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Je tiens à remercier tous les (post-)doctorants et (post-)doctorantes de l’IRMA et du Cerema

que j’ai croisés de près ou de loin, sans qui ces trois années de thèse auraient paru bien plus longues.
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Narcissus, in the hidden fire of passion,

Wanes slowly, with the ruddy color going,

The strength and hardihood and comeliness,

Fading away, and even the very body

Echo had loved. She was sorry for him now,

Though angry still, remembering; you could hear her

Answer “Alas!” in pity, when Narcissus

Cried out “Alas!” You could hear her own hands beating

Her breast when he beat his. “Farewell, dear boy,

Beloved in vain!” were his last words, and Echo

Called the same words to him. His weary head

Sank to the greensward, and death closed the eyes

That once had marveled at their owner’s beauty.

Ovid, Metamorphoses, Book III, translated by Rolfe Humphries
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14 Introduction (Français)

Contexte et objectifs

Cette thèse étudie le problème inverse d’entendre la forme d’une salle. Bien que la dénomination

fasse référence à entendre la forme d’un tambour [86], les deux problèmes diffèrent considérablement.

En effet, le célèbre article publié par Kac en 1966 examine l’unicité de la forme d’un tambour par

rapport aux fréquences propres de l’opérateur Laplacien-Dirichlet. En pratique, il n’est pas possible

d’accéder directement aux fréquences propres ou aux fonctions propres à partir de mesures réelles.

Nous examinerons donc le problème inverse, plus réaliste, de la reconstruction de la forme d’une

pièce à partir de mesures effectuées en un nombre fini de positions de microphones dans la pièce.

De plus, nous examinerons des réponses impulsionnelles de salle (RIR), c’est-à-dire les mesures

ponctuelles de la réponse de la pièce à une source sonore qui est impulsionnelle à la fois en espace et

en temps. Formellement, le champ de pression p résultant d’une source parfaitement impulsionnelle

située en rsrc est la solution de l’équation des ondes inhomogène suivante à l’intérieur de la pièce Ω

[27] :

�
1
c2
∂2
t p(r, t)−Δp(r, t) = δ(t)δrsrc(r) (r, t) ∈ Ω× R

p(r, t) = ∂tp(r, t) = 0 (r, t) ∈ Ω× R∗
−

(1)

où c désigne la vitesse du son, qui sera prise constante et égale à 1 343 m.s−1 dans nos applications.

L’absorption et la réflexion partielles des ondes sonores sur les parois peuvent être modélisées en

1343 m.s−1 est la vitesse du son à une température de 20◦C et à une pression atmosphérique standard.
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Figure 1: Simulations (a) temporelle (t = 7 ms) et (b) fréquentielle (f = 1500 Hz) de RIR pour une
même position source dans une pièce polygonale 2D.
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ajoutant des conditions au bord d’admittance sur la frontière ∂Ω :

∂np(r, t) +
1

c

∂

∂t
β(r, ·) ∗ p(r, ·)(t) = 0 (r, t) ∈ ∂Ω× R (2)

où ∂n est la dérivée normale orientée vers l’extérieur, β est un filtre temporel représentant

l’admittance des parois et ∗ désigne une convolution en temps. De manière équivalente, on peut

considérer la formulation dans le domaine fréquentiel en appliquant une transformée de Fourier à

l’équation des ondes. On obtient alors une équation de Helmholtz à chaque nombre d’onde (ou

fréquence) :

Δp̃(r, f) + K2p̃(r, f) = −δrsrc(r) (r, f) ∈ Ω× R (3)

où K = 2πf
c est le nombre d’onde, f désignant la fréquence, et p̃ est la transformée de Fourier de p,

définie par:

p̃ : (r, f) �→
� +∞

−∞
p(r, t)e−2iπftdt. (4)

La condition au bord d’admittance (2) se transforme alors en une condition de Robin à coefficient

complexe :

∂np̃(r, f) + iKβ̃(r, f)p̃(r, f) = 0 (r, f) ∈ ∂Ω× R. (5)

La figure 1 présente un exemple de réponse impulsionnelle simulée pour une pièce polygonale 2D

dans les domaines fréquentiel et temporel.

Lorsque β est nul, les conditions aux limites (2) et (5) deviennent des conditions au bord

homogènes de Neumann. Les conditions de Neumann modélisent des murs parfaitement réfléchissants,

(a) Une source ponctuelle s, sa source
image s� et la réflexion spéculaire corres-
pondante vers un récepteur m.
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(b) Réponse impulsionnelle de salle simulée à l’aide de la méthode des
sources images à une fréquence d’échantillonnage de 16 kHz.

Figure 2
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également appelés murs rigides. Dans certaines géométries, le modèle se simplifie considérablement

dans ce cas, car on peut alors considérer le modèle des sources images (ISM) [5]. En résumé, l’ISM

représente les chemins de réflexions spéculaires comme des sources virtuelles, les sources images. La

figure 2a présente un chemin de réflexion spéculaire en 2D ainsi que la source et la source image

correspondantes. La source image est construite en prenant le symétrique de la source par rapport

à la surface réfléchissante. Il est à noter que la position d’une surface réfléchissante peut être

facilement calculée à partir des positions d’une source et de sa source image. La figure 2b présente

un exemple de RIR temporelle simulée en une position microphone fixée à l’aide de l’ISM. Le premier

pic correspond au champ direct et les pics suivants aux réflexions spéculaires sur les parois. Ce

modèle sera introduit plus en détail dans la section 1.1.

Lorsque l’on considère des mesures réelles, il faut tenir compte de certains facteurs limitants :

• Il est impossible d’enregistrer des signaux véritablement continus et il est nécessaire d’appliquer

une discrétisation en temps.

• Les microphones ne peuvent pas mesurer des fréquences infiniment élevées et appliquent un

effet de filtre sur les observations.

Le filtre appliqué par les microphones est généralement inconnu dans les scénarios réels. En

pratique, nous considérerons un cas plus simple où les microphones imposent un filtre passe-bas

idéal. Ce filtre est appliqué en convoluant les signaux en temps avec une fonction sinc. Comme la

transformée de Fourier de sinc est une fonction porte, cela élimine complètement les effets de toutes

les fréquences supérieures à une fréquence de coupure donnée. En outre, en raison de la nature

discrète des signaux enregistrés, nous n’avons accès qu’à un nombre fini de mesures en temps tn, en

fréquence fn ou en nombre d’ondes Kn = 2πfn
c , observées à plusieurs microphones dans la pièce.

À la lumière de ces problèmes et des modèles mentionnés ci-dessus, nous nous posons les questions

suivantes :

Q1. Si nous supposons que les réflexions spéculaires sont dominantes et que nous contraignons

la forme de la salle à être un parallélépipède rectangle en 3D, pouvons-nous reconstruire la

configuration géométrique de la pièce directement à partir des RIR multicanales discrétisées en

utilisant la méthode des sources images ?

Q2. Si β est un nombre réel constant et connu, pouvons-nous retrouver la géométrie d’une pièce po-

lygonale en 2D à partir d’un nombre fini de mesures en fréquence de la solution de l’équation (3)

grâce à des méthodes d’optimisation de forme ?

L’objectif de cette thèse est de développer un cadre mathématique permettant d’aborder ces questions

et de fournir des justifications théoriques et numériques attestant que la réponse est positive dans un

contexte assez général. Pour les deux questions, les positions des microphones les unes par rapport

aux autres peuvent avoir un impact considérable sur la complexité et résolubilité du problème inverse.
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Nous supposerons que la géométrie de l’antenne de microphones est connue, et qu’elle est sphérique

(ou circulaire) dans la plupart des expériences, bien que les méthodes utilisées soient applicables à

d’autres géométries. La position et l’orientation de l’antenne sont inconnues et devront être évaluées.

Il convient de préciser que la restriction au cas 2D et aux polygones convexes dans Q2 a été adoptée

par souci de simplicité. Les méthodes développées dans cette section pourraient, en principe, être

étendues au cas 3D et aux formes non convexes.

Structure du manuscrit

La partie I aborde Q1 en formulant la question comme un problème inverse portant sur les positions

des sources images. Le chapitre 1 présente le modèle des sources images de manière plus détaillée,

ainsi que le cadre mathématique de la super-résolution qui sera utilisé dans cette partie. La section

1.3 introduit également deux revues de l’état de l’art pour les méthodes de localisation des sources

images et d’estimation de la géométrie d’une salle à partir de mesures acoustiques.

Le chapitre 2 porte sur la localisation des sources images à partir de RIR multicanales discrètes.

Nous introduisons une nouvelle formulation comme un problème d’optimisation parmi les mesures de

Radon, qui est le cadre utilisé dans la reconstruction de sources parcimonieuses et la super-résolution.

L’objectif est alors d’inverser un opérateur qui à un terme source dans l’équation d’onde associe

les observations correspondantes enregistrées au niveau des microphones. Le problème inverse qui

en découle est d’abord formulé dans la section 2.1.2 comme un problème de moindres carrés non

convexe en dimension finie portant sur les amplitudes et les positions d’une combinaison linéaire de

masses de Dirac. L’opérateur ΓK prend ses arguments dans RK
+ × R3K et ses valeurs dans RMN ,

où M est le nombre de microphones et N le nombre d’échantillons temporels. Son expression est

donnée par

(ΓK(a, r))m,n =

K�

k=1

ak
κ(n/fs −

��rk − rmic
m

��
2
/c)

4π �rk − rmic
m �2

∀(m,n) ∈ [[1,M ]]× [[0, N − 1]] (6)

où κ désigne le filtre des microphones, fs est la fréquence d’échantillonnage et les rmic
m sont les

positions des microphones. On notera que ΓK est singulier à chaque position de microphone. En

désignant par x ∈ RMN le vecteur d’observations, le problème des moindres carrés correspondant

est alors le suivant :

min
a∈RK

+ ,r∈CK

1

2

��ΓK(a, r)− x
��2
2

(7)

où C est un ensemble borné qui ne contient pas les emplacements des microphones. Nous étudions

le caractère bien posé du problème (7) dans la section 2.2. Le problème est ensuite ramené à un

problème d’optimisation convexe dans la section 2.3. En désignant par R3
ε l’espace R3 privé de

l’union des boules de rayon ε centrées sur les microphones, la fonction ΓK se transforme alors en un
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opérateur linéaire Γ agissant sur les mesures de Radon M(R3
ε) :

(Γψ)m,n =

�

R3
ε

κ(n/fs −
��r − rmic

m

��
2
/c)

4π �r − rmic
m �2

dψ(r) ∀(m,n) ∈ [[1,M ]]× [[0, N − 1]] (8)

et le problème de moindres carrés de dimension finie devient le problème dit de Beurling-Lasso

(BLASSO) :

min
ψ∈M(R3

ε)

1

2
�Γψ − x�22 + λ�ψ�TV. (9)

Nous nous appuyons ensuite sur l’algorithme sliding-Frank-Wolfe [53] pour résoudre numériquement

(9) et définissons dans la section 2.3.3 une procédure de reconstruction de la mesure composée par

les sources images, dans laquelle des modifications spécifiques ont été appliquées afin d’adapter

l’algorithme à notre cas. L’algorithme résultant est testé numériquement dans des expériences

simulées à la section 2.4. Nous étudions comment la fréquence d’échantillonnage fs, le nombre de

microphones M et le niveau de bruit additif influent sur les résultats numériques.

Le chapitre 3 aborde le problème de la reconstruction de la configuration géométrique complète

d’une pièce cubique à partir des positions des sources images. La géométrie de l’antenne est

connue, et nous cherchons à estimer les 18 paramètres d’entrée de l’ISM : la position 3D de la

source, les dimensions de la pièce, la translation et l’orientation de la pièce, et les coefficients

d’absorption attribués à chaque mur. Nous définissons un algorithme en deux étapes qui estime

d’abord l’orientation de l’antenne de microphones, puis récupère les dimensions de la pièce et les

paramètres restants. En désignant par G l’ensemble des sources images reconstruites, l’estimation de

l’orientation est réalisée en résolvant le problème d’optimisation suivant :

max
�u�2=1

J3(u), où J3(u) =
�

s,p∈G
f3(u, s− p). (10)

Ici, f3(u,v) vaut 1 si u est orthogonal à v et à 0 dans le cas contraire. La fonction objectif J3 évalue

donc le nombre d’orthogonalités entre un vecteur donné et les directions définies par la grille des

sources images reconstruites. Nous prouvons dans la section 3.3 que, lorsque G est un sous-ensemble

rectangulaire contigu de la grille des sources images cibles, c’est-à-dire que les sources images sont

parfaitement localisées, la solution du problème (21) est un vecteur qui est orthogonal à un mur.

L’emplacement de la source peut être facilement identifié à partir de G. Une fois l’orientation

récupérée, nous extrayons les sources images de premier ordre en recherchant les points à distance

minimale situés dans les cônes définis par la source et les vecteurs normaux aux murs estimés

précédemment. Nous utilisons ensuite ces sources de premier ordre pour récupérer les paramètres

restants. L’algorithme complet est évalué dans des expériences numériques en section 3.2, en suivant

la configuration expérimentale du chapitre 2. Nous comparons aussi favorablement l’algorithme à la

méthode basée sur les matrices de distance euclidienne introduite dans [58].

Enfin, le chapitre 4 fournit une preuve alternative à la preuve formelle de la décomposition ISM
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publiée par Allen et Berkley en 1979 [5]. Contrairement à la preuve d’Allen et Berkley, notre preuve

est effectuée dans le domaine temporel, utilise une représentation intermédiaire modale temporelle

et traite explicitement la causalité de la solution.

La question Q2 est traitée dans la partie II. Bien que les méthodes décrites dans cette partie

soient applicables en 3D, afin de simplifier l’implémentation et de réduire les coûts de calcul, nous

considérerons plutôt le cas simplifié de l’optimisation de polygones 2D. Nous commençons par

rappeler des notions générales d’optimisation de formes dans le chapitre 5, ainsi que des outils

plus spécifiques utilisés pour les formes polygonales. Nous présentons également la méthode des

solutions fondamentales (MFS), qui est la méthode de simulation sans maillage utilisée pour résoudre

l’équation de Helmholtz dans nos simulations numériques. Le chapitre 6 se concentre sur la résolution

numérique du problème direct et présente la mise en œuvre de la MFS. Nous décrivons d’abord une

stratégie d’échantillonnage adaptatif utilisée pour simuler efficacement la solution de l’équation de

Helmholtz à de multiples fréquences. Dans la section 6.2, nous validons ensuite numériquement la

méthode MFS sur quelques cas tests en comparant la solution MFS à des solutions analytiques ou

à la solution générée par la méthode des éléments finis. Dans la section 6.3, nous présentons une

méthode permettant d’utiliser la MFS pour simuler des RIR dans le domaine temporel en appliquant

une transformée de Fourier inverse et un filtre passe-haut.

Le problème inverse est abordé au chapitre 7. La formulation sous forme de problème

d’optimisation de forme est décrite dans la section 7.1. Nous considérons le problème d’optimisation

suivant :

min
Ω∈Sadm

J(Ω), J(Ω) :=
1

2LM

L�

l=1

M�

m=1

��pΩ,Kl
(rmic

m )− pobs,Kl
(rmic

m )
��2 (11)

où pΩ,K est la solution de l’équation de Helmholtz sur Ω pour le nombre d’onde K, pobs,K est le champ

de pression observé et Sadm est l’ensemble des polygones convexes avec un nombre fixé d’arêtes.

La dérivée de forme de la fonction objectif est calculée de manière formelle dans la section 7.2 en

utilisant une méthode lagrangienne et des représentations tensorielles. En particulier, nous devons

tenir compte de l’irrégularité des polygones, ce qui ajoute des termes tangentiels non standards à

la formule finale. La section 7.3 donne une description détaillée du cadre numérique mis en place

pour résoudre le problème (11) en utilisant une méthode de descente de gradient et la dérivée

de forme calculée dans la section 7.2. Nous discutons du choix de la paramétrisation, calculons

le gradient paramétrique correspondant et introduisons un terme de pénalisation qui impose des

contraintes d’inclusion pour le microphone et les sources. L’algorithme de descente de gradient

lui-même est défini dans la section 7.3.4. Enfin, l’algorithme est évalué expérimentalement dans la

section 7.4. Nous considérons deux configurations : l’une sans information préalable sur la forme

où nous effectuons des intialisations aléatoires, et une configuration où nous essayons d’affiner une

estimation initiale bruitée de la forme.
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Contributions

Nous donnons dans cette section un aperçu des principales contributions de cette thèse. Les chapitres

1 et 5 sont omis car ils présentent des notions générales et des outils bien connus dans la littérature.

Chapitre 2. Le problème inverse de localisation des sources images est abordé dans ce chapitre.

Nous adoptons une approche différente des méthodes existantes en traitement du signal audio et

acoustique en formulant le problème comme un problème d’optimisation sur des mesures de Radon.

Nous commençons par étudier le caractère bien posé du problème d’optimisation correspondant en

dimension finie dans la section 2.2. En raison de la présence de singularités du noyau de l’opérateur

à chaque emplacement de microphone, l’existence de solutions n’est pas garantie lorsque les positions

des sources ne sont pas contraintes. En particulier, nous démontrons que tout comportement est

possible : la non-existence peut se produire pour certains vecteurs d’observation x, et, inversement,

nous prouvons que l’existence peut se produire sous certaines hypothèses sur x et sur le filtre des

microphones dans le théorème 2.2.1. Nous étudions ensuite numériquement le problème d’optimisation

convexe relaxé en dimension infinie (BLASSO). Ce cadre nous permet de tirer parti des outils de

super-résolution pour récupérer les sources images sans utiliser de grille. Contrairement aux méthodes

proposées précédemment en traitement du signal audio et acoustique, la méthode introduite nécessite

peu de connaissances à priori sur la configuration géométrique d’une pièce parallélépipédique. À

la connaissance de l’auteur, il s’agit de la première application de techniques de super-résolution

pour retrouver les positions de sources images en 3D directement à partir d’une RIR discrétisée.

L’opérateur d’onde considéré Γ diffère également des applications usuelles de la super-résolution en

imagerie, car son noyau est singulier et présente une décroissance linéaire de l’amplitude avec la

distance. Nous présentons un algorithme numérique pour résoudre le BLASSO, et évaluons en détail

ses performances dans la section 2.4. L’algorithme est basé sur l’algorithme sliding-Frank-Wolfe [53],

qui a été fortement adapté à notre cas d’application spécifique et à la structure de l’opérateur Γ.

En particulier, nous modifions l’initialisation de l’étape de localisation des sources pour prendre en

compte la nature sphérique des ondes sonores émises. Nous mettons également en place une procédure

d’extension qui traite des signaux de plus en plus longs, afin de gérer la croissance quadratique du

nombre de sources images à reconstruire. L’algorithme résultant récupère un nombre record de

sources images avec une grande précision dans des expériences simulées, avec des taux de rappel

supérieurs à 95 % et avec des erreurs euclidiennes inférieures au centimètre dans les conditions les

plus favorables. En particulier, les positions des sources images de premier ordre, qui contiennent

notamment l’information sur les emplacements des murs, sont reconstruites avec un taux de rappel

de 99 % dans les simulations. L’algorithme démontre également une robustesse satisfaisante face au

bruit. Le modèle, l’algorithme de reconstruction et certains résultats numériques ont été publiés dans

une revue de traitement du signal [136]. L’étude numérique approfondie fournie dans ce chapitre,

l’analyse théorique du problème d’optimisation et une présentation plus détaillée de l’algorithme

seront soumises à un journal de problèmes inverses.
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Chapitre 3. En s’appuyant sur l’algorithme de reconstruction des sources images présenté dans

la section 2.3.3, le chapitre 3 introduit un nouvel algorithme de réversion des sources images pour

récupérer tous les paramètres géométriques d’une configuration de pièce parallélépipédique. Un écart

notable par rapport aux algorithmes existants est l’ajout d’une étape d’estimation de l’orientation

de l’antenne de microphones, un facteur souvent négligé dans les algorithmes de reconstruction de la

géométrie. Cette étape est en partie rendue possible par les taux de rappel élevés de notre algorithme

de localisation des sources images. De plus, l’heuristique utilisée est justifiée théoriquement dans la

section 3.3, où nous prouvons que le problème d’optimisation retrouve bien l’orientation lorsque les

sources images sont parfaitement estimées.

Une fois la position de la vraie source extraite, les sources images de premier ordre sont identifiées

en recherchant les points à distance minimale situés dans des cônes définis par la source et les

directions calculées lors de l’étape d’estimation de l’orientation. Prendre en compte l’orientation

permet une meilleure identification des sources images de premier ordre en éliminant certaines sources

faussement reconstruites (faux positifs) de l’espace de recherche. L’orientation est également utilisée

pour améliorer la précision de l’estimation des dimensions de la pièce en effectuant une projection

sur les axes de la salle. Lors des tests sur un ensemble de données de pièces parallélépipédique

générées aléatoirement, nous obtenons des erreurs remarquablement faibles pour l’estimation des

dimensions de la pièce, avec des erreurs absolues moyennes inférieures au millimètre. Nous nous

comparons également favorablement à une méthode de référence reposant sur les matrices de distance

euclidienne introduite dans [58]. Ce chapitre a été soumis sous forme d’article à un journal de

traitement du signal audio [137].

Chapitre 4. Ce chapitre présente une preuve alternative du résultat démontré de manière formelle

par Allen et Berkley en 1976 [5], à savoir que la solution de l’équation des ondes avec des conditions

aux limites de Neumann peut être décomposée en une somme infinie d’ondes sphériques en 3D

(fonctions de Green). Contrairement à la démonstration d’Allen et Berkley, notre preuve reste dans

le domaine temporel et une représentation modale intermédiaire temporelle est présentée. Notre

preuve impose en hypothèse initiale la causalité des réponses impulsionnelles, tandis que la causalité

n’était pas établie et forcée à posteriori dans l’article original.

Chapitre 6. Nous détaillons dans ce chapitre l’implémentation de la MFS sur des domaines

polygonaux. En particulier, nous présentons la stratégie d’échantillonnage adaptatif qui sera utilisée

pour résoudre l’équation de Helmholtz simultanément à plusieurs fréquences en parallèle. Cette

méthode se compare favorablement aux simulations FEM en termes de coût de calcul à haute

fréquence. Nous introduisons également une méthode de calcul qui utilise la MFS dans le domaine

fréquentiel pour simuler des RIR dans le domaine temporel.

Chapitre 7. Dans ce chapitre, nous abordons enfin l’application de méthodes d’optimisation de

forme pour la reconstruction de la géométrie d’une salle. Nous utilisons une méthode lagrangienne

en vue de calculer une expression de la dérivée de forme de la fonction coût associée. Un aspect
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inhabituel de ce problème est que nous considérons des formes peu régulières. Nous appliquons les

méthodes décrites dans [103] afin d’obtenir une formulation de la dérivée de forme distribuée sur le

bord. Cette formulation contient des termes tangentiels non standards en raison de l’irrégularité

des polygones à chaque sommet. Dans la section 7.3, nous détaillons l’algorithme de descente de

gradient implémenté pour résoudre le problème inverse. Plutôt que de construire un maillage, nous

paramétrisons les polygones en utilisant les sommets ou des demi-plans, et optimisons directement

la fonction coût au sein des polygones convexes. Les tests numériques effectués dans la section

7.4 montrent que l’algorithme est capable de retrouver la forme d’une pièce polygonale à partir

d’initialisations bruitées et d’une plage de fréquences restreinte, avec une erreur angulaire moyenne

sur les murs de 0, 26◦ pour les quadrilatères. Nous testons également l’algorithme en exploitant

toutes les fréquences jusqu’à une fréquence maximale et des initialisations aléatoires, et obtenons

un taux de rappel global pour les murs de 77 % sur un ensemble de polygones aléatoires. Nous

obtenons également des erreurs angulaires moyennes satisfaisantes de 3, 1◦ pour les quadrilatères

correctement estimés et de 3, 9◦ pour les pentagones. Les expériences indiquent qu’augmenter le

nombre d’initialisations aléatoires et de pas de gradient peut encore améliorer la précision. Le travail

mis en route dans ce chapitre fera l’objet d’une future publication dans une revue de mathématiques

appliquées.
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• 16e Congrès Français d’Acoustique, Marseille, avril 2022.

Sessions poster :

• IEEE International Conference on Acoustics, Speech, and Signal Processing.

Juin 2023. Rhodes, Grèce.
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Context and objectives

This thesis studies the so-called inverse problem of hearing the shape of a room. Although the

denomination is a reference to hearing the shape of a drum [86], the two problems differ considerably.

Indeed, Kac’s famous 1966 article considers the uniqueness of the shape of a drum relatively

to its Dirichlet eigenfrequencies. In practice, one cannot directly access the eigenfrequencies or

eigenfunctions from real-life measurements. We will thus consider the more realistic inverse problem

of recovering the shape of a room from measurements at a finite number of microphone locations

in the room. Moreover, we will consider Room Impulse Responses, i.e. point measurements of the

response of the room to a sound source that is impulsive both in space and time. Formally, the

pressure field p resulting from a perfectly impulsive source located at rsrc is solution to the following

inhomogeneous wave equation inside the room Ω [27]:

�
1
c2
∂2
t p(r, t)−Δp(r, t) = δ(t)δrsrc(r) (r, t) ∈ Ω× R

p(r, t) = ∂tp(r, t) = 0 (r, t) ∈ Ω× R∗
−

(12)

where c is the speed of sound, which will be constant and equal2 to 343 m.s−1 in our applications.

The partial absorption and reflection of the sound waves at the walls can be modeled by adding

admittance conditions on the boundary ∂Ω:

∂np(r, t) +
1

c

∂

∂t
β(r, ·) ∗ p(r, ·)(t) = 0 (r, t) ∈ ∂Ω× R (13)

2343 m.s−1 is the speed of sound at a temperature of 20◦C and standard atmospheric pressure.
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Figure 3: (a) Time (t = 7 ms) and (b) frequency domain (f = 1500 Hz) simulations of a RIR for the
same source location in a 2D polygonal room.
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where ∂n is the outward normal derivative, β is the time filter representing the admittance of the

walls and ∗ denotes a time-domain convolution. Equivalently, one can consider the frequency-domain

formulation by applying a Fourier transform to the wave equation. This yields a Helmholtz equation

at each wave number (or frequency):

Δp̃(r, f) + K2p̃(r, f) = −δrsrc(r) (r, f) ∈ Ω× R (14)

where K = 2πf
c is the wave number, f denoting the frequency, and p̃ is the time Fourier transform of

p, i.e.:

p̃ : (r, f) �→
� +∞

−∞
p(r, t)e−2iπftdt. (15)

The admittance boundary condition (13) then turns into a complex Robin condition:

∂np̃(r, f) + iKβ̃(r, f)p̃(r, f) = 0 (r, f) ∈ ∂Ω× R. (16)

Fig. 3 presents an example of RIR simulation in a 2D polygonal room in time and frequency domain.

When β vanishes to zero, the boundary conditions (13) and (16) become homogeneous Neumann

boundary conditions. Neumann conditions model perfectly reflecting walls, also called rigid walls.

For certain geometries, the model simplifies considerably in that case, as one can then consider the

Image Source Model (ISM) [5]. In short, the ISM represents specular reflection paths as virtual

sources, the image sources. Fig. 4a presents a specular reflection path in 2D and the corresponding

source and image source. The image source is constructed by taking the symmetry of the source

(a) UA point source s, its image source
s� and the specular reflection path to a
receiver m.
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(b) Time-domain RIR simulated using the ISM and a 16 kHz sampling
frequency.
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with respect to the reflecting surface. Note that the location of a reflecting surface can be calculated

from the locations of a source and its image source. An example of time-domain RIR simulated at a

given microphone location using the ISM is presented in Fig. 4b, where the first peak corresponds

to the direct path and the following peaks to specular reflections. This model will be introduced

more in detail in Section 1.1.

When working with actual measurements, one has to take into account some limiting factors:

• We are unable to record truly continuous signals, and a time discretization is applied.

• Microphones cannot measure infinitely high frequencies and have a filtering effect on the

observations.

The filter applied by the microphones is usually unknown in real-life scenarios. In practice, we will

consider a simpler case where the microphones impose an ideal low-pass filter. This is enforced by

convoluting the signals in time with a sinc function. As the Fourier transform of sinc is a rectangular

(or gate) function, this completely deletes the effect of all the frequencies above a given cutting

frequency. Moreover, due to the discrete nature of recorded signals, we will only have access to

a finite number of time tn, frequencies fn or equivalently wave number Kn = 2πfn
c measurements,

observed at multiple microphone locations in the room. In light of these issues and the models

mentioned above, we consider the following questions:

Q1. If we assume specular reflections are dominant and constrain the room to be a 3D cuboid,

can we recover the geometric configuration of the room directly from discretized multichannel

RIRs by using the ISM ?

Q2. If β is a known, constant real number, can we recover the shape of a convex, 2D polygonal room

from discrete frequency measurements of the solution to Eq. (14) through shape optimization

methods ?

The objective of this thesis is to develop a mathematical framework to address these questions

and provide both theoretical and numerical evidence that the answer is positive under some broad

settings. For both questions, the locations of the microphones relative to each other can have

a massive impact on the complexity and solvability of the inverse problem. We will assume the

geometry of the microphone array to be known, and to be spherical (or circular) in most experiments,

although the underlying methods can be applied to other geometries. The location and orientation

of the array are unknown and will need to be evaluated. Note that the restriction to the 2D case

and convex polygons in Q2 is made for simplicity. The methods developed in this section could, in

principle, be extended to the 3D case and non-convex shapes.
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Structure of the manuscript

Part I tackles Q1 by formulating the question as an inverse problem on the locations of the

image sources. Chapter 1 presents the Image Source Model and the super-resolution framework in

more details. We also provide in Section 1.3 two detailed state-of-the-art reviews on image-source

localization methods, and room geometry estimation from acoustic measurements.

Chapter 2 focuses on the localization of image sources from discrete multichannel RIRs. We

introduce a novel formulation as an optimization problem amongst Radon measures, which is the

framework used in sparse source reconstruction and super-resolution. The objective is then to reverse

an operator that maps a source term in the wave equation to the recorded observations at the

microphones. The ensuing inverse problem is first formulated in Section 2.1.2 as a least-squares,

non-convex finite-dimensional problem on the amplitudes and locations of a linear combination of

Dirac masses. The operator ΓK takes its arguments in RK
+ × R3K and its values in RMN , where M

is the number of microphones and N the number of time samples. Its expression is given by:

(ΓK(a, r))m,n =

K�

k=1

ak
κ(n/fs −

��rk − rmic
m

��
2
/c)

4π �rk − rmic
m �2

∀(m,n) ∈ [[1,M ]]× [[0, N − 1]] (17)

where κ is the microphones’ filter, fs is the sampling frequency and rmic
m are the microphones’

positions. Note that ΓK is singular at each microphone’s location. Denoting by x ∈ RMN the vector

of observations, the corresponding least-squares problem is then:

min
a∈RK

+ ,r∈CK

1

2

��ΓK(a, r)− x
��2
2

(18)

where C is a bounded set from which we exclude the microphones’ locations. We proceed to study the

well-posedness of Problem (18) in Section 2.2. The problem is then relaxed to a convex optimization

problem in Section 2.3. Denoting by R3
ε the space R3 from which we removed a ball of radius ε

around each microphone, the functional ΓK then translates to a linear operator Γ acting on Radon

measures M(R3
ε):

(Γψ)m,n =

�

R3
ε

κ(n/fs −
��r − rmic

m

��
2
/c)

4π �r − rmic
m �2

dψ(r) ∀(m,n) ∈ [[1,M ]]× [[0, N − 1]] (19)

and the least-squares problem becomes the so-called Beurling-Lasso (BLASSO):

min
ψ∈M(R3

ε)

1

2
�Γψ − x�22 + λ�ψ�TV. (20)

We then build on the sliding-Frank-Wolfe algorithm [53] to solve numerically (20) and define in

Section 2.3.3 a procedure to reconstruct the measure composed by the image sources, where specific

modifications were applied in order to adapt the algorithm to our case. The resulting algorithm is
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extensively tested in numerical experiments in Section 2.4. We study how the sampling frequency

fs, the number of microphones M and the level of additive noise affect the numerical results.

Chapter 3 addresses the problem of reconstructing the complete geometric configuration of a

cuboid room from the locations of the image-sources. The geometry of the antenna is known data,

and we seek to estimate the 18 input parameters of the ISM: the 3D source position, the dimensions

of the room, the room translation and orientation, and the absorption coefficients attributed to each

wall. We define a two-step algorithm that first estimates the orientation of the microphone array

and then recovers the room dimensions and the rest of the parameters. Denoting by G the set of

recovered image sources, orientation recovery is achieved by solving the optimization problem:

max
�u�2=1

J3(u), where J3(u) =
�

s,p∈G
f3(u, s− p). (21)

Here, f3(u,v) is equal 1 if u is orthogonal to v and 0 otherwise. The objective function J3 thus

evaluates the number of orthogonalities between a given vector and the directions defined by the

recovered image-sources grid. We prove in Section 3.3 that, when G is a contiguous rectangular subset

of the target image-sources grid, i.e. we have a perfect localization of image sources, the solution to

Problem (21) is a vector that is orthogonal to a wall. The source location can be easily identified

from G. Once the orientation is recovered, we extract the first-order image-sources by searching

for the closest points that are located in the cones defined by the source and the estimated wall

normal vectors. We then use these estimated first-order sources to recover the remaining parameters.

The full algorithm is evaluated in numerical experiments in Section 3.2, following the experimental

setup of Chapter 2. We also favorably compare the algorithm against the seminal Euclidean distance

matrix method introduced in [58].

Finally, Chapter 4 provides an alternative proof to the formal proof of the ISM decomposition

given by Allen and Berkley in 1979 [5]. Contrarily to Allen and Berkley’s proof, our proof remains

in time domain, uses a time-domain modal intermediate representation, and explicitly addresses the

causality of the solution.

Question Q2 is addressed in Part II. Although the methods described in this part are applicable

to the 3D case, in order to simplify the implementation and reduce the computational cost we will

consider instead the simplified case of optimizing 2D polygons. We begin by recalling general notions

of shape optimization in Chapter 5, as well as more specific tools used for polygonal shapes. We also

present the Method of Fundamental Solutions (MFS), which is the meshless simulation method used

to solve the Helmholtz equation in our numerical simulations. Chapter 6 focuses on the numerical

resolution of the forward problem and presents our implementation of the MFS. We first describe an

adaptive sampling strategy used to efficiently simulate the solution to the Helmholtz equation at

numerous frequencies. In Section 6.2, we then validate numerically the MFS method on some test

cases by comparing the MFS solution to analytical solutions or to the solution obtained by a finite

element method. In Section 6.3, we present a method to use the MFS to simulate time-domain RIRs
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by applying an inverse Fourier transform and a high-pass filter.

The inverse problem itself is tackled in Chapter 7. The shape optimization formulation is

described in Section 7.1. In brief, we consider the following optimization problem:

min
Ω∈Sadm

J(Ω), J(Ω) :=
1

2LM

L�

l=1

M�

m=1

��pΩ,Kl
(rmic

m )− pobs,Kl
(rmic

m )
��2 (22)

where pΩ,K is the solution to the Helmholtz equation on Ω at wave number K, pobs,K is the observed

pressure field and Sadm is the set of convex polygons with a fixed number of edges S. The shape

derivative of the objective function is formally computed in Section 7.2 by using a Lagrangian

method and tensor representations. In particular, we have to take into account the non-smooth

nature of the polygons, which adds non-standard tangential terms to the final formula. Section 7.3

gives a detailed description of the numerical framework used for solving Problem (22) by using a

gradient descent method and the shape derivative that was calculated in Section 7.2. We discuss

the choice of parametrization, compute the corresponding parametric gradient and introduce a

penalization term that enforces inclusion constraints for the microphone and sources. The gradient

descent algorithm itself is defined in Section 7.3.4. Finally, the algorithm is evaluated experimentally

in Section 7.4. We consider two setups: one with no prior information on the shape where we use

random initializations, and a configuration where we try to refine a noisy initial guess of the shape.

Contributions

We give in this section an overview of the main contributions of this thesis. Chapters 1 and 5 are

skipped as they present general notions and tools that are well-known in the literature.

Chapter 2. The problem of image-source localization is tackled in this chapter. We take a different

approach from existing methods in audio and acoustic signal processing by formulating the problem

as an optimization problem on Radon measures. We begin by studying the well-posedness of the

corresponding optimization problem in finite dimension in Section 2.2. Due to the presence of kernel

singularities at each microphone location, the existence of solutions is not guaranteed when the

locations of the sources are not constrained. In particular, we demonstrate that every behavior

is possible: non-existence can happen for certain observation vectors x, and conversely we prove

that existence can happen under some hypotheses on x and on the microphones’ filter in Theorem

2.2.1. We then investigate numerically the relaxed, infinite-dimensional convex optimization problem

(BLASSO). This setting allows us to leverage the super-resolution framework to recover the image

sources in a gridless manner. Contrarily to prior methods in audio and acoustic signal processing,

the proposed method requires little a priori knowledge on the cuboid room’s geometric configuration.

To the best of the author’s knowledge, this is the first application of super-resolution techniques to

recover 3D image source locations directly from a multichannel RIR. The considered wave operator

Γ also strays from usual applications of super-resolution in imagery, as its kernel is singular in nature



32 Introduction (English)

and presents a linear decrease in amplitude with distance. We present a numerical algorithm to solve

the BLASSO, and extensively evaluate its performance in Section 2.4. The algorithm is based on

the sliding-Frank-Wolfe algorithm [53], which was heavily adapted to our specific problem and the

structure of the operator Γ. In particular, we tailor the initialization of the source location search

step to take into account the spherical nature of incoming sound waves. We also use an extension

procedure that deals with increasingly long signals, in order to handle the quadratic growth in the

number of image sources to be retrieved. The resulting algorithm retrieves an unprecedented number

of image sources with high accuracy in simulated experiments, with global recall rates over 95 % and

with Euclidean errors below the centimeter in the most favorable conditions. In particular, first-order

image-source locations, that notably contain the information on wall locations, are recovered at a

99 % recall rate in simulations. The algorithm also demonstrates satisfactory robustness to noise.

The model, the reconstruction algorithm and some numerical results were published in a signal

processing journal [136]. A more extensive numerical study, the theoretical analysis and a more

detailed presentation of the algorithm will be submitted to an inverse problems journal.

Chapter 3. Building on the image-source recovery algorithm presented in Section 2.3.3, Chapter

3 introduces a novel image-source reversion algorithm to recover every geometric parameter of a

cuboid room configuration. A notable departure from existing algorithms is the incorporation of

a microphone array orientation recovery step, which is a factor usually overlooked in geometry

recovery algorithms. This step is in part made possible by the high recovery rates of our image-source

localization algorithm. Moreover, the heuristic used is theoretically justified in Section 3.3 where we

prove that the optimization problem does indeed recover the orientation when the image sources are

perfectly estimated.

Once the true source’s location has been extracted, the first-order image-sources are identified by

searching for the closest points located in cones defined by the source and the directions calculated

in the orientation recovery step. Using the orientation allows for a better identification of first

order image sources by eliminating false positives from the search space. The orientation is also

used to improve the accuracy of room dimension estimation by projecting onto the correct axes.

When testing on a dataset of randomly generated cuboid rooms, we achieve remarkably low errors in

room dimension estimation, with mean absolute errors falling below a millimeter. We also compare

favorably to the baseline method of Euclidean distance matrix introduced in [58].This chapter was

submitted in article form to an audio signal processing journal [137].

Chapter 4. This chapter presents an alternative proof to the result proved formally by Allen

and Berkley in 1976 [5], that is, that the solution to the wave equation with Neumann boundary

conditions can be decomposed by an infinite sum of spherical waves in 3D (Green’s functions).

Contrarily to Allen and Berkley’s proof, our proof remain in time domain and a time-domain modal

intermediate representation is presented. Our proof imposes the causality of the RIR as an initial

hypothesis, while causality is not established and only enforced a posteriori in Allen and Berkley’s

article.
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Chapter 6. We detail our implementation of the MFS on polygonal domains in this chapter. In

particular, we present the adaptive sampling strategy that will be used to solve the Helmholtz

equation at multiple frequencies in parallel. The method compares favorably with FEM simulations

in terms of computational cost at high frequencies. We also introduce a simulation method that

uses the MFS in frequency-domain to simulate time-domain RIRs.

Chapter 7 In this chapter, we finally tackle shape optimization for room reconstruction. We

use a Lagrangian method to compute a shape derivative for the associated cost function. An

unconventional aspect of this problem is that we consider non-smooth shapes. We apply the methods

described in [103] in order to obtain a boundary formulation of the derivative, which involves

non-standard tangential terms due to the polygons’ irregularity. In Section 7.3, we expand on the

gradient descent algorithm used to solve the inverse problem. Rather than constructing a mesh, we

parametrize polygons using vertices or half-planes and optimize directly amongst convex polygons.

The tests in Section 7.4 show that the algorithm is able to recover the shape of a polygonal room

from noisy initializations and limited frequency data, with a mean angular error on walls of 0.26◦ for

quadrilaterals. We also test the algorithm using all frequencies up to a maximum frequency and

random initializations, and get an overall wall recall rate of 76 % over a set of random polygons.

We also get satisfactory mean angular errors of 3.1◦ for correctly estimated quadrilaterals and

3.9◦ for pentagons. Experiments indicate that increasing the number of random initializations and

gradient steps can further increase accuracy. The work begun in this chapter will be part of a future

publication in an applied mathematics journal.
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• Team seminar, IECL, Université de Lorraine, Nancy, January 2024.

• MACARON Inria team retreat seminar, Belmont, February 2024.

• Phd student seminar, Irma, Université de Strasbourg, December 2023.
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The aim of this part is to address the problem of estimating the geometrical parameters of a

rectangular room from a room impulse response. We consider here a rectangular room of volume

V = LxLyLz and a sound source located at a location rsrc inside the room.

Chapter 1 presents the image-source method for rectangular rooms, as well as the super-resolution

approach for sparse measure recovery. Chapter 2 addresses theoretically and numerically the issue

of estimating the image-source locations from filtered room impulse responses. Finally, Chapter 3

introduces an algorithm to recover every geometrical unknown of a rectangular room configuration

using the estimated image-source positions.
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Chapter 1

Tools for Image-Source localization

using super-resolution

This chapter presents the image-source model, which will be used throughout this part. We also

provide an introduction to sparse measure reconstruction, and two state-of-the-art reviews.

39
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1.1 Image Source Method

1.1.1 Green’s functions

As defined in the introduction, a RIR is the measurement of the response of a room to an impulsive

sound source, i.e. the measure of a pressure field p resulting from a Dirac source term located

at some point rsrc ∈ Ω. Such a solution p is called a Green’s function of the wave (respectively

Helmholtz) equation for the given boundary conditions. A particular case of Green’s functions are

the free-field Green’s functions, which are solutions to the wave (respectively Helmholtz) equation

in free space. The boundary conditions are then replaced by a Sommerfeld radiation condition at

infinity:

lim
r→∞

r(d−1)/2

�
∂Grsrc

∂r
(r)− iKGrsrc(r)

�
= 0. (1.1)

Condition (1.1) ensures that the solution is unique and that the waves do not back-propagate. The

free-field Green’s functions for the wave equation for a point source located at rsrc are given by [27]:

Grsrc(r, t) =





δ(t−�r−rsrc�2/c)
4π�r−rsrc�2

if d = 3

H(t−�r−rsrc�2/c)
2π
√

t2−|r−rsrc|2/c2
if d = 2

(r, t) ∈ Rd × R (1.2)

where H is the Heaviside function. The free-field Green’s functions for the Helmholtz equation at

wave number K are given by:

GK
rsrc(r) =





eiK�r−rsrc�2
4π�r−rsrc�2

if d = 3

i
4H

(1)
0 (K �r − rsrc�2) if d = 2

r ∈ Rd (1.3)

with H
(1)
0 denoting the Hankel function of the first kind of order 0. Note that we use the convention

of equation (14) for the sign, i.e. ΔGK
rsrc + K2GK

rsrc = −δrsrc .

One notable property of Green’s functions is their ability to represent solutions of a particular

solution of a given equation by a convolution product. Take for instance GK
rsrc the free-field Green’s

function for the 3D Helmholtz equation with rsrc = 0, and consider the inhomogeneous PDE:

Δp+ K2p = f (1.4)

completed with the radiation condition (1.1). Then, as the Dirac distribution is the neutral element

for the convolution we get:

(Δ+ K2)(−Grsrc ∗r f) = [(Δ+ K2)(−Grsrc)] ∗r f = δ0 ∗r f = f (1.5)

where ∗r denotes a spatial convolution. −G0 ∗r f is thus a solution for equation (1.4). The same

representation holds for the wave equation by applying a double convolution in time and space.
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1.1.2 Standard ISM

The image-source method (ISM) was formally introduced in room acoustics by Allen and Berkley in

1976 [5] in order to quickly simulate room impulse responses in rectangular rooms. The image-source

method is based on the following observation: any specular reflection of an impulse sound source on

a wall can be modeled by a virtual source, namely an image source, located outside the domain and

obtained by taking the symmetry of the original source with respect to the wall. This process can

be iterated in order to model reverberation, constructing image sources successively to take into

account every reflection of the original sound wave on the walls (see Fig. 1.1 for an illustration of

the image-sources up to the second order). In the shoebox case (i.e. the room is a cuboid), the

image-source coordinates are most easily expressed in a reference frame of the room, meaning a

frame composed of an orthonormal basis (e1, e2, e3) of normal vectors to the walls along with an

origin located at one of the room’s corners.

In such a frame, the set of image-source coordinates is given by:

IΩ := {rq,ε = ε� rsrc + 2q � vL, ε ∈ {−1; 1}3, q ∈ Z3} (1.6)

where vL =



Lx

Ly

Lz


 is the room size vector, vdsrc =



dsrcx

dsrcy

dsrcz


 gives the distance of the source to each

Figure 1.1: Representation of the source in black, the first order image-sources in blue and second
order sources in red in 2D. The reflection paths from the source rsrc to a microphone rmic and
corresponding to r1, r2 are drawn in blue and red. Note that the length of these paths is respectively
equal to the distances r1r

mic and r2r
mic.
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wall containing the origin and � denotes the Hadamard product defined by:

∀u,v ∈ RD, ∀i ∈ [[1, D]], (u� v)i = uivi. (1.7)

Hence, the image sources lie on eight distinct translated orthogonal lattices of common mesh

size 2Lx × 2Ly × 2Lz. The same construction can be done in 2D. For instance, the indices

corresponding to the image-sources r1, r2 of Fig. 1.1 are respectively q = (0, 1), ε = (1,−1)

and q = (1, 0), ε = (−1,−1).

Assuming that the walls of the room are perfectly reflecting, the impedance boundary conditions

are replaced by homogeneous Neumann boundary conditions on ∂Ω. The pressure field p is then

solution to the following system:





1
c2
∂2
t p(r, t)−Δp(r, t) = δ0(t)δrsrc(r) (r, t) ∈ Ω× R

p(r, t) = ∂tp(r, t) = 0 (r, t) ∈ Ω× R∗
−

∂np(r, t) = 0 (r, t) ∈ ∂Ω× R+

(N-W)

The ISM models the pressure field in a perfectly reflecting room as an infinite sum of spherical waves:

p(r, t) =
�

q∈Z3,ε∈{−1,1}3
pq,ε(r, t) =

�

q∈Z3,ε∈{−1,1}3

δ(t− �rq,ε − r�/c)
4π�rq,ε − r� , (r, t) ∈ R3 × R+. (1.8)

Note that pq,ε is a solution to the free-field wave equation with a point source located at rq,ε, i.e. a

free-field Green function. This representation of the pressure field is thus solution to the following

free-field wave equation:

1

c2
∂2
t p(r, t)−Δp(r, t) = δ0(t)

�

q∈Z3,ε∈{−1,1}3
δrq,ε(r), (r, t) ∈ R3 × R+. (1.9)

Allen and Berkley proved in [5] that the pressure field given by formula (1.8) is indeed solution to

System (N-W), using a modal decomposition and a frequency-domain formulation. This result is

formalized in Section 2.1.1, and a new time-domain proof of this proposition is given in Chapter 4.

1.1.3 Extension to absorbing walls

The most restricting assumption of the standard ISM is that the room is perfectly reflecting. The

pressure field appears as a succession of impulses (Dirac masses) in time, and the energy carried

by the impulses contained in a sliding time window grows linearly as time increases. Indeed, the

number of reflections grows quadratically with the distance to the source whilst the propagation

attenuation is only linear with respect to the distance. This leads to a non-physical representation

of the pressure field as its energy diverges when time goes to infinity. In their same paper [5], Allen
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and Berkley proposed to assign an attenuation coefficient to each image source in order to model

the absorption of the walls. An absorption coefficient αl ∈]0, 1[, 1 ≤ l ≤ 6 is associated to each wall,

and the amplitude a for an image source of order n is given by :

a =
n�

l=0

�
1− αnl

(1.10)

where nl is the index of the wall corresponding to the l-th reflection. This ensures a geometric

decrease of the amplitude of the image sources with the order of reflection. For high orders of

reflection the amplitude of the image sources becomes negligible and the pressure field is well

approximated by a finite sum of image sources. Denoting by rk, k ∈ [[1,K]] the locations of the

remaining image sources, the pressure field is then given by:

p(r, t) =

K�

k=1

ak
δ (t− �r − rk�2 /c)

4π�r − rk�
, (r, t) ∈ R3 × R+ (1.11)

which is a solution to the modified free-field wave equation:

1

c2
∂2
t p(r, t)−Δp(r, t) = δ0(t)

K�

k=1

akδrk(r), (r, t) ∈ R3 × R+. (1.12)

Further extensions of this model include considering frequency-dependent coefficients αl and source

directivity, see for instance [138, 54]. We will only consider the case of constant coefficients here. This

method falls into the category of geometric acoustic methods and provides an accurate approximation

of the pressure field at high frequency when the wavelength is sufficiently smaller than the dimensions

of the room [96]. This property makes geometric acoustic methods a good substitute to expensive

wave-based simulators, such as finite elements, at high frequency.

1.2 Sparse measure reconstruction

We introduce here a mathematical framework for sparse measure recovery from noisy measurements,

used, e.g., in [32, 60, 53, 146]. The inverse problem considered in this part will be to recover a

sparse measure ψ0 =
�K

k=1 a0,kδr0,k from finite, noisy, filtered measurements x0. The measurement

process will be modeled by a linear operator Γ on such measures. Formally speaking, we thus want

to recover ψ0 from a vector x0 = Γψ0 + e. We will now define each of these terms more rigorously.

1.2.1 The space of Radon measures

Let X be R3 or a connected compact subset of R3.
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Definition 1.2.1. We denote by M(X) the space of bounded Radon measures on X, which is

defined as the dual space of C0(X), the space of continuous functions on X that vanish at infinity,

endowed with � �∞.

In particular, M(X) contains the weighted sums of Dirac masses. Indeed, a Dirac can be defined

as a linear form on C0(X) with δr : f �→ f(r). Depending on context, δr will either refer to a Dirac

mass in the distributional sense or in the sense of the Radon measures.

The dual norm of � �∞ is called the total variation norm:

Definition 1.2.2. The total variation norm of a measure ψ ∈ M(X) is:

�ψ�TV = sup

��

X
fdψ; f ∈ C0(X), �f�∞ ≤ 1

�
. (1.13)

Remark 1.2.1. In particular, if ψ =
�K

k=1 akδrk takes the same form as the source term in equation

(1.12), its total variation norm is the �1 norm of the corresponding amplitude vector a ∈ RK , i.e.

�ψ�TV =
�K

k=1 |ak|. The total variation norm can then be seen as a continuous counterpart of the

�1 norm. Moreover, similarly to the �1 norm it will act as a sparsity inducing regularizer which

favors solutions composed of finite sums of Dirac masses.

M(X) is then a Banach space when endowed with the total variation norm. The subdifferential

of the total variation norm is given in the following proposition:

Proposition 1.2.1. Let ψ ∈ M(X), then the subdifferential of the total variation norm at ψ is:

∂�ψ�TV =

�
f ∈ C0(X); �f�∞ ≤ 1,

�

X
fdψ = �ψ�TV

�
. (1.14)

In particular, if ψ =
�K

k=1 akδrk , then:

∂�ψ�TV = {f ∈ C0(X); �f�∞ ≤ 1, ∀k ∈ [[1, K]], f(rk) = sign(ak)} . (1.15)

See [131] for more details on Radon measures.

1.2.2 The BLASSO optimization problem

The observation operator Γ considered here will take the following form:

Γ :
M(X) −→ RD

ψ �→
��

X ϕidψ
�
i
.

(1.16)

In practice, we consider kernels that verify the following assumptions:





∀i ∈ [[1, D]], ϕi ∈ C2(X)

∀x ∈ RD, r �→ �D
i=1 xiϕi(r) vanishes at infinity

∀k ∈ [[0, 2]], �Dkϕi�∞ < +∞.

(1.17)
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In order to reverse Γ and recover the input measure ψ0, we minimize an energy composed of a

least-squares data compliance term, and a sparsity favoring regularization:

min
ψ∈M(X)

�x0 − Γψ�2 + λ�ψ�TV. (Bλ)

Problem (Bλ) is coined Beurling-LASSO [48] or BLASSO in the literature and can be seen as

an extension of the finite dimension LASSO to the infinite-dimensional space of Radon measures.

The existence of solutions to Problem (Bλ) was proven in [25] for more general operators under

a continuity hypothesis on Γ. The addition of the total variation regularization guarantees the

existence of at least one sparse solution, i.e. a solution that is a finite sum of weighted Dirac masses

[151].

Remark 1.2.2. When e = 0 and λ = 0, one considers the following constrained problem:

min
ψ∈M(X), Γψ=x0

�ψ�TV. (1.18)

This optimization problem can be seen as a basis pursuit [38] problem over the space of Radon

measures. In particular, when λ vanishes to zero the solution of (Bλ) converges to a particular

solution of (1.18) [60].

By considering the first-order optimality conditions and the subdifferential of the total variation

norm given in (1.14), we get a characterization of the sparse, finite solutions to Problem (Bλ):

Proposition 1.2.2. Let ψ =
�K

k=1 akδrk . Then ψ is a solution to Problem (Bλ) if and only if the

function η := 1
λΓ

∗(x0 − Γψ) verifies:

�η�∞ ≤ 1 and ∀k ∈ [[1, K]], η(rk) = sign(ak). (1.19)

The function η is called a dual certificate. Another powerful notion is the vanishing derivatives

precertificate ηV introduced in [60]. Under some hypotheses on ηV we can ensure stable recovery

of the support of the true measure ψ0 in the presence of noise. We will now quickly define each of

these terms for our application case. More detailed definitions can be found in [60].

Let r = (r1, . . . , rK) ∈ XK . We begin by defining a finite dimensional operator Γr that can be

expressed in matrix form by Γr =
�
A(r) B(r)

�
where

A(r) =




ϕ1(r1) . . . ϕ1(rK)
...

...

ϕD(r1) . . . ϕD(rK)


 , (1.20)
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and

B(r) =




∂xϕ1(r1) . . . ∂xϕ1(rK) ∂yϕ1(r1) . . . ∂yϕ1(rK) ∂zϕ1(r1) . . . ∂zϕ1(rK)
...

...
...

...
...

...

∂xϕD(r1) . . . ∂xϕD(rK) ∂yϕD(r1) . . . ∂yϕD(rK) ∂zϕD(r1) . . . ∂zϕD(rK)


 .

(1.21)

In the following we assume that x0 is defined by the amplitude and location vectors a0r0, i.e.

x0 = Γ(
�K

k=1 a0,kδr0,k).

Definition 1.2.3. Suppose that Γr0 has full rank and let v∗ = (Γ+
r0)

∗
�
sign(a0)

0R3D

�
, where r0 =

(r0,1, . . . , r0,K), a0 = (a0,1, . . . , a0,K), and (Γ+
r0)

∗ denotes the adjoint of the pseudoinverse of Γr0.

We then define the vanishing derivatives precertificate as ηV = Γ∗v∗.

Proposition 1.2.3. The vector v∗ is the unique solution to:

min
v∈R4D

�v�2 such that: (Γ∗v)(r0,k) = sign(a0,k), D(Γ∗v)(r0,k) = 0 ∀k ∈ [[1, K]]. (1.22)

Remark 1.2.3. The precertificate ηV thus interpolates the sign of the true measure at each spike’s

location, with vanishing derivatives. In the noiseless case, i.e. e = 0, the condition �ηV �∞ ≤ 1,

ensures the uniqueness of the solution to Problem (1.18). In our case Γ∗ takes the following expression:

an operator on RD that takes its values in C0(X):

Γ∗ :
RD −→ C0(X)

v �→ r �→ �D
i=1 viϕi(r).

(1.23)

We now define a criterion on ηV that implies the stable recovery of the support from noisy

measurements.

Definition 1.2.4. We say that ηV is non-degenerate if:

�
detD2ηV (r0,k) �= 0 ∀k ∈ [[1,K]]

|ηV (r)| < 1 if r /∈ {r0,1, . . . r0,K}.
(1.24)

This condition is hard to prove in practice for our operator, in part because X ⊂ R3. However, it

can be checked numerically and plotting the precertificate gives some insight on the complexity and

behavior of the inverse problem. We finally write one of the main results in [60], which motivates

the study of ηV .
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Theorem 1.2.1. Assume that Γr0 has full rank, the kernels ϕi verify (1.17) and ηV is non-degenerate.

Then there exist two constants α, λ0 > 0 such that for all λ, e verifying 0 < λ ≤ λ0 and
�e�2
λ ≤ α,

there exists a unique solution ψ∗ to (Bλ). Moreover, ψ∗ takes the form ψ∗ =
�K

k=1 a
∗
kδr∗

k
, and if we

take λ = 1
α �e�2 we have:

�a0 − a∗�∞ = O(�e�2) and �r0 − r∗�∞ = O(e). (1.25)

In other words, if the noise level �e�2 is low enough and λ is chosen proportionally to �e�2,
the solution to (Bλ) is a finite sparse measure that contains as many spikes as the true measure,

and it converges to the true measure as λ and �e�2 vanish to zero. The idea behind the proof of

this theorem and the construction of the precertificate ηV is the following: one can use the implicit

function theorem to prove the existence of a discrete measure ψλ,e, composed of the correct number of

spikes, that interpolates the sign of the true measure at the spike locations with vanishing derivatives.

The locations and amplitudes are a function of the noise level and regularization parameter, and one

can show that ηλ := 1
λΓ

∗(x0−Γψλ,e) converges to ηV when the noise level and λ vanish to zero. The

assumptions of the theorem then ensure that �ηλ�∞ ≤ 1 in the limit, hence that the corresponding

measure verifies the optimality conditions.

1.2.3 Numerical optimization on measures

We describe in this section a method to optimize directly on the space of measure, namely the Frank-

Wolfe algorithm [68] or conditional gradient descent. Frank-Wolfe can be applied to constrained

optimization problems of the type:

min
ψ∈C

f(ψ) (1.26)

where f is a continuously differentiable function and C is a compact convex subset of a Banach space.

In our case, C = M(X) and f : ψ �→ �x0 − Γψ�2 + λ�ψ�TV is the BLASSO energy functional. The

main idea of the algorithm is to consider a linearization of the cost function f at each iteration (see

[85] for an illustration).

The condition at line 3 of the algorithm translates the first order optimality condition. The step

Algorithm 1 Frank-Wolfe algorithm

1: for i = 0, . . . , L do
2: ψlin ← argminψ∈C f(ψ(i)) +Df(ψ(i))(ψ − ψ(i))

3: if Df(ψ(i))(ψlin − ψ(i)) = 0 then
4: Stop.
5: end if
6: Update step γ(i)

7: ψ(i+1) ← ψ(i) + γ(i)(ψlin − ψ(i))
8: end for
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(i) is updated using the rule γ(i) = 2
i+2 or by doing a standard line search. Convergence guarantees

can be obtained, with a convergence rate in O(1/i) for convex functions (see for instance [123]). In

other words, if ψ∗ is optimal for Problem (1.26), there exists a constant C such that:

∀i ∈ N∗, f(ψ(i))− f(ψ∗) ≤ C

i
. (1.27)

The measure ψ(i+1) can be replaced by any other measure ψ ∈ C such that f(ψ) ≤ f(ψ(i+1)), without

losing the convergence properties. This property is leveraged in [53] by adding a non-convex local

search at the end of each iteration in order to refine the results. The algorithm obtained by adding

this so-called sliding step is guaranteed to converge in a finite number of iterations.

Note that Frank-Wolfe can not be directly applied to the BLASSO as M(X) is unbounded

and the energy Tλ is not differentiable due to the regularization term. This issue is addressed in

[53] by solving an equivalent problem on an epigraphical lift, and the usual convergence results

apply. Moreover, the linearized problem at line 2 can be resolved by maximizing the 3D function

η(i) = Γ∗(x−Γψ(i)), which can be seen as a numerical dual certificate. More details on this algorithm

will be given in Section 2.3.3.

1.3 State of the art

1.3.1 Acoustic source localization

The problem of recovering image sources from measured audio signals can be viewed as a generalization

of many tasks that have been independently investigated in the acoustic signal processing literature

over the past decade. Estimating the absolute or relative times of arrival of image sources at

microphones, also known as early echoes, is the focus of [91, 45, 55, 134] and can be of independent

interest in the context of echo-aware signal processing, as reviewed in [33]. Localizing reflectors

in the room is equivalent to localizing their corresponding first-order image source together with

the true source. Most studies on this first estimate echoes and/or directions of arrival of image

sources, then label and sort them, and finish by triangulation [141, 8, 139, 106, 58, 84, 126, 61, 105].

Alternatively, [129] proposes a more direct approach based on sparse optimization. Retrieving the

coefficients ak associated to reflectors in frequency bands is studied in [133] and [56], as they relate

to their acoustic impedance. Finally, recovering image sources within a given range is the focus of

recent non-parametric sound-field reconstruction methods [92, 46]. All these tasks can either be

performed using RIRs as in [129, 8, 58, 91, 45, 84, 126, 61, 128, 105, 56] or blindly using unknown

source signals as in [141, 8, 139, 106, 92, 55, 46, 134, 133].

While the above referenced studies developed a rich variety of methodologies, nearly all of them

have in common the definition of a discrete grid in 1D time [141, 139, 106, 8, 58, 91, 45, 84, 126,

61, 105, 134, 56], in 2D space [139, 106, 128, 92, 46] or in 3D space [129], as well as the use of

sparse optimization techniques and/or peak-picking techniques over such grids. This on-the-grid
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paradigm suffers from intrinsic limitations. First, in 3D, the required grid size grows cubically in

the desired range and precision. This fundamentally limits the accuracy of current sparse methods

under reasonable computational constraints [129, 92, 46], though some works aim at reducing this

cost [93]. Second, time-domain peak-picking fails when peaks are overlapping and distorted due to

filtering effects such as the application of a low-pass filter. Existing methods address this by using

ad-hoc source and microphone placements inside the room [8, 58, 84, 126, 61, 105]. Third, sparse

optimization over a discrete grid fundamentally suffers from the so-called basis-mismatch problem

[39, 53], requiring the use of ad-hoc post-processing steps.

In parallel, recent theoretical and methodological advances on the general problem of gridless

spike recovery off-the-grid have emerged [48, 32, 60, 115, 53, 146], notably motivated by applications

to super-resolution in, e.g., fluorescence microscopy [82, 53]. The theoretical gridless spike recovery

problem can be approached either by Prony’s method and its derivatives, such as MUSIC [132]

(MUltiple SIgnal Classification), ESPRIT [130] (Estimation of Signal Parameters by Rotational

Invariance Technique), or by variational methods. While some extensions to noisy data [44, 154]

and multivariate measures [122, 94] were developed, Prony’s type methods are better suited to

noiseless, 1D measurements. On the other hand, gridless variational methods aim to resolve

optimization problems on a space of measures, without prior knowledge on the number of spikes.

These problems can be seen as convex relaxations of similar finite dimension, grid-based problems to

infinite dimensional convex optimization problems. We will focus here on these variational methods,

which generalize well to any kind of measurement operator and noise. More precisely, we will consider

the BLASSO optimization problem (Bλ) as defined in section 1.2.2, which has received considerable

attention in recent years, both in theoretical and algorithmic work. A first theoretical issue is to

find conditions to ensure exact support recovery of the ground truth measure in the noiseless case.

It then follows naturally to study how the solution of (Bλ) with noisy measurements relates to

the solution of the noiseless case. The seminal work of Candès and Fernandes-Granda [32] on the

1D low-pass filter vastly contributed to opening the field by proving that exact support recovery

could be achieved under a minimum separation constraint between spikes, with latter expansions

to noisy measurements [31, 15, 65]. These latter works provide error bounds on the locations of

the recovered spikes, but few guarantees on the structure of the reconstructed measure. Duval and

Peyré show in [60] that under certain hypotheses on the certificates of the dual problem, λ and

the measurement noise, there exists a unique solution to the noisy BLASSO that contains as many

spikes as the input measure. Additionally, the recovered measure converges to the exact measure

for the weak-∗ topology when the noise and λ vanish to 0. Note that a particular case of interest

focuses on input measures for which the spikes cluster around a set point. Exact noiseless support

recovery and stable noisy reconstruction can be achieved when the amplitudes of the spikes are real

and positive under some non-degeneracy condition, see for instance [52] in 1D or [124] for higher

dimensions, however in our case the spikes will be well-separated in space.

Several successful numerical approaches have been developed over the years in order to solve
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the super-resolution problem off the grid. We can cite amongst these methods the semi-definite

programming (SDP) formulation [32] and its extension to higher dimensions using Lasserre hierarchy

[102, 49], optimal transport theory and particle gradient descent [41, 40], over-parametrized projected

gradient descent [147, 28] and finally the Frank-Wolfe algorithm (also called the conditional gradient

descent) [68, 25, 53, 23]. Except for a small number of recent studies on blind echo estimation

[55] and anechoic beamforming [37] or covariance matrix fitting [36], these advances seem not to

have received significant attention from the audio and acoustics communities yet. The algorithm

for acoustic source localization developed in this thesis is an adaptation of the sliding Frank-Wolfe

algorithm [53]. A quick description of Frank-Wolfe was given in section 1.2.3.

Finally, one can also consider deep-learning methods for localizing acoustic sources. These

methods are beyond the scope of this thesis, and an extensive review of the vast and recent

associated literature can be found in [77].

1.3.2 Room geometry estimation

The key physical phenomenon making room geometry estimation from audio measurements possible

at all is that of early acoustic reflections. When sound propagates from a source inside a room, it

is reflected on surfaces before reaching microphones. This materializes into delayed and filtered

copies of the emitted signal inside the measured time-domain signals, that are commonly referred

to as echoes. The time of arrival (TOA) of an echo at a microphone is proportional to the length

of the corresponding reflected propagation path, while the time differences of arrival (TDOAs)

of an echo between two or more microphones are linked to the direction of arrival (DOA) of the

corresponding reflected propagation path. The core idea of nearly all existing methods in the field is

to estimate such quantities from measured signals, to prune, sort and label echoes, and to solve for

the acoustic-scene geometry based on the recovered information. A literature review of the works

tackling some or all of these steps is proposed in the remainder of this section.

The reflector associated to the TOA of a first-order propagation path from a source to a

microphone is known to be tangential to an ellipsoid whose focci are the corresponding source and

microphone positions. Assuming the latter are known, a number of early approaches, referred to

as direct localization in [126], have hence focused on detecting, pruning, clustering and localizing

tangent lines to multiple ellipses in the 2D case [9, 67, 29, 30, 66, 8], or tangent planes to multiple

ellipsoids in the 3D case [117, 127, 126]. An alternative to this is to combine the TOAs and DOAs

of echoes to obtain the 3D locations of their associated image sources. Reflectors can then be

localized as the bisecting planes between a true source and its first order image sources, as in

[57, 129, 58, 106, 125, 126, 128, 105, 150]. This approach is referred to as image source reversion in

[126].

Several early works in the field assume that TOAs are trivial to estimate from room impulse

responses (RIRs) using peak picking [9, 8] or consider them readily available [57, 117, 58, 114, 108,

84, 125]. This would be the case if microphones, sources and reflectors had perfectly flat responses
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up to very high frequencies, but this is never true in practice. This band-limitedness results in a

significant smearing of echoes, blurring the location of their peaks and making them overlap and

interfere with each other in the time domain. An analogous phenomenon occurs in the 1D and 2D

DOA domains, and is reinforced by the limited diameter of microphone arrays. Interference is all the

more present since echoes are, by definition, strongly correlated with each other and with direct-path

signals. Due to this, the tasks of TOA, TDOA and DOA estimation of early acoustic reflections has

been the focus of significant research effort. The vast majority of existing techniques proceed by

some form of peak-picking over a discretized time domain [67, 141, 30, 66, 127, 126, 61, 106, 91, 45],

DOA domain [29, 139, 127, 105, 134], joint TOA-DOA domain [145, 128, 150], 3D space [129] or ray

space [95, 109]. To improve the separation and sharpness of objects inside such discrete grids, some

methods leverage sparsity-based techniques [129, 91, 45, 18, 150, 134] or ad-hoc image processing

tools [145, 109, 128, 105]. Despite these efforts, operating over discrete time or space suffers from

intrinsic limitations, which were mentioned in the last section, namely peak separability, a large grid

volume in the 3D case, and basis-mismatch.

There are a few notable exceptions to this discrete grid-search paradigm [108, 158, 142, 55]. In

[108], a class of 2D room geometries is selected (rectangle, L-shaped) and the continuous shape

dimensions are directly optimized by minimizing a distance between measured and image-source

TOAs, using a genetic algorithm. In [158], the wall- and source-to-wall distances in a 1D room

are continuously optimized based on resonant frequencies. In [142], non-linear minimization of a

likelihood-based cost function in the spherical harmonics domain is utilized to jointly estimate the

continuous DOA of a fixed number of reflectors. In [55], the TDOAs of echoes are blindly estimated

in the continuous time domain by leveraging an infinite-dimensional convex relaxation of the problem

and the sliding Frank-Wolfe algorithm [53].

Many of the above-reviewed methods estimate TOAs and/or TDOAs independently across

individual channels and/or channel pairs. To leverage these quantities for geometry estimation,

they need to be associated to reflectors, a procedure referred to as echo sorting. This difficult

combinatorial problem is the focus of [57, 58, 84]. The need for echo sorting is bypassed by methods

that directly localize image sources from RIRs [129, 106, 142, 126, 128, 105, 150, 134].

Once image sources are localized, a necessary subsequent step is to label them, namely, identify

their order of reflection. In the literature, labeling is typically performed by ad-hoc algorithms that

exploit the geometrical constraints at hands, e.g., [129, 58, 125, 105]. They are often tailored to

the specific class of source-microphone-room setup under consideration, and may hence be hard to

generalize.

Complementarily to approaches tackling room geometry estimation, a few approaches are focused

on estimating surface absorption coefficients or echo amplitudes from recorded signals given the room

geometry or image source positions [118, 10, 18, 133, 119, 56]. The approaches in [118, 10, 18, 119]

proceed by discretizing the wave equation in both time and space to solve the corresponding

sparse inverse problem. The computational burden of discretizing limits these approaches to either
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frequencies below 500 Hz [118, 10] or 2D rooms [18, 119]. In contrast, the approach in [133] estimate

echo amplitudes blindly given their continuous TOAs via least-square optimization. To tackle

the high sensitivity of these techniques to geometrical errors, [56] formulates the problem in the

magnitude short-time Fourier domain and robustly solves the corresponding non-linear inverse

problem with the help of random sampling consensus.

Finally, a relatively recent class of methods replaces some or all of the previously described steps

by making use of virtually-supervised deep learning [157, 149, 156, 19]. While promising results

have been reported, these approaches are currently restricted to the acoustic setups simulated in

their training data. Moreover, the ability of various training simulation strategies to generalize to a

broad enough range of real measurements is an open question that calls for further investigation.

We close this section by observing that most of the above-referenced methods are only tested on

a restricted set of geometries. For instance, the methods in [95, 9, 67, 141, 117, 57, 29, 30, 66, 139,

108, 109, 145, 106, 58, 127, 134] are tested on less than 3 simulated or real room geometries, and the

experimental setups in [129, 66, 139, 106, 126, 61, 128, 105] have in common a favorable positioning

of devices, such as a microphone array near the room center, or sources near the reflectors of interest.

Combined with the general absence of publicly available code, this makes existing techniques difficult

to reproduce or compare.



Chapter 2

Image source estimation

We model in this chapter the cuboid room reconstruction problem as an inverse problem on image-

source locations. We provide a theoretical analysis of the finite dimensional formulation of the

problem, and present an algorithm to solve its convex relaxation on the space of Radon measures.

The numerical performance of the proposed method is then evaluated on synthetic data. This chapter

is currently being prepared in article format for submission to an applied mathematics journal.

53
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2.1 Modeling of the inverse problem

2.1.1 The direct problem

Consider a rectangular room Ω with (positive) dimensions Lx, Ly, Lz, and a sound source positioned

at rsrc within the room. Let rmic �= rsrc denote a microphone location distinct from the source

position. The Room Impulse Response (RIR) for this configuration is the signal recorded at

microphone rmic when the source emits an ideal impulse at time t = 0. In other words, an RIR

represents the measurement at a given microphone location of the Green’s function for the wave

equation. A multichannel RIR refers to a collection of RIRs recorded at various microphone locations

for a single source position.

The pressure field p resulting from a perfectly impulsive source located at rsrc is a solution to the

inhomogeneous wave equation (2.1):

�
1
c2
∂2
t p(r, t)−Δp(r, t) = δ(t)δ(r − rsrc) (r, t) ∈ Ω× R

p(r, t) = ∂tp(r, t) = 0 (r, t) ∈ Ω× R∗
−,

(2.1)

where c > 0 is the speed of sound.

In the following, we will use the modified image-source model as described in Section 1.1.3.

Recall that the ISM models the case of perfectly reflecting walls, which corresponds to setting a

time-constant β(·) in Eq. (13) i.e., applying Neumann boundary conditions on ∂Ω. The pressure

field p is then solution to System (N-W), restated here:





1
c2
∂2
t p(r, t)−Δp(r, t) = δ(t)δ(r − rsrc) (r, t) ∈ Ω× R

p(r, t) = ∂tp(r, t) = 0 (r, t) ∈ Ω× R∗
−

∂np(r, t) = 0 (r, t) ∈ ∂Ω× R
(N-W)

Remark 2.1.1. Let us highlight that p also solves an equivalent formulation. Let us set �c =
1
c2
∂2
t −Δ, let ϕ1 denote a smooth function in Ω, and consider ϕ the unique solution of the wave

equation 



�cϕ(r, t) = 0 (r, t) ∈ Ω× R+

ϕ(r, 0) = 0, ∂tϕ(r, 0) = ϕ1(r) r ∈ Ω

∂nϕ(r, t) = 0 (r, t) ∈ ∂Ω× R+.

(2.2)

Let us introduce the function ψ defined by ψ(r, t) = H(t)ϕ(r, t), where H is the so-called Heaviside

function. Then, seeing ψ as a distribution, one gets

�cψ(r, t) = δ(t)ϕ1(r), (r, t) ∈ Ω× R (2.3)
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according to the jump rule for distributions [70, Chapter 2]. Let �p be the solution of





�c�p(r, t) = 0 (r, t) ∈ Ω× R+

�p(r, 0) = 0, ∂t�p(r, 0) = δ(r − rsrc) r ∈ Ω

∂n�p(r, t) = 0 (r, t) ∈ ∂Ω× R+.

(2.4)

Using the representation formula through Green kernels and denoting by ∗r the spatial convolution,

for any choice of spatial source term ϕ1 the equality p ∗r ϕ1 = �p ∗r ϕ1 stands for positive times, thus

p is also solution to System (2.4).

It is notable that the analytical solution to the system (N-W) can be explicitly derived using the

image source method (see Section 1.1). The distributional solution to system (N-W) can then be

expressed as a series of functions, with each term corresponding to a virtual source. In [5], a formal

proof is provided for expressing the solution to (N-W) using the image-source method, leading to

the following result:

Theorem 2.1.1 (Image source method). The solution p to (N-W) in the sense of distributions is

given by:

p(r, t) =
�

rq,ε∈IΩ
prq,ε(r, t), with prq,ε(r, t) =

δ(t− �rq,ε − r�/c)
4π�rq,ε − r� , (r, t) ∈ R3 × R+, (2.5)

where IΩ is defined in (1.6). An alternative proof of Theorem 2.1.1 is given at the end of this

part in Chapter 4.

Each prq,ε is a Green kernel for the 3D wave equation in free-field. The sum can be interpreted

as a superposition of sound waves emitted by a set of point sources located at the positions defined

in (1.6). Each image source represents a specific path of specular reflections of the original source on

the room’s walls and is constructed by iteratively reflecting the source across the encountered walls.

It is worth mentioning that the geometric construction of image sources can be generalized to

any polyhedral room configuration [22] by incorporating additional source visibility constraints.

However, the image source technique provides the sound field solution to system (N-W) only for a

very limited number of room geometries, including cuboid rooms, as stated by Theorem 2.1.1.

Remark 2.1.2. The image source technique does not account for general admittance conditions

such as (13). In practice, the heuristic defined in Section 1.1.3 is often used, where a reflection

coefficient is assigned to each wall based on its material properties and an amplitude coefficient aq,ε

is added to each impulse source term in equation (2.5) to model wall absorption. Whilst the resulting

sound field solves the free-field wave equation given by (1.12), the addition of these amplitudes

breaks the direct connection to the original wave equation (N-W).
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2.1.2 A finite dimensional inverse problem

We aim to recover the positions of the image sources based on the pressure field p measured at a

finite number of discrete microphones (microphones) in the room.

The pressure field p inside the room. Following the extended ISM model presented in Section

1.1.3, we consider p to be the solution of a free-field wave equation:

1

c2
∂2p

∂t2
(r, t)−Δp(r, t) = ψ(r)δ(t), (r, t) ∈ R3 × R+ (2.6)

where ψ(r) =
�+∞

k=1 akδrk(r), rk being the locations of the image sources ranging over the set IΩ

defined by (1.6) and the ak are in (0, 1) for every k ∈ N∗, and are defined according to the heuristic

described in Section 1.1.3. Therefore, the pressure field p reads

p(r, t) =
+∞�

k=1

ak
δ(t− �rk − r�2 /c)

4π �rk − r�2
, r ∈ R3. (2.7)

Observation of the pressure field at each microphone. Let M ∈ N \ {0} be the number of

used microphones and

EM = {rmic
m , m ∈ [[1,M ]]} (2.8)

be the set of microphone positions. In order to avoid the singularity of the Green kernel at each

microphone location, we assume that for all k ∈ N∗, rk /∈ {rmic
m }m∈[[1,M ]]. In our model, we need to

account for three limitations:

• Microphones are unable to measure very high frequencies.

• Microphones cannot measure continuous signals.

• The source amplitudes decrease geometrically with the order of reflection, meaning that if k is

large, ak can be considered negligible. Therefore, we will assume that:

∃K ∈ N∗ | ∀k ≥ K + 1, ak = 0.

Let us clarify the first and second limitations. The measured pressure field at each microphone is

obtained by convolving p in time with a continuous filter κ that models the microphone’s response.

In our case we consider a low-pass filter that models the limitation of measuring only low-frequency

signals. The resulting signal is then discretized into N time steps according to a fixed sampling

frequency fs, ranging from 0 to Tmax = (N − 1)/fs. Thus, the microphone m provides a sampled
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version of the signal in the form of a vector (xm,n)0≤n≤N−1 given by

xm,n =
�
κ ∗ p(rmic

m , ·)
�
(n/fs) =

K�

k=1

ak
κ(n/fs −

��rk − rmic
m

��
2
/c)

4π �rk − rmic
m �2

. (2.9)

for every (m,n) ∈ [[1,M ]]× [[0, N − 1]].

This leads us to define an observation function mapping a set of K source amplitudes a =

(ak)1≤k≤K and positions r = (rk)1≤k≤K to an ideal observation vector:

∀(a, r) ∈ (R+)
K × (R3 \ EM )K , ΓK(a, r) =

K�

k=1

akγ(rk), (2.10)

where the function γ : R3 \ EM → RMN is defined component-wise by:

∀(m,n) ∈ [[1,M ]]× [[0, N − 1]], ∀r ∈ R3 \ EM , γm,n(r) =
κ(n/fs −

��r − rmic
m

��
2
/c)

4π �r − rmic
m �2

. (2.11)

Remark 2.1.3. In our applications, the amplitudes are contained in [0, 1] (see Section 1.1.3).

However, we generalize the problem here with unbounded coefficients.

Let us denote by B
�
rmic
m , cTmax

�
the open ball of radius cTmax centered at rmic

m . Let

C =

M�

m=1

B (rmic
m , cTmax) \ EM (2.12)

be the set of spike positions that are observable by every microphone in the time interval, i.e. the

set of sources for which every time of arrival at the microphones is inferior to the final time Tmax.

Since the number of Dirac measures (or ”spikes”) to reconstruct is assumed to be lower than K, the

reconstruction task can be framed as a least squares optimization problem:

inf
(a,r)∈OK

T (a, r) with T (a, r) =
1

2

�����x−
K�

k=1

akγ(rk)

�����

2

2

and OK = RK
+ × CK (PK)

where x = (xmn)(m,n)∈[[1,M ]]×[[0,N−1]] is the target observation vector. In the following section, we

discuss the well-posedness of this problem. In particular, we will demonstrate that, without further

constraints on the problem data, any outcome is possible (existence or non-existence). This will lead

us to consider constraining the problem.
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2.2 Analysis of Problem (PK)

2.2.1 Well-posedness issues

In this section, we investigate the existence of solutions for problem (PK). We show that, without

additional assumptions on the measurements obtained from the microphones, which may include

noise in practice, any scenario is possible. In particular, we present two situations: one where

problem (PK) has a solution, and another where it does not. The answers provided in this section

are partial, as the conclusions are derived within frameworks that are not necessarily physical.

Notably, two characteristics of the problem can lead to non-existence:

• The function γ is singular at the points where the microphones are placed.

• No regularization term has been added to the least squares function T .

This will lead us to consider a slightly modified version of problem (PK).

Choice of the low-pass filter κ. In numerical applications, we will use an ideal low-pass filter

given by:

κlp : t �→ sinc(πfst), (2.13)

where fs is both the sampling frequency and the cutoff frequency of the filter. This filter is designed

to pass frequencies up to fs/2, as the Fourier transform of κlp is a rectangle function of width 1
2 .

Another commonly used filter is the Gaussian one, defined by

κσ : t �→ e−
t2

2σ2 . (2.14)

An example of non-existence. The existence of a solution to Problem (PK) is not guaranteed in

general. Indeed, the spikes of a minimizing sequence for Problem (PK) may converge to microphone

positions. In this paragraph, we detail the construction of counterexamples to the existence. Let M ,

N be two integers larger than 2 and x = (xmn)(m,n)∈[[1,M ]]×[[0,N−1]] denote the synthetic observation

vector defined by �
∀m ∈ [[2,M ]], ∀n ∈ [[0, N − 1]] xm,n = 0

∀n ∈ [[0, N − 1]] x1,n = ακ(n/fs)
(2.15)

where α > 0. Then if κ is continuous and κ(0) > 0, the optimal value for Problem (PK) is zero.

Indeed, let (al, rl) denote the sequence defined by

�
∀l ∈ N∗, al1 =

4πα
l , rl1 = rmic

1 + u/l

∀l ∈ N∗, k ∈ [[2, K]] alk = 0, rlk = rmic
1 + u/l

(2.16)

where u is an arbitrary unit vector. For l large enough ΓK(al, rl) is well defined and ΓK(al, rl)

converges to x as l goes to infinity. To further simplify this example, assume that K = 1, i.e. we
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can place only one spike. Assume by contradiction that there exists a solution (a, r) = (a1, r1) to

problem (PK) such that a1 > 0 and r1 �= rmic
1 . Since the optimal value is 0, a1γ1,n(r1) = ακ(n/fs)

for all n. Let t1 =
�r1−rmic

1 �
2

c > 0 be the source’s time of arrival at rmic
1 . We get:

a1
κ(n/fs − t1)

4πct1
= ακ(n/fs), ∀n ∈ [[0, N − 1]]. (2.17)

In particular, evaluating this expression at n = 0 yields a1
4πct1

= ακ(0)
κ(t1)

, and (2.17) can therefore be

rewritten as:
∀n ∈ [[0, N − 1]], κ(n/fs − t1) = κ(n/fs)

κ(t1)

κ(0)
. (2.18)

Relation (2.18) is not true in general for all values of n, depending on the choice of the filter κ. For

instance if κ = κlp as defined in (2.13), then (2.18) yields κ(n/fs − t1) = 0 for every n ∈ [[1, N − 1]],

which is false if fst1 is not an integer.

If κ = κσ (Gaussian filter), we get by definition:

κσ(n/fs − t1) = κσ(n/fs)κ
σ(t1)e

nt1
fsσ2 . (2.19)

As κσ(0) = 1, (2.18) leads to e
nt1
fsσ2 = 1 and t1 = 0, i.e. r1 = rmic

1 . For both filter types we get a

contradiction, thus problem (PK) does not admit a solution in that case.

Existence may arise. We now provide an existence criterion for Problem (PK) under the

assumption that the operator ΓK is lower bounded in some sense:

Definition 2.2.1. ΓK is said to be amplitude lower-bounded if there exists a constant C > 0

such that:

∀(a, r) ∈ OK ,
��ΓK(a, r)

��
2
≥ C

K�

k=1

ak. (2.20)

In what follows, we will make the following general assumption on the kernel κ:

(i) The function κ is continuous on R, such that κ(0) > 0

(ii) lim|s|→+∞ κ(s) = 0.
(Hfilter)

Let us now state the main existence result.

Theorem 2.2.1. Let us assume that κ satisfies (Hfilter) and that ΓK is amplitude lower-bounded by

a constant C > 0. We define the constant :

φ := inf
t∈R∗

+

N−1�

n=0

κ(n/fs)κ(n/fs − t)

4πct
(2.21)

and the coefficients

µm :=

N−1�

n=0

xm,nκ(n/fs), m ∈ [[1,M ]]. (2.22)
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Then Problem (PK) has a solution whenever one of the following conditions is satisfied:

(i) φ < 0 and for all m ∈ [[1,M ]], µm ≤ 2
Cφ �x�2

(ii) φ ≥ 0 and for all m ∈ [[1,M ]], µm ≤ 0.

The proof of Theorem 2.2.1 is provided in Section 2.2.2. We conclude this section by specifying

sufficient conditions on the filter κ that ensure the assumption “ΓK is amplitude lower-bounded” is

satisfied.

On the assumption “ΓK is amplitude lower-bounded”. Intuitively, the assumption that ΓK

is amplitude lower-bounded translates the fact that the positive part of the filter κ is stronger than

its negative part, and that two spikes cannot cancel each other out. The following criterion provides

a sufficient condition on the filter κ to ensure amplitude lower-boundedness of ΓK with respect to

the number of time samples.

Proposition 2.2.1. Let fs ∈ R∗
+, N ∈ N∗. Let κ satisfy (Hfilter) and:

∀τ ∈
�
0,

N − 1

fs

�
,

N−1�

n=0

κ(n/fs − τ) > 0 (2.23)

then ΓK is amplitude lower-bounded.

In particular we can apply this result to κlp defined in (2.13).

Corollary 2.2.1. Let κ = κlp, then ΓK is amplitude lower-bounded.

In practice criterion (2.23) can be relaxed to a continuous counterpart which ensures ΓK is

asymptotically amplitude lower-bounded as the number of time samples goes to infinity. The

following result encompasses the case of the Gaussian filter κσ given by (2.14).

Corollary 2.2.2. Let Tmax ∈ R∗
+ and assume that the filter κ verifies:

∀τ ∈ [0, Tmax],

� Tmax

0
κ(t− τ)dt > 0. (2.24)

Then there exists N � ∈ N∗ such that ΓK is amplitude lower-bounded for all fs, N that verify N ≥ N �

and Tmax = (N − 1)/fs.

The proofs for Proposition 2.2.1, and for Corollaries 2.2.1 and 2.2.2 are provided in Section 2.2.3.

2.2.2 Proof of Theorem 2.2.1

We first study the behavior of the spikes of a minimizing sequence for Problem (PK) (Lemma 2.2.1),

and provide an expression of the optimal value (Lemma 2.2.2). From this expression we deduce a

simple existence criterion (Lemma 2.2.3) which we then apply to prove Theorem 2.2.1. The following

lemma explores the asymptotic behavior of the amplitudes and locations of a minimizing sequence

(al, rl).
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Lemma 2.2.1. Consider a minimizing sequence (al, rl) for Problem (PK), and k ∈ [[1,K]]. Then,

up to a subsequence, the sequence of spike positions (rlk) satisfies one of the following properties:

(i) ∃rk ∈ C , ∃ak ∈ R+, rlk −−−−→
l→+∞

rk and alk −−−−→
l→+∞

ak

(ii) ∃mk ∈ [[1,M ]], ∃�ak ∈ R+ rlk −−−−→
l→+∞

rmic
mk

, alk −−−−→
l→+∞

0 and
alk

4π
���rl

k−rmic
mk

���
2

−−−−→
l→+∞

�ak.

Proof. Let k ∈ [[1,K]]. (rl) is bounded by definition of C . The amplitudes (al) are also bounded as

���ΓK(al, rl)− x
���
2
≥

���
���ΓK(al, rl)

���
2
− �x�2

��� ≥ C
K�

k=1

alk − �x�2 (2.25)

by amplitude lower-boundedness of ΓK . We can thus consider a subsequence (still denoted (al, rl)

with a slight abuse of notation) for which the amplitudes (al) converge to a certain vector a ∈ RK
+

and each position (rlj) converges to a location rj ∈ C ∪ EM . Case (i) is verified if rk /∈ EM .

Consider now a spike sequence (rlk) converging to a microphone position rmic
mk

. We define

Imk
⊂ [[1,K]] as the indices of the spikes locations rlj converging towards rmic

mk
as l → +∞. The

residual at the first time sample is given by

clmk,0
= xmk,0 −

�

j /∈Imk

aljγmk,0(r
l
j)−

�

j∈Imk

aljγmk,0(r
l
j) (2.26)

By minimality, (clmk,0
)2 is necessarily bounded, thus so is

�
j∈Imk

aljγmk,0(r
l
j). As κ(0) > 0, each

term of the sum is positive if l is large enough, hence these terms are individually bounded. We

deduce that

alkγmk,0(r
l
k) = alk

κ(
��rlk − rmic

mk

��
2
/c)

4π
��rlk − rmic

mk

��
2

(2.27)

is bounded. By continuity of κ at 0,
alk���rl

k−rmic
mk

���
2

is bounded, and therefore the case (ii) arises.

Using Lemma 2.2.1, we now provide a useful expression of the optimal value.

Lemma 2.2.2. There exists an integer (possibly equal to 0) K � ≤ K, a pair (a, r) ∈ (R+)
K� × (R3 \

EM )K
�
, and �a ∈ RM

+ such that, up to a permutation of the indices, the optimal value of problem

(PK) expands as:

inf
(a,r)∈OK

T (a, r) = �T (a, r, �a) := 1

2

M�

m=1

N−1�

n=0

�
xm,n −

K��

k=1

akγm,n(rk)− �amκ(n/fs)

�2

(2.28)

Moreover, there exists a minimizing sequence (al, rl) for Problem (PK) such that (alk, r
l
k)

converges to (ak, rk) for all k ∈ [[1, K �]] and (alk) converges to 0 for k ∈ [[K � + 1,K]].
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Proof. Consider an arbitrary minimizing sequence (al, rl) for problem (PK). Lemma 2.2.1 shows

that, up to extracting a sub-sequence and permuting the indices, we can assume that the first

K � ∈ [[0,K]] spikes positions converge to locations rk that are distinct from the sensor locations, while

the remaining spikes converge to positions in EM . By continuity of the kernel,
�K�

k=1 a
l
kγm,n(r

l
k)

converges to
�K�

k=1 akγm,n(rk) for all m,n.

Consider now the spikes that converge to some microphone location in EM . For m ∈ [[1,M ]]

we define Im ⊂ [[1,K]] as the set of indices k such that rk = rmic
m . Observe that by Lemma 2.2.1 if

several spikes converge to the same microphone m their contributions share the same sign and can

then be summed.

∀m,n,
�

i∈Im
alkiγm,n(r

l
ki
) −−−−→

l→+∞
κ(n/fs)

�

i∈Im
�aki = κ(n/fs)�am, �am ∈ R+. (2.29)

Moreover, if a spike rlj converges to a microphone location, the corresponding amplitude alj converges

to 0, hence:

∀m �= m� ∈ [[1,M ]], ∀j ∈ Im� , aljγm,n(r
l
j) −−−−→

l→+∞
0. (2.30)

Thus, a spike that converges to a microphone contributes only to the terms related to that particular

microphone in the cost function, which justifies formula (2.28). If none of the spikes converge to a

given microphone m, the corresponding coefficient �am is zero.

In the following lemma, we state a numerical condition that guarantees the existence of a

minimizer for Problem (PK).

Lemma 2.2.3. Let K � ≤ K, (a, r) ∈ (R+)
K�×(R3\EM )K

�
, �a ∈ RM

+ such that inf(a,r)∈OK T (a, r) =

�T (a, r, �a). If the pair (a, r) is such that

∀m ∈ [[1,M ]],

N−1�

n=0

xm,nκ(n/fs) ≤
K��

k=1

N−1�

n=0

akκ(n/fs)γm,n(rk), (2.31)

then �a = 0 and Problem (PK) has a solution.

Proof. Let K � < K, (a, r, �a) yielding a decomposition of the optimal value as specified in Lemma

2.2.2 and consider the following quadratic optimization program

inf
b∈RM

�T (a, r, b) = inf
b∈RM

M�

m=1

�Tm(bm) (2.32)

where �Tm : t �→ 1
2

�N−1
n=0

�
xm,n −�K�

k=1 akγm,n(rk)− tκ(n/fs)
�2

. Note that �Tm is a positive, convex

quadratic polynomial of the real variable t. Denoting by �b∗m the minimizer of �Tm over R, its minimizer

over R+ is necessarily max(�b∗k, 0). We deduce that if every component �b∗m is negative, then the
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coefficients �am are all zero and consequently there exists a solution to problem (PK). Indeed, we

obtain in this case T (a�, r�) = inf(a,r)∈OK T (a, r), with

(a�k, r
�
k) =

�
(ak, rk) if k ≤ K �

(0,v) otherwise
(2.33)

where v is an arbitrary location distinct from the microphones. Note that �b∗ is given by the first

order optimality conditions for each function �Tm:

∀m ∈ [[1,M ]],

N−1�

n=0

κ(n/fs)

�
xm,n −

K��

k=1

akγm,n(rk)−�b∗mκ(n/fs)

�
= 0 (2.34)

and thus,

∀m ∈ [[1,M ]],
N−1�

n=0

κ(n/fs)
2�b∗m =

N−1�

n=0

κ(n/fs)

�
xm,n −

K��

k=1

akγm,n(rk)

�
. (2.35)

Since
�N−1

n=0 κ(n/fs)
2 ≥ κ(0)2 > 0, we infer:

∀m ∈ [[1,M ]], �b∗m ≤ 0 ⇐⇒
N−1�

n=0

κ(n/fs)

�
xm,n −

K��

k=1

akγm,n(rk)

�
≤ 0 (2.36)

which is exactly (2.31).

We can now prove Theorem 2.2.1.

Proof of Theorem 2.2.1. In order to get a global existence criterion on the observation vector x and

the operator ΓK , we only need to compute a uniform lower bound of the right hand side of inequality

(2.31). We consider a decomposition of the optimal value as given by Lemma 2.2.2 and keep the

same notations.

Consider φ as defined in Theorem 2.2.1. Using (Hfilter), we infer that φ is finite by continu-

ity and boundedness of the kernel κ. Let m ∈ [[1,M ]]. We distinguish two cases based on the sign of φ.

Proof under the assumption (i). Assume φ ≤ 0. Consider (a, r, �a) a decomposition of the optimal

value as given by Lemma 2.2.2, K � the associated truncating integer, and a corresponding minimizing

sequence (al, rl). If taking a null vector of amplitudes yields a solution to problem (PK), then we

are done. Otherwise, using the amplitude lower-boundedness hypothesis we obtain the following

inequalities for all l large enough:

���x− ΓK(0, rl)
���
2
= �x�2 ≥

���x− ΓK(al, rl)
���
2
≥

���ΓK(al, rl)
���
2
− �x�2 ≥ C

K�

k=1

alk − �x�2 .
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Letting l go to infinity, we obtain 2
C �x�2 ≥

�K�
k=1 ak, from which we infer

N−1�

n=0

K��

k=1

κ(n/fs)akγm,n(rk) =

K��

k=1

ak

N−1�

n=0

κ(n/fs)κ(n/fs −
��rk − rmic

m

��
2
/c)

4π �rk − rmic
m �2

≥ 2φ

C
�x�2 .

By using (i), we finally get that (2.31) is true, whence the result.

Proof under the assumption (ii). Assume φ ≥ 0. Then we obviously have:

∀m ∈ [[1,M ]],
N−1�

n=0

K��

k=1

κ(n/fs)akγm,n(rk) ≥ 0 ≥ µm, (2.37)

and (2.31) holds. Applying Lemma 2.2.3 yields the expected conclusion.

2.2.3 Proofs of Proposition 2.2.1, Corollary 2.2.1 and Corollary 2.2.2

Proof of Proposition 2.2.1. We only need to consider amplitude vectors a such that
�

k ak > 0. By

equivalence of the norms in finite dimension and homogeneity, considering the set of convex weights

H = {α ∈ RK
+ ,

�K
k=1 αk = 1}, one has to show:

∃C ∈ R∗
+, ∀r ∈ CK , ∀α ∈ H,

��ΓK(α, r)
��
1
≥ C. (2.38)

Let J : a, r �→ �Γ(a, r)�1 and (αl, rl) a minimizing sequence for infΛ J , where Λ = H × CK . As

Λ and C are bounded, (αl, rl) converges up to a subsequence to some (α∗, r∗) where α∗ ∈ H and

r∗ ∈ (C ∪ EM )K . Observe that if a spike rk converges to a microphone location, the corresponding

amplitude converges to 0. Indeed, let m ∈ [[1,M ]] and let Im ⊂ [[1,K]] be the set of indices k such

that r∗k = rmic
m . Assume that Im is non-empty, i.e. there exists a spike position converging to

microphone rmic
m . We have:

���ΓK(al, rl)
���
1
≥

K�

k=1

αl
kγm,0(r

l
k) ∼

l→+∞

�

k∈Im
αl
kγm,0(r

l
k) +

�

k/∈Im
α∗
kγm,0(r

∗
k). (2.39)

The sum
�

k∈Im αl
kγm,0(r

l
k) is thus bounded. Since κ(0) > 0 and κ is continuous, each term of the

sum is positive for l large enough, and must consequently be bounded:

αl
kγm,0(r

l
k) ∼

l→+∞
αl
k

4π
��rlk − rmic

m

��
2

κ(0) = O (1) ∀k ∈ Im. (2.40)



2.2. ANALYSIS OF PROBLEM (PK) 65

Hence, if (rlk) converges to a microphone m for some k, then α∗
k = 0 and

αl
k

4π�rl
k−rmic

m �
2

converges

up to a subsequence to some nonnegative value c∗k. Let 0 < K � ≤ K �� ≤ M such that:





∀k ∈ [[1, K �]], α∗
k > 0 and r∗k ∈ C

∀k ∈ [[K � + 1,K ��]], α∗
k = 0 and liml→+∞ rlk = rmic

mk
∈ EM

∀k ∈ [[K �� + 1,K]], α∗
k = 0 and r∗k ∈ C .

(2.41)

Note that K � �= 0 as α∗ ∈ H. We have:

∀l ∈ N, J(al, rl) =

M�

m=1

N−1�

n=0

�����
K�

k=1

αl
kγm,n(r

l
k)

����� ≥
M�

m=1

N−1�

n=0

K�

k=1

αl
kγm,n(r

l
k). (2.42)

Letting l go to infinity, we get:

inf
Λ

J ≥
M�

m=1

K��

k=1

α∗
k

4π
��r∗k − rmic

m

��
2

N−1�

n=0

κ

�
n

fs
−

��r∗k − rmic
m

��
2

c

�
+

K���

k=K�+1

c∗k

N−1�

n=0

κ(n/fs). (2.43)

By construction of C , 0 ≤ �r∗
k−rmic

m �
2

c ≤ (N − 1)/fs for 1 ≤ k ≤ K �, 1 ≤ m ≤ M . Inequality (2.23)

then guarantees that the term
α∗
k

4π�r∗
k−rmic

m �
2

�N−1
n=0 κ

�
n
fs

− �r∗
k−rmic

m �
2

c

�
is positive for all m ∈ [[1,K �]]

and k ∈ [[1,K �]]. Likewise, the terms c∗k
�N−1

n=0 κ
�

n
fs

�
are nonnegative for K � < k ≤ K ��, thus the

right-hand side in (2.43) is positive.

Proof of Corollary 2.2.1. We call κlp the continuous extension of κlp at 0. We will prove that κlp

satisfies (2.23). Let τ ∈ [0, (N − 1)/fs], n
+ ∈ N the smallest index such that n+/fs ≥ τ , and n− the

largest index such that n−/fs ≤ τ , see Fig. 2.1.

Figure 2.1

Let us set yn = sinc(πfs(n/fs − τ)) for all n. One expands:

N−1�

n=0

yn =

n−�

n=0

yn +

N−1�

n=n+

yn − δn−,n+ , (2.44)

where δn−,n+ denotes here the Kronecker symbol and handles the case where τ is exactly equal to

one of the time samples, as κlp(0) = 1.
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Let us first assume that n− < n+. Let l ∈ [[0, N − n+ − 1]], we have:

yn++l =
sin(πfs(n

+/fs − τ) + lπ)

πfs((n+ + l)/fs − τ)
= (−1)l

sin(πfs(n
+/fs − τ))

πfs((n+ + l)/fs − τ)
. (2.45)

Note that sin(πfs(n
+/fs − τ)) > 0 as πfs(n

+/fs − τ) ∈ (0,π), and yn+ > 0. By the alternating

series theorem, the sum carries the sign of its first term. Indeed, we get the upper bound:

������

N−1�

n=n++1

yn

������
≤ |yn++1| =

sin(πfs(n
+fs − τ))

πfs((n+ + 1)/fs − τ)
(2.46)

thus
�N−1

n=n++1 yn ≥ −|yn++1| and

N−1�

n=n+

yn ≥ yn+ − |yn++1| = sin(πfs(n
+fs − τ))

�
1

πfs(n+/fs − τ)
− 1

πfs(n+ + 1)/fs − τ)

�
> 0.

Likewise, the sum
�n−

n=0 yn is non-zero and shares the sign of sin(πfs(n−/fs−τ))
πfs(τ−n−/fs)

, which is also positive.

In the case where n− = n+, we have τ = n+/fs and yn+ = 1 and then,

∀n ∈ [[0, N − 1]], πfs(n/fs − τ) = π(n− n+) ∈ πZ. (2.47)

It follows that yn = δn,n+ and
�N−1

n=0 yn = 1, which concludes the proof.

Proof of Corollary 2.2.2. Let τ ∈ [0, Tmax] be given. Assume that the sampling frequency fN is

chosen such that Tmax = (N − 1)/fN . Observing that the sum in inequality (2.23) is a Riemann

sum

SN (τ) :=

N−1�

n=0

κ(n/fN − τ) =

N−1�

n=0

κ

�
n
Tmax

N − 1
− τ

�
, (2.48)

it follows that SN converges uniformly towards τ �→
� Tmax

0 κ(t − τ)dt over [0, Tmax] as N → +∞.

Thus for N large enough, inequality (2.23) is satisfied and ΓK is amplitude lower-bounded.

2.3 A super-resolution-type algorithm

The discussion in Section 2.2 leads us to define a slightly modified version of Problem (PK) to avoid

the potential pathologies described above. In order to avoid non-existence caused by the singularities,

we will enforce a small distance ε > 0 to the microphone positions. Let us hence introduce

R3
ε = R3 \

�

m∈[[1,M ]]

B(rmic
m , ε).



2.3. A SUPER-RESOLUTION-TYPE ALGORITHM 67

In our numerical approach, we will reformulate the problem as a BLASSO-type problem. Thus, it is

relevant to add a l1 regularization term to the cost function. We thus consider the problem

inf
(a,r)∈OK

0,ε

Tλ(a, r) with OK
0,ε = RK

+ × (R3
ε)

K
and Tλ(a, r) = T (a, r) + λ

K�

k=1

ak. (PK
ε,λ)

2.3.1 Analysis of Problem (PK
ε,λ)

The maximal distance constraint on the spike locations is no longer needed, as the regularization

term forces an upper bound on the amplitudes a. Any spike vanishing at infinity hence has a null

contribution to the objective function. If ε > 0 and λ > 0, existence is automatically guaranteed.

Note that we can also define problem (PK
ε,λ) in the case ε = 0 by optimizing the cost function on

OK .

Proposition 2.3.1. Let ε > 0, λ ≥ 0. Then, if at least one of the following assumptions holds,

problem (PK
ε,λ) has a solution: (i) λ > 0 (ii) ΓK is amplitude lower-bounded.

Proof. Let (al, rl) be a minimizing sequence for problem (PK
ε,λ). If λ > 0, (al) is bounded due to

the coercivity of the regularization term. In the case λ = 0, ΓK is amplitude lower-bounded, which

implies that (al) is also bounded. As the amplitudes are bounded and ΓK is continuous, if a given

location rk diverges to infinity, its contribution akγ(rk) vanishes in the limit. We can thus replace

each diverging spike location by an arbitrary location v distinct from the microphones to obtain a

bounded minimizing sequence. Any closure point of this sequence is a solution to Problem (PK
ε,λ)

It is notable that Theorem 2.2.1 can be adapted to Problem (PK
ε,λ) if λ > 0 and ε = 0.

Theorem 2.3.1. Let λ > 0 and let us assume that κ is continuous, bounded and κ(0) > 0. Let φ,

µm be defined as in Theorem 2.2.1. Then if one of the following conditions is met, problem (PK
ε,λ)

with ε = 0 has at least one solution:

(i) φ < 0 and for all m ∈ [[1,M ]], µm ≤ φ
2λ �x�22

(ii) φ ≥ 0 and for all m ∈ [[1,M ]], µm ≤ 0.

Remark 2.3.1. If ΓK is amplitude lower-bounded with constant C, the inequality constraint in

case (i) can be improved to:

∀m ∈ [[1,M ]], µm ≤ max

�
φ

2λ
�x�22 ,

2φ

C
�x�2

�
. (2.49)
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Proof. We adapt the proof of Theorem 2.2.1. Observe that because Tλ(a, r) ≥ λ
�

k ak the

amplitudes of a minimizing sequence (al, rl) are bounded, removing the need for the amplitude

lower-boundedness hypothesis in Lemma 2.2.1. Lemma 2.2.1 can then be reproduced, with the

added possibility of a spike diverging to infinity. Due to the boundedness of the amplitudes, the

contribution of such a spike to the cost function vanishes in the limit. The rest of the proof is

identical.

Likewise, the proof of Lemma 2.2.2 is identical in the case λ > 0, with a different expression of

the optimal value:

inf
(a,r)∈OK

Tλ(a, r) = �Tλ(a, r, �a) := �T (a, r, �a) + λ

K��

k=1

ak. (2.50)

The addition of the regularization term does not affect the argument in Lemma 2.2.3, and the

proof is identical as the optimality conditions considered in (2.34) are unchanged. We thus obtain

the same existence criterion.

Finally, we only need to adapt the upper bound on the amplitudes given in the proof of Theorem

2.2.1 to handle the case φ < 0. Using the same notations, we have here Tλ(0, r) = 1
2 �x�

2
2 ≥

Tλ(a, r) ≥ λ
�K�

k=1 ak. The same argument as before yields the existence criterion.

2.3.2 A convex relaxation

Using the integral representation (2.9) we can extend the definition of the observation function ΓK

as a linear operator on the space of Radon measures defined in section 1.2.1. Let us define the linear

operator Γε:

Γε : M(R3
ε) −→ RMN

ψ �−→
��

r∈R3
ε

κ(n/fs −
��r − rmic

m

��
2
/c)

4π �r − rmic
m �2

dψ(r)

�

1≤m≤M
0≤n≤N−1

(2.51)

which can be interpreted as the mapping of a given source term ψ supported on R3
ε to the measured

free-field response at each microphone location. Indeed, the solution to the free-field wave equation

with a spatial source term ψ is given by convolving in space with a Green’s function. This leads us

to the following expression of p(r, t):

p(r, t) =

�

r�∈R3
ε

δ(t− �r − r��2 /c)
4π �r − r��2

dψ(r�), (2.52)

where the convolution of distributions is denoted with an integral symbol with a slight abuse of

notation. We then proceed as in Section 2.1.2. p is convolved in time with the filter κ and discretized
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at each sample to get the observation vector:

xm,n =
�
κ ∗ p(rmic

m , ·)
�
(n/fs) =

�

r∈R3
ε

κ(n/fs −
��rmic

m − r
��
2
/c)

4π �rmic
m − r�2

dψ(r) ∀m ∈ [[1,M ]], ∀n ∈ [[0, N−1]].

(2.53)

Whilst (2.52) is not well-defined for a Radon measure ψ, the integral in (2.53) can be seen as the

evaluation of ψ at r �→ κ(n/fs−�rmic
m −r�

2
/c)

4π�rmic
m −r�2

which is continuous on R3
ε.

The convex relaxation of problem (PK
ε,λ) is called Beurling-LASSO or BLASSO (see Section

1.2.2) and can be written as:

inf
ψ∈M(R3

ε)

1

2
�x− Γεψ�22 + λ�ψ�TV. (Bλ,ε)

Remark 2.3.2. Problem (PK
ε,λ) is indeed the restriction of problem (Bλ,ε) to linear combinations

of K Dirac measures, as for (a, r) ∈ OK
0,ε, Γ

K(a, r) = Γε(
�K

k=1 akδrk) and ��K
k=1 akδrk�TV =�K

k=1 |ak| = �a�1. Moreover, Γε is continuous, and for λ > 0 problem (Bλ,ε) admits solutions [25],

with at least one MN -sparse solution [24] (meaning a measure composed of at most MN Dirac

masses). In particular, for K ≥ MN , the optimal values for (PK
ε,λ) and (Bλ,ε) are the same.

Applying the theory introduced in [60] and summarized in Section 1.2.2 is difficult in our case, as

the operator Γε is 3-dimensional and depends on a complex geometric relation between the locations

of the sources and the positions of the microphones. However, it is possible to compute numerically

the vanishing derivatives pre-certificates ηV (see Definition 1.2.3) to obtain some insights on the

operator’s behavior. Fig. 2.2 represents the values taken by ηV on a portion of a plane parallel to a

wall that contains several image sources, for varying sampling frequencies. The microphone array’s

geometry is spherical here, and we proceed to increase the radius of the array, as the array size has

an impact on the ability to geometrically locate sources (see Section 2.4 for further details on the

experimental setup). Note that the mass of ηV is concentrated on spheres that are centered around

each microphone, with radii given by the times of arrival of each source to the microphone. Due to

the application of the low-pass filter, each sphere is slightly smeared around its true radius, and

the location of an image source is given at the intersection of every of its corresponding spheres.

As the sampling frequency and the array’s radius increase, the mass of ηV becomes more tightly

contained around each sphere, ensuring a sharper distribution at the intersection. Recall that stable

support recovery is guaranteed by Theorem 1.2.1 under an assumption of non-degeneracy of ηV ,

i.e. ηV (r) < 1 if r is not a source location. While Fig 2.2 shows that ηV is degenerate at 8 kHz

and for the smallest array radius in this case, it seems to be non-degenerate for greater radii and

sampling frequencies. More generally, numerical experiments indicate that, for a fixed room and

with measurements from a spherical microphone array, ηV is non-degenerate when the sampling

frequency and array radius are sufficiently large, and thus that Theorem 1.2.1 applies.
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Figure 2.2: 2D plot of the absolute value of the vanishing derivative pre-certificate ηV on a section
plane parallel to a wall of a room for different sampling frequencies fs and microphone array radii r.
The locations of the image sources that belong to the plane are marked by red crosses.
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2.3.3 Numerical algorithm

We implement1 and adapt the Sliding Frank-Wolfe type algorithm introduced in [53] and initially

applied to microscopy in order to find a sparse solution to Problem (Bλ,ε) (see Remark 2.3.2). See

Section 1.2.3 for a description of the more general Frank-Wolfe algorithm. Let ψ(i) =
�K(i)

k=1 a
(i)
k δ

r
(i)
k

be the reconstructed measure at iteration i. The reconstruction algorithm consists of two main steps

in each iteration:

1. A new source is located by maximizing the numerical certificate:

η(i) : R3 −→ R
r �−→

�
Γ∗res(i)

�
(r) =

�
m,n res

(i)
m,nγm,n(r)

(2.54)

where res(i) := x(i) − Γψ(i) is the residual at iteration i and Γ∗ is the adjoint of operator Γ.

A stopping criterion can be inferred from the optimality conditions of the BLASSO problem

[53]: η(i)(r
(i)
∗ ) ≤ λ where r

(i)
∗ is the new candidate location. If this criterion is not met, r

(i)
∗ is

added to the list of already reconstructed source positions to form r(i+1).

2. The amplitudes are then updated by solving a non-negative convex LASSO problem:

a(i+1) = argmin

a∈Rlen(r(i+1))
+

Tλ(a, r
(i+1)). (2.55)

The full algorithm is defined in the next page in Alg. 2, and the procedure is explained in detail

afterwards.

Step 1 is encompassed by the lines 7-9 of Alg. 2. The maximization of η(i) is achieved numerically

by applying a parallel implementation of the BFGS algorithm [71] to solve the optimization problem.

A crucial issue is to provide an accurate guess for initializing BFGS. This becomes especially

difficult as the operator’s “sharpness” increases with the sampling frequency and the size of the

microphone array, as illustrated in the precertificate plots of Fig. 2.2. Due to the spatial extent of

the 3D optimization domain, evaluating η(i) on a global fine grid would require millions of function

evaluations per iteration and is computationally intractable. We consider instead an efficient heuristic

to initialize BFGS. As described previously, a true source should be located at the intersection

of the spheres centered around each microphone with radii given by the corresponding times of

arrival of the source to each microphone. In order to approximate these times of arrival, we apply a

moving average over 3 samples to the squared residual signal of each microphone and extract the

sample with maximal value. We then consider the 8 microphones with the highest values and build

uniform grids with a mean angular spacing of 5◦ on the corresponding spheres. We also mesh the

1The implementation is done in Python and is publicly available at https://github.com/Sprunckt/acoustic-sfw.
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Algorithm 2 Adapted Frank-Wolfe

Input: Observation vector x, cutting indices j = (j1, . . . , jL)
Output: Estimated image-source amplitudes and locations (afin, rfin)
1: ψ(0) ← 0
2: x(0) ← (xm,n)

1≤m≤M
1≤n≤j1

3: while i < imax do
4: if

��res(i)
��
2
is sufficiently reduced or iext iterations have elapsed since last extension then

5: Extend x(i) if possible
6: end if
7: Create an initialization grid G
8: Get rini = argmaxr∈G η

(i)(r)

9: Get r
(i)
∗ by applying BFGS to −η(i) with initial guess rini

10: if η(i)(r
(i)
∗ ) ≤ λ then

11: if x(i) can be extended then
12: Extend x(i) and go to next iteration
13: else
14: Exit the loop
15: end if
16: end if
17: Get r(i+1) = r(i) ∪ {r(i)∗ }
18: Get a(i+1) by solving the LASSO problem min

a∈RK(i+1)
+

Tλ(a, r
(i+1))

19: if a
(i+1)

K(i+1) < 0.01 then

20: if x(i) can be extended then
21: Extend x(i) and go to next iteration
22: else
23: Exit the loop
24: end if
25: end if
26: Delete spikes from (a(i+1), r(i+1)) that have amplitudes below 0.01
27: i ← i+ 1
28: end while
29: Delete spikes from (a(i), r(i)) that have amplitudes below 0.01
30: Get (afin, rfin) by applying BFGS to Tλ with initial guess (a(i), r(i))
31: Delete spikes from (afin, rfin) that have amplitudes below 0.01

surrounding spheres with radii ±5 cm to obtain a fine grid of approximately 40000 points. The grid

point maximizing η(i) is picked as the initial position for off-the-grid optimization.

The optimization problem of Step 2 is solved at the line 18 using the Scikit-learn library [120]. We

stop the algorithm when the amplitude of the last estimated source is below a threshold αmin = 0.01

or the criterion described in Step 1 is met. In order to facilitate the resolution and accelerate

the execution, we begin by running the algorithm on a reduced observation vector constructed by

limiting the time frame of the signals, i.e. only considering the first j1 samples with j1 < N − 1.
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When a stopping criterion is reached at line 10 or 19, we extend the RIR if possible, i.e. if the time

signals have not yet reached Tmax. We also increase the number of samples when beginning the

iteration at line 5 if 20 iterations have been effected since the last extension, or if the norm of the

residual has sufficiently decreased since the last extension (typically a 70 % decrease from the norm

computed at the last extension). The indices j1 < . . . < jL = N − 1 are chosen in order to have a

linear progression of the energy, i.e. the norm of the vectors (xm,n)
1≤m≤M
jl≤n<jl+1

are roughly constant.

The first separating indices jl are well spaced, while the last indices are more clustered together, as

the number of reflections arriving at each microphone increases rapidly. This extension procedure

has the effect of focusing the resolution at first on the closest sources, for which the time of arrivals

are usually well separated in the signals. These low-order sources are also the most valuable, as for

instance the whole geometric information on the configuration of a cuboid room is embedded in the

locations of the original source and the first order image sources.

Sliding-Frank-Wolfe [53] introduces a so-called “sliding” step at each iteration. The idea is

to perform a local descent on both the locations and amplitudes at the end of each iteration i

to optimize Tλ(a, r), using the currently reconstructed measure as initialization. Although this

step greatly increases the accuracy of the reconstruction and brings convergence guarantees, the

algorithmic complexity explodes for certain rooms in which the number of image sources can reach

over a thousand. We thus proceed as in [28] and apply the sliding step only once after the very last

step. We also delete low amplitude sources before and after optimization, as described in lines 29-31.

2.4 Numerical experiments

We present here some numerical results obtained by applying the algorithm described in the last

section.

2.4.1 Simulation details

The experimental setup is the following: we consider a spherical array of 32 microphones based

on the em32 Eigenmike® (radius r=4.2 cm). We generate 200 random cuboid rooms, in which we

randomly place the microphone array and sound source, enforcing a minimal separation of 1 m

between the array’s center and the source. We also constrain the location of the array’s center to

be located at least 25 cm from each wall in order to ensure that every microphone remains in the

room. The room lengths and widths in meters are picked uniformly at random in [2, 10], while the

heights are taken in [2, 5]. We associate each wall with an absorption coefficient uniformly drawn at

random in [0.01, 0.3]. The microphone array is randomly rotated, and a multichannel discretized

room impulse response is generated by applying the operator described in equation (2.51) to the

measure composed of the image sources up to order 20. This amounts to truncating the sum in

Proposition 2.1.1 to encompass only the source and the image sources that model reflections of order
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Figure 2.3: Reconstruction results for a room of dimensions 6.45× 2.51× 2.35 in meters, resulting in
530 target image sources. The recall is 93% for radial and angular thresholds of 1 cm and 2◦, and
the mean euclidean error for the recovered sources is 6 cm. The sampling frequency and microphone
array radius are respectively 32 kHz and 4.2 cm.

lower or equal to 20. We set κ = κlp as defined in (2.13) for all experiments. For each scenario, we

choose N as to get signals of duration Tmax = N−1
fs

= 50 ms. Although we use 11521 image sources

to simulate the measurements, only a fraction of these sources has any impact on the first 50 ms

of each signal. Note that we will only consider the target sources that are in the set C (as defined

in Section 2.1) in our metrics. In other words, for evaluation we only look at the target image

sources that are in range for every microphone and discard the others. The number of image sources

considered in the metrics then ranges from less than 100 to over 1500. λ is set to 3.10−5 in all

experiments based on a preliminary study of its impact on reconstruction accuracy. We also test the

robustness to noise by adding Gaussian noise to the signals, with varying Peak Signal-to-Noise Ratio

(PSNR) values. We define the Peak Signal to Noise Ratio (PSNR) as 10 log10

�
max(x)2

�e�22

�
, where x is

the noiseless observation vector, and e is the vector of additive noise.

We then proceed to run the algorithm on every resulting measurement vector, and we evaluate

the accuracy of the reconstruction. Fig. 2.3 presents 2 of the 32 target and reconstructed time

signals for a particular test room, as well as the 3D locations of the sources.

2.4.2 Evaluation metrics

Error metrics

Let r be a target source location, and r̂ the estimated source location. We define the Angular Error

(AE) as the angle between the unitary vectors defined by the target and estimated source locations:

AE(r, r̂) = arccos

�
r · r̂

�r�2 �r̂�2

�
. (2.56)
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The Radial Error (RE) is the absolute difference between the norms of the target and estimated

source locations:

RE(r, r̂) = |�r�2 − �r̂�2| . (2.57)

We will also consider the Euclidean Error (EE):

EE(r, r̂) = �r − r̂�2 . (2.58)

Recall and precision

We set radial and angular thresholds at 1 cm and 2◦ respectively, and we proceed to compute the

recall on the recovered sources, that is the proportion of target image sources that were approximated

with an error below the thresholds. We then compute the mean radial, angular and Euclidean errors

on the sources that are considered as recovered, as well as the mean error on the corresponding

amplitudes. We also consider the precision, i.e. the proportion of sources in the reconstructed

measures that are counted as truly recovered according to the error thresholds.

Numerical results

Fig. 2.4 presents the influence of the microphone array radius r and sampling frequency fs on

the recall. Each bar’s height represents the recall, and the corresponding mean Euclidean error is

displayed at the top of each bar. Note that we segmented the room database according to the number

of target image-sources, as the number of image-sources varies greatly depending on the size and

configuration of the room. In particular, for a limited number of small rooms the number of image

sources explodes, increasing the reconstruction’s complexity as the echoes become harder to separate

in time. We observe that the performance of the algorithm improves as the sampling frequency or

the array radius increases, which is expected after the previous observations on the behavior of the

certificates (see Fig. 2.2). For the best parameters (fs = 32 kHz and r = 21 cm) we get over 99 %

recall for the rooms that generate less than 700 image sources, with a mean Euclidean error under

1.5 cm. For these rooms, the precision, i.e. the proportion of sources in the reconstructed measures

that are counted as truly recovered is over 90 %. Note that if two sources are reconstructed close

to a same target source, only the closest one is counted as a true positive. Table 2.1 presents the

recall (R), precision (P) and mean radial (RE), angular (AE), Euclidean (EE) and amplitude (AmE)

errors amongst the recovered sources for every subset of the room database sources, with fs=24 kHz,

r=4.2 cm and no noise. The mean Euclidean errors are of the order of a few centimeters.

Comparatively, the distance of the sources to each microphone ranges from 1 to over 15 meters,
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Figure 2.4: Recall for varying microphone array radii r for fs taking the values 8 kHz (a), 24 kHz
(b), 32 kHz (c). The room dataset is segmented in four subsets according to the number of target
image sources. The mean Euclidean error for the recovered sources is displayed in cm above each
bar.

# of IS R(%) P(%) RE(mm) AE(°) EE(mm) AmE

0-200 89.9 80.5 0.043 0.456 113 0.034
200-400 85.6 78.6 0.062 0.454 114 0.0256
400-700 74.1 67.7 0.097 0.488 120 0.022
700-1568 49.5 43.9 0.166 0.544 122 0.022

Table 2.1: Recall (R), precision (P) and mean radial (RE), angular (AE), Euclidean (EE) and
amplitude (AmE) errors amongst recovered sources as a function of the number of sources, with
r = 4.2 cm and fs = 24 kHz.
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Noiseless 30 dB PSNR

IS order R(%) RE(mm) AE(°) EE(mm) R(%) RE(mm) AE(°) EE(mm)

Source 100 0.00309 0.0163 0.996 100 0.0396 0.149 8.23
Order 1 99.4 0.00717 0.0820 11.7 98.8 0.0875 0.346 37.8
Order 2 98.1 0.0120 0.151 27.0 96.5 0.131 0.513 74.2
Order 3 96.0 0.0207 0.220 44.7 91.7 0.175 0.662 112

Table 2.2: Recall (R), precision (P) and mean radial (RE), angular (AE) and Euclidean (EE) errors
amongst recovered sources as a function of the image-source order, with r = 4.2 cm and fs = 24 kHz.

and the error increases with distance due to the compact spherical geometry of the microphone array.

Table 2.2 presents the recall and mean Euclidean error as a function of image-source order when

considering the whole room dataset at once, both for the noiseless case and at 30 dB PSNR.

In particular, we get a satisfactory 99.4 % recall rate for the first order image sources in the

noiseless case, with a mean localization error of 1.17 cm. Note that if we increase the sampling

frequency to 32 kHz and the array radius to 21 cm, every first order source is recovered, with a

mean Euclidean error of 0.773 mm (not displayed in the table).

Fig. 2.5 shows how the parameter λ affects the quality of the reconstruction at two different

noise levels. For low noise levels, the curves are practically flat around the chosen value of the

parameter. λ could be tuned to increase precision at the cost of recall, especially at high PSNR.

However, whilst increasing λ can greatly reduce false positives, it does not only reduce the recall

for high order image sources, but also for first order sources. For some applications, such as room

geometry reconstruction, the locations of first order sources are crucial, which justifies using a low

regularization parameter at the expense of additional false positives.
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Figure 2.5: (a) Recall and (b) precision as a function of λ at two different PSNRs.
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Figure 2.6: Recall for varying PSNR with a microphone array radii r = 4.2 cm and fs = 24 kHz.

Finally, Fig. 2.6 presents the recall obtained for different Peak to Signal Noise Ratios (PSNR).

At 40 PSNR we see little impact on the recall and errors, while the Euclidean errors tend to increase

quickly at 30 PSNR. However, this damages mainly the high order sources, for which the heights of

the time-signals peaks are close to the standard deviation of the noise. Indeed, as highlighted in

Table 2.2 even at 30 PSNR we have a 98.8 % recall rate for the first order sources, with an associated

mean Euclidean error of 3.78 cm. These results were obtained for fs = 24 kHz and r = 4.2 cm and

might be further improved by increasing the resolution.

2.5 Conclusion

We have introduced a new formulation for the inverse problem of locating image sources from

discretized multichannel RIRs. The study of the finite dimensional, non-convex optimization problem

on the amplitudes and locations of the sources highlights the complexity of the problem. In particular,

the singularities of the kernel require a minimum distance to be enforced, as, depending on the

observation vector x, the problem can be ill-posed. We have proposed a numerical method based on

the Frank-Wolfe algorithm to solve the relaxation of the optimization problem to the space of Radon

measures, effectively locating the image sources in 3D space directly from discretized measurements.

The algorithm presents a very high recall rate when the diameter of the microphone array and its

sampling frequency are sufficiently large, with vanishingly small errors. Moreover, the high accuracy

and recall rates obtained for the first order image sources suggest a good adequacy of the method

for room geometry reconstruction.



Chapter 3

Cuboid room reconstruction

This chapter finally tackles the problem of room shape estimation by leveraging the image-source

reconstruction algorithm introduced in the last chapter. We present an image-source reversion

algorithm that is able to infer the complete geometric configuration of a cuboid room from a set of

estimated image sources. We proceed to evaluate the performance of the algorithm on simulated

data.

79
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3.1 Room geometry recovery

This section presents an ISM reversion algorithm for cuboid rooms, which is able to reliably recover

the 18 input parameters: these are the 3D source position, the 3 dimensions of the room, the

6-degrees-of-freedom room translation and orientation, and an absorption coefficient for each of

the 6 room boundaries. The algorithm consists in three steps which are detailed in the following

subsections. The first step is estimating the orientation, i.e. finding a rotation to transform the

array vector basis to a room referential basis. The second step is to extract the order 1 image sources

from the image-source point cloud. The third and final step consists in inferring the remaining

parameters, i.e. the distance of the source relative to each wall and the room dimensions.

3.1.1 Orientation

Let us first consider the task of recovering the room orientation from an unlabeled image source

point cloud, such as the one obtained by the algorithm presented in Section 2.3.3. The key idea is to

estimate its underlying orthogonal grid structure, which is apparent in the examples of Fig. 3.1(a)

and 3.2. The task amounts to finding a rotation matrix that transforms the microphone array’s

reference frame to the room’s reference frame, up to a permutation of directions. By Eq. (1.6),

the projected coordinates of image sources onto a normal vector to a wall will form clusters, each

cluster containing the coordinates of a plane of image sources parallel to this wall. Conversely,

projecting image sources onto a randomly chosen vector will, intuitively, not form clusters but

instead spread out over the entire range of possible values. In other words, the room basis vectors

are orthogonal to the image-source planes generated by the corresponding walls and are expected to

maximize the number of orthogonalities. Our method seeks to exploit this structure by scoring basis

vector candidates according to their orthogonality to the directions generated by image-source pairs.

Formally, let us define fD as follows:

∀u,v ∈ RD, fD(u,v) =

�
1 if u⊥v

0 otherwise.
(3.1)

Let G ⊂ R3 be a finite set of image source locations. Let us consider the following optimization

problem:
max

�u�2=1
J3(u), where J3(u) =

�

s,p∈G
f3(u, s− p). (3.2)

It can be shown that in the noiseless case, for a complete finite cuboid grid G of image sources, the

solution to this problem is indeed a wall normal:

Proposition 3.1.1. Let N1, N2, N3 be non-zero even integers. Consider the following subset of

image sources: G = {rq,ε, q ∈ [[0, N1/2− 1]]× [[0, N2/2− 1]]× [[0, N3/2− 1]], ε ∈ {−1, 1}3} with rq,ε

defined as in (1.6). Then, any solution u∗ to problem (3.2) is a wall normal, i.e, u∗ = ±ei for some

i ∈ [[1, 3]].

Proof. See Section 3.3.
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Note that in Proposition 3.1.1, the coordinates are expressed using Eq. (1.6), i.e., in the unknown

reference frame of the room. However, the definition of the cost function J3 is independent of

the coordinate system, so that the result remains true in any coordinate frame. Note also that

adversarial cases could be built by carefully removing sources from the image-source point cloud

in order to have the score function bear its maximum in a wrong direction. However, assuming

the reconstruction algorithm of Section 2.3.3 misses image sources at random, the probability of

encountering such an adversarial situation is vanishingly small, and Proposition 3.1.1 is expected to

hold for generic subsets, as will be confirmed by our experiments.

In practice, the image-source reconstruction is noisy and the function fD defined in (3.1) cannot

be computed exactly. fD is instead approximated using a Gaussian kernel

fσ
D(u,v) = exp

�
− 1

2σ2

�
u.v

�u�2 �v�2

�2
�
, (3.3)

such that limσ→0 f
σ
D = fD in the pointwise sense. The scale parameter σ controls the tightness of the

approximation and plays a regularizing role with respect to the error committed in the localization

of image sources. A small σ will yield a noisy loss function if the source localization error is high.

Conversely, a large σ means poor precision on room orientation recovery. As we are searching

for an optimal unit vector, the regularized score function Jσ
3 can be re-parameterized in spherical

coordinates by two angles (θ,φ) ∈ [0, 2π[×[0,π[:

Jσ
3 (θ,φ) =

�

s,p∈G
fσ
3 (u(θ,φ), s− p) (3.4)

x (m)

−10
0

10 y (m)
−10

0
10

z
(m

)

−10
0
10

(a) (b)

Figure 3.1: (a) Reconstructed image-source point cloud using Alg. 2 (b) Associated Jσ
3 score plotted

on the sphere (brighter is higher). A sharp peak is observed in the direction of a wall normal.
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Figure 3.2: Projection of the estimated sources on ê1 (blue) and the associated 2D Jσ
2,ê1

score (red).
We observe maximal values in the directions of the wall normals.

Algorithm 3 Orientation estimation

Input: Image sources (rk)
K
k=1

Output: Estimated room orthonormal basis ê1, ê2, ê3
1: ê1 ← argminu∈S2

discr
J0.01
3

2: for σ ∈ [0.01, 0.005, 0.0005] do
3: ê1 ← local descent(ê1, J

σ
3 )

4: end for
5: ê2 ← argminu∈S1

discr
J0.01
2,ê1

6: for σ ∈ [0.01, 0.005, 0.0005] do
7: ê2 ← local descent(ê2, J

σ
2,ê1

)
8: end for
9: ê3 = ê1 × ê2

where u(θ,φ) is the unit vector defined by spherical coordinates (θ,φ). Once a first basis vector u

maximizing Jσ
3 has been found, we can proceed in a greedy manner by projecting G onto u⊥:

Jσ
2,u(θ) =

�

s,p∈G
fσ
2 (v(θ),Pu⊥(s− p)) ∀θ ∈ [0, 2π[, (3.5)

where Pu⊥ is the orthogonal projection onto the plane orthogonal to u, and v(θ) is the unit vector

contained in this plane and defined by the polar angle θ. As can be seen in the examples of Fig. 3.1

and 3.2, both score functions Jσ
3 and Jσ

2,u feature maxima along the room axes.

We use the Scipy implementation of the BFGS algorithm [153] to maximize Jσ
3 . Due to the

non-convexity of the problem we initialize the optimization algorithm on a finely meshed half-sphere

S2
discr. In order to reduce even more the chance of the algorithm stopping at a local minimum,
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we begin with a high value of the scale parameter σ and perform the optimization with gradually

decreasing values. This process yields an accurate, gridless reconstruction of a first basis vector

ê1, given a sufficiently accurate image-source reconstruction. The sources are then projected onto

the plane orthogonal to ê1 and the process is repeated to recover a second vector ê2 by optimizing

Jσ
2,ê1

. The third vector is then obtained by taking the cross product ê1 × ê2. The full process is

summarized in Algorithm 3. The same values of σ will be used in all experiments, without any

specific tuning.

3.1.2 First order identification and geometry inference

Once the room orientation has been estimated, we seek to identify which of the estimated image

sources are of first order. We leverage the fact that the zeroth order image source, i.e., the true

source, can be straightforwardly identified (it is the closest one to the microphone array’s center). It

is also very accurately localized, since the direct path is usually well separated from reflections in all

RIRs. We then cast a cone from the true source in each reconstructed direction êd and their opposite

−êd. The image source closest to the source in each cone is picked as a first order source candidate.

If the cone is empty (implying that source localization errors are too great) we progressively extend

the cone’s width until it contains at least one source. As the reconstruction algorithm sometimes

produces clusters of sources around the true image-source location, we assume that any source close

to an estimated first order source is a reconstruction artifact. We thus proceed to merge the closest

estimated sources. Let r∗ be a candidate first order source, µ ∈ R∗
+ a threshold and {r∗1, . . . r∗P } the

set of reconstructed sources such that
��r∗p − r∗

��
2
< µ ∀p ∈ [[1, P ]]. We use a heuristic inspired by

[147] to merge the corresponding Diracs and their amplitudes:

â =
�P

p=1 a
∗
p

r̂ =
�P

p=1
a∗p
â r∗p.

(3.6)

This procedure gives us estimates for the six first-order image sources r̂k and their associated

reflection coefficients âk. The distances of the true source to each wall are then recovered by

computing the projections on each estimated wall normal. Let r̂t−, r̂t+ be the first order image

Algorithm 4 Source-wall distances, first order amplitudes

Input: Image sources and amplitudes (rk)
K
k=1, (ak)

K
k=1; directions ê1, ê2, ê3; threshold µ

Output: Corrected amplitudes up to order 1 â0, . . . , â6, source-walls distances d̂1, . . . , d̂6
1: r̂0 ← fusion(rk0 , (ak)k, (rk)k, µ), k0 = argmink �rk�2
2: for t = 1, . . . , 3 do
3: (rleft, rright) ← closest in cone(r̂0, êt, (rk)k)
4: (ât,−, r̂t,−) ← fusion(rleft, (ak)k, (rk)k, µ)
5: (ât,+, r̂t,+) ← fusion(rright, (ak)k, (rk)k, µ)
6: end for
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sources corresponding to êt such that r̂t+ is in the cone emitted from r̂0 with direction êt, and r̂t−
is contained in the opposite cone. We summarize the procedure in Alg. 4. The room length in a

given direction is given by the following formula:

L̂t =
1

2
(êt.(r̂0 − r̂t−) + êt.(r̂t+ − r̂0)) (3.7)

=
1

2
êt.(r̂t+ − r̂t−). (3.8)

Setting the intersection of the walls corresponding to r̂1−, r̂2−, r̂3− as a reference vertex of the room,

the translation vector of the room with respect to the source is:

τ̂room =
1

2



ê1.(r̂0 − r̂1−)

ê2.(r̂0 − r̂2−)

ê3.(r̂0 − r̂3−)


 (3.9)

Given the coordinates r of a point in the frame of the microphones, we can then compute the

corresponding coordinates in the recovered room frame:

r̂room =



êT1
êT2
êT3


 (r − r̂0) + τ̂room. (3.10)

We now have recovered all 18 input parameters that were used to generate the multichannel RIR:

• the room orientation vectors ê1, ê2, ê3

• the 3D source position r̂0

• the room translation with respect to the source τ̂room

• the room dimensions L̂1, L̂2, L̂3

• the 6 wall absorption coefficients α̂k = 1− â2k for k = 1, . . . , 6 (see Eq. (1.10)).

3.2 Numerical Experiments

We proceed in this section to evaluate the effectiveness of the proposed inverse algorithm, which

can be decomposed into two major steps: first estimating an image source point cloud from a

multichannel RIR and then inferring the room parameters from it. We focus here on the estimation

of the 18 room parameters given an image-source point cloud estimated using the algorithm described

in Sec. 2.3.3. All the following tests are based on RIRs simulated using the shoebox ISM, i.e.,

Eq. (2.9). As in Sec. 2.4, the RIRs are simulated using image sources up to order 20 and are cut

after 50 ms, so that all audible reflections are present in the signals.
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3.2.1 Simulation Details

We test the full reconstruction procedure on a set of 200 randomly generated rooms containing an

omnidirectional impulse sound source and a microphone array. We use two distinct array geometries

that are detailed in the following subsections. The rooms’ lengths and widths in meters are picked

uniformly at random in [2, 10] while the heights are picked in [2, 5]. The array’s center and the

source are randomly placed in each room with a minimal separation distance of one meter to each

other and the array is randomly rotated. We also enforce a distance constraint of 25 cm of the array

center to each wall to avoid having any microphone placed beyond the room’s boundary. Each wall’s

absorption coefficient is drawn uniformly at random in [0.01, 0.3].

3.2.2 Evaluation Metrics

Orientation and dimensions

In order to match each recovered direction with the corresponding ground truth wall normal, we

apply the ground truth inverse rotation to (ê1, ê2, ê3). Each resulting vector should contain two

zero coefficients, the last coefficient being −1 or 1. The indices of the non-zero coefficients allow us

to re-order the vectors of the rotation matrix to match the recovered directions. We then compute

the mean angular errors between the recovered directions êd and the associated wall normals by

taking the arccosine of the dot products. We also compute the mean absolute errors on recovered

room dimensions.

Wall absorptions

Having matched recovered first-order sources to walls, we compute the mean absolute errors on

estimated absorption coefficients: α̂k = 1− â2k.

Room translation

In order to evaluate the room translation estimation, we calculate the room’s center in the array’s

reference frame from estimated parameters. This is done by inserting r̂room = [L̂1/2, L̂2/2, L̂3/2]
�

in (3.10) and solving for r. We then calculate the mean of Euclidean distances to the ground truth.

RIR extrapolation

Lastly, we evaluate the global accuracy of the method by re-simulating a RIR x̂ corresponding

to a new random source-array placement in the room using the image-source method (2.9) with

estimated parameters as input. Using the same sampling rate, we compute the signal-to-error ratio

to the true RIR x at the new location:

SER(x̂,x) = 10 log10

��NM
i=1 (x̂i − xi)

2

�NM
i=1 x2i

�
. (3.11)
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3.2.3 Experimental Results and Analysis

We first consider a 32-element spherical microphone array based on the geometry of the em32

Eigenmike® (radius R=4.2 cm) and scaled by various factors. Figure 3.3 presents the algorithm’s

performance on the geometry estimation task for varying sampling frequencies and microphone array

radii. In accordance with the image source localization results reported in Section 2.3.3, the accuracy

of the estimation improves as the radius or the sampling frequency grow. The lowest resolution

(R = 4.2 cm and fs = 8 kHz) presents some catastrophic reconstruction failures that heavily impact

the mean errors. These catastrophic cases seem to vanish when the array size and sampling rate

increase, the mean error steadily converging towards zero for all three metrics. This empirically

supports our main claim that the shoebox image-source method is indeed fully algorithmically

reversible for large enough arrays and frequencies of sampling. For a frequency of sampling of 24 kHz

and the lowest radius, the mean room dimension estimation error is around 3 mm. This number

goes down to 0.15 mm when dilating the array by a factor of 5. Meanwhile, the mean error on

room orientation (Figure 3.3.c) remains under 0.06° in all experiments, except for the very lowest

resolution. The errors on room center localization are somewhat higher. For the smallest array we

get a mean error of 0.42 cm at 24 kHz which diminishes to 0.022 cm after dilation. This is expected

because estimating the room center couples errors on orientation estimation and source-wall distance

estimation.

We then evaluate the estimation of wall absorption coefficients. We observed some rare failures

of absorption recovery even for relatively high array resolutions and frequency of sampling. In order
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Figure 3.3: Mean absolute errors on room dimensions (a), mean Euclidean errors on room center (b)
and mean angular error on room orientation (c) in function of the sampling frequency for varying
array radii and frequency of sampling.
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to get a more meaningful picture of the error committed, we only compute the mean errors over

coefficients estimated with an error below 0.3, and consider the rest as outliers. Recall that in

our simulations, the coefficients take values in [0.01, 0.3], thus outliers correspond to overestimated

absorptions between 0.31 and 1. We also computed the recall rates for this threshold. Both metrics

are displayed in Fig. 3.4. The obtained mean errors are around 0.01, and 100% recall rates are

obtained with the largest array sampling at 24 kHz or above. While these are low errors, we do not

observe the same convergence towards zero as on geometrical errors. One possible explanation is

that we kept the spike estimation algorithm described in Section 2.3.3 untouched, including two

spike pruning steps that discard low amplitude Diracs before and after the final gradient descent.
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Figure 3.5: Example of RIR extrapolation inside the room of Fig. 3.2 (4.2 cm array radius, 24 kHz
frequency of sampling).
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While the first pruning step does seem to help the optimization algorithm, the second step, which

is aimed at reducing false positives, might cause an issue on amplitude estimation. Rather than

deleting the spikes and losing the corresponding amplitudes, a lead for improvement would be to

merge the spikes by, e.g, adapting the heuristic presented in [147].

We now proceed with evaluating the ability of the method to extrapolate RIRs to arbitrary

source-array placements in the same room. The results are shown in Fig. 3.5. Despite the slight

absorption errors, we again observe a strong convergence of RIR extrapolation errors towards zero

as the array size increases, bringing further support to the claim that the shoebox image-source

method has been successfully reversed. Note that we did not observe such convergence as a function

of the frequency of sampling. This is expected, since the RIR extrapolation task itself, as assessed

by the proposed metric, becomes harder as the frequency of sampling increases. An example of

RIR extrapolation result is presented in Fig. 3.5. As can be seen, the extrapolated RIR very closely

matches the ground truth.

We finally study the impact of noise on geometry estimation. Figure 3.6 presents the recall

curves for the recovery of each individual room dimension Li, for different thresholds. The sampling

frequency and array radius are respectively set to 24 kHz and 4.2 cm, and we proceed to varying the

peak signal-to-noise ratio (PSNR) of input signals using additive white Gaussian noise. As expected,

the algorithm’s performance deteriorates when the noise increases and a severe drop appears at

25 dB PSNR. Nevertheless, the algorithm still manages to recover 95.5% of all room dimensions

with an error below 5 cm under such noise level, suggesting a reasonable robustness of the overall

approach.
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3.2.4 Baseline Comparison

We now compare the accuracy of the proposed algorithm with the landmark Euclidean distance

matrix (EDM)-based method introduced by Dokmanic et al. [58], using the code provided by

the authors1. This method takes as input a set of unlabeled times of arrival (TOAs) on multiple

RIRs, and returns the 3D locations of first order image sources. Given a set of TOAs, one for each

microphone, the algorithm estimates whether the combination could correspond to an image source

in 3D space. This estimation is performed by checking the rank of the corresponding EDM. Direct

comparison on the synthetic dataset defined in Section 3.2.1 turned out to be unfeasible. Indeed, the

algorithmic complexity of the EDM-based method explodes when the number of reflections increases.

Moreover, the method makes the strong assumption that only TOAs from image sources of orders

lower than or equal to two are provided. Even when only considering these low-order sources, the

number of considered combinations can become very high if the reflections are tightly clustered

together due to the room’s configuration, which frequently happens in our dataset. Finally, the

method was designed for and tested with arrays of typically 5 microphones, since the complexity

also drastically increases with the number of channels.

To produce a meaningful comparison, we configure the experiments to be favorable to the

EDM-based method. To demonstrate that our approach is agnostic to the array geometry and

number of elements, we consider a non-spherical microphone array of 8 microphones composed

of two squares stacked on top of each other, the top square being rotated by an angle π/4. The

corresponding array diameter is 37.5 cm. In order to avoid choosing a peak picking method to

process the input of the EDM-based method, we place it in an oracle setting. Namely, we provide it

with the true times of arrival of all image sources up to order 2 that are in recording range (partial

oracle labeling), rounded to the nearest discrete-time sample at 32 kHz. Note that working in

discrete time is a fundamental limit of such approaches. We run the two algorithms on the same

room configurations as before, only altering the array’s geometry but retaining the same location for

its center.

For each method, we compute the precision and recall for a 20 cm error threshold on the source

and first-order image sources localization and labelling. While the proposed algorithm always returns

exactly 6 first-order sources, the EDM-based method can wrongfully label second-order reflections

as first-order reflections, causing a loss in precision. The results for these experiments are listed in

1https://infoscience.epfl.ch/record/186657/

O1 Rec. O1 Prec. O1 MEE O0 MEE

[58] 84.4% 59.7% 65.7± 41.3 mm 35.1± 26.0 mm
Ours 97.2% 97.2% 2.41± 5.71 mm 0.289± 0.584 mm

Table 3.1: Recall, precision and mean Euclidean errors (MEE) for first-order image sources (O1)
and MEE for the true source (O0) using [58] or the proposed method.



90 CHAPTER 3. CUBOID ROOM RECONSTRUCTION

Table 3.1. The localization errors committed by the EDM-based method are an order of magnitude

larger than with the proposed approach. This highlights that, even using oracle information, the

considered task is far from trivial when considering fully randomized room parameters. The proposed

algorithm obtains a mean Euclidean error below 3 mm, which is below 343
2×32000 ≈ 5.1 mm, the

theoretically lowest achievable radial error by any discrete-time method at this frequency of sampling,

indicating that super-resolution is achieved. The number of rooms for which all 6 first-order sources

were retrieved without spurious second-order ones was 25.5% for the EDM-based method. Hence,

the method could not be used to recover the full geometry of most of the rooms. In contrast,

this ratio reached 95.5% of the rooms using the proposed method. For those rooms, the mean

geometrical reconstruction errors obtained by it, following the metrics presented in Section 3.2.2,

were respectively 0.34± 0.6 mm for the room dimensions, 0.61± 0.6 mm for the room translation

and 0.016 ± 0.05◦ mm for the room orientation. These are in line with those obtained with the

32-element spherical microphone array of comparable radius and sampling frequency. This seems

to indicate that when the array resolution is sufficient, adding microphones does not significantly

improve the accuracy of correctly recovered sources. However, adding microphones does seem to

reduce some of the geometrical ambiguities and hence to increase the number of correctly identified

sources.

3.3 Proof of Proposition 3.1.1

Proof. Note that, by construction, |G| = N1N2N3. Let u ∈ R3 and denote by Pu
s the affine plane

passing by s ∈ G with normal vector u. J3 can be reinterpreted as the total number of intersections

of all planes {Pu
s }s∈G with G:

J3(u) =
�

s∈G
|G ∩ Pu

s |. (3.12)

Indeed, for all s,p ∈ G, s − p is orthogonal to u if and only if p ∈ Pu
s . Note that for 1 ≤ i ≤ 3

the set G is partitioned by the disjoint union of Ni parallel planes Qi
j := Pei

sij
, 1 ≤ j ≤ Ni where

{sij , 1 ≤ j ≤ Ni} = {rq,ε ∈ G, (ql, εl) = (0, 1) if l �= i}. Then:

J3(u) =
�

s∈G

Ni�

j=1

|Qi
j ∩ Pu

s ∩ G| ∀i ∈ [[1, 3]]. (3.13)

Assume in the following that u is not colinear to any of the vectors ei. Then there exists a

direction ei such that every line Qi
j ∩ Pu

s , 1 ≤ j ≤ Ni is diagonal, in the sense that the direction of

the line is not given by any of the basis vectors ej . Indeed, consider the converse proposition by

contradiction: assume that for each i ∈ [[1, 3]] there exists an image source s ∈ G and a plane Qi
j

such that the line Qi
j ∩ Pu

s is generated by a basis vector eki , ki �= i. In particular, u is orthogonal

to ek1 by definition as Pu
s contains the direction ek1 . Similarly, ekk1 is orthogonal to u. Moreover,

as the direction ekk1 is contained in Qk1
j which is orthogonal to ek1 , then ek1 and ekk1 are distinct.
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Figure 3.7: Intersection of Q1
j and Ps when u and e1 are not orthogonal

Hence u would be colinear to the last basis vector, raising a contradiction.

We can assume without any loss of generality that direction e1 verifies this property (see Figure

3.7 for a depiction in that case), i.e every line Q1
j ∩ Pu

s , 1 ≤ j ≤ N1 is not generated by e2 or e3.

Then, the line Q1
j ∩ Pu

s intersects G at at most min(N2, N3) image sources. Moreover, as u is not

colinear to e2 and e3, this upper bound can only be reached for the sources s located on the diagonal.

Indeed, we need only consider the worst-case scenario, in which the straight line passes through all

the nodes on the diagonal. These nodes are at most min(N2, N3). Hence:

J3(u)=
�

s∈G

N1�

j=1

|Q1
j ∩ Pu

s ∩ G|<
�

s∈G
N1min(N2, N3)

=N2
1N2N3min(N2, N3). (3.14)

Now by replacing u with e1, formula (3.13) becomes :

J3(e1) =

N1�

j=1

�

s∈G
|Q1

1 ∩ G|1s∈Q1
j
= N1|Q1

1 ∩ G|2. (3.15)

Thus, J3(e1) = N1N
2
2N

2
3 . We obtain similar formulas for e2 and e3, hence:

J3(u) < max
1≤i≤3

J3(ei) = N1N2N3 max
1≤i<j≤3

NiNj (3.16)

and the maximum is reached for a vector e∗ colinear to e1, e2 or e3. Note that this proof extends

to 2D by considering the projection of G on e∗⊥ in order to obtain a second basis vector.
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3.4 Conclusion

A new algorithm that leverages the gridless image-source localization method introduced in Section

2.3.3 to achieve full image-source reversion from a discrete, low-passed, multichannel, shoebox RIR

was presented. In contrast to previous methods, we introduce a novel optimization step to recover the

microphone array’s orientation, which improves the accuracy of dimension estimation, and decreases

the sensitivity to the false positives appearing in the image-source localization step. Extensive

numerical experiments on simulated RIRs from randomized input parameters reveal that near-exact

recovery of all input parameters is achieved by the method, for large enough array sizes and sampling

rates. This constitutes, to our knowledge, the first empirical evidence that the historical image-source

method of Allen and Berkley [5] is algorithmically reversible, for a wide range of configurations.



Chapter 4

Proof of the ISM decomposition

We provide in this chapter an alternative proof of the ISM decomposition introduced by Allen and

Berkley for the solution of the wave equation with Neumann boundary conditions in a cuboid.
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4.1 Modal decomposition

Let us introduce the eigenfunctions Ψw of the Neumann Laplacian in Ω, with associated eigenvalues

k2w ∈ R+, defined by (see for instance [96]):

�
Ψw(r) =

2
√
2√
V
cos(πw1

Lx
r1) cos(

πw2
Ly

r2) cos(
πw3
Lz

r3)

kw = �vw�2 , vw = (πw1
Lx

, πw2
Ly

, πw3
Lz

)
(4.1)

where V = LxLyLz is the volume of Ω, and w = (w1, w2, w3) ∈ N3. Recall that the family {Ψw}w∈N3

forms a Hilbert basis of L2(Ω). In the following, the duality pairings are defined with respect to

the L2(Ω) dot product. In order to solve analytically system (N-W), we introduce the eigenmode

decomposition of the solution p:





p(r, t) =
�

w∈N3 aw(t)Ψw(r) (r, t) ∈ Ω× R
ΔΨw(r) = −k2wΨw(r) w ∈ N3, r ∈ Ω

∂nΨw(r) = 0 r ∈ ∂Ω,

(4.2)

this expansion being understood in a distributional sense. The time-dependent coefficients aw can

be obtained explicitly. This yields the following modal decomposition of the sound field in the time

domain.

Proposition 4.1.1. Let Ω = [0, Lx]× [0, Ly]× [0, Lz] be a 3-dimensional orthotope. The solution to

System (N-W) can be written as:

∀(r, t) ∈ Ω× R, p(r, t) =
�

w∈N3

c2tH(t) sinc(ctkw)Ψw(r
src)Ψw(r) (4.3)

where H denotes the Heaviside function. Such an expression makes sense in a distributional sense.

Proof. Let ϕ ∈ C∞
c (Ω× R) be a test function. Plugging (4.2) and (4.1) into (N-W), we get

�
(
1

c2
∂2
t −Δ)p , ϕ

�
=

�

t∈R

�

r∈Ω


 �

w∈N3

1

c2
a��w(t) + k2waw(t)


Ψw(r)ϕ(r, t)drdt (4.4)

=

�

t∈R

�

w∈N3

�

r∈Ω

�
1

c2
a��w(t) + k2waw(t)

�
Ψw(r)ϕ(r, t)drdt (4.5)

= ϕ(rsrc, 0). (4.6)
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Now, for t ∈ R, ϕ(t, ·) is in L2(Ω). Hence, we can also write:

ϕ(rsrc, 0) =

�
δ0 ,

�

w∈N3

��

r∈Ω
ϕ(·, r)Ψw(r)dr

�
Ψw(r

src)

�
(4.7)

=

�
δ0 ,

�

r∈Ω

�

w∈N3

Ψw(r)Ψw(r
src)ϕ(·, r)dr

�
. (4.8)

By identifying the distributions, we deduce that aw satisfies the ODE

a��w(t) + c2k2waw(t) = c2Ψw(r
src)δ0(t). (4.9)

Since aw is a causal function, let us write aw(t) = H(t)αw with αw ∈ H1
loc(R). It follows from the

jump rule [70, Chapter 2] that

a�w(t) = α�
wH(t) + [αw](0)δ0(t) and a��w(t) = α��

wH(t) + [α�
w](0)δ0(t) + [αw](0)δ

�
0(t)

where the notation [f ](0) stands for the jump of f at 0. We are thus led to identify αw solving the

ODE �
α��
w(t) + c2k2wαw = 0 t > 0

αw(0) = 0, α�
w(0) = c2Ψw(r

src)
(4.10)

and by solving this simple equation, we get

aw(t) =
c

kw
H(t)Ψw(r

src) sin(ctkw) = tc2H(t)Ψw(r
src) sinc(ctkw), w ∈ (N∗)3, t ∈ R. (4.11)

Recall that this solution is unique. Likewise, solving (4.10) in the case w = (0, 0, 0) yields:

a(0,0,0)(t) = tc2H(t)Ψ(0,0,0)(r
src) = tc2H(t)Ψ(0,0,0)(r

src) sinc(ctk(0,0,0)). (4.12)

We finally obtain the expected expression of p.

Note that applying a Fourier transform in time to the expression in Prop. 4.1.1 yields the

frequency-domain modal decomposition in a cuboid:

Corollary 4.1.1. The solution to the Helmholtz equation at wave number K on Ω with Neumann

boundary conditions is given by:

p(r,K) =
�

w∈N3

�
1

k2w − K2
+ i

π

2kw
(δ(ckw + K)− δ(ckw − K))

�
Ψw(r

src)Ψw(r) (r,K) ∈ Ω× R.

(4.13)
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Proof. Using the convolution theorem and standard Fourier pair tables, we have:

F [H(·) sin(·(kwc))] =
1

2π
F [H] ∗ F [sin(·(kwc))] =

iπ2

2π

�
1

iπ ·+δ(·)

�
∗ [δ(·+ kwc)− δ(·− kwc)] ,

(4.14)

thus

F [H(·) sin(·(kwc))] (ω) =
iπ

2

�
1

iπ(ω + kw)
− 1

iπ(ω − kw)
+ δ(ω/c+ kw)− δ(ω/c− kw)

�
, (4.15)

where ω = 2πf is the angular speed. Multiplying by c
kw

Ψw(r
src)Ψw(r) and refactoring yields the

expression in Cor. 4.1.1, using K = ω
c .

4.2 Image source expansion

We now modify the modal decomposition of the solution p provided by Proposition 4.1.1 to obtain

the desired image source expansion. Let w ∈ N3, w �= (0, 0, 0). Using Euler’s formula and the

notations introduced in (4.1), we can expand the products Ψw(r)Ψw(r
src) into a sum of complex

exponentials:

Ψw(r)Ψw(r
src) =

8

64V

�

ξ1,ξ2∈{−1,1}3
eivw.(ξ1�r+ξ2�rsrc) =

1

8V

�

ξ1,ξ2∈{−1,1}3
eiξ1�vw.(r+ξ2�rsrc). (4.16)

The application (ξ,m) �→ ξ �m is a bijection from {−1, 1}3 ×
�
N3 \ {(0, 0, 0)}

�
into Z3 \ {(0, 0, 0)}.

Thus, by injecting identity (4.16) in formula (4.3) we get:

p(r, t) =
1

8V

�

w∈N3

�

ξ1,ξ2∈{−1,1}3
c2tH(t) sinc(ct �vw�2)eiξ1�vw.(r+ξ2�rsrc) (4.17)

=
1

8V

�

w∈Z3

�

ξ∈{−1,1}3
c2tH(t) sinc(ct �vw�2)eivw.(r+ξ�rsrc) (4.18)

where we define vw and kw similarly to (4.2) for w ∈ Z3. If we express each term of the sum as an

integral against a Dirac delta distribution this expands to:

p(r, t) =
1

8V

�

w∈Z3

�

ξ∈{−1,1}3

�

u∈R3

c2tH(t) sinc(ct �u�2)eiu.(r+ξ�rsrc)δvw(u)du. (4.19)

The following calculations are presented formally, so as not to make the notations too cumbersome,

and additional justifications will be provided at the end of the proof. The one dimensional Dirac

comb Fourier series decomposition is given by:

1

α

+∞�

n=−∞
e

2iπnx
α =

+∞�

n=−∞
δnα(x) ∀α ∈ R∗. (4.20)
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Decomposing the Dirac along each dimension, δvw can be seen as product of 1D Dirac distributions:

δvw(u) = δ π
Lx

kx(ux)δ π
Ly

ky(uy)δ π
Lz

kz(uz), where vw = (
π

Lx
kx,

π

Ly
ky

π

Lz
kz) and (kx, ky, kz) ∈ Z3.

(4.21)

This product is rigorously defined as a tensor product of distributions [70, Chapter 4]. We can then

apply the decomposition (4.20) on each dimension in equation (4.19) to get:

p(r, t) =
1

8π3

�

w∈Z3

�

ξ∈{−1,1}3

�

u∈R3

c2tH(t) sinc(ct �u�2)eiu.(r+ξ�rsrc+2w�vL)du. (4.22)

The last step is to compute the integral
�
u∈R3

c sin(�u�2ct)
�u�2

eiu.vdu where v is an arbitrary vector in

R3.

Lemma 4.2.1. Let v ∈ R3. We have the following identity:

�

u∈R3

c sin(�u�2 ct)
�u�2

eiu.vdu =
2π2

�v�2
(δ(�v�2 /c− t))− δ(�v�2 /c+ t)). (4.23)

Proof. This integral can be seen as the Fourier transform of the 3D spherically symmetric function

f : u �→ c sin(�u�2ct)
�u�2

. Denoting by v the Fourier variable, one has

�

u∈R3

c
sin(�u�2 ct)

�u�2
eiu·vdu =

1

c

�

cu∈R3

sin(�cu�2 t)
�cu�2

ei(cu)·(v/c)d(cu) =
1

c

�

u∈R3

sin(�u�2 t)
�u�2

eiu·(v/c)du

The unnormalized Fourier transform f̂ of a function f of d arguments with radial symmetry is only

radius-dependent, and is given by the following identity [74]:

f̂(u) =
(2π)d/2

�u�d/2−1
2

� +∞

0
rd/2f(r)Jd/2−1(�u�2 r)dr (4.24)

where we denote by Jk the Bessel function of the first kind of order k. In particular in the case

d = 3, J1/2 is given explicitly by:

J1/2(t) =

�
2

π

sin(t)√
t

∀t ∈ R+. (4.25)

Applying formula (4.24) to the integral of interest yields:

�

u∈R3

sin(�u�2 t)
�u�2

eiu·(v/c)du =
4π

�v�2

� +∞

0
sin(rt) sin

�
r
�v�2
c

�
dr (4.26)

=
2π

�v�2

� +∞

−∞
sin(rt) sin

�
r
�v�2
c

�
dr. (4.27)

Using both the Euler formula and the fact that the Fourier transform with oscillatory factor −1 of
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the distribution eiax is 2πδ(ξ − a), for a ∈ R, we get

1

c

�

u∈R3

sin(�u�2 t)
�u�2

eiu·(v/c)du =
2π2

�v�2

�
δ

��v�2
c

− t

�
− δ

��v�2
c

+ t

��
, (4.28)

which is the desired formula.

Injecting this last identity in (4.22), we get:

p(r, t) =
�

w∈Z3

�

ξ∈{−1,1}3

δ(t− �r + ξ � rsrc + 2w � vL�2 /c)
4π �r + ξ � rsrc + 2w � vL�2

, (4.29)

which concludes the proof.

The transition from Eq. (4.19) to Eq. (4.22) can be made rigorous by performing a truncation

of sinc(ct �·�2) using a smooth, compactly supported function χµ, where χµ equals 1 on the ball

of radius µ centered at the origin, and vanishes outside the ball of radius 2µ. Indeed, the equality

between both expressions hold for the truncation, and we can let µ go to infinity in Eq (4.23) to

obtain the desired result.

Remark 4.2.1. In the case d = 2, integral (4.24) translates to:

�

u∈R2

c
sin(�u�2 ct)

�u�2
eiu.vdu =

�

u∈R2

sin(�u�2 t)
�u�2

eiu·(v/c)du

= 2π

� +∞

0
sin(rt)J0(r �v/c�2)dr

=
2π

�vc�1/22

� +∞

0
r−1/2 sin(rt)J0(r �vc�2)(�vc�2 r)1/2dr

where vc = v/c. According to formula 8.2.32 in [17], this last Hankel transform becomes:

�

u∈R2

c
sin(�u�2 ct)

�u�2
eiu·vdu = 2π

H(t− �vc�2)�
t2 − �vc�22

(4.30)

which is proportional to the 2D causal Green function for the wave equation. Similarly to the 3D

case, the pressure field can then be expressed as a sum of Green functions:

p(r, t) =
�

w∈Z2

�

ξ∈{−1,1}2

H(t− �r + ξ � rsrc + 2w � vL�2 /c)
2π

�
t2 − �r + ξ � rsrc + 2w � vL�22 /c2

. (4.31)
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General approach
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We consider in this part the more general case of a polyhedral room. To simplify the problem,

we place ourselves in 2D and consider a convex room Ω with a polygonal boundary ∂Ω. Chapter

5 introduces useful notations and formulas, as well as general notions on shape optimization and

simulation of the Helmholtz equation. The application of the method of fundamental solutions

(MFS) to the simulation of the 2D Helmholtz equation in a closed polygonal domain is presented in

details in Chapter 6. We then address the problem of reconstructing the shape of Ω from a set of

measurements in Chapter 7 by using a shape-optimization approach.
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Chapter 5

Tools for shape-optimization on

polygons

We introduce in this chapter some notations and useful identities, as well as some basic notions of

shape optimization. We also provide a short overview of numerical methods for the resolution of the

Helmholtz equation, and present the Method of Fundamental Solutions.
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5.1 Shape optimization on polygons

5.1.1 Notations and useful identities

We begin by introducing some notations and useful elementary properties for vector calculus. We

denote by ⊗ the outer product of vectors :

∀x,y ∈ CD, (x⊗ y) = (xiyj)1≤i,j≤D. (5.1)

The Frobenius inner product : of real matrices is defined by:

∀A,B ∈ MD,D(R), A : B :=
D�

i=1

D�

j=1

Ai,jBi,j = tr(ATB). (5.2)

Note that we will apply Formula (5.2) to complex valued matrices, but we do not consider the

complex Frobenius inner product, in which case the transpose would become a conjugate transpose.

The divergence of a matrix Z : RD → MD,D(R) is the vector of the divergences of its rows:

divZ := (divZi)1≤i≤D = (

D�

j=1

∂jZi,j)1≤i≤D. (5.3)

The tangential derivative of a vector field V : RD → RD on ∂Ω writes:

DΓV = DV − (DV )n⊗ n = DV − (DV.n)⊗ n, (5.4)

the tangential divergence of V is defined as:

divΓ(V ) = div V − (DV.n) · n = tr(DΓV ), (5.5)

and the tangential gradient of a scalar field f : RD → R is:

∇Γf = ∇f − (∇f · n)n. (5.6)

Recall Green’s first and second identities [62], stated here for regular domains and functions:

Theorem 5.1.1 (Green’s first and second identities). Assume that Ω is open, bounded with a C1

boundary. Let ϕ1,ϕ2 ∈ C2(Ω,R). We have the identities:

�

Ω
ϕ1Δϕ2 − ϕ2Δϕ1 =

�

∂Ω
ϕ1∂nϕ2 − ϕ2∂nϕ1 (5.7)

and �

Ω
ϕ1Δϕ2 +∇ϕ1 ·∇ϕ2 =

�

∂Ω
ϕ1∂nϕ2. (5.8)
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The following identities will be useful in the next sections.

Lemma 5.1.1. Let V1, V2, V3 : RD → RD, f : RD → R, and Z : RD → MD,D(C). If V1, V2, V3, f, Z

are sufficiently regular, we have the following expressions:

Z : DV1 + V1 · divZ = div(ZTV1) (5.9)

Z : I = tr(Z) (5.10)

(V1 ⊗ V2) : Z = V1 · (ZV2). (5.11)

divΓ(fV1) = ∇Γ(f) · V1 + f divΓ(V1) (5.12)

∇(V1 · V2) = DV T
1 V2 +DV T

2 V1. (5.13)

(V1 ⊗ V2).V3 = (V2 · V3)V1. (5.14)

5.1.2 Shape derivative

We wish to minimize an objective function J that depends on the domain Ω, and on the solution pΩ of

a PDE system defined on Ω and its boundary ∂Ω. We will focus here on an “optimize-then-discretize”

approach, meaning that we will begin by computing the continuous derivative of J with respect to

the shape Ω, and then discretize the resulting expression for numerical optimization. This section

provides a short presentation of shape derivatives.

Let V ∈ W 1,∞(R2,R2) a deformation vector field operating on a domain Ω chosen in such a

way that Ω+ εV belongs to the set of admissible shapes Sadm whenever ε > 0 is small enough. For

ε > 0, we define the transformation Tε := Id+εV and the deformed domain Ωε := Tε(Ω). The shape

derivative of the cost function J in direction V , when it exists, is defined by:

DJ(Ω) · V = lim
ε→0+

J(Ωε)− J(Ω)

ε
. (5.15)

It is standard to introduce the so-called Eulerian derivative p�Ω of pΩ in direction V given by

p�Ω := ṗΩ −∇pΩ · V, (5.16)

where ṗΩ denotes the Lagrangian derivative of pΩ in direction V , defined as the derivative at ε = 0

Figure 5.1: Effect of Tε on Ω



106 CHAPTER 5. TOOLS FOR SHAPE-OPTIMIZATION ON POLYGONS

of the mapping ε �→ pΩε ◦ (Id+εV ). Formally and intuitively, p�Ω verifies the expression

p�Ω = lim
ε→0+

pΩε − pΩ
ε

, (5.17)

which is ill-defined on the boundary.

In our case, we will derive formal calculations for the shape derivative that will be utilized in a

gradient descent algorithm. In practice, we will seek a boundary expression of the type:

DJ(Ω) · V =

�

∂Ω
F∂Ω.(V · n), (5.18)

where F∂Ω is a scalar function to be determined. Under some regularity assumptions, the existence

of an expression of the type (5.18) is guaranteed by a structure theorem, see [50, Theorem 3.6].

Further details and more rigorous definitions of shape derivatives can be found for instance in

[81, 80, 50, 79, 4].

5.1.3 Shape derivative on polygons

We will consider in our case a polygonal domain Ω, defined by S vertices v1, . . . ,vS indexed in

trigonometric ordering, with the convention vS+1 = v1. We denote by τs the s-th unitary tangential

vector τs = vs+1−vs

�vs+1−vs�2
, and Γs the corresponding edge, i.e. ∂Ω =

�S
s=1 Γs. Fig. 7.1 will give an

overview of these notations.

We will use a similar framework to [104, 103], based on a Lagrangian formulation, to compute

the shape derivative. We will require an adaptation of the tangential divergence theorem in order to

transform some boundary integrals used to compute the derivative. We will thus make use of an

adaptation of the theorem for polygons, introduced in the more general context of Ck curvilinear

polygons in [103].

Theorem 5.1.2. Let Ω a 2D polygonal domain with S edges, and ∂Ω =
�S

s=1 Γs its boundary. Let

V ∈ W 1,1(Γs,R2) ∩ C0(Γs,R2). Then, for every 1 ≤ s ≤ S, we have:

�

Γs

divΓ(V ) = (V (vs+1)− V (vs)) · τs, (5.19)

with the convention vS+1 = v1.

Remark 5.1.1. An additional term containing the mean curvature of the polygon has to be

computed for general Ck curvilinear polygons. This term vanishes in our case, as the curvature is

null on each edge.

The final form of the shape derivative will be the sum of a boundary integral of the type (5.18),

and a finite linear combination of functions evaluated at each vertex of the polygon.
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5.1.4 State of the art

Whilst shape optimization problems on smooth domains are well studied in the literature, the case

of non-smooth domains remains less explored. However, some works on the existence, structure

and regularity of shape derivatives for non-smooth domains have been published. For instance,

[51] provides results on the structure of shape derivatives for general non-smooth domains, whilst

[69, 90] focus on domains with cracks and [135] considers discrete singularities. The regularity of

shape derivatives around irregular domains is studied in [99], and the structure of derivatives for

domains with finite perimeters is investigated in [100]. In our case, we will concentrate on polygonal

domains, and prioritize numerical applications. The shape derivative of our objective function will

be computed using a Lagrangian method [34]. In order to obtain a boundary integral formulation,

we will use a strategy based on tensor representations, described in [103] in for more general classes

of irregular domains. Finally, several works provide numerical frameworks for shape optimization

amongst convex shapes. For instance, [98] defines a numerical method to optimize functions with

a convexity constraint by using the half-space (or half-plane) parametrization for convex shapes.

However, this method is designed to be used with many half-spaces discretizing the domain. In

particular, half-spaces may become inactive during the optimization process, leading to the vanishing

of some faces of the domain, where in our case we wish to keep a constant number of edges. In [21],

the author proposes to use the support function for the optimization of convex shapes. The convexity

constraints are enforced by discretizing the support function. Again, keeping a fixed number of

edges would be problematic in this context. We will thus use one of the natural parametrizations of

polygons in our method.

5.2 Numerical resolution of the Helmholtz equation

5.2.1 A short overview of Helmholtz simulation methods

In order to implement a shape optimization algorithm we will require an efficient simulation method.

Indeed, at each gradient step we will solve two Helmholtz equations: one to compute the pressure

field on the current shape, and another to calculate an adjoint state, which is necessary to update the

gradient. The chosen resolution method has to offer a decent accuracy to get a good approximation

of the cost function and gradient at each step, with a low computational cost. Moreover, the

source terms considered are singular, and the resolution method has to be able to handle a finite

combination of point sources. We can divide simulation methods into two categories: mesh-based

methods and meshless methods. Amongst mesh-based methods, the Finite Element Method (FEM)

is widely used in acoustics, see for instance [144, 121, 59, 116]. We give here a short description of

the Galerkin method applied to the Helmholtz equation. By multiplying the Helmholtz equation by

a test function ϕ, integrating over the whole domain and applying Green’s second identity (5.8), we
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get the following weak formulation for equation (14) with Robin boundary conditions (16):

�

Ω
∇p ·∇ϕ− K2

�

Ω
pϕ+ iKβ

�

∂Ω
pϕ = ϕ(rsrc), ∀ϕ ∈ C1(Ω). (5.20)

The domain Ω is discretized in a number of subdomains Ωj , j ∈ [[1, N ]], typically triangles, called finite

elements. We then choose a basis of local interpolating functions ϕ
(k)
j , k ∈ [[1,K]] over Ωj , for instance

Lagrange polynomials. The basis functions ϕ
(k)
j are chosen such that they are globally continuous

across the domain, with piecewise definitions on individual elements Ωj . The approximated solution

on Ωj then writes p̂j =
�K

k=1 α
(k)
j ϕ

(k)
j . Applying Equation (5.20) with ϕ = ϕ

(k)
j , k = 1, . . . ,K yields

a local system of integral equations over Ωj with unknowns α
(k)
j , that can be discretized using a

numerical quadrature formula. Each system of equations is then assembled into a global equation

matrix taking into account the connectivity constraints between elements.

Although the FEM produces accurate results, it is known to be computationally expensive,

especially as the frequency increases. Indeed, the number of elements necessary to accurately

represent the solution highly depends on the wavelength [2]. Several methods were developed to

counteract this issue, such as enrichment methods [64], Galerkin least-squares [78] or adaptive

methods using a posteriori error estimates [3, 83]. [143] provides a review of FE methods for the

Helmholtz equation.

Managing the mesh can become a burden in shape optimization problems as it has to be updated

at each optimization step, adding a significant computational cost. Meshless methods, however,

do not require a spatial discretization of the interior of the domain. Only the boundary of the

domain is meshed, effectively reducing the dimension of the problem by one. This especially reduces

the computational and implementation complexity in 2D, as the boundary is one-dimensional and

consequently no triangulation is necessary. This offers a significant advantage for shape optimization

algorithms as it is easier and less costly to handle the resulting boundary mesh between gradient

steps. Amongst meshless methods, the Boundary Element Method (BEM) is the most prominent

method in acoustics [107, 16, 35, 101]. Let p be the solution of the homogeneous Helmholtz equation

with inhomogeneous Robin boundary conditions. Applying Green’s first identity (5.7) yields:

�

∂Ω
∂nG

K
r (r

�)p(r�)dr� + p(r) =

�

∂Ω
∂np(r)G

K
r (r

�)dr�, r ∈ Ω (5.21)

where GK
r denotes a free field Green’s function for the Helmholtz equation at wave number K (see

Section 1.1.1). The values of p inside Ω can thus be inferred from the values taken on the boundary.

Assuming Ω is sufficiently regular and letting r approach ∂Ω yields a singular boundary integral

formulation [89]:

�

∂Ω
∂nG

K
r (r

�)p(r�)dr� +
1

2
p(r) =

�

∂Ω
∂np(r)G

K
r (r

�)dr�, r ∈ ∂Ω. (5.22)



5.2. NUMERICAL RESOLUTION OF THE HELMHOLTZ EQUATION 109

Equation (5.22) is used to construct a linear system of equations for which the unknowns are

the values taken by the solution p at a finite number of elements on the boundary ∂Ω. The

numerical solution can then be evaluated at any point inside the domain by using formula (5.21).

See [42, 155, 89] for more details on BEM.

The method implemented in this thesis is the Method of Fundamental Solutions (MFS). It carries

common traits with the BEM: it makes use of the free-field Green’s functions, and it is a meshless

method for which the solution of the approximated field can be computed at any location inside

the domain. The MFS has seen various applications in acoustics, such as the simulation of horns

[72], acoustic scattering [97, 88], vibro-acoustics [43], wave propagation [11] or eigenfrequencies

computation [148, 6]. The MFS was favorably compared to the BEM in [73] for the simulation of the

Helmholtz equation with impedance boundary conditions in 3D. Due to its simplicity, the MFS has

also been used in the context of shape optimization, with applications to eigenproblems [7, 13, 12],

source [110, 1], obstacle [111, 87] or cavity [140] reconstruction from boundary measurements. In

the next section we provide a detailed description of the MFS applied to the Helmholtz equation in

a closed domain.

5.2.2 The Method of Fundamental Solutions

General description

The Method of Fundamental Solutions (MFS) is a meshless numerical resolution method that

consists in approximating the solution of a PDE with boundary conditions by a linear combination

of free-field Green’s functions:

p(r) ≈
K�

j=1

αjG
K
rj (r), r ∈ Ω. (5.23)

The rj are set virtual source locations that are located outside Ω. Consider a homogeneous Helmholtz

equation with inhomogeneous Robin boundary conditions:

�
Δp+ K2p = 0 in Ω

∂np+ iKβp = g on ∂Ω.
(5.24)

Let (αj , rj) ∈ C × Rd, j ∈ [[1,K]] where the rj are located outside Ω̄. Then, it follows from the

definition of Green’s functions that �p =
�K

j=1 αjG
K
rj solves the interior equation of System (5.24)

regardless of the values of the weights αj . We then adjust the weights αj in order to meet the

boundary condition. Setting a collection of collocations points bi ∈ ∂Ω, i ∈ [[1, Nc]] where Nc ≥ K,
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we solve the following linear system:




(∂n + iKβ)GK
r1(b1) · · · (∂n + iKβ)GK

rK
(b1)

...
...

(∂n + iKβ)GK
r1(bNc) · · · (∂n + iKβ)GK

rK
(bNc)







α1

...

αK


 =




g(b1)
...

g(bNc)


 . (5.25)

Now, in order to simulate room impulse responses, we consider instead an inhomogeneous

Helmholtz equation with homogeneous Robin boundary conditions:

�
Δp+ K2p = −δrsrc(r) in Ω

∂np+ iKβp = 0 on ∂Ω.
(5.26)

This can be achieved by the previous method by setting g(r) = −(∂n + iKβ)Grsrc(r) in (5.25), and

considering the approximated solution �p =
�K

j=1 αjGrj +Grsrc . Note that by linearity we can also

solve the equation similarly in the case of a weighted sum of point sources. Moreover, the method

adapts easily to Neumann, Dirichlet or more complex boundary conditions as we need only to modify

the boundary conditions applied to the Green’s functions in (5.25).

Remark 5.2.1. This method is the strong formulation of the MFS. It is also possible to use the same

principle to compute a weak formulation of the MFS, which requires integrating the fundamental

solutions over the boundary. Note however that, contrarily to the boundary integrals used in the

BEM, the singularities of the Green’s functions involved are not directly located on the boundary.

Adaptation to polygons

The case of polygonal domains introduces some difficulties in the computation of the MFS. Indeed,

the fundamental solutions fail to replicate the behavior of the solution near the vertices of the

boundary in the case of singular corners. A corner is called regular if its inner angle is of the form

π/ω with ω ∈ N. If ω /∈ N, the corner is said to be irregular and can cause convergence issues in the

MFS, which will be addressed in the numerical experiments of Section 6.2. Antunes and Valtchev

proposed in [14] an enrichment of the basis of fundamental solutions in order to take into account

the irregularity of the solution at the singular corners. The idea is to add particular solutions of the

homogeneous Helmholtz equation that can compensate the asymptotic behavior of the solution of

the boundary problem near the corners. The functions considered are of the form:

ψl(r, θ) = Jlω(kr) cos(lωθ), l ∈ N (5.27)

where Jlω denotes the Bessel function of the first kind of order lω and r, θ are the polar coordinates

with the origin located at the corner and the x-axis aligned with an edge, as represented on Fig. 5.2.

The functions ψl are Neumann corner eigenfunctions for the Helmholtz equation and are adapted

to counteract the asymptotic behavior for a Neumann boundary problem. However, numerical
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experiments have shown that these functions also perform satisfactorily for Robin boundary conditions

(see Section 6.2). More details on the implementation are given in Section 6.1.

Figure 5.2: Polar system of coordinates for a corner function at vertex s and a given location p.
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Chapter 6

Method of fundamental solutions

In this chapter, we describe more precisely the implementation of the MFS in the context of our

problem, and assess its numerical efficiency for the resolution of the 2D Helmholtz equation with a

point source inside a polygonal domain. We also present an approach to compute a time-domain

RIR using the MFS.

113
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6.1 Implementation details

6.1.1 Virtual source locations

A first crucial issue to ensure the accurate execution of the MFS is the choice of the virtual source

locations outside the domain. It is possible to optimize on the locations of the sources in order to

maximize accuracy [112]. However, to reduce computational costs, we sample the sources on the

polygon and simply shift them in the direction of the outgoing normal vector by a distance dx (see

Fig. 6.1). As we will only consider convex polygons, this guarantees that every virtual source is

located at the same distance to the boundary. The choice of the distance dx between ∂Ω and the

virtual boundary is discussed in Section 6.2. Given a desired number of virtual sources K, we assign

to each edge a number of sources proportional to its length and uniformly spread the locations on

the edge. The choice of K is addressed in the next section.

Figure 6.1: Resolution domain Ω and associated sampling boundary for the virtual sources.

6.1.2 Adaptive sampling strategy

A sufficient number of basis functions must be used to approximate the solution in order to have an

accurate representation. The choice of the number of fundamental solutions is far from obvious, as

it depends both on the geometry and the wave number. In particular, when solving the Helmholtz

equation at different wave numbers, we can adapt the number of virtual sources accordingly. We

then choose the number of collocation points on the boundary to be superior or equal to the number

of virtual sources. Moreover, we can check the adequacy of the approximated solution by evaluating

the corresponding boundary conditions, and increase the number of virtual sources if necessary. In

order to reduce the memory usage and computational cost when computing the solution at numerous

frequencies, we only check the solution at certain reference frequencies in order to set the number

of sources. The same virtual boundary mesh is then used for a whole frequency range. Alg. 5

gives a description of the setup procedure given a sequence of increasing reference wave numbers,

and two sequences of initial spacing parameters for the collocation points and virtual sources. For
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Algorithm 5 Setting up of a simulation

Input: Reference wave numbers Kref
1 < . . . < Kref

L , virtual source spacing σl, collocation points
spacing µl, error threshold ε

Output: Virtual source locations (rlk)1≤k≤Kl
, collocation points (blk)1≤k≤K�

l
and corresponding

normal vectors (nl
k)1≤k≤K�

l
for each reference wave number Kref

l

1: for l = 1, . . . , L do
2: e ← +∞
3: while e > ε do
4: if σl > σl−1 then
5: σl−1 ← σl
6: end if
7: if µl > σl then
8: µl ← 0.95µl

9: end if
10: (rlk)1≤k≤Kl

, (blk)1≤k≤K�
l
, (nl

k)1≤k≤K�
l
← sample(∂Ω, dx,σl, µl)

11: (αl
k)1≤k≤Kl

← solve(Kref
l , (rlk), (b

l
k), (n

l
k))

12: e ← evaluate error(Kref
l , ∂Ω, (αl

k), (r
l
k), 0.8µl)

13: end while
14: end for

each wave number we proceed to sample the real and virtual boundary to get the source locations,

the collocation points, and the corresponding normal vectors. We then evaluate the error on the

boundary conditions, and we reduce the spacings until the error reaches a certain threshold. For

Robin boundary conditions, we consider the following relative error for the l− th reference frequency:

el =

�
�Nerr

j=1

���(∂n + iKref
l β)

�
G

Kref
l

rsrc(berrj ) +
�Kl

k=1 α
l
kG

Kref
l

rl
k

(berrj )
����

2

�
�Nerr

j=1

���(∂n + iKref
l β)G

Kref
l

rsrc(berrj )
���
2

, (6.1)

where the berrj are located on the boundary and are distinct from the collocation points, and the αl
k

are the coefficients in the MFS approximation for the reference wave number Kref
l . In practice, to

reduce the number of parameters, only one collocation spacing µ is used and is chosen to be lower

than the last source spacing σL. The initial source spacings σl, 1 ≤ l ≤ L and error threshold ε can

be set depending on the accuracy required.

For a given wave number K such that Kref
l < K ≤ Kref

l+1, we then use the reference collocation

points (bl+1
k )1≤k≤Kl+1

and source locations (rl+1
k )1≤k≤Kl+1

to solve the Helmholtz equation at that

particular frequency. We use the NumPy least-squares function to solve the system. Moreover, the

solutions for different wave numbers are computed in parallel using the multiprocessing package.

The number of corner particular solutions in the enriched basis (see Section 5.2.2) is easier to set.

Indeed, numerical experiments (supported by the claims in [14]) showed that only a handful of corner
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Figure 6.2: Numerical solution of the Helmholtz equation at frequencies 200 Hz (a) and 2000 Hz (b)
obtained using respectively 51 and 492 virtual sources, and 1034 collocation points on the boundary.

functions per vertex were necessary to dampen the numerical instabilities. As the number of corner

functions usually remains well under the number of virtual sources, adding a few basis functions

has a relatively low cost. Hence, we use 20 particular solutions per corner in all experiments. Fig.

6.2 gives an example of resolution for f = 200 Hz and f = 2000 Hz using respectively 51 and 492

virtual sources, and 20 corner functions per vertex. The perimeter of the polygon is approximately

16.84 m, which corresponds to sampling around 6 sources per wavelength on the virtual boundary.

This yields relative errors of the order of 10−6.

6.2 Numerical validation of the MFS implementation

6.2.1 Rectangular domain

We first test the implementation on a rectangular domain Ω = [0, Lx]× [0, Ly] which only contains

regular corners, where Lx = 5.2 m and Ly = 3.3 m. In the case of Neumann boundary conditions,

the analytical solution is given by its eigenmode decomposition as expressed in Corollary 4.1.1.

We estimate this sum numerically by doing a truncation, and compare the result with the MFS

simulations. We compute the relative L2 error between the MFS approximation and the truncation of

the exact series, which is defined as the L2 norm of the difference between the two solutions divided

by the L2 norm of the reference solution. Fig. 6.3 gives the convergence of the approximated solution

to the exact solution in L2 norm when the number of virtual sources increases for different simulated

frequencies. The series defining the analytical solution was truncated up to order N = 10, 000 for
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Figure 6.3: Relative L2 error between the MFS approximation and the truncation of the exact modal
decomposition series as a function of the number of virtual sources for a rectangular domain. The
series is truncated at order N = 10, 000, and we consider a square system in the MFS.
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Figure 6.4: Relative L2 error between the MFS approximation and the truncation of the exact
modal decomposition series as a function of the shift dx between the real and virtual boundary for a
rectangular domain (1000 virtual sources, 1200 boundary points)
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the numerical solution. The MFS approximation seems to converge quickly to the exact solution for

lower frequencies, higher frequencies requiring more virtual sources in order to have an accurate

numerical solution. Note that at low frequencies the error reaches a plateau and remains stable when

the number of sources is high. This can be explained by a predominance of the truncation error of

the series, whilst the MFS approximation continues to converge towards the exact solution. The

number of virtual sources exactly matches the number of boundary points in that figure, however in

practice we will often consider over-determined systems, i.e. more boundary points than sources.

As mentioned previously, the choice of the distance parameter dx has an impact on the quality

of the resolution. Fig. 6.4 shows the dependence on this parameter for this particular geometry.

The optimal shift depends on the frequency, lower frequencies being more permissive in the range of

adequate shifts. It would be possible to adapt this shift for every simulated frequency and geometry,

however in practice we will empirically set dx = 0.3 in all experiments unless mentioned otherwise.

6.2.2 Polygonal domain

We then test the MFS on an arbitrary polygonal domain containing singular corners with complex

Robin boundary conditions. We compare the results with FEM simulations as no analytical solution

is available in this case. Fig. 6.5 shows an example of Helmholtz resolution using FreeFem++ and

the MFS on the polygonal test case.

In order to reduce the computational cost of the FEM resolution we limit the maximal testing

frequency to 1000 Hz. Fig. 6.6 presents the L2 error between the FreeFem++ and MFS numerical

solutions. We see a steady decline of the error as the number of virtual sources increases, followed
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Figure 6.5: (a) FreeFem++ approximation (b) MFS approximation (300 virtual sources and boundary
points, 20 corner functions per vertex) at 1000 Hz for Robin boundary conditions (β = 0.01).
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Figure 6.6: Relative L2 error between the MFS and FreeFem++ approximations as a function of the
number of virtual sources for the polygonal domain depicted in Fig. 6.5.

by a plateau. Once again, the plateau is likely due to the approximation error of the FEM solution.

Note that the plateau is reached sooner for high frequencies, as the number of elements in the FEM

mesh is fixed and more elements are needed for an accurate resolution at higher frequencies.

Fig. 6.7 highlights the numerical instabilities that appear in the presence of singular corners.

The blue curve represents the Robin boundary condition induced by the virtual sources on each

edge, i.e. (∂n + iKβ)
�K

j=1 αjG
K
rj using the notations of Section 5.2.2. The orange curve depicts

the source contribution −(∂n + iKβ)GK
rsrc . Significantly increasing the number of boundary points

or virtual sources does not reduce the oscillations, however adding a few corner eigenfunctions to

the approximation counteracts these issues, as illustrated in Fig. 6.8. Note that, as the quality

of the resolution only depends on the approximation of the boundary conditions, a near-perfect

approximation as represented in Fig. 6.8 ensures an accurate numerical solution inside the domain.

Remark 6.2.1. The appearance of the plateau in the error curves could be delayed by improving the

accuracy of the reference solution, either by increasing the number of modal terms in the expansion

in the previous section, or by refining the FEM mesh here. Such improvements would enable a more

precise assessment of the convergence rate of the MFS but at a significantly higher computational

cost, particularly for high-frequency FEM simulations. Since the aim of these experiments is only to

validate the MFS implementation, we will not pursue this direction further.
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Figure 6.7: Real and imaginary parts of the MFS approximation of the boundary conditions without
corner eigenfunctions (500 virtual sources, 700 boundary points, f = 375 Hz)
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Figure 6.8: Real and imaginary parts of the MFS approximation of the boundary conditions with 20
corner eigenfunctions per vertex (500 virtual sources, 700 boundary points, f = 375 Hz)
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6.2.3 Eigenvalues of the Laplacian

This section addresses the resolution issues caused by the eigenvalues of the Laplacian, also called

resonant frequencies or eigenfrequencies in acoustics. Recall that an eigenvalue of the Laplacian

is a frequency for which there exists a non-zero solution of the associated homogeneous Helmholtz

equation for given boundary conditions. The resonant frequencies and corresponding eigenmodes

for a rectangular domain with Neumann boundary conditions are given by (4.1), but are usually

unknown for general domains. Fig. 6.9 highlights the ill-conditioning of the MFS system on a

rectangular domain with Neumann boundary conditions by plotting the smallest singular value of

the MFS system matrix as a function of the frequency.
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−4.5

−4.0

lo
g
(σ

0
)

smallest singular value

resonant frequencies

Figure 6.9: Exact resonant frequencies for the Neumann boundary conditions against the smallest
singular value σ0 of the MFS system for a 3× 2 rectangle, 150 virtual sources and 200 collocation
points.

Consider the resolvent of the Neumann-Laplacian, i.e. the linear operator T : L2(Ω) → {u ∈
H1(Ω),

�
Ω u = 0} that maps a source term f to the solution u of −Δu = f with zero mean satisfying

Neumann boundary conditions. T is self-adjoint and compact [47], and its eigenvalues µl are the

inverses of the Laplacian eigenvalues λl. Indeed, let µ > 0 be an eigenvalue for T. We have:

u := Tf = µf = −µΔu ⇐⇒ −Δu =
1

µ
u. (6.2)

We can then apply the Fredholm alternative [26]. Let �T = 1
µT , the equation f − �Tf = g is

solvable if and only if g ∈ Ker
�
Id− �T

�⊥
. This kernel is finite-dimensional, and its dimension is

the multiplicity of the associated eigenvalue λ = 1
µ . Formally, in our case g = −δrsrc , and the

orthogonality constraints become: u(rsrc) = 0 for every λ-eigenfunction u. In other words, if K

corresponds to an eigenfrequency, the associated Helmholtz equation with a Dirac source term located

at rsrc is ill-posed if rsrc is not located on the nodal set for this wave number. In practice, numerical

instabilities are observed when the simulated frequency is chosen too close to an eigenfrequency. For

the case of Neumann boundary conditions, the resonant frequencies are real and positive, and have a
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distribution that makes computing the MFS solution on a large frequency range intractable. Indeed,

if we denote by N(K) the number of eigenvalues of the Neumann-Laplacian that are less than K, we

have the asymptotics [152]:

N(K) = O(Kd/2)
K→∞

(6.3)

in the case of a d−dimensional smooth boundary, which implies a linear growth in the number of

eigenfrequencies with regard to the frequency in 2D. See also [75] for an overview of the properties

of Laplace eigenvalues.

Remark 6.2.2. These issues render the MFS impractical for shape optimization, as the resonant

frequencies of the domain are unknown at each optimization step. However, Neumann boundary

conditions are never encountered in the real world, as surfaces absorb and transmit some of the

sound energy. We will consider admittance boundary conditions in numerical applications, i.e.

complex Robin boundary conditions. These issues do not arise in that case as long as the admittance

coefficient has a non-zero real part, because the corresponding resonant frequencies are not located

on the real line.

6.3 Wave equation simulations using the MFS

We describe here how we can simulate time-domain room impulse responses with impedance boundary

conditions using the frequency-domain MFS. Recall that the Helmholtz equation can be obtained by

applying a Fourier transform to the wave equation and the associated boundary conditions. We

then have a simple framework to compute solutions of the wave equation at a given location rmic:

1. Pick a maximum frequency fmax and a number of frequencies nf . Let Kn = 2πnfmax

cnf
, 0 ≤ n ≤

nf .

2. Solve the Helmholtz equation with Robin boundary conditions at location rmic for every

Kn, 0 < n ≤ nf and store the results in a vector ũ with ũ0 = 0.

3. Apply a high-pass filter to ũ.

4. Apply a real inverse Discrete Fourier Transform (DFT) to ũ to get the discrete time signal u.

The resulting vector u contains an approximation of the time response between t0 = 0 and tmax =
nf

fmax
.

Note that tmax must be high enough, so that p(rmic, tmax) ≈ 0, i.e. the time signal has a finite

duration. Setting ũ0 amounts to choosing a normalization for the RIR, as it equals the mean value

of the signal. In the absence of a high-pass filter, low-frequency effects are visible in the signals and

the obtained RIR are non-physical. Common impedance models, such as the Delany-Bazley-Miki

model for porous media [113] are not valid for low frequencies. Intuitively, this limitation arises

because certain assumptions in such models become invalid when the wave length is large relative to

the dimensions of the room, thus motivating the need for a high-pass filter.
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To get an estimate of the computational cost, we consider the following test case: we solve the

Helmholtz equation on a 4.5× 2.3m rectangle at 3000 frequencies uniformly sampled between 0 and

4 kHz, using 478 virtual sources and 1352 collocation points. With a simple parallel implementation,

the simulation takes around 11 minutes using 64 cores split in 16 batches of 4 cores. A single

frequency simulation takes between 1 and 2 seconds on 4 cores, meaning that a significant amount

of time is lost on the parallelization overhead. This could be improved upon, as each frequency

simulation is independent of the others. Once the coefficients are computed, evaluating the time

signal at a single location takes less than 1 second. Note that Step 2 can be further sped up by using

the adaptive sampling strategy described in Alg. 5.

Remark 6.3.1. A major advantage of working in the frequency domain is to avoid handling the

time convolution in the boundary condition (13), as it transforms into a frequency-wise product

after applying the Fourier transform.

We perform two time simulations on a polygon by solving the Helmholtz equation at nf = 4000

frequencies up to fmax = 4 kHz, which corresponds to a total simulation time tmax = 1 s. We also

apply a fourth-order Butterworth high-pass filter at 50 Hz. Figure 6.10 represents two RIRs simulated

at a fixed location rmic on a polygonal domain, respectively by applying the Delany-Bazley-Miki
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Figure 6.10: RIRs computed at location rmic = (3.75, 0.5) using the MFS on the polygonal domain
represented in Fig. 6.11 and 6.12. (a) uses Delany-Bazley-Miki to model β with the static air flow
resistivity σ = 20000 N.s.m−4 and the thickness h = 10 cm, whilst (b) uses a constant coefficient
β = 0.1.
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Figure 6.11: Absolute value of the pressure field in arbitrary units computed using the MFS. On the
left we use the Delany-Bazley-Miki model for β with the static air flow resistivity σ = 20000 N.s.m−4

and the thickness h = 10 cm, and on the right β = 0.1 is constant.
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model to compute the impedance and by taking a constant value for β. Fig. 6.11 gives some

snapshots of the associated wave propagation

The early specular reflections are clearly visible in the time signals, however the echoes are

considerably damped in the case of the porous model. In both cases the simulated RIRs are very

different from those produced by the image source model, such as those presented in Fig. 4b. This

is partially caused by the fact that we consider 2-dimensional simulations here, rather than the 3D

model of the first part.

However, we can also observe phenomena that would not be represented by the basic extensions of

the ISM to non-rectangular domains as the one presented in [22]. In particular, Fig. 6.12 illustrates

that in the case of an occlusion, i.e. an image-source that would not be observable from a given

measurement point, a reflection is still visible. On this figure, the first order image-source r1 is not

visible above the red line, as the corresponding specular reflection would occur outside the room,

but a perturbed wavefront still propagates in the occlusion zone. Note that this wavefront is circular

with its center located at the vertex delimiting two walls, as if an image-source was emitting a

wave from the corner. Such a phenomenon cannot be accounted for by the image-source method.

Although the damping effect of the frequency-dependent model used for β is particularly visible on

the left figures, the specular reflections are still noticeable. We can also observe some resolution

artifacts. These artifacts are probably caused by the application of the inverse DFT. Increasing the

Figure 6.12: Absolute value of the pressure field after 11 ms for β = 0.1 (see Fig. 6.11). r0 is the
source location, r1 is the first order image-source location corresponding to the bottom wall. The
occlusion boundary for r1 is represented in red.
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maximum simulated frequency and the maximum time can contribute to reduce the errors linked to

the Fourier transform. Besides, the impact of the accuracy of the frequency-domain solutions on the

resulting time-domain signals has not been studied extensively, and increasing the number of virtual

sources and boundary points could improve the results.

6.4 Conclusion

We have described our implementation of the MFS for the resolution of the Helmholtz equation

with a Dirac source term on a polygonal domain. The method demonstrates a good computational

efficiency when compared to the FEM simulations, and is able to handle higher frequencies. This

ability to simulate high frequencies is then leveraged to compute time-domain RIRs, revealing a

more complex behavior than the one predicted by the image-source model.



Chapter 7

2D Shape optimization for room

reconstruction

We introduce in this chapter a formulation of the room shape recovery inverse problem in 2D as

a shape optimization problem on polygons. We compute the corresponding shape derivative, and

define a shape gradient descent algorithm. Finally, we evaluate the algorithm on a set of randomly

generated polygons.

127
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7.1 Shape optimization formulation

We consider in this part a bounded, convex, polygonal domain Ω ⊂ R2. Similarly to Part I, we will

consider low-pass filtered, discrete measurements of the pressure field in order to reconstruct the

geometry. Unlike in Part I, we place ourselves in the frequency-domain, and formalize the problem

as an optimization problem on the shape Ω. We thus consider the following optimization problem:

min
Ω∈Sadm

J(Ω), J(Ω) :=
1

2LM

L�

l=1

M�

m=1

��pΩ,Kl
(rmic

m )− pobs,Kl
(rmic

m )
��2 (7.1)

where Sadm is the set of admissible shapes defined below, pobs,K is the observed pressure field at

wave number K, and pΩ,K is a compact notation for the solution of the Helmholtz equation on Ω

with Robin boundary conditions:

�
Δp+ K2p = −δrsrc in Ω

∂np+ iKβp = 0 on ∂Ω,
(7.2)

which admits the following variational formulation:

�

Ω
∇pΩ,K ·∇ϕ− K2pΩ,Kϕ+ iKβ

�

∂Ω
pΩ,Kϕ = ϕ(rsrc) ∀ϕ ∈ H1(Ω). (7.3)

We consider here that β is constant on each wall, and real valued. The source location rsrc and

the microphone positions are assumed to be known and contained inside Ω. Sadm is the set of

convex polygons that contain the microphone positions rmic
m and the source location rsrc, with a

fixed number of vertices S.

Remark 7.1.1. In practical on-site acoustic measurements, the range of available frequencies is

limited. In particular, the very-low frequencies (typically < 50 Hz) cannot be accurately recorded,

and similarly high frequencies are inaccessible. Moreover, the impedance model becomes invalid as

the frequency drops and the wave length grows larger relative to the size of the room. This issue

will be addressed in the numerical section.

7.2 Shape derivative

7.2.1 Introduction

In the following, we will consider a single wave number K in the expression of the objective function

J defined in (7.1). The full expression can be obtained by linearity by adding the derivative for each

wave number. Using the notations of Section 5.1.2, it is straightforward to compute formally an
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expression of the shape derivative:

DJ(Ω) · V =
1

M

M�

m=1

p�Ω,K(r
mic
m )

�
pΩ,K(r

mic
m )− pobs,K(r

mic
m )

�
. (7.4)

However, this formula is not usable in practice, as we cannot access the values of the Eulerian

derivative of the pressure field p�Ω,K. We will instead use the boundary formulation given in the

following theorem.

Theorem 7.2.1. Let Ω ∈ Sadm be a convex polygon, and V ∈ W 1,∞(R2,R2) be a vector field such

that V vanishes in a neighborhood of rsrc and rmic
m , 1 ≤ m ≤ M . Let pΩ,K be the solution of the

Helmholtz equation (7.2) on Ω, and qΩ,K be the solution of the adjoint system:

�
ΔqΩ,K + K2qΩ,K = 1

M

�M
m=1 (pΩ,K(r

mic
m )− pobs,K(r

mic
m ))δrmic

m
in Ω

∂nqΩ,K − iKβqΩ,K = 0 on ∂Ω.
(7.5)

Then the shape derivative of the cost function J in direction V satisfies:

DJ(Ω) · V =

�

∂Ω
(V · n) Re

�
∇pΩ,K ·∇qΩ,K + K2(2β2 − 1)pΩ,KqΩ,K

�
(7.6)

+
S�

s=1

(τs−1 − τs) · V (vs)Re[iKβ pΩ,K(vs)qΩ,K(vs)] (7.7)

where τs denotes the unit vector tangent to the edge vsvs+1, and τ0 = τS.

Remark 7.2.1. Note that we can remove the singularities from the source term of the PDE by

considering an equivalent system. Indeed, writing �pΩ,K = pΩ,K − GK
rsrc where GK

rsrc is a free-field

Green’s function located at the source, �pΩ,K satisfies a homogeneous Helmholtz equation with

non-homogeneous boundary conditions:

�
Δ�pΩ,K + K2�pΩ,K = 0 in Ω

∂n�pΩ,K + iKβ�pΩ,K = −(∂nG
K
rsrc + iKβGK

rsrc) on ∂Ω
(7.8)

where GK
rsrc is singular at the source location, but regular elsewhere (and in particular at the

boundary). The same reasoning can be applied to qΩ,K by considering a combination of Green’s

functions located at the microphones’ positions. For Neumann boundary conditions and a convex

domain, i.e. β = 0, �pΩ,K belongs to H2(Ω) by elliptic regularity [76]. We will assume in the following

that the same regularity holds in the case of complex Robin boundary conditions. pΩ,K and qΩ,K are

then the sum of a regular function, and a function containing discrete singularities located inside Ω.

We will use the Cea formal differentiation approach introduced originally in [34] and a tensor

representation as described in [103] to obtain a usable expression of the shape derivative DJ(Ω) · V .
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To this aim, let us introduce the Lagrangian functional L defined by

L(�Ω,ϕ,ψ) =
1

2M

M�

m=1

|ϕ(rmic
m )− pobs(r

mic
m )|2 +Re

�
−ψ(rsrc) +

�

�Ω

�
∇ϕ ·∇ψ − K2ϕψ

��
(7.9)

+Re

�
iKβ

�

∂�Ω
ϕψ

�
. (7.10)

L is obtained by summing the objective function and the weak formulation of the PDE verified by

pΩ,K.

The strategy used to compute the shape derivative is the following:

1. Establish the equation verified by the adjoint state qΩ,K, which is defined by:

∂ϕL(Ω, pΩ,K, qΩ,K)(�ϕ) = 0, ∀�ϕ ∈ H1(Ω). (7.11)

2. Apply a change of variable to express the integrals on Ω instead of Ωε and consider:

G(ε, pΩ,K, qΩ,K) := L(Ωε, pΩ,K ◦ T−1
ε , qΩ,K ◦ T−1

ε ), (7.12)

where Tε := Id+εV .

3. Find a volumetric expression of the shape derivative by using the relation

DJ(Ω) · V = ∂εG(0, pΩ,K, qΩ,K). (7.13)

4. Transform this formula using Theorem 5.1.2 to get a boundary expression depending on pΩ,K,

qΩ,K, and V · n.

We now proceed with formal calculations using the so-called “Céa method”. It is standard in this

approach to assume that the expression for the shape derivative is valid under certain regularity

assumptions on the functions �pΩ,K and �qΩ,K, as described in Remark 7.2.1. A rigorous proof that

these regularity assumptions hold in our case will be provided in a forthcoming article. Notably, by

ensuring the perturbation field V vanishes near the source and microphone positions, multiplying

pΩ,K and qΩ,K by V effectively eliminates the singularities in the computations.

7.2.2 Adjoint state

Equation (7.11) translates to:

Re

��

Ω
(∇�ϕ ·∇qΩ,K − K2 �ϕqΩ,K)) + iKβ

�

∂Ω
�ϕqΩ,K +

1

M

M�

m=1

�ϕ(rmic
m )(pΩ,K(rmic

m )− pobs,K(rmic
m ))

�
= 0

(7.14)
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for any �ϕ ∈ H1(Ω). Let qΩ,K = q1 + iq2, pΩ,K − pobs,K = g1 + ig2, and take �ϕ = �ϕ1 + i�ϕ2 with

q1, q2, g1, g2, �ϕ1, �ϕ2 real-valued. Equation (7.14) yields:

�

Ω

�
∇�ϕ1 ·∇q1 +∇�ϕ2 ·∇q2 − K2(�ϕ1q1 + �ϕ2q2)

�
+Kβ

�

∂Ω
(�ϕ1q2−�ϕ2q1)+

1

M

M�

m=1

(�ϕ1g1+�ϕ2g2)(r
mic
m ) = 0.

(7.15)

Setting now �ϕ = �ϕ2 − i�ϕ1 we get:

�

Ω
(∇�ϕ2 ·∇q1−∇�ϕ1 ·∇q2−K2(�ϕ2q1− �ϕ1q2))+Kβ

�

∂Ω
(�ϕ1q1+ �ϕ2q2)+

1

M

M�

m=1

(�ϕ2g1− �ϕ1g2)(r
mic
m ) = 0.

(7.16)

By considering the combination (7.15)− i(7.16), we thus obtain the variational formulation of the

complex adjoint equation:

�

Ω
(∇qΩ,K ·∇ϕ− K2qΩ,Kϕ))− iKβ

�

∂Ω
qΩ,Kϕ+

1

M

M�

m=1

(pΩ,K(r
mic
m )− pobs,K(r

mic
m ))ϕ(rmic

m ) = 0, ∀ϕ.

(7.17)

In other words, qΩ,K satisfies

�
ΔqΩ,K + K2qΩ,K = 1

M

�M
m=1 (pΩ,K(r

mic
m )− pobs,K(r

mic
m ))δrmic

m
Ω

∂nqΩ,K − iKβqΩ,K = 0 ∂Ω
(7.18)

Remark 7.2.2. Note that the state pΩ,K satisfies

∂ψL(Ω, pΩ,K,ψ)( �ψ) = 0, ∀ �ψ ∈ H1(Ω), (7.19)

i.e.

Re

��

Ω
(∇pΩ,K ·∇ �ψ − K2pΩ,K

�ψ)− �ψ(rsrc) + iKβ

�

∂Ω
pΩ,K

�ψ
�
= 0, ∀ �ψ ∈ H1(Ω). (7.20)

By doing similar computations we can obtain the PDE system (7.2) for pΩ,K by applying relation

(7.19).

7.2.3 Volumetric shape derivative

Note that Tε leaves rsrc and rmic
m invariant, as V is equal 0 in the neighborhood of each of these

locations. Using the notations of Section 5.1.2, we apply a change of variable and define:

G(ε,ϕ,ψ) = L(Ωε,ϕ ◦ T−1
ε ,ψ ◦ T−1

ε ) (7.21)

= Re

� �

Ω
(∇ϕ ·Aε.∇ψ − K2ϕψξε) + iKβ

�

∂Ω
ϕψξΓε (7.22)

−ψ(rsrc) +
1

2M

M�

m=1

|ϕ(rmic
m )− pobs,K(r

mic
m )|2

�
(7.23)
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where ξε denotes the Jacobian of Tε, namely ξε = | detDTε|, Aε is given by

Aε = ξεDT−1
ε DT−T

ε ,

and ξΓε is the tangential Jacobian of Tε:

ξΓε = | detDTε|�DT−T
ε n�.

Note that detDTε > 0 for ε small enough. We now compute the derivative of each term in expression

(7.23) with respect to ε and consider the evaluation at ε = 0. Using the differentials of the matrix

determinant and inversion operators, we get:

d

dε
ξε
��
ε=0

= tr
�
Com(Id)TDV

�
= div V, (7.24)

and, if M,H are in MD(R):

d

dε
(M + εH)−1 = −(M + εH)−1H(M + εH)−1. (7.25)

Applying (7.25) yields:
d

dε

��
ε=0

DT−1
ε = −DV. (7.26)

Combining every term in the derivative, we hence get:

d

dε
Aε

��
ε=0

= div V. Id−(DV +DV T ). (7.27)

Similarly, we have:
d

dε
ξΓε
��
ε=0

= div V −DV.n · n = divΓ(V ). (7.28)

We thus get a volumetric form for the shape derivative by using (5.10) and (5.11):

∂εG(0, pΩ,K, qΩ,K) = Re

� �

Ω
∇pΩ,K · (div V.I−DV −DV T ).∇qΩ,K − div V K2pΩ,KqΩ,K (7.29)

+iKβ

�

∂Ω
divΓ(V )pΩ,KqΩ,K

�
(7.30)

=

�

Ω
Z : DV +

�

∂Ω
ZΓ : DΓV (7.31)

where

Z = Re
�
(∇pΩ,K ·∇qΩ,K − K2pΩ,KqΩ,K)I−∇pΩ,K ⊗∇qΩ,K −∇qΩ,K ⊗∇pΩ,K

�
, (7.32)
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and

ZΓ = Re [iKβpΩ,KqΩ,K] I. (7.33)

7.2.4 Boundary formulation

Let ω =
�M

m=1B(rmic
m , t)

�
B(rsrc, t), with t > 0 chosen such that V vanishes on ω. Assuming

elliptic regularity for pΩ,K and qΩ,K as in Remark 7.2.1, we have Z|Ω\ω ∈ W 1,1(Ω \ ω), and div(ZTV )

is well-defined. Moreover, a quick calculation shows that divZ|Ω\ω is null as the source terms for

pΩ,K and qΩ,K are contained in ω. We can then apply (5.9) to get:

Z|Ω\ω : DV = Z|Ω\ω : DV + divZ|Ω\ω · V = div(Z|TΩ\ωV ). (7.34)

Note also that the identity (5.14) gives (∇pΩ,K ⊗ ∇qΩ,K).n = (∇qΩ,K · n)∇pΩ,K = ∂nqΩ,K∇pΩ,K,

and (∇qΩ,K ⊗∇pΩ,K).n = ∂npΩ,K∇qΩ,K. We can then apply the divergence theorem for a Lipschitz

domain (see for instance the generalized Gauss-Green theorem in [63]) to obtain:

�

Ω
Z : DV =

�

∂Ω
ZTV · n =

�

∂Ω
V · Zn (7.35)

=

�

∂Ω
Re

�
(V · n)(∇pΩ,K ·∇qΩ,K − K2pΩ,KqΩ,K) (7.36)

− (∂nqΩ,K∇pΩ,K + ∂npΩ,K∇qΩ,K) · V
�
. (7.37)

By using Formula (5.12), we can also write on each edge Γs:
�

Γs

ZΓ : DΓV =

�

Γs

divΓ(Re[iKβ pΩ,K qΩ,K]V )− V ·∇ΓRe[iKβpΩ,KqΩ,K] (7.38)

=

�

Γs

divΓ(Re[iKβ pΩ,K qΩ,K]V )− V · Re
�
iKβ

�
qΩ,K∇pΩ,K + pΩ,K∇qΩ,K(7.39)

−(∂npΩ,KqΩ,K + pΩ,K∂nqΩ,K)n

��
. (7.40)

As ∂npΩ,KqΩ,K = pΩ,K∂nqΩ,K = −iKβpΩ,KqΩ,K on ∂Ω, the terms in (7.37) cancel out with some of
the terms in (7.39), and we get by adding both integrals:

∂εG(0, pΩ,K, qΩ,K) =

�

∂Ω
(V · n)Re

�
∇pΩ,K ·∇qΩ,K − K2pΩ,KqΩ,K + 2K2β2pΩ,KqΩ,K

�
(7.41)

+

S�

s=1

�

Γs

divΓ(Re[iKβ pΩ,K qΩ,K]V ). (7.42)

By applying the tangential divergence theorem 5.1.2 on each edge Γs, we get:
�

Γs

divΓ(Re[iKβ pΩ,K qΩ,K]V ) = τs ·
�
Re[iKβ pΩ,K(vs+1)qΩ,K(vs+1)]V (vs+1) (7.43)

−Re[iKβ pΩ,K(vs)qΩ,K(vs)]V (vs)

�
. (7.44)
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Summing over s finally yields a boundary formulation of the shape derivative in direction V :

DJ(Ω) · V =

�

∂Ω
(V · n) Re

�
∇pΩ,K ·∇qΩ,K + K2(2β2 − 1)pΩ,KqΩ,K

�
(7.45)

+

S�

s=1

(τs−1 − τs) · V (vs)Re[iKβ pΩ,K(vs)qΩ,K(vs)] (7.46)

where τ0 = τS .

7.3 Shape optimization algorithm

In order to implement a numerical optimization algorithm, we begin by choosing a parametrization

for the geometry. As we work with convex polygons, we have two natural parametrizations available:

the polygon’s vertices, or the half-planes defining the edges of the polygon. Vertex parametrization

is the easiest to implement, and the resulting formula for the shape derivative is also less complex.

On the other hand, the half-planes parametrization has the advantage, by definition, of constraining

the shape to be convex, the algorithm will have to keep track of line intersections, i.e. vertices, as

the shape evolves.

Half-planes parametrization can be implemented in a number of ways. Let o be a reference

location inside Ω. The polygon can then be parametrized by the orthogonal projections ps of o on

the lines defining each edge. Regardless of the choice of the parametrization used for the descent, the

projections ps can be used to check if a given point is located inside or outside the polygon. Indeed,

a location r is inside the polygon if and only if r is on the same side of each of the lines defined by

the polygon’s edges. This can be checked by evaluating some scalar products and comparing their

values to the distance of the origin o to the corresponding edge:

r ∈
◦
Ω ⇐⇒

�
(ps − o) · (r − o) < �ps − o�22 ∀s ∈ [[1, S]]

�
(7.47)

⇐⇒ ((ps − o) · (r − ps) < 0 ∀s ∈ [[1, S]]) . (7.48)

Fig 7.1 illustrates the parametrization. The projections ps and origin o are represented in (a), and

(b) shows the situation in the case of a point r located outside the polygon. Here r is on the wrong

side of the edge v4v5, and denoting by p� the intersection (ro) ∩ (v4v5), we have:

(p4 − o) · (r − o) > (p4 − o) · (p� − o) = (p4 − o) · (p4 − o) = �p4 − o�22 . (7.49)

In particular, this condition will be used to enforce an inclusion constraint on the microphones.

Finally, we can express ps as a function of the vertices:

ps = vs +
(o− vs) · (vs+1 − vs)

�vs+1 − vs�22
(vs+1 − vs). (7.50)
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Figure 7.1: (a) Vertices vs and projections ps parametrizations for the polygon. (b) Illustration of
inclusion checking for the edge v4v5.

7.3.1 Parametrization

7.3.2 Parametric gradient

We recall here the method described in [21] to compute the parametric gradient of the cost function

J . Assume that the shape derivative for the cost function J exists and is well-defined, and

denote one of the two mentioned parametrizations by c = (c1, . . . , cN ). Denote by Ω(c) the shape

defined by a given parameter vector c. Let δc ∈ RN be a small, admissible perturbation of the

parameters. Then, there exists a vector field Vc(δc) ∈ W 1,∞(R2,R2) such that Vc(0) = (0, 0) and

Ω(c+ δc) = (Id+Vc(δc))Ω(c). We then apply the chain rule:

d

dδc
J(Ω(c+ δc))

��
δc=0

= DJ(Ω(c)) · d

dδc
Vc(dδc)

��
δc=0

. (7.51)

In practice, we thus only have to compute the vector field Vc corresponding to a perturbation of

the parameters, derivate this vector field with respect to the parameters, and calculate the scalar

product with the normal vector to apply the shape derivative formula. In the next paragraphs we

compute the derivative of J for both of the previously introduced parametrizations. V (δ) will denote

in each case the vector field resulting from a small perturbation δ ∈ R2, which is applied either to a

vertex vs or a projection ps.

Derivatives with respect to vertices

Moving the s-th vertex vs only affects the neighboring edges of indices s − 1 and s. Hence, the

consequent perturbation field V (δ) is null on every other edge. If r ∈ ∂Ω, we denote by r� the

corresponding point on the new shape, i.e. r� = r + V (δ)(r). We parametrize the (s− 1)-th edge

linearly. If r = (1− α)vs−1 + αvs, α ∈ [0, 1], we take:

V (δ)(r) = r� − r = αδ. (7.52)
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Derivating V with respect to δ and applying the dot product with the normal vector yields:

DV (0)(r) · n = αn (7.53)

We can apply the same calculation to the s-th edge. In particular, DV (0)(vk) is equal to (1, 1) if

k = s and 0 otherwise. We thus get the partial derivative with respect to both coordinates of the

s-th vertex.

Derivatives with respect to projections

As can be seen on Fig. 7.2, moving ps only affect the s − th edge. To simplify the notations, we

begin by considering a perturbation on the first coordinate of ps. Hence, every component of δ is

zero, except for the component that corresponds to the x coordinate of ps, which we take equal to δ.

As before, r� denotes the mapping of the point r ∈ ∂Ω on the new boundary. Using once again a

linear parametrization, we can write for r = (1− α)vs + αvs+1:

V (δ)(r) = (1− α)(v�
s − vs) + α(v�

s+1 − vs+1) = (1− α)εs(δ)τs−1 + αεs+1(δ)τs+1 (7.54)

where εs(δ), εs+1(δ) are respectively the signed distances from vs to v�
s and vs+1 to v�

s+1. Let

ps = (x, y), o = (xo, yo), and τs−1 = (xτs−1 , yτs−1). By using (p�
s − o)⊥(v�

s − p�
s) and writing

v�
s − p�

s = vs − p�
s + εs(δ)τs−1, we get:

εs(δ) =
(x+ δ − xo)(x+ δ − xvs) + (y − yo)(y − yvs)

xτs−1(x+ δ − xo) + yτs−1(y − yo)
, (7.55)

with the associated derivative in 0:

ε�s(0) =
(2x− xo − xvs)τs−1 · (ps − o)− xτs−1(ps − o) · (ps − vs)

(τs−1 · (ps − o))2
. (7.56)

Figure 7.2: Geometric configuration when adding a perturbation to ps
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Switching the indices s− 1 and s+ 1 yields a similar formula for ε�s+1(0). We then get, on edge s:

DV (0)(r) = (1− α)ε�s(0)τs−1 + αε�s+1(0)τs+1. (7.57)

The partial derivative with respect to the x coordinate of ps is then obtained by applying the shape

derivative formula to the vector field defined by (7.57) on edge s. The same process can be used to

get the y derivative.

7.3.3 Penalization of inclusion constraints

We describe here the penalization method applied to constrain the microphones locations to remain

inside the polygon. We use the inequality (7.48) to check inclusion, and define the penalization

functional:

Pε(Ω) =
1

2ε

M�

m=1

S�

s=1

max[0, (ps − o) · (rmic
m − ps)]

2. (7.58)

The cost function J then becomes:

Jε(Ω) =
1

2LM

L�

l=1

M�

m=1

��pΩ,Kl
(rmic

m )− pobs,Kl
(rmic

m )
��2 + Pε(Ω). (7.59)

Again, we compute the derivative of Pε with respect to the projections ps and vertices vs.

Derivative with respect to projections

The derivative with respect to the s-th projection is straightforward to compute:

∇psPε(Ω) =
1

ε

M�

m=1

max
�
0, (ps − o) · (rmic

m − ps)
�
(rmic

m + o− 2ps). (7.60)

Derivative with respect to vertices

The derivative with respect to the s-th vertex is given by:

∇vsPε(Ω) =
1

ε

M�

m=1

S�

l=1

max
�
0, (pl − o) · (rmic

m − pl)
�
∇vs [(pl − o) · (rmic

m − pl)]. (7.61)

In practice only the terms of indices s and s− 1 (mod S) can be non-zero, as the other projections

do not depend on vs. Let ts =
(o−vs)·(vs+1−vs)

�vs+1−vs�22
. We have:

∇vsts =
2vs − o− vs+1

�vs+1 − vs�22
− 2

(o− vs) · (vs+1 − vs)

�vs+1 − vs�42
(vs − vs+1) =

2vs − o− vs+1 + 2ts(vs+1 − vs)

�vs+1 − vs�22
(7.62)
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and

∇vsts−1 =
o− vs−1 − 2ts−1(vs − vs−1)

�vs − vs−1�22
. (7.63)

Using (7.50), we get the following jacobian matrices for the derivatives of ps and ps−1 with respect

to vs:

Dvsps=

�
1− ts

1− ts

�
I +

�
∂xts.(vs+1 − vs) ∂yts.(vs+1 − vs)

�
=

�
1− ts

1− ts

�
I + (vs+1 − vs)⊗∇vsts,

(7.64)

and

Dvsps−1=

�
ts−1

ts−1

�
I+

�
∂xts−1.(vs − vs−1) ∂yts−1.(vs − vs−1)

�
=

�
ts−1

ts−1

�
I+(vs−vs−1)⊗∇vsts−1.

(7.65)

We can then apply (5.13) to get

∇vs [(ps − o) · (rmic
m − ps)] = Dvsp

T
s (r

mic
m − 2ps + o), (7.66)

hence

∇vs [(ps−o) · (rmic
m −ps)] = (1− ts)(r

mic
m − 2ps+o)+ [∇vsts⊗ (vs+1−vs)].(r

mic
m − 2ps+o) (7.67)

and by (5.14) we have:

∇vs [(ps − o) · (rmic
m − ps)] = (1− ts)(r

mic
m − 2ps + o) + (rmic

m − 2ps + o) · (vs+1 − vs)∇vsts. (7.68)

Similarly, we can write:

∇vs [(ps−1−o)·(rmic
m −ps−1)] = ts−1(r

mic
m −2ps−1+o)+(rmic

m −2ps−1+o)·(vs−vs−1)∇vsts−1. (7.69)

We finally get:

∇vsPε(Ω) =
1

ε

M�

m=1

cs,m + cs−1,m (7.70)

where s− 1 is taken modulo S, and





cs,m = max[0, (ps − o) · (rmic
m − ps)]

�
(1− ts)(r

mic
m − 2ps + o)+

(rmic
m − 2ps + o) · (vs+1 − vs)∇vsts

�

cs−1,m = max[0, (ps−1 − o) · (rmic
m − ps−1)]

�
ts−1(r

mic
m − 2ps−1 + o)+

(rmic
m − 2ps−1 + o) · (vs − vs−1)∇vsts−1

�

(7.71)
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7.3.4 Gradient descent

The implementation of the shape gradient descent is described in Alg. 6. We apply a line search

at each iteration by translating the vertices in the direction of the gradient, and stopping when

the objective function Jε has decreased or a maximal number of steps have been applied. We

apply the penalization Pε on the inclusion constraints as described in Section 7.3.3, using ε = 1.

The shape gradient is computed by applying the formulas given in Theorem 7.2.1 and Equation

(7.70). The boundary integrals are evaluated numerically using Simpson’s rule. The step γ is

updated dynamically on lines 7-12, depending on if the line search requires more than one step to

stop. The frequency range is modified during the execution of the algorithm. We set a minimal

accessible frequency fmin, a global maximum frequency fmax, and one or several intermediate maximal

frequencies fmin < f
(l)
max ≤ fmax. We consider only the frequencies between fmin and the current

Algorithm 6 Gradient descent algorithm

Input: Global maximum number of iterations itmax, initial vertices vini, initial step γ, intermediate

maximal frequencies f
(l)
max, minimal and maximal number of iterations per frequency it

(l)
min and

it
(l)
max

Output: Estimated vertices vfin
1: vcurr ← vini
2: k ← 0
3: kfreq ← 0
4: while k < itmax do
5: gcurr ← ∂vJ(vcurr)
6: Get updated vcurr by applying a line search in direction gcurr
7: if line search stopped after 1 iteration 3 times in a row then
8: γ ← 1.2γ
9: end if

10: if line search took more than 1 iteration 3 times in a row then
11: γ ← 0.8γ
12: end if
13: if no vertex has moved more than 0.5 mm in the last 50 iterations then
14: Set patience flag to true
15: end if
16: if (costcurr < costmin or kfreq ≥ it

(l)
max or patience is true) and kfreq ≥ it

(l)
min then

17: if f
(l)
max < fmax then

18: Increase l, reset patience and kfreq
19: else
20: Break the loop and stop.
21: end if
22: end if
23: Increment k and kfreq
24: end while
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maximal frequency when computing the cost and the gradient. When a stopping criterion is reached,

we first check if the current frequency has already reached fmax. In that case we stop the algorithm.

Otherwise, we reset the relevant counters and increase f to the next frequency. A first criterion is

based on a patience heuristic which is checked at line 13: we consider that the criterion is achieved

if the maximal Euclidean distance covered by the vertices of the polygon over 50 iterations is less

than 0.5 mm. This condition should trigger when the algorithm has stalled and the error plateaued.

We also check the value of the cost (7.59), stopping if it goes below the threshold 10−6. Finally, we

track the number of iterations executed at the current maximal frequency f using a counter kfreq.

We set a maximal and a minimal number of iterations for each f
(l)
max, denoted by it

(l)
min and it

(l)
max.

The aim of these bounds is to enforce a minimal and maximal computing budget for each frequency

range, ensuring for instance that the whole descent is not spent only on lower frequencies.

Note that the hyperparameters described in this section, such as the threshold for the cost, are

arbitrary and were set as such based on prior numerical experiments but not on an extensive study.

These hyperparameters could be further fine-tuned to improve results.

7.4 Numerical experiments

7.4.1 Experimental setup

Room datasets

We test the gradient descent algorithm on two datasets of 50 convex rooms each, one containing

quadrilaterals and the other pentagons. The rooms are generated randomly by taking the convex

hull of 4 (respectively 5) vertices picked uniformly at random in the disk centered at (0, 0) and of

radius 4 m. If the number of vertices was decreased, we reject the room and try again in order to get

a convex polygon with the correct number of vertices. We also reject the room if any of the walls’

lengths is less than 2 m, or if any of the inner angles of the polygon is less than π
4 or greater than

3π
4 , in order to get non-degenerate rooms. Finally, we consider an array of 8 microphones regularly

spaced on the circle centered at the origin and of radius 50 cm. We only keep rooms for which the

measure points are at least at a 50 cm distance from the walls. The source is located at the center

of the microphone array. See Fig. 7.3 for a graphical representation of some rooms sampled from

the datasets.

Experiments and parameters

We will consider two types of experiments. The first experiments will evaluate the task of reconstruct-

ing the shape with minimal geometric knowledge, using 128 frequencies ranging from 0 to 256 Hz.

We test 25 random initializations using the same procedure used to generate the datasets. For each

polygon, we apply 30 gradient steps, considering only the frequencies below 100 Hz. Initializations
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Figure 7.3: Some examples of random rooms generated for the experiments.

that degenerate to a non-convex polygon are restarted with a new random polygon. We then consider

the polygon that achieved the lowest cost, and launch a full gradient descent with a maximal number

of iterations of 2000. See Tab. 7.1 for the parameters used for the final gradient descent, following

the notations of Section 7.3.4. As mentioned in Section 7.1, on-site measurements cannot capture

low frequencies. We will run the same experiments, removing every frequency below 50 Hz. This

means only 103 frequencies are used when considering a maximal frequency of 256 Hz.

f
(l)
max (Hz) 100 256

it
(l)
min 50 1000

it
(l)
max 500 -

Table 7.1: Parameters used for the experiments.

In practical cases, one could have access to a first estimate of the shape, obtained for instance

by applying another method or from in-situ measurements. We are then interested in the ability

of the algorithm to refine this estimation by using acoustic measurements. In the second type of

experiments, we thus consider that an initial guess for the shape is available, and that we cannot

access low frequencies. Once again, we remove the frequencies below 50 Hz and try to refine the

initial guess with the remaining 103 frequencies in the 50− 256 Hz range. The initial guesses are

chosen by considering the target polygons and applying Gaussian, zero-mean additive noise. We

apply an angular noise eθ ∼ N (0,σθ) to the normal vectors of the polygon, and a metric noise

ed ∼ N (0,σd) to the corresponding distance of the origin to each edge. The wall distance and

angular noise standard deviations are respectively set to σd = 10 cm, and σθ = 5◦.
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7.4.2 Evaluation metrics

In order to evaluate the ability of our proposed shape descent method to reconstruct rooms, we

will compute a number of error metrics. Let us consider the half-plane parametrization of convex

polygons described in Fig. 7.1, with o set at the origin (0, 0). Let ps, p̂s be the respective projections

of o on the s-th wall of the target and the estimated rooms.

Shape metrics

The wall distance error measures the radial error committed on wall locations and is defined by:

e
(s)
d =

�� �ps�2 − �p̂s�2
��. (7.72)

The angular error is defined by the angle formed by the target and the estimated walls:

e
(s)
θ = min(|θ|, 2π − |θ|), θ = arccos(ps · p̂s)|. (7.73)

We will also measure the Euclidean error on vertices, which is easily defined but slightly less

interpretable than other metrics:

e
(s)
v = �vs − v̂s�2 . (7.74)

Another value of interest is the absolute error on the volume of the rooms, denoted by eV .

Error reduction for noisy initializations

For the type 2 experiments where a noisy initial guess is provided, we evaluate the initial and final

errors in order to measure the improvement produced by our shape descent method. The initial

errors will be noted with the superscript ini.

Recall and mean errors

In certain cases the reconstruction procedure might fail catastrophically, especially for the first

type of experiments where we only test a limited number of initializations that can all be bad

approximations of the target. The objective function is highly non-convex, and if the initial guess

is too far from the target, the algorithm may converge to a local minimum instead of the desired

solution. The resulting errors have a disproportionately high cost on the overall mean error. We can

thus proceed as in Section 2.4 and compute the mean error for the walls that have been recovered

with an angular error and a wall distance error that are below set thresholds εθ = 10◦ and εd = 5 cm.

We compute the recall at these thresholds, i.e. the proportion of walls that were accurately recovered.

For reference, we also present the global mean error for each wall, even for those that were not

accurately recovered.



7.4. NUMERICAL EXPERIMENTS 143

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)
fixed vertices

source

microphones

free vertex

bounding box

Figure 7.4: Setup for visualizing the cost function J . The free vertex is allowed to move in the
bounding box, and J is evaluated for each corresponding polygon.

7.4.3 Structure of the cost function

In this section we make some observations on the cost function and the nature of its local minima.

Local minima might arise from a variety of different factors. For instance, near-symmetries of

the source, microphones and polygon setup can result in a local minimum. This is amplified at

low frequencies when the radius of the array is small, since at low frequencies the measure points

are indistinguishable. Another aspect to take into account is the presence of dominant first order

reflections. As seen in Section 6.3, the early specular reflections are prominent in the time responses,

and moving a wall can be seen as moving its corresponding spike in the time response in order to

best match measurements. It can thus be advantageous for the algorithm to wrongly push back a

wall in order to decrease the amplitude of its first order reflection if the initialization was too far

from target. The occlusion of reflections can be problematic, as it can cause sharp changes in the

cost function. Higher order reflections can also cause issues, especially in the case of parallel or

near-parallel walls. For example, in the case of a rectangle, doubling the dimensions of the rectangle

in any direction results in a local minimum. Indeed, one of the first order reflections is missing, but

most of the higher order reflections are perfectly matched. The combination of all these factors

causes a complex behavior, especially if we take into account the fact that the observations are

band-limited. Note that providing an informative visualization of the cost function is a complex

task, as it is defined on a high-dimensional space (dimension 2S for a polygon with S vertices). In

order to visualize the objective function, we set a reference polygon, source location and microphone

positions and simulate target measurements with 256 frequencies uniformly spaced between 0 and
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Figure 7.5: Values of the objective function J and its gradient when moving the free vertex in the
bounding box, for different minimum and maximum frequencies. The red cross designates the target
vertex location, and the red lines are the continuation of the target polygon’s edges.
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500 Hz. We designate one of the vertices to be a free vertex, according to the setup presented in

Fig. 7.4. We then proceed to move the free vertex while keeping the other vertices still, and compute

the value of the objective function for each corresponding polygon, taking the simulations for the

reference polygon as the target measurements. The values taken by the objective function for each

polygon defined by the different locations of the free vertex are plotted in Fig. 7.5. We also plot the

gradient, and consider different values for the minimal and maximal frequencies to see the influence

of the frequency range on the cost.

During the execution of a randomly initialized gradient descent algorithm, every vertex would be

allowed to move simultaneously, and so Fig. 7.5 does not completely render the complexity of the

objective function’s behavior. However, we can note that the function seems well-behaved when

lower frequencies are included, and even looks locally convex around the true minimum. The profile

of the function seems more complex when we exclude low frequencies. The impact of the first

order reflection caused by the bottom room wall is clearly visible, especially for fmin = 50 Hz, and

fmax = 500 Hz and when looking at the y derivative. However, the right wall has a lesser impact, as

the corresponding reflection path is longer and thus the corresponding wave is damped.

7.4.4 Evaluation of the algorithm

We split the evaluation of the algorithm in two parts, in order to account for the two types of

experiments (full geometry inference and refinement with noisy initialization).

Random initialization

Recall that in these experiments we have no initial guess on the shape, and we test multiple random

initializations before starting the full gradient descent. This can cause the algorithm to converge to

a very different shape from the target, as the number of starting polygons tested is limited. Fig. 7.6

and Fig. 7.7 present two applications of the algorithm in the case where the low frequencies are

retained. The evolution of the objective function is plotted on the left and the best initial shape, the

target and the estimated shapes are represented on the right. For the cost plot, the extension of the

frequency range is represented by a dashed line. Note that increasing the maximal frequency causes

a jump in the cost function. In the first case, the algorithm converges to the correct shape, and stops

after reaching the minimal number of iterations of 1000 as the cost is below the threshold, with final

mean errors ed = 0.085 mm, ev = 2.5 cm, eθ = 0.47◦ and an error on the volume of 5.1 · 10−5 m2.

However, the cost does not plateau, and additional gradient steps might have improved results. In

the second case a local minimum is quickly reached after approximately 200 iterations, and the

algorithm gets stuck far from the optimal shape with the errors ed = 41 cm, ev = 320 cm, eθ = 65◦.

However, it is notable that the error on volume remains quite low at eV = 0.32 m2. Two of the

estimated walls are a relatively close match to the target walls, which could be explained by the
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Figure 7.6: Successful shape optimization for a random room. Mean angular error: 0.47◦, (a) cost as
a function of iterations (b) best initial shape, target and final estimated shape after gradient descent.
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Figure 7.7: Failed shape optimization for a random room as the algorithm converges to a local
minimum. (a) cost as a function of iterations (b) best initial shape, target and final estimated shape
after gradient descent.
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observations made in Section 7.4.3

The mean metrics obtained for the quadrilaterals and pentagons datasets are presented in Tab.

7.2. The means computed over the recovered walls only are displayed with the superscript rec. Note

that the volume error is computed over every room, including rooms that contain inaccurately

recovered walls. Intriguingly, despite the presence of bad recoveries, the mean volume error remains

low both for quadrilaterals and pentagons when low frequencies are available, which indicates the

ability of the algorithm to recover intrinsic geometric properties of the room even when the shape

itself is poorly approximated. We obtain low angular errors of 3.1◦ and 3.9◦ for the recovered walls,

with negligible radial errors of 0.1 cm and 0.3 cm when using the full frequency range. In that

case, the recall rates for the quadrilaterals’ and pentagons’ walls are respectively 90 % and 63 %.

The algorithm demonstrates an ability to recover the shape, as long as the initialization is close

enough to the target shape. This could be ensured by drastically increasing the number of random

initializations tested, at a severe computational cost.

Whilst the mean errors for recovered walls remain quite similar when we remove the low

frequencies, the recall rate drops drastically to 42 % for quadrilaterals and to 24 % for pentagons.

This indicates that the algorithm is more likely to converge to a local minimum when the low

frequencies are not available, and that the importance of a correct initialization is increased in that

case. However, even if the recall rates are low, the algorithm still manages to recover the shape with

a small error in that case when a decent initial guess is provided. The ability of the algorithm to

converge to the true shape when a good initialization is provided is further illustrated in the next

section. Moreover, note that the errors obtained for successfully recovered walls could be further

reduced by increasing the number of gradient steps and relaxing the stopping criteria. This will also

be shown in the next subsection.

Noisy initialization

We consider in this section the second type of experiments, i.e. a full gradient descent with an

initial shape obtained by adding noise to the target shape, with measurements only available for

f ∈ [50 Hz, 256 Hz]. The other parameters for the gradient descent are the same as those used for

fmin (Hz) S R (%) eθ (◦) ed (cm) ev (cm) eV (m2) erecθ (◦) erecd (cm) erecv (cm)

0 4 90 5.8± 11 3.4± 18 32± 59 0.014± 0.047 3.1± 2.2 0.13± 0.14 17± 13
0 5 63 12± 16 10± 26 64± 82 0.091± 0.17 3.9± 2.1 0.27± 0.51 23± 22

50 4 42 21± 25 36± 66 130± 150 4.2± 4.5 2.8± 2.0 0.84± 1.4 32± 58
50 5 24 27± 26 49± 70 180± 150 6.9± 5.5 4.7± 2.5 1.0± 1.4 45± 51

Table 7.2: Mean angular eθ, distance ed, vertex ev, volume eV error. Mean errors at the angular and
distance thresholds εθ = 10◦ and εd = 5 cm are given by the superscript rec, and the corresponding
recall rate is denoted by R.
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S eθ (◦) ed (cm) ev (cm) einiθ (◦) einid (cm) einiv (cm)

4 0.257± 0.207 0.0133± 0.0206 1.41± 1.15 19.0± 18.5 7.55± 5.29 26.8± 16.6
5 1.24± 4.24 3.92± 25.2 7.08± 24.3 21.0± 15.9 7.64± 6.20 25.8± 18.1

Table 7.3: Mean angular eθ, distance ed, vertex ev. The mean initial errors are denoted by the
superscript ini, and S is the number of vertices.

previous experiments. Tab. 7.3 gives the values of the mean initial and final errors for quadrilaterals

and pentagons. We observe in both cases a sharp improvement in angular error, as the mean error is

approximately divided by 70 for quadrilaterals and 20 for pentagons. Similarly, wall distance errors

are significantly reduced. For quadrilaterals the errors become negligible with less than 0.5◦ angular

error and less than 1 mm wall distance error, indicating true convergence to the target polygon for

every room. We can however note a difference in performance between quadrilaterals and pentagons,

due in part to some failure cases in the pentagon dataset. Indeed, the recall at 10◦ of angular error

and 5 cm wall distance error is 100 % for the walls of the quadrilaterals’ dataset, and 96 % for

pentagons. The algorithm thus failed to converge to the target room for several pentagons. The

impact of the few failure cases can be seen by noticing the especially high standard deviations for the

mean errors on pentagons. We still obtain satisfactory errors for pentagons, with 1.2◦ mean angular

error and 3.9 cm mean wall distance error. Note that these errors decrease respectively to 0.53◦

and 0.36 cm if we proceed as in the last section and consider only the walls localized with lower

errors than the fixed threshold, yielding errors on the same order of magnitude as those obtained for

quadrilaterals.

Finally, note that the initial noise levels here are above the errors obtained for the recovered

walls of last section. This indicates in particular that similar accuracy could be achieved using a

limited number of random initializations by simply letting the gradient descent continue for a higher

number of iterations, as the initializations used in this section are usually worse estimations of the

target shape than the end results of last section’s gradient descents. The errors obtained are thus

in great part bounded by the stopping criteria used, which can be relaxed at the cost of greater

computational requirements. This also further validates the ability of the algorithm to converge to

the right shape when using random initializations, as long as a sufficient number of initializations

are tested.

7.5 Conclusion

We presented a shape optimization method to recover the boundary of a polygonal room from

partial frequency measurements of a multichannel room impulse response. We formally computed

a boundary formulation of the shape derivative, which included non-standard terms due to the

irregularity of the boundary. We then implemented a shape gradient descent algorithm, which was

evaluated on a dataset consisting of random rooms. Whilst the proposed algorithm demonstrated an
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ability to accurately reconstruct the boundary of a room in our preliminary numerical results, the

gradient descent algorithm is highly dependent on initialization, especially when limiting the access

to lower frequencies. In its current state, the performance of the algorithm seems mainly limited by

the computing budget allowed, as using a greater number of random initializations would ultimately

yield a first guess sufficiently close to the target shape. This constitutes a first encouraging step

towards the development of a shape optimization algorithm for room acoustics. Several avenues for

improvement will be presented in the general conclusion.
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We presented two very different approaches to the problem of hearing the shape of a room,

following the questions raised in the introduction.

The first approach, based on the Image Source Method, displays an impressive ability to recover

the geometry of a cuboid room from a single multichannel RIR recorded at a compact microphone

array. However, the proposed approach is currently not directly applicable to real measured RIRs.

This is mainly because the image source localization method it relies upon is specifically designed to

reverse the forward image-source model, which makes a number of simplifying assumptions that do

not hold in reality. A path towards real-data applicability can nevertheless be envisioned. For this,

the algorithm of Section 2.3.3 would need to be extended to take into account both angular and

frequency dependencies of receiver, source, and wall responses. Even assuming the responses of the

source and microphones are known, and using a physics-based model for the angular dependencies of

wall responses, the number of unknowns in the problem is then significantly increased. Namely, one

needs to additionally estimate the source (and image sources) orientations, as well as a frequency-

dependent impedance for each wall. One could try to make the inverse problem tractable by adding

physical or geometrical constraints on these unknowns. Restricting the observed frequency range

could also be a first step towards applicability to real data, as the presented model can directly be

translated to a frequency-domain formulation. The translation of the source localization method

to general polyhedra is not obvious, as one would have to factor in image-source occlusions, i.e.

configurations where a source is not visible from a given microphone location. The generalization of

the proposed geometry recovery algorithm to arbitrary geometries is also not straightforward.

The second approach overcomes some limitations of the first by removing the restriction to

cuboid geometries and adopting a more realistic physical model for sound absorption. Numerical

experiments show that the method can recover the shape of a polygonal room from simulated RIRs,

given sufficient computational budget. However, it still falls short of being applicable to real-world

data. One major limitation is the high computational cost due to the numerous initializations needed

to ensure the algorithm converges to the target shape, especially when the frequency range excludes

low frequencies. One potential improvement would be to use a preprocessing algorithm, such as one

based on specular reflections and the ISM, to get a rough initial guess for the walls’ locations. Another

possibility is to add a stochastic element, by activating either random frequencies or microphones at

each iteration. Note that when using the MFS, changing the number of microphone measurements

has a limited impact on computational cost, whilst limiting the number of used frequency reduces

the simulation time. The influence of microphone and source positioning can also be investigated.

Using multiple sources can be considered, as it reduces ambiguities in the measurements. This can be

achieved either by considering simultaneous sources, which has a negligible impact on computation

time, or by considering separate emission times, in which case an additional simulation per source

is required. Another issue is maintaining convexity during iterations. This could be enforced by

penalizing each angle of the polygon. Similarly, the length of each edge can be penalized, in order

to avoid degenerate shapes. It would also be possible to compute the derivative with respect to β
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and alternate gradient steps between geometry and impedance optimization, or to use a different

algorithm altogether to estimate β, as the impedance is usually an unknown of the problem. A

theoretical study of the shape derivative has still to be performed beyond the formal computations,

and will be the subject of a future publication. The directivity of the source could be added to the

simulation model, for instance by considering the multipole model described in [20]. Finally, the

method could be applied to 3D room shapes. This would however require adapting the MFS, as the

corner functions developed in [14] for 2D polygons do not directly generalize to 3D polyhedra.

Whilst we highlighted the limitations of the proposed methods, the first numerical results

demonstrate that both approaches are promising stepping stones towards the application to real-

world data.
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[93] Sacha Krstulovic and Rémi Gribonval. Mptk: Matching pursuit made tractable. In 2006 IEEE
International Conference on Acoustics Speech and Signal Processing Proceedings, volume 3,
pages III–III. IEEE, 2006.
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