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1. Biological context - nuclear receptor proteins 
 

The proper and efficient functioning of living cells relies on the intricate regulation of gene 

expression (Cramer 2019). This process is vital for maintaining cellular homeostasis in 

response to constant changes in cell environment. In eucaryotic cells, protein gene transcription 

is carried out sequentially, comprising three main stages: initiation, elongation and termination. 

Each of these steps is regulated by a variety of proteins, namely general transcription factors 

(GTFs), activators and co-activators (Maston, Evans, and Green 2006). For the transcription to 

begin, various activators and coactivators must bind to specific upstream regions of the DNA, 

and their function is to regulate and facilitate chromatin remodelling, as well as to assemble 

additional proteins necessary for the initiation of transcription. Activators, also named 

transcription factors (TFs), are sequence-specific DNA-binding proteins that are classified 

based on their DNA-binding domain structural organization. One superclass of transcription 

factors named “Zinc-coordinating DNA-binding domains”, has either cysteines, histidines, or 

both, coordinating zinc ions. Belonging to this superclass, along with nine others, is the class 

of proteins called nuclear receptors (NRs) (Wingender, Schoeps, and Dönitz 2013). 

 

2. Roles and classification of NRs  
 

Nuclear receptor proteins are found in all metazoans classes, from sponges to vertebrates 

(Miglioli et al. 2021). They govern the transcription of a large variety of genes necessary for 

driving key biological processes, including development, cell proliferation and apoptosis (J. P. 

Renaud and Moras 2000a). They are also critical determinants of everyday health via their roles 

in metabolism and circadian rhythms (Ray 2022). 

In humans, there are 48 nuclear receptor proteins. They modulate transcription by 

selectively binding small-molecule lipophilic ligands, thus providing a direct link between 

signalling molecules and gene transcription (Rastinejad et al. 2013). Their natural ligands are 

small hydrophobic molecules, such as hormones, vitamins, sterols, bile- and fatty acids. NRs 

that have no identified natural ligands are called nuclear orphan receptors (19 out of 48 human 
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NRs), but they also exert active regulation of numerous genes (Tao et al. 2020). The question 

remains open whether this is due to their intrinsic activation activity, making them ligand-

independent (“constitutively active”), or due to unknown metabolites acting as their ligands 

(Tao et al. 2020). Due to their large number of proteins, their different functions and ligands, 

there are several classifications of NRs based on different criteria. Here we adopt the 

classification based on sequence alignment and phylogenetic tree analysis of NRs shown in 

Table 1 (Germain et al. 2006; Owen and Zelent 2000; Weikum, Liu, and Ortlund 2018a). 
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Table 1. Nuclear receptor classification. Adapted from (Weikum et al., 2018).  
Family Name Abbreviation Gene name Ligand
0B Dosage-sensitive sex reversal-adrenal hypoplasia congenital critical 

region on the X chromosome, Gene 1
DAX1 NROB1 Orphan

Short heterodimeric partner SHP NROB2 Orphan SHP NR0B2 Orphan

1A Thyroid hormone receptor-α TRα THRA Thyroid hormones

Thyroid hormone receptor-β TRβ THRB Thyroid hormones

1B Retinoic acid receptor-α RARα RARA Retinoic acids

Retinoic acid receptor-β RARβ RARB Retinoic acids

Retinoic acid receptor-γ RARγ RARG Retinoic acids

1C Peroxisome proliferator-activated receptor-α PPARα PPARA Fatty acids

Peroxisome proliferator-activated receptor-β PPARβ PPARD Fatty acids

Peroxisome proliferator-activated receptor-γ PPARγ PPARG Fatty acids

1D Reverse-Erb-α REV-ERBα REV-ERBα NR1D1 Heme

Reverse-Erb-β REV-ERBβ REV-ERBβ NR1D2 Heme

1F Retinoic acid-related orphan-α RORα RORA Sterols

Retinoic acid-related orphan-β RORβ RORB Sterols

Retinoic acid-related orphan-γ RORγ RORC Sterols

1H Farnesoid X receptor FXRα NR1H4 Bile Acids

Farnesoid X receptor-β FXRβ NR1H5P Orphan

Liver X receptor-α LXRα NR1H3 Oxysterols

Liver X receptor-β LXRβ NR1H2 Oxysterols

1I Vitamin D receptor VDR VDR 1α,25-dihydroxyvitamin D3

Pregnane X receptor PXR NR1I2 PXR NR1I2 Endobiotics and xenobiotics

Constitutive androstane receptor NR1I3 Xenobiotics

2A Hepatocyte nuclear Factor-4-α HNF4α HNF4A Fatty acids

Hepatocyte nuclear Factor-4-γ HNF4γ HNF4G Fatty acids

2B Retinoid X receptor-α RXRα RXRA 9-Cis retinoic acid

Retinoid X receptor-β RXRβ RXRB 9-Cis retinoic acid

Retinoid X receptor-γ RXRγ RXRG 9-Cis retinoic acid

2C Testicular Receptor 2 TR2 NR2C1 Orphan

Testicular Receptor 4 TR4 NR2C2 Orphan

2E Tailless homolog orphan receptor TLX NR2E1 Orphan

Photoreceptor-cell-specific nuclear receptor PNR NR2E3 Orphan
2F Chicken ovalbumin upstream promoter-transcription factor α COUP-TFα NR2F1 Orphan

Chicken ovalbumin upstream promoter-transcription factor β COUP-TFβ NR2F2 Orphan

Chicken ovalbumin upstream promoter-transcription factor γ COUP-TFγ NR2F6 Orphan

3A Estrogen receptor-α ERα ESR1 Estrogens

Estrogen receptor-β Erβ ESR2 Estrogens

3B Estrogen-related receptor-α ERRα ESRRA Orphan

Estrogen-related receptor-β ERRβ ESRRB Orphan

Estrogen-related receptor-γ ERRγ ESRRC Orphan

3C Androgen receptor AR AR Androgens

Glucocorticoid receptor GR NR3C1 Glucocorticoids
Mineralocorticoid receptor MR NR3C2 Mineralocorticoids and 

glucocorticoids
Progesterone receptor PR PGR Progesterone

4A Nerve growth Factor NGF1-B NR4A1 Orphan

Nurr-related Factor 1 NURR1 NR4A2 Unsaturated fatty acids

Neuron-derived orphan Receptor 1 NOR-1 NR4A3 Orphan

5A Steroidogenic Factor 1 SF-1 NR5A1 Phospholipids

Liver receptor Homolog-1 LRH-1 NR5A2 Phospholipids

6A Germ cell nuclear factor GCNF NR6A1 Orphan
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3. Structural organisation  
 

Nuclear receptors are multi-domain proteins that have a shared modular structure where 

different regions corresponding to autonomous domains execute different functions. This 

canonical structural and functional organisation is represented in Fig. 1A, where the canonical 

organization starts with the A/B N terminal domain also called the Activating Function 1 (AF-

1) domain; followed by the C, or DNA binding domain (DBD), the hinge region D and 

terminating with the E or ligand binding domain (LBD), also called the Activating Function 2 

(AF-2) domain. The F domain is not present in all nuclear receptor proteins. Nuclear receptors 

generally function as homo- or hetero-dimers. In Fig. 1B, the domain structures of several 

nuclear receptor proteins are represented to illustrate the diversity of specific domains, in 

particular the length of the A/B domain.  

 

 

 

Figure 1. Representation of nuclear receptor modular organisation. A) Sequential order of modular 
domains. (The F domain is not represented since it is not common to all receptors) B) Examples of nuclear 
receptors, their sequence versatility and length. C) Full‐length NR structure of LXR‐RXR heterodimer 
(PDB: 4NQA). The colours of the structure match the colours of domains in the schematic representation. 
Figure from (Weikum et al., 2018) 
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3.1. A/B domain 
 

The N-terminal A/B domain of nuclear receptors is an intrinsically disordered, sequence 

variable domain with lengths ranging from 8 to 600 residues, depending on the NR protein 

(Fig. 1A, B) (Wärnmark et al. 2003). Many nuclear receptors have several isoforms, which are 

derived from alternative splicing of a single gene. Differences between isoforms are mainly 

found in the A/B domain. It is revealed that the ordering of this domain is not substantially 

changed upon ligand binding (Goswami et al. 2014). The A/B domain contains the autonomous 

AF-1 activation function that mediates the recruitment of multiple transcriptional coregulatory 

proteins in gene regulation (Shamilov and Aneskievich 2019). NRs recruit coregulator proteins 

mediated by the AF-1 domain in ligand-independent manner. The AF-1 surface is known to 

bind coregulators which enable cooperative function between AF-1 and AF-2 regions and thus 

cooperatively enhance transactivation (Bugge et al. 2009; Pawlak, Lefebvre, and Staels 2012). 

In addition, coregulator-linked interactions with the N-terminal and C-terminal domains were 

found for AR, ER and PR (Table 1) (Wärnmark et al. 2003).  

 The A/B domains are frequently targeted by phosphorylation and other post-

translational, covalent modifications, such as SUMOylation, which confer distinct functional 

properties of nuclear receptors. In the case of ligand-activated receptors, AF-1 modifications 

generally have a tissue-specific modulatory effect on their transcriptional properties 

(Gronemeyer, Gustafsson, and Laudet 2004). Studies show that receptors like RAR can be 

phosphorylated by cyclin-dependent kinases, a process that is important for both ligand-

dependent and ligand-independent transactivation (Bour et al. 2005a; Gaillard et al. 2006). For 

example, phosphorylation of the A/B domain of GR by p38 MAPK was shown to induce stable 

tertiary structure formation in this domain, hence favouring its interaction with coregulatory 

proteins (Huppunen, Wohlfahrt, and Aarnisalo 2004; Nader et al. 2010). Due to it being an 

intrinsically disordered (ID) domain, no crystallographic structures of the N-terminal domain 

have been resolved. However, one experimental study, by cryo-electron microscopy (cryo-EM) 

shows full-length androgen receptor (AR) homodimer bound to DNA and two coactivator 

proteins. The N-terminal domains are experimentally characterised as being wrapped around 
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the LBDs of the dimer, providing a platform for coactivator binding (Yu et al. 2020). Kumar 

and Thompson proposed that, since the A/B domain is structured when involved in 

transcriptional activation, it can rapidly and reversibly adopt various configurations that are 

available for binding by coregulator proteins (R. Kumar and Thompson 2012). 

 

3.2. C domain  
 

 The DNA-binding domain (DBD), or the C domain, enables specific recognition of, and 

binding to target DNA sequences (Claessens and Gewirth 2004). It is, structurally and 

functionally, a highly conserved domain consisting of 60-70 amino acids that are organised as 

a globular domain of two α-helices with short anti-parallel β-strands, see Fig. 2 (Pohl and 

Tomlinson 2020). It contains two zinc finger motifs, in which zinc ions are coordinated by four 

highly conserved cysteine residues (Fig. 2A). These two zinc finger motives are responsible 

for DNA sequence recognition (Freedman et al. 1988). The C domain contains several 

sequence elements, named P-, D-, T- and A-boxes (Novac and Heinzel 2004). The P-box 

consist of key residues that enable the accurate identification of the major groove of specific 

DNA sequences (Fig. 2B). D-box is responsible for DNA-dependent dimerization and, more 

precisely, for the half-site spacing. Additional T- and A-boxes, which are at the C-terminal 

extension (CTE) of this domain (or sometimes even in the D domain), contain amino acid 

residues that are essential for the creation of functional dimers. Studies have shown that the 

dimerization of DNA-binding domains takes place simultaneously with their interaction with 

DNA, rendering DNA an allosteric effector (Claessens and Gewirth 2004). 
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 In order to regulate transcription, nuclear receptors bind DNA by recognising specific 

sequences called hormone response elements (HREs). HREs are organised in ‘half-sites’, and 

can take on different patterns of organisation of the consensus recognition motif. This 

recognition motif contains nucleotide sequences 5'-AGGTCA-3' or 5'-AGAACA-3'. The 

specificity of NR binding to a particular promoter region is related to the placement of these 

repeats (Evans and Mangelsdorf 2014). They are organised as one (for monomeric receptors) 

or two (for dimeric receptors) repeats. Two repeats can be direct or inverted, see Fig. 3. For 

example, the steroid hormone receptors bind to direct or inverted repeats, while other 

heterodimeric nuclear receptors bind direct repeats. For the NRs that bind direct repeats, the 

space between the core recognition motifs dictates the binding specificity. The spacing between 

repeats can be 1 - 5 base pairs, denominated ID1 - ID5, or DR1 - DR5. If there is no spacing 

(no nucleotides) between direct or inverted repeats, they are called tandem and palindrome 

repeats, respectively. The discrimination between these hexamers is mainly due to differences 

in the structure of the response elements, allowing the intercalation of water molecules between 

the DNA and DBD residues, thus destabilising the complex when there is an incorrect match 

(Gewirth and Sigler 1995). One classification of nuclear receptors is based on the organisation 

of half-sites to which they bind. The class I and class II receptors bind to two half-sites 

organised as inverted repeats (IRs) of different sequences. Class III receptors bind to direct 

repeats (DRs), while class IV receptors typically bind to unique half-sites as monomers. 

 

Figure 3. Representation of NR - DNA binding. Schematic representation of NR binding to DNA 
sequences called repose elements. DR: Direct repeats; IR: Inverted repeats. Examples of nuclear 
receptors: SR: steroid receptors. RXR: Retinoid X receptor, in heterodimer, where X is another NR. 
DOR: orphan receptors without known ligands. Monomeric orphan receptor is for example NGF1-B. 
Figure adapted from Pastori, V., Pozzi, S., Labedz, A., Ahmed, S., & Ronchi, A. E. (2022).  
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3.3. D domain  
 

The D domain, also referred to as the hinge region, connects the DNA and ligand-binding 

domains, facilitating the receptor's structural flexibility (Novac and Heinzel 2004). This region 

had been initially seen as a flexible region with no particular function, however several nuclear 

receptor studies have revealed different functions. The D domain contains the nuclear receptor 

localisation signal (NLS). It also provides the ability to bind to DNA through the T- and A-

boxes, which are found in the conserved N-terminal of this domain. Even though these two box 

elements are in the hinge region, they are ascribed the function of the DNA-binding domain. 

The T- and A-boxes are involved in NR dimerisation and half-site recognition (DNA minor 

groove), respectively. The hinge region of thyroid receptor is seen to accommodate corepressor 

proteins that inactivate the nuclear receptor. The hinge region is also known to accommodate 

some residue mutations that impede ligand binding when bound to the DNA, and, therefore, 

by extension prevent corepressor protein release (Safer et al. 1998). 

 

3.4. E domain 
 

The ligand-binding domain (LBD) is a multifunction domain comprised of around 250 residues 

and is structurally highly conserved within and between species (Mitsis et al. 2019). Nuclear 

receptors share a similar overall conformation of LBDs, consisting of 11 - 13 alpha-helices, 

and a small beta sheet, ordered in a 'three-layered sandwich' (Moras and Gronemeyer 1998). 

The canonical structure of this domain has been resolved by crystallographic experiments many 

times (Fig. 4). Variations of the canonical structure involve certain receptors, such that they 

present an additional helix between H1 and H3. The 'sandwich'-like structure has the first layer 

made of helices H1 - H3, the second layer is composed of helices H4, H5, H6, H8 and H9, and 

the final layer composed of helices H7, H10 and H11. The H12 is the C-terminal flexible helix, 

also known as the AF-2, contributes to the NR functionality by its flexibility. The structure is 

assembled around a hydrophobic core, or pocket, which can accommodate various lipophilic 

ligands (Rastinejad et al. 2013).  
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4. Mechanisms of transcription regulation 
4.1. Transcriptional activation 

 

The LBD is implicated in multiple functions - ligand binding, protein dimerization and the co-

regulatory protein binding, through the ligand-dependent transactivation function, AF-2 

(Germain and Bourguet 2013). The structural changes seen in the LBD upon ligand binding 

concern the increase in the compactness of the domain and a specific change in the position of 

the C-terminal helix H12. The helix adopts a distinct transcriptionally 'active conformation', 

characterised by numerous crystallographic structures (Fig. 6). The active conformation of H12 

makes it more stable, positioned adjacent to helices H3, H4 and H11. The interface made of 

these helices constitutes a platform for coactivator protein binding, after the release of 

corepressor protein. This model of receptor activation in which H12 closes on the ligand-

binding site in response to ligand binding, rendering the receptor active and ready to 

accommodate coactivator protein is termed 'the mousetrap model' (J.-P. Renaud et al. 1995).  

 

 

 

 

Figure 5. Ligand binding pockets of three nuclear receptors. LBPs of (GR, FXR, and PPARgamma
are in blue, represented for comparison of their size. Figure from (Weikum et al., 2018) 
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Kallenberger et al. 2003; le Maire et al. 2010) and there are examples where the binding of 

dissimilar ligands results in similar structures of the LBD/ligand complex as determined by X-

ray crystallography, but the regulatory consequences are distinct. This suggests a contribution 

of structural dynamics to selective targeting of different regulatory pathways (Nwachukwu et 

al. 2016; Choi et al. 2010; 2011; Chrisman et al. 2018; Nettles et al. 2008; Zheng et al. 2018).  

So, adding to the foundations of the mouse trap model is a more dynamical view of the 

activation. Dynamical models describe nuclear receptors as a dynamic ensemble of 

conformations, where ligand binding shifts the population of these conformations, influencing 

receptor activity (Khan et al. 2022). This model captures the receptor's intrinsic flexibility and 

accommodates observations that different ligands stabilize distinct conformations with varying 

transcriptional outcomes.  

Furthermore, the allosteric modulation of NRs is a topic of interest where novel 

mechanisms trigger an allosteric response at the level of the LBD or spanning across domains, 

to a transcriptionally active receptor. These include (non)canonical ligand binding (Cossins 

and Lawson 2015; Meijer et al. 2019), interactions with different proteins (Fernandez 2018) or 

DNA (A. K. M. Patel et al. 2023), and post-translational modifications (PTMs). One example 

of PTM triggered allostery is found in the RAR nuclear receptor, whose primary regulator is 

retinoic acid. Phosphorylation of the ligand binding domain has been shown to modulate 

downstream phosphorylation of the regulatory A/B domain and thus nuclear signalling 

(Gaillard et al. 2006; Bour et al. 2005b; Samarut et al. 2011a). Molecular dynamics simulations 

showed that phosphorylation of the RARg (and RARa) receptors of this family leads to changes 

in the dynamic properties of the protein without producing significant conformational 

rearrangements (Chebaro et al. 2013; 2017). Along with these studies, the whole genome 

sequencing helped understand how epigenetics can dictate NR binding sites, which are not only 

found in gene promoter regions, but in the regions between genes, acting as enhancers, and 

regulate the transcription of target genes (D. X. Zhang and Glass 2013). 
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4.2. Transcriptional repression 
 
The repressive conformation of nuclear receptors is characterised by specific structural features 

that distinguish it from the active state. The most prominent, and the most studied, structural 

change happens at the LBD level and involves the region carrying the activation function 2 

(AF-2) region. In most cases, in the absence of ligand, the AF-2 H12 helix adopts a position 

different from the transcriptionally active conformation, where it is against the LBD making a 

hydrophobic platform with helices H3 and H4 for coactivator protein binding. Instead, the AF-

2 favours interactions with corepressor proteins. In order to ensure a stable repressive 

configuration, the helix 12 can either adopt a conformation where it is stabilized against LBD, 

while creating a surface that is highly compatible with corepressors, or experience a higher 

degree of dynamics, resulting in movements where it can take multiple conformations, 

including being extended in solution. This is most often translated as the absence of electron 

density for this region, or a secondary structure that is stabilised by crystal contacts. One 

example of distinct active and repressive conformations is the retinoid X receptor alpha 

(RXRa) (Fig. 6). 

 While the detailed mechanism of molecular switching between an active and repressed 

form is not known in detail, and coupled with the fact that there are relatively few structures of 

nuclear receptors in their inactive form, crystallographic structures show a distinction between 

the "unligated", or "apo" form, and the “ligand-bound” or “holo” form (Torchia, Glass, and 

Rosenfeld 1998a). Furthermore, the mechanism of NR repression is not necessarily universal 

for different NRs, unlike NR ligand-dependent activation. The most straightforward 

mechanism, which was first discovered, is that in the presence of activating ligand, NRs are 

associated with coactivators, and in the absence of ligands, they are associated with 

corepressors (Fig. 7) (McKenna, Lanz, and O’Malley 1999; Nagy 2004).  A significant 

characteristic of these interactions is that both corepressors and coactivators bind to 

overlapping surfaces of LBDs, rendering their binding mutually exclusive. This way, both 

states are seen as structured conformations actively repressing or activating transcription. The 

majority of nuclear receptors are in the cytoplasm in their unbounded form, precluded from 
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evident when considering the number and importance of genes whose transcription they 

modulate. More specifically, given the absence of a recognised category of endogenous 

antagonists, it is not unexpected that the control of repression encompasses a large variety of 

mechanisms (Nagy 2004). Additionally, post-translational modifications (PTMs), such as 

phosphorylation or ubiquitination, can modulate the stability and dynamics of both active and 

the repressive states (Rosenfeld, Lunyak, and Glass 2006). In conclusion, nuclear receptors 

exhibit conformations with varying affinity for corepressors and DNA.  

 

4.3. Coregulator proteins  
 

Since nuclear receptor proteins have no intrinsic enzymatic activity, they rely on other proteins 

to carry out their function and facilitate the transcriptional regulation of target genes. 

Coregulator proteins, or cofactors, are essential for enabling nuclear receptors (NRs) to 

modulate transcription. They significantly contribute to the stabilization of large complexes of 

NRs along with the basal transcription machinery at the promoter region through a series of 

molecular interactions (Raj Kumar, Johnson, and Thompson 2004a; Millard et al. 2013). 

Coregulators are large proteins that can count more than 2500 residues, and whose structures 

are often characterised by intrinsically disordered (ID) regions. This supports their role in 

flexible and dynamic interaction with different partners and participation in signalling complexes. 

The ID regions, which are subjected to covalent PTMs, primarily phosphorylation, acetylation, 

and ubiquitination, probably allow coregulators to adopt different conformations when binding 

to different nuclear receptors or other coregulators. Forming transient, dynamic interactions 

with many interactants would be an essential feature for rapid assembly and disassembly of 

large complexes. More than 300 coregulator proteins are known (“dkNET | dkNET Data 

Archive: NURSA (Nuclear Receptor Signaling Atlas)” 2024), data from 2020). Most 

coregulators belong to the group responsible for covalently modifying histones or 

transcriptional machinery through PTMs, through ATP-dependent activity, ubiquitination and 

SUMOylation. The second group physically bridges nuclear receptors with other essential 

components of the transcriptional machinery (Kishimoto et al. 2006; Lonard and O’Malley 
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2007; Rosenfeld, Lunyak, and Glass 2006; Torchia, Glass, and Rosenfeld 1998b). These 

coregulators primarily function in two distinct capacities, either as coactivators or as 

corepressors of the transcriptional process. 

 

4.3.1. Coactivators 
 

Coactivators are proteins that enhance the transcription process. They contain a characteristic 

leucine-rich recognition motif defined by a consensus amino acid sequence of LXXLL, which 

is responsible for the interaction with nuclear receptors. This motif is a part of a longer helix 

that carries residues implicated in a charge clamp, where two charged amino acids of the 

coactivator interact with two charged amino acids from helices H3 and H12 (Weikum, Liu, and 

Ortlund 2018a). Their enzymatic activity encompasses chromatin and nucleosome 

remodelling. For example, the acetylation of histones tails by histone acetylases (HATs) on 

sites H3K9 and H4K20, the methylation on site H3K4, and phosphorylation of linker histones. 

These modifications weaken the electrostatic interaction between the positively 

charged histone tails and the negatively charged backbone of the DNA, resulting in chromatin 

decondensation, which opens the way for transcriptional activation. Examples of coactivators 

include protein complexes such as the cAMP response element binding protein (CBP/p300), 

as well as the CBP association factor known as p/CAF, both of which exhibit intrinsic HAT 

activity. Other important coactivators encompass members of various families, including the 

p160s/Steroid Receptor Coactivator (SRC-1) complex, coactivator associated arginine 

methyltransferase (CARM), and protein arginine methyltransferase (PRMT) families. The 

binding of coactivator complexes to NRs allows the association of the pre-initiation complex 

(PIC) in the correct position and its stabilization. This complex contains RNA polymerase II 

general transcription factors (GTFs), necessary for transcription (J. P. Renaud and Moras 

2000b). 
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4.3.2. Corepressors  
 

In contrast, NR corepressor proteins, which repress transcription, are characterized by the motif 

LXX I/H IXXX I/L, alternatively referred to as the Cornr-box (X. Hu and Lazar 1999). The 

two most extensively studied nuclear receptor corepressors are the Silencing mediator of 

retinoid and thyroid hormone receptors (SMRT) and the Nuclear receptor corepressor (NCoR), 

which are large homologous proteins that function as a structural platform, facilitating the 

binding of multiple cofactors. These hub proteins engage in complex assembly with histone 

deacetylase enzymes (HDACs). The activity of HDACs closes the chromatin around 

nucleosomes, physically preventing gene transcription. The interaction between a nuclear 

receptor and a corepressor can be enhanced by the addition of an inverse agonist ligand, which 

is disrupted when an agonist ligand binds to the receptor, underscoring the dynamic nature of 

these molecular interactions. The majority of LBD crystal structures in complex with 

corepressor peptides have synthetic antagonists bound, in order to enhance their interaction or 

stabilise the H12 in a position suitable for corepressor binding (H. Zhang et al. 2011).  

 

4.4. Dimerisation 
 

Nuclear receptor dimerization is a critical mechanism that enhances the transcriptional 

regulation of genes. NRs can assemble in homo- or hetero-dimers. The receptor RXR plays an 

important role since it can both homodimerize and act as a common dimerisation partner for 

other NRs. Dimerisation at the LBD level essentially helps stabilize the dimer, while 

dimerization at the DBD helps DNA specific sequence recognition. LBD dimerisation 

interfaces have been mainly determined through crystallographic studies, showing that the 

topologically conserved dimerization surface is comprised of helices H7, H9 and H10-11, 

including the loops H8-9 and L9-10 (Germain and Bourguet 2013). The sequence specificity 

determines the binding specificity of different receptors. The group of steroid receptors (AR, 

PR, GR, and MR) represents an exception to this established dimerization interface, but 
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bioinformatic tools can help decipher their alternative homodimer binding surfaces (Bianchetti 

et al. 2018). 

 

5. Peroxisome proliferator - activated receptors (PPARs) 
 

Peroxisome proliferator - activated receptors, commonly referred to as PPARs belong to 

subgroup 1 of the NR superfamily, along with receptors TR (thyroid hormone receptors), RAR 

(retinoic acid receptors), REV-ERB (reverse-Erb), ROR (retinoic acid related orphan receptor), 

FXR (farnesoid X receptor), LXR (liver X receptor) and VDR (vitamin D receptor) (Weikum, 

Liu, and Ortlund 2018b). Within the PPAR subfamily, there exist three distinct isotypes 

(subtypes): PPARα (NR1C1), PPARβ/δ (NR1C2) and PPARg (NR1C3), encoded by different 

genes. Even though they play a central role in lipid metabolism, they are named after their 

ability to bind peroxisome proliferators, in the first study from 1990 (Issemann and Green 

1990). Peroxisome proliferators (PPs) are a class of structurally diverse endogenous substances 

and exogenous chemicals that increase the number and size of peroxisomes (M. Jiang and Yang 

2014). Exogenic PPs are proven to have cancerogenic effect in rodent models and are used for 

different purposes, such as herbicides, plasticizers, and industrial solvents (Abdelmalak, Yang, 

and Ray 2024). Peroxisomes are single - membrane cytoplasmic organelles, which assure 

several metabolic functions such as b-oxidation of fatty acids, ether phospholipid and bile acid 

synthesis, and glyoxylate detoxification (Wanders et al. 2023).  

Due to the considerable size of their ligand binding pockets, PPARs can accommodate 

a large number of various ligands. The endogenous ligands of PPARs are long chain saturated, 

mono- (MUFA) and polyunsaturated (PUFA) fatty acids (FA), as well as and their lipophilic 

derivatives, called eicosanoids, highlighting the connection between these receptors and lipid 

metabolism (Gervois et al. 2000).  Three PPAR isotypes differ in tissue expression, together 

controlling the expression of genes involved in lipid and glucose metabolism, in development, 

and inflammatory response (Berger and Moller 2002). PPARa is primarily expressed in tissues 

having high FA oxidation rate, such as liver, heart, skeletal muscle, white adipose tissue and 

kidney. It promotes FA uptake in these tissues, through mitochondrial and peroxisomal b-
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oxidation, producing acetyl-CoA and ATP the latter affecting the indirect modulation of 

glucose metabolism. High-affinity PPARα agonists, called fibrates have been used for treating 

dyslipidaemia (unhealthy levels of one or more kinds of lipid in blood). The PPARb/d is the 

least studied isotype, found predominantly in skeletal and cardiac muscles, where it controls 

the metabolic switch from glucose to FA utilization, and decreases lipid accumulation. Trials 

on treatments for dyslipidaemia and type 2 diabetes mellitus targeting PPARb/d have been 

discontinued due to safety concerns, warranting further studies (Lamas Bervejillo and Ferreira 

2019).  

 

5.1. Peroxisome proliferator - activated receptor gamma (PPARg) 
 

Peroxisome proliferator - activated receptor gamma (PPARg) was initially discovered based on 

its similarity to PPARa. PPARg protein is coded by the PPARG gene, found on chromosome 

3. It has two separate promoters and different 5' exons resulting in at least four mRNAs. The 

isoform PPARg2, which has 505 residues, is considered to be the full-length protein. It has 

molecular mass of 57.62 kDa (UniProt 2024). PPARg is primarily expressed in brown and 

white adipose tissue where it plays a crucial role in regulating adipogenesis and glucose 

metabolism by promoting the differentiation of pre-adipocytes into mature adipocytes. It 

stimulates glucose uptake by regulating the secretion of adipocytokines - the mediators of 

insulin action (Janani and Ranjitha Kumari 2015). PPARg is present in macrophages, dendritic- 

and T-cells, where it acts as an immune-modulator, specifically as a repressor of inflammation. 

Furthermore, it has a dual role in cancer - it can act as a tumor suppressor and as an initiator, 

depending on cancer type (Hernandez-Quiles, Broekema, and Kalkhoven 2021a). Therefore, 

PPARg represents a target for treatment of type 2 diabetes mellitus, cancer, inflammation and 

hypertension (Berger and Moller 2002).  

 With a ligand binding pocket of about 1300 Å3, PPARg can accommodate a variety of 

lipophilic ligands - polyunsaturated fatty acids (PUFAs) and their oxidised derivatives called 

eicosanoids. Fatty acids, such as linoleic, docosahexaenoic, and eicosatetraenoic acids, bind 
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PPARg at µM levels. PPARγ governs hormone- and nutrient-mediated responses, by 

accommodating different ligands: eicosanoids (ex. prostalglandins), nitrated fatty acids, 

flavonoids, nutrients such as glutamine and arginine (Marion-Letellier, Savoye, and Ghosh 

2016a). Man-made compounds with an agonistic effect on PPARg are phtalates and bisphenols. 

PPARg is a cognate receptor for thiazolidinediones (such as rosiglitazone and pioglitazone), 

which are a class of anti-hyperglycaemic drugs developed for the treatment of type 2 diabetes. 

However, their use has been challenged due to serious side - effects (Dubois et al. 2020). 

 PPARg is localized both in the cytoplasm and in the cell nucleus, where it exerts its 

function of nuclear repressor. Nuclear - cytoplasmic shuttling of PPARg in the cell is largely 

determined by ligand concentration (Umemoto and Fujiki 2012). In absence of ligand, PPARγ 

interacts with corepressor complexes, such as NCoR or SMRT, which recruit chromatin-

modifying enzymes (HDACs) and actively repress transcription. After binding an agonist 

ligand, PPARγ forms a heterodimer with the receptor retinoid X receptor (RXR)(Fig. 8). The 

heterodimer can recruit coactivators such as PPARγ coactivator 1-α (PGC-1α) or E1A binding 

protein p300 (EP300), which carry HAT enzymatic activity. DNA binding occurs on the 

peroxisome proliferator response element (PPRE) gene promoter, which are usually direct 

hexamer repeats spaced by 1 (DR1) or 2 (DR2) nucleotides, leading to regulation of gene 

transcription (Schoonjans, Staels, and Auwerx 1996). Binding profiles have indicated that 

PPARγ binds to thousands of PPRE sites in the genome (many of which are located far from 

proximal promoters) and that the PPARγ binding is cell-dependent (binding differs between 

cell types and adipocytes from different anatomical locations) (Nielsen et al. 2008; Siersbæk 

et al. 2012). Additional level of PPARγ regulation of activity is at the epigenetic level.  

Covalent post-translational modifications, such as phosphorylation or SUMOylation can 

modulate the activity of PPARγ. One particular PTM, the over-phosphorylation of Ser273 by 

cyclin-dependent kinase 5 (CDK5) leads to suppression of genes that promote insulin 

sensitivity (Choi et al. 2010). This turn of events results in insulin resistance, increasing the 

risk of type 2 diabetes and cardiovascular diseases.  
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 The PPARg ligand binding domain has the canonical NR structure, composed of 12 a 

helices, one 2 or 3-strand b sheet, and a small additional a helix H2` (Fig. 9). To date, there 

are over 300 resolved structures in the PDB, of the ligand binding domain (residues 230 - 505), 

with or without RXR receptor, and with the resolution as high as 1.42 Å. In addition, we find 

3 crystallographic structures of the full-length receptor (residues 102 - 5005 minus the N-

terminal domain). Most of the LBD structures depict the active state of the protein, in the 

presence of natural or synthetic ligands, or through the stabilisation of the H12 by crystal 

contacts. In some of these structures, the omega loop structure is not resolved, indicating its 

flexibility. The inactive conformation of the PPARg remains controversial. One structure of 

PPARg LBD bound to an antagonist and SMRT corepressor peptide does not have H12 electron 

density (PDB ID: 7SQA). The structure which binds covalent synthetic inverse agonist (PDB 

ID: 6ONI) can be seen as having the helix H12 inside the ligand binding pocket. We will not 

discuss the physiological importance of such structures, but we will note that the true "apo" 

form of PPARg LBD, which would represent an inactive conformation, are scarce (PDB IDs: 

7WOX chain B, and 2PRG chain B). The structures of “apo” PPARg in the Protein Data Bank 

generally have H12 stabilised in a position that is not considered transcriptionally active (Fig. 

9). Concerning the full-length repressive conformation of PPARg, studies showed that the AF-

1 of N-terminal domain inhibits PPARγ activity, through the (MAP) kinase-mediated 

phosphorylation (E. Hu et al. 1996), and a recent study (from BioRxiv) found that this 

inhibition happens through  the interaction of NTD with the b sheet and H12 of the LBD, which 

could compete for coactivator binding (Mosure et al. 2024). 

 The conformational dynamics of PPARg was first studied using NMR experiments, 

which showed that more than half of the pics were missing in "apo" structure compared to an 

agonist - bound form. This further suggested that adding the agonist (here rosiglitazone) led to 

the stabilisation of the domain, and that the domain activation of this is a result of a population 

shift of a dynamic ensemble of conformations, rather than a switch from an inactive to an active 

conformation (of the helix H12) (Bruce A. Johnson et al. 2000). Further studies of hydrogen-

deuterium exchange (HDX) coupled mass-spectrometry (MS), NMR and fluorescence 
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anisotropy, revealed high flexibility of H12, the last portion of helix H11and the loop H11-

H12, which were stabilized solely in response to ligand binding (Bruning et al. 2007; Hughes 

et al. 2012b). Sampling of PPARg apo state was also done using molecular dynamics 

simulations. Studies by Fratev and colleagues (Fratev 2016; Fratev et al. 2015) by accelerated 

MD (aMD) and metadynamics (metaD), of ~12µs, indicate that the C-terminal H12 can adopt 

an antagonist conformation in mainly 2 clusters, starting from active conformations, and one 

cluster shows H12 conformation similar to the one found in two 'apo' crystallographic 

structures. Another combined experimental - MD study by (Chrisman et al. 2018a) showed the 

that helix 12 and the coregulator-binding surface are a dynamic structural ensemble, and reveal 

several clusters of H12 conformational state, in apo and corepressor - bound form, among 

others. 
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in many different physiological processes, as well as disease (Tompa 2016). For example, 

recurrent mutations of PPARγ were found to activate the PPARγ/RXRα pathway in luminal 

bladder cancer (Natacha Rochel et al. 2019). Mutations were found throughout the protein - 

including N-terminal, DNA-binding and ligand-binding domains, and most of them enhance 

protein activity. Structure-function and molecular dynamics studies of some of PPARγ variants 

with mutations in the ligand-binding domain allowed for the identification of structural 

dynamic elements that underpin the gain-of-function of PPARG mutants that lead to pro-

tumorigenic PPARγ/RXRα pathway activation in luminal bladder tumours.  

The atomic level understanding of molecular mechanisms of biological activity, both 

physiological and pathological, has been largely dominated by the structural analysis of 

implicated biomolecules. However, there is a growing realization that understanding can be 

significantly improved by including consideration of the underlying structural dynamics, 

particularly those of collective motions (Ponzoni and Bahar 2018; Bahar et al. 2015; Seo et al. 

2014; Shukla, Shukla, and Tripathi 2018). These trends underscore a shift towards a more 

dynamic understanding of biological structures, emphasizing the importance of movement, 

flexibility, and temporal changes in biomolecular function. Advances in technology and 

computational methods are key drivers of these developments, providing unprecedented detail 

and insight into the complexity of life at the molecular level.  

It remains a major scientific challenge to quantify changes in structural dynamics and 

understand how these changes are coupled to different physiological mechanisms. The most 

used method for studying structural dynamics in proteins is solution NMR (Salvi, Abyzov, and 

Blackledge 2017; Walinda, Morimoto, and Sugase 2018). However, this approach is often 

limited to proteins under 50 kDa, although new labelling techniques have been pushing the size 

limit upwards. Spectroscopic techniques, such as far-IR and terahertz (THz) spectroscopies 

(both time dependent and absorption) are emerging as attractive for studying biophysical 

processes (Khoury and Hellwig 2017), but their application has remained limited to isolated 

proteins and peptides, as discussed in the next section.  

 The objective of this thesis is to develop new approaches to measure physical properties 

directly related to changes in low frequency collective structural dynamics of proteins. Toward 
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this end, we plan to develop an integrated far infrared absorption spectroscopy – molecular 

dynamics simulation approach. Far infrared absorption spectroscopies probe the low frequency 

region of the vibrational spectrum and reveal the collective vibrational modes in the spectral 

region from 0.06 THz (2 cm-1) to 10 THz (333 cm-1), a frequency region that is accessible to 

vibrational analysis based on molecular mechanics and dynamics calculations.  Our hypothesis 

is that spectroscopic techniques such as far-IR absorption spectroscopy, when combined with 

molecular modelling and structural and biophysical analysis, can be used to advance our 

understanding of the structural dynamic response of proteins to ligand binding, even when the 

structural changes are minimal or non-existent (Cooper and Dryden 1984b).  Not limited by 

protein size, the establishment and integration of far-IR spectroscopy with other biophysical 

approaches will provide an innovative means to quantify a low-frequency vibrational 

fingerprint of the protein as well as changes to this fingerprint as a function of ligand binding 

and complexation. We will be able to study a much wider range of proteins and their complexes 

than current approaches (i.e. NMR) permit.  

 This project is founded upon work studying ligand binding and allostery in the MAGI1 

PDZ domain (Cote et al. 2017a). In that work, far-IR absorption spectroscopy and molecular 

dynamics simulations were combined to study the structural dynamic response of this PDZ 

domain to the binding of a small peptide ligand.  These first results demonstrated the potential 

of combining far-IR experiments and molecular dynamics (MD) simulations for the study of 

ligand binding by proteins. We believe that, through the development of far-IR/modelling 

approaches, we will be able to uniquely characterize low-frequency motions and exploit this 

information in novel ways to target proteins which can be considered in drug development 

projects. The first work also made clear certain developments were in order, including moving 

towards more complex systems and the consideration of ensembles of conformations rather 

than single conformations and improvements in simulation technology for interpreting 

spectroscopic data.  

 Concerning the computational approach, normal mode (NM) analysis is a technique 

that continues to contribute to new technologies. NMs explore the collective motions within a 

molecule by examining its vibrational modes. These modes represent the natural, low-
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frequency movements that the molecule can undergo without significant changes in its 

structure. 

Some of the notable techniques where normal mode analysis has been used includes 

cryo-electron microscopy (cryo-EM). Cryo-EM has become a critical tool for determining the 

structures of large macromolecular complexes at near-atomic resolutions and more recently 

has been providing insights in the dynamics of biological assemblies through the elucidation 

of the subject molecules in different conformations. An essential computational tool 

underpinning these applications is normal mode analysis (Harastani et al. 2022; Grudinin, 

Laine, and Hoffmann 2020). Single molecule fluorescence, smFRET, enables the study of 

dynamic processes at the single-molecule level, providing detailed information about 

conformational changes and interactions in real-time. Normal mode analysis has been 

employed in the interpretation of the experiments (Gabba et al. 2014).  

Normal modes can play a significant role when they are employed in conjunction with 

molecular dynamics simulations, for example being an integral part of enhanced sampling 

algorithms that improve the exploration of conformational space. One such approach is the 

Molecular Dynamics with Excited Normal Modes (MDeNM) method (Costa et al. 2023).  

MDeNM is an enhanced sampling method that combines molecular dynamics simulations with 

normal mode analysis (NMA) to accelerate sampling. It uses a few low-frequency normal 

modes to guide the dynamics and has been shown to explore protein conformational space 

more effectively than standard MD. With these methods, one is able to study large scale 

conformational changes, such as domain movements, binding events, allosteric regulation, or 

folding processes.  

 In the next chapter, we present the methods used in the course of this thesis, followed 

by chapter III, which presents our ensemble approach to calculating properties from normal 

mode analysis. Chapter III serves as a prelude to the applications presented in the subsequent 

chapters. Chapter IV presents the results obtained in a large study of PPARg in apo WT, holo 

WT and two mutant forms, using the combined far-IR/molecular dynamics approach. The 

objective was to investigate the effects of different perturbations to the underlying low 

frequency collective motions, which are often attributed to important physiological function. 
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Chapter V presents results for a theoretical study on the effects of polarization on the collective 

motions of proteins. Polarization was introduced via the Drude polarizable force field (Lopes, 

Huang, Shim, Luo, Li, Roux, and Mackerell 2013). The final chapter presents conclusions and 

perspectives. 

  



 
 

 
 

38 

 
 

 

 

 
 
 
 

Chapter II - Methodology 
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1. Molecular modelling 
 
According to A. Leach.  « molecular modelling represents a simplified description of a system 

or a process (...) devised to facilitate calculations and prediction of behaviour of molecules an 

molecular systems. » (Leach 2001a). A system is the portion or the subset of the physical world 

that we are modelling. It is described by its constituents and the interactions between them 

(Haile 1997). In order to observe, and further analyse them, we must first model them - meaning 

we have to assign numerical values to the constituents of our system. The art of modelling lies 

in the ability to make a system simpler than reality, to exclude the constituents that have little 

to no impact on the results. The system's behaviour will remain consistent with physical reality, 

in the scope of a restricted set of input conditions. One set of methods used for describing 

properties of molecular systems is molecular mechanics (Allinger 1982).  

 

2. Molecular mechanics  
 

Molecular mechanics (MM) is a computational method which describes molecular systems 

using classical mechanics principles. Its advantage lies in the simplified and, therefore, less 

computationally expensive, calculations, compared to quantum mechanics (QM). Despite the 

advancement in the computing capacities, it is still largely used for quick calculations, 

applications to large systems and for simulating longer molecular dynamics. In all-atom MM, 

atoms are represented as particles (no separation of nuclei and electrons), connected to other 

atoms via springs (Hooke's law), which undergo vibrational motion. The specific parameters 

describing atoms and bonds are derived from experimental data, empirical or ab initio 

(quantum mechanical) calculations, and will be described in the next paragraph. Molecular 

mechanics calculations are used, primarily, for calculating the potential energy of molecular 

systems, energy minimization, molecular dynamics simulations, or even in molecular docking 

studies. We will describe it in terms of potential energy, energy minimization and normal mode 

analysis.  
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2.1. Potential energy function: All - Atom Additive Force Field  
 

The basis of molecular mechanics that characterizes the dynamical behaviour of molecules of 

biological interest is the potential energy surface. The potential energy surface (PES) represents 

the energy of a system as a function of atomic positions, i.e. how the energy changes for 

different molecular conformations. The first information we get from the PES are relative 

stabilities of different conformations of our system. The most accurate PES of a molecular 

system can be obtained by quantum calculations. However, historically, the capacities for doing 

these complex calculations were limited by computer power, so the first models that would 

represent the PES were created as a way of simplifying and approximating the systems that 

were studied. The model that is applied for calculating the potential surface is given in the form 

of potential energy function (U), also called force field (FF). A force field is a sum of individual 

bonded and non – bonded terms, as a function of atomic coordinates, describing inter- and 

intramolecular interactions of the atoms in a system (Eq.1).  

 𝑈 = 𝐸	"#$%&%	 + 𝐸	$#$'"#$%&% (1) 
     

 Since the development of the approach, different force fields have been developed with 

some common features such as the use of harmonic potentials with a force constant that restores 

the equilibrium positions for bonds and valence angles (an angle between three atoms). Here, 

we will consider the all atom force field developed for the CHARMM program, called 

ALLATOM36 (A. D. MacKerell, Jr, et al. 1998), in its integral form (Eq. 2): 
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𝑈 =	) 𝑘( 	(𝑟 −	𝑟))*	"#$%+ +	) 𝑘, 	(𝜃 −	𝜃))*	-$./&+ +	) 𝑘01 	(𝑆 −	𝑆))*	0(&2	'1(-%/&2+	) 𝑘3	/1 + 𝑐𝑜𝑠(𝑛𝜙 − 	𝛿)6	%45&%(-/+	 +		) 𝑘6	(𝜔 −	𝜔))*	478(#8&(++	) 𝑈9:;<	(𝜑, 𝜓)(&+4%=&+ 	
+ 	) ;4ℇ4> >?𝜎4>𝑟4>A?* − ?𝜎4>𝑟4>A@B +	 𝑞4𝑞>4𝜋𝜀)𝜀𝑟4>F									(2)$#$'"#$%&%	8-4(+  

 

2.1.1. Bonded terms  
 

The reference to bonded terms implicates groups of atoms separated by one, two or three bonds 

(Fig. 10, Eq. 3). 

 𝑈 = 	∑ 𝑘!	(𝑟 −	𝑟")#	$%&'( +	∑ 𝑘)	(𝜃 −	𝜃")#	*&+,-( +	∑ 𝑘./	(𝑆 −	𝑆")#	.!-0	2/!*',-0 +	∑ 𝑘3	-1 + 𝑐𝑜𝑠(𝑛𝜙 − 	𝛿)5	'45-'!*,(	 +		∑ 𝑘6	(𝜔 −	𝜔")#	478!%8-!( +	∑ 𝑈9:;<	(𝜑, 𝜓)	!-(4'=-( 	           (3) 

 

The terms modelled by a harmonic potential include atomic bonds (r), valence angles (θ), Urey-

Bradley (S), and improper angle (ω), torsional dihedral angles (ϕ) are modelled by a periodic 

function, and the torsional correction for backbone atoms (CMAP φ,ψ) is an energy 

contribution rather than a continuous function. Variables with subscript represent the respective 

equilibrium values. Each term has a force constant associated: kr , kθ , kUB , kϕ , and kω. In this 

way, the energy of individual terms increases with the deviation of the values from their 

respective equilibriums. The only term not represented by a harmonic potential is the dihedral 

angle, which has sinusoidal expression, where n represents the periodicity of the dihedral angle, 

and δ is the phase shift. The improper angle is maintaining the planarity of atoms, and it is 

described as an angle between an atom an imaginary plane composed of three adjacent atoms. 

For atoms 1-2-3, the Urey – Bradley term describes quadratic function of the distance between 
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including polarization is in the form of a Drude polarizable force field, which is built upon the 

additive FF previously described. This polarizable force field introduces a term based on Drude 

oscillator, or "charge-on-springs", and accounts for electronic polarization, which is the way 

atomic or molecular dipoles adjust in response to their surroundings (Lopes, Huang, Shim, 

Luo, Li, Roux, and MacKerell 2013; Vanommeslaeghe and MacKerell 2015a). In addition, the 

Drude FF includes virtual "lone pair" particles that allow a better representation of hydrogen 

bond acceptors (Fig. 11).  

 

2.2.1. Atomic polarizability 
2.2.1.1. Drude particle  

 

In this FF, there is a "Drude particle" carrying negative charge qD,i, connected to the core of the 

polarizable atom, i, via harmonic potential (or a spring) with force constant kD. The following 

term is added to the classical CHARMM36m force field formulation: 

 𝑈	%(=%& 	= 	 ?ABC	 	H∑ D!,#D$E(!,#	'	($E4F> + ∑ D!,#D!,$E(!,#	'	(!,$E4F> J	+	?* 	∑ 𝑘C8#/-(4G-"/&	-H#7+ 	K𝑟C,4 	− 	𝑟4K*  (5) 

 

The position rD,i of the Drude particle is able to move freely depending on the electrostatic 

potential environment, emulating the deformation of the atom’s electron cloud in response to  

Figure 11. Representation of the Drude oscillator model. Two atoms of carbon and oxygen are 
represented in light blue, and their charges (qc and qo), in addition to their respective Drude particles 
qDc and qDo are represented. 'LP' - lone pair. Three arrows and values α11, α22, and α33 are the tensor 
components of the anisotropic polarizability along three axes.  
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that environment. The isotropic atomic polarizability, a (Å3), is a constant that depends on how 

easily its electron cloud can be distorted by an external field. The isotropic atomic polarizability 

of a given atom is achieved by distributing the atomic charge q between the core atom (qA) and 

its Drude particle (qD), such that the q = qA + qD. The atomic polarizability is calculated through 

the following expression: 

𝛼	 = 	 𝑞C*𝑘C 	 (6) 
 

The value of the force constant kD is set to a constant value of 1000 kcal.mol–1.Å–2 for all 

Drude–atom pairs. The atomic dipole moment µ, in response to the electric field E, can be 

calculated using: 

𝝁	 = 	𝑞C*𝑬𝑘C 	 (7) 
 

The first generation Drude FF had a problem of unrealistic over polarization, which arises when 

two atoms are physically close and the induced dipole moment being a linear function of the 

electric field. This can cause the Drude particle of one atom to become "trapped" in the potential 

well of a nearby atom. Furthermore, the effect on polarization is greater along the axis formed 

by two adjacent atoms than along the perpendicular axis. In order to suppress these effects, a 

specific constraint was introduced to the first generation Drude potential energy function. This 

was the "HardWall' modification, which places a "hard limit" on how close the Drude particles 

can approach, thus preventing the distance between charges from going to zero and having 

infinite electrostatic forces that would therefore arise. If a Drude particle moves beyond the 

HardWall limit set to 0.2 Å, the relative velocity of the particle is scaled down, even though it 

still continues to move outwards. The velocity of the core atom is adjusted to maintain overall 

momentum during MD simulation integration (Vanommeslaeghe and MacKerell 2015b). 

A second adjustment of the Drude FF is the implementation of the explicit dipole - 

dipole interaction for atoms within three bonds. Non-bonded interactions between 1-2 (one 

bond) and 1-3 (two bonds) atom pairs were only implicitly represented by bond-stretching and 
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angle-bending terms in the additive FF. The interactions of atom pairs 1- 4 and beyond are 

represented by classical Coulomb interactions. The interactions of the Drude oscillators, i.e.  

no core atom - core atom or core atom - Drude for 1-2, 1-3, corresponding to 1−2 and 1−3 pairs 

are represented through scaling of electrostatic terms by a Thole-like screening function Sij, 

which reduces dipole-dipole interactions as distances decrease (Thole 1981). The function Sij 

depends on the distance rij between Drude particles i and j in the following manner:  

 

𝑆4> 	/𝑟4>6 = 	1	 −	Q1	 +	/𝑡4 + 𝑡>6	𝑟4> 		2/𝛼4𝛼>6? @⁄ S	𝑒'KH#LH$M	(#$		KN#N$M% &⁄ 	 (8) 

 

where rij is the distance between atoms i and j, αi and αj are respective atomic polarizabilities. 

The atomistic Thole factor, ti (or tj), is a damping constant associated with atom i (j) and is 

defined individually for each atom.  

 

2.2.1.2. Anisotropic polarizability 
 

To include anisotropy (until now it was all isotropy), the Drude model includes two more 

extensions that further improve the representation of hydrogen bond acceptors. One concerns 

the anisotropy of the charge distribution and the second the polarizability. First term, the 

anisotropy of the charge distribution, describes the uneven spatial distribution of charges in a 

molecule. It is represented by lone pairs (LP), massless, negatively charged point charges that 

are exclusively added to electronegative atoms. Essentially, LPs represent virtual sites carrying 

negative charge. (Harder et al. 2006) 

The second term accounts for anisotropy of the polarizability, which is the variation in 

how easily the electron cloud can distort in different directions in response to an external 

electric field. To explain anisotropy, recall that isotropic polarizability is described by a 

harmonic self-polarization term, Uself, that is calculated on the basis of the harmonic bond 

energy between the Drude oscillators and their core atoms. While the Uself term was represented 

by a displacement d, and an isotropic scalar force constant kD,  
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 𝑈+&/O4+#H(#84P(𝒅) = 	12 𝑘C𝒅*	 (9) 
 

anisotropic polarizability, which varies with direction, is represented by a tensor (matrix), KD, 

with off-diagonal elements set to zero. (Fig 11., tensor components) 

 𝑈+&/O-$4+#H(#84P =	12 XY𝑲??(C)[𝛼?		* + Y𝑲**(C)[𝛼*		* + Y𝑲SS(C)[𝛼S		*\	 (10) 
 

The combination of lone pairs and anisotropic polarization improves the accuracy of describing 

hydrogen bonding.  

 
2.3. Long - range interactions 
 

The long-range non-bonded interactions are the most computationally demanding, since their 

number scales with N2, as opposed to the number of bonded interactions (involving bonds, 

angles, and dihedrals) which is proportional to the number of atoms (N). To accelerate these 

calculations, we generally disregard interactions between atoms separated by the distance 

greater than a predefined cutoff distance. Two most common methods used for implementing 

the cutoff in the calculations of energy, while maintaining energy smoothness, are called shift 

and switch truncation functions which, by their algorithmic construction « turn off » the 

interaction in a continuous way so that the interaction is zero at the cutoff distance (Bernard R. 

Brooks et al. 1983). 

The difficulty here is that terminating interactions at a certain cutoff distance results in 

the neglect of long-range interactions arise from electrostatics, in particular. Numerous studies 

have shown the importance of long-range electrostatic interactions in biomolecular systems 

(Zuegg and Gready 1999; Ahsan, Pindi, and Senapati 2020). 

The inclusion of the long-range electrostatic interactions in molecular dynamics 

simulations employs, for the most part, the use of an algorithm based on the Ewald summation 

method.  The most currently used implementation is called Particle Mesh Ewald (York, 
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Darden, and Pedersen 1993). The method splits the electrostatic interaction into two parts, a 

short-range contribution and a long-range contribution. For this, we use the implementation of 

the Particle Mesh algorithm. 

 

2.4. Solvent representation 
 

For the sake of a better representation of biological systems, it is preferable to study protein 

systems in aqueous solution, instead of using the gas-phase simulations. The representation of 

water molecules is of great importance, since it plays an important role in the structure and 

dynamics of biological molecules. Two common ways of modelling solvent are explicit solvent 

and implicit solvent models.  In our simulations, we use the explicit solvent, which represents 

water molecules as individual particles. 

 

 

 

 

 

 

 

 

 

 

In the additive force field simulations, we are using the TIP3P ("Transferable Intermolecular 

Potential functions" 3-point) water model, meaning it represents water molecules using three 

interaction sites corresponding to the positions of the oxygen atom and the two hydrogen atoms 

(Fig 3)(Jorgensen 1981). The corresponding Drude model for water molecules is the 4-point 

Figure 12. Explicit solvent models: TIP3P and SWM4 NDP. Both models have the same geometry. 
TIP3P is the model on the left, and SWMP4 NDP (Drude model)  is on the right. The Drude model has
2 additional terms: the Drude particle (D), and the 'M' site (M).   
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SWM4 - NDP ("simple water model with negative Drude polarization") (Lamoureux et al. 

2006), which is essentially a rigid configuration of HOH particles, with two additional 

elements. Firstly, the model includes a negatively charged 'M site' of the oxygen, placed along 

the axis of symmetry of the molecule. Secondly, the Drude particle is attached to the oxygen 

atom, carrying a charge qD = -1.72, that is equal in magnitude, but opposite in sign, to the 

charge of the oxygen atom (qO = 1.72). The total charge of the oxygen atom (between oxygen 

and its Drude particle) is zero, which is an important aspect of the model's design, and together 

these two terms contribute to the accurate representation of dipole and quadrupole moments of 

water (Lemkul, Huang, Roux, and Alexander D.  MacKerell 2016). The polarizability is 

represented by the Drude particle, and the permanent dipole by the M-site charge (qM = -1.11) 

and 2 hydrogen partial charges (2 x qH = 0.56). 

 

2.5. Energy minimization 

 

Energy minimization is a method employed to find a minimum-energy conformation of a 

molecular system. Energy minimization is used to optimize the molecular coordinates, or 

geometry. For most applications, it is used to relieve strain in conformations that are generally 

present in experimental structures, resolving structural conflicts like bond angles or torsion 

strain and steric clashes. Considering the complexity of a potential energy surface, finding a 

minimum-energy structure is not an easy task. The potential energy surface describes the way 

potential energy varies with respect to coordinates. The potential energy is a multidimensional 

function of atomic coordinates; 3N - 6 internal or 3N Cartesian coordinates for an N atom 

system. The nonlinear nature of the potential energy function results in potential energy surface 

with multiple minima, most that are called local minima and one global energy minimum, 

characterized by having the lowest energy of the system. Energy minimization algorithms can 

determine local minima. These algorithms are in general characterized as first-derivative 

algorithms (i.e., algorithms that use only the first derivative of the potential), second derivative 

algorithms (i.e., algorithms that use both the first and second derivative of the potential). The 

first derivative of the potential energy function (the gradient) describes the rate of change of 
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energy with respect to atomic positions, or the slope. At both the global minimum and all local 

minima, as well as at any other stationary points such as saddle points or maxima, the first 

derivative of the energy with respect to the coordinates is zero. It also related to the force, since 

the force is the negative gradient of the potential (Eq. 11) (McCammon and Stephen 1987). 

The second derivative matrix, representing the curvature of the potential energy surface, has 

all positive values, at a minimum point.  𝑭	 = 	−𝛁𝑈	 (11) 
 

2.5.1. Steepest descent method 
 

Steepest descent (SD) method is a first-derivative minimization algorithm that is generally used 

in the initial stages of preparation to relieve bad contacts that may be present in an experimental 

structure (Wiberg 1965). At each step, the gradient of the potential (the vector of the first 

derivative) is calculated.  𝒔T 	= 	− 𝒈T|𝒈T| 	 (12) 
 

Here, sk is the 3N-dimensional unit vector, and gk is the potential energy gradient vector 

component of the coordinate k. Next, a change is added to all the coordinates, in a direction 

opposite to the gradient. Starting from a point rk, the displacement is added using: 

 𝒓TL? 	= 	 𝒓T 	+ 	𝜆T𝒔T (13) 
 

where the lk is the displacement parameter. The size of the displacement, or how far to move 

along the gradient, is determined through different approaches. The algorithm gradually 

changes atomic coordinates as the system moves closer to the minimum point. Both the 

gradients and the directions of successive steps are orthogonal. Despite having a poor 

convergence and accuracy, coming from oscillating around a minimum, this algorithm is 

computationally fast, and useful as a first step in minimizing a structure.  



 
 

 
 

51 

 

 

 

 

 

 

 

2.5.2. Conjugate gradient 
 

Conjugate gradient (CD) algorithm (Williams and Schleyer 1968) also uses the first-derivative 

information. It uses the gradient from the previous minimization step, in addition to the current 

gradient, to determine the next displacement direction vk, as their linear combination:  

 𝒗T 	= 	𝒈T +	𝛾T𝒗T'?	 (14) 
 

Figure 13. Representation of different energy minimization algorithms. Steepest descent (SD) requires
the most steps, while conjugate gradient (CG) requires fewer steps, but is more computationally costly. 
Newton Raphson (NR) can minimize quadratic function in one step, but it is more most costly
computationally. Image adapted from Leach, 2001. 
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where gk can be calculated using: 𝛾T 	= 	 𝒈T 	. 𝒈T𝒈T'?	. 	𝒈T'? 	 (15) 
 

The following position is obtained through: 	 𝒓TL? 	= 	 𝒓T 	+ 	𝜆T𝒗T	 (16)	
  

For an N-dimensional quadratic surface, the algorithm reaches the minimum in N steps. This 

algorithm is more computationally demanding than the steepest descent, but it converges more 

quickly and produces a lower energy once it has converged.  

 

2.5.3. Adopted-Basis Newton-Raphson  
 

The  Adopted-Basis Newton-Raphson (ABNR) is a variant of the Newton-Raphson algorithm 

that uses the second-derivative of the potential energy function (Bernard R. Brooks et al. 1983). 

The Newton-Raphson algorithm, starting from a point rk, has the next step rk+1 calculated by 

the following expression:  	 𝒓TL? 	= 	 𝒓T 	− 		𝑼8#HU (𝒓T)𝑼8#HUU (𝒓T)	 (17) 
 

Calculating the second derivative entails the construction and inversion of the second 

derivative (Hessian) matrix, which can be computationally costly. The ABNR method consists 

of calculating only a subset of the matrix (of basis vectors) at each step and only taking into 

account the vectors for which the systems has made the most progress in the previous steps. 

This approach converges extremely fast, but it is more computationally demanding than the 

first-derivative methods.  
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In general, the Steepest Descent and Conjugate Gradient methods are used to quickly 

minimize structures and eliminate significant high-energy interactions. Afterwards, the second 

derivative methods can be used to produce lower energy conformations.   

 

2.5. Normal Mode Analysis 
 

The idea of exploring vibrational motions of proteins came hand in hand with the advancement 

of computational methods in the field of chemistry. The first study of the vibrational dynamics 

of an alpha-helix was done in 1979, by Karplus and Levy (Levy and Karplus 1979). This idea 

was developed further through the Normal Mode Analysis (NMA), and shortly after, the first 

protein systems were studied - glucagon and bovine pancreatic trypsin inhibitor (BPTI) 

(Tasumi et al. 1982; B. Brooks and Karplus 1983). Since then, normal mode analysis has been 

applied to study many protein systems and has been used to elucidate how protein 

conformational dynamics are associated to their function (Skjaerven, Hollup, and Reuter 2009; 

Mahajan and Sanejouand 2015). Normal modes describe the vibrational motion of molecular 

systems, and so the normal mode analysis represents a powerful tool for studying structural 

and dynamic properties of molecular systems. By definition, NMA involves the analytical 

study of harmonic potential wells, beginning with a stable conformation of the system that 

corresponds to a minimum on the potential energy surface, and then describing harmonic 

motions of small amplitude within the potential well (where “small” means “small enough that 

the harmonic approximations hold”). A stable conformational state is defined as a point on 

potential energy surface where the first derivative of the potential energy is zero, or sufficiently 

close to zero, and the second derivative of the potential energy is positive, which indicates a 

local minimum. Applying the formulation of normal mode analysis, the motions in these wells 

can be described as vibrational motions, called normal modes, and they represent a specific 

pattern of motion, each associated with a specific frequency. The technique has been widely 

used for small molecules in the study of their vibrational motions. For a system with N particles, 

there are 3N number of degrees of freedom for of a non-linear system. Six degrees of freedom 

represent rigid-body motions such as translation and rotation of a molecule, around three axes, 
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with no energy. The remaining 3N-6 degrees of freedom are called vibrational normal modes, 

or non-trivial modes, and are grouped by their frequencies, ω. The typical protein vibrational 

frequencies span from couple of wave-numbers (cm-1) the tera-hertz (THz) region, for the 

entire protein, up to approximately 3280 cm-1 for individual bond vibration (stretching of C-N 

bond) (Foggia et al., n.d.). Protein dynamics can be described as a linear combination of all 

normal modes, and the modes are orthogonal - the motion of one mode does not interfere with 

another, allowing for clear separation of different vibrational patterns. The lowest frequency 

modes, also named soft modes, are believed to be functionally relevant (Skjaerven, Hollup, and 

Reuter 2009). Low frequency modes have the highest amplitude and the lowest energetic cost. 

They encompass all, or most of, the atoms in a system, and describe the largest movements in 

a protein. The vibrational modes in which all atoms are moving are called collective motions, 

and they exclude localised motions associated with higher frequencies.  

Normal mode frequencies and the displacements of atoms are obtained by calculating 

the second derivative of the potential energy (described by molecular mechanics), also called 

the Hessian matrix (F). After minimizing a structure, and calculating the Hessian matrix, the 

values are weighted by atomic mass according to the equation:  

 𝑭	 = 	𝑴'%(	𝛁*𝑈(𝒓V)𝑴'%(		 (18) 
  

where M is the diagonal matrix of 3N x 3N, containing atomic masses only along the diagonal. 𝐌'%(	 represents the matrix with the inverse square root of atomic masses and weighing them is 

required since forces act differently with respect to atomic mass. The 𝛁* is the second 

derivative of the potential energy 𝑈 of the system of the atoms r. By calculating eigenvalues 

(λi), and eigenvectors (ai) of our matrix we can diagonalize it: 

 |𝛁*𝑈(𝑟V) −	𝜆𝑴| 	= 	0	 (19) 
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Each normal mode is described by two components: eigenvector Ai, which represents 

displacements of each atom moves in a vibrational pattern, scaled by eigenvalue 𝜆4, 
corresponding to vibrational frequencies, or how fast the atoms are oscillating: 

 𝑭		 ×			𝑨/ =		 𝜆4 		× 	𝑨/ 	 (20) 
 

In summary, NMA uses mathematical tools to study how atoms in a molecule move slightly 

around a stable point, helping us understand their vibrations and motions.  

 

2.5.1. Analysis of normal mode calculations  
 

2.5.1.1. Fluctuations 
 

From the results of a normal mode calculation, we can calculate properties such as root mean 

square fluctuations (RMSF). Atomic fluctuations for atom i at temperature T, can be calculated 

by Eq. 21, which uses normal mode (eigenvector) k and the corresponding eigenvalue:  

 <	 (∆𝑟4)* >𝒌	= 	 𝑘1𝑇	 ∑ -#*,+(6+(𝜶YZ,2,G 	 (21) 
   

The Boltzmann constant is represented by kB. ωk is the frequency of mode k, ∆ri is the 

displacement of atom i from its minimum energy position, the scalar aiα,k of mode k is the 

component of the eigenvector, α  = (x,y,z) that describes the displacement the atom i.  

  

<	 (∆𝑟4)* >		= ) <	 (∆𝑟4)* >T 	$
TY? (22) 

 

Eq. 22 describes the contribution of all normal modes to the fluctuation of an atom i. These 

fluctuations can be compared to the fluctuations derived from the crystallographic B factors, 

calculated using the following equation:  
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 𝐵	 = 	38𝜋*(∆𝑟4)*	 (23) 
  

2.5.1.2. Correlations 
 

The second analysis that we can carry out using the normal modes is to calculate the correlation 

coefficients for each protein atom pairs. This will give us information about the correlated 

motions exhibited by residues, and in more general view, the correlations between different 

secondary structure elements during the course of a trajectory. We can obtain the Cij correlation 

coefficients using the following expression:  

 𝐶4>	 	= 	 < ∆𝑟4∆𝑟> >/< ∆𝑟4 >< ∆𝑟> >6?* 	 (24) 
     

where the ∆ri is the displacement from the average position of an atom i.  

 

2.5.1.3. Infra - red spectra 
 

Calculating the Infrared spectrum (IR) from normal modes is achieved through the extraction 

of frequencies and dipoles associated to a structure and, more precisely, the derivative of a 

dipole moment. The IR spectrum is represented as function of the integrated intensity, Γk, 

which has units of the molar absorptivity, calculated from the dipole derivative values:  

 

ΓT 	= 	 𝑁)𝜋*3𝑐*𝜀)𝜔T 	? 𝑑𝜇𝑑𝑄TA* (25) 
  

where N0 is Avogadro’s number, ε0 is the permittivity of vacuum, c is the speed of light, 𝜇 is 

the dipole moment, Qk is the normal coordinate, and ωk is the respective frequency. The IR 
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spectra were then smoothed by multiplying the intensity of each peak by a Gaussian function 

with a full width at half-maximum of 10 cm−1. 

We have described the calculation of normal modes, starting from a minimized structure of 

a molecular system. The protocol we develop in chapter III consists of extracting multiple 

representative structures from the most populated well of a free energy landscape calculated 

from a molecular dynamics simulation, using these for NMA and averaging the results. Since 

the normal mode analysis of a single structure is highly sensitive to that structure, we take this 

ensemble approach and average over hundreds of structures. This will be described in a 

separate chapter. 

 

3. Molecular dynamics 
 
3.1. Protocol 

 

Molecular Dynamics (MD) simulation is a computational method that allows us to describe the 

microscopic world of molecules using numerical models. MD simulations calculate the 

dynamical evolution of a modelled system through time using classical dynamics. By carrying 

out MD simulations, we can analyse the properties of atomic assemblies in terms of structure, 

microscopic interactions and overall dynamics (Michael P. Allen 2004). This approach consists 

of integrating equations of motion by breaking down the calculation into discrete time steps. 

For classical MD simulations using an all-atom force field, the time step, dt, is in the order of 

1 - 2 femtoseconds. The forces acting on atoms are calculated at each step and combined with 

the positions of the atoms at a time t, to generate positions at time t+1. The new atomic positions 

are then determined, and a new set of forces is calculated. The product of a simulation is a 

trajectory, representing how atomic positions change with time.  

MD simulations start with the preparation of the system followed by the production of 

a dynamics trajectory. The preparation involves modelling the molecule of interest by an 

empirical energy force field; in general, the initial molecular structure is determined 

experimentally usually by X-ray crystallography or NMR spectroscopy, or modelled using 
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different approaches, such as homology modelling or other structure prediction algorithms such 

as AlphaFold2. To include environmental effects, the molecule is most often modelled in an 

explicit water environment, along with additional elements used to emulate the physiological 

and physicochemical properties of biological systems (for example, ions). One necessary step 

before running an MD simulation is energy minimization, as discussed above – a well 

minimized structure is crucial for stable MD simulations. The molecular system is brought to 

a desired temperature in a series of steps designed to heat the system gradually by modulating 

the atomic velocities. Multiple heating and minimization steps are usually combined to ensure 

a proper preparation of the system. The system is then equilibrated by molecular dynamics 

simulations for some given time during which the temperature is monitored and readjusted 

accordingly. Different parameters, for example total energy and/or RMSD are monitored as a 

measure of stability. The final step, called the production, phrase will generate a trajectory of 

the molecular motions over time that is then used for analysis. 

 

3.2. Integrating algorithm - All - Atom Additive FF 
 

MD simulations calculate atomic trajectories by solving Newton’s equations of motion for each 

of the atoms in the system. Atomic trajectories are a sequence of atomic positions in space as 

a function of time. The Newton’s second law of motion stipulates that the force acting on 

particle i is equal to its mass mi times acceleration ai (the rate at which velocity v changes over 

time t, being the second derivative of the position ri):  

 𝑭4 = 𝑚4 	 ∙ 	𝒂4 	 (26)
    

𝑭4 	= 𝑚4 	 ∙ 𝑑𝒗4𝑑𝑡 	= 	𝑚4 	 ∙ 	𝑑*𝒓4𝑑𝑡* (27) 
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The forces acting on the particles come from interactions with other particles, and they can be 

derived from potential energy function, where the total force on a particle, Fi, is the negative 

gradient of the potential energy with respect to its position: 

 𝑭4 =	−𝛁4𝑈	 (28) 
 

Starting from initial atomic position ri, and the potential energy function U, the force is known. 

We can calculate the acceleration for every particle of the system and then update the atomic 

positions and velocities of particles using numerical integration methods, which are given by 

different algorithms. An analytical solution is not achievable, since the motions of the N 

particles are coupled. Initial velocities, vi, are assigned randomly from the Maxwell-Boltzmann 

distribution at a specified  temperature (Leach 2001a). 

The NAMD program (Phillips et al. 2020a), which is the most used in the present work 

to run the MD simulations, uses the Velocity Verlet algorithm for calculating atomic velocities 

and positions (Allen and Tildesley 1989; Swope et al. 1982). This algorithm calculates 

positions ri and velocities vi at the same time. The positions are calculated in the following 

manner: 𝒓4(𝑡 + 𝑑𝑡) 	= 	 𝒓4(𝑡) + 𝒗4(𝑡) ⋅ 𝑑𝑡 + 12𝒂4(𝑡) ⋅ (𝑑𝑡)* (29) 	 
and are updated based on the current velocities and acceleration. Forces are then updated for t 

+ dt the based on new positions (and new potential energy U), and allow for the calculation of 

acceleration for t + dt: 𝒂4 	(𝑡	 + 	𝑑𝑡) = 	𝑭4(𝑡	 + 	𝑑𝑡)𝑚4 	 (30) 
  

 

Velocities vi are updated based on: 
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𝒗4 	(𝑡	 + 	𝑑𝑡) = 		 𝒗4 	(𝑡) +	12	[	𝒂4 	(𝑡) +	𝒂4 	(𝑡	 + 	𝑑𝑡)] 	 ⋅ 𝑑𝑡	 (31) 
 

The velocity is updated using both the old and new accelerations, which ensures that the 

velocity is correctly synchronized with the positions. 

 

3.3. Integrating algorithm - All - Atom Polarizable FF 
 

The Drude oscillator model requires a different integration algorithm for including the auxiliary 

particles attached to core atoms. Extended Lagrangian dynamics is implemented in the NAMD 

program, instead of the computationally expensive, albeit accurate, self-consistent field (SCF) 

regime. (W. Jiang et al. 2011; Lamoureux and Roux 2003) This ensures lower computational 

cost since the energy is not minimized at each step of the dynamics. In extended Lagrangian 

dynamics, Drude particles are not restricted to their energetic minima, but instead carry kinetic 

energy that is kept at low values using a designated thermostat. Dual stochastic Langevin 

thermostats modify the equations of motion by adding both a frictional force and a random 

force to each particle’s motion. The motions of atom-Drude pairs with coordinates ri and rD,i  

are treated separately. We now have two different terms accounting for motions. The motion of 

the center-of-mass Ri of the atom-Drude pair and the relative internal motion of the oscillator 

di = rD,i - ri. The atom-Drude pair has a total mass mi, and the oscillator has a reduced mass mi' 

= mD (1 - mD/mi). The resulting pair of equations of motions for atom-Drude pairs are the 

following Langevin equations Eq. 32 and 33: 

 𝑚4 𝑑*𝑑𝑡* 𝑹4 	= 	𝑭[,4 	− 	𝛾 𝑑*𝑑𝑡 𝑹4 	+ 𝒇4 	 (32) 
 

𝑚4U 𝑑*𝑑𝑡* 𝒅4 	= 	𝑭%,4 	− 	𝛾U 𝑑*𝑑𝑡 𝒅4 	+ 𝒇4U	 (33) 
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The FR,i and Fd,i are the forces acting on the centre-of-mass and on the oscillator reduced mass, 

respectively, g and g' are the internal and external Langevin friction coefficients, fi and fi′ are 

two random forces whose values randomly change over time, according to the stochastic 

(random) force of Langevin dynamics, and with respect to two Langevin friction coefficients 

respectively. The forces acting on the centers-of-mass and on the displacements are represented 

as actual forces acting on particles: 

 𝑭[,4 	= 	−𝑑𝑈𝑑𝑟4 	− 	 𝑑𝑈𝑑𝑟C,4 	 (34) 
and: 𝑭%,4 	= 	− H1 −	𝑚C𝑚4 J 𝑑𝑈𝑑𝑟C,4 	+ 	H	𝑚C𝑚4 J 𝑑𝑈𝑑𝑟4 	 (35) 
 

The Brünger−Brooks−Karplus (BBK) method is implemented in NAMD for integrating the 

Langevin equation (Brünger, Brooks, and Karplus 1984). The integration of the centers-of-

mass and the displacements are identical to the integration of the individual atoms. NAMD 

treats the entire system as standard atomic coordinates. After an initial equilibration using 0.5 

femtosecond timestep, integration time steps of 1 or 2 femtoseconds are appropriate for 

generating accurate molecular dynamics trajectories. 

 

3.4. Periodic boundary conditions 
 

The most commonly used method for studying dynamical properties of bulk solvent and 

solvated systems is by molecular dynamics simulations using periodic boundary conditions 

(PBC) (Leach 2001b; Rapaport 2004). PBC allow for a relatively large number of particles to 

be simulated as if they were experiencing interactions in a bulk fluid (or other states of matter, 

not applicable in our studies). This approach takes our system, which is essentially a protein 

submerged in a water box, as a central cell and it replicates it in all spatial directions, called 

spatial images (Fig. 14). The box has no physical walls and, as a consequence, if a particle 

leaves the box from one side, it is reintroduced from the opposite side of the central box (in the 
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3.5. Analysis 
3.5.1. RMS deviation and fluctuation 

 

Because the positions of the atoms of a dynamical system change over time, several properties 

can be calculated. We can calculate the average structural deviation (RSMD) from a reference 

structure, given by Eq. 36:  

 

𝑅𝑀𝑆𝐷	 = 	�1𝑁 ) X𝑟> 	− 	𝑟>(&O&(&$P&\*V
>	Y	? (36) 

 

where j indexes a particular atom, N is the number of equivalent atoms, rj is the actual position 

and 𝑟>(&O&(&$P&is the position of the same atom in the reference structure.  

If the reference structure is the average structure calculated from the dynamics 

simulation, we can get a measure of the flexibility about that average structure for a particular 

atom. The RMSF (root mean square fluctuation) represents a measure of the deviation between 

the position of particle i and a reference position, when the reference position is the average 

structure over time, and it can be calculated using Eq. 37:  

 

𝑅𝑀𝑆4O/=PH 	= 	�1𝑇 ) /𝑟4/𝑡>6 	−	𝑟4-\&(-.&6*]
H$	Y	? (37) 

 

3.5.2. Correlations 
 

The calculation of correlated motions is described in detail in section 2.5.1.2., in the context of 

Normal Mode Analysis, but correlations Cij can be calculated directly from an MD trajectory, 

using the same equation:  𝐶4>	 	= 	 < ∆𝑟4∆𝑟> >/< ∆𝑟4 >< ∆𝑟> >6?* 	 (38) 
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where the ∆ri is the displacement from the average position of a residue i.  

 

 

3.5.3. Secondary structure element analysis  
 

Secondary structure elements are well characterized protein regions that are stabilized by 

hydrogen bonds between atoms in the polypeptide backbone, providing a scaffold for the 

tertiary structure of the protein. The fluctuations in the secondary structure content can 

influence the protein's structure and function. In this work, we sought to quantify the secondary 

structure content of PPARg systems for the purpose of comparing them with experimental IR 

measurements (chapters III and IV). We used a combination of the software STRIDE (Heinig 

and Frishman 2004a) and the python package MDAnalysis (R. Gowers et al. 2016). STRIDE 

software uses a knowledge-based approach to determine hydrogen bonding patterns and 

backbone geometry (notably the geometry of torsion angles). Weighted product of hydrogen 

bond energy and the probabilities of torsional angles determine the starting and ending position 

of secondary structure elements, with respect to empirically optimized thresholds. We 

developed a python script to pilot these two programs to efficiently analyse our dynamics 

trajectories. 
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Chapter III - Ensemble 
averaged Normal modes - a 

prelude  
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1. Introduction 
   

Normal mode analysis (NMA) is well suited to study the conformational dynamics of proteins 

because of its relative simplicity and rapidity in terms of calculation time. Normal mode 

analysis has been especially useful for understanding the contributions of low-frequency 

collective vibrational modes to conformational changes. However, a shortcoming of normal 

mode analysis is that it is generally performed for a single energy minimized structure, obtained 

either from a crystal structure or from a molecular dynamics simulation. It is well appreciated 

today that a representative experimental “structure” actually corresponds to an ensemble of 

structures, so the calculation of properties from a single structure can lead to questions on the 

robustness of the results. Several approaches to address the issue of an ensemble of 

representative structures has been developed.  In the work by van Vlijmen and Karplus (van 

Vlijmen and Karplus 1999), normal modes (NMs) were calculated for several individual 

energy-minimized protein structures sampled from 100ps MD simulations and properties 

calculated and averaged from the individual NM analyses gave a better agreement with 

experiment. Kitao and co-workers developed the ‘‘jumping among minima’’ (JAM) model 

(Kitao, Hayward, and Go 1998). This approach accounts for multiple structures by assuming 

the system can transition between local minima that are separated by barriers that can be 

crossed on the timescale of MD simulations. Batista and coworkers developed a ‘consensus 

modes’ approach where the harmonic information present in multiple minima of the potential 

energy surface of a protein was exploited (Batista et al. 2010).  

As simulations have become much longer, there is the realization that crystal structures 

represent a restrictive view of the conformational ensemble sampled by a given protein. So, 

much more extensive conformational sampling is considered the norm. For example, in the 

method of Karplus and Hermann, the simulations were 100ps in length; today, simulations are 

generally 100s nano- to microsecond in length. 

We present here a method that builds on the use of multiple structures for normal mode 

analysis (NMA) and that is better adapted to the analysis of longer simulations. Our ensemble 

approach involves combining data from multiple structures from a molecular dynamics 
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2. Methods 
2.1. Structure preparation  

 

The PPARγ LBD (residues 230 - 505) of wild type (WT) apo structure was prepared for this 

analysis using a crystallographic structure available in the Protein Data Bank (PDB) (Burley et 

al. 2023). The WT apo model of 276 residues was based on the structure of chain B from 

PDBID 7WOX (Yoshizawa et al. 2022a), which has a 3.20 Å resolution. Chain A in this PDB 

entry is bound to the antagonist MMT-160, but chain B was considered to be in apo form 

because it did not show any electron density, representing a ligand, in the binding pocket.  

The initial coordinate and protein structure files (PSF) needed for the molecular 

dynamics simulations were prepared using the PDB Reader & Manipulator option of the 

CHARMM-GUI web interface (Jo et al. 2008) using default parameters. The interface was also 

used to build missing protein residues. The protonation states of the histidine residues of our 

systems were determined using PROPKA program (Olsson et al. 2011; Søndergaard et al. 

2011) via the webserver https://server.poissonboltzmann.org/pdb2pqr, and verified manually. 

The following protocol was used for the molecular dynamics simulation using the 

CHARMM all-atom force field, version 36m (A. D. MacKerell, Bashford, et al. 1998). The 

molecular dynamics simulation was carried out for 100 ns using NAMD program (Phillips et 

al. 2020b) with the time step of 1 fs under NPT conditions. System preparation was done in 

four stages following solvation of the protein in a 100Å cubic water box.. First stage consisted 

of 1000 steps of minimization with a fixed protein chain and non-fixed water-ion box. Next, 

the system was heated up to 600K during 23000 steps. The system was, once again, minimized 

for 1000 steps, and then heated up to 296.5 K. Then, with the constraints on the protein chain 

removed, the system was minimized for 2000 steps. The entire system was heated up to 296.5 

K, for 15000 steps. This was followed by an equilibration of 85 000 steps of dynamics, 

followed by the production phase. The production simulation was carried out for a duration of 

100 ns.  
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2.2. Analysis of the trajectories  
 

From the molecular dynamics simulation, we calculated the root-mean-square coordinate 

difference (RMSD) and the radius of gyration (RGYR) considering only the Ca backbone 

atoms. Using the results for RMSD and RGYR, a free energy surface was constructed and the 

most populated well was identified.  From this well, 100 structures were extracted for further 

analysis. These 100 structures compose our structural ensemble. We further calculated the 

backbone atomic root-mean-square fluctuations (RMSFs) averaged by residue from the 

simulations. 

 

2.3. Normal Mode Analysis  
 

Normal mode analysis was carried out using the VIBRAN module of the CHARMM program, 

see Methods section 2.5 for a description of the methodology. All the modes were calculated 

in this analysis (3N atoms) corresponding to 13464 Cartesian displacement modes for the APO 

form of PPARg. The first six modes correspond to the global translational and rotational modes 

and were removed from the analysis.  

 From the results of the normal mode analysis of the ensemble of structures, the intrinsic 

dynamics were characterized by the atomic root-mean-square fluctuations (RMSF), which 

were calculated using Eqs. 21 and 22. The cross-correlation coefficients for the ensemble of 

structures were also calculated from the NMA using Eq. 24 of Methods.  From the Cij 

correlation coefficients, which are organized as a matrix, a cross-correlation map was 

calculated using a color-coded 2D representation. In this representation, Cij = 1 identifies 

correlated motions and Cij = -1 anti-correlated motions. These values give us information 

concerning the global collective motions.  

Using structures in the ensemble, which are representative of highly probable structures 

through the analysis of the free energy surface, and the results of their NMA, the IR spectra 

were computed (Cote et al. 2017a). Each IR spectrum was represented as function of the 
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integrated intensity, Γk, which has units of the molar absorptivity, calculated from the dipole 

derivative values, using Eq. 25 of Methods.   
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3. Results and discussion 
3.1. RMSD, RGYR and RMSF  

 

The RMSD and RGYR time series were calculated from the 100ns simulation of PPARg apo-

WT. The time series results are shown in Fig. 16 and 17. We see that in both cases, the time 

series level off at plateau values even though the RMSD time series shows some variation. 

 

 

Figure 16. RMSD of the Ca atoms of the complete backbone. In black is the running average over 500 
timeframes and in grey are the values at each time point. 

Figure 17. Radius of gyration of the Ca atoms of the complete backbone. In black is the running average 
over 500 timeframes and in grey are the values at each time point. 
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 We additionally calculated the RMSF from the molecular dynamics simulation and 

averaged the results by-residue for the backbone atoms. The results are shown in Fig. 18, which 

also shows the secondary structure of the protein as a function of sequence. We see that, for 

the most part, secondary structure elements, such as alpha helices (green rectangles), are more 

stable than the terminal ends and loops between the secondary structure elements, but being an 

apo structure, the LBD displays a certain degree of flexibility. 

 

 

 

 

To assess the conformational landscape of the protein, an effective 2D free-energy landscape 

(FEL) based on the RMSD and RGYR was constructed from molecular dynamics simulations. 

The 2D FEL was based on the values of the RMSD and the RGYR computed from the protein 

structures extracted from the simulations using the relationship as follows: 

 𝐹𝐸𝐿(𝑅𝑀𝑆𝐷, 𝑅𝐺𝑌𝑅) = 	−𝑘1𝑇𝑙𝑛𝑃(𝑅𝑀𝑆𝐷, 𝑅𝐺𝑌𝑅) (39) 

Figure 18. By-residue averages backbone RMS fluctuations from the molecular dynamics simulations of 
PPARg apo form. 
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where kB and T are the Boltzmann constant and the temperature, respectively, and P is the joint 

probability of a structure having the values of RMSD and RGYR. The landscape result is 

shown in Fig. 19, where we see that, in this simulation, there is one principal well between 

RMSD values of, roughly 1.65Å and 1.95Å and an RGYR of 19.0Å and 20Å.  A minor well is 

observed at smaller RMSD values and slightly higher RGYR values. 

 

 

 

 

 

 

 

Figure 19. The effective free energy landscape built from the RMSD and the RGYR values computed 
from the MD simulation the APO form of PPARg. The more red the region, the deeper is the well. 
Indicated in the square is the region from which structures were extracted for further analysis. 
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3.2. Normal mode calculations 
3.2.1. Fluctuations  

 

From the deepest minimum on the surface, that being for RMSD between 1.85 and 1.95Å and 

a radius of gyration between 19.9 and 19.95, denoted by the square on the FES plot, Fig. 19, 

we generated a dynamics trajectory of structures that fell within those ranges.  Nearly 10000 

structures were extracted (9754) from this region of the free energy landscape.  From this 

cluster, we randomly extracted 100 structures for normal mode analysis (NMA). Each structure 

was subjected to enough steps of minimization using the adapted basis Newton–Raphson 

(ABNR) algorithm to reach an RMS gradient of 10-7 kcal.mol-1.Å-1 or less. The treatment of 

the nonbond interactions in the normal mode calculations was the same as that used for the 

energy minimization. This ensured that each structure was at the local minimum of the potential 

energy surface, a necessary condition for NMA. A switching function was used for the van der 

Waals non-bonded interactions and a shift function with the distance-dependent dielectric, e= 

4r, was used for the electrostatic interactions. An atom-based 15Å cutoff was used.  

 The atomic fluctuations were calculated from the normal modes using equation Eq. 21. 

In Fig. 20, the fluctuations from normal modes are compared to the fluctuations calculated 

from the molecular dynamics simulations. We see that the trends between the simulation results 

and the normal mode results follow well.  As expected, the fluctuations are generally greater 

in loop regions for both the MD simulations and the normal mode results. Fluctuations 

calculated from NMA are generally smaller than corresponding fluctuations calculated from 

molecular dynamics simulations. 

 In Figure 21, we show the RMSF calculated from several different structures extracted 

from the lowest free energy well.  The structures themselves are all roughly 1.9Å from the 

initial crystal structure. We see that the detailed results, in this case, of RMSF can show a 

certain degree of variation between structures, in particular, for the more flexible loop regions.  

This is a manifestation of the fact that even slight differences in energy minimized structures 

can lead to different results, raising the question when comparing results from different 
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systems, are the differences due to the inherent differences between the systems or could the 

conclusions change if different, but perfectly acceptable minimized structures are used.  

 

 

 

Figure 20. Atomic fluctuations of backbone atoms from the molecular dynamics simulations (black) and 
the atomic fluctuations of backbone atoms from normal mode calculations (red).  Examples of several 
results from normal modes are shown. In the bottom panel, we zoom in on the fluctuations from normal 
modes. 
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3.2.2. Correlated motions  
 

 From the normal modes for several individual structures, we calculated the correlated 

motions using Eq. 24. We compare the correlated motions calculated from a single structure to 

the correlated motions calculated and averaged from the full ensemble extracted from the 

molecular dynamics trajectory. We see in Fig. 21, that, for the most part, the general 

characteristics concerning secondary structure elements are similar, reflecting the topology of 

the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

But we see differences between regions that do not belong to the same secondary structure 

elements, for example, the anticorrelated motions implicating helix 4-5 and helix 12 differ 

between conformations and from the correlated motions calculated from the full ensemble of 

structures. Other regions where anticorrelated motions differ are between helix 9 and helix 12. 

Or the correlated motions between the beta sheets and the W loop region including helix 2. 

 By averaging over the ensemble of structures, we get a more robust representation of 

the correlated motions.  In Fig. 22, we show the comparison of the correlated motions averaging 

of 10, 50, 75 and 95 structures to the correlations from the full ensemble of 100 structures. 

Figure 21. Comparison of correlated motions from three individual structures (upper triangle) to the 
correlated motions calculated and averaged from the ensemble of structures extracted from the 
molecular dynamics simulations (lower triangle). 
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Averaging over 50 structures seems sufficient for good convergence to the full ensemble result 

based on a visual inspection. 

 

 

Figure 22. Correlated motions calculated from the NMA. The top graphs represent 10 and 50 structures,
and bottom graphs 75 and 95 structures, from left to right. Upper left and bottom right triangles of  a 
given individual graph are identical. 
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 To demonstrate that the correlated motions are well reproduced by the low frequency 

vibrational modes, we calculated the correlated motions maps for PPARg for a single structure, 

taking a progressively larger number of modes determined by normal mode analysis and Eq. 

24. We compared the calculation of the correlated motions using the full set of normal modes 

to the correlated motions calculated from the first 15 modes which range from 1.2 to 4.5 cm-1, 

the first 150 modes ranging from 1.2 to 22.2 cm-1 and the first 1500 mode range from 1.2 to 

158.6 cm-1 modes. The corelated motions maps are shown in Fig. 23, where in the lower 

triangle, the correlated motions are calculated from the full set of normal modes and in the 

upper triangle, for the first 15, 150 and 1500 modes, respectively.  We see that, even just the 

first few modes, up to 4.5 cm-1 include enough information to characterize the topological 

features of the secondary structural elements. The same conclusion is made when including 

modes up to 22 cm-1. However, the dynamic properties are exaggerated in the correlated 

motions calculated by just the lowest frequency modes.  Higher frequencies are required to get 

convergence with the correlated motions calculated from the full set of modes. While the lowest 

frequency modes are crucial for the underlying dynamics of the protein, the higher frequency 

modes in the far-IR region also contribute to the larger-scale collective motions, and by 

extension, more accurate calculation of dynamical properties. 
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3.2.3 Far-IR spectra 
 

We calculated the far-infrared (far-IR) spectra from normal mode analysis. The normal mode  

analysis was performed on each of the structures extracted from the lowest energy well. Each 

structure was energy optimized. The NMA provided frequencies, corresponding to normal 

modes that represent collective atomic displacements, and the change in the dipole moment 

with respect to the atomic displacements. Far-IR spectra are derived from these low-frequency 

vibrational modes, typically in the range of 10 to 400 cm−1. The intensity of each mode in the 

far-IR region depends on the change in dipole moment with respect to atomic displacements. 

The spectrum is then generated by summing up the contributions from all modes, with each 

mode’s intensity and frequency contributing to a broadened peak. The result is a spectrum that 

reflects the interactions and motions in the low-frequency region, often related to collective 

motions such as vibrations or other large-scale rearrangements within the molecular structure.   

As with the other properties calculated from the normal modes, we show that the 

detailed results vary with the choice of specific structure.  In Fig. 24, we see the far-IR spectra 

from two sets of three structures taken from two different PPARg systems. We see that the 

variation in maximum peak position and features of individual spectra vary significantly. As 

with the other properties, this makes it difficult to decide if differences between two systems, 

when interpreted at a detailed level, could change if another valid structure was used. 

In our ensemble averaged approach, we average the results over the ensemble of 

structures taken from the minimum of the free energy surface. In Fig. 25, we see the results 

comparing two systems, after averaging structures represented in Fig. 24. 



 
 

 
 

81 

 

 

 

 

Figure 24. Calculated Far-IR spectra. Upper panel: Far-IR spectrum obtained from NMA of individual 
structures. Three structures were taken from each system. Systems are annotated '7wox' and 'apo2'.  
Bottom panel: Average Far-IR spectrum obtained from averaging the results from NMA of the ensemble 
of structures.  
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Averaging results until convergence ensures robustness in the reported results. In Fig. 25, we 

see that peak positions and curve features begin to converge after averaging over about 75 

structures from the ensemble and with 95 structures there is little variation in the calculated 

results. Throughout this work in this thesis, we therefore limit our ensembles to 100 structures. 

 

4. Conclusions 
 

Here we introduced a new approach for the calculation of properties from an ensemble of 

conformations obtained from molecular dynamics simulations.  In contrast to previous works, 

the ensemble of structures was extracted from the deepest well on a pseudo free energy surface 

constructed from RMSD and RGYR values of the structures sampling in the molecular 

dynamics trajectory.   

Figure 25. Convergence of the spectrum as a function of the number of structures included in the
averaging. 
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In most normal-mode calculations, a single energy minimized structure is used. Here, 

we averaged the results from 100 structures. We showed that for single structures and using all 

the modes in the calculation of the properties, there was significant variation in structural 

dynamic properties, such as the RMSF by residue.  We also showed that, using single 

structures, the calculation of the correlated motions and the far-IR spectrum displayed 

significant variation. 

Normal-mode calculations based on a single minimized structure can vary significantly 

from one structure to another. The averaging of normal mode results over an ensemble of 

subspace conformations leads to better converged results. Experimental observations reflect an 

average over different native subspace conformations of the protein. However, from a 

computational perspective, averaging seems to defy the purpose of normal-mode calculations, 

which is in part to avoid the calculation of computationally expensive MD trajectories. To 

average, one needs an ensemble of native subspace conformations. In conclusion, the utility of 

normal-mode calculations for analysing structural dynamic properties of proteins is increased 

by calculating them for several structures obtained from MD simulations and averaging the 

results. This is expected to provide more meaningful values and makes it possible to determine 

error bars. 
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1. Introduction 
 
Nuclear receptor (NR) proteins form the largest family of transcription factors that regulate the 

transcription of genes in metazoans. They are implicated in the transcriptional cascade 

underlying many physiological phenomena related to cell cycle, differentiation, apoptosis, 

development, reproduction and homeostasis (Laudet and Gronemeyer 2001). An important 

feature of NRs is that their regulation of gene expression is dependent on the fixation of small 

ligands, thus acting as a hub that translates a chemical signal into a biological response. The 

transmission of this information implicates conformational changes in the protein. This ligand 

dependent activity of NRs makes them central targets for drug development in many diseases 

including diabetes, arteriosclerosis, inflammatory diseases and cancer (Xu 2015).  

While much is known about the structure of nuclear receptor protein, in particular, the 

ligand binding domain, increasing attention is being focused on the role of protein structural 

dynamics in crucial cellular signaling pathways. Large scale structural dynamics play a critical 

role in the ability of nuclear receptor proteins to function properly (J. P. Renaud and Moras 

2000c).  Structural dynamics without large-scale conformational changes likely allow nuclear 

receptor proteins to bind to a variety of ligands, both natural and synthetic, with varying affinity 

and specificity allowing nuclear receptors to respond to a wide range of signaling molecules 

(Ekins et al. 2009; Kroker and Bruning 2015). Structural dynamics in nuclear receptor proteins 

is necessary for dimerization either at the level of the ligand binding or the DNA binding 

domains.  In full length nuclear receptor proteins, flexibility of the linker region between the 

DBD and the LBD is necessary for dimerization and accommodation of varying DNA 

sequences allowed a more expansive range of DNA target sequences and subsequent gene 

regulation (A. K. M. Patel et al. 2023).  Large-scale structural dynamics are implicated in co-

regulator binding, in particular when agonist binding leads to the stabilization of H12 in a 

conformation where the recruitment of coactivator proteins is promoted (J. P. Renaud and 

Moras 2000c).  The binding of antagonists prevents H12 from populating this transcriptionally 

active conformation and the binding of an inverse agonist promotes the binding of corepressor 

proteins. This strong dependence of function on conformation has led to the development of 
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selective modulators for a variety of nuclear receptor proteins, which exploit this dependence 

to modulate nuclear receptor activity, often in a tissue-selective context (Holzer, Markov, and 

Laudet 2017). Several clinically approved modulators exist to treat a variety of conditions, 

including cancers, metabolic disorders, osteoporosis, and hormone-related diseases. 

Besides modulating conformations in nuclear receptor proteins, ligand binding is 

believed to influence the underlying collective dynamics (Fidelak et al. 2010a). Collective 

dynamics results from the concerted motions of a large number of atoms throughout the protein 

and have been suggested to play a significant role in controlling functional dynamical 

mechanisms, such as enzyme catalysis (Agarwal et al. 2002), ligand binding (Meireles et al. 

2011) and allosteric signaling (Smith et al. 2016). Modulating these collective structural 

dynamics is becoming an important avenue of exploitation for the discovery of new therapeutic 

compounds, in particular allosteric drugs (Tee and Berezovsky 2024). 

Collective motions occur in the low-frequency region of vibrational spectra and have 

been measured by techniques such as neutron scattering (Hong et al. 2016), vibrational 

spectroscopy (Rischel et al. 1998) and NMR spectroscopy (Lewandowski et al. 2011). 

Previously, far-IR spectroscopy and molecular dynamics simulations were combined to study 

the response of a PDZ domain to the binding of a small peptide ligand, elucidating the 

mechanism of allostery in this protein domain (Cote et al. 2017a). This integrated approach 

was used to quantify changes in low-frequency collective motions even for proteins without 

substantial conformational change upon ligand binding. Infrared (IR) spectroscopy, 

encompassing both mid-infrared (Mid-IR) and far-infrared (Far-IR) regions, is a powerful 

analytical technique for studying protein structure and dynamics. Mid-IR spectroscopy is 

particularly useful for examining protein secondary structures, as it probes vibrational modes 

that are sensitive to the backbone conformation of proteins, such as the amide I and II bands. 

The amide I band, arising mainly from the C=O stretching vibration, is located in the spectral 

range of 1700 to 1600 cm-1 and provides detailed information about the secondary structure 

elements like alpha-helices, beta-sheets, and random coils. Far-IR spectroscopy explores the 

low-frequency vibrational modes below 400 cm-1, which are often associated with collective 

motions and large-scale conformational changes within the protein. These motions are crucial 
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for understanding dynamic allostery and the functional conformational changes that occur upon 

ligand binding. Ligand binding can influence the underlying collective motions in this 

frequency range. In the work presented here, we extend the development and application of an 

integrated approach to characterize the structural dynamics of a nuclear receptor (NR) protein. 

We apply our ensemble approach to normal mode analysis to all the systems studied. We focus 

on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a nuclear receptor that is a 

particularly important target for the development of therapeutic compounds for diseases such 

as diabetes and cancer. In collaboration with the team of Professor Petra Hellwig (UMR 7140, 

University of Strasbourg), both mid-IR and far-IR spectroscopies were employed to analyze 

the LBDs of PPARγ in both wild-type (apo and holo) and two mutant forms, T475M and 

F310S. The proteins were provided by Dr. Natacha Rochel and Dr. Judit Osz of our team at the 

IGBMC. The work presented in this chapter are the molecular dynamics simulations and 

associated developments that contributed to this collaborative study through integration with 

the experimental data and the subsequent analysis done to extract information on the collective 

motions of the protein.  Studying the protein by this combined experimental/computational 

approach in the presence and absence of ligands, as well as a function of mutation, we gained 

insights into how ligand binding and mutations influence the structural dynamics of the protein 

at the level of allosteric regulation. This dual approach allowed us to capture a comprehensive 

picture of the conformational landscape and the underlying mechanisms of PPARγ's functional 

modulation. Such information can contribute to the development of new therapeutic strategies. 

In this chapter, we present the molecular dynamics simulations of PPARg in WT apo 

and holo forms, where PPARg was complexed to the ligand GW1929. GW1929 is a non-

thiazolidinedione selective PPARγ agonist (Heppner et al. 2004) and its chemical structure is 

shown in Fig. 26. In addition to the apo and holo WT forms, we also studied two mutant forms 

- T475M, which is mutant form that is known to have increased transcriptional activity even in 

apo form (Natacha Rochel et al. 2019) and F310S, which is known to be a loss-of-function 

mutation (Coutos-Thévenot, Beji, Neyret-Kahn, Pippo, Fontugne, Osz, Krucker, Groeneveld, 

et al. 2019). T475M and F310S mutations are implicated in luminal and basal bladder cancer, 

respectively. The structures of the 4 PPARg systems are shown in Fig. 27 . Also shown for the 
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2. Methods 
2.1. Model preparation 

 
Four different PPARγ LBD (residues 230 - 505) models, including the WT apo structure, WT 

holo with ligand GW1929, mutants T475M and F310S in their apo forms, were prepared for 

numerical simulation based on crystallographic structures available in the Protein Data Bank 

(PDB) (www.rcsb.org) (Berman et al. 2000; Burley et al. 2023). In this study, the numbering 

of the LBD sequence corresponds to PPARγ2 isoform (residues 230 - 505).   

 The WT apo model of 276 residues was based on the structure of chain B from PDBID 

7WOX (Yoshizawa et al. 2022b), which has a 3.20 Å resolution. Chain A in this PDB entry is 

bound to the antagonist MMT-160, but chain B was considered to be in apo form because it 

did not show any electron density representing a ligand in the binding pocket. The initial 

coordinate and protein structure files (PSF) needed for simulations were prepared using the 

PDB Reader & Manipulator option of the CHARMM-GUI web interface (Jo et al. 2008), using 

default parameters. The interface was also used to build missing protein residues. The protein 

chain was energy minimized using 700 steps of SD algorithm. The protein chain, along with 

crystallographic waters and neutralizing ions (90 Na+ ions, 87 Cl- ions, ~150mM concentration) 

was placed into a 100Å3 explicit TIP3P model water box. 

The mutant F310S model is based on the crystal apo structure 7WOX. The protein chain 

B was extracted from the PDB file and residue F310 was modified to a serine using the 

CHARMM program (Bernard R. Brooks et al. 1983). The protein chain was energy minimized 

using 700 steps of SD algorithm. The protein chain, along with crystallographic waters and 

neutralizing ions (90 Na+ ions, 87 Cl- ions, ~150mM concentration) was placed into a 100Å3 

explicit TIP3P model water box. 

The PPARγ bound to the agonist GW1929 (see Fig. 26) was modeled using the structure 

from PDBID: 6D8X (PDB DOI: https://doi.org/10.2210/pdb6D8X/pdb, to be published), chain 

A, which has a resolution of 1.90 Å. The 276 residue LBD coordinate and protein structure file 

were prepared using CHARMM-GUI interface and CHARMM program as described 

previously. Based on our observation of a ‘water – network’ representing a hydrogen bond 
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network bridging ligand and protein residues that seemingly contributes to stabilizing the 

ligand binding pocket, the crystallographic water molecules were kept in the preparation. Initial 

parameters for the ligand GW1929 were obtained from the ParamChem webserver 

(Vanommeslaeghe and MacKerell 2012) and used without modification as no parameter 

penalty exceeded the recommended limit. The protein chain was energy minimized using 700 

steps of SD algorithm. The system was further neutralized with 90 ions of Na+ and 85 ions of 

Cl-, in a 100 Å3 water box. 

The structure of mutant T475M used for the simulations was based on the structure of 

chain A from, PDB ID: 6FZY, which has a resolution of 3.10 Å (Natacha Rochel et al. 2019). 

This structure has 279 residues (residues 227 – 505 of the LBD). Seven residues are missing 

from the W - loop region in the crystal structure, reflecting local flexibility. These missing 

residues were built using the tools available in the CHARMM-GUI interface. The protein chain 

was energy minimized using 700 steps of SD algorithm, then placed in the 100 Å3 water box, 

along with 90 Na+ and 87 Cl- neutralizing ions.  

 
2.2 Determination of histidine protonation states  

 

Prior to setting up molecular dynamics simulations of a protein, it is necessary to determine the 

protonation states of the titratable residues. While most residues are taken in their standard 

protonation states because their pKa values are relatively far from physiological pH. Because 

of its imidazole group side chain, histidine can readily exist in different protonation states 

depending on the local environment. For the isolated His amino acid, the three protonation 

states of His are shown in Fig 28. In an acidic environment (low pH), histidine can exist in a 

fully protonated form where both Nd and Ne are protonated giving the residue a +1 charge 

(HSP).  In an environment that is more pH neutral, histidine exists in a neutral (deprotonated 

form) where it can be protonated on either Nd or Ne atoms, depending on the local 

environment. However, in a protein, depending on the local environment, the protonated HSP 

form can often be stabilized at neutral pH. 

 



 
 

 
 

92 

 

 

 

 
 
 
 

How the protonation state is set in the simulation can have an important impact on the final 

results. To determine the protonation states of the histidine residues of our systems, we used 

the PROPKA program (Olsson et al. 2011; Søndergaard et al. 2011) via the webserver 

https://server.poissonboltzmann.org/pdb2pqr. PROPKA takes an empirical approach to 

estimate titration states using parameters derived from experimental data and pKa values. 

Based on the local structural, it estimates pKa values for the titratable residues in the protein.  

The results for PPARg are presented in Table 2. The protonation states given in Table 2 were 

taken for all apo structures (WT and two mutants). For the holo-WT complex (PDBID 6D8X), 

the protonation states were the same as in Table 2, except for His245, taken as HSD, His453, 

taken as HSD and His477, taken as HSD.   

 

 
 
 
 
 
 
 
 
 

HSD                HSE                     HSP 

Figure 28. The three different protonation state of histidine. The names are those used in the CHARMM 
force field. 
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Table 2. The PROPKA suggestions for histidine protonation states of the apo protein. The HSD, HSE 
and HSP annotations represent histidines carrying hydrogens on atoms Nd, Ne and on both nitrogen 
atoms, respectively. The mutant T475M has one additional histidine on N-terminal end of the protein 
(first row in the table).  
 

histidine residue n° protonation state 

(229) (HSD) 

245 HSE 

294 HSD 

351 HSP 

453 HSP 

477 HSE 

494 HSE 

 

 

His351 is located on H4-H5 and extends into the ligand binding pocket. In the holo-WT 

structure, PDBID 6D8X, the PROPKA server first suggested this His as being neutral and 

protonated on the Nd of the imidazole ring (HSD). However, the PROPKA server does not 

take into account the presence of ligands, and the structure PDBID 6D8X is of PPARγ bound 

to the ligand GW1929.  Visual inspection of the binding pocket showed that, in the vicinity of 

His351, there is a water molecule that can stabilize protonation on the Nd, thus justifying the 

assignment made by PROPKA, but in the presence of the ligand, protonation can also occur on 

the Ne, which points towards the carboxyl group of the ligand, see Fig. 29.  Given that there is 

no crystallographic water molecule in the vicinity acting as H bond donor for the ligand and 

that a unprotonated Ne– ligand interaction would be unfavorable, His351 was finally 

reassigned as HSP, or doubly protonated for both apo and holo forms. 
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minimization for 1000 steps. This was followed by a heating to 296.5 K. The constraints on 

the protein/ligand were removed and the entire system was energy minimized for of 2000 steps. 

The entire system was then heated up to 296.5 K over 15000 steps, followed by an equilibration 

run of 85 000 steps of dynamics that was followed by the production phase. A time step of 2 fs 

was used. The duration of each simulation was 100 stages of 1 x 106 timesteps, which resulted 

in 200 ns - long simulations. Structures were saved every 250 steps, resulting in 400000 

structures per trajectory. Three simulation replicas were carried out for all four PPARγ LBD 

systems yielding a total of 2.4 µs of simulation. 

 

3. Results and discussion 
3.1. RMSD and RMSF  

 

The RMSD time series provides a measure of the change in conformation of the protein as a 

function of time and is used to assess the stability of a molecular dynamics simulation. For 

each of the three replicas of the four different PPARγ systems being studied here, the RMSD 

time series were calculated from the MD. The results from each replica of each system were 

averaged and the average time series was plotted for the 200 ns of trajectory, along with the 

variation (highest and lowest values) at each time point. Referring to Fig 30, all four systems 

show relatively stable trajectories given that the RMSD time series reach plateau values. Upon 

visual inspection of final structures, there is no significant loss of secondary structure integrity. 

The RMSD mean value of PPARg apo WT system has the average RMSD of 2.7 Å (st. dev. 

0.21 Å). After 150ns, a slight increase in RMSD value is observed and there is an increase of 

variability between replicas (variation in pink of the highest and lowest values). That apo form 

of the WT shows increased flexibility, especially in comparison to the holo form, is not 

unexpected given that experimental measurements  suggest this behaviour (B A Johnson et al. 

2000; Chalmers et al. 2011).  The WT – GW1929 complex has an average RMSD of 3.0 Å (st. 

dev. 0.11 Å) and, although this is a higher number compared to the WT RMSD, we see that the 

trajectory is more stable and reaches a plateau after 60 ns of trajectory. We calculated the 

RMSD of the agonist ligand separately (average value: 2.3 Å, st. dev. 0.1 Å). After some 
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conformational adjustment in the first 100 ns of trajectory, it reaches a plateau and becomes 

more stable at around an RMSD of 2.5 Å. Both mutant structures present high RMSD values, 

with the RMSD of 3.6 Å (st. dev. 0.09 Å) for the mutant T575M and 3.6 Å (st. dev. 0.07 Å) 

for F310S. Both simulations are stable, with F310S displaying less variability between replicas. 

The F310S model was based on the WT apo structure, but it presents a higher RMSD value 

much sooner in the trajectory. 
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The root mean square fluctuation (RMSF) values provide a quantification of the degree 

of flexibility of the protein around an average structure.  Here, the RMSF values averaged over 

the three replicas are plotted by residue number, from residues 230 (226 for the mutant T475M) 

to 505. To facilitate the understanding of these results, the secondary structure elements are 

represented on a horizontal line, with alpha helices represented as green, and beta strands as 

blue rectangles. The mean values are plotted in red and the highest/lowest values as pink area. 

In general manner, all four systems present values that are characteristic for the PPARγ LBD. 

Lower flexibility is observed for residues of secondary structure elements and higher flexibility 

for loops and terminal end regions. Still, differences between systems are noticeable. The 

PPARγ apo WT form has stable regions, including helices H1, H3, H5, H8, H9, H10. The most 

flexible regions are the loop H2 – S1, with RMSF values up to 4 Å and the C – terminal residues 

with RMSF values up to 4.5 Å (Fig. 31A). As expected, all loops are more flexible than the 

secondary structure regions. The highest variability between replicas is noticeable in the helix 

H12 and the C – terminal region.  
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low fluctuations of around 2 Å. The two PPARγ mutated system, T475M and F310S (Fig. 31C 

and D, respectively), also follow the classical pattern of PPARγ fluctuations. However, they 

present higher variability of RMSF values among three replicas, represented by a larger pink 

area.  

The T475M system has the most significant fluctuation values of up to 3.5 Å in the W 

- loop region. It is the only system where the W - loop region presents higher values of RMSF 

than the H2 – S1 loop. Another area of high fluctuation is helix H12 and, in particular, the very 

C – terminal residues, which have RMSF values of around 3.7 Å. The fluctuations of the H3 – 

H4 loop have the mean values of 2.7 Å, the highest of all four systems, which also displays the 

highest variability among replicas. The same is observed for the H8 – H9 loop, which surpasses 

other PPARγ systems with the average value of about 1.8 Å. The helix H6, loop H6 – H7 and 

the helix H7 have somewhat uniform fluctuations that are slightly lower than the WT apo and 

F310S systems, and similar to the PPARγ – GW1929 system.  

The F310S mutant system displays high variability of RMSF values when comparing 

three replicas (Fig. 33D). The most variability is seen in the region around helices H1, H2, W - 

loop, H8 – H9 loop, H9 – H10 loops and helix H12. Recall that F310S is a loss-of-function 

mutant, while T475M is a gain-of-function mutant (Natacha Rochel et al. 2019)  

   

3.2. RMSD - Radius of gyration based free-energy landscapes  

 

In the subsequent analysis of the simulations, we will follow the protocol outlined in the 

previous chapter, where we developed our Ensemble normal mode approach for calculating 

dynamical properties. In the first step of applying this approach here, we calculate the free 

energy landscape from RMSD and radius of gyration (RGYR). 

 To assess the conformational landscape of PPARg in the different systems studied here, 

an effective free energy landscape (FEL) was constructed from the molecular dynamics 

simulations. Based on the vales of the backbone RMSD and the RGYR, the FEL was computed 
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using Eq. 39, in chapter III. The FEL was calculated for each replica simulation; the results are 

presented in Figs. 32 - 35. 

 For each system, we show three individual plots, one for each molecular dynamics 

replica simulation. For each replica simulation, we calculated the backbone RMSD and RGYR 

in order to construct the landscapes through binning of the discrete values. Each simulation 

saved 400 thousand structures for analysis. The ‘pseudo’ potential energy surface maps 

constructed from these trajectories are used to visually cluster the large number of structures 

that we have for each simulation as they serve as an indicator of different clusters or ‘wells’ 

that are populated during the simulations. In Fig 32-35, the more red the area, the more 

populated are those regions of conformational space, meaning that the majority of structures in 

a given well have similar values of RMSD and RGYR. As per our ensemble approach, 

structures were extracted from the most populated well for further analysis.  
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For example, for first replica of the WT apo system, we extracted structures that had RMSD 

values between 1.6 and 1.75 Å, and a RGYR between 19.8 and 19.9 Å. For each replica, the 

number of structures which satisfied these conditions is reported in the Table 3. From each 

group of representative structures (n° of extracted structures, Table 3), one hundred structures 

were extracted for further analysis. As explained earlier, a dynamics trajectory of all the 

structures that satisfied the RMSD and RGYR criteria were selected.  A dynamics trajectory 

was constructed, and 100 structures were extracted from this trajectory. 

 
 
 
Table 3. Values of RMSD and Radius of gyration used to define the most populated wells, and the total 
number of structures extracted for each system.   

  replica 1 replica 2 replica 3 

WT apo 

RMSD (Å) 1.6 – 1.75 1.8 – 1.95 1.9 – 2.15 

Rgyr (Å) 19.8 – 19.9 19.77 – 19.82 19.75 – 19.9 

n° of structures 

extracted 
48 897 14 888 78 811 

WT - GW1929 

RMSD (Å) 2.67 – 3.0 2.12 – 2.3 2.22 – 2.47 

Rgyr (Å) 19.56 – 19.65 19.68 – 19.8 19.7 – 19.85 

n° of structures 

extracted 
5 100 84 714 90 671 

F310S 

RMSD (Å) 2.97 – 3.0 2.81 – 2.87 2.85 – 2.98 

Rgyr (Å) 19.7 – 19.76 19.4 – 19.5 19.4 – 19.5 

n° of structures 

extracted 
11 970 23 611 30 885 

T475M 

RMSD (Å) 2.7 – 2.84 2.5 – 2.8 2.69 – 2.97 

Rgyr (Å) 19.76 – 19.84 20.2 – 20.34 19.7 – 19.88 

n° of structures 

extracted 
14 972 77 056 123 965 
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3.3. Normal Mode Analysis 
 

Normal Mode Analysis (NMA) was done for each set of 100 structures extracted from the 

individual replicas. Each replica is treated separately. The NMA calculation was carried out 

using the Vibran module of the CHARMM program. Each structure was subjected to an energy 

minimization using the adopted basis Newton Raphson (ABNR) minimizer in the CHARMM 

program until the GRMS, a measure of the closeness to the local energy minimum, was less 

than the tolerance of 1 x 10-6 kcal/(mol.Å). The minimized structure was then used for the NMA 

calculation. The output file of the vibran calculation contains 3N number of frequencies, where 

N is the number of atoms, each associated to a normal mode (Table 4). To check if the 

calculation was executed properly, we verified the values of first 6 modes, which, in the 

CHARMM output, correspond to translational and rotational degrees of freedom. Their values 

should be close to zero. If this condition was satisfied, the results from the normal mode 

analysis frequencies associated with normal modes are used for further calculation of atomic 

fluctuations, IR spectra, and correlation plots. 

 

Table 4. Number of atoms and number of normal modes of each system. 

 n° of atoms 3N normal modes 

WT apo 4 488 13 464 

WT - GW1929 4 559 13 677 

F310S 4 479 13 437 

T475M 4 543 13 629 

 

3.3.1. Computed fluctuations  

 

From the normal modes calculated for each set of 100 structures from each replica of each 

system under study, we calculate the RMS fluctuations using Eq.21 in Methods. The low 

frequency normal modes capture the collective motions, which are often associated with 

functionally important movement. Calculating the RMS fluctuations provides a verification of 
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information they give should not be over-interpreted, since their accuracy is affected by various 

factors, such as crystal defects, diffraction data quality or experimental conditions (Na, Hinsen, 

and Song 2021; Mlynek, Djinović-Carugo, and Carugo 2024). Nevertheless, they can still be 

useful to assess the internal mobility or rigidity of proteins, which can help understand protein 

function.  

 For each system, a plot of all three RMSF (Å) calculations as a function of residue is 

provided in Fig. 36. The fluctuations are calculated from different sources, from MD 

simulations, from NMA and from crystallographic B-factors. Their comparison shows how 

they can be similar - or different - for a particular protein system. Note that, in Fig. 36D for the 

mutant F310S, there are no no fluctuations from experimental B – factors, as this mutant does 

not have a corresponding crystallographic structure, rather it is a model constructed based on 

the structure of the apo WT.   

The MD and NMA fluctuation are represented as an average of 3 replicas, with the 

shaded area of the same color around the curve being the standard deviation value. The first 

thing we notice is the scale (Å) at which these fluctuations take place. The highest values in 

fluctuations are seen in MD simulations, going up to 6 Å in the case of the N-terminal end of 

PPARg in the cases of the mutant structures and the structure complexed with GW1929. Next, 

the fluctuations from B factors ranging from 0.8 - 3 Å, and finally the NMA fluctuations with 

the smallest values, of around 0.5 Å for the stable secondary structure elements. It comes as no 

surprise that the values for these fluctuations fall in this order. The crystallographic physical 

and chemical environment of individual proteins restricts their movement, accounting for the 

smaller values of atomic displacements with respect to the simulation results. In the cases 

where a protein region moves significantly, there will be no electron density, and consequently 

no B- factors. This is depicted as a gap in the curve on the plot in the case of PPARγ WT apo 

and mutant T475M. Regarding the fluctuations calculated from normal modes, recall that these 

motions are small harmonic displacements around an atomic equilibrium, so it is expected that 

they will not have high values. But, from these figures we can see a consistency in the pattern 

of motions. On each figure, we see that the three curves follow the same trends, with lower 

fluctuation values for more stable regions of secondary structure elements, and higher values 
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for more flexible protein sections. This provides confirmation of the correctness of our 

simulations and suggests that the trajectories and structures extracted from them can be used 

for further analysis. 

 

3.3.2. Computed Infrared spectra  

 

From the results of the normal mode calculations, we calculated the mid- and far-IR 

spectra for each replica of each system under study using Eq. 25. This calculation used the 

results from the normal mode calculation presented above.  The full set of normal modes was 

used. Following the protocol of ensemble normal modes presented in chapter III, one infra – 

red spectrum was calculated for each structure extracted from the MD simulations of each 

replica, meaning 100 spectra for each replica. From the output file, we extracted frequencies 

and dipole derivatives associated to each vibrational normal mode. The frequencies and 

intensities were then binned into 4000 bins which allowed us to merge the different spectra. In 

order to simulate an experimental IR spectrum, we applied a convolution factor. A value of ten 

for the smoothing factor was chosen since it gave the best qualitative result and corresponded 

to the value used in the experiments. 

The experimental results were generated by Professor Petra Hellwig and Dr. Filipa 

Seica. With their permission, the data are reproduced here for comparison to the calculated 

results. The experimental far-IR spectra of PPARg in apo WT form, holo form bound to the 

agonist GW1929, and two apo mutant forms, one with the activating mutant T475M and the 

inactivating mutant F310S were recorded by following the protocol described in Annex section 

at the end of this chapter IV. The results are shown in the Fig. 37, where one observes that the 

measured far-IR spectra all have a similar shape. One also notices that the calculated peaks are 

generally broader. There is one very intense and broad peak that appears in the frequency range 

[100–250] cm-1 and a second peak that is present in the frequency range [500–600] cm-1. A 

smaller peak appears in the frequency range [400–450] cm-1. The signal at 140 cm-1 observed 

in the apo WT form shifts to higher frequencies [162 cm-1] in the holo form spectrum. This 

blue shift in the far-IR is likely to be a consequence of the interaction between the ligand and 
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the protein. With respect to the apo WT protein, the first peak for both mutants also shows a 

blue shift (the shift towards higher frequencies). The same trends are observed in the higher 

frequency peaks in the ranges of range [500–600] cm-1 and [400–450] cm-1.  

Mid-IR range from [1500-1800] cm-1 shows very little effect of changes due either to 

ligand binding or point mutations. For the holo form in complex with GW1929, the region 

[1100-1200] cm-1 shows significant peak shifts, and the apo mutant forms show slightly less 

shifts. But overall, ligand binding seems to affect the low-frequency region more than the mid- 

and amide regions of the spectrum. 
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Figure 37. Shown here are the experimental mid- and far- IR absorbance spectra (top) for WT APO 
(black), WT+GW1929 (red), and two mutant forms T475M (blue) and F310S (cyan). The bottom figure 
shows the absorbance spectra for the amide I and amide VI bands. Reproduced with the permission of 
Professor Petra Hellwig and Dr. Filipa Seica. 
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Figure 38 shows the full IR spectra calculated for all four systems. Plotted are wave numbers 

(cm-1) ranging from 0 to 4000 cm-1 and spectral intensities (from right to left). We distinguish 

three ranges of wave numbers, the far – IR, with ω < 700 cm-1, the mid – IR (from 1200 to 

1700 cm-1) and near – infra red (from 3000 to ~ 3300 cm-1). The 0 – 4000 cm-1 range plots are 

given as a qualitative assessment of the validity of the results, ensuring that the entire spectrum 

is calculated. The different regions of the spectrum correspond to different molecular motions 

corresponding to different vibrational frequencies ranging from entire collective protein 

motions (low frequencies) to more localized bond vibrational motions (high frequencies). The 

mid-IR reflects motions of secondary structural elements. We note that the high frequency 

Figure 38. Computed IR spectra, from normal mode calculations, of four biological systems: WT apo 
(black), WT – GW1929 (red), mutant T475M (blue) and mutant F310S (cyan).  
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vibrations (near IR range, high wavenumbers) are nearly identical across all proteins. Our focus 

here is on the low - frequency motions that are unique for each system. 

 

As the primary interest in this work are the collective motions of the different protein 

systems, the low frequency regions were plotted in one plot to facilitate comparison; the low-

frequency region lies between ω = 0 - 600 cm−1 (Fig. 39). The intensity values are not indicated 

as they are not of primary interest here, only peak positions, shifts and shapes. Averaging over 

the replicas results in the mean values of different spectra being plotted as a solid line and the 

standard deviations being represented as shaded areas around curves in the same color. The 

relative position of curves is displayed with an increment along the y-axis to facilitate the visual 

comparison. Focusing on the lowest frequency peak of the spectra, we find they are centered 

around ω = 47 cm−1 (WT apo), ω = 45 cm−1 (WT - GW1929), ω = 45 cm−1 (mutant T475M), ω 

Figure 39. Computed IR spectra, ω < 600 cm-1, from normal mode calculations, of four biological 
systems.   
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= 48 cm−1 (mutant F310S). Small shifts in these lowest frequency peaks are also observed 

experimentally. Moving to higher frequencies, we see similar trends between the experimental 

and calculated spectra. We see that the descending slope after the first peak (after 100cm-1) 

shows more variation in the apo WT than in the holo WT with the ligand GW1929. 

Experimentally, the descending slope of the apo WT has more features than the holo WT. 

Similarly, the next set of peaks in the calculated spectra find correspondence in the 

experimental peaks with similar shifts. 

 

3.3.3. Secondary structure analysis 

 

By analyzing the amide I and amide VI infra-red bands, which are sensitive to secondary 

structure motifs, infrared (IR) spectroscopy provides a direct experimental measurement of 

protein secondary structure content. Following the methodology described in the Annex of this 

chapter, the secondary structure content of PPARg in the different forms studied here, that is 

WT apo and holo forms, and two mutant structures, T475M and F310S, was determined by the 

experimental team of Professor Petra Hellwig. The results are presented in Table 5. 
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Table 5. Secondary structure content as determined by Mid-IR spectroscopy from analysis of the amide 
I and amide VI bands. Shown are the percentages for each type of secondary structure and, in 
parentheses, the wave numbers of the peaks analyzed. 

Amide I WT [cm-1] WT_GW1929 [cm-1] T475M [cm-1] F310S [cm-1] 

% α-helix 48 (1654) 57 (1652) 69 (1653) 66 (1652) 

% antiparallel β-

sheet 
27 (1638, 1687) 24 (1634, 1686) 18 (1631, 1689) 21 (1631, 1689) 

% β-turns 22 (1671) 16 (1671) 11 (1677) 11 (1677) 

% intermolecular 

aggregate % β-

sheet 

3 (1622) 3 (1616) 2 (1615) 2 (1615) 

 

Amide VI WT [cm-1] WT_GW1929 [cm-1] T475M [cm-1] F310S [cm-1] 

% α-helix 59 (518) 69 (502, 521) 54 (510, 525) 
70 (502, 518 

532) 

% β-sheet 10 (539) 22 (538) 17 (540) 18 (548) 

% β-turns 5 (552) 4 (558, 567) 6 (555) 6 (564) 

% other 

contributions 
26 (472, 478, 493) 6 (481) 19 (477, 493) 6 (485) 

 

 

Here we focus only on a-helical content, given that a-helices are the predominant structural 

motif in the NR LBD. The analysis of the experimental data (Table 5) indicates first that the 

analysis of the two bands, amide I and amide VI, yields different absolute values of percent 

content. However, for the most part, the analysis of the two bands shows the same general trend 

from one form to the other. Only T475M shows a deviation from the pattern. In the analysis of 
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the amide I band, T475M shows a greater a-helical content with respect to apo and holo WT 

forms, while in the analysis of the amide VI band, it shows lower a-helical content than apo 

and holo WT forms. Comparing to the values calculated from the crystal structures used in this 

study (Table 6), the percent of a-helical content determined from the IR experiments are 

generally lower, while the percent b-sheet are considerably higher. The reasons for these 

discrepancies are not clear. 

 

 
Table 6. Percent of secondary structure calculated from the crystal structures used in this study.  There 
is no experimental structure for the F310S mutant. 

Crystal Structure  a helix (%) % b sheet (%) 
Apo WT (7WOX) 69.5 4.7 

WT_GW1929 (6D8X) 76.8 4.7 

T475M (6FYZ) 74.5 4.7 

F310S - - 

 

 

The secondary structure content of PPARg was calculated from the molecular dynamics 

simulations using the Stride program (Heinig and Frishman 2004b) piloted by MDAnalysis (R. 

J. Gowers et al. 2016) and an in-house python script developed during the course of this thesis.  

For each replica of each system, the percentages of α-helices and random coils, and β-sheets 

were calculated. For each system, the results were averaged over the three replicas (last 

column). The results are shown in Table 7. 
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Table 7. Secondary structure content calculated from the molecular dynamics simulations. The 
background colors are associated to the colors of the far-IR spectra shown in Fig. 40. 

  rep1 rep2 rep3 mean value 

WT apo 
a helix (%) 73.4 72.2 74.09 73.2 ±1.0 

b sheet (%) 3.9 4 4 4.0 ±0.0 

      

GW1929 
a helix (%) 75.8 77 76 76.3 ±0.6 

b sheet (%) 4.2 3.7 4.2 4.0 ±0.3 

      

T475M 
a helix (%) 77 78 77 77.3 ±0.6 

b sheet (%) 4.6 4 4 4.0 ±0.0 

      

F310S 
a helix (%) 72.7 72 71.7 71.9 ±0.2 

b sheet (%) 4.3 4.3 4.1 4.2 ±0.1 

 

 

In general, we see that the percentages calculated from the simulations are more in line 

with the values calculated from the experimental crystal structures than from the mid-IR 

experiments. However, for the a helices, we see that, for the most part, the trends observed in 

the IR results are followed by the simulation results. In particular, the percentage of a helix 

increases when going from the wt-APO to the wt-HOLO, which could reflect stabilization of 

H12, as well as other regions around the ligand binding pocket.  A further increase in a-helical 

content is observed in the T475M mutant. An increase is also observed in the results from the 

mid-IR measurements but is not observed in the crystal structures. This increase in a-helical 

content in the T475M mutant could reflect further stabilization of H12 due to interaction with 

the methionine 475. As seen in the original simulations of T475M, and in the subsequent X-

ray crystal structure, the C-terminal tyrosine (Y505) interacts with the sidechain of 475M, 

leading to stabilization of the H12 helix (Natacha Rochel et al. 2019).  Concerning the F310S 

mutant, the mid-IR results show that the a-helical content in this mutant is larger than in the 

WT apo protein, but the simulations show that the content is essentially the same. This could 
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reflect the fact that this mutant structure was constructed using the WT apo structure as a 

template. 

In Fig. 40, we show the percent secondary structure at three points throughout the 

simulation- beginning, middle and end. This shows that over the course of the simulations, the 

secondary structure content does not change significantly, although there is a slight increase in 

a-helix content for the WT holo and the T475M proteins. The percent content of b-sheet 

remains low, consistent with the values calculated from the crystal structures, but less than the 

values determined by the mid-IR measurements. 

 

 

 

Figure 40. Secondary structure content as a function of time point (values between 70 - 80 % represent 
a helix, and around 4% are b sheets). The results are averaged over the three replicas. Multiple 
structures are taken from 3 time points: beginning, middle and at the end of each simulation. 
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When compared to experimental IR spectroscopy data, these results further validate the 

molecular dynamics simulations.  The discrepancies between calculated and experimental data 

can arise from factors such as differences in hydration and environmental conditions between 

the experiments and the molecular dynamics simulations.  

 

3.3.4. Correlated motions 
 

Through the comparison of the measured mid- and far-IR spectra to those calculated from our 

molecular dynamics simulations, we established that the atomic motions in our simulations 

represent well the low-frequency dynamics of the different forms of PPARg studied here. This 

then allows us to examine the collective motions and elucidate the effects ligand binding and 

point mutations. Following our ensemble NMA approach (chapter III), we computed the 

correlated motions of the Ca atoms for each of the 100 representative structures extracted for 

each replica of each system. For these calculations, we included all 3N normal modes, but in 

chapter III, we showed in Fig. 23 that the correlated motions themselves are well represent by 

modes up to 200 cm-1. The results are shown in Figs. 41 for the WT proteins and Fig. 42 for 

the mutant proteins. The general aspect of the correlation maps for all four systems is quite 

similar. We notice differences mostly in the intensities of the correlations. Along the diagonal, 

we have completely correlated motions, and the rest of the plot represents correlated (red) or 

anti-correlated motions (blue). On all four plots, extending perpendicularly from the diagonal, 

are correlated regions representing b sheet, while a helices run along the diagonal.  

In the correlated motions of the apo WT (Fig. 41 top) calculated and averaged from the 

NMA, we see correlations between different secondary structure elements, in particular H12 

and H3, as well as the w loop region following H2’. One also sees correlated motions between 

H4-5 and H8-loop-H9.  The strands of the b-sheets show significant correlation between them, 

as well as with other regions of the protein. The PPARγ WT presents other prominent islets of 

red. These represent correlations of b1, b2, and b3 strands in the b - sheet, H1 and the C-

terminal end of H3, H1 and H9, and between H5 and H10-11. These correlations can be 

explained by the spatial proximity of these residues and their immediate interaction. Another 
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correlated region is found between residues of H12 and the W - loop. Highly anticorrelated 

motions are seen less across the plot. Still, smaller anticorrelations are concentrated in the 

regions of H1 and the region between H2 - H2', H1 and H4, H1 and the loop H8 - H9, the end 

of H2 and the end of H9, W - loop and H5, H4 and end of H9. The region between H11 and C 

- terminal is anticorrelated with helix H4 and with the region of H8 - H9 loop and N - terminal 

of H9.  

The correlations of PPARγ - GW1929 (Fig. 41 bottom), have a highly similar aspect, 

but with significant fading of anticorrelations. For example, the anticorrelated motions depicted 

in darker blue shade, between H1 and H8 - H9 loop, are completely softened. H12 shows 

significant correlation with H3. Putting H12 in a different conformation in the holo-WT 

simulation has a significant effect on the correlated motions of the ligand binding domain.  

In a previous study (Natacha Rochel et al. 2019), it was shown that the T475M mutant, 

even in apo form, could activate gene transcription to a degree similar to the WT holo form. 

Concerning the correlated motions of the T475M mutant structures (Fig. 42 top), we see, in 

fact, strong similarities to the holo WT structure, especially if we look at the anti-correlated 

regions. For example, the mutant T475M displays anti-correlated patterns and intensities that 

are similar to the WT - GW1929 system. The T475M mutant shows some additional correlated 

motions not seen in the WT holo, for example, H4-5 and H12. The correlated motion of the 

mutant F310S is similar to those of the WT apo form (Fig. 42 bottom).  

While it was previously shown that ligand binding alone can affect the correlated 

motions (Fidelak et al. 2010a), these molecular dynamics simulations have identified both 

sequence- and structure-specific differences in correlated motions involving different 

secondary structure elements. We see that differences in the local conformation and sequence 

can have profound effects on the structural dynamics, interaction networks, and long-range 

correlations in this protein domain.  
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Figure 41. Correlated motions calculated from normal modes for the WT apo (top) and WT holo systems 
(bottom). 
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Figure 42. Correlated motions calculated from normal modes for the mutant T475M (top) and F310S 
systems (bottom). 
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3.3.5. H-bond analysis  
 

Shifts in the mid- and far-IR spectra can be attributed, in part, to changes in hydrogen bonding.  

In the mid-IR, these are changes to C=O vibrations in secondary structure. Here we carried out 

an analysis of the hydrogen bonds present in ensembles of structures used for the NMA. All 

hydrogen bond pairs were chosen, including both backbone and sidechain hydrogen bonds. 

Analysis of the hydrogen bonds can provide insight into protein stability and dynamics.   

 To identify the hydrogen bonds populated by the structures used for the normal mode 

calculations, we took the 100 structures of each replica of each system and generated a 

dynamics trajectory that was subsequently analyzed using the CHARMM coor hbond module.  

The selection was made for the entire protein chain, which gave results for backbone-backbone 

and hydrogen bonds involving sidechains. Backbone hydrogen bonds are essential for the 

stability of secondary structure elements, such as a helices, b sheets and b turns. These 

hydrogen bonds form between the carbonyl oxygen of one amino acid and the amide hydrogen 

of another.  The analysis also identified hydrogen bonds between side chains and between side 

chains and backbone atoms. These later hydrogen bonds can contribute to the stabilization of 

the overall 3D fold of the protein. Water molecules were not included in this analysis. The 

hydrogen bonds were calculated for each replica using a distance cutoff of 2.4 Å and no angle 

limitation, as defined by the default parameters in the CHARMM program. Changes in the 

hydrogen bonds of the protein could manifest itself in shifts of the low frequency IR peaks.  

 

3.3.5.1. Backbone H-bond analysis 
 

From the analysis of the 100 structures per replica per system used in the ensemble normal 

mode analysis, we calculated the average number of backbone hydrogen bonds (Fig. 44). We 

see that the WT apo system has the fewest number of backbone H-bonds, while the other 

systems have larger numbers. The WT holo system has, on average, the highest number of 
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and the hydrogen bonds are shown as thin lines.  Some of the lines appear to be very long for 

hydrogen bonds, which is a consequence of putting the bonds on the average structure as 

opposed to individual structures. Indeed, the long lines represent regions of high 

conformational flexibility. In this present case of the WT apo structure, this suggests that the 

C-terminal helix is somewhat flexible. One does not see any coupling by H-bonds between H3 

and the W loop region. 

In Fig. 45 bottom, we see the results of the H-bond analysis for the WT complexed to 

the agonist GW1929.  The H-bonds clustered around the C-terminal end are relatively short, 

which suggests a less flexible C-terminal H12 helix. We see, in addition, H-bonds that couple 

the H11-H12 loop to H3 and to the W loop region. So, there is more significant coupling than 

what is observed the apo form. In addition, we see that His494 at the N-terminal end of H12 is 

involved in H-bond formation with Gln314, Lys293, His294 and Ser 492. His 494 is a residue 

of therapeutic interest since its mutation to Tyr has been associated to inactivation of PPARg 

in baldder cancer (Coutos-Thévenot, Beji, Neyret-Kahn, Pippo, Fontugne, Osz, Krucker, Dos, 

et al. 2019). 
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The T475M mutation has been identified as an activating point mutation in luminal bladder 

cancer (Natacha Rochel et al. 2019). From the analysis of the H-bonds in this structure, we see 

there is significant coupling between the H11-H12 loop and the N-terminal end of H3 (Fig.45 

top). There is also some coupling with the W loop, as seen in the WT protein complexed with 

the agonist GW1929, but we see that, given the length of the hydrogen bonds, the region 

remains quite flexible. While there are various couplings via H-bonds of the C-terminal end of 

H12, the cluster is less populated than that observed in the WT complexed to the agonist 

GW1929 (see Fig. 44). His494 is involved in hydrogen bonds with Gln311, Leu496, and 

Gln498.  Even in its apo form, the mutant T475M has shown some transcriptional activity 

(Natacha Rochel et al. 2019).   

The F310S has been identified as an inactivating point mutation in basal bladder cancer. 

In Fig. 45 (bottom), we see the H-bonds calculated from these structures. The F310S mutation 

show a significant amount of hydrogen bonding around H12, but interestingly, there is almost 

no H-bond coupling to the W loop region. Given the length of the illustrated H-bonds, the 

region remains quite flexible. Compared to the WT apo form, F310S shows a much more local 

H-bonding between H12 and the N-terminal end of H3, which suggest that the mutation leads 

to a stabilization of this region in its inactive conformation. This H-bonding could impede the 

conformational changes necessary to populate the active form. This could contribute to the 

inactivating effect of the mutation. 

These results suggest that the shift in the IR spectra might be partially due to changes in 

hydrogen bond numbers.   
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3.3.6. Community network analysis (CNA) 
 

Community network analysis was performed using the Bio3D software (Grant, 

Skjærven, and Yao 2021). Contact maps were produced using an atom-atom distance (cut-off 

of ≤10 Å) and the correlated motions obtained from the MD trajectories. The CNA uses graph-

based network approach that is based on the edge-betweenness centrality measure, where the 

edge-betweenness centrality of an individual residue is defined as the number of the shortest 

paths connecting other residue pairs that pass through it, thus providing an estimate of the 

influence of this residue on communication, or modularity. Communities of residues are 

characterized by high modularity values, that is, residues in the same community share dense 

connections, whereas residues of different communities have sparse or no connections at all. 

The size of the nodes is related to the size of a community and larger spheres depict higher 

number of residues. The edges connect coupled communities, where thicker edges correspond 

to higher degree of correlation. The correlation threshold for edge detection (cij cutoff) was 0.5. 

The community map analysis results are depicted using coloured spheres mapped on the 

average 3D structure in tube representation.  

The Community Network Analysis (CAN) of the PPARγ systems was done using the 

correlated motions calculated and averaged from the 3 replicas simulations for each 

PPARg variant. The results (Figs. 49 to 52) show community nodes placed on the average 

backbone structure for each system. Two orientations are shown, one rotated about 180° with 

respect to the other (A and B).  Also shown are the detailed compositions of each node (C), as 

well as the network 2D map (D). Many nodes correspond to entire secondary structure 

elements, such as helices, however, some nodes encompass spatially adjacent residues 

belonging to different structural elements. Coupling between nodes is indicated by an edge, 

drawn as a rod connecting two nodes. The thickness of the rod indicates the degree of coupling. 

For the WT apo protein, the results of the CNA are shown in Fig. 46. 13 nodes were 

detected by the analysis.  Interestingly, we see nodes formed on H3 (node 6), H12 (node 7), 

the W loop region  (node 5).  The b sheet region forms a single node in the WT apo protein 

(node 4). The loop between H8 and H9 forms a sizable node (node 8) that is highly connected 
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to the rest of the LBD (Fig. 46A). H3 shows connections to H12 and the w loop region. H10-

H11 (Fig. 46B) forms a single node (node 13) that is connected to H9 and the N-terminus (node 

1), as well as to loop H8-H9 (node 8). 
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Adding the agonist GW1929 to the WT system results in a radical modification of the 

node organization (Fig. 47).  The first community node regroups the N-terminal residues of 

H1, but unlike the apo protein, the first node does not include any amino acids of H9. The effect 

of this is a decoupling of H1 (node 1) and the residues of loop 8-9 (node 6).  As in the apo 

system, the node encompassing loop 8-9 (node 6) is the most connected node in the LDB. In 

the presence of the ligand, we see that the b sheet (node 8) no longer contains all three strands, 

but just the two closest to the ligand binding pocket. We also see that H3 (node 5) decouples 

from H12 (node 14). While in the WT-apo protein, H10-H11 composes an entire node, in WT-

holo, this long helix is broken into 2 nodes. This illustrates that ligand binding affects the 

motions of H10-H11, which is the principal helix found at the dimer interface. 

The apo mutant protein, T475M, has features that resemble both the WT-apo and the 

WT-holo protein. Recall that the mutation T475M is an activating mutation, in that, even in 

apo form, it displays transcriptional activity (N Rochel et al. 2019). In the T475M mutant, the 

b sheet region contains all three strands (node 3), but H3 (node 5) is decoupled from H12 (node 

15). As in both the WT- apo and holo proteins, loop 8-9 (node 7) is the best-connected node. 

And as in the WT-holo, H10-H11 is represented as 2 nodes with the transition from one node 

(node 13) to the other (node 14) occurs just before the point mutation (Fig. 48). T475M 

mutation affects the size of the nodes attributed to H10-11. In the holo form (Fig. 47), a large 

node encompassing much of H10 and H1 was determined. Introduction of the point mutation 

T475M, located in H10-H11 leads to a decrease in the size of this major node.  

Interestingly, the WT-apo system has a strong edge between H3 (node 6) and H12 (node 

7) (Fig. 46), but introduction of the ligand or the T475M mutation leads to a loss of this edge 

and an increased coupling of H12 with H10-H11 (nodes 12 and 13), which is the helix found 

at the dimer interface. This could reflect a mechanism to transfer information to the dimer 

partner, receptor RXR. 

The apo mutant F310S, which is an inactivating mutation, displays effects from the 

point mutation (Fig. 49). Modelled on the structure of the apo chain from the PDB structure 

7WOX, which was also used for the wild-type apo simulations, the point mutation is located 

in helix H3 and breaks the coupling between H3 (node 4) and H12 (node 13), shifting the 
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couplings towards the b sheet region of the protein. As in the other protein systems, the loop 

between H8 and H9 (node 5) is well connected to the rest of the protein.  

Loop 8-9 of the LBD is known to interact with cyclin H in the nuclear receptor RARa 

(Samarut et al. 2011b). The PPARγ LBD is known to interact with cyclin D in the context of 

regulating adipogenesis (Sarruf et al. 2005). We saw that in all cases, the node encompassing 

loop 8-9 is the most connected in the networks, which underscores its importance in LBD 

physiology. Besides the loop between H8-H9, the loop between H9-H10  is also well connected 

to the rest of the protein. This loop is known to be important in the allostery related to 

phosphorylation in other receptors (Chebaro et al. 2017; 2013; Samarut et al. 2011b).   
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4. Conclusions 
 

In this chapter, we presented a combined MD/Far-IR approach to the study of the PPARg ligand 

binding domain. The protein in apo-, holo- form complexed to the agonist GW1929, as well as 

two mutant proteins in apo form, T475M and F310S, were studied.   

Through our collaboration with the team of Prof. Petra Hellwig of the Laboratory of 

Bioelectrochemistry and Spectroscopy, University of Strasbourg, we demonstrated for the first 

time the feasibility of using a far-IR/MD approach to measure the effect of ligand binding by 

a nuclear receptor protein, in this case, the ligand binding domain of PPARg. The study showed 

that upon ligand binding, the lowest frequency peaks undergo a shift toward higher frequencies 

(blue shift) suggesting a strengthening of the vibrational mode. 

We carried out extensive molecular dynamics simulations of all the forms studied, from 

which we generated free energy surfaces based on the distribution of RMSD and radius of 

gyration. From these surfaces, we identified a number of populated potential wells. From the 

primary free energy wells on these surfaces, representative structures were extracted and used 

for the Normal Mode Analysis, followed by calculations of the IR spectra and analysis of the 

collective motions through correlated motions and community network analysis.  

The computational results demonstrated that in the far-IR domain, the calculated IR 

spectra displayed very similar feature patterns to those observed experimentally, in particular 

shifts of the low frequency spectral peaks. We confirmed through hydrogen bonding analysis 

of the simulations that the changes in the experimental spectra coincide with changes in 

hydrogen bonding. Effects of point mutations on the low frequency spectra were also observed 

and correlated with changes in hydrogen bonding.  

Using the structures extracted from the most populated well for an Ensemble averaged 

Normal Mode Analysis, we calculated maps of correlated motions of the LBD, which showed 

regions of coupling within the single domain. We noted that even small perturbations due to 

ligand binding or point mutations can have an effect on the collective dynamics of the protein, 

which modulated couplings between physiologically distinctive regions of the LBD. 
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To further exploit the calculated collective motions, we carried out a community 

network analysis (CNA) to identify highly correlated regions that are coupled to other highly 

correlated regions of the LBD. Couplings between highly correlated nodes suggest a means by 

which information might pass within the protein domain due to changes in the structural 

dynamics.  We identified regions of the LBD that are strongly coupled to the rest of the domain, 

in particular, the loop between H8 and H9, which is known to be physiologically important as 

a site that binds cyclin during a phosphorylation cascade identified on some nuclear receptors 

(Samarut et al. 2011a).  We also showed how ligand binding shifts the correlated dynamics 

toward the region of the LBD that takes part in dimerization with RXR. We showed that small 

changes related to single point mutations are measurable experimentally, which allowed us to 

validate our simulations. 

We showed that the computational and experimental far-IR approaches are 

complementary since both approaches displayed similar trends in the measured and calculated 

spectra. Once the simulations were validated through comparison to this experimental data, we 

were able to further exploit the correlated motions obtained from our Ensemble-averaged 

normal mode analysis to get insight into the effects of these perturbations on the intra-domain 

dynamics. The sensitivity to binding of different ligands, agonists versus antagonists remains 

to be explored. In the future, we expect to study the effects of point mutations to better 

understand their effects on the structural dynamics arising from the collective modes. 
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5. Annex: Experimental methodology 
(with permission from Professor Petra Hellwig) 

 

5.1. Mid-Infrared (Mid-IR) Measurements 
 
Five samples were measured immediately after being removed from storage at -70°C. In the 

mid-IR domain, a mercury cadmium telluride (MCT) detector was used with a scan velocity of 

40 kHz. For each sample, five spectra were recorded with a resolution of 4 cm-1 (256 scans) 

and averaged. The measurements were performed using a Vertex 70 instrument (Bruker). 

The infrared transmission spectra were obtained using a transmission cell consisting of two 

calcium fluoride (CaF2) windows. A volume of 0.5 µL of the protein solution, along with the 

buffer, was deposited on one window, which was then covered with the other window, forming 

a defined path length of 17 µm as described by Barth et al. The assembled transmission cell 

was placed in the optical path of the IR beam. For FTIR-ATR spectra of the peptide, 3 µL of 

the protein solution was deposited on a diamond crystal (Harrick) and the spectra were recorded 

until a dry film was obtained. 

The transmission spectra were subjected to specific data treatment to isolate the amide I band 

using OPUS software. This involved baseline correction of the protein and buffer spectra, 

normalization of both spectra in the amide I band region, and subtraction of the buffer spectrum 

from the protein spectrum to obtain the difference spectra. 

 

5.2. Far-Infrared (Far-IR) Measurements 
 
Five samples were measured after being removed from -70°C and measured using diamond 

ATR. For each measurement, 3 µL of the sample was deposited on the crystal and spectra were 

recorded until dry. In the far-IR domain, a deuterated triglycine sulfate (dTGS) detector was 

used with a scan velocity of 2.5 kHz. For each sample, five spectra with a resolution of 4 cm-

1 (128 scans) were recorded and averaged. These measurements were also conducted using a 

Vertex 70 instrument (Bruker). 
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5.3. Determination of Protein Secondary Structure 

 
The amide I and VI bands, which appear in the spectral ranges of 1700 to 1600 cm-1 and 590 

to 490 cm-1 respectively, were analyzed. Key positions of structural elements were identified 

using second derivative spectra. A straight baseline was subtracted from the spectra in the 

ranges of 1700 to 1600 cm-1 and 590 to 490 cm-1. Least-squares iterative curve fitting with 

Gaussian bands was performed using the Peak Fit Analysis Program (Sea-Solve, MA, USA). 

Each band obtained from the fitting procedure was assigned to a specific secondary structure 

element. The areas of all bands assigned to a given secondary structure element were summed, 

and the total area was used to determine the contribution of each structural element to the 

overall protein structure. 
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Chapter V - Impact of force 
field polarization on the 

collective motions of PPARg 
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1. Introduction 
 

While experimental structure determination has shed light on the many conformations a 

particular protein can exist in, there remains little in the way of experimental exploration of the 

detailed motions of particular conformations. Of these, long-range correlated motions are 

considered fundamentally important for key functional properties of proteins such as substrate 

binding, allostery and catalysis (Kurkcuoglu et al. 2012). Changes in single domain collective 

motions have been associated to the sensing of ligand binding resulting in the propagation of a 

signal through the protein to transmit information and alter activity. Studies have suggested 

that correlated motions of secondary structure elements, such as b-sheets, contribute 

importantly to protein function (Fenwick et al. 2014). For example, PDZ domains are protein 

interaction modules that recognize short amino acid motifs at the C-termini of target 

proteins. Ligand binding affects the transfer of binding information to other domains in the 

context of PDZ-containing multidomain scaffold proteins. In the PDZ domain, the global 

network of correlated motions, can lead to the coupling of the N- and C-terminal ends by 

pathways involving the b-sheets. These motions arise from the low-frequency collective 

movements of residues and it has been suggested that these protein motions are selected by 

evolution (Glembo et al. 2012; Orellana 2023). 

While the importance of correlated motions has become more apparent and appreciated, 

they remain difficult to measure experimentally, so one of the principal methods for studying 

correlated motions is by molecular dynamics simulations. Molecular dynamics simulations of 

proteins rely on the use of empirical force fields, which are parameterized using, for the most 

part, experimental data and quantum mechanical calculations. And while this approach has 

been used with great success over the past decades to study a wide range of topics, there is a 

constant effort to introduce improvements. One such effort has been to improve the treatment 

of electrostatic interactions, which in the standard classical force fields, are treated by fixed 

point charges. Efforts by numerous teams have focused on introducing aspects of electronic 

polarization. One approach characterizes the charge redistribution within each atom, by either 

induced dipoles (Shi et al. 2013) or by a Drude oscillator model (Lopes, Huang, Shim, Luo, Li, 
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Roux, and Mackerell 2013) , and the other approach is based on charge flow between atoms, 

as implemented in the fluctuating charge (FQ) model (S. Patel, Mackerell Jr., and Brooks III 

2004).  

Developed largely in the framework of the CHARMM all-atom force field, the Drude 

oscillator model for protein force fields (Anisimov et al. 2005) is a theoretical framework that 

introduces an auxiliary particle called the "Drude particle" for each atom representing a loosely 

bound electron that contributes to the atomic polarizability. A harmonic oscillator function is 

used to connect the Drude particle to the atom, simulating the restoring force on the electrons. 

The model introduces a term that represents the polarizability of the atom, allowing for the 

simulation of electronic response to an external electric field. The development of the Drude 

model in the context of polarizable force fields in molecular dynamics simulations aims to 

capture electronic polarization effects that are not explicitly represented in the classical models. 

This type of model is intended for studying systems where electronic polarization plays a 

significant role.  

The Drude model has been used and benchmarked for a variety of systems (Lopes, 

Roux, and MacKerell 2009), and several reviews are available (Lemkul, Huang, Roux, and 

MacKerell 2016; Lemkul 2020). Though the Drude model for polarization has undergone 

extensive development and application, the analysis associated with the applications has 

largely focused on aspects of structure, energetics and local dynamics. None of these studies 

have utilized the Drude model to address questions concerning collective behaviour.   

Collective motions occur across the three-dimensional structure of the protein and the 

principal tool for studying such motions in proteins is molecular dynamics simulations. The 

question naturally arises, then, to what degree does the inclusion of polarization affect the 

collective motions of single protein domains. In this work, we address this question through 

the study of the ligand binding domain of the nuclear receptor PPARg. We assess the impact 

of the polarization on various dynamical properties, including their collective motions. 

 Peroxisome proliferator-activated receptor gamma (PPARg) is a ligand-dependent  

transcription factor belonging to the nuclear receptors superfamily (Lazar 2005).  PPARg was 

presented in the introduction, chapter I, section 5.1. Structures of PPARg LBD in its apo and 
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LBD. Characterized by numerous crystallographic structures of agonist-bound LBDs, this 

position of the H12 helix is often referred to as the transcriptionally active conformation (J. P. 

Renaud and Moras 2000c; Wurtz et al. 1996). In this active conformation, H12, along with 

helices H3 and H4, constitute a hydrophobic interface called an activation function 2 (AF2). 

This interface serves as a platform for coactivator protein binding and the recruitment of 

chromatin modulator complexes as well as other components of basal transcriptional 

machinery (Raj Kumar, Johnson, and Thompson 2004b). In contrast to the active conformation 

of the LBD and H12, the inactive conformation of the receptor is not structurally well 

described. The crystallographic and computational data suggest an ensemble of conformations 

for H12, meaning that this region, in the absence of an agonist ligand is flexible (Frkic et al. 

2023). 

The first study of the functional dynamics of the PPARγ ligand binding domain (LBD) 

was done by Fidelak et al (Fidelak et al. 2010b). This study explored the role of allostery in the 

functioning of the receptor by comparing LBDs in apo and in agonist-bound form. A dynamical 

pathway linking amino acids which are in topological proximity or at distance was established, 

explaining correlated motions primarily arising from low-frequency collective motions. The 

analysis of correlated motions shows coupling between distant regions of the LBD, such as 

different helices, the N- and C-terminals and the coactivator peptide. In the apo form of PPARγ, 

the dynamical network plays a role in maintaining the structural integrity and flexibility of the 

protein. It is also involved in mediating interactions with co-regulator proteins and with PPARγ 

heterodimeric partner RXRa. The addition of the agonist rosiglitazone contributed to changes 

in the dynamical network of PPARγ. As a consequence, the changes in this network could 

impact the ability of LBD to bind ligands and coregulators, and by extension the overall 

function of PPARγ. Correlated motion calculations and network analysis were later done for 

the full PPARg/RXRa heterodimer structure in complex with DNA (Ricci et al. 2016). The 

results showed the existence of longer range interdomain correlations which were used toward 

the understanding of allostery in nuclear receptor complexes. Here, we explore the intrinsic 

dynamics of PPARγ LBD in its apo- and corepressor peptide bound forms using both the 

classical all-atom additive empirical energy functions and the Drude force field. We provide 



 
 

 
 

147 

quantitative insights into the effects of polarization on the modelling of correlated motions of 

PPARγ. 

 
2. Methods and Analysis 
 

We study the ligand binding domain (LBD) of human PPARg because of the importance of 

collective motions in its function. The system was prepared using the PDB Reader and 

Manipulator option of the CHARMM-GUI web interface (Jo et al. 2008) to prepare the 

simulations using the CHARMM all-atom additive force field (AA using the CHARMM36 all-

atom parameter set (A. D. MacKerell, Bashford, et al. 1998). The CHARMM-GUI Drude 

Prepper interface (Kognole et al. 2022) was subsequently used to prepare the systems for 

simulations using the Drude polarizable force field.   

For the PPARg ligand-binding domain (residues 230 - 505), we used  the 3.2 Å 

resolution crystal structure of chain B from the PDB file 7WOX (Yoshizawa et al. 2022b).  

Although one chain in this PDB entry is bound to the antagonist MMT-160, the second chain 

(chain B) did not show any electron density representing a ligand in the binding pocket, so it 

was taken to be a structure of the apo protein. The protonation states of the histidine residues 

of this chain were determined using PROPKA method (Olsson et al. 2011; Søndergaard et al. 

2011) via the webserver https://server.poissonboltzmann.org/pdb2pqr, followed by manual 

verification and the structure was further prepared using the CHARMM GUI interface (Jo et 

al. 2008).  

The molecular dynamics simulations were done using the NAMD program under NPT 

conditions (Phillips et al. 2020c). The protocol consists of four steps, first, the protein was fixed 

but the water and ions were without constraints. The system was subjected to 1000 steps of 

energy minimization to allow the water and ions to adjust position in response to the presence 

of the protein. Next, the system was heated up to 600K, during 23000 steps, again with the 

protein. This was followed by another energy minimization for 1000 steps.  This was followed 

by a heating to 296.5 K. The constraints on the protein/ligand were removed and the entire 

system was energy minimized for 2000 steps. The entire system was then heated up to 296.5 
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K over 15000 steps, followed by an equilibration run of 85 000 steps of dynamics followed by 

the production phase. A time step of 1 fs was used. The duration of each simulation was 100 

stages of 1x106 timesteps, which resulted in 100 ns - long simulations. The last trajectory frame 

was taken as a starting structure for building the structures for the Drude and AA simulations 

used in this study.  

The two systems we compared were the apo form of PPARg LBD and the PPARg LBD 

complexed to the corepressor peptide NCoR ID1 (12 amino acid sequence GLEDIIRKALMG), 

identified here as the corepressor-bound form. The coordinates for the corepressor peptide were 

taken from the crystallographic structure of a PPARg mutant complexed to the NCoR peptide 

resolved by our team (unpublished data). The 12 amino acid peptide was added by superposing 

the apo PPARg LBD structure on the in-house structure. 

For the simulations with the Drude force field, the apo- and corepressor-bound 

structures were solvated in 100 x 100 x 100 Å3 water box using the SWM4-NDP water model. 

A minimization for 2000 steps was done followed by an equilibration for 200000 steps using 

the NAMD program with the time step of 0.5 fs. During the production phase, we used a time 

step of 1fs. The duration of each simulation was 100 ns. Three replica simulations were carried 

out for the four PPARg LBD systems. Similarly, three replica AA simulations were performed. 

For each simulation, the root-mean-square coordinate difference (RMSD) and residue averaged 

backbone atomic root mean square fluctuations (RMSF) were calculated. These calculated 

fluctuations were compared to the atomic fluctuations calculated from experimental B-factors. 

 In addition to the Community Network Analysis (used and described in chapter IV), we 

used the Shortest Path Method (SPM) tool. SPM was used to assess the importance of 

individual residues and their pairwise connections in the structural dynamics of proteins 

(Casadevall et al. 2024). This is in contrast to the community network analysis, which 

establishes communities around multiple residues. The SPM method produces a network graph 

based on mean distances and correlation values, and computes shortest path lengths using 

Dijkstra algorithm (Dijkstra 1959). The shortest path is the most direct path with the most 

significant connection between two residues, and shows how the residues are connected in the 

protein’s structural dynamics. The tool is mostly aimed at exploring key residues implicated in 
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enzymatic activity, but here we use as a way to assess the similarities and differences of 

simulations using different force fields.  

 

3. Results and Discussion 
 

3.1. Structural dynamics of PPARg - RMSD and RMSF 

 

The RMSD time series for PPARg were calculated from the molecular dynamics simulations 

for the three replicas of the AA and Drude simulations for each system. For each system, the 

average times series of the three replicas were displayed along with the high/low values at each 

time point.  All four PPARg systems show stable 100 ns trajectories (Fig. 51). The RMSD mean 

value of PPARg apo system simulated with the Drude model was higher than the value of the 

system simulated with the AA force field with the values being 3 Å (std_dev: 0.09) and 2.5 Å 

(std_dev: 0.06), respectively (Fig. 51A and B). We notice the same trend when comparing the 

simulations of PPARg bound to the corepressor peptide NCoR (Fig. 51C and D). The Drude 

simulations presented higher values of RMSD, with the mean value of 3.2 Å (std_dev: 0.21) 

than the non-drude simulations, where the mean value is 2.4 Å (std_dev: 0.04). These results 

are consistent with the conclusions that the Drude force field allows for a higher conformational 

flexibility than the standard additive CHARMM force field (Lopes, Huang, Shim, Luo, Li, 

Roux, and Mackerell 2013). In addition to the overall stability of the PPARγ - corepressor 

bound system, we see the interaction of two components as stable as the peptide does not  
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and so it is also in the initial simulation structure His 453 was taken to be a protonated histidine. 

This salt bridge is known to be conserved in all NRs of class II (Brelivet et al. 2004), so the 

simulations with the Drude force field lead to the maintaining of this conserved salt bridge, 

while it was lost in the AA simulations. The second salt bridge characteristic of the class II 

NRs, between residues E352 (mid H4 – 5) and R425 (loop H8 – 9), is well maintained in both 

AA and Drude simulations. The RMSF variability, represented by the light pink regions, of 

three replicas is also higher for Drude simulations.    

 For the PPARg - NCoR system, the differences are less prominent, the RMSF curves 

for both the AA and Drude simulations are similar, albeit with differences in the H9 - H10 loop 

and the H12 and corepressor peptide region (Fig. 52C and D). Higher variability is found in 

the AA simulation around H2’ and the W loop, and also in the loop H9 - H10- the later reflects 

the loss of contact in salt-bridge D411- H453. Comparing the apo and corepressor bound 

PPARg systems, we see the difference in the b-sheet region and H6. For both AA and Drude 

simulations, adding the corepressor peptide lowered the replica-averaged RMSF. With the 

Drude simulations, the variability among replicas is also much smaller. In cases of stable 

structures, like the LBD/corepressor peptide complex, the use of the Drude model seems to 

provide additional stabilization of the protein complex. 
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The radially averaged fluctuations of all heavy atoms were calculated (Fig. 53). We 

notice the increase in the fluctuations as we move towards the residues located further from the 

centre of geometry. The fluctuations are higher in the Drude simulations than in the AA (non-

drude) simulations, reaching up to 3.3 Å in the apo system and 5.3 Å in the corepressor-bound 

system near the surface of the protein. The radius of gyration is similar for all four systems, 

with values of 20.1 Å (std_dev: 0.04) for AA apo system, 20.1 Å (std_dev: 0.01) for AA 

corepressor-bound system, 19.9 Å (std_dev: 0.15) for the drude apo system, and 20 Å (std_dev: 

0.11) for the drude corepressor-bound system. 

 

Figure 53. Radially averaged atomic fluctuations of the PPARγ LBD apo form (top), and corepressor 
bound form (bottom).  
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We calculated dipole moment timeseries from the AA and Drude simulations of the apo 

PPARγ protein and the PPARγ protein complexed to the co-repressor peptide (Fig 54).  For the 

PPARγ apo system, we see lower dipole values in simulations with AA force field, with the 

average of 247 D, compared to the Drude force field, where the average value is 329 D. The 

Figure 55. By-residue dipole moments of PPARg. Top figure is for the apo protein and the bottom 
figure is for the LBD in complex with the co-repressor peptide. 
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calculations of PPARγ corepressor bound system follow the same trend, where the average 

values are 240D and 332D for the AA and the Drude FF, respectively.  

Concerning the by-residue average dipole moment (Fig. 55), systematically, the dipole 

moments in alpha helices are larger in the Drude simulations than in the AA force field 

simulations for PPARγ. 

 

3.3. Correlated motions  
 

Correlated motions are important for understanding how the motions in different 

regions of the protein are coupled to other regions and how those coupled motions change in 

response to different perturbations, such as ligand binding.  Changes in the correlated motions 

can effectively occur over long distances. In its simplest interpretation, this could correspond 

to allostery in the absence of conformational changes (Cooper and Dryden 1984a). It is 

therefore important to identify the residues involved in this transmission of structural dynamic 

information. This information can be obtained by calculating the cross-correlations, which 

complement the fluctuation analysis presented above by providing information on correlated 

motions as calculated by Eq. 38. From the Cij correlation coefficients, which are organized as 

a matrix, a cross-correlation map was calculated using a color-coded 2D representation. These 

calculations find use in many different applications (Cote et al. 2017; Gaillard et al. 2007; 

Fidelak et al. 2010).  
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Figure 56. Correlated motions calculated from the simulation of the PPARγ LBD apo form (top), and
corepressor bound form (bottom). Correlated motion maps are represented with a color code related to 
the sign and intensity of correlations (ranging from dark blue for perfect anticorrelations to dark red for
perfect correlations). The secondary structural elements are indicated(a) from the Drude simulation 
(upper triangle), compared to the AA simulations, lower triangle.  
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We assessed the effects of polarization on the collective motions of the PPARg LBD 

by calculating the cross-correlations from the MD simulations (Fig. 56). The lower right 

triangle of the maps corresponds to the correlation map for PPARg calculated from the 

simulation using the AA force field, while the upper left triangle corresponds to the correlated 

motions of PPARg calculated from the Drude simulations. The calculations were done for both 

the apo (top) and corepressor-bound forms (bottom). Regarding the general aspect of the 

correlation maps, for both forms, we notice a great similarity between the two. The differences 

are noticeable regarding the intensities of the correlations, as they appear damped in the Drude 

simulations, to the point that in particular regions, correlation islands disappear. In the case of 

the PPARg apo system, the most significant isles represent the correlation between H12 - W 

loop residues, and H1-H9. While strongly present in the AA maps, only traces of the isles are 

present in the Drude simulations. Concerning the PPARg bound to the corepressor, the most 

important distinction in the correlated motions is observed between helices 1 and 10, and in the 

motions between the H12 – H3 and H12 - H4. The peptide itself seems to be positively 

correlated to the C-ter of H3 and the N-ter of H4, which is a functionally important interaction, 

considering that the H3, H4 and H12 constitute the platform for corepressor binding.  

 

3.3.1. Community Network Analysis  
 

 To further interpret the consequences of the long-range correlated motions, we 

performed a community network analysis (CNA). Maps from a CNA are derived from a 

functional clustering of correlated motions obtained from MD simulations. It has been shown 

that this type of analysis, based on the Gervan-Newman algorithm, can be used to interpret 

long range communication and dynamic allostery of proteins (Madan et al. 2023; Lesgidou and 

Vlassi 2024). Community maps can help interpret how different parts of proteins move together 

and how changes in one part of a protein can affect the dynamics of distant sites. Communities 

highlight regions of the protein that exhibit collective movements and may represent 

functionally important domains or allosteric communication pathways. Using correlation 

matrices calculated from our MD simulations and the R package bio3D (Grant, Skjærven, and 
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Yao 2021), we obtained coarse grained networks of dynamically coupled communities. 

Community network maps are depicted using coloured spheres mapped onto the average 3D 

structure, in tube representation. The size of a node is related to the size of its community and 

larger spheres depict larger number of residues. The edges connect coupled communities, 

where thicker edges correspond to higher degree of correlation. 

 The CNA of the PPARγ apo system using the correlated motions calculated and 

averaged from the 3 replicas of molecular dynamics simulations detected 13 nodes for the AA 

simulations and 11 nodes for Drude simulations (Fig. 57). The specific compositions of the 

nodes are given in Table 8. The nodes correspond largely to entire secondary structure 

elements, mostly helices, however, the AA simulations have four nodes encompassing spatially 

adjacent residues belonging to different helices: the first community regroups the N-terminal 

residues with residues from H9 (node 1, 23 residues (230:234, 432:449)), the second one 

regroups the large node containing  H2’ and W loop, the beta sheet and helix 6 (node 4, 45 

residues (274:296, 363:384)), the third one regroups the W loop C-terminal residues with H12 

residues (node 6, 27 residues (298 to 306, 488 to 505)), and the fourth one regroups the loop 

between H3 and H4 along with H4 with the H8 – H9 loop (node 8, 25 residues (333:348, 

423:431)). Node 4 is the one most coupled to other nodes in the apo structure. Interestingly, 

node 4 shows a relatively weak direct coupling to node 6, which contains the transcriptionally 

important H12, but it has a strong coupling via node 5, which encompasses the N-terminal end 

of H3. This lack of strong direct coupling may be due to the fact that the spatially near loop in 

node 6 is quite flexible.  There is also a relatively strong coupling between the loop H8-H9 

(node 8) with the rest of the protein.  Interestingly, this loop is known to interact with cyclin H 

in other nuclear receptors, in particular RARa (Samarut et al. 2011b). The PPARγ LBD is 

known to interact with cyclin D (Sarruf et al. 2005) in the context of regulating adipogenesis. 

The nodes encompassing the loop regions at either end of Helix 9 are well connected to the rest 

of the protein and are known to be important in the allostery related to phosphorylation in other 

receptors (Chebaro et al. 2017; 2013; Samarut et al. 2011b).   
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Table 8. Composition of the nodes from the community network analysis. Isoform PPARg2 numbering 
of LBD residues: 230 - 505. Corepressor peptide is numbered from 506 - 517. Size represents the 
number of amino acids in a node. Node members are the numbers of amino acids belonging to a node.  

PPAR_AA_apo  PPAR_AA_corep 

node id size members  node id size members 

1 23 c(230:234, 432:449)  1 28 c(230:232, 431:455) 

2 22 235:256  2 22 233:254 

3 17 257:273  3 19 255:273 

4 45 c(274:296, 363:384)  4 32 c(274:289, 372:378) 

5 14 c(297, 307:319)  5 38 c(290:308, 487:505) 

6 27 c(298:306, 488:505)  6 24 309:332 

7 13 320:332  7 17 333:349 

8 25 c(333:348, 423:431)  8 13 350:362 

9 14 349:362  9 13 379:391 

10 21 385:405  10 16 392:407 

11 17 406:422  11 23 408:430 

12 15 450:464  12 31 456:486 

13 23 465:487  13 12 506:517 

 

PPAR_Drude_apo  PPAR_Drude_corep 

node id size members  node id size members 

1 25 230:254  1 25 230:254 

2 20 255:274  2 20 255:274 

3 33 c(275:284, 362:384)  3 25 c(275:277, 362:383) 

4 21 285:305  4 13 278:290 

5 26 306:331  5 14 291:304 

6 30 332:361  6 27 305:331 

7 22 385:406  7 30 332:361 

8 15 407:421  8 23 384:406 

9 28 422:449  9 16 407:422 

10 17 450:502  10 31 423:453 

11 39 467:505  11 34 454:487 

    12 18 488:505 

    13 12 506:517 
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The CNA of the Drude simulation of the apo PPARγ LBD generally shows smaller 

nodes than those observed in the AA simulation. The largest node, node 3 (residues 274:283, 

361:383) encompasses the residues of H6, the b sheet and some of the W loop; the equivalent 

node in the AA simulation is node 4, however, the node from the Drude simulation is smaller.  

Many of the other nodes are along secondary structure elements. As in the AA simulation, there 

is no direct coupling between node 3 and the helix 12 region of PPAR. In the Drude results, 

the coupling passes through 3 to 4 nodes depending on the path, while in the AA simulation, 

the coupling was either direct (weak) or through just one additional node. In addition to the 

couplings being different between the AA and the Drude simulation, these results suggest that 

the coupling between different regions of the PPAR ligand binding domain is less strong in the 

Drude simulations than in the AA simulations.   
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Figure 57. Community network analysis of the PPARγ LBD. On the left, the colored nodes are 
superposed on the protein backbone structure, represented as a tube and colored according to the nodes. 
The edges are denoted as grey connections between the nodes, where the thickness indicates the 
strength of the correlation between two nodes. On the right is the network representation. In (top) are 
the results from the AA simulation, and in (bottom) are the results from the Drude simulations.   
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For the PPARγ/corepressor complex, the CNA identified 13 community nodes for 

correlated motions from both the AA and the Drude simulations (Table 8, Fig. 58). The specific 

node compositions are provided in supplementary material. In both cases, the protein has 12 

nodes, and the corepressor peptide forms its own node. More of the nodes identified in the AA 

simulations include sequentially distant, but spatially near resides (nodes 1, 4 and 5), while in 

the Drude simulation, there is only one node that includes sequentially distant, but spatially 

near residues (node 3).  In the AA system, there are three nodes which connect to neighbouring 

nodes: the first groups N-terminal residues with H9 (node 1, 229:231, 430:454), the second 

groups the N-terminal of the W loop with the b sheet (node 4, 32 residues, (45:60, 134:149)), 

and the third one associates the W loop with H12 (node 5, 38 residues (61:79, 258:276)). In the 

Drude simulation, node 3 encompasses the b sheet and the N-terminal end of the W loop.  

Concerning the interconnectivity of the nodes, the CNA shows that many of the node 

interconnections are along the secondary structure elements, but the AA simulations display 

several edges between nodes beyond secondary structure. The node organization for AA is 

more global as opposed to the Drude simulation results, where there is less interconnectivity, 

and the network is more extended.  Central to the interconnectivity in PPARγ is the node that 

encompasses the b sheet and part of the W loop region. This node forms a hub through which 

many edges connect. 
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Figure58. Community network analysis of PPARgamma with corepressor peptide. On the left, the colored nodes
are superposed on the protein backbone structure, represented as a tube and colored according to the nodes. The 
edges are denoted as grey connections between the nodes, where the thickness indicates the strength of the 
correlation between two nodes. On the right is the network representation. Representation on the PPARγ LBD 
corepressor bound form, from AA simulation (top), and Drude simulation (bottom).  
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CNA analysis for both the AA and the Drude simulations show the corepressor peptide 

as a single node. And we further notice that this node does not form any edges to any nodes in 

the ligand binding domain of PPARγ. If we look back at the correlation plots of AA 

simulations, we see positive correlation between the corepressor peptide residues and the N-

terminal of H4, while the Drude simulations did not capture these correlations. The correlations 

were weak and as they did do not go over the 0.5 threshold, they are not represented by an 

edge. The addition of the corepressor peptide in the AA and Drude simulations does not seem 

to break the community of the H3 – 4 loop and H4 residues, which forms the corepressor 

binding platform. In the AA results, the presence of the peptide seems to increase the H12 and 

W loop community, passing from 27 (node 6) to 38 (node 5) residues, and reinforcing their 

correlations. In the Drude simulations, the addition of the peptide seems to decouple two 

different communities. First, the H11 – H12 community is split into two separate ones, 

connected by an edge (from node 11 to nodes 11 and 12). The second community, built around 

the W loop (node 4), is divided into 2 separate nodes (nodes 4 and 5), connected by edges. 

Other nodes do not seem to be affected by the corepressor addition.  

One significant distinction between simulations with two force field concerns the 

community that represents helix H12. In the AA simulations of both apo and corepressor-bound 

systems, H12 and one part of the W loop are coupled and are therefore represented by one 

community. This node is of medium size, with 27 residues for the apo form and with 38 

residues for the corepressor-bound form. In the Drude simulations, H12, together with H11 

make up an individual community, represented by a node containing 39 residues. This 

community is decoupled from the node encompassing the W loop in both systems simulated by 

the Drude FF meaning there are no edge connections between them. This suggests that the 

correlations in the Drude simulations are not sufficiently strong to result in the CNA analysis 

detecting direct communication between them. In the corepressor-bound form, H12 is further 

decoupled from the H11, having its own community of helix residues connected by an edge to 

the H11. Furthermore, in both systems simulated with AA FF, the N-terminal residues of 

PPARγ are grouped in the same community with H9 residues, while in the Drude simulations, 

these N-terminal residues are in the same community as H1 residues. This coincides with high 
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RMSF values for the N-terminal residues of the LBD in both Drude simulated systems, see 

Fig. 52.  

Helix H12 represents the activation function 2 in LBDs and therefore is physiologically 

important for the regulation of PPARγ’s transcriptional activity. In the transcriptionally 

inactive form studied here (apo or corepressor bound forms), the H12 exhibits higher flexibility 

and is capable of exploring multiple conformations (Chrisman et al. 2018b). In the community 

analysis of the Drude simulations, we notice the decoupling of the H12 from the other regions, 

notably the W loop and the H11. This suggests that these regions explore different movements 

which are not directly correlated and display different conformational dynamics. The lack of 

high correlating communities and the presence of communities largely representative of 

individual alpha-helices is apparent in the correlation maps, where the Drude simulations 

display attenuated colours, and thus smaller correlations. It is generally appreciated that around 

the ligand binding pocket of the PPARγ LBD, the region is flexible in the absence of a ligand, 

so we would expect a low degree of correlated motion is this area, notably of the functionally 

relevant helix H12 and the conformationally flexible W loop.  

 

3.3.2. Shortest Path Method (SPM) 
 

A second approach for interpreting correlated motions is the Shortest Path Method (SPM), 

which was used through the online webserver (Casadevall et al. 2024). This tool was used to 

assess the importance of individual residues, and their pairwise connections, in the structural 

dynamics of the two proteins. This is in contrast to the community network analysis, which 

establishes communities around multiple residues. The SPM method produces a network graph 

based on mean distances and correlation values. The shortest path lengths were calculated using 

the Dijkstra algorithm (Casadevall et al. 2024). The shortest path is the most direct path 

following the most significant connection between two residues and shows how the residues 

are connected in the protein’s structural dynamics. The tool is mostly aimed at exploring key 

residues implicated in enzymatic activity, but here we use it to assess the similarities and 

differences of simulations using different force fields.  
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The PPARγ apo system (Fig. 59) shows a graph network connecting different nodes 

corresponding to same secondary structure elements. For example, if we look at the side view 

of the structure from AA simulation, we can see a network spanning across the entire helix 

H10-11, and then continuing connecting the loop and H12, and even further the W loop. This 

suggests a correlation and coupling of these secondary structure elements. On the other hand, 

the Drude simulation shows no such connection and the functionally important H12 is not 

coupled to W loop movements. Similar observations were made from the community network 

analysis. 

Compared to the apo PPARg, the SPM paths of PPARγ bound to the corepressor peptide 

are relatively different for both the AA and Drude calculations (Fig. 60). In this case, we again 

discern in the case of the AA simulation, the SPM spanning throughout the ‘upper’ region of 

the LBD and the one in the ‘bottom’ region with respect to the illustration, where H12 and the 

W loop are connected. Interestingly, we see short paths between alpha helices.  

 Drawing similar conclusions, the use of the Drude force field leads to a decoupling of 

H12 and the W loop region in the apo protein; the same observation was made from the 

community network analysis. The corepressor peptide, even though it was included in the SPM 

network calculation, does not appear to participate in the shortest path representation. Despite 

the somewhat correlated motions between the corepressor peptide and helices H3 and H4, the 

co-repressor peptide is not connected to the rest of the protein in this analysis. A similar 

conclusion was made the community network analysis, the corepressor peptide does not enter 

into any communication network. We also notice the absence of the SPM path in the regions 

of the loop H3 – H4, probably caused by the addition of the corepressor peptide. This suggests 

that the presence of the peptide, while not directly implicated in a network, will perturb the 

underlying communication network of PPARg.  
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Figure 58. Shortest Path Method ball and stick representation mapped on the front and side views of 
PPARγ LBD apo form. The AA simulation is at the top (magenta) and the Drude simulation on the 
bottom (blue). 
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Figure 59. Shortest Path Method ball and stick representation mapped on the front and side views of 
PPARγ LBD with corepressor peptide bound. The AA simulation is at the top (red) and the Drude 
simulation on the bottom (cyan).  
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4. Conclusions  
 

In this work, we used the Drude polarizable force field in molecular dynamics simulations of 

the ligand binding domain of human PPARg and compared the results to simulations using the 

CHARMM all atom atomic force field.  We examined the effect of the Drude force field on 

standard measures of structural dynamics, such as RMSD and RMSF via comparison to 

simulations using a classical, AA force field. We generally found conformational change 

leading to a higher RMSD and, in flexible regions of the proteins, greater flexibility.  But 

overall, the trends remained the same. Looking at dipole moments, we confirmed the effect of 

polarization on amino acid dipole moments, which is influenced by secondary structure.  

We also characterized for the first time the effects of using the Drude force field on 

correlated motions, which have been implicated in the biological function of proteins. The 

correlated motions were characterized by correlation maps generated by molecular dynamic 

simulations, by community network analysis and shortest path method (SMP) analysis. The 

latter two interpret information from the correlated motions obtained from the simulations. The 

CNA distinguished regions of the proteins where residues interact strongly with each other, 

and are placed in the same community, from those that interact more weakly. The latter are 

placed outside of the community and if they are part of another community with sufficiently 

strong correlations to another community, the information is indicated by connection between 

the nodes. The analysis further reveals paths through which signals, structural or through 

interactions with other proteins, can propagate from one region to another. The SPM approach 

provide more residue-to-residue mapping of the correlated motions, but both approaches 

provided insights into how protein dynamics map onto the modular organization of the protein 

and reveal residues or communities of residues that display coordinated motions. Such 

coordinated motions may underpin allosteric communication.  

Analysis of the correlated motions through examination of the correlation maps, the 

CNA and the SMP analysis based on these correlations show that the use of polarization via 

the Drude force field affects the low-frequency collective modes by decoupling the motions 

and generally softening the correlated motions. This suggests that, perhaps the simulated 
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protein will be less responsive to perturbations introduced, for example, by ligand binding or 

by the introduction of point mutations. So, perhaps there is an advantage to using the AA force 

field if one is interested in the studying allosteric behaviour of proteins based on their collective 

motions. In conclusion, we notice that the major difference arises in regions of the protein that 

are known from simulations to exhibit more significant flexibility that in other regions of the 

protein, more precisely at the lower half of the protein, concerning ligand binding pocket, and 

aforementioned helix H12. 
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Chapter VI - Conclusions and 
Perspectives 
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Increasing attention is being focused on the role of protein structural dynamics in crucial 

cellular signalling pathways and modulating structural dynamics is becoming an important 

avenue of exploitation for the discovery of new therapeutic compounds. However, there 

remains a serious paucity of techniques that permit one to obtain relevant data related to 

structural dynamics on appropriate timescales. New approaches are needed to both elucidate 

and measure physical properties directly related to structural dynamics.  

In this thesis, the primary objective was to develop an integrated far infrared absorption 

spectroscopy/molecular dynamics simulations for quantifying and studying collective motions 

in proteins. Integrating far-infrared (far-IR) measurements with molecular dynamics (MD) 

simulations offers a powerful, multi-dimensional approach for investigating protein dynamics. 

Far-IR spectroscopy is sensitive to low-frequency vibrational modes of molecules, including 

protein motions, conformational changes, and collective dynamics that are difficult to capture 

using conventional structure-based techniques, but the results are difficult to interpret. Far-IR 

data also provides crucial experimental validation for molecular dynamics simulations, which 

offer insights into protein conformational changes, motions and low frequency collective 

dynamics of proteins. The combination of the two techniques can provide more insight than 

either technique alone. This was previously demonstrated in a first integrated study of the 

response of a PDZ domain to the binding of a small peptide, where it was shown that 

exploitable information concerning changes in low frequency collective motions could be 

obtained even for proteins where there is no substantial conformational change upon ligand 

binding (Cote et al. 2017b). The integrated approach allowed for quantification of a mechanism 

of allostery in a PDZ domain.  

We aimed to enlarge the field of application of this integrated approach and to 

characterize the dynamics of nuclear receptor (NR) proteins. NRs constitute a superfamily of 

proteins that function as DNA-binding, ligand dependent transcription factors. Being a large, 

complex protein implicated in transcriptional cascades that underlie many physiological 

phenomena make them one of the major signal transduction paradigms in metazoans. Indeed, 

evidence suggests that there exist multiple mechanisms exploiting structural dynamics and 

allostery that implicate ligand, DNA, co-activator and co-repressor binding, as well as post-
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translational modifications. Central to these mechanisms is the ligand binding domain (LBD), 

which acts as an allosteric hub, transmitting binding events to other protein interfaces and, 

eventually, other intra- and intermolecular domains.  

As the nuclear receptor LBD is a large protein and presents a complex allostery, new 

developments to the earlier computational approach were introduced to address the complex 

structural dynamics more accurately. While the approach developed here maintains its reliance 

on normal mode analysis, which a powerful computational tool for studying protein dynamics, 

particularly for understanding low-frequency, collective motions, to better adapt to long 

molecular dynamics simulations, we developed a conformational ensemble approach that 

includes a large number of structures extracted from long molecular dynamics simulations. 

This ensemble approach differs from the original approach in that the latter relied on the normal 

mode analysis of a single structure extracted from a molecular dynamics simulation.    

Our ensemble approach, presented in chapter III, leads to more robust results in terms 

of quantities calculated from normal mode analysis.  In chapter IV, we applied the method to 

the nuclear receptor protein Peroxisome Proliferator-Activated Receptor gamma (PPARg), a 

nuclear receptor that is a particularly important target for development of therapeutic 

compounds for multiple diseases, including diabetes and cancer. We focused on the ligand 

binding domain in both apo- and holo-wild-type forms, as well as two mutant forms, where we 

characterized the effects of agonist ligand binding, as well as the effects of gain-of-function 

and loss-of-function mutations on the structural dynamics. Both far infrared absorption 

spectroscopy (done by our collaborators) and molecular dynamics simulations were applied to 

the same systems, giving a unique opportunity to synergistically study the systems. We studied 

the PPARg LBD in various physiological states, including apo and holo forms, as well as apo 

forms of gain- and loss-of function mutations implicated in bladder cancer. The results of the 

calculations were compared to results from mid- and far-IR measurements.  This is the first 

time that such an approach has been applied to a protein of this complexity. Beyond comparing 

the calculated IR spectra with the experimental spectra, which provided a robust validation of 

the computational results, we were able to calculate, from our ensemble approach, the long-

range correlated motions that we used in in further analysis by community network analysis, a 
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tool that is powerful in pulling out information concerning correlated modes and identifying 

local regions that are highly correlated and their interactions with other highly correlated 

regions. The important conclusions were that physiologically important regions were identified 

as being highly correlated to the rest of the domain. In particular, the loop between H8 and H9 

formed a highly correlated node that was well connected to the rest of the protein. This region 

of the LBD is important for signalling cascades in nuclear receptor proteins and its degree of 

coupled correlation to the rest of the LBD has not been elucidated to such a degree in earlier 

studies. We also found the regions such as the beta sheet regions were also well connected and 

that the introduction of agonist ligands shifted the corelation profile toward the dimer interface, 

which would be important for information transfer during the process of gene transcription. 

The results presented in this thesis rely on an accurate representation of the collective 

motions of the protein. We confirmed (chapter III) that these collective motions are well 

captured by low-frequency vibrational modes. This raises an important question, particularly 

in light of current interest in polarizable force fields: What effect does polarization have on the 

collective motions of a protein, as calculated in molecular dynamics simulations? In chapter V, 

we presented a study where we carried out a simulation study of the nuclear receptor protein 

PPARg and compared the calculated correlated motions from simulations that did not use a 

polarizable force field to those that did.  While in many studies, polarizable force fields show 

good performance for structural features, such as RMSD or atomic fluctuations, we found in 

our study that polarization softened the calculated correlations. The correlated motions were 

fed to a community network analysis and we found there were fewer correlations between 

different regions of the LBD compared to the classic all atom force field. With softened 

correlations, interpretations pertaining to allostery are more difficult. Additionally, community 

network analysis yielded less definitive results when polarization was included and some 

features that made physiological sense in the context of nuclear receptor proteins were lost. 

This raises the point that one should be cautious when using a polarizable force field for studies 

where low frequency collective motions are important. 

Through the use of molecular dynamics simulations, the research presented here has 

provided a deeper understanding of the intrinsic intradomain collective motions of nuclear 
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receptor proteins. Our results underscore the complex interplay within a single receptor domain 

as a function of ligand or mutations. These insights are critical for advancing the development 

of novel therapeutic strategies targeting nuclear receptors, particularly in the context of diseases 

such as cancer, metabolic disorders, and endocrine diseases. This work demonstrates the power 

of computational approaches, especially when complementing experimental techniques such 

as IR spectroscopy.  This work may pave the way for more rational drug design based on 

molecular-level understanding of receptor dynamics. 

While the molecular dynamics simulations conducted in this thesis have provided 

valuable insights into the structural dynamics of nuclear receptor proteins, several aspects 

remain to be explored. Future studies could expand upon this work by incorporating more 

diverse ligand libraries to probe a wider range of binding modes and receptor subtypes, 

particularly in the context of therapeutic design. Additionally, inclusion of coregulator proteins 

could also enhance our understanding of the couplings between different domains. More 

extensive studies will be needed before one can predict whether a particular compound will 

function as a good agonist or antagonist. But more immediately, within a particular family of 

compounds, one will be able to predict trends in pharmaceutical responses.  A particular 

pipeline could involve the testing of a series of compounds against a nuclear receptor protein 

and the more promising candidates could undergo further testing by far-IR spectroscopy before 

being used in more expensive biological tests. 

Other improvements could involve the integration of enhanced sampling simulations to 

access an even larger distribution of structures as well as including structures from multiple 

minimum energy wells. Continued experimental validation of the computational findings will 

also be essential for further refining our understanding of nuclear receptor function. Finally, 

investigating the interactions of nuclear receptors with coactivators and corepressors will be 

crucial for understanding the full spectrum of receptor-mediated signalling. 

This study has implications for drug discovery, particularly in the context of nuclear 

receptors. By providing a detailed analysis of receptor dynamics, this thesis lays the 

groundwork for an approach that can contribute to the rational design of small molecules that 

can modulate receptor activity through structural dynamics. The findings emphasize the 
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importance of targeting structural dynamics of the receptor rather than relying solely on static 

models, which may overlook critical functional states. The insights gained here could aid in 

the design of more potent nuclear receptor modulators for the treatment of diseases such as 

cancer, diabetes, and autoimmune disorders. Moreover, the computational approaches applied 

in this work can be extended to other protein systems, further advancing the field of structure-

based drug design. Ultimately, the work presented here contributes to the growing 

understanding of nuclear receptor structural biology and provides a foundation for future 

investigations into receptor-ligand interactions, eventually with therapeutic implications. 
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variété de ligands lipophiles - des acides gras polyinsaturés (AGPI) et leurs dérivés oxydés 

appelés eicosanoïdes. En l'absence de ligand, PPARg interagit avec des complexes 

corépresseurs, tels que NCoR ou SMRT, qui recrutent des enzymes modifiant la chromatine 

(HAT, ayant une activité histone acétyltransférase) et répriment activement la transcription. 

Après avoir fixé un ligand agoniste, PPARg forme un hétérodimère avec le récepteur rétinoïde 

X (RXR) (Fig. 3, la protéine PPARg « full-length » en rose).  L'hétérodimère peut recruter des 

coactivateurs tels que le coactivateur PPARγ 1-α (PGC-1α) ou la protéine de liaison E1A p300 

(EP300), qui sont capables d'ouvrir la structure de la chromatine et de permettre l'assemblage 

de complexes protéiques modulateurs de transcription.  

Il existe trois structures cristallines du PPARg complet et plus de 300 structures de son 

domaine LBD. Les structures du domaine LBD sont principalement résolues dans des positions 

actives, tandis que la structure du récepteur sous forme inactive reste sujette à débat. Les 

changements de conformation sont liés à la dynamique structurale des RNs, qui s'est donc 

rapidement révélée comme un élément indispensable pour comprendre leur fonction. En effet, 

la dynamique structurale des protéines participe de manière essentielle à leur activité 

biochimique. La dynamique collective, où différentes régions d'une protéine peuvent se 

déplacer de manière corrélée, a été identifiée comme un facteur important de la fonction des 

protéines, par exemple, contribuant à la régulation allostérique (Smith et al. 2016). Ces 

mouvements collectifs sont des mouvements globaux d'un grand nombre d'atomes composant 

la protéine, caractérisés par des vibrations de basses fréquences, propres à tout système 

protéique. Bien que la dynamique structurale des protéines ait été étudiée à l'aide de techniques 

expérimentales, celles-ci présentent des limitations, et la quantification des changements 

structuraux et de leurs effets, reste un défi majeur. L'objectif de cette thèse était de développer 

de nouvelles approches pour quantifier les propriétés physiques directement liées aux 

changements dans la dynamique structurale collective à basse fréquence en réponse à différents 

effets, tels que les changements de conformation à grande échelle, la liaison de ligands et les 

mutations ponctuelles physiologiquement pertinentes.  

 

Chapitre III 
La dynamique structurale du domaine de liaisons au ligand du PPARg a été explorée à l'aide 

d'approches de modélisation moléculaire et de simulations de dynamique moléculaire. Cette 

approche, que nous appelons « Ensemble moyenné des modes normaux » permet d’intégrer la 

spectroscopie d'absorption dans l'infrarouge lointain avec les simulations de dynamique 
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moléculaire. Les spectroscopies d'absorption dans l'infrarouge lointain sondent la région des 

basses fréquences du spectre de vibrations et révèlent les modes vibrationnels collectifs dans 

la région spectrale allant de 0,06 THz (2 cm-1) à 10 THz (333 cm-1), une région de fréquence 

accessible à l'analyse vibrationnelle basée sur des calculs de mécanique et de dynamique 

moléculaire. Notre hypothèse est que les techniques spectroscopiques telles que la 

spectroscopie d'absorption dans l'IR lointain, lorsqu'elles sont combinées à la modélisation 

moléculaire et à l'analyse structurale et biophysique, peuvent être utilisées pour faire progresser 

notre compréhension de la réponse des protéines à la liaison d'un ligand, même lorsque les 

changements structuraux sont minimes ou inexistants (Cooper and Dryden 1984) mais que la 

dynamique est impactée. Non limitée par la taille des protéines, la mise en place et l'intégration 

de la spectroscopie dans l'IR lointain avec d'autres approches biophysiques fournira un moyen 

innovant de quantifier une empreinte vibrationnelle à basse fréquence de la protéine ainsi que 

les changements de cette empreinte en fonction de la liaison du ligand.  

Ce projet est fondé sur des travaux étudiant la liaison des ligands et l'allostérie dans le 

domaine PDZ de MAGI1 (Cote et al. 2017). Dans ce travail, la spectroscopie d'absorption dans 

l'IR lointain et les simulations de dynamique moléculaire ont été combinées pour étudier la 

réponse du domaine PDZ à la liaison d'un petit ligand peptidique et son impact sur la 

dynamique structurale.  

Les modes normaux explorent les mouvements collectifs au sein d'une molécule en 

examinant ses modes vibrationnels. Ces modes représentent les mouvements naturels à basse 

fréquence que la molécule peut subir sans modification significative de sa structure. Les modes 

normaux peuvent jouer un rôle important lorsqu'ils sont utilisés en conjonction avec des 

simulations de dynamique moléculaire, par exemple en faisant partie intégrante d'algorithmes 

d'échantillonnage qui améliorent l'exploration de l'espace conformationnel. Nous présentons 

ici une méthode qui s'appuie sur l'utilisation de structures multiples pour les modes normaux 

et qui est mieux adaptée à l'analyse de simulations plus longues. Notre approche par l'ensemble 

moyenné consiste à combiner les données de plusieurs structures issues d'une simulation de 

dynamique moléculaire extraites du puits le plus peuplé d'une surface d'énergie libre. La 

surface d'énergie libre (Fig. 4A) est générée à partir de la RMSD et du rayon de giration, comme 

dans (Cote et al. 2017), les structures sont réorientées dans le même référentiel et une NMA 

est effectuée sur chaque structure. Nous calculons les modes normaux pour les structures 

extraites et faisons ensuite la moyenne des résultats. À partir des modes normaux, nous 

calculons la moyenne de la RMSF (Fig. 4B), les mouvements corrélés (Fig. 4C) et les spectres 

de l'IR lointain (Fig. 4D) que nous comparerons à l'expérience dans les chapitres suivants. La 
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confirmé l'effet de la polarisation sur les moments dipolaires des acides aminés, qui est 

influencé par la structure secondaire. Nous avons également caractérisé pour la première fois 

les effets de l'utilisation du champ de force de Drude sur les mouvements corrélés, qui sont 

impliqués dans la fonction biologique des protéines. Les mouvements corrélés ont été 

caractérisés par des cartes de corrélation générées par des simulations de dynamique 

moléculaire, par l'analyse de réseaux communautaires (CNA) et par l'analyse de la carte du 

plus court chemin (SMP). Ces deux dernières interprètent les informations des mouvements 

corrélés obtenues à partir des simulations. L’analyse CNA distingue les régions des protéines 

où les résidus interagissent fortement entre eux, et sont placés dans la même communauté, de 

celles qui interagissent plus faiblement. Ces dernières sont placées au sein d’une autre 

communauté et l'information est indiquée par une connexion entre les nœuds. L'analyse révèle 

en outre les chemins par lesquels les signaux peuvent se propager d'une région à l'autre. 
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la liaison d'un ligand ou par l'introduction de mutations ponctuelles. En conclusion, nous 

remarquons que la différence majeure survient dans des régions de la protéine qui sont connues, 

d'après les simulations, pour présenter une flexibilité plus importante que dans d'autres régions 

de la protéine, plus précisément dans la moitié du LBD de la protéine, qui contient la poche de 

liaison au ligand, et l'hélice H12. 

 

Chapitre VI 
En conclusion, l'objectif principal de cette thèse était de développer des protocoles intégrant la 

spectroscopie d'absorption dans l'infrarouge lointain et des simulations de dynamique 

moléculaire pour quantifier et étudier les mouvements collectifs dans les protéines. 

L'intégration de mesures dans l'infrarouge lointain (IR lointain) avec des simulations de 

dynamique moléculaire (MD) offre une approche puissante et multidimensionnelle pour 

étudier la dynamique des protéines. Les données de l'IR lointain fournissent également une 

validation expérimentale cruciale pour les simulations de dynamique moléculaire, qui donnent 

un aperçu des changements de conformation des protéines, des mouvements et de la dynamique 

collective à basse fréquence des protéines. La combinaison des deux techniques peut fournir 

plus d'informations qu’une technique seule. Cela a été démontré précédemment dans une 

première étude intégrée de la réponse d'un domaine PDZ à la liaison d'un petit peptide, où il a 

été démontré que des informations exploitables concernant les changements dans les 

mouvements collectifs à basse fréquence pouvaient être obtenues même pour les protéines où 

il n'y a pas de changement de conformation substantiel lors de la liaison du ligand. L'approche 

intégrée a permis de quantifier un mécanisme d'allostérie dans un domaine PDZ. Nous avons 

voulu élargir le champ d'application de cette approche intégrée et caractériser la dynamique 

des protéines des récepteurs nucléaires (NR). Les RN constituent une superfamille de protéines 

qui fonctionnent comme des facteurs de transcription dépendants des ligands et qui se lient à 

l'ADN. Le fait qu'il s'agisse d'une protéine complexe de grande taille impliquée dans des 

cascades transcriptionnelles qui sous-tendent de nombreux phénomènes physiologiques en fait 

l'un des principaux paradigmes de transduction du signal chez les métazoaires. Le domaine de 

liaison au ligand d’un récepteur nucléaire étant une protéine de grande taille par rapport au 

domaine PDZ et présentant une allostérie complexe, de nouveaux développements de 

l'approche computationnelle antérieure ont été introduits afin d'aborder la dynamique 

structurale complexe avec plus de précision. 
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Bien que l'approche développée ici continue de s'appuyer sur l'analyse en mode 

normaux, qui est un outil informatique puissant pour étudier la dynamique des protéines, en 

particulier pour comprendre les mouvements collectifs à basse fréquence, afin de mieux 

s'adapter aux longues simulations de dynamique moléculaire, nous avons développé une 

approche d'ensemble conformationnel qui inclut un grand nombre de structures extraites de 

longues simulations de dynamique moléculaire. Cette approche d'ensemble diffère de 

l'approche originale dans la mesure où cette dernière reposait sur l'analyse des modes normaux 

d'une seule structure extraite d'une simulation de dynamique moléculaire. Notre approche 

d'ensemble conduit à des résultats plus robustes en termes de quantités calculées à partir de 

l'analyse des modes normaux. Nous avons ensuite appliqué cette approche à la protéine PPARg, 

un récepteur nucléaire. Nous nous sommes concentrés sur le domaine de liaison du ligand dans 

les formes apo et holo-sauvage, ainsi que dans deux formes mutantes, où nous avons caractérisé 

les effets de la liaison du ligand agoniste, ainsi que les effets des mutations de gain de fonction 

et de perte de fonction sur la dynamique structurale. La spectroscopie d'absorption dans 

l'infrarouge lointain (réalisée par nos collaborateurs) et les simulations de dynamique 

moléculaire ont été appliquées aux mêmes systèmes, ce qui a donné une occasion unique 

d'étudier les systèmes de manière synergique. Les résultats des calculs ont été comparés aux 

résultats des mesures dans l'infrarouge moyen et lointain. C'est la première fois qu'une telle 

approche est appliquée à une protéine de cette complexité.  

Outre la comparaison des spectres IR calculés avec les spectres expérimentaux, qui a 

fourni une validation solide des résultats informatiques, nous avons pu calculer, à partir de 

notre approche d'ensemble, les mouvements corrélés à longue portée que nous avons utilisés 

dans une analyse plus poussée par l'analyse du réseau communautaire, un outil pour extraire 

des informations concernant les modes corrélés et identifier les régions locales qui sont 

fortement corrélées et leurs interactions avec d'autres régions. Les principales conclusions sont 

que des régions importantes sur le plan physiologique ont été identifiées comme étant fortement 

corrélées au reste du domaine. En particulier, la boucle entre H8 et H9 forme un nœud 

fortement corrélé qui est bien connecté au reste de la protéine. Cette région du LBD est 

importante pour les cascades de signalisation dans les protéines des récepteurs nucléaires et 

son degré de corrélation couplée au reste du LBD n'a pas été élucidé à un tel degré dans des 

études antérieures. Nous avons également constaté que les régions telles que les régions du 

feuillet bêta étaient également bien connectées et que l'introduction de ligands agonistes 
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déplaçait le profil de corrélation vers l'interface du dimère, ce qui serait important pour le 

transfert d'informations au cours du processus de transcription des gènes.  

Ensuite, nous avons présenté une étude de simulation de la protéine du récepteur 

nucléaire PPARg et comparé les mouvements corrélés calculés à partir de simulations qui 

n'utilisaient pas de champ de force polarisable à celles qui en utilisaient un. Alors que dans de 

nombreuses études, les champs de force polarisables montrent de bonnes performances pour 

les caractéristiques structurales, telles que la RMSD ou les fluctuations atomiques, nous avons 

constaté dans notre étude que la polarisation adoucissait les corrélations calculées. Les 

mouvements corrélés ont été soumis à l’analyse de réseau communautaire (CNA), et nous 

avons constaté qu'il y avait moins de corrélations entre les différentes régions du LBD par 

rapport au champ de force classique pour tous les atomes. Avec des corrélations adoucies, les 

interprétations relatives à l'allostérie sont plus difficiles. En outre, l'analyse du réseau 

communautaire a donné des résultats moins définitifs lorsque la polarisation a été incluse et 

certaines caractéristiques qui avaient un sens physiologique dans le contexte des protéines des 

récepteurs nucléaires ont été perdues. Notre étude a donc démontré l’intérêt de comparer les 

champs de force polarisables et classiques dans les études dans lesquelles les mouvements 

collectifs à basse fréquence sont importants, afin d’obtenir une vision plus robuste des réseaux 

corrélés.  
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MILINSKI Ana 
Dynamique structurale du récepteur nucléaire PPARgamma 

 
Résumé 
 
PPARg est un régulateur du métabolisme des lipides et de l'énergie, et les changements dans sa 
dynamique structurale sont impliqués dans de nombreux processus physiologiques et pathologiques. 
L’étude au niveau atomique des mécanismes moléculaires qui sous-tendent ces effets dynamiques 
implique de caractériser les mouvements, et en particulier les mouvements collectifs de PPARg. 

L'objectif de cette thèse était de développer une nouvelle approche pour mesurer les propriétés 
physiques directement liées aux changements dans la dynamique structurale collective à basse 
fréquence des protéines. A cette fin, nous avons développé une approche intégrée de spectroscopie dans 
l'infrarouge lointain (Far-IR) et de simulation de dynamique moléculaire (MD), appelée « Ensemble 
Averaged Normal Modes ». Nous nous sommes appuyés sur l'analyse des modes normaux (NMA) en 
mettant en œuvre un échantillonnage MD, ce qui nous a permis d'étudier les fluctuations, les spectres 
IR et les mouvements corrélés. Ces analyses ont été complétées par les analyses de la connectivité et 
des évaluations de la structure secondaire et des liaisons hydrogène. 

Le chapitre III décrit le protocole développé, qui a été appliqué dans le chapitre IV à PPARγ, 
en particulier son domaine de liaison au ligand (LBD) sauvage dans les formes apo et holo (lié à 
l'agoniste GW1929) et portant deux mutations associées au cancer (T4757M et F310S). Le chapitre V 
décrit une deuxième étude qui portait sur des effets de la polarisation, à travers l'implémentation d’un 
champ de force polarisable, sur les mouvements collectifs de PPARγ, dans sa forme apo et dans sa 
forme liée à un peptide corépresseur.  

En conclusion, nous présentons une méthodologie originale qui combine des simulations de 
dynamique moléculaire et de la spectroscopie IR lointain, ainsi qu’une application du protocole 
développé à l'étude de PPARγ, ainsi qu’une étude de l'impact de la polarisation électronique sur les 
mouvements collectifs de PPARγ. 

 
Mots clés : PPARgamma, récepteur nucléaire, dynamique moléculaire, mutations, ligand, 
mouvements corrélés, polarisation 
 
Abstract  
 
PPARg is a regulator of lipid and energy metabolism and is implicated in many different physiological 
and pathological processes. It acts as an allosteric hub receiving chemical signals that are then translated 
into biological responses. This action depends on changes in its conformation and its structural 
dynamics, the latter being difficult to quantify. An atomic level understanding of the molecular 
mechanisms of both physiological and pathological activity of PPARg can be can be understood by 
studying the underlying structural dynamics, particularly those of collective motions. 

We developed an integrated approach to study physical properties directly related to low 
frequency collective structural dynamics of proteins. It is a combined far infrared (Far-IR) spectroscopy 
– molecular dynamics (MD) simulation approach that relies on a method we call Ensemble Averaged 
Normal Modes. This allowed us to characterise protein fluctuations, computed IR spectra, and 
correlated motions. These analyses were complemented by community network analysis, secondary 
structure- and hydrogen-bond evaluations. 

Developed protocol was applied to PPARγ systems, including its wild-type ligand-binding 
domain (LBD) in apo and holo forms (bound to agonist ligand GW1929) and two cancer-associated 
mutants (gain-of-function T4757M and loss-of-function F310S). Chapter V describes a separate study 
of the effects of polarization, through the implementation of the polarizable Drude force field, on the 
collective motions of PPARγ in its apo form and when bound to a corepressor peptide.  
 
Keywords: PPARgamma, nuclear receptor, molecular dynamics, sampling, mutations, ligand, 
collective motions, polarization 
 


