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Abstract

The aim of this thesis is to prove new results on asymptotic invariants of flows in
dimension 3. These new invariants come from invariants used in knot theory, which
can be generalised to vector fields following Arnol’d’s method.

We first define the bridge number of vector fields and show some results on its
continuity, its relation to the asymptotic bridge number and to two other asymptotic
invariants, the helicity and the trunkunness of vector fields.

We then prove the existence of the asymptotic genus for right-handed vector fields
preserving an ergodic volume. We show that in this case the asymptotic genus is
equal to half the helicity.

Résumé

L’objectif de cette these est de démontrer de nouveaux résultats sur les inva-
riants asymptotiques de flots en dimension 3. Ces nouveaux invariants proviennent
d’invariants utilisés en théorie des noeuds qui peuvent étre généralisés aux champs
de vecteurs en suivant la méthode d’Arnol’d.

Nous définissons dans un premier temps le «nombre de ponts» des champs de vec-
teurs et démontrons plusieurs résultats au sujet de sa continuité, sa relation avec
le «nombre de ponts» asymptotique et avec deux autres invariants asymptotiques,
I’hélicité et le tronc des champs de vecteurs.

Nous prouvons ensuite I'existence du genre asymptotique pour les champs de vec-
teurs dextrogyres préservant un volume ergodique. Nous montrons que ce genre
asymptotique est égal a la moitié de I’hélicité dans ce cas.
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Introduction (en frangais)

Contexte

L’objet de cette these est d'introduire deux nouveaux invariants asymptotiques pour
les champs de vecteurs lisses non-singuliers préservant une mesure sur S?, le second
invariant étant défini uniquement pour la classe des champs de vecteurs dextrogyres
préservant un volume ergodique. Pour expliquer I'intérét de la recherche d’invariants
de champs de vecteurs préservant une mesure, commengons par un résumé histo-
rique. Considérons les équations d’Euler (1755) dans R?, qui décrivent le champ de
vitesses v; d'un fluide parfait - non-visqueux et incompressible - a partir de 'appli-
cation des lois de la mécanique de Newton a des volumes infinitésimaux :

V'Ut =

0
{%?—l—(va)meVp 0

La premieére équation exprime la conservation de la masse du fluide, tandis que
la seconde représente la conservation de la quantité de mouvement. Ici p désigne
la pression appliquée au fluide et (v; - V)v; la dérivée directionnelle de v;. En 1858,
Helmholtz remarqua une propriété particuliere de ces équations [Hel58] : il démontra
que la circulation du champ de vitesses v; le long d’une courbe fermée est conservée
au cours du temps. Au niveau infinitésimal, cela signifie que le champ de vorticité
w; = V X vy est transporté par le champ de vitesses v;.

Cette observation a d’importantes conséquences : puisque @', une hypothétique
solution du systéme, est un difféomorphisme préservant le volume pour tout temps
t, toute propriété du champ de rotationnel w; qui est préservée par difféomorphisme
préservant le volume constitue un invariant indépendant du temps du champ de
vitesses vy, et par conséquent, du systeme original. Parmi ces propriétés possibles,
la présence d’une orbite périodique de w; représentant un type de noeud spécifique
prend une importance particuliere. Bien que l'identification d’orbites périodiques
isolées puisse étre une tache difficile, un voisinage tubulaire d’un nceud peut également
étre préservé par le flot du champ de vecteurs, ce qui conduit a la notion de tube
invariant noué. Cette notion est a l'origine de la théorie des atomes de Thomson
[Tho69] et a motivé la fondation de la théorie des noeuds par Tait [Tai77].

Le premier - et le plus simple - invariant de champs de vecteurs découvert est
I'hélicité. Il a été introduit dans les années 60 par Woltjer [Wol58|, Moreau [Mor61]
et Moffatt [Mof69]. Par souci de simplicité, nous donnons sa définition pour un
champ de vecteurs statique X préservant un volume €2 sur S*, bien qu’elle puisse
étre définie dans n’importe quelle sphere d’homologie rationnelle.
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Définition. L’hélicité de (X,Q)) est donnée par

Hel(X,Q) = /

ax /\dOéX
s3

ot doy = ix§2.

Comme cette définition repose uniquement sur des notions de calcul différentiel,
I’hélicité est facile a calculer ou a approximer. Moffatt a esquissé le lien avec la théorie
des noeuds un peu plus tard en calculant 1'hélicité de tubes invariants noués [Mof69]
et Arnol’d I'a approfondi comme suit [Arn73]. Soit p un point de S* et appelons
kx(p,t) la courbe fermée construite en commengant au point p, en suivant 1'orbite
de p pendant un temps ¢ et en bouclant par un segment géodésique de longueur
bornée entre p et @' (p). Soit link(kx (p1,t1), kx(p2,t2)) le nombre d’enlacements -
le linking number - de deux nceuds obtenus de cette fagon. Arnol’d [Arn73] et Vogel
[Vog03] ont prouvé le théoréme suivant :

Théoréme (Arnol’d-Vogel). Soit X un champ de vecteurs sur S* préservant une
mesure | telle que p n'est concentrée sur aucune orbite périodique. Alors pour p-
presque toute paire de points (p1,p2), la limite

. L.

lkx (p1, p2) = lim —link(kx(p1,t1), kx(pe,t2))
1,t2—00 t1t2

existe. Si de plus p est un volume et si X est ergodique par rapport a p, alors pour

presque tous p1, py cette limite vaut @HGZ(X, ).

L’hélicité peut donc étre interprétée comme un nombre d’enlacements asympto-
tique moyen de deux orbites du champ de vecteurs.

Remarquons que si I est votre invariant de nceuds (ou d’entrelacs) préféré, et
si pour presque tous py, ..., p; Uinvariant I(kx(p1,t1), ..., kx(pi, t;)) a un comporte-
ment asymptotique de la forme I (p1, ..., p;) X t1*...t;" et si la fonction (py, ..., p;) —
Io(p1, ..., p;) est intégrable par rapport a la mesure yu, alors son intégrale sur (S3)
est un invariant de (X, p) par difféfomorphisme préservant p. On peut donc na-
turellement se demander si en remplagant le nombre d’enlacements par un autre
invariant d’entrelacs ou de noeuds, et en utilisant les mémes méthodes, on obtien-
drait un autre invariant asymptotique. En suivant la méthode d’Arnol’d, Freedman
et He ont construit le nombre de croisement asymptotique [FH91], tandis que De-
hornoy et Rechtman ont construit la trunkenness des champs de vecteurs comme
une généralisation du tronc d’un nceud [DR17]. Bien qu’il ne provienne pas d’un in-
variant de nceuds, il faut également mentionner 'invariant asymptotique de Ruelle
construit par Gambaudo et Ghys [GG97]. Ces trois exemples d’invariants ne sont
pas fonction de I’hélicité, méme sur des champs de vecteurs ergodiques, et sont
donc considérés comme des invariants totalement indépendants. En revanche, si
I'on considere les w-signatures des noeuds [GGO1], les invariants de selle linéaires
[Baall], et les invariants de type fini de Vassiliev [BM12], les invariants obtenus
par la méthode d’Arnol’d sont fonction de I'hélicité au moins pour les champs de
vecteurs ergodiques, ce qui peut réduire leur intérét. Le début d'une explication a
ce phénomeéne d’ubiquité de I'hélicité est venu de deux équipes différentes en 2016
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[EPSTAL16],[Kud16]. Elles ont montré que tout invariant suffisamment régulier -
dans le sens ou sa dérivée de Fréchet est donnée par l'intégrale d’un noyau continu
- est une fonction de I’hélicité. Mais comme aucun des invariants mentionnés ci-
dessus n’a cette régularité, il pourrait y avoir une explication encore plus forte a
I'omniprésence de 1’hélicité.

Je présenterai d’abord les résultats concernant le nombre de ponts des champs
de vecteurs, qui a été défini a 'aide de la méthode d’Arnol’d.

Nombre de ponts d’un champ de vecteurs

Au cours de cette these, je me suis d’abord intéressée au nombre de ponts des noeuds,
noté byeugs dans la suite, qui est un invariant de méme nature que le tronc des nceuds
a partir duquel Dehornoy et Rechtman ont construit la trunkenness dans [DR17].

Considérons un champ de vecteurs lisse non-singulier X sur S* = R* U {co} et
supposons que X préserve une mesure de probabilité u. Notons ¢4 le flot de X
au temps t. Nous appelons fonction hauteur sur S une fonction obtenue en pré-
composant la fonction hauteur standard de S?, dont les niveaux sont des spheéres
centrées en l'origine, par un difféomorphisme préservant l'orientation de S* - une
définition précise sera donnée dans la section 2.2.1. Pour une fonction hauteur A et

t €]0, 1], soit Tx (h~'(¢)) 'ensemble (fermé) des points o X est tangent au niveau
h(t).

Définition. Pour une fonction hauteur h donnée, le nombre de ponts du champ de
vecteurs X pour h est défini par

By = iy b (U ol (1 (17') )

On définit le nombre de ponts de (X, p) par

B(X,p) = inf fhm ,u( U QSOE]( ( _l(t)))> :

h fonction hauteur 2 e—0 € 0<t<1

Dans cette these, nous prouvons certaines propriétés de cette derniere définition.
La premiere est qu’il s’agit bien d’un invariant, et qu’il est d’ordre un :

Théoréme A. Soit f un Cl-difféomorphisme de S3, et X, et Xy deux champs de
vecteurs préservant respectivement les mesures de probabilité py et uo, telles que
= f*ug et f oy, = ¢k, o f pour tout t € R. Alors

B(Xy, ) = B(X2, a) -
De plus, pour X € RY, B(AX1, 1) = AB(Xy, f11).

Notons que le nombre de ponts est un invariant de classe C' alors que la trunken-
ness est un invariant de classe C°. Cela vient du fait que nous devons considérer les
points de tangence du champ de vecteurs aux niveaux de la fonction hauteur pour
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calculer le nombre de ponts, et ceux-ci requierent plus de régularité que la condition
de transversalité requise pour la trunkenness [DR17]. Une propriété cruciale pour
un invariant est sa continuité en le champ de vecteurs et la mesure. Dans notre cas,
nous avons le résultat suivant :

Théoréme B. Soit (X, tin)nen une suite de champs de vecteurs préservant une
mesure de probabilité. Supposons que (X, )nen converge vers un champ de vecteurs
X en topologie C°, que (n)nen converge vers une mesure u faiblement-x et que
lim B(X,,u,) =L € RU{o0}. Dans ce cas

n—oo

dim B(X,, ) < B(X, ) .

Le théoreme B donne plus d’options pour calculer le nombre de ponts des champs
de vecteurs, comme nous le montrerons dans un exemple avec le cas des flots de
Seifert dans la section 2.4. De plus, le théoreme B implique que le nombre de ponts
B(X, 1) peut étre obtenu comme une limite asymptotique lorsque X est ergodique
pour un volume p. Ainsi, nous définissons un nombre de ponts asymptotique :

Théoréme C. Soit (X, u) un champ de vecteurs sur S® préservant un volume er-
godique . Soit x un point récurrent pour le flot de X et générique pour p. Alors :

Ilgrolo ;bnoeuds (kx(il', T)) = B(Xv :u) :

De méme que pour 1'hélicité, le théoreme C fournit une interprétation du nombre
de ponts comme la moyenne du nombre de ponts asymptotique de ses orbites, en les
considérant comme des nceuds arbitrairement longs.

Comme nous 'avons expliqué plus haut, un point clé lorsqu’on définit un nouvel
invariant est de savoir s’il est indépendant de 1’hélicité et des autres invariants déja
connus. Dans le cas du nombre de ponts, nous disposons de ce qui suit :

Théoréme D. Pour une mesure ergodique i, il n’existe pas de fonction telle que
B(X, p) = f(Hel(X, p)).

Le tronc - I'invariant de nceuds dont dérive la trunkenness - et le nombre de ponts
sont liés en tant qu’invariants de nceuds : pour un nceud k& nous avons
Tronc(k) < 2byeeuas(k) en général, avec une égalité pour les nceuds méridionalement
petits, c’est-a-dire les nceuds k£ dont 'extérieur ne contient pas de surface essen-
tielle avec un bord méridional [Ozal0]. C’est pourquoi nous abordons également la
question d’une relation entre la trunkenness et le nombre de ponts des champs de
vecteurs. Nous montrerons dans un exemple qu’ils sont indépendants.

Genre des champs de vecteurs dextrogyres

Dans la deuxieme partie de cette these, j'ai défini un genre asymptotique pour
les champs de vecteurs dextrogyres préservant un volume ergodique sur S?. Etant
donné un neeud k& dans S3, il est possible de construire une surface de Seifert, c’est-
a-dire une surface plongée orientée dont le bord est k, et de calculer son genre.
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Nous appelons genre de k le genre minimal que 'on peut obtenir par ce procédé.
C’est un invariant de noeuds. Il y a déja eu plusieurs tentatives pour définir un genre
asymptotique a partir de la méthode d’Arnol’d précédemment évoquée. Par exemple
les travaux antérieurs de Dehornoy [Deh15] suggerent que l'ordre de cet invariant
est 2, et Dehornoy et Rechtman [DR22] ont prouvé le théoréme suivant,

Théoréme. Soit M une trois-sphére d’homologie entiere, X un champ de vecteurs
dextrogyre sur M et p une mesure invariante par le flot de X. Si (), ey €St une
suite d’orbites périodiques dont les longueurs (t,)nen tendent vers linfini et telle
que (i%)neN tend vers j faiblement-x, alors la suite (égenus(vn))neN tend vers
la moitié de Uhélicité de (X, p).

Ce théoreme laisse espérer que 1'on puisse définir le genre asymptotique pour
cette classe particuliere de champs de vecteurs. Les champs de vecteurs dextrogyres
ont été introduits par Ghys dans [Ghy09] et seront présentés dans le chapitre 1. Tres
informellement, un champ de vecteurs dextrogyre satisfait que toute paire d’orbites
suffisamment longues est positivement enlacée. Bien que cela puisse sembler restric-
tif, cette classe de champs de vecteurs a la propriété dynamique intéressante que
toute collection d’orbites périodiques est le bord d’une surface transverse au flot et
intersectant toutes ses orbites en temps fini, c¢’est-a-dire une section de Birkhoff. Le
champ de vecteurs de Hopf, et plus généralement les champs de vecteurs de Seifert
sur S? sont des champs de vecteurs dextrogyres [Ghy09]. Un autre exemple est donné
par l'attracteur de Lorenz. Récemment, Florio et Hryniewicz ont démontré que le
flot géodésique d'une 3-sphere est dextrogyre si la courbure est pincée entre deux
constantes [FH23].

La stratégie pour construire le genre asymptotique est de considérer un tres long
arc d’orbite d’un point récurrent pour le flot et générique pour la mesure, et de le
fermer artificiellement par une perturbation C!-petite du champ de vecteurs pour
obtenir le nceud k(z,t,). Nous devons alors montrer que le champ perturbé reste
dextrogyre. Ensuite, grace aux travaux de Dehornoy et Rechtman [DR22], il est
possible de calculer le genre de cette orbite fermée particuliere, et nous obtenons le
théoreme :

Théoréme E. Soit X un champ de vecteurs dextrogyre préservant un volume er-
godique pn sur S3. Soit x un point récurrent pour le flot de X et générique pour .

Alors : | .

n—oo ¢

Bien qu’elle ne soit pas totalement compléte, je présente également une tentative
de preuve que le genre asymptotique des champs de vecteurs dextrogyres est majoré
par la moitié de I'hélicité. A mes yeux, cela pourrait étre intéressant car cela utilise
des méthodes completement différentes et fournit une formule générale pour borner
le genre de deux noeuds positivement enlacés.

Organisation de la these

L’organisation de la these est la suivante. Le chapitre 1 est considéré comme un
chapitre préalable dans lequel nous expliquons le cas particulier de I’hélicité parmi
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les invariants de champs de vecteurs dans la section 1.1, et nous présentons des
définitions et des résultats concernant les champs de vecteurs dextrogyres dans la
section 1.2. Enfin nous présentons quelques exemples a garder a ’esprit pour le reste
du texte dans la section 1.3. Dans le chapitre 2, nous expliquons la construction du
nombre de ponts des champs de vecteurs et nous prouvons les théoremes A a D. Le
chapitre 3 présente les deux constructions du genre asymptotique dans les sections
3.1 et 3.2. Ce dernier chapitre s’appuie sur le matériel présenté dans les sections 1.1
et 1.2 et peut étre lu indépendamment du chapitre 2.



Introduction

Context

The purpose of this thesis is to introduce two new asymptotic invariants for smooth
measure preserving non-singular vector fields on S*, one of them on the specific class
of right-handed vector fields preserving an ergodic volume. To explain the interest
of the search for invariants of measure preserving vector fields, let us begin with
a historical summary. Let us consider the equations of Euler (1755) in R®, which
describe the velocity field v; of an ideal fluid - characterized by non-viscosity and in-
compressibility - from the application of Newton’s laws of mechanics to infinitesimal
volumes:

V'Ut =0
Ot (v Vg +Vp =0

The first equation expresses the conservation of the fluid’s mass, while the second
represents the conservation of momentum, with p standing for the pressure applied
to the fluid and (v;-V)v; denoting the directional derivative of v;. In 1858, Helmholtz
found a particular property of these equations [Hel58|: he demonstrated that the
circulation of the velocity field v; along a closed curve is preserved over time. At
the infinitesimal level, this means that the vorticity field w; = V X v, is carried by
the velocity field v, resulting in the concept of it being frozen in.

This observation has significant implications: since ¢, the hypothetical solution
to the equation, is a volume-preserving diffeomorphism for all times ¢, any property
of the vorticity field w, that is preserved under volume-preserving diffeomorphisms
constitutes a time-independent invariant of the velocity field v;, and consequently,
of the original system. Among these possible properties, the presence of a periodic
orbit of a specific knot type for w; is particularly interesting. Although identifying
isolated periodic orbits might be a difficult task, a tubular neighbourhood of a knot
might also be preserved by the flow of the vector field, leading to the notion of a
knotted invariant tube. This was at the origin of Thomson’s theory of atoms [Tho69]
and motivated the foundation of knot theory by Tait [Tai77].

The first - and simplest - invariant of vector fields discovered was helicity. It was
introduced in the 60s by Woltjer [Wol58], Moreau [Mor61] and Moffatt [Mof69]. For
simplicity we state its definition for a vector field X preserving a volume € on S3,
though it can be defined in any rational homology sphere.

Definition. Hel(X, ) = [ ax A dax is the helicity of X, where dax = ix§).

15
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Because this definition relies only on differential calculus, helicity is easy to
compute or to approximate. Moffatt sketched the connection with knot theory a
little later when computing the helicity of vector fields in knotted tubes and Arnol’d
deepened it as follows [AK21]. Let us denote by kx(p,t) a loop starting at the
point p, following the orbit of p during a time ¢ and closed by a geodesic segment
of bounded length. Denote by link(kx(p1,t1), kx(p2,t2)) the linking number of two
knots obtained in this way. Arnol’d [Arn73] and Vogel [Vog03] proved the following
theorem:

Theorem (Arnold-Vogel). Let X be a vector field on S* preserving a measure yu so
that p does not charge any periodic orbit. Then for u-almost pair of points (p1,p2),
the limit

) 1
lkx(p1,p2) == lim ——link(kx(p1,t1), kx(p2,t2))

t1,ta—00 tl 2

exists. Moreover if i is a volume and X s ergodic with respect to u, then for almost
every py, p2 the limit equals @H@Z(X, 1).

Thanks to this result, helicity can be interpreted as an average linking number
of two orbits of the vector field.

Remark that if I is your favorite knot (or link) invariant, and if for almost every
D1, ..., p; the invariant I(kx(p1,t1), ..., kx(pi,t;)) has an asymptotic behavior of the
form Io(p1, ..., p;) x t7*...t1" and the function (p, ..., p;) = Io(p1, ..., p;) is integrable
with respect to the measure p, then its integral on (S*)’ is an invariant of (X, p)
under p-preserving diffeomorphisms. Thus one naturally wonders if replacing the
linking number with another link or knot invariant, and using the same methods,
would produce another asymptotic invariant. Following Arnol’d’s method, Freed-
man and He constructed the asymptotic crossing number [FH91], while Dehornoy
and Rechtman constructed the trunkenness of vector fields as a generalisation of the
trunk of a knot [DR17]. Although it does not come from a knot invariant, we should
also mention the asymptotic Ruelle invariant constructed by Gambaudo and Ghys
[GGIT7]. These three examples of invariants are not proportional to helicity, even on
ergodic vector fields, and thus are totally independent new invariants. On the other
hand, when considering the w-signatures of knots [GGO1], linear saddle invariants
[Baall], and Vassiliev’s finite type invariants [BM12], the invariants obtained with
Arnol’d’s method are function of helicity at least for ergodic vector fields, which
might reduce their interest. The beginning of an explanation to this phenomenon of
ubiquity of the helicity came from two different teams in 2016 [EPSTdL16],[Kud16].
They showed that any invariant which is regular enough - in the sense that its
Fréchet derivative is given by the integral of a continuous kernel - is a function of
helicity. But since none of the above mentioned invariants has this regularity, there
might be an even stronger explanation to the omnipresence of helicity.

I will first present the results about the bridge number of vector fields, which
was defined using the method of Arnol’d.
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Bridge number of vector fields

During this thesis I was first interested in the bridge number of knots, denoted b0t
in what follows, which is an invariant of the same nature as the trunk of knots from
which Dehornoy and Rechtman constructed the trunkenness in [DR17].

We consider a smooth non-singular vector field X on S* and we suppose that X
preserves a probability measure p. We denote ¢% the flow of X at the time t. We
call height function on S* a function obtained by pre-composing the standard height
function of S3, whose level sets are spheres centered in the origin in the standard
stereographic projection, by a Cl-orientation preserving diffeomorphism - a precise
definition will be given in Section 2.2.1. For h a height function and t €]0, 1], we
denote T'x (h™(t)) the (closed) set of points where X is tangent to the level set
hi(t).

Definition. For h a height function, the bridge number of the vector field X for h
s defined by

By(X.p) = L lim M(U 40 (7 (—1<t>))).

20 € \g 5

We define the bridge number of (X, ) by

B(X,pn) = inf = hm 1[L < U gb[)?’g] (TX (h_l(t)))> .

h height function 2 e—0 € O<t<1

In this thesis we prove some properties of this last definition. The first one is
that it is indeed an invariant, and its order is one:

Theorem A. Let f be a Ct-diffeomorphism of S?, and X, and X, two vector fields
that preserve respectz’vely the probability measures py and o, and so that py = f* s
and fo ¢ = ¢, o f forallt € R. Then

B(X1, ) = B(X2, p2) -
Moreover, for X € R, B(AX1, 1) = AB(X1, ).

Note that the bridge number is a C!-invariant whereas the trunkenness is a C°-
invariant. This comes from the fact that we have to consider the tangency points of
the vector field to the level sets of the height function to compute the bridge number,
and this requires more regularity than the transversality condition required for the
trunkenness [DR17]. A crucial property for an invariant is its continuity in the
vector field and the measure. In our case we have the following result:

Theorem B. Let (X,,, tin)nen be a sequence of vector fields preserving a probability
measure on S3. Suppose that (X, )nen converges to a vector field X in the C°-topology
and that (fy)nen converges to p weakly-+, and that Jim. B(Xy, pn) = L € RU{o0}.
Then

lim B(X,, u,) < B(X, ).

n—o0
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Theorem B gives more options to compute the bridge number of vector fields,
as we will show in an example with the case of Seifert flows in Section 2.4. Also,
Theorem B implies that the bridge B(X, u) can be obtained as an asymptotic limit
when p is an ergodic volume. In this direction, we define an asymptotic bridge
number:

Theorem C. Let (X, u) be a volume preserving vector field on S* and suppose that
X is ergodic with respect to p. Let x be a recurrent point for the flow of X and
generic for . Then:

Jm b (x(, T) = BIX, ).
As it was the case for helicity, Theorem C provides us with an interpretation
of the bridge number as the average of the asymptotic bridge number of its orbits,
seen as arbitrarily long knots.
As we explained above, a key point when one defines a new invariant is to know
whether it is independent from helicity and other known invariants. We have the
following:

Theorem D. For p an ergodic measure, there is no function so that B(X,pu) =

The trunkenness and the bridge number are related as knot invariants: for a
knot k£ we have Trunk(k) < 2byots(k) in general, with an equality for meridionally
small knots, that is to say knots so that the exterior of the knot does not contain
an essential surface with meridional boundary [Ozal0]. This is why we also address
the question of a relation between the trunkenness and the bridge number of vector
fields. In Section 2.4 we show in an example that they are independent.

Genus of right-handed vector fields

In the second part of this thesis I define an asymptotic genus for smooth non-singular
right-handed vector fields preserving an ergodic volume on S3. Given a knot & in S3,
it is possible to construct a Seifert surface, i.e. an oriented embedded surface whose
boundary is k, and to compute its genus. We call genus of k the minimal genus
that we can obtain with this process. It is a knot invariant. There where already
several attempts to define an asymptotic genus by mean of the method of Arnol’d.
For instance previous works from Dehornoy [Dehl15] suggest that the order of this
invariant is 2, and Dehornoy and Rechtman [DR22] proved the following theorem:

Theorem. Let M be a 3-manifold that is an integer homology sphere, X a non-
singular right-handed vector field on M and p an X-invariant measure. If (Vn),en
is a sequence of periodic orbits whose lengths (t,)nen tend to infinity and such that
(i%)neN tends to p in the weak-x sense, then the sequence (égenus(%))neN tends

to half the helicity of (X, ).
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This result gives hope that one could define the asymptotic genus for this par-
ticular class of vector fields. Right-handed vector fields were introduced by Ghys in
[Ghy09] and will be presented in Chapter 1. Roughly speaking, a right-handed vec-
tor field satisfies that any pair of long enough orbits are positively linked. Although
this may seem restrictive, this class of vector fields has the interesting dynamical
property that any collection of periodic orbits bounds a surface transverse to the flow
and intersecting all of its orbits in bounded time, that is to say a Birkhoff section.
The Hopf vector field, and more generally Seifert vector fields on S? are right-handed
[Ghy09]. Another example is given by the Lorenz attractor. Recently, Hryniewicz
and Florio demonstrated that the geodesic flow of a 3-sphere is right-handed if the
curvature is pinched between two constants [FH23].

The strategy to construct the asymptotic genus is to consider a very long arc of
orbit of a recurrent point generic for the measure and to artificially close it with a
C'-perturbation of the vector field to obtain the knot k(z,t,). We have to show that
the perturbed field remains right-handed. Then thanks to the work of Dehornoy
and Rechtman [DR22] it is possible to compute the genus of this particular closed
orbit, and we obtain the following:

Theorem E. Let X be a smooth right-handed non-singular vector field X preserving
a smooth ergodic volume j on S®. Let x be a recurrent point for the flow of X and
generic for p. Then

1 1
lim tnﬁg(k(%tn)) = S Hel(X, ).

Although it is not fully complete, I also present an attempt of a proof that the
asymptotic genus of right-handed vector fields is bounded by half of the helicity.
To my eyes this might be interesting as it uses completely different methods and
provides us with a general formula to bound the genus of two positively linked knots.

Organization of the thesis

The organization of the thesis is as follows. Chapter 1 is thought as a prerequisite
chapter where we explain the special case of helicity among vector fields invariants
in Section 1.1, present definitions and results concerning right-handed vector fields
in Section 1.2 and finally present some examples to have in mind for the rest of
the text in Section 1.3. In Chapter 2 we explain the construction of the bridge
number of vector fields and we prove Theorems A to D. Chapter 3 presents the
two constructions of the asymptotic genus in Sections 3.1 and 3.2. This last chapter
relies on the material presented in Sections 1.1 and 1.2 and can be read appart from
Chapter 2.
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Chapter 1

Prerequisites and examples

In this chapter we introduce the main ideas and notions that will be used in the
thesis. At first it is necessary to understand the idea of Arnol’d and to examine
the special case of helicity, which we do in Section 1.1. Then in Section 1.2 we
present the particular class of right-handed vector fields, for which we will define
the asymptotic genus in Chapter 3. Lastly in Section 1.3 we present a class of
examples of flows for which it is possible to compute the trunkenness and the bridge
number.

1.1 Vector fields invariants and helicity

1.1.1 Helicity

For simplicity and because we are interested in asymptotic invariants of vector fields
in S?, we will be working in S3, though helicity exists for vector fields in homology
spheres of any nature, and can also be extended to submanifolds of S* that have a
boundary, under the condition that the vector field remains tangent to the boundary.
So let X be a smooth measure-preserving vector field on S3, preserving a volume
form p. One can define a 2-form (x using the vector field X by mean of the formula
Bx = ixp. Because X preserves the volume, the Lie derivative of u along X is
zero and Cartan’s formula implies that Sy is closed, thus exact since H?*(S?) is
trivial. Hence there exists a 1-form ax - a potential form of X - such that da = fx.
Of course it is not unique since other potential forms can be obtained by adding an
exact form, but one can show that the integral

/, ax N Bx
3

is independent of the choice of the potential form ax. This leads to the definition
of helicity:

Definition 1.1. The helicity Hel( X, p) of (X, p) is given by

Hel( X, p) := /SS ax Ndax

where ax s a potential form of X.

21
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It is important to remark that by definition, helicity is significantly influenced
by the choice of the invariant volume p. Different choices of invariant volumes lead
to distinct helicity values.

Proposition 1.2. The helicity of (X, 1) is invariant under the action of u-preserving
diffeomorphisms.

As Pierre Dehornoy remarks in [Deh15], while the above definition is succinct, it
might seem enigmatic. Following his summary text about asymptotic invariants, we
present an alternative understanding of helicity in the particular case of R? endowed
with an auxiliary metric, denoted ¢. In this case p is the volume associated to the
metric g. The volume-preservation of X writes V-X = 0 in this case and this implies
that X is the rotational of some vector potential w, that is to say V x w = X. Then
one can check that the definition of helicity boils down to Hel(X, i) = [w-Xdu. But
on R3, we have a fundamental example of a vector potential given by the Biot-Savard
formula:

1 X(y) x (x —y)
= dy.
W@ = o e

Using this potential in the definition of helicity and the relation z - (y X z) =
det(zx,y, ), one finally gets:

1 det(X(z), X(y), * — y)
Hel(X, 1) = 7// ’ drd
el(X. n) AT R3 xR3\ A |z —yl? o

where A is the diagonal set {(z,z)|x € R?}. Before we continue by presenting the
method of Arnol’d, we need to introduce the linking number and the linking forms.

1.1.2 Linking forms and system of short paths

Linking number and linking forms The linking number stands out as the most
straightforward invariant for 2-component links. Given two separate knots k; and ko
in R3, their linking number, denoted as link(ky, k2), can be described using multiple
equivalent definitions [Rol76]:

o the number of signed crossings of a projection of the knots ki, ks on a plane;

o the algebraic intersection number of k; with a Seifert surface for ko - and
conversely;

o the degree of the Gauss map defined on S' x S! and given by (ti,t3) —

% where v, and 7, are any parametrizations of the knots k;, ko;

« the Gauss integral (note the similarity with the previous computation for he-
licity in R?):

i det (71 (tl)> ;)/2(752)7 72(t2) - M (tl))
Am //Slxgl [v2(t2) — 7 (t0)[? dhats
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An important remark is that the above definitions of the linking number also
work in S?: the point is to perturb the knots so that they do not pass through
the point at infinity (in a given stereographic projection), and then to compute the
linking number of their stereographic projections. Actually, another way to compute
the linking number is given by the integration of a Gauss linking form on §? x S?.

Definition 1.3. A Gauss linking form on S® is a double form L on S* x S* such
that for any two disjoint closed oriented one-dimensional submanifolds v, 2 of S?,
the equality:

link(~yy,7v2) = / L
Y1 /Y2
holds.

Example. According to the previous definitions of the linking number and the
example at the end of Section 1.1.1, if z, y € R* V € T,R® and W € T,R? the
2-form given by

LV-(W x (@ —y)
eyl

Lps =

is a Gauss linking form on R3.

In his article [Vog03], Vogel proved using the theory of Poisson equation on Rie-
mannian manifolds, that Gauss linking form exist on any closed oriented three-
dimensional manifold M having the real cohomology of a three-sphere, that is to
say H'(M,R) = H*(M,R) = 0. We will not present the detail of this construction
but we will list some of its properties that will be useful in Chapter 3.

Let us consider the projections:

RSP xS — §3

The bundle of double forms over S? x S? is the tensor product of the pullbacks of
the bundle A*(T*S?) of differential forms by these two projections:

m (A(T7S%)) @ myp (A(17S?))

Let g be a Riemannian metric on S®. There are left and right exterior derivative
operators dy, and dg which act on double forms, and moreover g induces the left and
right Hodge star operators %5, and *z. Denote by G the Green form of the Hodge
Laplacian A associated with g. This form is constructed explicitly with help of the
distance function in Chapter V of [dR84]. G is an integrable double form, smooth
outside the diagonal and satisfying the pointwise bound:

1Gp.qlloc = O(dist(p,q) ")

where ||y 4|loo is the maximum of the absolute value of the coefficients of « in an
orthogonal basis, evaluated in the point (p, q) € (S* x S3)\ A, A being the diagonal
of S* x S3. Then a Gauss linking form is the double form defined by

L= *Rng .
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It is immediate that £ is integrable and smooth outside of the diagonal in S? x S3?,
and satisfies the pointwise bound:

Lemma 1.4.
1£p.qlloe = O(dist(p, q) %) .

The other property of the Gauss linking form we need in this thesis is the bound-
edness of its integral on pairs of short geodesics. Let g be a Riemannian metric on
S* and denote by 7,;(g) the injectivity radius of g.

Lemma 1.5. Fiz ro := r;,5(g)/100. Then there exists a constant C(g) > 0 depend-
ing only on g so that for any pair of distinct geodesics 7y, 2 of length less than rg
and intersecting at most one time,

[ymz‘ < Clg).

As noted Prasad in [Pra22], Lemma 1.5 is stated in the proof of [[Vog03], Theo-
rem 5], and is proven more precisely in the article of Prasad [[Pra22], Lemma 2.3].

System of short paths. We explained in the introduction that there is a suitable
way to close up the arc of trajectories of a flow in order to get a knot. This can be
achieved using a system of short paths, introduced by Arnol’d [AK21] and refined
by Vogel [Vog03|. Here we present briefly the definition and properties of a system
of short paths. The following definition comes directly from [Vog03].

Definition 1.6. A set S of paths on S? is a system of short paths if it has the
following properties:

1. For any two points p, ¢ € S? there is a unique path o(p,q) € S starting at p
and ending at q.

2. Each path in S is piecewise differentiable.

3. The paths depend continuously on their endpoints almost everywhere and the
following limits exist in the L-sense:

1
i / / L£l=0 1.1
T,8—00 TS o0 (@) Jo (65 (y).) £ D
lim / Ll =0 1.2
TS—>ooTS (6T (2),2) ¢[°S()‘ | 2
lim / / Ll =0 1.3
TSHoo TS (6% (z),2) Jo (6% () | = 3

4. The sets
Ixs = {(z,y) € $* x S0 (z) N o (6% (), y) # 0}
Isy = {(z,y) € S* x S*|o(¢% (x), 2) N oY () # 0}
Is;s = {(z,y) € S* x S*|o (g% (x),2) N a<¢X<y> y) # 0}

have measure zero at any given time T, respectively S.
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Since this definition is technical, we explain the aim of such requirements. Point
2 ensures that integrating along a short path is possible. Thanks to the continuity
condition in point 3, the integrals of the linking form on artificially closed orbits are
measurable functions on S* x S§* and conditions (1.1) to (1.3) ensure that the short
paths do not count for the asymptotic linking number. Then point 4 avoids having
short paths intersecting either one another or the flow lines too often.

Vogel showed that a subset of the set of geodesics is a system of short paths:

Theorem 1.7 (Vogel, [Vog03]). Let S be the set consisting of a geodesic of minimal
length having starting point p and ending point q for any p, ¢ € S*. Then S is a
system of short paths.

Now we can use this result to relate helicity to the asymptotic linking number.

1.1.3 Connection between helicity and the linking number

In his work about helicity, Moffatt had already figured out that helicity could be
interpreted as an average linking number. To refine Moffatt’s idea and to get around
the fact that the orbits of the flow are generally not closed curves, Arnol’d introduced
a technique to transform open segments of orbits into closed loops [Arn73]. Although
the initial definition lacked some precision to achieve the result, Vogel presented later
the enhancement of the system of short paths that we presented in the precedent
section.

Definition 1.8. We define the knot kx(p,t) as the concatenation of the segment of
orbit gb[)g’ﬂ (p) with the short path o(¢%(p),p) in the set S given by Theorem 1.7.

According to the definition of the system of short paths S, this is a well-defined
knot for almost every positive time 7.

Theorem 1.9 (Arnol’d-Vogel [Arn73] [Vog03]). Let X be a vector field on S® pre-
serving a measure i not charging any periodic orbit. Then for pu-almost every pair
of points py, ps, the limit
. L.
lkx(p1,p2) == lim —link(kx(p1,t1), kx (p2, t2))

t1,ta—00 t1t2

exists. Moreover, if u is a volume form and if X is ergodic with respect to ., then

for almost every p1, po the limit equals ﬁ]{el(){, ).

The proof of this theorem is an application of Birkhoff’s ergodic theorem. First
we know that the linking number of the knots kx(p1,t1), kx(p2,t2) is given by the
integral of the Gauss linking form along the knots. Because of the choice of the
closing short paths and the fact that we are considering arbitrary long pieces of
orbits and dividing by the product of times, only the following integral may have a
(strictly) positive limit:

L de (X)), X650, 0302) = 03010
tita Jo Jo 163 (p2) = ¢% (po)|I® ’
and this integral is a time average. One has then to check that the function (z,y) —
det(X(”x)’Yﬁ%)’yiz)
y—x
An example of computation of the helicity will be presented in Section 1.3.

is integrable on S? x §* \ A before concluding.
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1.2 Right-handed vector fields

Right-handed vector fields are a special class of non-singular vector fields on closed,
oriented rational homology three-spheres introduced by Etienne Ghys [Ghy09]. To
say it shortly, non-singular vector field X is right-handed if any pair of long pieces
of distinct recurrent trajectories of X, after being closed up in an appropriate way,
form a pair of embedded knots with positive linking number. One example is the
vector field generating the Hopf fibration on S?, where any pair of orbits forms a
Hopf link with linking number 1. A motivation to the study of these vector fields is
given by the following theorem of Ghys:

Theorem 1.10 ([Ghy09]). Let X be a right-handed vector field in S3. Then any fi-
nite collection of periodic orbits is a fibered link. More precisely, any finite collection
of periodic orbits is the binding of some Birkhoff section.

Here we present the definition of right-handedness as explained by Anna Florio
and Umberto Hryniewicz in [FH23|, focusing on the case of (non-singular) vector
fields X on S? as it will be our preoccupation later on this thesis. The advantage
of this equivalent definition compared to Ghys’ original definition, is that we do
not need to deal with the existence of linking forms. We also present briefly Ghys’
definition, in order to state a theorem from Ghys that we need in Section 3.1.

1.2.1 Transverse rotation numbers

Let X be a smooth vector field on S* and denote its flow by ¢%. Let v be a
non-constant periodic orbit of ¢% of primitive period T > 0. We think of v as
amap v : R/TZ — S®. On a small tubular neighbourhood N of ~, consider the
tubular coordinates (t,z = x + iy) € R/T7Z x C such that dt A dz A dy > 0 and
&% (7(0)) = (¢,0). For every 6y € R, let ¢ — 6(t) be the continuous real valued
function defined by 6(0) = 6, and

D¢ (0,0) - (0,™) € R(1,0) + R, (0, ).

For a 1-form y € H'(N \ 7,R) homologous to pdt + qdf we define the transverse
rotation number of v with respect to y:

py(7)=T<p+q lim M) :

2w t—+oo ¢

As Hryniewicz showed in [Hry20], Section 2, this number p¥(y) does not depend
on the choice of tubular coordinates nor on the initial condition #,. Consider any
oriented Seifert surface S spanned by 7, with the orientation of the boundary of
S, S, being consistent with the orientation of v given by the flow ¢%. Denote by
S* € H'(S?\v;Z) the class dual to S. Since we are working in S*, S* is independent
of S. Actually (S*, 3) = link(v, B) for any oriented loop 8 in S\ 7. One can think
of it as a class in H'(N \ 7;Z) after restricting to N \ 7.

Definition 1.11. Let y be the cohomology class dual to some (thus any since we
are in a homology 3-sphere) oriented Seifert surface for ~v. We say that p¥(vy) is the
transverse rotation number of v in a Seifert framing.
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In Section 3.1.4 we will explain a more geometric interpretation of this quantity
in terms of a Seifert framing. For now on, let us pursue with a definition of right-
handedness.

1.2.2 Right-handedness according to Florio and Hryniewicz

Now we suppose in addition to the above hypothesis that X is non-singular. Let P
be the set of ¢'y-invariant Borel probability measures, R the set of recurrent points,
and R the following measurable set:

R ={(z.y) € R x RI¢% (x) N o (y) = 0} .

Let w1 and ps be two ergodic probability measures in P, and denote by g1 X ps the
product measure. There are two cases to consider:

L (un x 1o)(R) = L.

2. (g1 X p2)(R) = 0 and supp(u1) Usupp(pe) C v for some periodic orbit +.

One needs to treat each case separately. Let g be an auxiliary Riemannian metric
on S3.

Case 1. Choose (p,q) € R and denote by S(p,q) the set of ordered pairs of
sequences ((Tn)neN , (Sn)n€N> such that when n goes to infinity (7},)nen and (Sy, )nen

tend to infinity, ¢%* (p) — p and ¢35 (¢) — ¢. For an n large enough denote a, (resp.
$3,) the shortest geodesic arc from ¢ (p) to p (resp. ¢57(q) to ¢). In order to get
two closed loops k(T,,, p) and k(S,, q) not intersecting each other, consider C'-small

perturbations &, 8 of «,, and f3,, fixing the extremities. We set:

link (o™ (p), %™ (@) = limint  link (k(T,, ), (Sn,q))

1 1
dﬁ%anvggﬁn

and

' Ly 0,Tn] (0,5]
l(p7 q) = inf link_ (0,7 (p)7 ,Sn (q) .
((T)pexes(Sn)ert ) €S(p.a) TnSn ( X b'e )

In this case, p; and ps are said to be positively linked if I(p, ¢) > 0 for uy X po-almost
all points (p, q).

Case 2. 1y and po are said to be positively linked if the transverse rotation number
pY(7y) of the periodic orbit v containing the supports of 11, o computed in a Seifert
framing is strictly positive.

Definition 1.12. We say that the vector field X is right-handed if all pairs of ergodic
measures in P are positively linked.

As we said earlier, the advantage of this definition is that it avoids dealing with
details on the existence of linking forms. In [Ghy09], Ghys defines right-handedness
in a different way that we are now going to sketch.
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1.2.3 Right-handedness according to Ghys

As we have seen in Section 1.1, there is a suitable way to close the arc trajectory
from a point p € S? to ¢%(p) in order to get a knot. Using this fact, Ghys defines
the linking number of two ergodic (for the flow of X) probability measures p; and
pz as follows [Ghy09]. Let p; and ps be two points which are generic respectively for
py and ps, and tq, to two large times. Connecting the endpoints of the arcs of orbit

[)g’tl](pl) and ¢[§’t2](p2), one obtains a link k(p1,t;) U k(ps, t2) in S®. Adapting the
proof of Arnol’d, Ghys proved that if ; and ps are not concentrated on the same
periodic orbit, the limit of linking numbers

(s, ) =, lim _-link (k(p, 1), K(pa, )

exists i1 X pg-almost everywhere and is independent from the choice of (py, p2). If 14
and po are distributed on the same periodic orbit, there is also a way to define the
self-linking number without using a preferred trivialization of the normal bundle. In
our situation, Ghys explains that one can define some kind of self-linking number
of a periodic orbit going through a point p, by considering the asymptotic linking
number of the orbits of two sequences of different points p}, pi converging to the
point p.

Using the ergodic decomposition theorem and the previous definition of linking
number of measures, one can define a bilinear form 1k(p1, p19) on the set P of invariant
probability measures for X. Ghys proves that this bilinear extension is possible in
a continuous way and finally defines the fundamental linking form on the compact
convex set P:

k:PxP—R.

We end up with the following definition of a right-handed vector field:

Definition 1.13. A non-singular vector field X on S* is right-handed if the quadratic
linking form is positive on the convex set P of invariant probability measures.

We can now state Ghys’ Theorem which is an analogue to the
Schwarzman-Fried—Sullivan Theorem:

Theorem 1.14. Let X be a non-singular vector field on S3, generating a flow ¢ .
Choose some Gauss linking form ). The following conditions are equivalent:

1. X is right-handed, i.e., the quadratic linking form is positive on the conver set

P.

2. There is some T > 0 such that for every pair of points py, pa on different
orbits, the integral [] [ Q¢§§ (p1):62 (m)(Xqﬁ; (pl),X¢§? (p2))dtidts is positive.

3. There is some Gauss linking form Q which is pointwise positive on X, i.e. for
every distinct points py, pa, one has 0y, p, (X (p1), X (p2)) > 0.



1.3. EXAMPLES 29

1.3 Examples

1.3.1 Trunk of knots and trunkenness

Before we look at some examples of vector fields that are relevant for this thesis,
I would like to introduce the trunkenness of vector fields, an invariant which was
defined by Pierre Dehornoy and Ana Rechtman in [DR17]. The objective is twofold:
first to present an invariant very close to the bridge number of knots, that we
will generalize to vector fields in Chapter 2, and also to have a second invariant to
compute when we will look at examples. Let us start with the trunk of knots defined
by Ozawa in [Ozal0]. Define the standard height function on R3 by h, : (z,y,2) — 2.

Definition 1.15. A height function h on R® is a function of the form

h@,y,z) = h.(Y(2,y,2))
where 1 is a smooth orientation-preserving diffeomorphism of R3. In particular, the

level sets of a height function on R? are topologically smooth planes.

Let k be a knot in R?, and h a height function which is Morse with respect to
k. Ozawa [Ozal0] defines the trunk of k for h by

. -1
tky (k) := max #{kNh™(t)}.
Definition 1.16 ([Ozal0]). The trunk of the knot k is given by

th(k) = inf thy (k) = inf max #{kNh~1(t)}.

= 1 = 1
h Morse height function h Morse height function t€R

Examples.
e The trunk of the unknot is 2, and a knot is trivial if and only if its trunk is 2.
e The trunk of the trefoil knot is 4.

o Since a torus knot T'(p,q) can be realized as the closure of a braid with ¢
strands, and using symmetry of the knot, one has tk(k) < min{p, ¢}. Actually,
Ozawa proved that this is an equality [Ozal0)].

In order to generalize this invariant, Dehornoy and Rechtman proposed the fol-
lowing definition. Define a height function i on S? to be a function whose level sets
are 2-dimensional spheres and with only two singular points. Let X be a vector field
in S* preserving a measure p. The trunkenness of (X, p) for h is given by

o —1
tksy (X, 1) == mnax Flux (X, i, h (t))
where Flux (X, s, h71(t)) is the geometric flux of (X, 1) through the level set h=1(¢).
Roughly speaking, it represents the instantaneous measure of the points crossing
the level set h=1(t).
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Definition 1.17 (Dehornoy-Rechtman [DR17)). The trunkenness of (X, p) is

Tks(X, p) := inf thsp (X, u) = inf max Flux (X, i, h_l(t)>

h height function h height function t€[0,1]

In their article [DR17], Dehornoy and Rechtman prove that the trunkenness is
an order one invariant under measure preserving homeomorphisms. It is continuous
in the sense that if the sequence of vector fields (X, )nen tends to X in the CO-
topology and preserves the sequence of measures (ji,),eny converging to pu weakly-x,
the trunkenness of (X, i,) converges to the trunkenness of (X, u). In particular,
the asymptotic trunk is well-defined:

Theorem 1.18 (Dechornoy-Rechtman, [DR17]). If X is ergodic with respect to u,
for p-almost every point p,

1
Jim Lt (kx (p.1)
exists and is equal to Tks(X, ).

The trunk of knots behaves well under connected sum. Davies and Zupan proved
the following [DZ17]:

Proposition 1.19 (Davies-Zupan, [DZ17]). For any two knots ki, ko in R?,
tk(k‘l#kg) = max{tk(kl), tk(k‘g)} .

The trunk is also related to another knot invariant, the bridge number of knots.
There are several ways to define the bridge number, here to be consistent we choose
to fix the knot and vary the height function. Let k be a knot and h be a height
function so that hj, is a Morse function, which means that the function hj; has
finitely many extrema.

Definition 1.20. Let by(k) be the number of mazima (or minima) of hy. The
bridge number of k is then defined by:

b(k) - h heigi?]%lnction bh(k) )

In general, we have the relation tk(k) < 2b(k). Ozawa [Ozal0] proved that for
the class of meridionally small knots, equality holds. A knot k is called meridion-
ally small if there exists no essential surface in its exterior E(k) with meridional
boundary.

Theorem 1.21 (Ozawa [Ozal0]). If a knot k is meridionally small, then th(k) =
2b(k).

Because of this relation, we asked if the trunkenness of vector fields could be
related to the bridge number of vector fields that we define in this thesis. We show
in an example in Section 2.4 that it is not the case and that these invariants are
independent.
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1.3.2 Seifert flows

The Seifert flow of parameters (o, 3) € RY is the flow preserving the Haar measure
Qiraar on S and defined by :

¢faﬁ)(z1, 29) = (21 exp 2imat, z exp 2imw5t) |

where (z;);—12 are complex coordinates on S* C C?. This flow has two particular
orbits given by z; = 0 that are closed and unknotted for any choice of parameters.
Moreover the flow preserves the torii ||2|| = constant. If a/f is rational and equal
to p/q with p and ¢ two coprime integers, then every orbit is periodic and forms
a torus knot of type T'(p,q) - except the two previously mentioned. This is why
for these flows, it is easy to compute vector field invariants using their asymptotic
definition.

Helicity of Seifert flows. In the case where («, ) takes on the rational values
(p,q) with the condition that p A ¢ = 1, all the orbits are periodic of period 1
and the linking number between any pair of orbits is pg with the exception of the
two specific unknotted orbits that have linking number 1. Hence the asymptotic
linking number is also pg and using Arnol’d’s Theorem 1.9, the helicity is pg. In the
general case, when o/ € R\ Q, one can approximate the vector field X, 3 with a
sequence of Seifert flows with rational slope, for which the helicity is the product of
the parameters. Using the continuity of helicity, one eventually has

Hel(Xo 8, Qpaar) = af .

for arbitrary parameters a, 5 € R.

Trunkenness of Seifert flows.

Proposition 1.22 (Dehornoy-Rechtman, [DR17]). The trunkenness of (Xa.5, 2raar)
is min(ay, 3).

We briefly explain the proof of this result. It stands in two steps. First, us-
ing the definition of the trunkenness in terms of geometric fluxes, one shows that
Tks(Xo g, Qraar) < 20 by exhibiting a particular height function. Here we have
to consider the standard height function hy on S3, whose level sets are 2-spheres
centered in the origin of the standard stereographic projection, and more precisely
its particular level set hg'(1/2) which contains the special orbit z, = 0 and is the
only sphere that intersects all the orbits of the flow.

The second step is to prove the converse inequality Tks(X, g, Qpaar) = 2 min(a, 3).
This can be achieved by approximating the vector field X, g with a sequence of vector
fields with rational slope (X, /r, .gn/rn Jnen, Where p,, ¢, and 7, are integer numbers
(think of the decimal expansions of o and /). By Theorem 1.18,

Tks (Xa,ﬂu QHaa'r) - nh—>nolo Tks (Xpn/rr,qn/rna QHaar) .

Using the fact that the trunkenness is an order one invariant, it is enough to prove
Tks(X, 4, QHaar) = 2min(p, q) for p, ¢ two coprime natural numbers. We have to
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compute the right-hand side of the above equality.

As we remarked, the flow is particularly simple in this case. One can choose a
sequence (K, )nen of collections of n periodic orbits so that i, the invariant measure
supported by K,, tends to Qgaq-. This sequence of measures is defined as follows.
Let X,, be a vector field tangent to the link K, in every point. This induces a flow
¢! along the link. The invariant measure supported by K, is given by:

fnl(A) 1= ~Leb (UL, {1 € [0,1), 64 (s:) € A})

for all A C S?, where the x; belong to the i-th component of K,,. Since the period
of each component is 1 and we have n of them, pu, is of total mass 1 and tends to
Qnaar Wwhen n goes to infinity by choice of the collection K,. But the orbits that
constitute K, are of course torus knots of type (p,q) so the trunkenness of K, is
nmin(p, q) by a theorem of Zupan about cable links [Zup12]. Thus we have:

. 1 . )
Tks(Xpg, Qttaar) = lim Tks(Xp, g, pn) = lim - X nmin(p, ¢) = min(p, q) .
We will show in Chapter 2 that the bridge number of this flow is the same as the
trunkenness - because torus knots are meridionally small - and in Chapter 3 that
the asymptotic genus of this flow is half of the helicity.



Chapter 2

The bridge number of vector fields

In this chapter we are interested in the bridge number of knots, which is an invariant
of the same nature as the trunk of knots defined by Schubert [Sch54] from which
Dehornoy and Rechtman defined the trunkenness of vector fields in [DR17]. In
Section 2.1 we present the definition of the bridge number of knots and some needed
results of Milnor relating the bridge number of knots to the curvature of closed
curves. In Section 2.2 we introduce a definition for the bridge number of a vector
field X preserving a probability measure 1 on S* and we show that it is an order
one invariant by C!'-diffeomorphisms preserving u (Theorem A). Then we prove a
regularity result for this new invariant (Theorem B) in Section 2.2 and use it to define
an asymptotic bridge number (Theorem C) in Section 2.3. Finally we investigate
the relations between the bridge number of vector fields, the trunkenness and the
helicity in Section 2.4.

2.1 Bridge number, crookedness and curvature of
a curve

First we define what is a height function in S3: it is the precomposition of the
standard height function:

ho: S*=R3U{cc} — [0,1]

(ZL‘,y,Z) = 1= !

1+$2+y2+22 )

with a Cl-orientation-preserving diffeomorphism of S3. Let K be a knot and
h : S* — R be a height function. We denote K the set of all embeddings k of
S! into S? that are isotopic to K and so that Ay, is a Morse function.

Definition 2.1. Let b, (k) be the number of mazima (or minima) of hy.. The bridge
number of K is then defined by:

In this definition we choose to set the height function A and then minimize the
bridge number over the embeddings of the knot for which h is Morse. Another point

33
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of view (which we used in Chapter 1) is to fix an embedding of the knot and then
minimize the bridge number over the height functions that are Morse for this knot:
b(K) - h heig}gcl%}llnction bh(k) ’

We will use this last definition in preference to the previous one when defining a
bridge number for vector fields.

The bridge number is almost additive under the connected sum of knots. This
result was proven by Schubert and later by Schultens [Sch03] and it will be used in
Section 2.4:

Proposition 2.2. The quantity b — 1 is additive under the connected sum of knots:
if K1 and Ky are two knots,

b(KﬂjKQ) = b(K1) + b(KQ) —1.

Relation with the curvature. In the case of knots, the bridge number happens
to coincide with the crookedness of a curve, a notion which was introduced by Mil-
nor [Mil50] in the 50s.

Let K be a knot, k an embedding of S! into R” that is isotopic to K and
u € S" 1 C R™ a unit vector. We are considering k as a periodic parametrized curve
~(t). We denote p(k,w) the number of maxima of the function ¢ — u - y(t) during
one period, and we call crookedness of k the quantity pu(k) := min,egn—1{p(k,u)}.
Then the crookedness of K is defined by

wW(K) = min (k).

- k embedding isotopic to K

In his article Milnor relates the crookedness of a closed curve with its curvature.
Here we state his result in our particular setting : S* embedded in R*. The point is
that the crookedness of K is exactly the bridge number of K. The difference with
the definition that we chose before is that for the crookedness, one fixes a height
function and then isotopes the knot, while our first definition fixes the embedding
and then changes the height function. Now let k& be an oriented knot seen as the
support of a curve C of class C?, parametrized by arc length by v : S' — R* and
with total length I, and set k(k) = k(C) = [l|7"(s)|ds the total curvature of the
curve. Then the following holds:

Theorem 2.3 (Milnor, [Mil50]). The integral [ u(C,u)dS exists and

Vol(S?)

/82 w(Ciu)dS = — % k(C).

This allows Milnor to obtain an upper bound of the crookedness by the curvature,
and thus also an upper bound of the bridge number. In our case because u(C,u) >
p(k) we have from the precedent theorem:

Corollary 2.4. x(k) > 27b(k).

This will be useful in Section 2.3 to show an upper bound on the asymptotic
bridge number.
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2.2 Bridge number of vector fields

2.2.1 Definition and proof of Theorem A

We consider a smooth non-singular vector field X on S* = R*U{cc} and we suppose
that X preserves a probability measure . We denote ¢ the flow of X at the time
t. For h a height function and ¢t € [0,1], we note T (h~'(¢)) the (closed) set of
points where X is tangent to the level set h='(#).

The problem that we face now is to mimic counting the local extrema of a height
function on a closed curve when the curve is replaced with a vector field. The first
remark is that when considering a vector field X, the local extrema correspond to
the tangency points of X to the level sets of the height function. The second step is
to find a way to count these tangency points. To see this let us consider a knot k of
isotopy class K in R3. On k we define X, a unitary vector field tangent to k. Since
k is a knot, the flow gthk is T-periodic for some fixed T' > 0. It allows a measure to
be defined in the following way. For A a mesurable set and any p € k,

puk(A) = Leb{t € [0, T], ¢, (p) € A}.

Of course this measure does not see the tangency points of X; to the level S of a
Morse height function. But it can detect short arcs of orbit ¢[§;j] (p). In particular

if € is small enough, i,(¢ E](k’ NS)) = e- Card{k N S}, that is to say

1
Card{k N S} = lim “un(eNI (kN S)).
€ €

Now the general case is more complicated, because an arbitrary measure may not
detect a 1-dimensional subset in general, for instance if y is a volume. Thus in order
to detect the tangency points of X to the level sets using the measure pu we have to
consider the union of all the tangency points to all the level sets of h, push them by
the flow and then compute their measure. We have the following definition:

Definition 2.5. For a given height function h, we define the bridge number of the
vector field X preserving a probability measure p for h by

By = iy b (U ol (1 (17') )

20 €\ 5

Note that when p charges only one orbit of the flow, this formula counts morally
the number of local extrema of the height function A restricted to this orbit, divided
by two, and this is just the bridge number of the orbit. As we said in the introduction,
we can then define the bridge number of (X, u):

Definition 2.6. The bridge number of (X, u) is given by

B(X,p)=  inf Lim 1u< U o8 (1x (h‘l(t)») .

h height function 2 e—0 € O<t<1
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From this definition, we deduce that if for a given height function h, By (X, u) <
+00, then p(Tx) = 0, where Tx denotes the union of the tangency points of X to
the level sets of h. Indeed, if this is not the case, then pushing T’x by a small time €
just makes its measure bigger, and dividing by e makes 2u(T') go to infinity when
¢ tends to zero.

Another important remark about this definition is that given (X, u) as above,
it is not immediate that there exists a height function h so that Bp(X,pu) < oo.
Indeed, if By (X, ) = oo for a given height function h, it means that the y-measure
of the union of tangency points of X to the level sets of h is (strictly) positive. Let
us show that we can always find a height function so that the p-measure of the
tangency points of X to the level sets of this function is zero. We begin with the
following lemma.

Lemma 2.7. Let X be a vector field in S®. Let A C S® and suppose that there exists
a fited n > 0 so that any two intersections of A with the same orbit of the flow of X
are separated by a time greater than n. Then for all invariant measures p and all
e > 0 so that e <n, we have

(A) = (%1(A)) = f xe,

where f is a constant depending on A and p and which we call the geometric flux of

the flow through A.

Proof. Choose an invariant measure p and let  be a generic point for ¢ and recurrent
for the flow of X. It induces an ergodic measure defined by

1iz(B) = lim ;Leb ({t € [0, 7], ¢ (x) € BY})

T—o00

for B C S a measurable set. Then

1
pa(A) = lim —Leb ({t € [0,7), ¢(x) € AY)
1
= Jim e t{AN o (@)}

But by hypothesis the intersection points of A with the orbit of x are isolated along
the orbit and there exists a fixed small time n > 0 which separates two intersections.
Thus

MAm&%%w}<?,

so finally u,(A€) = e x f where f is a constant depending on A and z. Since by the
ergodic decomposition theorem ([Mn87], Section I1.6) any invariant measure y is a
linear combination of such ergodic measures p,, we are done.

]

Proposition 2.8. Let (X, uu) be as in Definition 2.5. Let h be a height function so
that By (X, 1) = oo. Then there exists a height function h so that Bj (X, p) < oo.
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Proof. Let us suppose that By (X, ) = oo for a given height function h, meaning
that the p-measure of the union of tangency points of X to the level sets of h is
strictly positive. Then at least one of these two options occurs:

1. The union of tangency points of X to the level sets of h contains an open set
U in the support of ; which has positive measure.

2. There exists t; €]0,1[ so that the level set h™!(ty) contains a piece of orbit
which is in the support of u and has positive measure.

By regularity of X and h, one cannot avoid the union of the tangency points of h
to be a set of dimension 2. However, for I a closed time interval and x € S*, we can
avoid having pieces of orbits ¢’ () as tangency points of a given level set, which is
the issue in the above two cases. We are going to construct a perturbation A of h
so that in the support of 4, the tangency points of i are discrete along any orbit.

Let us set T'x(h) := . U 1 Tx (h=1(t)) and we will omit the reference to h when it

<t<

is clear which height function we are referring to. So our aim is to change the level
sets of h in a neighbourhood U of the set of tangency points T'x (h), in order to get
a height function for which the pair (X, i) has finite bridge number.

Since U is closed in S3, thus compact, we can cover this set with a finite number
of flowboxes (]-"i)(1 <i<n)" We want to gradually change the level sets of h in a
neighbourhood of U, with perturbations located inside the F;. To do this we need
another family of flowboxes G; so that each G; is contained in F; and the family
(Gi)i<i<n is a covering of Y. This can be made because the family (F;)icicn is a
covering, so shrinking a little the generating disks of these flowboxes does not change
this property.

Consider the flowbox F;. There is a family of level sets of h that are problematic,
i.e. tangent to X along segments of orbits in F;. In this case we can perform a
Cl-perturbation of the level sets of h in G; so that the new tangency points of
X inside G; form 2-dimensional sets that are transverse to X. The idea of the
perturbation is to allow the level sets to make C! little waves instead of being flat
(and tangent). As there is a finite number of oscillations in Gy, one can find a small
time 7; which separates two tangency points in the same orbit. Figure 2.1 illustrates
this modification. Let us call h the perturbed function.

Note that since we only modify the level sets inside of G;, the obtained level
sets glue well with the other level sets outside F; since the level sets in F; \ G;
are unchanged. This also means that we do not add tangency points with this
perturbation, we can only remove some of them. Indeed after perturbation we
have u(Tx N Gy) = 0. We iterate this process on the n flowboxes F; to finally get
u(U) = 0. For each flowbox G; we have a small positive constant 7; and we have
a finite number of flowboxes, so with = min;—;__, 7; the set Tx(fz) satisfies the
hypothesis of Lemma 2.7.

Finally after a finite number of changes, we obtain a height function h so that
I ( U Tx (ﬁ‘%t))) =0 and the set U Tx (ﬁ_l(t)> satisfies the hypothesis of

0<t<1 0<t<1
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Fi Fi

Figure 2.1: Changing the level sets of h to obtain a 2-dimensional set of tangency
points.

Lemma 2.7, and thus

1. 1 0,4 7
Bi(X,p) = 3 lim —p <0<LtJ<1¢x (T (R 1@))))
1.
= _—lim —qa; x €
2 e—=00 ¢
ap,
2

< +00.

O

Proposition 2.8 and Lemma 2.7 and their proof call for a definition of a class
of height functions which could be usable to compute the bridge number of a given
vector field X:

Definition 2.9. Let X be a vector field on S*. We say that a height function h is
good for X if T (h) does not contain any orbit segment of strictly positive length.

Given any height function, we can change its level sets as explained in the Propo-
sition 2.8 so that it becomes an h that is good for X and B;(X, ) < Bu(X, p).
Moreover from the proof of Proposition 2.8, any good function h for X admits an
en, > 0 so that any two points of T’y (h) that belong to the same orbit are at distance
at least €,. Then for any € < €, we have that u(7%) = aj, X €, where ay, is sometimes
called the geometric flux through Ty, as we have seen in Section 1.3. It is a flux that
does not take the orientations into account and that counts everything positively.
This ay, exists because p is an invariant measure, so it can be desintegrated if one
thinks of the flow lines as a foliation, as it is explained in Lemma 2.7. In this case,
ay, is the bridge number of (X, ) with respect to the good height function h.
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Now we prove Theorem A that asserts that this definition is invariant under
measure-preserving C!-diffeomorphisms.

Proof of Theorem A Let X; and X5 be two vector fields that preserve respec-
tively the probability measures p; and ps, f a Cl-diffeomorphism of S* so that
p = ffue and fo ¢ = ¢k, o f for all ¢ € R. Suppose by contradiction that
0 <d=B(X1,u) — B(Xo, ). Let (Hy,)nen be a sequence of differentiable height
functions so that

dim By, (X, p2) = B(Xa, p2) -

For all n we define the height function h, = H, o f and we call Tx, (h,'(t)) the
points of the level set h,'(t) where X, is tangent. We have:

Tx, (b (8) = T, (f 7 0 H' (1) = Tpoy (71 0 H ' (1) = £ (T (H, (1)) -

So, since f conjugates the flows and p; = f*us:

iy o (U o (1, (120)) =t L (U o2 (57 (2 (50))))

=0 € 0<t<1 =0 € 0<t<1

i (17U o8 (1 (1220) )

0<t<1

—lim u2< U o%! (1x, (Hl(t>))>,

=0 0<t<1

thus By, (X1, 1) = By, (X, p2). Let now N € N be so that for all n > N,
B, (X, 2) — B(Xa, p2) < g For any n > N we have that

0<0=B(Xi,m)— B(Xs,p2) = B(Xy, 1) — By, (X1, 1) + Bp, (X2, p2) — B(X2, p12)

4]

< 0+

+ 5

since B(Xy,pu1) < By, (Xi,pp) for all n. This gives a contradiction,
S0 B(X2>H2) = B(Xlnul)‘

It remains to prove that the order of B is one. Let A € R% and h be a height

function and consider the vector field AX;. It has the same tangency points to any

level set of h as X1, and we also have ngE\O)g = ¢ ”\e] , so that we have:

Br(A X1, 1) = lhm Ml( U ¢AX1 (T/\X1( l(t)>)>

=0 € 0<t<1

=i (U o2 (1 (1m'0))

0<t<1

= )\Bh(Xle)-

Since this holds for all height functions &, the bridge number is an order one invari-
ant.
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2.2.2 Proof of Theorem B

In this section we prove Theorem B. The proof is by contradiction. Remember that
X is a smooth non-singular vector field on S? preserving a probability measure s,
and we have a sequence (X, fiy),,cy 50 that (X,),en tends to X in the C'-topology
and (p, )nen tends to p weakly-x.

Let us begin the proof with some general results. Fix a Riemannian metric g on
S3 so that || X || = 1 everywhere. To exploit weak-* convergence of (i, )nen to g, We
are going to use the theory of currents. The current associated to (X, p) is given for
every differential 1-form o on S? by

Cx(0) = / a(X)dp = [ a(¥)dv

where Y is the unitary vector field and v = || X||p ; observe that in our case

HX [
X =Y and p = v, but we can define by analogy Y,, and v, as well. The mass of a

current is then given by

M (Cln) = sup ([ a(X)du) =v(&).

If the vector fields X, tend to X in the C®—topology and (ji, )nen tends to u weakly-x,
the currents Cx, ,,) tend to C(x ,) in mass topology, so

M (Cx ) = Cixtpmn)) = Dn —nsoo 0.

Lemma 2.10. For any measurable set A C S?, |[v(A) — vn(A)| < 6, where 6, is a
positive decreasing sequence converging to zero, and independent from A.

Proof. Let a be the dual form to Y and «,, be the dual form to Y,, with respect to
the metric g. Then ||af =1, [|a,|| =1, a(Y) = a,(Y,) = 1 and since Y and Y, are
C-close,

0<aY,) = Y,) =a,(Y) <1

and there exists a positive sequence (€, ),en so that (Y, Y,,) > 1 —¢, tends to 1 when
n goes to infinity. Then

An =M (C(Xp, C(Xn Nn))

> ; (/A a(y)dy_/Aa(Yn)dynJr/ an(Y) /Aozn dz/n)
=5 () =) = [ a®av, + [ an(v)av)
>;<V( ) — vn(A /d”’”L/l_E"dV)
- ; ((2 = en)r(A) — 2u(A)) .
Finally
B )~ (),
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We can then write

V(A) = 1l 4) = v(4) = 5= (A) + (

2 €
< —A, -
2—€, +2—en

=: 0,

2

2—€,

_ 1) v (A)

Vn(S?)

and 9,, is independent from A and tends to 0 as n goes to infinity. Using the 1—forms
—a and —a,,, the same computation gives

thus

[]

We continue by considering the following sets, which we reintroduce for greater
clarity:

TXn = U TXn (h_l(t)) and TX = U TX (h_l(t)) s

0<t<1 0<t<1

and denote them by T'x(h) and T, (h) when we need to specify the height function.
Lemma 2.11. Let h be a good height function for X. Then lim pn(Tx,) = p(Tx).

Proof. Let 6,, be the positive angle between X and X,,. Then cos(6,) = (Y,Y,) >
1 — ¢, for the positive sequence (€,)nen converging to 0. By compactness of S3,
the continuous function which maps any point p € S to the angle 6,,(p) is strictly
bounded by a constant d,, which tends to 0 as n goes to infinity. Let us extract
this sequence (d, )ken so that it is strictly decreasing to 0. For ny < n < nj4q, set
d, = d,,. Let W, be the set of the points of each level set of h for which the tangent
space of the level set makes an angle strictly less than d,, with X. These W,, have
the following properties:

o« W, D W,y for any nand N W, = Tx;

neN

o u(W,) < u(S?), hence it is finite. Then

0=uTx)=p (ﬂ Wn) = lim pu(W,)

n—oo
neN

o Tx, C W, for all n € N.
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By the additivity of the measure u, we have:

0 < u(Tx,) — (Tx) < p(Tx, \ Tx) < p(Wo \ Tx) .
But

dim p(W;, \ Tx) Zu(ﬂ (Wn\Tx)) =u((ﬂ Wn) \Tx) =0.

Hence u(TY, ) tends to u(Tx) = v(Tx) when n tends to infinity. Thus, v(TY, ) tends
to v(Tx) as well.
By Lemma 2.10 we have for all n € N:

v(Tx,) — va(Tx,)

which implies for all € > 0, there exists N, € N so that for all n > N,:

< On s

v(Tx) =0, —e<v,(Tx,) <on+v(Tx) +e.

Thus when n tends to infinity, v, (T, ) tends to v(Tx) = pu(Tx).
Now we want to prove that yu, (T, ) converges to u(Tx). Let M, = max 1 X!

and m,, = min | X,.||7t. By the convergence of X,, to X, given ¢ > 0 there exists N/

so that for alln > N/, 1 —e < M, <1+4e€and 1 —e < m, < 1+ e Moreover, there
exists K so that [u(Tx)—v,(Tx, )| < eforalln > K. Hence for all n > max(N/, K.),
we can write

(1 = vn(Tx,) < muvn(Tx,) < pin(Tx,) < Mpvn(Tx,) < (1 +€)vn(Tx,)

from which we deduce

e(~p(Tx) = €) < —eva(Tx,) < pin(Tx,) — va(T,) < evn(Tx,) < e+ p(Tx))

Thus p, (T, ) — va(Tx,) tends to 0 when n goes to infinity, implying that p, (T, )
converges to u(Tx). O

We now push the sets with the flow of X (resp. X,,). For a small positive time
€ let us consider the sets:

T5=¢Y(Tx) and T =60 7(Ix,).

Recall that W, is the set of the points of each level set of h for which the tangent
space of the level set makes an angle strictly less than d,, with X. We have seen
that Tx,, € W,, C W, for all n, m € N so that m > n.

Fix a small ¢ > 0 that we might take smaller later in the proof. Set

Wy = ( U T)zm) U R (Wa).

m>=n

These sets have the following properties:
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o W5 DWr. y;
o Ty CWyand T C Wy for all n and m > n;

e N WS =T%. Let us prove the two inclusions:
neN

— Because of the properties of (W,,)nen, T% C qbo E]( W,) for all n and thus
T, C W for all n, so that T, € N W.

neN

— Let us show the converse inclusion. Let x € < N Wﬁ) \ T%. Then

neN

(n(ym.)) s

and x ¢ Tx. Then for all n € N, there exists y,, € T, so that the orbit

of X,, going through v,, goes through x and qﬁt)’gn(yn) =z with0 < ¢, <e.

By compactness of S, (i, )nen converges to a point 4 up to extraction of a

subsequence and there exists ¢ = lim #, € [0, €] so that ' () = y. Thus

x belongs to T and this contradicts the choice of x. So ﬂN Wy CTx.
ne

Let us suppose that N T% ¢ T%. If = belongs to € ﬂ T, \ Tk, there

neN
exist two sequences (p,)nen and (f,)nen so that p, € TXn, t, € [0,€] and
pn = ®% (). Since the T, are closed and decreasing for the inclusion, (p,)nen

converges to p € T'x up to extraction of a subsequence and (t,),en converges
tot € [0,¢]. In the end & € T and this is a contradiction. So (| T% C Tk

neN
and finally N W =T%.
neN

Now we can use these results to prove the theorem by contradiction. Suppose
that L > B(X,u). Then there exists h good for X such that a, < L. Fixn > 1
such that na, < L. There exist N(n) so that for all n > N(n), na,, < B(Xp,, tin)-
Fix € < €,/2. Then

n—oo
neN

0 < ape=p(Ty) =p (ﬂ Wé) lim p(Wy).

So there exists N(e) > 0 such that for all n > N(¢), we have u(W;) < nape and
thus u(T% ) < nape.
As in the proof of Lemma 2.11, given 6 > 0, there exists /N so that
11— M,| <§ and 1 —m,| <o
for all n > Nj. Then

V(T)E(n) - MnVn(T)E(n) < N(T)g(n) - MN(T)e(n) < V(T)6(n) - mnVn(T)E(n) .

The lower bound can be bounded from below by
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v(T,) — Muvn(T%,) = M, (V(T)E( ) — va(Tk, )
> My, + (1 M,y <T;(>
> —(6+1)0, — ov(TY,)
= —0(0n +v(T%,)) — On

Mn)V(TJG(n)

for every n > Nj. Since v(T%, ) = u(T%,) is bounded, by taking n big, the above
quantity is arbitrarily close to 0. Proceeding the same way, the upper bound is
bounded by

v(Tx,) = mavn(Tk,) = my (V(T)E(n) - Vn(T)G(n>) + (1 =mp)v(Tk,)
< (04 1)6, + ov(TY,)
=0(0n +v(TX,)) + 0n

which can be taken arbitrarily close to 0. So there is an N(e,n) so that for all
n>N(n,e),
pn(Tx ) < nane.

The aim of what comes next is to find a good height function A, for X,,, so that
B, (Xn, i) < nay. By definition, h has the following properties:

o The set Tx(h) does not contain any connected segment of orbit (for X) of
strictly positive length;

o If 2,y € Tx are such that there exists ¢t > 0 with ¢ (x) = y and ¢%(z) ¢ Tx
for all s €]0,¢[, then t > €.

Let 6 < ¢, and n large enough so that W, satisfies the following conditions:

o The set W, does not contain any connected segment of orbit (for X,,) of length
greater than §/2;

o If 2,y € Ty, are such that there exists ¢ > 0 with ¢ (z) = y and ¢% () ¢
Tx, for all s €]0,t[, then t > §/2.

This is possible because TXnk C Wy, and NyW,, = Tx which satisfies the above
properties. Indeed since h is good for X, Tx does not contain any orbit segment
of strictly positive length and two points of Tx on the same orbit are at a distance
bigger than €, > §. Moreover Tx does not contain any piece of orbit of strictly
positive length for X,,.

For each such n - given by the above conditions on W, let us choose a finite
covering of (S?, X,,) with flowboxes (F;)1<i<as whose lengths are at least 2§ and so
that any connected orbit segment of length § is contained in a flowbox.

Fact: For each such n, we can construct a height function h,, which is good for
X,, and so that €,, > 6/4. Moreover, T, (h,) C Tx, (h).

Proof: We want to use the above covering to obtain a height function h,, good
for X,, and so that T, (h,) C Tx,(h). To do this we need another family of
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> 20

Figure 2.2: Changing the level sets of h inside a flowbox G; to make it good for X,,.
There can be several “plateaux” in the same flowbox, the important point is that
there are all at least §/2 apart, which ensures that we have enough space to perform
a modification.

flowboxes (G;)1<i<pr so that each G; is contained in JF; and the family (G;)i<icnr
is a covering of T, . This can be made because the family (F;)1<;<a is a covering,
so shrinking a little the generating disks of these flowboxes does not change this
property. In each flowbox G;, the level sets of h have a certain number of “plateaux”,
that is to say points where a piece of orbit of strictly positive length is tangent,
and these“plateaux” are apart one from each other from at least 6/2 by choice of
W,,. Inside these flowboxes, we can change the “plateaux” into“bump”, with a
Cl-perturbation as pictured in Figure 2.2.

Since the “plateaux” are apart from at least §/2, by choosing the middle of the
“plateau” as top of the “bump”, we ensure that two tangency points on the same
orbit are apart from at least §/2, thus a fortiori €, > /4.

Let € < §/4 < €. Recall that there exists N(e,n) > 0 so that for all n > N (e, n)
we have p,,(T%, ) < nape. Let n > max(N(e,n), N(n)), then

e = (TS, (ha)) < ia(T5, () < mape.
Thus ap, < nap, and
B(Xo, pn) < ap, < nap < B(Xp, fin),

a contradiction. So L < B(X, p).

If L = 00, we can fix A > B(X, ) and find N > 0 so that for all n > N we have
B(X,, pn) > A. Then repeating the above proof with A instead of L gives again a
contradiction. So Theorem B holds.

2.3 Asymptotic bridge number

Let X be a smooth non-singular vector field on S* which preserves an ergodic volume
. Following the work of Arnol’d, the aim of this section is to prove that the
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asymptotic bridge number of a vector field is well defined (Theorem C) for this
setting and that it coincides with the bridge number of a vector field that we defined
in the previous section.

2.3.1 Asymptotic bridge number and curvature

Before proving Theorem C, we present an interesting relation between the asymp-
totic bridge number and the mean curvature of a knot. In order to use the relation
between bridge number and curvature that was established by Milnor, we need to
set a Riemannian metric g on S* induced by R*. We denote ¢% the flow of X at the
time T' € R.

System of short paths. As we have already seen with the asymptotic linking
number, an obvious difference between the bridge number of knots and the one we
want to define is that we are working with pieces of trajectories which are generally
not closed. So we need a system of short paths S that allows us to close the
trajectories, which has been defined by Thomas Vogel in [Vog03| and which we have
presented in Section 1.1.2. We recall some of its properties that we will need in this
section:

« For each pair of points p, ¢ € S3, there exists an unique short path from p to
q; each short path is piecewise differentiable.

o The short paths depend continuously on their extremities almost everywhere.

o For almost each point p and for all time T', the short path from p to ¢%(p)

does not intersect the piece of trajectory gb[)g’ﬂ (p), that is to say that we can
close pieces of orbits with short paths and obtain simple closed curves.

With this system and the results of Milnor (Corollary 2.4), we can prove an
upper bound on the asymptotic bridge number when it exists. We begin with a
construction.

Construction

e For x € S* and T € R, we follow the trajectory of 2 during the time 7" and
then close it with the right short path a in & given by Theorem 1.7. Then
we do a little trick : we take a C? perturbation & of o so that & has the same
properties as a and the curve k(z,T) := gb[)g’T}(x) U @ is of class C2. Such a
construction is possible for almost every x.

» We note b(z,T) the bridge number of the knot k(x,T).

 Following Milnor, we also define k(z,T) = k(k(x,T)) = T ] "(s) |
where v is the parametrized by arc length curve of support k(x, ) nd [(&)
is the length of &. We set:

1
k(x) = jlgrolo Tﬁ(x T).
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The above limit exists because the curve + is of class C? on S? which is compact.
Moreover the contribution of the perturbed geodesic to the curvature divided
by T tends to 0 when the length of the piece of trajectory goes to infinity, so

we have:
_l- 1 T 1! d 1- 1 T+l(d) /! d
k@) = Jim = [ 15/(s) [ds+ Jim = [ 15(s) | ds
= 1 l T ) d
= Jim = [ ]7"(s) | ds

and the limit x(z) can be interpreted as the average curvature of the positive
orbit of z.

Using Corollary 2.4, we know that for almost every z € S* and for all T > 0 we
have k(z,T) = 2mb(x,T), so

1 1
k(z) = lim TH(.Q?,T) > 2 Tlggo Tb(a:,T) D 2T boo ()

T—o0

when the limit exists for the right-hand side of the inequality. Now if we consider

a sequence (T},)en of times converging to infinity, the sequence (ﬁb(m, T))nen is
bounded between 0 and 2k (z) and converges up to extraction of a subsequence. So

the mean curvature bounds the asymptotic bridge number.

2.3.2 Proof of Theorem C

Recall that for this result X is ergodic with respect to the volume p. Fix a Rie-
mannian metric and let = be a generic point in S for u. We consider a small open
disk-like section D of radius R transverse to X around x and push it with the flow
of X on the time interval | — ¢, ¢[ for a fixed small ¢ > 0 so as to get a flowbox G.
We call (t,)nen a sequence of return times of the point x to D, associated to the
points (2, )nen = (9% (2))nen so that d(z, r,) tends monotonically to 0 when n goes
to infinity. Now fix n > 0. We want to close the arc of orbit between x and =z,
with a Cl-perturbation of X in a smaller flowbox F,, that we are going to define.
Consider a radius r, so that x,, is the first return of x in the transverse open disk
centered on x and of radius r,, and r,, < R. Now we push:

T = oM D ).

Let us abusively denote x,, the intersection point of the arc of orbit gb[)o(’t”}(:v) with
)_(t/ "(D(x,7,)). In this lowbox F,, we can close the arc of orbit gb[)%t"_t/ 100](1‘)
with a Cl-perturbation of X in F, - this is possible with the C!-closing lemma of
Pugh and Robinson [PR83]. We denote kx(x,t,) the obtained knot. For each return
time t,, we have a perturbed vector field X,, so that X,, = X outside F,, and X, is
Cl-close to X in F,.
As we have seen previously in the beginning of Section 2.2.1, we can associate
a Dirac linear measure to the knot kx(z,t,) as follows : for a point z € S?, ¢ > 0,
fo(A) :=Leb({s € [0,t], % (z) € A}). We consider the normalized measure ;.
Since X is ergodic for y, for p-almost all x € S* and for all (t,)nen 50 that (¢,)nen
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Figure 2.3: Possible position of the level sets of h,, in G and F,

tends to infinity, i [gt, converges to p weakly-+. Now we denote p,, the normalized
Dirac linear measure supported by the periodic orbit (for X,) kx(x,t,), which is
invariant by X,. As X, tends to X in the C'-topology and p, tends to u weakly-
%, by Theorem B the sequence B(X,, u,) admits a limit, that is less or equal to
B(X, ).

Take h,, so that By, (X, itn) = B(Xy, it). Such a height function exists since
the support of j, is a knot in S3.

Lemma 2.12. Let n € N. Let F,, be the flowbox where X # X,,. We can choose h,
so that

° M(TX(hn)) =0;
o Tx, (hy)NF,=10.

Proof. From the choice of h,,, we can already have that p,(Tx(h,)) = 0. Indeed,
since X = X, outside of F,, and h,, is a good height function for X,, in an open
tubular neighbourhood N of kx (z,t,), the level sets of h,, satisty that p,(Tx(h,)) =
0. Thus by Proposition 2.8 we can modify the level sets of h, in S* \ N so that the
tangency points to X are isolated along the orbits, which implies that p(Tx (h,)) = 0.
Note that since S* \ A/ is not in the support of y,, anything could have happened
with the tangency points there although h, is a good function for X,, = X. We
have then to look at what happens inside F,,. If X,, does not have tangency points
for h,, in F,,, we are done. If not, since the flowboxes are arbitrarily small and h,, is
chosen to minimize the bridge, one can suppose that the tangency points look like
in Figure 2.3.

Then we can pull away the problematic points by modifying the level sets in G,
so that the level sets of h,, are transverse both to X,, and X in F,,, as pictured in
Figure 2.4

This concludes the proof. O

Observe that p,(Tx, (h,)) = ( x (hy)), by the definition of u,, and for € > 0
small we have ju,(T%, (hn)) = ,un( % (hn)) too. Thus

p(Tx (hn)) = (T, (hn)) = (T (M) = pin (T (hn)) -



2.3. ASYMPTOTIC BRIDGE NUMBER 49

Figure 2.4: Modification of the level sets of h,, in G so that there are no tangency
points in F,

Since pu(T'x (hn)) = 0, (1% (hy)) = an - €, and also i, (T, (hn)) = by - €, for some a,,
and b, > 0. Observe that b, = By, (X,, pn) and a,, = By, (X, i), and by Theorem B
b, < a, for n big enough. Given a positive sequence (€x)ren converging to 0, there
exists a sequence (ny)ken converging to infinity so that

2

1—m,,
—_— € »

9 1—M,,
€ s ‘ M
ng

where §,, is given by Lemma 2.10 and we recall that M, = max | X0, I~ and

2
On,, < €4
Mo,

m,, = min || X, ||”!. At the same time,
S3
by, - € . 1 . b€
M, < Un (Txn(hn>) < min,un (Txn(hn>) = m.

where the last equality holds for € small enough. Then

I_Mnk €k €k
_Ei + M"k bnkek < :u (TX (hnk)) - :unk (TX% (h‘nk)) )

and

€ € 1-m
% (TXk (hnk)) — Hny, Tank (hnk) < Ei +

mn:k bnk €L -
Now we need to remember that for any n € N, b, = B(X,,, i) and by Theorem B
up to extraction of a subsequence,

Jim b, < B(X, ).

Thus b, € tends to zero when £ tends to infinity, and for k& sufficiently big we can
assume that

~2¢ < =@l +bua) < p(TEn) — s, (T8, (hn)) <0+ bu) <26
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Hence when k tends to infinity,

Y g (75 (1) = Jm g (T3, (1)
and

1
. = €k _ : — 1 —
tim Ztn, (T3, (hny)) = Jim b, = Jim B(Xo, i) = L.

k—o0

But p (T (hn,,)) < an, € - with an inequality because €; might not be small enough.
This implies that

a= lim a, < L.
k—o00

If a < L, there exists K big enough so that for all & > K, a, < L. Then by
definition of the bridge number of vector fields,

Bhnk(Xmu) <L< B(Xmu)

which is a contradiction. If not,

and we are done.

Corollary 2.13. Let X be a smooth non-singular vector field on S® preserving an
ergodic volume . Let x be a recurrent point generic for p. Then

k()
B(X, ,U) < ?

where k(x) is the limit defined in Section 2.3.1.

Proof. Let x be a recurrent point generic for p. Then from Section 2.3.1, we have:

K(z) = 27hoo (),

and since (X, u) is ergodic by Theorem C we know that b (z) = B(X, i), so the
result follows.
O]

2.4 Connection with other invariants

2.4.1 Independance of helicity

As we said in the introduction, it happens sometimes that a new invariant turns out
to be a function of the well-known helicity. The aim of this section is to show that
it is not the case for the bridge number of vector fields.

Here we restrict to vector fields X preserving a volume form € on S3. We recall
from Chapter 1 that the helicity of (X, ) is defined by
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Hel(X,Q) = /S

where « is any potential 1-form for i x§2, that is to say da = ix€). To prove Theorem
D we want to show an example of a vector field for which the bridge number of vector
fields is not a function of helicity. So we first compute the bridge number in the
case of Seifert flows, a class of flows that we presented in Section 1.3. We start by
giving an upper bound and then we show that this number is also the infimum.

We consider the standard height function on S3. The tangency points of the
flow to the surface level sets (spheres centered on 03) are exactly the points of the
“plane” P (actually a sphere) made of the two flat disks bounded by the particular
orbit t — (exp2irat,0). For z € P, the first return time (in P) is % and this
time multiplied by the area of P is equal to the volume of S?, that is to say 1. So
the bridge number of this flow is bounded by % x 28 = (. Now if we change the
stereographic projection of S?, the same argument shows that B(X.. 5, Qgaer) < .
Thus we can conclude:

a Adao,
3

B(Xa.8, QHaer) < min(a, 8) .

In order to prove the converse inequality, we approximate X, g in the C*°-topology
by a Qpaer-preserving sequence (X, /r, . /ra JneNs With pn, g, 7, three sequences of
integer numbers so that p,/r, and ¢, /r, are decimal expansions of o and 5. Then
by Theorem B, we have:

B(XQ7B7 QHGGT) 2 T}L)Irolo B(Xpn/r'rUQH/Tn ) QHQQT) .

We have to compute the right-hand side of this inequality. Fortunately since the
bridge number is an invariant of order 1, it is enough to prove that
B(X,.4: QHaar) = min(p, ¢) where p, ¢ are two coprime positive integers.

The proof is the same as the computation of the trunkenness of Seifert flows pre-
sented in Section 1.3. One can choose a sequence (K, ),en of collections of periodic
orbits so that its induced normalized invariant measures p,, tends to (pqq-. These
orbits are torus knots of type (p, q) so the bridge number of K, is nmin(p, q) since
the bridge number of torus knots is min (p, q) and we have n copies of them. The
period of each component of K, is 1, so that its total length is n and we have:

: .1 : :
B(Xp.g, Qttaar) 2 lim B(X,4, ftn) = lim — X nmin(p, ¢) = min(p, q).

n—oo n,

Finally we have
min(a, 8) 2 B(Xa,8, Qaar) 2 Im min(py/rn, ¢u/rn) = min(a, 8)
so that the bridge number of a Seifert flow of parameters («, §) is min(«, 3).

Proof of Theorem D. For a Seifert flow on S? with the standard Haar measure, we
have Hel(X, 8, Qraar) = af and B(Xa s, Qhaer) = min(e, 3). Since there is no
function f so that min(«, 5) = f(af), the helicity and the bridge number of vector
fields are independent in this case. But as we already said, the Seifert flows are not
ergodic with respect to Qg
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Let (a, ) so that «/f is irrational. Let x be a point on an invariant torus. The
measure i, associated with x is ergodic and supported precisely on this invariant
torus, and we have Hel(X, ) = o8 while B(X, ;) = min(c, ). This shows that
the bridge number is not a function of helicity in this particular ergodic case. [

But since the trunkenness is two times the bridge number in the case of torus
knots, we also need to check if the bridge number and the trunkenness are unrelated
in general, which we do in the next section.

2.4.2 Relation with the trunkenness of vector fields

As we have seen in the previous section and in Chapter 1, the bridge number of
knots is strongly related to the trunk, at least for meridionally small knots [Ozal0].
Thus one could ask: is the bridge number of vector fields independent from the
trunkenness of the vector fields?

We can answer that these two invariants are independent by showing a construction.
Let us consider two Seifert flows of parameters (3,2) on two copies of S* that we
consider as R* U {oc}.

Fix a projection of S* to R? so that in any invariant torus, the torus knots (the
orbits) make 3 turns meridionally and 2 turns longitudinally. Choose also a metric
g which induced distance will be denoted d. Then fix an invariant solid torus and
choose a small open disk D = D(zg,r) transverse to the flow that does not contain
the torus axis. The disk D can be made small enough so that any orbit in the
solid torus has at most one intersection with it. It is because any orbit crosses any
longitudinal section of the solid torus in two opposite points. Fix a positive € < r
and consider the set of points:

d(z,x d(z,z
Laor)= U et
z€D(xo,r)

which is some kind of open lens of radius r centered on zy. Choose this same
particular lens £(zg,r) in the two copies of S°.

Now perform the connected sum of the flows along these two lenses. We obtain a
flow that preserves the volume since the fluxes across each sections are identical. The
new flow X has two types of orbits:

« The ones that do not intersect D and that are 7'(3,2) torus knots;

 and the ones that intersect D and are a connected sum of two 7(3,2) torus
knots.

Now we need to specify the invariant measure that we consider for this new flow.
Let p € L(zg,7) and let us choose the measure supported by the periodic orbit of
p, which is thus ergodic with respect to X. Because of this choice, the values of
B(X, u) and Tk(X, ) are the ones of the knot invariants. Thus the bridge number
of the orbit of p is 3 because of the almost additivity of the bridge by Proposition 2.2.
In the same time, by Proposition 1.19, the trunk of a connected sum is the maxima
of their trunks [DZ17], thus the trunk of the orbit of p is 2. So the trunkenness and
the bridge number of vector fields are independent.



Chapter 3

The asymptotic genus

Given a knot k in S?, it is possible to construct a Seifert surface, i.e. an oriented
embedded surface whose boundary is k, and to compute its genus. We call genus of
k the minimal genus that we can obtain with this process. It is a knot invariant. If
we consider a vector field X on S3, the trajectories of the flow of X are generally
not closed curves in S*. Thus it would make sense to try to define an asymptotic
genus with Arnol’d’s method, just like the asymptotic linking number [AK21] or the
trunkenness [DR17]. In this chapter we explain two attempts to define an asymptotic
genus for right-handed vector fields, a class of vector fields that we have presented
in Chapter 1.

The first strategy is to consider a very long arc of orbit of a recurrent point z and
to artificially close it after a return time ¢, with a perturbation of the vector field
to obtain the knot k(z,t,). Then we show that the perturbed vector field remains
right-handed, and finally we compute the genus of this particular closed orbit to
obtain the following:

Theorem E. Let X be a smooth right-handed non singular vector field X preserving
a smooth ergodic volume ji on S®. Let x be a recurrent point for the flow of X and
generic for . Then

lim 1 (k(z,t,)) = ;HGZ(X, i) .

n— 00 tn2

Another idea to define an asymptotic genus, which uses completely different
methods, is to use an iterated construction that is presented in Section 3.2. We
choose a recurrent point and transform its arcs of orbits between two successive
returns to a flowbox into knots, using a short path to close them. These knots may
be linked, and we find a formula to bound the genus of this link. Then we present
a sketch of proof from which we could obtain that half of the helicity is an upper
bound for the genus of an orbit.

We start by explaining the first strategy in Section 3.1. The attempt of second
strategy is presented in Section 3.2.

23
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3.1 Proof of Theorem E

3.1.1 Outline of the proof

In this section we are going to show Theorem E. As it is technical, we start by
explaining the general idea of the proof together with some needed results. For the
detailed proof see Section 3.1.2.

We consider a smooth right-handed, non-singular vector field X preserving a
smooth ergodic volume p on S®. Choose z a recurrent point for the flow ¢% of X
generic for p in S* and S a disk transverse to the vector field containing z. Let xx
be the N-th return of the orbit of X to S, then zy = 3" (x). Set qb[)g’TM (x) to be
the orbit segment between z and zy. As we will explain below, we slightly modify
the vector field X in a flowbox around S in order to obtain a knot k(z, Ty). More
precisely we want to close the arc of orbit ¢[§’TN ) () with a C'-perturbation of X
preserving the volume p. To do this we need to find a “good” flowbox around =z.
Lemma 3.1, together with some technical assumptions, allows to choose a suitable
flowbox.

Lemma 3.1. Let X be a right-handed vector field in S®. Then there ewists two
constants T, > 0 and C, > 0 such that for any pair of recurrent points (p,q) of S,

1
link{k(p. 1), K(g.5)) > C;
for all times t, s > T,. We say that the vector field X is (T,., C,)-right-handed.

The first step is to use this lemma to construct a flowbox Fy around z so that
the return time of any recurrent point in Fy is at least 7,.. Secondly, we consider
xy the N-th return of z to Fy with N > 0 being fixed. Then using the C!-closing
lemma of Pugh and Robinson [PR83|, we can perturb locally X in Xy inside Fy in
order to close the arc of orbit ¢>[§’TN ](.:1:) while preserving the volume p. Note that
Xy = X outside Fy and that these two vector fields are C'-close in Fy. Even if
this perturbation is local for the vector fields, it is changing much more than the
prescribed orbit between zy and x since any orbit entering F might be affected
and re-branched on another (different) orbit.

After performing the perturbation we have to show that the perturbed vector
field Xy is still right-handed. To prove that the linking of two orbits stays positive,
we cut the integral of the linking form into pieces depending whether we integrate
or not on an orbit segment passing through Fy or close to Fy. Then we use the
technical bounds on the linking form presented in Chapter 1 to bound some terms
of the sum and estimate others, and finally we obtain a positive asymptotic. In
order to conclude, we then show that periodic orbits created by the perturbation
have positive self-linking.

As the linking of any two long enough pieces of orbit of Xy is positive this
implies that the piece of orbit ¢[§’TN ](x), the one which we artificially closed, is
linked positively to any other orbit. Then by a theorem of Ghys [Ghy09], this orbit
is a fibered knot and thus binds a Birkhoff section. But by a known result (see
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Theorem 4.1.10 in [Kaw96]), any Seifert surface Sy for this orbit and transverse

to the flow has minimal genus. Dehornoy and Rechtman computed the genus of

¢
such a surface in [DR22] using its self-linking number : one has g(Sy) = w

where (x,, is a vector field transverse to X . So using the fact that the asymptotic
self-linking number is equal to helicity (Arnol’d [Arn73]), we obtain Theorem E.

3.1.2 Proof of theorem E

In all this section, X is a smooth non-singular right-handed vector field preserving
a smooth ergodic volume p on S®. Fix x a recurrent point for the flow of X and
generic for .

3.1.3 Choice of a good neighbourhood

We start by proving Lemma 3.1.

Proof. Suppose it is false. Then there exist (7),),eny @ monotonically increasing
time sequence, diverging to +o00, and (C},),en a positive monotonically decreasing
sequence converging to 0, and a sequence ((pn,¢n)),cn Of pairs of recurrent points
and (S,)nen, (Rn)nen two sequences of return times so that S, > T,,, R, > T, and
such that we have for all n large enough:

link(k(pn, Sn), k(qn, Ry)) < Cy .
5 1 k(k(Pn; Sn) h(gn, Fin))

The limit of this quantity should be strictly positive according to Ghys’ Theorem
1.14 and we have a contradiction. In the case where (X, ) is ergodic, we give
another argument to prove Lemma 3.1. With the ergodic assumption, the above
quantity

1

Sp Ry,

tends to a constant when n tends to infinity, and if this constant is zero or negative,
it is a contradiction to the definition of right-handedness according to Hryniewicz-
Florio [FH23] which we presented in Chapter 1, see Section 1.2.2. Thus the limit is
strictly positive and this concludes the proof.

link(k(pn, Sn), k(qn, R))

]

As we want to change the vector field X in a small neighbourhood of a point x
without changing too much the linking number of the orbits of the flow, we will also
be needing Lemma 1.5 and Lemma 1.4 from Chapter 1 to bound the contribution to
the linking number of the perturbed parts of the orbits. Recall that on our setup in
S3, given a Riemannian metric g there is a construction of a Gauss linking form £
on S x S? given by Vogel [Vog03]. In this case Lemma 1.4 ensures that there exists
a constant C; depending on ¢ so that we have the punctual bound:

”Ep,quo < Cdist(p, Q)—Z'
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Choice of a flowbox around x. Here we explain how to choose the flowbox
in which we will perform a perturbation to close the orbit of x. Suppose that X
is right-handed of constants (7)., C,.), meaning that if we follow two orbits during
a time greater than 7, then their normalized linking number is at least C,. as in
Lemma 3.1.

Let g be a Riemannian metric of injectivity radius r;,;. As in Lemma 1.5 set
ro = 7Tinj/100, so that we have an isometric embedding i; of the Euclidian open
ball of radius ro/2 in R? into S* with i;(0gs) = z and so that the image of the disk
{(u,v,w) € R3u? +v? < (r9/2)%,w = 0} is a disk transverse to the flow of X,
which we denote i, (DTO /2(93)>. Similarly, the image of the ball of radius /2 will

be denoted 7, (Bm/g(x)). We also ask that the flow lines of X are just the image of

straight vertical lines in R? and that geodesics are parametrized by arc-length in the
image of the embedding. Since X is recurrent there exists an open neighbourhood
W cCuy (Dro/g(x)) of = so that the first return time to W is greater than a constant
To > T, + ro/2. We also have to ask Tj to be greater than the following constants,
up to shrinking W:

3G 1 3G \? C,
T, =04 +\l(r°+ >+64l

8 40, "2\ \4 ' 2C, C.
, 1 rg 2G C(g) 2G ( ZG)
=3 (2 T +\/8 c. "o \"te

where G is the geometric constant

G = :t (C’:%) +80,)

and C(g) is the constant from Lemma 1.5 and depends only on g. This restriction
will arise from the computations of Section 3.1.4. The idea is that Ty must be large
enough.

Suppose that we have T > max {TT +19/2, Ty, Tjr} We want to define a flow-
box around z to close very long pieces of orbit, and thus we need to avoid having
short periodic orbits, that is to say periodic orbits of period less than Ty, in a
neighbourhood of . Suppose by contradiction that there exist short periodic orbits
arbitrarily close to . Then in W, we can find a sequence (y,)nen converging to x
and so that the return time of any ,, is less or equal to Tj. By continuity of the flow,
this implies that x comes back to W in a time Ty + ¢, for € > 0 small, so because
of the definition of W, x comes back in W\ W. Let W be an open set around
x strictly contained in W and so that (W\ W) NW' = (). The same reasoning

applied to W' tells us that = comes back to W, which is strictly contained in W, in
a time Ty + €, with ¢ > 0 small, and this is a contradiction. So there exists a small
neighbourhood of x which does not contain short periodic orbits.

Now by regularity of the C°°-diffeomorphism ¢§°, there exist U a connected
open set around x in W so that any recurrent point has a first return time to U
greater than Ty. Consider a sequence (x,,)nen of returns of = to U so that d(z,, x) is
monotonically decreasing to zero when n goes to infinity. Fix N > 0. There exists
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Figure 3.1: Closing the orbit in the flowbox Fy

a connected open set Uy C U, containing x and x but not the precedent returns of
x. This is the set from which we will define Fy. Let us fix 0 < € < ro/4. We define
the flowbox Fy to be gb[);e’ol (Uy). In order to make this choice of neighbourhood
more understandable, let us list the properties of Fy:

o The point x belongs to the exit region of Fy;

e Any recurrent point in Fy will come back in a time greater than Ty > T,
and we will prove later that this ensures that it will link positively with long
enough orbits;

o In Fy the flow lines of X are just straight, parallel lines;

o Thanks to the inclusion Fy C 4 (Bro /Q(O)), the geodesics are just straight
lines, parametrized by arc-length, and Fy is small enough to use Lemma 1.5
for geodesics (or perturbations of geodesics) in it.

To simplify the notation we denote U; and U, the left and right transverse regions
of the boundary of the flowbox Fjy, and we suppose that the flow goes from left to
right.

We are ready to modify the orbit of z so as to close it. Abusing notation, consider
xy in U;. Then the Cl-closing Lemma for volume preserving vector fields of Pugh
and Robinson [PR83] states that we can construct a vector field X that is C!-close
to X inside Fy, so that Xy preserves the ergodic volume p and it has a prescribed
arc of orbit from zx to z in Fy. The vector field Xy coincides with X on the
boundary of Fy and hence we set Xy to be X outside Fy.

We are going to show that the perturbation is small enough to ensure that the
perturbed vector field Xy is right-handed.

3.1.4 The perturbation Xy is right-handed

As we said in Section 3.1.1, we want to cut the integral of the linking form in different
parts and bound them. In order to do this we use Lemma 1.5 and Lemma 1.4 from
Chapter 1. Lemma 1.4 is a punctual bound on the linking form which we will be
using when we integrate the linking form on arcs of orbits that are far one from the
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other. If the arcs of orbit are too close one from each other, then we use Lemma
1.5, which was already helpful to define the flowbox Fpy. Note that because of the
smoothness of the linking form outside the diagonal of S* x S?, Lemma 1.5 stays true
for Cl-perturbations of geodesics. This fact will be useful when considering short
arcs of orbits in i, (BTO /2(0)), and also for the short paths closing long arcs of orbits.

Consider a pair of recurrent points (p,q) of S* on distinct orbits, i.e. O(p) N
O(q) = 0. If none of the orbits of p and ¢ enters Fy, then their asymptotic linking
number is positive since Xy = X outside Fy and X is right-handed. Thus we have
to examine the two following cases:

1. The orbit of p enters Fy while the orbit of ¢ does not (up to changing p in ¢
and conversely);

2. Both of the orbits enter Fy.

In addition to these two cases, one has to consider that changing X in Xy may
have created new periodic orbits, that are necessary going through Fy. Actually
there is at least one, which is the new orbit of x. According to the definition of right-
handedness (see Chapter 1) one has to verify that these new orbits have positive
self-linking number. This will be made in a third case to complete the proof.

The proof of the second case contains somehow the proof of the first one, but
for the sake of comprehension we will detail both of them. We begin with the first
case.

Proof of the first case : O(q) N Fy = 0.

Since we are interested in very long pieces of orbits, we can suppose that p belongs
to the “exit region” U, of Fy. Indeed, otherwise the piece of orbit that is before the
first intersection of the orbit of p with Fy would have a bounded contribution to
the linking with the orbit of ¢, which would disappear as the times tend to infinity.
Since we would consider the linking for arbitrary big times, the bounded part can
be neglected.

Notations and setup. We modify the metric g so as to have an isometric em-
bedding i, of the Euclidean ball B, /»(0) around ¢, and more precisely so that
i2(Ogrs) = q. Note that we already have an embedding i; around the point z. It is
exaclty the same procedure as in Section 3.1.3 when the flowbox Fx was defined. To
sum up, there is one isometric embedding centered at x and containing Fu, which
means it also contains p and its arcs of orbits through Fy, and another isometric
embedding centered at ¢g. Thus in the neighbourhood of both p and ¢, the orbits are
images of straight lines (and geodesics), any other geodesic is the image of a straight
line, all geodesics are parametrized by arc-length and we are going to consider the
successive return times to U, for p and to iy(D,,,5(0)) for ¢. Let (Ry)ren and (Sk)ken
be two return time sequences for respectively p and ¢ to the exit region of Fy.

In this first case we decided that the orbit of ¢ would not enter the flowbox Fy,
but it is possible that it goes very close to it. As far as the orbit of p is concerned, it
can also go through i, (DTO /8(0)). In this case it is not possible to use the punctual
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Figure 3.2: The configuration of the different neighbourhoods around z

bound from Lemma 1.4 on the linking form, and we need to define some additional
neighbourhoods of p and ¢. Set:

V(p) =it (Bry2(0)) N ™" iy (Dry 1a(0)))
V(q) =iz (Bry2(0)) Nk ™22 (i (Dy, 1a(0))) -

These are two open flowboxes around p and ¢ respectively, and Fny C V(p). Note
that any piece of orbit that goes through V(p) or V(q) is a geodesic of length at

least % and at most rg, and thus since it is parametrized by arc-length it stays in
the neighbourhood during a time which is at least % and at most 7.

From now on the flow of Xy will be denoted by ¢n. Fix K > 0. Let ag
(respectively Bk ) be a geodesic from ¢ (p) to p (resp. qﬁif( (q) to q). It is a straight
line in the image of the embedding i, (Dr0/8(0)> (resp. iz (Dro/g(()))) because of the
isometry. Fix o a path C!-close to ay (resp. [ a path Cl'-close to B ) so that the
knots

ka(p, K) = o™ (p)Ua  and  ks(q, K) = o™ (q) U B

are respectively C!-close to:
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VO p Uax and  o™(g) U Bk
and so that these two knots k,(p, K) and ks(g, K') do not intersect.

Estimation of the linking integral. According to the definition of the asymp-
totic linking number, the linking number of the two knots k,(p, K) and kg(q, K)
divided by the time product Ry Sk must be close to their asymptotic linking num-
ber if K is chosen large enough. We are now going to split the integral of the linking
form into different pieces, then bound some of them and estimate the others. In our
first case, the linking number of k,(p, K) and kg(q, K) is equal to:

link (ko (p, K), ks(q, K

ka(p,K)xkg qK)

/d,ggRK ¢ o /Mc
+ / / c.
axglSKl( ¢l () 8

(@) (D)

We begin with the terms (B), (C) and (D). We are going to deduce the following
bounds:

/axﬁc < 16C, (3.1)
2 (Cly)
/ e 4 ro( 7 +8Cl> Sk (3.2)
2 (Clg) )
<= (=22 480 | R 3.3
’/quS*RK](p)xﬂ ro < V3 ) (3:3)

We start by explaining how to bound (B). Here the two paths « and 3 are C!-
perturbations of geodesics far away one from each other because p belongs to Fy
and ¢ belongs to iy (DTO /8(0)). So we can use the punctual bound on the linking
form from Lemma 1.4 to bound the integral, and:

,c’ (0)20,Dist (Frriz (Drs(@))

Since 9 (Dm/g(O)) does not intersect i; (BTO/Q(O)), the distance from Fy to
io (DTO /8(0)) is bounded from below by % and thus

axf

c’ 160, .

axf

The terms (C') and (D) are symmetric and they are bounded for the same reason.
Thus we will just explain how to bound (D). The path § lies in iy(D,,/5(0)) and

the arc of orbit qﬁE?,’RK} (p) lies somewhere in S, possibly intersecting V(q) a finite
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number of times m during certain periods of time ¢;, with >°7", ¢; < Rg. Consider
a hypothetical arc ¢ of QSE(\),’RK](p) in V(q). Because of the isometric embedding, ¢
is a geodesic, while 3 is C'-close to the short geodesic Sk lying in 45(D,,/5(0)) and
joining qb}gVK (q) to ¢. Thus by Lemma 1.5 the linking of the two short arcs is uniformly
bounded by the constant C'(g). Thus

5’ <m x C(g)

‘ /(¢58*RK] <p>rW(p>) %

and we know that mr0§ <Yt < Rg, so

2
4<Rx0 .
‘ /<¢58’RK] (p)ﬂV(p)) xf ® roV/3 (9)

Now consider the parts of QSE?,’RK] (p) that are not in V(gq). By the punctual bound of
Lemma 1.4 the linking of these pieces of orbit with 3 is bounded:

2
1 To Ui
4<C ) < (R =308,
‘/(¢[£'RK]<p)mV(p>c)xﬁ l<ro/8> 4 (K = )

because 3 is of length (thus time) at most ro/4 since ¢ and ¢5%(¢) both belong to
i2(Dy,/s(0)) and the distance between § and V(q) is at least 79/8. Rearranging the
factors and bounding Rx — 3.7, t; with Ry, we have:

16
4<QRK
To

‘ /<¢ES’RK](p)ﬂV(p)C) 3

Finally we conclude :

2 (Cly) )
E‘ < —|—= +8C)| Rk.
’/¢ES’RK](17)XB To ( V3 PR

The same argument yields the precedent bound (3) for (C'). Now we have to consider
the term (A) in the above equation. We are going to cut it in different parts,
depending whether the orbit of p passes inside or outside Fy, as follows:

K-1
/bES’RK](p)thosK] L= o /[R R+rz+1] ¢[o sK]( )E (3'4)
K
+ Z/ R, +r1+1 R2+1] ><¢58’SK](q) (35)

Here the r;;; are the times between ¢ (p) € U, and the next return to the flowbox,
which belongs to U;.What happens here - and it will be the same in the second
case - is that the first term in the right-hand side of the equation will be positive
because of the assumption that X is right-handed. At the same time, the second
term will have a finite contribution to the linking that can be made small enough
not to interfere with the positivity of the total integral.
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For the same reasons as the precedent term (C) - i.e. the punctual bound on the
linking form and Lemma 1.5 when necessary - we have the following bound for all
1< < K:

2
1 To 2
cl<c Oys C Sk (3.6
'/¢Ef”’"”1’R”“(p>x¢ES’S“(q) ‘ l<r0/8> G KT LB (9) > Sxc (3.6)

Thus we obtain the following bound on the sum:

2 (Cly)
c’g AV

To ( \/§ l K
Before explaining how, we need to bound from below the first term (3.4). Now we
use the fact that X is right-handed and that all the r; are larger than the time
constant 7). fixed in Lemma 3.1, by construction. Since for all 0 <7 < K — 1, we
have:

Ri+riy1,R; ,
e () PY el ()

1

_ L>C
r1+1SK / R;,R;+ Z+1](p)><¢g(\)],sk-](q) T

then

S L>C XT‘_HSK
‘/d)E\I]{VRZ+ Z+1](p)><¢58731(](q) r ¢

and finally since all terms are positive and 7,1 > R;y1 — R; — 7 because of the
choice of € < 1y/4:

7o
E /R R+7‘l+1] OSK] ﬁ 2 Cr X (RK - Kz)SK .
=0 (9)

Putting everything together we have:

To 2 (C(g)
> r - K— - — |\ — 7= K .
/(,5 ES’RK]@M%SK]@)L C,(Rk 1 )Sk " ( NG +8C, | KSk

Dividing by the product of times RSk,

1
RKSK /ORK]( )x 9K (g)

KTO 2 C(g) K
E}CT<1— )— Ao i
4RK 7”0(\/3 ! RK

Now if we consider the whole linking number, we have:

link (ko (p, K), ks(q, K)) > C, (1 - ﬁ;ﬁ) —i <C\§§) 8Cl> fzi

2 (C(g) 1 1 16C,
C2(CWg0) (Ly Ly 180
T'o ( V3 l) Rk Sk RSk

RKK
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From the choice of the return time Rg, we know that RK K To, SO — RL > —io and

a fortiori Rg > Ty - respectively S > Tp - implies —5— — > —7- - resp. _% > —Tio.

Finally we obtain:

‘ To 2 C(g) 3 16Cl
link (ko (p, K), ks(q, K)) = C, (1 4T0> m(\/g 8¢ T3

Cn

RKK

The right-hand side of the equation is positive if and only if

7”0 3G Cl
—16=~
2C, ) 6Cr 0,

Clg)

where we set G := % (% + 80;). The discriminant of this polynomial is positive:

(T 3GN G
A.<4+2Cr> e

Tz T[)(

thus for T bigger than

3G 1 3G C
T, =04 +J<Cf ) + 64—

8 40, "2 20, C.

the above constant Cly is positive. This condition holds because of our choice for T
in the beginning, see Section 3.1.3. Gathering things together we have:

A RSk

Link (ko (p, K), ks(q, K)) = Cn > 0,

and this concludes the proof of the first case.

Proof of the second case : O(q) N Fy #

We start with a similar setting as for the first case : now p and ¢ both belong to
U,, and we have the neighbourhood V = V(p) of Fy. As before we start with the
decomposition:

link (ko(p, K), ks(q, K

ko (p,K)xkg qK)

[0, RK ¢[0 SK] £+/a><,b’£

N

/¢
(A)
/a N /¢ES*RK](p)xﬁ £

(@ (D)

+

This time, the term (B’) is bounded by Lemma 1.5, and (C’) and (D’) are bounded
for the same reasons as (D) of first case. We have the following bounds:
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Lwc<0@

2 (Clg) )
L<—|—=+8C|S
/awﬂ%sff](q) ro ( V3 )
2 (C(g) )
£l <= (22 +80, | Re .
’/ES’RK](p)Xﬁ To ( V3 )T

We need to consider the term (A’). With the precedent notations for R; and r;
extended to the return times S; and s; for the orbit of ¢, the term (A’) decomposes
in four parts:

K-1K-1
/‘ﬁE?I,RK](p)X(z’ES’SK]( L= & = ¢)R JR; +7‘H_1 [S S +sJ+1]( )E (37)
K K-1
+§;0@MMM1WSHWU£ (3.8)
1= J=
K K-1
+ Z (3.9)

R;,R;+ S + .S
¢[ 7“z+1] )X Sj+41s ]+1]()

<.
I

—
<.
I

o

K
DI . L (3.10)

i=1/on ()xoyy? T )

+
Mw

@
I
—

The absolute value of Equation (3.10) is bounded by K?C/(g) thanks to Lemma 1.5,
since the short arcs of orbit in Fy are geodesics. The terms (3.8) and (3.9) are again
symmetric, and for (3.8) we have from our previous efforts (see Equation 3.6):

2
1 To 2
: St E‘éC’ — | —sjt1+ —=C(9)S)41-
‘/(ﬁgfﬁwﬂﬁiﬂl(p)x¢55]»sg+sg+1](q) l(T’Q/S) 4 J+1 TO\/g (g) J+1

Thus since Z]K:f)l sj+1 < Sk we obtain the following bound on the sum:

; Z /[R 71 Rig1] 5.5, +S7+1](q)[" < — <\/§ +8Cl> K Sk,

— (P)xop’ 7 To

and the symmetric one for (3.9):

53 . £’< YY) 480y ) KRy
- /[R R; +Tz+1] X¢£5J+sj+1,53+1](q) ( \/g l> K

7j=1 i= To

As far as (3.7) is concerned, we have since that X is (7,., C,)-right-handed and thus
(To, C,)-right-handed:

L>ri118. %X C,
[R;,R;+7;11] [S5,Sj+sj41] =z Ti+155+1 P
/¢N T (p)x fopeed RN

SO
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K-1K-1

To To
2:: ]z% /(bg\}?i+ri+lvRi+l ( )x ¢[SJ SJ+9]+1](q) L=C (RK - K4> <SK - K4> :

Now just like in the first case, we use the bounds that we have found to bound from
below the term (A'):

()2 €, (R~ K72) (81— K72 - C;K(RK 4 Sk) = K2 x C(g)

where we set G to be the constant, already presented in Section 3.1.3:

G::i(c}g)wq) .

So the whole linking number is bounded by:

link (ka(p, K, ka0, K) > €y (Ric = K72 ) (S = K72
G
~ SRR + 52— KCg
G

- 5(3K+5K) —C(g)-

Dividing by the time product Rx Sk and then using the fact —% > —Tio and

K _ 1
P > o we have

. K’f‘o KTO>
link (ko (p, K), ks(q, : .
i, ik (Fa(p, K, ks(g, K) = € ( 4RK)< 15,

G<K+1+K+1) K2+1C()
2 RK SK RKSK g
2
S (1_7"0) _E_%”(Qg)
AT, To ¢

The asymptotic linking number of p and ¢ will be positive if

To 2 2G 20(9)
CT<1 4T0> T, (@R

that is to say

70\ 2 G 20(g)
<T0—4) — 2y = S5 >0,

We find the polynomial in Tj:

>0

To 2G> n (7"0)2 ~ 2C(g)

Ty T0(2+C’r 1 C.
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whose discriminant is positive:
(7m0 2G 2 ro\? 2C(9)
A_<2+Or> 4((4) C,

. Clg) | 2G 2G
=38 Cr +Cr <7’0—|-CT).

This is why for Tj greater than

, 1 (re  2G C(g) 2G 2G
T+_2(2+cr+\/8 ¢, TG (TO+CT> |

the linking number will be positive. Gathering everything we finally have:

lim

link (ko (p, K), kg(q, K)) = Cy > 0,

and the orbits of p and ¢ have a positive asymptotic linking number in the second
case.

Proof of the third case

Suppose that changing X into Xy added new periodic orbits for the flow of X.
Actually there is at least the orbit of x to consider, the one that we closed with the
perturbation. There might be others, and the following proof applies to any of these
newly created periodic orbits.

Lemma 3.2. Let v be a periodic orbit for the flow ¢n of Xy and passing through
Fn. Then v has a (strictly) positive self-linking number.

Proof. We are going to use a geometric interpretation of Hryniewicz’s formula [FH23]
(see Chapter 1) for the self-linking number. First we recall the definition of the self-
linking number in our specific setting. Consider a tubular neighbourhood N of v
with complex coordinate z = (r,6) in the transverse disks and the time t as third
coordinate (the longitude), so that ¢' (7(0)) = (¢,0) in these coordinates. Set p to
be an intersection of v with U, and (R;);=1, x the successive return times of the
orbit of p to U,., with R = T being the period of «. Note that the orbit of p may
cross the flowbox Fy several times before closing, although this does not happen for
the specific orbit of x that we have closed with the perturbation Xy. Recall that
for a choice 6y € R, we have the continuous function given by

D¢ (0,0) - (0,¢) € R(1,0) 4 Ry (0, ¥ )

and Oy (0) = 6p. If X € H; (N \ 7, R) is a one-form of the form A = pdz + gdt, which
also represents a Seifert surface S for ~, the self-linking number of v is given by the
formula

p(y) = 2T7T <p+q lim QNt(t)> :

t—o0
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where we set T' to be the period of v. Now let § be a Seifert surface for v, and
choose a trivialization of the tubular neighbourhood N which has S as the zero
section. Then A\ = df is a cohomology class dual to §. We have to consider the two
following quantities:

On(t)

o the transverse rotation number of v, p*(y) = % tli)m =52
oo

o the number n?(p) of oriented intersections of the arc of orbit O (z, ¢4 (p)) with

S, that is to say the number of times that this arc of orbit crosses the zero
section.

In the same time, consider a sequence of points (p,)nen C U, converging to p. We
call S,, the K-th return time of the point p, to Fy. From the study of case 2, we
have since T' > T, and S,, > Tj:

1
TS,

and according to the definition of the linking number for knots, this linking number
is exactly ng (pn), thus

link (63" (p), o ™ (pa)) > Ciy

n‘;n (pn) > CNTS,, .

In the other hand, dx(S,) > 2m(ng (p,) — 1) since the arc of orbit O (z, ¢l (p))
crosses the zero section at least n‘gn (pn) times and between two consecutive inter-
sections the function #y has to increase by 27 since intersections are oriented. For
this reason we have

On(T) = 27 lim 0 (p,) —1 > 27 lim 75,0y —1 > 27T%Cly — 1.

The same argument starting with multiples KT of the period shows that

On(KT) > 27 (kT)*>C) — 1. By iteration of this process, we finally obtain a monoton-

T On(KT) is

ically increasing sequence (kT')zen- of time values for which the quantity 5=
greater than kT%C), — 1. As a consequence the limit is positive and Sik(~y) > 0.
O

So this concludes the third case and the p-preserving Cl-perturbation Xy of X
is still right-handed.

3.1.5 Genus of the prescribed orbit

Since Xy is right-handed, a Ghys’ Theorem 1.10 from [Ghy09] states that k(x, T)
bounds a surface Sy which is a Birkhoff section for Xy. But by Theorem 4.1.10
in [Kaw96], any Seifert surface Sy for this orbit and transverse to the flow has
minimal genus, so Sy has minimal genus. In our case, Dehornoy and Rechtman
[DR22] proved that

1+ SIkS* (k(z, Ty))

Q(SN) = 5
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Figure 3.3: The linking number is symmetric: on the left, ky intersects positively
a Seifert surface for k;. Looking at this crossing from the back of the picture, ky
intersects positively a Seifert surface for ks.

0

Using the fact that A}im w = Hel(X, p1) where (x is a vector field every-
—00
where transverse to X along the closed orbit k(x,Tx) [Arn73] we can conclude:
1+ SUkS(k(z, Ty)) 1

: 1 :
Jim Tngg(k(fc,TN)) = Jim 2T = Hel(X, ).

3.2 Genus of a two components link

3.2.1 Notation and definitions

Let k; and ks be two oriented knots in S® that are disjoint and may be linked one
with another. For ¢ = 1,2, we denote by g(k;) the genus and by x(k;) the Euler
characteristic of a co-oriented Seifert surface for k; that minimizes the genus.

Let k1 U ko be the link formed by the two knots. We need to define a notion
of crossing number which suits the cases we are interested in. First we have to
say that since the finality of this work is to deal with flows of vector fields, we will
not be interested in isotopies of a link. Thus we have chosen a definition of the
crossing number which is coherent with the asymptotic crossing number as defined
by Freedman and He in [FH91]. We call crossing number of this link the least
number (over all projections) of crossings between k; and ks, divided by two.

In this section we assume that all crossings (between k; and ko) are positive,
meaning that in each double point in a projection, the upper oriented strand has
to rotate anticlockwise to align with the lower oriented strand. Alternatively, there
exists 57 a co-oriented Seifert surface for k; that minimizes the genus such that
all the intersection points between S; and ks are positive. Under this assumption
link(kq, ko) = |link(kq, k2)| = cross(kq, k2). Note that this is a symmetric condition.
Indeed, consider a positive crossing, for example an above strand from k; crossing
horizontally to the right and an under strand from k5 crossing vertically in the upper
direction. Then if we look from the back of the picture (see Figure 3.3), where the
vertical strand from ks, is above the other, and consider a Seifert surface Sy for ko,
it will be co-oriented by the boundary and thus k; will intersect S, positively. Since
this happens for each positive crossing, we have link(ky, k2) = link(ko, k1) with our
previous definition.
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sleishs

Figure 3.4: Four positions of knots that can happen; positions 1 and 3 are mirror
images, as well as 2 and 4.

Proposition 3.3. Let ki and ko form a link with positive crossings and n =
link(ky, k2). Then modulo isotopy, there is a position of the link ki U ky such that
there exist disjoint embedded 2-spheres F', Iy, Fy, ..., F, such that

o FNky =0 and the intersection of F N ky is transverse.

o Ifn >0, FNky has exactly n = link(ky, k2) pairs of points, that is 2n points.
Ifn=0, FNky=0 and F separates ky and ks, that is to say that ki and ks
belong to distinct components of S*\ F.

We define the interior of F as the component of S* \ F that contains k;.
Define also the interior of F; as the component of S*\ F; that is contained in
the interior of F.

o Fori=1,2,...,n the intersection of F; with the two knots is transverse and
F; is contained in the interior of I'. Moreover, F; N k; has exactly 2 points,
for 7 = 1,2 and in the interior of F; the knots are in positions presented in
Figure 3.4.

Proof. Choose a projection where the link has the least crossing number. We can
imagine that the two components k; and k5 of the link are lying on a plane or on
a table. Now lift k; in a plane above ky while ko stays on the table. In this new
position we have a number n = link(k, ko) of pairs of linking strands in the space
between the two knots. We choose a disc between the two planes where (most of)
k1 and ko are located, and close it above k; to get a 2-sphere F. Then F' satisfies
that &y N F = (0, and that k; N F = n. In particular, if k; and ko are unlinked, by
definition we can find F so that k; and ks, are in distinct components of S? \ F'.

In this new position, we can put little spheres F; around each crossing. These
crossings are isolated enough so that the F; do not intersect each other and do not
intersect F', and because of the positive condition for the crossings, only the above
configurations can occur in the spheres F;. O]

3.2.2 The Fried surface for £y U ko.

In this section, we describe the construction of a Seifert surface Sg for the link k1 Uks
from two genus minimizing Seifert surfaces S; and Sy for k£ and ks respectively. We
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Figure 3.5: Lifting k; while k5 stays on the lower plane.

-

Figure 3.6: Transforming case 2 into case 1 with two Reidemeister moves.

will show that Sg is oriented, and thus its genus is an upper bound for the genus
of the link. In particular, if link(k;, ko) = 0 then Sr is just the disjoint union of S
and Sy and hence the genus is just the sum, and x(Sr) = x(S1) + x(S2).
First let us consider the link & U k5 in the position described in Proposition 3.3.
In each of the spheres F;, we have one of the four diagrams described in Figure 3.4.
We keep the cases 1 and 3 and we slightly modify the cases 2 and 4, according
to the following moves, as illustrated in Figure 3.6:

e From case 2, first make a loop with the upper part of ks, i.e. a Reidemeister
move of type 1;

e Then move the bottom strands to the opposite side : the left one goes to the
right and conversely - it is a Reidemeister move of type 3.

Note that this adds a crossing to ko in the exterior of F; for each ball where a
modification occurs, but this will not be a problem. In the same manner, case 4
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Figure 3.7: Intersections of the surfaces S; and S in the cases 1 and 2 of Figure 3.4

turns into case 3. Now let us consider two genus minimizing Seifert surfaces S; and
Sy for ki and ky (separately). In the balls F;, we can choose these surfaces so that
they look as in Figure 3.7. Here is a way to do this. Consider the knots in the
same configuration as in the proof of Proposition 3.3, with k5 lying on a plane and
kq lifted above. Now we unlink temporarily k; and ko, keeping track of the small
parts of strands (¢; )icf1,..n} and (¢?)ieq1,..n} that where inside the F;. Then consider
two Seifert surfaces S; and Sy for ky and k. Since k; and ky are now unlinked, we
can suppose that F' separates S7 and Sy up to slightly moving the Seifert surfaces.
Now pull and extend the pieces of strands (¢} )ieq1,..ny and (¢7)ie1, .n}, avoiding any
self-intersection of S; and Ss, in order to link k; and ks again as they were in the
beginning. After these movements, FNS; = () and F'N .S, consists of n segments. In
particular if B; denotes the closure of the connected component of S*\ F; containing
the i-th linking between k; and ks, there is an unique intersection segment (marked
in red) in each ball B;.

We are going to remove the self-intersections of this surface using an idea of
Fried [Fri83]. To do this, let us denote S% = (57 U Sz) N B; and consider a vector
field R on B; positively transverse to the interior of S% and tangent to the boundary
dS%., that we note abusively k; U ky. On each boundary k;, S% extends to the unit
normal bundle ¥, into a collection of immersed curves transverse to the extension
of R and in general position. Now we blow up B; along 9S5% to get the compact
manifold Bss bounded by two cylinders. By the precedent remark, S% extends
to an immersed compact surface that we still denote S% on Bsg. Moreover this
extension is transverse to the extension of R along dBgs and every self-intersection
is transverse, even in 0Bygs.

By choice of R, S% has a transversal given by R and thus we can resolve its
self-intersections consistently to get an embedded surface 5’}; positively transverse
to R in Bpyg, as pictured in Figure 3.8. Each boundary piece of torus of Bsg has
well-defined meridians which corresponds to the unit bundle of points in 9S%. Thus
we can isotope the resolved boundary in 0Bgg with an isotopy transverse to R, so
that it becomes transverse to the foliation by meridians as pictured in Figure 3.9.
This isotopy can be extended to an isotopy of S% transverse to R and supported
in a small neighbourhood of 0Byg. After blow-down, the isotoped surface yields an
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Figure 3.8: Desingularization of the intersection after Fried

!
/
L

Figure 3.9: Resolution of the double points of 9S% transversally to R.

=
L

immersed surface S& in B;. This surface has no self-intersection and has (k; Uky) N B;
as a boundary inside B;.

This operation acts as if we added two half-twisted strips between S; and Ss in
each sphere F;. To see this, look at the picture of the desingularized disks in Figure
3.8, and make half a turn with the lower disk.

Now we can perform this process in each of the cases 1 and 3 as they appear
in the spheres F;. The orientations are locally consistent and, since S; and S5 are
oriented surfaces, we obtain a globally oriented surface that we call the Fried surface,
denoted by Sg. This surface is a Seifert surface for the link ky U ks. As we have
seen while explaining the Fried desingularization, S is obtained by adding locally
two twisted strips per crossing between S; and 5.

Proposition 3.4. The FEuler characteristic of Sg is given by the following formula

X(SF) = X(Sl> -+ X(SQ) — QZlnk(lﬁ, ]{32)

Proof. This follows from the precedent construction, since the number of crossing is
equal to the number of linking by hypothesis. m

Corollary 3.5. If link(k1, k2) > 1, then g(Sr) = g(k1) + g(ka) + link(kq, ko) — 1. If
link(ky, ko) = 0 then g(Sr) = g(k1) + g(k2).
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Proof. 1f link(ky, ko) = 0, the Fried surface Sr has two connected components which
are Seifert surfaces for k; and ko, so the result follows.

If link(kq, ko) = 1, the linking implies that Sk is connected. Since the Euler charac-
teristic of an oriented surface equals two minus twice the genus minus the number
of boundary components we have that

2—29(Sp) —2=2—2g(k)) — 1+ 2 — 2g(ks) — 1 — 2link(ky, ko),

and the result follows immediately. ]

3.2.3 How good is this formula for g(k; U k2)?

The idea is to study how good the formulas in Proposition 3.4 and Corollary 3.5 are
for the Euler characteristic of a genus minimizing Seifert surface S for ky U ky. We
show that it is accurate if link(ky, ko) < 1, but not for link(ky, ko) > 2.

Case link(ky, ky) = 0.

Since the two knots are unlinked, by the assumption of positiveness of the cross-
ings we can apply Proposition 3.3. We consider hence the 2-sphere F' and the surface
S. We can now assume that F' and S are in general position with respect to each
other, thus the intersection between them defines a finite collection of circles C on
F that are two by two disjoint, because of the assumption link(ky, k2) = 0.

If S is the disjoint union of two surfaces S} and S5 with boundary k; and ko
respectively, we obtain that

9(51) + g(52) < g(S7) + 9(Sy) = g(S) < g(Sr) = g(S1) + g(S2),

implying that S} and S} are also genus minimizing for k; and ky respectively.

If S is connected, then the cardinality of C is (strictly) positive. Let Cy € C
be such that one of the components of '\ Cy is empty, meaning that it does not
contain any other circle of C. We now cut S along C, and paste two disks along
the two boundaries that are created. Let S. be the obtained surface, that might be
disconnected. Observe that 05, = ki U k.

Lemma 3.6. ¢(S,) = g(9).

Proof. If Cj is an essential curve for S, then cutting along C induces a lost of genus
because the first homology group of S is getting smaller. Then S would not be a
genus minimizing surface for k; U ky. Thus Cj is not an essential curve and the cut
and paste operation does not change the genus of the surface. O

In particular, after performing this operation, S, is disconnected and we have
two possibilities:

1. One component (or a union of components) has the link k; U ko as boundary
and the only other component is a 2-sphere. Then we throw away the 2-sphere
and we denote abusively S, the lasting component.
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2. S was the connected sum of two surfaces S} and S? with respective boundaries
k1 and ko, which we separated with the cut and paste operation. We keep the
notation S, = S! U S2.

Observe that in both cases, F' is in general position with respect to S, and the
intersection of these two surfaces is along a finite collection of circles that has one
less circle than C. We call this operation erasing an empty circle.

We can hence repeat the above procedure to obtain a new surface Ss. that
intersects F' along a collection of circles with one less circle. We continue the process
until finding a surface S’ such that S'NF =), 95" = k; Uk, and ¢(S’) = ¢(S). This
implies that S" = S| U S, where S| has ky (respectively ks) as a boundary.Then

9(51) + g(S2) < g(S1) + 9(53) = 9(S) < g(Sr) = g(S1) + 9(52).
This implies that the formulas are the best possible for this case.

Case link(kq, ko) = 1.

Proposition 3.3 implies that we have two spheres F' and F} such that F' contains
k1 and intersects k5 in two points, and Fj is a small ball around the crossing located
in the same connected component of S* \ F as k. As before, let S be a genus
minimizing surface for the link k; U k. We place F' so that it is in general position
with respect to S. In this case S N F' consists of a finite collection of two by two
disjoint circles C and a segment S whose endpoints are the two points in F'Nky. For
the intersection F; N.S we have two possibilities to consider:

1. Up to erasing irrelevant intersections that we could erase, F; NS consists of
two segments (s;);—1 2, and each s; links the two intersections of Fy with k;;

2. F1 N S consists of two segments s1o and sg;, with s15 linking the endpoint
(according to the orientation) of the strand of k; with the start-point of the
strand of ko and conversely for s9;. This is necessary because the surface S is
oriented, and so is Sp,, the part of S which is inside F3.

In both cases, we orient the intersection segments of S with F; to make them
coherent with the orientations of the strands of k; and ky inside Fj. In case 1, we
have a link made of two unknotted components, positively linked. The genus of this
link is zero and so g(Sr, ) = 0 because otherwise S would not be a genus minimizing
surface. Thus Sp, is an annulus as described in Figure 3.10.

In case two, the link that appears in F} after orienting the intersection segments
of S with F} is the unknot, since its trunk number is 2 when we consider a height
function whose level sets are vertical planes. Thus by the same argument as above
9(Sr,) = 0 and this time S, is a disk as described in Figure 3.10.

Now that we know how S looks like in F7, we modify S to show that the formula
is optimal. We start with case one. Observe that § is disjoint from every circle in
C. So for each circle in C, § is in one of the components of its complement. We can
thus erase one by one the circles in C as before and obtain a surface S’ such that
its boundary is k; U ko, its intersection with F' is the segment and g(S’) = g(.5).
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Figure 3.10: Two possible configurations in £}
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Figure 3.11: Unlinking the two possible configurations in F}
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Figure 3.12: n linking number in a row

Because we throw away the obtained 2-sphere when we erase the empty circles, S’
is connected.

Now cut the two half-twisted bands of the annulus inside F; to obtain two disks,
as pictured in Figure 3.11. This disconnects S’ and we obtain S} a Seifert surface
for ko and S another surface which stays in F'. Since S’ is the connected sum of
these two surfaces, we have

9(S) = g(5") = g(51) + 9(S3) = g(k2) + g(k1) -
In another hand if we consider the Fried Surface for k; U ko, we know by Corollary
3.5 that

g(k1) + g(ka) = g(Sr) = 9(9),

thus S is minimizing and the formula is optimal in this case.

Now we deal with the second case. First, as before erase one by one the circles
in C to obtain a surface S’ as in the first case. Then cut the twisted band in F; and
replace it with a straight band, as pictured in Figure 3.11. This operation preserves
the genus and g(S”) = ¢(S). Note that after this operation, the knots k; and ko
are not linked anymore and S” is a Seifert surface for k; U ko. Then we can use the
process described in the case link(ky, ko) = 0 to get two Seifert surfaces S; and S
for ki and ks so that ¢g(S”) = g(S1) + ¢g(S2). Since S was genus minimizing for the
link &y U ko, we have

9(Sr) = g(k1) + g(k2) = g(S) = g(5") = g(S1) + g(S2) = g(k1) + g(k2)

thus Sp is minimizing for k; U ke when link(ky, ko) = 1.

What happens from link(ki, ky) > 2?7 In this case, the main obstruction to
prevent the accuracy of our formula is that several linkings can happen in a row, as
illustrated in Figure 3.12.

Suppose that a minimal surface S looks like in Figure 3.12 in the neighbourhood
of the linkings, and that there is no other linking. Then we could replace the n-
twisted band with a straight one to unlink k; and ko, getting a new surface S’ with
the same genus as S. Then S’ is also minimizing for k; Ll ks, and from the study of
the case Link(kq, ko) = 0 above,

9(8") = g(k1) + g(k2) < g(Sp) = g(k1) + g(k2) +n — 1
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Figure 3.13: Closing pieces of orbits in a flowbox.

so the Fried surface is highly non-optimal for this class of examples. As far as we
know, there is no way to distinguish between two linkings that happen in a row and
two linkings appart one from another.

3.2.4 A bound on the asymptotic genus of an orbit

In the previous section we obtained a bound on the genus of a two component link
with positive crossings depending on the genera of the two knots. We want to use
this bound to estimate the genus of a very long pieces of orbit for the flow ¢’ of a
right-handed vector field X preserving an ergodic volume pu.

Setting. Consider a recurrent point x, D a small disk-like section around z and
call (T},)nen the sequence of the successive return times of z in D with Ty := 0, and
set t, = T, — T,—1 for any n € N\ {0}. According to Lemma 3.1 we can shrink
D so that ¢, > T, for all n € N. Set ¢ < 1 and let F' be the flowbox gb[)ze’o](D).

For each return time 7,, > 0, we close the piece of orbit ng[T” bl 6}( ) in F' with
a short geodesic path in the set S given by Theorem 1.7, so that we get a knot
k(¢ (), t,). In the same idea, k(z,T,) is the knot obtained by closing the piece
of orbit ¢l®Tn=(z) with a short c- path in F. We denote link(7}_1,¢;) the linking
number of the knots k(z, Tj_1) and k(¢ " (2),t;).

For N € N, we want to split the knot k(z, Ty) constructed as above into a kind
of sum of the knots k ((b)T(’“ (x), tk+1), with the sum being made in the flowbox. To

explain this consider the knots k(z,t;) and k(¢%,t,) obtained by following respec-
tively the arc of orbits ¢'v" () and ¢ (4% (2)) and closing them with the
appropriate short paths from the set S given by Theorem 1.7. From these two knots
we can construct k(z, Tz) by replacing the two closing arc (in dotted lines in Figure

3.13) by the orbit segment @' [Th=e. Tl]( ) (in dotted red) and the segment in S joining
27¢(z) to o (in red). Figure 3.13 illustrates this operation. We can then iterate
this process to decompose the knots k(x,T},) into a sum by the flow of the knots

k(¢! (x),t,) and use the precedent computation on the genus of two components
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Figure 3.14: The Fried surface in the neighbourhood of the flowbox F’

positive links to bound the asymptotic genus.

The first thing to see is that the link k(¢ ' (x),¢;) Uk(z, Ti—;) has only positive
crossings. If we see each link as an orbit of a Cl-perturbation of X, which is right-
handed, then because right-handedness is C'-open (Ghys [Ghy(09]) these two orbits
bound a Birkhoff section and we know that all the crossings are positive.

Then we need to understand what happens with the genus when we connect the
two knots of the two-component link k(¢ " (z),4;) U k(z, Ti_1). Let us consider
by = o9 (2) Ua and ky = 55279 (2) U B where o (resp. B) is the short geodesic
path connecting ¢% ~“(z) to z (resp. ¢ “(z) to ¢t (x)) in F. Let us consider the
Fried surface Sg for the link k; U ko, made out of two genus minimizing surfaces
for k1 and ky. In F', because of the orientation of the boundaries, Sr looks like in
Figure 3.14.

Thus to join the boundaries consistently with the orientations - in order to obtain
a Seifert surface for the knot k(x, T3), we only have to attach a positively half-twisted
band to the boundaries o and S in F', as illustrated in Figure 3.15.

Let S be the surface made with Sr plus the above half-twisted band. Since
X(S) = x(Sr) — 1, we have:

2-29(S)—1=2-2g(Sp)—2—1,

thus g(S) = g(Sr) +1 = g(k1) + g(k2) + link(ky, k2).
Iterating this formula by cutting the knot k(x, T},) into pieces at each return time
to F', we have:

1

729 (k(x

(9 (k(2, Tuer)) + g (R(@X ™ (@), 1)) +link(To1, )
9

(k(o% " (), .)+§”:hnk(?21, )

=1

M: 5’@‘ —

.
I
—

(4) (B)



3.2. GENUS OF A TWO COMPONENTS LINK 79

Figure 3.15: Connecting the boundaries a and [ with a half-twisted band inside F'.

The sequence of time interval (¢,),en between two successive returns of x in D is
bounded. This implies that the knots k(¢ " (z),t;) are tame and thus have a finite
genus bounded by some gpqz, and also that 7 is bounded. Therefore part (A) in
the above equation is bounded by T—Cn for some positive constant C' and thus tends
to zero as n goes to infinity.

Now we need estimate the term (B), and this is where the proof becomes sketchy
and unfinished. Since X is right-handed, Ghys’ Theorem 1.14 ensure that there
exists a Gauss linking form €2 which is pointwise positive. By definition, the sum of
link(7;_1,¢;) is the sum of the integrals of this linking form  on the collection of
knots k(z, T;_1) x k(x,t;), which is, up to throwing away the contribution of the short
closing paths which is negligible if the return times are big enough (i.e. if D is chosen
small enough), the integral of 2 on the collection of curves {¢'(z) x ¢*(z), (t,s) €
U [0, T4 — €] x [T;—1,T; — €]}. Thus the term (B) is bounded by the integral 1(7},)
of this particular linking form Q on the set {¢'(z) x ¢*(x),t € [0,T,, — €] and s €
[t+¢€, T, —¢€]}. The problem to estimate this integral is that we are considering only
one orbit instead of two distinct orbits. Indeed, we usually have:

1
link(7y1,72) = lim

Ty T>
Ty, Tyso0 Ty Ty /0 0 Q’Yl(tl)fm(tﬂ (X (71 (tl)) , X (72@2))) dtydty

and using the symmetry of the linking number we could conclude that the term (B)
is bounded by half of the asymptotic linking number of the two orbits, which is the
helicity here because X is ergodic with respect to p. But here we are considering
points on the same orbit, and we have to avoid the diagonal of S x S? on which
2 has a pole of order 2. A solution to compute the integral /(7)) would be to
take inspiration from Ghys’ definition of the self-linking number without a preferred
framing (see Section 1.2.3) and approximate x with two sequences (pg), (¢x) of points
converging to z, and then compute the integral

Th—e rTn—c¢
L Qoo (X (65 00) X (@) duudes

but it is yet to be done.
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