




Théorie de la structure électronique des molécules à transition de

spin sur surfaces métalliques : résumé de thèse

R. Pasquier

Université de Strasbourg, Institut de Physique et de Chimie des Matériaux de Strasbourg,

CNRS-UNISTRA UMR 7504, 67034 Strasbourg, France

1



La Spintronique est un domaine de la physique qui s’intéresse à l’étude et l’utilisation

des degrés de liberté de spin d’un électron en plus de la charge électronique. Il s’agit d’un

domaine assez jeune, qui trouve ses origines dans plusieurs travaux effectués au cours des

années 80. Un exemple notable est la découverte de la magnétorésistance géante par Fert

et Grünberg et 1988, ce qui a mené à plusieurs percées dans le domaine des disques durs

et à un prix Nobel en 2007. Ainsi, ce nouveau degré de liberté de spin a entraîné la créa-

tion d’une grande variété de systèmes électroniques novateurs, parmi lesquels les systèmes

hybrides molécule-surface métallique. Ceux-ci ont l’avantage de combiner les propriétés de

la surface métallique, telles que leur magnétisme, avec les propriétés moléculaires telles que

le phénomène de transition de spin. En effet, dans le champ électrique créé par un ligand

de géométrie octaédrique, la quintuple dégénérescence des orbitales d de l’atome métallique

complexé, appelé centre octaédrique, est levée en deux groupes d’orbitales de basse énergie

(t2g, composée des orbitales hors axes dxy, dyz et dzx) et de haute énergie (eg, composée des

orbitales axiales dx2
−y2 et dz2). Nous avons ainsi naturellement différents états de spin pour

le complexe selon l’appariement desdits spins, et par définition on appelle état de bas spin

(LS) celui d’appariement maximal et état de haut spin (HS) celui d’appariement minimal,

et ainsi on peut envisager des transitions entre ces différents états : c’est la transition de

spin.

Figure 1 – Complexe en symétrie octaédrique avec les orbitales t2g en blanc et eg en gris,

et levée de dégénérescence dans un complexe octaédrique. La figure de gauche provient de

[1]

Ce phénomène de transition de spin a été observé pour la première fois dans le cas de

la molécule de Fe(phenanthroline)2(NCS)2 (que l’on désignera par l’abréviation très com-
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mune de FePhen désormais) par Baker et Bobonic en 1964 [2], au cours de leur étude de

la susceptibilité magnétique de complexes de la forme Fe(Phen)2X2. Ce système est depuis

devenu un exemple de référence pour l’étude de la transition de spin. Le but de cette thèse

est ainsi d’étendre les résultats déjà obtenus sur ce système ([3, 4]), notamment adsorbé

sur une surface de Cu(100) ([5]), mais également de les appliquer à d’autres systèmes de

transition connus dans la littérature. Nous nous attacherons à étudier l’effet relativement

inexploré du dopage sur ces systèmes à transition de spin, et nous montrerons comment

manipuler l’état de spin grâce à des substitutions des atomes d’hydrogène des ligands. Nous

implémenterons également dans le code VASP le calcul de spectres d’absorption à rayons X

sur ces systèmes, et étudié l’influence de la surface et de la déformation octaédrique sur le

signal. Finalement, nous avons également calculé les images STM au-delà de l’approximation

Tersoff-Hamann, et montré et étudié les différences avec cette approche basique. Nous pré-

senterons également quelques résultats préliminaires sur le calcul des phonons et de l’énergie

libre dans ces molécules à transition de spin.

Figure 2 – Structure de la molécule de FePhen. La représentation de Cram provient de [6]

Le phénomène de transition de spin est intrinsèquement lié à l’influence du champ élec-

trostatique des ligands sur le centre octaédrique. Ainsi, il paraît légitime de s’intéresser à

l’effet d’un changement desdits ligands sur les états magnétiques moléculaires. En particulier,

un domaine assez inexploré est celui de l’influence du dopage, par exemple en substituant

certains atomes par d’autres dans la composition des ligands. Et c’est ainsi le sujet du pre-
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Figure 5 – Corrélation HS-LS des fréquences phononiques dans la molécule non-dopée (à

gauche) et dopée (à droite)

.

Nous procédons également à la même étude sur la molécule dopée, et nous montrons

ainsi que le dopage mène à des modifications sur les fréquences associées aux processus

dans l’octaèdre, ce qui correspond au fait que ces liaisons sont les plus affectées après la

fluorination de manière très similaire à la transition de spin. Ainsi, le calcul de l’énergie

libre démontre que l’état HS est toujours le plus stable à toute température, ce qui confirme

que la molécule dopée devrait rester un complexe dans l’état HS expérimentalement ce qui

correspond aux attentes théoriques car le phénomène de transition de spin est lié à l’entropie

de vibration qui stabilise ainsi l’état HS en allongeant la valeur moyenne des longueurs de

liaison.

Figure 6 – Différence d’énergie libre entre les états HS et LS pour la molécule dopée (à

gauche) et non dopée (à droite)

.

Nous montrons ensuite nos résultats de simulation de phonons à partir de la dynamique

moléculaire dans la molécule non dopée, qui est une approche commune afin d’obtenir un
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ces dernières de manière statique, en créant un trou (ou un demi-trou de Slater) explicitement

dans le cortège de coeur et en recalculant les bandes de valence. Mais nous avons montré

que ceci entraîne de plus mauvais résultats vis-à-vis des données expérimentales, à cause de

l’écrantage du trou par les électrons qui mène à une forte réduction du moment magnétique

sur l’atome de fer et ainsi une modification erronée du signal théorique obtenu. En outre, nous

avons démontré dans le cadre de notre formalisme la relation entre les spectres d’absorption

et les densités d’état partielles des électrons de valence, ce qui nous a permis d’effectuer

une analyse des structures sur les spectres d’absorption en termes des structures sur les

densités d’états eg et t2g de l’atome de fer, montrant ainsi de quelles symétries proviennent

les différentes contributions des spectres XAS.

Figure 8 – Signaux XAS au seuil L2,3 dans l’état LS (à gauche) et HS (à droite) calculés

avec et sans surface, comparés aux résultats expérimentaux. [10]

Nous avons également montré que l’angle d’incidence du rayonnement polarisé influe sur

le signal XMCD, et peut ainsi être corrélé à la déformation locale de l’octaèdre N6 autour de

l’atome de fer. Finalement, nous avons étudié l’impact de la direction de magnétisation sur

le signal XMCD, qui est ainsi reliée à l’anisotropie du moment magnétique sur l’atome de

fer. Nous avons estimé la température de blocage de l’aimantation, et montré que les règles

de sommes de Thole etal. étaient respectées pour plusieurs directions de magnétisation,

mais celles-ci nécessitent l’évaluation du moment dipolaire magnétique issue de la déforma-

tion de l’octaèdre central dans l’état HS. Toutes ces prédictions nécessitent néanmoins une

vérification expérimentale.
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Figure 9 – Signaux XMCD au seuil L2,3 dans l’état HS sur surface calculés avec différentes

orientations d’incidence, comparés aux résultats expérimentaux (uniquement en incidence

rasante) et illustration associée [10]

∆E (meV) Tz (µB) mℓ (µB) ms (µB)

Direction de Direct Intégrale Direct Intégrale

magnétisation

(001) -1.9 -0.101 0.180 0.154 3.635 3.731

(111) -0.98 -0.092 0.106 0.092 3.637 3.735

(010) 0 -0.092 0.006 0.006 3.635 3.734

Table II – Anisotropie magnéto-cristalline ∆E en meV, et calcul du moment magnétique

dipolaire (Tz), du moment magnétique (ms), et du moment angulaire (mℓ) en DFT comparés

aux valeurs obtenues avec les règles de somme intégrales (en magnéton de Bohr µB) pour le

site de fer dans la molécule de FePhen avec différentes directions de magnétisation [10]

Finalement, nous présenterons nos résultats concernant la simulation de la microscopie à

effet tunnel, qui est un moyen rapide et assez commun pour discriminer entre les états de

spin car les différences structurelles sont clairement visibles sur les images obtenues. Ainsi,

nous avons calculé les images STM de la molécule de FePhen adsorbée sur une surface

en utilisant trois méthodes : la méthode de Tersoff-Hamann, où la pointe est considérée

comme un pur état s ; la méthode de Chen, où la pointe est décomposée sur toutes les

symétries s, p et d ; et finalement l’approximation de Bardeen générale, où la pointe est
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intéressant du point du vue expérimental afin de manipuler la stabilité relative entre les états

LS et HS des complexes à transition de spin. Le calcul phononique corrobore la stabilisation

de l’état HS vis-à-vis de l’état LS. Nos simulations de spectres XAS et XMCD, en accord

relatif, mettent en évidence l’importance des déformations et anisotropies de ces systèmes

qui jouent sur le signal résultant et sur leur interprétation, notamment au niveau des règles

de sommes de Thole et al. avec l’importance du tenseur magnétique dipolaire. Finalement,

nous avons étudié la simulation des images STM et montré que les méthodes de Tersoff-

Hamann et Bardeen étaient en accord pour la grande séparation entre la pointe et la surface

que nous avons utilisée, ce qui est le comportement attendu, tandis que les corrections de la

formule de Chen sont relativement restreintes et limitées à de courtes distances.
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Introduction

0.1 Some historical milestones

The topic of spin-transition or spin crossover (SCO) physics was initiated by the seminal

work of Cambi and co-workers during the 30s, who studied, among other things, Fe(III) com-

pounds of the form Fe(R2NCS2)3, underlining the anomalous behaviour of their magnetic

susceptibility with respect to the temperature ([1, 2, 3]) and showing for the first time a tem-

perature driven transition between two spin states. These studies also emphasized the strong

sensitivity of the spin state to the nature of the (R) ligands, and in some cases intermediate

values of the magnetization were observed. Foundational work done at the same time by Pau-

ling and co-workers on the properties of the ligand-metal bond ([4]) led them to the idea of

incorrectly describing these results in terms of an intermediate spin state, although Pauling

did in fact foresee the possibility of a equilibrium in a general bistable system based on the

nature of the bonding ([5]).

After a period of relative dormancy dictated by the requirements of the SecondWorldWar,

the subject of SCO had a rebirth starting from the end of the 50s, spearheaded by a number of

novel breakthroughs, including the famous work of Orgel ([6, 7]), who used ligand field theory

(LFT) to correctly describe the previous results as stemming from an equilibrium between two

spin configurations: a low spin one and a high spin one. This, among other works, led to the

recognition of LFT as a very valuable tool in understading the properties of SCO compounds,

which coincided with a genuine explosion of the research activity on the spin transition topic

from the beginning of the 60s. Remarkable examples include the study of the magnetic states

of various Iron(II) and Cobalt(II) compounds by Busch et al., which led to the discovery of co-

balt(II) spin crossover systems ([8]). At roughly the same time, we can also note the discovery

of the spin transition behaviour in Fe(II) SCO molecules following the extensive work of Ba-

ker and Bobonich in 1964 ([9]), then Madeja and König in 1967 ([10]), on systems of the form

[Fe(Phen)2X2], including the now widely studied Fe(phenanthroline)2(NCS)2 parent system

on which we shall focus more thoroughly in another part. The first studies on the pressure

effects were also carried during the same period, by various groups including for exampleMar-

tin and Ewald [11], who tried to extend the work of Cambi on Fe(III) systems. These systems
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have received a fair amount of attention, and the first use of Mössbauer spectroscopy to study

the SCO phenomenon was indeed demonstrated on Iron(III) dithiocarbamites [12] during the

same era before being used by Madeja and König in their seminal studies on Fe(II) compounds

[10]. Another study of particular interest on these Fe(III) systems was the work of Hendrick-

son et al. during the 80s, showing that the characteristics of the spin-transition phenomenon

in the powdered crystalline phases depends on the granularity of the crystallites, underlining

the strong contribution of long-order interactions on the SCO in multimeric systems [13].

Therefore, the period starting from the 80s was mainly characterized by a massive increase

in interest on multimeric and polynuclear SCO compounds as the result of Henrickson et al.,

among others, emphasized the importance of studying covalent bondings between SCO mole-

cules and supramolecular long-range interactions to understand the difference with the purely

monomeric results that were obtained during the previous decades. Without going in exces-

sive depth as it is not the subject of this thesis, we can note that important results include

the first forays into dinuclear Fe(II) and Co(II) compounds by the groups of Kahn and Zarem-

bowitch [14, 15], the study of trinuclear Fe(III) with Htrz bridges by Reedjik, Haasnoot et al.

[16, 17] that showed that only the central ion undergoes the spin transition whereas the edge

remains in the HS state with a weak exchange interaction, while Brooker et al. [18] showed

a simultaneous crossover in a dinuclear Co(II) complex with a strong exchange. We can also

note the discovery at roughly the same era of a tetranuclear 2x2 square Fe(II) compound with

a variety of observed spin transitions by the groups of Lehn and Ruben [19].

To conclude, the topic of spin-crossover materials is a buzzing research field, most notably

because of the numerous nanotechnological promises entailed by the mastery of the transi-

tion between the spin states that show clear commercial potentialities for e.g. novel memory,

display or storage devices. For example, as emphasized by Létard et al. [20], systems with a

significant amount of hysteresis exhibit a memory effect, where their behaviour depends on

their past history, that could be leveraged to design memristive components, as demonstra-

ted for example by Miyamachi et al. in 2012 [21]. Besides, the spin-crossover mechanism also

plays an important role in certain natural processes, for example within haemoglobin where

the structural changes between spin states allow for a very efficient transport of oxygen and

therefore influenced the evolution of species [22, 23]. As such, the continuous strife for better

theoretical results on the topic is a worthwhile enterprise.

0.2 The principles of spin-transition

In vacuum, the electrons of an atomic system are organised in degenerate levels that can

be indexed by their angular quantum number l. To understand the SCO in transition metal

compounds, we are interested in the d-subshell that has a fivefold degeneracy, containing the
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so-called dxy, dyz, dzx (along the diagonal directions) and the dx2−y2 and dz2 orbitals (along the

axes). In the electronic field created by a ligand of octahedral geometry, this fivefold degene-

racy of the d-orbitals is lifted as some of these orbitals are aligned with the axes (and therefore,

the ligands) and others are out of the axes. This leads to the splitting of the d-subshell in two

degenerate states of lower energy (t2g , composed of 3 orbitals) and higher energy (eg , 2 orbitals)

separated by the energy splitting ∆. We therefore have different spin-states for the complex,

depending on whether the spins remain paired (low spin state) or stand in the higher energy

states (high spin state) for all transition metals with a configuration between d4 and d7. The

choice between these two possibilities is naturally depending on the difference between the

energy splitting ∆ and the pairing energy P , with ∆ << P favouring a high spin (HS) state

and ∆ >> P a low spin (LS) state. In the particular case where ∆ and P become relatively

close, an artificial transition between the two states induced by an external stimulus becomes

possible: this is called a spin transition or a spin crossover. Naturally, this spin transition is

correlated to length differences between the HS and LS state. Indeed, the strength of the Li-

gand Field, and therefore the energy splitting, obviously depends on the distance between the

coordination centre and the chelating ligands, with a HS state being correlated to longer dis-

tances in order to reduce∆ whereas the LS state is correlated to shorter distances to increase

this splitting. Note that this crossover phenomenon almost only exists within the complexes

of first-row, 3d transition metals [24] but note that there are extremely rare examples of 4d

SCO complexes [25]. However, to the extent of the author’s knowledge, no 5d thermal spin

crossover complexes have been observed.

The thermodynamical properties of the spin crossover phenomenon were studied by Sorai

et al., who showed that the SCO is a entropy-driven process [26, 27], and as such relies on

both electronic and vibrational contributions to the energetic balance, especially in the solid

state which is linked to the so-called cooperativity of the system [28] that describes how local

changes in the individual molecules are correlated to global changes at the solid scale. As a

consequence, the HS state is the most stable state at higher temperatures, but note however

that the LS to HS transition during heating can be highly non trivial.

A very convenient and useful way to monitor a spin-transition within a solid sample is to

measure and plot the HS fraction γHS , or equivalently the magnetization, in the sample with

respect to the temperature. One can then distinguish several types of spin transition based on

the general shape of the plot within broadly five categories [24]:

— The first case corresponds to systems with low cooperativity, so that the solid basically

acts as a set of independent SCO molecules in a lattice. Therefore, the fraction γHS na-

turally follows a Boltzmann distribution with respect to the temperature. This is typical

of a spin-crossover behaviour in solution, where the cooperativity is non-existent [29].

— The second case corresponds to systems with stronger cooperativity, so that a single

molecule switching triggers a cascade transition across the solid which is therefore des-
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cribed by a noticeable increase of the HS fraction at the so-called transition temperature,

which can be anywhere from somewhat gradual to extremely abrupt [30] depending on

the cooperativity of the system.

— The third case corresponds to systems with a particularly strong cooperativity, so that

the spin transition leads to noticeable structural changes within the solid. This causes

an hysteresis to appear on the plot [31], linked to the stabilization of the spin states by

the necessity of the system to undergo a crystallographic phase transition during the

switch from a spin state to the other .

— The fourth case corresponds to systems with a multistep transition, and is quite uncom-

mon. It is often linked to physical peculiarities within the system such as multinuclear

complexes or multiple possible lattice sites for the SCO molecules leading to different

transitions between the inequivalent sites, and cases with 8 steps in the transition have

been reported in very complex systems [32].

— The final case corresponds to system with an incomplete HS to LS transition at low tem-

peratures, and it is often related to some kind of lattice related hindrance effects where

the geometry of the system constrains the spin state at some lattice points. In some

cases, the population may also be kinetically trapped in the HS state as the structural

transition can be a slow process [33]. Note that the trapping of an LS population at high

temperature can also happen in some SCO compounds but it is rarer as the thermal and

vibrationnal effects should in principle act against any kinetic or structural barrier.

Note that in rare cases, the structural phase changes linked to the spin-crossover might

lead to an anomalous entropically disfavorable reverse spin-crossover phenomenon with a

partial HS to LS conversion with heating on a small temperature range, although it is always

the HS state that will be favoured at the higher temperatures as the vibrationnal degrees of

freedom get populated [34]. This importance of the lattice contribution on the transition has

actually initiated a drive to study these complexes in solution, especially within the context of

ligand engineering, so as to remove all solid-state effects on the SCO [29].

The entropic nature of the SCO also implies that the spin-transition phenomenon can be

driven by a variety of external perturbations beyond temperature. First of all, a very important

discovery was the influence of an external radiation on the spin-crossover phenomenon. The

so-called LIESST (Light Induced Excited Spin State Trapping) effect is based on the idea of

irradiating a LS solid-state sample at low temperature, which triggers a conversion to a me-

tastable HS state that decays back to the LS state with heating above a temperature known as

the LIESST critical temperature or T(LIESST) [35]. As such, the system remains trapped in the

HS state if the temperature is low enough, with extreme lifetimes in some cases (up to several

days) [28]. A particularly interesting aspect of this is that it is also possible to reversely turn

the excited state back to the ground state by irradiating the sample with a longer wavelength,

an effect known as the reverse-LIESST [36, 37] with very obvious applications for memory and
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storage devices. The use of these external radiations along with temperature manipulation can

also have an influence on the hysteretical structure of the spin transition phenomenon, with

the discovery of the LITH (Light Induced Thermal Hysteresis) [38] where a LIESST sample

under constant irradiation shows an hysteretical cycle under a simultaneous thermal loop.

We can also note the "mirror" effect, with the LIOH (Light Induced Optical Hysteresis) [39]

where the temperature is kept constant but the irradiation is cycled. A related effect is the

LiPTH (Light Perturbed Thermal Hysteresis) [40] where a SCO sample undergoing a thermal

hysteresis shows a shift of the transition cycle under an external irradiation, with its "mir-

ror" effect LiPOH (Light Perturbed Optical Hysteresis) [40]. Finally, the use of photo-sensitive

ligands can lead to a spin crossover linked to the geometrical changes of the ligands under

irradiation, which is the so-called LD-LISC phenomenon (Ligand Driven Light Induced Spin

Crossover) which was mostly observed within solution [41]. Interestingly, a very similar effect

to the LIESST can be triggered by using soft x-rays leading to the SOXIESST effect (Soft X-ray

Induced Excited Spin State Trapping) [42] or hard x-rays with HAXIESST [43] and nuclear

decay leading to the NIESST effect (Nuclear decay Induced Excited Spin State Trapping) [28].

The influence of pressure has already been mentioned earlier. As the pressure reduces the

bond length between the coordination centre and the ligands, it usually stabilizes the LS state.

Equivalently, the enthalpy of a system depends on the pressure p with a term pV , so that the

HS state should be energetically disfavorable as it is the system with the higher volume V

[44]. Most notably, this can trigger a transition in a normally stable HS system: examples of

paramount importance are Ferropericlase (Mg,Fe)O [45] and Perovskite (Mg,Fe)SiO3 [46],

two HS minerals which undergo a transition to an LS state under the massive pressure condi-

tions of the Earth mantle with important changes on various physical properties such as the

density, elasticity or viscosity, leading to noticeable consequences on the associated geophy-

sical processes. The opposite effect of stabilizing the HS state has also been observed in some

cases, as pressure can trigger structural phase changes that may favor a high spin state [47].

Naturally, the application of a magnetic field should also have an impact on the spin tran-

sition, and indeed it stabilizes the HS state with a shift in the transition temperature that

can be computed and verified experimentally [48, 49]. Using the susceptibility χ of the spin

states, one can show using the magnetic moment µm = χB that the enthalpy is shifted by

a value ∆Em = −1/2χB2 because of the Zeeman effect. The HS state is paramagnetic, so

that χHS > 0 whereas the LS state is either diamagnetic or very weakly paramagnetic with

|χLS| << χHS so that its contribution can be neglected. Therefore, a magnetic field should

favor the HS state and disfavor the LS state. The case of an electric field was also studied and

it was shown that it is possible to selectively stabilize either the HS or LS state depending on

the polarity of the electric current [50, 21].

Finally, chemical manipulation is rarer but also exists, being mostly observed in solution.
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Hence, it is possible to induce a spin state switching by solvating a SCO compound [51], by

modifying the ligands with an extremely famous example being the aforementioned case of

hemoglobin which undergoes a spin state change under the coordination of oxygen [4]), or in

very rare cases by a coordination change on the metal center itself [52].

0.3 Fe(II) systems

Fe(II) systems are d6 complexes, which therefore have a (6t2g
0eg) population in the LS

state of spin S=0 and a (4t2g 2eg) population in the HS state of spin S=2. As we have said earlier,

the SCO in Fe(II) compounds was first observed in the case of the Fe(phenanthroline)2(NCS)2

(usually abbreviated as FePhen) molecule by Baker and Bobonich in 1964 ([9]), who studied

the magnetic susceptibilties of several high-spin Fe(II) complexes of the general form

[Fe(Phen)2X2]. They showed that, for the isothiocyanate ligand (NCS), the magnetic moment

is sharply decreasing with the temperature. This was later explained in 1967 by König and

Madeja ([10]), who demonstrated the transition between low spin and high spin states thanks

to thermal excitation. They measured the magnetic susceptibility, showing a decrease of the

magnetic moment with a critical temperature around Tc ≈175 K. Using Mössbauer spectro-

scopy, they showed that the compound was in a 5T2 high-spin state at high temperature and

a 1A1 low-spin state at lower temperatures, and therefore undergoes a thermal induced spin

transition between these two states. These extensive studies led to a strong focus on Fe(II)

compounds during the early years of the field, being used as prototypical systems to assess

the influence of a wide variety of parameters on the SCO phenomenon [24]. The FePhen

molecule is the prototypical example of the [Fe(diimine)2(X)2] class of complexes, and

more generally of the Fe(II)N6 family which encompasses the majority of the most studied

SCO compounds because of the spectacular resilience of the spin crossover phenomenon

to extensive modifications of the molecule, leading to a pretty thorough knowledge of the

general effects of ligands on the relative energetics of the spin states. For example, an entire

field of research was built around general substitution and replacement of the ligands,

showing a wide range of effects depending on the nature of the transformation done on the

molecule, with a very common idea being the replacement of the isothiocyanate ligands by

selenocyanate ligands [NCSe−]. These are characterized by a stronger field as compared to

the pristine isothiocyanate which leads to a stabilization of the LS state, with the selenated

FePhen molecule showing a spin transition temperature of Tc ≈ 235 K. [53].

There is a massive ongoing effort to study SCO compounds on metallic surfaces. Indeed,

harnessing the bistability of the spin crossover molecules requires a functionalization based

on their adsorption on surfaces in order to create building blocks for novel spintronics devices,

and the knowledge of the characteristics of the interaction between a given SCO molecule

and a given surface, both from a theoretical and experimental point of vue, appears as a
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natural requirement to achieve this task. This is a very young field, owing to the difficulties

encountered during the deposition of SCO compounds on surfaces as most of them aren’t

sublimable without decomposition which therefore prevents the use of vacuum evaporation.

Hence, other methods such as wet-coating approaches are required, which have several

disadvantages such as less control over the coating thickness or more impurities [54]. The

first results of SCO molecules on surfaces were hence obtained in 1988 by Barraud et al.

[55, 56] using Langmuir-Blodgett films of FePhen aliphatic derivatives on CaF2 slides that

exhibited spin crossover but with marked impurities related effects as expected. More recently,

Alam et al. have grafted SCO molecules on a highly ordered pyrolytic graphite (HOPG) [57].

They showed that the resulting STM images show a noticeable contrast between the HS and

LS states, with a significant difference of conductance heralding their functionalizability as

memory storage components. This anticipated results obtained with vacuum evaporated

systems that were developed at roughly the same time, most notably FePhen [58, 21].

As such, the field has known rapid progress during the 2010s, with several successive

successes in the sublimation of increasingly complex and varied spin crossover systems

([59, 60, 61]. For more details about the surface growing of SCO systems, see [62] linked

to a string of discoveries such as the promotion of SCO behaviour thanks to the surface

polarization [63], in relation to the development of an intense field of work organised around

the idea of manipulating the cooperativity of SCO molecules on surfaces by either tuning

the ligand [64] or the substrate [65], with varying success. Naturally, the coupling of SCO

molecules with magnetically active surfaces, especially ferromagnetical surfaces, has been

extensively studied. A strong coupling between the ferromagnets and the SCO molecules has

been demonstrated [66], leading to the possibility of manipulating the resulting spinterface

states by an external stimuli with obvious functional promises [67] for novel spintronics

applications, although this also entails the possibility of permanently locking the spin state

because of the very same interactions [54] so that a fair amount of fine tuning is required. As

such, given the importance of this field, it is of no surprise that several reviews on the topic

have already been released, to which we forward the reader for more information. As such,

for a general outlook on the topic, see [54]. For the characterization of SCO compounds on

surfaces, that we did not tackle yet but which will be one of the main topics of this thesis, see

[68].

0.4 The FePhen molecule

The FePhen molecule being one of the, if not the most studied system in the entire field,

we will dedicate the following section to the description of its properties.
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0.4.1 Structural properties

The FePhen molecule is an octahedral SCO complex, with a central Iron coordina-

tion centre encapsulated within an octahedral cage of nitrogen atoms, from two 1,10-

phenanthroline (C12H8N2) and two isothiocyanate (NCS) ligands. Its structure under various

conditions has been extensively studied, with solid state structural parameters having been

determined at room pressure at 298 K, so in a mostly HS state, and 130 K in a mostly LS

state [69]. The difference of chemical properties between these two ligands leads to a fairly

deformed octahedral geometry, with the Fe− NCS bonds being shorter than the Fe− Phen

bonds, with an average length of 1.95 Å for the former and 2.05 Å in the LS state. It crystallizes

in a Pbcn space group in both spin states, and this structure remains stable even at high

pressure with some small changes in the lattice parameter [70, 71]. Hence, most of the

changes associated with the spin transition phenomenon are located at the molecular level.

The most striking difference are the elongations within the octahedral cage, with an increase

of 0.2 Å for the Fe− Phen bonds and 0.1 Å for the Fe− NCS bonds during the LS to HS

thermal transition, the difference being related to the fact that the Phen groups are better

π-acceptors than NCS, and thus this leads to a stronger π-backbonding effect on the former

than the latter [72]. An increase in the bonding angles can also be observed, from 91.6° in the

LS state to 92.9° in the HS state.

0.4.2 Transition properties

The Fephen molecule undergoes a steep transition at a critical temperature of Tc =175

K, with a very small hysteresis of 1 K. As we have emphasized earliert, it is one of the most

extensively studied transition in literature, being still used as a benchmark for any new expe-

rimental or theoretical development in the field.

Obviously, there is a massive literature about the thermal transition that was studied in all

possible phases, including the single molecule [21], in powder [58], in thin film [69] or in the

solid state [69]. The results show that the molecule undergoes a complete transition in the

powder state, jumping from a magnetization of 0.5 µB at 130 K to 5.2 µB at 298 K with a steep

transition. In the solid state, the high temperature limit at 298 K is the same with a magneti-

zation of 5.2 µB , but the transition is much more gradual at 175 K with a noticeable amount

of molecules trapped in the HS state at 130 K where a remanent magnetization of 2.2 µB was

measured. This can be linked to several phenomena, from defects in the solid-state to geome-

trical interactions quenching the transition as we have emphasized earlier. The transition in

thin films is similar to the solid-state one, although with less quenching at low temperature

with a remanent magnetization around 1 µB at 100 K.

The effects of pressure were also well analysed, hailing from Drickamer et al. pioneering
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studies on the matter [73], who showed that it stabilizes the LS state as expected. This was

extended by Ksenofontov et al. [74], who studied the evolution of the transition between 105

Pa and 1.3 GPa. They showed that pressure suppresses the hysteresis and leads to a more gra-

dual transition, with an increase of the critical temperature that is naturally equivalent to a

stabilization of the LS state. However, one can show that the susceptibility of this transition

temperature to the pressure, ∂Tc/∂P=∆V/∆S decreases as the pressure increases [74]. This,

along with the proportion of trapped HS states remaining constant at low temperatures, stron-

gly suggests the existence of some steric effects at play preventing a total conversion of the

HS population into the LS state. Note that the softening of the transition indicates a loss of co-

operativity as the pressure increases, that is naturally correlated to the loss of HS population.

Boussekssou et al. also studied the effect of pressure pulses on the transition [75], and showed

that the pressure pulse leads to a reversible decrease of the HS fraction in the ascending branch

of the hysteresis and an irreversible decrease of the HS fraction in the descending branch, as

one could have expected. Interestingly, this is the exact opposite of magnetic pulses, as we will

see in the next paragraph.

Indeed, the effect of a magnetic field has also been studied, starting from the work of Güt-

lich at al. [48]. They have measured the transition properties under a field of 1 T and 5.5 T,

and showed that the transition temperature decreases as the strength of the magnetic field in-

creases, with excellent qualitative accordance with the theoretical result. This was extended by

Boussekssou et al. [49], who studied the influence of a pulsed magnetic field and showed that

it induces a reversible increase of the HS fraction in the descending branch and an irreversible

increase of the HS fraction in the ascending branch, which is the exact opposite of the pres-

sure pulse effect. Indeed, the enthalpy contains a pV term for the pressure, while the magnetic

contribution is −1/2χB2 so it is clear that these two perturbations should have an opposite

effect [75, 49]. An interesting fact is that one can clearly observe a longer response time to

the magnetic pulse in the ascending branch (90 ms) as compared to the descending branch (50

ms), which was to be expected as relaxing from the ascending branch requires going to the

descending branch (hence the irreversibility) whereas relaxing from the descending branch

does not involve a branch switch, and vice-versa for the pressure pulse.

Similarly, the effects of irradiation within FePhen have been extensively documented. The

LIESST phenomenon within FePhen was discovered by Decurtins et al. [35, 76, 77], who mea-

sured a T(LIESST) of 55 K. In the same work, the transition path during the LIESST is also

intuited: the irradiation leads to a pumping from the 1A1 low spin state to a set of several
1T and 1MLCT (Metal-to-Ligand Charge Transfer) excited states. These are highly unstable

states, which should rapidly undergo a relaxation to the 1A1 state. However, the existence of

spin-orbit can lead to an alternative spin-forbidden decay path through 3T states and then ul-

timately to the 5T2 state which has no relaxation channel to the 1A1, hence the stability of the

LIESST HS state. This was further analysed by Heber and Casson [78], Lee et al. [79] and later
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by Kato et al. [80], who used a variety of techniques to conclusively show the optical pumping

of the LS ground states in the excited states without any light-induced thermal transfer effects.

The SOXIESST effect was discovered within FePhen by Collison et al. [81], and then was stu-

died by Davesne et al. [82] who used it to flesh out the details on this at that time still pretty

unexplored effect. They showed that the phenomenon had broad similarities with the LIESST

effect both on the excitation path and the dynamics of the process, along with demonstrating

the combined use of the LIESST and SOXIESST effects for a precise controlability of the ex-

citation. HAXIESST was dicovered in this system by Vankó et al. [83], who also emphasized

the similarities with the LIESST phenomenon, where the metastable HS state and the reverse

HS to LS relaxation dynamics are the same than for LIESST. However, the energy of the hard

x-rays is way too high to excite the MLCT states, and as such the excitation process follows

another path through secondary electrons leading to different excitation dynamics.

0.5 Theoretical approaches to spin-transition systems

The genuine popularity and potential of spin crossover molecules has naturally led to a

strong drive for accurate theoretical methods to understand and predict the properties of SCO

molecules. First, we have the purely theoretical models which started as soon as Cambi’s ori-

ginal results with the work of Pauling et al. [5, 4], that anticipated the idea of an equilibrium

between spin states to describe these results. Besides, in more recent years, there has been a

considerable use of ab-initio methods such as DFT or HF methods to study the spin-transition

from first principles, which revealed the fact that properly reproducing the energetics of the

spin states is a challenging task [84].

0.5.1 Theoretical models

Various theoretical models have been developed over the years to explain the spin-

crossover phenomenon following the early work of Pauling. As we have emphasized earlier,

any such model has to take into account the fact that the transition is entropy-driven, and

therefore it should include the vibrationnal contribution to the free energy balance between

the spin states, along with the cooperativity of the system to properly describe non-Boltzmann

and hysteretic transitions. The most famous and widely used example is the Slichter and

Drickamer model [85], which gives a pretty good insight about the SCO in the solid-state and

we will therefore give more details about it. In the very commonly used form, it gives the HS

fraction γHS with respect to temperature:

ln [(1− γHS) /γHS] = (∆HHS↔LS + Γ (1− 2γHS)) /RT −∆SHS↔LS/R , (1)
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where∆HHS↔LS is the transition enthalpy,∆SHS↔LS is the transition entropy, and by virtue

of the definition of the free energy we have that the critical temperature is given by Tc =

∆HHS↔LS/∆SHS↔LS . Γ is the interaction parameter between the HS states and LS states,

which is closely related to the so-called degree of cooperativity C = Γ/2RTc, and it can be

considered positive for our intents (the case of a negative Γ is also considered in the original

paper).R is the ideal gas constant and T is the temperature. The close links with Guggenheim’s

approach for regular solutions [86] and to the Bragg-Williams model for the thermal effects

on atoms in alloys [87] have been extensively discussed [85, 88, 89].

The parameters that we have introduced have a temperature and pressure dependence. The

pressure being an external parameter usually kept constant during γHS(T )measurements, its

related effects can be taken into account by carrying calculations or experiments at different

pressure values. This is a requirement for a proper understanding of exotic pressure effects

in certain systems such as hematin [85]. The temperature dependence of the entropy and en-

thalpy differences is commonly neglected as one is often mostly interested in a short region

around the transition over which these parameters can be considered to be constant. The case

of the cooperativity parameter Γ is much more complex, as it was introduced phenomenogi-

cally in the original paper. Therefore, its variations with respect to the temperature and the

pressure are not well known (see [90]), and as such it is often kept constant.

As noted by the original authors, this is a transcendental equation and one can solve it

graphically as detailed in the paper, but as a short summary we have:

— One can clearly see that when Γ = 0, the equation always admits one single solution

only which translates to a single possible branch for the fraction. This is the first type of

SCOmolecule in the classification we presented earlier in this thesis, with amore-or-less

Boltzmann shape without any hysteresis.

— When Γ does not vanish, there can be several solutions for the fraction depending on the

temperature. As shown in the original paper, a closer look at the free energy shows that

not all these solutions have the same stability and as such this can be used to explain the

discontinuous behaviour and the hysteresis observed for the second and third cases of

the classification, as the system will jump from one minima to the other as the tempera-

ture varies around the critical point. One can derive a critical value of the cooperativity

Γc = 2RTc above which the system will exhibit an hysteretical behaviour.

As such, this model can be used to explain the influence of cooperativity on the shape

of the transition that we mentioned, and is often used as a fit on experimental HS frac-

tion/magnetization curves to extract enthalpy/entropy and cooperativity values near the

transition temperature. This model, which stems from an inherently mean-field treatment of

the free energy (see [89]), has been greatly extended beyond this approximation in recent

times. The domain structure, which has been thus far neglected by virtue of this mean field

nature, was first studied by Sorai et al. [27], before receiving a more thorough treatment
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by Purcell and Edwards [91] who have extended the cooperativity by taking into account

supplementary interactions between the HS states themselves and the LS state themselves.

Other models of interest include the so-called elastic model of Spiering et al. [92], where

the SCO molecules in a metal diluted system are described as impurities within an idealised

anharmonic and elastic crystal leading to pretty good qualitative results even for most of the

anomalous transitions. We can also note Kambara’s approach [93], who coupled the ligand

field theory of the individual molecule to symmetric deformations of the crystal, leading

to a good description of pressure effects and cooperative interactions on the spin transition

[94]. There has been a drive to understand the domain structure of hysteretic systems using

the relay hysteron theory of Preisach [95] and the closely related Everett theorems [96],

with however pretty mixed results depending on the complex studied. The use of effective

Ising-like lattice models along with Monte Carlo simulation methods yielded pretty accurate

results for the simulation of metal dilution, effects of pressure or metadynamical studies of

the transiton path [97, 98, 99, 100, 101].

0.5.2 Ab-initio approaches

As we have emphasized, simulating spin crossover molecules with DFT methods is a com-

plex task. While accurate geometries are nowadays accessible with most DFT methods, the

relative energetics of the HS and LS states are notoriously hard to reproduce as these states

are by definition separated by a small energy difference [102].

Swart et al. [103] have examined the performance of different DFT functionals for predic-

ting the relative spin state (low, intermediate, or high) energies of seven iron complexes for

which experimentally determined ground states are known. They found that the employed

exchange and correlation functionals can be divided into two groups, one that particularly

disfavors high spin states, i.e., standard functionals such as LDA, BLYP, and PBE, and the

other where this is much less the case as for hybrid and improved GGAs and most of the

meta-GGAs. They found that the energy difference between these two groups can be as much

as 20 kcal/mol, showing that the choice of the DFT functional to compute the spin state of

Fe(II) and Fe(III) complexes should be examined carefully [104]. The same conclusions were

reached by Ganzenmüller et al. [105].

The work of Pierloot et al. [106] goes in the same direction, as they showed that BP86 and

other GGAs tend to over stabilize the LS states with respect to the HS states, whereas the adia-

batic difference with the hybrid functionals is heavily influenced by the extent of admixture

of exact exchange, i.e., each TM complex is described by different exact-exchange parameters.

As for the CASPT2 calculations, one can observe a slight overstabilization of the HS state in

some cases, although it is possible to obtain accurate results using extensive basis sets based

on an adequate CASSCF reference wave function making it computationally prohibitive, even
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using high performance computers. In more relatively recent work, they show that the origin

of the over stabilization of the HS with respect to the LS states by CASPT2 can be attributed

to an inappropriate description of the (3s-3p) correlation [107].

Sanvito and coworkers [108] have also found that DFT functionals are unable to produce

an accurate HS-LS energy difference for several ions complexes and attribute this failure to the

DFT reduced exchange, as 50% of Hartree-Fock (HF) exchange in hybrid functionals produced

accurate energy differences in their case. However, this conclusion was contradicted by Kulik

and coworkers [109] who showed that the partial charge decreases on iron with a delocali-

zation to the ligands as the HF exchange is increased. They therefore concluded the HS-LS

energy difference in TM complexes can not be accurately obtained with a single percentage

of HF exchange.

Cirera and Paesani [110, 111] studied ligand driven light-induced spin changes (LD-LISC)

in many cis/trans isomers of iron complexes, showing that in their case only calculations based

on the TPSSh functional provide accurate SCO temperatures.

Wilbraham et al. [112] studied the spin-state orderings in nine Fe(II) and Fe(III) complexes

with ligands of varying strength usingmulticonfiguration pair-density functional theory (MC-

PDFT), which is much less computationally expensive than the complete active space second

order perturbation theory (CASPT2). However, while this method reproduced qualitatively the

results of CASPT2, it was found to strongly depend on the active space size.

On the other hand, Vela and coworkers [113] have used PBE functionals including the Hub-

bardU and D3 van derWaals correction to benchmark nine Fe(II) and Fe(III) complexes against

reference experimental values and showed that the values of U are different for each repor-

ted iron complex. However, all values of U were small in comparison to the self-consistent

values obtained by Poloni et al. [114]. This is also compatible with the early work of Lebègue

and coworkers[115], who used low values of U to produce the HS-LS energy difference of the

Fe(phen) and Fe(btr) compounds.

To conclude, a huge variety of exchange and correlation schemes have been used to study

the HS-LS energy differences, and they show the difficulty of a given method in getting syste-

matically accurate results over a wide range of SCO compounds. Only methods that have been

benchmarked to reference experimental data, by adjusting for example either the HF exchange

mixture [106, 108, 109] or the HubbardU parameter [113, 115, 116, 117], have consistently pro-

duced accurate HS-LS energies, with an obvious transferability issue.
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0.5.3 Theoretical Results on FePhen

As we said earlier, Lebegue et al. have pioneered the studies of the FePhen molecule wi-

thin a periodic DFT code using VASP with a LDA+U approach [115]. They have studied the

energetics of the various experimental HS and LS geometries at low and high temperature

by varying the value of the Hubbard parameter U, showing that a value of U = 2.5 eV and

J = 0.95 eV leads to a very good agreement with experimental results in their case, with the

DOS splitting and population concurring with the theoretical expectation. However, they em-

phasized the lack of predictability of the LDA+U method as they also showed that one could

selectively stabilize one state or the other by varying the value of U . In a second paper, they

carried another calculation both in the molecular and the solid state, using LDA+U along with

DFT-D2 Van derWaals corrections which play a significant role in the crystalline phase. Using

a phonon calculation within the harmonic approximation, they carried a precise study of the

transition enthalpy and entropy within both phases, underlining the great influence of coope-

rative effects on the SCO in the solid state with a computed transition barrier in accordance

with experimental results [118].

This study was greatly extended by Gueddida et al., who also used GGA+U+DFT-D2 within

VASP to carry an extensive study of the FePhen molecule on paramagnetic or ferromagnetic

metallic surfaces [116]. They demonstrated the very strong adsorption of the molecule on the

substrate, stabilizing both the HS state and the LS state on the surface as observed experi-

mentally with a strong barrier through a metastable S = 1 unlike the free molecule with a

sudden S = 2 to S = 1 switch. They also showed that passivating the surface with a nitro-

gen layer greatly weakens the bonding between the molecule and the surface, allowing for

an easier transition between the spin states as observed experimentally. Interestingly, the use

of a Cobalt surface has the same effect, but also induces a spin polarization of the LS state

and a RKKY type ferromagnetic coupling between the surface and the iron centre through the

NCS groups [117]. Interestingly, DOS and Bader calculations seem to show that beyond this

particular polarization effect for ferromagnetic surfaces, the amount of charge transfer and

influence of the surface on the ligand field is quite reduced, which underlines the fact that the

DFT calculations alone are not sufficient to explain the experimentally observed Kondo effect

as the results do not show a peak at the Fermi energy in the DOS. STM calculations have also

been carried in the Tersoff-Hamann approximation, with decent agreement with experimental

results [119]. In more recent times, Zhang [120] has shown, using the LDA+U method with a

DZP basis set, that the use of non-metallic substrates has a non-trivial effect, and can either

stabilize the HS state or the LS state depending on the chemical environment and the defects

in the surface, with the example of a graphene surface switching the Fe(Phen) molecule to a

HS state. As they indicate, this is linked to electronic structure changes and charges transfer

during the adsorption process along with strong changes in the molecular phonon spectrum.

The case of metallic surfaces was studied more in depth by Sanchez-de-Armas et al. [121], who
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computed the energetics of FePhen adsorbed on Au(111), Cu(111) and Ag(111) surfaces within

VASP. They showed a pretty good correlation between the strength of the interaction between

the molecule and the surface (as obtained from quantities such as the adsorption energy or the

molecule-surface distance), and the energetical stabilization of the LS state with respect to the

HS state with copper having the strongest bonding and gold the weakest, corroborating earlier

results by Gueddida [119].

– 15 –





Chapitre 1

Theory

1.1 Introduction

For a given atomic system of N particles Ψ(X1, ..., XN), with theXi being a general coor-

dinate of the position ri and the spin σi, the wavefunction follows the Schrödinger equation:

HΨ = EΨ, (1.1)

wher H is the Hamiltonian of the system.

To study the physical properties of the system, it is therefore necessary to solve this

equation. However, this problem has only been analytically solved for N=2 ; hence, since

condensed matter systems are usually constituted of a much larger amount of particles (up

to the Avogadro number N ≈ 1023), an analytical solution of the problem is not possible

for most systems of interest. Besides, directly tackling this issue computationally is not

reasonable for larger systems with a huge number of degrees of freedom. Then, we need

sensible approximations in order to be able to solve the equation numerically.

A major first approach is the Born-Oppenheimer approximation [122], which consists

in splitting the nuclear and electronic degrees of freedom (DOF). It is then possible to purely

compute the electronic DOF while considering the nuclear DOF as frozen, then update the

nuclear DOF using for example the Hellmann-Feynman theorem [123].

Nonetheless, this approximation alone is usually not sufficient to make this problem compu-

tationally tractable and we still need more efficient methods, as the electronic equation still is

a prohibitive computation for larger systems.

Such a method can be found thanks to the powerful tool of density functional theory

(DFT). Originating from work done by Hohenberg and Kohn [124] as an extension to
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Thomas-Fermi theory [125], it consists in an elegant and exact rewriting of the Schrödinger

equation in terms of the electronic density of the system. This leads to recasting the issue into

a variational problem of this density, which is much simpler numerically to solve, although

some approximations still need to be done.

1.2 The Hohenberg-Kohn theorems

The density functional theory is based on the two theorems of Hohenberg and Kohn

[124]. For the previous quantum system Ψ(X1, ..., Xn), we have the following:

First Hohenberg-Kohn theorem: The energy of the system can be written exactly as

a functional of the electronic density in the following way:

E[n] = T [n] + Eext[n] + EH [n] + Exc[n], (1.2)

where:

— T is the kinetic energy functional.

— Eext is the scalar external potential functional applied on the electronic system, coming

from the frozen nuclei potential (and from eventual other external sources), which can

be recasted as:

Eext =

Z
Vext(r)n(r)dr. (1.3)

— EH is the Hartree functional, which can be written in the form:

EH =
1

2

Z Z
n(r)n(r′)

|r− r′|
drdr′. (1.4)

— Exc is the exchange correlation functional, coming from the geometric exchange poten-

tial and the electronic correlation.

Second Hohenberg-Kohn theorem: The exact ground state density n0 of the system is

the one that minimizes this functional:

δE[n(r)]

δn(r)

�

�

�

�

n→n0

= 0. (1.5)

While the problem has now been recasted in an apparently much simpler form, there is still a

major issue : we have no analytical form for the kinetic energy functional and the exchange-

correlation functional. There are several approaches to solve the problem of the kinetic energy,

the most popular - and the one we use - is the Kohn-Sham ansatz.
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1.3 The Kohn-Sham Ansatz

The Kohn-Sham ansatz posits the existence of a fictious non-interacting electron system

that yields the exact same density as the real interacting system [126]. More precisely, we can

split the previous kinetic energy functional as:

T [n] = Ts[n] + Tint[n] = −
X

i

Z
Φ

∗
i (r)

∆

2
Φi(r)d

3r + Tint[n], (1.6)

where the Φ are called the Kohn-Sham orbitals corresponding to this fictious non-interacting

system, and we have by definition that n(r) =
PN

i |Φi(r)|
2. The Tint is the interaction contri-

bution to the kinetic energy, which we will use to rescale the exchange-correlation Exc →
E

′

xc = Exc + Tint. This allows us to rewrite the energy functional as:

E[n] = Ts[n] + Eext[n] + EH [n] + E
′

xc[n], (1.7)

and then, using the variational theorem on the Kohn-Sham orbitals with a fixed total number

of particles:

δ

δΦ∗
i (r)

 
E[n]−

X

i

ϵi

Z
Φ

∗
i (r)Φi(r)dr

!
= 0, (1.8)

which yields the so-called Kohn-Sham equations, usually written in the form:

�

−∆

2
+ Veff (r)

�

Φi(r) = ϵiΦi(r). (1.9)

They take a form similar to the Schrödinger equation of a system in the effective potential

Veff , which can be written as:

Veff = Vext +
δE

′

xc[n]

δn(r)
+

Z
n(r′)

|r− r′|
dr

′. (1.10)

The variational problem can then be solved self-consistently computationally, by initially

taking an ansatz for the density and then solving the corresponding Kohn-Sham equations to

get a new density, and looping this procedure until convergence.

However, in order to achieve this, we still need to find a form for the exchange-correlation

functional. This has been one of the most outstanding issues in the field of density functional

theory, and an analytical expression for this functional is still not known (although closed

expressions are known in terms of density matrices [127, 128]) Here, approximations have to
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be made.

1.4 Local approximations to the exchange-correlation

functional

As explained before, the exact form of the exchange-correlation density functional can’t

be casted in a analytical closed expression. The local density approximation proposes to write

this functional as a local function of the density, that is, a functional of the density at a given

point in space:

ELDA
xc ([n]) =

Z
ϵxc[n(r)]n(r)dr, (1.11)

where ϵxc[n] is a local functional of the density at the point r. One of the most popular and

successful forms for this functional is the jellium functional, where the ϵxc[n] is taken to be

the functional of an homogeneous electron gas (also called a jellium). This functional is then

usually split in two parts ϵxc[n] = ϵx[n] + ϵc[n], where ϵx[n] is the Dirac exchange functional,

whose exact analytical formwas first derived byDirac as an extension to Thomas-Fermi theory

[129]:

Ex[n] = −3

4

�

3

π

�1/3 Z
n(r)4/3dr. (1.12)

The second part is the correlation functional, which has no exact analytical form although

several mathematical forms have been proposed for it, for example based on accurate quantum

Monte-Carlo simulations of the jellium [130].

The extension to a non-trivial electronic spin polarization has been extensively studied

and is quite straightforward for the exchange part using the so-called scaling relations [131],

but the correlation part requires more finesse and is often built by interpolating in some

way between the paramagnetic and ferromagnetic limits. This yields the local spin density

approximation (LSDA) [131]:

ELSDA
xc ([n↑, n↓]) =

Z
ϵxc[n

↑, n↓]n(r)dr =

Z
ϵxc[n

↑, n↓]
�

n↑(r) + n↓(r)
�

dr. (1.13)

Henceforth, it should be understood that this spin generalization can be done for all the

following results. However, for brevity and clarity reasons, it will not be shown explicitely.

A natural extension of L(S)DA arises by taking into account higher derivative orders of
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the density in the exchange-correlation functional:

Emeta−GGA
xc ([n]) =

Z
ϵxc[n(r),∇n(r),∆n(r), ...]n(r)dr. (1.14)

The expansion is almost always cut at the second order which leads to the so-called meta-

generalized gradient approximations (meta-GGA) to the exchange-correlation functional [132],

although we should note that higher order derivatives have been explored within the context

of machine-learning approaches to DFT [133, 134]. The popular generalized gradient approxi-

mation (GGA) is obtained by truncating even further the functional at the first derivative

order in the density. It should be emphasized that these are still local functionals of the density,

only depending on the value of the density at some point and its derivatives, although they

are often referred to as semi-local (or even confusingly as non-local) functionals. Truly non-

local functionals of the density have also been studied [135], but are much less commonly used.

In the GGA approximation, the exchange-correlation functional is not as easy to obtain

as in LDA. Indeed, merely doing a naive gradient expansion of the density in the exchange-

correlation integral yields inaccurate results because such functionals do not respect integral

constraints of the exact exchange-correlation functionals unlike LDA [135]. Rather, one

needs to carefully modify these naive expansions in order to properly reproduce said rules,

leading to the most notable examples of GGA such as the Perdew-Wang 91 (PW91) functional,

and the closely related Perdew-Becke-Ernzerhof (PBE) functional, that we will use for our

calculations [136, 137].

However, note that there is no guarantee that such gradient-based expansions will ne-

cessarily yield better results than a pure LDA. Indeed, because of the necessity to artificially

correct the naive gradient expansion in order to respect the integral sum rules, whereas these

are exactly respected by LDA, it is entirely conceivable than GGA may lead to worse results

for some systems. For example, GGA is required to get a ferromagnetic ground state for bulk

iron, as LDA yields a wrong paramagnetic ground state [138, 139], but one can show that

the magnetic stabilization energy is also grossly overestimated with GGA in other magnetic

systems [140]. Still, GGA is known to yield superior results with respect to experimental

references in many cases [135, 141]
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1.5 Solving the Kohn-Sham equations : The Projector

Augmented Wave Method

1.5.1 Introducing the general eigenvalue problem

In order to solve the Kohn-Sham equations, a natural method is to expand the system

wavefunction over a complete basis of functionsΦ in order to turn the issue into a generalized

eigenvalue problem:

|Ψ⟩ =
∞X

i

ci |Φi⟩, (1.15)

which leads to the following form for the (Kohn-Sham) Schrödinger equation, after projection

over a given state Φj :
∞X

i

ci ⟨Φj|H |Φi⟩ = E

∞X

i

ci ⟨Φj|Φi⟩. (1.16)

Introducing the S overlap matrix Sij = ⟨Φi|Φj⟩ and the coefficient vector c⃗, this can be rewrit-

ten as:

Hc⃗ = ESc⃗, (1.17)

which leads directly to the generalized eigenvalue problem:

det(H − ES) = 0. (1.18)

Solving the Kohn-Sham equations then requires solving this generalized eigenvalue problem

and getting the corresponding generalized eigenvectors. Computationally, we need to restrict

the basis set to a finite size as it would be impossible to use an infinite basis numerically,

and to find the smallest such finite basis to complete this task, as this generalized eigenvalue

problem has a significant complexity in the basis set size N, roughly O(N3). In fact, for larger

systems, most notably those with a surface like ours, this equation is not solved. Rather,

the strategy is to directly minimize the Energy functional as the complexity scaling in N

is less steep for this operation. This is the spirit of the so-called Orbital-Free DFT methods

(OF-DFT) [142], that are less popular than orbital Kohn-Sham DFT methods because of accu-

racy issues, although there has been great progress over the recent years to correct these [143].

Finding an adequate reduced basis to solve the Kohn-Sham equation is a fairly com-

plex task. Indeed, the coulombian potential is divergent near the nuclei. Therefore, all

electronic states have non-negligible values close to this pole, especially core states. As such,
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since valence states have to be orthogonal to the core states, valence wavefunctions tend to

have strong oscillations near the nuclei ; and are hence hard to compute, requiring a large set

of plane waves to be described satisfactorily.

There are several approaches to this issue. One of them is to use pseudopotentials [144],

where the combined nuclear and core electronic potential is described by a smooth effective

tabulated potential up until a certain radius, where they match the all electron potentials. The

Kohn-Sham equations can then be solved for the valence states in this potential. This method

has the advantage of supressing the divergent potential behaviour, and also to greatly reduce

the number of wave functions to be computed as only the valence states have to be calculated.

However, an obvious flaw of this method is that information of the system is lost close to

nuclei. Still, this approach proved to be highly successful and is one the most commonly used

nowadays [145].

Another way is to use the so-called augmented plane-waves (APW) [146]. The idea is

based on the fact that there seems to be two regions of drastically different behaviour for the

valence wavefunctions: a quasi-flat potential region far from the nucleus, and a quasi-atomic

potential close to the nuclei. As such, close to the nuclei, the valence wavefunction should

look like spherical atomic wavefunction ; whereas smooth plane waves have to be expected

far from the nuclei. The augmentation strategy then consists in combining these two

observations: the wavefunctions will be described by atomic partial waves inside a certain

augmentation spherical region around each nuclei, whereas smoother wave functions will be

used in the interstitial flat potential regions. Both sets of wavefunctions are then differentiably

matched at the augmentation spheres boundaries.

There exists in fact a more general scheme, which includes the advantages of both

pseudopotential and APWmethods. It is called the projector augmented wave (PAW) method,

introduced by Blöchl [147].

1.5.2 The PAWmethod

As said earlier, the all electron single particle wavefunction is characterized by a highly

oscillatory behaviour near the nucleus, and is therefore numerically hard to compute. To

solve this complex issue, the PAW method [147] proposes the following scheme.

We consider a linear transformation T between the all electron Kohn-Sham wavefunc-

tion |Ψn⟩ (where n is an index of the band and of the k-point) and a fictious, smooth

wavefunction |Ψ̃n⟩ such as:

|Ψn⟩ = T |Ψ̃n⟩. (1.19)
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From until now, all values associated to the pseudo auxilliary Hilbert Space of these fictious

wavefunctions will be denoted using a tilde.

Given that the wavefunction is already smooth beyond a certain distance from the nu-

clei, we can restrict the transformation inside the various augmentation spheres ΩR for nuclei

centered at R:

T = 1 +
X

R

TR. (1.20)

This allows us to define a complete set of pseudo smooth partial waves, associated to the real

partial waves in each augmentation sphere by the correpsonding transformation:

|ΦΛ⟩ = (1 + TR) |Φ̃Λ⟩. (1.21)

It should be emphasized that Λ is a general index of the positionR, of the angular momentum

and of the spin. Besides, the all electron and pseudo partial waves naturally match outside of

the augmentation spheres.

Inside the augmentation region, the pseudo wavefunction can then be written as a li-

near combination of these pseudo partial waves:

|Ψ̃n⟩ =
X

Λ

cn
Λ
|Φ̃Λ⟩. (1.22)

By the linearity of the T opeartor, we then trivially have that the all electron wavefunction

can be written as:

|Ψn⟩ =
X

Λ

cn
Λ
|ΦΛ⟩, (1.23)

which allows us to write that:

|Ψn⟩ = |Ψ̃n⟩+
X

Λ

cn
Λ
(|ΦΛ⟩ − |Φ̃Λ⟩). (1.24)

The coefficient cΛ also have to be linear functionals of the pseudo wavefunction, as T is a

linear transformation. This allows us to define projector functions |p̃Λ⟩ such that:

cn
Λ
= ⟨p̃Λ|Ψ̃n⟩. (1.25)
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This naturally leads to the closure relation
P

Λ
|Φ̃Λ⟩ ⟨p̃Λ| = 1 inside the augmentation spheres,

which leads to the orthogonality condition:

⟨p̃Λ|Φ̃Λ′⟩ = δΛΛ′ . (1.26)

As this is only valid within the augmentation regions, this leads to no restrictions on the

projector functions beyond ΩR. Usually, projectors are taken to be localized within the

augmentation region, although it’s entirely possible for them to be extended beyond.

This leads to the following form for the transformation T :

T = 1 +
X

Λ

(|ΦΛ⟩ − |Φ̃Λ⟩) ⟨p̃Λ|, (1.27)

which allows us to express the transformation T in terms of the all electron and pseudo partial

waves, as well as the projector functions.

1.5.3 Operators in the PAW formalism

We defined a linear transformation between the all electron Hilbert space and the

pseudo Hilbert space that allows one to associate a pseudo wavefunction to each all electron

wavefunction. As such, these pseudo wavefunctions are the new variational parameters, and

we therefore need a way to extract observables from operators acting on the PS Hilbert space.

As such, we need to find the expression of these operators in the PS Hilbert space, and their

expectation values.

To achieve this, we first note that:

⟨Ψn|A |Ψn⟩ = ⟨Ψ̃n|T
†AT |Ψ̃n⟩, (1.28)

which allows us to define the transformed operator Ã = T †AT . Assuming the operator A to
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be semilocal and expanding the T transformation, we obtain the following form:

Ã = A+ Al − Ãl (1.29)

Al =
X

Λ,Λ′

|p̃Λ⟩ ⟨ΦΛ|A |ΦΛ′⟩ ⟨p̃Λ′ | (1.30)

Ãl =
X

Λ,Λ′

|p̃Λ⟩ ⟨Φ̃Λ|A |Φ̃Λ′⟩ ⟨p̃Λ′ |. (1.31)

Note thatAl and Ãl are ill-defined if the partial waves are unbound. As such, bothAE and

PS partial waves need to cancel each other beyond the augmentation region.

Finally, evaluating the expectation value leads to the following general form:

⟨A⟩ = ˜⟨A⟩+



Al
�

− ˜⟨Al⟩
˜⟨A⟩ =

X

n

fn ⟨Ψ̃n|A |Ψ̃n⟩ (1.32)




Al
�

=
X

n,Λ,Λ′

fn ⟨Ψ̃n|p̃Λ⟩ ⟨ΦΛ|A |ΦΛ′⟩ ⟨p̃Λ′ |Ψ̃n⟩ (1.33)

˜⟨Al⟩ =
X

n,Λ,Λ′

fn ⟨Ψ̃n|p̃Λ⟩ ⟨Φ̃Λ|A |Φ̃Λ′⟩ ⟨p̃Λ′ |Ψ̃n⟩, (1.34)

where fn is the occupation of the n state.

It should be understood that this form is valid for a general semilocal operator, most notably

the monoelectronic density n(r) which will be written as:

n(r) = ñ(r) + nl(r)− ñl(r), (1.35)

with the right hand side being defined as before.

This can also be done for the energy functional E, which be generally written as:

E =
X

n

fn ⟨Ψn|−
1

2
∇2 |Ψn⟩+

1

2

Z
dr

Z
dr

′ (n+ nZ)(n+ nZ)

|r− r′|
+

Z
drnϵxc(n), (1.36)

with nZ the nuclear density. The dependance on r and r
′ for the densities is implicit.
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This can be written under the transformation scheme as:

E = Ẽ + El − Ẽl (1.37)

Ẽ = −
X

n

fn ⟨Ψ̃n|
∇2

2
|Ψ̃n⟩+

1

2

Z
dr

Z
dr

′ (ñ+ nc)(ñ+ nc)

|r− r′|
+

Z
drñϵxc(ñ) (1.38)

+

Z
drñvt

El = −
X

n,Λ,Λ′

fn ⟨Ψ̃n|p̃Λ⟩ ⟨ΦΛ|
∇2

2
|ΦΛ′⟩ ⟨p̃Λ′ |Ψ̃n⟩+

1

2

Z
dr

Z
dr

′ (n
l + nZ)(nl + nZ)

|r− r′|
(1.39)

+

Z
drnlϵxc(n

l)

Ẽl = −
X

n,Λ,Λ′

fn ⟨Ψ̃n|p̃Λ⟩ ⟨Φ̃Λ|
∇2

2
|Φ̃Λ′⟩ ⟨p̃Λ′ |Ψ̃n⟩+

1

2

Z
dr

Z
dr

′ (ñ
l + nc)(ñ

l + nc)

|r− r′|
(1.40)

+

Z
drñlϵxc(ñ

l) +

Z
drñlvt,

where vt is a localized potential in the augmentation region that can be arbitrarily chosen in

order to correct the partial wave expansion truncation error and to dampen the near singula-

rities of the coulombian potential. As ñ and ñl coincide exactly in the augmentation regions,

its contribution to the total energy vanishes exactly. Besides, nc is the so-called compensation

density: to understand its contribution, one should first remember that the Hartree energy can

be written as:

EH =
1

2

Z
dr

Z
dr

′ntot(r)ntot(r
′)

|r− r′|
, (1.41)

with ntot(r) = n(r) + nZ(r). As such, by using the transformation formula of the density,

we notice the fact that the density within the augmentation region interacts with the inter-

stitial density, which prevents us from naively splitting the Hartree energy in the usual three

contributions. To solve this, we use a classic trick: the compensation density nc is introduced

in order to supress the localized potential contribution outside the augmentation region and

allow us to conveniently split the energy in the three previous contributions.

1.6 Strongly Correlated systems: the LDA+U method

1.6.1 The issue of strong correlations

In certain materials, the Coulomb repulsion between electrons exceeds their kinetic

energy and therefore constrains them to remain localized in quasi-atomic orbitals. Such

materials could even appear to be conductors according to conventional band theory, which
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underestimates electron-electron interaction, but are in fact insulating: they are then called

Mott insulators [148]. Such strongly-correlated materials are naturally very complex to

describe with DFT as the exact form of the energy-correlation functional is not known.

In fact, most of the commonly-used LDA and GGA exchange-correlation functional fail at

describing this insulating behaviour as they have a tendency to underlocalize electrons, and

therefore misrepresent the characteristic orbital polarization of the insulator [149, 130].

Strongly-correlated materials are usually described thanks to models such as the Hub-

bard model [150]. In a real-space second quantized formalism, the model can be written as

for the simplest one-band case:

HHub = −t
X

<i,j>,σ

�

c†i,σcj,σ + h.c.
�

+ U
X

i

ni,↑ni,↓, (1.42)

where< i, j > should be understood as a sum over nearest neighbours. The hopping between

adjacent sites is controlled by the amplitude t, whereas the on-site Coulomb repulsion is

described by the parameter U . It appears naturally that for the limit case where U >> t,

the on-site term dominates the hopping term and therefore forces the electrons to remain

localized: this is characteristic of a Mott insulator state (which is in fact the eigenstate of the

Hamiltonian for t vanishing).

The LDA+U approach [151] is then based on the idea of splitting the electrons in two

parts: the strongly-correlated electronic states, usually located within the d or f shells, will be

described using a correction based on this U dominated Hubbard model, whereas the other

states will be described using the usual DFT formalism. It should be understood that while

this method is usually called LDA+U, it is really a correction valid for a generic approximate

DFT method, not just LDA.

1.6.2 the LDA+U formalism

We can therefore write the energy functional as:

ELDA+U [n, ni] = ELDA[n]− ELDA
dc [ni] + Ecor[ni], (1.43)

where ni are the density terms for the strongly localized orbitals (the d orbitals for Fe). The

Ecor[ni] is the Hubbard correction: since this is an additive correction to take into account the

electronic Coulomb interaction, it is necessary to remove the part of this interaction that is

described within the LDA formalism itself, hence the double counting term ELDA
dc [ni]. In the
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original formulation, the functional could be written as [152, 153, 154]:

ELDA+U [n, ni] = ELDA[n] +
U

2

X

i ̸=j

ninj −
U

2
nd(nd − 1), (1.44)

with nd =
P

i ni.

For spin-polarised calculation, it is necessary to take into account the exchange inter-

action between electrons of the same spin. By introducing the exchange energy J , we can

show that the correction takes the form:

ELDA+U = ELSDA +
U − J

2

X

m,σ

(nmσ − n2
mσ). (1.45)

A problem that immediately arises from this form is that the nmσ occupation terms are not ro-

tationally invariant and any rotation of the localized basis set used to define themwill lead to a

natural modification of the orbitals which will become a linear combination of the pre-rotation

orbitals. To solve this issue, a more general formulation [155] based on the density matrix ρ

can be introduced as the trace is a rotational invariant. We can now write the correction as:

ELDA+U = ELSDA +
U − J

2

"
X

m,σ

ρσmm −
X

m,m′,σ

(ρσmm′ρ
σ
m′m)

#
. (1.46)

Finally, we need to emphasize that the non-sphericity of the interactions has thus far been

neglected. It is possible to take it into account in an even more general scheme [156]:

ELDA+U = ELSDA + EHub − ELSDA
dc (1.47)

EHub =
1

2

X

{m},{σ}

nσ
m1m3

[⟨m1,m2|Ve−e |m3,m4⟩ − δσσ′ ⟨m1,m2|Ve−e |m4,m3⟩]nσ′

m2m4

(1.48)

ELSDA
dc =

U

2
nd(nd − 1)− J

2

X

σ

(nσ
d(n

σ
d − 1)), (1.49)

where the m states are the localized orbital basis set.

Using atomic states as this set, the electron-electron potential Ve−e can be expanded in

terms of Slater integrals F k:

⟨m1,m2|Ve−e |m3,m4⟩ =
X

k

ak(m1,m3,m2,m4)F
k. (1.50)
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The ak coefficient can be expressed as a product of Clebsch-Gordan coefficients. For the

d orbitals, only the F 0, F 2 and F 4 integrals are relevant, as higher order ak terms in the

expansion vanish. In practice, these integrals are not used themselves as the Coulomb

interaction is screened in solids, and they are treated as parameters specified in terms of U

and J .

1.7 The Van derWaals interaction in DFT: a short presen-

tation of the DFT-D2 method

Van der Waals forces are originating from long range electronic correlations, that can

evidently not be described accurately by DFT as the exchange-correlation functional has no

exact form. Given their importance for various physical system, for example in the case of

molecular adsorption on surfaces, this has led to a huge amount of research to find a suitable

implementation of Van der Waals interactions in the DFT formalism. While there are several

solutions to this problem [157], a very pragmatic and empirical but popular approach for this

is given by the DFT-D method of Grimme, later extended into the DFT-D2 method [158, 159].

The idea is that the dispersion-corrected total energy can be written as:

EDFT−D = EDFT + ED, (1.51)

where EDFT is the energy obtained from the Kohn-Sham DFT calculation, and ED is the em-

pirical dispersion correction, which will be written as:

ED = −S6

Na−1X

i=1

NaX

j=i+1

C ij
6

R6
ij

fd(Rij), (1.52)

where S6 is a global scaling factor that depends only on the density functional used. C ij
6 is the

dispersion parameter for the pair of atoms ij andNa is the number of atoms. The fd function is

a damping function to prevent from having a diverging value for a small inter-atomic distance,

and can be written as:

fd(Rij) =
1

1 + exp(−d(Rij/R0ij − 1))
, (1.53)
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where R0ij = R0ii + R0jj is the sum of the atomic Van der Waals Radii of the atomic pair ij.

The parameter d is usually fixed at d = 20.0.

All the C ii
6 and R0ii parameters are tabulated for chemical elements [160], with the

interatomic dispersion parameter being computed as the geometric mean:

C ij
6 =

q
C ii

6 C
jj
6 . (1.54)

It is possible to take into account higher dispersion orders through C8 or C10 coefficient, but

this can be counterproductive as they will interact with the damping function and can lead to

worse results. These coefficients therefore require a modification of the damping logic (i.e. see

the DFT-D3 method [161]).
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Energetical aspects of the

Spin-crossover phenomenon

2.1 Introduction

Aswe have emphasized earlier in the introduction, bistable spin crossover systems have si-

gnificant potential as building blocks for highly innovative spintronics devices. As such, achie-

ving this promise necessarily entails the mastery of the energetics of these SCO systems, both

from a theoretical and experimental point of view, in order to be able to properly address and

manipulate both spin states. As such, the point of the following section is to introduce se-

veral novel results on the energetics of spin-crossover molecules on metallic surfaces. More

precisely, we will focus on the FePhen system adsorbed on a Cu(001) surface, because of the

extensive literature on its electronic properties both in the gas phase and on the surface [119].

We will start by recomputing several quantities such as the adiabatic energy difference and

the transition barrier in our case, and we will then introduce at the same time our new results

about the ligand doping effects on the energetics of the spin crossover mechanism as a no-

vel approach to manipulate the spin states in a SCO system. Finally, we will also show some

results about the calculation of phonons within these systems, first in the harmonic approxi-

mation to demonstrate the computation of thermodynamical quantities in order to study the

stability and the evolution of the spin states with respect to temperature. We will then focus

on our tentative foray into calculations beyond the harmonic approximation using molecular

dynamics.

2.2 Computational details

All calculations were carried using the projected augmented wave (PAW) method [162] as

implemented in VASP (Vienna Ab initio Simulation Package) [163]. The exchange-correlation
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contribution was evaluated within the generalized gradient approximation (GGA) [137]. Van

der Waals interactions between the molecule and the substrate are taken into account using

Grimme’s DFT-D2 approximation [159]. The localized d states of iron were described with

the rotationally invariant DFT+U method of Dudarev and coworkers [164]. The values of the

Hubbard parameter U and exchange parameter J were set respectively to 3.0 eV and 0.9 eV

to properly reproduce the iron spin moment and the expected energy difference between the

two spin states of Fe(II) in our case [116, 117], as this is the most consistent and convenient

approach to obtain accurate adiabatic energy differences without relying on highly precise

but prohibitvely costly methods such as CASSCF or Full CI as we have emphasized earlier in

the introduction. For lack of anything better, these values will moreover be kept constant for

all systems studied throughout this part as all self-consistent approaches to recompute these

parameters yield unrealistically large overcorrections to the energetics of the FePhenmolecule

[113, 165, 166, 167].

The substrate was simulated using three layers of copper grown along the (001) direction,

with each plane containing 36 (6x6) atoms of copper, for a total of 159 atoms in the supercell

to fully describe the H(F)-Fephen/Cu(001) system. The dimensions of this periodic cell were

(17.8×17.8×33.6Å) for both the gas phase and themolecule adsorbed on the copper substrate.

The total energy is converged to 10−5 eV and the plane waves cut-off energy is set at 500 eV.

The atoms are allowed to move until the forces are below 10−3 eV/Å in each direction of

the cell axes. The calculation of the Fermi level is carried with a Gaussian integration method

[168] using a width of 0.1 eV. This electronic entropy is removed when calculating the total

energy. Due to the large size of the supercell, we restricted our k-point mesh to the Γ point.

2.3 Some results on FePhen

Wewill start by recomputing some already available theoretical results on the FePhen mo-

lecule for consistency purposes, as we have no guarantee that the newer implementations of

VASP will yield the same results as the earlier implementations especially with the immense

sensitivity of the spin state energetics to the method used. Some important structural proper-

ties are given in the table 2.1
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HS (free) HS@Cu(001) LS (free) LS@Cu(001)
Fe-NCS (Å) 2.00 2.03 1.92 1.90

Fe-N(Phen) (Å) 2.23 2.19 1.98 1.98
Fe-N (Å) 2.15 2.14 1.96 1.95

C-N(NCS) (Å) 1.20 1.18 1.19 1.18
C-N(Phen) (Å) 1.35 1.35 1.35 1.35

C-C (Å) 1.41 1.41 1.41 1.41
C-H (Å) 1.09 1.09 1.09 1.09
C-S (Å) 1.61 1.65 1.61 1.65
S-Cu (Å) N/A 2.06 N/A 2.12

SCN-Fe-NCS (°) 102.4 96.3 91.6 91.3
Fe-N-C(NCS) (°) 140.8 168.1 161.4 169.7

N-C-S (°) 177.5 176.8 178.8 174.4
ζ (Å) 0.620 0.420 0.145 0.222
∆ 2.645 ·10−3 1.300 ·10−3 1.727 ·10−4 2.309 ·10−4

Σ (°) 89.9 78.7 34.2 35.3
Θ (°) 255.5 246.8 103.2 108.8

Table 2.1 – Average values for various bond lengths, angles and deformation parameters wi-
thin the free FePhen molecule and adsorbed on the surface, both in the HS and LS state.

In the previous table, the deformation parameters are most commonly defined as:

ζ =
1

6

6X

i=1

�

�di − d̄
�

� (2.1)

∆ =
1

6

6X

i=1

�

�

�

�

di − d̄

d̄

�

�

�

�

2

(2.2)

Σ =
1

12

12X

i=1

|Φi − 90| (2.3)

Θ =
1

24

24X

i=1

|θi − 60| , (2.4)

where the di are the 6 Fe− N bonds in the molecule and d̄ the average length (also reported in

the table), the Φi are the cis N− Fe− N angles in the molecule and the Θi are the angles bet-

ween twisting triangular planes. These parameters were computed thanks to the OctaDist

code [169].

The structural results are also similar to what was obtained previously both experimentally

[71] and theoretically [115, 116, 119], with the augmentation of the octahedral bond lengths in

the HS state with respect to the LS state, along with a widening of the bond angle between the

isothiocyanate groups and a closure of the Phen bond angle, leading to a strong deformation

of the octahedral geometry in the HS state wrt the LS state. One can also note a stretching of

the NCS groups for the molecule adsorbed on the surface when compared to the free molecule,
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tural table 2.3, which means that the overall structural properties of the compound have not

been significantly affected by the fluorine substitution. However, a closer inspection shows

that the Fe-N bonds of the phenanthroline cage around the iron coordination centre have

been stretched, especially in the HS state with an increase of the average value of 0.07 Å for

the free molecule and 0.05Å for the adsorbed molecule in the HS state, and 0.02Å for the free

molecule and 0.05Å for the adsorbed molecule in the LS state. This stretching can also be seen

from the fact that all the deformation parameters that we have previously introduced have a

bigger value after doping. As the strength of the crystal field splitting is directly related to the

ligand potential, and as such to the interatomic distance between the ligand and the central

atom, one can already expect some changes in the electronic structure. In table 2.2, we give the

energetic and magnetic states for both the pristine and fluorinated states. As one can clearly

see, we observe a clear inversion of the spin state ordering after doping, with a positive adia-

batic energy difference for the undoped molecule and a negative one after fluorination, with

or without the surface. The adsorption-related structural properties are not greatly changed,

with a surface-to-molecule distance of 1.97 Å in the LS state and 1.95 Å in the HS state, which

are slighty reduced values compared to the data available for the undoped molecule.

LS HS ∆E (kJ/mol)

Unfluorinated ET (eV) -749.57 (-359.726) -749.00 (-359.517) 55.3 (20.3)

µFe (µB) 0.00 (0.00) 3.60 (3.72)

Fluorinated ET (eV) -887.407 (361.701) -887.609 (361.977) -19.6 (-26.8)

µFe (µB) 0.00 (0.00) 3.25 (3.72)

Table 2.2 – Total energy (ET ) in eV and iron magnetic moment (µFe) in Bohr magneton (µB)
for the high spin (HS) and low spin (LS) states of the unfluorinated and fluorinated Fephen
molecule adsorbed on the Cu(001) substrate (the values for the free molecule are between
parenthesis). The last column shows the total energy difference ∆E = EHS

T − ELS
T in kJ/mol.

Reproduced from [173].

The root median square displacements (RMSD) of the overlap between the states before

and after doping show a deformation of the octahedral cage around the coordination centre,

which appears to be more important in the HS state than in the LS state, as seen in figure

2.2. However, it also appears that the doped LS state on the surface is quite strongly stretched

compared to the free molecule as one can see on the table 2.3, with a ζ parameter growing

from 0.158 Å in the free molecule to 0.374 Å in the molecule on the surface (and a similar

behaviour for∆), whereas the increase was much more restricted for the undoped case going

from 0.145 Å to 0.222 Å . Interestingly, the opposite behaviour can be observed for the case

of the HS state. Moreover, the angular deformations are also reduced in the same time, with

the Σ parameter going down from 75.8 to 49.1 (and idem for Θ) within the LS state, and a

similar behaviour in the HS state. Interestingly, doping the molecule and restricting the atomic

movement yields a lowering of the adiabatic energy difference but no inversion, showing that
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define atomic boundaries - and therefore atoms - within a molecule. This conceptual difficulty

was noted by Bader [174, 175], who therefore introduced Bader analysis in order to deal with

this issue. The idea is to find the spatial minima of the electronic density, and then to com-

pute the perpendicular intersecting surfaces of these points: the so-called zero-flux surfaces

(because they are the surfaces through which the derivative of the density, the electronic flux,

vanishes). This defines a decomposition of the supercell into elementary volumes, called Bader

volumes, that can be considered as the molecular equivalent for atoms, allowing one to carry

a systematic and rigorous analysis of the electronic repartition within the molecular system.

Carrying this procedure, we will focus on the electronic distribution in a select subset of the

atoms in the FePhen molecule before and after fluorination because of the relative symmetry

between both Phen groups. We can then compute the number of valence electrons of the mo-

lecule, and thus obtain the electronic transfers linked to the doping process as shown in figure

2.3.

As one can see on the figure, there is a significant electron transfer happening on the carbon

atoms bonded with fluorine, as the strong electronegativity of said atom leads to an electronic

depopulation of the carbon centres. In turn, this leads to the increase of the charge on the

Nitrogen atoms as these anions are attracted to the more strongly positively charged carbon

cation. Therefore, the effective charge on the Nitrogen atom increases, which can be seen on

the Bader analysis, and the ligand electrostatic field thus becomes stronger. This increases the

repulsion with the coordination centre, leading to the observed bond length elongation. As

such, the balance between the pairwise repulsion and the ligand screening swings towards

the former, which stabilizes the HS state wrt the LS state. Interestingly, it appears that the do-

ping increases the charge on the Iron coordination centre, which can rationalized as the longer

bond lengths should lead to a weakening of said bonds, and as such an electronic repopulating

of the metal atom. To have a more qualitative understanding of the effects of this doping on

the coordination centre itself, especially on the octahedral splitting, we will now focus on the

iron-projected density of states.

2.6 Density of states

We have now computed the projected density of states on the iron centre, shown in figure

2.4, resolved in t2g and eg subshells. The ligand-field strength is naturally defined as the diffe-

rence of energy between these two levels, however the imperfect octahedral symmetry lifts the

degeneracy within the subshells themselves so we will take the difference between the highest

peaks of t2g and eg characters. Note that using the centre of mass of the subshell densities is

also possible in theory, but the significant amount of hybridization in the spectrum leads to

a uneven spread of the distribution compared to the purely octahedral case and therefore to

spurious values for the calculation of the centre of mass, so we will not use it.
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and t2g on the DFT calculation is not reproduced as these are linked to additional neglected

phenomena such as hybridization.

2.7 Electronic barrier

The aim of this part is to describe the transition barrier between both spin states before

and after fluorination. As the Fephen molecule undergoes a thermal SCO at Tc = 175 K,

a very natural way of doing so would be to carry a molecular dynamics (MD) calculation

at a sufficiently high temperature above Tc, and let the system evolve naturally towards

the HS state while monitoring the energy (or the other way around at low temperature).

However, the existence of local minima on the energy surface greatly restricts the usefulness

of such a method as the system could in theory remain trapped in these, and therefore fail

to explore the totality of the energy barrier, although the method was used with success in

some crystalline systems [180].

A possible solution to fix this issue is to use the so-called Laio-Parrinello metadynamics [181],

where a repulsive (usually Gaussian) potential is added to the energy surface at each step of

the MD so that the system can escape these local minima. However, there is still an issue: as

the magnetization in our system is a discrete, non differentiable quantity of the Cartesian

positions, it cannot be a collective variable of the system. As such, there is in principle no

way to add a magnetic bias within the metadynamics procedure in order to force a spin flip,

and as such the convergence of the SCO barrier is rather slow as the system samples and fills

many non-ground spin states during the process.

We will therefore proceed in a different manner: we start by interpolating a set of images

between the HS and LS coordinates. We will now use two different methods to sample the

barrier: the first one is the well known Nudged Elastic Band (NEB) method [182], which has

been extensively used to study transition paths. It consists in first interpolating many possible

transition points, often called images, from the initial to the final states and relaxing them

with constraints originating from fictitious spring forces between neighboring images, in or-

der to maintain a constant distance between them along the reaction path. The calculations

converge when the MEP is found, but this method is difficult to converge and is computa-

tionally prohibitive for systems with many atoms per unit cell, we have also used what we

called the constrained minimization method (CMM). We fixed the NCS-Fe-NCS angle of each

image and relaxed them, therefore approximating the path as the one resulting from these

interpolated systems, This method should in principle be a rough approximation to the NEB,

as the NEB method is an iterative method ideally converging towards the MEP whereas our

method consists in interpolating an approximate path along some chosen order parameter of

the transition without any further iteration, while being aware of the fact that there is no gua-
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at low temperatures (we will study the thermodynamical stability of the states in the next

part). Hence, a thermal SCO will not be possible, unlike for the pristine molecule. However,

the switching should be possible by another external excitation. For example, a reversible

STM electrical switching of the fluorinated molecule is in principle possible. The electric field

should drive the HS state to the LS state and vice versa at a fixed temperature, like performed

experimentally by Miyamachi et al.[185, 21] on the undoped molecule. As we saw earlier, ir-

radiation and especially LIESST is also a possibility, but in this case it will be a anomalous HS

to LS LIESST that has very interestingly already been observed for SCO molecules on metallic

surfaces [186]. However, it is not clear what will be the rate of switching of the fluorinated

molecule, and there is a priori no way to decide on a lower or higher rate than for the pris-

tine molecule obtained by STM [21] as the excitation pathway is completely different from the

usual LIESST phenomenon as it involves an indirect switching thanks to the effects of photo-

electrons heralding from the interaction of the substratewith the irradiation light [186]. Hence,

the existence of LIESST within the bulk phase of the doped molecule is not a certainty. Howe-

ver, pressure should in this case be a very efficient way to trigger the transition as it naturally

stabilizes the LS phase.

2.8 Phonons

The next section will be dedicated to the calculation of intramolecular phonons in the

spin crossover molecules as these play a role of paramount importance in the spin transition

phenomenon. We will start with a short reminder on the theoretical and numerical aspects of

the matter.

2.8.1 Theoretical aspects

Assume a molecular system with Na atoms of coordinates xα
i , with i ≤ Na the atomic

index and α = 1, 2, 3 the Cartesian coordinates, perturbed around the equilibrium of energy

E0 with displacements δαi . One can then Taylor expand the energy of the system:

E = E0 +
X

k≥1,{αk},{ik}

1

k!
Φ

α1,...,αk

i1,...,ik
δα1

i1
...δαk

ik
, (2.7)

where the {αk}, {ik} stand for the set of allαp and ip up to p = k. TheΦα1,...,αk

i1,...,ik
are the so-called

interatomic force constants of order k (IFCk). It should be noted that since we are working

near the equilibrium, the order 1 IFC1 are vanishing as they correspond to the forces acting

over the atom at the equilibrium. The force acting on atom i along direction α can then be
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derived by differentiating with respect to these coordinates:

F α
i = −

X

k≥2

1

(k − 1)!
Φ

α1,...,αk

i1,...,ik
δα1

i1
...δαk

ik
. (2.8)

Several important physical quantities can be derived from the set of the IFC , including the

so-called dynamical matrix from the IFC2:

Dα,β
i,j =

Φ
α,β
i,jp

MiMj

, (2.9)

where Mi is the mass of atom i. Note that in general, the dynamical matrix is defined as the

Fourier transform of the IFC2, but we will restrict ourselves to the gamma point in our cal-

culations given the size of our systems. Diagonalizing this matrix yields the phonon spectrum

(using Einstein’s summation convention):

Dα,β
i,j X i

α,n = (ωn)
2Xj

β,n. (2.10)

The X i
α,n are the so-called phonon modes associated to the phonon frequencies ωn. Note

that the IFC2 are real symmetric (and therefore hermitian) by the symmetry of second

derivatives, and therefore so is the dynamical matrix. As such, the spectrum is real and the

eigenvectors are orthonormal. Note that the eigenvalues can be negative even though they

are defined to be the squares of the phonon frequencies, which are then purely imaginary.

The phonon plane wave dispersion, evolving as exp (iωnt), therefore becomes hyperbolic

and as such the associated elongation direction is unstable: we then have a possible phase

transition, and the associated modes are usually referred to as soft modes. The computation

of phonon modes therefore is a quite useful tool in the study of phase stability and transition

states.

From this spectrum, one can extract important thermodynamical quantities such as:

— trivially, the phonon density of states (νDOS):

ρ(ω) =
X

n

δ(ω − ωn). (2.11)

— the vibrational enthalpy Hν at temperature T, which in the very common harmonic

approximation is:

Hν = ℏ

X

n

ωn

�

1

2
+ fBE(ℏωn, T )

�

= ZPE + ℏ

X

n

ωnfBE(ℏωn, T ), (2.12)

where fBE is the Bose-Einstein distribution and ZPE is the so-called zero-point vibra-

tional energy.
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— the vibrational free energy Fν (also in the harmonic approximation):

Fν = ZPE + kBT
X

n

log

�

1− exp

�−ℏωn

kBT

��

. (2.13)

— the vibrational entropy Sν = (Hν − Fν)/T .

From these quantities, one can compute the Gibbs free energy G of the system:

G = E0 + PV + Fν − TSr = Hel + Fν − TSr, (2.14)

where E0 is the previously defined equilibrium energy, P and V are the pressure and volume

of the system, Hel the electronic enthalpy defined as the sum of the two previous terms, and

Sr are the non-vibrational contributions to the entropy. They are composed of the magnetic

entropy defined as Smag = R log(2S + 1), with R the ideal gas constant and S the total spin

of the system, and the rotational entropy. We neglect the translational entropy, along with the

rotational and translational enthalpy because these are identical in both spin states so that

they do not contribute to the free energy balance, along with all thermal effects onE0 as these

are vanishingly small compared to the previously introduced contributions.

By definition, the transition between the HS and LS states at the transition temperature Tc is

linked to the vanishing of the Gibbs free energy difference between the states:

GHS(Tc) = GLS(Tc)

⇐⇒ [E0 + PV + Fν ]HS (Tc)− TcSr,HS = [E0 + PV + Fν ]LS (Tc)− TcSr,LS

⇐⇒ Tc =
[E0,HS + (PV )HS + Fν,HS − E0,LS + (PV )LS + Fν,LS] (Tc)

Sr,HS − Sr,LS

, (2.15)

where the notation [A](Tc) indicates that all the termsA between the brackets depend on tem-

perature and should therefore be evaluated at the temperature of transition Tc. Then, equation

(2.15) yields a theoretical way to compute the transition temperature by solving for the value

of Tc. This is pretty complex in practice as it requires knowing both the electronic enthalpy

and the vibrational free energy at all temperatures, which is linked to several issues. First, the

electronic enthalpy is indirectly a function of temperature through the thermal dilatation ef-

fects on the volume of the unit cell, and therefore on the internal energy E0 and the PV term.

As such, an accurate knowledge of the evolution of the volume with temperature is required,

using for example Parrinello-Rahman or Wentzcovitch dynamics [187, 188] if one is to com-

pute the free energy in a crystalline SCO system.

For isolated molecules in a supercell, one can safely neglect both these thermal dilatation ef-

fects and the PV difference between the HS and LS states, leading to the following equation:

Tc =
∆E0,HS−LS +∆Fν,HS−LS(Tc)

Sr,HS − Sr,LS

, (2.16)
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where the ∆E term is the adiabatic energy difference, which is independent of the tempera-

ture and can therefore be evaluated once at 0K with a typical DFT calculation.

Second, the phonon eigenvalues depend both on the volume of the unit cell and on tempe-

rature, i.e. ωn = ωn(V, T ). As such, an accurate determination of the vibrational free energy

should involve the computation of the spectrum at all temperatures. In practice, several ap-

proximations can be made to simplify the problem:

— in the harmonic approximation (HA) [189], the dependence of ω on temperature is com-

pletely neglected and the only temperature effects come from the Bose-Einstein statis-

tics. This is formally exact when the IFCk are all neglected except for the second order,

and one can easily see that the system is then formally equivalent to a set of 3Na inde-

pendent harmonic oscillators. The spectrum is then evaluated at some reference volume

V0 (usually the T = 0 K volume in DFT) and then kept constant for all calculations:

ω(V, T ) = ωHA(V0). This is a surprisingly effective approximation, and it allows for an

easy analytic evaluation of important quantities such as the previously introduced vi-

brational free energy. However, it obviously can’t reproduce thermal dilatation effects,

which therefore require a more refined approach.

— in the isothermal quasi-harmonic approximation (QHA) [190], the thermal dependence

of the phonon eigenvalues is entirely contained in the volume variations: ω(V, T ) =

ωQHA(V (T )). Informally, this can be seen as an "harmonic approximation for each vo-

lume", and all the formulas derived in the harmonic approximation remain valid as the

only correction required is to formally substitute the invariant spectrum with the QHA

eigenvalues: ∀F, F ({ωHA(V0)}) → F ({ωQHA(V (T ))}). In particular, this means that

anharmonic effects are not properly taken into account within this approximation and

the IFCk expansion is still technically truncated at the second order, but with an ef-

fective set of volume-dependent IFCeff
2 (V (T )). However, this is still a very successful

approximation for most usual phonon derived quantities, but it naturally can’t account

for isochoric thermal effects.

— the proper treatment of isochoric effects requires explicitely taking into account anhar-

monic terms [191, 192], usually up to the third or fourth order in practice. This leads to

the formal need to modify all the statiscally-derived physical quantities such as the free

energy, although in practice the harmonic expressions are commonly kept as the correc-

tions are minimal. These higher order parameters can be of crucial importance for some

calculations, as they can be shown to be directly related to important quantities such as

the Grüneisen parameters, the thermal expansion coefficient or the stress tensor (note

that these could also be computed from the QHA, but the results will be less accurate).

In practice, the methods to carry an actual calculation of IFCk from an ab initio approach

are manifold. For example, for DFT, the two major such approaches at the harmonic level

are the finite difference method ([193, 194]) and the density functional perturbation theory
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(DFPT) method ([195, 196]). The finite difference method relies on obtaining the IFCk by

moving atoms and computing the related change of energy with DFT calculations. The IFCk

can then be computed from these changes as the k-order derivatives of the energy with respect

to displacements. This is obviously a very brute force method and it requires a huge number of

calculations, up to (3Na)
p at order p, although there are several theorems and symmetries that

allow to significantly reduce this number (but the computational cost is still huge). However,

several results have shown that it leads to very satisfactory results, even when extended for

strong anharmonic results ([197, 198]), and as such is still very commonly used. DFPT, on the

other hand, relies on the use of the perturbative expansion of DFT (the so-called Sternheimer’s

equation [199]) to compute the perturbed wavefunctions and energies with respect to the ionic

displacements, and then deduce the IFCk in a similar way than with the finite difference

method. DFPT is naturally less computationally heavy than finite differences (especially with

the existence of the famed 2n+1 theorem), but its perturbative nature leads to issues for strong

anharmonicities at higher orders ([200, 201]). Therefore, a significant number of theoretical

methods have been developed in the last twenty years in order to explicitly tackle the particular

issue of these strongly anharmonical systems without having to rely on costly finite difference

methods (see reference [202] for the most notable examples.)

A very common way to compute the spectrum at some temperature T is to carry an AIMD

calculation, and then compute the autocorrelation function of the atomic velocities (VACF)

calculated during the AIMD simulation:

gv(τ) =

Z
v(t)v(t+ τ)dt . (2.17)

One can show [203] that the phonon density of states is the Fourier transform of the norma-

lized VACF:

ρ(ω) =

Z
eiωt

gv(t)

gv(0)
dt. (2.18)

In practice, this naturally requires a sufficiently long sampling time in order to properly eva-

luate both the convolution function and the resulting density of states. Note that a very similar

result can be derived from the position autocorrelation function. [204]

2.8.2 Results

A short reminder on the harmonic approximation

We will start by giving the results for the harmonic approximation. The calculation was

done within the VASP code, using the finite differences method with a two points centered

stencil. To obtain accurate forces values, the energy was converged to 10−6eV . As such, given

the strongly increased computationnal costs associated with the more stringent convergence

criterion, we could not compute the spectrum for the molecule adsorbed on the surface and
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we will restrict ourselves to the free molecule. We will begin with the results for the pristine

FePhen molecule, starting with the correlation between the HS and LS states as seen in figure

2.7.

Figure 2.7 – Correlation between the phonon frequencies in the LS and HS states, for the
undoped molecule without a surface.

As one can see, our results are in complete accordance with the already available results of

Lebegue et al. [118]. One can clearly observe the characteristical frequency changes between

the LS and HS molecules, with a softening of the N-C-S stretching modes around 2100 cm−1 of

roughly 45 cm−1 and of the Fe-Ligand stretching around 100-400 cm−1 of 60 cm−1 on average.

This was to be expected as these bond are stretched during the LS to HS transition, which

naturally softens the oscillation frequency.

The thermodynamical calculations within the harmonic approximation at the experimental

critical temperature of Tc yield a vibrational entropy difference between the HS and LS states

of∆Svib = 29.0 J/mol/K and a vibrational entropy difference of∆Hvib = -7.3 kJ/mol, in relative

accordance with the previously obtained results. Note that the total entropy includes the ma-

gnetic entropy ∆Smag = R log(5) = 13.4 J/mol/K, along with the rotationnal entropy of ∆Srot

= 0.6 J/mol/K, which leads to a total value of ∆S = 43.0 J/mol/K. The total enthalpy includes

an electronic contribution of ∆Hel = 14.5 kJ/mol, therefore amounting to ∆H = 7.2 kJ/mol,

which is surprisingly close to the experimental value of 9 kJ/mol. Interestingly, evaluating

the transition temperature using equation 2.16 yields a value of Tc = 167 K, in remarkable ac-

cordance with the experimental value although this is completely fortuitous as the extensive

litterature on the topic shows that this value is extremely sensitive to numerical errors and ap-

proximations, especially since soft modes have the strongest impact on the entropy and these

are often noticeably anharmonic and as such can’t be systematically evaluated with a decent

accuracy [205].

The thermal variation of the vibrational entropy, vibrational enthalpy and total free energy
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Figure 2.9 – Difference between the values for the HS and LS states of the vibrational entropy
∆Svib, vibrational enthalpy ∆Hvib and total free energy ∆Ftot for figure 2.8

Therefore, as one can see, the vibrations stabilize the HS state with respect to the LS state,

with a stronger vibrationnal entropy (except at very low temperatures) and a smaller vibra-

tionnal enthalpy in the HS state. This therefore drives the free energy of the HS state down as

compared to the LS state, which eventually leads to the sign switching of the free energy dif-

ference at the critical temperature and therefore to the spin transition phenomenon. Based on

these quantities, one can then use the Slichter-Drickamer model to compute the HS fraction,

the result being given in figure 2.10. One can clearly see how the cooperativity modifies the

– 52 –





Chapitre 2

Figure 2.11 – Calculated thermal evolution of the HS fraction γHS for the literature value
of the cooperativity parameter Γc = 3.0 kJ/mol [206, 207], compared with the experimental
results [208] disregarding the ≈ 20 % remnant of HS states at low temperatures and shifting
the experimental transition at the computed value of 167 K.

We will now proceed with a comparison to the doped FePhen molecule. As before, we first

give the results of the correlation between the HS and LS states, alongwith a direct comparison

to the previous case on the figure 2.12.

Figure 2.12 – Correlation between the phonon frequencies in the LS and HS states on the top
for the doped molecule without a surface, along with the correlation for the undoped molecule
restricted over the relevant range on the bottom
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Now, there are several regions of interest. First of all, the calculation shows an absence of

the 3000-3100 cm−1 frequency region on the plot that corresponds to the C-H bond stretching

in an aromatic cycle, which is naturally missing in the doped molecule. As such, we decided to

restrict figure 2.12 to frequencies below 2500 cm−1. The N-C-S stretching frequencies around

2100 cm−1 are visibly not affected by the doping procedure. The first major difference comes in

the region around 1300-1500 cm−1, where we note more modes for the doped molecule than

for the undoped molecule. These frequencies correspond to C-F stretching modes, with the

higher frequencies being associated with in-phase processes. We also note the disappearance

of modes in the 1000 cm−1 region after doping, and these are associated with bending in C-H

bonds. These are replaced with the appearance of C-F in-phase bending frequencies around

800 cm−1, and regular bending frequencies in the 300 cm−1 [209, 210]. Once again, the modes

that are the most affected by the spin crossover are the N-C-S and Fe-N stretching, although

visibly less than for the undoped molecule with a shift of 30 cm−1 for the N-C-S modes and

40 cm−1 for the Fe-Ligand modes on average, the frequencies being already quenched by the

inherent stretching of the bond linked to the doping. At the undoped critical temperature of

175 K, the doped molecule shows a vibrational entropy difference of∆Svib = 7.1 J/mol/K and a

vibrational enthalpy difference of∆Hvib = -4.7 kJ/mol. Adding the other contributions yields a

total entropy difference of∆Stot = 20.5 J/mol/K and a total enthalpy difference of∆Htot = -29.2

kJ/mol. Just as before, we will also plot the evolution of these thermodynamical quantities in

the figures 2.13 and 2.14

In these figures, we can see that the free energy difference never crosses the zero value and

is in fact always decreasing, and as such the HS state always remains the more stable phase at

all temperatures as one could have expected since thermal effects should favorize the HS as we

have emphasized earlier. In these conditions, solving the Slichter-Drickamer calculation yields

a trivial γHS = 1 line so we will not reproduce the results here. Interestingly, however, one

can note that the vibrational entropy is stronger in the LS state than in the HS state on a wider

range than for the undoped molecule, up to roughly 120 K ; indicating that it stabilizes the low

spin state which may appear a bit counterintuitive, although at higher temperatures the HS

state ends up being the more stabilized. Besides, the massive difference in enthalpy between

these states and the magnetic entropy prevent any switching of the spin state, in accordance

with the idea that the SCO is an entropy-driven phenomenon.
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Figure 2.14 – Difference between the values for the HS and LS states of the vibrational entropy
∆Svib, vibrational enthalpy ∆Hvib and total free energy ∆Ftot for figure 2.13

.
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Going beyond the harmonic approximation

As we have emphasized earlier, the harmonic approximation is sufficiently accurate for

many purposes but fails at properly reproducing temperature related effects, especially near

strongly unharmonic points such as a phase transition. As such, the use of post-harmonic

approximations for phonon frequencies could provide fruitful results about the physics of the

spin-crossover phenomenon, especially given the fact that to the extent of our knowledge such

calculations have never been carried for intramolecular phonon modes. In this part, we are

going to give some results about the simulation of phonons beyond the harmonic approxima-

tion, using molecular dynamics simulations of the free FePhen system at several temperatures.

This is done without the substrate as the associated increase in numerical cost proved to be

prohibitive because of the large amount of simulation points required to compute the Fourier

transform with a sufficient accuracy, even in the case where the surface atoms are constrained

not to move. The MD calculations are done using an Andersen thermostat [211] with a time

step of 0.1 fs along with a collisional probability of 0.02 fs−1, for a total simulation time of 1 ps.

The first 1000 steps are not taken into account for the calculation of the Fourier transform to

allow for a sufficient thermalization of the system because of the inherent probabilistic nature

of the thermostat. Still, convergence was hard to achieve as we faced several memory related

issues that prevented us from carrying the calculation for the doped molecule, and as such the

following part will be restricted to the undoped molecule. Note that we have monitored the

magnetization during the MD to guarantee that both systems remain in their respective spin

states.

We will start with the densities of state. We have computed the densities of state at 100

K, 200 K and 300 K ; which we are reproducing in figure 2.15, which shows the temperature

evolution of the spectrum within the HS ans LS states. As one can see, the densities correctly

reproduce most of the spectrum, with a clearly apparent fingerprint region below 1500cm−1

and a very intense C-H stretching peak at 3100cm−1. However, we note the very noticeable

exception of the N-C-S stretching frequencies around 2100cm−1 that is barely apparent, whe-

reas it is usually a very strong signal in experimental spectra [212]. This is quite inconvenient

as these are some of the driving frequencies behind the spin-crossover phenomenon, and we

could not explain such a discrepancy with respect to the expected result, although these fre-

quencies contribute much less to the total energy balance than the clearly apparent Fe-Ligand

stretching modes around 100 − 400 cm−1. Besides, we do not observe any striking evolution

of the frequencies with respect to temperature.

Naturally, one can integrate over these densities of states to compute the evolution of ther-

modynamical quantites such as the free energy with temperature, which leads to the values

in table 2.4:
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of its stochastic nature [213], and as such the VACF collapses much faster with time than

in reality so that the sampling time should in principle not be the main culprit. Therefore,

other numerical phenomena might also be at play, which could also explain the quasi-total

extinction of the N-C-S stretching frequency on the spectrum, and hence this issue is still

being investigated.

2.9 Conclusion

In this first part, we have studied some energetical aspects of the spin-crossover pheno-

menon. More precisely, we first showed that the substitution of hydrogen by fluorine in the

spin crossover Fephen molecule induces a profound transformation of its electronic structure,

leading to the inversion of the magnetic state for the free and adsorbed molecule on a Cu(001)

surface. This was correlated to a noticeable modification of the bond lengths and angles bet-

ween the ligands and the central iron atom, though the overall geometry remains unaffected.

Through the use of Bader analysis, we showed that a significant amount of electronic redis-

tribution takes place after doping, leading to a modification of the electronic charge on the

nitrogen octahedral cage which stretches the ligand-metal bond. This can be seen in the den-

sity of states, with a strong reduction of the eg − t2g ligand-field energy splitting, especially

in the HS state. One can also note a reduction of the transition barrier between the HS and

LS states after doping, although our results are still pretty crude (especially the NEB method

which is extremely hard to converge). We have also carried an harmonic calculation of the

phonon spectrum within these molecules using a (two-points centered) finite-difference me-

thod. We have therefore showed that the main frequency difference betwen the HS and LS

states lie in the N-C-S and Fe-Ligand stretching modes for both the undoped and doped mole-

cule, as one could have expected given the fact that these bonds are the most affected by the

spin-crossover phenomenon, in accordance with earlier calculations [118]. Using these values,

we carried a free-energy study exhibiting a transition in the undoped molecule at a surprisin-

gly accurate temperature of 167 K as compared to the experimental value of 175 K, although

this in entirely fortuitous given the fact that previous calculations using very similar methods

have led to highly inaccurate values of the transition temperature as the main driving force

behind these errors is the value of the vibrational entropy which is very strongly dependent

on low frequency modes, that are hard to compute properly as they tend to be strongly anhar-

monic. The doped molecule, on the other hand, does not exhibit any spin transition as the HS

state always remains more stable than the LS state. These frequencies have also been used in a

computation of the evolution of the HS fraction with respect to the temparture in the undoped

molecule using the Slichter-Drickamer model, in decent agreement with experimental results.

Our preliminary results on post-harmonic simulations based on molecular dynamics are sadly

highly inconclusive and are at this time still being further developed, although we do observe
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a free energy crossing at a temperature of 144 K in relative accordance with the experimental

result.
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Simulation of X-ray Absorption

Spectroscopy in Spin-crossover systems

Note: The following Thesis Chapter, along with appendices B and C, are directly

adapted fromapaper thatwas publishedwithinPhysical ReviewB.As per official gui-

delines of the American Physical Society, the bibliographical citation can be found in

[214]. Statement: Copyright © 2024 by American Physical Society. All rights reserved.

3.1 Introduction

X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) are

two of the most commonly used techniques to study spin crossover molecules. Indeed, they

are based on the coupling between the angular momentum of an incident photon beam and

the magnetic momentum of the Iron electrons within the HS and LS states, which therefore

show distinctive spectra owing to their repective magnetic properties [215, 216, 79, 217, 21].

Naturally, these spectra have been measured and widely used for the FePhen molecule, for

example by Miyamachi et al. during their studies of the Fephen system both in the gas phase

and adsorbed on a Cu(100) surface. Fundamentally, the HS to LS transition in Fe(II) complexes

is associated to the spin transition (t2g)
3↑(eg)

2↑(t2g)
1↓ → (t2g)

3↑(t2g)
3↓(eg)

0 (see Ref. [173]),

and it is therefore interesting to compute the LS and HS XAS L2,3 edges from first principles

and compare them directly to experimental results to validate this spin transition. To this end,

we calculated the x-ray absorption spectra and XMCD of the Fephen molecule both on the gas

phase and adsorbed on a Cu(100) surface in the electric dipole approximation and compared

our findings to the aforementioned experimental results [21].

After a short theoretical introduction, we will first show that the distortion within the

Iron octahedron leads to a dependence of the XMCD spectra on the direction of the incident

circularly polarized x-ray beam. In addition, we have also computed the XMCD for different
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magnetization directions in order to exhibit the anisotropy of the orbital magnetic moment.

We will also show that the calculation without static core hole effects is in better agreement

with experiment. We then give an interpretation of the HS and LS XAS and XMCD in terms of

the eg− t2g split density of states. Finally, we demonstrate how to utilize the XMCD sum rules

to compute the spin and orbital magnetic moments, as well as the importance of the magnetic

dipole moment for the determination of the spin magnetic moment. The derivation and imple-

mentation of the magnetic dipole moment in the VASP package, as well as the approximation

of the XAS byweighted partial density of states of the conduction electrons are provided in the

appendices. The calculation was carried using exactly the same parameters as for the previous

chapter on energetics for consistency. As such, we refer the reader to said part for the details

of the DFT methods used. Note that the computation of the spectrum did require an increase

in the number of bands calculated as compared to a normal calculation to properly reproduce

the conduction states, but this did not affect the previously established results in any way.

3.2 Theory: X-ray absorption and XMCD

One can define the x-ray absorption cross-section with polarization µ in a general way

using Fermi’s golden rule [218]:

σµ(ω) =
4παℏ

m2
eω

X

if

|⟨f |pµ|i⟩|2 δ(ℏω − ϵf + ϵi). (3.1)

Here, α is the fine-structure constant, me is the electron mass, i and f stand respectively for

the core states and the conduction states, and their energies ϵi and ϵf ). Here pµ = −iℏ∇µ is

the projection of the momentum operator on the {µ = −1, 0, 1} polarization direction. These

directions, along with the corresponding cross-section, are defined as:

σµ=± : pµ=± =
∓1√
2
(px ± ipy) (3.2)

σµ=0 : pµ=0 = pz.

There are several ways to calculate the x-ray absorption cross-section, ranging from the

analytical evaluation of transition matrix elements [219] to core-hole [220] or ligand field

DFT methods [221]. In this study, our approach is based on the PAW method within the DFT

calculations to compute these matrix elements, and it was already used to compute the K and

L2,3 edges in iron to achieve quantitative agreement with experimental data [222]. Here, we

extend our method by including the plane wave contribution and enabling computation of

the XMCD spectra for any direction of the magnetization and any direction of the incident

circularly polarized x-ray. We have also determined the XAS in terms of the partial density
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of states of the probed atom. This will be used later to analyze the different features in the

XAS in terms of the parent eg and t2g density of states of the ideal octahedron. Note that

in this formalism, its straightforward to include the effect of a static core hole or to use the

Slater transition rule[223, 224] where only one half core state is included. However, the static

core hole usually only improves the K-edge spectrum, but it seldom leads to improved L2,3

edges compared to calculations with the initial state[225]. Indeed, we will show below that

the initial state calculation agrees better with experiment than calculations using a static full

core hole or Slater’s half hole.

Within PAW [147], the core states are considered frozen and kept unchanged in the pseudo-

potential files, and they are usually fully relativistic |J,M⟩, i.e., solutions to the Dirac equation
[226]. This means that we need to work in a |JMLS⟩ coupled basis set:

|i⟩ = |J,M⟩ =
X

m′,s

⟨ℓ′,m′, 1/2, s|J,M⟩|ℓ′,m′, 1/2, s⟩ =
X

m′,s

CJ,M
ℓ′,m′,1/2,s|ℓ

′,m′, 1/2, s⟩, (3.3)

where ℓ, m and s the usual angular momentum and spin quantum numbers, the CJ,M
ℓ′,m′,1/2,s

are the usual Clebsch-Gordan coefficients and ℓ′ = 1 for the L2,3 edges. It should be noted

that we disregard the contribution of the minor part of the Dirac bispinor when computing

the matrix elements because the conduction states are scalar relativistic and the small com-

ponent contribution is negligible. The conduction states are the computed Kohn-Sham orbitals

|n,k, s⟩, which can be written in the PAW method as:

|f⟩ = |n,k, s⟩ = |n̂,k, s⟩+
X

p,ℓ,m

eP n,k,s
p,ℓ,m(|p, ℓ,m, s⟩ − | ^p, ℓ,m, s⟩), (3.4)

where n is the band index, k the wavevector and s the spin index and eP n,k,s
p,ℓ,m is the projection

value of the pseudo Kohn-Sham wave functions on the PAW projector functions (for more

details see Ref. [147]). Here p is used for multiple projector functions to improve the atomic

basis set. Usually p is limited to one or two projector functions per angular momentum ℓ.

It should be noted that our implementation can include only the static core-hole effects

using a supercell geometry, unlike other PAW implementations, such as the Taillefumier et al.

method [227] where a continued fraction formulation was used to compute the K-edge x-ray

absorption near-edge structures in presence of a core hole. However, our calculations do not

include multiplet structures and dynamical core-hole screening. Although this appears to be a

drastic approximation, we will show that our implementation is sufficient to obtain qualitative

agreement with experiment. The |n̂,k, s⟩ are the so-called pseudo wave functions associated

with the pseudo-partial waves | ^p, ℓ,m, s⟩, whereas the |p, ℓ,m, s⟩ are the all electron partial

waves. The pseudo and plane wave contributions will be shown to be negligible as the 3d
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electrons of iron are strongly localized within the augmentation region, and these corrections

are hence extremely small up to several dozens of eV above the Fermi level. They are therefore

only relevant for EXAFS, which is not the subject of this work. This naturally leads us to limit

the calculation to the relevant photo-electron energy range when not including the plane wave

contribution. These partial waves are indexed by p the projector index, and ℓ,m and s the usual

angular momentum and spin quantum numbers, with P n,k,s
p,ℓ,m the associated projection value

of the Kohn-Sham pseudo wave functions:

P n,k,s
p,ℓ,m = ⟨gp,ℓ,m,s|n̂,k, s⟩, (3.5)

where gp,ℓ,m,s are the usual PAW projector functions. Note that VASP uses cubic harmonics

Ym
ℓ whereas the formula is computed for spherical harmonics Y m

ℓ . We should then transform

the projections back into the spherical basis when doing the actual computation by using

the usual unitary transformation U from cubic to spherical harmonics. We can show that

it amounts in writing the projections as P n,k,s
p = U−1 ∗ eP n,k,s

p , where eP n,k,s
p represents the

vector of the cubic projections, as given by Eq. 3.4, that are computed by VASP.

Using these formulas together with the golden rule, we can find:

σµ(ω) =
4παℏ

m2
eω

X

M,n,k,s

�

�

�

�

X

p,ℓ,m,m′

CJ,M
ℓ′,m′,1/2,s⟨p, ℓ,m|pµ|ℓ

′,m′⟩P ∗n,k,s
p,ℓ,m

�

�

�

�

2

δ(ℏω−ϵnks+ϵJM), (3.6)

where we have used the fact that the spin is conserved by the momentum operator. The ϵnks

and ϵJM are respectively the Kohn-Sham eigenvalues and the relativistic core energies. Note

that VASP does not compute the spin-orbit splitting between the (J−1/2) and (J+1/2) core

states, and we have therefore taken this splitting from the result of a relativistic all electron

atomic program calculation[228]. This also implies that the spectra σµ(ω) are J dependent,

although this will be kept implicit in our notations.

Using Wigner-Eckart’s theorem [229, 230], one can then show that:

⟨p, ℓ,m|pµ|ℓ
′,m′⟩ =

Cℓ,m
ℓ′,m′,1,µ

Cℓ,0
ℓ′,0,1,0

⟨p, ℓ, 0|p0|ℓ′, 0⟩. (3.7)

We therefore recover the so-called dipolar selection rules: ℓ = ℓ′ ± 1 and m = µ +m′. Using

angular momentum algebra [230], we have the following closed formula that will be used to

compute the reduced matrix element for each projector p:

⟨p, ℓ, 0 |∇0| ℓ
′, 0⟩ =δℓ,ℓ′+1

ℓp
(2ℓ− 1) (2ℓ+ 1)

�

(ϕp,ℓ |∂r|ϕ
c
ℓ′)− (ℓ− 1)

�

ϕp,ℓ

�

�r−1
�

�ϕc
ℓ′

��

+ δℓ,ℓ′−1
ℓ+ 1p

(2ℓ+ 1) (2ℓ+ 3)

�

(ϕp,ℓ |∂r|ϕ
c
ℓ′) + (ℓ+ 2)

�

ϕp,ℓ

�

�r−1
�

�ϕc
ℓ′

��

,

(3.8)
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where we introduced the radial functions associated with the core ϕc or the conduction states

ϕ, along with the radial integration (ϕp,ℓ |r
α|ϕc

ℓ′) =
R
drϕp,ℓ(r)r

α+2ϕc
ℓ′(r). Note that for most

weakly relativistic systems such that α2Z2 << 1 (including iron, where α2Z2 ≈ 0.03), the

fine structure corrections to the radial eigenfunctions are very small [231] and consequently

one can safely use non-relativistic radial wave functions for the core states. However, VASP

allows us to compute the relativistic radial wave functions by solving Dirac’s equation, so we

will use them.

To conclude, in the momentum representation, the following expression for the absorption

spectrum can be shown:

σµ(ω) =
4παℏ3

m2
eω

X

M,n,k,s

�

�

�

�

�

X

p,ℓ,m,m′

CJ,M
ℓ′,m′,1/2,s

Cℓ,m
ℓ′,m′,1,µ

Cℓ,0
ℓ′,0,1,0

⟨p, ℓ, 0 |∇0| ℓ
′, 0⟩P ∗n,k,s

p,ℓ,m

�

�

�

�

�

2

δ (ℏω − ϵnks + ϵJM) .

(3.9)

The polarization is defined as in equation (3.2), and the XAS and XMCD corresponding res-

pectively to the σXAS = 1
3
(σ0 + σ− + σ+) and σXMCD = σ− − σ+ spectra are computed

using Eq. 3.9. The matrix elements ⟨p, ℓ, 0 |∇0| ℓ
′, 0⟩ are computed using equation (3.8), with

the radial integrations being cut at the augmentation radius for consistency. However, given

the low symmetry of the molecule under study, it is important to note that the dependence of

the XMCD signal on the direction of the incident circularly polarized light is a signature of

the distortion of the iron octahedron. Here we use a global coordinates system (O, x, y, z),

and assume that the direction of incident light is given by the two spherical angles (ϑ, φ). We

can therefore write the cross-section σXMCD for any incident light direction specified by ϑ, φ

as shown in Fig. 3.1. The figure shows also that the spin quantization direction is fixed along

a given direction, as it would be done experimentally with a magnetic field. Here we take the

(001) direction as a reference. It will be shown later that this direction corresponds to the lo-

west total energy when the spin-orbit coupling is included. We need therefore to rotate the

matrix elements from the local frame of reference (O, x′, y′, z′), where the z′ direction is along

the incident light, to the global frame. This transformation is provided by the direction cosine

rotation matrix:

R(u, v, w) = Rz′(φ) ·Ry′(ϑ) =







uw√
1−w2

− v√
1−w2

u
vw√
1−w2

u√
1−w2

v

−
√
1− w2 0 w






, (3.10)

where the direction cosines are defined as u = x/r, v = y/r, and w = z/r, where r =p
x2 + y2 + z2. We can show that the the XMCD signal for any direction (ϑ, φ) is given by

σXMCD(ω) = uσyz(ω) + vσzx(ω) + wσxy(ω), (3.11)
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and where σµν is given by

σµν(ω) =
4παℏ

m2
eω

X

if

ℑ (⟨f |pµ|i⟩⟨i|pν |f⟩) δ(ℏω − ϵf + ϵi). (3.12)

Here ℑ is the imaginary part, and µ, ν = x, y, or z. For an ideal octahedron, the lateral com-

ponents σyz and σzx are vanishing so that we have σXMCD(ω) = wσxy(ω) = cos(ϑ)σxy(ω),

which is a well known result [232].

Figure 3.1 – Fephen molecule on top of the Cu(001) surface. The direction of the incident
circularly polarized light is along the z-direction (A) and along ϑ = φ = π/4 (B). The spin
magnetic moment direction is set along the z-direction, perpendicular to the Cu(001) surface,
when the spin-orbit coupling is included.

We will now proceed with a derivation of the plane wave contribution to the spectrum.

Going back to equation 3.6, the total plane wave contribution can be split into two parts:

the pseudo partial wave contribution |p̂, ℓ,m⟩ and the actual plane wave part |n̂,k, s⟩, so the

Golden Rule could be written as:

σµ(ω) =
4παℏ

m2
eω

X

M,n,k,s

�

�

�

�

X

p,ℓ,m,m′

CJ,M
ℓ′,m′,1/2,s(⟨p, ℓ,m|− ⟨p̂, ℓ,m|)pµ|ℓ

′,m′⟩P ∗n,k,s
p,ℓ,m

+
X

m′

CJ,M
ℓ′,m′,1/2,s⟨n̂,k, s|pµ|ℓ′,m′⟩

�

�

�

�

2

δ(ℏω − ϵnks + ϵJM).

(3.13)
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Obviously, the calculation of the pseudo partial wave contribution is identical to that of the

previously calculated partial wave part. On the other hand, the plane wave contribution is

more involved. One starts by the plane wave expansion:

⟨r|n̂,k, s⟩ = 1√
Ω

X

G

cn,k,s
G

⟨r|k+G⟩ = 1√
Ω

X

G

cn,k,s
G

ei(k+G)(r′+τα). (3.14)

where r = r
′ + τα is the global electron position, split into the nucleus position τα and the

local position (with respect to the nucleus) r′. Note that the |k + G⟩ are the eigenfunctions
of the momentum operator pµ: pµ|k + G⟩ = (kµ + Gµ)|k + G⟩. The plane wave expansion
is normalized by the system volume Ω. In this local frame, one can then carry a partial wave

expansion of the plane wave:

ei(k+G)·r′ = 4π
X

ℓ,m

iℓjℓ(|(k+G)| |r′|)Y m ∗
ℓ (\k+G)Y m

ℓ (br′), (3.15)

where the jℓ are the usual spherical Bessel functions. Therefore, we can write the following:

⟨n̂,k, s|pµ|ℓ′,m′⟩ = 4π√
Ω

X

G,ℓ,m

i−ℓ(cn,k,s
G

(kµ +Gµ))
⋆Y m

ℓ (\k+G)e−i(k+G)·τα (3.16)

Z
drr2jℓ(|(k+G)| r)ϕℓ′(r)

Z
dbrY m′

ℓ′ (br)Y m ∗
ℓ (br).

Then, using the orthogonality of the spherical harmonics, we get that:

⟨n̂,k, s|pµ|ℓ′,m′⟩ = 4π√
Ω

X

G

i−ℓ′(cn,k,s
G

(kµ +Gµ))
∗Y m′

ℓ′ (\k+G)e−i(k+G)·τα (3.17)

Z
drr2jℓ′(|(k+G)| r)ϕℓ′(r).

This contribution can then be added to the absorption cross section using formula (3.13). As

shown in Fig. 3.2, the effects of this contribution to the L2,3 XAS and XMCD are extremely

small, being roughly two to three orders of magnitude smaller than the corresponding signal so

that one cannot see any difference between the corrected and uncorrected signals. This was to

be expected as we are only interested in a limited energy range above the Fermi energy for the

L2,3 edges, that are primarily associated with the 3d part of the eigenfunctions well localized

within the augmentation region so that the pseudo partial wave and plane wave contributions

should vanish almost exactly as we see here. As such, we can very safely disregard any plane

wave contribution for this calculation and only take the partial wave into account.
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Figure 3.2 – Comparison between the all electron partial wave (green) and the full PAWwave
function (red) calculated iron L2,3 XAS spectra for the LS state. The negligible difference (blue)
of the spectra as well as the plane wave contribution to the XAS (black) are shown on the right
scale.

To utilize the so called XMCD sum rules[233, 234, 235] to compute the spin and orbital

moments, we need to compute the number of electrons in the valence states ne as we are

truncating the plane wave component of the wave function, and we are therefore restricting

ourselves to the augmentation region contribution to the density of states, which will not

integrate to the theoretical values of ne = 6 below the Fermi energy or ne = 10 over the entire

energy range. In practice, carrying the integration of the density of states over this restricted

range yields less accurate values for the sum rules than the theoretical value of nh = 4, that

we will therefore use. We will also show in the results that we need to evaluate the magnetic

dipole contribution ⟨Tz⟩ to obtain accurate values of the spin and orbital magnetic moments.

The ⟨Tz⟩ contribution will be directly evaluated in DFT. First of all, the magnetic dipole tensor

can be defined as:

T̂ = Ŝ− 3r̂(r̂ · Ŝ)/|r|2, (3.18)

where Ŝ is the vector spin operator, and r̂ is the position operator. With a spin quantization

axis along z, the magnetic dipole operator can then be written:

T̂ = Ŝz − 3r̂(r̂zŜz)/|r|
2. (3.19)

As we said earlier, one can show that the sum rules normally include a ⟨T̂z⟩ contribution in

the valence shell of angular momentum ℓ. We will now explicitly compute the value of this

tensor using DFT in order to estimate this quantity. We start by writing the T̂z tensor as:

T̂z = Ŝz(1− 3r̂2z/|r|
2) = Ŝz(1− 4π(Ŷ 0

1 )
2), (3.20)
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where Y 0
1 is the spherical tensor operator associated to the spherical harmonic Y 0

1 . Then, its

mean value in some shell of electrons with angular momentum ℓ can be evaluated in the PAW

method as:

⟨T̂z⟩ =
X

n,k,s

fn,k,s⟨n,k, s|T̂z|n,k, s⟩ (3.21)

=
X

n,k,s

fn,k,s
X

p,m
p′,m′

P ∗n,k,s
p′,ℓ,m′P

n,k,s
p,ℓ,m⟨p′, ℓ,m′, s|T̂z|p, ℓ,m, s⟩,

where we once again disregard the plane wave contribution as we are only interested in the

augmentation region in this calculation, andwe introduced the Fermi occupations fn,k,s so that

the sum naturally only runs over the occupied states. Using its definition, the matrix elements

of T̂z in the partial wave basis can be written as:

⟨p′, ℓ,m′, s|T̂z|p, ℓ,m, s⟩ = ⟨p′, ℓ,m′, s|Ŝz(1− 3r̂2z/|r|
2)|p, ℓ,m, s⟩ (3.22)

= ⟨p′, ℓ,m′, s|Ŝz(1− 4π(Ŷ 0
1 )

2)|p, ℓ,m, s⟩
= ms(⟨p′, ℓ,m, s|p, ℓ,m, s⟩δm,m′ − 4π⟨p′, ℓ,m′, s|(Ŷ 0

1 )
2|p, ℓ,m, s⟩),

wherems is the magnetic moment. Using the definition of the spherical harmonics [230], one

can show that:

(Ŷ 0
1 )

2 =

r
1

4π
Ŷ 0
0 +

r
1

5π
Ŷ 0
2 . (3.23)

This leads to the following:

⟨p′, ℓ,m′, s|T̂z|p, ℓ,m, s⟩ = −4

r
π

5
ms⟨p′, ℓ,m′, s|(Ŷ 0

2 )|p, ℓ,m, s⟩. (3.24)

The matrix element involves an integral over three spherical harmonics Y 0
2 , Y

m
l and Y m′

l . This

is known in the literature as a Gaunt coefficient [230], and can be shown to be equal to:

⟨p′, ℓ,m′, s|(Ŷ 0
2 )|p, ℓ,m, s⟩ =

r
5

4π
Cℓ,m′

2,0,ℓ,mC
ℓ,0
2,0,ℓ,0(p

′, ℓ|p, ℓ) , (3.25)

where the (p′, ℓ|p, ℓ) are the radial integration as defined in Eq. 3.8. By angular selection rules,

we directly have thatm′ = m. Therefore, we obtain that:

⟨T̂z⟩ = −2
X

n,k,s

fn,k,s
X

p,m
p′

P ∗n,k,s
p′,ℓ,m P n,k,s

p,ℓ,mmsC
ℓ,m
2,0,ℓ,mC

ℓ,0
2,0,ℓ,0(p

′, ℓ|p, ℓ), (3.26)

which we implemented directly in VASP.
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3.3 Results and discussion

To illustrate the effect of various atoms of the molecule on the electronic structure of the

iron atom, and therefore on its high spin state XAS absorption and XMCD, we depict in Fig.

3.3 the magnetization isosurface at ±0.025µB per unit cell for the undistorted (top left) and

distorted (top right) (as in the molecule on the copper surface) FeN6 cluster together with

that of the molecule in the gas phase (bottom left) and that on the substrate (bottom right).

Due to the direct hybridization of the p orbitals of nitrogen with those of the iron site, the

magnetic moments of all the N atoms are oriented opposite to that of the iron site. This does

not apply to the case of the free FeN6 octahedron. This is because the nitrogen atoms are

chemically bonded to the carbon atoms of the phenanthroline. Table 3.1 shows the iron number

of electrons and magnetic moment in FeN6 cluster and in the molecule. It is clear from the

table that the distortions have only a slight impact on the electronic distribution of the iron

atom, but as shown later, the XMCD is considerably modified. As a result, new σxz and σzy

signals appear. This is also true for the free molecule as compared to the molecule on the

Cu(001) substrate, as the Fe−N bond lengths of the free molecule deviate differently from the

average bond length than for the adsorbed molecule. We found that the relative root mean-

square deviation percentage for the free molecule is 5.1% whereas it is 3.6% for the adsorbed

molecule.

System ns np nd ms (µB) mp (µB) md (µB)

Ideal FeN6 0.370 0.422 5.838 0.039 -0.029 3.237

Distorted FeN6 0.386 0.460 5.877 0.030 -0.004 2.996

Fe in Fephen 0.327 0.451 5.982 0.017 0.026 3.696

Fe in Fephen/Cu(001) 0.304 0.407 6.007 0.017 0.022 3.635

Table 3.1 – Iron site number of electrons and spin magnetic moments in units of µB per s, p
and d orbitals for ideal and distorted FeN6 cluster together with the Fephen molecule in the
gas phase and the one adsorbed on Cu(001) surface.

The XAS and XMCD L2,3 spectra were computed for the Fephen molecule up to 6.5 eV

above the Fermi energy. The L2 and L3 edges are split by the relativistic p1/2 − p3/2 spin-orbit

energy, which we found to be 12.45 eV using an atomic all-electron relativistic program [228].

The program also produced a p3/2 energy shift of 0.66 eV towards higher energy for the spin-

polarized state compared to the non spin-polarized one. The L2,3 edges are broadened by a

Gaussian function of full-width of 0.25 eV and a Lorentzian function of 0.5 eV, leading to a

Voigt profile with a broadening ≈ 0.6 eV, in agreement with experimental results [236]. To

find out how important the effect of the static core hole on the XAS is, we have performed

the calculation including a static core hole in the core 2p states, and also half hole according

to the Slater transition rule. We have compared in Fig. 3.4 the calculation of XAS and XMCD
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(a) Undistorted FeN6 (b) Distorted FeN6

(c) Fephen molecule (d) Fephen on Cu(001)

Figure 3.3 – Comparison of the high-spin isosurface of the magnetization density of undistor-
ted (a) and distorted (b) FeN6 cluster with that of the Fephen in (c) gas phase and (d) adsorbed
on the Cu(001) surface. The red color represents the positive magnetization (majority spin up),
and blue the negative magnetization (minority spin down). For all cases, the isosurface is taken
to be ±0.025µB per unit cell.
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Since calculations including a static core hole deviate more from the experimental XAS

spectra of Miyamachi et al. [21], we have shown in Fig. 3.5 the calculated x-ray XAS and

XMCD using the initial state and compared our results to this experimental spectra. We have

adjusted the energy reference by shifting the theoretical LS spectrum relative to the HS one

by our computed value of 0.66 eV. We have then plotted the experimental LS spectrum for

the gas phase by adjusting the well-defined L3 peak as a reference point, the HS spectrum

being then automatically obtained and compared to the experimental one. We can see that the

calculation reproduces the L2,3 edges in the LS state, but as expected the multiplets, which are

not taken into account in the calculation, are not reproduced. It is interesting to note that the

spectrum for the molecule on the surface is similar to that of the gas phase, apart from the

structure at about 5 eV which is strongly reduced. The two spectra for the gas phase and for

the adsorbed molecule are shifted by the difference of their respective Fermi levels. In the case

of the HS state, we note a less accurate agreement between the theoretical and experimental

results as the experimental peaks are slightly shifted and have different intensities for the L2

and L3 edges. These differences might be dependent on the dynamics of the core-hole[239],

although we still have a qualitative agreement.

For the XMCD, we have made calculations for three alignments of the magnetic moment.

The first for the moment along the (001) easy axis, and the second and the third for themoment

along the (111) and (010) directions. Note that the magnetic moment direction has a negligible

effect on the total XAS. These XMCD results for various magnetization directions will be used

later to determine the orbital magnetic moment anisotropy by means of the XMCD sum rules.

As it can be seen from Fig. 3.5 the agreement with the experimental data is only qualitative.

This is expected, as the XMCD simulation is notoriously complex. It relies on the difference

between two relatively close spectra for left and right circular polarizations, and it is therefore

extremely sensitive to numerical errors and approximations. Indeed, one can easily observe

that the XMCD spectrum vanishes exactly if spin-orbit coupling is not taken into account as

both spin channels will then couple identically with the photon helicity, and therefore both

left and right polarizations give the same results. As such, the value of the orbital moment is

strongly dependent on the accuracy of the spin-orbit treatment, which, therefore, constitutes

an important source of error as it is numerically very difficult to compute accurately for such

a large molecule.
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the orbital magnetic moment. To support our idea, we have depicted in Fig. 3.7 the σµν com-

ponents as given by Eq. 3.12 for the L2,3 iron atom in the molecule on Cu(001) and for the iron

atom in the distorted and undistorted FeN6 octahedra. For the undistorted tetrahedron, the

σyz and σzx are exactly zero due to symmetry and the code also produces zero, whereas these

two components of the σ tensor do not vanish for the distorted octahedron, as shown in Fig.

3.7 (bottom). It is clear that if we set the direction of the circularly polarized light along (010)

or (100) direction, while keeping the magnetization along the (001) direction, we will observe

only σyz or σzx as shown by Eq. 3.12. It is therefore interesting to emphasize that this kind of

experiment will directly give the effect of the octahedron distortion on the XMCD signal. One

can set a database of XMCD spectra for a direction where the the XMCD should be zero for a

perfect octahedron and machine learning can be used to predict the octahedron distortion of

SCOmolecules adsorbed onmetallic surfaces. These theoretical predictions are interesting and

need future experimental confirmation, as most available results yet deal with the crystalline

phase which is clearly isotropic.

Figure 3.7 – Calculated σµν (see Eq. 3.12) for the HS Fephen molecule (left) when the magnetic
moment is aligned along the (001) axis and for perfect and deformed FeN6 octahedron (right).
σyz and σzx are strictly zero by symmetry for the undistorted octahedron (not shown). The
scale of σyz and σzx is on the right. The inset shows the the deformation of the octahedron
(Nitrogen atoms in green) as in themolecule case compared to the non deformed one (Nitrogen
in orange).

To understand the structures in the XAS, we have compared them in Fig. 3.8 with the spin-

polarized eg and t2g symmetry representations of the iron site density of states. As expected

from the d6 electronic configuration of the ground state, the density of states shows that the

primary states contributing to the LS XAS signal are from the unoccupied parent eg states. As

for the HS XAS, the main contribution are from the minority spin parent t2g and eg states. This

is due to the splitting of the eg and t2g states caused by the strong crystal-field effect and in

part to the splitting of the states due to the distorted iron octahedron. [173] This interpretation

is compatible with the structural and electronic structure transition from the HS to LS which

involves the spin transition (t2g)
3↑(eg)

2↑(t2g)
1↓ → (t2g)

3↑(t2g)
3↓(eg)

0 as shown in Ref. [173].
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The figure also shows that the states contributing to the HS XMCD spectrum are naturally the

same as those for the HS XAS.

Figure 3.8 – The iron site spin polarized eg and t2g symmetry decomposed unoccupied density
of states compared to the calculated XAS L3 spectrum for both LS (top) and HS (middle) and
to HS XMCD (bottom).

It is evident that the sum rules should be vanishing in the LS state and the numerical cal-

culation concurs with this analytical result. However, this is not the case in the HS state, for

which we get the results shown in Table 3.2. These results are obtained from the XMCD spec-

tra presented in Fig. 3.5 when the polarization is along the (001), (111) and (010) directions.

We did not evaluate the sum rules for the experimental spectrum because we encountered

normalization issues, which lead to nonphysical values (e.g. mℓ has a computed value of se-

veral µB). The table also shows that the magneto-crystalline energy ∆E is lowest when the
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magnetic moment is oriented along the (001) direction and the hard axis is aligned with the

(010) direction. This energy∆E is equivalent to a blocking temperature of 22 K, which is very

low considering the super-paramagnetic aspect of the molecular crystal.

∆E (meV) Tz (µB) mℓ (µB) ms (µB)

Magnetization Direct Sum rule Direct Sum rule

direction

(001) -1.9 -0.101 0.180 0.154 3.635 3.731

(111) -0.98 -0.092 0.106 0.092 3.637 3.735

(010) 0 -0.092 0.006 0.006 3.635 3.734

Table 3.2 – Magneto-crystalline anisotropy energy∆E in meV, direct calculation of magnetic
dipole (Tz), spin moment (ms), and orbital moment (mℓ) compared to those obtained using
the XMCD sum rules (in units of Bohr magneton µB) for the iron site of the SCO Fephen in
the HS state for various directions of the iron magnetic moment. The hard axis total energy is
-1045.48985 eV.

We can make several interesting observations:

— The magnetic dipole tensor is non-vanishing, and its value is non-negligible as it makes

up for roughly 10% of the magnetic moment contribution. One could have expected this,

as it was shown that this operator takes a finite value for ideal Fe+2 octahedral complexes

in the HS state when spin-orbit coupling is taken into account [240]. However, as we

show in the appendices, relativistic corrections are not the dominant contribution to

the value of this tensor in our case as they are almost negligible. Instead, it appears

that the likely origin of this behavior is imperfect octahedral geometry of the high spin

complexes which significantly lifts the degeneracy of the t2g and eg states, and as such

removes the symmetries that nullify the value of Tz .

— The orbital momentum sum rule yields a slightly underestimated value of 0.154µB com-

pared to the directly calculated value of 0.180µB when the magnetization is oriented

along the easy axis (001). As the accuracy of this value depends directly on the integral

of the XMCD signal, such an agreement is quite surprising as one would expect a worse

accordance especially given the relatively poor agreement between the theoretical and

experimental spectra that demonstrated the limitation of the model. We have also to

note that the sum rules are an approximate theoretical results and as such the range of

their validity has been debated [239, 241], although they ought to be decently respected

for Fe2+ compounds, according to Schwitalla and Ebert [239]. It should also be empha-

sized that the integrated spectra over the relevant energy range, used for the sum rules,

are in general less sensitive to the details of their structures and shapes. [241]

— The spin-moment sum rule appears to yield a quite accurate value of 3.731µB compared

to direct calculated value of 3.635µB . We can appreciate here the importance of the
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magnetic dipole correction, as without it the sum rule would only yield a moment of

3.377µB , which is still within an acceptable range from the expected value. It appears,

therefore, that this spin sum rule is less sensitive to inaccuracies in the XMCD spectrum

than the orbital moment sum rule. This is not surprising, as the orbital moment is much

smaller compared to the spin magnetic moment and is consequently much more prone

to errors.

3.4 Conclusion

Our implementation of the XAS and XMCD spectra within VASP was used to compute the

L2,3 edges for both the low-spin and high-spin iron site within a SCO Fephen molecule in the

gas phase and adsorbed on a copper surface. We found that the plane wave contribution to the

x-ray matrix elements within the electric dipole approximation are fully compensated by the

pseudo-partial contribution to the PAW wave function within the XAS energy range.

The calculated XAS and XMCD results are in qualitative agreement with the available ex-

perimental results, although with relative intensity issues in the HS state that underscore the

importance of multiplet and dynamics of the core-hole effects for a comprehensive understan-

ding of the spectrum. We noticed that the simple static core hole of Slater transition rule half

hole did not improve the agreement with experiment. The calculation using the initial state

produced the best agreement with experiment and the overall features in both the HS and LS

spectra are understood in terms of the parent eg and t2g representations of the iron 3d DOS.

We have also found that the dependence of the XMCD signal on the direction of incident x-ray

circularly polarized light can be used to directly measure the deformation in the iron octahe-

dron. As discussed above, one could attempt to establish a database for the σyz and σzx XMCD

directions, which are zeros for a perfect octahedron, and use machine learning to determine

directly the octahedron distortion of the SCO molecules.

We have also shown that the XMCD for different magnetization directions is related to the

anisotropy of the iron orbital magnetic moment. As a result, the sum rules yields the correct

orbital and spin magnetic moments as compared to direct calculations for different orienta-

tions of the spin magnetic moment, as long as one takes into account the contribution of the

magnetic dipole moment originating from the geometrical deformation of the iron site octa-

hedron in the HS state. These theoretical predictions await future experimental confirmation.
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STM beyond the Tersoff-Hamann

approximation

4.1 Introduction

The Scanning Tunnel Microscopy (STM) images of FePhen adsorbed on a molecule have

been measured ([21]), showing two distinctive lobes for the Phen groups pointing towards the

STM tip. The images show an apparent difference between LS and HS images as the increase

of the bond length and bonding angles leads to a clear separation between the lobes in the

HS state when compared to the LS state, along with an increase of the corrugation height.

The interesting part lies in the measure of the conductance in the HS state in contrast with

the LS state, which shows a clear conductance peak in the HS state at zero bias whereas the

LS state is relatively insensitive to the bias applied. This Kondo resonance is a classic signa-

ture of the HS spin state in SCO molecules on metallic surfaces [242], it is however extremely

sensitive to various parameters such as the nature of the surface or the Ligands, owing to

and typically showing the strong influence of these parameters on important aspects of the

Kondo physics within these systems such as the spin state (the Kondo impurity) or the bath

of conduction electrons from the surface. The simulation of STM images within the Tersoff-

Hamann approximation, with a pure s-wave tip, on the FePhen molecule has already been car-

ried ([119]), showing results that concur with experimental results with however predictable

accuracy shortfalls stemming from the very strong approximation done. It could therefore be

interesting to see what differences are observed with more general levels of approximation,

which will be the goal of this part. We will start by introducing the various commonly studied

layers of approximation associated to the (one-particle) calculation of STM, being the Bardeen

formula [243], the Chen approximation [244] and finally the Tersoff-Hamman approximation

[245, 246], before using them to compute the theoretical STM images with comparison to pre-

viously available theoretical and experimental results.
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4.2 Theoretical aspects

4.2.1 A General introduction : Bardeen’s formula

One of themost popular approaches to simulate STM images is the Bardeen transfer forma-

lism, which consists in a very convenient one-particle elastic approximation to the tunneling

current, neglecting all direct interaction between the tip and the surface. We will now proceed

with a demonstration of this formula, closely following the derivation in the ref ([247])

Assume a system composed of a tip, a surface and a separation vacuum. If the tip and

the surfaces are supposed to be sufficiently separated, their respective wavefunctions can be

assumed to follow a free system Schrödinger’s equation:

iℏ∂tΨS/T =

�

− ℏ
2

2m
∇2 + VS/T

�

ΨS/T , (4.1)

where ΨS/T is the surface (respectively tip) wavefunction and VS/T the associated potential.

These wavefunctions are associated with the stationnary states ΨS/T ;n, satisfying the time-

independent Schrödinger equation:

�

− ℏ
2

2m
∇2 + VS/T

�

ΨS/T ;n = ES/T ;nΨS/T ;n, (4.2)

wherewe introduced the eigenenergiesES/T ;n so thatΨS/T = ΨS/T ;n exp(−iES/T ;nt/ℏ). Now,

assume that we bring both systems closer: naturally, the new wavefunction of the coupled

system then follows the Schrödinger equation of the total potential, which is the sum of the

surface and tip potentials:

iℏ∂tΨ =

�

− ℏ
2

2m
∇2 + VS + VT

�

Ψ. (4.3)

We will now use perturbation theory to solve the equation, therefore implicitly assuming a

slow and adiabatic transformation from the non-interacting to the interacting case, which is

the case experimentally as the tip movement (in s) is much slower than the average electronic

relaxation time (in fs). Assuming that the system is initially in some given state ΨS;n, expan-

ding the coupled wavefunction over the surface and tip eigenfunctions yields:

Ψ = an(t)ΨS;n exp(−iES;nt/ℏ) +
∞X

m=1

cm(t)ΨT ;m exp(−iET ;mt/ℏ), (4.4)

where we have an(t → −∞) = 1 and cm(t → −∞) = 0 by definition. We will now

assume that the sets of free tip and surface wavefunctions are mutually orthogonal, so thatR
d3rΨ∗

S;nΨT ;m ≈ 0. We can then apply Schrödinger’s equation on this definition of Ψ and
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project it on some given state ΨT ;p, which yields:

iℏ∂tcp(t) = ⟨ΨT ;p|VT |ΨS;n⟩ exp
�

−i
(ES;n − ET ;p)

ℏ
t

�

, (4.5)

where we neglected the time variation of an(t) ≈ 1 because of the adiabatic approxima-

tion, and all second order perturbative terms. As all quantities on the right side are time-

independent except for the explicit time in the exponential, one can integrate this and get:

cp(t) = lim
η→0

⟨ΨT ;p|VT |ΨS;n⟩
(ES;n − ET ;p + iη)

exp

�

−i
(ES;n − ET ;p + iη)

ℏ
t

�

. (4.6)

We introduced a regularization parameter η to take into account the case where ES;n = ET ;p,

which is the elastic transport condition.

Using the definition of the wavefunction (4.4), one can clearly see that |cp|
2 is the transition

probability from the initial state ΨS;n to this given state ΨT ;p, which therefore writes:

|cp|
2 = lim

η→0

|⟨ΨT ;p|VT |ΨS;n⟩|2
(ES;n − ET ;p)2 + η2

exp

�

2ηt

ℏ

�

, (4.7)

one can then take the derivative with respect to time in order to get the transition rate:

Γs,p(t) = lim
η→0

2η

ℏ

|⟨ΨT ;p|VT |ΨS;n⟩|2
(ES;n − ET ;p)2 + η2

exp

�

2ηt

ℏ

�

. (4.8)

We can now take the limit as it is properly defined (in the distributional sense) and we get the

Fermi Golden Rule of this problem:

Γs,p(t) =
2π

ℏ
δ(ES;n − ET ;p) |⟨ΨT ;p|VT |ΨS;n⟩|2 . (4.9)

We now need to evaluate the transition matrix element. we first write:

⟨ΨT ;p|VT |ΨS;n⟩ =
Z

d3rΨ∗
T ;pVTΨS;n =

Z

z∈ΩT

d3rΨS;n

�

ℏ
2

2m
∇2 + ET ;p

�

Ψ
∗
T ;p, (4.10)

where we define ΩT as the volume of space where the tip potential VT does not vanish, dis-

joint from the similarly defined volume ΩS for the surface as we assumed at the beginning of

this derivation. The second equality is nothing but Schrödinger’s equation applied to the tip

wavefunction Ψ∗
T ;p.
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Now, using the elastic tunneling condition ET ;p = ES;n, we have:

⟨ΨT ;p|VT |ΨS;n⟩ =
Z

d3rΨ∗
T ;pVTΨS;n =

Z

z∈ΩT

d3rΨS;n

�

ℏ
2

2m
∇2 + ES;n

�

Ψ
∗
T ;p

=

Z

z∈ΩT

d3rΨS;n
ℏ
2

2m
∇2

Ψ
∗
T ;p +

Z

z∈ΩT

d3rES;nΨS;nΨ
∗
T ;p

=

Z

z∈ΩT

d3rΨS;n
ℏ
2

2m
∇2

Ψ
∗
T ;p +

Z

z∈ΩT

d3r

�

− ℏ
2

2m
∇2 + VS

�

ΨS;nΨ
∗
T ;p

=
ℏ
2

2m

Z

z∈ΩT

d3r
�

ΨS;n∇2
Ψ

∗
T ;p −Ψ

∗
T ;p∇2

ΨS;n

�

, (4.11)

where we applied Schrödinger’s equation to the surface wavefunctionΨS;p for the third equa-

lity, and VS is supposed to vanish within ΩT as we say earlier so that we get the final line.

Now, it can be easily seen that:

ΨS;n∇2
Ψ

∗
T ;p −Ψ

∗
T ;p∇2

ΨS;n = ∇
�

ΨS;n∇Ψ
∗
T ;p −Ψ

∗
T ;p∇ΨS;n

�

. (4.12)

This yields the following result:

⟨ΨT ;p|VT |ΨS;n⟩ =
ℏ
2

2m

Z

z∈ΩT

d3r∇
�

ΨS;n∇Ψ
∗
T ;p −Ψ

∗
T ;p∇ΨS;n

�

(4.13)

=
ℏ
2

2m

Z

z∈∂ΩT

dS
�

ΨS;n∇Ψ
∗
T ;p −Ψ

∗
T ;p∇ΨS;n

�

, (4.14)

where we applied Stokes’ theorem to get the final result, which is known as Bardeen’s transfer

matrix formula. The integral should therefore be calculated on any surface on the boundary

∂ΩT enclosing the infinite volume ΩT , and is usually taken to be a plane at half distance

between the tip and the surface.

We therefore have the transition probability between two states of the tip and the surface. To

get the full probability, we need to sum over all possible pairs of such states. As such, we get

the total current formula, also known as Bardeen’s formula:

I =
2πe

ℏ

X

n;p

�

f(ES;n − EF
S )− f(ET ;p − EF

T )
�

|Mpn|
2
δ(ES;n − ET ;p − eV ), (4.15)

where we introduced the Fermi energies of the surfaceEF
S and the tipEF

T , and the tip potential

V . The matrix elementMpn is the one defined earlier, soMpn = ⟨ΨT ;p|VT |ΨS;n⟩. We have also

introduced the Fermi-Dirac distribution f(E).

Assuming a quasi-continuous spectrum, one can take the continuous limit of the integral,

which yields:

I =
2πe

ℏ

Z
dE

�

f(E − EF
S )− f(E − eV − EF

T )
�

|M(E,E − eV )|2

× ρS(E)ρT (E − eV ), (4.16)
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where the matrix elementM(E,E−eV ) is the continuous equivalent of the matrix transition

element Mpn, and ρS and ρT are respectively the surface and tip density of states, which can

be defined as ρS/T (E) =
P

n δ(E − ES/T ;n).

Asmost STMmeasurement are done near zero Kelvin to avoid all thermal effects on the sample,

we can take the low temperature limit where the Fermi functions can be replaced by Heaviside

step functions and as such the current can be shown to become:

I =
2πe2V

ℏ

�

�M(EF
S , E

F
T )

�

�

2
ρS(E

F
S )ρT (E

F
T ), (4.17)

which is strongly reminiscent of a local form of the Julliere model of conductance ([248]),

with the added matrix transfer element that will depend on the relative location of the tip as

compared to the surface.

4.2.2 Chen’s approximation

The so-called Chen approximation [244] consists in expanding the tip wavefunction over

the set of spherical harmonics:

ΨT ;p ≈
X

β

cT ;p,βΦβ, (4.18)

where the Φ are the basis functions of the expansion, that can be factorized as Φβ = Φlm =

RlmYlm, where R is a the radial wavefunction and Y a spherical harmonic.

We will first consider the case of a single wavefunction tip ΨT ;p = cT ;p,lmRlmYlm. Since we

assumed the separation between the tip and the surface to be sufficiently large, their respective

wavefunctions follow the free particle Schrödinger equation near the separation surface:

�

∇2 − κ2
p

�

Ψ(r) = 0. (4.19)

We introduced the vacuum decay constant κp =
p

2mET ;p. One can then apply this equation

to this case for the tip and get that the radial wavefunctionsRlm are in fact modified spherical

Bessel functions of the second kind Rlm = kl(κp |r− r0|), where r0 is the position of the tip

apex atom. These functions have the following recurrence properties:

(2l + 1)kl(z) = zkl−1(z)− zkl+1(z) (4.20)

z
d

dz
kl(z) = zkl+1(z) + lkl(z), (4.21)

for any z > 0. Now, the associated Green function follows the equation:

�

∇2 − κ2
p

�

G(r− r0) = −δ(r− r0), (4.22)
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which admits a spherical wave as solution:

G(r− r0) =
exp (−κp |r− r0|)

4π |r− r0|
=

κp

4π
k0(κp |r− r0|). (4.23)

Using the Bessel recurrence relation of equation (4.20), one can show that there exists a set

of derivative operators ∂p,lm acting on the Green function to yield the Basis functions Φlm =

4π/κp ∂p,lmG. These operators are known in this context as Chen’s differentiation operators,

and they can written up to the d shell as:

Ylm s px py pz dxy dyz dx2−y2 dzx dz2

∂p,lm 1 κ−1
p ∂x κ−1

p ∂y κ−1
p ∂z κ−2

p ∂x∂y κ−2
p ∂y∂z κ−2

p

�

∂2
x − ∂2

y

�

κ−2
p ∂z∂x 3κ−2

p ∂2
z − 1

Table 4.1 – List of adimensional Chen operators up to the l=2 case

Using the Bardeen transfer matrix formula (4.13), one can show that for a purely s tip

ΨT ;p = Ck0(κp |r− r0|), where C is some normalization constant, we have:

Mpn =
ℏ
2

2m

Z

z∈ΩT

d3r
�

ΨS;n∇2
Ψ

∗
T ;p −Ψ

∗
T ;p∇2

ΨS;n

�

=
ℏ
2C

2m

Z

z∈ΩT

d3r
�

ΨS;n∇2k0(κp |r− r0|)− k0(κp |r− r0|)∇2
ΨS;n

�

=
2πℏ2C

κpm

Z

z∈ΩT

d3r
�

ΨS;n∇2G(r− r0)−G(r− r0)∇2
ΨS;n

�

= −2πℏ2C

κpm

Z

z∈ΩT

d3rΨS;nδ(r− r0)

= −2πℏ2C

κpm
ΨS;n(r0), (4.24)

where equations (4.22) and (4.19) yield the fourth line. Note that the sample wavefunction has

the same decay constant as the tip because we are studying elastic tunneling, which conserves

the energy. This is the well known Tersoff-Hamann transfer matrix formula, that will be stu-

died in depth in the next subsection, but we can already see that the matrix element is propor-

tional to the sample wavefunction at the tip position.

As a straightforward and very important consequence of this, we can compute the deriva-

tive ∂0
p,lmΨS;n(r0), where ∂0 should be understood as a derivative along the tip coordinates

r0 = (x0, y0, z0):

−2πℏ2C

κpm
∂0
p,lmΨS;n(r0) =

2πℏ2C

κpm

Z

z∈ΩT

d3r
�

ΨS;n∇2∂0
p,lmG(r− r0)− ∂0

p,lmG(r− r0)∇2
ΨS;n

�

=
ℏ
2C

2m

Z

z∈ΩT

d3r
�

ΨS;n∇2
Φlm(r− r0)− Φlm(r− r0)∇2

ΨS;n

�

= Mlm,n, (4.25)
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so that the derivatives of the sample wavefunction yield the matrix elements Mlm,n with a

pure lm tip, a result that is known as Chen’s derivative rule. A more involved derivation can

be used to show that the result still holds in the general case considered in equation (4.18),

which leads to the so-called Chen’s summation rule:

ΨT ;p ≈
X

lm

cT ;p,lmklYlm ⇐⇒ Mpn = −2πℏ2

κpm

X

lm

cT ;p,lm∂
0
p,lmΨS;n(r0), (4.26)

so that the Matrix transition element can be written in the general case as a linear combination

of the lm derivatives of the sample wavefunction, with the same coefficients as for the wave

expansion itself.

We will now focus on two particular aspects of this formula: the decay length and the expan-

sion coefficients.

The decay length

In the previous section, we have introduced the characteristic decay length κp. As the tip is

not an ideal atom, this decay length needs to be evaluated carefully as the wavefunctions are

not rigorously exponentially decaying. One needs to introduce the following integral quanti-

ties:

Σx =
1

∆z

Z
zdz =

z2max − z2min

2∆z

(4.27)

Σx2 =
1

∆z

Z
z2dz =

z3max − z3min

3∆z

(4.28)

Σy =
1

∆z

Z
log(ΨT ;p)dz (4.29)

Σy2 =
1

∆z

Z
log(ΨT ;p)

2dz (4.30)

Σxy =
1

∆z

Z
z log(ΨT ;p)dz, (4.31)

where the integrals are evaluated over the range [zmin, zmax], and∆z is the step of integration.

Note that [zmin, zmax] is a subset of the total range of the wavefunctions as the exponential

behaviour is only true asymptotically, and such evaluating an effective decay with this method

will lead to spurious results if the range of the z-values comes too close to the tip. In practice,

the cutoff zmax is taken to be half the height of the vacuum region between the tip and the

surface, so that∆z =: 2(zmax − zmin)/N , with N the total number of points in the grid. Now,

assuming a perfectly exponential wavefunction ΨT ;p = AT ;p(x, y) exp(−κpz), the following
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results can be shown:

Σxy −∆zΣxΣy

Σx2 −∆zΣ
2
x

= −κp (4.32)

ΣyΣx2 − ΣxΣxy

Σx2 −∆zΣ
2
x

=
log(AT ;p(x, y))

∆z

(4.33)
�

�

�

�

�

�

Σxy −∆zΣxΣyq
(Σx2 −∆zΣ

2
x)
�

Σy2 −∆zΣ
2
y

�

�

�

�

�

�

�

= 1. (4.34)

Therefore, one can evaluate the effective exponential parameters for an arbitrary tip using

these formulas. In practice, only thefirst formula of equation (4.32) is needed to get the effective

decay, the third formula is then used to gauge the quality of the approximation as it can be

shown to be strictly inferior to its ideal value of 1 when the tip is not perfectly exponential

(a direct consequence of the Cauchy-Schwarz inequality). The second formula can be used

to compute an effective amplitude, allowing one to perform an analytical continuation of the

exponential approximation of the tip wavefunctions above the cutoff zmax although we will

not be interested in that aspect here.

The projection coefficients

The expansion of the tip wavefunction in terms of hydrogenoid wavefunctions requires

the evaluation of the coefficients cT ;p,lm.

Obviously, carrying the projection of the wavefunction yielded by some DFT code over a lo-

calized basis will yield these coefficients, although one needs to be careful as these basis sets

are not complete over the entire space and as such the projection will not be norm-preserving.

Another way of evaluating these coefficients stems from the approximate orthogonality of the

hydrogen wave function within the augmentation sphere ΩA:

Z

ΩA

|ΨT ;p|
2 d3r =

X

lm,l′m′

cT ;p,lmc
∗
T ;p,l′m′

Z

ΩA

Φ
∗
l′m′Φlmd

3r ≈
X

lm

|cT ;p,lm|
2, (4.35)

and as such the tip density of states can be written as:

ρT (E) =
X

p

�Z

ΩA

|ΨT ;p|
2 d3r

�

δ(E − ET ;p) =
X

p

 
X

lm

|cT ;p,lm|
2
δ(E − ET ;p)

!

↔ ρT (E) =
X

p

ρT ;pδ(E − ET ;p), (4.36)

where the ρT ;p are the tip partial occupations, projected over the p band of the tip. As such,

one could define the projections as cT ;p,lm =
√
ρT ;p and therefore weight the different Chen

channels with the partial occupations. The main advantage of this method is that the partial
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occupations are a very usual output from any DFT code as they are used to define the very

commonly used partial densities of states, whereas the projections coefficients themselves

usually require more involvement as we emphasized earlier.

The last method is to consider idealized lm tips. In that case, one can take anymixture of states

such that
P

β |cT ;p,lm|
2 = 1, and the tip decay is usually fixed at unity: κp = 1 Å−1.

4.2.3 The Tersoff-Hamann approximation

As we emphasized earlier, the particular case of the pure ideal s tip Chen approximation

leads to the very well known Tersoff-Hamann approximation. In this case, we have in the

discrete case:

|Mpn|
2 =

�

�

�

�

2πℏ2C

κpm
ΨS;n(r0)

�

�

�

�

2

→ I =
8π3

ℏ
3C2e

m2

X

n

�

f(ES;n − EF
S )− f(ET ;p − EF

T )
�

|ΨS;n(r0)|
2
δ(ES;n − ET ;p − eV )

→ I =
8π3

ℏ
3C2e

m2

X

n

�

f(ES;n − EF
S )− f(ET ;p − EF

T )
�

ρS(r0, ES;n)δ(ES;n − ET ;p − eV ),

(4.37)

and in the continuous case:

I =
8π3

ℏ
3C2e

m2

Z
dE

�

f(E − EF
S )− f(E − eV − EF

T )
�

|ΨS;n(r0)|
2
ρS(E − EF

S )ρT (E − eV − EF
T )

=
8π3

ℏ
3C2e

m2
ρT (E

F
T )

Z eV

0

dEρSL(r, E + EF
S ),

where we introduced the local density of states (LDOS) of the surface ρSL(r, E) =
P

µ |Ψµ(r)|
2
δ(E − Eµ). This is the so-called Tersoff-Hamann formula, which shows

that the tunneling current is a map of the local density of states of the surface, which allows a

fast estimation of the STM images as the LDOS can be very easily evaluated within any DFT

code starting from the Kohn-Sham states. Doing a low voltage, low temperature expansion of

this previous formula yields:

I ≈ πeV ρT (EF )ρ
S
L(r, EF ) (4.38)

G ≈ πeρT (EF )ρ
S
L(r, EF ), (4.39)

The last line defines the local Tersoff-Hamann conductance at low temperatures, a formula

that is formally identical to the local Julliere model. As such, this is the formula commonly

used to compute STM images at the Tersoff-Hamann approximation within DFT, as they are

in this case nothing but contour maps of the local density of states (up to a normalization

factor which is inaccessible anyway as we have emphasized earlier).

– 91 –



Chapitre 4

4.3 Methods

The calculation is done through a personal Python implementation of the previous me-

thods, that takes however extensive inspiration from the seminal bSKAN code of Hofer et

al. ([249, 250]) that is the standard for the simulation of STM images within and beyond the

Tersoff-Hamann approximation. As such, exactly like bSKAN does, the code uses as an input

wavefunctions from VASP that are Fourier transformed along x and y, using the STM module

implemented within VASP itself. This leads to several numerical simplifications, and most no-

tably, the Bardeen transfer matrix integration becomes analytical which massively reduces the

numerical cost of the Bardeen method (for more details, see [250]). Our implementation makes

an extensive use of the opt_einsummodule of Python ([251]), that allows for very efficient

parallelised and vectorized calculations of tensor contractions for an extremely fast evaluation

of the current using the massive Fourier matrices that arise as a result of the calculation of the

transfer matrix elements within the Fourier basis (several hundreds of GB of RAM are requi-

red for a Bardeen transfer matrix calculation). The Fourier transformation is carried over a 16

Å range with steps of 0.1 Å, so over 160 points, starting from a distance of 7 Å above the top

of the molecule down to the metallic surface ; and a distance from 2 Å to 18 Å above the apex

for the tips, so that the apex of the tip and the top of the sample are separated by 9 Å. Note

that the HS state is shifted 0.2 Å higher than the LS state in the supercell. For consistency, the

molecule is converged using exactly the same parameters as for the other chapters so we refer

once again the reader to the first part for the details of the DFT calculation.

As we are interested in a magnetically non-trivial system, we have considered two tip

materials : tungsten (non-ferromagnetic) and iron (ferromagnetic). We have tried to consi-

der several geometries, as the shape of the tip is known to play a major role on the resulting

image [252] : a large commensurate system sharing its lateral dimensions with the molecular

supercell, so 20.4×20.4 Å2. This system is built from a 5x5x3 slab of metal topped with a metal

pyramid, which is therefore not a periodic system within the supercell although this is per-

fectly acceptable as the Bardeen formula only requires the wavefunction at the tip apex and

these vanish way before the edges of the surface so that the calculation is strongly agnostic to

such finite size effects. We have also tried to use the smaller supercell geometry that is used

by Mandi et al. in their own pioneering study on post Tersoff-Hamann methods of calcula-

tion [252]. However, we had memory related numerical issues with the latter as the required

k-point sampling to obtain meaningful results led to excessive computationnal costs for the

image simulation. As such, we will only use the commensurate tips for this paper, which have

the advantage of leading to diagonal Bardeen matrix elements in the Fourier basis [250] and

as such to significantly reduced computational costs for the complete Bardeen method along

with being in accordance to the theoretical result for an integration over an infinite separation

surface.
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Figure 4.3 – Comparison of the Tersoff-Hamann (s tip) constant current STM images for the
HS state on the left and the LS state on the right, along with their corresponding constant
height image on the bottom. All lengths are in Å, the current value for the constant height
image is in arbitrary units. Note that as we said earlier, there is a shift in height between the
HS and LS molecules by 0.2Å , so that the axes on the constant current images are the same for
both spin states up to said shift. Please note that the black dot on the picture is an unfortunate
byproduct of the code but it does not affect the calculations in any way.

The images are in accordance with the previously established results [119, 173], with the

two lobes of the FePhen molecule clearly visible both on the height and current images, sho-

wing a greater separation in the HS state in contrast with the LS state. As one can easily see, the

current images are clearly much more detailed than the height images, so that only focusing

on the first appears as a justified choice. The lobes of maximal height on the constant current

images are separated by 5.3 Å on the HS image and by 4.6 Å on the LS image, although the

difference is clearly not as striking as on the experimental results. Using the constant height

images, one can see that the value of the current is higher in the HS state (2.3× 10−8 a.u.) than

in the LS state (7.2 × 10−9 a.u.) at a similar distance from the sample. Nonetheless, there are

still noticeable differences between the experimental and theoretical images owing both the

experimental conditions that we have already mentioned but also to the theoretical method
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itself as the Tersoff-Hamann formula leads to excessively detailed pictures because of the per-

fect s tip. As such, we will now go beyond this approximation by using the Chen derivative

rule for s,p and d tips.

4.6 Chen approximation

We will now extend our previous results by computing the images within the Chen ap-

proximation [244]. We will start with pure p and d tips, and then compute the images for the

more realistic tips that we have introduced earlier.

4.6.1 Pure tips

We will now give the images for all the pure s, p and d tips. The p tip is defined as the

weighted tip contructed from the three p states ΨT = 1√
3
(px + py + pz) and the d tip from

the five d states ΨT = 1√
5
(dxy + dyz + dxz + dx2−y2 + dz2). The images were taken using the

same parameters than for the Tersoff-Hamann images.

Figure 4.4 – Comparison of the p tip constant current STM images for the HS state on the left
and the LS state on the right, All quantities are in Å.

As on can see, the s tip and p tip images show very strong similarities at first glance, with

similar appearance and organization of the corrugation lobes in the HS and LS states. A very

convenient way to quantify this is to compute the correlation factor between these images

[253, 254]. Doing so, we get a value of 0.966 between the HS images and 0.974 between the

LS images for both tips, which is appreciably close to 1 and therefore shows their similarity.

Note however that this value is skewed towards 1 by the background which cannot be entirely

neglected during this calculation. The separation between the lobes of maximal height is of
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5.3 Å in the HS state and 4.6 Å in the LS state. These results are indeed very similar to what

was obtained with the s tip, and as such the ideal balanced p tip is quite similar to the ideal s

tip.

Figure 4.5 – Comparison of the d tip constant current STM images for the HS state on the left
and the LS state on the right. All quantities are in Å.

In this case, the STM images are still similar to the previous results but one can start to

clearly note the difference with the previous cases, with the corrugation lobes being smaller

than for the previous tips. In fact, this appears to be a general trend, as the p tip corrugation

lobes were also smaller than for the s tip (see 4.6). The correlationmatrix yields a factor of 0.930

in the HS state and 0.954 in the LS state, which is indeed smaller than for the p tip indicating

less agreement with the s tip, although this is still indicative of a strong overlap between the

images. Besides, the correlation between the p tip and the d tip yields a value of 0.941 in the HS

state and 0.958 in the LS state, showing that the d tip is slightly closer to the p tip than to the s

tip but not by a truly significative margin. The separation between the lobes, especially in the

HS state, is however the most clearly visible here and is quite reminescent of the experimental

result, with a value of 5.6 Å in the HS state and 5.3 Åin the LS state which are larger values

than for the previous tips.
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Figure 4.6 – Comparison of the s,p and d tip constant current STM images for the HS state on
the left and the LS state on the right.

As a sidenote, the correlation between the HS and LS images themselves yield a value of

0.941 for the s tip, 0.929 for the p tip and 0.916 for the d tip, showing that the images from both

spin states still show a fair amount of similarity. Beyond obvious background contribution,

this was to be expected as the difference in geometry between both systems is not massive

and as such there is a fair overlap with most of the molecule beyond the topmost points of the
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main lobes. As such, the value of the correlation is skewed towards 1 because of these points,

points stemming from an idealised tip and that are clearly visible on the theoretical images

but not on the experimental images which shows a clear difference between both spin states.

Hence, going beyond the idea of a perfect tip towards a more realistic mixture of states such as

the one used within the total Chen derivative formula is a natural step as it could yield results

in better accordance with the litterature by taking into account the actual electronic structure

of the tip.

4.6.2 Realistic tips

Wewill now proceed with calculations of the STM images using Chen’s formula. However,

because of numerical issues, we could not compute these images on a grid as dense as for the

previous cases, and as such all images within this part were computed on a coarser grid than

before and then interpolated back to the larger grid. We realize that this is not ideal as it

will lead to blurrier images, so that the comparison with the previous images is going to be

imperfect, although the loss in quality will remain limited as we will see.

Projection coefficients

Unlike the previous cases, the use of realistic tips within the Chen approximation leads

to several changes from the previous idealized cases. Indeed, we now have to explicitely take

into account the electronic structure of the tip. At the Chen approximation level, we do need

to reconstitute the tip wavefunctions to compute the decay length for all eigenstates, which is

done by using the formula previously introduced and taking the maximal value of the resul-

ting decay parameter over the xy grid as this will naturally correspond to the vertical direction

under an ideal tip. However, we do not require any more information from these wavefunc-

tions themselves as we do not need to carry a numerical integration of the Bardeen transfer

matrix elements. Hence, only the projections coefficients and the eigenvalues truly need to be

stored and used as is. As such, we will begin with a quick comparison of the two main ways to

compute these coefficients, which are to take the direct projection coefficients from the DFT

code, which is the theoretically exact method, or the square root of the tip partial occupations

which is an approximation over the previous case as we will neglect the relative phases bet-

ween. Very conveniently, VASP returns both sets of data in the same file so we can readily

evaluate both approaches without any supplementary calculation. Note that energy conser-

vation between the tip and surface eigenvalues is assured by the use of a Gaussian smearing

of the tunneling matrix elements, with a width of 0.01 eV:
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Figure 4.7 – Comparison of the Chen rule constant current STM images for an iron tip in the
HS state on the left and in the LS state on the right, with complex projection coefficients on
the top and population projection coefficients on the bottom. Note that the green band at the
edges of the images is a purely numerical effect

As one can easily see, there are indeed a few differences between both methods, as it seems

that the population projection coefficients slightly overestimates the overlap between both

lobes as compared to the complex coefficients. We can compute correlation factors of 0.958 in

the HS state and 0.973 in the LS state, which are somewhat high values compared to what we

saw earlier but one should remember that the images required an interpolation, which blurs

the fine details so that the correlation gets skewed towards 1. Still, one can easily see that

both images do show a clear amount of similarity. As both approaches can be evaluated at the

same time in our case, since VASP yields both sets of coefficents within the same file, we will

be only interested in the complex coefficients as they don’t incur any approximation in the

projection of the wavefunction over the atomic orbitals beyond the use of an augmentation

cutoff for the radial integration. As we have noted earlier, this does imply that the projection

coefficients are not normalised, and therefore they need to be renormalized before their use in

Chen’s formula.
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Iron and Tungsten tips

Wewill now proceed with a comparison between the images obtained with an iron tip and

those obtained with a tungsten tip:

Figure 4.8 – Comparison of the Chen rule STM images for the HS state on the left and the LS
state on the right, with an iron tip on the top and a tungsten tip on the bottom.

Both tips show a great similarity, with the major difference being that the overlap between

the lobes appears to be bigger with the iron tip than with the tungsten tip although the sepa-

ration remains the same. This leads to a correlation factor of 0.947 in the HS state and 0.967

in the LS state. Besides, both images show a great similarity with the pure iron d tip image,

so that we have correlation values with the d tip of 0.952 for the Fe tip and 0.967 for the W

tip in the HS state, and 0.976 for the Fe tip and 0.967 for the W tip in the LS state. As both

Iron and Tungsten have d states near the Fermi energy, such a result is not surprising as the

tips should be mostly with a d character which is exactly what we see on these images, but it

is interesting to see that the ferromagnetic character of the iron tip does not really affect the

images as compared to a magnetically trivial tungsten tip.
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As one can easily see from the images, the Bardeen images are in great agreement with

the Tersoff-Hamann s tip images and the experimental results, with a correlation in the HS

state of 0.950 between the Fe tip and the s tip, and 0.935 between the W tip and the s tip. The

tip themselves show slight discrepancies, with a correlation of 0.894 between the Fe tip and

the W tip, as one can see that the lobes are more localized with the Fe tip that is closer to

the s tip image as compared to the W tip where they are more diffuse. In the LS state, the

correlation between the Fe tip and the s tip is 0.946, whereas it has a value of 0.972 between

the W tip and the s tip and 0.985 between the two tips themselves. As such, both tips show

a great similarity in this case, although it is the W tip that is closer to the Tersoff Hamman

result with more diffuse lobes, however not by a significant amount. Hence, just as in the Chen

case, the electronic structure difference does not play a large role in the images, which are in

strong agreement with the Tersoff Hamann images. This result can easily be understood by

the fact that we took a large separation length between the tip and the surface, so that we are

approaching the large distance limit of the Bardeen approximation which is identical to the

Tersoff-Hamann formula [255], whereas the Chen formula leads to corrections that certainly

are only meaningful at shorter distances in our case and vanish very fast just as we said ear-

lier. Hence, to properly demonstrate this behaviour, one could redo these calculations with

smaller separation distances and see if the results are converging towards the Chen images,

although time constraints prevented us from doing so within this thesis and this is still a work

in progress.

4.8 Conclusion

In this part, we have studied the simulation of STM images beyond the Tersoff-Hamann ap-

proximation. We have developed a personal implementation of the calculation of STM images

within the Bardeen transfer matrix approach that is interfaced with the VASP code, based on

the influential bSKAN code [249] which is the most used code for this purpose. We first star-

ted by recomputing the images within the Tersoff-Hamann approximation, showing that our

results broadly agrees with the previously available experimental and theoretical litterature

as our images clearly show the strength of the Tersoff-Hamann approximation in reproducing

the general features of the STM images, with a visible set of two lobes being separated by a

larger distance in the HS state compared to the LS state, although the excessive detail and cor-

rugation leads to noticeable diffrences with the experimental results. As such, we computed

the images within the Chen approximation, starting with pure p and d tips, and showed that

these images have great similarities with the s tip, although one can clearly see corrugation

differences on the images that may impact the eventual experimental images depending on

the nature of the tip. The exact Chen approximation with a ferromagnetic (iron) and non-

magnetic tip (tungsten) yield results in great similarity with those of a d tip, in accordance
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with their electronic structure, whereas the Bardeen approximation shows a great accordance

with the Tersoff-Hamann case as one could have expected from the large separation that we

have used between the tip and the surface. Howerver, we note a lack of apparent difference

between these two tips, indicating that the use of a ferromagnetic tip should not in principle

bring much diffrence on the STM images over the non-ferromagnetic one in our case, although

this is awaiting experimental confirmation.
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Conclusion and Perspectives

In this Thesis, we have used ab-initio methods, mainly density functionnal theory within

the VASP code, to extend the theoretical physics of spin crossover molecules on metallic

surfaces.

In a first part, we have studied the fluorine doping of a Fephen molecule in a free phase or

adsorbed on a Cu(001) substrate. Starting from a study of the energetics of the spin states,

we have observed that this doping leads to an inversion of the spin state which then stays in

the high spin state at low temperature, whether the molecule is in the gas phase or absorbed

on the metal surface. Looking at the geometry of the system, we show that while the overall

geometry of the complex is not affected by the doping, we observe a clear elongation of

the Ligand-metal bonds which leads to a stronger deformation of the central octahedron of

the complex. Such elongations can only weaken the Fe-N bond, and therefore decrease the

electrostatic field of the ligands at the level of the central atom. As such, this should lead

to a reduction of the octahedral ∆ and therefore stabilize the HS state with respect to the

LS state as we saw earlier. This is demonstrated by computing the densities of state, which

show a clear reduction in the separation between the eg and t2g peaks, and therefore of

the octahedral ∆, which is more noticeable in the HS state. The combined use of the Bader

analysis of the charge distribution and a point charge model demonstrates that the doping

leads to a wide electronic rearrangement within the molecule radiating from the C-F bonds

in the Phen Ligand and caused by the high electronegativity of the fluorine atoms, which

ultimately increases the charge of the nitrogen ions in the central octahedron. Thus, the

electronic repulsion with the octahedral centre is increased, leading to a stretching of the

bonds and hence to the observed result. We have also used the Nudged Elastic Band (NEB)

to compute the transition path and show that the transition barrier is reduced in the doped

molecule, so that the reversible transition from the HS state to the LS state should be easier

in principle.

As such, our doping procedure potentially opens a new way to manipulate the spin crossover

phenomenon in molecules on metallic surfaces, and most notably to fine tune the balance

between the HS and LS states by partially fluorinating the system in order to reduce the

amount of energy required to trigger the SCO to create efficient spintronical devices, although

this is still awaiting for an experimental realization and confirmation as the energetics of
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spin crossover systems is a fairly complex matter to simulate properly. To go further, we

were interested in studying other doping compounds, beginning with the other halogen

atoms beyond Fluorine. Early results seem to indicate a competition between the decreasing

electronegativity of the successive halogens which restabilizes the LS state, and the increasing

steric hindrance induced by the size of the doping atoms which stabilizes the HS state

by causing widespread stretching across the molecule. However, we are still awaiting for

experimental data about the realizability of said systems before truly proceeding any further.

We have also computed the phonon spectrum within the harmonic approximation in the

undoped and doped system, using a finite difference method, and we showed that in both

cases the spin crossover phenomenon is mainly linked to frequencies associated with the

N-C-S and Fe-N bonds. We do observe a softening of these modes in the doped molecule,

which together with the reversal of the spin states leads to the stabilization of the HS state

against the LS state at all temperatures. This was to be expected as entropy will in most cases

stabilize the former over the latter as we have shown earlier, so that the molecule always

remains in the HS state. The calculation of of the phonon spectrum in the undoped molecule,

on the other hand, clearly shows an inversion of the spin state at a transition temperature of

167 K, appreciably close to the experimental result, as the stronger vibrationnal enthalpy in

the HS state than in the LS state drives the transition from one state to the other. The use of

the Slichter-Drickamer model along with the thermodynamical quantities derived from the

previous calculation allowed us to compute the evolution of the HS fraction with Temperature,

with decent agreement to the available experimental results. However, our calculation of

the phonon spectrum beyond the harmonic approximation is still highly inconclusive, and

as such, we would like to go further in that direction. First of all, we were interested in

other methods to compute the phonon spectrum beyond the harmonic approximation. Most

notably, we also tried to use the so-called TDEP method ([202]), which relies in a linear fit of

AIMD extracted displacements and forces in order to extract the phonon spectrum. However,

the convergence of the linear regression parameters to the phonon spectrum proved to be

extremely slow with our large molecule, even when using regularization techniques, so that

we could only obtain highly inaccurate spectra. We also tried to use the so-called SCAILD

method ([256]), with an equal lack of success as the method relies on a self-consistent

calculation of phonon displacement that diverged very easily in our case, leading to highly

inaccurate frequencies. As such, we are still investigating for other ab-initio methods in order

to compute the phonon spectrum at finite temperature, notably near the transition point as

this is an entropy mediated phenomenon as to the extent of our knowledge no one has ever

carried such as study on the intramolecular phonons of the FePhen molecule, most of the

literature available being on intermolecular interactions (which is understandable, as these

are the main driving force behind the cooperativity parameter which plays an essential role

in the shape of the spin-transition phenomenon as we have seen with the Slichter-Drickamer

model, see for example ([257])).
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Conclusion and Perspectives

The second part of this Thesis dealt with the simulation of X-Ray absorption within the

spin crossover compounds, which is one the most used tool to characterize spin crossover

compounds, along with other examples such as scanning tunnel microscopy and Mossbauer

spectroscopy. We have therefore implemented the calculation of XAS and XMCD within

VASP, using the dipolar approximation, in order to compute the L2,3 edge absorption in the

iron atom of the FePhen molecule. we obtained results in qualitative accordance with the

already available experimental results, with however issues related to the intensities of the

absorption peaks that are known to depend on the influence of the multiplet structure or

electron-hole interaction which we have neglected thus far. However, VASP has implemented

the static calculation of electron-hole interactions by allowing the creation of a static hole

within the core. Using this, we show that after relaxation the valence shell electrons shield

the created hole which therefore leads to a strong reduction of the magnetic moment of

the Iron atom and therefore to a spurious modification of the absorption signal. We have

also carried an analysis of the resulting signal in terms of the density of states, showing

within our implementation of XAS the well-known formula relating absorption spectra and

densities of states so that it is possible to know which states contribute to the XAS signal

by analyzing the structure of the DOS, but also to directly compute the absorption spectrum

from the densities of state of the valence electrons under some assumptions. We have also

shown that the incidence angle of the polarized beam has a direct impact on the XMCD

signal, and that this can be directly correlated to the local deformation of the octahedral

complex as it lifts the degeneracy between the 3d states. Similarly, we have shown that the

magnetisation direction also has an impact on the XMCD signal and therefore its relation

to the magnetic anisotropy of the Iron atom. We have therfore computed the magnetization

blocking temperature of the system, and shown that the sum rules are well respected for

all directions of the magnetization as long as one adds the oft-neglected contribution of the

magnetic dipole tensor, that we have also implemented within VASP. Once again, these last

predictions are awaiting for future experimental confirmation. As such, a natural extension

to this work would be going beyond the dipolar approximation, by adding quadrupolar

corrections to the absorption calculation, whose relevance in some systems has already been

demonstrated ([258]) and for which sum rules have also already been computed ([259]).

Interestingly, it is possible to relate the magnetic dipole tensor to the quadrupole contribution

([260]) so that implementing it would give another way of computing the corrections to the

sum rules. Beyond this, we have also started to implement the calculation of X-ray spectra

within a so-called Ligand Field DFT (LFDFT) approach, as it provides a convenient way to

take into account the multiplet structure within the XAS spectra calculation ([261]) that is

a requirement for more accurate results as we have already emphasized. Besides, we were

also looking forward to add electron-hole corrections based on the seminal work of De

Dominicis and Nozières ([262]) on the treatment of the scattering of conduction electrons

by the hole created during X-Ray absorption, so that we can fully take into account the two
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major contributions (multiplet and eletron-hole) to the spectrum that we have neglected.

Finally, we implemented the calculation of STM images within and beyond the Tersoff-

Hamann approximation, interfaced with VASP and directly based on the bSKAN code of

Hofer et al. ([250, 249]). This allowed us to compute the Tersoff-Hamann images, with great

accordance wth the already available theoretical and experimental literature, but also to go

beyond the Tersoff-Hamann approximation and use the Chen approximation to show the

influence of diffrent tip symmetries on the spectra. While pure tips of p and d character show

great similarities at first glance to the Tersoff-Hamann formula, we can clearly see differences

in the corrugation depending on the tip symmetry. Such diffrences may be observed in an

eventual experimental STM investigation of a single FePhen molecule, as most available

results were taken at a large distance from the surface in order to see clusters of molecules,

conditions under which the Tersoff-Hamann limit is perfectly valid so that no supplementary

insight could be obtained from other more advanced approximations. The simulation of

realistic iron and tungsten tips within the total Chen derivative formula show as expected

images in great accordance with a perfect d tip, although we also noted an interesting lack

of difference between the ferromagnetic iron tip and the non-magnetic tungsten tip. This

could be seen as surprising given that both the sample and the tip are magnetic, and as such

one could have expected some spin-polarized effects to arise with the iron tip. The images

within the Bardeen approximation are in great accordance with the Tersoff-Hamann result,

as expected given the large separation between the tip and the surface, and we are still

investigating the short range limit to see if we are able to reproduce the Chen corrections.

A natural next step in the simulation of these STM images is to use a multiparticle approach

such as the one based on the Landauer-Büttiker formula [263], which was already leveraged

with success in order to compute STM images [264] with better accuracy than the full Bardeen

formula [265]. Extension beyond the Landauer-Büttiker formula based on the Meir-Wingreen

formula [266] within a non equilibrium Green Function framework (NEGF) [267] have also

been studied, most notably within the context of inelastic tunneling spectroscopy [268] which

could be of huge intrest in our case as this can be used in principle to detect and analyse

vibrationnal modes excited by tunneling electrons and therefore provide another means to

study the phonon spectrum of these molecules. Naturally, we are also investigating scanning

tunnel spectroscopy (STS), expecially with the idea of trying to reproduce and study the well

known Kondo effect observed in certain SCO compounds on metallic surfaces ([242]) that has

been the basis of a widespread body of work linked to its potential functionalization for e.g.

memristive components ([21]), although a one-particle approach such as the Bardeen formula

might not be sufficient in this case, instead requiring a full NEGF based calculation.
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Appendix

A The point charge model

A point charge model is a simple model neglecting all hydridizations, that allows one to

qualitatively understand the d orbital splitting caused by an arbitrary ligand field. In this mo-

del, all ligands are assumed to be point-like charges which create a Coulomb potential which

interacts with the central metal orbitals. As we are interested in the octahedral eg − t2g split-

ting, it is necessary to rotate the global frame of reference to the local frame of reference, i.e.,

to find the frame that is maximally oriented along the ligands as the octahedral eg and t2g are

only well defined with respect to a local frame along the atomic bonds. Working in said local

frame, it is possible to expand the ligand field potential as:

V (r) =
X

i,l,m

(−1)m
4πqi
2l + 1

Y −m
l (r)Y m

l (Ri)
rl<
rl+1
>

, (40)

with qi the charge of the ligand i and Ri the vector between i and the central metal, and the

Y m
l are the spherical harmonics. The r< and r> should be understood as a shorter notation

formin(|r|, |Ri|) andmax(|r|, |Ri|).

We can then compute the overlap matrix elements of the iron 3d orbitals:

Mm,m” = ⟨Φm
2 |V |Φm”

2 ⟩ =
Z X

i,l,m′

(−1)m+m′ 4πqi
2l + 1

ϕ(r)2Y −m
2 (r)Y −m′

l (r)Y m′

l (Ri)Y
m”
2 (r)

rl<
rl+1
>

dr,

(41)

where the Φm
l are the nlm orbitals wavefunctions, with here n = 3 and l = d = 2, the n index

being implicit. After some calculations, this can be written as:

Mm,m” =
X

i,l,m′

(−1)m+m′ Z

a0

qi
216 Xi

r
4π

2l + 1

 
2 2 l

0 0 0

! 
2 2 l

m” −m −m′

!
(42)

×

�

1

X l
i

γ(l + 7, Xi) +X l+1
i Γ(6− l, Xi)

�

,
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where Z = 6.25 is the shielded atomic number of iron according to Slater’s rules [269], a0 the

Bohr radius and Xi = 2ZRi/3a0.

We use the Wigner-3j symbols, defined from the Clebsch-Gordan coefficients as:

 
l1 l2 l3

m1 m2 m3

!
=

(−1)l1−l2−m3

√
2l3 + 1

⟨l1 m1 l2 m2| |l3 (−m3)⟩ . (43)

They have wholesome properties such as:

— −li ≤ mi ≤ li

— (−m3) = m1 +m2 .

— l1 + l2 + l3 must be an integer, an even integer if m1 = m2 = m3 = 0.

— |l1 − l2| ≤ l3 ≤ l1 + l2

This allows us to restrict the summation over l = 0, 2, 4 andm′ = m−m”.

We used the lower incomplete gamma function γ(s, x) and higher incomplete gamma

function Γ(s, x), defined as:

γ(s, x) =

Z x

0

ρs−1exp(−ρ)dρ (44)

Γ(s, x) =

Z ∞

x

ρs−1exp(−ρ)dρ. (45)

We can then diagonalize theM matrix and extract the eignevalues and their eg and t2g mixing

parts.We have to be careful about the fact that thematrixM is in the spherical harmonics basis

set, while the eg and t2g orbitals are in the cubic harmonics set. For convenience, we directly

define the transformation matrix between the spherical harmonics and the cubic harmonics:

U =



















i√
2

0 0 0 −i√
2

0 1√
2

0 −1√
2

0

0 0 1 0 0

0 i√
2

0 i√
2

0
1√
2

0 0 0 1√
2



















, (46)

and we will directly work on the transformed matrix M ′ = UMU †, with the t2g being the

m = −2,−1, 1 states and eg the m = 0, 2 states.
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Appendix

B Note on the Magnetic dipole operator

It is well knwon that the contribution of Tz always vanishes for a perfect Oh symmetry

complex of a 3d transition metal without spin-orbit coupling. In order to demonstrate this, we

first note that in that case the magnetic dipole moment can be rewritten as:

⟨T̂z⟩ = −4

r
π

5

X

i

ms,i⟨i|(Ŷ 0
2 )|i⟩ (47)

= −2

r
π

5

X

u,d

(⟨u|(Ŷ 0
2 )|u⟩ − ⟨d|(Ŷ 0

2 )|d⟩), (48)

where the index i runs over all the electrons of the ground state, and u, d runs over the up and

down populations respectively. For a d6 Fe2+ complex, we now need to consider the ground

state configuration in both spin states:

— In the LS state, the ground state corresponds to a closed t2g subshell. In that case, the

magnetic dipole operator is trivially vanishing as the two spin contributions that are

summed over are the same up to the spin sign.

— In the HS state, the ground state can be constructed by half-filling all five d orbitals with

the same spin direction, then filling with an equal probability one of the three t2g orbitals

with an electron of opposite spin. Sum rules over the Clebsch-Gordan coefficients can

be used to show that:






P
m C2,m

2,0,2,m = 0

2C2,−1
2,0,2,−1 + 2C2,1

2,0,2,1 + C2,2
2,0,2,2 + C2,−2

2,0,2,−2 = 0.
(49)

Using the definition of the d orbitals and equation (3.25), it can easily be seen that the

majority spin contribution to the magnetic dipole operator is proportional to the first

line, whereas the minority spin is proportional to the second line. As such, the magnetic

dipole tensor vanishes exactly in this case.

When the spin-orbit interaction is taken into account, the moment still vanishes in the LS

state as the two spinor directions are effectively degenerate in that case and we can therefore

use a very similar reasoning than in the non-relativistic case. The case of the HS state is much

more complex, and it can be shown that the magnetic dipole tensor takes a non-vanishing

value for certain ground state geometries, including the d6 geometry of Fe2+ [240]. With this

in mind, we computed the value of the magnetic dipole moment in our molecules with (SO)

and without (NSO) the spin orbit:
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Molecule NSO SO

LS (surface/gas) 0 0

HS (surface) -0.091 -0.101

HS (gas phase) -0.150 -0.161

Table 2 – Value of Tz in the molecular systems in the HS and LS state (in µB).

As expected, the magnetic dipole operator vanishes in the low spin state. For the high spin

state, we immediately note that the moment is superior in the gas phase than on the surface,

but most importantly that the operator does not vanish even without spin-orbit, and the spin

orbit contribution is minimal. To rationalize this apparent contradiction, we need to recall

that our previous reasoning was only valid for a perfect octahedral geometry, and that the

deformation of a real complex is often non-negligible especially in the HS state. Distortion is

known to play a noticeable effect on the features of x-ray absorption spectra (see for example

Ref. [270]), and therefore it is of no surprise that it should influence the value of Tz (this was

already noted, but not shown explicitly, in [219]). Informally, distortion breaks the ideal sym-

metry between the d-states that is observed in Eq. 47, and as consequence the sum rules of

Eq. 49 are no longer applicable. Instead, each state is now a mixture weighted by the PAW

projections such as in equation Eq. 3.26, and there is no a priori reason for said sum to vanish

when both spin directions are not degenerate such as in the HS state, even in the absence of

SOC. In order to give a better illustration of this phenomenon, we will quantify the "amount"

of deformation of these systems away from their ideal geometry. We need first to optimally

rotate and rescale our system before comparing it to a reference geometry. This is the essence

of the so-called extended orthogonal Procrustes algorithm [271]. As a short summary, assume

a set of points u and a reference set of points v (the molecular octahedral coordinates and an

ideal octahedron coordinates respectively in our case). An obvious way of defining a "distance"

to quantitatively compare these structure is to carry a root median square displacement calcu-

lation between these two structures, taking into account the fact that both systems need to be

properly rescaled together to have an accurate comparison. Then, we can recast the associated

least-square deviation problem as a search for the ideal rotationR and scale factor c between

u and v, so that we can write the cost function associated to this RMSD calculation as:

L(θ,Φ) =
1

2
||v − cR(θ,Φ)u||2,

that needs to be minimized over the set of angular variables (θ,Φ) and c. For the rotation

part, the solution can be found ([271]) by computing the singular value decomposition of the

covariance matrix H = u
T
v:

H = UΣV
T → R = VΣ

′
U

T,
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Appendix

where Σ
′ is a 3x3 diagonal matrix with diagonal elements d1 = 1, d2 = 1 and

d3 = sign(det(VU
T)), which is used to enforce the positive definiteness of the deter-

minant of the rotation matrix, so that we always have a proper transformation. For the scale

factor, using the definition of the matrix norm ||A|| = Tr(ATA) in the previous formula for

the RMSD cost function, one can show ([271]) that the minimization yields the following

result:

c =
Tr(uT

R
T
v)

Tr(uTu)
. (50)

Applying these to our case, we can obtain a quantitative estimate of the deviation of the mo-

lecular geometries from the ideal octahedral geometry. We also add a deviation to an ideal

tetrahedral geometry by comparing it to an imperfect tetrahedron using the 4 shortest ligand

bonds in our molecular octahedron (as the average bond length in a tetrahedral complex is

shorter than for an octahedral complex):

HS (gas phase) HS (surface) LS (gas phase) LS(surface)

Octahedral Loss 0.016 0.011 0.002 0.002

Tetrahedral Loss 0.044 0.048 0.082 0.147

Ratio Oct/Tet 0.363 0.229 0.024 0.014

Table 3 – Value of the Loss function in the molecular systems (in Å2) with respect to an ideal
octahedral and tetrahedral geometry, and ratio between the two values.

We can see that the octahedral RMSD is an order of magnitude higher in the high spin

state than the low spin state, and the same applies to the ratio between the octahedral and

tetrahedral RMSD. As such, not only is the geometry more strongly deformed in the high spin

state than in the low spin states, the non negligible ratio between the octahedral and tetrahe-

dral RMSD in the HS state shows that the absolute deformation away from the ideal case is

sizeable. Besides, the deformation in the HS state is clearly larger in the gas phase than when

the molecule is adsorbed on the surface. It is therefore of no surprise that the magnetic dipole

operator does not vanish in this case, even without spin-orbit corrections. However, this ap-

proach is quite rough as it "averages" over all the angular and length distortions and therefore

it will not be able to discriminate between the finer details that characterize distortion, and

as a consequence the exact dependence of the magnetic dipole moment with the value of the

RMSD is highly non-trivial.
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C Relation between XAS and local DOS

It is interesting to note that the XAS can be shown to be directly related to the iron 3d

DOS, as noted for example in [272]. In our formulation, the relation takes a very simple form.

First, we will need to use the position representation of the transition operator. Using the

Schroedinger Equation, one can easily show that the HamiltonianH and the position operator

rµ follow the commutation relation [rµ, H] = iℏpµ/me. This allows us to rewrite the cross

section as:

σµ(ω) = 4παℏω
X

M,n,k,s

�

�

�

�

�

X

m′

CJ,M
ℓ′,m′,1/2,s⟨n,k, s|rµ|ℓ′,m′⟩

�

�

�

�

�

2

δ(ℏω − ϵnks + ϵJ).

Note that we used here the fine-structure degeneracy of the ϵJM = ϵJ over the set of M that

was not relevant thus far for this study. We can then expand the squared norm as:

σµ(ω) = 4παℏω
X

M,m′,m′′

n,k,s

CJ,M
ℓ′,m′,1/2,sC

J,M
ℓ′,m′′,1/2,s⟨n,k, s|rµ|ℓ′,m′⟩⟨ℓ′,m′′|rµ|n,k, s⟩ (51)

δ(ℏω − ϵnks + ϵJ)

= 4πα
X

M,m′,m′′

n,k,s

(ϵnks − ϵJ)C
J,M
ℓ′,m′,1/2,sC

J,M
ℓ′,m′′,1/2,s⟨n,k, s|rµ|ℓ′,m′⟩⟨ℓ′,m′′|rµ|n,k, s⟩

δ(ℏω − ϵnks + ϵJ),

where we rewrote ℏω as ϵnks−ϵJ thanks to the delta function as we will need it for a following

approximation. We will sum over the ℓ+1/2 edge σµ
ℓ+1/2(ω) and ℓ−1/2 edge σµ

ℓ−1/2(ω). To do

so, we first need to shift them together as both spectra have different core energy references.

We arbitrarily take the ℓ+1/2 edge, and shift it by∆ωJ = (ϵℓ−1/2−ϵℓ+1/2)/ℏ. Doing so yields:

X

J

σ
µ
J (ω) ≈ 4πα

X

J,M,m′,m′′

n,k,s

(ϵnks − ϵℓ−1/2)C
J,M
ℓ′,m′,1/2,sC

J,M
ℓ′,m′′,1/2,s (52)

⟨n,k, s|rµ|ℓ′,m′⟩⟨ℓ′,m′′rµ|n,k, s|⟩δ(ℏω − ϵnks + ϵℓ−1/2),

where we neglected the variation of ϵJ with respect to ϵnks, because the core energies are

located at several thousands of eV below the Fermi energy compared to our EXAFS range of

a few hundreds of eV at the highest, and as such we will now write ϵℓ−1/2 = ϵC . Now, we can
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use the orthogonality property of the Clebsch-Gordan coefficients:

X

J,M

CJ,M
ℓ′,m′,1/2,sC

J,M
ℓ′,m′′,1/2,s = δm′,m′′ (53)

X

m1,m2

CJ,,M
ℓ1,m1,ℓ2,m2

CJ ′,M ′

ℓ1,m1,ℓ2,m2
= δJ,J ′δM,M ′ ,

and write:

X

J

σ
µ
J (ω) = 4πα

X

m′,n,k,s

(ϵnks − ϵC)⟨n,k, s|rµ|ℓ′,m′⟩⟨ℓ′,m′|rµ|n,k, s⟩δ(ℏω − ϵnks + ϵC)

(54)

= 4παℏω
X

m′,n,k,s

⟨n,k, s|rµ|ℓ′,m′⟩⟨ℓ′,m′|rµ|n,k, s⟩δ(ℏω − ϵnks + ϵC).

Now, we can rewrite the Kohn-Sham eigenfunctions using the PAWmethod. For our purposes,

we can remain at the partial wave contribution. We therefore have

X

J

σ
µ
J (ω) = 4παℏω

X

m′,n,k,s
p1,ℓ1,p2,ℓ2,m1,m2

⟨p1, ℓ1,m1|rµ|ℓ
′,m′⟩⟨ℓ′,m′|rµ|p2, ℓ2,m2⟩ (55)

× P ∗n,k,s
p1,ℓ1,m1

P n,k,s
p2,ℓ2,m2

δ(ℏω − ϵnks + ϵC).

Writing rµ = r
q

4π
3
Y µ
1 , one can show that:

⟨p1, ℓ1,m1|rµ|ℓ
′,m′⟩ = − (p1, ℓ1|r|ℓ

′)Cℓ′,0
ℓ1,0,1,0

Cℓ1,m1

1,µ,ℓ′,m′ , (56)

where the (p1, ℓ1|r|ℓ′) are the radial integrations introduced in Eq. 3.8. This leads to:

X

J

σ
µ
J (ω) = 4παℏω

X

m′,n,k,s
p1,p2,ℓ1,ℓ2,m1,m2

(p1, ℓ1|r|ℓ
′) (ℓ′|r|p2, ℓ2)C

ℓ′,0
ℓ1,0,1,0

Cℓ′,0
ℓ2,0,1,0

Cℓ1,m1

1,µ,ℓ′,m′C
ℓ2,m2

1,µ,ℓ′,m′

(57)

× P ∗n,k,s
p1,ℓ1,m1

P n,k,s
p2,ℓ2,m2

δ(ℏω − ϵnks + ϵC).
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We will now sum over all the polarization directions µ and use the orthogonality relations

from equation (53):

σ(ω) =
X

µ

X

J

σ
µ
J (ω)

= 4παℏω
X

µ,m′,n,k,s
p1,ℓ1,p2,ℓ2,m1,m2

(p1, ℓ1|r|ℓ
′) (ℓ′|r|p2, ℓ2)C

ℓ′,0
ℓ1,0,1,0

Cℓ′,0
ℓ2,0,1,0

Cℓ1,m1

1,µ,ℓ′,m′C
ℓ2,m2

1,µ,ℓ′,m′

× P ∗n,k,s
p1,ℓ1,m1

P n,k,s
p2,ℓ2,m2

δ(ℏω − ϵnks + ϵC)

= 4παℏω
X

n,k,s
p1,p2,ℓ1,m1

(p1, ℓ1|r|ℓ
′) (ℓ′|r|p2, ℓ2) (C

ℓ1,0
ℓ′,0,1,0)

2

× P ∗n,k,s
p1,ℓ1,m1

P n,k,s
p2,ℓ1,m1

δ(ℏω − ϵnks + ϵC). (58)

Splitting the two allowed dipole transitions ℓ1 = ℓ′±1, and neglecting the overlap between

different projectors, we can rewrite this as:

σ(ω) ≈ 4παℏω

�

�

�

�(ℓ′ + 1|r|ℓ′)Cℓ′,0
ℓ′+1,0,1,0

�

�

�

2

ρℓ′+1(ω + ϵC/ℏ) +
�

�

�(ℓ′ − 1|r|ℓ′)Cℓ′−1,0
ℓ′,0,1,0

�

�

�

2

ρℓ′−1(ω + ϵC/ℏ)

�

(59)

= 4παℏ(ω′ − ϵC/ℏ)

�

ℓ′ + 1

2ℓ′ + 3
|(ℓ′ + 1|r|l′)|

2
ρℓ′+1(ω

′) +
ℓ′

2ℓ′ − 1
|(ℓ′ − 1|r|ℓ′)|

2
ρℓ′−1(ω

′)

�

= Aℓ′(ω
′)ρℓ′+1(ω

′) + Bℓ′(ω
′)ρℓ′−1(ω

′),

where we introduced the ℓ partial densities of states ρℓ and the shifted frequencies ω′ = ω +

ϵC/ℏ. Therefore, the normalized edge σ(ω) can be written as a weighted sum of the partial

densities of states corresponding to the dipole allowed ℓ values.
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