx, has the next step rx+; calculated by

the following expression:

;)ot(rk)

Calculating the second derivative entails the construction and inversion of the second
derivative (Hessian) matrix, which can be computationally costly. The ABNR method consists
of calculating only a subset of the matrix (of basis vectors) at each step and only taking into
account the vectors for which the systems has made the most progress in the previous steps.
This approach converges extremely fast, but it is more computationally demanding than the

first-derivative methods.
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In general, the Steepest Descent and Conjugate Gradient methods are used to quickly
minimize structures and eliminate significant high-energy interactions. Afterwards, the second

derivative methods can be used to produce lower energy conformations.

2.5. Normal Mode Analysis

The idea of exploring vibrational motions of proteins came hand in hand with the advancement
of computational methods in the field of chemistry. The first study of the vibrational dynamics
of an alpha-helix was done in 1979, by Karplus and Levy (Levy and Karplus 1979). This idea
was developed further through the Normal Mode Analysis (NMA), and shortly after, the first
protein systems were studied - glucagon and bovine pancreatic trypsin inhibitor (BPTI)
(Tasumi et al. 1982; B. Brooks and Karplus 1983). Since then, normal mode analysis has been
applied to study many protein systems and has been used to elucidate how protein
conformational dynamics are associated to their function (Skjaerven, Hollup, and Reuter 2009;
Mahajan and Sanejouand 2015). Normal modes describe the vibrational motion of molecular
systems, and so the normal mode analysis represents a powerful tool for studying structural
and dynamic properties of molecular systems. By definition, NMA involves the analytical
study of harmonic potential wells, beginning with a stable conformation of the system that
corresponds to a minimum on the potential energy surface, and then describing harmonic
motions of small amplitude within the potential well (where “small” means “small enough that
the harmonic approximations hold”). A stable conformational state is defined as a point on
potential energy surface where the first derivative of the potential energy is zero, or sufficiently
close to zero, and the second derivative of the potential energy is positive, which indicates a
local minimum. Applying the formulation of normal mode analysis, the motions in these wells
can be described as vibrational motions, called normal modes, and they represent a specific
pattern of motion, each associated with a specific frequency. The technique has been widely
used for small molecules in the study of their vibrational motions. For a system with N particles,
there are 3N number of degrees of freedom for of a non-linear system. Six degrees of freedom

represent rigid-body motions such as translation and rotation of a molecule, around three axes,
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with no energy. The remaining 3N-6 degrees of freedom are called vibrational normal modes,
or non-trivial modes, and are grouped by their frequencies, w. The typical protein vibrational
frequencies span from couple of wave-numbers (cm™') the tera-hertz (THz) region, for the
entire protein, up to approximately 3280 cm™! for individual bond vibration (stretching of C-N
bond) (Foggia et al., n.d.). Protein dynamics can be described as a linear combination of all
normal modes, and the modes are orthogonal - the motion of one mode does not interfere with
another, allowing for clear separation of different vibrational patterns. The lowest frequency
modes, also named soft modes, are believed to be functionally relevant (Skjaerven, Hollup, and
Reuter 2009). Low frequency modes have the highest amplitude and the lowest energetic cost.
They encompass all, or most of, the atoms in a system, and describe the largest movements in
a protein. The vibrational modes in which all atoms are moving are called collective motions,
and they exclude localised motions associated with higher frequencies.

Normal mode frequencies and the displacements of atoms are obtained by calculating
the second derivative of the potential energy (described by molecular mechanics), also called
the Hessian matrix (F). After minimizing a structure, and calculating the Hessian matrix, the

values are weighted by atomic mass according to the equation:

F = M 2V2UV)M (18)

where M is the diagonal matrix of 3N x 3N, containing atomic masses only along the diagonal.

1
M~z represents the matrix with the inverse square root of atomic masses and weighing them is
required since forces act differently with respect to atomic mass. The V? is the second
derivative of the potential energy U of the system of the atoms r. By calculating eigenvalues

(4i), and eigenvectors (a;) of our matrix we can diagonalize it:

IVZU@rN) —AM| = 0 (19)
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Each normal mode is described by two components: eigenvector A4, which represents
displacements of each atom moves in a vibrational pattern, scaled by eigenvalue A;,

corresponding to vibrational frequencies, or how fast the atoms are oscillating:
F X Al = Ai X Al (20)

In summary, NMA uses mathematical tools to study how atoms in a molecule move slightly

around a stable point, helping us understand their vibrations and motions.

2.5.1. Analysis of normal mode calculations

2.5.1.1. Fluctuations

From the results of a normal mode calculation, we can calculate properties such as root mean
square fluctuations (RMSF). Atomic fluctuations for atom i at temperature T, can be calculated

by Eq. 21, which uses normal mode (eigenvector) k and the corresponding eigenvalue:

af,
< (Ari)z >k = kBT Za=x,y,z_2k (21)

Wy

The Boltzmann constant is represented by ks i is the frequency of mode k, Ar;is the
displacement of atom 7 from its minimum energy position, the scalar i, of mode £k is the

component of the eigenvector, @ = (x,y,z) that describes the displacement the atom i.

n

< (Ar)? > = z < (Ar)? >, 22)

k=1

Eq. 22 describes the contribution of all normal modes to the fluctuation of an atom i. These
fluctuations can be compared to the fluctuations derived from the crystallographic B factors,

calculated using the following equation:
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B = %nz(Ari)z (23)

2.5.1.2. Correlations

The second analysis that we can carry out using the normal modes is to calculate the correlation
coefficients for each protein atom pairs. This will give us information about the correlated
motions exhibited by residues, and in more general view, the correlations between different
secondary structure elements during the course of a trajectory. We can obtain the C;; correlation

coefficients using the following expression:

< ArjAry >

1
(< Ay >< Ay >)?

where the Ar;is the displacement from the average position of an atom i.

2.5.1.3. Infra - red spectra

Calculating the Infrared spectrum (IR) from normal modes is achieved through the extraction
of frequencies and dipoles associated to a structure and, more precisely, the derivative of a
dipole moment. The IR spectrum is represented as function of the integrated intensity, /%,

which has units of the molar absorptivity, calculated from the dipole derivative values:

r o= Mo’ (d” ) (25)

- 3c?gowy, \dQ,

where Ny is Avogadro’s number, & is the permittivity of vacuum, c is the speed of light, u is

the dipole moment, Oy is the normal coordinate, and wy is the respective frequency. The IR
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spectra were then smoothed by multiplying the intensity of each peak by a Gaussian function
with a full width at half-maximum of 10 cm™.

We have described the calculation of normal modes, starting from a minimized structure of
a molecular system. The protocol we develop in chapter III consists of extracting multiple
representative structures from the most populated well of a free energy landscape calculated
from a molecular dynamics simulation, using these for NMA and averaging the results. Since
the normal mode analysis of a single structure is highly sensitive to that structure, we take this

ensemble approach and average over hundreds of structures. This will be described in a

separate chapter.

3. Molecular dynamics

3.1. Protocol

Molecular Dynamics (MD) simulation is a computational method that allows us to describe the
microscopic world of molecules using numerical models. MD simulations calculate the
dynamical evolution of a modelled system through time using classical dynamics. By carrying
out MD simulations, we can analyse the properties of atomic assemblies in terms of structure,
microscopic interactions and overall dynamics (Michael P. Allen 2004). This approach consists
of integrating equations of motion by breaking down the calculation into discrete time steps.
For classical MD simulations using an all-atom force field, the time step, dr, is in the order of
1 - 2 femtoseconds. The forces acting on atoms are calculated at each step and combined with
the positions of the atoms at a time #, to generate positions at time #+;. The new atomic positions
are then determined, and a new set of forces is calculated. The product of a simulation is a
trajectory, representing how atomic positions change with time.

MD simulations start with the preparation of the system followed by the production of
a dynamics trajectory. The preparation involves modelling the molecule of interest by an
empirical energy force field; in general, the initial molecular structure is determined

experimentally usually by X-ray crystallography or NMR spectroscopy, or modelled using
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different approaches, such as homology modelling or other structure prediction algorithms such
as AlphaFold2. To include environmental effects, the molecule is most often modelled in an
explicit water environment, along with additional elements used to emulate the physiological
and physicochemical properties of biological systems (for example, ions). One necessary step
before running an MD simulation is energy minimization, as discussed above — a well
minimized structure is crucial for stable MD simulations. The molecular system is brought to
a desired temperature in a series of steps designed to heat the system gradually by modulating
the atomic velocities. Multiple heating and minimization steps are usually combined to ensure
a proper preparation of the system. The system is then equilibrated by molecular dynamics
simulations for some given time during which the temperature is monitored and readjusted
accordingly. Different parameters, for example total energy and/or RMSD are monitored as a
measure of stability. The final step, called the production, phrase will generate a trajectory of

the molecular motions over time that is then used for analysis.

3.2. Integrating algorithm - All - Atom Additive FF

MD simulations calculate atomic trajectories by solving Newton’s equations of motion for each
of the atoms in the system. Atomic trajectories are a sequence of atomic positions in space as
a function of time. The Newton’s second law of motion stipulates that the force acting on
particle 7 is equal to its mass m; times acceleration a; (the rate at which velocity v changes over

time ¢, being the second derivative of the position r;):

Fi =m; * Q; (26)
dvi dzrl’
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The forces acting on the particles come from interactions with other particles, and they can be
derived from potential energy function, where the total force on a particle, F;, is the negative

gradient of the potential energy with respect to its position:

Starting from initial atomic position r;, and the potential energy function U, the force is known.
We can calculate the acceleration for every particle of the system and then update the atomic
positions and velocities of particles using numerical integration methods, which are given by
different algorithms. An analytical solution is not achievable, since the motions of the N
particles are coupled. Initial velocities, v;, are assigned randomly from the Maxwell-Boltzmann
distribution at a specified temperature (Leach 2001a).

The NAMD program (Phillips et al. 2020a), which is the most used in the present work
to run the MD simulations, uses the Velocity Verlet algorithm for calculating atomic velocities
and positions (Allen and Tildesley 1989; Swope et al. 1982). This algorithm calculates
positions r; and velocities v; at the same time. The positions are calculated in the following

manner:

ri(t+dt) = ri(t) +v;(t) - dt + %ai (t) - (dt)? (29)

and are updated based on the current velocities and acceleration. Forces are then updated for ¢
+ dt the based on new positions (and new potential energy U), and allow for the calculation of
acceleration for ¢ + dt:

a; (t + dt) = Fit + dt) (30)

i
Velocities v; are updated based on:
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v; (t + dt) = v; (t) + % [a; (t) + a; (t + dt)] -dt (31)

The velocity is updated using both the old and new accelerations, which ensures that the

velocity is correctly synchronized with the positions.

3.3. Integrating algorithm - All - Atom Polarizable FF

The Drude oscillator model requires a different integration algorithm for including the auxiliary
particles attached to core atoms. Extended Lagrangian dynamics is implemented in the NAMD
program, instead of the computationally expensive, albeit accurate, self-consistent field (SCF)
regime. (W. Jiang et al. 2011; Lamoureux and Roux 2003) This ensures lower computational
cost since the energy is not minimized at each step of the dynamics. In extended Lagrangian
dynamics, Drude particles are not restricted to their energetic minima, but instead carry kinetic
energy that is kept at low values using a designated thermostat. Dual stochastic Langevin
thermostats modify the equations of motion by adding both a frictional force and a random
force to each particle’s motion. The motions of atom-Drude pairs with coordinates 7; and 7p;
are treated separately. We now have two different terms accounting for motions. The motion of
the center-of-mass R; of the atom-Drude pair and the relative internal motion of the oscillator
di = rp,i - ri. The atom-Drude pair has a total mass m;, and the oscillator has a reduced mass m;’
= mp (1 - mp/m;). The resulting pair of equations of motions for atom-Drude pairs are the

following Langevin equations Eq. 32 and 33:

d? d?

miﬁRi = Fp; — VERL' + fi (32)
d? d?

mgﬁdi =Fy; — )"adi + fi (33)
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The Fr,and F,; are the forces acting on the centre-of-mass and on the oscillator reduced mass,
respectively, y and y' are the internal and external Langevin friction coefficients, f; and f;’ are
two random forces whose values randomly change over time, according to the stochastic
(random) force of Langevin dynamics, and with respect to two Langevin friction coefficients
respectively. The forces acting on the centers-of-mass and on the displacements are represented

as actual forces acting on particles:

Foo- au du 34)
Ri dr; drp;
and:
_ mp\ dU mp\ dU
Fd'i B <1 m; ) er,l + < m; ) dri (35)

The Briinger—Brooks—Karplus (BBK) method is implemented in NAMD for integrating the
Langevin equation (Briinger, Brooks, and Karplus 1984). The integration of the centers-of-
mass and the displacements are identical to the integration of the individual atoms. NAMD
treats the entire system as standard atomic coordinates. After an initial equilibration using 0.5
femtosecond timestep, integration time steps of 1 or 2 femtoseconds are appropriate for

generating accurate molecular dynamics trajectories.

3.4. Periodic boundary conditions

The most commonly used method for studying dynamical properties of bulk solvent and
solvated systems is by molecular dynamics simulations using periodic boundary conditions
(PBC) (Leach 2001b; Rapaport 2004). PBC allow for a relatively large number of particles to
be simulated as if they were experiencing interactions in a bulk fluid (or other states of matter,
not applicable in our studies). This approach takes our system, which is essentially a protein
submerged in a water box, as a central cell and it replicates it in all spatial directions, called
spatial images (Fig. 14). The box has no physical walls and, as a consequence, if a particle

leaves the box from one side, it is reintroduced from the opposite side of the central box (in the
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3 dimensions of space). By applying PBC, the system is treated as infinitely large and, when
coupled to different algorithms, allows one to carry out simulations at thermodynamic
equilibrium in different ensembles, for example, the microcanonical ensemble - NVE (constant
number of particles (N), constant volume (V) and constant energy (E)), or the isothermal-
isobaric ensemble - NPT (constant number of particles (N), pressure (P) and temperature (T)).
Simulations in these ensembles are used alongside PBC, by coupling the central cell of atoms

to a constant-temperature bath or a constant-pressure piston.
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Figure 14. Schematic of periodic boundary conditions. Taken from
https://people.se.cmich.edu/petkolvg/isaacs/manual/page22 ct.html#fpbc
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3.5. Analysis
3.5.1. RMS deviation and fluctuation

Because the positions of the atoms of a dynamical system change over time, several properties
can be calculated. We can calculate the average structural deviation (RSMD) from a reference

structure, given by Eq. 36:

N
1 2
RMSD = Nz (T] . T}reference) (36)
i=1

where j indexes a particular atom, N is the number of equivalent atoms, 7; is the actual position

rejference. . . .
and 7; ! is the position of the same atom in the reference structure.

If the reference structure is the average structure calculated from the dynamics
simulation, we can get a measure of the flexibility about that average structure for a particular
atom. The RMSF (root mean square fluctuation) represents a measure of the deviation between
the position of particle i and a reference position, when the reference position is the average

structure over time, and it can be calculated using Eq. 37:

T
1
RMS[M = 2D (n(y) - 10’ 37

t]'=1

3.5.2. Correlations

The calculation of correlated motions is described in detail in section 2.5.1.2., in the context of
Normal Mode Analysis, but correlations Cj; can be calculated directly from an MD trajectory,
using the same equation:
< ArjAry >
Cij = 1 (38)
(< Ar; >< A1y >)?
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where the Ar;is the displacement from the average position of a residue i.

3.5.3. Secondary structure element analysis

Secondary structure elements are well characterized protein regions that are stabilized by
hydrogen bonds between atoms in the polypeptide backbone, providing a scaffold for the
tertiary structure of the protein. The fluctuations in the secondary structure content can
influence the protein's structure and function. In this work, we sought to quantify the secondary
structure content of PPARy systems for the purpose of comparing them with experimental IR
measurements (chapters III and IV). We used a combination of the software STRIDE (Heinig
and Frishman 2004a) and the python package MDAnalysis (R. Gowers et al. 2016). STRIDE
software uses a knowledge-based approach to determine hydrogen bonding patterns and
backbone geometry (notably the geometry of torsion angles). Weighted product of hydrogen
bond energy and the probabilities of torsional angles determine the starting and ending position
of secondary structure elements, with respect to empirically optimized thresholds. We
developed a python script to pilot these two programs to efficiently analyse our dynamics

trajectories.
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Chapter III - Ensemble
averaged Normal modes - a
prelude
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1. Introduction

Normal mode analysis (NMA) is well suited to study the conformational dynamics of proteins
because of its relative simplicity and rapidity in terms of calculation time. Normal mode
analysis has been especially useful for understanding the contributions of low-frequency
collective vibrational modes to conformational changes. However, a shortcoming of normal
mode analysis is that it is generally performed for a single energy minimized structure, obtained
either from a crystal structure or from a molecular dynamics simulation. It is well appreciated
today that a representative experimental “structure” actually corresponds to an ensemble of
structures, so the calculation of properties from a single structure can lead to questions on the
robustness of the results. Several approaches to address the issue of an ensemble of
representative structures has been developed. In the work by van Vlijmen and Karplus (van
Vlijmen and Karplus 1999), normal modes (NMs) were calculated for several individual
energy-minimized protein structures sampled from 100ps MD simulations and properties
calculated and averaged from the individual NM analyses gave a better agreement with
experiment. Kitao and co-workers developed the ‘‘jumping among minima’’ (JAM) model
(Kitao, Hayward, and Go 1998). This approach accounts for multiple structures by assuming
the system can transition between local minima that are separated by barriers that can be
crossed on the timescale of MD simulations. Batista and coworkers developed a ‘consensus
modes’ approach where the harmonic information present in multiple minima of the potential
energy surface of a protein was exploited (Batista et al. 2010).

As simulations have become much longer, there is the realization that crystal structures
represent a restrictive view of the conformational ensemble sampled by a given protein. So,
much more extensive conformational sampling is considered the norm. For example, in the
method of Karplus and Hermann, the simulations were 100ps in length; today, simulations are
generally 100s nano- to microsecond in length.

We present here a method that builds on the use of multiple structures for normal mode
analysis (NMA) and that is better adapted to the analysis of longer simulations. Our ensemble

approach involves combining data from multiple structures from a molecular dynamics
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simulation extracted from the most populated well of a free energy surface. The free energy
surface is generated from RMSD and radius of gyration, as in Cote, et al. (Cote et al. 2017a),
the structures are reoriented to the same reference frame and an NMA is performed on each
structure to obtain the normal modes. We calculate the normal modes for the extracted
structures and subsequently average the results. From the normal modes, we calculate the
average RMSF, correlated motions and the far-IR spectra that we will compare to experiment
in later chapters. The combination of spectra from multiple structures allows us to obtain an
ensemble averaged IR spectra. Overall, this approach is more robust and less dependent on any
individual structure. We will present this ensemble averaged approach through an application

to the ligand binding domain of PPARY, shown in Fig. 15.

N-terminal

C-terminal

Figure 15. PPARgamma ligand binding domain. Residues 230 - 505, from the 3.2A crystal structure
PDB ID: 7WOX chain B, in apo form. Key structural elements are labelled.
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2. Methods

2.1. Structure preparation

The PPARy LBD (residues 230 - 505) of wild type (WT) apo structure was prepared for this
analysis using a crystallographic structure available in the Protein Data Bank (PDB) (Burley et
al. 2023). The WT apo model of 276 residues was based on the structure of chain B from
PDBID 7WOX (Yoshizawa et al. 2022a), which has a 3.20 A resolution. Chain A in this PDB
entry is bound to the antagonist MMT-160, but chain B was considered to be in apo form
because it did not show any electron density, representing a ligand, in the binding pocket.

The initial coordinate and protein structure files (PSF) needed for the molecular
dynamics simulations were prepared using the PDB Reader & Manipulator option of the
CHARMM-GUI web interface (Jo et al. 2008) using default parameters. The interface was also
used to build missing protein residues. The protonation states of the histidine residues of our
systems were determined using PROPKA program (Olsson et al. 2011; Sendergaard et al.

2011) via the webserver https://server.poissonboltzmann.org/pdb2pqr, and verified manually.

The following protocol was used for the molecular dynamics simulation using the
CHARMM all-atom force field, version 36m (A. D. MacKerell, Bashford, et al. 1998). The
molecular dynamics simulation was carried out for 100 ns using NAMD program (Phillips et
al. 2020b) with the time step of 1 fs under NPT conditions. System preparation was done in
four stages following solvation of the protein in a 100A cubic water box.. First stage consisted
of 1000 steps of minimization with a fixed protein chain and non-fixed water-ion box. Next,
the system was heated up to 600K during 23000 steps. The system was, once again, minimized
for 1000 steps, and then heated up to 296.5 K. Then, with the constraints on the protein chain
removed, the system was minimized for 2000 steps. The entire system was heated up to 296.5
K, for 15000 steps. This was followed by an equilibration of 85 000 steps of dynamics,
followed by the production phase. The production simulation was carried out for a duration of

100 ns.
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2.2. Analysis of the trajectories

From the molecular dynamics simulation, we calculated the root-mean-square coordinate
difference (RMSD) and the radius of gyration (RGYR) considering only the Co backbone
atoms. Using the results for RMSD and RGYR, a free energy surface was constructed and the
most populated well was identified. From this well, 100 structures were extracted for further
analysis. These 100 structures compose our structural ensemble. We further calculated the
backbone atomic root-mean-square fluctuations (RMSFs) averaged by residue from the

simulations.

2.3. Normal Mode Analysis

Normal mode analysis was carried out using the VIBRAN module of the CHARMM program,
see Methods section 2.5 for a description of the methodology. All the modes were calculated
in this analysis (3N atoms) corresponding to 13464 Cartesian displacement modes for the APO
form of PPARY. The first six modes correspond to the global translational and rotational modes
and were removed from the analysis.

From the results of the normal mode analysis of the ensemble of structures, the intrinsic
dynamics were characterized by the atomic root-mean-square fluctuations (RMSF), which
were calculated using Eqs. 21 and 22. The cross-correlation coefficients for the ensemble of
structures were also calculated from the NMA using Eq. 24 of Methods. From the Cj
correlation coefficients, which are organized as a matrix, a cross-correlation map was
calculated using a color-coded 2D representation. In this representation, C; = 1 identifies
correlated motions and Cj; = -1 anti-correlated motions. These values give us information
concerning the global collective motions.

Using structures in the ensemble, which are representative of highly probable structures
through the analysis of the free energy surface, and the results of their NMA, the IR spectra

were computed (Cote et al. 2017a). Each IR spectrum was represented as function of the
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integrated intensity, ['x, which has units of the molar absorptivity, calculated from the dipole

derivative values, using Eq. 25 of Methods.
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3. Results and discussion
3.1. RMSD, RGYR and RMSF

The RMSD and RGYR time series were calculated from the 100ns simulation of PPARYy apo-
WT. The time series results are shown in Fig. 16 and 17. We see that in both cases, the time

series level off at plateau values even though the RMSD time series shows some variation.
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Figure 16. RMSD of the Ca atoms of the complete backbone. In black is the running average over 500
timeframes and in grey are the values at each time point.
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Figure 17. Radius of gyration of the Ca atoms of the complete backbone. In black is the running average

over 500 timeframes and in grey are the values at each time point.
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We additionally calculated the RMSF from the molecular dynamics simulation and
averaged the results by-residue for the backbone atoms. The results are shown in Fig. 18, which
also shows the secondary structure of the protein as a function of sequence. We see that, for
the most part, secondary structure elements, such as alpha helices (green rectangles), are more
stable than the terminal ends and loops between the secondary structure elements, but being an

apo structure, the LBD displays a certain degree of flexibility.
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Figure 18. By-residue averages backbone RMS fluctuations from the molecular dynamics simulations of
PPARYy apo form.

To assess the conformational landscape of the protein, an effective 2D free-energy landscape
(FEL) based on the RMSD and RGYR was constructed from molecular dynamics simulations.
The 2D FEL was based on the values of the RMSD and the RGYR computed from the protein

structures extracted from the simulations using the relationship as follows:

FEL(RMSD,RGYR) = —k,zTInP(RMSD, RGYR) (39)
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where kg and T are the Boltzmann constant and the temperature, respectively, and P is the joint
probability of a structure having the values of RMSD and RGYR. The landscape result is
shown in Fig. 19, where we see that, in this simulation, there is one principal well between
RMSD values of, roughly 1.65A and 1.95A and an RGYR of 19.0A and 20A. A minor well is

observed at smaller RMSD values and slightly higher RGYR values.
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Figure 19. The effective free energy landscape built from the RMSD and the RGYR values computed
from the MD simulation the APO form of PPARy. The more red the region, the deeper is the well.
Indicated in the square is the region from which structures were extracted for further analysis.

73



3.2. Normal mode calculations
3.2.1. Fluctuations

From the deepest minimum on the surface, that being for RMSD between 1.85 and 1.95A and
a radius of gyration between 19.9 and 19.95, denoted by the square on the FES plot, Fig. 19,
we generated a dynamics trajectory of structures that fell within those ranges. Nearly 10000
structures were extracted (9754) from this region of the free energy landscape. From this
cluster, we randomly extracted 100 structures for normal mode analysis (NMA). Each structure
was subjected to enough steps of minimization using the adapted basis Newton—Raphson
(ABNR) algorithm to reach an RMS gradient of 10”7 kcal.mol".A"! or less. The treatment of
the nonbond interactions in the normal mode calculations was the same as that used for the
energy minimization. This ensured that each structure was at the local minimum of the potential
energy surface, a necessary condition for NMA. A switching function was used for the van der
Waals non-bonded interactions and a shift function with the distance-dependent dielectric, e=
4r, was used for the electrostatic interactions. An atom-based 15A cutoff was used.

The atomic fluctuations were calculated from the normal modes using equation Eq. 21.
In Fig. 20, the fluctuations from normal modes are compared to the fluctuations calculated
from the molecular dynamics simulations. We see that the trends between the simulation results
and the normal mode results follow well. As expected, the fluctuations are generally greater
in loop regions for both the MD simulations and the normal mode results. Fluctuations
calculated from NMA are generally smaller than corresponding fluctuations calculated from
molecular dynamics simulations.

In Figure 21, we show the RMSF calculated from several different structures extracted
from the lowest free energy well. The structures themselves are all roughly 1.9A from the
initial crystal structure. We see that the detailed results, in this case, of RMSF can show a
certain degree of variation between structures, in particular, for the more flexible loop regions.
This is a manifestation of the fact that even slight differences in energy minimized structures

can lead to different results, raising the question when comparing results from different
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systems, are the differences due to the inherent differences between the systems or could the

conclusions change if different, but perfectly acceptable minimized structures are used.
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Figure 20. Atomic fluctuations of backbone atoms from the molecular dynamics simulations (black) and
the atomic fluctuations of backbone atoms from normal mode calculations (red). Examples of several
results from normal modes are shown. In the bottom panel, we zoom in on the fluctuations from normal
modes.

75



h3 _ hishs h6 hi hé hg_ hiQhit hi2

h1 h2 2

533

Residue #

3.2.2. Correlated motions

From the normal modes for several individual structures, we calculated the correlated
motions using Eq. 24. We compare the correlated motions calculated from a single structure to
the correlated motions calculated and averaged from the full ensemble extracted from the
molecular dynamics trajectory. We see in Fig. 21, that, for the most part, the general
characteristics concerning secondary structure elements are similar, reflecting the topology of

the structure.
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Figure 21. Comparison of correlated motions from three individual structures (upper triangle) to the
correlated motions calculated and averaged from the ensemble of structures extracted from the
molecular dynamics simulations (lower triangle).

But we see differences between regions that do not belong to the same secondary structure
elements, for example, the anticorrelated motions implicating helix 4-5 and helix 12 differ
between conformations and from the correlated motions calculated from the full ensemble of
structures. Other regions where anticorrelated motions differ are between helix 9 and helix 12.
Or the correlated motions between the beta sheets and the Q loop region including helix 2.

By averaging over the ensemble of structures, we get a more robust representation of
the correlated motions. In Fig. 22, we show the comparison of the correlated motions averaging

of 10, 50, 75 and 95 structures to the correlations from the full ensemble of 100 structures.
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Figure 22. Correlated motions calculated from the NMA. The top graphs represent 10 and 50 structures,
and bottom graphs 75 and 95 structures, from left to right. Upper left and bottom right triangles of a

given individual graph are identical.

Averaging over 50 structures seems sufficient for good convergence to the full ensemble result

based on a visual inspection.
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To demonstrate that the correlated motions are well reproduced by the low frequency
vibrational modes, we calculated the correlated motions maps for PPARYy for a single structure,
taking a progressively larger number of modes determined by normal mode analysis and Eq.
24. We compared the calculation of the correlated motions using the full set of normal modes
to the correlated motions calculated from the first 15 modes which range from 1.2 to 4.5 cm™!,
the first 150 modes ranging from 1.2 to 22.2 cm™ and the first 1500 mode range from 1.2 to
158.6 cm™! modes. The corelated motions maps are shown in Fig. 23, where in the lower
triangle, the correlated motions are calculated from the full set of normal modes and in the
upper triangle, for the first 15, 150 and 1500 modes, respectively. We see that, even just the
first few modes, up to 4.5 cm™! include enough information to characterize the topological
features of the secondary structural elements. The same conclusion is made when including
modes up to 22 cm’l. However, the dynamic properties are exaggerated in the correlated
motions calculated by just the lowest frequency modes. Higher frequencies are required to get
convergence with the correlated motions calculated from the full set of modes. While the lowest
frequency modes are crucial for the underlying dynamics of the protein, the higher frequency
modes in the far-IR region also contribute to the larger-scale collective motions, and by

extension, more accurate calculation of dynamical properties.
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Figure 23. Correlated motions calculated from normal modes comparing correlations calculated from
the full set of normal modes to correlations calculated from a subset of normal modes. A. modes up to
4.5cm™, B. modes up to 22.2cm™, C. modes up to 158.6cm™.
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3.2.3 Far-IR spectra

We calculated the far-infrared (far-IR) spectra from normal mode analysis. The normal mode
analysis was performed on each of the structures extracted from the lowest energy well. Each
structure was energy optimized. The NMA provided frequencies, corresponding to normal
modes that represent collective atomic displacements, and the change in the dipole moment
with respect to the atomic displacements. Far-IR spectra are derived from these low-frequency
vibrational modes, typically in the range of 10 to 400 cm™!. The intensity of each mode in the
far-IR region depends on the change in dipole moment with respect to atomic displacements.
The spectrum is then generated by summing up the contributions from all modes, with each
mode’s intensity and frequency contributing to a broadened peak. The result is a spectrum that
reflects the interactions and motions in the low-frequency region, often related to collective
motions such as vibrations or other large-scale rearrangements within the molecular structure.

As with the other properties calculated from the normal modes, we show that the
detailed results vary with the choice of specific structure. In Fig. 24, we see the far-IR spectra
from two sets of three structures taken from two different PPARy systems. We see that the
variation in maximum peak position and features of individual spectra vary significantly. As
with the other properties, this makes it difficult to decide if differences between two systems,
when interpreted at a detailed level, could change if another valid structure was used.

In our ensemble averaged approach, we average the results over the ensemble of
structures taken from the minimum of the free energy surface. In Fig. 25, we see the results

comparing two systems, after averaging structures represented in Fig. 24.
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Figure 24. Calculated Far-IR spectra. Upper panel: Far-IR spectrum obtained from NMA of individual
structures. Three structures were taken from each system. Systems are annotated '7wox' and 'apo2'.
Bottom panel: Average Far-IR spectrum obtained from averaging the results from NMA of the ensemble
of structures.
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Figure 25. Convergence of the spectrum as a function of the number of structures included in the

averaging.

Averaging results until convergence ensures robustness in the reported results. In Fig. 25, we
see that peak positions and curve features begin to converge after averaging over about 75
structures from the ensemble and with 95 structures there is little variation in the calculated

results. Throughout this work in this thesis, we therefore limit our ensembles to 100 structures.

4. Conclusions

Here we introduced a new approach for the calculation of properties from an ensemble of
conformations obtained from molecular dynamics simulations. In contrast to previous works,
the ensemble of structures was extracted from the deepest well on a pseudo free energy surface
constructed from RMSD and RGYR values of the structures sampling in the molecular

dynamics trajectory.
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In most normal-mode calculations, a single energy minimized structure is used. Here,
we averaged the results from 100 structures. We showed that for single structures and using all
the modes in the calculation of the properties, there was significant variation in structural
dynamic properties, such as the RMSF by residue. We also showed that, using single
structures, the calculation of the correlated motions and the far-IR spectrum displayed
significant variation.

Normal-mode calculations based on a single minimized structure can vary significantly
from one structure to another. The averaging of normal mode results over an ensemble of
subspace conformations leads to better converged results. Experimental observations reflect an
average over different native subspace conformations of the protein. However, from a
computational perspective, averaging seems to defy the purpose of normal-mode calculations,
which is in part to avoid the calculation of computationally expensive MD trajectories. To
average, one needs an ensemble of native subspace conformations. In conclusion, the utility of
normal-mode calculations for analysing structural dynamic properties of proteins is increased
by calculating them for several structures obtained from MD simulations and averaging the
results. This is expected to provide more meaningful values and makes it possible to determine

error bars.

83



Chapter IV - Application of
Ensemble-averaged Normal

modes to PPARYy - a combined
MD/Far-IR study
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1. Introduction

Nuclear receptor (NR) proteins form the largest family of transcription factors that regulate the
transcription of genes in metazoans. They are implicated in the transcriptional cascade
underlying many physiological phenomena related to cell cycle, differentiation, apoptosis,
development, reproduction and homeostasis (Laudet and Gronemeyer 2001). An important
feature of NRs is that their regulation of gene expression is dependent on the fixation of small
ligands, thus acting as a hub that translates a chemical signal into a biological response. The
transmission of this information implicates conformational changes in the protein. This ligand
dependent activity of NRs makes them central targets for drug development in many diseases
including diabetes, arteriosclerosis, inflammatory diseases and cancer (Xu 2015).

While much is known about the structure of nuclear receptor protein, in particular, the
ligand binding domain, increasing attention is being focused on the role of protein structural
dynamics in crucial cellular signaling pathways. Large scale structural dynamics play a critical
role in the ability of nuclear receptor proteins to function properly (J. P. Renaud and Moras
2000c). Structural dynamics without large-scale conformational changes likely allow nuclear
receptor proteins to bind to a variety of ligands, both natural and synthetic, with varying affinity
and specificity allowing nuclear receptors to respond to a wide range of signaling molecules
(Ekins et al. 2009; Kroker and Bruning 2015). Structural dynamics in nuclear receptor proteins
is necessary for dimerization either at the level of the ligand binding or the DNA binding
domains. In full length nuclear receptor proteins, flexibility of the linker region between the
DBD and the LBD is necessary for dimerization and accommodation of varying DNA
sequences allowed a more expansive range of DNA target sequences and subsequent gene
regulation (A. K. M. Patel et al. 2023). Large-scale structural dynamics are implicated in co-
regulator binding, in particular when agonist binding leads to the stabilization of H12 in a
conformation where the recruitment of coactivator proteins is promoted (J. P. Renaud and
Moras 2000c). The binding of antagonists prevents H12 from populating this transcriptionally
active conformation and the binding of an inverse agonist promotes the binding of corepressor

proteins. This strong dependence of function on conformation has led to the development of
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selective modulators for a variety of nuclear receptor proteins, which exploit this dependence
to modulate nuclear receptor activity, often in a tissue-selective context (Holzer, Markov, and
Laudet 2017). Several clinically approved modulators exist to treat a variety of conditions,
including cancers, metabolic disorders, osteoporosis, and hormone-related diseases.

Besides modulating conformations in nuclear receptor proteins, ligand binding is
believed to influence the underlying collective dynamics (Fidelak et al. 2010a). Collective
dynamics results from the concerted motions of a large number of atoms throughout the protein
and have been suggested to play a significant role in controlling functional dynamical
mechanisms, such as enzyme catalysis (Agarwal et al. 2002), ligand binding (Meireles et al.
2011) and allosteric signaling (Smith et al. 2016). Modulating these collective structural
dynamics is becoming an important avenue of exploitation for the discovery of new therapeutic
compounds, in particular allosteric drugs (Tee and Berezovsky 2024).

Collective motions occur in the low-frequency region of vibrational spectra and have
been measured by techniques such as neutron scattering (Hong et al. 2016), vibrational
spectroscopy (Rischel et al. 1998) and NMR spectroscopy (Lewandowski et al. 2011).
Previously, far-IR spectroscopy and molecular dynamics simulations were combined to study
the response of a PDZ domain to the binding of a small peptide ligand, elucidating the
mechanism of allostery in this protein domain (Cote et al. 2017a). This integrated approach
was used to quantify changes in low-frequency collective motions even for proteins without
substantial conformational change upon ligand binding. Infrared (IR) spectroscopy,
encompassing both mid-infrared (Mid-IR) and far-infrared (Far-IR) regions, is a powerful
analytical technique for studying protein structure and dynamics. Mid-IR spectroscopy is
particularly useful for examining protein secondary structures, as it probes vibrational modes
that are sensitive to the backbone conformation of proteins, such as the amide I and II bands.
The amide I band, arising mainly from the C=0 stretching vibration, is located in the spectral
range of 1700 to 1600 cm™! and provides detailed information about the secondary structure
elements like alpha-helices, beta-sheets, and random coils. Far-IR spectroscopy explores the
low-frequency vibrational modes below 400 cm-!, which are often associated with collective

motions and large-scale conformational changes within the protein. These motions are crucial
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for understanding dynamic allostery and the functional conformational changes that occur upon
ligand binding. Ligand binding can influence the underlying collective motions in this
frequency range. In the work presented here, we extend the development and application of an
integrated approach to characterize the structural dynamics of a nuclear receptor (NR) protein.
We apply our ensemble approach to normal mode analysis to all the systems studied. We focus
on Peroxisome Proliferator-Activated Receptor gamma (PPARY), a nuclear receptor that is a
particularly important target for the development of therapeutic compounds for diseases such
as diabetes and cancer. In collaboration with the team of Professor Petra Hellwig (UMR 7140,
University of Strasbourg), both mid-IR and far-IR spectroscopies were employed to analyze
the LBDs of PPARy in both wild-type (apo and holo) and two mutant forms, T475M and
F310S. The proteins were provided by Dr. Natacha Rochel and Dr. Judit Osz of our team at the
IGBMC. The work presented in this chapter are the molecular dynamics simulations and
associated developments that contributed to this collaborative study through integration with
the experimental data and the subsequent analysis done to extract information on the collective
motions of the protein. Studying the protein by this combined experimental/computational
approach in the presence and absence of ligands, as well as a function of mutation, we gained
insights into how ligand binding and mutations influence the structural dynamics of the protein
at the level of allosteric regulation. This dual approach allowed us to capture a comprehensive
picture of the conformational landscape and the underlying mechanisms of PPARY's functional
modulation. Such information can contribute to the development of new therapeutic strategies.

In this chapter, we present the molecular dynamics simulations of PPARy in WT apo
and holo forms, where PPARy was complexed to the ligand GW1929. GW1929 is a non-
thiazolidinedione selective PPARy agonist (Heppner et al. 2004) and its chemical structure is
shown in Fig. 26. In addition to the apo and holo WT forms, we also studied two mutant forms
- T475M, which is mutant form that is known to have increased transcriptional activity even in
apo form (Natacha Rochel et al. 2019) and F310S, which is known to be a loss-of-function
mutation (Coutos-Thévenot, Beji, Neyret-Kahn, Pippo, Fontugne, Osz, Krucker, Groeneveld,
et al. 2019). T475M and F310S mutations are implicated in luminal and basal bladder cancer,
respectively. The structures of the 4 PPARY systems are shown in Fig. 27 . Also shown for the
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mutant structures are the positions of the point mutations. The mutation T475M is located on
the helix called H10-11, while the F310S mutation is located on H3 (for the detailed numbering

of helices in PPARY, see Fig. 9 in the introduction).

Figure 26. The chemical structure of the PPARy agonist GW1929 used in this study.
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Figure 27. Structures used in the study. A) Apo WT (PDB ID: 7WOX, chain B). B) WT complexed to
GW1929 (PDB ID: 6D8X). C) Apo T575M mutant (6FYZ). D) Apo F310S mutant constructed on
7WOX template.
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2. Methods
2.1. Model preparation

Four different PPARy LBD (residues 230 - 505) models, including the WT apo structure, WT
holo with ligand GW1929, mutants T475M and F310S in their apo forms, were prepared for
numerical simulation based on crystallographic structures available in the Protein Data Bank
(PDB) (www.rcsb.org) (Berman et al. 2000; Burley et al. 2023). In this study, the numbering
of the LBD sequence corresponds to PPARY2 isoform (residues 230 - 505).

The WT apo model of 276 residues was based on the structure of chain B from PDBID
7WOX (Yoshizawa et al. 2022b), which has a 3.20 A resolution. Chain A in this PDB entry is
bound to the antagonist MMT-160, but chain B was considered to be in apo form because it
did not show any electron density representing a ligand in the binding pocket. The initial
coordinate and protein structure files (PSF) needed for simulations were prepared using the
PDB Reader & Manipulator option of the CHARMM-GUI web interface (Jo et al. 2008), using
default parameters. The interface was also used to build missing protein residues. The protein
chain was energy minimized using 700 steps of SD algorithm. The protein chain, along with
crystallographic waters and neutralizing ions (90 Na*ions, 87 Cl- ions, ~150mM concentration)
was placed into a 100A3 explicit TIP3P model water box.

The mutant F310S model is based on the crystal apo structure 7WOX. The protein chain
B was extracted from the PDB file and residue F310 was modified to a serine using the
CHARMM program (Bernard R. Brooks et al. 1983). The protein chain was energy minimized
using 700 steps of SD algorithm. The protein chain, along with crystallographic waters and
neutralizing ions (90 Na*ions, 87 CI" ions, ~150mM concentration) was placed into a 100A3
explicit TIP3P model water box.

The PPARY bound to the agonist GW 1929 (see Fig. 26) was modeled using the structure
from PDBID: 6D8X (PDB DOI: https://doi.org/10.2210/pdb6D8X/pdb, to be published), chain

A, which has a resolution of 1.90 A. The 276 residue LBD coordinate and protein structure file
were prepared using CHARMM-GUI interface and CHARMM program as described

previously. Based on our observation of a ‘water — network’ representing a hydrogen bond
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network bridging ligand and protein residues that seemingly contributes to stabilizing the
ligand binding pocket, the crystallographic water molecules were kept in the preparation. Initial
parameters for the ligand GW1929 were obtained from the ParamChem webserver
(Vanommeslaeghe and MacKerell 2012) and used without modification as no parameter
penalty exceeded the recommended limit. The protein chain was energy minimized using 700
steps of SD algorithm. The system was further neutralized with 90 ions of Na* and 85 ions of
Cl, in a 100 A3 water box.

The structure of mutant T475M used for the simulations was based on the structure of
chain A from, PDB ID: 6FZY, which has a resolution of 3.10 A (Natacha Rochel et al. 2019).
This structure has 279 residues (residues 227 — 505 of the LBD). Seven residues are missing
from the Q - loop region in the crystal structure, reflecting local flexibility. These missing
residues were built using the tools available in the CHARMM-GUI interface. The protein chain
was energy minimized using 700 steps of SD algorithm, then placed in the 100 A® water box,

along with 90 Na" and 87 CI" neutralizing ions.

2.2 Determination of histidine protonation states

Prior to setting up molecular dynamics simulations of a protein, it is necessary to determine the
protonation states of the titratable residues. While most residues are taken in their standard
protonation states because their pKa values are relatively far from physiological pH. Because
of its imidazole group side chain, histidine can readily exist in different protonation states
depending on the local environment. For the isolated His amino acid, the three protonation
states of His are shown in Fig 28. In an acidic environment (low pH), histidine can exist in a
fully protonated form where both N& and Ne are protonated giving the residue a +1 charge
(HSP). In an environment that is more pH neutral, histidine exists in a neutral (deprotonated
form) where it can be protonated on either NO or Ne atoms, depending on the local
environment. However, in a protein, depending on the local environment, the protonated HSP

form can often be stabilized at neutral pH.
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Figure 28. The three different protonation state of histidine. The names are those used in the CHARMM
force field.

How the protonation state is set in the simulation can have an important impact on the final
results. To determine the protonation states of the histidine residues of our systems, we used
the PROPKA program (Olsson et al. 2011; Sendergaard et al. 2011) via the webserver

https://server.poissonboltzmann.org/pdb2pqr. PROPKA takes an empirical approach to

estimate titration states using parameters derived from experimental data and pKa values.
Based on the local structural, it estimates pKa values for the titratable residues in the protein.
The results for PPARY are presented in Table 2. The protonation states given in Table 2 were
taken for all apo structures (WT and two mutants). For the holo-WT complex (PDBID 6D8X),
the protonation states were the same as in Table 2, except for His245, taken as HSD, His453,

taken as HSD and His477, taken as HSD.
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Table 2. The PROPKA suggestions for histidine protonation states of the apo protein. The HSD, HSE
and HSP annotations represent histidines carrying hydrogens on atoms No, Ne and on both nitrogen
atoms, respectively. The mutant T475M has one additional histidine on N-terminal end of the protein
(first row in the table).

histidine residue n° protonation state
(229) (HSD)
245 HSE
294 HSD
351 HSP
453 HSP
477 HSE
494 HSE

His351 is located on H4-H5 and extends into the ligand binding pocket. In the holo-WT
structure, PDBID 6D8X, the PROPKA server first suggested this His as being neutral and
protonated on the No of the imidazole ring (HSD). However, the PROPKA server does not
take into account the presence of ligands, and the structure PDBID 6D8X is of PPARy bound
to the ligand GW1929. Visual inspection of the binding pocket showed that, in the vicinity of
His351, there is a water molecule that can stabilize protonation on the N9, thus justifying the
assignment made by PROPKA, but in the presence of the ligand, protonation can also occur on
the Ne, which points towards the carboxyl group of the ligand, see Fig. 29. Given that there is
no crystallographic water molecule in the vicinity acting as H bond donor for the ligand and
that a unprotonated Ne— ligand interaction would be unfavorable, His351 was finally

reassigned as HSP, or doubly protonated for both apo and holo forms.
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Figure 29. Shown is the crystallographic structure of the holo WT PPARg bound to GW1929 (PDB
ID: 6D8X) Shown in stick representation are the ligand, GW 1929 and His351.

Even though the PROPKA is generally considered to be a validated approach for assigning
protonation states, visual inspection provides an additional degree of validation, as witnessed

by the case of His351 in the structure PDBID 6D8X.

2.3. Molecular dynamics simulation parameters

The CHARMM program (B. R. Brooks et al. 2009) was used to prepare the solvated proteins.
The protein chain was first energy minimized for 700 steps using the steepest descent algorithm
(SD). A simulated-annealing type protocol was carried out to prepare the system for molecular
dynamics simulation. In the first step, the protein and, if applicable, ligand, were fixed in their
position and 1000 steps of energy minimization was done to allow the water and ions to adjust
position in response to the presence of the protein. Next, the system was heated up to 600K,

during 23000 steps, again with the protein/ligand fixed. This was followed by another energy
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minimization for 1000 steps. This was followed by a heating to 296.5 K. The constraints on
the protein/ligand were removed and the entire system was energy minimized for of 2000 steps.
The entire system was then heated up to 296.5 K over 15000 steps, followed by an equilibration
run of 85 000 steps of dynamics that was followed by the production phase. A time step of 2 fs
was used. The duration of each simulation was 100 stages of 1 x 10° timesteps, which resulted
in 200 ns - long simulations. Structures were saved every 250 steps, resulting in 400000
structures per trajectory. Three simulation replicas were carried out for all four PPARy LBD

systems yielding a total of 2.4 us of simulation.

3. Results and discussion
3.1. RMSD and RMSF

The RMSD time series provides a measure of the change in conformation of the protein as a
function of time and is used to assess the stability of a molecular dynamics simulation. For
each of the three replicas of the four different PPARy systems being studied here, the RMSD
time series were calculated from the MD. The results from each replica of each system were
averaged and the average time series was plotted for the 200 ns of trajectory, along with the
variation (highest and lowest values) at each time point. Referring to Fig 30, all four systems
show relatively stable trajectories given that the RMSD time series reach plateau values. Upon
visual inspection of final structures, there is no significant loss of secondary structure integrity.
The RMSD mean value of PPARy apo WT system has the average RMSD of 2.7 A (st. dev.
0.21 A). After 150ns, a slight increase in RMSD value is observed and there is an increase of
variability between replicas (variation in pink of the highest and lowest values). That apo form
of the WT shows increased flexibility, especially in comparison to the holo form, is not
unexpected given that experimental measurements suggest this behaviour (B A Johnson et al.
2000; Chalmers et al. 2011). The WT — GW 1929 complex has an average RMSD of 3.0 A (st.
dev. 0.11 A) and, although this is a higher number compared to the WT RMSD, we see that the
trajectory is more stable and reaches a plateau after 60 ns of trajectory. We calculated the

RMSD of the agonist ligand separately (average value: 2.3 A, st. dev. 0.1 A). After some
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conformational adjustment in the first 100 ns of trajectory, it reaches a plateau and becomes
more stable at around an RMSD of 2.5 A. Both mutant structures present high RMSD values,
with the RMSD of 3.6 A (st. dev. 0.09 A) for the mutant T575M and 3.6 A (st. dev. 0.07 A)
for F310S. Both simulations are stable, with F310S displaying less variability between replicas.
The F310S model was based on the WT apo structure, but it presents a higher RMSD value

much sooner in the trajectory.

96



RMSD (A)

PPARgamma

4.5 T

RMSD (A)

1

mean value

15 L
0 50 100 150 200
PPARgamma GW1929 PPARgamma GW1929 ligand
B s . ; . C s . . :
mean value mean value
4t E 4r 7
35 B
35 n
< < 3t g
o 3L 1 o
7] %]
2 3z 25f
25 1
2 -
2r 1 15 1
15 . . L 1 L | L
0 50 100 150 200 0 50 100 150 200
time (ns) time (ns)
D PPARgamma T475M E PPARgamma F310S
4.5 T T T 4.5 T T T
mean value mean value
4 - -
35 b
3
3 3 :
=
o
25 B
2+ B 2+ B
1.5 1 1 1 1.5 1 1 1
0 50 100 150 200 0 50 100 150 200
time (ns) time (ns)

Figure 30. RMSD timeseries graphs of 200 ns simulations of PPARgamma [LBD, averaged over 3
replicas. Four different systems: A) WT apo, B) WT - GW1929, C) for the GW1292 ligand alone, and
mutants D) T475M and E. F310S. The mean value of 3 replicas is represented as a red line and the
variation at each time point by the shaded pink.
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The root mean square fluctuation (RMSF) values provide a quantification of the degree
of flexibility of the protein around an average structure. Here, the RMSF values averaged over
the three replicas are plotted by residue number, from residues 230 (226 for the mutant T475M)
to 505. To facilitate the understanding of these results, the secondary structure elements are
represented on a horizontal line, with alpha helices represented as green, and beta strands as
blue rectangles. The mean values are plotted in red and the highest/lowest values as pink area.
In general manner, all four systems present values that are characteristic for the PPARy LBD.
Lower flexibility is observed for residues of secondary structure elements and higher flexibility
for loops and terminal end regions. Still, differences between systems are noticeable. The
PPARYy apo WT form has stable regions, including helices H1, H3, H5, H8, H9, H10. The most
flexible regions are the loop H2 — S1, with RMSF values up to 4 A and the C — terminal residues
with RMSF values up to 4.5 A (Fig. 31A). As expected, all loops are more flexible than the
secondary structure regions. The highest variability between replicas is noticeable in the helix

H12 and the C — terminal region.
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Figure 31. RMS fluctuations of PPARgamma [LBD, for four biological systems. The mean value of

3 replicas is represented as a red line. Secondary structure elements are shown on the x axis: alpha
helices (h1 — h12) as green, and beta strands (s1 — s3) as blue rectangles. A)WT apo, B) WT with
GW1929, C) the T475M mutant and D) the F310S mutant.

The RMSF values for PPARy — GW1929 also follow the characteristic pattern (Fig.

31B). The N-terminal region is not of particular interest here since it is the continuation of the

hinge region connecting the DBD and LBD domains, and it is expected to be flexible. In the

PPARYy - GW1929 system, the RMSF values are slightly higher than those in the WT apo form,

this is particularly noticeable in the omega loop region. The RMSF increases for the loop

residues. Helices H1, H3, H6, H10 and HI12 appear more stable comparing to the WT apo

system. The C — terminal residues fluctuate up to 6 A, but the residues of the helix H12 exhibit
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low fluctuations of around 2 A. The two PPARy mutated system, T475M and F310S (Fig. 31C
and D, respectively), also follow the classical pattern of PPARy fluctuations. However, they
present higher variability of RMSF values among three replicas, represented by a larger pink
area.

The T475M system has the most significant fluctuation values of up to 3.5 A in the Q
- loop region. It is the only system where the Q - loop region presents higher values of RMSF
than the H2 — S1 loop. Another area of high fluctuation is helix H12 and, in particular, the very
C — terminal residues, which have RMSF values of around 3.7 A. The fluctuations of the H3 —
H4 loop have the mean values of 2.7 A, the highest of all four systems, which also displays the
highest variability among replicas. The same is observed for the H8 — H9 loop, which surpasses
other PPARY systems with the average value of about 1.8 A. The helix H6, loop H6 — H7 and
the helix H7 have somewhat uniform fluctuations that are slightly lower than the WT apo and
F310S systems, and similar to the PPARy — GW1929 system.

The F310S mutant system displays high variability of RMSF values when comparing
three replicas (Fig. 33D). The most variability is seen in the region around helices H1, H2, Q -
loop, H8 — H9 loop, H9 — H10 loops and helix H12. Recall that F310S is a loss-of-function

mutant, while T475M is a gain-of-function mutant (Natacha Rochel et al. 2019)

3.2. RMSD - Radius of gyration based free-energy landscapes

In the subsequent analysis of the simulations, we will follow the protocol outlined in the
previous chapter, where we developed our Ensemble normal mode approach for calculating
dynamical properties. In the first step of applying this approach here, we calculate the free
energy landscape from RMSD and radius of gyration (RGYR).

To assess the conformational landscape of PPARY in the different systems studied here,
an effective free energy landscape (FEL) was constructed from the molecular dynamics

simulations. Based on the vales of the backbone RMSD and the RGYR, the FEL was computed
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using Eq. 39, in chapter III. The FEL was calculated for each replica simulation; the results are
presented in Figs. 32 - 35.

For each system, we show three individual plots, one for each molecular dynamics
replica simulation. For each replica simulation, we calculated the backbone RMSD and RGYR
in order to construct the landscapes through binning of the discrete values. Each simulation
saved 400 thousand structures for analysis. The ‘pseudo’ potential energy surface maps
constructed from these trajectories are used to visually cluster the large number of structures
that we have for each simulation as they serve as an indicator of different clusters or ‘wells’
that are populated during the simulations. In Fig 32-35, the more red the area, the more
populated are those regions of conformational space, meaning that the majority of structures in
a given well have similar values of RMSD and RGYR. As per our ensemble approach,

structures were extracted from the most populated well for further analysis.
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Figure 32. RMSD — RGYR free energy landscapes for individual replicas for the WT APO system. A)
replica 1, B) replica 2, C) replica 3.

Referring to Fig. 32, the WT apo system has the scale of 19 — 20 A for the radius of
gyration, and 0.5 — 3.5 A scale for the RMSD values. The three FEL plots display different
aspects. For replica 1 (Fig. 32A) the FEL suggests that the trajectory is more restrained in
sampling than replicas 2 and 3 (Fig. 32B, C respectively) samples. Replica 3 shows structures
that are less compact and with values of RMSD up to 2.9 A, which are higher than for the

others. That the simulation of the apo WT structures show larger variability is not unexpected.
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The FELs for the PPARy — GW1929 system are shown in Fig. 34. The plots have scales
ranging from 19.2 —20.3 A for the radius of gyration and 1.2 — 4.2 A for the RMSD. The first
replica (Fig. 33A) displays a plot with two wells, one more populated than the other. Other two
replicas (replica2, Fig. 33B and replica3, Fig. 33C) sampled less conformational space. This is
probably due to the fact that, in this set of simulations, PPARY is complexed to the strong
agonist, GW1929, which stabilizes the LBD structure. Even though GW1929 is a strong
agonist and stabilizes the LBD, it can also stabilize the conformation in a well that can display
calculated results that differ more significantly from the other replicas. We note that one of the
replicas (33A) displays two minima, which highlights the importance of extensive

conformational sampling, a consideration that underpins our ensemble sampling approach.
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Figure 33. RMSD — RGYR plots free energy landscape for individual replicas for the WT with
GW1929 system. A) replica 1, B) replica 2, C) replica 3.
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Figure 34. RMSD — RGYR plots free energy landscape for individual replicas for the T475M system.
A) replica 1, B) replica 2, C) replica 3.

The mutant T475M (Fig. 34) is plotted on a scale of 19.2 — 21.0 A for the radius of
gyration and 1.0-4.5 A for the RMSD. All three replicas show larger conformational sampling
of trajectories with respect to the WT protein, with irregularly shaped plots.

The mutant F310S (Fig. 35) is plotted on scales 19.0 —20.4 A for the radius of gyration
and 1.5 — 4.0 A for the RMSD. All three plots suggest a more flexible LBD, with the highest
RMSD values going higher than 4 A.

104



A Contour Plot B Contour Plot

20.4 20.4
20.2 1 20.2 4
20.0 20.0
2 19.8 19.8
=
>
o
< 19.6 19.6
19.4 19.4
19.2 4 19.2
19-0 T T T T T T M T M 19.0 T T T T T T T T T
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
RMSD (A) RMSD (A)

Contour Plot

C 20.4

20.2 1

9.0 T : - - - - - : -
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
RMSD (A)

Figure 35. RMSD — RGYR plots free energy landscape for individual replicas for the F310S system.
A) replica 1, B) replica 2, C) replica 3.

The comparison of these different plots reveal that the mutant forms explore more
conformational space even though their most populated wells are relative constrained. The WT
apo shows more conformational exploration that the WT complexed to the agonist GW 1929,
which demonstrates the stabilizing effect of the ligand on the LBD.

As per our ensemble approach, for subsequent analysis, structures were extracted from
the most populated wells. The areas shaded in deep red/deep red correspond to those regions
of the FEL that were most populated. Defining limits in terms of both RMSD and RGYR, (not
shown on plots) a CHARMM script was used to extract structures from the most populated

wells. The values for extracting structures for individual replicas are summarized in Table 3.
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For example, for first replica of the WT apo system, we extracted structures that had RMSD
values between 1.6 and 1.75 A, and a RGYR between 19.8 and 19.9 A. For each replica, the
number of structures which satisfied these conditions is reported in the Table 3. From each
group of representative structures (n° of extracted structures, Table 3), one hundred structures
were extracted for further analysis. As explained earlier, a dynamics trajectory of all the
structures that satisfied the RMSD and RGYR criteria were selected. A dynamics trajectory

was constructed, and 100 structures were extracted from this trajectory.

Table 3. Values of RMSD and Radius of gyration used to define the most populated wells, and the total
number of structures extracted for each system.

replica 1 replica 2 replica 3
RMSD (A) 1.6-1.75 1.8-1.95 1.9-2.15
Rgyr (A) 19.8 -19.9 19.77 - 19.82 19.75-19.9
WT apo
n° of structures
48 897 14 888 78 811
extracted
RMSD (A) 2.67-3.0 2.12-23 2.22-247
Rgyr (A) 19.56 — 19.65 19.68 — 19.8 19.7-19.85
WT - GW1929
n° of structures
5100 84 714 90 671
extracted
RMSD (A) 2.97-3.0 2.81 -2.87 2.85-298
Rgyr (A) 19.7-19.76 19.4 -19.5 19.4 -19.5
F310S
n° of structures
11 970 23 611 30 885
extracted
RMSD (A) 2.7-2.84 25-2.8 2.69-2.97
Rgyr (A) 19.76 — 19.84 20.2 -20.34 19.7-19.88
T475M
n° of structures
14 972 77 056 123 965
extracted
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3.3. Normal Mode Analysis

Normal Mode Analysis (NMA) was done for each set of 100 structures extracted from the
individual replicas. Each replica is treated separately. The NMA calculation was carried out
using the Vibran module of the CHARMM program. Each structure was subjected to an energy
minimization using the adopted basis Newton Raphson (ABNR) minimizer in the CHARMM
program until the GRMS, a measure of the closeness to the local energy minimum, was less
than the tolerance of 1 x 10°kcal/(mol.A). The minimized structure was then used for the NMA
calculation. The output file of the vibran calculation contains 3N number of frequencies, where
N is the number of atoms, each associated to a normal mode (Table 4). To check if the
calculation was executed properly, we verified the values of first 6 modes, which, in the
CHARMM output, correspond to translational and rotational degrees of freedom. Their values
should be close to zero. If this condition was satisfied, the results from the normal mode
analysis frequencies associated with normal modes are used for further calculation of atomic

fluctuations, IR spectra, and correlation plots.

Table 4. Number of atoms and number of normal modes of each system.

n° of atoms 3N normal modes
WT apo 4 488 13 464
WT - GW1929 4559 13 677
F310S 4479 13 437
T475M 4 543 13 629

3.3.1. Computed fluctuations

From the normal modes calculated for each set of 100 structures from each replica of each
system under study, we calculate the RMS fluctuations using Eq.21 in Methods. The low
frequency normal modes capture the collective motions, which are often associated with

functionally important movement. Calculating the RMS fluctuations provides a verification of
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Figure 36. RMS fluctuations calculated from MD trajectories, NM calculations and crystallographic B
factors. A) WT apo; B) WT with GW1929; C) T475M; D) F310S.

To compare different results, three different calculations of RMS fluctuations are represented
on one plot: the RMSF calculated from MD simulations, from normal mode analysis and from
the crystallographic B- factors (Fig. 36). Crystallographic B-factors, also known as temperature
factors or Debye -Waller factors, represent atomic displacements from X- ray crystallography
data (C. L. Brooks, Karplus, and Montgomery Pettitt 1988). They provide information on

positional flexibility and dynamics of atoms in crystallographic structures of proteins. The

108



information they give should not be over-interpreted, since their accuracy is affected by various
factors, such as crystal defects, diffraction data quality or experimental conditions (Na, Hinsen,
and Song 2021; Mlynek, Djinovi¢-Carugo, and Carugo 2024). Nevertheless, they can still be
useful to assess the internal mobility or rigidity of proteins, which can help understand protein
function.

For each system, a plot of all three RMSF (A) calculations as a function of residue is
provided in Fig. 36. The fluctuations are calculated from different sources, from MD
simulations, from NMA and from crystallographic B-factors. Their comparison shows how
they can be similar - or different - for a particular protein system. Note that, in Fig. 36D for the
mutant F310S, there are no no fluctuations from experimental B — factors, as this mutant does
not have a corresponding crystallographic structure, rather it is a model constructed based on
the structure of the apo WT.

The MD and NMA fluctuation are represented as an average of 3 replicas, with the
shaded area of the same color around the curve being the standard deviation value. The first
thing we notice is the scale (A) at which these fluctuations take place. The highest values in
fluctuations are seen in MD simulations, going up to 6 A in the case of the N-terminal end of
PPARY in the cases of the mutant structures and the structure complexed with GW1929. Next,
the fluctuations from B factors ranging from 0.8 - 3 A, and finally the NMA fluctuations with
the smallest values, of around 0.5 A for the stable secondary structure elements. It comes as no
surprise that the values for these fluctuations fall in this order. The crystallographic physical
and chemical environment of individual proteins restricts their movement, accounting for the
smaller values of atomic displacements with respect to the simulation results. In the cases
where a protein region moves significantly, there will be no electron density, and consequently
no B- factors. This is depicted as a gap in the curve on the plot in the case of PPARy WT apo
and mutant T475M. Regarding the fluctuations calculated from normal modes, recall that these
motions are small harmonic displacements around an atomic equilibrium, so it is expected that
they will not have high values. But, from these figures we can see a consistency in the pattern
of motions. On each figure, we see that the three curves follow the same trends, with lower

fluctuation values for more stable regions of secondary structure elements, and higher values
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for more flexible protein sections. This provides confirmation of the correctness of our
simulations and suggests that the trajectories and structures extracted from them can be used

for further analysis.

3.3.2. Computed Infrared spectra

From the results of the normal mode calculations, we calculated the mid- and far-IR
spectra for each replica of each system under study using Eq. 25. This calculation used the
results from the normal mode calculation presented above. The full set of normal modes was
used. Following the protocol of ensemble normal modes presented in chapter III, one infra —
red spectrum was calculated for each structure extracted from the MD simulations of each
replica, meaning 100 spectra for each replica. From the output file, we extracted frequencies
and dipole derivatives associated to each vibrational normal mode. The frequencies and
intensities were then binned into 4000 bins which allowed us to merge the different spectra. In
order to simulate an experimental IR spectrum, we applied a convolution factor. A value of ten
for the smoothing factor was chosen since it gave the best qualitative result and corresponded
to the value used in the experiments.

The experimental results were generated by Professor Petra Hellwig and Dr. Filipa
Seica. With their permission, the data are reproduced here for comparison to the calculated
results. The experimental far-IR spectra of PPARYy in apo WT form, holo form bound to the
agonist GW1929, and two apo mutant forms, one with the activating mutant T475M and the
inactivating mutant F310S were recorded by following the protocol described in Annex section
at the end of this chapter IV. The results are shown in the Fig. 37, where one observes that the
measured far-IR spectra all have a similar shape. One also notices that the calculated peaks are
generally broader. There is one very intense and broad peak that appears in the frequency range
[100-250] cm! and a second peak that is present in the frequency range [500-600] cm™!. A
smaller peak appears in the frequency range [400-450] cm!. The signal at 140 cm™! observed
in the apo WT form shifts to higher frequencies [162 cm™] in the holo form spectrum. This
blue shift in the far-IR is likely to be a consequence of the interaction between the ligand and
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the protein. With respect to the apo WT protein, the first peak for both mutants also shows a
blue shift (the shift towards higher frequencies). The same trends are observed in the higher
frequency peaks in the ranges of range [500-600] cm! and [400—450] cm.

Mid-IR range from [1500-1800] cm! shows very little effect of changes due either to
ligand binding or point mutations. For the holo form in complex with GW1929, the region
[1100-1200] cm™ shows significant peak shifts, and the apo mutant forms show slightly less
shifts. But overall, ligand binding seems to affect the low-frequency region more than the mid-

and amide regions of the spectrum.
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Figure 37. Shown here are the experimental mid- and far- IR absorbance spectra (top) for WT APO
(black), WT+GW1929 (red), and two mutant forms T475M (blue) and F310S (cyan). The bottom figure
shows the absorbance spectra for the amide I and amide VI bands. Reproduced with the permission of

Professor Petra Hellwig and Dr. Filipa Seica.
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Figure 38. Computed IR spectra, from normal mode calculations, of four biological systems: WT apo
(black), WT — GW1929 (red), mutant T475M (blue) and mutant F310S (cyan).

Figure 38 shows the full IR spectra calculated for all four systems. Plotted are wave numbers
(cm™) ranging from 0 to 4000 cm! and spectral intensities (from right to left). We distinguish
three ranges of wave numbers, the far — IR, with ® < 700 ¢cm™!, the mid — IR (from 1200 to
1700 cm™) and near — infra red (from 3000 to ~ 3300 cm™). The 0 — 4000 cm™! range plots are
given as a qualitative assessment of the validity of the results, ensuring that the entire spectrum
is calculated. The different regions of the spectrum correspond to different molecular motions
corresponding to different vibrational frequencies ranging from entire collective protein
motions (low frequencies) to more localized bond vibrational motions (high frequencies). The

mid-IR reflects motions of secondary structural elements. We note that the high frequency
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intensity

vibrations (near IR range, high wavenumbers) are nearly identical across all proteins. Our focus

here is on the low - frequency motions that are unique for each system.

IR spectrum
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— T475M
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Figure 39. Computed IR spectra, ® < 600 cm™, from normal mode calculations, of four biological
systems.

As the primary interest in this work are the collective motions of the different protein
systems, the low frequency regions were plotted in one plot to facilitate comparison; the low-
frequency region lies between @ =0 - 600 cm ™! (Fig. 39). The intensity values are not indicated
as they are not of primary interest here, only peak positions, shifts and shapes. Averaging over
the replicas results in the mean values of different spectra being plotted as a solid line and the
standard deviations being represented as shaded areas around curves in the same color. The
relative position of curves is displayed with an increment along the y-axis to facilitate the visual
comparison. Focusing on the lowest frequency peak of the spectra, we find they are centered

around ® =47 cm ' (WT apo), ® =45 cm ' (WT - GW1929), ® = 45 cm™! (mutant T475M), ®
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= 48 cm! (mutant F310S). Small shifts in these lowest frequency peaks are also observed
experimentally. Moving to higher frequencies, we see similar trends between the experimental
and calculated spectra. We see that the descending slope after the first peak (after 100cm™)
shows more variation in the apo WT than in the holo WT with the ligand GW1929.
Experimentally, the descending slope of the apo WT has more features than the holo WT.
Similarly, the next set of peaks in the calculated spectra find correspondence in the

experimental peaks with similar shifts.

3.3.3. Secondary structure analysis

By analyzing the amide I and amide VI infra-red bands, which are sensitive to secondary
structure motifs, infrared (IR) spectroscopy provides a direct experimental measurement of
protein secondary structure content. Following the methodology described in the Annex of this
chapter, the secondary structure content of PPARY in the different forms studied here, that is
WT apo and holo forms, and two mutant structures, T475M and F310S, was determined by the

experimental team of Professor Petra Hellwig. The results are presented in Table 5.
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Table 5. Secondary structure content as determined by Mid-IR spectroscopy from analysis of the amide

I and amide VI bands. Shown are the percentages for each type of secondary structure and, in
parentheses, the wave numbers of the peaks analyzed.

Amide I

WT [cm]

WT_GW1929 [em™]

T475M [cm']

F310S [em™]

% o-helix

48 (1654)

57 (1652)

69 (1653)

66 (1652)

% antiparallel -

27 (1638, 1687)

24 (1634, 1686)

18 (1631, 1689)

21 (1631, 1689)

sheet
% PB-turns 22 (1671) 16 (1671) 11 (1677) 11 (1677)
% intermolecular
aggregate % [- 3 (1622) 3(1616) 2 (1615) 2 (1615)
sheet
Amide VI WT [em?]  |WT_GWI1929 [em™]| T475M [em™] | F310S [em™]
70 (502, 518
% o-helix 59 (518) 69 (502, 521) 54 (510, 525)
532)
% PB-sheet 10 (539) 22 (538) 17 (540) 18 (548)
% PB-turns 5(552) 4 (558, 567) 6 (555) 6 (564)
% other
26 (472,478, 493) 6 (481) 19 (477, 493) 6 (485)
contributions

Here we focus only on a-helical content, given that a-helices are the predominant structural

motif in the NR LBD. The analysis of the experimental data (Table 5) indicates first that the

analysis of the two bands, amide I and amide VI, yields different absolute values of percent

content. However, for the most part, the analysis of the two bands shows the same general trend

from one form to the other. Only T475M shows a deviation from the pattern. In the analysis of
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the amide I band, T475M shows a greater a-helical content with respect to apo and holo WT
forms, while in the analysis of the amide VI band, it shows lower a-helical content than apo
and holo WT forms. Comparing to the values calculated from the crystal structures used in this
study (Table 6), the percent of a-helical content determined from the IR experiments are
generally lower, while the percent B-sheet are considerably higher. The reasons for these

discrepancies are not clear.

Table 6. Percent of secondary structure calculated from the crystal structures used in this study. There
is no experimental structure for the F310S mutant.

Crystal Structure o helix (%) % P sheet (%)
Apo WT (TWOX) 69.5 4.7
WT_GW1929 (6D8X) 76.8 4.7
T475M (6FYZ) 74.5 4.7
F310S - -

The secondary structure content of PPARy was calculated from the molecular dynamics
simulations using the Stride program (Heinig and Frishman 2004b) piloted by MDAnalysis (R.
J. Gowers et al. 2016) and an in-house python script developed during the course of this thesis.
For each replica of each system, the percentages of a-helices and random coils, and -sheets
were calculated. For each system, the results were averaged over the three replicas (last

column). The results are shown in Table 7.
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Table 7. Secondary structure content calculated from the molecular dynamics simulations. The
background colors are associated to the colors of the far-IR spectra shown in Fig. 40.

repl rep2 rep3 mean value
o helix (%) 734 722 74.09 732 +1.0
WT apo
B sheet (%) = 4 4 4.0 0.0
o helix (%) 75.8 77 76 76.3 £0.6
GW1929
B sheet (%) 4.2 3.7 42 4.0£0.3
o helix (%) 77 78 77 77.3 0.6
T475M
B sheet (%) 4.6 4 4 4.0 +0.0
o helix (%) 72.7 72 71.7 71.9 £0.2
F3108
B sheet (%) 4.3 4.3 4.1 4.2+0.1

In general, we see that the percentages calculated from the simulations are more in line
with the values calculated from the experimental crystal structures than from the mid-IR
experiments. However, for the a helices, we see that, for the most part, the trends observed in
the IR results are followed by the simulation results. In particular, the percentage of o helix
increases when going from the wt-APO to the wt-HOLO, which could reflect stabilization of
H12, as well as other regions around the ligand binding pocket. A further increase in o-helical
content is observed in the T475M mutant. An increase is also observed in the results from the
mid-IR measurements but is not observed in the crystal structures. This increase in o-helical
content in the T475M mutant could reflect further stabilization of H12 due to interaction with
the methionine 475. As seen in the original simulations of T475M, and in the subsequent X-
ray crystal structure, the C-terminal tyrosine (Y505) interacts with the sidechain of 475M,
leading to stabilization of the H12 helix (Natacha Rochel et al. 2019). Concerning the F310S
mutant, the mid-IR results show that the a-helical content in this mutant is larger than in the

WT apo protein, but the simulations show that the content is essentially the same. This could
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reflect the fact that this mutant structure was constructed using the WT apo structure as a
template.

In Fig. 40, we show the percent secondary structure at three points throughout the
simulation- beginning, middle and end. This shows that over the course of the simulations, the
secondary structure content does not change significantly, although there is a slight increase in
a-helix content for the WT holo and the T475M proteins. The percent content of B-sheet
remains low, consistent with the values calculated from the crystal structures, but less than the

values determined by the mid-IR measurements.
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Figure 40. Secondary structure content as a function of time point (values between 70 - 80 % represent
a helix, and around 4% are B sheets). The results are averaged over the three replicas. Multiple
structures are taken from 3 time points: beginning, middle and at the end of each simulation.
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When compared to experimental IR spectroscopy data, these results further validate the
molecular dynamics simulations. The discrepancies between calculated and experimental data
can arise from factors such as differences in hydration and environmental conditions between

the experiments and the molecular dynamics simulations.

3.3.4. Correlated motions

Through the comparison of the measured mid- and far-IR spectra to those calculated from our
molecular dynamics simulations, we established that the atomic motions in our simulations
represent well the low-frequency dynamics of the different forms of PPARy studied here. This
then allows us to examine the collective motions and elucidate the effects ligand binding and
point mutations. Following our ensemble NMA approach (chapter III), we computed the
correlated motions of the Ca atoms for each of the 100 representative structures extracted for
each replica of each system. For these calculations, we included all 3N normal modes, but in
chapter III, we showed in Fig. 23 that the correlated motions themselves are well represent by
modes up to 200 cm!. The results are shown in Figs. 41 for the WT proteins and Fig. 42 for
the mutant proteins. The general aspect of the correlation maps for all four systems is quite
similar. We notice differences mostly in the intensities of the correlations. Along the diagonal,
we have completely correlated motions, and the rest of the plot represents correlated (red) or
anti-correlated motions (blue). On all four plots, extending perpendicularly from the diagonal,
are correlated regions representing 3 sheet, while a helices run along the diagonal.

In the correlated motions of the apo WT (Fig. 41 top) calculated and averaged from the
NMA, we see correlations between different secondary structure elements, in particular H12
and H3, as well as the o loop region following H2’. One also sees correlated motions between
H4-5 and H8-loop-H9. The strands of the B-sheets show significant correlation between them,
as well as with other regions of the protein. The PPARy WT presents other prominent islets of
red. These represent correlations of B1, B2, and B3 strands in the B - sheet, HI and the C-
terminal end of H3, H1 and H9, and between H5 and H10-11. These correlations can be

explained by the spatial proximity of these residues and their immediate interaction. Another
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correlated region is found between residues of H12 and the Q - loop. Highly anticorrelated
motions are seen less across the plot. Still, smaller anticorrelations are concentrated in the
regions of H1 and the region between H2 - H2', H1 and H4, H1 and the loop H8 - H9, the end
of H2 and the end of H9, Q - loop and H5, H4 and end of H9. The region between H11 and C
- terminal is anticorrelated with helix H4 and with the region of H8 - H9 loop and N - terminal
of HY.

The correlations of PPARy - GW1929 (Fig. 41 bottom), have a highly similar aspect,
but with significant fading of anticorrelations. For example, the anticorrelated motions depicted
in darker blue shade, between H1 and H8 - H9 loop, are completely softened. H12 shows
significant correlation with H3. Putting H12 in a different conformation in the holo-WT
simulation has a significant effect on the correlated motions of the ligand binding domain.

In a previous study (Natacha Rochel et al. 2019), it was shown that the T475M mutant,
even in apo form, could activate gene transcription to a degree similar to the WT holo form.
Concerning the correlated motions of the T475M mutant structures (Fig. 42 top), we see, in
fact, strong similarities to the holo WT structure, especially if we look at the anti-correlated
regions. For example, the mutant T475M displays anti-correlated patterns and intensities that
are similar to the WT - GW1929 system. The T475M mutant shows some additional correlated
motions not seen in the WT holo, for example, H4-5 and H12. The correlated motion of the
mutant F310S is similar to those of the WT apo form (Fig. 42 bottom).

While it was previously shown that ligand binding alone can affect the correlated
motions (Fidelak et al. 2010a), these molecular dynamics simulations have identified both
sequence- and structure-specific differences in correlated motions involving different
secondary structure elements. We see that differences in the local conformation and sequence
can have profound effects on the structural dynamics, interaction networks, and long-range

correlations in this protein domain.
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Figure 41. Correlated motions calculated from normal modes for the WT apo (top) and WT holo systems

(bottom).
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systems (bottom).
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3.3.5. H-bond analysis

Shifts in the mid- and far-IR spectra can be attributed, in part, to changes in hydrogen bonding.
In the mid-IR, these are changes to C=0 vibrations in secondary structure. Here we carried out
an analysis of the hydrogen bonds present in ensembles of structures used for the NMA. All
hydrogen bond pairs were chosen, including both backbone and sidechain hydrogen bonds.
Analysis of the hydrogen bonds can provide insight into protein stability and dynamics.

To identify the hydrogen bonds populated by the structures used for the normal mode
calculations, we took the 100 structures of each replica of each system and generated a
dynamics trajectory that was subsequently analyzed using the CHARMM coor hbond module.
The selection was made for the entire protein chain, which gave results for backbone-backbone
and hydrogen bonds involving sidechains. Backbone hydrogen bonds are essential for the
stability of secondary structure elements, such as o helices, B sheets and B turns. These
hydrogen bonds form between the carbonyl oxygen of one amino acid and the amide hydrogen
of another. The analysis also identified hydrogen bonds between side chains and between side
chains and backbone atoms. These later hydrogen bonds can contribute to the stabilization of
the overall 3D fold of the protein. Water molecules were not included in this analysis. The
hydrogen bonds were calculated for each replica using a distance cutoff of 2.4 A and no angle
limitation, as defined by the default parameters in the CHARMM program. Changes in the

hydrogen bonds of the protein could manifest itself in shifts of the low frequency IR peaks.

3.3.5.1. Backbone H-bond analysis

From the analysis of the 100 structures per replica per system used in the ensemble normal
mode analysis, we calculated the average number of backbone hydrogen bonds (Fig. 44). We
see that the WT apo system has the fewest number of backbone H-bonds, while the other

systems have larger numbers. The WT holo system has, on average, the highest number of
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hydrogen bonds in the ensemble of structures extracted from the molecular dynamics

simulations.

Number of H-Bonds that exist in at least 30% of the structures
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Figure 43. Average number of backbone hydrogen bonds found in at least 30% of the structures of each
ensemble of structures extracted from the molecular dynamics simulation. Averaged over 3 replicas.

3.3.5.2. Sidechain H-bond analysis

Through a combination of perl and python scripts, we extracted the hydrogen bonds formed
outside of secondary structure elements and displayed them on the average structure of the
protein calculated over the 100 structures. H-bonds for each replica are displayed on the same
structure.

In Fig. 44 top, we show the hydrogen bonds calculated from the structure ensembles used for

the normal mode calculations of the WT apo system. Only the backbone structure is shown,
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and the hydrogen bonds are shown as thin lines. Some of the lines appear to be very long for
hydrogen bonds, which is a consequence of putting the bonds on the average structure as
opposed to individual structures. Indeed, the long lines represent regions of high
conformational flexibility. In this present case of the WT apo structure, this suggests that the
C-terminal helix is somewhat flexible. One does not see any coupling by H-bonds between H3
and the Q loop region.

In Fig. 45 bottom, we see the results of the H-bond analysis for the WT complexed to
the agonist GW1929. The H-bonds clustered around the C-terminal end are relatively short,
which suggests a less flexible C-terminal H12 helix. We see, in addition, H-bonds that couple
the H11-H12 loop to H3 and to the Q loop region. So, there is more significant coupling than
what is observed the apo form. In addition, we see that His494 at the N-terminal end of H12 is
involved in H-bond formation with GIn314, Lys293, His294 and Ser 492. His 494 is a residue
of therapeutic interest since its mutation to Tyr has been associated to inactivation of PPARy
in baldder cancer (Coutos-Thévenot, Beji, Neyret-Kahn, Pippo, Fontugne, Osz, Krucker, Dos,
et al. 2019).
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Figure 44. H-bonds mapped onto the average structure over the 100 extracted for normal mode analysis.
Systems: WT apo (top), and WT structure complexed to GW1929 (bottom). In the ligand bound system,
the arrow highlights a wider range coupling of the omega loop region to H12.
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The T475M mutation has been identified as an activating point mutation in luminal bladder
cancer (Natacha Rochel et al. 2019). From the analysis of the H-bonds in this structure, we see
there is significant coupling between the H11-H12 loop and the N-terminal end of H3 (Fig.45
top). There is also some coupling with the 2 loop, as seen in the WT protein complexed with
the agonist GW1929, but we see that, given the length of the hydrogen bonds, the region
remains quite flexible. While there are various couplings via H-bonds of the C-terminal end of
H12, the cluster is less populated than that observed in the WT complexed to the agonist
GW1929 (see Fig. 44). His494 is involved in hydrogen bonds with GIn311, Leu496, and
GIn498. Even in its apo form, the mutant T475M has shown some transcriptional activity
(Natacha Rochel et al. 2019).

The F310S has been identified as an inactivating point mutation in basal bladder cancer.
In Fig. 45 (bottom), we see the H-bonds calculated from these structures. The F310S mutation
show a significant amount of hydrogen bonding around H12, but interestingly, there is almost
no H-bond coupling to the Q loop region. Given the length of the illustrated H-bonds, the
region remains quite flexible. Compared to the WT apo form, F310S shows a much more local
H-bonding between H12 and the N-terminal end of H3, which suggest that the mutation leads
to a stabilization of this region in its inactive conformation. This H-bonding could impede the
conformational changes necessary to populate the active form. This could contribute to the
inactivating effect of the mutation.
These results suggest that the shift in the IR spectra might be partially due to changes in

hydrogen bond numbers.
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Figure 45. H-bonds mapped onto the average structure over the 100 extracted for normal mode analysis.
Systems: apo T475M structure (top), and the apo F310S structure (bottom).
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3.3.6. Community network analysis (CNA)

Community network analysis was performed using the Bio3D software (Grant,
Skjerven, and Yao 2021). Contact maps were produced using an atom-atom distance (cut-off
of <10 A) and the correlated motions obtained from the MD trajectories. The CNA uses graph-
based network approach that is based on the edge-betweenness centrality measure, where the
edge-betweenness centrality of an individual residue is defined as the number of the shortest
paths connecting other residue pairs that pass through it, thus providing an estimate of the
influence of this residue on communication, or modularity. Communities of residues are
characterized by high modularity values, that is, residues in the same community share dense
connections, whereas residues of different communities have sparse or no connections at all.
The size of the nodes is related to the size of a community and larger spheres depict higher
number of residues. The edges connect coupled communities, where thicker edges correspond
to higher degree of correlation. The correlation threshold for edge detection (c;; cutoff) was 0.5.
The community map analysis results are depicted using coloured spheres mapped on the
average 3D structure in tube representation.

The Community Network Analysis (CAN) of the PPARYy systems was done using the
correlated motions calculated and averaged from the 3 replicas simulations for each
PPARYy variant. The results (Figs. 49 to 52) show community nodes placed on the average
backbone structure for each system. Two orientations are shown, one rotated about 180° with
respect to the other (A and B). Also shown are the detailed compositions of each node (C), as
well as the network 2D map (D). Many nodes correspond to entire secondary structure
elements, such as helices, however, some nodes encompass spatially adjacent residues
belonging to different structural elements. Coupling between nodes is indicated by an edge,
drawn as a rod connecting two nodes. The thickness of the rod indicates the degree of coupling.

For the WT apo protein, the results of the CNA are shown in Fig. 46. 13 nodes were
detected by the analysis. Interestingly, we see nodes formed on H3 (node 6), H12 (node 7),
the Q loop region (node 5). The B sheet region forms a single node in the WT apo protein

(node 4). The loop between H8 and H9 forms a sizable node (node 8) that is highly connected
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to the rest of the LBD (Fig. 46A). H3 shows connections to H12 and the o loop region. H10-
H11 (Fig. 46B) forms a single node (node 13) that is connected to H9 and the N-terminus (node

1), as well as to loop H8-H9 (node 8).
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N-ter

WT APO

id size members
29 c(1:4,202:226)
21 5:25
19 26:44
11 c(45:47,139:146)
20 48:67

29 ¢(68:69, 76:102)
25 ¢(70:75, 258:276)
29 ¢(103:119, 190:201)

oo NOODULLD WN P
0O NO UL B WN B

9 16 120:135
10 10 16 c(136:138, 147:159)
1111 19 160:178
1212 11 179:189
1313 31 227:257

Figure 46. CNA of the apo WT system. A) LBD, B) LBD rotated by 180°, C) detailed list of node
members (add 229 for isoform 2 numbering), D) network graph.
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) o loop

GW1929

id size members
11 25 1:25

2 2 20 26:45

3 3 16 46:61

4 4 16 62:77
55 25 78:102

6 6 27c(103:120, 196:203, 205)
7 7 16 121:136

8 8 19 137:155

9 9 23 156:178
1010 17 179:195
1111 22 c(204, 206:226)
1212 13 227:239
1313 24 240:263
1414 13 264:276

Figure 47. CNA of the holo-WT with GW1929 system. A) LBD, B) LBD rotated by 180°, C) detailed

list of node members (add 229 for isoform 2 numbering), D) network image.
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Adding the agonist GW1929 to the WT system results in a radical modification of the
node organization (Fig. 47). The first community node regroups the N-terminal residues of
HI, but unlike the apo protein, the first node does not include any amino acids of H9. The effect
of this is a decoupling of H1 (node 1) and the residues of loop 8-9 (node 6). As in the apo
system, the node encompassing loop 8-9 (node 6) is the most connected node in the LDB. In
the presence of the ligand, we see that the 3 sheet (node 8) no longer contains all three strands,
but just the two closest to the ligand binding pocket. We also see that H3 (node 5) decouples
from H12 (node 14). While in the WT-apo protein, HI0-H11 composes an entire node, in WT-
holo, this long helix is broken into 2 nodes. This illustrates that ligand binding affects the
motions of H10-H11, which is the principal helix found at the dimer interface.

The apo mutant protein, T475M, has features that resemble both the WT-apo and the
WT-holo protein. Recall that the mutation T475M is an activating mutation, in that, even in
apo form, it displays transcriptional activity (N Rochel et al. 2019). In the T475M mutant, the
[ sheet region contains all three strands (node 3), but H3 (node 5) is decoupled from H12 (node
15). As in both the WT- apo and holo proteins, loop 8-9 (node 7) is the best-connected node.
And as in the WT-holo, H10-H11 is represented as 2 nodes with the transition from one node
(node 13) to the other (node 14) occurs just before the point mutation (Fig. 48). T475M
mutation affects the size of the nodes attributed to H10-11. In the holo form (Fig. 47), a large
node encompassing much of H10 and H1 was determined. Introduction of the point mutation
T475M, located in H10-H11 leads to a decrease in the size of this major node.

Interestingly, the WT-apo system has a strong edge between H3 (node 6) and H12 (node
7) (Fig. 46), but introduction of the ligand or the T475M mutation leads to a loss of this edge
and an increased coupling of H12 with H10-H11 (nodes 12 and 13), which is the helix found
at the dimer interface. This could reflect a mechanism to transfer information to the dimer
partner, receptor RXR.

The apo mutant F310S, which is an inactivating mutation, displays effects from the
point mutation (Fig. 49). Modelled on the structure of the apo chain from the PDB structure
7WOX, which was also used for the wild-type apo simulations, the point mutation is located

in helix H3 and breaks the coupling between H3 (node 4) and H12 (node 13), shifting the
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couplings towards the B sheet region of the protein. As in the other protein systems, the loop
between H8 and H9 (node 5) is well connected to the rest of the protein.

Loop 8-9 of the LBD is known to interact with cyclin H in the nuclear receptor RAR«a
(Samarut et al. 2011b). The PPARy LBD is known to interact with cyclin D in the context of
regulating adipogenesis (Sarruf et al. 2005). We saw that in all cases, the node encompassing
loop 8-9 is the most connected in the networks, which underscores its importance in LBD
physiology. Besides the loop between H8-H9, the loop between H9-H10 is also well connected
to the rest of the protein. This loop is known to be important in the allostery related to

phosphorylation in other receptors (Chebaro et al. 2017; 2013; Samarut et al. 2011b).
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T475M

id size members
11 29 1:29

2 2 18 30:47

3 3 11 ¢(48:50,142:149)
4 4 23 51:73

55 20 74:93

6 6 17 94:110

7 7 21¢(111:123,196:203)
8 8 16 124:139

9 9 11¢(140:141, 150:158)
1010 20 159:178
1111 17 179:195
1212 27 204:230
1313 16 231:246
1414 19 247:265
1515 14 266:279

Figure 48. CNA of the T475M system. A) LBD, B) LBD rotated by 180°, C) detailed list of node

members (add 226 for isoform 2 numbering), D) network image.
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C D
F310S
id size members
11 25 1:25
2 2 20 26:45
3 3 30 46:75
4 4 27 76:102
5 5 29¢(103:119, 193:203, 205)
6 6 17 120:136 e
7 7 19 137:155 )
8 8 15 156:170 “
9 9 22 171:192
1010 21 c(204, 206:225)
1111 10 226:235
1212 24 236:259
1313 17 260:276

Figure 49. CNA of the F310S system. A. LBD, B. LBD rotated by 180°, C. detailed list of node
members (add 229 for isoform 2 numbering), D. network image.
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4. Conclusions

In this chapter, we presented a combined MD/Far-IR approach to the study of the PPARy ligand
binding domain. The protein in apo-, holo- form complexed to the agonist GW1929, as well as
two mutant proteins in apo form, T475M and F310S, were studied.

Through our collaboration with the team of Prof. Petra Hellwig of the Laboratory of
Bioelectrochemistry and Spectroscopy, University of Strasbourg, we demonstrated for the first
time the feasibility of using a far-IR/MD approach to measure the effect of ligand binding by
a nuclear receptor protein, in this case, the ligand binding domain of PPARYy. The study showed
that upon ligand binding, the lowest frequency peaks undergo a shift toward higher frequencies
(blue shift) suggesting a strengthening of the vibrational mode.

We carried out extensive molecular dynamics simulations of all the forms studied, from
which we generated free energy surfaces based on the distribution of RMSD and radius of
gyration. From these surfaces, we identified a number of populated potential wells. From the
primary free energy wells on these surfaces, representative structures were extracted and used
for the Normal Mode Analysis, followed by calculations of the IR spectra and analysis of the
collective motions through correlated motions and community network analysis.

The computational results demonstrated that in the far-IR domain, the calculated IR
spectra displayed very similar feature patterns to those observed experimentally, in particular
shifts of the low frequency spectral peaks. We confirmed through hydrogen bonding analysis
of the simulations that the changes in the experimental spectra coincide with changes in
hydrogen bonding. Effects of point mutations on the low frequency spectra were also observed
and correlated with changes in hydrogen bonding.

Using the structures extracted from the most populated well for an Ensemble averaged
Normal Mode Analysis, we calculated maps of correlated motions of the LBD, which showed
regions of coupling within the single domain. We noted that even small perturbations due to
ligand binding or point mutations can have an effect on the collective dynamics of the protein,

which modulated couplings between physiologically distinctive regions of the LBD.
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To further exploit the calculated collective motions, we carried out a community
network analysis (CNA) to identify highly correlated regions that are coupled to other highly
correlated regions of the LBD. Couplings between highly correlated nodes suggest a means by
which information might pass within the protein domain due to changes in the structural
dynamics. We identified regions of the LBD that are strongly coupled to the rest of the domain,
in particular, the loop between H8 and H9, which is known to be physiologically important as
a site that binds cyclin during a phosphorylation cascade identified on some nuclear receptors
(Samarut et al. 2011a). We also showed how ligand binding shifts the correlated dynamics
toward the region of the LBD that takes part in dimerization with RXR. We showed that small
changes related to single point mutations are measurable experimentally, which allowed us to
validate our simulations.

We showed that the computational and experimental far-IR approaches are
complementary since both approaches displayed similar trends in the measured and calculated
spectra. Once the simulations were validated through comparison to this experimental data, we
were able to further exploit the correlated motions obtained from our Ensemble-averaged
normal mode analysis to get insight into the effects of these perturbations on the intra-domain
dynamics. The sensitivity to binding of different ligands, agonists versus antagonists remains
to be explored. In the future, we expect to study the effects of point mutations to better

understand their effects on the structural dynamics arising from the collective modes.
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5. Annex: Experimental methodology
(with permission from Professor Petra Hellwig)

5.1. Mid-Infrared (Mid-IR) Measurements

Five samples were measured immediately after being removed from storage at -70°C. In the
mid-IR domain, a mercury cadmium telluride (MCT) detector was used with a scan velocity of
40 kHz. For each sample, five spectra were recorded with a resolution of 4 cm-1 (256 scans)
and averaged. The measurements were performed using a Vertex 70 instrument (Bruker).

The infrared transmission spectra were obtained using a transmission cell consisting of two
calcium fluoride (CaF2) windows. A volume of 0.5 puL of the protein solution, along with the
buffer, was deposited on one window, which was then covered with the other window, forming
a defined path length of 17 um as described by Barth et al. The assembled transmission cell
was placed in the optical path of the IR beam. For FTIR-ATR spectra of the peptide, 3 pL of
the protein solution was deposited on a diamond crystal (Harrick) and the spectra were recorded
until a dry film was obtained.

The transmission spectra were subjected to specific data treatment to isolate the amide I band
using OPUS software. This involved baseline correction of the protein and buffer spectra,
normalization of both spectra in the amide I band region, and subtraction of the buffer spectrum

from the protein spectrum to obtain the difference spectra.

5.2. Far-Infrared (Far-IR) Measurements

Five samples were measured after being removed from -70°C and measured using diamond
ATR. For each measurement, 3 uL of the sample was deposited on the crystal and spectra were
recorded until dry. In the far-IR domain, a deuterated triglycine sulfate (dTGS) detector was
used with a scan velocity of 2.5 kHz. For each sample, five spectra with a resolution of 4 cm-
1 (128 scans) were recorded and averaged. These measurements were also conducted using a

Vertex 70 instrument (Bruker).
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5.3. Determination of Protein Secondary Structure

The amide I and VI bands, which appear in the spectral ranges of 1700 to 1600 cm™ and 590
to 490 cm! respectively, were analyzed. Key positions of structural elements were identified
using second derivative spectra. A straight baseline was subtracted from the spectra in the
ranges of 1700 to 1600 cm-1 and 590 to 490 cm-1. Least-squares iterative curve fitting with
Gaussian bands was performed using the Peak Fit Analysis Program (Sea-Solve, MA, USA).
Each band obtained from the fitting procedure was assigned to a specific secondary structure
element. The areas of all bands assigned to a given secondary structure element were summed,
and the total area was used to determine the contribution of each structural element to the

overall protein structure.
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Chapter V - Impact of force
field polarization on the

collective motions of PPARYy
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1. Introduction

While experimental structure determination has shed light on the many conformations a
particular protein can exist in, there remains little in the way of experimental exploration of the
detailed motions of particular conformations. Of these, long-range correlated motions are
considered fundamentally important for key functional properties of proteins such as substrate
binding, allostery and catalysis (Kurkcuoglu et al. 2012). Changes in single domain collective
motions have been associated to the sensing of ligand binding resulting in the propagation of a
signal through the protein to transmit information and alter activity. Studies have suggested
that correlated motions of secondary structure elements, such as [-sheets, contribute
importantly to protein function (Fenwick et al. 2014). For example, PDZ domains are protein
interaction modules that recognize short amino acid motifs at the C-termini of target
proteins. Ligand binding affects the transfer of binding information to other domains in the
context of PDZ-containing multidomain scaffold proteins. In the PDZ domain, the global
network of correlated motions, can lead to the coupling of the N- and C-terminal ends by
pathways involving the B-sheets. These motions arise from the low-frequency collective
movements of residues and it has been suggested that these protein motions are selected by
evolution (Glembo et al. 2012; Orellana 2023).

While the importance of correlated motions has become more apparent and appreciated,
they remain difficult to measure experimentally, so one of the principal methods for studying
correlated motions is by molecular dynamics simulations. Molecular dynamics simulations of
proteins rely on the use of empirical force fields, which are parameterized using, for the most
part, experimental data and quantum mechanical calculations. And while this approach has
been used with great success over the past decades to study a wide range of topics, there is a
constant effort to introduce improvements. One such effort has been to improve the treatment
of electrostatic interactions, which in the standard classical force fields, are treated by fixed
point charges. Efforts by numerous teams have focused on introducing aspects of electronic
polarization. One approach characterizes the charge redistribution within each atom, by either

induced dipoles (Shi et al. 2013) or by a Drude oscillator model (Lopes, Huang, Shim, Luo, Li,
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Roux, and Mackerell 2013) , and the other approach is based on charge flow between atoms,
as implemented in the fluctuating charge (FQ) model (S. Patel, Mackerell Jr., and Brooks III
2004).

Developed largely in the framework of the CHARMM all-atom force field, the Drude
oscillator model for protein force fields (Anisimov et al. 2005) is a theoretical framework that
introduces an auxiliary particle called the "Drude particle" for each atom representing a loosely
bound electron that contributes to the atomic polarizability. A harmonic oscillator function is
used to connect the Drude particle to the atom, simulating the restoring force on the electrons.
The model introduces a term that represents the polarizability of the atom, allowing for the
simulation of electronic response to an external electric field. The development of the Drude
model in the context of polarizable force fields in molecular dynamics simulations aims to
capture electronic polarization effects that are not explicitly represented in the classical models.
This type of model is intended for studying systems where electronic polarization plays a
significant role.

The Drude model has been used and benchmarked for a variety of systems (Lopes,
Roux, and MacKerell 2009), and several reviews are available (Lemkul, Huang, Roux, and
MacKerell 2016; Lemkul 2020). Though the Drude model for polarization has undergone
extensive development and application, the analysis associated with the applications has
largely focused on aspects of structure, energetics and local dynamics. None of these studies
have utilized the Drude model to address questions concerning collective behaviour.

Collective motions occur across the three-dimensional structure of the protein and the
principal tool for studying such motions in proteins is molecular dynamics simulations. The
question naturally arises, then, to what degree does the inclusion of polarization affect the
collective motions of single protein domains. In this work, we address this question through
the study of the ligand binding domain of the nuclear receptor PPARy. We assess the impact
of the polarization on various dynamical properties, including their collective motions.

Peroxisome proliferator-activated receptor gamma (PPARY) is a ligand-dependent
transcription factor belonging to the nuclear receptors superfamily (Lazar 2005). PPARY was
presented in the introduction, chapter I, section 5.1. Structures of PPARy LBD in its apo and
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corepressor-bound form, in complex with a peptide from the NCorl corepressor protein are

shown in Fig. 50.

Nter Nter

Figure 50. PPARy ligand binding domain (residues 230 — 505) from the 3.2A crystal structure PDBID
7WOX chain B. A) Apo form (green) and B) the same LBD (blue) modeled with the corepressor-peptide

(gray).

The physiological function of NRs is highly dependent on conformation and structural
dynamics modulated by ligand binding. The ligand binding domain acts as a dynamic hub,
transmitting binding events to other protein interfaces and domains. The PPARY activation
involves a conformational change of the H12 helix at the C-terminal part of the LBD induced
by ligand binding (Weikum, Liu, and Ortlund 2018a). Helix H12 undergoes a transition from

a flexible ensemble of conformations to a folded conformation localized on the core of the
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LBD. Characterized by numerous crystallographic structures of agonist-bound LBDs, this
position of the H12 helix is often referred to as the transcriptionally active conformation (J. P.
Renaud and Moras 2000c; Wurtz et al. 1996). In this active conformation, H12, along with
helices H3 and H4, constitute a hydrophobic interface called an activation function 2 (AF2).
This interface serves as a platform for coactivator protein binding and the recruitment of
chromatin modulator complexes as well as other components of basal transcriptional
machinery (Raj Kumar, Johnson, and Thompson 2004b). In contrast to the active conformation
of the LBD and H12, the inactive conformation of the receptor is not structurally well
described. The crystallographic and computational data suggest an ensemble of conformations
for H12, meaning that this region, in the absence of an agonist ligand is flexible (Frkic et al.
2023).

The first study of the functional dynamics of the PPARY ligand binding domain (LBD)
was done by Fidelak et al (Fidelak et al. 2010b). This study explored the role of allostery in the
functioning of the receptor by comparing LBDs in apo and in agonist-bound form. A dynamical
pathway linking amino acids which are in topological proximity or at distance was established,
explaining correlated motions primarily arising from low-frequency collective motions. The
analysis of correlated motions shows coupling between distant regions of the LBD, such as
different helices, the N- and C-terminals and the coactivator peptide. In the apo form of PPARYy,
the dynamical network plays a role in maintaining the structural integrity and flexibility of the
protein. It is also involved in mediating interactions with co-regulator proteins and with PPARy
heterodimeric partner RXRa.. The addition of the agonist rosiglitazone contributed to changes
in the dynamical network of PPARYy. As a consequence, the changes in this network could
impact the ability of LBD to bind ligands and coregulators, and by extension the overall
function of PPARY. Correlated motion calculations and network analysis were later done for
the full PPARy/RXRa heterodimer structure in complex with DNA (Ricci et al. 2016). The
results showed the existence of longer range interdomain correlations which were used toward
the understanding of allostery in nuclear receptor complexes. Here, we explore the intrinsic
dynamics of PPARy LBD in its apo- and corepressor peptide bound forms using both the

classical all-atom additive empirical energy functions and the Drude force field. We provide
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quantitative insights into the effects of polarization on the modelling of correlated motions of

PPARy.

2. Methods and Analysis

We study the ligand binding domain (LBD) of human PPARYy because of the importance of
collective motions in its function. The system was prepared using the PDB Reader and
Manipulator option of the CHARMM-GUI web interface (Jo et al. 2008) to prepare the
simulations using the CHARMM all-atom additive force field (AA using the CHARMM?36 all-
atom parameter set (A. D. MacKerell, Bashford, et al. 1998). The CHARMM-GUI Drude
Prepper interface (Kognole et al. 2022) was subsequently used to prepare the systems for
simulations using the Drude polarizable force field.

For the PPARy ligand-binding domain (residues 230 - 505), we used the 3.2 A
resolution crystal structure of chain B from the PDB file 7TWOX (Yoshizawa et al. 2022b).
Although one chain in this PDB entry is bound to the antagonist MMT-160, the second chain
(chain B) did not show any electron density representing a ligand in the binding pocket, so it
was taken to be a structure of the apo protein. The protonation states of the histidine residues
of this chain were determined using PROPKA method (Olsson et al. 2011; Sendergaard et al.

2011) via the webserver https://server.poissonboltzmann.org/pdb2pgr, followed by manual

verification and the structure was further prepared using the CHARMM GUI interface (Jo et
al. 2008).

The molecular dynamics simulations were done using the NAMD program under NPT
conditions (Phillips et al. 2020c). The protocol consists of four steps, first, the protein was fixed
but the water and ions were without constraints. The system was subjected to 1000 steps of
energy minimization to allow the water and ions to adjust position in response to the presence
of the protein. Next, the system was heated up to 600K, during 23000 steps, again with the
protein. This was followed by another energy minimization for 1000 steps. This was followed
by a heating to 296.5 K. The constraints on the protein/ligand were removed and the entire

system was energy minimized for 2000 steps. The entire system was then heated up to 296.5
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K over 15000 steps, followed by an equilibration run of 85 000 steps of dynamics followed by
the production phase. A time step of 1 fs was used. The duration of each simulation was 100
stages of 1x10° timesteps, which resulted in 100 ns - long simulations. The last trajectory frame
was taken as a starting structure for building the structures for the Drude and AA simulations
used in this study.

The two systems we compared were the apo form of PPARy LBD and the PPARy LBD
complexed to the corepressor peptide NCoR ID1 (12 amino acid sequence GLEDIIRKALMG),
identified here as the corepressor-bound form. The coordinates for the corepressor peptide were
taken from the crystallographic structure of a PPARy mutant complexed to the NCoR peptide
resolved by our team (unpublished data). The 12 amino acid peptide was added by superposing
the apo PPARy LBD structure on the in-house structure.

For the simulations with the Drude force field, the apo- and corepressor-bound
structures were solvated in 100 x 100 x 100 A* water box using the SWM4-NDP water model.
A minimization for 2000 steps was done followed by an equilibration for 200000 steps using
the NAMD program with the time step of 0.5 fs. During the production phase, we used a time
step of 1fs. The duration of each simulation was 100 ns. Three replica simulations were carried
out for the four PPARy LBD systems. Similarly, three replica AA simulations were performed.
For each simulation, the root-mean-square coordinate difference (RMSD) and residue averaged
backbone atomic root mean square fluctuations (RMSF) were calculated. These calculated
fluctuations were compared to the atomic fluctuations calculated from experimental B-factors.

In addition to the Community Network Analysis (used and described in chapter IV), we
used the Shortest Path Method (SPM) tool. SPM was used to assess the importance of
individual residues and their pairwise connections in the structural dynamics of proteins
(Casadevall et al. 2024). This is in contrast to the community network analysis, which
establishes communities around multiple residues. The SPM method produces a network graph
based on mean distances and correlation values, and computes shortest path lengths using
Dijkstra algorithm (Dijkstra 1959). The shortest path is the most direct path with the most
significant connection between two residues, and shows how the residues are connected in the

protein’s structural dynamics. The tool is mostly aimed at exploring key residues implicated in
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enzymatic activity, but here we use as a way to assess the similarities and differences of

simulations using different force fields.

3. Results and Discussion

3.1. Structural dynamics of PPARy — RMSD and RMSF

The RMSD time series for PPARy were calculated from the molecular dynamics simulations
for the three replicas of the AA and Drude simulations for each system. For each system, the
average times series of the three replicas were displayed along with the high/low values at each
time point. All four PPARY systems show stable 100 ns trajectories (Fig. 51). The RMSD mean
value of PPARY apo system simulated with the Drude model was higher than the value of the
system simulated with the AA force field with the values being 3 A (std_dev: 0.09) and 2.5 A
(std_dev: 0.06), respectively (Fig. 51A and B). We notice the same trend when comparing the
simulations of PPARY bound to the corepressor peptide NCoR (Fig. 51C and D). The Drude
simulations presented higher values of RMSD, with the mean value of 3.2 A (std_dev: 0.21)
than the non-drude simulations, where the mean value is 2.4 A (std_dev: 0.04). These results
are consistent with the conclusions that the Drude force field allows for a higher conformational
flexibility than the standard additive CHARMM force field (Lopes, Huang, Shim, Luo, Li,
Roux, and Mackerell 2013). In addition to the overall stability of the PPARy - corepressor

bound system, we see the interaction of two components as stable as the peptide does not
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Figure 51. RMSD of PPARY LBD, left: AA simulations for the apo A) and co-rep complexed C) protein
and for the Drude simulations, apo B) and corepressor complexed D). The mean value of 3 replicas is
represented as a red line.

dissociate from the PPARy LBD. In our case, the Drude force field maintains the protein —
peptide complex.

We calculated the root mean square fluctuations (RMSF) of the backbone atoms of
PPARYy averaged by residue over all three replicas (Fig. 52). In all of the cases, we observe an
RMSEF profile that well reflects the structure- in that loops are more flexible than the secondary
structure regions. The AA simulations present the highest flexibility in the regions of the loop
between H2 — S1, loop H9 - H10 and the H12 (Fig. 52A). The apo Drude simulation shows a
higher flexibility of the Q loop region, and smaller flexibility of the loop H9 - H10 (Fig. 52B),
than the AA simulation. The explanation for the lower flexibility of the loop between H9 and
H10-11 could be that in both cases of Drude simulations, a salt bridge between residues D411

(H8) and H453 (loop H9-10) is maintained. This salt bridge is present in the crystal structure,
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and so it is also in the initial simulation structure His 453 was taken to be a protonated histidine.
This salt bridge is known to be conserved in all NRs of class II (Brelivet et al. 2004), so the
simulations with the Drude force field lead to the maintaining of this conserved salt bridge,
while it was lost in the AA simulations. The second salt bridge characteristic of the class II
NRs, between residues E352 (mid H4 — 5) and R425 (loop H8 — 9), is well maintained in both
AA and Drude simulations. The RMSF variability, represented by the light pink regions, of
three replicas is also higher for Drude simulations.

For the PPARy - NCoR system, the differences are less prominent, the RMSF curves
for both the AA and Drude simulations are similar, albeit with differences in the H9 - H10 loop
and the H12 and corepressor peptide region (Fig. 52C and D). Higher variability is found in
the AA simulation around H2’ and the Q loop, and also in the loop H9 - H10- the later reflects
the loss of contact in salt-bridge D411- H453. Comparing the apo and corepressor bound
PPARy systems, we see the difference in the B-sheet region and H6. For both AA and Drude
simulations, adding the corepressor peptide lowered the replica-averaged RMSF. With the
Drude simulations, the variability among replicas is also much smaller. In cases of stable
structures, like the LBD/corepressor peptide complex, the use of the Drude model seems to

provide additional stabilization of the protein complex.
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Figure 52. RMSF of PPARy LLBD, left: AA apo A) and AA corep complex C), Drude FF apo B) and copre
complex D). The mean value of 3 replicas is represented as a red line. Secondary structure elements are
shown on the x axis: alpha helices (h1 — h12) as green, and beta strands (s1 — s3) as blue rectangles. The
corepressor peptide is represented as a green rectangle on the far right of C) and D).
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Figure 53. Radially averaged atomic fluctuations of the PPARy LBD apo form (top), and corepressor
bound form (bottom).

The radially averaged fluctuations of all heavy atoms were calculated (Fig. 53). We
notice the increase in the fluctuations as we move towards the residues located further from the
centre of geometry. The fluctuations are higher in the Drude simulations than in the AA (non-
drude) simulations, reaching up to 3.3 A in the apo system and 5.3 A in the corepressor-bound
system near the surface of the protein. The radius of gyration is similar for all four systems,
with values of 20.1 A (std dev: 0.04) for AA apo system, 20.1 A (std dev: 0.01) for AA
corepressor-bound system, 19.9 A (std_dev: 0.15) for the drude apo system, and 20 A (std_dev:

0.11) for the drude corepressor-bound system.
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3.2. Electric dipole moments

Electric dipole moments of proteins contribute to the structural dynamics and function by

influencing how proteins interact with their environment. Accurate modelling of the dipole

moment can thus improve the overall representation of intermolecular interactions. The dipole

moments of PPARy were calculated along the trajectories (Fig. 54). The data are presented as

time series of the dipole moment of the full protein. We further calculated the average dipole

moment of the protein backbone by-residue (Fig. 55).
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Figure 54. Protein dipole moment timeseries of the PPARy LBD. A. in the apo form with AA force
field, B. in the apo form with the Drude FF, C. in complex with co-repressor and AA force field, D. in
complex with co-repressor and the Drude FF.

154



PPARgamma

7
6
5_
g 47
e
= 3H
2L
1r ]
h1_ h2 s h2' h3 hish5 s2€3h6  h7  h8 ha h104h11  h1z ]
0-.| i o I | | R T A T wrrs M N R g
2 28383 28288¢8¢9¢388 8
NNNmmmmmvcrgd-vm
Residue #
PPARgamma + corepressor
7 ]
H AA = ]
Drude — 1
6| .
=)
e

Figure 55. By-residue dipole moments of PPARg. Top figure is for the apo protein and the bottom
figure is for the LBD in complex with the co-repressor peptide.

We calculated dipole moment timeseries from the AA and Drude simulations of the apo
PPARYy protein and the PPARY protein complexed to the co-repressor peptide (Fig 54). For the
PPARY apo system, we see lower dipole values in simulations with AA force field, with the

average of 247 D, compared to the Drude force field, where the average value is 329 D. The
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calculations of PPARY corepressor bound system follow the same trend, where the average
values are 240D and 332D for the AA and the Drude FF, respectively.

Concerning the by-residue average dipole moment (Fig. 55), systematically, the dipole
moments in alpha helices are larger in the Drude simulations than in the AA force field

simulations for PPARYy.

3.3. Correlated motions

Correlated motions are important for understanding how the motions in different
regions of the protein are coupled to other regions and how those coupled motions change in
response to different perturbations, such as ligand binding. Changes in the correlated motions
can effectively occur over long distances. In its simplest interpretation, this could correspond
to allostery in the absence of conformational changes (Cooper and Dryden 1984a). It is
therefore important to identify the residues involved in this transmission of structural dynamic
information. This information can be obtained by calculating the cross-correlations, which
complement the fluctuation analysis presented above by providing information on correlated
motions as calculated by Eq. 38. From the Cj; correlation coefficients, which are organized as
a matrix, a cross-correlation map was calculated using a color-coded 2D representation. These
calculations find use in many different applications (Cote et al. 2017; Gaillard et al. 2007;

Fidelak et al. 2010).
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Figure 56. Correlated motions calculated from the simulation of the PPARy LBD apo form (top), and
corepressor bound form (bottom). Correlated motion maps are represented with a color code related to
the sign and intensity of correlations (ranging from dark blue for perfect anticorrelations to dark red for
perfect correlations). The secondary structural elements are indicated(a) from the Drude simulation
(upper triangle), compared to the AA simulations, lower triangle.
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We assessed the effects of polarization on the collective motions of the PPARy LBD
by calculating the cross-correlations from the MD simulations (Fig. 56). The lower right
triangle of the maps corresponds to the correlation map for PPARy calculated from the
simulation using the AA force field, while the upper left triangle corresponds to the correlated
motions of PPARYy calculated from the Drude simulations. The calculations were done for both
the apo (top) and corepressor-bound forms (bottom). Regarding the general aspect of the
correlation maps, for both forms, we notice a great similarity between the two. The differences
are noticeable regarding the intensities of the correlations, as they appear damped in the Drude
simulations, to the point that in particular regions, correlation islands disappear. In the case of
the PPARy apo system, the most significant isles represent the correlation between H12 - Q
loop residues, and HI-H9. While strongly present in the AA maps, only traces of the isles are
present in the Drude simulations. Concerning the PPARy bound to the corepressor, the most
important distinction in the correlated motions is observed between helices 1 and 10, and in the
motions between the H12 — H3 and H12 - H4. The peptide itself seems to be positively
correlated to the C-ter of H3 and the N-ter of H4, which is a functionally important interaction,

considering that the H3, H4 and H12 constitute the platform for corepressor binding.

3.3.1. Community Network Analysis

To further interpret the consequences of the long-range correlated motions, we
performed a community network analysis (CNA). Maps from a CNA are derived from a
functional clustering of correlated motions obtained from MD simulations. It has been shown
that this type of analysis, based on the Gervan-Newman algorithm, can be used to interpret
long range communication and dynamic allostery of proteins (Madan et al. 2023; Lesgidou and
Vlassi 2024). Community maps can help interpret how different parts of proteins move together
and how changes in one part of a protein can affect the dynamics of distant sites. Communities
highlight regions of the protein that exhibit collective movements and may represent
functionally important domains or allosteric communication pathways. Using correlation

matrices calculated from our MD simulations and the R package bio3D (Grant, Skjerven, and
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Yao 2021), we obtained coarse grained networks of dynamically coupled communities.
Community network maps are depicted using coloured spheres mapped onto the average 3D
structure, in tube representation. The size of a node is related to the size of its community and
larger spheres depict larger number of residues. The edges connect coupled communities,
where thicker edges correspond to higher degree of correlation.

The CNA of the PPARy apo system using the correlated motions calculated and
averaged from the 3 replicas of molecular dynamics simulations detected 13 nodes for the AA
simulations and 11 nodes for Drude simulations (Fig. 57). The specific compositions of the
nodes are given in Table 8. The nodes correspond largely to entire secondary structure
elements, mostly helices, however, the AA simulations have four nodes encompassing spatially
adjacent residues belonging to different helices: the first community regroups the N-terminal
residues with residues from H9 (node 1, 23 residues (230:234, 432:449)), the second one
regroups the large node containing H2’ and Q loop, the beta sheet and helix 6 (node 4, 45
residues (274:296, 363:384)), the third one regroups the Q loop C-terminal residues with H12
residues (node 6, 27 residues (298 to 306, 488 to 505)), and the fourth one regroups the loop
between H3 and H4 along with H4 with the H8 — H9 loop (node 8, 25 residues (333:348,
423:431)). Node 4 is the one most coupled to other nodes in the apo structure. Interestingly,
node 4 shows a relatively weak direct coupling to node 6, which contains the transcriptionally
important H12, but it has a strong coupling via node 5, which encompasses the N-terminal end
of H3. This lack of strong direct coupling may be due to the fact that the spatially near loop in
node 6 is quite flexible. There is also a relatively strong coupling between the loop H8-H9
(node 8) with the rest of the protein. Interestingly, this loop is known to interact with cyclin H
in other nuclear receptors, in particular RARa (Samarut et al. 2011b). The PPARy LBD is
known to interact with cyclin D (Sarruf et al. 2005) in the context of regulating adipogenesis.
The nodes encompassing the loop regions at either end of Helix 9 are well connected to the rest
of the protein and are known to be important in the allostery related to phosphorylation in other

receptors (Chebaro et al. 2017; 2013; Samarut et al. 2011Db).
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Table 8. Composition of the nodes from the community network analysis. [soform PPARy2 numbering
of LBD residues: 230 - 505. Corepressor peptide is numbered from 506 - 517. Size represents the
number of amino acids in a node. Node members are the numbers of amino acids belonging to a node.

PPAR_AA_apo PPAR_AA_corep
node id size members node id size members
1 23 c(230:234, 432:449) 1 28 c(230:232, 431:455)
2 22 235:256 2 22 233:254
3 17 257:273 3 19 255:273
4 45 c(274:296, 363:384) 4 32 c(274:289, 372:378)
5 14 c(297, 307:319) 5 38 ¢(290:308, 487:505)
6 27 ¢(298:306, 488:505) 6 24 309:332
7 13 320:332 7 17 333:349
8 25 c(333:348, 423:431) 8 13 350:362
9 14 349:362 9 13 379:391
10 21 385:405 10 16 392:407
11 17 406:422 11 23 408:430
12 15 450:464 12 31 456:486
13 23 465:487 13 12 506:517
PPAR_Drude_apo PPAR_Drude_corep
node id size members node id size members
1 25 230:254 1 25 230:254
2 20 255:274 2 20 255:274
3 33 c(275:284, 362:384) 3 25 ¢(275:277, 362:383)
4 21 285:305 4 13 278:290
5 26 306:331 5 14 291:304
6 30 332:361 6 27 305:331
7 22 385:406 7 30 332:361
8 15 407:421 8 23 384:406
9 28 422:449 9 16 407:422
10 17 450:502 10 31 423:453
11 39 467:505 11 34 454:487
12 18 488:505
13 12 506:517
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The CNA of the Drude simulation of the apo PPARy LBD generally shows smaller
nodes than those observed in the AA simulation. The largest node, node 3 (residues 274:283,
361:383) encompasses the residues of H6, the 3 sheet and some of the Q loop; the equivalent
node in the AA simulation is node 4, however, the node from the Drude simulation is smaller.
Many of the other nodes are along secondary structure elements. As in the AA simulation, there
is no direct coupling between node 3 and the helix 12 region of PPAR. In the Drude results,
the coupling passes through 3 to 4 nodes depending on the path, while in the AA simulation,
the coupling was either direct (weak) or through just one additional node. In addition to the
couplings being different between the AA and the Drude simulation, these results suggest that
the coupling between different regions of the PPAR ligand binding domain is less strong in the

Drude simulations than in the AA simulations.

161



Omega Loop

Figure 57. Community network analysis of the PPARy LBD. On the left, the colored nodes are
superposed on the protein backbone structure, represented as a tube and colored according to the nodes.
The edges are denoted as grey connections between the nodes, where the thickness indicates the
strength of the correlation between two nodes. On the right is the network representation. In (top) are
the results from the AA simulation, and in (bottom) are the results from the Drude simulations.
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For the PPARy/corepressor complex, the CNA identified 13 community nodes for
correlated motions from both the AA and the Drude simulations (Table 8, Fig. 58). The specific
node compositions are provided in supplementary material. In both cases, the protein has 12
nodes, and the corepressor peptide forms its own node. More of the nodes identified in the AA
simulations include sequentially distant, but spatially near resides (nodes 1, 4 and 5), while in
the Drude simulation, there is only one node that includes sequentially distant, but spatially
near residues (node 3). In the AA system, there are three nodes which connect to neighbouring
nodes: the first groups N-terminal residues with H9 (node 1, 229:231, 430:454), the second
groups the N-terminal of the Q loop with the [ sheet (node 4, 32 residues, (45:60, 134:149)),
and the third one associates the Q) loop with H12 (node 5, 38 residues (61:79, 258:276)). In the
Drude simulation, node 3 encompasses the 3 sheet and the N-terminal end of the Q loop.

Concerning the interconnectivity of the nodes, the CNA shows that many of the node
interconnections are along the secondary structure elements, but the AA simulations display
several edges between nodes beyond secondary structure. The node organization for AA is
more global as opposed to the Drude simulation results, where there is less interconnectivity,
and the network is more extended. Central to the interconnectivity in PPARY is the node that
encompasses the § sheet and part of the (2 loop region. This node forms a hub through which

many edges connect.
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Figure58. Community network analysis of PPARgamma with corepressor peptide. On the left, the colored nodes
are superposed on the protein backbone structure, represented as a tube and colored according to the nodes. The
edges are denoted as grey connections between the nodes, where the thickness indicates the strength of the
correlation between two nodes. On the right is the network representation. Representation on the PPARy LBD
corepressor bound form, from AA simulation (top), and Drude simulation (bottom).
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CNA analysis for both the AA and the Drude simulations show the corepressor peptide
as a single node. And we further notice that this node does not form any edges to any nodes in
the ligand binding domain of PPARy. If we look back at the correlation plots of AA
simulations, we see positive correlation between the corepressor peptide residues and the N-
terminal of H4, while the Drude simulations did not capture these correlations. The correlations
were weak and as they did do not go over the 0.5 threshold, they are not represented by an
edge. The addition of the corepressor peptide in the AA and Drude simulations does not seem
to break the community of the H3 — 4 loop and H4 residues, which forms the corepressor
binding platform. In the AA results, the presence of the peptide seems to increase the H12 and
Q) loop community, passing from 27 (node 6) to 38 (node 5) residues, and reinforcing their
correlations. In the Drude simulations, the addition of the peptide seems to decouple two
different communities. First, the HI1 — H12 community is split into two separate ones,
connected by an edge (from node 11 to nodes 11 and 12). The second community, built around
the Q loop (node 4), is divided into 2 separate nodes (nodes 4 and 5), connected by edges.
Other nodes do not seem to be affected by the corepressor addition.

One significant distinction between simulations with two force field concerns the
community that represents helix H12. In the AA simulations of both apo and corepressor-bound
systems, H12 and one part of the Q2 loop are coupled and are therefore represented by one
community. This node is of medium size, with 27 residues for the apo form and with 38
residues for the corepressor-bound form. In the Drude simulations, H12, together with H11
make up an individual community, represented by a node containing 39 residues. This
community is decoupled from the node encompassing the Q loop in both systems simulated by
the Drude FF meaning there are no edge connections between them. This suggests that the
correlations in the Drude simulations are not sufficiently strong to result in the CNA analysis
detecting direct communication between them. In the corepressor-bound form, H12 is further
decoupled from the H11, having its own community of helix residues connected by an edge to
the H11. Furthermore, in both systems simulated with AA FF, the N-terminal residues of
PPARy are grouped in the same community with H9 residues, while in the Drude simulations,

these N-terminal residues are in the same community as H1 residues. This coincides with high
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RMSF values for the N-terminal residues of the LBD in both Drude simulated systems, see
Fig. 52.

Helix H12 represents the activation function 2 in LBDs and therefore is physiologically
important for the regulation of PPARY’s transcriptional activity. In the transcriptionally
inactive form studied here (apo or corepressor bound forms), the H12 exhibits higher flexibility
and is capable of exploring multiple conformations (Chrisman et al. 2018b). In the community
analysis of the Drude simulations, we notice the decoupling of the H12 from the other regions,
notably the Q loop and the H11. This suggests that these regions explore different movements
which are not directly correlated and display different conformational dynamics. The lack of
high correlating communities and the presence of communities largely representative of
individual alpha-helices is apparent in the correlation maps, where the Drude simulations
display attenuated colours, and thus smaller correlations. It is generally appreciated that around
the ligand binding pocket of the PPARy LBD, the region is flexible in the absence of a ligand,
so we would expect a low degree of correlated motion is this area, notably of the functionally

relevant helix H12 and the conformationally flexible Q loop.

3.3.2. Shortest Path Method (SPM)

A second approach for interpreting correlated motions is the Shortest Path Method (SPM),
which was used through the online webserver (Casadevall et al. 2024). This tool was used to
assess the importance of individual residues, and their pairwise connections, in the structural
dynamics of the two proteins. This is in contrast to the community network analysis, which
establishes communities around multiple residues. The SPM method produces a network graph
based on mean distances and correlation values. The shortest path lengths were calculated using
the Dijkstra algorithm (Casadevall et al. 2024). The shortest path is the most direct path
following the most significant connection between two residues and shows how the residues
are connected in the protein’s structural dynamics. The tool is mostly aimed at exploring key
residues implicated in enzymatic activity, but here we use it to assess the similarities and

differences of simulations using different force fields.
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The PPARY apo system (Fig. 59) shows a graph network connecting different nodes
corresponding to same secondary structure elements. For example, if we look at the side view
of the structure from AA simulation, we can see a network spanning across the entire helix
H10-11, and then continuing connecting the loop and H12, and even further the Q loop. This
suggests a correlation and coupling of these secondary structure elements. On the other hand,
the Drude simulation shows no such connection and the functionally important H12 is not
coupled to Q loop movements. Similar observations were made from the community network
analysis.

Compared to the apo PPARY, the SPM paths of PPARY bound to the corepressor peptide
are relatively different for both the AA and Drude calculations (Fig. 60). In this case, we again
discern in the case of the AA simulation, the SPM spanning throughout the ‘upper’ region of
the LBD and the one in the ‘bottom’ region with respect to the illustration, where H12 and the
Q) loop are connected. Interestingly, we see short paths between alpha helices.

Drawing similar conclusions, the use of the Drude force field leads to a decoupling of
H12 and the Q loop region in the apo protein; the same observation was made from the
community network analysis. The corepressor peptide, even though it was included in the SPM
network calculation, does not appear to participate in the shortest path representation. Despite
the somewhat correlated motions between the corepressor peptide and helices H3 and H4, the
co-repressor peptide is not connected to the rest of the protein in this analysis. A similar
conclusion was made the community network analysis, the corepressor peptide does not enter
into any communication network. We also notice the absence of the SPM path in the regions
of the loop H3 — H4, probably caused by the addition of the corepressor peptide. This suggests
that the presence of the peptide, while not directly implicated in a network, will perturb the

underlying communication network of PPARy.
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Figure 58. Shortest Path Method ball and stick representation mapped on the front and side views of
PPARy LBD apo form. The AA simulation is at the top (magenta) and the Drude simulation on the
bottom (blue).
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Figure 59. Shortest Path Method ball and stick representation mapped on the front and side views of
PPARy LBD with corepressor peptide bound. The AA simulation is at the top (red) and the Drude
simulation on the bottom (cyan).

Omega Loop
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4. Conclusions

In this work, we used the Drude polarizable force field in molecular dynamics simulations of
the ligand binding domain of human PPARYy and compared the results to simulations using the
CHARMM all atom atomic force field. We examined the effect of the Drude force field on
standard measures of structural dynamics, such as RMSD and RMSF via comparison to
simulations using a classical, AA force field. We generally found conformational change
leading to a higher RMSD and, in flexible regions of the proteins, greater flexibility. But
overall, the trends remained the same. Looking at dipole moments, we confirmed the effect of
polarization on amino acid dipole moments, which is influenced by secondary structure.

We also characterized for the first time the effects of using the Drude force field on
correlated motions, which have been implicated in the biological function of proteins. The
correlated motions were characterized by correlation maps generated by molecular dynamic
simulations, by community network analysis and shortest path method (SMP) analysis. The
latter two interpret information from the correlated motions obtained from the simulations. The
CNA distinguished regions of the proteins where residues interact strongly with each other,
and are placed in the same community, from those that interact more weakly. The latter are
placed outside of the community and if they are part of another community with sufficiently
strong correlations to another community, the information is indicated by connection between
the nodes. The analysis further reveals paths through which signals, structural or through
interactions with other proteins, can propagate from one region to another. The SPM approach
provide more residue-to-residue mapping of the correlated motions, but both approaches
provided insights into how protein dynamics map onto the modular organization of the protein
and reveal residues or communities of residues that display coordinated motions. Such
coordinated motions may underpin allosteric communication.

Analysis of the correlated motions through examination of the correlation maps, the
CNA and the SMP analysis based on these correlations show that the use of polarization via
the Drude force field affects the low-frequency collective modes by decoupling the motions

and generally softening the correlated motions. This suggests that, perhaps the simulated
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protein will be less responsive to perturbations introduced, for example, by ligand binding or
by the introduction of point mutations. So, perhaps there is an advantage to using the AA force
field if one is interested in the studying allosteric behaviour of proteins based on their collective
motions. In conclusion, we notice that the major difference arises in regions of the protein that
are known from simulations to exhibit more significant flexibility that in other regions of the
protein, more precisely at the lower half of the protein, concerning ligand binding pocket, and

aforementioned helix H12.
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Chapter VI - Conclusions and
Perspectives
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Increasing attention is being focused on the role of protein structural dynamics in crucial
cellular signalling pathways and modulating structural dynamics is becoming an important
avenue of exploitation for the discovery of new therapeutic compounds. However, there
remains a serious paucity of techniques that permit one to obtain relevant data related to
structural dynamics on appropriate timescales. New approaches are needed to both elucidate
and measure physical properties directly related to structural dynamics.

In this thesis, the primary objective was to develop an integrated far infrared absorption
spectroscopy/molecular dynamics simulations for quantifying and studying collective motions
in proteins. Integrating far-infrared (far-IR) measurements with molecular dynamics (MD)
simulations offers a powerful, multi-dimensional approach for investigating protein dynamics.
Far-IR spectroscopy is sensitive to low-frequency vibrational modes of molecules, including
protein motions, conformational changes, and collective dynamics that are difficult to capture
using conventional structure-based techniques, but the results are difficult to interpret. Far-IR
data also provides crucial experimental validation for molecular dynamics simulations, which
offer insights into protein conformational changes, motions and low frequency collective
dynamics of proteins. The combination of the two techniques can provide more insight than
either technique alone. This was previously demonstrated in a first integrated study of the
response of a PDZ domain to the binding of a small peptide, where it was shown that
exploitable information concerning changes in low frequency collective motions could be
obtained even for proteins where there is no substantial conformational change upon ligand
binding (Cote et al. 2017b). The integrated approach allowed for quantification of a mechanism
of allostery in a PDZ domain.

We aimed to enlarge the field of application of this integrated approach and to
characterize the dynamics of nuclear receptor (NR) proteins. NRs constitute a superfamily of
proteins that function as DNA-binding, ligand dependent transcription factors. Being a large,
complex protein implicated in transcriptional cascades that underlie many physiological
phenomena make them one of the major signal transduction paradigms in metazoans. Indeed,
evidence suggests that there exist multiple mechanisms exploiting structural dynamics and

allostery that implicate ligand, DNA, co-activator and co-repressor binding, as well as post-
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translational modifications. Central to these mechanisms is the ligand binding domain (LBD),
which acts as an allosteric hub, transmitting binding events to other protein interfaces and,
eventually, other intra- and intermolecular domains.

As the nuclear receptor LBD is a large protein and presents a complex allostery, new
developments to the earlier computational approach were introduced to address the complex
structural dynamics more accurately. While the approach developed here maintains its reliance
on normal mode analysis, which a powerful computational tool for studying protein dynamics,
particularly for understanding low-frequency, collective motions, to better adapt to long
molecular dynamics simulations, we developed a conformational ensemble approach that
includes a large number of structures extracted from long molecular dynamics simulations.
This ensemble approach differs from the original approach in that the latter relied on the normal
mode analysis of a single structure extracted from a molecular dynamics simulation.

Our ensemble approach, presented in chapter III, leads to more robust results in terms
of quantities calculated from normal mode analysis. In chapter IV, we applied the method to
the nuclear receptor protein Peroxisome Proliferator-Activated Receptor gamma (PPARY), a
nuclear receptor that is a particularly important target for development of therapeutic
compounds for multiple diseases, including diabetes and cancer. We focused on the ligand
binding domain in both apo- and holo-wild-type forms, as well as two mutant forms, where we
characterized the effects of agonist ligand binding, as well as the effects of gain-of-function
and loss-of-function mutations on the structural dynamics. Both far infrared absorption
spectroscopy (done by our collaborators) and molecular dynamics simulations were applied to
the same systems, giving a unique opportunity to synergistically study the systems. We studied
the PPARy LBD in various physiological states, including apo and holo forms, as well as apo
forms of gain- and loss-of function mutations implicated in bladder cancer. The results of the
calculations were compared to results from mid- and far-IR measurements. This is the first
time that such an approach has been applied to a protein of this complexity. Beyond comparing
the calculated IR spectra with the experimental spectra, which provided a robust validation of
the computational results, we were able to calculate, from our ensemble approach, the long-

range correlated motions that we used in in further analysis by community network analysis, a
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tool that is powerful in pulling out information concerning correlated modes and identifying
local regions that are highly correlated and their interactions with other highly correlated
regions. The important conclusions were that physiologically important regions were identified
as being highly correlated to the rest of the domain. In particular, the loop between H8 and H9
formed a highly correlated node that was well connected to the rest of the protein. This region
of the LBD is important for signalling cascades in nuclear receptor proteins and its degree of
coupled correlation to the rest of the LBD has not been elucidated to such a degree in earlier
studies. We also found the regions such as the beta sheet regions were also well connected and
that the introduction of agonist ligands shifted the corelation profile toward the dimer interface,
which would be important for information transfer during the process of gene transcription.

The results presented in this thesis rely on an accurate representation of the collective
motions of the protein. We confirmed (chapter III) that these collective motions are well
captured by low-frequency vibrational modes. This raises an important question, particularly
in light of current interest in polarizable force fields: What effect does polarization have on the
collective motions of a protein, as calculated in molecular dynamics simulations? In chapter V,
we presented a study where we carried out a simulation study of the nuclear receptor protein
PPARYy and compared the calculated correlated motions from simulations that did not use a
polarizable force field to those that did. While in many studies, polarizable force fields show
good performance for structural features, such as RMSD or atomic fluctuations, we found in
our study that polarization softened the calculated correlations. The correlated motions were
fed to a community network analysis and we found there were fewer correlations between
different regions of the LBD compared to the classic all atom force field. With softened
correlations, interpretations pertaining to allostery are more difficult. Additionally, community
network analysis yielded less definitive results when polarization was included and some
features that made physiological sense in the context of nuclear receptor proteins were lost.
This raises the point that one should be cautious when using a polarizable force field for studies
where low frequency collective motions are important.

Through the use of molecular dynamics simulations, the research presented here has

provided a deeper understanding of the intrinsic intradomain collective motions of nuclear
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receptor proteins. Our results underscore the complex interplay within a single receptor domain
as a function of ligand or mutations. These insights are critical for advancing the development
of novel therapeutic strategies targeting nuclear receptors, particularly in the context of diseases
such as cancer, metabolic disorders, and endocrine diseases. This work demonstrates the power
of computational approaches, especially when complementing experimental techniques such
as IR spectroscopy. This work may pave the way for more rational drug design based on
molecular-level understanding of receptor dynamics.

While the molecular dynamics simulations conducted in this thesis have provided
valuable insights into the structural dynamics of nuclear receptor proteins, several aspects
remain to be explored. Future studies could expand upon this work by incorporating more
diverse ligand libraries to probe a wider range of binding modes and receptor subtypes,
particularly in the context of therapeutic design. Additionally, inclusion of coregulator proteins
could also enhance our understanding of the couplings between different domains. More
extensive studies will be needed before one can predict whether a particular compound will
function as a good agonist or antagonist. But more immediately, within a particular family of
compounds, one will be able to predict trends in pharmaceutical responses. A particular
pipeline could involve the testing of a series of compounds against a nuclear receptor protein
and the more promising candidates could undergo further testing by far-IR spectroscopy before
being used in more expensive biological tests.

Other improvements could involve the integration of enhanced sampling simulations to
access an even larger distribution of structures as well as including structures from multiple
minimum energy wells. Continued experimental validation of the computational findings will
also be essential for further refining our understanding of nuclear receptor function. Finally,
investigating the interactions of nuclear receptors with coactivators and corepressors will be
crucial for understanding the full spectrum of receptor-mediated signalling.

This study has implications for drug discovery, particularly in the context of nuclear
receptors. By providing a detailed analysis of receptor dynamics, this thesis lays the
groundwork for an approach that can contribute to the rational design of small molecules that

can modulate receptor activity through structural dynamics. The findings emphasize the
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importance of targeting structural dynamics of the receptor rather than relying solely on static
models, which may overlook critical functional states. The insights gained here could aid in
the design of more potent nuclear receptor modulators for the treatment of diseases such as
cancer, diabetes, and autoimmune disorders. Moreover, the computational approaches applied
in this work can be extended to other protein systems, further advancing the field of structure-
based drug design. Ultimately, the work presented here contributes to the growing
understanding of nuclear receptor structural biology and provides a foundation for future

investigations into receptor-ligand interactions, eventually with therapeutic implications.
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Etude de la dynamique structurale du récepteur nucléaire PPARgamma

Chapitre I

Le bon fonctionnement des cellules vivantes repose sur la régulation complexe de I'expression
des genes (Cramer, 2019). Cette régulation est assurée par des protéines appelées facteurs de
transcription. Les récepteurs nucléaires (RN) forment la plus grande famille de facteurs de
transcription chez les métazoaires. Ils controlent de nombreux processus liés au cycle
cellulaire, a la différenciation, a l'apoptose, au développement, a la reproduction et a
I'homéostasie (Renaud and Moras 2000). Ils régulent 1'expression des genes suite a la fixation
de divers ligands lipophiles. Cette activité dépendante du ligand fait des récepteurs nucléaires
des cibles centrales pour le développement de médicaments dans de nombreuses maladies,
telles que le diabete, l'artériosclérose, les maladies inflammatoires chroniques, le cancer et
d'autres. Les récepteurs nucléaires sont des protéines a domaines multiples qui présentent une
structure modulaire commune ou différentes régions correspondant a des domaines autonomes
exécutent des fonctions différentes (Fig. 1A et 1B). Cette organisation structurale et
fonctionnelle canonique commence par le domaine N terminal A/B, également appelé domaine
de la fonction d'activation 1 (AF- 1), suivi du domaine C, ou domaine de liaison a I'ADN

(DBD), de la région charni¢re D et se terminant par le domaine E ou domaine de liaison au
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ligand (LBD), également appelé domaine de la fonction d'activation 2 (AF-2). Certains
récepteurs nucléaires possedent également une extension C-terminale appelée domaine F, mais
ce n’est pas le cas pour le PPARY.

Le domaine A/B N-terminal des récepteurs nucléaires est un domaine intrinséquement
désordonné et contient la fonction d'activation autonome AF-1 qui assure la médiation du
recrutement de multiples protéines corégulatrices de la transcription des génes (Shamilov and
Aneskievich 2019). Le domaine de liaison a 'ADN (DBD), ou domaine C, permet la
reconnaissance spécifique et la liaison a des séquences d'’ADN cibles (Claessens and Gewirth
2004). 11 s'agit, d'un point de vue structurel et fonctionnel, d'un domaine hautement conservé,
composé de deux hélices a avec des brins B courts et antiparalleles. Il contient deux motifs en
doigt de zinc qui sont responsables de la reconnaissance des séquences d'ADN. Afin de réguler
la transcription, les récepteurs nucléaires se lient a I'ADN en reconnaissant des séquences
spécifiques appelées éléments de réponse aux hormones (HRE).

Le domaine de liaison au ligand (LBD) est un domaine multifonctionnel dont la
structure est conservée au sein d'une méme espece et d'une espece a l'autre. Il se compose de
11 a 13 hélices alpha et d'un petit feuillet béta (Moras and Gronemeyer 1998). La poche de
liaison au ligand du LBD peut accueillir une variété de ligands, y compris des agonistes, des
antagonistes et des agonistes inverses. Ce domaine a donc fait I'objet de nombreuses études
biochimiques, biophysiques et structurales, qui ont permis d'établir des aspects essentiels de la

relation structure-fonction des récepteurs nucléaires. L'activation d'un récepteur nucléaire et le

—
coactivator
peptide

C-terminal

Figure 2.

180



déclenchement de la transcription d'une protéine sont liés a un changement de conformation de
I'hélice H12 de la partie C-terminale du LBD (Fig. 2, I’hélice 12 est colorée en cyan).

L'inclinaison de I'hélice H12 vers le corps du LBD permet a ce domaine d'atteindre une
conformation active, liée a la formation d'une plate-forme permettant la liaison de protéines
régulatrices appelées coactivateurs, qui modulent positivement la transcription. En revanche,
la conformation répressive des récepteurs nucléaires se caractérise par des traits structuraux
qui la distinguent de 1'état actif. Pour assurer une configuration répressive stable, I'hélice 12
peut soit adopter une conformation ou elle est stabilisée contre le LBD, tout en créant une
surface compatible avec des protéines a activité corépresseurs (mais incompatible avec les co-
activateurs), soit montrer une variation conformationnelle importante, lié¢e a des mouvements
ou elle peut prendre de multiples conformations, y compris étre étendue en solution.

Les travaux de cette theése portent sur le récepteur nucléaire appelé Peroxisome
proliferator - activated receptor gamma (PPARy), et plus spécifiquement l'isoforme
PPARgamma?2, qui compte 505 résidus, et qui est considérée comme la forme complete de la
protéine. Dans 1’organisme, le récepteur PPARY est principalement exprimé dans les tissus
adipeux bruns et blancs, ou il joue un réle crucial dans la régulation de I'adipogenése et du
métabolisme du glucose en favorisant la différenciation des préadipocytes en adipocytes
matures. Cette protéine stimule l'absorption du glucose en régulant la sécrétion
d'adipocytokines - les médiateurs de 'action de l'insuline (Janani and Ranjitha Kumari 2015).
En tant que tel, il présente une cible particulierement importante pour le développement de
traitements contre le diabéte, le cancer, l'inflammation et I'hypertension (Berger and Moller

2002). Avec une poche de liaison du ligand d'environ 1300 A3, PPARy peut accueillir une

Figure 3.
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variété de ligands lipophiles - des acides gras polyinsaturés (AGPI) et leurs dérivés oxydés
appelés eicosanoides. En l'absence de ligand, PPARy interagit avec des complexes
corépresseurs, tels que NCoR ou SMRT, qui recrutent des enzymes modifiant la chromatine
(HAT, ayant une activité histone acétyltransférase) et répriment activement la transcription.
Apres avoir fixé un ligand agoniste, PPARy forme un hétérodimere avec le récepteur rétinoide
X (RXR) (Fig. 3, la protéine PPARYy « full-length » en rose). L'hétérodimere peut recruter des
coactivateurs tels que le coactivateur PPARY 1-a (PGC-1a) ou la protéine de liaison E1A p300
(EP300), qui sont capables d'ouvrir la structure de la chromatine et de permettre 1'assemblage
de complexes protéiques modulateurs de transcription.

Il existe trois structures cristallines du PPARy complet et plus de 300 structures de son
domaine LBD. Les structures du domaine LBD sont principalement résolues dans des positions
actives, tandis que la structure du récepteur sous forme inactive reste sujette a débat. Les
changements de conformation sont liés a la dynamique structurale des RNs, qui s'est donc
rapidement révélée comme un élément indispensable pour comprendre leur fonction. En effet,
la dynamique structurale des protéines participe de manicre essentielle a leur activité
biochimique. La dynamique collective, ou différentes régions d'une protéine peuvent se
déplacer de maniere corrélée, a été identifiée comme un facteur important de la fonction des
protéines, par exemple, contribuant a la régulation allostérique (Smith et al. 2016). Ces
mouvements collectifs sont des mouvements globaux d'un grand nombre d'atomes composant
la protéine, caractérisés par des vibrations de basses fréquences, propres a tout systéme
protéique. Bien que la dynamique structurale des protéines ait été étudiée a 1'aide de techniques
expérimentales, celles-ci présentent des limitations, et la quantification des changements
structuraux et de leurs effets, reste un défi majeur. L'objectif de cette thése était de développer
de nouvelles approches pour quantifier les propriétés physiques directement liées aux
changements dans la dynamique structurale collective a basse fréquence en réponse a différents
effets, tels que les changements de conformation a grande échelle, la liaison de ligands et les

mutations ponctuelles physiologiquement pertinentes.

Chapitre III

La dynamique structurale du domaine de liaisons au ligand du PPARYy a été explorée a l'aide
d'approches de modélisation moléculaire et de simulations de dynamique moléculaire. Cette
approche, que nous appelons « Ensemble moyenné des modes normaux » permet d’intégrer la

spectroscopie d'absorption dans l'infrarouge lointain avec les simulations de dynamique
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moléculaire. Les spectroscopies d'absorption dans l'infrarouge lointain sondent la région des
basses fréquences du spectre de vibrations et révelent les modes vibrationnels collectifs dans
la région spectrale allant de 0,06 THz (2 cm™) a 10 THz (333 cm'!), une région de fréquence
accessible a l'analyse vibrationnelle basée sur des calculs de mécanique et de dynamique
moléculaire. Notre hypotheése est que les techniques spectroscopiques telles que la
spectroscopie d'absorption dans I'IR lointain, lorsqu'elles sont combinées a la modélisation
moléculaire et a I'analyse structurale et biophysique, peuvent tre utilisées pour faire progresser
notre compréhension de la réponse des protéines a la liaison d'un ligand, méme lorsque les
changements structuraux sont minimes ou inexistants (Cooper and Dryden 1984) mais que la
dynamique est impactée. Non limitée par la taille des protéines, la mise en place et l'intégration
de la spectroscopie dans I'IR lointain avec d'autres approches biophysiques fournira un moyen
innovant de quantifier une empreinte vibrationnelle a basse fréquence de la protéine ainsi que
les changements de cette empreinte en fonction de la liaison du ligand.

Ce projet est fondé sur des travaux étudiant la liaison des ligands et 'allostérie dans le
domaine PDZ de MAGI1 (Cote et al. 2017). Dans ce travail, la spectroscopie d'absorption dans
I'IR lointain et les simulations de dynamique moléculaire ont été combinées pour étudier la
réponse du domaine PDZ a la liaison d'un petit ligand peptidique et son impact sur la
dynamique structurale.

Les modes normaux explorent les mouvements collectifs au sein d'une molécule en
examinant ses modes vibrationnels. Ces modes représentent les mouvements naturels a basse
fréquence que la molécule peut subir sans modification significative de sa structure. Les modes
normaux peuvent jouer un role important lorsqu'ils sont utilisés en conjonction avec des
simulations de dynamique moléculaire, par exemple en faisant partie intégrante d'algorithmes
d'échantillonnage qui améliorent l'exploration de I'espace conformationnel. Nous présentons
ici une méthode qui s'appuie sur l'utilisation de structures multiples pour les modes normaux
et qui est mieux adaptée a I'analyse de simulations plus longues. Notre approche par 1'ensemble
moyenné consiste a combiner les données de plusieurs structures issues d'une simulation de
dynamique moléculaire extraites du puits le plus peuplé d'une surface d'énergie libre. La
surface d'énergie libre (Fig. 4A) est générée a partir de la RMSD et du rayon de giration, comme
dans (Cote et al. 2017), les structures sont réorientées dans le méme référentiel et une NMA
est effectuée sur chaque structure. Nous calculons les modes normaux pour les structures
extraites et faisons ensuite la moyenne des résultats. A partir des modes normaux, nous
calculons la moyenne de la RMSF (Fig. 4B), les mouvements corrélés (Fig. 4C) et les spectres
de I'IR lointain (Fig. 4D) que nous comparerons a l'expérience dans les chapitres suivants. La

183



combinaison des spectres de plusieurs structures (dans nos études, 100 structures) nous permet
d'obtenir un spectre IR moyen d'ensemble. Globalement, cette approche est plus robuste et

moins dépendante d'une structure individuelle.
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Chapitre IV

La premicere étude réalisée au cours de ma these a été I'application de cette approche des modes
normaux moyennées, au systtme PPARY, en combinaison avec les études de spectroscopie IR.
Dans ce chapitre, nous présentons les simulations de dynamique moléculaire de PPARy sous
les formes WT apo (Fig. 5) et holo, ou PPARY a été complexé au ligand GW1929. En plus des
formes apo et holo WT, nous avons également étudié¢ deux formes mutantes - T475M, qui est
la forme mutante connue pour avoir une activité transcriptionnelle accrue méme sous forme

apo (non ligandée) (Rochel et al. 2019), et F310S, qui est connue pour étre une mutation de

perte de fonction (Coutos-Thévenot et al. 2019). Les mutations T475M et F310S sont
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impliquées dans le cancer de la vessie luminal et basal, respectivement. Grace a notre
collaboration avec I'équipe expérimentale, nous avons démontré pour la premicre fois la
faisabilité de l'utilisation d'une approche IR lointain/MD pour mesurer 'effet de la liaison du
ligand par une protéine de la famille des récepteurs nucléaires. L'étude a montré que lors de la
liaison d'un ligand, les pics de fréquence les plus bas subissent un déplacement vers des
fréquences plus élevées, ce qui suggere que le ligand renforce les interactions et impacte les

mouvements vibrationnels.

N-terminal

Figure 5.

Pour commencer, nous avons effectué des simulations approfondies de dynamique
moléculaire pour toutes les formes étudi€es, a partir desquelles nous avons généré des surfaces
d'énergie libre basées sur la distribution de la RMSD et du rayon de giration. A partir de ces
surfaces, nous avons identifié un certain nombre de puits de potentiel. A partir de ces puits, des
structures représentatives ont été extraites et utilisées pour l'analyse des modes normaux, pour
les calculs des spectres IR et l'analyse de l'effet collectif par le biais d'une analyse des
mouvements corrélés et du réseau d’atomes dont la dynamique est corrélée. Les résultats des
simulations ont démontré que dans le domaine de IR lointain, les spectres IR calculés
présentaient des caractéristiques tres similaires a celles observées expérimentalement, en
particulier des déplacements des pics spectraux en présence de ligand. Nous avons complété
ce résultat par l'analyse des liaisons hydrogeéne et confirmé que les changements dans les

spectres expérimentaux coincident avec des changements dans les réseaux de liaisons
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hydrogenes. Les effets des mutations ponctuelles sur les spectres a basse fréquence ont
également été observés et corrélés avec les changements dans la liaison hydrogene. En utilisant
notre approche sur les différents systemes du PPARy, nous avons calculé des cartes de
mouvements corrélés du LBD, qui ont montré des régions de couplage au sein du domaine
unique. Nous avons noté que méme de petites perturbations dues a la fixation d'un ligand ou a
des mutations ponctuelles peuvent avoir un effet sur la dynamique collective de la protéine, ce
qui a modulé les couplages entre les régions physiologiquement distinctives du LBD. Pour
mieux exploiter les mouvements collectifs calculés, nous avons effectué une analyse de réseau
communautaire (CNA, analyse des régions dont les mouvements sont corrélés et couplés) afin
d'identifier les régions fortement corrélées qui sont couplées a d'autres régions fortement
corrélées du LBD (Fig. 6, a gauche: PPARY apo, a droite: PPARy avec GW1929 ligand). Les
couplages entre les nceuds fortement corrélés suggerent un moyen par lequel l'information
pourrait passer au sein du domaine protéique en fonctions de changements dans la dynamique

structurale.

Figure 6.

Nous avons identifié des régions du LBD qui sont fortement couplées au reste du domaine, en
particulier la boucle entre H8 et H9, qui est connue pour étre physiologiquement importante en
tant que site qui lie la cycline au cours d'une cascade de phosphorylation identifiée sur certains
récepteurs nucléaires. De plus, nous avons également montré comment la liaison d'un ligand
déplace la dynamique corrélée vers la région du LBD qui participe a la dimérisation avec le

RXR. En comparant nos résultats avec les résultats de spectroscopie, nous avons vu que des
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petits changements liés a des mutations ponctuelles sont mesurables expérimentalement, ce qui
nous a permis de valider nos simulations. Nous avons montré que les approches informatiques
et expérimentales de I'IR lointain sont complémentaires puisque les deux approches ont montré
des tendances similaires dans les spectres mesurés et calculés. Une fois les simulations validées
par comparaison avec ces données expérimentales, nous avons pu exploiter davantage les
mouvements corrélés obtenus a partir de notre analyse des modes normaux moyennés afin de

mieux comprendre la dynamique intra-domaine.

Chapitre V

La seconde étude portait sur l’analyse théorique des effets de la polarisation sur les
mouvements collectifs des protéines, introduits via le champ de force polarisable de Drude
(Lopes et al., 2013). Dans ce travail, nous avons utilisé le champ de force polarisable de Drude
dans des simulations de dynamique moléculaire du domaine de liaison au ligand du PPARy
humain afin de les comparer aux résultats des simulations utilisant le champ de force
CHARMM AA “tout atome” (MacKerell et al. 1998). Les deux systemes de PPARy LBD
utilisés étaient la forme ‘apo’ (Fig. 5) et la forme liée au peptide corepresseur (Fig 7, le peptide

corepresseur en gris). Nous avons examiné l'effet de champ de force Drude sur les mesures

Figure 7.

standard de la dynamique structurale, telles que RMSD et RMSF, en les comparant a des
simulations utilisant un champ de force AA classique. Nous avons généralement constaté que
le champ de force polarisable montrait une RMSD plus élevée et, dans les régions flexibles des

protéines, une plus grande flexibilité. En ce qui concerne les moments dipolaires, nous avons
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confirmé l'effet de la polarisation sur les moments dipolaires des acides aminés, qui est
influencé par la structure secondaire. Nous avons également caractérisé pour la premiére fois
les effets de l'utilisation du champ de force de Drude sur les mouvements corrélés, qui sont
impliqués dans la fonction biologique des protéines. Les mouvements corrélés ont été
caractérisés par des cartes de corrélation générées par des simulations de dynamique
moléculaire, par I'analyse de réseaux communautaires (CNA) et par l'analyse de la carte du
plus court chemin (SMP). Ces deux dernicres interprétent les informations des mouvements
corrélés obtenues a partir des simulations. L’analyse CNA distingue les régions des protéines
ou les résidus interagissent fortement entre eux, et sont placés dans la méme communauté, de
celles qui interagissent plus faiblement. Ces dernicres sont placées au sein d’une autre
communauté et I'information est indiquée par une connexion entre les noeuds. L'analyse révele

en outre les chemins par lesquels les signaux peuvent se propager d'une région a l'autre.
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L'approche SPM fournit davantage de cartographie résidu a résidu des mouvements corrélés,
mais les deux approches ont permis de comprendre comment la dynamique des protéines
s'inscrit dans 1'organisation modulaire de la protéine et révele des résidus ou des communautés
de résidus qui présentent des mouvements coordonnés (Fig. 8, exemple de systtme PPARYy
‘apo’, en rose le SPM des simulations avec le champ de force additif, en bleu le SPM des
simulations utilisant le champ de force polarisé¢ Drude).

Ces mouvements coordonnés peuvent étre a la base de la communication allostérique.
L'analyse des mouvements corrélés par I'examen des cartes de corrélation, 1'analyse CNA et
'analyse SMP basée sur ces corrélations montrent que l'utilisation de la polarisation via le
champ de force de Drude affecte les modes collectifs a basse fréquence en découplant les
mouvements et en adoucissant généralement les mouvements corrélés. Cela suggere que la

protéine simulée sera peut-étre moins sensible aux perturbations introduites, par exemple, par

Omega Loop

Figure 8.
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la liaison d'un ligand ou par l'introduction de mutations ponctuelles. En conclusion, nous
remarquons que la différence majeure survient dans des régions de la protéine qui sont connues,
d'aprées les simulations, pour présenter une flexibilité plus importante que dans d'autres régions
de la protéine, plus précisément dans la moiti¢ du LBD de la protéine, qui contient la poche de

liaison au ligand, et I'hélice H12.

Chapitre VI

En conclusion, I'objectif principal de cette thése était de développer des protocoles intégrant la
spectroscopie d'absorption dans l'infrarouge lointain et des simulations de dynamique
moléculaire pour quantifier et étudier les mouvements collectifs dans les protéines.
L'intégration de mesures dans l'infrarouge lointain (IR lointain) avec des simulations de
dynamique moléculaire (MD) offre une approche puissante et multidimensionnelle pour
¢tudier la dynamique des protéines. Les données de I'IR lointain fournissent également une
validation expérimentale cruciale pour les simulations de dynamique moléculaire, qui donnent
un apercu des changements de conformation des protéines, des mouvements et de la dynamique
collective a basse fréquence des protéines. La combinaison des deux techniques peut fournir
plus d'informations qu’une technique seule. Cela a ét¢ démontré précédemment dans une
premicre étude intégrée de la réponse d'un domaine PDZ a la liaison d'un petit peptide, ou il a
été démontré que des informations exploitables concernant les changements dans les
mouvements collectifs a basse fréquence pouvaient étre obtenues méme pour les protéines ou
il n'y a pas de changement de conformation substantiel lors de la liaison du ligand. L'approche
intégrée a permis de quantifier un mécanisme d'allostérie dans un domaine PDZ. Nous avons
voulu élargir le champ d'application de cette approche intégrée et caractériser la dynamique
des protéines des récepteurs nucléaires (NR). Les RN constituent une superfamille de protéines
qui fonctionnent comme des facteurs de transcription dépendants des ligands et qui se lient a
I'ADN. Le fait qu'il s'agisse d'une protéine complexe de grande taille impliquée dans des
cascades transcriptionnelles qui sous-tendent de nombreux phénomeénes physiologiques en fait
l'un des principaux paradigmes de transduction du signal chez les métazoaires. Le domaine de
liaison au ligand d’un récepteur nucléaire étant une protéine de grande taille par rapport au
domaine PDZ et présentant une allostérie complexe, de nouveaux développements de
l'approche computationnelle antérieure ont été introduits afin d'aborder la dynamique

structurale complexe avec plus de précision.
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Bien que l'approche développée ici continue de s'appuyer sur l'analyse en mode
normaux, qui est un outil informatique puissant pour étudier la dynamique des protéines, en
particulier pour comprendre les mouvements collectifs a basse fréquence, afin de mieux
s'adapter aux longues simulations de dynamique moléculaire, nous avons développé une
approche d'ensemble conformationnel qui inclut un grand nombre de structures extraites de
longues simulations de dynamique moléculaire. Cette approche d'ensemble differe de
l'approche originale dans la mesure ou cette derniére reposait sur l'analyse des modes normaux
d'une seule structure extraite d'une simulation de dynamique moléculaire. Notre approche
d'ensemble conduit a des résultats plus robustes en termes de quantités calculées a partir de
l'analyse des modes normaux. Nous avons ensuite appliqué cette approche a la protéine PPARY,
un récepteur nucléaire. Nous nous sommes concentrés sur le domaine de liaison du ligand dans
les formes apo et holo-sauvage, ainsi que dans deux formes mutantes, ou nous avons caractérisé
les effets de la liaison du ligand agoniste, ainsi que les effets des mutations de gain de fonction
et de perte de fonction sur la dynamique structurale. La spectroscopie d'absorption dans
l'infrarouge lointain (réalisée par nos collaborateurs) et les simulations de dynamique
moléculaire ont été appliquées aux mémes systémes, ce qui a donné une occasion unique
d'étudier les systémes de maniére synergique. Les résultats des calculs ont été comparés aux
résultats des mesures dans l'infrarouge moyen et lointain. C'est la premicre fois qu'une telle
approche est appliquée a une protéine de cette complexité.

Outre la comparaison des spectres IR calculés avec les spectres expérimentaux, qui a
fourni une validation solide des résultats informatiques, nous avons pu calculer, a partir de
notre approche d'ensemble, les mouvements corrélés a longue portée que nous avons utilisés
dans une analyse plus poussée par l'analyse du réseau communautaire, un outil pour extraire
des informations concernant les modes corrélés et identifier les régions locales qui sont
fortement corrélées et leurs interactions avec d'autres régions. Les principales conclusions sont
que des régions importantes sur le plan physiologique ont été¢ identifiées comme étant fortement
corrélées au reste du domaine. En particulier, la boucle entre H8 et H9 forme un nceud
fortement corrélé qui est bien connecté au reste de la protéine. Cette région du LBD est
importante pour les cascades de signalisation dans les protéines des récepteurs nucléaires et
son degré de corrélation couplée au reste du LBD n'a pas été élucidé a un tel degré dans des
¢tudes antérieures. Nous avons également constaté que les régions telles que les régions du

feuillet béta étaient également bien connectées et que l'introduction de ligands agonistes
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déplacait le profil de corrélation vers l'interface du dimére, ce qui serait important pour le
transfert d'informations au cours du processus de transcription des genes.

Ensuite, nous avons présenté une étude de simulation de la protéine du récepteur
nucléaire PPARy et comparé les mouvements corrélés calculés a partir de simulations qui
n'utilisaient pas de champ de force polarisable a celles qui en utilisaient un. Alors que dans de
nombreuses études, les champs de force polarisables montrent de bonnes performances pour
les caractéristiques structurales, telles que la RMSD ou les fluctuations atomiques, nous avons
constaté dans notre étude que la polarisation adoucissait les corrélations calculées. Les
mouvements corrélés ont été soumis a I’analyse de réseau communautaire (CNA), et nous
avons constaté qu'il y avait moins de corrélations entre les différentes régions du LBD par
rapport au champ de force classique pour tous les atomes. Avec des corrélations adoucies, les
interprétations relatives a l'allostérie sont plus difficiles. En outre, l'analyse du réseau
communautaire a donné des résultats moins définitifs lorsque la polarisation a été incluse et
certaines caractéristiques qui avaient un sens physiologique dans le contexte des protéines des
récepteurs nucléaires ont été perdues. Notre étude a donc démontré 1’intérét de comparer les
champs de force polarisables et classiques dans les ¢tudes dans lesquelles les mouvements
collectifs a basse fréquence sont importants, afin d’obtenir une vision plus robuste des réseaux

corrélés.
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MILINSKI Ana
Dynamique structurale du récepteur nucléaire PPARgamma

Résumé

PPARy est un régulateur du métabolisme des lipides et de 1'énergie, et les changements dans sa
dynamique structurale sont impliqués dans de nombreux processus physiologiques et pathologiques.
L’étude au niveau atomique des mécanismes moléculaires qui sous-tendent ces effets dynamiques
implique de caractériser les mouvements, et en particulier les mouvements collectifs de PPARy.

L'objectif de cette these était de développer une nouvelle approche pour mesurer les propriétés
physiques directement liées aux changements dans la dynamique structurale collective a basse
fréquence des protéines. A cette fin, nous avons développé une approche intégrée de spectroscopie dans
l'infrarouge lointain (Far-IR) et de simulation de dynamique moléculaire (MD), appelée « Ensemble
Averaged Normal Modes ». Nous nous sommes appuyés sur I'analyse des modes normaux (NMA) en
mettant en ceuvre un échantillonnage MD, ce qui nous a permis d'étudier les fluctuations, les spectres
IR et les mouvements corrélés. Ces analyses ont été complétées par les analyses de la connectivité et
des évaluations de la structure secondaire et des liaisons hydrogene.

Le chapitre III décrit le protocole développé, qui a été appliqué dans le chapitre IV a PPARY,
en particulier son domaine de liaison au ligand (LBD) sauvage dans les formes apo et holo (li¢ a
l'agoniste GW1929) et portant deux mutations associées au cancer (T4757M et F310S). Le chapitre V
décrit une deuxiéme étude qui portait sur des effets de la polarisation, a travers l'implémentation d’un
champ de force polarisable, sur les mouvements collectifs de PPARY, dans sa forme apo et dans sa
forme liée a un peptide corépresseur.

En conclusion, nous présentons une méthodologie originale qui combine des simulations de
dynamique moléculaire et de la spectroscopie IR lointain, ainsi qu’une application du protocole
développé a 1'étude de PPARY, ainsi qu’une étude de l'impact de la polarisation électronique sur les
mouvements collectifs de PPARy.

Mots clés : PPARgamma, récepteur nucléaire, dynamique moléculaire, mutations, ligand,
mouvements corrélés, polarisation

Abstract

PPARy is a regulator of lipid and energy metabolism and is implicated in many different physiological
and pathological processes. It acts as an allosteric hub receiving chemical signals that are then translated
into biological responses. This action depends on changes in its conformation and its structural
dynamics, the latter being difficult to quantify. An atomic level understanding of the molecular
mechanisms of both physiological and pathological activity of PPARy can be can be understood by
studying the underlying structural dynamics, particularly those of collective motions.

We developed an integrated approach to study physical properties directly related to low
frequency collective structural dynamics of proteins. It is a combined far infrared (Far-IR) spectroscopy
— molecular dynamics (MD) simulation approach that relies on a method we call Ensemble Averaged
Normal Modes. This allowed us to characterise protein fluctuations, computed IR spectra, and
correlated motions. These analyses were complemented by community network analysis, secondary
structure- and hydrogen-bond evaluations.

Developed protocol was applied to PPARy systems, including its wild-type ligand-binding
domain (LBD) in apo and holo forms (bound to agonist ligand GW1929) and two cancer-associated
mutants (gain-of-function T4757M and loss-of-function F310S). Chapter V describes a separate study
of the effects of polarization, through the implementation of the polarizable Drude force field, on the
collective motions of PPARY in its apo form and when bound to a corepressor peptide.

Keywords: PPARgamma, nuclear receptor, molecular dynamics, sampling, mutations, ligand,
collective motions, polarization
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