
UNIVERSITY OF STRASBOURG

DOCTORAL SCHOOL MSII
MATHEMATIQUES, SCIENCES DE L’INFORMATION

ET DE L’INGENIEUR

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Strasbourg
Specialty : Computer Science

Defended by

Eloïse Stein

Smart scheduling and routing for
data acquisition networks

prepared at ICUBE, Network Team
defended on October 21, 2024

Jury :

Advisors : Prof. Cristel Pelsser - Université de Strasbourg
Université catholique de Louvain (UCLouvain)

Prof. Thomas Noel - Université de Strasbourg
Reviewers : Prof. Holger Fröning - Heidelberg University

Prof. Piero Vicini - National Institute for Nuclear Physics (INFN)
Examiners : Prof. Géraldine Texier - École nationale supérieure Mines-Télécom

Atlantique (IMT)
Prof. Stefano Secci - Conservatoire National des Arts

et Métiers (Cnam)

i

Résumé

Le Grand Collisionneur de Hadrons (LHC) est le plus grand et le plus puissant
accélérateur de particules au monde. Le long du LHC, quatre détecteurs à particules
(ALICE, ATLAS, CMS et LHCb) observent les collisions de particules (également
appelées événements) créées par le LHC. Ces détecteurs sont composés de dizaines de
milliers de capteurs et d’un système d’acquisition de données (DAQ) dont l’objectif
est de collecter les fragments de données de chaque capteur et d’assembler tous les
fragments correspondant à chaque événement de collision en un seul ensemble de
données. Ce processus, appelé Event Building, implique un échange collectif de type
all-to-all entre un ou plusieurs ordinateurs interconnectés en réseau. Cependant, le
trafic associé à l’Event Building a tendance à créer des congestions en raison de la
nature de l’échange collectif all-to-all, qui nécessite d’utiliser presque toute la bande-
passante disponible sur le réseau. Si la congestion n’est pas adressée de manière
appropriée, ses effets entravent gravement les performances du système DAQ, ce qui
peut entraîner la perte de données expérimentales très précieuses.

Cette thèse présente des approches visant à minimiser la congestion du réseau
dans une topologie fat-tree, en utilisant le réseau DAQ du détecteur LHCb (Large
Hadron Collider beauty) comme étude de cas. Les réseaux fat-tree sont particulière-
ment adaptés aux communications à haut débit, comme l’Event Building. Ils ont une
bande passante de bisection constante pour toutes les bisections possibles, ils sont
aussi réarrangeables et non bloquants. Le réseau DAQ du détecteur LHCb exploite
actuellement une combinaison particulière d’un algorithme de routage spécifique aux
réseaux fat-tree et d’un algorithme d’ordonnancement du trafic all-to-all optimisé,
qui évite complètement la congestion sur le réseau. Cette solution permet des per-
formances élevées dans des conditions nominales, mais une seule défaillance de lien
peut réduire considérablement le débit atteint par le réseau DAQ de l’expérience
LHCb, le faisant passer d’environ 46 Tbps à environ 30 Tbps.

Nous proposons dans cette thèse une étude statistique des pannes dans les
réseaux DAQ. Nous avons pu récolter des données sur les pannes qui sont surv-
enues sur le réseau DAQ de l’expérience LHCb pendant une période de deux mois.
Ensuite, nous proposons une évaluation des différents algorithmes de routage spé-
cifiques à InfiniBand et pouvant être utilisés comme solution pour le réseau DAQ
de l’expérience LHCb. Enfin, nous avons développé une application permettant de
créer un échange all-to-all non synchronisé et nous le comparons à l’échange syn-
chronisé en cas de pannes en effectuant des mesures réelles sur le réseau DAQ de
l’expérience LHCb.

Pour répondre à notre problème, nous présentons une étude plus détaillée des
différents scénarios de pannes réseau afin de montrer ce qu’ils impliquent en termes
de réduction de bande passante et les propriétés qu’une solution d’ordonnancement
et de routage devrait respecter pour adresser ces scénarios de pannes. Ainsi, nous
proposons FORS (Fault-adaptive Optimized Routing and Scheduling), une solution
de routage et d’ordonnancement optimisée en cas de pannes afin de maintenir un
débit élevé malgré la réduction de la bande passante.

ii

Abstract

The Large Hadron Collider (LHC) is the largest and most powerful particle accel-
erator in the world. At the LHC, four particle detectors (ALICE, ATLAS, CMS,
and LHCb) observe the particle collisions (called events) created by the LHC. These
detectors are composed of tens of thousands of individual sensors and a data ac-
quisition (DAQ) system whose objective is to collect fragments of data from each
sensor and to assemble all the fragments corresponding to each collision event into a
single data set. This process, called Event Building, involves an all-to-all collective
exchange between one or more network computers. However, the traffic associated
with Event Building tends to create congestion because of the nature of the all-to-all
collective exchange, which requires using almost all of the available bandwidth in
the network. If not mitigated, the effects of congestion severely hamper the per-
formance of the data acquisition system, potentially leading to the loss of valuable
experimental data.

This thesis presents approaches to minimize network congestion in a fat tree
topology, using the DAQ network of the LHCb (Large Hadron Collider beauty)
detector as a case study. Fat-tree networks are particularly suitable for high-
throughput communication, like Event Building. They have constant bisection
bandwidth for all possible bisections, they are also rearrangeably non-blocking. The
DAQ network of the LHCb detector currently uses a specific combination of a routing
algorithm specific to fat-tree networks and an optimized all-to-all traffic scheduling
algorithm, which completely avoids network congestion. This solution allows for
high performance under nominal conditions, but a single link failure can signifi-
cantly reduce the throughput achieved by the LHCb experiment’s DAQ network,
dropping it from approximately 46 Tbps to about 30 Tbps.

In this thesis, we propose a statistical study of failures in DAQ networks. We
were able to collect data on the failures that occurred in the DAQ network of the
LHCb experiment over a two-month period. Then, we present an evaluation of
various routing algorithms specific to Infiniband that could be used as a solution for
the LHCb experiment’s DAQ network. Finally, we developed a non-synchronized
all-to-all exchange application, which we compare to the synchronized exchange in
the event of failures by conducting real measurements on the LHCb experiment’s
DAQ network.

To address our problem, we present a more detailed study of different network
failure scenarios to demonstrate their impact in terms of bandwidth reduction and
the properties that a scheduling and routing solution should have to address these
failure scenarios. Thus, we propose FORS (Fault-adaptive Optimized Routing and
Scheduling), an optimized routing and scheduling solution designed to maintain high
throughput despite bandwidth reduction.

iii

Acknowledgments

As I reach the end of this three-year journey, I think of the many people who have
walked this path with me. These years have been filled with challenges and growth,
and I could not have made it through without the support, encouragement, and
kindness of so many. While it is impossible to fully express the gratitude I feel for
everyone who has been part of this experience, I want to take a moment to thank
each person who has contributed to this journey.

First of all, I would like to express my heartfelt thanks to my PhD advisor, Cristel
Pelsser. Your guidance throughout this research has been invaluable, and it would
not have reached this point without your expertise and advice. I truly appreciated
our discussions over the past three years, your understanding of this research topic,
which was new to both of us, as well as your interest for linear programming and the
suggestions that greatly helped me develop the solutions presented in this thesis.
Finally, thank you for your incredible support and encouragement, without which
this thesis would not have been completed. I think you are an incredible supervisor
and any student embarking on this journey, as I did, will be very lucky to have you
to guide them.

I would also like to thank the members of my jury who agreed to evaluate my
thesis. Thank you to Holger Fröning, Piero Vicini, Géraldine Texier, and Stefano
Secci. I sincerely hope that you found my work, which has required a lot of time
and effort from myself and all those who contributed, to be both engaging and
worthwhile.

Then, many thanks to Quentin Bramas, without whom a significant portion
of this work would not have been possible. Your invaluable advice and expertise
in mathematics made a major contribution to solving some of the main challenges
presented in this thesis. I am deeply grateful for your contributions, which played
a crucial role in advancing this research.

I am grateful to Pierre Schaus for providing valuable insights on the optimization
challenges I faced during this thesis.

I would also like to thank the entire Online Team at CERN for their contributions
to this work and for providing their expertise when needed. In particular, I am
grateful to Flavio Pisani and Tommaso Colombo, who dedicated an entire day and
night to testing the work presented in this thesis with me. I want to express my
thanks to Tommaso Colombo for his supervision throughout this project. My thanks
also go to Alberto Perro, Pierfrancesco Cifra and Konstantinos Stavropoulos for the
engaging discussions we had over pizza. I appreciate the interesting conversations
with Mauricio Feo, whether academic or not, and for his encouragement. Finally,
I want to thank Clara Gaspar and Niko Neufeld, the leaders of this team, who
perform incredible work every day and supported me, helping me to stay motivated
and focused on my future opportunities.

Je remercie Denis, sans qui rien de tout cela ne serait arrivé, ainsi que pour ses
conseils, en lui souhaitant bon courage pour la fin de son périple.

Je tiens à remercier Jeanne et Thierry pour leur soutien, leurs conseils et leur

iv

présence. Leur force de travail et de caractère m’ont toujours motivée à aller de
l’avant.

Je remercie également Adèle, dont la détermination, la joie de vivre et la volonté
auront été une source d’inspiration dans mon travail.

Je tiens également à exprimer ma profonde gratitude à mes parents, Yolande et
Fabrice, pour leur soutien et leur amour tout au long de ce parcours.

Enfin, et surtout, un grand merci à mon partenaire, Hugo. Il est difficile
d’exprimer par des mots à quel point ta présence, ton amour et ton soutien ont
compté pour moi tout au long de ce parcours. Tu ne le croiras peut-être pas, mais
sans toi, ce travail n’aurait jamais abouti. Tes encouragements et ta gentillesse
ont été essentiels pour rendre cette thèse possible. Je n’aurais pas pu terminer ce
doctorat sans ton incroyable soutien, et je t’en serai toujours profondément recon-
naissante.

This work was mainly funded by the European Council for Nuclear Research
(CERN) and partially founded by a grant from the Silicon Valley Foundation
(CG1318167).

v

List of publications

Journals

• Eloïse Stein, Flavio Pisani, Tommaso Colombo and Cristel Pelsser. Measuring
Performance Under Failures in the LHCb Data Acquisition Network. IEEE Trans-
actions on Nuclear Science (TNS)

• Eloïse Stein, Quentin Bramas, Flavio Pisani, Tommaso Colombo, Cristel Pelsser.
FORS: Fault-adaptive Optimized Routing and Scheduling for DAQ Networks.
Computing and Software for Big Science, Springer

Conferences

• Eloise Noelle Stein, Quentin Bramas, Tommaso Colombo, Cristel Pelsser (2023).
Fault-adaptive Scheduling for Data Acquisition Networks. The 48th IEEE Con-
ference on Local Computer Networks (LCN). October 2023.

• Eloïse Stein, Flavio Pisani, Tommaso Colombo and Cristel Pelsser. Measuring
Performance Under Failures in the LHCb Data Acquisition Network. The 24th
IEEE Real Time Conference. April 2024.

Contents

1 Introduction 1
1.0.1 Contributions . 2
1.0.2 Overview . 4

2 Background 7
2.1 The Fat-tree topology . 7

2.1.1 Terminology . 7
2.1.2 Logical Fat-tree . 7
2.1.3 The considered Generalized Fat-trees 8
2.1.4 Reduced Logical Fat-Tree and Generalized Fat-tree 10
2.1.5 Conflicts . 10

2.2 The all-to-all collective exchange . 11
2.2.1 Definition . 11
2.2.2 Segmentation of the all-to-all exchange into phases to prevent

congestion . 11
2.2.3 Linear-shift scheduling algorithm 12

2.3 Case of study : A DAQ network . 14
2.3.1 The Event Builder network 14
2.3.2 The all-to-all exchange applied to the Event Builder network 15
2.3.3 The routing of the communications 15

2.4 Conclusion . 17

3 Related Work 19
3.1 Collective operations . 19
3.2 Routing strategies . 22

3.2.1 Scheduling-Aware Routing . 22
3.2.2 Adaptive routing . 22
3.2.3 Oblivious routing . 23
3.2.4 Weighted fat-tree routing algorithm 24

3.3 High performance computing topologies 24
3.3.1 Dragonfly topology . 24
3.3.2 Demand-aware topology . 26
3.3.3 HyperX topology . 26
3.3.4 The Fault-Tolerant Engineered Network topology 26

3.4 Conclusion . 27

4 Study of failures in the LHCb DAQ network 29
4.1 Statistics of failures . 30

4.1.1 Methodology . 30
4.1.2 Duration . 31

viii Contents

4.1.3 Frequency . 34
4.1.4 Nature of failures . 35

4.2 Throughput achieved by Infiniband routing algorithms 36
4.2.1 Methodology . 36
4.2.2 Results . 37

4.3 The effect of synchronization on the throughput 39
4.3.1 The non-synchronized All-to-All MPI application 40
4.3.2 Experiment setup . 42
4.3.3 Scalability of synchronized and non-synchronized all-to-all . . 42
4.3.4 Throughput achieved by the synchronized and non-

synchronized all-to-all in case of failures 43
4.4 Design recommendation . 45
4.5 Conclusion . 45

5 Fault-Adaptive Scheduling Algorithm 47
5.1 Latin Square . 47
5.2 Bandwidth reduction . 50
5.3 The Bandwidth-Optimal All-to-All exchange 52
5.4 Adaptation of the Bandwidth All-to-All Exchange to Failures 61

5.4.1 Lower bound on the number of phases with bandwidth reduction 62
5.4.2 Increase in the number of phases 64
5.4.3 Scheduling the communications on the added phases 66

5.5 Results . 69
5.6 Conclusion . 73

6 Fault-adaptive Optimized Routing and Scheduling 75
6.1 Spine pinning problem . 76
6.2 Non-uniform bandwidth reduction 77
6.3 Fault-adaptive scheduling algorithm 80
6.4 Fault-adaptive routing solution . 85

6.4.1 Routing algorithm . 85
6.5 Integer Linear Programming with dynamic programming 86

6.5.1 The ILP model . 88
6.5.1.1 The variables . 89
6.5.1.2 The constraints . 90

6.5.2 Dynamic programming . 90
6.6 Results . 91

6.6.1 Experiments setup . 91
6.6.2 Comparison of the achieved throughput 93
6.6.3 Computation Time . 97

6.7 Deployment . 97
6.7.1 Operational constraints . 98
6.7.2 LID Mask Control for Infiniband Multipath 98

6.8 Conclusion . 100

Contents ix

7 Conclusion and Research Directions 103
7.1 Summary of the contributions . 103

7.1.1 Study of failures in the LHCb DAQ network 103
7.1.2 Fault-Adaptive Scheduling Algorithm 105
7.1.3 Fault-adaptive Optimized Routing and Scheduling 106

7.2 Perspectives . 107
7.3 Introduction . 4

7.3.1 Contributions . 6
7.3.2 Aperçu . 8

7.4 Conclusion et perspectives de recherche 9
7.4.1 Résumé des contributions . 9

7.4.1.1 Étude des pannes dans le réseau DAQ de LHCb . . 9
7.4.1.2 Algorithme d’Ordonnancement Adaptatif aux Pannes 11
7.4.1.3 Routage et Ordonnancement Optimisés et Adaptat-

ifs aux Pannes . 12
7.4.2 Perspectives . 13

List of Figures 17

List of Tables 22

Bibliography 23

Chapter 1

Introduction

Data acquisition (DAQ) systems play a crucial role in the collection of scien-
tific data [Belyaev et al. 2017, Jereczek et al. 2015, Bawej et al. 2015]. Typically
composed of a diverse set of sensors, DAQ systems capture large amounts of
data. These systems find extensive use in various fields, including scientific
research such as aerospace [Borrill et al. 2015, Dorelli et al. 2022, Update 2011],
healthcare [Liu et al. 2023, Leung et al. 2020] and physics [Belyaev et al. 2017,
Jereczek et al. 2015, Bawej et al. 2015]. For instance, DAQ systems at
the European Organization for Nuclear Research (CERN)[Jereczek et al. 2015,
Bawej et al. 2015] process tens of exabytes annually[LHCb Collaboration 2014,
LHCb Collaboration 2020], significantly contributing to advancements in the field
of physics research[CERN 2019]. Such systems are deployed at experiments along
the Large Hadron Collider (LHC) at CERN to collect fragmented data from various
sensors and assemble them to reconstruct each particle collision event. This process
is known as Event Building.

Event building for large collider experiments is typically enabled by a high-
throughput and low-latency network of interconnected servers. The data exchanged
is produced in real-time by large scientific instruments such as the LHC. The LHC
at CERN accelerates particles to energies of up to 6.8 TeV and makes them collide to
energies up to 13.6 TeV. Numerous sensors capture various aspects of the resulting
collisions, also known as "events". Each sensor is connected to a server which
receives its data. To synthesize these data fragments into a unified representation
of each event, every server exchanges its data fragments with all others through
the network. The resulting network traffic matrix is a continuous succession of all-
to-all exchanges. As events are continuously produced in the LHC, servers must
reconstruct the events promptly. A delay in reconstruction can overload server
buffers with data, leading to congestion and the potential loss of important data.
Consequently, throughput is the focal network metric in this thesis.

The all-to-all collective exchange demands significant network resources such as
bandwidth. To make best use of the available bandwidth in the network, the full
capacity of a link is used for each transmission between servers. If two communi-
cation flows use the same link, there is a congestion because the two transmissions
need to share the capacity of the link. Consequently, bandwidth utilization in the
DAQ network is close to the maximum capacity which makes the all-to-all exchange
highly sensitive to failures. As highlighted in the literature [Gill et al. 2011], link
failures in high-throughput networks, such as those used for collective communica-
tions between servers in DAQ networks, are common.

2 Chapter 1. Introduction

DAQ systems often rely on High Performance Computing (HPC) applications
for real-time analysis and efficient processing of significant volumes of data. Op-
timization of HPC applications is the subject of much research, pushing back
the limits of hardware components[Wu et al. 2023, Wang et al. 2023a], comput-
ing architecture[Chirkov & Wentzlaff 2023, Huang et al. 2023, Contini et al. 2023]
and networks[Feng et al. 2023]. A lack of optimization can result in a significant
loss of performance, preventing important scientific discoveries from being made.
While the optimization of collective exchanges, such as the all-to-all exchange,
in HPC applications is extensively discussed and addressed [Prisacari et al. 2013b,
Prisacari et al. 2013a, Al-Fares et al. 2010, Izzi & Massini 2020, Zahavi et al. 2009,
Peng et al. 2022, Izzi & Massini 2022, Izzi & Massini 2023], to the best of our
knowledge, there has been no proposals on optimizing these collective exchanges
in the event of network failures, involving bandwidth reduction, despite the fact
that failures are common [Singh et al. 2021]. As we demonstrate in this thesis,
network performance is currently significantly impacted when bandwidth reduction
occurs. Addressing this issue is challenging as it involves adapting the schedul-
ing and routing of these collective exchanges to the remaining network bandwidth
during failures.

Collective operations, in general, are also increasingly used in ma-
chine learning[Sergeev & Del Balso 2018, Zhao et al. 2024a, Zhou et al. 2023,
Wang et al. 2023b], including AllGather, AllReduce, or ReduceScat-
ter [Nvidia 2020]. However, they differ from the all-to-all collective exchange.
Our problem is specific to DAQ systems.

The all-to-all exchange is a collective communication that is very demanding in
bandwidth as all the servers in the DAQ network must exchange data with all the
others. If all servers send data to the same destination simultaneously, the links to
this destination become congested. A typical strategy to address this problem is to
spread the communications to each server over time, meaning that the exchange is
segmented into distinct phases.

In this approach, the all-to-all collective exchange is synchronized, meaning that
the DAQ application ensures that all servers complete their data exchange before
moving to the next phase. This synchronized approach achieves high through-
put, particularly in systems with data rates close to 100% of the link capaci-
ties [Pisani et al. 2023a].

1.0.1 Contributions

In this thesis, I present my contributions to routing and scheduling solutions that
improve fault tolerance in DAQ networks. Additionally, I demonstrate, through
measurements, the importance of addressing this issue, given the sensitivity of DAQ
networks to failures.

First, we propose to study link failures in the DAQ network of the Large Hadron
Collider beauty (LHCb) experiment at CERN. We analyze network failures observed
over a two-month period during which the LHC was fully active and data were

3

exchanged in the DAQ network. Specifically, we present statistics on the duration,
frequency, and underlying causes of network link failures to prove that failures are
frequent and can last a long time. These statistics motivate our problem.

Then, we present an analysis of various routing algorithms relevant to the studied
network. Specifically, we evaluate the performance of adaptive routing compared to
the routing algorithm currently used in the LHCb DAQ network with various failure
scenarios. Our measurements highlight the throughput achieved by each routing
algorithm on the network under study. We find that link failures can significantly
degrade performance, as bandwidth utilization in the DAQ network is close to the
maximum capacity. A single failure leads to congestion and degrades the throughput
from approximately 46 Tbps to 30 Tbps in total, even with the best routing solution.

We also propose to evaluate the two scheduling approaches of the all-to-all col-
lective exchange: non-synchronized and synchronized. In a synchronized all-to-all
exchange, all servers wait for the others to complete their data exchange before
proceeding to the next phase. This is the approach currently used in the studied
DAQ network. An alternative approach involves a simpler non-synchronized all-
to-all exchange, where the network is left to deal with the congestion. These two
approaches have never been compared in the context of network link failures, which
is what we propose in Chapter 4. In this thesis, we do not consider failures between
network switches and servers, as these failures result in complete disconnection of
the affected servers from the network. Such servers are no longer able to partici-
pate in the all-to-all exchange, and their exclusion does not impact the bandwidth
required to complete the exchange among the remaining servers. Finally, we de-
rive some design recommendations from our comparison of the throughput achieved
by the synchronized and non-synchronized all-to-all applications in the presence of
network failures. However, none of these scheduling and routing approaches enable
to make efficient use of the bandwidth that remains in the network when failures
occur. These contributions are discussed in Chapter 4 and have resulted in one
publication [Stein et al. 2024].

As we demonstrate the importance of finding a scheduling and routing solution
that ensures more graceful degradation of throughput, we conduct a detailed study
of existing scheduling algorithms in the literature. We show that these algorithms
are not fault-tolerant, as the number of phases in a synchronized all-to-all exchange
is insufficient to prevent congestion. To address this, we introduce the concept of
bandwidth reduction, which more precisely defines how failures affect routing in
an all-to-all schedule and allows us to derive a formula for computing the lower
bound on the number of phases necessary for congestion-free routing, making the
number of phases optimal. Following this, we propose an algorithm, along with
an Integer Linear Programming (ILP) model, to adapt existing all-to-all scheduling
patterns to handle failure scenarios on a fat-tree topology. Finally, we evaluate
our contribution and highlight its limitations. This contribution has led to one
publication [Stein et al. 2023].

To address these limitations, we propose a more comprehensive study of various
failure scenarios in the network, focusing on the challenges for scheduling and rout-

4 Chapter 1. Introduction

ing to prevent congestion. Then, we present a Fault-adaptive Optimized Routing
and Scheduling (FORS) solution to maintain high all-to-all throughput despite the
bottlenecks introduced by network link failures. FORS is composed of an algorithm
to adapt the scheduling of the communications for the all-to-all collective exchange
in case of link failures. Additionally, FORS is composed of a semi-algorithmic rout-
ing solution, combining a route computation algorithm for basic failure scenarios
with an Integer Linear Programming (ILP) model designed to address more chal-
lenging combination of failures. The purpose of these two algorithms is to provide
congestion-free paths between servers within the network based on the given fail-
ure scenario. We demonstrate the applicability and performance of our solution
on a real, operational DAQ network at CERN employing HPC for processing large
volumes of scientific data. We compare our proposal with currently deployed ap-
proaches. This contribution is under submission at Computing and Software for Big
Science in Springer journal.

1.0.2 Overview

This thesis is composed of seven chapters. Chapter 2 provides the necessary back-
ground to understand our contributions. We start by introducing the fat-tree topol-
ogy and the two variants we consider. Then, we discuss the all-to-all collective
exchange and the linear-shift scheduling algorithm, which is widely used in Infini-
Band networks. We then provide an overview of the DAQ network of the LHCb
experiment and the Event Building process. We present with more details the ap-
plication of the all-to-all collective exchange in the Event Building process and the
use of InfiniBand technology in the fat-tree topology of the DAQ network.

In Chapter 3, we review related work relevant to our research, including various
existing collective operations other than all-to-all. We also present different routing
strategies, such as adaptive, oblivious, and scheduling-aware. Finally, we introduce
other network topologies such as Dragonfly, which is widely used in HPC networks,
along with demand-aware topologies. We introduce the HyperX and F10 topologies
that are relevant to our problem as they could improve fault tolerance by increasing
the number and diversity of paths available between switches.

In Chapter 4, we present our statistics on network failures that occurred in the
studied network during March and April 2024. We then present measurements of
the throughput achieved by different InfiniBand routing algorithms relevant to our
network, along with data showing the effects of the synchronization of the all-to-
all exchange in terms of scalability and in the event of failures. We conclude this
chapter with design recommendations.

In Chapter 5, we study with more details various scheduling algorithms and
demonstrate their inadequacy in the event of failures due to inevitable congestion,
as no congestion-free routing solution exists with the proposed number of phases. We
then explain how we compute the optimal number of phases based on the bandwidth
reduction caused by network failures. Finally, we propose a first scheduling solution
that can adapt any all-to-all scheduling pattern in the event of failures, addressing

5

simple failure scenarios only.
In Chapter 6, we conduct a more in-depth analysis of different failure scenar-

ios and their consequences in terms of bandwidth reduction. We then propose a
scheduling algorithm that more effectively consider routing, ensuring that a feasible
routing solution exists without congestion for any failure scenario. Furthermore, we
present a routing algorithm associated with an Integer Linear Programming (ILP)
model to address all possible failure scenarios as long as the network switches di-
rectly connected to the servers remain fully connected. Finally, we evaluate the
performance and applicability of our solution.

In Chapter 7, we conclude by summarizing our various contributions and their
results, as well as suggesting further research perspectives.

Have a pleasant reading.

Chapter 2

Background

In this chapter, we introduce the fat-tree topology and all-to-all collective exchange
common to DAQ networks. Then, we focus on our case of study and describe its
specifics and existing routing algorithms.

2.1 The Fat-tree topology

Our contributions currently focus on a single topology family: Generalized Fat-
trees, more specifically k-ary-L-trees [Petrini & Vanneschi 1997]. Fat-tree topologies
are widely used in High-Performance Computing (HPC). Many of the systems on
the latest Top500 list employ a fat-tree topology [List 2024]. Generalized fat-tree
topologies are particularly well-suited for the all-to-all collective exchange, thanks
to their scalability and rearrangeable non-blocking nature[Pippenger 1978]. This
last characteristic allows each end node to communicate at the same time, making
the best use of the available bandwidth [Yao et al. 2014]. Fat-trees also maintain
constant bisection bandwidth across all possible bisections. A bisection is when the
network is divided into two equal halves. Bisection bandwidth refers to the total
bandwidth available across the set of links that, when cut, would split the network
into these two equal halves. In this section, we define a logical fat-tree and the
generalized fat-trees we consider.

2.1.1 Terminology

For simplicity, in this thesis, we use the term server to refer to network end-nodes,
and switch for intermediate network nodes. The difference between the two in the
problem addressed in this thesis is that the server processes the data, while the
switch simply forwards it to its destination.

2.1.2 Logical Fat-tree

Logical fat-trees can be described as a traditional tree structure, where the link
capacity increases as we move closer to the root. The capacity of a link at any
level of the fat-tree must be equal to the sum of the capacities of the links at the
preceding level [Leiserson et al. 1992]. It is common to only consider trees where the
number of children is the same for all switches at a given layer. The main property
of a fat-tree is that any communication flows is possible without congestion, i.e., it
is non-blocking. In more details, for any bijection f between the set of servers then
it is possible for each server i, at the same time, to communicate with the server

8 Chapter 2. Background

Figure 2.1: Logical fat-tree LFT (3; 2, 2, 4) with three layers. At the top layer, the
switch SW12 has 4 down links with a capacity of 4. Then, each switch at layer 2
SW8..11 and each switch at layer 1 SW0..7 has 2 down links with a capacity of
respectively 2 and 1. There are 16 servers connected in the topology. The nodes
SW0 . . . 12 are switches and the nodes S0 . . . 15 are servers.

f(i) using all the available bandwidth without congestion. We use here a definition
with notation similar to previous work [Prisacari et al. 2013b].

Definition 1 A logical fat-tree LFT (L;M1, . . . ,ML) is a rooted tree graph of height
L+1, where the set of switches is partitioned into L+1 sets VL, VL−1, . . . , V0. Each
set is a layer of the tree. Their size is respectively 1, containing only the root at
the top layer of the topology, and then ML (the number of switches at layer L),
ML ×ML−1 (at layer L− 1), . . . ,

∏L
i=0Mi (at layer 0). The link capacity between

a switch at layer l and a switch at layer l+1 is Πl =
∏l

i=1Mi, such as a switch has
enough bandwidth to serve all its servers.

The servers from the set Servers of nodes are denoted server nodes, and represent
the only nodes that can send and receive messages. The other nodes in the tree are
here to route messages and are switches.

An example of a logical fat-tree is depicted in Figure 2.1 which presents the
fat-tree LFT (3; 2, 2, 4) with the servers numbered from 0 to 2× 2× 4− 1 = 15.

2.1.3 The considered Generalized Fat-trees

The practical scalability of fat-tree topologies is constrained by the increasing link
capacities required as we approach the root. However, regular fat-tree topologies,
where each node has the same number of children at every level, can be generalized
into a scalable variant using readily available hardware. This is achieved by replacing
the higher-bandwidth links with multiple parallel links of equal bandwidth, and by
replacing each node with a set of switches that have the same number of ports.

2.1. The Fat-tree topology 9

Our generalized fat-tree, denoted FT (L; k, . . . , 2k) corresponds to the biggest
fat-tree with L+1 levels one can build with switches having up to 2k ports. We use
here a definition with notation similar to previous work [Prisacari et al. 2013b]. At
each level, each switch has k parents and k children (like in a k-ary-L-tree) but the
switches at level L have 2k children. We call the switches at level L spine switches;
the switches at level 1 are called leaf switches. In the remaining we always consider
without loss of generality that each link in a generalized fat-tree has a capacity of
one.

Figure 2.2: Generalized fat-tree FT (3; 2, 2, 4) with three layers. At the top layer,
each switch SW16..19 has 4 down links. Then, each switch at layer 2 SW8..15 and
each switch at layer 1 SW0..7 has 2 down links. There are 16 servers connected in
the topology. Each link has a capacity of 1.

For instance, Figure 2.2 presents a fat-tree FT (3; 2, 2, 4) with the servers num-
bered from 0 to 2 × 2 × 4 − 1 = 15. The fat-tree FT (3; 2, 2, 4) is the generalized
version of the logical fat-tree LFT (3; 2, 2, 4) depicted in Figure 2.1.

The most well-known generalizations are the k-ary-L-
tree [Petrini & Vanneschi 1997] that generalizes the fat-tree FT (L, k, . . . , k)

and some variants such as the mirrored-k-ary-L-tree used in [Li & Chu 2019]. The
k-ary-L-tree is a tree structure made up of switches, where each switch has an
equal number of uplinks and downlinks [Leiserson 1985, Petrini & Vanneschi 1997].
An example of the generalized fat-tree FT (L, k, . . . , k) is depicted in Figure
2.3. The difference between the k-ary-L-tree generalization of a fat-tree and the
generalization FT (L; k, . . . , 2k) we define is that instead of using only half of the
ports on the switches at the highest level in the hierarchy, we use all links to
connect the layer below.

In the following of this thesis, when we use the term generalized fat-tree,
we include the k-ary-L-tree generalization FT (L; k, . . . , k) and our generalization
FT (L; k, . . . , 2k).

10 Chapter 2. Background

Figure 2.3: Generalized fat-tree FT (3; 2, 2, 2) with three layers. At the each layer,
each switch has two down links. There are 8 servers connected in the topology. Each
link has a capacity of 1.

2.1.4 Reduced Logical Fat-Tree and Generalized Fat-tree

One of our contributions is the definition of the reduced logical fat-trees and the
reduced generalized fat-trees. A reduced logical fat-tree corresponds to a fat-tree
where the bandwidth available is reduced, i.e., the capacity of some links is reduced.
A reduced generalized fat-tree also corresponds to a fat-tree where the available
bandwidth is reduced; however, in this case, some links completely disappear from
the topology, as all links in the generalized fat-tree have a capacity of one. A
reduced logical or generalized fat-tree can be useful either because some links might
not require full capacity in a logical fat-tree, or to simulate a failure.

2.1.5 Conflicts

A conflict is a congestion that happens due to sharing of a link by multiple commu-
nication flows. A conflict occurs when a link is used by two different source nodes
during the same phase and in the same direction. Assuming that servers always
send at full link capacity, the notion of conflict and congestion are equivalent.

In this thesis, we propose a routing and scheduling solution to route the sched-
uled communication between servers on a reduced fat-tree topology while ensuring
that no conflicts occur on the links. Our solution is applicable to both logical and

2.2. The all-to-all collective exchange 11

generalized fat-trees. However, this thesis focuses on generalized fat-trees, specifi-
cally FTL; k, . . . , 2k and FTL; k, . . . , k, as they are more commonly used in practice
due to the availability of network hardware.

2.2 The all-to-all collective exchange

The all-to-all collective exchange finds common application in parallel or dis-
tributed computing environments and is standardized in Message Passing Interface
(MPI) [MPI 2021]. This data exchange plays a crucial role in various scientific ap-
plications, such as the Fast Fourier Transform (FFT) algorithm [Dalcin et al. 2019,
Czechowski et al. 2012, Doi & Negishi 2010, Namugwanya et al. 2023], which finds
application in diverse scientific fields, including healthcare with medical image recon-
struction in Magnetic Resonance Imaging (MRI) [Sumanaweera & Liu 2005]. Col-
lective all-to-all communications are also widely used in scientific applications, in-
cluding other CERN experiments [Jereczek et al. 2015, Bawej et al. 2015] and large-
scale high-performance computing (HPC) applications in general [Chan et al. 2007].
Furthermore, the all-to-all exchange is widely used in Grid-based Simulations, em-
ployed in the prediction of weather patterns [Müller et al. 2019] or in Hadoop-like
applications [Roy et al. 2015]. More recently, collective exchanges have also been
integrated into machine learning applications [Zhao et al. 2024b, Shah et al. 2023,
Cai et al. 2021]

2.2.1 Definition

The all-to-all collective exchange is a communication pattern in which each process
(or server) sends data to every other process and receives data from every other pro-
cess in the group. A communication flow between a source server and a destination
server is defined as follow:

Definition 2 A communication flow x(S, P) is a bijective function that associate
a server in S at a phase in P to a server in D.

2.2.2 Segmentation of the all-to-all exchange into phases to pre-
vent congestion

Simultaneous all-to-all data transfer can cause network congestion. In a network
connecting a group of servers denoted as S, each hosting a single process, each
server must send and receive data to and from every other server. A full-mesh
topology, where each server has a direct link to all others, avoids congestion but is
a waste of resources as it requires a bandwidth of |S|2 when |S| bandwidth units
are sufficient at the servers. To reach this lower bandwidth, a commonly employed
strategy is to divide the time into synchronized phases P . This implies that when a
server completes its exchange with another server at phase p0 ∈ P , it must wait until
all other servers finish their exchange for phase p0 before communicating with the

12 Chapter 2. Background

Figure 2.4: A collective all-to-all exchange between 4 servers on a fat-tree topology
FT(2;2,2). The switches are SW [0, . . . , 3] and the servers are S[0, . . . , 3]. Each
server transmits simultaneously to all other servers, creating congestion on all links
in the network.

server scheduled for phase p1 ∈ P . To synchronize the exchange, Barrier algorithms
are typically used [Hensgen et al. 1988]. Each server communicates with exactly one
server at each phase. After the end of all phases, every server has exchanged data
with all others, needing only |S| bandwidth units per phase.

Figure 2.4 illustrates an all-to-all exchange between four servers in the fat-tree
topology FT(2;2,2), where each server sends data to all others. This results in
congestion across all links: the links between the servers and switches SW [0, 1]

carry three communication flows each and the links between switches SW [0, 1] and
SW [2, 3] handle two flows each in the same direction. To prevent congestion, a more
effective strategy is to divide the data exchange into four distinct phases.

In more detail, the all-to-all schedule divided into phases can be defined as
follows:

Definition 3 An all-to-all schedule (or matrix) of length P is a function σ that
associates each phase 0 ≤ p ≤ P−1 with a set of communication flows σ(p) = {(i, j)}
such that ∀i, j ∈ S × S, where S is the set of servers, ∃p, σ(p)(i) = j. In other
words, in the schedule, there exists a phase where server i sends its data to server j.

The minimum length of an all-to-all schedule when there is no link failure is
obviously |S|, the number of servers, to avoid congestion in the network.

2.2.3 Linear-shift scheduling algorithm

To avoid congestion, the all-to-all exchange typically needs to be divided into phases,
with the communications between servers being scheduled at each phase. To com-

2.2. The all-to-all collective exchange 13

Figure 2.5: The linear-shift scheduling with four servers. Each process communicates
with all other servers. To prevent congestion, the exchange is divided into four
phases. At each phase, each server sends data to another process and receives data
from another one. The minimum number of phases for the all-to-all exchange is the
same as the number of servers.

Figure 2.6: The routing of the linear-shift all-to-all schedule with four servers in the
fat-tree topology FT (2; 2, 2). No links are used twice in the same direction.

plete an all-to-all exchange with synchronized phases, communications are scheduled
using an algorithm that computes the unique destination for each source and phase.
An example of such an algorithm is the Linear-shift pattern [Zahavi et al. 2009]
illustrated in Figure 2.5, where each destination is computed with d = (s + p)

mod S, where s refers to the source server, p is the phase and S is the total num-
ber of servers. Many other scheduling algorithms [Izzi & Massini 2022] exist, such
as XOR or Bandwidth-optimal [Prisacari et al. 2013b]. As network links are used
at full capacity by communication flows, combining these algorithms with optimal
routing helps avoid congestion in the network and ensure that no communication
flows share links.

Figure 2.6 shows the routing of the linear-shift all-to-all schedule with four servers
in the fat-tree topology FT (2; 2, 2). Each link carries at most one flow in each
direction, ensuring that no congestion occurs on the network at any phase.

14 Chapter 2. Background

2.3 Case of study : A DAQ network

The application of the all-to-all collective exchange with a fat-tree topology is used
in various systems [Müller et al. 2019], including data acquisition (DAQ) in par-
ticle physics experiments [Jereczek 2017, Amoiridis et al. 2023, Pisani et al. 2023b]
at the European Council for Nuclear Research (CERN). Our case of study is the
DAQ network of the LHCb experiment at CERN depicted in Figure 2.7.

2.3.1 The Event Builder network

Figure 2.7: The Event Builder Network of the LHCb experiment. The data frag-
ments from the sensors are transmitted to the servers, which perform an all-to-all
exchange to reconstruct the events. The network topology is a two-layer fat-tree
with 28 40-port InfiniBand High Data Rate (HDR) switches. Each leaf switch is
directly connected to approximately 20 servers and 20 spine switches with 200 Gbps
links. Each source server traverses the fat-tree topology from the leaf switch it is
connected to, up to the spine switches, and then back down to the leaf switches to
reach the destination server.

The Large Hadron Collider (LHC) at CERN is the largest and most powerful
particle accelerator in the world. Within this accelerator, two particle beams are
accelerated to nearly the speed of light before colliding. After over three years
of upgrades and maintenance, the LHC currently achieves a record energy level
of 13.6 TeV. The resulting physical phenomena from these collisions are studied
by physicists, significantly advancing the field of physics research [CERN 2024].
Throughout the remainder of this thesis, a physical phenomenon is referred to as
an event. Instruments responsible for measuring the properties of these events are
known as detectors, typically composed of multiple sensors. The data produced by
the sensors represent an image of events resulting from collisions between the beams
at a given time. Data acquisition (DAQ) systems play a crucial role in collecting
data from these sensors and processing it to extract relevant information for physics
research. One of the objectives of a DAQ system is to reconstruct a comprehensive
view of each event generated in the LHC. This process is called Event Building and
is generally performed over a high-throughput network of interconnected servers.
The Event Building process is our primary focus in this thesis. The sensors are
directly connected to the servers and send data to them. The servers then perform
an all-to-all collective exchange to reconstruct the events generated in the LHC.

2.3. Case of study : A DAQ network 15

In the DAQ system of the Large Hadron Collider beauty (LHCb) experiment,
such network is known as the Event Builder network and is illustrated in Figure 2.7.
After the Event Building process, interesting events are selected through a two-step
High Level Trigger (HLT) process [Aaij et al. 2020].

Unlike other experiments such as ATLAS [Aad et al. 2023], the LHCb exper-
iment has no hardware trigger, meaning that events are not filtered prior to the
event building stage. Instead, LHCb adopts a triggerless DAQ framework, requir-
ing the system, including the communication network, to handle the full collision
rate. This results in higher bandwidth requirements. For this reason, the perfor-
mance of the DAQ network at LHCb is crucial, as it needs to sustain a high data
rate of approximately 46 Tbps. Such performance makes the studied network the
one with the highest real-time data bandwidth compared to other experiments at
CERN [Amoiridis, Vassileios et al. 2024, Kopeliansky 2023].

2.3.2 The all-to-all exchange applied to the Event Builder network

In the Event Builder network, the servers receive a partial spacial view of the ac-
tivity in the beam from a subset of the sensors. Then, the servers send the data
from different time intervals to different servers. Each server reconstructs from the
received data fragments a complete view of the collision events for its allocated times
and is tasked with handling an equal share of the total number of events. In the
Event Builder network, each link are used at full capacity by communication flows.
This data distribution and reconstruction process results in a continuous succession
of all-to-all exchanges. The nature of the all-to-all exchange poses significant chal-
lenges from a network perspective. It demands substantial bandwidth to prevent
congestion. More precisely, a data fragment denoted as D(si, t) from an event oc-
curring at time t ∈ T , is collected by a sensor, and then transmitted to a designated
server, denoted as si, i ∈ [0, S], with S being the set of servers IDs in the DAQ
application. T defines the set of all possible timestamps at which events occur. To
assemble the data fragments, they need to be assigned to a specific server, sj , that
receives all the pieces of data for time t ∈ T through the DAQ application A as
shown in Equation 2.1.

A : (S × T)|S| → S :

A(D(s0, t), D(s1, t), . . . , D(sS , t)) = sj
(2.1)

2.3.3 The routing of the communications

The studied DAQ network relies on the Infiniband technology. Infiniband is widely
used in HPC[List 2024]. The fat-tree topology of the studied DAQ network, illus-
trated in Figure 2.7, is composed of 28 40-ports Infiniband High Data Rate (HDR)
switches. As a reminder of Section 2.1, the switches located at the top layer of the
fat-tree topology are referred to as spine switches while those at the bottom layer
are leaf switches. The studied fat-tree topology includes 18 leaf switches and 20
spine switches. Each leaf switch is connected to every spine with a 200 Gbps optical

16 Chapter 2. Background

fiber. Leaves are also directly connected to at most 20 servers with 20 copper cables
with the same capacity of 200 Gbps. The network enables the connection of a total
of 360 servers. However, the effective number of servers used in the network is 326.
The total throughput that can theoretically be achieved by the DAQ application is
326 ∗ 200 = 65200 Gbps = 65.2 Tbps. Nevertheless, due to various overheads, our
experiments show in Section 4.3.3 that the actual total throughput achieved by the
DAQ application is approximately 46 Tbps. This represents a utilization of about
70% of the available bandwidth in the network.

Every Infiniband network relies on a controller, called OpenSM [Nvidia 2023b].
The controller is responsible for computing routes and pushing them into the Linear-
Forwarding Tables (LFT) of the switches [Nvidia 2023b]. To efficiently route each
communication flow, a routing algorithm compatible with the linear-shift schedul-
ing [Zahavi et al. 2009] is used to avoid congestion in the topology. Ensuring high
throughput requires selecting the shortest paths for each communication flow. In
our studied network, every inter-leaf flow must traverse the topology from the leaf
switches to the spine switches and then back to the leaf switches, this path being the
shortest in the topology of the DAQ network. Hence, the challenge lies in choosing
a spine for each communication flow. To prevent two flows from using the same link
simultaneously, each leaf must use a distinct spine for each communication flow.

A routing algorithm with those characteristics is provided by Infiniband. This
routing algorithm, named Ftree [Nvidia 2023b], uniformly distributes the traffic on
the links between spine and leaf switches according to the destination server. The
Ftree routing algorithm assigns ports to join each server in the routing table of
the switches. For each destination server, the algorithm starts at the leaf switch
directly connected to that server and assigns the output port that leads to it. This
process is then repeated for each of the other leaf switches and subsequently for the
switches in the upper layers. This step goes from the bottom layer of the network to
the top, visiting each leaf switch and assigning the output port that directs traffic
toward the destination server. This ensures that every switch has a route to the
destination servers. Each switch port has a counter that increments every time
the port is used as an output to reach a destination server. If multiple ports are
candidates for the same destination, the algorithm selects the port with the smallest
port ID [Zahavi et al. 2009].

This type of routing algorithm has demonstrated its effectiveness in routing
shift communication patterns, such as the linear-shift pattern, without causing
congestion on fat-tree topologies commonly used in practice [Jacobs 2010]. Con-
sequently, the linear-shift algorithm combined with the Ftree routing algorithm
ensures that there is no congestion in the network when there are no network fail-
ures [Zahavi et al. 2009].

In the event of link failures, the use of the Ftree routing is not recommended as
the topology is no longer a pure fat-tree. In such scenarios, the default behavior of
OpenSM is to switch from Ftree to Min-Hop, upon the detection of failures. Similar
to Ftree, Min-Hop computes the shortest path for each communication flow and
uniformly distributes the traffic. Contrary to Ftree, Min-hop is applicable on non

2.4. Conclusion 17

fat-tree topologies. In the presence of a link failure, there may not be sufficient links
available to allocate traffic without congestion. Consequently, the same spine might
need to be used simultaneously by multiple communication flows from and to a leaf
switch. Min-Hop prioritizes the spine with the least communication flows to balance
the traffic uniformly [Nvidia 2023b].

2.4 Conclusion

In this chapter, we discussed the background necessary to understand the contribu-
tions presented in this thesis. We presented the fat-tree topology and its variants,
which is ideal for all-to-all communication due to its non-blocking nature and the
bandwidth it offers. Specifically, we discussed the generalization of fat-tree topolo-
gies and defined another generalization commonly used in practice, to which all the
solutions proposed in this thesis apply.

We then discussed the all-to-all exchange and the strategies implemented to
avoid congestion in this collective operation, which requires significant bandwidth.
We introduced the linear-shift algorithm, which schedules all-to-all communications
without creating congestion.

Finally, we presented our case of study: a data acquisition network in produc-
tion at CERN. We detailed the activity of the LHCb experiment where this data
acquisition network is used. Finally, we showed that the all-to-all exchange, when
combined with a fat-tree topology and the Infiniband Ftree algorithm, achieves op-
timal performance, enabling the data acquisition network to reach a throughput of
46 Tbps when the are no link failures.

Chapter 3

Related Work

Contents
3.1 Collective operations . 19
3.2 Routing strategies . 22

3.2.1 Scheduling-Aware Routing . 22
3.2.2 Adaptive routing . 22
3.2.3 Oblivious routing . 23
3.2.4 Weighted fat-tree routing algorithm 24

3.3 High performance computing topologies 24
3.3.1 Dragonfly topology . 24
3.3.2 Demand-aware topology . 26
3.3.3 HyperX topology . 26
3.3.4 The Fault-Tolerant Engineered Network topology 26

3.4 Conclusion . 27

In the previous chapter, we provided a comprehensive overview of the important
concepts necessary for understanding our contributions. In this chapter, we discuss
the related work in this area. We describe various collective operations other than
the all-to-all exchange, which was discussed in the previous chapter, and explain why
the All-to-All operation is particularly challenging to optimize in terms of bandwidth
compared to other collective operations.

Then, we explore various routing strategies that can be applied to the all-to-all
exchange in a fat-tree topology. However, these strategies may not necessarily be
the most effective for traffic in the data acquisition network we are studying. By
discussing these alternatives, we aim to provide a comprehensive understanding of
their strengths and limitations in different contexts.

Finally, we present the different topologies commonly used in data center net-
works that could be considered for all-to-all communication patterns. We discuss
their applicability to our problem, considering how these topologies can impact per-
formance and optimization strategies in the context of data acquisition networks.

3.1 Collective operations

Collective operations involve communication and data sharing between a set of
processes P . The most common collective operations are standardized in Message
Passing Interface (MPI) [MPI 2023, Nvidia 2020] and are described below:

20 Chapter 3. Related Work

Broadcast: The Broadcast operation is used when a single process needs to
share data with all other processes. For example, in a set of processes P =

{p1, p2, p3}, process p1 needs to send data d to all other processes. In the Broadcast
exchange, process p1 sends data d to p2 and p3, as well as itself. By the end of
the exchange, all processes p1, p2, and p3 have received the data d. This operation
involves one sender (p1), |P | receivers (p1, p2, p3), and requires a bandwidth of |P |,
as only one process sends |P | messages.

Reduce: The Reduce operation aggregates data from all processes into a single
result using a specified operation, such as the sum of the maximum of values. Each
process contributes its data, and these contributions are combined. The final result
is then stored on a designated process. For example, a process p1 ∈ P needs to
receive the sum of the data d1 from p1, d2 from p2, and d3 from p3. In a Reduce
exchange, the sum, or any other operation, is computed progressively between the
processes in a hierarchical manner. In our example, it means that instead of each
process px ∈ P with x ∈ {1, 2, 3} sends data dx directly to process p1 to sum the
data, each process sends data dx to another process. The receiving process sums the
value it receives with its own value and forwards the result to the next process and
so on until p1 receives the final sum and add its own value. This operation involves
|P | senders (p1, p2, p3), one final receiver (p1), and requires a bandwidth of |P |, as
|P | processes each send one message to one process.

All-Reduce: The All-Reduce operation extends the Reduce operation by not
only aggregating the data but also ensuring that every process receives the final
result. After the reduction operation, the result is broadcast back to all processes.
This operation involves |P | senders (p1, p2, p3), |P | receivers (p1, p2, p3), and
requires a bandwidth of |2P |, as |P | processes each send one message to one process
and then the result is sent to |P | processes.

Gather: In the Gather operation, data from all processes is collected and sent
to a single process. For instance, process p1 ∈ P needs to receive the data d1 from
p1, d2 from p2, and d3 from p3. In a Gather exchange, each process px ∈ P with
x ∈ {1, 2, 3} sends data dx to process p1. This operation involves |P | senders (p1, p2,
p3), one receiver (p1), and requires a bandwidth of |P |, as each of the |P | processes
sends one message to a single process, the process that receives the result then
broadcasts it to all |P | processes.

All-Gather: The All-Gather operation is an extension of Gather, where instead
of just one process collecting data from all others, every process collects data from
every other process. After the operation, each process has a complete set of data.
In an All-Gather exchange, each process px ∈ P with x ∈ {1, 2, 3} sends data dx to
processes p1,2,3 ∈ P . This operation involves |P | senders (p1, p2, p3), |P | receivers
(p1, p2, p3), and requires a bandwidth of |P |2, as |P | processes each send one message
to |P | processes.

Scatter: The Scatter operation is essentially the opposite of Gather. Here, a
single process sends a set of data to all processes. Specifically, the data is divided
into chunks, and each chunk is sent to a different process. In a Scatter exchange,
process p1 ∈ P has data d, which is divided into three chunks of data d1, d2, d3.

3.1. Collective operations 21

Process p1 sends data d1 to p1, data d2 to p2, and data d3 to p3. This operation
involves one sender (p1), |P | receivers (p1, p2, p3), and requires a bandwidth of |P |,
as one process sends |P | data.

As discussed in Section 2.2, the all-to-all collective exchange is a communication
pattern where each process exchanges data with every other process. The bandwidth
required for the all-to-all exchange is |P |2. Consequently, the bandwidth required for
the all-to-all and all-gather collective exchanges is the same. However, the number of
different messages exchanged differs. For all-gather, the number of different messages
exchanged is |P | as each process sent a same message to all processes, whereas for
all-to-all, the number of different messages exchanged is |P |2, since each process
sends a different message to all processes.

To elaborate, in the all-to-all exchange involving processes p1, p2, p3 ∈ P , process
p1 holds a data set {a1, a2, a3} and transmits data a1 to p1, a2 to p2, and a3 to p3. As
explained in Section 2.3.1, each server connected to the LHCb experiment’s Event
Builder network receives data fragments from the sensors, and each fragment must
be transmitted to an assigned process. This difference between all-to-all and all-
gather makes scheduling for all-to-all more challenging to optimize in the event of
failures. In the all-to-all exchange, it is not sufficient to simply broadcast the same
data to other processes as each data fragment to be transmitted is unique and held
by a specific process. This is not the case for all-gather, which can be optimized as
shown, for example, in the work by Liangyu Zhao et al. [Zhao et al. 2024b], which
introduces ForestColl, a tool that generates a forest of spanning trees for aggregation
(all-reduce) and broadcasting (all-gather) on any topology while minimizing network
congestion.

Optimizing the all-to-all exchange is a challenging problem, especially in the
event of failures, because this exchange is highly demanding in bandwidth. Any
reduction in bandwidth can lead to congestion if the scheduling is not optimized
to consider the new bandwidth available. Numerous solutions have introduced
scheduling algorithms that optimize bisection bandwidth [Prisacari et al. 2013b,
Al-Fares et al. 2010, Bruck et al. 1997] or are applied to diverse network topolo-
gies such as Butterfly [Izzi & Massini 2020, Izzi & Massini 2023] and Dragon-
fly [Prisacari et al. 2013a]. However, these approaches do not consider failure sce-
narios which is the subject of this thesis.

The all-to-all traffic matrix can also be used by Network on Chip
(NoC) [Chatti et al. 2010, Venkataramani et al. 2022]. A Network on Chip (NoC)
is a network on an integrated circuit that connects components within a System
on Chip (SoC). The most commonly used topologies for NoCs are mesh and torus,
or tree topologies such as fat-trees [Bokhari & Parameswaran 2016]. However, in
most NoCs, the traffic pattern is not always all-to-all but tends to be more lo-
calized on specific nodes, depending on the application’s requirements. Further-
more, scheduling strategies are often used to optimize the network in terms of en-
ergy consumption [Tariq et al. 2021, Huseyin & İmre 2018, Yao et al. 2022] and la-
tency [Chao et al. 2012], but not necessarily in fault-tolerance. NoCs are used in
a variety of real-time applications, such as multimedia processing. For example,

22 Chapter 3. Related Work

in video processing, NoCs enable different processors to collaborate in real-time to
decode, filter, and compress videos [Peng et al. 2023].

3.2 Routing strategies

In this section, we discuss various appropriate routing strategies to optimize the
all-to-all exchange, with a focus on scenarios involving network failures and efficient
bandwidth utilization. We delve into how different approaches can be employed to
maintain high performance and reliability, even under challenging conditions such
as unexpected network failures.

3.2.1 Scheduling-Aware Routing

Scheduling-aware routing is a network routing strategy that considers not just the
best path for routing data but also the scheduling of communications. In this
approach, routing decisions are made based on both the current state of the network
and the schedule of communication flows, ensuring that resources like bandwidth
are efficiently allocated among the communications. For instance, in case of network
failures, the network does not just find the shortest or least congested path for data.
Instead, it considers when and how network resources, such as bandwidth, will be
available. This helps avoid conflicts and congestion in the network.

Various Scheduling-Aware Routing solutions exist [Huang et al. 2020,
Munir et al. 2016], especially for routing the all-to-all collective ex-
change [Subramoni et al. 2014, Subramoni et al. 2013, Domke & Hoefler 2016].
In [Subramoni et al. 2014], the authors attempted to make the all-to-all communi-
cation schedule free of congestion by spreading the traffic more evenly over time,
i.e., by adding more phases to perform an all-to-all exchange. They are able to
limit the number of communications sharing a link in the all-to-all schedule to
two. This strategy is interesting and we propose in the Chapter 5 of this thesis
an extension of it by defining a lower bound on the number of phases to perform
an all-to-all exchange without any congestion on the links, i.e., no communication
flows share a link in the same direction, based on the remaining bandwidth in the
network in case of failures.

3.2.2 Adaptive routing

Adaptive routing is a technique where data is dynamically routed in a net-
work based on real-time conditions such as traffic load, congestion, or fail-
ures [Rocher-González et al. 2022, Kasan et al. 2022, Rocher-Gonzalez et al. 2020,
Zahavi et al. 2014, Geoffray & Hoefler 2008]. In adaptive routing, the routing ta-
bles of switches have multiple output ports for each destination, and the specific port
used is dynamically selected according to the current network conditions. This con-
trasts with deterministic [Zahavi et al. 2009, Hoefler et al. 2008] or oblivious rout-
ing [Räcke 2009], where paths are predetermined and fixed, meaning each switch has

3.2. Routing strategies 23

a single output port that remains unchanged for each destination. Adaptive routing
generally improves network performance and reliability by dynamically balancing
traffic to reduce congestion.

Numerous deterministic routing solutions have been proposed for all-to-
all exchanges [Zahavi 2011, Kumar & Kale 2004, Zahavi et al. 2009]. The de-
bate between the use of adaptive versus deterministic routing has been dis-
cussed [Gomez et al. 2007, Rodriguez et al. 2009], and Infiniband, for example, of-
fers an adaptive version of the deterministic routing algorithm Ftree [Nvidia 2023b].
However, adaptive routing did not seem suitable for our data acquisition network,
as the bursty nature of the traffic prevents adaptive algorithms from adapting ef-
fectively, as shown in [Shin & Pinkston 2003]. Bursty traffic refers to peaks of data
transmission that occur unpredictably and in short periods of time, followed by pe-
riods with low or no traffic. Adaptive routing makes routing decisions based on the
state of the network. When a burst occurs, the adaptive routing algorithm may not
have enough time to react to these sudden peaks, leading to inefficient routing de-
cisions. The study in [Shin & Pinkston 2003] evaluates deterministic and adaptive
routing with bursty traffic and shows that adaptive routing performance degrades
more compared to deterministic routing. Furthermore, our performance evaluation
in the studied data acquisition (DAQ) network, as presented in Section 4.2.2, proves
that adaptive routing is not appropriate for our studied DAQ network.

3.2.3 Oblivious routing

Oblivious routing is a routing strategy where the routes for data transmission are
set independently of the current network conditions, such as traffic load or fail-
ures [Räcke 2009]. In other words, the routing decisions are made without consider-
ing the state of the network at the time of transmission, making the routing oblivious
to any changes in the network. This is in contrast to adaptive routing, where paths
are adjusted dynamically based on real-time network conditions. The difference
between oblivious and deterministic routing [Zahavi et al. 2009] is that oblivious
routing employs multipath, meaning that the same source-destination pair can be
routed with different paths, whereas deterministic routing always uses the same path
for each source-destination pair.

Optimal oblivious routing often relies on linear programming tech-
niques [Bienkowski et al. 2003, Prisacari et al. 2013c]. However, these solutions are
challenging to apply in large-scale systems due to the significant computation time
required for finding routing solutions, and they do not address the scheduling of the
communications. In this thesis, we propose a scheduling algorithm designed to pre-
vent congestion, which significantly reduces the complexity of the routing problem.
This allows us to use a basic algorithm for simple failure scenarios and an Inte-
ger Linear Programming (ILP) model for challenging combination of failures. As a
result, the combined scheduling and routing solution becomes feasible for the stud-
ied data acquisition network, with the computation of both routing and scheduling
taking approximately 30 seconds in the worst case for challenging failure scenarios.

24 Chapter 3. Related Work

3.2.4 Weighted fat-tree routing algorithm

The Weighted Fat-Tree (WFatTree) routing algorithm, as proposed
in [Zahid et al. 2015], is an adaptation of the Ftree routing algo-
rithm [Zahavi et al. 2009], including advanced load-balancing techniques that
improve throughput by up to 60% compared to Ftree in a fat-tree topology with
36 leaf switches [Zahid et al. 2016]. WFatTree achieves this by using weighted
paths to more evenly distribute traffic in the network, preventing certain links from
being overloaded while others remain underutilized. To be more precise, weights
are assigned to the leaf switches based on the traffic each leaf switch will receive.
However, this approach is not well-suited for handling all-to-all traffic patterns,
where every leaf switch receives a roughly equal amount of traffic by the end of all
phases.

Furthermore, as we demonstrate in Chapter 5, congestion is inevitable if the
scheduling is not adapted to bandwidth reductions due to network failures. Even
minor congestion can significantly degrade network throughput, as shown in Section
4.2.2. In this thesis, we propose a congestion-free routing and scheduling solution,
unlike the WFatTree routing algorithm, which can still lead to congestion.

3.3 High performance computing topologies

In this section, we discuss various network topologies commonly used in data cen-
ter networks that are well-suited for all-to-all traffic patterns. We discuss these
topologies with a particular focus on fault tolerance.

3.3.1 Dragonfly topology

The all-to-all collective exchange has been extensively studied and applied in
various widely-used topologies within HPC, such as the mesh [Sen et al. 2018]
and torus [Yazaki et al. 2012, Doi & Negishi 2010] topologies. These topologies
are still used and in place, but the most popular ones are currently Dragon-
fly [Kim et al. 2008] and Fat-tree for their scalability. These hierarchical topologies
are characterized by the presence of multiple layers. Each layer is responsible for a
certain scope of the network. Such topologies are easily scalable because multiple
layers allow the network to be extended more easily.

Dragonfly topologies leverage the locality of data exchanges observed in some
High-Performance Computing (HPC) applications, but not in all-to-all. They are
blocking topologies except intra-group, which makes them less suitable for all-to-
all exchanges. Figure 3.1 illustrates a Dragonfly topology with three groups, each
containing four switches. Each switch is directly connected to two servers. In
each group, the switches are fully interconnected, allowing servers to exchange data
simultaneously without congestion. However, each switch has only one direct link
to a switch in each of the other groups. As a result, multiple hops are required for a
server to communicate with another server in a different group. This can quickly lead

3.3. High performance computing topologies 25

Figure 3.1: A Dragonfly topology with 24 servers and 12 switches. The topology is
composed of three groups, with the number of switches in the same group denoted
by α. Each group contains 4 switches (α = 4), and the number of servers connected
to each switch is denoted by p. Each switch is connected to 2 servers (p = 2). The
switches in the same group are fully interconnected. Additionally, each switch has
two links to external groups, represented by dashed lines, where the number of links
to external groups is denoted by h, so h = 2. In a Dragonfly topology α, p and h

can have any value. However, to balance the load in a Dragonfly topology, we need
a = 2p = 2h [Kim et al. 2008].

to congestion if many servers need to exchange data with servers in other groups,
especially when there is no direct link between the source and destination switches.

Furthermore, the completion time of all-to-all exchanges with dragon-
fly topologies is increased compared to the application to fat-tree topolo-
gies [Prisacari et al. 2013a]. The Dragongly+ topology is a variation of the drag-
onfly topology in which nodes inside the groups are built as a two-layer fat-
tree [Shpiner et al. 2017]. An analysis of performance variability of the dragonfly+
topology for all-to-all patterns has been conducted [Beni & Cosenza 2022]. The re-
sults revealed that the all-to-all collective exchange shows the most performance
degradation compared to other communication patterns (one-to-all and all-to-one)
when the exchanges are performed between different groups.

26 Chapter 3. Related Work

3.3.2 Demand-aware topology

A relevant approach to improve the bandwidth capacity in large-scale networks
involves using demand-aware topologies [Griner et al. 2021, Zerwas et al. 2023,
Avin et al. 2018, de O. Souza et al. 2022, Avin & Schmid 2021]. Demand-aware
topologies refer to network topologies that are optimized based on the specific com-
munication demands of the applications. Unlike traditional static topologies, which
are fixed and do not change regardless of the traffic patterns, demand-aware topolo-
gies are more flexible and can adapt to the actual traffic matrix in the network.
However, in the context of the studied data acquisition network, demand-aware
topologies are not suitable, as the essential requirement of the data acquisition ap-
plication is a continuous utilization of all-to-all exchanges and generally uses always
the same traffic pattern without involving any other. Therefore, demand-aware
topologies are not suitable for our problem, as traditional HPC topologies like fat-
tree are already optimized for the all-to-all collective exchange.

3.3.3 HyperX topology

HyperX [Domke et al. 2019a] is a network topology designed for high-performance
computing (HPC) and large-scale data centers. It extends the traditional mesh
topology by allowing multiple links between switches, providing more flexibility and
generally higher performance. HyperX is designed to be scalable, fault-tolerant, and
suitable for various traffic matrix.

To our knowledge, the HyperX topology has never been evaluated with an all-to-
all traffic matrix. However, two studies [Domke et al. 2019b, Lakhotia et al. 2021]
have evaluated its performance with an all-reduce traffic matrix. Furthermore, one
of these studies [Domke et al. 2019b] compares the HyperX topology to the fat-tree
topology in terms of throughput and both studies show an improvement in achieved
throughput.

Consequently, it could be interesting to evaluate the HyperX topology using the
routing and scheduling solution presented in this thesis. The advantage of HyperX
lies in its multiple redundant paths, which could simplify the optimization of our
routing and scheduling solution in the event of failures.

3.3.4 The Fault-Tolerant Engineered Network topology

The Fault-Tolerant Engineered Network (F10) is composed of a variant of the fat-
tree topology and a set of protocols that improve fault tolerance. In [Liu et al. 2013],
the authors explain that the main weakness of the fat-tree topology lies in its sym-
metry; that is, each switch at layer l is connected in the same way to switches at
layer l+1. This symmetry limits the diversity of available paths, reducing the fault
tolerance of the fat-tree topology. To address this, the authors propose the AB fat-
tree topology, where switches in a subtree are connected to switches in the upper
layer using two different schemes: Scheme A and Scheme B. This approach breaks

3.4. Conclusion 27

the symmetry of the fat-tree and increases the number of possible paths between
two switches.

For our studied data acquisition network, the AB fat-tree topology is not useful
because there are only two layers, meaning that each switch in layer 1 is connected
to all switches in layer 2, resulting in the same number of paths between switches.
However, for fat-tree networks with more than two layers, the AB fat-tree topology
might offer advantages and could be worth testing with the routing and scheduling
solution presented in this thesis.

3.4 Conclusion

In this chapter, we reviewed the literature related to our problem. We provided an
overview of the various collective operations used in High-Performance Computing
(HPC). We highlighted that the all-to-all operation is one of the most challenging
because, although it uses the same bandwidth as the allGather operation, the num-
ber of different messages exchanged is higher, making the scheduling problem for
all-to-all more challenging in terms of fault tolerance.

We also discussed how optimization of scheduling algorithms are used in
Network-on-Chip (NoC). However, the traffic matrix in NoCs is not always all-
to-all and focus on optimization of energy consumption or latency rather than fault
tolerance.

We then present different routing strategies, such as scheduling-aware routing,
which adapts routing based on communication schedules. Among the scheduling-
aware solutions in the literature, one approach suggests increasing the number of
phases to distribute congestion more evenly but does not achieve optimal number of
phases to avoid congestion. In this thesis, we use this strategy and propose a lower
bound on the number of phases in Section 5.4.1 to make it optimal and to avoid
congestion.

Another routing solution discussed is adaptive routing, which creates multiple
paths in the switch routing tables and adjusts them based on network conditions such
as failures. We evaluate adaptive routing in Section 4.2.2 of this thesis and show that
there are no improvements in the throughput achieved compared to deterministic
routing.

Then, we discuss oblivious routing, which involves pre-computed paths with
multiple paths between a source and a destination. Oblivious routing algorithms
often rely on linear programming to optimize routing in terms of bandwidth or fault
tolerance. Linear programming often involves significant computation time, making
the oblivious routing solutions often less applicable to large networks. However, we
use this strategy and present an evaluation of our Integer Linear-Programming (ILP)
model to compute the routing in Section 6.6.3 of this thesis. The computation time
we achieve makes our routing solution applicable for our data acquisition network.

We also present the weighted Fat-tree (wFatTree) routing algorithm, an adap-
tation of the Ftree routing algorithm proposed by InfiniBand, which improves the

28 Chapter 3. Related Work

load-balancing on the links. However, wFatTree does not seem effective for the
studied network because it prioritizes certain communication flows based on the
traffic each switch connected to the servers receive. In the LHCb DQA network, all
switches connected to the servers receive roughly the same amount of traffic, which
makes this approach less suitable.

Finally, we discuss various network topologies relevant to our problem, includ-
ing the Dragonfly topology, which is not optimal for all-to-all exchanges due to
its blocking nature except in intra-groups. Demand-aware topologies adapt to the
traffic matrix used and are suitable for networks with diverse traffic patterns but
not for data acquisition networks that typically use the same traffic matrix all the
time. We introduce the HyperX and AB fat-tree topologies, which offer improved
fault tolerance by increasing the number and diversity of paths available between
switches. These topologies are interesting solutions for our problem and could be
compatible with our proposed scheduling and routing solutions.

Chapter 4

Study of failures in the LHCb
DAQ network

Contents
4.1 Statistics of failures . 30

4.1.1 Methodology . 30
4.1.2 Duration . 31
4.1.3 Frequency . 34
4.1.4 Nature of failures . 35

4.2 Throughput achieved by Infiniband routing algorithms . . 36
4.2.1 Methodology . 36
4.2.2 Results . 37

4.3 The effect of synchronization on the throughput 39
4.3.1 The non-synchronized All-to-All MPI application 40
4.3.2 Experiment setup . 42
4.3.3 Scalability of synchronized and non-synchronized all-to-all . . 42
4.3.4 Throughput achieved by the synchronized and non-

synchronized all-to-all in case of failures 43
4.4 Design recommendation . 45
4.5 Conclusion . 45

In this chapter, we delve into the motivations driving our research problem by
showing how often failures occur, how long they last, and their impact on throughput
with various routing and scheduling solutions.

Past studies have shown that network failures in data centers are a common
occurrence [Singh et al. 2021], as evidenced by the study conducted by the authors
in [Gill et al. 2011]. The authors propose an analysis of network failures in data
centers, presenting statistical insights derived from a year-long observation of a real
data center network. Despite the generally robust infrastructure of data center net-
works, the findings underscore the frequency of failures on a daily basis throughout
the measurement period. Furthermore, the study shows the long duration of cer-
tain link failures, often attributed to repair difficulties such as limitations in spare
network equipment or limited accessibility to the affected link.

Furthermore, a time correlation exists among failures in large-scale distributed
systems. Yigitbasi et al. [Yigitbasi et al. 2010] show the presence of peak periods,

30 Chapter 4. Study of failures in the LHCb DAQ network

characterized by high failure rates that can persist for several hours. Their analysis
shows that, on average, these peak periods account for over 50% and in some cases
up to 95% of the system downtime.

In this chapter, we present statistics on the duration, frequency, and underlying
causes of network link failures. We show that failures are frequent and can last a long
time. Throughout this thesis, we were able to monitor and recover data on network
failures that occurred over a two-month period of activity when the Large Hadron
Collider (LHC) was operational and data were exchanged in the DAQ network.
During this period, we closely monitored the causes of these failures. Notably, test
days were conducted, leading to network failures.

Subsequently, we proceed to evaluate the throughput achieved during these fail-
ures. We observe that link failures can significantly degrade performance, as band-
width utilization in the DAQ network is close to maximum capacity. A single failure
leads to congestion, reducing the throughput from approximately 46 Tbps to 30 Tbps
in total with the best routing and synchronization approach.

First, we propose to evaluate the effect of various InfiniBand routing algorithms,
suitable for a fat-tree topology, on the throughput. We show that, depending on the
algorithm used, some create more congestion than others, both when failures occur
and when the network is operating normally. Based on the results, we can assess
which routing algorithms perform best under normal conditions and during failures.

Then, we propose to evaluate the throughput achieved with and without syn-
chronization of the all-to-all collective exchange. The non-synchronized MPI appli-
cation was developed by us to perform our measurements. While previous investiga-
tions [Pisani et al. 2023a] have shown performance differences between synchronized
and non-synchronized all-to-all exchanges on our network, our contribution intro-
duces novel measurements, particularly in the context of performance in case of
failures, which have never been measured on our network. To conclude this chapter,
we derive some design recommendations.

4.1 Statistics of failures

The literature shows that failures in large-scale networks are frequent and can
persist for an extended duration due to the difficulty to repair network fail-
ures [Singh et al. 2021]. In this chapter, our contribution is to gather and analyze
failure statistics in the Event Builder network of the LHCb experiment to under-
stand the duration, frequency, and nature of network failures in this network. Our
statistics cover a two-month period during which the Large Hadron Collider was
operational, and physics data was transmitted within the Event Builder network.

4.1.1 Methodology

The failures are monitored using OpenSearch, an open-source tool derived from
Elasticsearch and maintained by a community of contributors [OpenSearch 2024].

4.1. Statistics of failures 31

OpenSearch comprises various components, including dashboards for data vi-
sualization and analysis, along with other tools for managing and querying
data. To monitor the failures, Logstash, an open-source data processing
pipeline [Elasticsearch 2024], collects and processes data from the system log mes-
sages on a server running OpenSM. The collected data are fed into OpenSearch
and include all possible logs from OpenSM, such as changes in topology, routing
engine updates, and the status of the subnet. Specifically, we are interested in logs
that indicate changes in switch port state, which are provided by messages of type
"osm_spst_rcv_process" that contains the switch ID, port ID, and port state.

For instance, when a link goes down, the switch port connecting that link goes
from the ACTIVE to DOWN state. Conversely, when the link is repaired, it goes
from DOWN to INIT (and then ACTIVE). To obtain this data, we create a query
in OpenSearch targeting these specific logs, executing it automatically every day for
two months. The output is a Comma-separated values (CSV) file containing all the
necessary information for failure analysis: timestamp, involved switch and port, and
the change in port state. Subsequently, we parse these files using a Python program
to analyze the data.

4.1.2 Duration

To properly evaluate the duration of failures, we considered the presence of flap-
ping links. Flapping links are common in networks in general, and can cause
considerable perturbations to networks due to multiple consecutive route re-
configurations [Merindol et al. 2018].

A flapping link can be defined as a link that oscillates repetitively between
a down and up state. In this thesis, we are particularly interested in the interval
between flaps, with a flap being defined as a link that goes from up to down and back
within a few seconds. The multiple re-configurations caused by these flaps create
instability and can degrade significantly the throughput, as the state of the link can
oscillate continuously over long periods, sometimes for several hours. Consequently,
this series of short-duration failures (typically lasting only a few seconds) can, in
fact, represent a prolonged failure that can last for several hours.

To consider this phenomenon in our analysis of the duration of failures, we clas-
sified the observed flapping links and their flapping periods over the two-month
measurement period. We define a flapping period as a period during which multiple
flaps are observed on the same link over a relatively long duration, which can last
from several minutes to several hours. We experimentally determine the most prob-
able duration between flaps. To be more specific, Figure 4.2 shows the distinction
between the duration of a flap and the duration between two flaps. In the cumu-
lative distribution presented in Figure 4.1, we only consider the interval between
flaps, which is T3− T2, represented by a dashed arrow. In Figure 4.3, we consider
the duration of the flaps (or failures in general) which is the duration T2 − T1,
represented by a solid arrow.

The results are illustrated in Figure 4.1, we show the cumulative distribution

32 Chapter 4. Study of failures in the LHCb DAQ network

Figure 4.1: Cumulative distribution of the interval T3 - T2 (in Figure 4.2) between
flaps of observed flapping links and their flapping periods.

Figure 4.2: Distinction between the duration of a flap and the interval between two
flaps. The duration of a flap is represented by the solid arrowed line and the value
is T2 - T1. The interval between two flaps is represented by the dashed arrowed
line, which is T3 - T2.

of the duration between failures on a same link. In the Event Builder network, we
observe that when a link starts flapping, 90% of the failures observed during the
flapping period of the observed flapping links have a time interval of less than 10
minutes. This means that when the first failure occurs on the link during its flapping
period, the next one probably occurs less than 10 minutes later.

4.1. Statistics of failures 33

Based on this insight, we consider a flapping link period as a single failure by
ignoring the time interval between two failures that are inferior to 10 minutes. This
means that when two or more failures occur on a flapping link and their time interval
is less than 10 minutes, these failures are considered as one, and the failure period
starts at the time the first failure occurred until the last one is recovered. To be
more specific, in Figure 4.2, if the interval T3−T2 is less than 10 minutes, the failure
with a duration of T2− T1 and the subsequent failure with a duration of T3− T2

are considered a single failure, with the total duration being T4− T1. By applying
the flapping links correction, we discovered that nearly 70% of the failures result
from flapping links. Over the 2605 observed failures, 1778 are attributed to flaps.
After applying the correction, these flaps were reduced to 287 failures, representing
287 periods during which the links were flapping.

Figure 4.3: Cumulative distribution of failure duration. The blue line represents
the cumulative distribution of failure duration without the flapping links correction.
The orange dotted line represents the cumulative distribution of failure duration
with the flapping links correction. Flapping links correction is applied by counting
failures of a flapping link as one long failure rather than several small failures spaced
over a short period.

Figure 4.3 illustrates the cumulative distribution of link failures duration ob-
served throughout March and April 2024 on the Event Builder network. The du-
ration of a link failure refers to the period during which a link transitions from an

34 Chapter 4. Study of failures in the LHCb DAQ network

operational state to a non-operational state until it returns to the operational state.
In Figure 4.2, it corresponds to the duration T2 − T1. The blue line shows the
results for all observed failures, excluding periods during which performance tests
were conducted on the Event Builder network. These tests were generated by our-
selves and involved manually disabling links to evaluate how the network reacts to
failures. We chose to remove them as they bias our experiments. Given that the
duration of these failures is predetermined and programmed, they are irrelevant to
the study. Otherwise, all the links between the leaf and spine switches, as well as the
entire period between March and April 2024, are considered in the cumulative dis-
tribution of link failures duration. The dotted orange line represents the cumulative
distribution of link failure duration when applying the flapping links correction.

In the results without the flapping links correction (the blue line), we observe
that instances of very short failures are not frequent, 33% of the observed failures
have a duration of less than 10 seconds. However, the data reveals that 88% of
observed failures are short-lived, lasting less than a minute, while 97% conclude
within 10 minutes. Consequently, the majority of failures are brief, with the longest
failures lasting around 3 days.

Compared to the duration of failures without the flapping links correction, fail-
ures duration are prolonged when the correction is applied (the orange dotted line),
with 24% of the failures lasting less than 1 minute and 60% lasting less than 10
minutes. This highlights the severity of flapping links as a network issue, as they
often lead to prolonged failures. Furthermore, the impact on the network is even
worse because each flap requires computing new routes and updating routing tables.
These actions consume time [Dandapanthula 2011, Francois & Bonaventure 2008],
approximately 1.5 seconds in our network. Consequently, these failures can degrade
network performance and cause long-lived performance degradation. A more effec-
tive strategy might be to disable a flapping link as soon as it starts to flap, as this
is likely to result in better overall throughput by allowing the network to adapt to
the failure, rather than repeatedly restarting the link.

4.1.3 Frequency

Figure 4.4 illustrates the distribution of failures over the two-month period of March
and April 2024. Only the days and links where failures occurred are represented in
Figure 4.4. We observed 28, not necessarily consecutive, days without any failures
over the two-month period. Among these, there is a maximum of 6 consecutive days
without failures. Each link was assigned an ID based on the order of the switch ID
and the port ID, which were sorted in ascending order. In total, 150 links in the
Event Builder network failed at least once during the month of March and April
2024. The test days for the Event Builder network occurred on 03/08, 03/10, 03/11
and 03/12, which explains the occurrence of failures for various links on these days.
During these tests, various links were manually disabled, which explain why a lot of
links experienced a few failures on these days. These are the events removed from
Figure 4.3. Furthermore, two links experienced repeated failures throughout the

4.1. Statistics of failures 35

Figure 4.4: Distribution of network link failures over a two-month period. The
x-axis represents the days in March and April 2024 when failures occurred. The
y-axis represents the IDs of the links that failed during this period. The link IDs
are assigned based on the switch IDs and the port IDs which are sorted in ascending
order.

entire period. These links represent a single flapping link in two directions. The
link frequently experienced flapping, with failures occurring nearly every day and
recording more than 200 failures on a single day (April 16 - 04/16). As detailed
in Section 4.2.2, the consequences of such failures can significantly impact network
performance, resulting in an important loss of throughput. Unfortunately, this link
could not be repaired during the measurement period due to the unavailability of
spare equipment and the location of the link.

4.1.4 Nature of failures

During March and April 2024, we observed a total of 2605 failures, out of which 549
were attributed to tests conducted on the Event Builder network, while 2056 were
real network failures. Among the 2056 real failures, 1778 are due to flapping links.
Flapping links are caused by cable deterioration over time. Excluding the flaps,
there remain 278 isolated failures, which are generally due to hardware issues such
as dirty optical fibers or software problems. Additionally, maintenance activities
were conducted on the Event Builder network servers, resulting in a total of 332
failures of servers. However, failures of servers are not relevant to our study, as they
involve complete disconnections of servers from the network. There is no means of
recovering from a server failure with the current infrastructure. In such cases, the
available bandwidth remains sufficient for the all-to-all exchange as the number of
sources is reduced.

36 Chapter 4. Study of failures in the LHCb DAQ network

4.2 Throughput achieved by Infiniband routing algo-
rithms

In this section, we present our measurements of the throughput obtained on the DAQ
network of the LHCb experiment using the various Infiniband routing algorithms
relevant to a fat-tree topology.

4.2.1 Methodology

The links that were deactivated were chosen randomly and included 1 to 10 simulta-
neous failures. We chose these numbers of failures to show the gradual degradation
of throughput in the event of failures for the different routing algorithms. Since the
all-to-all application is synchronized, all servers experience the same degradation in
bandwidth, even if the switch to which they are connected does not have any failed
links.

The routing algorithms we evaluate are Ftree, Ftree adaptive routing, Ftree to
Min-Hop, Min-Hop, Up-Down and Up-Down adaptive routing. Ftree is the routing
algorithm used for fat-tree topologies and shifted communication patterns such as
the linear-shift pattern [Zahavi et al. 2009]. The Ftree routing algorithm, coupled
with the linear-shift, ensures that there will be no congestion on the network if
the bandwidth available is sufficient as explained in Section 2.3.3. In the event
of failures, the default behavior of OpenSM, the subnet manager, is to switch to
the Min-Hop routing algorithm, as the Ftree algorithm is not suited for non-pure
fat-tree topologies. The Min-Hop algorithm computes the shortest path between a
source and a destination while distributing the load as evenly as possible. Up-Down
is similar to Min-Hop but prevents deadlocks in the network, it offers less choice
in the paths to use as they are constrained by ranking rules to avoid deadlocks.
Adaptive routing for Up-Down and Ftree are algorithms that act like Up-Down and
Ftree respectively, except that for each communication, several routes are computed
to balance the traffic if a link is congested [Nvidia 2023b]. Other Infiniband routing
algorithms exist, such as LAyered SHortest Path Routing (LASH) and Dimension
Order Routing (DOR), but they are not suitable with our traffic or topology. LASH
requires virtual lanes to create multiple channels within a physical link, which is
not suitable for our topology as each link needs to be used at full capacity for each
communication flow. DOR is used for k-ary n-cubes topologies [Nvidia 2023b].

To configure each routing algorithm, we manually modified the routing_engine
parameter in the OpenSM configuration file to specify which algorithm to use. To
use the Ftree algorithm all the time, even in the event of a failure, and thus avoid
switching to Min-Hop, which is the default behavior, we also added a root_guid_file
containing the list of GUIDs for the spine switches. This file is also used for the
Up-Down routing algorithm as it needs the root nodes to create the ranks. This
file allows the subnet manager to trust us on the number of active spines with no
failures, so that we can always use Ftree as the routing algorithm, even though
it’s only designed for pure fat-tree topologies. For adaptive routing, we changed

4.2. Throughput achieved by Infiniband routing algorithms 37

the AR_ENABLE parameter from false to true to enable adaptive routing on the
switches. The configuration of OpenSM is done before the measurement. Following
every configuration change, we also manually restart OpenSM and check that all
the changes are taken into account, which takes a seconds.

To illustrate the performance degradation during failures, the status of the ports
on the switches connecting the links involved in the failure scenarios was set to
DOWN before the measurement. To measure the throughput, we use an existing
Python program that counts the number of events reconstructed by each server over
5 seconds in the all-to-all application and records the data in a Comma-Separated
Values (CSV) file. The duration of a measurement was 60 seconds, which creates 12
measurement points in the CSV file. Then, we used a Python program to parse the
output CSV file and obtain the number of events reconstructed for each measurement
point and each server. We then multiply this number by the size of an event and
convert the result into bits. This results in the throughput of the server in bps,
which we then convert to Gbps.

4.2.2 Results

Figure 4.5: The throughput achieved per server according to the failure scenario
with the Infiniband routing algorithms suitable for a fat-tree topology. The routing
algorithm in the evaluation are Ftree, Ftree adaptive routing, Ftree to Min-Hop
(default behavior), Min-Hop, UPDN, UPDN-AR. To obtain the total throughput
achieved by the DAQ application, one can multiply the throughput per server by the
number of servers in the DAQ application, which is 326. The error bars represent
the minimum, mean and maximum values.

Figure 4.5 shows the throughput achieved by each server. Without failures, the
best routing algorithm is Ftree and its variants. This is because Ftree, coupled with
the linear-shift pattern, creates no congestion on the network, as no link is used

38 Chapter 4. Study of failures in the LHCb DAQ network

twice in the same direction. In contrast, Min-Hop and Up-Down create congestion
because they are not adapted to the communication pattern; several links are used
multiple times in the same direction, creating congestion which significantly impacts
throughput.

Ftree to Min-Hop, the default behavior of the InfiniBand controller,
shows the best performance compared to all other routing algorithms.
When there are no failures in the network, Ftree is the most optimized routing
algorithm for our traffic matrix and fat-tree topology. In case of failures, the Min-
Hop routing algorithm takes over and distributes the load between links that are
affected by congestion due to failures. The combination of these two algorithms
thus provides the most optimized routing solution for our DAQ network. However,
it should be noted that we observe a significant degradation in throughput, dropping
from approximately 144 Gbps to 87 Gbps with just a single network failure, and
continuing to degrade slowly as the number of failures increases. This is because
the network operates close to 100% bandwidth utilization under normal conditions.
Therefore, even a single failure causes significant congestion in the all-to-all traffic
matrix, impacting all servers.

Ftree has variable throughput as the number of failures on the net-
work increases. In the event of failures, congestion is inevitable, since bandwidth
utilization is close to 100% when there are no failures on the network. Therefore,
even a single failure creates unavoidable congestion. Ftree is not suitable for failures,
as the load will be less spread over the different links, creating more congestion than
necessary. In particular, after three failures, throughput varies significantly, and the
scenario with four failures has a better throughput than the one with three failures.
This result is attributed to the fact that Ftree no longer effectively balances the traf-
fic after a certain number of failures. With Ftree, when a link l0 is down, the link l1
connected to the next port takes the load of l0 which creates even more congestion
on the link l1. This creates a significant decrease in throughput. To summarize,
Ftree, in the absence of failures, evenly distributes the traffic and does not create
conflicts when it is combined with the linear-shift scheduling, resulting in the best
achievable throughput. However, in case of failures, Ftree changes its routes from
the broken port to the next available port, which creates significant congestion.

Ftree/Ftree-AR and Up-Down/Up-Down-AR offer similar perfor-
mance with and without failures. Adaptive routing is expected to be more
efficient during network failures, as it dynamically redirects traffic to avoid conges-
tion. This is attributed to the fact that the traffic generated by the DAQ applica-
tion is too bursty, compared to datacenter traffic in general [Abdous et al. 2021,
Zhang et al. 2017, Roy et al. 2015], for the Ftree adaptive routing algorithm to
adapt accordingly. Bursty traffic is characterized by unpredictable peaks in data
transmission rates that can last for a short period of time, in our case, in the order
of milliseconds. Beyond our measurements, another source has indicated that adap-
tive routing leads to more performance degradation for bursty traffic compared to
deterministic routing [Shin & Pinkston 2003].

Without failures, Min-Hop performs poorly compared to Ftree to

4.3. The effect of synchronization on the throughput 39

Min-Hop. Without any failures, Min-Hop performs really poorly with an average
throughput of 53 Gbps per server. This is explained by Min-Hop being not suitable
for the linear-shift pattern which creates a lot of congestion on the links. In the event
of failures, Min-Hop alone does not perform as well as when the controller switches
from Ftree to Min-Hop which is surprising as this is the same algorithm that is used
(Min-Hop in case of failures). These different results can be explained by the fact
that the controller (OpenSM) always preserves the existing routing in cases where
there are no changes in the connected switches within the topology [Nvidia 2023b].
This means that if a link is added or removed, OpenSM will not recompute routes
that do not need to change. Consequently, Min-Hop routing without failures and
Min-Hop routing with a failure do not change significantly, because only the traf-
fic coming from or going to the leaf switch with the failure needs to be balanced,
and a significant part of the routing is based on Min-Hop without failures. As we
have observed, Min-Hop without failures presents a lot of congestion because it is
not adapted to the linear-shift pattern. While Ftree to Min-Hop routing is based on
Ftree, which is optimized for the linear-shift pattern, and only the routes of commu-
nication flows going to or coming from the failed switches are balanced. Therefore,
Ftree to Min-Hop shows much better performance in the event of a failure than
Min-Hop, even though the same routing algorithm is used.

Up-Down presents similar or lower performance than Min-Hop. This
is due to Up-Down algorithm having fewer route choices available. Its principle
is to avoid certain routes to prevent deadlocks from occurring in loops within the
subnet. In a network, a loop-deadlock occurs when data packets can not be sent
because each packet is waiting for another to release a resource or complete an
operation, creating a circular dependency with no resolution. The Up-Down routing
algorithm uses a hierarchical structure on the network with a spanning tree and a
node ranking system. Paths are determined by following an upward and a downward
phase through the tree. [Nvidia 2023b] These properties reduce path diversity and
can constrain them, resulting in more congestion compared to Min-Hop, especially
when the number of failures is higher.

To conclude, the Ftree to Min-hop approach is clearly the most effective com-
pared to other routing strategies. However, there is still room for improvement, as a
single failure significantly impacts throughput, reducing it from approximately 144
Gbps per server to 87 Gbps with the best strategy. In Chapter 6, we propose a new
routing approach that more gracefully handles failures.

4.3 The effect of synchronization on the throughput

In this section, we investigate the effect of synchronization on the throughput in
nominal state and upon failures. Our objective is to devise efficient communication
strategies in the two situations (with and without failures). The all-to-all synchro-
nized application currently in production and used by the Data Acquisition (DAQ)
system has been developed internally for the LHCb experiment[Pisani et al. 2023a].

40 Chapter 4. Study of failures in the LHCb DAQ network

We evaluate the performance of synchronized all-to-all compared to the non-
synchronized as we ask ourselves whether synchronization always remains the op-
timal solution. For this purpose, we develop a new all-to-all application without
synchronization that supports the same throughput as the synchronized one cur-
rently in production.

4.3.1 The non-synchronized All-to-All MPI application

Figure 4.6: Description of the MPI all-to-all application without synchronization.

Both the non-synchronized and synchronized all-to-all applications are developed
using the Message Passing Interface (MPI). MPI is a tool for high-performance sci-
entific computing that provides syntax, semantics, and libraries to enable multiple
processes to communicate with each other. MPI relies on Single Program Multi-
ple Data (SPMD) principle, which allows the user to write a single program to be
executed by a set of processes, each with a distinct role [MPI 2021]. The user’s
challenge lies in defining how these processes communicate with each other based
on their roles within the set. Additionally, MPI provides a set of functions to fa-
cilitate communication between processes, such as MPI_Send and MPI_Receive.
These functions enable processes to send or receive data. While MPI_Send and
MPI_Receive are blocking functions, requiring all data to be sent or received be-
fore proceeding to the next instruction, MPI_IReceive and MPI_ISend are non-
blocking, allowing other instructions to be executed even if all data has not yet
been received or sent. In our non-synchronized application, illustrated in Figure
4.6, we use only the non-blocking functions MPI_IReceive and MPI_ISend for per-
formance reasons. Blocking functions can slow and block the traffic in the all-to-all
exchange, which is undesirable in a non-synchronized application. Furthermore,
MPI offers a variety of functions for performing collective exchanges between pro-
cesses, such as broadcast with MPI_Bcast or gather with MPI_Gather. MPI also

4.3. The effect of synchronization on the throughput 41

provides an all-to-all exchange function with MPI_AlltoAll. However, this exchange
is synchronized.

Synchronization involves dividing the all-to-all exchange into phases. At each
phase, every process communicates with a single process until each process has
communicated with all others. The different processes synchronize with each other,
meaning that once one process has finished sending its data, it must wait until all
other processes have finished sending their data before proceeding to the next phase.
This synchronization is achieved using the MPI_Barrier function. In this function,
once a process completes its exchange, it sends a notification and then proceeds to
wait. Depending on the chosen Barrier algorithm, the notification can be centrally
transmitted or distributed among different processes [Hensgen et al. 1988].

In the centralized approach, a single process acts as a controller and receives
the notifications from the other processes once their exchanges are finished. Once
all processes have completed their exchanges, the controller notifies all processes to
proceed to the next phase [Hensgen et al. 1988].

In the distributed approach, known as Tournament, a binary tree structure is
implemented among the processes [Hensgen et al. 1988]. At each layer and for every
pair of nodes in the tree, a winner is designated and takes responsibility for notifying
the winner at the higher level of the tree. Once all notifications have been sent to the
global winner, it then propagates the notification to allow the processes to proceed
to the next phase, and subsequently, the notification is propagated to the layers
below in the same way.

The LHCb DAQ network makes use of the Tournament algorithm. This
barrier algorithm was selected over the centralized algorithm due to its better
performance[Pisani et al. 2023a]. Since we aim to evaluate the performance of our
network with a non-synchronized collective exchange, we need to develop our own
all-to-all exchange without synchronization. As the synchronized all-to-all applica-
tion used by the LHCb DAQ system relies on MPI, we chose to develop the non-
synchronized application using MPI to ensure the two applications are comparable
and to take advantage of the simplicity of using MPI.

In the non-synchronized all-to-all application, we simulate the Event
Building process similarly to the synchronized one, which involves re-
constructing collision events generated by the Large Hadron Collider.
Each server in the Event Builder network has one process of the MPI application
allocated. The principle of the non-synchronized all-to-all application is that one
process serves as the controller while all others act as workers. The controller as-
signs each worker a collision event to reconstruct. Each worker has a piece of data
of every event and sends it to the worker responsible for reconstructing that event.
Figure 4.6 illustrates our non-synchronized application with one controller and two
workers. The controller assigns worker 0 to reconstruct the event with ID 0 and
worker 1 to reconstruct the event with ID 1. Subsequently, worker 0 and worker
1 exchange requests for data on the corresponding event. Upon sending the data
and reconstructing the event, the workers send an acknowledgment to the controller,
prompting the assignment of subsequent events to be reconstructed.

42 Chapter 4. Study of failures in the LHCb DAQ network

In this approach, there is no scheduling; when workers are assigned an
event by the controller, they send a request to receive data for this event to all
workers in the order of their ID. However, the data request is non-blocking, which
means that all sources may send their data concurrently. The only blocking con-
dition for a worker is that it is required to receive all data from other workers on
the event it needs to reconstruct before making a request to the controller to assign
another event.

4.3.2 Experiment setup

To compare the synchronized and non-synchronized all-to-all versions in the event
of failures, we manually deactivated the links between the leaf and spine switches.
We did not test disabling the links between leaf switches and servers, as these do
not affect the bandwidth of the all-to-all exchange for the remaining nodes.

The links that were deactivated were chosen randomly and included 1, 3, and
5 simultaneous failures. We chose this number of failures because the literature
has shown that groups of failures containing more than 5 failures are unlikely, with
only 10% of groups containing more than 4 failures [Singh et al. 2021]. Our net-
work shows the same behavior, with a median of only 1 simultaneous failure. The
maximum number of coexisting failures observed is 5.

For each failure scenario, the tests were repeated randomly 10 times. To measure
the throughput, we use the same method as described in Section 4.2.1.

The routing algorithms used during these tests are Ftree and Min-Hop. Ftree
is used when there is no network failure. The network switches to Min-Hop when
a failure occurs. We chose these algorithms because, firstly, they are the default
behavior of OpenSM and, secondly, they are recommended because they offer the
best performance for our topology, as shown in Section 4.2.2.

4.3.3 Scalability of synchronized and non-synchronized all-to-all

We first propose to re-evaluate the scalability of the synchronized and non-
synchronized all-to-all exchange of [Pisani et al. 2023a] due to significant changes
in the DAQ application since this publication, potentially leading to new results.

We evaluate the scalability of the current network design by measuring the global
event building throughput when enabling an increasing number of servers in Figure
4.7. To increase the number of servers, racks of servers are consecutively added to
the system. Each rack contains one leaf switch and 16 to 20 servers.

In our evaluation, synchronization proves to be more advantageous. As the
system grows in size, synchronization enables to reach higher throughput. When
the DAQ system is used at full capacity, we observe a throughput gain of
about 15 Tbps over the non-synchronized all-to-all. By contrast, in the prior
test [Pisani et al. 2023a], the throughput gain was approximately 5 Tbps at full
capacity of the Event Builder network with 326 servers.

4.3. The effect of synchronization on the throughput 43

Figure 4.7: Scalability of the synchronized and non-synchronized all-to-all applica-
tions. The error bars represent the minimum, mean and maximum values.

The difference in performance between synchronized and non-synchronized all-
to-all arises from the assurance provided by synchronization that the scheduling
of communications during each phase is always respected. With synchronization,
every server waits until all others have transmitted and received their data before
proceeding to the next communication. This approach effectively prevents network
congestion, as proper scheduling and sufficient bandwidth ensures that there will
be no congestion on the network links, thus improving throughput. Conversely, in
the non-synchronized all-to-all, there is no scheduling as the exchange is not syn-
chronized, which creates network congestion and reduces the achieved throughput.
Therefore, the synchronized all-to-all provides better performance, particularly in
systems used at full capacity. Although there is cost in synchronization time as the
sources need to wait on each other, this cost can be offset by the performance gained
by avoiding congestion on the network.

4.3.4 Throughput achieved by the synchronized and non-
synchronized all-to-all in case of failures

The synchronized approach performs better than the non-synchronized approach
without failures and when the system is used at full capacity. In this section, we
evaluate the performance of these two approaches in the event of failures, considering
that link failure events are common, as demonstrated in Section 4.1. This evaluation
has never been conducted before.

The throughput of the synchronized exchange can significantly de-
crease in the event of failures. Figure 4.8 shows the results of the evaluation of

44 Chapter 4. Study of failures in the LHCb DAQ network

1 3 5
Number of failures

80

90

100

110

120

Th
ro

ug
hp

ut
 p

er
 se

rv
er

 (G
bp

s)

Synchronized exchange
Unsynchronized exchange

Figure 4.8: Synchronized and non-synchronized all-to-all exchange throughput per
server as a function of the number of failures. Failure scenarios are randomly gen-
erated 10 times for each number of failures. There are 326 servers in the topology.
The number of simultaneous failures in the Event Builder network is 1, 3 or 5. The
boxplots represent the minimum, 25th percentile, median, 75th percentile, and max-
imum values. Outliers are also depicted.

the synchronized and non-synchronized approaches in the event of failures. The fail-
ure scenarios have been replicated 10 times for each number of simultaneous failures.
The links taken down are picked randomly. In total, there are 30 experiments. In
particular, we demonstrate that throughput can significantly decrease in the event
of failures, from a median of 142.71 Gbps without failures to 89.6 Gbps for the syn-
chronized exchange, even with just one failure in the entire network of 360 optical
links. The variation in results for the same number of failures for synchronized and
non-synchronized exchanges are due to some links carrying more flows than others.
When they are down, more traffic is impacted by their failure. For instance, the
minimum achieved throughput per server for a single failure with synchronized ex-
change is 82 Gbps, while the maximum value is 120 Gbps. For the 82 Gbps result,
the disabled port of one switch served as the output port for 26 destinations in all
phases, whereas for the 120 Gbps result, the disabled port on another switch was
used as the output port for 9 destinations. Consequently, disabling the port used to
reach 26 destinations, which support more communication flows, had a much greater
impact on the throughput compared to the port used for 9 destinations, resulting
in a decreased throughput in case of failures.

4.4. Design recommendation 45

Synchronized exchange shows lower performance compared to non-
synchronized exchange in the event of failures. In the synchronized all-
to-all, the cost of synchronization can be offset by the performance gained from
avoiding congestion on the network. However, this approach lacks adaptability in
the event of network link failures because its performance is dependent on avoiding
congestion. When congestion becomes unavoidable due to link failures with the
currently used routing and scheduling, performance suffers accordingly. Contrarily,
the non-synchronized approach shows better adaptability in case of failures. The
lack of synchronization points allows it to make efficient use of the remaining network
capacity as we highlight in the next section.

4.4 Design recommendation

In our measurements, we demonstrated that the non-synchronized version of the all-
to-all exchange performs better than the synchronized version in the event of failures.
As discussed in Section 4.1, some failures can be long-lived failures due to flapping
links. For instance, during two months of measurements, a single optical link failed
861 times, resulting in a total downtime of approximately 6.1× 105 seconds, which
represents approximately seven days and one hour. In Section 4.3.4, we show that
the median throughput of the synchronized exchange for a single failure is 89.6 Gbps
per server, whereas the non-synchronized application achieves a median throughput
of 95.2 Gbps per server. Consequently, the total application throughput during a
failure is 29.2 Tbps for the synchronized application compared to 31 Tbps for the
non-synchronized application. We obtain these numbers by multiplying the median
throughput for a server by the total number of servers, which is 326. This means
that every time one link fails, the synchronized application loses 1.8 Tbps compared
to the non-synchronized one, which represents a total loss of approximately 1.1×106

Tb over the months of March and April, given the flapping link’s total downtime of
6.1× 105 seconds.

4.5 Conclusion

In this chapter, we present statistics about failures collected over two months. Our
results revealed that failures occur frequently, with 2605 failure events recorded dur-
ing the data taking period. Most of these failures were due to flapping links, which
are characterized by fluctuations between operational and non operational states,
leading to extended periods of downtime. This highlights the existence of long-lived
failures in the studied network, which cause a significant loss of throughput.

Then, we evaluate the throughput achieved by relevant Infiniband routing algo-
rithms for our studied network. We elaborate on the results obtained by highlighting
the specific properties of each routing algorithm.

Finally, we evaluate two alternative approaches to Event Building on the LHCb
DAQ system, showing that a synchronized approach can reach high throughput in

46 Chapter 4. Study of failures in the LHCb DAQ network

normal conditions. However, upon link failures, the synchronized approach faces
significant performance reduction. In these scenarios, eliminating synchronization
is a quick solution to reduce the performance degradation. Furthermore, as we
demonstrated the existence and impact of flapping links, we believe that a more
effective strategy would be to disable a flapping link as soon as it starts to flap.
Instead of repeatedly restarting the link, which can trigger multiple network re-
configurations and cause instability, it would be better to use the non-synchronized
all-to-all exchange to adapt to failures.

Chapter 5

Fault-Adaptive Scheduling
Algorithm

Contents
5.1 Latin Square . 47
5.2 Bandwidth reduction . 50
5.3 The Bandwidth-Optimal All-to-All exchange 52
5.4 Adaptation of the Bandwidth All-to-All Exchange to Failures 61

5.4.1 Lower bound on the number of phases with bandwidth reduction 62
5.4.2 Increase in the number of phases 64
5.4.3 Scheduling the communications on the added phases 66

5.5 Results . 69
5.6 Conclusion . 73

In this chapter, we present our scheduling algorithm, designed to adapt to fail-
ures in a fat-tree topology, ensuring that network congestion is avoided. We start
by introducing the Latin Squares and how they can define an all-to-all commu-
nication pattern. We also introduce the concept of bandwidth reduction which
is one of our contribution. Then, we study a scheduling algorithm that demon-
strates potential in addressing failure scenarios by limiting the use of bisection band-
width. This algorithm is derived from the formulas described in the referenced pa-
per [Prisacari et al. 2013b] and, like the linear-shift scheduling [Zahavi et al. 2009],
only works in the absence of failures. However, we compare its performance with the
linear-shift because the properties of this algorithm [Prisacari et al. 2013b] suggest
it may offer better fault tolerance. Then, we discuss the inadequacies of current
scheduling algorithms in avoiding congestion during failures, highlighting the neces-
sity to increase the number of phases for the all-to-all exchange to effectively address
failures. Finally, we introduce an algorithm and Integer Linear Programming (ILP)
model that allows for the adaptation of any scheduling pattern to failures.

5.1 Latin Square

As introduced in 2.2.3, in the all-to-all collective exchange, each server exchanges
data with all other servers through the network. A straight forward topology for
the all-to-all exchange is a full-mesh network where each server is directly connected

48 Chapter 5. Fault-Adaptive Scheduling Algorithm

with all the other servers. This is however very costly and a waste of resources as
not all links are needed all the time. This is why, the all-to-all collective exchange
is typically divided into multiple phases to distribute the necessary bandwidth over
time and avoid congestion in the network. The minimum number of phases necessary
for the all-to-all exchange is n, the number of servers. At each phase, every server
communicates exclusively with one other server that is not involved in any other
communication to spread the load over the topology. The objective is for all servers
to have communicated with each other by the end of all phases.

These constraints are the same as for Latin Square. A Latin square of order
n is a n × n array filled with n different symbols, each occurring exactly once in
each row and exactly once in each column. Latin squares were first designed by the
mathematician Choi Seok-jeong in 1700, who used them in his work on constructing
magic squares [Colbourn & Dinitz 2006].

We can define any all-to-all communication pattern using Latin squares of order
n, where n is the number of servers. In this context, the source servers are repre-
sented by the rows, the phases by the columns, and the symbols within the Latin
square represent the ID of the destination servers. For instance, we can define a
linear-shift pattern [Zahavi et al. 2009] between four servers using a Latin square of
order four as shown in Table 5.1. In this Latin square, each column is shifted by its
column number starting from 0 with the permutation [0, 1, 2, 3], meaning that each
number d in a cell is computed by d = (idrow + idcolumn) mod 4.

Table 5.1: Linear-shift pattern defined as a Latin Square.

Phase 0 Phase 1 Phase 2 Phase 3
Server 0 0 1 2 3
Server 1 1 2 3 0
Server 2 2 3 0 1
Server 3 3 0 1 2

A Latin Square can also be represented as a n2×3 array, known as the orthogonal
array representation[Stec 2023]. This representation includes three columns denoted
r, c and s, where r is the row number in the n × n Latin Square, c is the column
number and s is the cell value. The associated orthogonal array representation with
the linear-shift pattern with 4 servers is shown in Table 5.2.

By observing the Latin Square in Table 5.1, we notice that the rows and columns
are generated by a cycle of shifts. Specifically, rows are permutations of rows and
columns are permutations of columns. Latin Squares can be described as a set of
permutations where the sets of numbers {0, . . . , n− 1} are rearranged according to
the row and column. This implies that all sets of permutations that respect the
properties of a n × n Latin Square are valid solutions for the all-to-all exchange,
as they share the same properties. However, computing the number Ln of possible
n× n Latin Squares remains challenging, as it is a complex combinatorial problem.
While an exact enumeration of the solutions is possible for small n up to n =

5.2. Bandwidth reduction 49

Table 5.2: Linear-shift pattern defined as an orthogonal array representation of a
Latin Square.

row column symbol

0 0 s = (0 + 0) mod 4 = 0

0 1 s = (0 + 1) mod 4 = 1

0 2 s = (0 + 2) mod 4 = 2

0 3 s = (0 + 3) mod 4 = 3

1 0 s = (1 + 0) mod 4 = 1

1 1 s = (1 + 1) mod 4 = 2

1 2 s = (1 + 2) mod 4 = 3

1 3 s = (1 + 3) mod 4 = 0

2 0 s = (2 + 0) mod 4 = 2

2 1 s = (2 + 1) mod 4 = 3

2 2 s = (2 + 2) mod 4 = 0

2 3 s = (2 + 3) mod 4 = 1

3 0 s = (3 + 0) mod 4 = 3

3 1 s = (3 + 1) mod 4 = 0

3 2 s = (3 + 2) mod 4 = 1

3 3 s = (3 + 3) mod 4 = 2

11, for larger n, researchers have derived both upper and lower bounds on the
number of possible solutions, which differ significantly [Van Lint & Wilson 2001,
McKay & Wanless 2005].

As we demonstrated, all n×n Latin Squares can satisfy the constraints of the all-
to-all exchange scheduling between n servers. However, additional constraints are
required as we also need for the schedule to map on the topology without congestion.
This is exemplified by the linear-shift communication pattern, which is associated
with the Ftree routing algorithm [Nvidia 2023b] to guarantee no congestion in the
network under normal conditions. However, the linear-shift pattern shows significant
congestion in the event of network failures, as demonstrated in Section 4.3.4. The
bandwidth usage at the different phases of the linear-shift scheduling is not balanced.
This leads to unavoidable congestion at certain phases as depicted in Figure 5.6. As
explained in Section 2.3.2, each communication flow uses all the bandwidth of a link.
For example, Figure 5.1 illustrates the Ftree routing of linear-shift scheduling with
four servers. At phase 0, there is no congestion because each server exchanges data
with itself, resulting in no link usage. However, at phase 2, all links are used in both
directions, leading to inevitable congestion in the event of failures. To address this
issue, our initial approach was to identify a more fault-tolerant scheduling pattern
that could better handle network failures compared to the linear-shift.

50 Chapter 5. Fault-Adaptive Scheduling Algorithm

Figure 5.1: The Ftree routing of the Linear-shift communication pattern at each
phase. The topology of the network is a two-layer fat-tree denoted FT (2; 2, 2),
which interconnects four servers. SW [0, . . . , 3] are the switches and S[0, . . . , 3] are
the servers. The table is the same as Table 5.1, which shows the scheduling of the
linear-shift defined as a Latin square. The first column is the source server, each
following column is a phase and the content in the cell is the destination server.

5.2 Bandwidth reduction

Before discussing an alternative all-to-all scheduling approach that could potentially
better address failures, it is important to introduce a key concept, which is one of
our contributions: bandwidth reduction. Bandwidth reduction allows us to more
precisely define the impact of failures on the routing of an all-to-all schedule. We
define bandwidth reduction as the maximum number of failures occurring on the
same leaf switch. In this chapter, when we use the term bandwidth reduction, we
always refer to a uniform bandwidth reduction that results in the same number of
paths between a leaf switch affected by a failure and all other leaf switches. For
instance, the bandwidth reduction of the top failure scenario in Figure 5.2 is uniform
as the leaf switch SW0 has the same number of paths, which is 3, to join the other
leaf switches through SW5..7. A non-uniform bandwidth reduction would be if there
is an additional failure between the switches SW1 and SW5. In that case, SW0 and
SW1 have only two paths to join each other (through SW6 and SW7) while having
three paths to join the other leaf switches. The concept of non-uniform bandwidth
reduction will be discussed with more details in Section 6.2.

In Figure 5.2, we illustrate the fat-tree topology FT(2;4,4) as an example. In
the top figure, we show the traffic to and from servers S0..3 using different types of
arrows. We consider the worst-case scenario for bandwidth usage in the scheduling,
where servers S0..3 must communicate externally and none communicate locally
(meaning none of the servers S0..3 are communicating with servers S0..3). The

5.2. Bandwidth reduction 51

Figure 5.2: An example of the impact of a bandwidth reduction of 1 in the FT(2;4,4)
topology with 16 servers. The different types of arrows represent the traffic in both
directions towards the associated server. In the top figure, the bandwidth reduction
is 1 due to a link failure between SW0 and SW4. As a result, servers S0..3 have
only three links available for external communication, creating one congestion on
the link between switches SW0 and SW4. Similarly, the bottom figure illustrates
a bandwidth reduction of 1 with two failures, one between SW0 and SW4 and
another between SW1 and SW4, resulting in one congestion on the links SW0-SW5
and SW1-SW5.

failure between switches SW0 and SW4 reduces the bandwidth by 1, resulting in
servers S0..3 having only 3 links instead of 4 for simultaneous communication. The
bandwidth reduction is uniform because the leaf switch affected by the failure, SW0,
has three available paths to all other leaf switches, through the spine switches SW5
to SW7. If we distribute the congestion across the links as evenly as possible, this
means that the links between switches SW0 and SW5 is used twice in the same
direction, creating one congestion on that link.

This congestion means that the communications to and from servers S0 and
S3 will take twice as long to complete. Consequently, since the all-to-all exchange

52 Chapter 5. Fault-Adaptive Scheduling Algorithm

is synchronized, all other servers will have to wait for S0 and S3 to finish their
exchanges before moving on to the next phase. If we assume that this phase normally
takes time T , due to this congestion, it will take a duration of 2T . Since the exchange
is synchronized, all other servers will be impacted by the failure.

In the bottom sub-figure of Figure 5.2, the bandwidth reduction is still 1, but in
this case there are two failures: one between switches SW0 and SW4 and another
between switches SW1 and SW4. Similarly to the previous case, if the load is
optimally distributed between the links, this failure scenario creates congestion on
the links SW0-SW5 and SW1-SW5. The bandwidth reduction is also uniform as
the leaf switches SW0 and SW1 affected by the failures have three available paths
to join all other leaf switches, through the spine switches SW5 to SW7. In this
scenario, in the same manner as before, the communications to and from servers S0
and S3, as well as S4 and S7, will take twice as long to complete. This affects the
time required to finish this phase, as it will also take 2T instead of T.

Therefore, it does not matter if there is a failure between switches SW0 and
SW4 or if the spine SW4 is completely disconnected, since the maximum number
of congestion on the links will be the same (if the routing is optimal), affecting the
time to complete the phase in the same way. That is why, in this chapter, we prefer
to evaluate our solution in terms of bandwidth reduction rather than the number of
failures.

5.3 The Bandwidth-Optimal All-to-All exchange

The bandwidth-optimal all-to-all exchange is described in [Prisacari et al. 2013b].
The authors present an all-to-all scheduling pattern specifically adapted to fat-tree
topologies. This pattern optimizes bandwidth usage at each phase. The authors
compare their scheduling pattern with linear-shift [Zahavi et al. 2009] and XOR,
demonstrating that their approach minimizes the number of messages crossing the
bisection bandwidth.

Figure 5.3 illustrates an example of the bandwidth-optimal all-to-all communi-
cation pattern of Prisacari et al. [Prisacari et al. 2013b] with four servers. At each
phase, exactly 2 messages cross the bisection bandwidth, corresponding to half the
messages sent during a phase. This contrasts with the linear-shift where there is
increasing use and then decreasing use of the bisection bandwidth. In Figure 5.1,
the number of messages crossing the bisection is 0, 2, 4, and 2 for phases 0, 1, 2, and
3 respectively. Prisacari et al. prove that half of the messages crossing the bisection
at each phase is optimal. This scheduling solution was our initial approach, as the
balanced bandwidth usage at each phase would allow better adaptation in the event
of failures compared to the linear-shift. However, a challenge we encountered was
that the authors did not provide a well-defined algorithm for their solution, only
a set of formulas for computing the destination depending on the source and the
phase and a proof that this satisfies the properties of the all-to-all exchange. There-
fore, we first propose Algorithm 1 which is a well-defined algorithm to compute the

5.3. The Bandwidth-Optimal All-to-All exchange 53

Figure 5.3: The routing of the Bandwidth-optimal communication pattern at each
phase. The topology of the network is a two-layer fat-tree denoted FT (2; 2, 2),
which interconnects four servers. SW [0, . . . , 3] are the switches and S[0, . . . , 3] are
the servers. At each phase, only two messages cross the bisection of the network.

all-to-all exchange scheduling on a fat-tree topology. The complexity of Algorithm
1 is O(S2 × L) where S is the number of servers and L is the number of layers in
the fat-tree topology.

The notations used in the algorithm are consistent with those presented in
[Prisacari et al. 2013b] and are summarized in Table 5.3. The concept of a vari-
able base is defined in [Prisacari et al. 2013b]. In a fixed-base system, the base
remains constant. For instance, in base 2, each digit can only take the value 0 or 1.
In a variable base, however, the base can change dynamically for different positions
within the number. In the bandwidth-optimal scheduling, each destination server is
given by computing each digit using the base specific to each layer in the fat-tree.

54 Chapter 5. Fault-Adaptive Scheduling Algorithm

Table 5.3: Notations of Algorithm 1.

Name of the variable Description of the variable
s The source server.
d The destination server.
p The phase.
S The number of servers.
P The number of phases which

is equal to S.
L The number of layers in the

fat-tree topology.
M = [M0, . . . ,ML−1] The list M where each el-

ement Ml in the list repre-
sents the number of links con-
nected to a switch at layer l ∈
[0, . . . , L−1], with 0 being the
bottom layer connected to the
servers and L−1 being the top
layer.

kPerm The list of size L obtained by
reversing the order of the ele-
ments in [1, . . . , L].

α The digits of the destination
server d in the variable base
(M0, . . . ,ML−1).

After developing a well-defined algorithm that computes the destination accord-
ing to the source and phase to reproduce the bandwidth-optimal scheduling defined
in [Prisacari et al. 2013b], we compare the congestion produced by the bandwidth-
optimal scheduling in the event of failures with the congestion produced by the
linear-shift scheduling.

To simulate the congestion of the linear-shift and bandwidth-optimal, we use a
simple algorithm to compute the number of conflicts at each phase and the resulting
duration of the phase according to the failure scenario, as described in Algorithm
2. Given the algorithmic nature of these patterns, a known topology and failure
scenario, predicting the number of conflicts is straightforward.

First, we compute the communication pairs for each phase and for each schedul-
ing pattern. Then, we simulate failure scenarios and compute the number of external
communications to and from the leaf switches, as well as the available bandwidth
for each leaf switch. This allows us to identify communications that share a link,
as we know which server is connected to a leaf switch with a broken link and the
communications to these servers. We define an external communication as one oc-
curring between a source server and a destination server not connected to the same
switch. This type of communication requires using links that ascend to the top

5.3. The Bandwidth-Optimal All-to-All exchange 55

Algorithm 1: Computation of the Bandwidth-Optimal scheduling.
1 Input: Number of servers and phases S

2 Input: Number of layers L ≥ 2

3 Input: The list M that contains the number of links connected to each
switch at layer l ∈ [0, . . . , L− 1]

4 Output: The dictionary schedule with the phase p as key and the list of
tuple (s, d) as value, where s is the source server and d is the destination
server

5 M0 := First element of the list M and the number of servers connected to
each leaf switch

6 M1 := Last element of the list M and the number of leaf switches
connected to each spine switch

7 kPerm = [L,L− 1, . . . , 2, 1]

8 schedule := Empty dictionary of size S

9 forall p ∈ [0, . . . , S − 1] do
10 schedule[p] := Empty array of size S

11 forall s ∈ [0, . . . , S − 1] do
12 d = 0

// The α are the values of the destination at each layer

13 α := Empty array of size L

14 forall k ∈ [0, . . . , L− 1] do
// Determining the factor to compute α[k]

15 if kPerm[k]− 1 == 0 then
16 factor = 1

17 else if kPerm[k]− 1 == 1 then
18 factor = M1

19 else
20 factor = M1 × (kPerm[k]− 2) ∗M0

21 α[k] =
⌊

s
factor

⌋
+

⌊
p

factor

⌋
mod M [kPerm[k]− 1]

22 forall i ∈ [0, . . . , L− 1] do
23 d = d+ α[i]× (M0)

i

24 schedule[p].insert((s, d))

25 return schedule

56 Chapter 5. Fault-Adaptive Scheduling Algorithm

Figure 5.4: The Min-Hop routing algorithm’s best-case scenario (left) and worst-
case scenario (right) in terms of congestion distribution.

layer in the fat-tree topology and then descend to the bottom layer to reach the
destination server.

In Algorithm 2, if no communication flows use the links between the leaf and
spine switches, i.e., no server communicates with other servers, the phase is almost
instantaneous. If for each leaf the number of communication flows to or from the
leaf during a phase is less than or equal to the number of available links connected
to the leaf, there is sufficient bandwidth. In this case, there will be no conflicts, and
the communications from or to the leaf switch takes 1 unit of time. Otherwise, we
assume the communications are evenly distributed across the available links, with
the phase duration computed by the maximum number of communications sharing
a link which is the sharing factor. The duration of a phase Dp is computed using
the formula:

Dp = max

(⌈
Cl

Nl

⌉
| l ∈ L

)
,

where L is the set of leaf switches, Cl represents the number of external communi-
cations from or to the leaf l ∈ L, and Nl is the number of available links connected
to leaf l ∈ L. As the all-to-all exchange is synchronized, all communications during
a phase must wait for each other to finish before moving to the next phase. This
means that if a communication between two servers takes X units of time, and X is
the maximum duration of any exchange during the phase, then the duration of the
phase is X. To compute the duration of the all-to-all exchange D, we simply need
to sum the duration of all phases, which is given by this formula:

D = Σp=P−1
p=0 Dp

where P is the number of phases.
For the routing, we consider the best-case in terms of distribution of the con-

gestion for the Min-Hop routing algorithm, which is the default routing algorithm
used by the OpenSM controller in the event of a failure[Nvidia 2023b]. We assume

5.3. The Bandwidth-Optimal All-to-All exchange 57

Algorithm 2: Computation of the duration of the all-to-all schedule.
1 Input: The dictionary schedule with the phase as key and the ordered list

of source-destination pairs (s, d) as value
2 Input: The ordered list L of leaf switches
3 Input: The dictionary fromLeaf with the phase p ∈ P and leaf switch

l ∈ L as key and the ordered list of tuple (s, d) as value, where s is the
source server connected to l and d is the destination server

4 Input: The dictionary toLeaf with the phase p ∈ P and leaf switch l ∈ L

as key and the ordered list of tuple (s, d) as value, where s is the source
server and d is the destination server connected to l

5 Input: The dictionary bw with the leaf switch l ∈ L as key and the
bandwidth available (number of links) for the leaf l as value

6 Input: The number of servers M0 connected to the leaf switches
7 Output: The total duration of the all-to-all schedule D

8 D = 0

9 forall p ∈ schedule do
// Dp is the duration of the phase

10 Dp = 0

11 forall c ∈ schedule[p] do
12 s = c[0]

13 d = c[1]

// Computation of the source leaf switch sLeaf and the destination

leaf switch dLeaf with the source server s and the destination

server d

14 sLeaf =
⌊

s
M0

⌋
15 dLeaf =

⌊
d
M0

⌋
16 if sLeaf ̸= dLeaf then

// If at least one communication (s, d) needs to use the links

between the leaf and spine switches, the duration of the phase

is 1

17 Dp = 1

18 break

19 forall l ∈ L do
20 t =

⌊
|fromLeaf [(p,l)]|

bw[l]

⌋
21 if t > Dp then
22 Dp = t

23 t =
⌊
|toLeaf [(p,l)]|

bw[l]

⌋
24 if t > Dp then
25 Dp = t

26 D = D +Dp

27 return D

58 Chapter 5. Fault-Adaptive Scheduling Algorithm

that it will spread the routes as efficiently as possible in case of failures, although
this is not always the case in practice. An example of the best-case and worst-case
scenarios for the Min-Hop algorithm is shown in Figure 5.4. In this example, four
servers need to communicate externally while only three links are available on the
switch. In the best-case scenario (left), there is only one conflict. In the worst-case
scenario (right), there are three conflicts. We only use the best-case scenario of
Min-Hop to evaluate the bandwidth-optimal and linear-shift scheduling as it is the
most optimized one.

Figure 5.5: The routing of the Bandwidth-optimal communication pattern at each
phase with one link failure between SW0 and SW2. The topology of the network is
a two-layer fat-tree FT (2; 2, 2), which interconnects four servers. SW [0, . . . , 3] are
the switches and S[0, . . . , 3] are the servers. Each phase takes one unit of time as
there is still enough bandwidth to route the exchanges at each phase. The total
duration of the all-to-all exchange in this case is of four unit of time.

In order to give a clear example of this algorithm, we can consider the example of
the routing of the bandwidth-optimal scheduling in Figure 5.3. Figure 5.5 illustrates
the routing of the bandwidth-optimal scheduling when the link between switches
SW0 and SW2 is broken. With bandwidth-optimal scheduling, a single failure in
this topology poses no problem, as there is always sufficient bandwidth to route the
exchanges at each phase. At each phase, at most one communication between a
source server and a destination server needs to use the links between the bottom
and top layers in the fat-tree topology (the links between SW[0,1] and SW[2,3]) and
there is always at least one available link. All links have the same capacity and can
be used in both directions. Consequently, each phase takes one unit of time.

To give a clear example of the computation of an all-to-all exchange with Al-
gorithm 2, Figure 5.6 illustrates the routing of linear-shift scheduling with one link
failure. We consider phase 0 to be instantaneous because each server communicates
with itself, which is almost instantaneous in practice. Phases 1 and 3 each take one
unit of time as there is no congestion. Phase 2, however, creates congestion between

5.3. The Bandwidth-Optimal All-to-All exchange 59

Figure 5.6: The routing of the linear-shift communication pattern at each phase with
one link failure between SW0 and SW2. The topology of the network is a two-layer
fat-tree denoted FT (2; 2, 2), which interconnects four servers. SW [0, . . . , 3] are the
switches and S[0, . . . , 3] are the servers. Phase 0 is almost instantaneous because
each server communicates with itself. Phases 1 and 3 each take one unit of time
since there is sufficient bandwidth to handle the exchanges. However, congestion
occurs at phase 2 as two communications must share two links. Consequently, the
total duration of the all-to-all exchange in this scenario is four units of time.

SW0-SW3 and SW3-SW1. For example, communications between S2-S0 and S3-
S1 need to share the links SW1-SW3 and SW3-SW0 in the same direction. Since
two communications are using the same link, it takes twice as long to route this
exchange. Therefore, the duration of phase 2 is 2T. Despite this, the total duration
of the all-to-all exchange with the linear-shift scheduling is equal to the duration of
the all-to-all exchange with bandwidth-optimal scheduling. However, this will not
necessarily be the case for larger topologies, as we show in Figure 5.7.

In Figure 5.7, we show the simulated time performance of the linear-shift and
bandwidth-optimal scheduling under bandwidth reduction using the topology of
the LHCb DAQ network, which is our case of study. The failures occur on one leaf
switch. However, the result is the same whether the failures occur on one leaf switch
or all the leaf switches. Since the exchange is synchronized, the bandwidth reduction
effect is the same whether there is one failure on one leaf switch or a failure with
the same spine on each leaf switch in the fat-tree topology, as the servers need to
wait for each other to move to the next phase.

This is why we prefer to use the term "bandwidth reduction" instead of "fail-
ures". In this simulation, the specific leaf switch on which the failures occur does
not matter as much as the overall bandwidth reduction. Therefore, when the band-
width reduction is indicated as 1 on the x-axis, it does not imply a single failure
in the entire topology; rather, it implies at least one failure on at least one leaf
switch, potentially affecting all leaf switches as explained in Section 5.2. This could

60 Chapter 5. Fault-Adaptive Scheduling Algorithm

Figure 5.7: Time performance with the topology FT(2;20,18), which is the topology
of the LHCb DAQ network. LS refers to the linear-shift scheduling and BO is the
bandwidth-optimal scheduling. The left axis shows the slowdown of the different
scheduling upon bandwidth reduction compared to no failures, this is the relative
time degradation due to failures. The speedup, on the right axis, shows the improve-
ment ratio of bandwidth-optimal compared the linear-shift. The failures happen on
the leaf switches, which are the links between the bottom and top layer in the fat-
tree topology.

correspond to 1 to 20 failures, as there are 20 leaf switches in the fat-tree topology
FT(2;20,18). If there are two failures on the same leaf switch, the bandwidth reduc-
tion is 2, and the duration of the all-to-all exchange remains the same, regardless of
whether there are two failures on one leaf switch or two failures on each of the 20
leaf switches (resulting in 40 failures).

A bandwidth reduction of 10 in the topology FT (2; 20, 18) can result in the loss
of half of the links in the network. This is our most extreme failure scenario as more
failures are not realistic and cannot be optimized since too much bandwidth is lost.
The links between the leaf switches and the servers are not considered, since failures
on those links disconnect servers and, hence sources, from the network. These failure
scenarios do not result in a reduction of bandwidth that may lead to congestion as
the data to transmit reduces by the same amount of the bandwidth in the topology.

We define the slowdown of a scheduling solution in the presence of failures as
the ratio between the time for the all-to-all exchange completion with failures and
the time to completion with no failures, the latter being the ideal performance. The
time it takes to complete the all-to-all exchange is on the order of tens or hundreds of
milliseconds, depending on the number of servers, as each phase takes approximately
2 milliseconds. However, the unit of time does not matter for the slowdown since it
is a ratio. Basically, for every failure scenario, we compute the slowdown with this
formula:

Slowdown =
T

S

5.4. Adaptation of the Bandwidth All-to-All Exchange to Failures 61

where T represents the time it takes for the considered all-to-all schedule completion
and S is the number of servers which is the minimum number of phases in an all-
to-all schedule without failures.

We define the speedup as the improvement ratio of the bandwidth-optimal com-
pared to the linear-shift scheduling. We compute the speedup with this formula:

Speedup =
TLS

TBO

With a bandwidth reduction of 1, the bandwidth-optimal compared to the linear-
shift scheduling shows a speedup factor of two. This is due to the fact that with one
failure, the bandwidth-optimal scheduling has no conflicts at each phase as there are
fewer external communications that cross the bisection bandwidth at each phase.
However, when the bandwidth reduction is greater or equal to 2, the linear-shift
has slightly better performance than the bandwidth-optimal scheduling. During the
initial and final phases in the linear-shift scheduling, servers communicate with other
servers connected to the same leaf switch (in the first phase all servers communicate
with themselves). Therefore, in the initial and final phases, almost no bandwidth
is used which results in the linear-shift handling the congestion better than the
bandwidth-optimal scheduling that has congestion at every phase because there are
always external communications at every phase. Even if the middle phases in the
linear-shift scheduling result in a lot of congestion as all servers talk externally, this
cost is compensated by the initial and final phases. However, as shown in Figure
5.4, we only took into account the best-case of the routing algorithm Min-Hop,
which favors the linear-shift scheduling as the congestion is optimally distributed.
If we do not use the best case of Min-Hop, which could be the case in practice, the
bandwidth-optimal scheduling could perform better than the linear-shift because the
number of conflicts with the linear-shift scheduling would increase if the external
communications are not well distributed on the links.

Except for a bandwidth reduction of one, the speedup of the bandwidth-optimal
scheduling compared to the linear-shift scheduling does not show much improvement
as the ratio is 0.9 and is closer to 1 when the bandwidth reduction increases.

In any case, it is clear that with these two scheduling solutions, congestion is
unavoidable at some point and the duration of the all-to-all is generally increased by
a factor close to 2 with the two scheduling solutions, as indicated by the slowdown
ratio compared to the scenario with no failures. Unfortunately, we could not find in
the literature a scheduling algorithm that adapts better to failure, which is why we
decided to adapt the existing ones to address them.

5.4 Adaptation of the Bandwidth All-to-All Exchange to
Failures

In this section, we introduce an initial approach that adapts the bandwidth-optimal
scheduling to address failure scenarios effectively. Specifically, it must produce a

62 Chapter 5. Fault-Adaptive Scheduling Algorithm

Figure 5.8: The fat-tree topology FT (2; 2, 4) with 6 switches and 8 servers. The
link between SW0 and SW4 is broken so it is not represented in the topology.

schedule that ensures a routing solution is possible without congestion on the links.
Our first contribution demonstrates that the number of phases, S, for an all-to-all
exchange between S servers is insufficient for achieving a congestion-free exchange.
Consequently, we propose increasing the number of phases and provide a lower
bound on this number to minimize the total exchange duration. Then, we propose an
algorithm and an Integer Linear Programming (ILP) model to adapt the bandwidth-
optimal scheduling within this minimum number of phases.

5.4.1 Lower bound on the number of phases with bandwidth re-
duction

In Section 5.3, we observed that current scheduling algorithms do not effectively
address the problem of bandwidth reduction. All existing scheduling approaches
lead to congestion because the number of phases is insufficient to achieve an all-to-all
exchange with bandwidth reduction. The scheduling algorithms we reviewed provide
a scheduling in S phases for the all-to-all exchange between S servers, making them
inadequate for adapting to failures.

To illustrate, consider the fat-tree topology in Figure 5.8 with a failure between
switches SW0 and SW4. In this scenario, servers S0 and S1 are unable to send or
receive data simultaneously as there is only one link available (SW0-SW5). Conse-
quently, they must send or receive data sequentially. Referring to the Latin Square
of the bandwidth-optimal scheduling in Table 5.4, some communications in specific
phases must be adjusted to prevent congestion. For instance, at phase 1, commu-
nications S0-S2 and S1-S4 create congestion on the link between SW0 and SW5
since both servers connected to SW0 are communicating externally. Therefore, we
should remove either the communication S0-S2 or S1-S4 and reschedule one of them
to another phase to avoid congestion. In the example provided in Table 5.4, eight
communications are moved to the additional phases P [8..11], ensuring a congestion-
free schedule.

5.4. Adaptation of the Bandwidth All-to-All Exchange to Failures 63

Table 5.4: The bandwidth-optimal pattern is defined as a Latin Square with a
bandwidth reduction of 1. To prevent congestion, destination servers marked with
the symbol "*" need to be removed from the original phases and moved to the
additional phases P [8..11].

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
S0 S0 S2* S4* S6 S1 S3* S5* S7 S2 S4 S3 S5
S1 S2 S4 S6 S0 S3 S5 S7 S1
S2 S4 S6 S0* S2 S5 S7 S1* S3 S0 S1
S3 S6 S0* S2 S4 S7 S1* S3 S5 S0 S1
S4 S1 S3 S5 S7 S0 S2 S4 S6
S5 S3 S5 S7 S1 S2 S4 S6 S0
S6 S5 S7 S1 S3 S4 S6 S0 S2
S7 S7 S1 S3 S5 S6 S0 S2 S4

This approach ensures congestion-free scheduling when combined with appro-
priate routing. However, adding phases increases the duration of the all-to-all ex-
change due to the additional time required for these phases and their synchroniza-
tion. Therefore, we propose a lower bound on the number of phases according to
the bandwidth reduction in a fat-tree topology to ensure congestion-free scheduling
while minimizing the duration of the all-to-all exchange.

Our lower bound is true for any logical fat-tree LFT (L;M1, . . . ,ML) and gener-
alized fat-tree FT (L;M1, . . . ,ML). The example topology shown in Figure 5.8 has
two layers and 8 servers and is denoted FT (2; 2, 4). Let Πl =

∏l
i=1Mi represents

the bandwidth at layer l. ΠL then represents the bandwidth in the whole fat tree
as well as the number of servers. Here, ΠL = M1 ∗M2 = 2 ∗ 4 = 8.

In this section, we call local servers of a specific switch the servers that belong to
the sub-tree below the switch. The other servers are called external. For example,
the number of external servers for each leaf switch in Figure 5.8 is 6. If a server
local to a switch communicates with an external server, this communication will
go through the links connecting the local switch to its parent at layer l + 1. In
the all-to-all exchange, the number of communications of local servers with external
servers is therefore given by:

Ul = Πl(ΠL −Πl) = 2 ∗ (8− 2) = 12

which is, in this example, 12. To better explain this result, if we look at, for example,
switch SW0 we can see that it has two local servers connected to it. Each of these
two servers communicate once with the 6 external servers in an all-to-all collective
exchange. Therefore, the switch SW0 exchanges 2 ∗ 6 = 12 messages with the other
switches in the topology.

Now we consider that the link capacity between a switch SWX with X ∈ 0..5

at layer l and a switch at layer l + 1 is reduced by F , with 1 ≤ l ≤ L − 1 and
F < Πl. We must divide this number of messages exchanged by the number of links

64 Chapter 5. Fault-Adaptive Scheduling Algorithm

still available on at least one switch. Hence, the minimum number of phases to send
all these messages if the link between SW0 and SW4 is not broken in the topology
is: ⌈

Ul

Πl − F

⌉
⌈

12

2− 0

⌉
= 6

However, if one of the leaf switches loses one of its links connected to its parents
at layer l + 1, the two servers connected to it have only one link to communicate
with the external servers. For example, if the link between SW0 and SW4 is broken,
the servers S0 and S1 need to communicate in turns with the external servers,
which means that switch SW0 needs

⌈
12
2−1

⌉
= 12 phases to execute its full external

exchange. The other switches without failures still need only
⌈

12
2−0

⌉
= 6 phases

to do their full external exchanges since they have both of their links available.
Therefore, switch SW0 is the switch that affects the number of phases needed to
complete the all-to-all exchange. That is why the value of F in the computation
of the lower bound should be the maximum number of failures on a same switch,
i.e., the bandwidth reduction. Also, we know that the number of phases is at least
the number of servers ΠL. Thus, the number of phases necessary to perform the
all-to-all exchange verifies

P ≥ max

(
ΠL,

⌈
Ul

Πl − F

⌉)
(5.1)

We use the maximum between these two values because in some topologies we do
not necessarily need to increase the number of phases. Interestingly, using the same
reasoning, the lower bound remains the same even if each switch at layer l has F

links failure with their parents at layer l + 1. Similarly, if the capacity of each link
between layer l+1 and l+2 is reduced by F ×Ml+1, then the lower bound remains
unchanged because even with a bandwidth of ΠlMl+1 − FMl+1 = Ml+1(Πl − F), it
is equal to the sum of the bandwidth at the layer just below. In fact, not only the
lower bound is the same, but a schedule that tolerates reduction in capacity of F
between layer l and l+1 also tolerates a reduction of capacity of F ×Ml+1 between
layer l + 1 and l + 2. This is explained by the concept of bandwidth reduction
detailed in Section 5.2.

5.4.2 Increase in the number of phases

Figure 5.9 illustrates the multiplicative factor I for the number of phases in the fat-
tree topology, computed with the bandwidth reduction. Both the fat-tree topology
and the bandwidth reduction are specified. The vertical bar for each curve indicates
a reduction of the bandwidth by half. The multiplicative factor I for the number
of phases is the ratio of the number of phases with f bandwidth reduction over
without bandwidth reduction: I =

Pf

P0
. The bandwidth reduction corresponds to

5.4. Adaptation of the Bandwidth All-to-All Exchange to Failures 65

Figure 5.9: Multiplicative factor for the number of phases according to the band-
width reduction f between leaf and spine switches for several fat-tree topologies.
FT(2;8,16) contains 128 servers, FT(2;16,16) contains 256 servers, FT(2;20,18),
our use-case network, contains 360 servers, FT(2;16,32) contains 512 servers and
FT(2;32,32) contains 1024 servers. The vertical lines correspond to the loss of half
the bandwidth for each topology.

the maximum number of link failures on a same leaf switch. This implies that the
bandwidth reduction is the same for a single link failure and the loss of an entire
spine, as the exchange is synchronized. Additionally, our approach being conflict-
free, the only parameter affecting the throughput is the number of phases in the
all-to-all scheduling which is optimal and dependent on the bandwidth reduction.
As proved in Section 5.4.1, the optimal number of phases is computed by the for-
mula: Pf =

⌈
M0(P−M0)

M0−f

⌉
, where f is the bandwidth reduction between the leaf and

spine switches, P is the number of servers and M0 is the number of servers con-
nected to each leaf switch. Consequently, as the bandwidth reduction increases, the
throughput decreases, but the decline is less pronounced compared to other solu-
tions. This is because the increase in the number of phases remains optimal and
does not significantly impact throughput when the bandwidth is reduced by less
than half. Furthermore, a scenario involving the loss of half the bandwidth or more
in a network is unlikely.

We present the results for several fat-tree topologies: FT(2;8,16), FT(2;16,16),
FT(2;20,18) (the topology of the use-case network), FT(2;16,32) and FT(2;32,32).
For all topologies, the number of phases increases only slightly up to about half of
bandwidth lost. For instance, this corresponds to a bandwidth reduction f = M0

2 =
20
2 = 10 when half the bandwidth is lost for the topology FT(2;20,18). This increase
in the number of phases proves sufficient to ensure the all-to-all exchange without
conflicts even with half the bandwidth is lost in the network.

66 Chapter 5. Fault-Adaptive Scheduling Algorithm

5.4.3 Scheduling the communications on the added phases

After determining the optimal number of phases to address bandwidth reduction,
our next contribution is to schedule the communication accordingly to avoid con-
gestion. Our initial approach involves adapting the bandwidth-optimal schedule
by adjusting the placement of communications that could cause congestion in the
additional phases. The bandwidth-optimal all-to-all pattern allows for the use of
only half of the full bisection bandwidth. Consequently, the number of used links
is more balanced between the different phases compared to the linear-shift. While
the proposal in [Prisacari et al. 2013b] is appealing, no routing algorithm has been
proposed to complement the schedule. Furthermore, it provides rules to be followed
by the schedule but does not consider the necessary adaptations to the schedule and
the routing upon link failures, as explained in Section 5.3. We propose an extended
version of this algorithm that is more fault-tolerant.

As the number of phases increases, the problem becomes a variant of a partial
Latin rectangle that is more difficult to solve. A partial Latin rectangle is defined
as an r× c array where each cell is either empty or contains a symbol n ∈ N . Each
symbol can appear at most once in each row and column [Falcón 2015].

In our problem, the number of columns c is greater than or equal to the number
of rows r, with the rows representing the source servers and the columns representing
the phases. In a Latin square, r = c, as the number of phases required for an all-
to-all exchange is equivalent to the number of servers. However, to meet bandwidth
reduction requirements, the number of phases must increase, leading to r ≤ c. The
presence of empty cells in a partial Latin rectangle limits the choices available for
filling the remaining cells, which increases the complexity of the problem.

Another particularity of our problem compared to the standard partial Latin
rectangle is that the number of symbols |N | is equal to the number of rows r, since
the rows correspond to source servers and the symbols represent destination servers.
Additionally, each symbol must appear exactly once in each row, ensuring that each
source server communicates exactly once with each destination server.

To adapt the bandwidth-optimal schedule, we solve our problem in two steps.
First, we compute the communications to move to the additional phases by using
Algorithm 3. Then, we assign theses communications to the phases. The complexity
of Algorithm 3 is O(|P |∗|L|), where |P | represents the number of phases and L is the
number of leaf switches. We consider a reduction in capacity of F ≤ M0−1 between
two switches, meaning at least one link stays up for each leaf in the corresponding
fat-tree. M0 is the number of servers directly connected to a leaf switch. Note that
a conflict-free scheduling and routing occurs when at most one source-destination
pair uses a link at a given time in the fat-tree.

Algorithm 3 identifies the communications crossing the failed links. It ensures
that, on a switch with F failed links, there are no more than M1 − F incoming
and outgoing communications to prevent conflicts on the links. Communications on
links not affected by the failures are left untouched as they can be routed without
conflicts.

5.4. Adaptation of the Bandwidth All-to-All Exchange to Failures 67

Algorithm 3: Computation of the communications that need to be moved
to the additional phases.
1 Input: The ordered list P of phases
2 Input: The ordered list L of leaf switches
3 Input: The dictionary fromLeaf with the phase p ∈ P and leaf switch

l ∈ L as key and the ordered list of tuple (s, d) as value, where s is the
source server connected to l and d is the destination server

4 Input: The dictionary toLeaf with the phase p ∈ P and leaf switch l ∈ L

as key and the ordered list of tuple (s, d) as value, where s is the source
server and d is the destination server connected to l

5 Input: The dictionary bw with the leaf switch l ∈ L as key and the
bandwidth available (number of links) for the leaf l as value

6 Output: The list of communications cToMove that needs to be reschedule
to the additional phases

7 forall p ∈ P do
8 forall l ∈ L do

// If the number of external communications from leaf l at phase p is

superior to the number of links connected to l, we need to

reschedule the communications from leaf l at phase p.

9 if |fromLeaf [(p, l)]| > bw[l] then
10 forall c ∈ fromLeaf [(p, l)] do
11 if c /∈ cToMove then
12 cToMove.insert(c)

// If the number of external communications to leaf l at phase p is

superior to the number of links connected to l, we need to

reschedule the communications to leaf l at phase p.

13 if |toLeaf [(p, l)]| > bw[l] then
14 forall c ∈ toLeaf [(p, l)] do
15 if c /∈ cToMove then
16 cToMove.insert(c)

17 return cToMove

68 Chapter 5. Fault-Adaptive Scheduling Algorithm

Once we have the list of communications to move, we set up an integer linear
programming (ILP) model with the Gurobi optimizer [experts 2023a] to schedule
the communications computed in Algorithm 3 to the additional phases. Our choice
of Gurobi is guided by its improved performance compared to other widely used
solvers like IBM CPLEX and lpSolve [Luppold et al. 2018].

We were unable to find a general algorithm for scheduling communications to
additional phases, as the communications that create congestion depend on the
specific failure scenario. Such an algorithm should produce a schedule that ensures
sufficient bandwidth for each communication while respecting the main property of
the all-to-all exchange: no server should send or receive data more than once during a
phase. Additionally, it is necessary to optimize the schedule with a minimum number
of phases, as detailed in Section 5.4.1. Consequently, to meet these constraints and
optimization requirements, we chose to use an Integer Linear Programming (ILP)
model.

Usually, the objective of the ILP model is to test all possible solutions to find
the most optimized one. In the context of scheduling, an optimization function
is not necessary because we aim to create a schedule that avoids congestion in an
optimal number of phases but we know the optimal number of phases from the
formula proposed in Section 5.4.1. An optimisation function would only slowdown
the execution.

As mentioned earlier, we propose an adaptation of the bandwidth-optimal all-to-
all schedule [Prisacari et al. 2013b] to handle failures. While any scheduling pattern
could be adapted to support link failures, we chose the bandwidth-optimal all-to-
all pattern because external communications are more evenly distributed between
phases compared to the linear-shift. This even distribution of external communica-
tions results in fewer communications that need to be reassigned to extra phases,
which in turn reduces the number of variables in the ILP model, leading to decreased
computation time.

In the ILP model, each communication at each phase is represented by a binary
variable ys,d,p that is equal to 1 if there is traffic scheduled between a server source
s ∈ S and a server destination d ∈ S at phase p ∈ P and 0 otherwise. S is the set of
servers in the fat-tree topology and P is the set of phases. To create the y variables
in this model in case of failures, we go through the list of communications to be
moved that was computed in Algorithm 3. For example, in Table 5.4, one of the
communications S0-S2 and S1-S4 at phase 1 needs to be moved to the new phases
P8..11. Therefore, in the ILP model, we create the variables y0,2,1 and y1,4,1, but also
the variables y0,2,8..11 and y1,4,8..11. Then, the model computes all possible solutions
where y0,2,1+ y0,2,8..11 = 1 and y1,4,1+ y1,4,8..11 = 1 while respecting the constraints:

1. No source server communicates to the same destination server as another source
server during the same phase:
∀d ∈ S, p ∈ P,

∑
s∈S

ys,d,p ≤ 1.

2. At the end of all phases, every server will have communicated with every other

5.5. Results 69

server:
∀s, d ∈ S

∑
p∈P

ys,d,p = 1.

3. Each source communicates at most once at each phase:
∀s ∈ S, p ∈ P,

∑
d∈S

ys,d,p ≤ 1.

4. The communications from a leaf switch l ∈ L at phase p ∈ P , Vl,p, where L is
the set of leaf switches, should be less than or equal to the available bandwidth
bwl for the leaf switch l ∈ L.:
∀l ∈ L, p ∈ P, Vl,p ≤ bwl.

5. The communications to a leaf switch l ∈ L at phase p ∈ P , Xl,p, where L is the
set of leaf switches, should be less than or equal to the available bandwidth bwl

for the leaf switch l ∈ L.:
∀l ∈ L, p ∈ P,Xl,p ≤ bwl.

By combining Algorithm 3 with the ILP model, we can adapt the bandwidth-
optimal schedule, or any other schedule, to address congestion.

5.5 Results

We evaluate the proposed fault-adaptive scheduling based on the time required to
perform an all-to-all exchange, as a shorter all-to-all exchange duration results in
higher network throughput. Figures 5.10, 5.11, and 5.12 show the time performance
results for the FT(2;16,16), FT(2;20,18), and FT(2;16,32) fat-tree topologies, re-
spectively. The methodology used is the same as presented in Section 5.3. Our
solution, Fault-adaptive Scheduling (FS), is compared with the Linear-Shift (LS)
and Bandwidth-Optimal (BO) scheduling. The time to complete an all-to-all ex-
change according to the scheduling algorithm used is computed using Algorithm
2.

Since FS is a scheduling solution that creates no congestion, the only factor
that increases the time to complete the all-to-all exchange is the increase in the
number of phases. The computation of the number of phases for the FS solution
is explained in Section 5.4.1. However, the increase in the number of phases is
not significant enough to be worse than leaving congestion unaddressed when the
bandwidth reduction is less than or equal to half the available bandwidth.

As shown in Figures 5.10, 5.11, and 5.12, FS demonstrates significantly better
performance than LS and BO when the available bandwidth of the fat-tree topology
is reduced by up to half. As the bandwidth reduction increases, the number of paths
between a given source and destination pair decreases, reducing the possibilities of
finding an optimal solution. Consequently, FS approaches the performance of the
LS and BO solutions. However, losing more than half of the links in a network is

70 Chapter 5. Fault-Adaptive Scheduling Algorithm

an unrealistic scenario and would be so catastrophic that deploying a fault-adaptive
scheduling solution would not be a priority.

In general, FS results in smaller slowdowns than LS and BO for all topologies
and scenarios considered. For a bandwidth reduction of 1, the slowdown of FS
is approximately 1, meaning that the increase in the number of phases does not
significantly impact the time to complete the all-to-all exchange. Although the
slowdown increases as the bandwidth reduction increases, it remains significantly
lower compared to LS and BO. This makes FS the best of the three solutions.

For the topologies FT(2;16,16), FT(2;20,18), and FT(2;16,32), the slowdown of
LS is 1.875, 1.88, and 1.9375, respectively, with a bandwidth reduction of 1. This
indicates that it takes almost twice as long to complete an all-to-all exchange with
LS compared to no bandwidth reduction. The slowdown of LS continues to grow
slightly, approaching 2, as the bandwidth reduction increases.

With a bandwidth reduction of 1, the slowdown of BO is 1, 1, and 1.5 for the
topologies FT(2;16,16), FT(2;20,18), and FT(2;16,32), respectively. This result can
be explained by the fact that the BO schedule better balances the bandwidth at each
phase, which does not necessarily create congestion with a bandwidth reduction of
only 1 for the topologies FT(2;16,16) and FT(2;20,18), as shown in Figure 5.5. The
topology FT(2;16,32) has fewer available paths, with 32 leaf switches and only 16
spine switches, leading to congestion even with a bandwidth reduction of 1. As the
bandwidth reduction increases, the slowdown of BO increases accordingly, reaching
approximately 2 for all topologies when only half the bandwidth is available.

The speedup of FS compared to LS is close to 2 with a bandwidth reduction
of 1 for all topologies and decreases to 1.02 as the bandwidth reduction approaches
half the available bandwidth. Compared to BO, the speedup of FS is 1, 1, and 1.4
for the topologies FT(2;16,16), FT(2;20,18), and FT(2;16,32), respectively, with a
bandwidth reduction of 1. It increases to approximately 1.8 for all topologies with
a bandwidth reduction of 2 and then decreases to 1.03 as the bandwidth reduction
reaches half the available bandwidth.

To conclude, FS demonstrates much better performance in terms of the time to
complete the all-to-all exchange compared to LS and BO.

Figure 5.13 shows the computation time required to produce a fault-adaptive
scheduling. As explained in Section 5.4.3, to obtain a fault-adaptive scheduling, we
adapt the bandwidth-optimal scheduling using Algorithm 3 and an Integer Linear
Programming (ILP) model. Algorithm 3 identifies the communications that need to
be moved to the additional phases to avoid congestion. Then, the ILP model finds
the optimal combination that satisfies bandwidth and the all-to-all exchange con-
straints in general. The complexity of Algorithm 3 is O(P ×L), where P represents
the number of phases and L is the number of leaf switches. This complexity is man-
ageable even for large topologies. For example, with the topology of the LHCb DAQ
network FT(2;20,18), P = 20× 18 = 360 and L = 18, resulting in 360× 18 = 6480

iterations, making the computation almost instantaneous. However, the ILP model
can be time-consuming.

Figure 5.13 shows the computation time for both Algorithm 3 and the ILP model,

5.5. Results 71

Figure 5.10: Time performance with the topology FT(2;16,16). LS refers to the
linear-shift scheduling, BO is the bandwidth-optimal scheduling and FS is our pro-
posed fault-adaptive scheduling. The left axis shows the slowdown of the different
scheduling upon bandwidth reduction compared to no failures, this is the relative
time degradation due to failures. The speedup, on the right axis, shows the im-
provement ratio of FS compared to LS and BO.

Figure 5.11: Time performance with the topology FT(2;20,18), which is the topol-
ogy of the LHCb DAQ network. LS refers to the linear-shift scheduling, BO is the
bandwidth-optimal scheduling and FS is our proposed fault-adaptive scheduling.
The left axis shows the slowdown of the different scheduling upon bandwidth reduc-
tion compared to no failures, this is the relative time degradation due to failures.
The speedup, on the right axis, shows the improvement ratio of FS compared to LS
and BO.

72 Chapter 5. Fault-Adaptive Scheduling Algorithm

Figure 5.12: Time performance with the topology FT(2;16,32). LS refers to the
linear-shift scheduling, BO is the bandwidth-optimal scheduling and FS is our pro-
posed fault-adaptive scheduling. The left axis shows the slowdown of the different
scheduling upon bandwidth reduction compared to no failures, this is the relative
time degradation due to failures. The speedup, on the right axis, shows the im-
provement ratio of FS compared to LS and BO.

Figure 5.13: The computation time of the fault-adaptive scheduling under band-
width reduction. The fat-tree topology used is FT(2;20,18), which is the topology
of the LHCb DAQ network. For each bandwidth reduction b, tests were repeated
10 times with random failure scenarios involving one to three leaves and b spines.
The error bars represent the minimum, mean and maximum values.

5.6. Conclusion 73

illustrating a significant increase up to 148.69 seconds for a bandwidth reduction of
8. Additionally, the number and location of failures are important in this context
because the more failures we have, the more communications need to be rescheduled,
increasing the complexity of the ILP model. This means that between a failure on a
single leaf switch and a failure on all leaf switches, even if the bandwidth reduction
is 1 in both scenarios, the computation time will differ since the latter scenario
requires rescheduling more communications than the former.

To evaluate the fault-adaptive scheduling in terms of computation time, we ran-
domly simulated 10 failure scenarios for each bandwidth reduction. The error bars
in Figure 5.13 represent the minimum, mean, and maximum values. Each failure
scenario involved 1 to 3 leaf switches and a number of spines equal to the bandwidth
reduction value. We chose this number of failures because the literature shows that
groups of failures containing more than 3 simultaneous failures are unlikely, with
80% of groups containing less than 3 simultaneous failures [Gill et al. 2011]. We
run the ILP model with a "11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz"
processor, using 8 threads.

Figure 5.13 shows that the computation time increases significantly with the
number of failures. However, fault-adaptive scheduling remains viable for scenarios
involving a realistic number of failures.

5.6 Conclusion

In this chapter, we discussed scheduling algorithms for all-to-all traffic matrix. We
presented the concept of bandwidth reduction, one of our contributions, which allows
us to more precisely define the impact of failures on the routing of an all-to-all
schedule. We demonstrate that current scheduling algorithms are inadequate for
addressing congestion effectively as the number of phases is not sufficient for the
all-to-all exchange under bandwidth reduction. To address failures, we propose
increasing the number of phases according to the bandwidth reduction caused by
the failure scenario in the network. We propose a formula for computing the lower
bound on the number of phases and demonstrate that it increases only slightly until
half of the network bandwidth is lost.

With the lower bound on the number of phases, we propose a fault-adaptive
scheduling composed of Algorithm 3 and an Integer Linear Programming (ILP)
model described in 5.4.3 to adapt any scheduling pattern to failures by identifying
the communications that create congestion and rescheduling them in additional
phases given by the lower bound on the number of phases. We test this solution
by adapting the bandwidth-optimal scheduling for performance reasons, but any
scheduling can be adapted to failures.

We then evaluate our fault-adaptive scheduling and compare it with the widely
used linear-shift scheduling pattern which is the most optimized scheduling pat-
tern associated with the Infiniband Ftree routing algorithm without failures on the
network [Zahavi et al. 2009].

74 Chapter 5. Fault-Adaptive Scheduling Algorithm

Additionally, we compare our solution with the bandwidth-optimal scheduling
pattern[Prisacari et al. 2013b], which more effectively distributes communications
that use the network bandwidth at each phase, showing potential for fault tolerance.
Our solution completely avoids congestion, unlike the linear-shift and bandwidth-
optimal scheduling patterns, and significantly outperforms them in terms of com-
pletion time for the all-to-all exchange.

The primary drawback of our fault-adaptive scheduling solution is its reliance
on integer linear programming, which can become time-consuming in terms of com-
putation as the number of network failures increases. For instance, in the studied
FT(2;20,18) network topology, finding a scheduling solution with a bandwidth reduc-
tion of 8 takes an average of 148.69 seconds. Furthermore, the scenarios considered
are relatively simple, and as we will discuss in the next chapter, this approach may
not be sufficient to address more challenging failure scenarios. This implies that
finding a routing solution using our fault-adaptive scheduling is impossible without
causing congestion in these more challenging failure scenarios.

Nevertheless, the proposed solution remains viable for typical failure scenarios
and offers the flexibility to adapt any scheduling pattern to better tolerate network
failures.

Chapter 6

Fault-adaptive Optimized Routing
and Scheduling

Contents
6.1 Spine pinning problem . 76
6.2 Non-uniform bandwidth reduction 77
6.3 Fault-adaptive scheduling algorithm 80
6.4 Fault-adaptive routing solution 85

6.4.1 Routing algorithm . 85
6.5 Integer Linear Programming with dynamic programming . 86

6.5.1 The ILP model . 88
6.5.2 Dynamic programming . 90

6.6 Results . 91
6.6.1 Experiments setup . 91
6.6.2 Comparison of the achieved throughput 93
6.6.3 Computation Time . 97

6.7 Deployment . 97
6.7.1 Operational constraints . 98
6.7.2 LID Mask Control for Infiniband Multipath 98

6.8 Conclusion . 100

In Chapter 5, we introduced an algorithm associated with an integer linear pro-
gramming (ILP) model that adapts any all-to-all scheduling solution to address
some failure scenarios without causing congestion. However, this approach is not
always optimal, as the complexity of the ILP model increases with the number of
failures, potentially making it unsolvable for complex failure scenarios.

In this chapter, we identify the failure scenarios that make existing schedul-
ing solutions incapable of avoiding congestion and define the key property that a
scheduling algorithm must respect to ensure a congestion-free routing solution. We
then propose a Fault-adaptive Optimized Routing and Scheduling (FORS) solution
to maintain high all-to-all throughput despite the bottlenecks introduced by network
link failures.

FORS consists of an algorithm to compute the scheduling of the communications
for the all-to-all collective exchange in case of link failures. Additionally, FORS in-
cludes of a semi-algorithmic routing solution, combining a routing algorithm for

76 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

Figure 6.1: Illustration of the deterministic nature of the paths in a two-layer fat-
tree topology FT(2;4,8). On the left, all servers have one unique path to join spine
9 represented by different dashed lines. On the right, all spine switches have one
unique path to join servers S0..3.

Figure 6.2: Illustration of the deterministic nature of the paths in a three-layer fat-
tree topology FT(3;4,4,4). All leaf switches have a single path to join spine 37 (red
links), and vice versa.

basic failure scenarios with an Integer Linear Programming (ILP) model with dy-
namic programming designed to address more challenging combinations of failures.
The purpose of the routing algorithm and the ILP model is to provide congestion-
free paths between servers in the network based on the given failure scenario. We
demonstrate the applicability and performance of our solution on a real, operational
data acquisition (DAQ) network that processes large volumes of scientific data. We
compare our proposal with currently deployed approaches. Finally, we present the
applicability of FORS and the associated deployment constraints.

6.1 Spine pinning problem

In a fat-tree topology, routing can be simplified by selecting a spine for each source-
destination pair, giving us the complete path for routing the communication flow.
In a two-layer fat-tree topology, as in the studied DAQ network, the leaf switches

6.2. Non-uniform bandwidth reduction 77

are directly connected to the spines, making this statement evident. However, this
properly extends to fat-tree topologies with more than two layers as well. In a k-ary-
L-tree [Petrini & Vanneschi 1997] fat-tree topology, the shortest path to go from a
spine to a destination server is always unique. Figure 6.1 represents a two-layer fat-
tree topology, as illustrated, all servers have one unique path to join spine 9 and all
spine switches have one unique path to join servers S0 . . . 3. This property is valid
on any type of k-ary-L-tree fat-tree, even in topologies with more than 2 layers. For
instance, Figure 6.2 depicts the fat-tree topology FT(3;4,4,4) with three layers. All
leaf switches (0..15) have a single path to join spine 37, as shown by the red links. If
we know the spine, the path from the spines to a server remains deterministic, and
vice versa, regardless of the scale of the network. Therefore, in a fat-tree topology,
the spine switch used to route communication between any source-destination pair
of servers defines the entire path.

This property makes the routing problem easy to solve when the bandwidth
reduction is uniform across all leaf switches or when there is no reduction in band-
width. As explained in Section 5.2, a uniform bandwidth reduction in a fat-tree
topology occurs when at least one leaf switch experiences f ≥ 1 failures with the
spine switches and the reduction r in the number of available paths between the leaf
switch impacted by failures and the other leaf switches is always equal to f , r == f .
For instance, if the link between switch 0 and switch 8 is broken in Figure 6.1, f = 1

and the number of available paths between switch 0 and switches 1 . . . 7 is reduced
by 1, resulting in r = 1 and r = f . The concept of non-uniform bandwidth reduction
is further discussed in Section 6.2. In this case, the routing problem becomes more
challenging to solve in failure scenarios that involve unequal bandwidth reduction
between leaf switches, as shown in Section 6.2.

6.2 Non-uniform bandwidth reduction

Figure 6.3 illustrates a two-layer fat-tree topology with a failure scenario involving
an unequal number of paths between different leaf switches. In the event of two
link failures in this topology, specifically, one between switches 0 and 8 and another
between switches 1 and 9, the number of paths available between switches 0 and
1 is reduced to 2 via spines 10 and 11, see long dashes in Figure 6.3. Whereas all
other leaf switches maintain 3 paths available to communicate with switches 0 and
1. This limitation implies that if, during a single phase, there are more than two
communications between switches 0 and 1, congestion is unavoidable.

In this scenario, the bandwidth reduction is non-uniform as switch 0 has three
paths available to leaf switches 2 through 7, but only two paths to leaf switch 1. The
same applies to switch 1. Addressing non-uniform bandwidth reduction is more com-
plex, as we need to consider the specific reduction in paths between certain switches
in the all-to-all schedule. This complexity makes the linear-shift [Zahavi et al. 2009]
and bandwidth-optimal [Prisacari et al. 2013b] schedule discussed in Chapter 5 im-
possible to adapt to such cases. The need to reschedule many communications to

78 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

Figure 6.3: Illustration of a non-uniform bandwidth reduction on a two-layer fat-tree
topology as it involves an unequal number of paths between different leaf switches.
The links 0-8 and 1-9 are broken, resulting in switch 0 having only 2 paths available
to join switch 1 and 3 paths available to join the rest of the leaf switches.

additional phases increases computation time significantly, which also completely
changes the initial all-to-all schedule.

For instance, consider a phase where the communications between servers 0→4,
1→5, and 2→6 occur in the topology depicted in Figure 6.3. The communications
0→4 and 1→5 can use spines 10 and 11 as paths, respectively. However, there is
no available spine for the communication 2→6 because spines 10 and 11 are already
being used as paths, and spine 8 is down for leaf 0, while spine 9 is down for leaf 1.
As a result, communication 2→6 is forced to share the link between leaf 0 and spine
10, causing congestion. This is an example of a non-uniform bandwidth reduction
problem.

The approach of adapting existing schedules to handle such failure scenarios,
presented in Section 5.4.3, is insufficient, as their structure fails to resolve the non-
uniform bandwidth reduction problem. Algorithm 3 does not fully address this
issue, as it requires rescheduling too many communications, leading to increased
complexity in the ILP model and, consequently, prolonged computation times. In
scenarios where non-uniform bandwidth reduction impacts more than half of the
leaf switches, as in the topology shown in Figure 6.3 with broken links 0-8, 1-9,
2-10, 3-11, and 4-8, it becomes unfeasible to find a scheduling solution that enables
congestion-free routing using Algorithm 3.

To provide a clearer example, we present the linear-shift scheduling in Tables
6.1 and 6.2 for servers S0 through S3, where the links 0-8, 1-9, 2-10, and 3-11 are
broken, in the topology of Figure 6.3. The communications marked with an asterisk
must be moved to additional phases, resulting in 28 communications that need to
be rescheduled for the leaf switch 0. Similarly, 28 communications must be moved

6.2. Non-uniform bandwidth reduction 79

Table 6.1: The linear-shift scheduling for 32 servers and the first 16 phases, only the
communications involving servers S0 through S3 are represented. Communications
marked with an asterisk (*) must be moved to additional phases to address the
failure scenario with the topology shown in Figure 6.3, where the following links
have failed: 0-8, 1-9, 2-10, and 3-11.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
S0 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
S1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
S2 S2 S3 S4 S5 S6* S7* S8 S9 S10* S11* S12 S13* S14* S15* S16 S17
S3 S3 S4 S5 S6* S7* S8 S9* S10* S11* S12 S13* S14 S15* S16 S17* S18*

Table 6.2: The linear-shift scheduling for 32 servers and last 16 phases, only the
communications involving servers S0 through S3 are represented. Communications
marked with an asterisk (*) must be moved to additional phases to address the
failure scenario with the topology shown in Figure 6.3, where the following links
have failed: 0-8, 1-9, 2-10, and 3-11.

P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31
S0 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31
S1 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S0
S2 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S0 S1
S3 S19* S20* S21* S22* S23* S24* S25* S26* S27* S28* S29* S30* S31 S0 S1 S2

for each of the switches 1, 2, and 3 affected by the failures, given that the linear-
shift pattern and that all leaf switches experience the same non-uniform bandwidth
reduction. This totals 112 (28× 4) communications that need to be rescheduled.

The lower bound on the number of phases given in Section 5.4.1, is
⌈
4×(4×8−4

4−1

⌉
=

38, which means that we need at least 6 additional phases for the rescheduling
of the communications. As discussed in Section 5.4.3, the ILP model creates a
communication variable for the phase when the communication is initially scheduled
and for each of the additional phases. Therefore, for each communication to be
rescheduled, 7 variables are created in the ILP model. This leads to a total of 112×
7 = 784 variables for the rescheduling of the communications, which significantly
increases the complexity of the problem, even for a small topology like FT(2;4,8).
If the problem becomes more constrained, such as in scenarios where non-uniform
bandwidth reduction impacts more than half of the leaf switches, finding a feasible
solution, meaning a solution that enables a routing to be found without creating
congestion, becomes impossible without completely changing the initial schedule.

Therefore, a better approach is to develop a new scheduling algorithm that
more effectively considers the routing constraints. A key property of this new fault-
tolerant scheduling algorithm, designed to handle all types of failure scenarios, is
that it limits communications between leaf switches to a single exchange per phase.

80 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

phases:
αs = 0

0

αs = 1

1

αs = 2

2

αs = 3

3

αs = 4

4

αs = 5

5
θ0 = 0

θ1 = 1

θ2 = 1

θ3 = 2

θ4 = 3

θ5 = 3 ×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×× × × × ×

sequence Θ̃

shift by -1
shift by -1

periodic with period M0

Figure 6.4: Illustration of function T (s, p), with M0 = 6 and f = 2, that defines
whether a server s (the lines) transmits at phase p or not. The function depends
only on αs and is periodic of period M0. Server s transmits at phase p if and only
if the corresponding cell is crossed.

This means that at each phase, each leaf switch communicates at most once with
another leaf switch. This property ensures that a routing solution can always be
found, regardless of the bandwidth reduction between any two leaf switches, as long
as they remain connected in the topology.

6.3 Fault-adaptive scheduling algorithm

The work presented in this section was conducted in collaboration with Quentin
Bramas, an Associate Professor at the University of Strasbourg, France. He designed
Algorithm 5 and demonstrated its functionality, as detailed in this section. The
implementation of the algorithm and the properties it needs to respect were carried
out by Éloïse Stein, the author of this thesis.

In this section, we present our new scheduling algorithm performing a congestion-
free all-to-all exchange in an arbitrary two-layer fat-tree. The challenge is to use
the minimum number of phases for any combination of link failures. Our algorithm
only applies to the all-to-all traffic matrix.

We consider here a fat-tree where the root node (representing the set of spines
in the generalized fat-tree topology) has M1 children representing the leaf switches,
and each leaf switch has M0 children representing the servers. There are P = M0M1

servers in total. Assuming the bandwidth between a server and its parent leaf switch
is normalized to 1, the available bandwidth between a leaf switch and the root is M0.
Such a fat-tree is denoted FT (2;M0,M1). There is a one to one mapping between
the resources in this topology and the k-ary-L-tree deployed in practice. This new
representation is used to simplify the upcoming notations.

Let f be the reduction of the bandwidth between each leaf switch and the root of
the tree. In a k-ary-L-tree the root is replaced by M0 spine switches, each connected
to all the leaf switch and links having equal bandwidth [Pippenger 1978]. In this

6.3. Fault-adaptive scheduling algorithm 81

case, f is the bandwidth reduction, i.e., the maximum number of failed links on
a leaf switch. The bandwidth reduction f is computed by taking the number of
link failures over all leaf switches and finding the maximum of these numbers. It
is known [Prisacari et al. 2013b] that, if M0 ≥ M1, then a schedule exists with a
bandwidth usage between a leaf switch and the root of at most M0 − ⌊M0

M1
⌋. So if

f ≤ ⌊M0
M1

⌋, the optimal schedule described in [Prisacari et al. 2013b] works without
being impacted by faults as illustrated in Figure 5.5.

Now we present a schedule that performs an all-to-all (congestion-free) sched-
ule for any ⌊M0

M1
⌋ < f < M0. The number of phases of our schedule is Pf =⌈

M0(P−M0)
M0−f

⌉
> P , which is optimal as shown in Chapter 5.

The index of a server s ∈ [0,M0M1] (line 15 in Algorithm 5) is uniquely decom-
posed as

s = αs + γsM0

where γs ∈ [0,M1 − 1] is the index of the parent leaf switch (line 13 in Algorithm
5) and αs ∈ [0,M0 − 1] is the index of the server among the servers below the leaf
switch. For instance, in the topology FT (2; 4, 8) with M0 = 4, M1 = 8 depicted in
Figure 6.3, the index s of server 22 can be computed as follows:

s = αs + γsM0 = 2 + 5 ∗ 4 = 22

.
We want each server to transmit P −M0 times evenly during the Pf phases of

an execution. These are the number of communications that need to leave the leaf
switch, for each source server. To do so, we define for each server s the set of phases
Θs when it transmits. The definition of Θs is based on a common infinite sequence
Θ̃ of evenly distributed integers with a density of M0/(M0 − f):

Θ̃(i) =

⌈
iM0

M0 − f

⌉
where i ∈ [0 . . . P − 1] is the index in the sequence. The computation of Θ̃ is given
in lines 7-9 in Algorithm 4. For instance, in the topology FT (2; 4, 8) with M0 = 4,
M1 = 8, f = 1 and the number of servers P = M0 × M1 = 4 × 8 = 32, the
computation of Θ̃(i) with i ∈ [0, 1, 2, .., P − 1] is :

i = 0, Θ̃(0) =

⌈
0× 4

4− 1

⌉
= 0

i = 1, Θ̃(1) =

⌈
1× 4

4− 1

⌉
= 2

i = 2, Θ̃(2) =

⌈
2× 4

4− 1

⌉
= 3

. . .

i = P − 1 = 31, Θ̃(31) =

⌈
31× 4

4− 1

⌉
= 42

82 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

We assign a shifted subset of the image of Θ̃ of size P −M0 to each server s as
follows:

Θs =
{
Θ̃(i+ θs)− αs s.t. i ∈ [0, P −M0 − 1]

}
with θs =

⌊
(αs−1)(M0−f)

M0

⌋
+ 1. Θs contains P −M0 integers from the sequence Θ̃,

shifted by αs, and starting at index θs (in order to ensure that the first phase is
non-negative). The computation of Θ is given at lines 13-17 in Algorithm 4 and
the computation of θ in lines 10-12. For instance, in the topology FT (2; 4, 8) with
M0 = 4, M1 = 8, f = 1, the number of servers P = M0 ×M1 = 4× 8 = 32 and the
servers with index 2 in the leaf switches to which they are connected, αs = 2, θs is⌊
(2−1)(4−1)

4

⌋
+ 1 = 1. In this case, θ = [0, 1, 1, 2] for all possible index of the servers

in the leaf switches they are connected to which are [0, 1, 2, 3]. In the example with
αs = 2, the set of phases when the servers can transmit with an index of two in the
leaf switches they are connected to is Θi with i ∈ [0..P −M0 − 1] and is computed
as follows:

i = 0,Θi = Θ̃(i+ θαs)− αs = Θ̃(0 + 1)− 2 = 2− 2 = 0

i = 1,Θi = Θ̃(i+ θαs)− αs = Θ̃(1 + 1)− 2 = 3− 2 = 1

. . .

i = 27,Θi = Θ̃(i+ θαs)− αs = Θ̃(27 + 1)− 2 = 38− 2 = 36

Let T be the transmission function defined on pairs (s, p) where s ∈ [0, P − 1]

is a server and p ∈ [0, Pf − 1] a phase, such that T (s, p) equals 1 if s transmits in
phase p and 0 otherwise. In our schedule, we define T as follows:

T (s, p) =

{
1 if p ∈ Θs

0 otherwise

We see that T is periodic with period M0 and depends only on αs and p. Fig-
ure 6.4 presents an example of a function T in a fat-tree FT (2; 6, 6) with a bandwidth
reduction of f = 2.

Let NT (s, p) be the number of times s transmits before phase p (ie.,∑p−1
q=0 T (s, q)).
We can now define our schedule d. For a given server s in a phase p, if the

server transmits at this phase, ie., if T (s, p) = 1 (line 16 in Algorithm 5), then the
destination server is computed using the number NT (s, p) + θs (the lines 19-25 in
Algorithm 5). This number is used to compute the destination leaf Dleaf (among
the M1 − 1 possible destination leaves, line 21 in Algorithm 5) and the index of the
destination server below this leaf Dserver (among the M0 possible servers, line 22 in
Algorithm 5). The destination index DleafM0 + Dserver (line 23 in Algorithm 5),
which depends only on αs, is then shifted to start from the index (γs +1)M0 of the
first server below the next leaf. In addition, one could observe that the sequence
of destinations is periodic with period the lowest common multiple between M1 − 1

6.3. Fault-adaptive scheduling algorithm 83

and M0 (denoted lcm(M1 − 1,M0), so if the M1 − 1 and M0 are not coprime, we
must shift the sequence every lcm(M1 − 1,M0) phase. Formally, we have:

{
Dserver = (NT (s, p) + θs)%M0

Dleaf =
(
NT (s, p) + θs +

⌊
NT (s,p)

lcm(M1−1,M0)

⌋)
%(M1 − 1)

d(s, p) = (DleafM0 +Dserver + (γs + 1)M0)%P

The scheduling algorithm is described in Algorithm 4 and Algorithm 5. The schedul-
ing solution can be found in polynomial time. The complexity of the scheduling al-
gorithm depends on the number of phases and the number of servers, and is given by
O(Pf ∗ P), where Pf =

⌈
M0(P−M0)

M0−f

⌉
> P is the number of phases with f reduction

of the bandwidth and P = M0M1 the number of servers.

Algorithm 4: The computation of θ and Θ, which are necessary for Algo-
rithm 5. Here, M1 is the number leaf switches, M0 is the number of servers
connected to a leaf switch and f is the bandwidth reduction.
1 Input: The number of servers M0 connected to a leaf switch.
2 Input: The number of leaf switches M1

3 Input: The bandwidth reduction f .
4 Output: The sequence θ of size M0

5 Output: The sequence Θ of size M0

// Computation of the number of servers P

6 P = M0 ×M1

// Computation of the sequence Θ̃ of evenly distributed integers

7 Θ̃ := Empty list of size P

8 foreach i ∈ [0, . . . , P − 1] do
9 Θ̃[i] =

⌈
iM0

M0−f

⌉
// Computation of the starting indexes θ from the sequence Θ̃ for all

possible index of the servers in the leaf switches they are connected to.

10 θ := Empty list of size M0

11 foreach αs ∈ [0, . . . ,M0 − 1] do
12 θ[αs] =

⌊
(αs−1)(M0−f)

M0

⌋
+ 1

// Computation for each server of the set of phases Θ when it transmits.

13 Θ := Empty list of size M0

14 foreach αs ∈ [0, . . . ,M0 − 1] do
15 Θ[αs] := Empty list of size P −M0

16 foreach i ∈ [0, . . . , P −M0 − 1] do
17 Θ[αs][i] = Θ̃[i+ θ[αs]]− αs

18 return θ, Θ

84 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

Algorithm 5: The scheduling algorithm computes the destination for each
source at each phase. Here, M1 is the number leaf switches, M0 is the num-
ber of servers connected to a leaf switch and f is the bandwidth reduction.
θ and Θ are computed in Algorithm 4. The output is schedule which is the
computed scheduling that gives the ordered list of source-destination pairs
for each phase.
1 Input: The number of servers M0 connected to a leaf switch.
2 Input: The number of leaf switches M1

3 Input: The bandwidth reduction f

4 Output: The dictionary schedule with the phase p as key and the list of
tuple (s, d) as value, where s is the source server and d is the destination
server

// Computation of the number of servers P

5 P = M0 ×M1

// Computation of the number of phases upon bandwidth reduction

6 nbPhase =
⌈
(P−M0)∗M0

M0−f

⌉
// Number of transmissions before returning to the same destination. The

lcm function returns the least common multiple between M1 − 1 and M0

7 cycleLength = lcm(M1 − 1,M0)

// Number of times Ns
T a server s has transmitted data

8 NT := List of size P filled with the value 0
9 schedule := Empty list of size nbPhase

10 foreach p ∈ [0, . . . , nbPhase− 1] do
11 scheduling[p] := Empty list of size P

12 foreach sourceLeaf ∈ [0, . . . ,M1 − 1] do
13 γ = sourceLeaf ∗M0

14 foreach α ∈ [0, . . . ,M0 − 1] do
// Computation of the source server s

15 s = γ + α

16 if p ∈ Θ[α] then
17 if NT [s] ≥ P −M0 then

// The server has finished transmitting

18 continue

19 n = NT [s] + θ[α]

20 cycleOffset =
⌊

NT [s]
cycleLength

⌋
21 groupDest = n mod (M1 − 1)

22 offsetDest = (n+ cycleOffset) mod M0

23 shift = groupDest ∗M0 + offsetDest

24 NT [s] = NT [s] + 1

25 d = (γ +M0 + shift) mod P

26 scheduling[p].insert((s, d))

27 return schedule

6.4. Fault-adaptive routing solution 85

6.4 Fault-adaptive routing solution

In order to recover from failures, a better communication pattern is not enough,
it is also necessary to ensure that the right paths are taken. Here we propose a
congestion free routing solution to map the traffic resulting from the schedule onto
paths. We first propose an algorithm that addresses link failures verifying a specific
property. We then propose an ILP model to deal with all the failures not supported
by Algorithm 6.

6.4.1 Routing algorithm

The objective of our routing algorithm is to efficiently assign a unique spine to each
source-destination pair at each phase. Indeed, selecting a spine dictates the whole
path between a source and destination. For this purpose we go back to the original
Generalized Fat-tree, more specifically the k-ary-L-tree [Petrini & Vanneschi 1997].
To prevent multiple communication flows from using the same link in the topology,
the algorithm must guarantee that a spine is not used more than once for destinations
connected to the same leaf switch as well as for sources below a leaf.

We propose Algorithm 6 to compute a unique spine to each source-destination
pair at each phase, ensuring that a spine is not used more than once for destinations
or sources connected to the same leaf. The principle of Algorithm 6 is simply
to exclude spines that contain at least one failure from being used as paths for
source-destination pairs. This property makes Algorithm 6 only applicable when
the number of spines impacted by failures m is inferior or equal to the bandwidth
reduction f (m ≤ f), i.e., the bandwidth reduction is uniform. For instance, in
Figure 6.3 which represents a two-layer fat-tree, the bandwidth reduction f is 1, as
the maximum number of link failures on leaf switches is 1. The number of spines
impacted by failures m is 2, as spines 8 and 9 each have one link failure with 0 and
1, respectively. As m > f , Algorithm 6 is not applicable in this scenario. However,
if there is only one failure, involving switches 0 and 8 for example, the algorithm
is applicable since the bandwidth reduction remains one and the number of spines
impacted by failures is now one (m == f) as well.

The spine to use on a path is chosen based on the index of the source-destination
pair in the scheduling defined in Section 6.3. The selected spine is identified by the
index i in Algorithm 6.

Consider a generalized fat-tree with n = M0 spines and consider the array of n
spines denoted N = (N0, . . . , Nn−1). Let p ∈ P be a phase, P be the ordered list
of phases and Dp

l = (dl0, d
l
1, . . . , d

l
k−1) be the ordered list of k servers (in increasing

order) connected to leaf l that are destinations at phase p. The ordered list of m ≤ n

spines not impacted by failures is denoted S ∈ N . A spine is impacted by failures if
at least one of its connected links fails. The ordered list of source-destination pairs
of servers that communicate at phase p ∈ P is defined by Schedulep with p being
the phase.

In the routing algorithm, each source-destination pair of servers denoted (s, d) ∈

86 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

Schedulep with p ∈ P , the spine used as a path to route the communication (s, d)

is noted Si mod m ∈ S with i mod m being the index of (s, d) in the ordered list
Schedulep. For example, Schedulep provides a set of source-destination pair SD =

((s0, d0), . . . , (sm, dm)), m being the number of spines not impacted by failures and
also the number of communications from and to a leaf switch at a phase p ∈ P .
The spines S0, . . . , Sm are respectively assigned as a path to the communications in
SD, which means that S0 is used as a path for the communication (s0, d0), S1 is
assigned to (s1, d1), etc.

Therefore, by definition, the source servers connected to a same leaf switch and
communicating in the same phase never use a same spine as the list is ordered (the
source servers with the lowest ID are the first in the list) and the number of source
servers that communicate is equal to m. This ensures that there is no congestion
between a source leaf and a spine. There is also no congestion between a spine and
a destination leaf as the destinations in the scheduling algorithm defined in Section
6.3 are shifted by one.

The solution computed by Algorithm 6 can be found in polynomial time. The
complexity of the routing algorithm is the same as the complexity of the scheduling
algorithm. The algorithm walks through all source-destination pairs to assign each
a spine, resulting in a complexity of O(N2), where N is the number of servers in
the topology.

However, in the case of other failure scenarios, in particular, if m spines are im-
pacted by failures, with m > f where f is the bandwidth reduction, as illustrated in
Figure 6.3, the routing problem becomes challenging. In order to be able to propose
a general solution capable of addressing all failure scenarios without encountering
congestion issues, our proposal is to use Integer Linear Programming (ILP).

6.5 Integer Linear Programming with dynamic program-
ming

In addressing failure scenarios with a non-uniform bandwidth reduction, i.e., where
the number of spines impacted by failures is strictly superior to the bandwidth
reduction f , the formulation of a general routing algorithm appears, to our best
understanding, unattainable. In response, our approach is to use an ILP model
with dynamic programming to find a feasible routing solution, i.e., without conflicts
on the links in the network.

We believe that a general routing algorithm can not be found, as our problem is
similar to the Multi-Commodity Flow problem [Karp 1975]. The multi-commodity
flow problem involves routing multiple flows (or commodities) through a network
from their respective sources to their destinations, while respecting capacity con-
straints on the links [Karp 1975]. The objective of a multi-commodity flow problem
is typically to minimize or maximize the costs associated with the links while sat-
isfying these constraints. This is similar to our problem, as we want to minimize
the cost of routing each communication between a source server and a destination

6.5. Integer Linear Programming with dynamic programming 87

Algorithm 6: Routing algorithm to compute the spine for each source-
destination pair (s, d) when m spines are impacted by failures and m ≤ f ,
with f being the bandwidth reduction. Here, M0 is the number of servers
connected to a leaf switch and S is the ordered list of spine switches that
do not contain any failed links. schedule is the scheduling computed by
Algorithm 5 that provides the ordered list of source-destination pairs for
each phase. The output is the dictionary routingTable which defines the
computed spine for each source-destination pair (s, d).

1 Input: The dictionary schedule with the phase p as key and the ordered
list of source-destination pairs (s, d) as value.

2 Input: The number of servers M0 connected to a leaf switch
3 Input: The ordered list S of spine switches that do not contain any failed

links
4 Output: The dictionary routingTable with the destination pair (s, d) as

key and the spine to use in the path to go from s to d as a value
5 routingTable := Empty dictionary of size N2, where N is the number of

servers in the topology
6 foreach p ∈ schedule do

// i is the index of the spine in S.

7 i = 0

8 foreach (s, d) ∈ schedule[p] do
// Computation of the source leaf switch sLeaf and the destination

leaf switch dLeaf with the source server s and the destination

server d

9 sLeaf =
⌊

s
M0

⌋
10 dLeaf =

⌊
d
M0

⌋
// If the communication (s, d) is not local to a leaf switch.

11 if sLeaf ̸= dLeaf then
// S[i] is the ith spine in the ordered list of spines S that do

not contain any failed links. It is assigned to communication

(s, d) to be used in the path from source s to destination d.

12 routingTable[(s, d)] = S[i]

13 i = (i+ 1) mod |S|

14 return routingTable

88 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

server.
More specifically, this means we want to ensure that a communication flow does

not go through the top layer of the fat-tree topology more than once to join a
destination. Additionally, our routing must respect certain constraints, which we
describe in Section 6.5.1.2, to avoid congestion, meaning that a link should not be
used more than once in the same direction.

The multi-commodity flow problem is known to be NP-complete [Karp 1975]
and, in some variants, NP-hard. A variant of the multi-commodity flow problem is
the Unsplittable Flow Problem (UFP) [Kleinberg 1996], in which each flow must be
routed along a single path from its source to its destination. This means the flow
can not be split across multiple paths. This problem is NP-hard and could relate to
our routing problem, as a communication flow between a source and a destination
can not be split into multiple paths and must use a single path. Since our problem
could be NP-complete or NP-hard (such a proof is left for future work), and we
could not find an algorithm, we decided to use integer linear programming to solve
it.

While using an ILP model to find optimal routing for a specific traf-
fic matrix is not new and has been employed in the past, existing ap-
proaches [Prisacari et al. 2013c, Schweissguth et al. 2017] solve scheduling and rout-
ing in a single model. This significantly increases the complexity of the problem and
makes its applicability to large topologies challenging. In our approach, scheduling
is solved by an algorithm in polynomial time, simplifying the routing problem. This
significantly reduces the complexity of the ILP model for routing, making it appli-
cable to larger topologies.

6.5.1 The ILP model

Our routing problem involves finding a path in a fat-tree topology for each source-
destination pair to provide a routing solution without congestion. In general, the
constraints that our routing must respect are:

• Unique spine assignment: For each source-destination pair, exactly one spine must
be selected.

• Avoiding upstream congestion: For each source leaf, no more than one communi-
cation can use the same spine.

• Avoiding downstream congestion: For each destination leaf, no more than one
communication can use the same spine.

All the variables in the model needs to be binary and linear constraints are
necessary to express the problem. Our constraints are linear because they involve
summing binary variables and setting these sums to specific values. For instance,
the constraint 1 requires the sum of binary variables to equal 1.

ILP is characterized by decision variables that are restricted to integer values,
such as binary values, and by constraints that must be linear. Our problem aligns

6.5. Integer Linear Programming with dynamic programming 89

Table 6.3: Notations in the ILP model.

Notation Description
S The set of servers in the topology.
s ∈ S The source server.
d ∈ S The destination server.
I The set of spines in the topology.
i ∈ I The spine switch.
L The set of leaf switches in the topology.
l ∈ L The leaf switch.
Sl The group of servers directly connected to the leaf switch

l ∈ L.

perfectly with these characteristics, making it well-suited for solving using ILP
solvers like Gurobi.

The definition of the problem and structure can be easily expressed with linear
formulations. This makes, to our knowledge, Integer Linear Programming (ILP) the
most suitable approach. However, ILP problems are known to be NP-complete and
challenging to solve, particularly when all variables are binary [Karp 1972]. To ad-
dress this, we reduced the problem as a spine pinning problem as explained in Section
6.1 and used dynamic programming as shown in Section 6.5.2 to solve it with, to our
knowledge, the most efficient solver available: Gurobi. Gurobi is the most optimal
solver for ILP problems and offers free licenses for academic use [experts 2023a].
Gurobi demonstrates significantly shorter computation times compared to other
widely used solvers such as IBM CPLEX and lpSolve [Luppold et al. 2018].

An ILP model comprises variables, constraints, and an optimization function.
However, in order to find a solution faster, and given that an optimization function
is unnecessary as we seek only a feasible routing solution, we deliberately omitted
such a function from our model and set the Gurobi parameters to stop after finding
the first feasible solution. The notation to define the variables and constraints of
the ILP model are described in Table 6.3.

6.5.1.1 The variables

The variables in our model indicate which spine is selected for each source-
destination pair. They are defined by v(s, d, sp), a binary variable where s ∈ S

is the source server, d ∈ S is the destination server, and i ∈ I is a spine. This
variable takes the value 1 if spine i is chosen for the path between source server s

and destination server d, and 0 otherwise. For instance, if during a phase, source
server 0 uses spine 8 to reach destination server 10, the variable v(0, 10, 8) is set to
1 in the ILP model, while for all other spines i ̸= 8, v(0, 10, i) is 0.

90 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

6.5.1.2 The constraints

We express the following constraints in the ILP model to ensure that the routing
solution is conflict-free:

• Only one spine is chosen per communication:
∀s, d ∈ S,

∑
i∈I v(s, d, i) = 1.

• At most one spine is used from each source leaf switch to avoid upstream conges-
tion:
∀l ∈ L, i ∈ I,

∑
s∈Sl,d∈S v(s, d, i) ≤ 1.

• At most one spine is used to each destination leaf switch to avoid downstream
congestion:
∀l ∈ L, i ∈ I,

∑
s∈S,d∈Sl

v(s, d, i) ≤ 1.

One ILP model is run for each phase. The variables and constraints enable
to find a feasible routing solution without conflicts on the links for each phase
independently.

To minimize the computation time of the ILP model, our next objective is to
apply dynamic programming which is an optimization technique that divides the
problem into smaller sub-problems, each of which is solved using the solutions found
for the previous sub-problems.

6.5.2 Dynamic programming

Dynamic programming keeps the computation time reasonable and enables find-
ing solutions for even larger topologies. The idea of dynamic programming is
to decompose the problem into smaller sub-problems and use the solutions of
these sub-problems to solve the subsequent ones. As described by Prisacari et
al. [Prisacari et al. 2013c], an Integer Linear Programming (ILP) model is proposed
to find optimized paths between a source and a destination within a fat-tree topol-
ogy, leveraging dynamic programming techniques. The objective in this model is
to distribute the load as evenly as possible across the various links at each layer in
the fat-tree topology. The approach involves splitting the routing problem by layers
within the fat-tree and solving the problem for each layer. At each step, the solution
for the current layer uses the routing solution of the previous layer. After solving the
problem for each layer, the overall solution is further optimized to ensure that the
load on the links is balanced. The approach of Prisacari et al. [Prisacari et al. 2013c]
aim to find the most optimized solution in terms of load balancing while our objec-
tive is feasibility in solving our routing problem. Since our scheduling solution is
already optimized to prevent network congestion, using a solution that balances the
load across links is not interesting for our problem.

To apply dynamic programming, our problem is divided into distinct phases. At
each phase, an ILP model is formulated to compute the routing solution for that

6.6. Results 91

specific phase. The solution obtained from the ILP model in the current phase is
saved and subsequently used by the ILP models in the following phases.

For each solved ILP model, we save the entries, an entry is defined by the spine
assigned to route the communication from one leaf switch to another, as specified
in the routing table of the leaf switch. For every source-destination pair (s, d) in
the solved ILP model, we compute the source leaf ls (the leaf switch connected to
s) and the destination leaf ld (the leaf switch connected to d). These entries are
stored in a dictionary with each (ls, ld) as key and the assigned spine as value.

In the current ILP model to be solved, we iterate through each source-destination
pair (s, d) and each possible spine i ∈ I that can be used to route (s, d) (refer to
Table 6.3 for notation). We then create the corresponding variable v(s, d, i) in the
ILP model. Once the variable is defined, we check if spine i has been previously
assigned for routing between the source leaf connected to s and the destination
leaf connected to d in the previous phases. If it has, we use the Start parameter
available in Gurobi [experts 2023c]. The Start parameter allows us to provide an
initial feasible solution to the solver, which accelerates the optimization process,
especially for complex problems. Consequently, we set the "Start" parameter for
variable v(s, d, i) to 1.

The dynamic programming approach has been chosen due to its effectiveness in
optimizing computation time, as demonstrated in [Prisacari et al. 2013c].

6.6 Results

In this section, we evaluate the throughput achieved by our Fault-adaptive Opti-
mized Routing and Scheduling (FORS) solution, our combined scheduling and rout-
ing solutions, on the use-case operational network. We deployed a prototype of our
solution and conducted the measurements on the live network. We compare FORS
with the state of the art solutions to prove that FORS degrades more gracefully in
the event of bandwidth reduction than the other solutions. Finally, we present the
computation time required to find a routing solution in complex failure scenarios,
necessitating solving our ILP model.

6.6.1 Experiments setup

To illustrate the performance degradation during bandwidth reduction, we count
the number of events reconstructed by each server over 5-second intervals in the all-
to-all application. The duration of the measurement is one minute for each failure
scenario, resulting in a total of 12 data points. Multiplying this rate by the volume
of data of an event, we obtain the global throughput of the DAQ network.

We perform our measurements under various failure scenarios, involving links
between leaf and spine switches. The leaf switches depicted in Figure 2.7 are noted
SW0..17 and the spine switches are noted SW18..37. The links between the leaf
switches and the servers are not considered, since failures on those links disconnect

92 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

servers and, hence sources, from the network. In such cases, optimizing the band-
width is not meaningful as we cannot reconstruct events anyway. To conduct our
measurements, we manually disable links between leaf and spine switches. In the
following description of the failures, the IDs of the switches are referenced according
to Figure 2.7:

• 0F: No failures.

• xF SW0: x ∈ [1, 2, 3] failure(s) between the leaf switch SW0 and random spine
switches. This scenario allows to show the impact of bandwidth reduction located
on a single leaf switch, i.e., a uniform bandwidth reduction.

• xF SW0,5,11: x ∈ [1, 2, 3] failure(s) between the leaf switches SW0, SW5 and SW11

and random spine switches. All cited leaf switches have failures with a different
spine. For instance, 1F SW0,5,11 corresponds to the link failures SW0-SW18,
SW5-SW19 and SW11-SW20. This scenario illustrates the impact of multiple link
failures occurring in more diverse locations than a single leaf inside the network
and the impact of a non-uniform bandwidth reduction.

• SW18,19: The spine switches SW18 and SW19 have failed. This scenario shows
the impact of spine failures.

• SW18,19,22,23: The spine switches SW18, SW19, SW22 and SW23 have failed.

We consider a large variety of realistic[Gill et al. 2011, Yigitbasi et al. 2010,
Singh et al. 2021] failure scenarios. The literature [Gill et al. 2011] shows that
grouped failures rarely consist of more than five failures simultaneously. Our failure
scenarios range from 1 failure (1F SW0) to 9 failures (3F SW0,5,11) occurring simul-
taneously. Additionally, we evaluate the performance of the different approaches
with spine failures, ranging from 40 to 80 link failures in the network. While these
latter failure scenarios are rather extreme our results show that the performance
degradation is identical to some more frequent lighter failure cases.

We measure the impact of bandwidth reduction for different configurations of
the DAQ network. The concept of bandwidth reduction is described in Section
5.2. As explained in Section 2.2.3, to prevent congestion, the all-to-all collective
exchange is segmented into phases. The DAQ application running on the servers
ensures that all sources finish sending their data to the current destinations before
moving to the next phase. The synchronization is performed using the Tree-based
Barrier algorithm [Hensgen et al. 1988]. This approach has demonstrated better
performance than non-synchronized communications without failures, especially in
large-scale systems [Pisani et al. 2023a]. However, as demonstrated in Section 4.3.4,
synchronization impacts throughput in the presence of failures and can degrade
performance more than the absence of synchronization. Therefore, we also evaluate
the approach without synchronization. The non-synchronized all-to-all application
is the same as presented in Section 4.3.1. In this naive approach, each destination
requests data from a configurable amount of sources at the same time, letting the
network handle the resulting congestion.

6.6. Results 93

The routing algorithm used in the absence of failures is Ftree, as explained in
Section 2.3.3, which is the optimal routing algorithm for the linear-shift schedul-
ing [Zahavi et al. 2009]. The routing algorithm Ftree is used in scenario 0F when
no bandwidth reduction occurred. It is also used in the scenarios SW18,19 and
SW18,19,22,23, denoting the failure of the spine switches SW18, SW19, SW22 and
SW23. Despite the complete failure of those switches, the Infiniband controller does
not fail over to Min-Hop as the topology stays a fat-tree in such cases. In the
other failure scenarios, the controller switches to the Min-Hop routing algorithm,
which is the default behavior in the absence of a pure fat-tree topology, and which is
recommended as it balances the traffic better than Ftree in case of bandwidth reduc-
tion [Drung & Rosenstock 2017] as we show in Section 4.2. Other OpenSM routing
algorithms exist, such as Up-Down, LAyered SHortest Path Routing (LASH), and
Dimension Order Routing (DOR), but they are not suitable for fat-tree topolo-
gies [Nvidia 2023b]. Bogdanski et al. [Bogdanski et al. 2012] study the performance
of these algorithms and show that they are all highly sensitive to network failures
and we also demonstrate the performance of Up-Down in Section 4.2.

Here we evaluate the performance of Infiniband routing algorithms optimized
for fat-tree topologies (Ftree and Min-Hop), in both normal operation and during
bandwidth reduction, on a real Infiniband network. Additionally, we include the
adaptive routing version of Ftree (Ftree-AR) into our measurements. This adaptive
routing version of Ftree is already implemented in Infiniband [Nvidia 2023b] but is
not normally used by the DAQ network under study. This approach dynamically
adjusts routing in the event of failures by setting multiple alternative routes in the
routing tables and balancing the traffic on the paths depending on the load. We
compare these routing approaches to FORS.

6.6.2 Comparison of the achieved throughput

To evaluate our solution, we measure the throughput achieved by the servers under
the various failure scenarios described in Section 6.6.1.

The InfiniBand controller assigns Local Identifiers (LIDs) to each server in the
topology. In the switch routing tables, each LID is mapped to an output port,
directing traffic accordingly.

Our custom scheduling described in Section 6.3 is implemented in the MPI ap-
plication deployed in the network. In instances of bandwidth reduction, FORS
establishes a routing solution comprising multiple paths for each source-destination
pair. The determination of the specific path for each pair depends on the phase in
which the exchange occurs.

Infiniband supports multipath [Nvidia 2023b], enabling the addition of multiple
routes to the switch routing table for each destination server. Since the topology
contains 20 spines, we need at least 20 routes for each server in the routing tables of
the switches. This means that instead of having one LID per server, we also encode
the spine to be used to reach the server in the LID. Thus, each switch has 20 LIDs
to join each server, with every spine in the network having an assigned ID encoded

94 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

Figure 6.5: Evaluation of FORS throughput compared to the default routing algo-
rithms Ftree/Min-Hop and the adaptive routing version of Ftree with synchronized
and non-synchronized all-to-all exchange. To obtain the total throughput achieved
by the DAQ application, one can multiply the throughput per server by the number
of servers in the DAQ application, which is 326. The error bars represent the mini-
mum, mean and maximum values over one minute of measurement for synchronized
all-to-all and five minutes for non-synchronized all-to-all. The fat-tree topology of
the studied data acquisition network is FT(2;20,18), illustrated in Figure 2.7. The
failure scenarios noted with "*" are the ones where an ILP model was needed to
compute the routing solution.

6.6. Results 95

within the LID. Using multiple LIDs for routing has already been implemented and
has proven to be effective [Lin et al. 2004].

The parameter to set up multiple paths to join a destination server in Infini-
Band is the LID Mask Control (LMC) [Nvidia 2023b]. The LMC value needed to
implement the routing solution is 5, allowing at most 25 = 32 routes for each des-
tination server, which works well with a topology of our size that has 20 spines.
We generate routing tables for each switch, where each LID is assigned to an out-
put port. The InfiniBand controller then pushes the routing tables to the switches.
Therefore, FORS routing assigns the LID to use for each communication at each
phase, thus defining the complete route for sending traffic. The scheduling of FORS
is implemented in the MPI application deployed in the network.

The throughput achieved by FORS decreases more gracefully than
the other solutions and depends solely on the bandwidth reduction. The
failure scenarios 1F SW0 and 1F SW0,5,11 exhibit the same throughput despite
having a different number of failures which are one and three, respectively. This
similarity is due to the throughput achieved by FORS depends solely on the band-
width reduction, which is one of our contribution described in Section 5.2. FORS
computes a congestion-free solution that requires the same number of phases in
scenarios 1F SW0 and 1F SW0,5,11 as the bandwidth reduction for both scenarios
is one. Consequently, the unique parameter that fluctuates the throughput is the
number of phases which depends on the bandwidth reduction as explained in Section
5.4.1. The number of phases increases with bandwidth reduction to prevent conges-
tion; therefore, a higher number of phases results in a longer all-to-all completion
time. This is true only for FORS. For the other solutions, the number of phases is
unchanged, and throughput is affected by conflicts causing congestion. The same
applies to scenarios 2F SW0, 2F SW0,5,11 and SW18,19, where the bandwidth reduc-
tion is 2 even though the actual number of failures differs (2, 6 and 40, respectively).
This characteristic allows FORS to maintain the same throughput, whether dealing
with the loss of two spine switches (scenario SW18,19) or the loss of two links on a
single leaf switch (scenario 2F SW0).

Without bandwidth reduction, the synchronized all-to-all is better
than the non-synchronized all-to-all. As previously demonstrated in Section
4.3.3, the synchronized all-to-all shows much better performance without band-
width reduction in the network (scenario 0F). This performance difference is due to
the synchronization preventing congestion. Since each source waits for all sources
to finish the current phase before sending to the next destination, the linear-shift
scheduling is always respected. In contrast, the non-synchronized all-to-all performs
poorly without bandwidth reduction with Ftree and Ftree-AR compared to the syn-
chronized all-to-all. This is due to the accumulated congestion during the all-to-all
exchange, resulting in a degradation of the throughput.

With bandwidth reduction, the non-synchronized all-to-all is better
than the synchronized all-to-all. As previously highlighted in Section 4.3.4,
when congestion becomes unavoidable, i.e. in the case of bandwidth reduction,
each synchronized phase has to wait for the congestion of the previous phase to

96 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

be resolved. In contrast, non-synchronized communications are performed as soon
as possible, enabling more effective utilization of the remaining bandwidth in the
network.

In the synchronized all-to-all exchange, the bandwidth reduction is
uniform between all servers. The synchronized version shows the same through-
put with two failures on a single leaf switch and with the loss of two spines. Notably,
the throughput with the failure of two spines (scenario SW18,19 in Figure 6.5) is bet-
ter than the throughput with three failures on a single leaf switch (scenario 3F SW0

in Figure 6.5). This is due to the exchange being synchronized, resulting in a uni-
form bandwidth reduction for all servers. Whether it is the loss of two links on
one leaf switch or the loss of two links on all leaf switches, all servers experience an
equivalent bandwidth reduction.

The bandwidth reduction is given by the failure scenarios and two fail-
ure scenarios with the same bandwidth reduction experiment the same
throughput in the synchronized all-to-all exchange. The failure scenarios
2F SW0 and SW18,19 shows the same throughput while 2F SW0 is two failures on
the leaf switch SW0 and SW18,19 is 40 failures because this is the failure of two
spine switches. This is due to the concept of bandwidth reduction described in
Section 5.2. Although there is a difference of 38 failures between scenarios 2F SW0

and SW18,19, both scenarios experience the same bandwidth reduction which is 2.
As a result, the achieved throughput is almost identical. It is also interesting to
note that scenarios where failures are not located on the same leaf switch exhibit
lower throughput. For instance, scenario 1F SW0, representing a failure on a sin-
gle leaf switch, demonstrates higher throughput than scenario 1F SW0,5,11, where
three leaf switches experience one link failure with different spines. This behav-
ior becomes more pronounced as the number of failures increases. This is due to
the distinction between a uniform bandwidth reduction defined in Section 6.1 and
non-uniform bandwidth reduction presented in Section 6.2. The difference between
the throughput of the scenarios 1F SW0,5,11 and 1F SW0 arises from the fact that
in the scenarios X ∈ [1, 2, 3]F SW0,5,11, the bandwidth reduction in non-uniform.
While in scenarios X ∈ [1, 2, 3]F SW0, the bandwidth reduction is uniform. In fail-
ure scenarios X ∈ [1, 2, 3]F SW0,5,11 with a non-uniform bandwidth reduction, the
number of paths between the leaf switches impacted by failures is further reduced
as explained in Section 6.2, which leads to reduced throughput compared to failure
scenarios X ∈ [1, 2, 3]F SW0 with a uniform bandwidth reduction.

The throughput of the non-synchronized all-to-all degrades slowly. The
non-synchronized all-to-all shows nearly the same throughput in all failure scenarios.
The performance of the non-synchronized all-to-all communication starts to degrade
with an increasing number of failures, as seen in scenarios such as 3FSW0,5,11 (loss
of three links on three leaf switches), as well as SW18,19 and SW18,19,22,23 (loss of
spine switches).

The performance of Ftree adaptive routing is reduced or equivalent
compared to the performance of Min-Hop and Ftree. The use of adaptive
routing demonstrates performance equivalent or inferior to the Ftree and Min-Hop

6.7. Deployment 97

routing solutions. The throughput of Ftree and Min-Hop is equivalent to Ftree
adaptive routing with synchronized all-to-all, except in the scenarios 3F SW0 and
3F SW0,5,11, in which the throughput is lower. In the case of the non-synchronized
all-to-all, Ftree and Min-Hop always perform better than Ftree adaptive routing,
which performs poorly. This is attributed to the fact that the traffic generated by
the DAQ application is too bursty as explained in Section 4.2.2.

FORS outperforms all routing and scheduling solutions, significantly
improving the throughput compared to these existing approach. For in-
stance, FORS increases the throughput per server from 87-88 Gbps with the current
approach to 137 Gbps with the failure scenario 1F SW0. With 326 servers in the
DAQ network, this improvement results in a total network throughput increase from
28 Tbps to 44 Tbps on average. As demonstrated in Chapter 4, flapping links exist
in the network and often lead to prolonged failures that could last for several hours.
FORS would be an interesting approach to address flapping links, as the moment
a link starts flapping, we could simply deactivate it temporarily and use FORS un-
til the link becomes stable again. This could result in significantly less data loss
compared to leaving the link unstable.

6.6.3 Computation Time

We measured the computation time of our solution under various randomly gener-
ated failure scenarios with the number of failures varying from 1 to the loss of half
the links in the entire topology. We run Gurobi with a "11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz" processor, using 8 threads. The average computation time to
find a routing solution for the topology of the studied DAQ network (FT(2;20,18))
is 29.72 seconds, with a minimum value of 27.399 seconds and a maximum value
of 37.554 seconds. While the computation time needed to find a routing solution
is not excessively long, it remains an inconvenience. However, in scenarios with a
uniform bandwidth reduction, a routing solution can be found in polynomial time,
as they are computed by the routing algorithm described in 6.4.1. Furthermore,
one potential approach is to pre-calculate a routing solution for all complex failure
scenarios.

6.7 Deployment

In this section, we discuss the applicability of FORS to InfiniBand networks. Specif-
ically, we address the number of entries required in the routing tables of switches to
reach a destination in the routing solution produced by FORS. It is necessary for
the routing solution computed by FORS to utilize multiple paths between a switch
and a destination server to avoid congestion. However, the current solution is not
optimized in terms of the number of entries, even though it remains applicable to
the studied data acquisition network. We propose a Mixed-Integer Linear Program-
ming (MILP) model to compute a routing solution that minimizes the number of

98 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

entries in the routing tables of the switches. Finally, we discuss the limitations of
InfiniBand for deploying FORS on the studied network.

6.7.1 Operational constraints

The limited flexibility of Infiniband imposes some constraint on the current imple-
mentation of FORS. The implementation is currently limited by Infiniband’s lack
of flexibility in implementing new static routing tables in the event of failures. Cur-
rently, the routing tables generated by FORS are applied using the “file” routing
engine, which loads the routing table from a file [Nvidia 2023b]. The file needs to
be regenerated for each failure scenario. However, the challenge with this approach
arises from the limitation that only reachable spines can be used as routes. If a failure
occurs on a spine, FORS generates a new scheduling and associated routing tables,
excluding the affected spine as a potential route. In the meantime, traffic will not be
routed in the network, generating traffic loss. We hope this limitation to be lifted in
future releases of Infiniband. However, this limitation does not exist in Ethernet net-
works; therefore, FORS is readily deployable on these networks. In the LHCb DAQ
network, Infiniband was chosen over Ethernet primarily due to Ethernet’s lack of
flow control mechanisms and the unavailability of 200 Gbps Ethernet network cards
at the time the network was designed [Krawczyk, Rafał Dominik et al. 2021].

6.7.2 LID Mask Control for Infiniband Multipath

The routing strategy used by FORS needs multiple routes to the same destination
server from a leaf switch. In the DAQ network topology FT(2;20,18) shown in Figure
2.7, each leaf switch S is directly connected to twenty servers. Each of these servers
must communicate with a destination server d at different phases in the schedule,
as simultaneous communications would create congestion. Consequently, the spine
used as a path to join server d may vary across different phases, resulting in multiple
routes being assigned from the leaf switch S to join server d.

In an InfiniBand network, each port is assigned a unique Local Identifier (LID),
which the controller uses to route the packets within the network[Nvidia 2023b]. A
LID is a 16-bit value, allowing for a range of 0 to 65,535 possible addresses. The
LID Mask Control (LMC) value enables the assignment of multiple LIDs to a same
destination, allowing multipath. The LMC value specifies how many of the least
significant bits of the 16-bit Destination LID field in the Infiniband packet header
are masked [Nvidia 2023a].

For example, with a LMC value of 2, the mask would be 1111111111111100,
or 0xFFFC in hexadecimal. The two least significant bits are masked, resulting in
22 = 4 distinct addresses for a given destination LID and thus 4 different paths. If
the destination LID value is 4, the four possible LIDs would be:

• 0000000000000100

• 0000000000000101

6.7. Deployment 99

• 0000000000000110

• 0000000000000111

The LMC value can range from 0 to 7[et al. 2024]. This means that InfiniBand
can support up to 27 = 128 addresses for the same destination. As introduced in
Section 6.6.2, the LMC value used to implement the FORS routing solution is 5.
Given that the topology includes 20 spines, even though not all switches necessarily
use all the spines to reach a destination, we must consider the worst-case scenario
to ensure the routing always works correctly. This means we need to consider that
at least one switch might use all the spines to reach at least one destination server
during the various phases of the schedule. Consequently, a minimum of 20 routes is
required for each destination LID, which corresponds to LMC = ⌈log2(20)⌉ = 5. A
LMC value of 5 provides 25 = 32 routes for each destination.

A LMC value of 5 means that each switch contains 32 entries for each destination
server in its routing table, plus one entry for each of the other switches in the topol-
ogy. In the are FT(2;20,18), there are 38 switches. Consequently, with 326 servers
in the LHCb DAQ network, each switch has 32 × 326 + 37 = 10,469 entries. Since
a modern Infiniband switch can hold up to 48,000 entries[technologies 2020], our
solution remains applicable to larger topologies within an InfiniBand network. For
instance, consider a fat-tree network, FT(2;36,36), with two layers, 36 leaf switches,
and 36 spine switches, with a total of 1,296 servers. For this network, the number
of entries required in the routing tables of the switches to implement FORS would
be computed as SP × S + L+ SP = 36× (36× 36) + 36 + 36 = 46, 728, where SP

is the number of spine switches, S is the number of servers, and L is the number
of leaf switches. However, to minimize the memory usage of the switches for the
FORS routing and to improve compatibility with even larger InfiniBand networks,
we developed an Mixed-Integer Linear Programming (MILP) model to optimize the
LMC value.

The variables and constraints of the MILP model are consistent with those of
the ILP model described in Section 6.5.1. The corresponding notations can be found
in Table 6.3. The MILP model introduces the following additional variables:

• Entry Variables e(l ∈ L, d ∈ S, i ∈ I): These binary variables indicate whether
a specific entry exists in leaf switch l ∈ L to join destination d ∈ S using spine
i ∈ I as a path.

• General Entry Variables ge(l ∈ L, d ∈ S): These integer variables represent
the total number of entries in the routing table of leaf switch l to join destination
d.

• Maximum LMC Variable maxLMC: This integer variable denotes the max-
imum LMC value required for routing. It represents the maximum number of
entries needed in any switch to reach a destination.

The additional constraints are as follows:

100 Chapter 6. Fault-adaptive Optimized Routing and Scheduling

1. Definition of Entries: If a spine is used by a leaf switch to join a destination,
then the corresponding entry must exist in the routing table of the leaf switch.
This is expressed as:

∀l ∈ L, d ∈ S, d /∈ Sl, i ∈ I, e(l, d, i) = max(v(s ∈ Sl, d, i)),

where max is the maximum function in Gurobi [experts 2023b].

2. Definition of General Entries: The general entry variable ge(l, d) must equal
the sum of all entries for joining destination d in the routing table of leaf switch
l. This is formalized as:

∀l ∈ L, d ∈ S, d /∈ Sl, ge(l, d) =
∑
i∈I

e(l, d, i).

3. Definition of Maximum LMC: The maximum LMC variable maxLMC is
defined as the maximum value of all general entry variables:

maxLMC = max(ge(l ∈ L, d ∈ S)),

where max is the maximum function in Gurobi [experts 2023b].

The optimization function minimize the value of the variable maxLMC. This
model is a Mixed-Integer Linear Programming (MILP) model, not an Integer Linear
Programming (ILP) model, because it uses the Gurobi max function[experts 2023b]
in constraints 1 and 3, which introduces non-linearity.

Unfortunately, the computation time for this model becomes excessively long
for network topologies with more than 12 switches and 32 servers. We were unable
to obtain a solution for the LHCb DAQ network. To the best of our knowledge,
further simplification of the model is not feasible. Therefore, until a more opti-
mized approach for configuring multipath routing in InfiniBand is developed, the
applicability of our solution will be constrained by the size of the network topology.

6.8 Conclusion

In this chapter, we present our Fault-adaptive Optimized Routing and Scheduling
(FORS) solution, a robust scheduling and routing solution designed to maintain high
throughput in the event of failures on large-scale networks with a fat-tree topology
and an all-to-all traffic matrix. More specifically, we introduce a scheduling algo-
rithm that produces congestion-free schedules for all-to-all exchanges and prove its
optimality. Furthermore, we present a routing solution, composed of an algorithm
and an Integer Linear Programming (ILP) model which, along with our scheduling
approach, produces a congestion-free routing solution. The evaluation of our solu-
tion on a real large-scale Infiniband network demonstrated throughput improvement
in the event of network failures compared to actual viable solutions in the studied
network.

6.8. Conclusion 101

Notably, our solution achieves a total throughput of 44 Tbps in the presence of
a single link failure, surpassing existing solutions that, at best, achieve 28 Tbps.
Additionally, we demonstrate that FORS degrades more gracefully, experiencing
only a minimal additional loss of a few Gbps as the bandwidth reduction increases.
Finally, FORS demonstrates resilience by tolerating the failure of two spine switches,
with throughput decreasing from 44 Tbps to 43 Tbps. As a result, FORS would
be an interesting approach to address flapping links that can significantly impact
network throughput, as shown in Chapter 4. We could deactivate a link that starts
flapping and use FORS until the link is stable again.

Finally, we discuss the deployability of FORS on Infiniband networks and its
limitations. Specifically, we propose a Mixed-Integer Linear Programming (MILP)
model to minimize the number of entries in the routing tables of the switches. Given
the limited memory available in switches, and although FORS remains applicable
to large networks such as the studied DAQ network, this model offers a preliminary
approach to reduce the memory usage required to deploy FORS on larger networks.

Chapter 7

Conclusion and Research
Directions

In this thesis, we present an in-depth study of data acquisition (DAQ) networks and
their fault tolerance. Our study focuses on the DAQ network of the Large Hadron
Collider beauty (LHCb) experiment at the European Council for Nuclear Research
(CERN). The LHCb DAQ network uses an all-to-all collective communication pat-
tern with a fat-tree topology to make the best use of the bandwidth available and
satisfy the DAQ system requirements. The routing algorithms used to route the
all-to-all communications in the network are Infiniband routing algorithms specifi-
cally adapted to a fat-tree topology. We focus our work on a key network metric:
the throughput. The LHCb data acquisition system lacks a hardware trigger for the
initial and quick selection of collision events produced by the Large Hadron Collider
(LHC). As a result, the DAQ network must handle the full collision rate. This con-
straint makes the studied DAQ network demanding in terms of throughput, making
the network particularly challenging to optimize.

After covering the necessary background and related work relevant to our prob-
lem, we provided a detailed explanation of our three main contributions in the
following three chapters: Chapters 4, 5, 6. In this chapter, we summarize these
contributions and suggest perspectives and future directions to further improve our
work.

7.1 Summary of the contributions

In this section, we summarize the key contributions presented in this thesis. We
highlight the important information of each contribution and provide an overview.

7.1.1 Study of failures in the LHCb DAQ network

Our first contribution aims to understand the frequency, duration, and causes of
various failures that can occur in a data acquisition (DAQ) network, as well as
how these failures impact throughput depending on the routing algorithm used and
the synchronization strategy. To address this, we present an analysis in Chapter
4 based on failure statistics observed over a two-month period during which the
Large Hadron Collider (LHC) was operational, and consequently, the DAQ system
was fully active. By monitoring these failures, we were able to extract information

104 Chapter 7. Conclusion and Research Directions

such as their duration and location in the network topology, allowing us to create
statistics on frequency and duration.

To understand the causes of these failures, we investigated each of them to
determine whether they were due to testing, dysfunction or maintenance. From this
study, we concluded that failures in the DAQ network are frequent, with 2,605 failure
events recorded during the data-taking period. Although most of these failures were
brief with 88% lasted less than a minute and 97% lasted less than 10 minutes,
when we consider flapping links, these failures can actually last for an extended
period of time. During our measurement period, we observed that some links could
flap, meaning they quickly transition between an up and a down state, for several
consecutive minutes and even hours. When we combine flapping incidents on the
same link and period as a single failure event, we were able to observe that over the
2605 observed failures, 1778 are attributed to flaps. Furthermore, when flaps are
considered, only 24% of failures last less than a minute, and 60% last less than 10
minutes. This significantly increases the overall duration of failures.

After showing that failures, particularly flapping links, are not uncommon events
in DAQ networks, we focused on measuring their impact on throughput. We first
evaluated various Infiniband routing algorithms applicable to our DAQ network.
We measured the throughput achieved by these routing algorithms under failure
scenarios involving 0 to 10 consecutive failures in the network.

Our measurements exhibit that the default behavior of Infiniband on a fat-tree
topology which is Ftree without failures switching to Min-Hop in case of failures,
provides the best performance. We then analyzed the different results and explained
why the other routing solutions do not perform the best for our network. From
these measurements, we concluded that even a single failure significantly reduces
throughput, dropping from approximately 144 Gbps per server to 87 Gbps, which
represents a global throughput reduction from 46 Tbps to 28 Tbps, as the studied
DAQ network interconnects 326 servers.

Finally, we demonstrated the impact of synchronization on throughput. We de-
veloped our own non-synchronized MPI application and measured the throughput
achieved by this application compared to the synchronized version used in produc-
tion. We found that the synchronized version performs better when there are no
network failures, but when a failure occurs, the non-synchronized application out-
performs the synchronized one.

This is due to the synchronized all-to-all application using the linear-shift pat-
tern for scheduling communications and the Infiniband routing algorithm Ftree for
routing them. The combination of this routing and scheduling solution achieves
optimal performance when bandwidth is not reduced, as there is no congestion
and each communication flow fully uses the links in the network. However, when
bandwidth reduction occurs, congestion becomes inevitable, and synchronization no
longer helps to prevent it. Additionally, synchronization causes servers not affected
by the bandwidth reduction to be slowed down by those that are, as each server
must wait for the others to finish their exchange before proceeding to the next phase.

As a result, the lack of synchronization makes better use of the remaining band-

7.1. Summary of the contributions 105

width during failures. Nevertheless, the non-synchronized all-to-all operation still
experiences a low throughput of approximately 95.2 Gbps per server with one single
failure compared to 144 Gbps when there are no failures, which represents a global
throughput reduction from 46 Tbps to 31 Tbps.

7.1.2 Fault-Adaptive Scheduling Algorithm

As demonstrated in Chapter 4, failures occur frequently and significantly impact
throughput, even when they are a few in the network. We initially focused on
scheduling to understand why congestion arises even with a single failure and how
to adapt to it. In Chapter 5, we show that the linear-shift pattern uses all network
links at specific phases, which inevitably leads to congestion in the presence of
failures. We then defined the concept of bandwidth reduction which allows us to
understand the impact of failures on the routing of an all-to-all schedule.

We then consider an alternative scheduling pattern: Bandwidth-optimal. This
approach optimizes the use of the bisection bandwidth at each phase, which
should reduce congestion because not all links are used simultaneously. While
[Prisacari et al. 2013b] formally describes the scheduling, we propose a well-defined
algorithm to reproduce this scheduling and compare the bandwidth-optimal schedul-
ing with the linear-shift. To conduct this comparison, we developed an algorithm
to compute the amount of congestion created by each scheduling approach based on
the network topology and the failure scenario, using the Infiniband Min-Hop routing
to optimally distribute the load between links.

In this algorithm, we can also compute the time each scheduling approach takes
to complete an all-to-all exchange, which allows us to measure their performance. We
show that bandwidth-optimal scheduling does not outperform linear-shift schedul-
ing, except in cases where only one failure occurs, which creates no congestion. We
further demonstrate that, given the current number of phases, it is impossible for
existing scheduling algorithms to avoid congestion during failures. Increasing the
number of phases is necessary to avoid congestion, but this increase must be minimal
as phases take time.

To address this issue, we propose a formula to compute the optimal number of
phases based on the fat-tree topology and bandwidth reduction. We also introduce
an algorithm combined with an Integer Linear Programming (ILP) model to adapt
any scheduling algorithm to network failures without creating congestion. Our so-
lution outperforms the bandwidth-optimal and linear-shift scheduling algorithms in
terms of time required to complete an all-to-all exchange. However, our approach
has limitations. The bandwidth reduction between servers must be uniform; other-
wise, beyond a certain number of failures, the ILP model takes considerable time to
adjust the schedule across additional phases without causing congestion. To han-
dle all possible failure scenarios and avoid the computational delays of ILP, it is
necessary to design a completely new scheduling algorithm.

106 Chapter 7. Conclusion and Research Directions

7.1.3 Fault-adaptive Optimized Routing and Scheduling

To address the limitations of our contribution presented in Chapter 5, we focused
on analyzing failure scenarios and discuss our findings in Chapter 6. We show that
routing in a fat-tree topology can be reduced to selecting a spine (the switches at the
top layer of a fat-tree topology) for each communication flow. By knowing the spine
to be used for routing a communication flow in a fat-tree topology, we can define the
path from the source to the spine and then from the spine to the destination. This
characteristic of the fat-tree topology significantly simplifies the routing problem,
as it reduces it to choosing a spine for each communication between two servers.

Then, we identified failure scenarios that create a non-uniform bandwidth re-
duction between switches. For instance, we demonstrate that if two leaf switches
(the switches at the lowest layer of a fat-tree) experience link failures with different
spines, the bandwidth reduction between these two leaf switches will be even greater
compared to the bandwidth reduction they have with the other leaf switches. This
scenario makes the routing more difficult to solve, as it must also be considered
during scheduling to ensure that a routing solution exists for each failure scenario
without congestion.

To address this issue, we propose a scheduling algorithm that respects an im-
portant property that we define: each leaf switch communicates at most once per
phase with all other leaf switches. Therefore, regardless of whether the bandwidth
reduction is uniform, as long as each leaf switch remains connected to all other leaf
switches in the topology, a routing solution exists without creating congestion. Our
scheduling algorithm is also optimal as it respects the minimum number of phases to
perform an all-to-all exchange with bandwidth reduction, which is computed using
the formula presented in Chapter 5.

To route the new scheduling algorithm, we propose a routing algorithm that
handles failure scenarios where bandwidth reduction is uniform between switches.
For cases where bandwidth reduction is non-uniform, we propose an Integer-Linear
Programming (ILP) model to assign a spine for each communication flow.

We then evaluate our Fault-Adaptive Optimized Routing and Scheduling
(FORS) solution in terms of throughput and compare it to the state of the art.
FORS outperforms the alternatives. For example, with one link failure in the net-
work, it achieves a throughput of 137 Gbps per server compared to 141 Gbps without
failures, and it degrades gradually as the number of failures increases. As a reminder,
the other scheduling approaches achieve, at best, 95 Gbps. This means that FORS
achieves a global throughput of approximately 44 Tbps with one failure, while other
approaches achieve, at best, 30 Tbps. Therefore, FORS would be a great alternative
to address flapping links that make the network unstable for long periods of time,
as shown in Chapter 4. We could simply deactivate a flapping link when it starts
flapping and deploy FORS on the network until the link is stable again.

We also evaluate the computational time of FORS by simulating various ran-
dom failure scenarios, ranging from one failure to the loss of half the links in the
network. The minimum computation time is approximately 27 seconds, the maxi-

7.2. Perspectives 107

mum is around 37 seconds, and the average is about 30 seconds, making our routing
solution applicable to the studied DAQ network.

Finally, we discuss the deployability of FORS on larger network topologies and
the deployment constraints related to Infiniband limitations, which we hope will be
addressed in future versions.

7.2 Perspectives

A first perspective to improve our work would be to study with more details the
deployability of our Fault-Adaptive Optimized Routing and Scheduling (FORS) so-
lution with Ethernet. It would be interesting to investigate how our routing algo-
rithm could be implemented in an Ethernet network. In section 6.7.2, we explained
in Chapter 6 that InfiniBand implements multipath routing using LID Mask Con-
trol (LMC), a mask that assigns multiple Local Identifiers (LIDs) to a destination
server. With Ethernet, a comparable strategy could be to encode the spine to be
used as a path for routing data directly into the IP address and applying a mask,
similar to LMC, to know the routing path. Each destination would receive the same
number of IP addresses as there are spines in the fat-tree topology. FORS would be
less constrained on an Ethernet network, as it would allow encoding far more than
the 128 addresses per destination, which is the limit in InfiniBand.

Currently, the network we studied uses InfiniBand for its flow control mechanisms
and the 200 Gbps Infiniband network cards which was not possible with Ethernet
as 200 Gbps Ethernet network cards were not available at the time the network
was designed. However, Ethernet is more standardized and allows the use of other
routing strategies, such as Equal-Cost Multi-Path (ECMP). ECMP spreads the
traffic on multiple paths. Here, because our different flows are roughly of equivalent
size, ECMP could help us reduce network congestion.

In general, the deployability of FORS should be more thoroughly studied on
InfiniBand networks, particularly by developing our own routing engine to deploy
FORS dynamically. Currently, FORS can not be automatically generated in the
event of failures because we need to create a file containing the routing tables, which
includes routes to join a destination server at each phase and for each switch while
avoiding failed ports. With the current OpenSM implementation, in case of a failed
port for an entry in the routing table, OpenSM needs to load the new routing tables
from our configuration file. In the meantime, packets are dropped. To address this,
we would need to develop our own routing engine that can compute our routing and
scheduling solution and generate the associated routing tables. This would allow
the controller to dynamically switch to our solution in the event of a failure, similar
to how Ftree defaults to Min-Hop in the event of failures without restarting the
OpenSM controller.

Once FORS is deployed on the LHCb DAQ network, another future work would
be to evaluate its fail-over performance. To be more precise, it would be interest-
ing to measure the time taken from the occurrence of a failure to the point when

108 Chapter 7. Conclusion and Research Directions

the network stabilizes with the FORS solution. Additionally, we should track the
frequency and duration of FORS utilization over several months, and then compute
the amount of data preserved by using FORS. This could be achieved by comparing
the throughput achieved with FORS to the throughput of the currently deployed
routing and scheduling solution, using the measurements presented in Chapter 4.

An interesting area for further research would be to formally define the complex-
ity of the routing problem when bandwidth reduction is non-uniform. To address
this, we proposed an Integer Linear Programming (ILP) model, as described in
Section 6.5. Although we attempted to develop a routing algorithm to solve this
problem, we were unsuccessful. We believe this challenge arises because our problem
could be a Multi-Commodity Flow Problem, specifically an Unsplittable Flow Prob-
lem (UFP). In UFP, each communication flow between a source and a destination in
a network must use a single path and cannot be split between multiple paths while
respecting capacity constraint on the links. This problem is known to be NP-hard,
and formally defining our routing problem with non-uniform bandwidth reduction
as a UFP could provide deeper insights into its complexity.

Constraint Programming (CP) is a technique used to find solutions that satisfy
a set of constraints, rather than optimizing an objective function as in linear pro-
gramming. CP is particularly effective for solving combinatorial problems where the
constraints are logical [Google 2024]. For instance, it performs well when variables
must be all different or when a constraint requires that if one variable is equal to
1, another must be equal to 0. However, the problem of routing communications
with a non-uniform bandwidth reduction is more naturally expressed using linear
constraints, which is why we use Integer Linear Programming (ILP) as described in
Section 6.5. Logical constraints alone may not adequately capture the complexity of
the routing problem. While it is possible to express our routing problem purely with
logical constraints, to our knowledge, doing so requires the introduction of additional
variables and constraints to replicate the behavior of linear constraints. This may
not only complicates the model but also slows down the solver. We attempted to
solve the routing problem with a non-uniform bandwidth reduction using logical
constraints suitable for CP. We used the open-source CP-SAT solver from Google’s
OR-Tools[Google 2023]. However, a solution could not be found within a reasonable
time for the topology of the studied DAQ network. Nevertheless, this approach may
need further investigation.

Another perspective for future work would be to adapt our scheduling solution
to other collective operations such as AllGather. As presented in Chapter 3, while
AllGather uses the same bandwidth as all-to-all, it involves a different number of
exchanged messages, with all-to-all requiring more messages to be exchanged in
the network. Therefore, our scheduling solution could likely be adapted to these
collective operations as they are less challenging to optimize in the event of failures.
Furthermore, the property in our scheduling to address non-uniform bandwidth
reduction and the routing solution can also be applied to these operations.

Finally, a last perspective would be to study how FORS could be adapted to
other topologies such as HyperX and AB Fat-Tree, which are discussed in Chapter

7.2. Perspectives 109

3. The AB Fat-Tree topology is part of the Fault-Tolerant Engineered Network
(F10) solution designed to enhance fault tolerance. This topology increases the
number of paths between leaf switches in the event of a failure by breaking the
symmetry of a standard fat-tree topology. In the LHCb DAQ network, the AB fat-
tree topology is not particularly advantageous, as there are already the maximum
number of paths between all leaf switches due to the two-layer structure of the
fat-tree topology. However, for enhancing fault tolerance in fat-tree topologies with
more than two layers, the AB Fat-Tree topology is an interesting solution, and FORS
could be adapted to accommodate this topology. We could evaluate the AB Fat-Tree
topology in terms of fault tolerance, for instance, by determining whether the ILP
model for routing solutions remains necessary in cases of non-uniform bandwidth
reduction. Given that the AB Fat-Tree topology provides more paths between leaf
switches, our simpler routing algorithm for uniform bandwidth reduction might
suffice. Additionally, we could adapt FORS to HyperX topologies and assess whether
a simpler routing solution would be adequate for traffic routing, considering that
the HyperX topology offers many redundant paths.

UNIVERSITE OF STRASBOURG

ECOLE DOCTORALE MSII
MATHEMATIQUES, SCIENCES DE L’INFORMATION

ET DE L’INGENIEUR

Laboratoire ICube, équipe réseaux

T H È S E présentée par :

Eloïse Stein
soutenue le : 21 Octobre 2024

pour obtenir le grade de :

Docteur de l’Université de Strasbourg
Discipline/Spécialité : Informatique

Ordonnancement et routage
intelligent pour les réseaux
d’acquisition de données

THÈSE dirigée par :

Prof. Cristel Pelsser - Université de Strasbourg
Université catholique de Louvain (UCLouvain)

Prof. Thomas Noel - Université de Strasbourg
RAPPORTEURS :

Prof. Holger Fröning - Université d’Heidelberg
Prof. Piero Vicini - Institut national de physique nucléaire (INFN) (INFN)

AUTRES MEMBRES DU JURY :

Prof. Géraldine Texier - École nationale supérieure Mines-Télécom
Atlantique (IMT)

Prof. Stefano Secci - Conservatoire National des Arts
et Métiers (Cnam)

Résumé

Les grands instruments scientifique sont généralement composés de dizaines de mil-
liers de capteurs et d’un système d’acquisition de données (DAQ) dont l’objectif
est de collecter les fragments de données de chaque capteur et d’assembler tous les
fragments en un seul ensemble de données. Ce processus, appelé Event Building,
implique un échange collectif de type all-to-all entre un ou plusieurs ordinateurs in-
terconnectés en réseau. Cependant, le trafic associé à l’Event Building a tendance à
créer de la congestion en cas de panne en raison de la nature de l’échange all-to-all,
qui nécessite d’utiliser presque toute la bande-passante disponible sur le réseau. La
congestion peut entraver gravement les performances du système DAQ et entraîner
la perte de données expérimentales très précieuses. Cette thèse présente des ap-
proches visant à minimiser la congestion du réseau en cas de panne, en utilisant le
réseau DAQ du détecteur LHCb (Large Hadron Collider beauty) comme étude de
cas.

2 Chapter 7. Conclusion and Research Directions

Abstract

Large scientific instruments are typically composed of tens of thousands of sensors
and a data acquisition (DAQ) system whose objective is to collect fragments of data
from each sensor and to assemble all the fragments corresponding to each collision
event into a single data set. This process, called Event Building, involves an all-
to-all collective exchange between one or more network computers. However, the
traffic associated with Event Building tends to create congestion in the event of a
failure due to the nature of the all-to-all exchange, which requires using almost all
available network bandwidth. Congestion can severely degrade the performance of
the DAQ system and lead to the loss of highly valuable experimental data. This
thesis presents approaches to minimizing network congestion in the event of failures,
using the DAQ network of the LHCb (Large Hadron Collider beauty) detector as a
case study.

7.2. Perspectives 3

Remerciements

À l’approche de la fin de ce parcours de trois ans, je pense à toutes les personnes qui
l’ont partagé avec moi. Ces années ont été remplies de défis et de croissance, et je
n’aurais pas pu les traverser sans le soutien, les encouragements et la bienveillance
de tant de personnes. Bien qu’il soit impossible d’exprimer pleinement la gratitude
que je ressens envers tous ceux qui ont fait partie de cette expérience, je tiens à
prendre un moment pour remercier chaque personne qui a contribué à ce voyage.

Tout d’abord, je tiens à exprimer mes sincères remerciements à ma directrice
de thèse, Cristel Pelsser. Votre guidance tout au long de cette recherche a été
inestimable, et elle n’aurait pas atteint ce stade sans votre expertise et vos conseils.
J’ai vraiment apprécié nos discussions au cours de ces trois dernières années, votre
compréhension de ce sujet de recherche, qui était nouveau pour nous deux, ainsi que
votre intérêt pour la programmation linéaire et les suggestions qui m’ont grandement
aidée à développer les solutions présentées dans cette thèse. Enfin, merci pour votre
incroyable soutien et vos encouragements, sans lesquels cette thèse n’aurait pas pu
être achevée. Vous êtes une directrice de thèse exceptionnelle et tout étudiant se
lançant dans ce parcours, comme je l’ai fait, aura beaucoup de chance de vous avoir
pour le guider.

Je tiens également à remercier les membres de mon jury qui ont accepté d’évaluer
ma thèse. Merci à Holger Fröning, Piero Vicini, Géraldine Texier et Stefano Secci.
J’espère sincèrement que vous avez trouvé mon travail, qui a nécessité beaucoup de
temps et d’efforts de ma part et de celle de toutes les personnes qui ont contribué,
à la fois intéressant et pertinent.

Ensuite, un grand merci à Quentin Bramas, sans qui une partie importante
de ce travail n’aurait pas été possible. Vos conseils précieux et votre expertise en
mathématiques ont grandement contribué à résoudre certains des principaux défis
présentés dans cette thèse. Je vous suis profondément reconnaissante pour vos
contributions, qui ont joué un rôle crucial dans l’avancement de cette recherche.

Je remercie Pierre Schaus pour les précieuses remarques sur les défis
d’optimisation auxquels j’ai été confrontée pendant cette thèse.

Je tiens également à remercier toute l’équipe en ligne du CERN pour leurs contri-
butions à ce travail et pour avoir apporté leur expertise lorsque cela était nécessaire.
En particulier, je suis reconnaissante à Flavio Pisani et Tommaso Colombo, qui
ont consacré une journée et une nuit entières à tester le travail présenté dans cette
thèse avec moi. Je souhaite exprimer mes remerciements à Tommaso Colombo pour
sa supervision tout au long de ce projet. Mes remerciements vont aussi à Alberto
Perro, Pierfrancesco Cifra et Konstantinos Stavropoulos pour les discussions en-
richissantes que nous avons eues autour d’une pizza. J’apprécie les conversations
intéressantes avec Mauricio Feo, qu’elles soient académiques ou non, et pour ses
encouragements. Enfin, je veux remercier Clara Gaspar et Niko Neufeld, les respon-
sables de cette équipe, qui accomplissent un travail incroyable chaque jour et m’ont
soutenue, m’aidant à rester motivée et concentrée sur mes futures opportunités.

Je remercie Denis, sans qui rien de tout cela ne serait arrivé, ainsi que pour ses

4 Chapter 7. Conclusion and Research Directions

conseils, en lui souhaitant bon courage pour la fin de son périple.
Je tiens à remercier Jeanne et Thierry pour leur soutien, leurs conseils et leur

présence. Leur force de travail et de caractère m’ont toujours motivée à aller de
l’avant.

Je remercie également Adèle, dont la détermination, la joie de vivre et la volonté
auront été une source d’inspiration dans mon travail.

Je tiens également à exprimer ma profonde gratitude à mes parents, Yolande et
Fabrice, pour leur soutien et leur amour tout au long de ce parcours.

Enfin, et surtout, un grand merci à mon partenaire, Hugo. Il est difficile
d’exprimer par des mots à quel point ta présence, ton amour et ton soutien ont
compté pour moi tout au long de ce parcours. Tu ne le croiras peut-être pas, mais
sans toi, ce travail n’aurait jamais abouti. Tes encouragements et ta gentillesse
ont été essentiels pour rendre cette thèse possible. Je n’aurais pas pu terminer ce
doctorat sans ton incroyable soutien, et je t’en serai toujours profondément recon-
naissante.

Ce travail a été principalement financé par le Conseil européen pour la recherche
nucléaire (CERN) et partiellement financé par une bourse de la Silicon Valley Foun-
dation (CG1318167).

7.3 Introduction

Les systèmes d’acquisition de données (DAQ) jouent un rôle crucial dans
la collecte de données scientifiques [Belyaev et al. 2017, Jereczek et al. 2015,
Bawej et al. 2015]. Généralement composés d’un ensemble diversifié de
capteurs, les systèmes DAQ capturent de grandes quantités de données.
Ces systèmes sont largement utilisés dans divers domaines, notamment la
recherche scientifique, tels que l’aérospatiale [Borrill et al. 2015, Dorelli et al. 2022,
Update 2011], les soins de santé [Liu et al. 2023, Leung et al. 2020] et la
physique [Belyaev et al. 2017, Jereczek et al. 2015, Bawej et al. 2015]. Par exem-
ple, les systèmes DAQ de l’Organisation européenne pour la recherche nucléaire
(CERN)[Jereczek et al. 2015, Bawej et al. 2015] traitent des dizaines d’exaoctets de
données chaque année[LHCb Collaboration 2014, LHCb Collaboration 2020], con-
tribuant de manière significative aux avancées dans le domaine de la recherche en
physique[CERN 2019]. De tels systèmes sont déployés dans les expériences menées le
long du Grand collisionneur de hadrons (LHC) au CERN pour collecter des données
fragmentées provenant de différents capteurs et les assembler afin de reconstruire
chaque événement de collision de particules. Ce processus est connu sous le nom de
"construction d’événements" (Event Building).

La construction d’événements pour les expériences menées sur de grands colli-
sionneurs repose généralement sur un réseau à haut débit et à faible latence inter-
connectant des serveurs. Les données échangées sont produites en temps réel par
de grands instruments scientifiques tels que le LHC. Le LHC au CERN accélère des
particules à des énergies allant jusqu’à 6,8 TeV et les fait entrer en collision à des

7.3. Introduction 5

énergies atteignant 13,6 TeV. De nombreux capteurs enregistrent divers aspects des
collisions résultantes, également appelées "événements". Chaque capteur est con-
necté à un serveur qui reçoit ses données. Pour synthétiser ces fragments de données
en une représentation unifiée de chaque événement, chaque serveur échange ses frag-
ments de données avec tous les autres via le réseau. La matrice de trafic réseau qui
en résulte est une succession continue d’échanges de type "tous vers tous". Comme
les événements sont produits en continu dans le LHC, les serveurs doivent reconstru-
ire les événements rapidement. Un retard dans la reconstruction peut surcharger
la mémoire tampon des serveurs avec des données, entraînant une congestion et la
perte potentielle de données importantes. Par conséquent, le débit est la métrique
réseau centrale examinée dans cette thèse.

L’échange collectif de type "tous vers tous" exige des ressources réseau significa-
tives, telles que la bande passante. Pour optimiser l’utilisation de la bande passante
disponible dans le réseau, la capacité totale d’un lien est utilisée pour chaque trans-
mission entre serveurs. Si deux flux de communication utilisent le même lien, une
congestion se produit, car les deux transmissions doivent partager la capacité du
lien. Par conséquent, l’utilisation de la bande passante dans le réseau DAQ est
proche de la capacité maximale, ce qui rend l’échange "tous vers tous" très sensible
aux défaillances. Comme le souligne la littérature [Gill et al. 2011], les pannes de
liens dans les réseaux à haut débit, tels que ceux utilisés pour les communications
collectives entre serveurs dans les réseaux DAQ, sont fréquentes.

Les systèmes DAQ s’appuient souvent sur des applications de calcul haute per-
formance (HPC) pour l’analyse en temps réel et le traitement efficace de volumes
importants de données. L’optimisation des applications HPC fait l’objet de nom-
breuses recherches, repoussant les limites des composants matériels[Wu et al. 2023,
Wang et al. 2023a], des architectures[Chirkov & Wentzlaff 2023, Huang et al. 2023,
Contini et al. 2023] de calcul et des réseaux[Feng et al. 2023]. Un manque
d’optimisation peut entraîner une perte de performance significative, em-
pêchant la réalisation de découvertes scientifiques importantes. Bien que
l’optimisation des échanges collectifs, tels que l’échange "tous vers tous", dans
les applications HPC soit largement abordée et étudiée [Prisacari et al. 2013b,
Prisacari et al. 2013a, Al-Fares et al. 2010, Izzi & Massini 2020, Zahavi et al. 2009,
Peng et al. 2022, Izzi & Massini 2022, Izzi & Massini 2023], à notre connaissance, il
n’existe aucune proposition visant à optimiser ces échanges collectifs en cas de dé-
faillances réseau impliquant une réduction de bande passante, malgré la fréquence
élevée de ces défaillances [Singh et al. 2021]. Comme nous le démontrons dans cette
thèse, les performances réseau sont actuellement fortement impactées en cas de ré-
duction de la bande passante. Résoudre ce problème est un défi, car cela implique
d’adapter l’ordonnancement et le routage de ces échanges collectifs à la bande pas-
sante résiduelle du réseau en situation de défaillance.

Les opérations collectives, en général, sont également de plus en plus utilisées
dans l’apprentissage automatique[Sergeev & Del Balso 2018, Zhao et al. 2024a,
Zhou et al. 2023, Wang et al. 2023b], notamment AllGather, AllReduce ou Re-
duceScatter [Nvidia 2020]. Cependant, elles diffèrent de l’échange collectif "tous

6 Chapter 7. Conclusion and Research Directions

vers tous". Notre problématique est spécifique aux systèmes DAQ.
L’échange "tous vers tous" est une communication collective très exigeante en

termes de bande passante, car tous les serveurs du réseau DAQ doivent échanger des
données avec tous les autres. Si tous les serveurs envoient des données vers une même
destination simultanément, les liens vers cette destination deviennent congestionnés.
Une stratégie typique pour résoudre ce problème consiste à répartir les communica-
tions de chaque serveur dans le temps, ce qui signifie que l’échange est segmenté en
phases distinctes. Dans cette approche, l’échange collectif "tous vers tous" est syn-
chronisé, ce qui signifie que l’application DAQ garantit que tous les serveurs termi-
nent leurs échanges de données avant de passer à la phase suivante. Cette approche
synchronisée permet d’atteindre un débit élevé, en particulier dans les systèmes avec
des débits proches de 100% des capacités des liens [Pisani et al. 2023a].

7.3.1 Contributions

Dans cette thèse, je présente mes contributions aux solutions de routage et
d’ordonnancement visant à améliorer la tolérance aux pannes dans les réseaux DAQ.
De plus, je démontre, à travers des mesures, l’importance de traiter ce problème,
compte tenu de la sensibilité des réseaux DAQ aux défaillances.

Tout d’abord, nous proposons d’étudier les pannes de liens dans le réseau DAQ
de l’expérience Large Hadron Collider beauty (LHCb) au CERN. Nous analysons les
pannes réseau observées sur une période de deux mois, durant laquelle le LHC était
pleinement actif et des données étaient échangées dans le réseau DAQ. Plus précisé-
ment, nous présentons des statistiques sur la durée, la fréquence et les causes sous-
jacentes des pannes de liens réseau pour démontrer que ces pannes sont fréquentes
et peuvent durer longtemps. Ces statistiques justifient notre problématique.

Ensuite, nous présentons une analyse de divers algorithmes de routage adap-
tés au réseau étudié. Plus précisément, nous évaluons les performances du routage
adaptatif par rapport à l’algorithme de routage actuellement utilisé dans le réseau
DAQ de l’expérience LHCb, dans différents scénarios de panne. Nos mesures met-
tent en évidence le débit atteint par chaque algorithme de routage sur le réseau
étudié. Nous constatons que les pannes de liens peuvent dégrader significative-
ment les performances, car l’utilisation de la bande passante dans le réseau DAQ
est proche de la capacité maximale. Une seule panne entraîne une congestion et
réduit le débit total d’environ 46 Tbps à 30 Tbps, même avec la meilleure solu-
tion de routage disponible. Nous proposons également d’évaluer les deux approches
d’ordonnancement de l’échange collectif "tous vers tous" : non-synchronisé et syn-
chronisé. Dans un échange "tous vers tous" synchronisé, tous les serveurs attendent
que les autres aient terminé leur échange de données avant de passer à la phase
suivante. C’est l’approche actuellement utilisée dans le réseau DAQ étudié. Une
approche alternative consiste en un échange "tous vers tous" non-synchronisé, plus
simple, où le réseau gère la congestion. Ces deux approches n’ont jamais été com-
parées dans le contexte des pannes de liens réseau, ce que nous proposons dans
le Chapitre 4. Dans cette thèse, nous ne prenons pas en compte les pannes entre

7.3. Introduction 7

les commutateurs réseau et les serveurs, car ces pannes entraînent une déconnexion
totale des serveurs affectés du réseau. Ces serveurs ne peuvent plus participer à
l’échange "tous vers tous", et leur exclusion n’impacte pas la bande passante néces-
saire pour terminer l’échange entre les serveurs restants. Enfin, nous proposons
quelques recommandations de conception issues de la comparaison du débit atteint
par les applications "tous vers tous" synchronisées et non synchronisées en présence
de pannes réseau. Cependant, aucune de ces approches d’ordonnancement et de
routage ne permet d’utiliser efficacement la bande passante restante dans le réseau
lorsque des pannes surviennent. Ces contributions sont abordées dans le Chapitre 4
et ont abouti à une publication [Stein et al. 2024].

Comme nous démontrons l’importance de trouver une solution
d’ordonnancement et de routage qui assure une dégradation plus progressive
du débit, nous menons une étude détaillée des algorithmes d’ordonnancement exis-
tants dans la littérature. Nous montrons que ces algorithmes ne sont pas tolérants
aux pannes, car le nombre de phases dans un échange "tous vers tous" synchronisé
est insuffisant pour éviter la congestion. Pour y remédier, nous introduisons le
concept de réduction de bande passante, qui définit plus précisément comment les
pannes affectent le routage dans un plan d’ordonnancement "tous vers tous" et nous
permet de dériver une formule pour calculer la borne inférieure du nombre de phases
nécessaires pour un routage sans congestion, rendant ainsi le nombre de phases
optimal. Ensuite, nous proposons un algorithme, accompagné d’un modèle de Pro-
grammation Linéaire Entière (ILP), pour adapter les schémas d’ordonnancement
"tous vers tous" existants afin de gérer les scénarios de panne sur une topologie
fat-tree. Enfin, nous évaluons notre contribution et mettons en évidence ses limites.
Cette contribution a donné lieu à une publication[Stein et al. 2023].

Pour remédier à ces limitations, nous proposons une étude plus complète de
divers scénarios de pannes dans le réseau, en mettant l’accent sur les défis liés
à l’ordonnancement et au routage afin de prévenir la congestion. Ensuite, nous
présentons une solution de Routage et Ordonnancement Optimisés et Adaptatifs
aux Pannes (FORS) pour maintenir un débit élevé dans les échanges "tous vers
tous" malgré les goulots d’étranglement introduits par les pannes de liens réseau.
FORS se compose d’un algorithme permettant d’adapter l’ordonnancement des com-
munications pour l’échange collectif "tous vers tous" en cas de pannes de liens. De
plus, FORS comprend une solution de routage semi-algorithmique, combinant un
algorithme de calcul de routes pour les scénarios de pannes simples avec un modèle
de Programmation Linéaire Entière (PLE) conçu pour traiter des combinaisons de
pannes plus complexes. L’objectif de ces deux algorithmes est de fournir des chemins
sans congestion entre les serveurs du réseau en fonction du scénario de panne donné.
Nous démontrons l’applicabilité et les performances de notre solution sur un réseau
DAQ réel et opérationnel au CERN, utilisant le calcul haute performance (HPC)
pour traiter de grands volumes de données scientifiques. Nous comparons notre
proposition avec les approches actuellement déployées. Cette contribution a donné
lieu à une publication.

8 Chapter 7. Conclusion and Research Directions

7.3.2 Aperçu

Cette thèse se compose de sept chapitres. Le Chapitre 2 fournit les éléments de base
nécessaires pour comprendre nos contributions. Nous commençons par introduire la
topologie fat-tree et les deux variantes que nous considérons. Ensuite, nous discutons
de l’échange collectif "tous vers tous" et de l’algorithme d’ordonnancement linéaire
par décalage, largement utilisé dans les réseaux InfiniBand. Nous donnons ensuite
un aperçu du réseau DAQ de l’expérience LHCb et du processus de construction
des événements (Event Building). Nous présentons plus en détail l’application de
l’échange collectif "tous vers tous" dans le processus de construction des événements
et l’utilisation de la technologie InfiniBand dans la topologie fat-tree du réseau DAQ.

Dans le Chapitre 3, nous passons en revue les travaux connexes pertinents
pour notre recherche, y compris diverses opérations collectives existantes autres
que l’échange "tous vers tous". Nous présentons également différentes stratégies
de routage, telles que les stratégies adaptatives, non-sensibles et tenant compte
de l’ordonnancement. Enfin, nous introduisons d’autres topologies réseau telles que
Dragonfly, largement utilisée dans les réseaux HPC, ainsi que des topologies adaptées
à la demande. Nous présentons les topologies HyperX et F10 qui sont pertinentes
pour notre problème, car elles pourraient améliorer la tolérance aux pannes en aug-
mentant le nombre et la diversité des chemins disponibles entre les commutateurs.

Dans le Chapitre 4, nous présentons nos statistiques sur les pannes réseau qui se
sont produites dans le réseau étudié pendant les mois de mars et avril 2024. Nous
présentons ensuite des mesures du débit atteint par différents algorithmes de routage
InfiniBand pertinents pour notre réseau, ainsi que des données montrant les effets
de la synchronisation de l’échange "tous vers tous" en termes de scalabilité et en cas
de pannes. Nous concluons ce chapitre par des recommandations de conception.

Dans le Chapitre 5, nous étudions plus en détail divers algorithmes
d’ordonnancement et démontrons leur inadéquation en cas de pannes dues à la
congestion inévitable, car aucune solution de routage sans congestion n’existe avec
le nombre de phases proposé. Nous expliquons ensuite comment nous calculons le
nombre optimal de phases en fonction de la réduction de bande passante causée par
les pannes réseau. Enfin, nous proposons une première solution d’ordonnancement
qui peut adapter n’importe quel modèle d’ordonnancement "tous vers tous" en cas
de pannes, en ne tenant compte que des scénarios de pannes simples.

Dans le Chapitre 6, nous menons une analyse plus approfondie des différents
scénarios de pannes et de leurs conséquences en termes de réduction de bande pas-
sante. Nous proposons ensuite un algorithme d’ordonnancement qui prend plus
efficacement en compte le routage, garantissant qu’une solution de routage faisable
sans congestion existe pour tous les scénarios de pannes. De plus, nous présentons
un algorithme de routage associé à un modèle de Programmation Linéaire Entière
(PLE) pour traiter tous les scénarios de pannes possibles tant que les commutateurs
réseau directement connectés aux serveurs restent entièrement connectés. Enfin,
nous évaluons la performance et l’applicabilité de notre solution.

Dans le Chapitre 7, nous concluons en résumant nos diverses contributions et

7.4. Conclusion et perspectives de recherche 9

leurs résultats, ainsi qu’en suggérant des perspectives de recherche futures.

7.4 Conclusion et perspectives de recherche

Dans cette thèse, nous présentons une étude approfondie des réseaux d’acquisition
de données (DAQ) et de leur tolérance aux pannes. Notre étude se concentre sur
le réseau DAQ de l’expérience Large Hadron Collider beauty (LHCb) au Conseil
Européen pour la Recherche Nucléaire (CERN). Le réseau DAQ de LHCb utilise
un schéma de communication collective de type tout-à-tout avec une topologie en
fat-tree afin d’exploiter au mieux la bande passante disponible et de répondre aux
exigences du système DAQ. Les algorithmes de routage utilisés pour acheminer ces
communications tout-à-tout sont des algorithmes de routage Infiniband spécifique-
ment adaptés à une topologie en fat-tree.

Nous concentrons notre travail sur une métrique clé du réseau : le débit. Le
système d’acquisition de données de LHCb ne dispose pas de déclencheur matériel
permettant une sélection initiale et rapide des événements de collision produits par
le Grand Collisionneur de Hadrons (LHC). Par conséquent, le réseau DAQ doit gérer
l’intégralité du taux de collision. Cette contrainte impose des exigences élevées en
matière de débit, rendant l’optimisation du réseau particulièrement complexe.

Après avoir présenté le contexte nécessaire et les travaux connexes en lien avec
notre problématique, nous détaillons nos trois principales contributions dans les
chapitres suivants : Chapitres 4, 5, 6. Dans ce chapitre, nous résumons ces contribu-
tions et proposons des perspectives ainsi que des orientations futures pour améliorer
davantage notre travail.

7.4.1 Résumé des contributions

Dans cette section, nous résumons les principales contributions présentées dans cette
thèse. Nous mettons en avant les éléments clés de chaque contribution et en four-
nissons une vue d’ensemble.

7.4.1.1 Étude des pannes dans le réseau DAQ de LHCb

Notre première contribution vise à comprendre la fréquence, la durée et les causes
des différentes pannes pouvant survenir dans un réseau d’acquisition de données
(DAQ), ainsi que leur impact sur le débit en fonction de l’algorithme de routage
utilisé et de la stratégie de synchronisation adoptée. Pour cela, nous présentons
dans le Chapitre 4 une analyse basée sur les statistiques de pannes observées sur
une période de deux mois durant laquelle le Grand Collisionneur de Hadrons (LHC)
était en fonctionnement et, par conséquent, le système DAQ pleinement actif. En
surveillant ces pannes, nous avons pu extraire des informations telles que leur durée
et leur emplacement dans la topologie du réseau, ce qui nous a permis d’établir des
statistiques sur leur fréquence et leur durée.

10 Chapter 7. Conclusion and Research Directions

Afin d’identifier les causes de ces pannes, nous avons examiné chaque incident
pour déterminer s’il était dû à des tests, un dysfonctionnement ou une maintenance.
Cette étude nous a permis de conclure que les pannes dans le réseau DAQ sont
fréquentes, avec 2 605 événements enregistrés durant la période de collecte des don-
nées. Bien que la majorité de ces pannes aient été brèves avec 88% d’entre elles
durant moins d’une minute et 97% moins de 10 minutes, la prise en compte des
liens instables (liens qui flappent) révèle une durée effective plus longue. Pendant
notre période de mesure, nous avons observé que certains liens pouvaient fluctuer
rapidement entre un état actif et inactif pendant plusieurs minutes, voire plusieurs
heures. En regroupant ces fluctuations sur un même lien en un seul événement de
panne, nous avons constaté que, parmi les 2 605 pannes observées, 1 778 étaient
dues à des fluctuations de lien. En considérant ces fluctuations, seulement 24% des
pannes durent moins d’une minute, et 60% moins de 10 minutes, ce qui augmente
significativement la durée globale des pannes.

Après avoir montré que les pannes, en particulier celles causées par des liens
instables, ne sont pas des événements rares dans les réseaux DAQ, nous avons évalué
leur impact sur le débit. Nous avons d’abord analysé différents algorithmes de
routage Infiniband applicables à notre réseau DAQ et mesuré le débit atteint sous
divers scénarios de pannes impliquant de 0 à 10 pannes consécutives dans le réseau.

Nos mesures montrent que le comportement par défaut d’Infiniband sur une
topologie en fat-tree, à savoir l’utilisation de Ftree en l’absence de panne, avec un
basculement vers Min-Hop en cas de panne, offre les meilleures performances. Nous
avons ensuite analysé les différents résultats et expliqué pourquoi les autres solutions
de routage ne sont pas les plus adaptées à notre réseau. Nous avons conclu que même
une seule panne entraîne une réduction significative du débit, passant d’environ 144
Gbps par serveur à 87 Gbps, soit une réduction du débit global de 46 Tbps à 28
Tbps, le réseau DAQ étudié interconnectant 326 serveurs.

Enfin, nous avons démontré l’impact de la synchronisation sur le débit. Nous
avons développé notre propre application MPI non synchronisée et mesuré le débit
obtenu par cette application par rapport à la version synchronisée utilisée en pro-
duction. Nos résultats montrent que la version synchronisée offre de meilleures
performances en l’absence de pannes, mais qu’en cas de panne, l’application non
synchronisée surpasse la version synchronisée.

Ce phénomène s’explique par le fait que l’application tout-à-tout synchro-
nisée utilise le schéma de communication en décalage linéaire (linear-shift) et que
l’algorithme de routage Ftree d’Infiniband est utilisé pour les acheminer. Cette
combinaison de routage et d’ordonnancement permet d’atteindre des performances
optimales tant que la bande passante n’est pas réduite, car il n’y a pas de congestion
et chaque flux de communication exploite pleinement les liens du réseau. Cependant,
en présence d’une réduction de la bande passante, la congestion devient inévitable
et la synchronisation ne permet plus de l’éviter. De plus, la synchronisation entraîne
un ralentissement des serveurs non affectés par la réduction de bande passante, car
ils doivent attendre que les autres terminent leurs échanges avant de passer à la
phase suivante.

7.4. Conclusion et perspectives de recherche 11

Ainsi, l’absence de synchronisation permet une meilleure exploitation de la bande
passante restante en cas de panne. Néanmoins, même avec un fonctionnement tout-
à-tout non synchronisé, le débit reste limité : il atteint environ 95,2 Gbps par
serveur en présence d’une seule panne, contre 144 Gbps en l’absence de panne, ce
qui représente une réduction du débit global de 46 Tbps à 31 Tbps.

7.4.1.2 Algorithme d’Ordonnancement Adaptatif aux Pannes

Comme démontré au Chapitre 4, les pannes sont fréquentes et ont un impact signifi-
catif sur le débit, même lorsqu’elles sont peu nombreuses dans le réseau. Nous nous
sommes d’abord concentrés sur l’ordonnancement afin de comprendre pourquoi la
congestion survient même avec une seule panne et comment s’y adapter. Dans le
Chapitre 5, nous montrons que le schéma d’ordonnancement en décalage linéaire
(linear-shift) utilise tous les liens du réseau à des phases spécifiques, ce qui conduit
inévitablement à une congestion en présence de pannes. Nous avons ensuite défini
le concept de réduction de bande passante, qui nous permet de comprendre l’impact
des pannes sur l’acheminement d’un schéma de communication de type all-to-all.

Nous avons alors étudié une alternative : l’ordonnancement Bandwidth-
optimal. Cette approche optimise l’utilisation de la bande passante de bisec-
tion à chaque phase, ce qui devrait réduire la congestion, car tous les liens ne
sont pas utilisés simultanément. Bien que l’ordonnancement soit formellement
décrit[Prisacari et al. 2013b], nous proposons un algorithme bien défini pour le re-
produire et le comparer au schéma en décalage linéaire. Pour mener à bien cette com-
paraison, nous avons développé un algorithme permettant de calculer la congestion
créée par chaque approche d’ordonnancement en fonction de la topologie du réseau
et du scénario de panne, en utilisant l’algorithme de routage Min-Hop d’Infiniband
afin de répartir la charge de manière optimale entre les liens. Cet algorithme nous
permet également de calculer le temps nécessaire à chaque approche pour compléter
un échange all-to-all, ce qui nous permet d’évaluer leur performance. Nous mon-
trons que l’ordonnancement Bandwidth-optimal ne surpasse pas l’ordonnancement
en décalage linéaire, sauf dans les cas où une seule panne est présente, car elle ne
génère alors aucune congestion. Nous démontrons ensuite qu’avec le nombre actuel
de phases, il est impossible pour les algorithmes d’ordonnancement existants d’éviter
la congestion en cas de panne. Augmenter le nombre de phases est nécessaire pour
éviter la congestion, mais cette augmentation doit être minimale, car chaque phase
prend du temps.

Pour répondre à ce problème, nous proposons une formule permettant de calculer
le nombre optimal de phases en fonction de la topologie en fat-tree et de la réduction
de bande passante. Nous introduisons également un algorithme combiné à un mod-
èle de Programmation Linéaire en Nombres Entiers (ILP) afin d’adapter n’importe
quel algorithme d’ordonnancement aux pannes du réseau sans créer de congestion.
Notre solution surpasse les algorithmes d’ordonnancement Bandwidth-optimal et en
décalage linéaire en termes de temps nécessaire pour effectuer un échange all-to-all.
Cependant, notre approche présente des limitations. La réduction de bande passante

12 Chapter 7. Conclusion and Research Directions

entre serveurs doit être uniforme, sinon, au-delà d’un certain nombre de pannes, le
modèle ILP met un temps considérable à ajuster l’ordonnancement sur des phases
supplémentaires sans créer de congestion. Pour gérer tous les scénarios de panne
possibles et éviter les délais de calcul liés à l’ILP, il est nécessaire de concevoir un
algorithme d’ordonnancement entièrement nouveau.

7.4.1.3 Routage et Ordonnancement Optimisés et Adaptatifs aux
Pannes

Pour surmonter les limites de notre contribution présentée au Chapitre 5, nous avons
analysé différents scénarios de panne, comme détaillé au Chapitre 6. Nous montrons
que le routage dans une topologie en fat-tree peut être réduit au choix d’une spine
(les commutateurs de la couche supérieure de la topologie en fat-tree) pour chaque
flux de communication. En connaissant la spine utilisée pour router un flux dans
un fat-tree, nous pouvons définir le chemin de la source vers la spine, puis de la
spine vers la destination. Cette propriété simplifie considérablement le problème du
routage, en le réduisant à un choix de spine pour chaque communication entre deux
serveurs.

Nous avons ensuite identifié des scénarios de panne entraînant une réduction non
uniforme de la bande passante entre les commutateurs. Par exemple, nous démon-
trons que si deux commutateurs leaf (les commutateurs de la couche inférieure d’un
fat-tree) subissent des pannes de liens impliquant différentes spines, la réduction de
bande passante entre ces deux commutateurs leaf sera encore plus importante que
celle qu’ils subissent avec les autres commutateurs leaf. Ce scénario complique le
routage, car il doit également être pris en compte lors de l’ordonnancement pour
garantir qu’une solution de routage existe pour chaque scénario de panne sans con-
gestion.

Pour résoudre ce problème, nous proposons un algorithme d’ordonnancement
respectant une propriété clé que nous définissons : chaque commutateur leaf ne
communique qu’une seule fois par phase avec tous les autres commutateurs leaf.
Ainsi, quelle que soit la réduction de bande passante, tant que chaque commutateur
leaf reste connecté à tous les autres, une solution de routage sans congestion existe.
Notre algorithme d’ordonnancement est également optimal, car il respecte le nombre
minimal de phases nécessaires pour réaliser un échange all-to-all avec réduction de
bande passante, nombre calculé à l’aide de la formule présentée dans le Chapitre 5.

Pour router ce nouvel algorithme d’ordonnancement, nous proposons un algo-
rithme de routage qui gère les scénarios de panne où la réduction de bande passante
est uniforme entre les commutateurs. Pour les cas où cette réduction est non uni-
forme, nous proposons un modèle de Programmation Linéaire Entières (ILP) afin
d’assigner une spine à chaque flux de communication.

Nous évaluons ensuite notre solution de Routage et d’Ordonnancement Opti-
misés et Adaptatifs aux Pannes (FORS) en termes de débit et la comparons à l’état
de l’art. FORS surpasse les solutions existantes. Par exemple, avec une panne de
lien dans le réseau, il atteint un débit de 137 Gbps par serveur contre 141 Gbps

7.4. Conclusion et perspectives de recherche 13

sans panne, et ce débit diminue progressivement à mesure que le nombre de pannes
augmente. Pour rappel, les autres approches de planification atteignent au mieux
95 Gbps. Ainsi, FORS permet d’obtenir un débit global d’environ 44 Tbps avec
une panne, tandis que les autres approches atteignent au mieux 30 Tbps. FORS
constitue donc une alternative efficace pour gérer les liens instables (liens qui flap-
pent) qui rendent le réseau instable sur de longues périodes, comme démontré au
Chapitre 4. Il suffirait de désactiver un lien instable dès qu’il commence à fluctuer
et de déployer FORS sur le réseau jusqu’à ce que le lien retrouve sa stabilité.

Nous évaluons également le temps de calcul de FORS en simulant divers scénarios
de panne aléatoires, allant d’une panne unique à la perte de la moitié des liens
du réseau. Le temps de calcul minimal est d’environ 27 secondes, le maximum
est d’environ 37 secondes, et la moyenne est d’environ 30 secondes, rendant notre
solution de routage applicable au réseau DAQ étudié.

Enfin, nous discutons de la déployabilité de FORS sur des topologies de réseau
plus larges et des contraintes de déploiement liées aux limitations d’Infiniband, que
nous espérons voir résolues dans de futures versions.

7.4.2 Perspectives

Une première perspective pour améliorer notre travail serait d’étudier plus en détail
la déployabilité de notre solution Fault-Adaptive Optimized Routing and Scheduling
(FORS) avec Ethernet. Il serait intéressant d’examiner comment notre algorithme
de routage pourrait être implémenté dans un réseau Ethernet. Dans la section
6.7.2, nous avons expliqué dans le Chapitre 6 qu’InfiniBand implémente un routage
multipath à l’aide du LID Mask Control (LMC), un masque qui attribue plusieurs
Local Identifiers (LIDs) à un serveur de destination. Avec Ethernet, une stratégie
comparable pourrait consister à encoder l’épine dorsale (spine) à utiliser comme
chemin de routage directement dans l’adresse IP et à appliquer un masque, similaire
au LMC, pour déterminer le chemin de routage. Chaque destination recevrait alors
autant d’adresses IP qu’il y a de spines dans la topologie fat-tree. FORS serait
moins contraint dans un réseau Ethernet, puisqu’il permettrait d’encoder bien plus
que la limite de 128 adresses par destination imposée par InfiniBand.

Actuellement, le réseau que nous avons étudié utilise InfiniBand pour ses mé-
canismes de contrôle de flux et ses cartes réseau InfiniBand à 200 Gbps, une option
qui n’était pas disponible avec Ethernet au moment de la conception du réseau.
Cependant, Ethernet est plus standardisé et permet l’utilisation d’autres stratégies
de routage, telles que Equal-Cost Multi-Path (ECMP). ECMP répartit le trafic sur
plusieurs chemins. Ici, comme nos différents flux sont globalement de taille équiva-
lente, ECMP pourrait nous aider à réduire la congestion du réseau.

De manière générale, la déployabilité de FORS devrait être étudiée plus en pro-
fondeur sur les réseaux InfiniBand, notamment en développant notre propre moteur
de routage pour déployer FORS dynamiquement. Actuellement, FORS ne peut
pas être généré automatiquement en cas de défaillance, car nous devons créer un
fichier contenant les tables de routage. Ce fichier inclut les routes pour atteindre un

14 Chapter 7. Conclusion and Research Directions

serveur de destination à chaque phase et pour chaque commutateur, tout en évitant
les ports en panne. Avec l’implémentation actuelle d’OpenSM, si un port en panne
est référencé dans la table de routage, OpenSM doit recharger de nouvelles tables
de routage à partir de notre fichier de configuration. Pendant ce temps, les paquets
sont perdus. Pour remédier à cela, nous devrions développer notre propre moteur
de routage capable de calculer notre solution d’ordonnancement et de routage, puis
de générer dynamiquement les tables de routage associées. Cela permettrait au con-
trôleur de basculer dynamiquement vers notre solution en cas de panne, de la même
manière que Ftree bascule par défaut vers Min-Hop en cas de panne, sans nécessiter
de redémarrer le contrôleur OpenSM.

Une fois FORS déployé sur le réseau DAQ de LHCb, un autre axe de travail
futur serait d’évaluer ses performances en termes de fail-over. Plus précisément,
il serait intéressant de mesurer le temps écoulé entre l’occurrence d’une panne et
le moment où le réseau se stabilise avec la solution FORS. De plus, nous devrions
suivre la fréquence et la durée d’utilisation de FORS sur plusieurs mois, puis cal-
culer la quantité de données préservées grâce à FORS. Cela pourrait être réalisé en
comparant le débit atteint avec FORS au débit de la solution d’ordonnancement
et de routage actuellement déployée, en s’appuyant sur les mesures présentées au
Chapitre 4.

Un autre domaine de recherche intéressant serait de définir formellement la com-
plexité du problème de routage lorsque la réduction de bande passante est non uni-
forme. Pour cela, nous avons proposé un modèle de Programmation Linéaire en
Nombres Entières (ILP), comme décrit dans la Section 6.5. Bien que nous ayons
tenté de développer un algorithme de routage pour résoudre ce problème, nous
n’avons pas réussi. Nous pensons que cette difficulté provient du fait que notre
problème pourrait être un Multi-Commodity Flow Problem, plus précisément un
Unsplittable Flow Problem (UFP). Dans un UFP, chaque flux de communication
entre une source et une destination dans un réseau doit emprunter un seul chemin et
ne peut pas être réparti sur plusieurs chemins tout en respectant les contraintes de
capacité des liens. Ce problème est connu pour être NP-difficile, et définir formelle-
ment notre problème de routage avec réduction de bande passante non uniforme
comme un UFP pourrait offrir un aperçu plus approfondi de sa complexité.

La Programmation par Contraintes (CP) est une technique utilisée pour trouver
des solutions satisfaisant un ensemble de contraintes, plutôt que d’optimiser une
fonction objective comme en programmation linéaire. La CP est particulièrement
efficace pour résoudre des problèmes combinatoires où les contraintes sont de na-
ture logique [Google 2024]. Par exemple, elle fonctionne bien lorsque des variables
doivent être toutes différentes ou lorsqu’une contrainte impose que si une variable
est égale à 1, une autre doit être égale à 0. Cependant, le problème du routage
des communications avec une réduction de bande passante non uniforme s’exprime
plus naturellement à l’aide de contraintes linéaires, ce qui justifie notre choix de
l’ILP dans la Section 6.5. Les contraintes purement logiques ne capturent pas tou-
jours adéquatement la complexité du problème de routage. Bien qu’il soit possible
d’exprimer notre problème en utilisant uniquement des contraintes logiques, cela

7.4. Conclusion et perspectives de recherche 15

nécessite, à notre connaissance, l’introduction de variables et de contraintes sup-
plémentaires pour reproduire le comportement des contraintes linéaires. Cela com-
plique non seulement le modèle, mais ralentit également le solveur. Nous avons
tenté de résoudre le problème de routage avec réduction de bande passante non
uniforme en utilisant des contraintes logiques adaptées à la CP. Nous avons em-
ployé le solveur CP-SAT open-source de Google OR-Tools[Google 2023], mais nous
n’avons pas trouvé de solution dans un délai raisonnable pour la topologie du réseau
DAQ étudié. Néanmoins, cette approche pourrait mériter une investigation plus
approfondie.

Une autre perspective pour les travaux futurs serait d’adapter notre solution
d’ordonnancement à d’autres opérations collectives, comme AllGather. Comme
présenté au Chapitre 3, bien qu’AllGather utilise la même bande passante que l’all-
to-all, il implique un nombre différent de messages échangés. L’all-to-all nécessite
davantage de messages circulant dans le réseau. Notre solution d’ordonnancement
pourrait donc probablement être adaptée à ces opérations collectives, qui sont moins
complexes à optimiser en cas de panne. De plus, la propriété de notre ordonnance-
ment permettant de gérer une réduction de bande passante non uniforme, ainsi que
notre solution de routage, pourraient également s’appliquer à ces opérations.

Enfin, une dernière perspective serait d’étudier comment FORS pourrait être
adapté à d’autres topologies, comme HyperX et AB Fat-Tree, qui sont abordées
au Chapitre 3. La topologie AB Fat-Tree fait partie de la solution Fault-Tolerant
Engineered Network (F10), conçue pour améliorer la tolérance aux pannes. Cette
topologie augmente le nombre de chemins entre les leaf switches en cas de panne
en brisant la symétrie d’une topologie fat-tree standard. Dans le réseau DAQ de
LHCb, la topologie AB fat-tree n’apporte pas d’avantage particulier, car le nombre
maximal de chemins entre les leaf switches est déjà atteint grâce à la structure fat-
tree à deux couches. Cependant, pour améliorer la tolérance aux pannes dans des
topologies fat-tree de plus de deux couches, l’AB Fat-Tree pourrait être une solution
intéressante, et FORS pourrait être adapté pour cette architecture. Nous pourrions
également étudier l’adaptation de FORS aux topologies HyperX et évaluer si une
solution de routage simplifiée serait suffisante pour le routage du trafic, étant donné
que la topologie HyperX offre de nombreux chemins redondants.

List of Figures

2.1 Logical fat-tree LFT (3; 2, 2, 4) with three layers. At the top layer,
the switch SW12 has 4 down links with a capacity of 4. Then, each
switch at layer 2 SW8..11 and each switch at layer 1 SW0..7 has
2 down links with a capacity of respectively 2 and 1. There are 16
servers connected in the topology. The nodes SW0 . . . 12 are switches
and the nodes S0 . . . 15 are servers. 8

2.2 Generalized fat-tree FT (3; 2, 2, 4) with three layers. At the top layer,
each switch SW16..19 has 4 down links. Then, each switch at layer 2
SW8..15 and each switch at layer 1 SW0..7 has 2 down links. There
are 16 servers connected in the topology. Each link has a capacity of 1. 9

2.3 Generalized fat-tree FT (3; 2, 2, 2) with three layers. At the each layer,
each switch has two down links. There are 8 servers connected in the
topology. Each link has a capacity of 1. 10

2.4 A collective all-to-all exchange between 4 servers on a fat-tree topol-
ogy FT(2;2,2). The switches are SW [0, . . . , 3] and the servers are
S[0, . . . , 3]. Each server transmits simultaneously to all other servers,
creating congestion on all links in the network. 12

2.5 The linear-shift scheduling with four servers. Each process commu-
nicates with all other servers. To prevent congestion, the exchange
is divided into four phases. At each phase, each server sends data to
another process and receives data from another one. The minimum
number of phases for the all-to-all exchange is the same as the number
of servers. 13

2.6 The routing of the linear-shift all-to-all schedule with four servers in
the fat-tree topology FT (2; 2, 2). No links are used twice in the same
direction. 13

2.7 The Event Builder Network of the LHCb experiment. The data frag-
ments from the sensors are transmitted to the servers, which perform
an all-to-all exchange to reconstruct the events. The network topol-
ogy is a two-layer fat-tree with 28 40-port InfiniBand High Data Rate
(HDR) switches. Each leaf switch is directly connected to approxi-
mately 20 servers and 20 spine switches with 200 Gbps links. Each
source server traverses the fat-tree topology from the leaf switch it is
connected to, up to the spine switches, and then back down to the
leaf switches to reach the destination server. 14

18 List of Figures

3.1 A Dragonfly topology with 24 servers and 12 switches. The topology
is composed of three groups, with the number of switches in the same
group denoted by α. Each group contains 4 switches (α = 4), and
the number of servers connected to each switch is denoted by p. Each
switch is connected to 2 servers (p = 2). The switches in the same
group are fully interconnected. Additionally, each switch has two
links to external groups, represented by dashed lines, where the num-
ber of links to external groups is denoted by h, so h = 2. In a Dragon-
fly topology α, p and h can have any value. However, to balance the
load in a Dragonfly topology, we need a = 2p = 2h [Kim et al. 2008]. 25

4.1 Cumulative distribution of the interval T3 - T2 (in Figure 4.2) be-
tween flaps of observed flapping links and their flapping periods. . . 32

4.2 Distinction between the duration of a flap and the interval between
two flaps. The duration of a flap is represented by the solid arrowed
line and the value is T2 - T1. The interval between two flaps is
represented by the dashed arrowed line, which is T3 - T2. 32

4.3 Cumulative distribution of failure duration. The blue line represents
the cumulative distribution of failure duration without the flapping
links correction. The orange dotted line represents the cumulative
distribution of failure duration with the flapping links correction.
Flapping links correction is applied by counting failures of a flap-
ping link as one long failure rather than several small failures spaced
over a short period. 33

4.4 Distribution of network link failures over a two-month period. The
x-axis represents the days in March and April 2024 when failures
occurred. The y-axis represents the IDs of the links that failed during
this period. The link IDs are assigned based on the switch IDs and
the port IDs which are sorted in ascending order. 35

4.5 The throughput achieved per server according to the failure scenario
with the Infiniband routing algorithms suitable for a fat-tree topol-
ogy. The routing algorithm in the evaluation are Ftree, Ftree adap-
tive routing, Ftree to Min-Hop (default behavior), Min-Hop, UPDN,
UPDN-AR. To obtain the total throughput achieved by the DAQ
application, one can multiply the throughput per server by the num-
ber of servers in the DAQ application, which is 326. The error bars
represent the minimum, mean and maximum values. 37

4.6 Description of the MPI all-to-all application without synchronization. 40

4.7 Scalability of the synchronized and non-synchronized all-to-all appli-
cations. The error bars represent the minimum, mean and maximum
values. 43

List of Figures 19

4.8 Synchronized and non-synchronized all-to-all exchange throughput
per server as a function of the number of failures. Failure scenarios
are randomly generated 10 times for each number of failures. There
are 326 servers in the topology. The number of simultaneous failures
in the Event Builder network is 1, 3 or 5. The boxplots represent the
minimum, 25th percentile, median, 75th percentile, and maximum
values. Outliers are also depicted. 44

5.1 The Ftree routing of the Linear-shift communication pattern at each
phase. The topology of the network is a two-layer fat-tree denoted
FT (2; 2, 2), which interconnects four servers. SW [0, . . . , 3] are the
switches and S[0, . . . , 3] are the servers. The table is the same as
Table 5.1, which shows the scheduling of the linear-shift defined as
a Latin square. The first column is the source server, each following
column is a phase and the content in the cell is the destination server. 50

5.2 An example of the impact of a bandwidth reduction of 1 in the
FT(2;4,4) topology with 16 servers. The different types of arrows
represent the traffic in both directions towards the associated server.
In the top figure, the bandwidth reduction is 1 due to a link failure
between SW0 and SW4. As a result, servers S0..3 have only three
links available for external communication, creating one congestion
on the link between switches SW0 and SW4. Similarly, the bottom
figure illustrates a bandwidth reduction of 1 with two failures, one be-
tween SW0 and SW4 and another between SW1 and SW4, resulting
in one congestion on the links SW0-SW5 and SW1-SW5. 51

5.3 The routing of the Bandwidth-optimal communication pattern at
each phase. The topology of the network is a two-layer fat-tree de-
noted FT (2; 2, 2), which interconnects four servers. SW [0, . . . , 3] are
the switches and S[0, . . . , 3] are the servers. At each phase, only two
messages cross the bisection of the network. 53

5.4 The Min-Hop routing algorithm’s best-case scenario (left) and worst-
case scenario (right) in terms of congestion distribution. 56

5.5 The routing of the Bandwidth-optimal communication pattern at
each phase with one link failure between SW0 and SW2. The topology
of the network is a two-layer fat-tree FT (2; 2, 2), which interconnects
four servers. SW [0, . . . , 3] are the switches and S[0, . . . , 3] are the
servers. Each phase takes one unit of time as there is still enough
bandwidth to route the exchanges at each phase. The total duration
of the all-to-all exchange in this case is of four unit of time. 58

20 List of Figures

5.6 The routing of the linear-shift communication pattern at each phase
with one link failure between SW0 and SW2. The topology of the
network is a two-layer fat-tree denoted FT (2; 2, 2), which intercon-
nects four servers. SW [0, . . . , 3] are the switches and S[0, . . . , 3] are
the servers. Phase 0 is almost instantaneous because each server
communicates with itself. Phases 1 and 3 each take one unit of time
since there is sufficient bandwidth to handle the exchanges. However,
congestion occurs at phase 2 as two communications must share two
links. Consequently, the total duration of the all-to-all exchange in
this scenario is four units of time. 59

5.7 Time performance with the topology FT(2;20,18), which is the topol-
ogy of the LHCb DAQ network. LS refers to the linear-shift schedul-
ing and BO is the bandwidth-optimal scheduling. The left axis shows
the slowdown of the different scheduling upon bandwidth reduction
compared to no failures, this is the relative time degradation due to
failures. The speedup, on the right axis, shows the improvement ratio
of bandwidth-optimal compared the linear-shift. The failures happen
on the leaf switches, which are the links between the bottom and top
layer in the fat-tree topology. 60

5.8 The fat-tree topology FT (2; 2, 4) with 6 switches and 8 servers. The
link between SW0 and SW4 is broken so it is not represented in the
topology. 62

5.9 Multiplicative factor for the number of phases according to the band-
width reduction f between leaf and spine switches for several fat-
tree topologies. FT(2;8,16) contains 128 servers, FT(2;16,16) con-
tains 256 servers, FT(2;20,18), our use-case network, contains 360
servers, FT(2;16,32) contains 512 servers and FT(2;32,32) contains
1024 servers. The vertical lines correspond to the loss of half the
bandwidth for each topology. 65

5.10 Time performance with the topology FT(2;16,16). LS refers to the
linear-shift scheduling, BO is the bandwidth-optimal scheduling and
FS is our proposed fault-adaptive scheduling. The left axis shows
the slowdown of the different scheduling upon bandwidth reduction
compared to no failures, this is the relative time degradation due to
failures. The speedup, on the right axis, shows the improvement ratio
of FS compared to LS and BO. 71

5.11 Time performance with the topology FT(2;20,18), which is the topol-
ogy of the LHCb DAQ network. LS refers to the linear-shift schedul-
ing, BO is the bandwidth-optimal scheduling and FS is our proposed
fault-adaptive scheduling. The left axis shows the slowdown of the dif-
ferent scheduling upon bandwidth reduction compared to no failures,
this is the relative time degradation due to failures. The speedup, on
the right axis, shows the improvement ratio of FS compared to LS
and BO. 71

List of Figures 21

5.12 Time performance with the topology FT(2;16,32). LS refers to the
linear-shift scheduling, BO is the bandwidth-optimal scheduling and
FS is our proposed fault-adaptive scheduling. The left axis shows
the slowdown of the different scheduling upon bandwidth reduction
compared to no failures, this is the relative time degradation due to
failures. The speedup, on the right axis, shows the improvement ratio
of FS compared to LS and BO. 72

5.13 The computation time of the fault-adaptive scheduling under band-
width reduction. The fat-tree topology used is FT(2;20,18), which
is the topology of the LHCb DAQ network. For each bandwidth re-
duction b, tests were repeated 10 times with random failure scenarios
involving one to three leaves and b spines. The error bars represent
the minimum, mean and maximum values. 72

6.1 Illustration of the deterministic nature of the paths in a two-layer
fat-tree topology FT(2;4,8). On the left, all servers have one unique
path to join spine 9 represented by different dashed lines. On the
right, all spine switches have one unique path to join servers S0..3. . 76

6.2 Illustration of the deterministic nature of the paths in a three-layer
fat-tree topology FT(3;4,4,4). All leaf switches have a single path to
join spine 37 (red links), and vice versa. 76

6.3 Illustration of a non-uniform bandwidth reduction on a two-layer fat-
tree topology as it involves an unequal number of paths between dif-
ferent leaf switches. The links 0-8 and 1-9 are broken, resulting in
switch 0 having only 2 paths available to join switch 1 and 3 paths
available to join the rest of the leaf switches. 78

6.4 Illustration of function T (s, p), with M0 = 6 and f = 2, that de-
fines whether a server s (the lines) transmits at phase p or not. The
function depends only on αs and is periodic of period M0. Server s

transmits at phase p if and only if the corresponding cell is crossed. . 80
6.5 Evaluation of FORS throughput compared to the default routing al-

gorithms Ftree/Min-Hop and the adaptive routing version of Ftree
with synchronized and non-synchronized all-to-all exchange. To ob-
tain the total throughput achieved by the DAQ application, one can
multiply the throughput per server by the number of servers in the
DAQ application, which is 326. The error bars represent the mini-
mum, mean and maximum values over one minute of measurement
for synchronized all-to-all and five minutes for non-synchronized all-
to-all. The fat-tree topology of the studied data acquisition network
is FT(2;20,18), illustrated in Figure 2.7. The failure scenarios noted
with "*" are the ones where an ILP model was needed to compute
the routing solution. 94

List of Tables

5.1 Linear-shift pattern defined as a Latin Square. 48
5.2 Linear-shift pattern defined as an orthogonal array representation of

a Latin Square. 49
5.3 Notations of Algorithm 1. 54
5.4 The bandwidth-optimal pattern is defined as a Latin Square with a

bandwidth reduction of 1. To prevent congestion, destination servers
marked with the symbol "*" need to be removed from the original
phases and moved to the additional phases P [8..11]. 63

6.1 The linear-shift scheduling for 32 servers and the first 16 phases, only
the communications involving servers S0 through S3 are represented.
Communications marked with an asterisk (*) must be moved to addi-
tional phases to address the failure scenario with the topology shown
in Figure 6.3, where the following links have failed: 0-8, 1-9, 2-10,
and 3-11. 79

6.2 The linear-shift scheduling for 32 servers and last 16 phases, only
the communications involving servers S0 through S3 are represented.
Communications marked with an asterisk (*) must be moved to addi-
tional phases to address the failure scenario with the topology shown
in Figure 6.3, where the following links have failed: 0-8, 1-9, 2-10,
and 3-11. 79

6.3 Notations in the ILP model. 89

Bibliography

[Aad et al. 2023] G. Aad, B. Abbott, K. Abeling, N.J. Abicht, S.H. Abidi, A. Aboul-
horma, H. Abramowicz, H. Abreu and Y. Abulaiti et al. Fast b-tagging at
the high-level trigger of the ATLAS experiment in LHC Run 3. Journal of
Instrumentation, vol. 18, no. 11, page P11006, nov 2023. 15

[Aaij et al. 2020] Roel Aaijet al. Allen: A high level trigger on GPUs for LHCb.
Comput. Softw. Big Sci., vol. 4, no. 1, page 7, 2020. 15

[Abdous et al. 2021] Sepehr Abdous, Erfan Sharafzadeh and Soudeh Ghorbani.
Burst-tolerant datacenter networks with Vertigo. In Proceedings of the 17th
International Conference on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’21, page 1–15, New York, NY, USA, 2021. Association
for Computing Machinery. 38

[Al-Fares et al. 2010] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath
Raghavan, Nelson Huang and Amin Vahdat. Hedera: dynamic flow schedul-
ing for data center networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, NSDI’10, page 19, USA,
2010. USENIX Association. 2, 21, 5

[Amoiridis et al. 2023] Vasileios Amoiridis, Thomas Owen James, Dinyar Sebas-
tian Rabady, Dominika Zogatova, Dominique Gigi, Attila Racz, Christian
Deldicque, Eric Cano, Emilio Meschi, Philipp Maximilian Brummeret al.
The CMS Orbit Builder for the HL-LHC at CERN. Technical report, CERN,
2023. 14

[Amoiridis, Vassileios et al. 2024] Amoiridis, Vassileios, Behrens, Ulf, Bocci, An-
drea, Branson, James, Brummer, Philipp, Cano, Eric, Cittolin, Sergio, Da
Silva Almeida Da Quintanilha, Joao, Darlea, Georgiana-Lavinia, Deldicque,
Christian, Dobson, Marc, Dvorak, Antonin, Gigi, Dominique, Glege, Frank,
Gomez-Ceballos, Guillelmo, Gorniak, Patrycja, Gutić, Neven, Hegeman,
Jeroen, Izquierdo Moreno, Guillermo, James, Thomas Owen, Karimeh,
Wassef, Kartalas, Miltiadis, Krawczyk, Rafał Dominik, Li, Wei, Long, Ken-
neth, Meijers, Frans, Meschi, Emilio, Morović, Srećko, Orsini, Luciano, Paus,
Christoph, Petrucci, Andrea, Pieri, Marco, Rabady, Dinyar Sebastian, Racz,
Attila, Rizopoulos, Theodoros, Sakulin, Hannes, Schwick, Christoph, Šimele-
vičius, Dainius, Tzanis, Polyneikis, Vazquez Velez, Cristina, Žejdl, Petr,
Zhang, Yousen and Zogatova, Dominika. The CMS Orbit Builder for the
HL-LHC at CERN. EPJ Web of Conf., vol. 295, page 02011, 2024. 15

[Avin & Schmid 2021] Chen Avin and Stefan Schmid. Renets: Statically-optimal
demand-aware networks, pages 25–39. Society for Industrial and Applied
Mathematics, 2021. 26

24 Bibliography

[Avin et al. 2018] Chen Avin, Alexandr Hercules, Andreas Loukas and Stefan
Schmid. rDAN: Toward robust demand-aware network designs. Information
Processing Letters, vol. 133, pages 5–9, 2018. 26

[Bawej et al. 2015] Tomasz Bawej, Ulf Behrens, James Branson, Olivier Chaze,
Sergio Cittolin, Georgiana-Lavinia Darlea, Christian Deldicque, Marc Dob-
son, Aymeric Dupont, Samim Erhan, Andrew Forrest, Dominique Gigi,
Frank Glege, Guillelmo Gomez-Ceballos, Robert Gomez-Reino, Jeroen Hege-
man, Andre Holzner, Lorenzo Masetti, Frans Meijers, Emilio Meschi,
Remigius K. Mommsen, Srecko Morovic, Carlos Nunez-Barranco-Fernandez,
Vivian O’Dell, Luciano Orsini, Christoph Paus, Andrea Petrucci, Marco
Pieri, Attila Racz, Hannes Sakulin, Christoph Schwick, Benjamin Stieger,
Konstanty Sumorok, Jan Veverka and Petr Zejdl. The New CMS DAQ Sys-
tem for Run-2 of the LHC. IEEE Transactions on Nuclear Science, vol. 62,
no. 3, pages 1099–1103, 2015. 1, 11, 4

[Belyaev et al. 2017] Nikita Belyaev, Dimitrii Krasnopevtsev, Rostislav Konoplich,
Vasily Velikhov and Alexei Klimentov. High performance computing system
in the framework of the Higgs boson studies. Technical report, ATL-COM-
SOFT-2017-089, 2017. 1, 4

[Beni & Cosenza 2022] Majid Salimi Beni and Biagio Cosenza. An Analysis of Per-
formance Variability on Dragonfly+topology. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pages 500–501, Heidelberg,
Germany, 2022. IEEE. 25

[Bienkowski et al. 2003] Marcin Bienkowski, Miroslaw Korzeniowski and Harald
Räcke. A Practical Algorithm for Constructing Oblivious Routing Schemes.
In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’03, page 24–33, New York, NY, USA, 2003.
Association for Computing Machinery. 23

[Bogdanski et al. 2012] Bartosz Bogdanski, Bjørn Dag Johnsen, Sven-Arne
Reinemo and Frank Olaf Sem-Jacobsen. Discovery and Routing of Degraded
Fat-Trees. In 2012 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies, pages 697–702, Beijing, China,
2012. IEEE. 93

[Bokhari & Parameswaran 2016] Haseeb Bokhari and Sri Parameswaran. Network-
on-chip design, pages 1–29. 01 2016. 21

[Borrill et al. 2015] Julian Borrill, Reijo Keskitalo and Theodore Kisner. Big Bang,
Big Data, Big Iron: Fifteen Years of Cosmic Microwave Background Data
Analysis at NERSC. Computing in Science & Engineering, vol. 17, no. 3,
pages 22–29, 2015. 1, 4

Bibliography 25

[Bruck et al. 1997] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal and D. Weathersby.
Efficient algorithms for all-to-all communications in multiport message-
passing systems. IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 11, pages 1143–1156, 1997. 21

[Cai et al. 2021] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi,
Todd Mytkowicz, Jacob Nelson and Olli Saarikivi. Synthesizing optimal col-
lective algorithms. In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’21, page 62–75,
New York, NY, USA, 2021. Association for Computing Machinery. 11

[CERN 2019] CERN. Key Facts and Figures – CERN Data Centre, 2019. [On-
line]. Available: https://information-technology.web.cern.ch/sites/
default/files/CERNDataCentre_KeyInformation_July2019V1.pdf.
Accessed on: June 24, 2024. 1, 4

[CERN 2024] CERN. The Large Hadron Collider, 2024. [Online]. Available: https:
//home.cern/science/accelerators/large-hadron-collider. Accessed
on: June 24, 2024. 14

[Chan et al. 2007] Ernie Chan, Marcel Heimlich, Avi Purkayastha and Robert
van de Geijn. Collective communication: theory, practice, and experience:
Research Articles. vol. 19, no. 13, page 1749–1783, sep 2007. 11

[Chao et al. 2012] Hung-Lin Chao, Yean-Ru Chen, Sheng-Ya Tung, Pao-Ann Hsi-
ung and Sao-Jie Chen. Congestion-aware scheduling for NoC-based recon-
figurable systems. In 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1561–1566, 2012. 21

[Chatti et al. 2010] Majed Chatti, Sami Yehia, Claude Timsit and Soraya Zertal. A
hypercube-based NoC routing algorithm for efficient all-to-all communications
in embedded image and signal processing applications. In 2010 International
Conference on High Performance Computing Simulation, pages 623–630,
2010. 21

[Chirkov & Wentzlaff 2023] Grigory Chirkov and David Wentzlaff. Seizing the
Bandwidth Scaling of On-Package Interconnect in a Post-Moore’s Law World.
In Proceedings of the 37th International Conference on Supercomputing, ICS
’23, page 410–422, New York, NY, USA, 2023. Association for Computing
Machinery. 2, 5

[Colbourn & Dinitz 2006] C.J. Colbourn and J.H. Dinitz, editors. Handbook of
combinatorial designs. Chapman and Hall/CRC, 2nd édition, 2006. 48

[Contini et al. 2023] Nicholas Contini, Bharath Ramesh, Kaushik Kandadi Suresh,
Tu Tran, Ben Michalowicz, Mustafa Abduljabbar, Hari Subramoni and Dha-
baleswar Panda. Enabling Reconfigurable HPC through MPI-based Inter-
FPGA Communication. In Proceedings of the 37th International Conference

https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_July2019V1.pdf
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_July2019V1.pdf
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider

26 Bibliography

on Supercomputing, ICS ’23, page 477–487, New York, NY, USA, 2023.
Association for Computing Machinery. 2, 5

[Czechowski et al. 2012] Kenneth Czechowski, Casey Battaglino, Chris McClana-
han, Kartik Iyer, P.-K. Yeung and Richard Vuduc. On the Communication
Complexity of 3D FFTs and Its Implications for Exascale. In Proceedings of
the 26th ACM International Conference on Supercomputing, ICS ’12, page
205–214, New York, NY, USA, 2012. Association for Computing Machinery.
11

[Dalcin et al. 2019] Lisandro Dalcin, Mikael Mortensen and David E. Keyes. Fast
parallel multidimensional FFT using advanced MPI. Journal of Parallel and
Distributed Computing, vol. 128, pages 137–150, 2019. 11

[Dandapanthula 2011] Nishanth Dandapanthula. Infiniband network analysis and
monitoring using opensm. Master’s thesis, The Ohio State University, 2011.
34

[de O. Souza et al. 2022] Otavio A. de O. Souza, Olga Goussevskaia and Stefan
Schmid. CBNet: Demand-aware tree topologies for Reconfigurable Datacenter
Networks. Computer Networks, vol. 213, page 109090, 2022. 26

[Doi & Negishi 2010] Jun Doi and Yasushi Negishi. Overlapping Methods of All-
to-All Communication and FFT Algorithms for Torus-Connected Massively
Parallel Supercomputers. In SC ’10: Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–9, New Orleans, LA, USA, 2010. IEEE. 11, 24

[Domke & Hoefler 2016] Jens Domke and Torsten Hoefler. Scheduling-Aware Rout-
ing for Supercomputers. In SC ’16: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
pages 142–153, Salt Lake City, UT, USA, 2016. IEEE. 22

[Domke et al. 2019a] Jens Domke, Satoshi Matsuoka, Ivan R. Ivanov, Yuki
Tsushima, Tomoya Yuki, Akihiro Nomura, Shin’ichi Miura, Nie McDonald,
Dennis L. Floyd and Nicolas Dubé. HyperX Topology: First at-Scale Im-
plementation and Comparison to the Fat-Tree. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’19, New York, NY, USA, 2019. Association for Computing
Machinery. 26

[Domke et al. 2019b] Jens Domke, Satoshi Matsuoka, Ivan Radanov, Yuki
Tsushima, Tomoya Yuki, Akihiro Nomura, Shin’ichi Miura, Nic McDonald,
Dennis Lee Floyd and Nicolas Dubé. The First Supercomputer with HyperX
Topology: A Viable Alternative to Fat-Trees? In 2019 IEEE Symposium on
High-Performance Interconnects (HOTI), pages 1–4, Santa Clara, CA, USA,
2019. IEEE. 26

Bibliography 27

[Dorelli et al. 2022] John Dorelli, Chris Bard, Thomas Chen, Daniel Silva, Luiz Fer-
nando Guedes dos Santos, Jack Ireland, Michael Kirk, Ryan McGranaghan,
Ayris Narock, Teresa Nieves-Chinchilla, Marilia Samara, M. Sarantos, Pete
Schuck and Barbara Thompson. Deep Learning for Space Weather Predic-
tion: Bridging the Gap between Heliophysics Data and Theory, 12 2022. 1,
4

[Drung & Rosenstock 2017] Benjamin Drung and Hal Rosenstock. Current OpenSM
Routing, 2017. [Online]. Available: https://github.com/linux-rdma/
opensm/blob/master/doc/current-routing.txt. Accessed on: June 24,
2024. 93

[Elasticsearch 2024] Elasticsearch. Centralize, transform and stash your data, 2024.
[Online]. Available: https://www.elastic.co/logstash. Accessed on: June
24, 2024. 31

[et al. 2024] Hal Rosenstock et al. opensm(8) - Linux man page, 2024. [Online].
Available: https://linux.die.net/man/8/opensm Accessed on: June 24,
2024. 99

[experts 2023a] Gurobi experts. Gurobi Optimization Inc. Gurobi optimizer refer-
ence manual, 2023. [Online]. Available: http://www.gurobi.com. Accessed
on: June 24, 2024. 68, 89

[experts 2023b] Gurobi experts. max_(), 2023. Online. Available: https:
//www.gurobi.com/documentation/10.0/refman/py_max_.html. Accessed
on: June 24, 2024. 100

[experts 2023c] Gurobi experts. Start, 2023. Online. Available: https://www.
gurobi.com/documentation/current/refman/start.html. Accessed on:
June 24, 2024. 91

[Falcón 2015] Raúl M. Falcón. Enumeration and classification of self-orthogonal
partial Latin rectangles by using the polynomial method. European Journal
of Combinatorics, vol. 48, pages 215–223, 2015. Selected Papers of Euro-
Comb’13. 66

[Feng et al. 2023] Guangnan Feng, Dezun Dong, Shizhen Zhao and Yutong Lu.
GRAP: Group-Level Resource Allocation Policy for Reconfigurable Dragonfly
Network in HPC. In Proceedings of the 37th International Conference on
Supercomputing, ICS ’23, page 437–449, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. 2, 5

[Francois & Bonaventure 2008] Pierre Francois and Olivier Bonaventure. Avoiding
Transient Loops During the Convergence of Link-State Routing Protocols.
Networking, IEEE/ACM Transactions on, vol. 15, pages 1280–1292, 01 2008.
34

https://github.com/linux-rdma/opensm/blob/master/doc/current-routing.txt
https://github.com/linux-rdma/opensm/blob/master/doc/current-routing.txt
https://www.elastic.co/logstash
https://linux.die.net/man/8/opensm
http://www.gurobi.com
https://www.gurobi.com/documentation/10.0/refman/py_max_.html
https://www.gurobi.com/documentation/10.0/refman/py_max_.html
https://www.gurobi.com/documentation/current/refman/start.html
https://www.gurobi.com/documentation/current/refman/start.html

28 Bibliography

[Geoffray & Hoefler 2008] Patrick Geoffray and Torsten Hoefler. Adaptive Routing
Strategies for Modern High Performance Networks. In 2008 16th IEEE Sym-
posium on High Performance Interconnects, pages 165–172, 2008. 22

[Gill et al. 2011] Phillipa Gill, Navendu Jain and Nachiappan Nagappan. Under-
standing Network Failures in Data Centers: Measurement, Analysis, and Im-
plications. SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, page 350–361,
aug 2011. 1, 29, 73, 92, 5

[Gomez et al. 2007] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez and J. Duato.
Deterministic versus Adaptive Routing in Fat-Trees. In 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium, pages 1–8, 2007.
23

[Google 2023] Google. OR-Tools - Google Optimization Tools, 2023. Online. Avail-
able: https://developers.google.com/optimization/cp/cp_solver. Ac-
cessed on: June 24, 2024. 108, 15

[Google 2024] Google. Constraint Optimization, 2024. Online. Available: https:
//developers.google.com/optimization/cp. Accessed on: June 24, 2024.
108, 14

[Griner et al. 2021] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya
Ghobadi, Stefan Schmid and Chen Avin. Cerberus: The Power of Choices in
Datacenter Topology Design - A Throughput Perspective. Proc. ACM Meas.
Anal. Comput. Syst., vol. 5, no. 3, dec 2021. 26

[Hensgen et al. 1988] Debra Hensgen, Raphael Finkel and Udi Manber. Two al-
gorithms for barrier synchronization. International Journal of Parallel Pro-
gramming, vol. 17, pages 1–17, 02 1988. 12, 41, 92

[Hoefler et al. 2008] Torsten Hoefler, Timo Schneider and Andrew Lumsdaine.
Multistage switches are not crossbars: Effects of static routing in high-
performance networks. In 2008 IEEE International Conference on Cluster
Computing, pages 116–125, 2008. 22

[Huang et al. 2020] Jheng-Yu Huang, Ming-Hung Hsu and Chung-An Shen. A Novel
Routing Algorithm for the Acceleration of Flow Scheduling in Time-Sensitive
Networks. Sensors (Basel, Switzerland), vol. 20, 2020. 22

[Huang et al. 2023] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang
Liu, Yafan Huang, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong Chenet al.
gzccl: Compression-accelerated collective communication framework for gpu
clusters. arXiv preprint arXiv:2308.05199, 2023. 2, 5

[Huseyin & İmre 2018] Temuçin Huseyin and Kayhan İmre. Scheduling Computa-
tion and Communication on a Software-Defined Photonic Network-on-Chip

https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp
https://developers.google.com/optimization/cp

Bibliography 29

Architecture for High-Performance Real-Time Systems. Journal of Systems
Architecture, vol. 90, 08 2018. 21

[Izzi & Massini 2020] Daniele Izzi and Annalisa Massini. Optimal all-to-all person-
alized communication on Butterfly networks through a reduced Latin square.
In 2020 IEEE 22nd International Conference on High Performance Comput-
ing and Communications; IEEE 18th International Conference on Smart
City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 1065–1072, Yanuca Island, Cuvu, Fiji, 2020.
IEEE. 2, 21, 5

[Izzi & Massini 2022] Daniele Izzi and Annalisa Massini. All-to-All Personalized
Communication on Fat-Trees Using Latin Squares. In 2022 International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM), pages 1–6, Split, Croatia, 2022. IEEE. 2, 13, 5

[Izzi & Massini 2023] Daniele Izzi and Annalisa Massini. Realizing Optimal All-
to-All Personalized Communication Using Butterfly-Based Networks. IEEE
Access, vol. 11, pages 51064–51083, 2023. 2, 21, 5

[Jacobs 2010] Joan Jacobs. D-Mod-K Routing Providing Non-Blocking Traffic for
Shift Permutations on Real Life Fat Trees. In Computer Science, Engineer-
ing, 2010. 16

[Jereczek et al. 2015] Grzegorz Jereczek, Giovanna Lehmann Miotto and David
Malone. Analogues between tuning TCP for Data Acquisition and datacen-
ter networks. In 2015 IEEE International Conference on Communications
(ICC), pages 6062–6067, 2015. 1, 11, 4

[Jereczek 2017] Grzegorz Jereczek. Software switching for high throughput data ac-
quisition networks. PhD thesis, National University of Ireland, Maynooth
(Ireland), 2017. 14

[Karp 1972] Richard M. Karp. Reducibility among combinatorial problems, pages
85–103. Springer US, Boston, MA, 1972. 89

[Karp 1975] Richard M Karp. On the computational complexity of combinatorial
problems. Networks, vol. 5, no. 1, pages 45–68, 1975. 86, 88

[Kasan et al. 2022] Hans Kasan, Gwangsun Kim, Yung Yi and John Kim. Dynamic
Global Adaptive Routing in High-Radix Networks. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA ’22, page
771–783, New York, NY, USA, 2022. Association for Computing Machinery.
22

[Kim et al. 2008] John Kim, Wiliam J. Dally, Steve Scott and Dennis Abts.
Technology-Driven, Highly-Scalable Dragonfly Topology. In 2008 Interna-
tional Symposium on Computer Architecture, pages 77–88, 2008. 24, 25,
18

30 Bibliography

[Kleinberg 1996] J.M. Kleinberg. Single-source unsplittable flow. In Proceedings of
37th Conference on Foundations of Computer Science, pages 68–77, 1996. 88

[Kopeliansky 2023] Revital Kopeliansky. ATLAS Trigger and Data Acquisition up-
grades for the High Luminosity LHC. Technical report, CERN, Geneva, 2023.
15

[Krawczyk, Rafał Dominik et al. 2021] Krawczyk, Rafał Dominik, Pisani, Flavio,
Colombo, Tommaso, Frank, Markus and Neufeld, Niko. Ethernet evaluation
in data distribution traffic for the LHCb filtering farm at CERN. EPJ Web
Conf., vol. 251, page 04001, 2021. 98

[Kumar & Kale 2004] S. Kumar and L.V. Kale. Scaling all-to-all multicast on fat-
tree networks. In Proceedings. Tenth International Conference on Parallel
and Distributed Systems, 2004. ICPADS 2004., pages 205–214, 2004. 23

[Lakhotia et al. 2021] Kartik Lakhotia, Fabrizio Petrini, Rajgopal Kannan and Vik-
tor Prasanna. In-network reductions on multi-dimensional HyperX. In 2021
IEEE Symposium on High-Performance Interconnects (HOTI), pages 1–8,
2021. 26

[Leiserson et al. 1992] Leiserson et al. The Network Architecture of the Connection
Machine CM-5 (Extended Abstract). SPAA’92, page 272–285. Association
for Computing Machinery, 1992. 7

[Leiserson 1985] Charles E. Leiserson. Fat-trees: Universal networks for hardware-
efficient supercomputing. IEEE Transactions on Computers, vol. C-34, no. 10,
pages 892–901, 1985. 9

[Leung et al. 2020] Carson K. Leung, Oluwafemi A. Sarumi and Christine Y. Zhang.
Predictive Analytics on Genomic Data with High-Performance Computing.
In 2020 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 2187–2194, Seoul, Korea (South), 2020. IEEE. 1, 4

[LHCb Collaboration 2014] LHCb Collaboration. LHCb Trigger and Online Up-
grade Technical Design Report. Technical report, CERN, Geneva, 2014. 1,
4

[LHCb Collaboration 2020] LHCb Collaboration. LHCb Upgrade GPU High Level
Trigger Technical Design Report. Technical report, CERN, Geneva, 2020. 1,
4

[Li & Chu 2019] Yamin Li and Wanming Chu. Switch Fault Tolerance in a Mirrored
K-Ary N-Tree. In 2019 CITS, pages 1–5, 2019. 9

[Lin et al. 2004] Xuan-Yi Lin, Yeh-Ching Chung and Tai-Yi Huang. A multiple LID
routing scheme for fat-tree-based InfiniBand networks. In 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings., pages
11–, 2004. 95

Bibliography 31

[List 2024] TOP500 List. TOP500 List, 2024. [Online]. Available: https://www.
top500.org/lists/top500/2024/06/. Accessed on: June 24, 2024. 7, 15

[Liu et al. 2013] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy and Thomas
Anderson. F10: A Fault-Tolerant Engineered Network. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13),
pages 399–412, Lombard, IL, April 2013. USENIX Association. 26

[Liu et al. 2023] Xiaoyan Liu, Zhiwei Xu, Guangwen Liu and Limin Liu. Intelligent
Compound Selection of Anti-cancer Drugs Based on Multi-Objective Opti-
mization. In 2023 International Conference on Intelligent Supercomputing
and BioPharma (ISBP), pages 48–53, Zhuhai, China, 2023. IEEE. 1, 4

[Luppold et al. 2018] Arno Luppold, Dominic Oehlert and Heiko Falk. Evaluat-
ing the Performance of Solvers for Integer-Linear Programming. Technical
report, Hamburg University of Technology, Hamburg, Germany, November
2018. 68, 89

[McKay & Wanless 2005] Brendan D McKay and Ian M Wanless. On the number
of Latin squares. Annals of combinatorics, vol. 9, no. 3, pages 335–344, 2005.
49

[Merindol et al. 2018] Pascal Merindol, Pierre David, Jean-Jacques Pansiot, Fran-
cois Clad and Stefano Vissicchio. A Fine-Grained Multi-Source Measurement
Platform Correlating Routing Transitions with Packet Losses. Computer
Communications, vol. 129, 08 2018. 31

[MPI 2021] MPI. MPI(3) man page, 2021. [Online]. Available: https://www.
open-mpi.org/doc/v4.0/man3. Accessed on: June 24, 2024. 11, 40

[MPI 2023] MPI. MPI: A Message-Passing Interface Standard, 2023. [Online].
Available: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.
pdf. Accessed on: June 24, 2024. 19

[Munir et al. 2016] Ali Munir, Ting He, Ramya Raghavendra, Franck Le and
Alex X. Liu. Network Scheduling Aware Task Placement in Datacenters.
In Proceedings of the 12th International on Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’16, page 221–235, New
York, NY, USA, 2016. Association for Computing Machinery. 22

[Müller et al. 2019] Andreas Müller, Willem Deconinck, Christian Kühnlein, Gi-
anmarco Mengaldo, Michael Lange, Nils Wedi, Peter Bauer, Piotr Smo-
larkiewicz, Michail Diamantakis, Sarah-Jane Lock, Sami Saarinen, George
Mozdzynski, Daniel Thiemert, Michael Glinton, Pierre Bénard, F. Voitus,
Charles Colavolpe, Philippe Marguinaud and Nick New. The ESCAPE
project: Energy-efficient Scalable Algorithms for Weather Prediction at Ex-
ascale. Geoscientific Model Development, vol. 12, pages 4425–4441, 10 2019.
11, 14

https://www.top500.org/lists/top500/2024/06/
https://www.top500.org/lists/top500/2024/06/
https://www.open-mpi.org/doc/v4.0/man3
https://www.open-mpi.org/doc/v4.0/man3
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

32 Bibliography

[Namugwanya et al. 2023] Evelyn Namugwanya, Amanda Bienz, Derek Schafer and
Anthony Skjellum. Collective-Optimized FFTs, 06 2023. 11

[Nvidia 2020] Nvidia. Collective Operations, 2020. [Online]. Available:
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/
usage/collectives.html. Accessed on: June 24, 2024. 2, 19, 5

[Nvidia 2023a] Nvidia. Appendix – IB Router, 2023. [Online]. Available: https:
//docs.nvidia.com/networking/display/ufmenterpriseumv6112/
appendix+%E2%80%93+ib+router. Accessed on: June 24, 2024. 98

[Nvidia 2023b] Nvidia. OpenSM, 2023. [Online]. Available: https://docs.nvidia.
com/networking/display/MLNXOFEDv461000/OpenSM. Accessed on: June
24, 2024. 16, 17, 23, 36, 39, 49, 56, 93, 95, 98

[OpenSearch 2024] OpenSearch. Find the truth within your data, 2024. [Online].
Available: https://opensearch.org/. Accessed on: June 24, 2024. 30

[Peng et al. 2022] Jintao Peng, Jie Liu, Yi Dai, Min Xie and Chunye Gong. Op-
timizing All-to-All Collective Communication on Tianhe Supercomputer. In
2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
pages 402–409, Melbourne, Australia, 2022. IEEE. 2, 5

[Peng et al. 2023] Zhiyong Peng, Jiang Du and Yulong Qiao. Design of GPU
Network-on-Chip for Real-Time Video Super-Resolution Reconstruction. Mi-
cromachines, vol. 14, page 1055, 05 2023. 22

[Petrini & Vanneschi 1997] F. Petrini and M. Vanneschi. k-ary n-trees: high per-
formance networks for massively parallel architectures. In Proceedings 11th
International Parallel Processing Symposium, pages 87–93, Geneva, Switzer-
land, 1997. IEEE. 7, 9, 77, 85

[Pippenger 1978] Nicholas Pippenger. On rearrangeable and non-blocking switching
networks. Journal of Computer and System Sciences, vol. 17, no. 2, pages
145–162, 1978. 7, 80

[Pisani et al. 2023a] Flavio Pisani, Tommaso Colombo, Paolo Durante, Markus
Frank, Clara Gaspar, Luis Granado Cardoso, Niko Neufeld and Alberto
Perro. Design and Commissioning of the First 32-Tbit/s Event-Builder.
IEEE Transactions on Nuclear Science, vol. 70, no. 6, pages 906–913, 2023.
2, 30, 39, 41, 42, 92, 6

[Pisani et al. 2023b] Flavio Pisani, Tommaso Colombo, Paolo Durante, Markus
Frank, Clara Gaspar, Luis Granado Cardoso, Niko Neufeld and Alberto
Perro. Design and Commissioning of the First 32-Tbit/s Event-Builder.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/networking/display/ufmenterpriseumv6112/appendix+%E2%80%93+ib+router
https://docs.nvidia.com/networking/display/ufmenterpriseumv6112/appendix+%E2%80%93+ib+router
https://docs.nvidia.com/networking/display/ufmenterpriseumv6112/appendix+%E2%80%93+ib+router
https://docs.nvidia.com/networking/display/MLNXOFEDv461000/OpenSM
https://docs.nvidia.com/networking/display/MLNXOFEDv461000/OpenSM
https://opensearch.org/

Bibliography 33

IEEE Transactions on Nuclear Science, vol. 70, no. 6, pages 906–913, 2023.
14

[Prisacari et al. 2013a] Bogdan Prisacari, German Rodriguez and Cyriel Minken-
berg. Generalized Hierarchical All-to-All Exchange Patterns. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing, pages
537–547, Cambridge, MA, USA, 2013. IEEE. 2, 21, 25, 5

[Prisacari et al. 2013b] Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg
and Torsten Hoefler. Bandwidth-Optimal All-to-All Exchanges in Fat Tree
Networks. In Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, page 139–148, New
York, NY, USA, 2013. Association for Computing Machinery. 2, 8, 9, 13, 21,
47, 52, 53, 54, 66, 68, 74, 77, 81, 105, 5, 11

[Prisacari et al. 2013c] Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg
and Torsten Hoefler. Fast Pattern-Specific Routing for Fat Tree Networks.
ACM Transactions on Architecture and Code Optimization, vol. 10, pages
1–25, 12 2013. 23, 88, 90, 91

[Räcke 2009] Harald Räcke. Survey on Oblivious Routing Strategies. In Klaus
Ambos-Spies, Benedikt Löwe and Wolfgang Merkle, editors, Mathemati-
cal Theory and Computational Practice, pages 419–429, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. 22, 23

[Rocher-Gonzalez et al. 2020] Jose Rocher-Gonzalez, Jesus Escudero-Sahuquillo,
Pedro Garcia, Francisco Quiles and Gaspar Mora. Towards an efficient
combination of adaptive routing and queuing schemes in Fat-Tree topologies.
Journal of Parallel and Distributed Computing, vol. 147, 08 2020. 22

[Rocher-González et al. 2022] José Rocher-González, Ernst Gunnar Gran, Sven-
Arne Reinemo, Tor Skeie, Jesús Escudero-Sahuquillo, Pedro Javier García
and Francisco J. Quiles Flor. Adaptive Routing in InfiniBand Hardware. In
2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 463–472, Taormina, Italy, 2022. IEEE. 22

[Rodriguez et al. 2009] German Rodriguez, Cyriel Minkenberg, Ramon Beivide,
Ronald P. Luijten, Jesus Labarta and Mateo Valero. Oblivious routing
schemes in extended generalized Fat Tree networks. In 2009 IEEE Inter-
national Conference on Cluster Computing and Workshops, pages 1–8, 2009.
23

[Roy et al. 2015] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter and
Alex C. Snoeren. Inside the Social Network’s (Datacenter) Network. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 123–137, New York, NY, USA, 2015.
Association for Computing Machinery. 11, 38

34 Bibliography

[Schweissguth et al. 2017] Eike Schweissguth, Peter Danielis, Dirk Timmermann,
Helge Parzyjegla and Gero Mühl. ILP-Based Joint Routing and Scheduling
for Time-Triggered Networks. In Proceedings of the 25th International Con-
ference on Real-Time Networks and Systems, RTNS ’17, page 8–17, New
York, NY, USA, 2017. Association for Computing Machinery. 88

[Sen et al. 2018] Abhijit Sen, Amit Datta and Mallika De. Fault Tolerant Wormhole
Routing for Complete Exchange in Multi-Mesh. In 2018 International Con-
ference on Computational Techniques, Electronics and Mechanical Systems
(CTEMS), pages 415–420, Belgaum, India, 2018. IEEE. 24

[Sergeev & Del Balso 2018] Alexander Sergeev and Mike Del Balso. Horovod:
fast and easy distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018. 2, 5

[Shah et al. 2023] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed
Maleki, Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi
and Rachee Singh. TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 593–612, Boston, MA,
April 2023. USENIX Association. 11

[Shin & Pinkston 2003] Jeonghee Shin and Timothy Mark Pinkston. The Perfor-
mance of Routing Algorithms under Bursty Traffic Loads. In International
Conference on Parallel and Distributed Processing Techniques and Appli-
cations, pages 737–743, Las Vegas, Nevada, USA, 2003. Proceedings of the
International Conference on Parallel and Distributed Processing Techniques
and Applications. 23, 38

[Shpiner et al. 2017] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir
Zdornov, Barak Gafni and Eitan Zahavi. Dragonfly+: Low Cost Topol-
ogy for Scaling Datacenters. In 2017 IEEE 3rd International Workshop on
High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), pages 1–8, Austin, TX, USA, 2017. IEEE. 25

[Singh et al. 2021] Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha
Parkhi, Jitendra Padhye and David Maltz. Surviving switch failures in cloud
datacenters. SIGCOMM Comput. Commun. Rev., vol. 51, no. 2, page 2–9,
may 2021. 2, 29, 30, 42, 92, 5

[Stec 2023] Maciej Stec. Latin Squares, 2023. [Online]. Available:
https://www.universityofgalway.ie/media/collegeofscience/
schools/schoolofmathematics/files/Latin_Squares.pdf. Accessed
on: July 11, 2024. 48

[Stein et al. 2023] Eloise Stein, Quentin Bramas, Tommaso Colombo and Cristel
Pelsser. Fault-adaptive Scheduling for Data Acquisition Networks. In 2023

https://www.universityofgalway.ie/media/collegeofscience/schools/schoolofmathematics/files/Latin_Squares.pdf
https://www.universityofgalway.ie/media/collegeofscience/schools/schoolofmathematics/files/Latin_Squares.pdf

Bibliography 35

IEEE 48th Conference on Local Computer Networks (LCN), pages 1–4, Day-
tona Beach, FL, USA, 2023. IEEE. 3, 7

[Stein et al. 2024] Eloïse Stein, Flavio Pisani, Tommaso Colombo and Cristel
Pelsser. Measuring Performance Under Failures in the LHCb Data Acquisi-
tion Network. IEEE Transactions on Nuclear Science, pages 1–1, 2024. 3,
7

[Subramoni et al. 2013] H. Subramoni, D. Bureddy, K. Kandalla, K. Schulz,
B. Barth, J. Perkins, M. Arnold and D. K. Panda. Design of network topol-
ogy aware scheduling services for large InfiniBand clusters. In 2013 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1–8, In-
dianapolis, IN, USA, 2013. IEEE. 22

[Subramoni et al. 2014] Hari Subramoni, Krishna. Kandalla, Jithin Jose, Karen
Tomko, Karl Schulz, Dmitry Pekurovsky and Dhabaleswar K. Panda. De-
signing Topology-Aware Communication Schedules for Alltoall Operations in
Large InfiniBand Clusters. In 2014 43rd International Conference on Parallel
Processing, pages 231–240, Minneapolis, MN, USA, 2014. IEEE. 22

[Sumanaweera & Liu 2005] Thilaka Sumanaweera and Donald Liu. Medical image
reconstruction with the FFT. GPU gems, vol. 2, pages 765–784, 2005. 11

[Tariq et al. 2021] Umair Tariq, Haider Ali, Lu Liu, John Panneerselvam and James
Hardy. Energy-efficient scheduling of streaming applications in VFI-NoC-
HMPSoC based edge devices. Journal of Ambient Intelligence and Humanized
Computing, vol. 12, pages 1–17, 11 2021. 21

[technologies 2020] Mellanox technologies. QM8700, 2020. [Online]. Available:
https://network.nvidia.com/files/doc-2020/pb-qm8700.pdf Accessed
on: June 24, 2024. 99

[Update 2011] Product Update. SIMULIA, 2011. [Online]. Available:
https://www.fsb.unizg.hr/atlantis/upload/newsboard/22_07_2011_
_15351_SIMULIA_RSN-May2011.pdf. Accessed on: June 24, 2024. 1, 4

[Van Lint & Wilson 2001] Jacobus Hendricus Van Lint and Richard Michael Wil-
son. A course in combinatorics. Cambridge University Press, 2001. 49

[Venkataramani et al. 2022] Vanchinathan Venkataramani, Bruno Bodin, Aditi
Kulkarni Mohite, Tulika Mitra and Li-Shiuan Peh. ASCENT: Communica-
tion Scheduling for SDF on Bufferless Software-Defined NoC. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 10, pages 3266–3275, 2022. 21

[Wang et al. 2023a] Ruiqi Wang, Dezun Dong, Fei Lei, Junchao Ma, Ke Wu and
Kai Lu. Roar: A Router Microarchitecture for In-network Allreduce. In
Proceedings of the 37th International Conference on Supercomputing, ICS

https://network.nvidia.com/files/doc-2020/pb-qm8700.pdf
https://www.fsb.unizg.hr/atlantis/upload/newsboard/22_07_2011__15351_SIMULIA_RSN-May2011.pdf
https://www.fsb.unizg.hr/atlantis/upload/newsboard/22_07_2011__15351_SIMULIA_RSN-May2011.pdf

36 Bibliography

’23, page 423–436, New York, NY, USA, 2023. Association for Computing
Machinery. 2, 5

[Wang et al. 2023b] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying
Zhang and Naader Hasani. Optimized Network Architectures for Large
Language Model Training with Billions of Parameters. arXiv preprint
arXiv:2307.12169, 2023. 2, 5

[Wu et al. 2023] Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang, Zizhe Jian,
Bryan Wong and Zizhong Chen. Anatomy of High-Performance GEMM with
Online Fault Tolerance on GPUs. In Proceedings of the 37th International
Conference on Supercomputing, ICS ’23, page 360–372, New York, NY, USA,
2023. Association for Computing Machinery. 2, 5

[Yao et al. 2014] Fan Yao, Jingxin Wu, Guru Venkataramani and Suresh Subrama-
niam. A comparative analysis of data center network architectures. In 2014
IEEE International Conference on Communications (ICC), pages 3106–3111,
Sydney, NSW, Australia, 2014. IEEE. 7

[Yao et al. 2022] Yu Yao, Yukun Song, Hu Ge, Ying Huang and Duoli Zhang. A
communication-aware and predictive list scheduling algorithm for network-
on-chip based heterogeneous muti-processor system-on-chip. Microelectronics
Journal, vol. 121, page 105367, 2022. 21

[Yazaki et al. 2012] Syunji Yazaki, Haruyuki Takaue, Yuichiro Ajima, Toshiyuki
Shimizu and Hiroaki Ishihata. An Efficient All-to-all Communication Al-
gorithm for Mesh/Torus Networks. In 2012 IEEE 10th International Sympo-
sium on Parallel and Distributed Processing with Applications, pages 277–
284, Leganes, Spain, 2012. IEEE. 24

[Yigitbasi et al. 2010] Nezih Yigitbasi, Matthieu Gallet, Derrick Kondo, Alexandru
Iosup and Dick Epema. Analysis and modeling of time-correlated failures
in large-scale distributed systems. In 2010 11th IEEE/ACM International
Conference on Grid Computing, pages 65–72, Brussels, Belgium, 2010. IEEE.
29, 92

[Zahavi et al. 2009] Eitan Zahavi, Gregory Johnson, Darren Kerbyson and Michael
Lang. Optimized InfiniBandTM fat-tree routing for shift all-to-all communi-
cation patterns. Concurrency and Computation: Practice and Experience,
vol. 22, pages 217 – 231, 11 2009. 2, 13, 16, 22, 23, 24, 36, 47, 48, 52, 73, 77,
93, 5

[Zahavi et al. 2014] Eitan Zahavi, Isaac Keslassy and Avinoam Kolodny. Distributed
Adaptive Routing Convergence to Non-Blocking DCN Routing Assignments.
IEEE Journal on Selected Areas in Communications, vol. 32, no. 1, pages
88–101, 2014. 22

Bibliography 37

[Zahavi 2011] Eitan Zahavi. Fat-Trees Routing and Node Ordering Providing Con-
tention Free Traffic for MPI Global Collectives. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Fo-
rum, pages 761–770, 2011. 23

[Zahid et al. 2015] Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdanski, Bjørn Dag
Johnsen and Tor Skeie. A Weighted Fat-Tree Routing Algorithm for Efficient
Load-Balancing in Infini Band Enterprise Clusters. In 2015 23rd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based
Processing, pages 35–42, Turku, Finland, 2015. IEEE. 24

[Zahid et al. 2016] Feroz Zahid, Ernst Gran and Tor Skeie. Realizing a Self-Adaptive
Network Architecture for HPC Clouds, 2016. 24

[Zerwas et al. 2023] Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan
Schmid and Chen Avin. Duo: A High-Throughput Reconfigurable Datacenter
Network Using Local Routing and Control. Proc. ACM Meas. Anal. Comput.
Syst., vol. 7, no. 1, mar 2023. 26

[Zhang et al. 2017] Qiao Zhang, Vincent Liu, Hongyi Zeng and Arvind Krishna-
murthy. High-resolution measurement of data center microbursts. In Pro-
ceedings of the 2017 Internet Measurement Conference, IMC ’17, page 78–85,
New York, NY, USA, 2017. Association for Computing Machinery. 38

[Zhao et al. 2024a] Liangyu Zhao, Saeed Maleki, Ziyue Yang, Hossein Pourreza,
Aashaka Shah, Changho Hwang and Arvind Krishnamurthy. ForestColl: Ef-
ficient Collective Communications on Heterogeneous Network Fabrics. arXiv
preprint arXiv:2402.06787, 2024. 2, 5

[Zhao et al. 2024b] Liangyu Zhao, Saeed Maleki, Ziyue Yang, Hossein Pourreza,
Aashaka Shah, Changho Hwang and Arvind Krishnamurthy. ForestColl:
Efficient Collective Communications on Heterogeneous Network Fabrics.
ArXiv, vol. abs/2402.06787, 2024. 11, 21

[Zhou et al. 2023] Qinghua Zhou, Quentin Anthony, Lang Xu, Aamir Shafi, Mustafa
Abduljabbar, Hari Subramoni and Dhabaleswar K. DK Panda. Accelerating
Distributed Deep Learning Training with Compression Assisted Allgather and
Reduce-Scatter Communication. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 134–144, 2023. 2, 5

	Introduction
	Contributions
	Overview

	Background
	The Fat-tree topology
	Terminology
	Logical Fat-tree
	The considered Generalized Fat-trees
	Reduced Logical Fat-Tree and Generalized Fat-tree
	Conflicts

	The all-to-all collective exchange
	Definition
	Segmentation of the all-to-all exchange into phases to prevent congestion
	Linear-shift scheduling algorithm

	Case of study : A DAQ network
	The Event Builder network
	The all-to-all exchange applied to the Event Builder network
	The routing of the communications

	Conclusion

	Related Work
	Collective operations
	Routing strategies
	Scheduling-Aware Routing
	Adaptive routing
	Oblivious routing
	Weighted fat-tree routing algorithm

	High performance computing topologies
	Dragonfly topology
	Demand-aware topology
	HyperX topology
	The Fault-Tolerant Engineered Network topology

	Conclusion

	Study of failures in the LHCb DAQ network
	Statistics of failures
	Methodology
	Duration
	Frequency
	Nature of failures

	Throughput achieved by Infiniband routing algorithms
	Methodology
	Results

	The effect of synchronization on the throughput
	The non-synchronized All-to-All MPI application
	Experiment setup
	Scalability of synchronized and non-synchronized all-to-all
	Throughput achieved by the synchronized and non-synchronized all-to-all in case of failures

	Design recommendation
	Conclusion

	Fault-Adaptive Scheduling Algorithm
	Latin Square
	Bandwidth reduction
	The Bandwidth-Optimal All-to-All exchange
	Adaptation of the Bandwidth All-to-All Exchange to Failures
	Lower bound on the number of phases with bandwidth reduction
	Increase in the number of phases
	Scheduling the communications on the added phases

	Results
	Conclusion

	Fault-adaptive Optimized Routing and Scheduling
	Spine pinning problem
	Non-uniform bandwidth reduction
	Fault-adaptive scheduling algorithm
	Fault-adaptive routing solution
	Routing algorithm

	Integer Linear Programming with dynamic programming
	The ILP model
	The variables
	The constraints

	Dynamic programming

	Results
	Experiments setup
	Comparison of the achieved throughput
	Computation Time

	Deployment
	Operational constraints
	LID Mask Control for Infiniband Multipath

	Conclusion

	Conclusion and Research Directions
	Summary of the contributions
	Study of failures in the LHCb DAQ network
	Fault-Adaptive Scheduling Algorithm
	Fault-adaptive Optimized Routing and Scheduling

	Perspectives
	Introduction
	Contributions
	Aperçu

	Conclusion et perspectives de recherche
	Résumé des contributions
	Étude des pannes dans le réseau DAQ de LHCb
	Algorithme d’Ordonnancement Adaptatif aux Pannes
	Routage et Ordonnancement Optimisés et Adaptatifs aux Pannes

	Perspectives

	List of Figures
	List of Tables
	Bibliography

