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Abstract

The aim of this thesis is to prove new results on asymptotic invariants of Ćows in
dimension 3. These new invariants come from invariants used in knot theory, which
can be generalised to vector Ąelds following ArnolŠdŠs method.
We Ąrst deĄne the bridge number of vector Ąelds and show some results on its
continuity, its relation to the asymptotic bridge number and to two other asymptotic
invariants, the helicity and the trunkunness of vector Ąelds.
We then prove the existence of the asymptotic genus for right-handed vector Ąelds
preserving an ergodic volume. We show that in this case the asymptotic genus is
equal to half the helicity.

Résumé

LŠobjectif de cette th‘ese est de démontrer de nouveaux résultats sur les inva-
riants asymptotiques de Ćots en dimension 3. Ces nouveaux invariants proviennent
dŠinvariants utilisés en théorie des nİuds qui peuvent être généralisés aux champs
de vecteurs en suivant la méthode dŠArnolŠd.
Nous déĄnissons dans un premier temps le «nombre de ponts» des champs de vec-
teurs et démontrons plusieurs résultats au sujet de sa continuité, sa relation avec
le «nombre de ponts» asymptotique et avec deux autres invariants asymptotiques,
lŠhélicité et le tronc des champs de vecteurs.
Nous prouvons ensuite lŠexistence du genre asymptotique pour les champs de vec-
teurs dextrogyres préservant un volume ergodique. Nous montrons que ce genre
asymptotique est égal ‘a la moitié de lŠhélicité dans ce cas.
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lŠUFR ont occasionné quelques déménagements. Je remercie donc chaleureusement
Khalef, Daniel, Marie, Titin, Hauru le chat - conĄnement oblige - Philippe, Josué,
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Introduction (en français)

Contexte

LŠobjet de cette th‘ese est dŠintroduire deux nouveaux invariants asymptotiques pour
les champs de vecteurs lisses non-singuliers préservant une mesure sur S3, le second
invariant étant déĄni uniquement pour la classe des champs de vecteurs dextrogyres
préservant un volume ergodique. Pour expliquer lŠintérêt de la recherche dŠinvariants
de champs de vecteurs préservant une mesure, commençons par un résumé histo-
rique. Considérons les équations dŠEuler (1755) dans R3, qui décrivent le champ de
vitesses vt dŠun Ćuide parfait - non-visqueux et incompressible - ‘a partir de lŠappli-
cation des lois de la mécanique de Newton ‘a des volumes inĄnitésimaux :

{
∇ · vt = 0

∂vt

∂t
+ (vt · ∇)vt + ∇p = 0⃗

La premi‘ere équation exprime la conservation de la masse du Ćuide, tandis que
la seconde représente la conservation de la quantité de mouvement. Ici p désigne
la pression appliquée au Ćuide et (vt · ∇)vt la dérivée directionnelle de vt. En 1858,
Helmholtz remarqua une propriété particuli‘ere de ces équations [Hel58] : il démontra
que la circulation du champ de vitesses vt le long dŠune courbe fermée est conservée
au cours du temps. Au niveau inĄnitésimal, cela signiĄe que le champ de vorticité
ωt = ∇ × vt est transporté par le champ de vitesses vt.

Cette observation a dŠimportantes conséquences : puisque ϕt
X , une hypothétique

solution du syst‘eme, est un difféomorphisme préservant le volume pour tout temps
t, toute propriété du champ de rotationnel ωt qui est préservée par difféomorphisme
préservant le volume constitue un invariant indépendant du temps du champ de
vitesses vt, et par conséquent, du syst‘eme original. Parmi ces propriétés possibles,
la présence dŠune orbite périodique de ωt représentant un type de nİud spéciĄque
prend une importance particuli‘ere. Bien que lŠidentiĄcation dŠorbites périodiques
isolées puisse être une tâche difficile, un voisinage tubulaire dŠun nİud peut également
être préservé par le Ćot du champ de vecteurs, ce qui conduit ‘a la notion de tube
invariant noué. Cette notion est ‘a lŠorigine de la théorie des atomes de Thomson
[Tho69] et a motivé la fondation de la théorie des nİuds par Tait [Tai77].

Le premier - et le plus simple - invariant de champs de vecteurs découvert est
lŠhélicité. Il a été introduit dans les années 60 par Woltjer [Wol58], Moreau [Mor61]
et Moffatt [Mof69]. Par souci de simplicité, nous donnons sa déĄnition pour un
champ de vecteurs statique X préservant un volume Ω sur S3, bien quŠelle puisse
être déĄnie dans nŠimporte quelle sph‘ere dŠhomologie rationnelle.

9
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Définition. L’hélicité de (X,Ω) est donnée par

Hel(X,Ω) =
∫

S3
αX ∧ dαX

où dαX = iXΩ.

Comme cette déĄnition repose uniquement sur des notions de calcul différentiel,
lŠhélicité est facile ‘a calculer ou ‘a approximer. Moffatt a esquissé le lien avec la théorie
des nİuds un peu plus tard en calculant lŠhélicité de tubes invariants noués [Mof69]
et ArnolŠd lŠa approfondi comme suit [Arn73]. Soit p un point de S3 et appelons
kX(p, t) la courbe fermée construite en commençant au point p, en suivant lŠorbite
de p pendant un temps t et en bouclant par un segment géodésique de longueur
bornée entre p et ϕt

X(p). Soit link(kX(p1, t1), kX(p2, t2)) le nombre dŠenlacements -
le linking number - de deux nİuds obtenus de cette façon. ArnolŠd [Arn73] et Vogel
[Vog03] ont prouvé le théor‘eme suivant :

Théorème (ArnolŠd-Vogel). Soit X un champ de vecteurs sur S3 préservant une
mesure µ telle que µ n’est concentrée sur aucune orbite périodique. Alors pour µ-
presque toute paire de points (p1, p2), la limite

lkX(p1, p2) := lim
t1,t2→∞

1

t1t2
link(kX(p1, t1), kX(p2, t2))

existe. Si de plus µ est un volume et si X est ergodique par rapport à µ, alors pour
presque tous p1, p2 cette limite vaut 1

µ(S3)2 Hel(X,µ).

LŠhélicité peut donc être interprétée comme un nombre dŠenlacements asympto-
tique moyen de deux orbites du champ de vecteurs.

Remarquons que si I est votre invariant de nİuds (ou dŠentrelacs) préféré, et
si pour presque tous p1, ..., pi lŠinvariant I(kX(p1, t1), ..., kX(pi, ti)) a un comporte-
ment asymptotique de la forme I∞(p1, ..., pi) × tn1

1 ...t
ni

i et si la fonction (p1, ..., pi) 7→
I∞(p1, ..., pi) est intégrable par rapport ‘a la mesure µ, alors son intégrale sur (S3)i

est un invariant de (X,µ) par difféomorphisme préservant µ. On peut donc na-
turellement se demander si en remplaçant le nombre dŠenlacements par un autre
invariant dŠentrelacs ou de nİuds, et en utilisant les mêmes méthodes, on obtien-
drait un autre invariant asymptotique. En suivant la méthode dŠArnolŠd, Freedman
et He ont construit le nombre de croisement asymptotique [FH91], tandis que De-
hornoy et Rechtman ont construit la trunkenness des champs de vecteurs comme
une généralisation du tronc dŠun nİud [DR17]. Bien quŠil ne provienne pas dŠun in-
variant de nİuds, il faut également mentionner lŠinvariant asymptotique de Ruelle
construit par Gambaudo et Ghys [GG97]. Ces trois exemples dŠinvariants ne sont
pas fonction de lŠhélicité, même sur des champs de vecteurs ergodiques, et sont
donc considérés comme des invariants totalement indépendants. En revanche, si
lŠon consid‘ere les ω-signatures des nİuds [GG01], les invariants de selle linéaires
[Baa11], et les invariants de type Ąni de Vassiliev [BM12], les invariants obtenus
par la méthode dŠArnolŠd sont fonction de lŠhélicité au moins pour les champs de
vecteurs ergodiques, ce qui peut réduire leur intérêt. Le début dŠune explication ‘a
ce phénom‘ene dŠubiquité de lŠhélicité est venu de deux équipes différentes en 2016
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[EPSTdL16],[Kud16]. Elles ont montré que tout invariant suffisamment régulier -
dans le sens o‘u sa dérivée de Fréchet est donnée par lŠintégrale dŠun noyau continu
- est une fonction de lŠhélicité. Mais comme aucun des invariants mentionnés ci-
dessus nŠa cette régularité, il pourrait y avoir une explication encore plus forte ‘a
lŠomniprésence de lŠhélicité.

Je présenterai dŠabord les résultats concernant le nombre de ponts des champs
de vecteurs, qui a été déĄni ‘a lŠaide de la méthode dŠArnolŠd.

Nombre de ponts d’un champ de vecteurs

Au cours de cette th‘ese, je me suis dŠabord intéressée au nombre de ponts des nİuds,
noté bnœuds dans la suite, qui est un invariant de même nature que le tronc des nİuds
‘a partir duquel Dehornoy et Rechtman ont construit la trunkenness dans [DR17].

Considérons un champ de vecteurs lisse non-singulier X sur S3 = R3 ∪ ¶∞♢ et
supposons que X préserve une mesure de probabilité µ. Notons ϕt

X le Ćot de X
au temps t. Nous appelons fonction hauteur sur S3 une fonction obtenue en pré-
composant la fonction hauteur standard de S3, dont les niveaux sont des sph‘eres
centrées en lŠorigine, par un difféomorphisme préservant lŠorientation de S3 - une
déĄnition précise sera donnée dans la section 2.2.1. Pour une fonction hauteur h et
t ∈]0, 1[, soit TX (h−1(t)) lŠensemble (fermé) des points o‘u X est tangent au niveau
h−1(t).

Définition. Pour une fonction hauteur h donnée, le nombre de ponts du champ de
vecteurs X pour h est défini par

Bh(X,µ) =
1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.

On définit le nombre de ponts de (X,µ) par

B(X,µ) = inf
h fonction hauteur

1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.

Dans cette th‘ese, nous prouvons certaines propriétés de cette derni‘ere déĄnition.
La premi‘ere est quŠil sŠagit bien dŠun invariant, et quŠil est dŠordre un :

Théorème A. Soit f un C1-difféomorphisme de S3, et X1 et X2 deux champs de
vecteurs préservant respectivement les mesures de probabilité µ1 et µ2, telles que
µ1 = f ∗µ2 et f ◦ ϕt

X1
= ϕt

X2
◦ f pour tout t ∈ R. Alors

B(X1, µ1) = B(X2, µ2) .

De plus, pour λ ∈ R∗
+, B(λX1, µ1) = λB(X1, µ1).

Notons que le nombre de ponts est un invariant de classe C1 alors que la trunken-
ness est un invariant de classe C0. Cela vient du fait que nous devons considérer les
points de tangence du champ de vecteurs aux niveaux de la fonction hauteur pour



12 TABLE DES MATIÈRES

calculer le nombre de ponts, et ceux-ci requi‘erent plus de régularité que la condition
de transversalité requise pour la trunkenness [DR17]. Une propriété cruciale pour
un invariant est sa continuité en le champ de vecteurs et la mesure. Dans notre cas,
nous avons le résultat suivant :

Théorème B. Soit (Xn, µn)n∈N une suite de champs de vecteurs préservant une
mesure de probabilité. Supposons que (Xn)n∈N converge vers un champ de vecteurs
X en topologie C0, que (µn)n∈N converge vers une mesure µ faiblement-∗ et que
lim

n→∞
B(Xn, µn) = L ∈ R ∪ ¶∞♢. Dans ce cas

lim
n→∞B(Xn, µn) ⩽ B(X,µ) .

Le théor‘eme B donne plus dŠoptions pour calculer le nombre de ponts des champs
de vecteurs, comme nous le montrerons dans un exemple avec le cas des flots de
Seifert dans la section 2.4. De plus, le théor‘eme B implique que le nombre de ponts
B(X,µ) peut être obtenu comme une limite asymptotique lorsque X est ergodique
pour un volume µ. Ainsi, nous déĄnissons un nombre de ponts asymptotique :

Théorème C. Soit (X,µ) un champ de vecteurs sur S3 préservant un volume er-
godique µ. Soit x un point récurrent pour le flot de X et générique pour µ. Alors :

lim
T →∞

1

T
bnœuds (kX(x, T )) = B(X,µ) .

De même que pour lŠhélicité, le théor‘eme C fournit une interprétation du nombre
de ponts comme la moyenne du nombre de ponts asymptotique de ses orbites, en les
considérant comme des nİuds arbitrairement longs.

Comme nous lŠavons expliqué plus haut, un point clé lorsquŠon déĄnit un nouvel
invariant est de savoir sŠil est indépendant de lŠhélicité et des autres invariants déj‘a
connus. Dans le cas du nombre de ponts, nous disposons de ce qui suit :

Théorème D. Pour une mesure ergodique µ, il n’existe pas de fonction telle que
B(X,µ) = f(Hel(X,µ)).

Le tronc - lŠinvariant de nİuds dont dérive la trunkenness - et le nombre de ponts
sont liés en tant quŠinvariants de nİuds : pour un nİud k nous avons
Tronc(k) ⩽ 2bnœuds(k) en général, avec une égalité pour les nİuds méridionalement
petits, cŠest-‘a-dire les nİuds k dont lŠextérieur ne contient pas de surface essen-
tielle avec un bord méridional [Oza10]. CŠest pourquoi nous abordons également la
question dŠune relation entre la trunkenness et le nombre de ponts des champs de
vecteurs. Nous montrerons dans un exemple quŠils sont indépendants.

Genre des champs de vecteurs dextrogyres

Dans la deuxi‘eme partie de cette th‘ese, jŠai déĄni un genre asymptotique pour
les champs de vecteurs dextrogyres préservant un volume ergodique sur S3. Étant
donné un nİud k dans S3, il est possible de construire une surface de Seifert, cŠest-
‘a-dire une surface plongée orientée dont le bord est k, et de calculer son genre.
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Nous appelons genre de k le genre minimal que lŠon peut obtenir par ce procédé.
CŠest un invariant de nİuds. Il y a déj‘a eu plusieurs tentatives pour déĄnir un genre
asymptotique ‘a partir de la méthode dŠArnolŠd précédemment évoquée. Par exemple
les travaux antérieurs de Dehornoy [Deh15] sugg‘erent que lŠordre de cet invariant
est 2, et Dehornoy et Rechtman [DR22] ont prouvé le théor‘eme suivant,

Théorème. Soit M une trois-sphère d’homologie entière, X un champ de vecteurs
dextrogyre sur M et µ une mesure invariante par le flot de X. Si (γn)n∈N est une
suite d’orbites périodiques dont les longueurs (tn)n∈N tendent vers l’infini et telle

que
(

1
tn
γn


n∈N

tend vers µ faiblement-∗, alors la suite
(

1
t2
n
genus(γn)


n∈N

tend vers

la moitié de l’hélicité de (X,µ).

Ce théor‘eme laisse espérer que lŠon puisse déĄnir le genre asymptotique pour
cette classe particuli‘ere de champs de vecteurs. Les champs de vecteurs dextrogyres
ont été introduits par Ghys dans [Ghy09] et seront présentés dans le chapitre 1. Tr‘es
informellement, un champ de vecteurs dextrogyre satisfait que toute paire dŠorbites
suffisamment longues est positivement enlacée. Bien que cela puisse sembler restric-
tif, cette classe de champs de vecteurs a la propriété dynamique intéressante que
toute collection dŠorbites périodiques est le bord dŠune surface transverse au Ćot et
intersectant toutes ses orbites en temps Ąni, cŠest-‘a-dire une section de Birkhoff. Le
champ de vecteurs de Hopf, et plus généralement les champs de vecteurs de Seifert
sur S3 sont des champs de vecteurs dextrogyres [Ghy09]. Un autre exemple est donné
par lŠattracteur de Lorenz. Récemment, Florio et Hryniewicz ont démontré que le
Ćot géodésique dŠune 3-sph‘ere est dextrogyre si la courbure est pincée entre deux
constantes [FH23].

La stratégie pour construire le genre asymptotique est de considérer un tr‘es long
arc dŠorbite dŠun point récurrent pour le Ćot et générique pour la mesure, et de le
fermer artiĄciellement par une perturbation C1-petite du champ de vecteurs pour
obtenir le nİud k(x, tn). Nous devons alors montrer que le champ perturbé reste
dextrogyre. Ensuite, grâce aux travaux de Dehornoy et Rechtman [DR22], il est
possible de calculer le genre de cette orbite fermée particuli‘ere, et nous obtenons le
théor‘eme :

Théorème E. Soit X un champ de vecteurs dextrogyre préservant un volume er-
godique µ sur S3. Soit x un point récurrent pour le flot de X et générique pour µ.
Alors :

lim
n→∞

1

tn
2
g(k(x, tn)) =

1

2
Hel(X,µ) .

Bien quŠelle ne soit pas totalement compl‘ete, je présente également une tentative
de preuve que le genre asymptotique des champs de vecteurs dextrogyres est majoré
par la moitié de lŠhélicité. ‘A mes yeux, cela pourrait être intéressant car cela utilise
des méthodes compl‘etement différentes et fournit une formule générale pour borner
le genre de deux nİuds positivement enlacés.

Organisation de la thèse

LŠorganisation de la th‘ese est la suivante. Le chapitre 1 est considéré comme un
chapitre préalable dans lequel nous expliquons le cas particulier de lŠhélicité parmi
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les invariants de champs de vecteurs dans la section 1.1, et nous présentons des
déĄnitions et des résultats concernant les champs de vecteurs dextrogyres dans la
section 1.2. EnĄn nous présentons quelques exemples ‘a garder ‘a lŠesprit pour le reste
du texte dans la section 1.3. Dans le chapitre 2, nous expliquons la construction du
nombre de ponts des champs de vecteurs et nous prouvons les théor‘emes A ‘a D. Le
chapitre 3 présente les deux constructions du genre asymptotique dans les sections
3.1 et 3.2. Ce dernier chapitre sŠappuie sur le matériel présenté dans les sections 1.1
et 1.2 et peut être lu indépendamment du chapitre 2.



Introduction

Context

The purpose of this thesis is to introduce two new asymptotic invariants for smooth
measure preserving non-singular vector Ąelds on S3, one of them on the speciĄc class
of right-handed vector Ąelds preserving an ergodic volume. To explain the interest
of the search for invariants of measure preserving vector Ąelds, let us begin with
a historical summary. Let us consider the equations of Euler (1755) in R3, which
describe the velocity Ąeld vt of an ideal Ćuid - characterized by non-viscosity and in-
compressibility - from the application of NewtonŠs laws of mechanics to inĄnitesimal
volumes:

{
∇ · vt = 0

∂vt

∂t
+ (vt · ∇)vt + ∇p = 0⃗

The Ąrst equation expresses the conservation of the ĆuidŠs mass, while the second
represents the conservation of momentum, with p standing for the pressure applied
to the Ćuid and (vt ·∇)vt denoting the directional derivative of vt. In 1858, Helmholtz
found a particular property of these equations [Hel58]: he demonstrated that the
circulation of the velocity Ąeld vt along a closed curve is preserved over time. At
the inĄnitesimal level, this means that the vorticity Ąeld ωt = ∇ × vt is carried by
the velocity Ąeld vt, resulting in the concept of it being frozen in.

This observation has signiĄcant implications: since ϕt
X , the hypothetical solution

to the equation, is a volume-preserving diffeomorphism for all times t, any property
of the vorticity Ąeld ωt that is preserved under volume-preserving diffeomorphisms
constitutes a time-independent invariant of the velocity Ąeld vt, and consequently,
of the original system. Among these possible properties, the presence of a periodic
orbit of a speciĄc knot type for ωt is particularly interesting. Although identifying
isolated periodic orbits might be a difficult task, a tubular neighbourhood of a knot
might also be preserved by the Ćow of the vector Ąeld, leading to the notion of a
knotted invariant tube. This was at the origin of ThomsonŠs theory of atoms [Tho69]
and motivated the foundation of knot theory by Tait [Tai77].

The Ąrst - and simplest - invariant of vector Ąelds discovered was helicity. It was
introduced in the 60s by Woltjer [Wol58], Moreau [Mor61] and Moffatt [Mof69]. For
simplicity we state its deĄnition for a vector Ąeld X preserving a volume Ω on S3,
though it can be deĄned in any rational homology sphere.

Definition. Hel(X,Ω) =
∫
S3 αX ∧ dαX is the helicity of X, where dαX = iXΩ.

15
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Because this deĄnition relies only on differential calculus, helicity is easy to
compute or to approximate. Moffatt sketched the connection with knot theory a
little later when computing the helicity of vector Ąelds in knotted tubes and ArnolŠd
deepened it as follows [AK21]. Let us denote by kX(p, t) a loop starting at the
point p, following the orbit of p during a time t and closed by a geodesic segment
of bounded length. Denote by link(kX(p1, t1), kX(p2, t2)) the linking number of two
knots obtained in this way. ArnolŠd [Arn73] and Vogel [Vog03] proved the following
theorem:

Theorem (Arnold-Vogel). Let X be a vector field on S3 preserving a measure µ so
that µ does not charge any periodic orbit. Then for µ-almost pair of points (p1, p2),
the limit

lkX(p1, p2) := lim
t1,t2→∞

1

t1t2
link(kX(p1, t1), kX(p2, t2))

exists. Moreover if µ is a volume and X is ergodic with respect to µ, then for almost
every p1, p2 the limit equals 1

µ(S3)2 Hel(X,µ).

Thanks to this result, helicity can be interpreted as an average linking number
of two orbits of the vector Ąeld.

Remark that if I is your favorite knot (or link) invariant, and if for almost every
p1, ..., pi the invariant I(kX(p1, t1), ..., kX(pi, ti)) has an asymptotic behavior of the
form I∞(p1, ..., pi)× tn1

1 ...t
ni

i and the function (p1, ..., pi) 7→ I∞(p1, ..., pi) is integrable
with respect to the measure µ, then its integral on (S3)i is an invariant of (X,µ)
under µ-preserving diffeomorphisms. Thus one naturally wonders if replacing the
linking number with another link or knot invariant, and using the same methods,
would produce another asymptotic invariant. Following ArnolŠdŠs method, Freed-
man and He constructed the asymptotic crossing number [FH91], while Dehornoy
and Rechtman constructed the trunkenness of vector Ąelds as a generalisation of the
trunk of a knot [DR17]. Although it does not come from a knot invariant, we should
also mention the asymptotic Ruelle invariant constructed by Gambaudo and Ghys
[GG97]. These three examples of invariants are not proportional to helicity, even on
ergodic vector Ąelds, and thus are totally independent new invariants. On the other
hand, when considering the ω-signatures of knots [GG01], linear saddle invariants
[Baa11], and VassilievŠs Ąnite type invariants [BM12], the invariants obtained with
ArnolŠdŠs method are function of helicity at least for ergodic vector Ąelds, which
might reduce their interest. The beginning of an explanation to this phenomenon of
ubiquity of the helicity came from two different teams in 2016 [EPSTdL16],[Kud16].
They showed that any invariant which is regular enough - in the sense that its
Fréchet derivative is given by the integral of a continuous kernel - is a function of
helicity. But since none of the above mentioned invariants has this regularity, there
might be an even stronger explanation to the omnipresence of helicity.

I will Ąrst present the results about the bridge number of vector Ąelds, which
was deĄned using the method of ArnolŠd.



TABLE DES MATIÈRES 17

Bridge number of vector fields

During this thesis I was Ąrst interested in the bridge number of knots, denoted bknots

in what follows, which is an invariant of the same nature as the trunk of knots from
which Dehornoy and Rechtman constructed the trunkenness in [DR17].

We consider a smooth non-singular vector Ąeld X on S3 and we suppose that X
preserves a probability measure µ. We denote ϕt

X the Ćow of X at the time t. We
call height function on S3 a function obtained by pre-composing the standard height
function of S3, whose level sets are spheres centered in the origin in the standard
stereographic projection, by a C1-orientation preserving diffeomorphism - a precise
deĄnition will be given in Section 2.2.1. For h a height function and t ∈]0, 1[, we
denote TX (h−1(t)) the (closed) set of points where X is tangent to the level set
h−1(t).

Definition. For h a height function, the bridge number of the vector field X for h
is defined by

Bh(X,µ) =
1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.

We define the bridge number of (X,µ) by

B(X,µ) = inf
h height function

1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.

In this thesis we prove some properties of this last deĄnition. The Ąrst one is
that it is indeed an invariant, and its order is one:

Theorem A. Let f be a C1-diffeomorphism of S3, and X1 and X2 two vector fields
that preserve respectively the probability measures µ1 and µ2, and so that µ1 = f ∗µ2

and f ◦ ϕt
X1

= ϕt
X2

◦ f for all t ∈ R. Then

B(X1, µ1) = B(X2, µ2) .

Moreover, for λ ∈ R∗
+, B(λX1, µ1) = λB(X1, µ1).

Note that the bridge number is a C1-invariant whereas the trunkenness is a C0-
invariant. This comes from the fact that we have to consider the tangency points of
the vector Ąeld to the level sets of the height function to compute the bridge number,
and this requires more regularity than the transversality condition required for the
trunkenness [DR17]. A crucial property for an invariant is its continuity in the
vector Ąeld and the measure. In our case we have the following result:

Theorem B. Let (Xn, µn)n∈N be a sequence of vector fields preserving a probability
measure on S3. Suppose that (Xn)n∈N converges to a vector field X in the C0-topology
and that (µn)n∈N converges to µ weakly-∗, and that lim

n→∞B(Xn, µn) = L ∈ R∪ ¶∞♢.

Then
lim

n→∞
B(Xn, µn) ⩽ B(X,µ) .
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Theorem B gives more options to compute the bridge number of vector Ąelds,
as we will show in an example with the case of Seifert flows in Section 2.4. Also,
Theorem B implies that the bridge B(X,µ) can be obtained as an asymptotic limit
when µ is an ergodic volume. In this direction, we deĄne an asymptotic bridge
number:

Theorem C. Let (X,µ) be a volume preserving vector field on S3 and suppose that
X is ergodic with respect to µ. Let x be a recurrent point for the flow of X and
generic for µ. Then:

lim
T →∞

1

T
bknots (kX(x, T )) = B(X,µ) .

As it was the case for helicity, Theorem C provides us with an interpretation
of the bridge number as the average of the asymptotic bridge number of its orbits,
seen as arbitrarily long knots.

As we explained above, a key point when one deĄnes a new invariant is to know
whether it is independent from helicity and other known invariants. We have the
following:

Theorem D. For µ an ergodic measure, there is no function so that B(X,µ) =
f(Hel(X,µ)).

The trunkenness and the bridge number are related as knot invariants: for a
knot k we have Trunk(k) ⩽ 2bknots(k) in general, with an equality for meridionally
small knots, that is to say knots so that the exterior of the knot does not contain
an essential surface with meridional boundary [Oza10]. This is why we also address
the question of a relation between the trunkenness and the bridge number of vector
Ąelds. In Section 2.4 we show in an example that they are independent.

Genus of right-handed vector fields

In the second part of this thesis I deĄne an asymptotic genus for smooth non-singular
right-handed vector Ąelds preserving an ergodic volume on S3. Given a knot k in S3,
it is possible to construct a Seifert surface, i.e. an oriented embedded surface whose
boundary is k, and to compute its genus. We call genus of k the minimal genus
that we can obtain with this process. It is a knot invariant. There where already
several attempts to deĄne an asymptotic genus by mean of the method of ArnolŠd.
For instance previous works from Dehornoy [Deh15] suggest that the order of this
invariant is 2, and Dehornoy and Rechtman [DR22] proved the following theorem:

Theorem. Let M be a 3-manifold that is an integer homology sphere, X a non-
singular right-handed vector field on M and µ an X-invariant measure. If (γn)n∈N
is a sequence of periodic orbits whose lengths (tn)n∈N tend to infinity and such that(

1
tn
γn


n∈N

tends to µ in the weak-∗ sense, then the sequence
(

1
t2
n
genus(γn)


n∈N

tends

to half the helicity of (X,µ).
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This result gives hope that one could deĄne the asymptotic genus for this par-
ticular class of vector Ąelds. Right-handed vector Ąelds were introduced by Ghys in
[Ghy09] and will be presented in Chapter 1. Roughly speaking, a right-handed vec-
tor Ąeld satisĄes that any pair of long enough orbits are positively linked. Although
this may seem restrictive, this class of vector Ąelds has the interesting dynamical
property that any collection of periodic orbits bounds a surface transverse to the Ćow
and intersecting all of its orbits in bounded time, that is to say a Birkhoff section.
The Hopf vector Ąeld, and more generally Seifert vector Ąelds on S3 are right-handed
[Ghy09]. Another example is given by the Lorenz attractor. Recently, Hryniewicz
and Florio demonstrated that the geodesic Ćow of a 3-sphere is right-handed if the
curvature is pinched between two constants [FH23].

The strategy to construct the asymptotic genus is to consider a very long arc of
orbit of a recurrent point generic for the measure and to artiĄcially close it with a
C1-perturbation of the vector Ąeld to obtain the knot k(x, tn). We have to show that
the perturbed Ąeld remains right-handed. Then thanks to the work of Dehornoy
and Rechtman [DR22] it is possible to compute the genus of this particular closed
orbit, and we obtain the following:

Theorem E. Let X be a smooth right-handed non-singular vector field X preserving
a smooth ergodic volume µ on S3. Let x be a recurrent point for the flow of X and
generic for µ. Then

lim
n→∞

1

tn
2
g(k(x, tn)) =

1

2
Hel(X,µ) .

Although it is not fully complete, I also present an attempt of a proof that the
asymptotic genus of right-handed vector Ąelds is bounded by half of the helicity.
To my eyes this might be interesting as it uses completely different methods and
provides us with a general formula to bound the genus of two positively linked knots.

Organization of the thesis

The organization of the thesis is as follows. Chapter 1 is thought as a prerequisite
chapter where we explain the special case of helicity among vector Ąelds invariants
in Section 1.1, present deĄnitions and results concerning right-handed vector Ąelds
in Section 1.2 and Ąnally present some examples to have in mind for the rest of
the text in Section 1.3. In Chapter 2 we explain the construction of the bridge
number of vector Ąelds and we prove Theorems A to D. Chapter 3 presents the
two constructions of the asymptotic genus in Sections 3.1 and 3.2. This last chapter
relies on the material presented in Sections 1.1 and 1.2 and can be read appart from
Chapter 2.
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Chapter 1

Prerequisites and examples

In this chapter we introduce the main ideas and notions that will be used in the
thesis. At Ąrst it is necessary to understand the idea of ArnolŠd and to examine
the special case of helicity, which we do in Section 1.1. Then in Section 1.2 we
present the particular class of right-handed vector Ąelds, for which we will deĄne
the asymptotic genus in Chapter 3. Lastly in Section 1.3 we present a class of
examples of Ćows for which it is possible to compute the trunkenness and the bridge
number.

1.1 Vector fields invariants and helicity

1.1.1 Helicity

For simplicity and because we are interested in asymptotic invariants of vector Ąelds
in S3, we will be working in S3, though helicity exists for vector Ąelds in homology
spheres of any nature, and can also be extended to submanifolds of S3 that have a
boundary, under the condition that the vector Ąeld remains tangent to the boundary.
So let X be a smooth measure-preserving vector Ąeld on S3, preserving a volume
form µ. One can deĄne a 2-form βX using the vector Ąeld X by mean of the formula
βX = iXµ. Because X preserves the volume, the Lie derivative of µ along X is
zero and CartanŠs formula implies that βX is closed, thus exact since H2(S3) is
trivial. Hence there exists a 1-form αX - a potential form of X - such that dα = βX .
Of course it is not unique since other potential forms can be obtained by adding an
exact form, but one can show that the integral

∫

S3
αX ∧ βX

is independent of the choice of the potential form αX . This leads to the deĄnition
of helicity:

Definition 1.1. The helicity Hel(X,µ) of (X,µ) is given by

Hel(X,µ) :=
∫

S3
αX ∧ dαX

where αX is a potential form of X.

21
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It is important to remark that by deĄnition, helicity is signiĄcantly inĆuenced
by the choice of the invariant volume µ. Different choices of invariant volumes lead
to distinct helicity values.

Proposition 1.2. The helicity of (X,µ) is invariant under the action of µ-preserving
diffeomorphisms.

As Pierre Dehornoy remarks in [Deh15], while the above deĄnition is succinct, it
might seem enigmatic. Following his summary text about asymptotic invariants, we
present an alternative understanding of helicity in the particular case of R3 endowed
with an auxiliary metric, denoted g. In this case µ is the volume associated to the
metric g. The volume-preservation of X writes ∇·X = 0 in this case and this implies
that X is the rotational of some vector potential w, that is to say ∇×w = X. Then
one can check that the deĄnition of helicity boils down to Hel(X,µ) =

∫
w·Xdµ. But

on R3, we have a fundamental example of a vector potential given by the Biot-Savard
formula:

w(x) =
1

4π

∫

R3\¶x♢

X(y) × (x− y)

∥x− y∥3
dy .

Using this potential in the deĄnition of helicity and the relation x · (y × z) =
det(x, y, z), one Ąnally gets:

Hel(X,µ) =
1

4π

∫ ∫

R3×R3\∆

det(X(x), X(y), x− y)

∥x− y∥3
dxdy

where ∆ is the diagonal set ¶(x, x)♣x ∈ R3♢. Before we continue by presenting the
method of ArnolŠd, we need to introduce the linking number and the linking forms.

1.1.2 Linking forms and system of short paths

Linking number and linking forms The linking number stands out as the most
straightforward invariant for 2-component links. Given two separate knots k1 and k2

in R3, their linking number, denoted as link(k1, k2), can be described using multiple
equivalent deĄnitions [Rol76]:

• the number of signed crossings of a projection of the knots k1, k2 on a plane;

• the algebraic intersection number of k1 with a Seifert surface for k2 - and
conversely;

• the degree of the Gauss map deĄned on S1 × S1 and given by (t1, t2) 7→
γ1(t1)−γ2(t2)

∥γ1(t1)−γ2(t2)∥ where γ1 and γ2 are any parametrizations of the knots k1, k2;

• the Gauss integral (note the similarity with the previous computation for he-
licity in R3):

1

4π

∫ ∫

S1×S1

det (γ̇1(t1), γ̇2(t2), γ2(t2) − γ1(t1))

∥γ2(t2) − γ1(t1)∥3
dt1dt2
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An important remark is that the above deĄnitions of the linking number also
work in S3: the point is to perturb the knots so that they do not pass through
the point at inĄnity (in a given stereographic projection), and then to compute the
linking number of their stereographic projections. Actually, another way to compute
the linking number is given by the integration of a Gauss linking form on S3 × S3.

Definition 1.3. A Gauss linking form on S3 is a double form L on S3 × S3 such
that for any two disjoint closed oriented one-dimensional submanifolds γ1, γ2 of S3,
the equality:

link(γ1, γ2) =
∫

γ1

∫

γ2

L

holds.

Example. According to the previous deĄnitions of the linking number and the
example at the end of Section 1.1.1, if x, y ∈ R3, V ∈ TxR3 and W ∈ TyR3 the
2-form given by

LR3 =
1

4π

V · (W × (x− y))

∥x− y∥3

is a Gauss linking form on R3.

In his article [Vog03], Vogel proved using the theory of Poisson equation on Rie-
mannian manifolds, that Gauss linking form exist on any closed oriented three-
dimensional manifold M having the real cohomology of a three-sphere, that is to
say H1(M,R) = H2(M,R) = 0. We will not present the detail of this construction
but we will list some of its properties that will be useful in Chapter 3.

Let us consider the projections:

πL, πR : S3 × S3 → S3

The bundle of double forms over S3 × S3 is the tensor product of the pullbacks of
the bundle Λ∗(T ∗S3) of differential forms by these two projections:

π∗
L

(
Λ∗(T ∗S3)


⊗ π∗

R

(
Λ∗(T ∗S3)



Let g be a Riemannian metric on S3. There are left and right exterior derivative
operators dL and dR which act on double forms, and moreover g induces the left and
right Hodge star operators ∗L and ∗R. Denote by G the Green form of the Hodge
Laplacian ∆ associated with g. This form is constructed explicitly with help of the
distance function in Chapter V of [dR84]. G is an integrable double form, smooth
outside the diagonal and satisfying the pointwise bound:

∥Gp,q∥∞ = O(dist(p, q)−1)

where ∥αp,q∥∞ is the maximum of the absolute value of the coefficients of α in an
orthogonal basis, evaluated in the point (p, q) ∈ (S3 × S3) \ ∆, ∆ being the diagonal
of S3 × S3. Then a Gauss linking form is the double form deĄned by

L := ∗RdRG .
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It is immediate that L is integrable and smooth outside of the diagonal in S3 × S3,
and satisĄes the pointwise bound:

Lemma 1.4.
∥Lp,q∥∞ = O(dist(p, q)−2) .

The other property of the Gauss linking form we need in this thesis is the bound-
edness of its integral on pairs of short geodesics. Let g be a Riemannian metric on
S3 and denote by rinj(g) the injectivity radius of g.

Lemma 1.5. Fix r0 := rinj(g)/100. Then there exists a constant C(g) > 0 depend-
ing only on g so that for any pair of distinct geodesics γ1, γ2 of length less than r0

and intersecting at most one time,
∣∣∣∣
∫

γ1×γ2

L
∣∣∣∣ < C(g) .

As noted Prasad in [Pra22], Lemma 1.5 is stated in the proof of [[Vog03], Theo-
rem 5], and is proven more precisely in the article of Prasad [[Pra22], Lemma 2.3].

System of short paths. We explained in the introduction that there is a suitable
way to close up the arc of trajectories of a Ćow in order to get a knot. This can be
achieved using a system of short paths, introduced by ArnolŠd [AK21] and reĄned
by Vogel [Vog03]. Here we present brieĆy the deĄnition and properties of a system
of short paths. The following deĄnition comes directly from [Vog03].

Definition 1.6. A set S of paths on S3 is a system of short paths if it has the
following properties:

1. For any two points p, q ∈ S3 there is a unique path σ(p, q) ∈ S starting at p
and ending at q.

2. Each path in S is piecewise differentiable.

3. The paths depend continuously on their endpoints almost everywhere and the
following limits exist in the L1-sense:

lim
T,S→∞

1

TS

∫

ϕ
[0,T ]
X

(x)

∫

σ(ϕS
X

(y),y)
♣L♣ = 0 (1.1)

lim
T,S→∞

1

TS

∫

σ(ϕT
X

(x),x)

∫

ϕ
[0,S]
X

(y)
♣L♣ = 0 (1.2)

lim
T,S→∞

1

TS

∫

σ(ϕT
X

(x),x)

∫

σ(ϕS
X

(y),y)
♣L♣ = 0 (1.3)

4. The sets

IX,S = ¶(x, y) ∈ S3 × S3♣ϕ[0,T ]
X (x) ∩ σ(ϕS

X(y), y) ̸= ∅♢
IS,Y = ¶(x, y) ∈ S3 × S3♣σ(ϕT

X(x), x) ∩ ϕ
[0,S]
X (y) ̸= ∅♢

IS,S = ¶(x, y) ∈ S3 × S3♣σ(ϕT
X(x), x) ∩ σ(ϕS

X(y), y) ̸= ∅♢
have measure zero at any given time T , respectively S.
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Since this deĄnition is technical, we explain the aim of such requirements. Point
2 ensures that integrating along a short path is possible. Thanks to the continuity
condition in point 3, the integrals of the linking form on artiĄcially closed orbits are
measurable functions on S3 × S3 and conditions (1.1) to (1.3) ensure that the short
paths do not count for the asymptotic linking number. Then point 4 avoids having
short paths intersecting either one another or the Ćow lines too often.

Vogel showed that a subset of the set of geodesics is a system of short paths:

Theorem 1.7 (Vogel, [Vog03]). Let S be the set consisting of a geodesic of minimal
length having starting point p and ending point q for any p, q ∈ S3. Then S is a
system of short paths.

Now we can use this result to relate helicity to the asymptotic linking number.

1.1.3 Connection between helicity and the linking number

In his work about helicity, Moffatt had already Ągured out that helicity could be
interpreted as an average linking number. To reĄne MoffattŠs idea and to get around
the fact that the orbits of the Ćow are generally not closed curves, ArnolŠd introduced
a technique to transform open segments of orbits into closed loops [Arn73]. Although
the initial deĄnition lacked some precision to achieve the result, Vogel presented later
the enhancement of the system of short paths that we presented in the precedent
section.

Definition 1.8. We define the knot kX(p, t) as the concatenation of the segment of

orbit ϕ
[0,T ]
X (p) with the short path σ(ϕT

X(p), p) in the set S given by Theorem 1.7.

According to the deĄnition of the system of short paths S, this is a well-deĄned
knot for almost every positive time T .

Theorem 1.9 (ArnolŠd-Vogel [Arn73] [Vog03]). Let X be a vector field on S3 pre-
serving a measure µ not charging any periodic orbit. Then for µ-almost every pair
of points p1, p2, the limit

lkX(p1, p2) := lim
t1,t2→∞

1

t1t2
link(kX(p1, t1), kX(p2, t2))

exists. Moreover, if µ is a volume form and if X is ergodic with respect to µ, then
for almost every p1, p2 the limit equals 1

µ(S3)2 Hel(X,µ).

The proof of this theorem is an application of BirkhoffŠs ergodic theorem. First
we know that the linking number of the knots kX(p1, t1), kX(p2, t2) is given by the
integral of the Gauss linking form along the knots. Because of the choice of the
closing short paths and the fact that we are considering arbitrary long pieces of
orbits and dividing by the product of times, only the following integral may have a
(strictly) positive limit:

1

t1t2

∫ t1

0

∫ t2

0

det (X(ϕs1
X (p1)), X(ϕs2

X (p2)), ϕ
s2
X (p2) − ϕs1

X (p1))

∥ϕs2
X (p2) − ϕs1

X (p1)∥3
ds1ds2 ,

and this integral is a time average. One has then to check that the function (x, y) 7→
det(X(x),Y (y),y−x)

∥y−x∥3 is integrable on S3 × S3 \ ∆ before concluding.

An example of computation of the helicity will be presented in Section 1.3.
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1.2 Right-handed vector fields

Right-handed vector Ąelds are a special class of non-singular vector Ąelds on closed,
oriented rational homology three-spheres introduced by Étienne Ghys [Ghy09]. To
say it shortly, non-singular vector Ąeld X is right-handed if any pair of long pieces
of distinct recurrent trajectories of X, after being closed up in an appropriate way,
form a pair of embedded knots with positive linking number. One example is the
vector Ąeld generating the Hopf Ąbration on S3, where any pair of orbits forms a
Hopf link with linking number 1. A motivation to the study of these vector Ąelds is
given by the following theorem of Ghys:

Theorem 1.10 ([Ghy09]). Let X be a right-handed vector field in S3. Then any fi-
nite collection of periodic orbits is a fibered link. More precisely, any finite collection
of periodic orbits is the binding of some Birkhoff section.

Here we present the deĄnition of right-handedness as explained by Anna Florio
and Umberto Hryniewicz in [FH23], focusing on the case of (non-singular) vector
Ąelds X on S3 as it will be our preoccupation later on this thesis. The advantage
of this equivalent deĄnition compared to GhysŠ original deĄnition, is that we do
not need to deal with the existence of linking forms. We also present brieĆy GhysŠ
deĄnition, in order to state a theorem from Ghys that we need in Section 3.1.

1.2.1 Transverse rotation numbers

Let X be a smooth vector Ąeld on S3 and denote its Ćow by ϕt
X . Let γ be a

non-constant periodic orbit of ϕt
X of primitive period T > 0. We think of γ as

a map γ : R/TZ 7→ S3. On a small tubular neighbourhood N of γ, consider the
tubular coordinates (t, z = x + iy) ∈ R/TZ × C such that dt ∧ dx ∧ dy > 0 and
ϕt

X(γ(0)) = (t, 0). For every θ0 ∈ R, let t 7→ θ(t) be the continuous real valued
function deĄned by θ(0) = θ0 and

Dϕt
X(0, 0) · (0, eiθ0) ∈ R(1, 0) + R+(0, eiθ(t)) .

For a 1-form y ∈ H1(N \ γ,R) homologous to pdt + qdθ we deĄne the transverse
rotation number of γ with respect to y:

ρy(γ) =
T

2π

(
p+ q lim

t→+∞
θ(t)

t


.

As Hryniewicz showed in [Hry20], Section 2, this number ρy(γ) does not depend
on the choice of tubular coordinates nor on the initial condition θ0. Consider any
oriented Seifert surface S spanned by γ, with the orientation of the boundary of
S, ∂S, being consistent with the orientation of γ given by the Ćow ϕt

X . Denote by
S∗ ∈ H1(S3 \γ;Z) the class dual to S. Since we are working in S3, S∗ is independent
of S. Actually ⟨S∗, β⟩ = link(γ, β) for any oriented loop β in S3 \ γ. One can think
of it as a class in H1(N \ γ;Z) after restricting to N \ γ.

Definition 1.11. Let y be the cohomology class dual to some (thus any since we
are in a homology 3-sphere) oriented Seifert surface for γ. We say that ρy(γ) is the
transverse rotation number of γ in a Seifert framing.
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In Section 3.1.4 we will explain a more geometric interpretation of this quantity
in terms of a Seifert framing. For now on, let us pursue with a deĄnition of right-
handedness.

1.2.2 Right-handedness according to Florio and Hryniewicz

Now we suppose in addition to the above hypothesis that X is non-singular. Let P
be the set of ϕt

X-invariant Borel probability measures, R the set of recurrent points,
and R the following measurable set:

R =
{
(x, y) ∈ R × R♣ϕR

X(x) ∩ ϕR
X(y) = ∅

}
.

Let µ1 and µ2 be two ergodic probability measures in P , and denote by µ1 × µ2 the
product measure. There are two cases to consider:

1. (µ1 × µ2)(R) = 1.

2. (µ1 × µ2)(R) = 0 and supp(µ1) ∪ supp(µ2) ⊂ γ for some periodic orbit γ.

One needs to treat each case separately. Let g be an auxiliary Riemannian metric
on S3.

Case 1. Choose (p, q) ∈ R and denote by S(p, q) the set of ordered pairs of

sequences
(
(Tn)n∈N , (Sn)n∈N


such that when n goes to inĄnity (Tn)n∈N and (Sn)n∈N

tend to inĄnity, ϕTn

X (p) → p and ϕSn

X (q) → q. For an n large enough denote αn (resp.
βn) the shortest geodesic arc from ϕTn

X (p) to p (resp. ϕSn

X (q) to q). In order to get
two closed loops k(Tn, p) and k(Sn, q) not intersecting each other, consider C1-small
perturbations α̃, β̃ of αn and βn, Ąxing the extremities. We set:

link−
(
ϕ

[0,Tn]
X (p), ϕ

[0,Sn]
X (q)


= lim inf

α̃
C1−→αn,β̃

C1−→βn

link (k(Tn, p), k(Sn, q)) ,

and

l(p, q) = inf
((Tn)n∈N

,(Sn)n∈N)∈S(p,q)

1

TnSn

link−
(
ϕ

[0,Tn]
X (p), ϕ

[0,Sn]
X (q)


.

In this case, µ1 and µ2 are said to be positively linked if l(p, q) > 0 for µ1 ×µ2-almost
all points (p, q).

Case 2. µ1 and µ2 are said to be positively linked if the transverse rotation number
ρy(γ) of the periodic orbit γ containing the supports of µ1, µ2 computed in a Seifert
framing is strictly positive.

Definition 1.12. We say that the vector field X is right-handed if all pairs of ergodic
measures in P are positively linked.

As we said earlier, the advantage of this deĄnition is that it avoids dealing with
details on the existence of linking forms. In [Ghy09], Ghys deĄnes right-handedness
in a different way that we are now going to sketch.
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1.2.3 Right-handedness according to Ghys

As we have seen in Section 1.1, there is a suitable way to close the arc trajectory
from a point p ∈ S3 to ϕt

X(p) in order to get a knot. Using this fact, Ghys deĄnes
the linking number of two ergodic (for the Ćow of X) probability measures µ1 and
µ2 as follows [Ghy09]. Let p1 and p2 be two points which are generic respectively for
µ1 and µ2, and t1, t2 two large times. Connecting the endpoints of the arcs of orbit
ϕ

[0,t1]
X (p1) and ϕ

[0,t2]
X (p2), one obtains a link k(p1, t1) ∪ k(p2, t2) in S3. Adapting the

proof of ArnolŠd, Ghys proved that if µ1 and µ2 are not concentrated on the same
periodic orbit, the limit of linking numbers

lk(µ1, µ2) = lim
t1,t2→∞

1

t1t2
link (k(p1, t1), k(p2, t2))

exists µ1 ×µ2-almost everywhere and is independent from the choice of (p1, p2). If µ1

and µ2 are distributed on the same periodic orbit, there is also a way to deĄne the
self-linking number without using a preferred trivialization of the normal bundle. In
our situation, Ghys explains that one can deĄne some kind of self-linking number
of a periodic orbit going through a point p, by considering the asymptotic linking
number of the orbits of two sequences of different points pn

1 , pn
2 converging to the

point p.

Using the ergodic decomposition theorem and the previous deĄnition of linking
number of measures, one can deĄne a bilinear form lk(µ1, µ2) on the set P of invariant
probability measures for X. Ghys proves that this bilinear extension is possible in
a continuous way and Ąnally deĄnes the fundamental linking form on the compact
convex set P :

lk : P × P 7→ R .

We end up with the following deĄnition of a right-handed vector Ąeld:

Definition 1.13. A non-singular vector field X on S3 is right-handed if the quadratic
linking form is positive on the convex set P of invariant probability measures.

We can now state GhysŠ Theorem which is an analogue to the
SchwarzmanŰFriedŰSullivan Theorem:

Theorem 1.14. Let X be a non-singular vector field on S3, generating a flow ϕt
X .

Choose some Gauss linking form Ω. The following conditions are equivalent:

1. X is right-handed, i.e., the quadratic linking form is positive on the convex set
P.

2. There is some T > 0 such that for every pair of points p1, p2 on different
orbits, the integral

∫ T
0

∫ T
0 Ω

ϕ
t1
X

(p1),ϕ
t2
X

(p2)
(X

ϕ
t1
X

(p1), Xϕ
t2
X

(p2))dt1dt2 is positive.

3. There is some Gauss linking form Ω which is pointwise positive on X, i.e. for
every distinct points p1, p2, one has Ωp1,p2(X(p1), X(p2)) > 0.
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1.3 Examples

1.3.1 Trunk of knots and trunkenness

Before we look at some examples of vector Ąelds that are relevant for this thesis,
I would like to introduce the trunkenness of vector Ąelds, an invariant which was
deĄned by Pierre Dehornoy and Ana Rechtman in [DR17]. The objective is twofold:
Ąrst to present an invariant very close to the bridge number of knots, that we
will generalize to vector Ąelds in Chapter 2, and also to have a second invariant to
compute when we will look at examples. Let us start with the trunk of knots deĄned
by Ozawa in [Oza10]. DeĄne the standard height function on R3 by hz : (x, y, z) 7→ z.

Definition 1.15. A height function h on R3 is a function of the form

h(x, y, z) = hz(ψ(x, y, z))

where ψ is a smooth orientation-preserving diffeomorphism of R3. In particular, the
level sets of a height function on R3 are topologically smooth planes.

Let k be a knot in R3, and h a height function which is Morse with respect to
k. Ozawa [Oza10] deĄnes the trunk of k for h by

tkh(k) := max
t∈R

#¶k ∩ h−1(t)♢ .

Definition 1.16 ([Oza10]). The trunk of the knot k is given by

tk(k) := inf
h Morse height function

tkh(k) = inf
h Morse height function

max
t∈R

#¶k ∩ h−1(t)♢ .

Examples.

• The trunk of the unknot is 2, and a knot is trivial if and only if its trunk is 2.

• The trunk of the trefoil knot is 4.

• Since a torus knot T (p, q) can be realized as the closure of a braid with q
strands, and using symmetry of the knot, one has tk(k) ⩽ min¶p, q♢. Actually,
Ozawa proved that this is an equality [Oza10].

In order to generalize this invariant, Dehornoy and Rechtman proposed the fol-
lowing deĄnition. DeĄne a height function h on S3 to be a function whose level sets
are 2-dimensional spheres and with only two singular points. Let X be a vector Ąeld
in S3 preserving a measure µ. The trunkenness of (X,µ) for h is given by

tksh(X,µ) := max
t∈[0,1]

Flux
(
X,µ, h−1(t)



where Flux (X,µ, h−1(t)) is the geometric Ćux of (X,µ) through the level set h−1(t).
Roughly speaking, it represents the instantaneous measure of the points crossing
the level set h−1(t).
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Definition 1.17 (Dehornoy-Rechtman [DR17]). The trunkenness of (X,µ) is

Tks(X,µ) := inf
h height function

tksh(X,µ) = inf
h height function

max
t∈[0,1]

Flux
(
X,µ, h−1(t)



In their article [DR17], Dehornoy and Rechtman prove that the trunkenness is
an order one invariant under measure preserving homeomorphisms. It is continuous
in the sense that if the sequence of vector Ąelds (Xn)n∈N tends to X in the C0-
topology and preserves the sequence of measures (µn)n∈N converging to µ weakly-∗,
the trunkenness of (Xn, µn) converges to the trunkenness of (X,µ). In particular,
the asymptotic trunk is well-deĄned:

Theorem 1.18 (Dehornoy-Rechtman, [DR17]). If X is ergodic with respect to µ,
for µ-almost every point p,

lim
t→∞

1

t
tk (kX(p, t))

exists and is equal to Tks(X,µ).

The trunk of knots behaves well under connected sum. Davies and Zupan proved
the following [DZ17]:

Proposition 1.19 (Davies-Zupan, [DZ17]). For any two knots k1, k2 in R3,

tk(k1#k2) = max¶tk(k1), tk(k2)♢ .

The trunk is also related to another knot invariant, the bridge number of knots.
There are several ways to deĄne the bridge number, here to be consistent we choose
to Ąx the knot and vary the height function. Let k be a knot and h be a height
function so that h♣k is a Morse function, which means that the function h♣k has
Ąnitely many extrema.

Definition 1.20. Let bh(k) be the number of maxima (or minima) of h♣k. The
bridge number of k is then defined by:

b(k) = min
h height function

bh(k) .

In general, we have the relation tk(k) ⩽ 2b(k). Ozawa [Oza10] proved that for
the class of meridionally small knots, equality holds. A knot k is called meridion-
ally small if there exists no essential surface in its exterior E(k) with meridional
boundary.

Theorem 1.21 (Ozawa [Oza10]). If a knot k is meridionally small, then tk(k) =
2b(k).

Because of this relation, we asked if the trunkenness of vector Ąelds could be
related to the bridge number of vector Ąelds that we deĄne in this thesis. We show
in an example in Section 2.4 that it is not the case and that these invariants are
independent.
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1.3.2 Seifert flows

The Seifert Ćow of parameters (α, β) ∈ R∗
+ is the Ćow preserving the Haar measure

ΩHaar on S3 and deĄned by :

ϕt
(α,β)(z1, z2) = (z1 exp 2iπαt, z2 exp 2iπβt) ,

where (zi)i=1,2 are complex coordinates on S3 ⊂ C2. This Ćow has two particular
orbits given by zi = 0 that are closed and unknotted for any choice of parameters.
Moreover the Ćow preserves the torii ∥ z2

z1
∥ = constant. If α/β is rational and equal

to p/q with p and q two coprime integers, then every orbit is periodic and forms
a torus knot of type T (p, q) - except the two previously mentioned. This is why
for these Ćows, it is easy to compute vector Ąeld invariants using their asymptotic
deĄnition.

Helicity of Seifert flows. In the case where (α, β) takes on the rational values
(p, q) with the condition that p ∧ q = 1, all the orbits are periodic of period 1
and the linking number between any pair of orbits is pq with the exception of the
two speciĄc unknotted orbits that have linking number 1. Hence the asymptotic
linking number is also pq and using ArnolŠdŠs Theorem 1.9, the helicity is pq. In the
general case, when α/β ∈ R \ Q, one can approximate the vector Ąeld Xα,β with a
sequence of Seifert Ćows with rational slope, for which the helicity is the product of
the parameters. Using the continuity of helicity, one eventually has

Hel(Xα,β,ΩHaar) = αβ .

for arbitrary parameters α, β ∈ R.

Trunkenness of Seifert flows.

Proposition 1.22 (Dehornoy-Rechtman, [DR17]). The trunkenness of (Xα,β,ΩHaar)
is min(α, β).

We brieĆy explain the proof of this result. It stands in two steps. First, us-
ing the deĄnition of the trunkenness in terms of geometric Ćuxes, one shows that
Tks(Xα,β,ΩHaar) ⩽ 2β by exhibiting a particular height function. Here we have
to consider the standard height function h0 on S3, whose level sets are 2-spheres
centered in the origin of the standard stereographic projection, and more precisely
its particular level set h−1

0 (1/2) which contains the special orbit z2 = 0 and is the
only sphere that intersects all the orbits of the Ćow.

The second step is to prove the converse inequality Tks(Xα,β,ΩHaar) ⩾ 2 min(α, β).
This can be achieved by approximating the vector ĄeldXα,β with a sequence of vector
Ąelds with rational slope (Xpn/rn,qn/rn

)n∈N, where pn, qn and rn are integer numbers
(think of the decimal expansions of α and β). By Theorem 1.18,

Tks (Xα,β,ΩHaar) = lim
n→∞

Tks
(
Xpn/rr,qn/rn

,ΩHaar


.

Using the fact that the trunkenness is an order one invariant, it is enough to prove
Tks(Xp,q,ΩHaar) = 2 min(p, q) for p, q two coprime natural numbers. We have to
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compute the right-hand side of the above equality.
As we remarked, the Ćow is particularly simple in this case. One can choose a
sequence (Kn)n∈N of collections of n periodic orbits so that µn, the invariant measure
supported by Kn, tends to ΩHaar. This sequence of measures is deĄned as follows.
Let Xn be a vector Ąeld tangent to the link Kn in every point. This induces a Ćow
ϕt

n along the link. The invariant measure supported by Kn is given by:

µn(A) :=
1

n
Leb

(
∪n

i=1¶t ∈ [0, 1], ϕt
n(xi) ∈ A♢



for all A ⊂ S3, where the xi belong to the i-th component of Kn. Since the period
of each component is 1 and we have n of them, µn is of total mass 1 and tends to
ΩHaar when n goes to inĄnity by choice of the collection Kn. But the orbits that
constitute Kn are of course torus knots of type (p, q) so the trunkenness of Kn is
nmin(p, q) by a theorem of Zupan about cable links [Zup12]. Thus we have:

Tks(Xp,q,ΩHaar) = lim
n→∞

Tks(Xp,q, µn) = lim
n→∞

1

n
× nmin(p, q) = min(p, q) .

We will show in Chapter 2 that the bridge number of this Ćow is the same as the
trunkenness - because torus knots are meridionally small - and in Chapter 3 that
the asymptotic genus of this Ćow is half of the helicity.



Chapter 2

The bridge number of vector fields

In this chapter we are interested in the bridge number of knots, which is an invariant
of the same nature as the trunk of knots deĄned by Schubert [Sch54] from which
Dehornoy and Rechtman deĄned the trunkenness of vector Ąelds in [DR17]. In
Section 2.1 we present the deĄnition of the bridge number of knots and some needed
results of Milnor relating the bridge number of knots to the curvature of closed
curves. In Section 2.2 we introduce a deĄnition for the bridge number of a vector
Ąeld X preserving a probability measure µ on S3 and we show that it is an order
one invariant by C1-diffeomorphisms preserving µ (Theorem A). Then we prove a
regularity result for this new invariant (Theorem B) in Section 2.2 and use it to deĄne
an asymptotic bridge number (Theorem C) in Section 2.3. Finally we investigate
the relations between the bridge number of vector Ąelds, the trunkenness and the
helicity in Section 2.4.

2.1 Bridge number, crookedness and curvature of

a curve

First we deĄne what is a height function in S3: it is the precomposition of the
standard height function:

h0 : S3 = R3 ∪ ¶∞♢ → [0, 1]
(x, y, z) 7→ 1 − 1

1+x2+y2+z2 ,

with a C1-orientation-preserving diffeomorphism of S3. Let K be a knot and
h : S3 → R be a height function. We denote K the set of all embeddings k of
S1 into S3 that are isotopic to K and so that h♣k is a Morse function.

Definition 2.1. Let bh(k) be the number of maxima (or minima) of h♣k. The bridge
number of K is then defined by:

b(K) = min
k∈K

bh(k) .

In this deĄnition we choose to set the height function h and then minimize the
bridge number over the embeddings of the knot for which h is Morse. Another point

33
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of view (which we used in Chapter 1) is to Ąx an embedding of the knot and then
minimize the bridge number over the height functions that are Morse for this knot:

b(K) = min
h height function

bh(k) .

We will use this last deĄnition in preference to the previous one when deĄning a
bridge number for vector Ąelds.

The bridge number is almost additive under the connected sum of knots. This
result was proven by Schubert and later by Schultens [Sch03] and it will be used in
Section 2.4:

Proposition 2.2. The quantity b− 1 is additive under the connected sum of knots:
if K1 and K2 are two knots,

b(K1♯K2) = b(K1) + b(K2) − 1 .

Relation with the curvature. In the case of knots, the bridge number happens
to coincide with the crookedness of a curve, a notion which was introduced by Mil-
nor [Mil50] in the 50s.

Let K be a knot, k an embedding of S1 into Rn that is isotopic to K and
u ∈ Sn−1 ⊂ Rn a unit vector. We are considering k as a periodic parametrized curve
γ(t). We denote µ(k, u) the number of maxima of the function t 7→ u · γ(t) during
one period, and we call crookedness of k the quantity µ(k) := minu∈Sn−1¶µ(k, u)♢.
Then the crookedness of K is deĄned by

µ(K) := min
k embedding isotopic to K

µ(k) .

In his article Milnor relates the crookedness of a closed curve with its curvature.
Here we state his result in our particular setting : S3 embedded in R4. The point is
that the crookedness of K is exactly the bridge number of K. The difference with
the deĄnition that we chose before is that for the crookedness, one Ąxes a height
function and then isotopes the knot, while our Ąrst deĄnition Ąxes the embedding
and then changes the height function. Now let k be an oriented knot seen as the
support of a curve C of class C2, parametrized by arc length by γ : S1 → R4 and
with total length l, and set κ(k) = κ(C) =

∫ l
0 ♣γ′′(s)♣ ds the total curvature of the

curve. Then the following holds:

Theorem 2.3 (Milnor, [Mil50]). The integral
∫
S2 µ(C, u) dS exists and

∫

S2
µ(C, u) dS =

V ol(S2)

2π
× κ(C) .

This allows Milnor to obtain an upper bound of the crookedness by the curvature,
and thus also an upper bound of the bridge number. In our case because µ(C, u) ⩾
µ(k) we have from the precedent theorem:

Corollary 2.4. κ(k) ⩾ 2πb(k).

This will be useful in Section 2.3 to show an upper bound on the asymptotic
bridge number.
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2.2 Bridge number of vector fields

2.2.1 Definition and proof of Theorem A

We consider a smooth non-singular vector Ąeld X on S3 = R3 ∪¶∞♢ and we suppose
that X preserves a probability measure µ. We denote ϕt

X the Ćow of X at the time
t. For h a height function and t ∈ [0, 1], we note TX (h−1(t)) the (closed) set of
points where X is tangent to the level set h−1(t).

The problem that we face now is to mimic counting the local extrema of a height
function on a closed curve when the curve is replaced with a vector Ąeld. The Ąrst
remark is that when considering a vector Ąeld X, the local extrema correspond to
the tangency points of X to the level sets of the height function. The second step is
to Ąnd a way to count these tangency points. To see this let us consider a knot k of
isotopy class K in R3. On k we deĄne Xk a unitary vector Ąeld tangent to k. Since
k is a knot, the Ćow ϕt

Xk
is T -periodic for some Ąxed T > 0. It allows a measure to

be deĄned in the following way. For A a mesurable set and any p ∈ k,

µk(A) = Leb¶t ∈ [0, T ], ϕt
Xk

(p) ∈ A♢ .
Of course this measure does not see the tangency points of Xk to the level S of a
Morse height function. But it can detect short arcs of orbit ϕ

[0,ϵ]
Xk

(p). In particular

if ϵ is small enough, µk(ϕ
[0,ϵ]
Xk

(k ∩ S)) = ϵ · Card¶k ∩ S♢, that is to say

Card¶k ∩ S♢ = lim
ϵ→0

1

ϵ
µk(ϕ

[0,ϵ]
Xk

(k ∩ S)) .

Now the general case is more complicated, because an arbitrary measure may not
detect a 1-dimensional subset in general, for instance if µ is a volume. Thus in order
to detect the tangency points of X to the level sets using the measure µ we have to
consider the union of all the tangency points to all the level sets of h, push them by
the Ćow and then compute their measure. We have the following deĄnition:

Definition 2.5. For a given height function h, we define the bridge number of the
vector field X preserving a probability measure µ for h by

Bh(X,µ) =
1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.

Note that when µ charges only one orbit of the Ćow, this formula counts morally
the number of local extrema of the height function h restricted to this orbit, divided
by two, and this is just the bridge number of the orbit. As we said in the introduction,
we can then deĄne the bridge number of (X,µ):

Definition 2.6. The bridge number of (X,µ) is given by

B(X,µ) = inf
h height function

1

2
lim
ϵ→0

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h−1(t)


.
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From this deĄnition, we deduce that if for a given height function h, Bh(X,µ) <
+∞, then µ(TX) = 0, where TX denotes the union of the tangency points of X to
the level sets of h. Indeed, if this is not the case, then pushing TX by a small time ϵ
just makes its measure bigger, and dividing by ϵ makes 1

ϵ
µ(T ϵ

X) go to inĄnity when
ϵ tends to zero.

Another important remark about this deĄnition is that given (X, µ) as above,
it is not immediate that there exists a height function h so that Bh(X,µ) < ∞.
Indeed, if Bh(X,µ) = ∞ for a given height function h, it means that the µ-measure
of the union of tangency points of X to the level sets of h is (strictly) positive. Let
us show that we can always Ąnd a height function so that the µ-measure of the
tangency points of X to the level sets of this function is zero. We begin with the
following lemma.

Lemma 2.7. Let X be a vector field in S3. Let A ⊂ S3 and suppose that there exists
a fixed η > 0 so that any two intersections of A with the same orbit of the flow of X
are separated by a time greater than η. Then for all invariant measures µ and all
ϵ > 0 so that ϵ < η, we have

µ(Aϵ) := µ
(
ϕ

[0,ϵ]
X (A)


= f × ϵ ,

where f is a constant depending on A and µ and which we call the geometric flux of
the flow through A.

Proof. Choose an invariant measure µ and let x be a generic point for µ and recurrent
for the Ćow of X. It induces an ergodic measure deĄned by

µx(B) = lim
T →∞

1

T
Leb

(
¶t ∈ [0, T ], ϕt

X(x) ∈ B♢


for B ⊂ S3 a measurable set. Then

µx(Aϵ) = lim
T →∞

1

T
Leb

(
¶t ∈ [0, T ], ϕt

X(x) ∈ Aϵ♢


= lim
T →∞

1

T
ϵ · ♯¶A ∩ ϕ

[0,T ]
X (x)♢ .

But by hypothesis the intersection points of A with the orbit of x are isolated along
the orbit and there exists a Ąxed small time η > 0 which separates two intersections.
Thus

♯¶A ∩ ϕ
[0,T ]
X (x)♢ ⩽

T

η
,

so Ąnally µx(Aϵ) = ϵ× f where f is a constant depending on A and x. Since by the
ergodic decomposition theorem ([Mn87], Section II.6) any invariant measure µ is a
linear combination of such ergodic measures µx, we are done.

Proposition 2.8. Let (X,µ) be as in Definition 2.5. Let h be a height function so
that Bh(X,µ) = ∞. Then there exists a height function h̃ so that Bh̃(X,µ) < ∞.
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Proof. Let us suppose that Bh(X,µ) = ∞ for a given height function h, meaning
that the µ-measure of the union of tangency points of X to the level sets of h is
strictly positive. Then at least one of these two options occurs:

1. The union of tangency points of X to the level sets of h contains an open set
U in the support of µ which has positive measure.

2. There exists t0 ∈]0, 1[ so that the level set h−1(t0) contains a piece of orbit
which is in the support of µ and has positive measure.

By regularity of X and h, one cannot avoid the union of the tangency points of h
to be a set of dimension 2. However, for I a closed time interval and x ∈ S3, we can
avoid having pieces of orbits ϕI

X(x) as tangency points of a given level set, which is
the issue in the above two cases. We are going to construct a perturbation h̃ of h
so that in the support of µ, the tangency points of h̃ are discrete along any orbit.

Let us set TX(h) :=
⋃

0<t<1
TX (h−1(t)) and we will omit the reference to h when it

is clear which height function we are referring to. So our aim is to change the level
sets of h in a neighbourhood U of the set of tangency points TX(h), in order to get
a height function for which the pair (X,µ) has Ąnite bridge number.

Since U is closed in S3, thus compact, we can cover this set with a Ąnite number
of Ćowboxes (Fi)(1⩽i⩽n). We want to gradually change the level sets of h in a
neighbourhood of U , with perturbations located inside the Fi. To do this we need
another family of Ćowboxes Gi so that each Gi is contained in Fi and the family
(Gi)1⩽i⩽n is a covering of U . This can be made because the family (Fi)1⩽i⩽n is a
covering, so shrinking a little the generating disks of these Ćowboxes does not change
this property.

Consider the Ćowbox F1. There is a family of level sets of h that are problematic,
i.e. tangent to X along segments of orbits in F1. In this case we can perform a
C1-perturbation of the level sets of h in G1 so that the new tangency points of
X inside G1 form 2-dimensional sets that are transverse to X. The idea of the
perturbation is to allow the level sets to make C1 little waves instead of being Ćat
(and tangent). As there is a Ąnite number of oscillations in G1, one can Ąnd a small
time η1 which separates two tangency points in the same orbit. Figure 2.1 illustrates
this modiĄcation. Let us call h̃ the perturbed function.

Note that since we only modify the level sets inside of G1, the obtained level
sets glue well with the other level sets outside F1 since the level sets in F1 \ G1

are unchanged. This also means that we do not add tangency points with this
perturbation, we can only remove some of them. Indeed after perturbation we
have µ(TX ∩ G1) = 0. We iterate this process on the n Ćowboxes Fi to Ąnally get
µ(U) = 0. For each Ćowbox Gi we have a small positive constant ηi and we have
a Ąnite number of Ćowboxes, so with η = mini=1,...,n ηi the set TX(h̃) satisĄes the
hypothesis of Lemma 2.7.

Finally after a Ąnite number of changes, we obtain a height function h̃ so that

µ

(
⋃

0<t<1
TX

(
h̃−1(t)


= 0 and the set

⋃
0<t<1

TX

(
h̃−1(t)


satisĄes the hypothesis of
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Figure 2.1: Changing the level sets of h to obtain a 2-dimensional set of tangency
points.

Lemma 2.7, and thus

Bh̃(X,µ) =
1

2
lim
ϵ→∞

1

ϵ
µ

(
⋃

0<t<1

ϕ
[0,ϵ]
X

(
TX

(
h̃−1(t)



=
1

2
lim
ϵ→∞

1

ϵ
ah̃ × ϵ

=
ah̃

2
< +∞ .

Proposition 2.8 and Lemma 2.7 and their proof call for a deĄnition of a class
of height functions which could be usable to compute the bridge number of a given
vector Ąeld X:

Definition 2.9. Let X be a vector field on S3. We say that a height function h is
good for X if TX(h) does not contain any orbit segment of strictly positive length.

Given any height function, we can change its level sets as explained in the Propo-
sition 2.8 so that it becomes an h̃ that is good for X and Bh̃(X,µ) ⩽ Bh(X,µ).
Moreover from the proof of Proposition 2.8, any good function h for X admits an
ϵh > 0 so that any two points of TX(h) that belong to the same orbit are at distance
at least ϵh. Then for any ϵ < ϵh, we have that µ(T ϵ

X) = ah ×ϵ, where ah is sometimes
called the geometric Ćux through TX , as we have seen in Section 1.3. It is a Ćux that
does not take the orientations into account and that counts everything positively.
This ah exists because µ is an invariant measure, so it can be desintegrated if one
thinks of the Ćow lines as a foliation, as it is explained in Lemma 2.7. In this case,
ah is the bridge number of (X,µ) with respect to the good height function h.
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Now we prove Theorem A that asserts that this deĄnition is invariant under
measure-preserving C1-diffeomorphisms.

Proof of Theorem A Let X1 and X2 be two vector Ąelds that preserve respec-
tively the probability measures µ1 and µ2, f a C1-diffeomorphism of S3 so that
µ1 = f ∗µ2 and f ◦ ϕt

X1
= ϕt

X2
◦ f for all t ∈ R. Suppose by contradiction that

0 < δ = B(X1, µ) − B(X2, µ). Let (Hn)n∈N be a sequence of differentiable height
functions so that

lim
n→∞

BHn
(X2, µ2) = B(X2, µ2) .

For all n we deĄne the height function hn = Hn ◦ f and we call TX1(h−1
n (t)) the

points of the level set h−1
n (t) where X1 is tangent. We have:

TX1(h−1
n (t)) = TX1(f−1 ◦H−1

n (t)) = Tf∗X2(f−1 ◦H−1
n (t)) = f−1

(
TX2(H−1

n (t))

.

So, since f conjugates the Ćows and µ1 = f ∗µ2:

lim
ϵ→0

1

ϵ
µ1

(
⋃

0<t<1

ϕ
[0,ϵ]
X1

(
TX1

(
h−1

n (t)


= lim
ϵ→0

1

ϵ
µ1

(
⋃

0<t<1

ϕ
[0,ϵ]
X1

(
f−1

(
TX2

(
H−1

n (t)


= lim
ϵ→0

1

ϵ
µ1

(
f−1

(
⋃

0<t<1

ϕ
[0,ϵ]
X2

((
TX2

(
H−1

n (t)


= lim
ϵ→0

1

ϵ
µ2

(
⋃

0<t<1

ϕ
[0,ϵ]
X2

(
TX2

(
H−1

n (t)


,

thus Bhn
(X1, µ1) = BHn

(X2, µ2). Let now N ∈ N be so that for all n > N ,
BHn

(X2, µ2) −B(X2, µ2) <
δ
2
. For any n > N we have that

0 < δ = B(X1, µ1) −B(X2, µ2) = B(X1, µ1) −Bhn
(X1, µ1) +BHn

(X2, µ2) −B(X2, µ2)

< 0 +
δ

2
,

since B(X1, µ1) ⩽ Bhn
(X1, µ1) for all n. This gives a contradiction,

so B(X2, µ2) = B(X1, µ1).
It remains to prove that the order of B is one. Let λ ∈ R∗

+ and h be a height
function and consider the vector Ąeld λX1. It has the same tangency points to any
level set of h as X1, and we also have ϕ

[0,ϵ]
λX1

= ϕ
[0,λϵ]
X1

, so that we have:

Bh(λX1, µ1) =
1

2
lim
ϵ→0

1

ϵ
µ1

(
⋃

0<t<1

ϕ
[0,ϵ]
λX1

(
TλX1

(
h−1(t)



=
λ

2
lim
ϵ→0

1

λϵ
µ1

(
⋃

0<t<1

ϕ
[0,λϵ]
X1

(
TX1

(
h−1(t)



= λBh(X1, µ1) .

Since this holds for all height functions h, the bridge number is an order one invari-
ant.



40 CHAPTER 2. THE BRIDGE NUMBER OF VECTOR FIELDS

2.2.2 Proof of Theorem B

In this section we prove Theorem B. The proof is by contradiction. Remember that
X is a smooth non-singular vector Ąeld on S3 preserving a probability measure µ,
and we have a sequence (Xn, µn)n∈N so that (Xn)n∈N tends to X in the C1-topology
and (µn)n∈N tends to µ weakly-∗.

Let us begin the proof with some general results. Fix a Riemannian metric g on
S3 so that ∥X∥ = 1 everywhere. To exploit weak-∗ convergence of (µn)n∈N to µ, we
are going to use the theory of currents. The current associated to (X,µ) is given for
every differential 1-form α on S3 by

C(X,µ)(α) =
∫
α(X)dµ =

∫
α(Y )dν

where Y is the unitary vector Ąeld X
∥X∥ and ν = ∥X∥µ ; observe that in our case

X = Y and µ = ν, but we can deĄne by analogy Yn and νn as well. The mass of a
current is then given by

M
(
C(X,µ)


= sup

α, ∥α∥⩽1

∫
α(X)dµ


= ν(S3) .

If the vector ĄeldsXn tend toX in the C0−topology and (µn)n∈N tends to µ weakly-∗,
the currents C(Xn,µn) tend to C(X,µ) in mass topology, so

M
(
C(X,µ) − C(Xn,µn)


= ∆n →n→∞ 0 .

Lemma 2.10. For any measurable set A ⊂ S3, ♣ν(A) − νn(A)♣ ⩽ δn, where δn is a
positive decreasing sequence converging to zero, and independent from A.

Proof. Let α be the dual form to Y and αn be the dual form to Yn with respect to
the metric g. Then ∥α∥ = 1, ∥αn∥ = 1, α(Y ) = αn(Yn) = 1 and since Y and Yn are
C0-close,

0 ⩽ α(Yn) = ⟨Y, Yn⟩ = αn(Y ) ⩽ 1

and there exists a positive sequence (ϵn)n∈N so that ⟨Y, Yn⟩ ⩾ 1− ϵn tends to 1 when
n goes to inĄnity. Then

∆n = M
(
C(X,µ) − C(Xn,µn)



⩾
1

2

∫

A
α(Y )dν −

∫

A
α(Yn)dνn +

∫

A
αn(Y )dν −

∫

A
αn(Yn)dνn



=
1

2


ν(A) − νn(A) −

∫

A
α(Yn)dνn +

∫

A
αn(Y )dν



⩾
1

2


ν(A) − νn(A) −

∫

A
dνn +

∫

A
(1 − ϵn)dν



=
1

2
((2 − ϵn)ν(A) − 2νn(A)) .

Finally
2

2 − ϵn

∆n ⩾ ν(A) − 2

2 − ϵn

νn(A) .
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We can then write

ν(A) − νn(A) = ν(A) − 2

2 − ϵn

νn(A) +


2

2 − ϵn

− 1

νn(A)

⩽
2

2 − ϵn

∆n +
ϵn

2 − ϵn

νn(S3)

=: δn

and δn is independent from A and tends to 0 as n goes to inĄnity. Using the 1−forms
−α and −αn, the same computation gives

ν(A) − νn(A) = νn(A) − 2

2 − ϵn

ν(A) +


2

2 − ϵn

− 1

ν(A)

⩽
2

2 − ϵn

∆n +
ϵn

2 − ϵn

ν(S3)

= δn ,

thus ∣∣∣∣ν(A) − νn(A)
∣∣∣∣ ⩽ δn .

We continue by considering the following sets, which we reintroduce for greater
clarity:

TXn
:=

⋃

0<t<1

TXn

(
h−1(t)


and TX :=

⋃

0<t<1

TX

(
h−1(t)


,

and denote them by TX(h) and TXn
(h) when we need to specify the height function.

Lemma 2.11. Let h be a good height function for X. Then lim
n→∞

µn(TXn
) = µ(TX).

Proof. Let θn be the positive angle between X and Xn. Then cos(θn) = ⟨Y, Yn⟩ ⩾

1 − ϵn for the positive sequence (ϵn)n∈N converging to 0. By compactness of S3,
the continuous function which maps any point p ∈ S3 to the angle θn(p) is strictly
bounded by a constant dn which tends to 0 as n goes to inĄnity. Let us extract
this sequence (dnk

)k∈N so that it is strictly decreasing to 0. For nk < n < nk+1, set
dn = dnk

. Let Wn be the set of the points of each level set of h for which the tangent
space of the level set makes an angle strictly less than dn with X. These Wn have
the following properties:

• Wn ⊇ Wn+1 for any n and
⋂

n∈N
Wn = TX ;

• µ(Wn) ⩽ µ(S3), hence it is Ąnite. Then

0 = µ(TX) = µ


⋂

n∈N

Wn


 = lim

n→∞µ(Wn)

• TXn
⊂ Wn for all n ∈ N.
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By the additivity of the measure µ, we have:

0 ⩽ µ(TXn
) − µ(TX) ⩽ µ(TXn

\ TX) ⩽ µ(Wn \ TX) .

But

lim
n→∞

µ(Wn \ TX) = µ


⋂

n∈N

(Wn \ TX)


 = µ




⋂

n∈N

Wn


 \ TX


 = 0 .

Hence µ(TXn
) tends to µ(TX) = ν(TX) when n tends to inĄnity. Thus, ν(TXn

) tends
to ν(TX) as well.

By Lemma 2.10 we have for all n ∈ N:

∣∣∣∣ν(TXn
) − νn(TXn

)
∣∣∣∣ ⩽ δn ,

which implies for all ϵ > 0, there exists Nϵ ∈ N so that for all n > Nϵ:

ν(TX) − δn − ϵ ⩽ νn(TXn
) ⩽ δn + ν(TX) + ϵ .

Thus when n tends to inĄnity, νn(TXn
) tends to ν(TX) = µ(TX).

Now we want to prove that µn(TXn
) converges to µ(TX). Let Mn = max

S3
∥Xn∥−1

and mn = min
S3

∥Xn∥−1. By the convergence of Xn to X, given ϵ > 0 there exists N ′
ϵ

so that for all n > N ′
ϵ, 1 − ϵ ⩽Mn ⩽ 1 + ϵ and 1 − ϵ ⩽ mn ⩽ 1 + ϵ. Moreover, there

exists K so that ♣µ(TX)−νn(TXn
)♣ < ϵ for all n > Kϵ. Hence for all n > max(N ′

ϵ, Kϵ),
we can write

(1 − ϵ)νn(TXn
) ⩽ mnνn(TXn

) ⩽ µn(TXn
) ⩽Mnνn(TXn

) ⩽ (1 + ϵ)νn(TXn
)

from which we deduce

ϵ(−µ(TX) − ϵ) < −ϵνn(TXn
) ⩽ µn(TXn

) − νn(TXn
) ⩽ ϵνn(TXn

) < ϵ(ϵ+ µ(TX)) .

Thus µn(TXn
) − νn(TXn

) tends to 0 when n goes to inĄnity, implying that µn(TXn
)

converges to µ(TX).

We now push the sets with the Ćow of X (resp. Xn). For a small positive time
ϵ let us consider the sets:

T ϵ
X := ϕ

[0,ϵ]
X (TX) and T ϵ

Xn
:= ϕ

[0,ϵ]
Xn

(TXn
) .

Recall that Wn is the set of the points of each level set of h for which the tangent
space of the level set makes an angle strictly less than dn with X. We have seen
that TXm

⊆ Wm ⊂ Wn for all n, m ∈ N so that m > n.
Fix a small ϵ > 0 that we might take smaller later in the proof. Set

W ϵ
n =


 ⋃

m⩾n

T ϵ
Xm


 ∪ ϕ

[0,ϵ]
X (Wn) .

These sets have the following properties:
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• W ϵ
n ⊃ W ϵ

n+1;

• T ϵ
X ⊂ W ϵ

n and T ϵ
Xm

⊂ W ϵ
n for all n and m ⩾ n;

•
⋂

n∈N
W ϵ

n = T ϵ
X . Let us prove the two inclusions:

– Because of the properties of (Wn)n∈N, T ϵ
X ⊂ ϕ

[0,ϵ]
X (Wn) for all n and thus

T ϵ
X ⊂ W ϵ

n for all n, so that T ϵ
X ⊂ ⋂

n∈N
W ϵ

n.

– Let us show the converse inclusion. Let x ∈
(
⋂

n∈N
W ϵ

n


\ T ϵ

X . Then

x ∈

⋂

n∈N

(
⋃

m>n

T ϵ
Xm


 \ T ϵ

X

and x /∈ TX . Then for all n ∈ N, there exists yn ∈ TXn
so that the orbit

of Xn going through yn goes through x and ϕtn

Xn
(yn) = x with 0 ⩽ tn ⩽ ϵ.

By compactness of S3, (yn)n∈N converges to a point y up to extraction of a
subsequence and there exists t = lim

n→∞ tn ∈ [0, ϵ] so that ϕt
X(x) = y. Thus

x belongs to T ϵ
X and this contradicts the choice of x. So

⋂
n∈N

W ϵ
n ⊂ T ϵ

X .

Let us suppose that
⋂

n∈N
T ϵ

Xn
⊈ T ϵ

X . If x belongs to ∈ ⋂
n∈N

T ϵ
Xn

\ T ϵ
X , there

exist two sequences (pn)n∈N and (tn)n∈N so that pn ∈ TXn
, tn ∈ [0, ϵ] and

pn = ϕtn

Xn
(x). Since the TXn

are closed and decreasing for the inclusion, (pn)n∈N

converges to p ∈ TX up to extraction of a subsequence and (tn)n∈N converges
to t ∈ [0, ϵ]. In the end x ∈ T ϵ

X and this is a contradiction. So
⋂

n∈N
T ϵ

Xn
⊂ T ϵ

X

and Ąnally
⋂

n∈N
W ϵ

n = T ϵ
X .

Now we can use these results to prove the theorem by contradiction. Suppose
that L > B(X,µ). Then there exists h good for X such that ah < L. Fix η > 1
such that ηah < L. There exist N(η) so that for all n > N(η), ηah < B(Xn, µn).
Fix ϵ < ϵh/2. Then

0 ⩽ ahϵ = µ(T ϵ
X) = µ


⋂

n∈N

W ϵ
n


 = lim

n→∞
µ(W ϵ

n) .

So there exists N(ϵ) > 0 such that for all n > N(ϵ), we have µ(W ϵ
n) < ηahϵ and

thus µ(T ϵ
Xn

) < ηahϵ.
As in the proof of Lemma 2.11, given δ > 0, there exists N ′

δ so that

♣1 −Mn♣ ⩽ δ and ♣1 −mn♣ ⩽ δ

for all n > N ′
δ. Then

ν(T ϵ
Xn

) −Mnνn(T ϵ
Xn

) ⩽ µ(T ϵ
Xn

) − µn(T ϵ
Xn

) ⩽ ν(T ϵ
Xn

) −mnνn(T ϵ
Xn

) .

The lower bound can be bounded from below by
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ν(T ϵ
Xn

) −Mnνn(T ϵ
Xn

) = Mn

(
ν(T ϵ

Xn
) − νn(T ϵ

Xn
)


+ (1 −Mn)ν(T ϵ
Xn

)

⩾ −Mnδn + (1 −Mn)ν(T ϵ
Xn

)

> −(δ + 1)δn − δν(T ϵ
Xn

)

= −δ(δn + ν(T ϵ
Xn

)) − δn

for every n > N ′
δ. Since ν(T ϵ

Xn
) = µ(T ϵ

Xn
) is bounded, by taking n big, the above

quantity is arbitrarily close to 0. Proceeding the same way, the upper bound is
bounded by

ν(T ϵ
Xn

) −mnνn(T ϵ
Xn

) = mn

(
ν(T ϵ

Xn
) − νn(T ϵ

Xn
)


+ (1 −mn)ν(T ϵ
Xn

)

< (δ + 1)δn + δν(T ϵ
Xn

)

= δ(δn + ν(T ϵ
Xn

)) + δn

which can be taken arbitrarily close to 0. So there is an N(ϵ, η) so that for all
n > N(η, ϵ),

µn(T ϵ
Xn

) < ηahϵ .

The aim of what comes next is to Ąnd a good height function hn for Xn, so that
Bhn

(Xn, µn) < ηah. By deĄnition, h has the following properties:

• The set TX(h) does not contain any connected segment of orbit (for X) of
strictly positive length;

• If x, y ∈ TX are such that there exists t > 0 with ϕt
X(x) = y and ϕs

X(x) /∈ TX

for all s ∈]0, t[, then t > ϵh.

Let δ < ϵh and n large enough so that Wn satisĄes the following conditions:

• The set Wn does not contain any connected segment of orbit (for Xn) of length
greater than δ/2;

• If x, y ∈ TXn
are such that there exists t > 0 with ϕt

Xn
(x) = y and ϕs

Xn
(x) /∈

TXn
for all s ∈]0, t[, then t > δ/2.

This is possible because TXnk
⊂ Wnk

and ∩kWnk
= TX which satisĄes the above

properties. Indeed since h is good for X, TX does not contain any orbit segment
of strictly positive length and two points of TX on the same orbit are at a distance
bigger than ϵh > δ. Moreover TX does not contain any piece of orbit of strictly
positive length for Xn.

For each such n - given by the above conditions on Wn, let us choose a Ąnite
covering of (S3, Xn) with Ćowboxes (Fi)1⩽i⩽M whose lengths are at least 2δ and so
that any connected orbit segment of length δ is contained in a Ćowbox.

Fact: For each such n, we can construct a height function hn which is good for
Xn and so that ϵhn

> δ/4. Moreover, TXn
(hn) ⊂ TXn

(h).
Proof: We want to use the above covering to obtain a height function hn good

for Xn and so that TXn
(hn) ⊂ TXn

(h). To do this we need another family of
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Figure 2.2: Changing the level sets of h inside a Ćowbox Gi to make it good for Xn.
There can be several ŞplateauxŤ in the same Ćowbox, the important point is that
there are all at least δ/2 apart, which ensures that we have enough space to perform
a modiĄcation.

Ćowboxes (Gi)1⩽i⩽M so that each Gi is contained in Fi and the family (Gi)1⩽i⩽M

is a covering of TXn
. This can be made because the family (Fi)1⩽i⩽M is a covering,

so shrinking a little the generating disks of these Ćowboxes does not change this
property. In each Ćowbox Gi, the level sets of h have a certain number of ŞplateauxŤ,
that is to say points where a piece of orbit of strictly positive length is tangent,
and theseŞplateauxŤ are apart one from each other from at least δ/2 by choice of
Wn. Inside these Ćowboxes, we can change the ŞplateauxŤ intoŞbumpŤ, with a
C1-perturbation as pictured in Figure 2.2.

Since the ŞplateauxŤ are apart from at least δ/2, by choosing the middle of the
ŞplateauŤ as top of the ŞbumpŤ, we ensure that two tangency points on the same
orbit are apart from at least δ/2, thus a fortiori ϵhk

> δ/4.
Let ϵ < δ/4 < ϵh. Recall that there exists N(ϵ, η) > 0 so that for all n > N(ϵ, η)

we have µn(T ϵ
Xn

) < ηahϵ. Let n > max(N(ϵ, η), N(η)), then

ahn
ϵ = µn(T ϵ

Xn
(hn)) ≤ µn(T ϵ

Xn
(h)) < ηahϵ.

Thus ahn
< ηah and

B(Xn, µn) ≤ ahn
< ηah < B(Xn, µn),

a contradiction. So L ≤ B(X,µ).
If L = ∞, we can Ąx A > B(X,µ) and Ąnd N > 0 so that for all n > N we have

B(Xn, µn) > A. Then repeating the above proof with A instead of L gives again a
contradiction. So Theorem B holds.

2.3 Asymptotic bridge number

Let X be a smooth non-singular vector Ąeld on S3 which preserves an ergodic volume
µ. Following the work of ArnolŠd, the aim of this section is to prove that the
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asymptotic bridge number of a vector Ąeld is well deĄned (Theorem C) for this
setting and that it coincides with the bridge number of a vector Ąeld that we deĄned
in the previous section.

2.3.1 Asymptotic bridge number and curvature

Before proving Theorem C, we present an interesting relation between the asymp-
totic bridge number and the mean curvature of a knot. In order to use the relation
between bridge number and curvature that was established by Milnor, we need to
set a Riemannian metric g on S3 induced by R4. We denote ϕT

X the Ćow of X at the
time T ∈ R.

System of short paths. As we have already seen with the asymptotic linking
number, an obvious difference between the bridge number of knots and the one we
want to deĄne is that we are working with pieces of trajectories which are generally
not closed. So we need a system of short paths S that allows us to close the
trajectories, which has been deĄned by Thomas Vogel in [Vog03] and which we have
presented in Section 1.1.2. We recall some of its properties that we will need in this
section:

• For each pair of points p, q ∈ S3, there exists an unique short path from p to
q; each short path is piecewise differentiable.

• The short paths depend continuously on their extremities almost everywhere.

• For almost each point p and for all time T , the short path from p to ϕT
X(p)

does not intersect the piece of trajectory ϕ
[0,T ]
X (p), that is to say that we can

close pieces of orbits with short paths and obtain simple closed curves.

With this system and the results of Milnor (Corollary 2.4), we can prove an
upper bound on the asymptotic bridge number when it exists. We begin with a
construction.

Construction

• For x ∈ S3 and T ∈ R, we follow the trajectory of x during the time T and
then close it with the right short path α in S given by Theorem 1.7. Then
we do a little trick : we take a C2 perturbation α̃ of α so that α̃ has the same
properties as α and the curve k(x, T ) := ϕ

[0,T ]
X (x) ∪ α̃ is of class C2. Such a

construction is possible for almost every x.

• We note b(x, T ) the bridge number of the knot k(x, T ).

• Following Milnor, we also deĄne κ(x, T ) = κ(k(x, T )) =
∫ T +l(α̃)

0 ♣ γ′′(s) ♣ ds
where γ is the parametrized by arc length curve of support k(x, T ) and l(α̃)
is the length of α̃. We set:

κ(x) = lim
T →∞

1

T
κ(x, T ) .
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The above limit exists because the curve γ is of class C2 on S3 which is compact.
Moreover the contribution of the perturbed geodesic to the curvature divided
by T tends to 0 when the length of the piece of trajectory goes to inĄnity, so
we have:

κ(x) = lim
T →∞

1

T

∫ T

0
♣ γ′′(s) ♣ ds+ lim

T →∞

1

T

∫ T +l(α̃)

T
♣ γ′′(s) ♣ ds

= lim
T →∞

1

T

∫ T

0
♣ γ′′(s) ♣ ds

and the limit κ(x) can be interpreted as the average curvature of the positive
orbit of x.

Using Corollary 2.4, we know that for almost every x ∈ S3 and for all T > 0 we
have κ(x, T ) ⩾ 2π b(x, T ), so

κ(x) = lim
T →∞

1

T
κ(x, T ) ⩾ 2π lim

T →∞

1

T
b(x, T ) =: 2π b∞(x) ,

when the limit exists for the right-hand side of the inequality. Now if we consider
a sequence (Tn)n∈N of times converging to inĄnity, the sequence ( 1

Tn
b(x, Tn))n∈N is

bounded between 0 and 2κ(x) and converges up to extraction of a subsequence. So
the mean curvature bounds the asymptotic bridge number.

2.3.2 Proof of Theorem C

Recall that for this result X is ergodic with respect to the volume µ. Fix a Rie-
mannian metric and let x be a generic point in S3 for µ. We consider a small open
disk-like section D of radius R transverse to X around x and push it with the Ćow
of X on the time interval ] − t, t[ for a Ąxed small t > 0 so as to get a Ćowbox G.
We call (tn)n∈N a sequence of return times of the point x to D, associated to the
points (xn)n∈N = (ϕtn

X (x))n∈N so that d(x, xn) tends monotonically to 0 when n goes
to inĄnity. Now Ąx n ≫ 0. We want to close the arc of orbit between x and xn

with a C1-perturbation of X in a smaller Ćowbox Fn that we are going to deĄne.
Consider a radius rn so that xn is the Ąrst return of x in the transverse open disk
centered on x and of radius rn, and rn ≪ R. Now we push:

Fn := ϕ
[−t/100,0]
X (D(x, rn)) .

Let us abusively denote xn the intersection point of the arc of orbit ϕ
[0,tn]
X (x) with

ϕ
−t/100
X (D(x, rn)). In this Ćowbox Fn, we can close the arc of orbit ϕ

[0,tn−t/100]
X (x)

with a C1-perturbation of X in Fn - this is possible with the C1-closing lemma of
Pugh and Robinson [PR83]. We denote kX(x, tn) the obtained knot. For each return
time tn, we have a perturbed vector Ąeld Xn so that Xn = X outside Fn and Xn is
C1-close to X in Fn.

As we have seen previously in the beginning of Section 2.2.1, we can associate
a Dirac linear measure to the knot kX(x, tn) as follows : for a point x ∈ S3, t > 0,
µx,t(A) := Leb(¶s ∈ [0, t], ϕs

X(x) ∈ A♢). We consider the normalized measure 1
t
µx,t.

Since X is ergodic for µ, for µ-almost all x ∈ S3 and for all (tn)n∈N so that (tn)n∈N



48 CHAPTER 2. THE BRIDGE NUMBER OF VECTOR FIELDS

Figure 2.3: Possible position of the level sets of hn in G and Fn

tends to inĄnity, 1
tn
µx,tn

converges to µ weakly-∗. Now we denote µn the normalized
Dirac linear measure supported by the periodic orbit (for Xn) kX(x, tn), which is
invariant by Xn. As Xn tends to X in the C1-topology and µn tends to µ weakly-
∗, by Theorem B the sequence B(Xn, µn) admits a limit, that is less or equal to
B(X,µ).

Take hn so that Bhn
(Xn, µn) = B(Xn, µn). Such a height function exists since

the support of µn is a knot in S3.

Lemma 2.12. Let n ∈ N. Let Fn be the flowbox where X ̸= Xn. We can choose hn

so that

• µ(TX(hn)) = 0;

• TXn
(hn) ∩ Fn = ∅.

Proof. From the choice of hn, we can already have that µn(TX(hn)) = 0. Indeed,
since X = Xn outside of Fn and hn is a good height function for Xn, in an open
tubular neighbourhood N of kX(x, tn), the level sets of hn satisfy that µn(TX(hn)) =
0. Thus by Proposition 2.8 we can modify the level sets of hn in S3 \ N so that the
tangency points toX are isolated along the orbits, which implies that µ(TX(hn)) = 0.
Note that since S3 \ N is not in the support of µn, anything could have happened
with the tangency points there although hn is a good function for Xn = X. We
have then to look at what happens inside Fn. If Xn does not have tangency points
for hn in Fn, we are done. If not, since the Ćowboxes are arbitrarily small and hn is
chosen to minimize the bridge, one can suppose that the tangency points look like
in Figure 2.3.

Then we can pull away the problematic points by modifying the level sets in G,
so that the level sets of hn are transverse both to Xn and X in Fn, as pictured in
Figure 2.4

This concludes the proof.

Observe that µn(TXn
(hn)) = µn(TX(hn)), by the deĄnition of µn, and for ϵ > 0

small we have µn(T ϵ
Xn

(hn)) = µn(T ϵ
X(hn)) too. Thus

µ(T ϵ
X(hn)) − µn(T ϵ

Xn
(hn)) = µ(T ϵ

X(hn)) − µn(T ϵ
X(hn)) .
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Figure 2.4: ModiĄcation of the level sets of hn in G so that there are no tangency
points in Fn

Since µ(TX(hn)) = 0, µ(T ϵ
X(hn)) = an · ϵ, and also µn(T ϵ

Xn
(hn)) = bn · ϵ, for some an

and bn ⩾ 0. Observe that bn = Bhn
(Xn, µn) and an = Bhn

(X,µ), and by Theorem B
bn ⩽ an for n big enough. Given a positive sequence (ϵk)k∈N converging to 0, there
exists a sequence (nk)k∈N converging to inĄnity so that

δnk
< ϵ2

k ,
∣∣∣∣
1 −mnk

mnk

∣∣∣∣ < ϵ2
k ,

∣∣∣∣
1 −Mnk

Mnk

∣∣∣∣ < ϵ2
k ,

where δnk
is given by Lemma 2.10 and we recall that Mnk

= max
S3

∥Xnk
∥−1 and

mnk
= min

S3
∥Xnk

∥−1. At the same time,

bn · ϵ
Mn

⩽ νn

(
T ϵ

Xn
(hn)


⩽

1

mn

µn

(
T ϵ

Xn
(hn)


=
bn · ϵ
mn

where the last equality holds for ϵ small enough. Then

−δnk
+ (1 −Mnk

)νnk

(
TXnk

(hnk
)


⩽ µ (T ϵk

X (hnk
)) − µnk

(
T ϵk

Xnk
(hnk

)


−ϵ2
k +

1−Mnk

Mnk

bnk
ϵk < µ (T ϵk

X (hnk
)) − µnk

(
T ϵk

Xnk
(hnk

)

,

and

µ (T ϵk

X (hnk
)) − µnk

(
T ϵk

Xnk
(hnk

)


⩽ δnk
+ (1 −mnk

)νnk

(
T ϵk

Xnk
(hnk

)


µ (T ϵk

X (hnk
)) − µnk

(
T ϵk

Xnk
(hnk

)


< ϵ2
k +

1−mnk

mnk

bnk
ϵk .

Now we need to remember that for any n ∈ N, bn = B(Xn, µn) and by Theorem B
up to extraction of a subsequence,

lim
n→∞

bn ⩽ B(X,µ) .

Thus bnk
ϵk tends to zero when k tends to inĄnity, and for k sufficiently big we can

assume that

−2ϵ2
k < −ϵ2

k(1 + bnk
ϵk) < µ (T ϵk

X (hnk
)) − µnk

(
T ϵk

Xnk
(hnk

)


< ϵ2
k(1 + bnk

ϵk) < 2ϵ2
k .
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Hence when k tends to inĄnity,

lim
k→∞

µ (T ϵk

X (hnk
)) = lim

k→∞
µnk

(
T ϵk

Xnk
(hnk

)


and

lim
k→∞

1

ϵk

µnk

(
T ϵk

Xnk
(hnk

)


= lim
k→∞

bnk
= lim

k→∞
B(Xnk

, µnk
) = L .

But µ (T ϵk

X (hnk
)) ⩽ ank

ϵk - with an inequality because ϵk might not be small enough.
This implies that

a = lim
k→∞

ank
⩽ L .

If a < L, there exists K big enough so that for all k > K, ank
< L. Then by

deĄnition of the bridge number of vector Ąelds,

Bhnk
(X,µ) < L ⩽ B(X,µ)

which is a contradiction. If not,

lim
k→∞

ank
= L ⩾ B(X,µ)

and we are done.

Corollary 2.13. Let X be a smooth non-singular vector field on S3 preserving an
ergodic volume µ. Let x be a recurrent point generic for µ. Then

B(X,µ) ⩽
κ(x)

2π

where κ(x) is the limit defined in Section 2.3.1.

Proof. Let x be a recurrent point generic for µ. Then from Section 2.3.1, we have:

κ(x) ⩾ 2πb∞(x),

and since (X,µ) is ergodic by Theorem C we know that b∞(x) = B(X,µ), so the
result follows.

2.4 Connection with other invariants

2.4.1 Independance of helicity

As we said in the introduction, it happens sometimes that a new invariant turns out
to be a function of the well-known helicity. The aim of this section is to show that
it is not the case for the bridge number of vector Ąelds.

Here we restrict to vector Ąelds X preserving a volume form Ω on S3. We recall
from Chapter 1 that the helicity of (X,Ω) is deĄned by
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Hel(X,Ω) =
∫

S3
α ∧ dα ,

where α is any potential 1-form for iXΩ, that is to say dα = iXΩ. To prove Theorem
D we want to show an example of a vector Ąeld for which the bridge number of vector
Ąelds is not a function of helicity. So we Ąrst compute the bridge number in the
case of Seifert Ćows, a class of Ćows that we presented in Section 1.3. We start by
giving an upper bound and then we show that this number is also the inĄmum.

We consider the standard height function on S3. The tangency points of the
Ćow to the surface level sets (spheres centered on 03

R) are exactly the points of the
ŞplaneŤ P (actually a sphere) made of the two Ćat disks bounded by the particular
orbit t 7→ (exp 2iπαt, 0). For x ∈ P , the Ąrst return time (in P ) is 1

2β
and this

time multiplied by the area of P is equal to the volume of S3, that is to say 1. So
the bridge number of this Ćow is bounded by 1

2
× 2β = β. Now if we change the

stereographic projection of S3, the same argument shows that B(Xα,β,ΩHaar) ⩽ α.
Thus we can conclude:

B(Xα,β,ΩHaar) ⩽ min(α, β) .

In order to prove the converse inequality, we approximate Xα,β in the C∞-topology
by a ΩHaar-preserving sequence (Xpn/rn,qn/rn

)n∈N, with pn, qn, rn three sequences of
integer numbers so that pn/rn and qn/rn are decimal expansions of α and β. Then
by Theorem B, we have:

B(Xα,β,ΩHaar) ⩾ lim
n→∞

B(Xpn/rn,qn/rn
,ΩHaar) .

We have to compute the right-hand side of this inequality. Fortunately since the
bridge number is an invariant of order 1, it is enough to prove that
B(Xp,q,ΩHaar) = min(p, q) where p, q are two coprime positive integers.
The proof is the same as the computation of the trunkenness of Seifert Ćows pre-
sented in Section 1.3. One can choose a sequence (Kn)n∈N of collections of periodic
orbits so that its induced normalized invariant measures µn tends to ΩHaar. These
orbits are torus knots of type (p, q) so the bridge number of Kn is nmin(p, q) since
the bridge number of torus knots is min (p, q) and we have n copies of them. The
period of each component of Kn is 1, so that its total length is n and we have:

B(Xp,q,ΩHaar) ⩾ lim
n→∞B(Xp,q, µn) = lim

n→∞
1

n
× nmin(p, q) = min(p, q) .

Finally we have

min(α, β) ⩾ B(Xα,β,ΩHaar) ⩾ lim
n→∞

min(pn/rn, qn/rn) = min(α, β) ,

so that the bridge number of a Seifert Ćow of parameters (α, β) is min(α, β).

Proof of Theorem D. For a Seifert Ćow on S3 with the standard Haar measure, we
have Hel(Xα,β,ΩHaar) = αβ and B(Xα,β,ΩHaar) = min(α, β). Since there is no
function f so that min(α, β) = f(αβ), the helicity and the bridge number of vector
Ąelds are independent in this case. But as we already said, the Seifert Ćows are not
ergodic with respect to ΩHaar.
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Let (α, β) so that α/β is irrational. Let x be a point on an invariant torus. The
measure µx associated with x is ergodic and supported precisely on this invariant
torus, and we have Hel(X,µx) = αβ while B(X,µx) = min(α, β). This shows that
the bridge number is not a function of helicity in this particular ergodic case.

But since the trunkenness is two times the bridge number in the case of torus
knots, we also need to check if the bridge number and the trunkenness are unrelated
in general, which we do in the next section.

2.4.2 Relation with the trunkenness of vector fields

As we have seen in the previous section and in Chapter 1, the bridge number of
knots is strongly related to the trunk, at least for meridionally small knots [Oza10].
Thus one could ask: is the bridge number of vector Ąelds independent from the
trunkenness of the vector Ąelds?
We can answer that these two invariants are independent by showing a construction.
Let us consider two Seifert Ćows of parameters (3, 2) on two copies of S3 that we
consider as R3 ∪ ¶∞♢.

Fix a projection of S3 to R3 so that in any invariant torus, the torus knots (the
orbits) make 3 turns meridionally and 2 turns longitudinally. Choose also a metric
g which induced distance will be denoted d. Then Ąx an invariant solid torus and
choose a small open disk D = D(x0, r) transverse to the Ćow that does not contain
the torus axis. The disk D can be made small enough so that any orbit in the
solid torus has at most one intersection with it. It is because any orbit crosses any
longitudinal section of the solid torus in two opposite points. Fix a positive ϵ ≪ r
and consider the set of points:

L(x0, r) :=
⋃

x∈D(x0,r)

ϕ
]−ϵ(1− d(x,x0)

r
)2,ϵ(1− d(x,x0)

r
)2[

X (x)

which is some kind of open lens of radius r centered on x0. Choose this same
particular lens L(x0, r) in the two copies of S3.

Now perform the connected sum of the Ćows along these two lenses. We obtain a
Ćow that preserves the volume since the Ćuxes across each sections are identical.The
new Ćow X has two types of orbits:

• The ones that do not intersect D and that are T (3, 2) torus knots;

• and the ones that intersect D and are a connected sum of two T (3, 2) torus
knots.

Now we need to specify the invariant measure that we consider for this new Ćow.
Let p ∈ L(x0, r) and let us choose the measure supported by the periodic orbit of
p, which is thus ergodic with respect to X. Because of this choice, the values of
B(X,µ) and Tk(X,µ) are the ones of the knot invariants. Thus the bridge number
of the orbit of p is 3 because of the almost additivity of the bridge by Proposition 2.2.
In the same time, by Proposition 1.19, the trunk of a connected sum is the maxima
of their trunks [DZ17], thus the trunk of the orbit of p is 2. So the trunkenness and
the bridge number of vector Ąelds are independent.



Chapter 3

The asymptotic genus

Given a knot k in S3, it is possible to construct a Seifert surface, i.e. an oriented
embedded surface whose boundary is k, and to compute its genus. We call genus of
k the minimal genus that we can obtain with this process. It is a knot invariant. If
we consider a vector Ąeld X on S3, the trajectories of the Ćow of X are generally
not closed curves in S3. Thus it would make sense to try to deĄne an asymptotic
genus with ArnolŠdŠs method, just like the asymptotic linking number [AK21] or the
trunkenness [DR17]. In this chapter we explain two attempts to deĄne an asymptotic
genus for right-handed vector Ąelds, a class of vector Ąelds that we have presented
in Chapter 1.

The Ąrst strategy is to consider a very long arc of orbit of a recurrent point x and
to artiĄcially close it after a return time tn with a perturbation of the vector Ąeld
to obtain the knot k(x, tn). Then we show that the perturbed vector Ąeld remains
right-handed, and Ąnally we compute the genus of this particular closed orbit to
obtain the following:

Theorem E. Let X be a smooth right-handed non singular vector field X preserving
a smooth ergodic volume µ on S3. Let x be a recurrent point for the flow of X and
generic for µ. Then

lim
n→∞

1

tn
2
g(k(x, tn)) =

1

2
Hel(X,µ) .

Another idea to deĄne an asymptotic genus, which uses completely different
methods, is to use an iterated construction that is presented in Section 3.2. We
choose a recurrent point and transform its arcs of orbits between two successive
returns to a Ćowbox into knots, using a short path to close them. These knots may
be linked, and we Ąnd a formula to bound the genus of this link. Then we present
a sketch of proof from which we could obtain that half of the helicity is an upper
bound for the genus of an orbit.

We start by explaining the Ąrst strategy in Section 3.1. The attempt of second
strategy is presented in Section 3.2.

53
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3.1 Proof of Theorem E

3.1.1 Outline of the proof

In this section we are going to show Theorem E. As it is technical, we start by
explaining the general idea of the proof together with some needed results. For the
detailed proof see Section 3.1.2.

We consider a smooth right-handed, non-singular vector Ąeld X preserving a
smooth ergodic volume µ on S3. Choose x a recurrent point for the Ćow ϕt

X of X
generic for µ in S3 and S a disk transverse to the vector Ąeld containing x. Let xN

be the N -th return of the orbit of X to S, then xN = ϕTN

X (x). Set ϕ
[0,TN ]
X (x) to be

the orbit segment between x and xN . As we will explain below, we slightly modify
the vector Ąeld X in a Ćowbox around S in order to obtain a knot k(x, TN). More

precisely we want to close the arc of orbit ϕ
[0,TN ]
X (x) with a C1-perturbation of X

preserving the volume µ. To do this we need to Ąnd a ŞgoodŤ Ćowbox around x.
Lemma 3.1, together with some technical assumptions, allows to choose a suitable
Ćowbox.

Lemma 3.1. Let X be a right-handed vector field in S3. Then there exists two
constants Tr > 0 and Cr > 0 such that for any pair of recurrent points (p, q) of S3,

1

ts
link(k(p, t), k(q, s)) ⩾ Cr

for all times t, s ⩾ Tr. We say that the vector field X is (Tr, Cr)-right-handed.

The Ąrst step is to use this lemma to construct a Ćowbox FN around x so that
the return time of any recurrent point in FN is at least Tr. Secondly, we consider
xN the N -th return of x to FN with N ≫ 0 being Ąxed. Then using the C1-closing
lemma of Pugh and Robinson [PR83], we can perturb locally X in XN inside FN in

order to close the arc of orbit ϕ
[0,TN ]
X (x) while preserving the volume µ. Note that

XN = X outside FN and that these two vector Ąelds are C1-close in FN . Even if
this perturbation is local for the vector Ąelds, it is changing much more than the
prescribed orbit between xN and x since any orbit entering FN might be affected
and re-branched on another (different) orbit.

After performing the perturbation we have to show that the perturbed vector
Ąeld XN is still right-handed. To prove that the linking of two orbits stays positive,
we cut the integral of the linking form into pieces depending whether we integrate
or not on an orbit segment passing through FN or close to FN . Then we use the
technical bounds on the linking form presented in Chapter 1 to bound some terms
of the sum and estimate others, and Ąnally we obtain a positive asymptotic. In
order to conclude, we then show that periodic orbits created by the perturbation
have positive self-linking.

As the linking of any two long enough pieces of orbit of XN is positive this
implies that the piece of orbit ϕ

[0,TN ]
X (x), the one which we artiĄcially closed, is

linked positively to any other orbit. Then by a theorem of Ghys [Ghy09], this orbit
is a Ąbered knot and thus binds a Birkhoff section. But by a known result (see
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Theorem 4.1.10 in [Kaw96]), any Seifert surface SN for this orbit and transverse
to the Ćow has minimal genus. Dehornoy and Rechtman computed the genus of

such a surface in [DR22] using its self-linking number : one has g(SN) = Slk
ζXN (γ)+1

2

where ζXN
is a vector Ąeld transverse to XN . So using the fact that the asymptotic

self-linking number is equal to helicity (ArnolŠd [Arn73]), we obtain Theorem E.

3.1.2 Proof of theorem E

In all this section, X is a smooth non-singular right-handed vector Ąeld preserving
a smooth ergodic volume µ on S3. Fix x a recurrent point for the Ćow of X and
generic for µ.

3.1.3 Choice of a good neighbourhood

We start by proving Lemma 3.1.

Proof. Suppose it is false. Then there exist (Tn)n∈N a monotonically increasing
time sequence, diverging to +∞, and (Cn)n∈N a positive monotonically decreasing
sequence converging to 0, and a sequence ((pn, qn))n∈N of pairs of recurrent points
and (Sn)n∈N, (Rn)n∈N two sequences of return times so that Sn > Tn, Rn > Tn and
such that we have for all n large enough:

1

SnRn

link(k(pn, Sn), k(qn, Rn)) < Cn .

The limit of this quantity should be strictly positive according to GhysŠ Theorem
1.14 and we have a contradiction. In the case where (X,µ) is ergodic, we give
another argument to prove Lemma 3.1. With the ergodic assumption, the above
quantity

1

SnRn

link(k(pn, Sn), k(qn, Rn))

tends to a constant when n tends to inĄnity, and if this constant is zero or negative,
it is a contradiction to the deĄnition of right-handedness according to Hryniewicz-
Florio [FH23] which we presented in Chapter 1, see Section 1.2.2. Thus the limit is
strictly positive and this concludes the proof.

As we want to change the vector Ąeld X in a small neighbourhood of a point x
without changing too much the linking number of the orbits of the Ćow, we will also
be needing Lemma 1.5 and Lemma 1.4 from Chapter 1 to bound the contribution to
the linking number of the perturbed parts of the orbits. Recall that on our setup in
S3, given a Riemannian metric g there is a construction of a Gauss linking form L
on S3 × S3 given by Vogel [Vog03]. In this case Lemma 1.4 ensures that there exists
a constant Cl depending on g so that we have the punctual bound:

∥Lp,q∥∞ ⩽ Cldist(p, q)−2 .
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Choice of a flowbox around x. Here we explain how to choose the Ćowbox
in which we will perform a perturbation to close the orbit of x. Suppose that X
is right-handed of constants (Tr, Cr), meaning that if we follow two orbits during
a time greater than Tr then their normalized linking number is at least Cr as in
Lemma 3.1.
Let g be a Riemannian metric of injectivity radius rinj. As in Lemma 1.5 set
r0 = rinj/100, so that we have an isometric embedding i1 of the Euclidian open
ball of radius r0/2 in R3 into S3 with i1(0R3) = x and so that the image of the disk
¶(u, v, w) ∈ R3♣u2 + v2 < (r0/2)2, w = 0♢ is a disk transverse to the Ćow of X,

which we denote i1
(
Dr0/2(x)


. Similarly, the image of the ball of radius r0/2 will

be denoted i1
(
Br0/2(x)


. We also ask that the Ćow lines of X are just the image of

straight vertical lines in R3 and that geodesics are parametrized by arc-length in the
image of the embedding. Since X is recurrent there exists an open neighbourhood
W ⊂ i1

(
Dr0/8(x)


of x so that the Ąrst return time to W is greater than a constant

T0 > Tr + r0/2. We also have to ask T0 to be greater than the following constants,
up to shrinking W :

T+ :=
r0

8
+

3G

4Cr

+
1

2

√√√√

r0

4
+

3G

2Cr

2

+ 64
Cl

Cr

T ′
+ :=

1

2


r0

2
+

2G

Cr

+

√

8
C(g)

Cr

+
2G

Cr


r0 +

2G

Cr




where G is the geometric constant

G :=
4

r0

(
C(g)√

3
+ 8Cl



and C(g) is the constant from Lemma 1.5 and depends only on g. This restriction
will arise from the computations of Section 3.1.4. The idea is that T0 must be large
enough.

Suppose that we have T0 > max
{
Tr + r0/2, T+, T

′
+

}
. We want to deĄne a Ćow-

box around x to close very long pieces of orbit, and thus we need to avoid having
short periodic orbits, that is to say periodic orbits of period less than T0, in a
neighbourhood of x. Suppose by contradiction that there exist short periodic orbits
arbitrarily close to x. Then in W , we can Ąnd a sequence (yn)n∈N converging to x
and so that the return time of any yn is less or equal to T0. By continuity of the Ćow,
this implies that x comes back to W in a time T0 + ϵ, for ϵ > 0 small, so because
of the deĄnition of W , x comes back in W \ W . Let W ′ be an open set around

x strictly contained in W and so that
(
W \ W


∩ W ′ = ∅. The same reasoning

applied to W ′ tells us that x comes back to W ′, which is strictly contained in W , in
a time T0 + ϵ′, with ϵ′ > 0 small, and this is a contradiction. So there exists a small
neighbourhood of x which does not contain short periodic orbits.

Now by regularity of the C∞-diffeomorphism ϕT0
X , there exist U a connected

open set around x in W so that any recurrent point has a Ąrst return time to U
greater than T0. Consider a sequence (xn)n∈N of returns of x to U so that d(xn, x) is
monotonically decreasing to zero when n goes to inĄnity. Fix N ≫ 0. There exists
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Figure 3.1: Closing the orbit in the Ćowbox FN

a connected open set UN ⊂ U , containing x and xN but not the precedent returns of
x. This is the set from which we will deĄne FN . Let us Ąx 0 < ϵ < r0/4. We deĄne

the Ćowbox FN to be ϕ
[−ϵ,0]
X (UN). In order to make this choice of neighbourhood

more understandable, let us list the properties of FN :

• The point x belongs to the exit region of FN ;

• Any recurrent point in FN will come back in a time greater than T0 > Tr,
and we will prove later that this ensures that it will link positively with long
enough orbits;

• In FN the Ćow lines of X are just straight, parallel lines;

• Thanks to the inclusion FN ⊂ i1
(
Br0/2(0)


, the geodesics are just straight

lines, parametrized by arc-length, and FN is small enough to use Lemma 1.5
for geodesics (or perturbations of geodesics) in it.

To simplify the notation we denote Ul and Ur the left and right transverse regions
of the boundary of the Ćowbox FN , and we suppose that the Ćow goes from left to
right.

We are ready to modify the orbit of x so as to close it. Abusing notation, consider
xN in Ul. Then the C1-closing Lemma for volume preserving vector Ąelds of Pugh
and Robinson [PR83] states that we can construct a vector Ąeld XN that is C1-close
to X inside FN , so that XN preserves the ergodic volume µ and it has a prescribed
arc of orbit from xN to x in FN . The vector Ąeld XN coincides with X on the
boundary of FN and hence we set XN to be X outside FN .

We are going to show that the perturbation is small enough to ensure that the
perturbed vector Ąeld XN is right-handed.

3.1.4 The perturbation XN is right-handed

As we said in Section 3.1.1, we want to cut the integral of the linking form in different
parts and bound them. In order to do this we use Lemma 1.5 and Lemma 1.4 from
Chapter 1. Lemma 1.4 is a punctual bound on the linking form which we will be
using when we integrate the linking form on arcs of orbits that are far one from the
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other. If the arcs of orbit are too close one from each other, then we use Lemma
1.5, which was already helpful to deĄne the Ćowbox FN . Note that because of the
smoothness of the linking form outside the diagonal of S3 ×S3, Lemma 1.5 stays true
for C1-perturbations of geodesics. This fact will be useful when considering short
arcs of orbits in i1

(
Br0/2(0)


, and also for the short paths closing long arcs of orbits.

Consider a pair of recurrent points (p, q) of S3 on distinct orbits, i.e. O(p) ∩
O(q) = ∅. If none of the orbits of p and q enters FN , then their asymptotic linking
number is positive since XN = X outside FN and X is right-handed. Thus we have
to examine the two following cases:

1. The orbit of p enters FN while the orbit of q does not (up to changing p in q
and conversely);

2. Both of the orbits enter FN .

In addition to these two cases, one has to consider that changing X in XN may
have created new periodic orbits, that are necessary going through FN . Actually
there is at least one, which is the new orbit of x. According to the deĄnition of right-
handedness (see Chapter 1) one has to verify that these new orbits have positive
self-linking number. This will be made in a third case to complete the proof.

The proof of the second case contains somehow the proof of the Ąrst one, but
for the sake of comprehension we will detail both of them. We begin with the Ąrst
case.

Proof of the first case : O(q) ∩ FN = ∅.

Since we are interested in very long pieces of orbits, we can suppose that p belongs
to the Şexit regionŤ Ur of FN . Indeed, otherwise the piece of orbit that is before the
Ąrst intersection of the orbit of p with FN would have a bounded contribution to
the linking with the orbit of q, which would disappear as the times tend to inĄnity.
Since we would consider the linking for arbitrary big times, the bounded part can
be neglected.

Notations and setup. We modify the metric g so as to have an isometric em-
bedding i2 of the Euclidean ball Br0/2(0) around q, and more precisely so that
i2(0R3) = q. Note that we already have an embedding i1 around the point x. It is
exaclty the same procedure as in Section 3.1.3 when the Ćowbox FN was deĄned. To
sum up, there is one isometric embedding centered at x and containing FN , which
means it also contains p and its arcs of orbits through FN , and another isometric
embedding centered at q. Thus in the neighbourhood of both p and q, the orbits are
images of straight lines (and geodesics), any other geodesic is the image of a straight
line, all geodesics are parametrized by arc-length and we are going to consider the
successive return times to Ur for p and to i2(Dr0/8(0)) for q. Let (Rk)k∈N and (Sk)k∈N

be two return time sequences for respectively p and q to the exit region of FN .
In this Ąrst case we decided that the orbit of q would not enter the Ćowbox FN ,

but it is possible that it goes very close to it. As far as the orbit of p is concerned, it
can also go through i2

(
Dr0/8(0)


. In this case it is not possible to use the punctual



3.1. PROOF OF THEOREM E 59

Figure 3.2: The conĄguration of the different neighbourhoods around x

bound from Lemma 1.4 on the linking form, and we need to deĄne some additional
neighbourhoods of p and q. Set:

V(p) := i1
(
Br0/2(0)


∩ ϕ

]−r0/2,r0/2[
X

(
i1
(
Dr0/4(0)



V(q) := i2
(
Br0/2(0)


∩ ϕ

]−r0/2,r0/2[
X

(
i2
(
Dr0/4(0)


.

These are two open Ćowboxes around p and q respectively, and FN ⊂ V(p). Note
that any piece of orbit that goes through V(p) or V(q) is a geodesic of length at

least r0

√
3

2
and at most r0, and thus since it is parametrized by arc-length it stays in

the neighbourhood during a time which is at least r0

√
3

2
and at most r0.

From now on the Ćow of XN will be denoted by ϕN . Fix K ≫ 0. Let αK

(respectively βK) be a geodesic from ϕRK

N (p) to p (resp. ϕSK

N (q) to q). It is a straight

line in the image of the embedding i1
(
Dr0/8(0)


(resp. i2

(
Dr0/8(0)


) because of the

isometry. Fix α a path C1-close to αK (resp. β a path C1-close to βK) so that the
knots

kα(p,K) = ϕ
[0,Rk]
N (p) ∪ α and kβ(q,K) = ϕ

[0,Sk]
N (q) ∪ β

are respectively C1-close to:
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ϕ
[0,Rk]
N (p) ∪ αK and ϕ

[0,Sk]
N (q) ∪ βK

and so that these two knots kα(p,K) and kβ(q,K) do not intersect.

Estimation of the linking integral. According to the deĄnition of the asymp-
totic linking number, the linking number of the two knots kα(p,K) and kβ(q,K)
divided by the time product RKSK must be close to their asymptotic linking num-
ber if K is chosen large enough. We are now going to split the integral of the linking
form into different pieces, then bound some of them and estimate the others. In our
Ąrst case, the linking number of kα(p,K) and kβ(q,K) is equal to:

link (kα(p,K), kβ(q,K)) =
∫

kα(p,K)×kβ(q,K)
L

=
∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L
︸ ︷︷ ︸

(A)

+
∫

α×β
L

︸ ︷︷ ︸
(B)

+
∫

α×ϕ
[0,SK ]

N
(q)

L
︸ ︷︷ ︸

(C)

+
∫

ϕ
[0,RK ]

N
(p)×β

L
︸ ︷︷ ︸

(D)

.

We begin with the terms (B), (C) and (D). We are going to deduce the following
bounds:

∣∣∣∣
∫

α×β
L
∣∣∣∣ ⩽ 16Cl (3.1)

∣∣∣∣
∫

α×ϕ
[0,SK ]

N
(q)

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


SK (3.2)

∣∣∣∣
∫

ϕ
[0,RK ]

N
(p)×β

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


RK (3.3)

We start by explaining how to bound (B). Here the two paths α and β are C1-
perturbations of geodesics far away one from each other because p belongs to FN

and q belongs to i2
(
Dr0/8(0)


. So we can use the punctual bound on the linking

form from Lemma 1.4 to bound the integral, and:

∣∣∣∣
∫

α×β
L
∣∣∣∣ ⩽


r0

2

2

ClDist
(
FN , i2

(
Dr0/8(0)

−2
.

Since i2
(
Dr0/8(0)


does not intersect i1

(
Br0/2(0)


, the distance from FN to

i2
(
Dr0/8(0)


is bounded from below by r0

8
and thus

∣∣∣∣
∫

α×β
L
∣∣∣∣ ⩽ 16Cl .

The terms (C) and (D) are symmetric and they are bounded for the same reason.
Thus we will just explain how to bound (D). The path β lies in i2(Dr0/8(0)) and

the arc of orbit ϕ
[0,RK ]
N (p) lies somewhere in S3, possibly intersecting V(q) a Ąnite
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number of times m during certain periods of time ti, with
∑m

i=1 ti < RK . Consider

a hypothetical arc c of ϕ
[0,RK ]
N (p) in V(q). Because of the isometric embedding, c

is a geodesic, while β is C1-close to the short geodesic βK lying in i2(Dr0/8(0)) and

joining ϕSK

N (q) to q. Thus by Lemma 1.5 the linking of the two short arcs is uniformly
bounded by the constant C(g). Thus

∣∣∣∣
∫
(

ϕ
[0,RK ]

N
(p)∩V(p)


×β

L
∣∣∣∣ ⩽ m× C(g)

and we know that mr0

√
3

2
⩽
∑m

i=1 ti < RK , so

∣∣∣∣
∫
(

ϕ
[0,RK ]

N
(p)∩V(p)


×β

L
∣∣∣∣ ⩽ RK

2

r0

√
3

× C(g) .

Now consider the parts of ϕ
[0,RK ]
N (p) that are not in V(q). By the punctual bound of

Lemma 1.4 the linking of these pieces of orbit with β is bounded:

∣∣∣∣
∫
(

ϕ
[0,RK ]

N
(p)∩V(p)c


×β

L
∣∣∣∣ ⩽ Cl

(
1

r0/8

2

× r0

4
×
(
RK −

m∑

i=1

ti


,

because β is of length (thus time) at most r0/4 since q and ϕSK

N (q) both belong to
i2(Dr0/8(0)) and the distance between β and V(q)c is at least r0/8. Rearranging the
factors and bounding RK −∑m

i=1 ti with RK , we have:

∣∣∣∣
∫
(

ϕ
[0,RK ]

N
(p)∩V(p)c


×β

L
∣∣∣∣ ⩽ Cl

16

r0

RK .

Finally we conclude :

∣∣∣∣
∫

ϕ
[0,RK ]

N
(p)×β

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


RK .

The same argument yields the precedent bound (3) for (C). Now we have to consider
the term (A) in the above equation. We are going to cut it in different parts,
depending whether the orbit of p passes inside or outside FN , as follows:

∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L =
K−1∑

i=0

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L (3.4)

+
K∑

i=1

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L (3.5)

Here the ri+1 are the times between ϕRi(p) ∈ Ur and the next return to the Ćowbox,
which belongs to Ul.What happens here - and it will be the same in the second
case - is that the Ąrst term in the right-hand side of the equation will be positive
because of the assumption that X is right-handed. At the same time, the second
term will have a Ąnite contribution to the linking that can be made small enough
not to interfere with the positivity of the total integral.
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For the same reasons as the precedent term (C) - i.e. the punctual bound on the
linking form and Lemma 1.5 when necessary - we have the following bound for all
1 ⩽ i ⩽ K:

∣∣∣∣
∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L
∣∣∣∣ ⩽ Cl

(
1

r0/8

2

× r0

4
× SK +

2

r0

√
3
C(g) × SK (3.6)

Thus we obtain the following bound on the sum:

∣∣∣∣
K∑

i=1

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


K × SK .

Before explaining how, we need to bound from below the Ąrst term (3.4). Now we
use the fact that X is right-handed and that all the ri are larger than the time
constant Tr Ąxed in Lemma 3.1, by construction. Since for all 0 ⩽ i ⩽ K − 1, we
have:

1

ri+1SK

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L ⩾ Cr ,

then

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L ⩾ Cr × ri+1SK

and Ąnally since all terms are positive and ri+1 ⩾ Ri+1 − Ri − r0

4
because of the

choice of ϵ < r0/4:

K−1∑

i=0

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[0,SK ]

N
(q)

L ⩾ Cr × (RK −K
r0

4
)SK .

Putting everything together we have:

∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L ⩾ Cr(RK −K
r0

4
)SK − 2

r0

(
C(g)√

3
+ 8Cl


KSK .

Dividing by the product of times RKSK ,

1

RKSK

∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L ⩾ Cr


1 − Kr0

4RK


− 2

r0

(
C(g)√

3
+ 8Cl


K

RK

.

Now if we consider the whole linking number, we have:

1

RKSK

link (kα(p,K), kβ(q,K)) ⩾ Cr


1 − Kr0

4RK


− 2

r0

(
C(g)√

3
+ 8Cl


K

RK

− 2

r0

(
C(g)√

3
+ 8Cl


1

RK

+
1

SK


− 16Cl

RKSK

.
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From the choice of the return time RK , we know that RK ⩾ KT0, so − K
RK

⩾ − 1
T0

and

a fortiori RK > T0 - respectively SK > T0 - implies − 1
RK

> − 1
T0

- resp. − 1
SK

> − 1
T0

.
Finally we obtain:

1

RKSK

link (kα(p,K), kβ(q,K)) ⩾ Cr


1 − r0

4T0


− 2

r0

(
C(g)√

3
+ 8Cl


3

T0

− 16Cl

T 2
0︸ ︷︷ ︸

CN

.

The right-hand side of the equation is positive if and only if

T 2
0 − T0


r0

4
+

3G

2Cr


− 16

Cl

Cr

> 0 ,

where we set G := 4
r0

(
C(g)√

3
+ 8Cl


. The discriminant of this polynomial is positive:

∆ :=

r0

4
+

3G

2Cr

2

+ 64
Cl

Cr

,

thus for T0 bigger than

T+ :=
r0

8
+

3G

4Cr

+
1

2

√√√√

r0

4
+

3G

2Cr

2

+ 64
Cl

Cr

the above constant CN is positive. This condition holds because of our choice for T0

in the beginning, see Section 3.1.3. Gathering things together we have:

lim
K→∞

1

RKSK

Link (kα(p,K), kβ(q,K)) ⩾ CN > 0 ,

and this concludes the proof of the Ąrst case.

Proof of the second case : O(q) ∩ FN ̸= ∅
We start with a similar setting as for the Ąrst case : now p and q both belong to
Ur, and we have the neighbourhood V = V(p) of FN . As before we start with the
decomposition:

link (kα(p,K), kβ(q,K)) =
∫

kα(p,K)×kβ(q,K)
L

=
∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L
︸ ︷︷ ︸

(A′)

+
∫

α×β
L

︸ ︷︷ ︸
(B′)

+
∫

α×ϕ
[0,SK ]

N
(q)

L
︸ ︷︷ ︸

(C′)

+
∫

ϕ
[0,RK ]

N
(p)×β

L
︸ ︷︷ ︸

(D′)

.

This time, the term (B′) is bounded by Lemma 1.5, and (C ′) and (D′) are bounded
for the same reasons as (D) of Ąrst case. We have the following bounds:
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∣∣∣∣
∫

α×β
L
∣∣∣∣ ⩽ C(g)

∣∣∣∣
∫

α×ϕ
[0,SK ]

N
(q)

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


SK

∣∣∣∣
∫

ϕ
[0,RK ]

N
(p)×β

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


RK .

We need to consider the term (A′). With the precedent notations for Ri and ri

extended to the return times Sj and sj for the orbit of q, the term (A′) decomposes
in four parts:

∫

ϕ
[0,RK ]

N
(p)×ϕ

[0,SK ]

N
(q)

L =
K−1∑

i=0

K−1∑

j=0

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L (3.7)

+
K∑

i=1

K−1∑

j=0

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L (3.8)

+
K∑

j=1

K−1∑

i=0

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[Sj +sj+1,Sj+1]

N
(q)

L (3.9)

+
K∑

i=1

K∑

j=1

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[Sj +sj+1,Sj+1]

N
(q)

L (3.10)

The absolute value of Equation (3.10) is bounded by K2C(g) thanks to Lemma 1.5,
since the short arcs of orbit in FN are geodesics. The terms (3.8) and (3.9) are again
symmetric, and for (3.8) we have from our previous efforts (see Equation 3.6):

∣∣∣∣
∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L
∣∣∣∣ ⩽ Cl

(
1

r0/8

2
r0

4
sj+1 +

2

r0

√
3
C(g)sj+1 .

Thus since
∑K−1

j=0 sj+1 < SK we obtain the following bound on the sum:

∣∣∣∣
K∑

i=1

K−1∑

j=0

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


KSK ,

and the symmetric one for (3.9):

∣∣∣∣
K∑

j=1

K−1∑

i=0

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[Sj +sj+1,Sj+1]

N
(q)

L
∣∣∣∣ ⩽

2

r0

(
C(g)√

3
+ 8Cl


KRK ,

As far as (3.7) is concerned, we have since that X is (Tr, Cr)-right-handed and thus
(T0, Cr)-right-handed:

∫

ϕ
[Ri,Ri+ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L ⩾ ri+1sj+1 × Cr ,

so
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K−1∑

i=0

K−1∑

j=0

∫

ϕ
[Ri+ri+1,Ri+1]

N
(p)×ϕ

[Sj ,Sj +sj+1]

N
(q)

L ⩾ Cr


RK −K

r0

4


SK −K

r0

4


.

Now just like in the Ąrst case, we use the bounds that we have found to bound from
below the term (A′):

(A′) ⩾ Cr


RK −K

r0

4


SK −K

r0

4


− G

2
K(RK + SK) −K2 × C(g)

where we set G to be the constant, already presented in Section 3.1.3:

G :=
4

r0

(
C(g)√

3
+ 8Cl


.

So the whole linking number is bounded by:

link (kα(p,K), kβ(q,K)) ⩾ Cr


RK −K

r0

4


SK −K

r0

4



− G

2
K(RK + SK) −K2C(g)

− G

2
(RK + SK) − C(g) .

Dividing by the time product RKSK and then using the fact − K
RK

⩾ − 1
T0

and

− K
SK

⩾ − 1
T0

, we have

1

RKSK

link (kα(p,K), kβ(q,K)) ⩾ Cr


1 − Kr0

4RK


1 − Kr0

4SK



− G

2


K + 1

RK

+
K + 1

SK


− K2 + 1

RKSK

C(g)

⩾ Cr


1 − r0

4T0

2

− 2G

T0

− 2C(g)

T 2
0︸ ︷︷ ︸

C′
N

The asymptotic linking number of p and q will be positive if

Cr


1 − r0

4T0

2

− 2G

T0

− 2C(g)

(T0)2
> 0 ,

that is to say


T0 − r0

4

2

− 2T0
G

Cr

− 2C(g)

Cr

> 0 .

We Ąnd the polynomial in T0:

T 2
0 − T0


r0

2
+

2G

Cr


+

r0

4

2

− 2C(g)

Cr

> 0



66 CHAPTER 3. THE ASYMPTOTIC GENUS

whose discriminant is positive:

∆ =

r0

2
+

2G

Cr

2

− 4

(
r0

4

2

− 2C(g)

Cr



= 8
C(g)

Cr

+
2G

Cr


r0 +

2G

Cr


.

This is why for T0 greater than

T ′
+ =

1

2


r0

2
+

2G

Cr

+

√

8
C(g)

Cr

+
2G

Cr


r0 +

2G

Cr


 ,

the linking number will be positive. Gathering everything we Ąnally have:

lim
K→∞

1

RKSK

link (kα(p,K), kβ(q,K)) ⩾ C ′
N > 0 ,

and the orbits of p and q have a positive asymptotic linking number in the second
case.

Proof of the third case

Suppose that changing X into XN added new periodic orbits for the Ćow of X̃.
Actually there is at least the orbit of x to consider, the one that we closed with the
perturbation. There might be others, and the following proof applies to any of these
newly created periodic orbits.

Lemma 3.2. Let γ be a periodic orbit for the flow ϕN of XN and passing through
FN . Then γ has a (strictly) positive self-linking number.

Proof. We are going to use a geometric interpretation of HryniewiczŠs formula [FH23]
(see Chapter 1) for the self-linking number. First we recall the deĄnition of the self-
linking number in our speciĄc setting. Consider a tubular neighbourhood N of γ
with complex coordinate z = (r, θ) in the transverse disks and the time t as third
coordinate (the longitude), so that ϕt

N (γ(0)) = (t, 0) in these coordinates. Set p to
be an intersection of γ with Ur and (Ri)i=1,...,K the successive return times of the
orbit of p to Ur, with RK = T being the period of γ. Note that the orbit of p may
cross the Ćowbox FN several times before closing, although this does not happen for
the speciĄc orbit of x that we have closed with the perturbation XN . Recall that
for a choice θ0 ∈ R, we have the continuous function given by

Dϕt
N(0, 0) · (0, eiθ0) ∈ R(1, 0) + R+(0, eiθN (t))

and θN(0) = θ0. If λ ∈ H1(N \ γ,R) is a one-form of the form λ = pdz + qdt, which
also represents a Seifert surface S for γ, the self-linking number of γ is given by the
formula

ρλ(γ) =
T

2π

(
p+ q lim

t→∞
θN(t)

t


,
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where we set T to be the period of γ. Now let S be a Seifert surface for γ, and
choose a trivialization of the tubular neighbourhood N which has S as the zero
section. Then λ = dθ is a cohomology class dual to S. We have to consider the two
following quantities:

• the transverse rotation number of γ, ρλ(γ) = T
2π

lim
t→∞

θN (t)
t

;

• the number nS
t (p) of oriented intersections of the arc of orbit O (x, ϕt

N(p)) with
S, that is to say the number of times that this arc of orbit crosses the zero
section.

In the same time, consider a sequence of points (pn)n∈N ⊂ Ur converging to p. We
call Sn the K-th return time of the point pn to FN . From the study of case 2, we
have since T > T0 and Sn > T0:

1

TSn

link
(
ϕ

[0,T ]
N (p), ϕ

[0,Sn]
N (pn)


> C ′

N

and according to the deĄnition of the linking number for knots, this linking number
is exactly nS

Sn
(pn), thus

nS
Sn

(pn) > C ′
NTSn .

In the other hand, θN(Sn) ⩾ 2π(nS
Sn

(pn) − 1) since the arc of orbit O (x, ϕt
N(p))

crosses the zero section at least nS
Sn

(pn) times and between two consecutive inter-
sections the function θN has to increase by 2π since intersections are oriented. For
this reason we have

θN(T ) ⩾ 2π lim
n→∞nS

Sn
(pn) − 1 > 2π lim

n→∞TSnC
′
N − 1 ⩾ 2πT 2C ′

N − 1 .

The same argument starting with multiples kT of the period shows that
θN(kT ) ⩾ 2π(kT )2C ′

N −1. By iteration of this process, we Ąnally obtain a monoton-

ically increasing sequence (kT )k∈N∗ of time values for which the quantity T
2π

θN (kT )
kT

is
greater than kT 2C ′

N − 1. As a consequence the limit is positive and Slk(γ) > 0.

So this concludes the third case and the µ-preserving C1-perturbation XN of X
is still right-handed.

3.1.5 Genus of the prescribed orbit

Since XN is right-handed, a GhysŠ Theorem 1.10 from [Ghy09] states that k(x, TN)
bounds a surface SN which is a Birkhoff section for XN . But by Theorem 4.1.10
in [Kaw96], any Seifert surface SN for this orbit and transverse to the Ćow has
minimal genus, so SN has minimal genus. In our case, Dehornoy and Rechtman
[DR22] proved that

g(SN) =
1 + SlkζX (k(x, TN))

2
.
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Figure 3.3: The linking number is symmetric: on the left, k2 intersects positively
a Seifert surface for k1. Looking at this crossing from the back of the picture, k1

intersects positively a Seifert surface for k2.

Using the fact that lim
N→∞

SlkζX (k(x,TN ))

TN
2 = Hel(X,µ) where ζX is a vector Ąeld every-

where transverse to X along the closed orbit k(x, TN) [Arn73] we can conclude:

lim
N→∞

1

TN
2 g(k(x, TN)) = lim

N→∞

1 + Slkξ(k(x, TN))

2TN
2 =

1

2
Hel(X,µ) .

3.2 Genus of a two components link

3.2.1 Notation and definitions

Let k1 and k2 be two oriented knots in S3 that are disjoint and may be linked one
with another. For i = 1, 2, we denote by g(ki) the genus and by χ(ki) the Euler
characteristic of a co-oriented Seifert surface for ki that minimizes the genus.

Let k1 ∪ k2 be the link formed by the two knots. We need to deĄne a notion
of crossing number which suits the cases we are interested in. First we have to
say that since the Ąnality of this work is to deal with Ćows of vector Ąelds, we will
not be interested in isotopies of a link. Thus we have chosen a deĄnition of the
crossing number which is coherent with the asymptotic crossing number as deĄned
by Freedman and He in [FH91]. We call crossing number of this link the least
number (over all projections) of crossings between k1 and k2, divided by two.

In this section we assume that all crossings (between k1 and k2) are positive,
meaning that in each double point in a projection, the upper oriented strand has
to rotate anticlockwise to align with the lower oriented strand. Alternatively, there
exists S1 a co-oriented Seifert surface for k1 that minimizes the genus such that
all the intersection points between S1 and k2 are positive. Under this assumption
link(k1, k2) = ♣link(k1, k2)♣ = cross(k1, k2). Note that this is a symmetric condition.
Indeed, consider a positive crossing, for example an above strand from k1 crossing
horizontally to the right and an under strand from k2 crossing vertically in the upper
direction. Then if we look from the back of the picture (see Figure 3.3), where the
vertical strand from k2 is above the other, and consider a Seifert surface S2 for k2,
it will be co-oriented by the boundary and thus k1 will intersect S2 positively. Since
this happens for each positive crossing, we have link(k1, k2) = link(k2, k1) with our
previous deĄnition.
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Figure 3.4: Four positions of knots that can happen; positions 1 and 3 are mirror
images, as well as 2 and 4.

Proposition 3.3. Let k1 and k2 form a link with positive crossings and n =
link(k1, k2). Then modulo isotopy, there is a position of the link k1 ∪ k2 such that
there exist disjoint embedded 2-spheres F , F1, F2, . . . , Fn such that

• F ∩ k1 = ∅ and the intersection of F ∩ k2 is transverse.

• If n > 0, F ∩ k2 has exactly n = link(k1, k2) pairs of points, that is 2n points.
If n = 0, F ∩ k2 = ∅ and F separates k1 and k2, that is to say that k1 and k2

belong to distinct components of S3 \ F .

We define the interior of F as the component of S3 \ F that contains k1.
Define also the interior of Fi as the component of S3 \ Fi that is contained in
the interior of F .

• For i = 1, 2, . . . , n the intersection of Fi with the two knots is transverse and
Fi is contained in the interior of F . Moreover, Fi ∩ kj has exactly 2 points,
for j = 1, 2 and in the interior of Fi the knots are in positions presented in
Figure 3.4.

Proof. Choose a projection where the link has the least crossing number. We can
imagine that the two components k1 and k2 of the link are lying on a plane or on
a table. Now lift k1 in a plane above k2 while k2 stays on the table. In this new
position we have a number n = link(k1, k2) of pairs of linking strands in the space
between the two knots. We choose a disc between the two planes where (most of)
k1 and k2 are located, and close it above k1 to get a 2-sphere F . Then F satisĄes
that k1 ∩ F = ∅, and that k2 ∩ F = n. In particular, if k1 and k2 are unlinked, by
deĄnition we can Ąnd F so that k1 and k2 are in distinct components of S3 \ F .

In this new position, we can put little spheres Fi around each crossing. These
crossings are isolated enough so that the Fi do not intersect each other and do not
intersect F , and because of the positive condition for the crossings, only the above
conĄgurations can occur in the spheres Fi.

3.2.2 The Fried surface for k1 ∪ k2.

In this section, we describe the construction of a Seifert surface SF for the link k1∪k2

from two genus minimizing Seifert surfaces S1 and S2 for k1 and k2 respectively. We
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Figure 3.5: Lifting k1 while k2 stays on the lower plane.

Figure 3.6: Transforming case 2 into case 1 with two Reidemeister moves.

will show that SF is oriented, and thus its genus is an upper bound for the genus
of the link. In particular, if link(k1, k2) = 0 then SF is just the disjoint union of S1

and S2 and hence the genus is just the sum, and χ(SF ) = χ(S1) + χ(S2).
First let us consider the link k1 ∪ k2 in the position described in Proposition 3.3.

In each of the spheres Fi, we have one of the four diagrams described in Figure 3.4.
We keep the cases 1 and 3 and we slightly modify the cases 2 and 4, according

to the following moves, as illustrated in Figure 3.6:

• From case 2, Ąrst make a loop with the upper part of k2, i.e. a Reidemeister
move of type 1;

• Then move the bottom strands to the opposite side : the left one goes to the
right and conversely - it is a Reidemeister move of type 3.

Note that this adds a crossing to k2 in the exterior of Fi for each ball where a
modiĄcation occurs, but this will not be a problem. In the same manner, case 4
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Figure 3.7: Intersections of the surfaces S1 and S2 in the cases 1 and 2 of Figure 3.4

turns into case 3. Now let us consider two genus minimizing Seifert surfaces S1 and
S2 for k1 and k2 (separately). In the balls Fi, we can choose these surfaces so that
they look as in Figure 3.7. Here is a way to do this. Consider the knots in the
same conĄguration as in the proof of Proposition 3.3, with k2 lying on a plane and
k1 lifted above. Now we unlink temporarily k1 and k2, keeping track of the small
parts of strands (c1

i )i∈¶1,...n♢ and (c2
i )i∈¶1,...n♢ that where inside the Fi. Then consider

two Seifert surfaces S1 and S2 for k1 and k2. Since k1 and k2 are now unlinked, we
can suppose that F separates S1 and S2 up to slightly moving the Seifert surfaces.
Now pull and extend the pieces of strands (c1

i )i∈¶1,...n♢ and (c2
i )i∈¶1,...n♢, avoiding any

self-intersection of S1 and S2, in order to link k1 and k2 again as they were in the
beginning. After these movements, F ∩S1 = ∅ and F ∩S2 consists of n segments. In
particular if Bi denotes the closure of the connected component of S3 \Fi containing
the i-th linking between k1 and k2, there is an unique intersection segment (marked
in red) in each ball Bi.

We are going to remove the self-intersections of this surface using an idea of
Fried [Fri83]. To do this, let us denote Si

F = (S1 ∪ S2) ∩ Bi and consider a vector
Ąeld R on Bi positively transverse to the interior of Si

F and tangent to the boundary
∂Si

F , that we note abusively k1 ∪ k2. On each boundary ki, S
i
F extends to the unit

normal bundle Σki
into a collection of immersed curves transverse to the extension

of R and in general position. Now we blow up Bi along ∂Si
F to get the compact

manifold B∂S bounded by two cylinders. By the precedent remark, Si
F extends

to an immersed compact surface that we still denote Si
F on B∂S. Moreover this

extension is transverse to the extension of R along ∂B∂S and every self-intersection
is transverse, even in ∂B∂S.

By choice of R, Si
F has a transversal given by R and thus we can resolve its

self-intersections consistently to get an embedded surface S̃i
F positively transverse

to R in B∂S, as pictured in Figure 3.8. Each boundary piece of torus of B∂S has
well-deĄned meridians which corresponds to the unit bundle of points in ∂Si

F . Thus
we can isotope the resolved boundary in ∂B∂S with an isotopy transverse to R, so
that it becomes transverse to the foliation by meridians as pictured in Figure 3.9.
This isotopy can be extended to an isotopy of Si

F transverse to R and supported
in a small neighbourhood of ∂B∂S. After blow-down, the isotoped surface yields an
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Figure 3.8: Desingularization of the intersection after Fried

Figure 3.9: Resolution of the double points of ∂Si
F transversally to R.

immersed surface S̃i
F in Bi. This surface has no self-intersection and has (k1∪k2)∩Bi

as a boundary inside Bi.
This operation acts as if we added two half-twisted strips between S1 and S2 in

each sphere Fi. To see this, look at the picture of the desingularized disks in Figure
3.8, and make half a turn with the lower disk.

Now we can perform this process in each of the cases 1 and 3 as they appear
in the spheres Fi. The orientations are locally consistent and, since S1 and S2 are
oriented surfaces, we obtain a globally oriented surface that we call the Fried surface,
denoted by SF . This surface is a Seifert surface for the link k1 ∪ k2. As we have
seen while explaining the Fried desingularization, SF is obtained by adding locally
two twisted strips per crossing between S1 and S2.

Proposition 3.4. The Euler characteristic of SF is given by the following formula

χ(SF ) = χ(S1) + χ(S2) − 2link(k1, k2).

Proof. This follows from the precedent construction, since the number of crossing is
equal to the number of linking by hypothesis.

Corollary 3.5. If link(k1, k2) ≥ 1, then g(SF ) = g(k1) + g(k2) + link(k1, k2) − 1. If
link(k1, k2) = 0 then g(SF ) = g(k1) + g(k2).
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Proof. If link(k1, k2) = 0, the Fried surface SF has two connected components which
are Seifert surfaces for k1 and k2, so the result follows.
If link(k1, k2) = 1, the linking implies that SF is connected. Since the Euler charac-
teristic of an oriented surface equals two minus twice the genus minus the number
of boundary components we have that

2 − 2g(SF ) − 2 = 2 − 2g(k1) − 1 + 2 − 2g(k2) − 1 − 2link(k1, k2),

and the result follows immediately.

3.2.3 How good is this formula for g(k1 ∪ k2)?

The idea is to study how good the formulas in Proposition 3.4 and Corollary 3.5 are
for the Euler characteristic of a genus minimizing Seifert surface S for k1 ∪ k2. We
show that it is accurate if link(k1, k2) ⩽ 1, but not for link(k1, k2) ⩾ 2.

Case link(k1, k2) = 0.
Since the two knots are unlinked, by the assumption of positiveness of the cross-

ings we can apply Proposition 3.3. We consider hence the 2-sphere F and the surface
S. We can now assume that F and S are in general position with respect to each
other, thus the intersection between them deĄnes a Ąnite collection of circles C on
F that are two by two disjoint, because of the assumption link(k1, k2) = 0.

If S is the disjoint union of two surfaces S ′
1 and S ′

2 with boundary k1 and k2

respectively, we obtain that

g(S1) + g(S2) ≤ g(S ′
1) + g(S ′

2) = g(S) ≤ g(SF ) = g(S1) + g(S2),

implying that S ′
1 and S ′

2 are also genus minimizing for k1 and k2 respectively.
If S is connected, then the cardinality of C is (strictly) positive. Let C0 ∈ C

be such that one of the components of F \ C0 is empty, meaning that it does not
contain any other circle of C. We now cut S along C0 and paste two disks along
the two boundaries that are created. Let Sc be the obtained surface, that might be
disconnected. Observe that ∂Sc = k1 ∪ k2.

Lemma 3.6. g(Sc) = g(S).

Proof. If C0 is an essential curve for S, then cutting along C0 induces a lost of genus
because the Ąrst homology group of S is getting smaller. Then S would not be a
genus minimizing surface for k1 ∪ k2. Thus C0 is not an essential curve and the cut
and paste operation does not change the genus of the surface.

In particular, after performing this operation, Sc is disconnected and we have
two possibilities:

1. One component (or a union of components) has the link k1 ∪ k2 as boundary
and the only other component is a 2-sphere. Then we throw away the 2-sphere
and we denote abusively Sc the lasting component.
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2. S was the connected sum of two surfaces S1
c and S2

c with respective boundaries
k1 and k2, which we separated with the cut and paste operation. We keep the
notation Sc = S1

c ∪ S2
c .

Observe that in both cases, F is in general position with respect to Sc and the
intersection of these two surfaces is along a Ąnite collection of circles that has one
less circle than C. We call this operation erasing an empty circle.

We can hence repeat the above procedure to obtain a new surface S2c that
intersects F along a collection of circles with one less circle. We continue the process
until Ąnding a surface S ′ such that S ′ ∩F = ∅, ∂S ′ = k1 ∪k2 and g(S ′) = g(S). This
implies that S ′ = S ′

1 ∪ S ′
2 where S ′

1 has k1 (respectively k2) as a boundary.Then

g(S1) + g(S2) ≤ g(S ′
1) + g(S ′

2) = g(S) ≤ g(SF ) = g(S1) + g(S2).

This implies that the formulas are the best possible for this case.

Case link(k1, k2) = 1.
Proposition 3.3 implies that we have two spheres F and F1 such that F contains

k1 and intersects k2 in two points, and F1 is a small ball around the crossing located
in the same connected component of S3 \ F as k1. As before, let S be a genus
minimizing surface for the link k1 ∪ k2. We place F so that it is in general position
with respect to S. In this case S ∩ F consists of a Ąnite collection of two by two
disjoint circles C and a segment S whose endpoints are the two points in F ∩k2. For
the intersection F1 ∩ S we have two possibilities to consider:

1. Up to erasing irrelevant intersections that we could erase, F1 ∩ S consists of
two segments (si)i=1,2, and each si links the two intersections of F1 with ki;

2. F1 ∩ S consists of two segments s12 and s21, with s12 linking the endpoint
(according to the orientation) of the strand of k1 with the start-point of the
strand of k2 and conversely for s21. This is necessary because the surface S is
oriented, and so is SF1 , the part of S which is inside F1.

In both cases, we orient the intersection segments of S with F1 to make them
coherent with the orientations of the strands of k1 and k2 inside F1. In case 1, we
have a link made of two unknotted components, positively linked. The genus of this
link is zero and so g(SF1) = 0 because otherwise S would not be a genus minimizing
surface. Thus SF1 is an annulus as described in Figure 3.10.

In case two, the link that appears in F1 after orienting the intersection segments
of S with F1 is the unknot, since its trunk number is 2 when we consider a height
function whose level sets are vertical planes. Thus by the same argument as above
g(SF1) = 0 and this time SF1 is a disk as described in Figure 3.10.

Now that we know how S looks like in F1, we modify S to show that the formula
is optimal. We start with case one. Observe that S is disjoint from every circle in
C. So for each circle in C, S is in one of the components of its complement. We can
thus erase one by one the circles in C as before and obtain a surface S ′ such that
its boundary is k1 ∪ k2, its intersection with F is the segment and g(S ′) = g(S).
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Figure 3.10: Two possible conĄgurations in F1

Figure 3.11: Unlinking the two possible conĄgurations in F1
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Figure 3.12: n linking number in a row

Because we throw away the obtained 2-sphere when we erase the empty circles, S ′

is connected.
Now cut the two half-twisted bands of the annulus inside F1 to obtain two disks,

as pictured in Figure 3.11. This disconnects S ′ and we obtain S ′
2 a Seifert surface

for k2 and S ′
1 another surface which stays in F . Since S ′ is the connected sum of

these two surfaces, we have

g(S) = g(S ′) = g(S ′
1) + g(S ′

2) ⩾ g(k2) + g(k1) .

In another hand if we consider the Fried Surface for k1 ∪ k2, we know by Corollary
3.5 that

g(k1) + g(k2) = g(SF ) ⩾ g(S) ,

thus SF is minimizing and the formula is optimal in this case.
Now we deal with the second case. First, as before erase one by one the circles

in C to obtain a surface S ′ as in the Ąrst case. Then cut the twisted band in F1 and
replace it with a straight band, as pictured in Figure 3.11. This operation preserves
the genus and g(S ′′) = g(S). Note that after this operation, the knots k1 and k2

are not linked anymore and S ′′ is a Seifert surface for k1 ∪ k2. Then we can use the
process described in the case link(k1, k2) = 0 to get two Seifert surfaces S1 and S2

for k1 and k2 so that g(S ′′) = g(S1) + g(S2). Since S was genus minimizing for the
link k1 ∪ k2, we have

g(SF ) = g(k1) + g(k2) ⩾ g(S) = g(S ′′) = g(S1) + g(S2) ⩾ g(k1) + g(k2) ,

thus SF is minimizing for k1 ∪ k2 when link(k1, k2) = 1.

What happens from link(k1, k2) ⩾ 2? In this case, the main obstruction to
prevent the accuracy of our formula is that several linkings can happen in a row, as
illustrated in Figure 3.12.

Suppose that a minimal surface S looks like in Figure 3.12 in the neighbourhood
of the linkings, and that there is no other linking. Then we could replace the n-
twisted band with a straight one to unlink k1 and k2, getting a new surface S ′ with
the same genus as S. Then S ′ is also minimizing for k1 ⊔ k2, and from the study of
the case Link(k1, k2) = 0 above,

g(S ′) = g(k1) + g(k2) < g(SF ) = g(k1) + g(k2) + n− 1
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Figure 3.13: Closing pieces of orbits in a Ćowbox.

so the Fried surface is highly non-optimal for this class of examples. As far as we
know, there is no way to distinguish between two linkings that happen in a row and
two linkings appart one from another.

3.2.4 A bound on the asymptotic genus of an orbit

In the previous section we obtained a bound on the genus of a two component link
with positive crossings depending on the genera of the two knots. We want to use
this bound to estimate the genus of a very long pieces of orbit for the Ćow ϕt

X of a
right-handed vector Ąeld X preserving an ergodic volume µ.

Setting. Consider a recurrent point x, D a small disk-like section around x and
call (Tn)n∈N the sequence of the successive return times of x in D with T0 := 0, and
set tn = Tn − Tn−1 for any n ∈ N \ ¶0♢. According to Lemma 3.1 we can shrink

D so that tn > Tr for all n ∈ N. Set ϵ ≪ 1 and let F be the Ćowbox ϕ
[−ϵ,0]
X (D).

For each return time Tn > 0, we close the piece of orbit ϕ
[Tn−1,Tn−ϵ]
X (x) in F with

a short geodesic path in the set S given by Theorem 1.7, so that we get a knot
k(ϕ

Tn−1

X (x), tn). In the same idea, k(x, Tn) is the knot obtained by closing the piece
of orbit ϕ[0,Tn−ϵ](x) with a short C1-path in F . We denote link(Ti−1, ti) the linking

number of the knots k(x, Ti−1) and k(ϕ
Ti−1

X (x), ti).
For N ∈ N, we want to split the knot k(x, TN) constructed as above into a kind

of sum of the knots k
(
ϕTk

X (x), tk+1


, with the sum being made in the Ćowbox. To

explain this consider the knots k(x, t1) and k(ϕT1
X , t2) obtained by following respec-

tively the arc of orbits ϕ
[0,t1−ϵ]
X (x) and ϕ

[0,t2−ϵ]
X (ϕT1

X (x)) and closing them with the
appropriate short paths from the set S given by Theorem 1.7. From these two knots
we can construct k(x, T2) by replacing the two closing arc (in dotted lines in Figure

3.13) by the orbit segment ϕ
[T1−ϵ,T1]
X (x) (in dotted red) and the segment in S joining

ϕT2−ϵ
X (x) to x (in red). Figure 3.13 illustrates this operation. We can then iterate

this process to decompose the knots k(x, Tn) into a sum by the flow of the knots

k(ϕ
Tn−1

X (x), tn) and use the precedent computation on the genus of two components
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Figure 3.14: The Fried surface in the neighbourhood of the Ćowbox F

positive links to bound the asymptotic genus.
The Ąrst thing to see is that the link k(ϕ

Ti−1

X (x), ti) ∪ k(x, Ti−1) has only positive
crossings. If we see each link as an orbit of a C1-perturbation of X, which is right-
handed, then because right-handedness is C1-open (Ghys [Ghy09]) these two orbits
bound a Birkhoff section and we know that all the crossings are positive.

Then we need to understand what happens with the genus when we connect the
two knots of the two-component link k(ϕ

Ti−1

X (x), ti) ∪ k(x, Ti−1). Let us consider

k1 = ϕ
[0,T1−ϵ]
X (x)∪α and k2 = ϕ

[T1,T2−ϵ]
X (x)∪β where α (resp. β) is the short geodesic

path connecting ϕT1−ϵ
X (x) to x (resp. ϕT2−ϵ

X (x) to ϕT1
X (x)) in F . Let us consider the

Fried surface SF for the link k1 ∪ k2, made out of two genus minimizing surfaces
for k1 and k2. In F , because of the orientation of the boundaries, SF looks like in
Figure 3.14.

Thus to join the boundaries consistently with the orientations - in order to obtain
a Seifert surface for the knot k(x, T2), we only have to attach a positively half-twisted
band to the boundaries α and β in F , as illustrated in Figure 3.15.

Let S be the surface made with SF plus the above half-twisted band. Since
χ(S) = χ(SF ) − 1, we have:

2 − 2g(S) − 1 = 2 − 2g(SF ) − 2 − 1 ,

thus g(S) = g(SF ) + 1 = g(k1) + g(k2) + link(k1, k2).
Iterating this formula by cutting the knot k(x, Tn) into pieces at each return time

to F , we have:

1

T 2
n

g (k(x, Tn)) ⩽
1

T 2
n

(
g (k(x, Tn−1)) + g

(
k(ϕ

Tn−1

X (x), tn)


+ link(Tn−1, tn)


⩽

n∑

i=1

g
(
k(ϕ

Ti−1

X (x), ti)


T 2
n︸ ︷︷ ︸

(A)

+
n∑

i=1

link(Ti−1, ti)

T 2
n︸ ︷︷ ︸

(B)

.
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Figure 3.15: Connecting the boundaries α and β with a half-twisted band inside F .

The sequence of time interval (tn)n∈N between two successive returns of x in D is

bounded. This implies that the knots k(ϕ
Ti−1

X (x), ti) are tame and thus have a Ąnite
genus bounded by some gmax, and also that n

Tn
is bounded. Therefore part (A) in

the above equation is bounded by C
Tn

for some positive constant C and thus tends
to zero as n goes to inĄnity.

Now we need estimate the term (B), and this is where the proof becomes sketchy
and unĄnished. Since X is right-handed, GhysŠ Theorem 1.14 ensure that there
exists a Gauss linking form Ω which is pointwise positive. By deĄnition, the sum of
link(Ti−1, ti) is the sum of the integrals of this linking form Ω on the collection of
knots k(x, Ti−1)×k(x, ti), which is, up to throwing away the contribution of the short
closing paths which is negligible if the return times are big enough (i.e. if D is chosen
small enough), the integral of Ω on the collection of curves ¶ϕt(x) × ϕs(x), (t, s) ∈
∪n

i=1[0, Ti−1 −ϵ]× [Ti−1, Ti −ϵ]♢. Thus the term (B) is bounded by the integral I(Tn)
of this particular linking form Ω on the set ¶ϕt(x) × ϕs(x), t ∈ [0, Tn − ϵ] and s ∈
[t+ ϵ, Tn − ϵ]♢. The problem to estimate this integral is that we are considering only
one orbit instead of two distinct orbits. Indeed, we usually have:

link(γ1, γ2) = lim
T1,T2→∞

1

T1T2

∫ T1

0

∫ T2

0
Ωγ1(t1),γ2(t2) (X (γ1(t1)) , X (γ2(t2))) dt1dt2

and using the symmetry of the linking number we could conclude that the term (B)
is bounded by half of the asymptotic linking number of the two orbits, which is the
helicity here because X is ergodic with respect to µ. But here we are considering
points on the same orbit, and we have to avoid the diagonal of S3 × S3 on which
Ω has a pole of order 2. A solution to compute the integral I(Tn) would be to
take inspiration from GhysŠ deĄnition of the self-linking number without a preferred
framing (see Section 1.2.3) and approximate x with two sequences (pk), (qk) of points
converging to x, and then compute the integral

∫ Tn−ϵ

0

∫ Tn−ϵ

t+ϵ
Ωϕt

X
(pk),ϕs

X
(qk)

(
X
(
ϕt

X(pk)

, X (ϕs

X(qk))

dt1dt2

but it is yet to be done.
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