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Résumé
La génération d'intrication et les opérations de portes quantiques sont fondamentales pour le 
traitement de l'information quantique. Cette thèse présente des protocoles novateurs pour 
les portes quantiques multi-qubits non locales et la génération d'intrication dans des 
systèmes où plusieurs émetteurs quantiques interagissent avec un mode bosonique partagé, 
offrant une large applicabilité dans les configurations de l'électrodynamique quantique en 
cavité. Les protocoles clés comprennent la Porte de Phase Géométrique et la Porte de 
Phase Adiabatique, développées avec des expressions sous forme fermée pour l'échelle 
d'infidélité en fonction du nombre de qubits et de la coopérativité. Appliqués aux deux qubits, 
ces protocoles forment un ensemble universel de portes pour le calcul quantique, tandis que 
dans les systèmes multi-qubits, ils fournissent une famille de portes quantiques déterministes 
avec des applications dans les simulations quantiques numériques, la métrologie et la 
correction d'erreurs quantiques. Une contribution significative de cette thèse est un protocole 
de détection amélioré par l'intrication qui atteint une haute précision de mesure grâce à des 
méthodes de contrôle optimal, démontrant une versatilité au-delà des opérations de portes 
conventionnelles. De plus, la thèse étudie un mécanisme de blocage des polaritons en cavité 
pour réaliser des états W multi-atomiques non locaux et des portes multi-qubits. Toutes les 
opérations multi-qubits déterministes présentées ne nécessitent que des excitations 
classiques de la cavité et, dans certains cas, des impulsions globales sur les qubits, 
établissant ainsi une base évolutive pour le calcul quantique, la détection, et le futur internet 
quantique en intégrant des opérations multi-qubits efficaces à travers les plateformes 
expérimentales, particulièrement celles basées sur des systèmes d'atomes neutres.

Mots-clés: Informatique quantique, QED de cavité, génération d’intrication, portes 
quantiques multi-qubits, méthodes de contrôle optimal, atomes neutres

Abstract
Entanglement generation and quantum gate operations are fundamental to quantum 
information processing. This thesis presents novel protocols for non-local multi-qubit 
quantum gates and entanglement generation in systems where multiple quantum emitters 
interact with a shared bosonic mode, offering broad applicability across cavity QED setups. 
Key protocols include the Geometric Phase Gate and Adiabatic Phase Gate, developed with 
closed-form expressions for infidelity scaling with qubit number and cooperativity. When 
applied to two-qubits, these protocols form a universal gate set for quantum computation, 
while in multi-qubit systems, they provide a family of deterministic quantum gates with 
applications in digital quantum simulations, metrology, and quantum error correction. A 
significant contribution of this thesis is an entanglement-enhanced sensing protocol that 
achieves high measurement precision through optimal control methods, demonstrating 
versatility beyond conventional gate operations. Additionally, the thesis investigates a cavity 
polariton blockade mechanism to realize non-local multi-atom W-states and multi-qubit gates. 
All of the presented deterministic multi-qubit operations require only classical cavity drives 
and, in some cases, global qubit pulses, establishing a scalable foundation for quantum 
computing, sensing, and the future quantum internet by integrating efficient multi-qubit 
operations across experimental platforms, particularly those based on neutral atom systems.

Keywords: Quantum Computing, Cavity QED, Entanglement generation, Multi-qubit 
Quantum Gates, Optimal Control Methods, Neutral Atoms
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Résumé de la Thèse en Français

I. Introduction

L’intrication et les opérations de portes quantiques sont au cœur du traitement de

l’information quantique, stimulant des avancées révolutionnaires en calcul et en com-

munication. L’intrication, caractéristique fondamentale de la mécanique quantique, la

distingue de la physique classique en mettant en évidence la nature spécifique du do-

maine quantique. Elle illustre l’interdépendance des résultats de mesure entre les partic-

ules, rendant inadéquate la description individuelle des particules. D’abord considérée

comme une curiosité théorique visant à sonder d’éventuelles lacunes de la mécanique

quantique [1], puis comme base des tests comparant la mécanique quantique au réalisme

local [2–4], l’intrication est aujourd’hui une pierre angulaire de la technologie quantique,

essentielle pour la cryptographie quantique, la détection et le calcul. Le succès de ces

technologies quantiques repose sur la manipulation haute fidélité des états intriqués,

souvent composés de nombreux qubits. Des progrès considérables ont été réalisés ces

dernières décennies dans le contrôle des systèmes à plusieurs corps [5–11].

En calcul quantique, la mise en œuvre de portes multi-qubits de haute fidélité est essen-

tielle pour réduire le nombre d’opérations et permettre des schémas de calcul tolérants

aux fautes adaptés à des plateformes spécifiques [12–14]. De même, en métrologie quan-

tique, les états intriqués multipartites permettent d’améliorer la sensibilité des mesures

au-delà de la limite quantique standard [15–21].

Cependant, un défi majeur réside dans le contrôle des systèmes à N corps et la nature

fragile des superpositions quantiques macroscopiques. En calcul quantique, de nombreux

systèmes physiques, y compris ceux basés sur des atomes neutres, ne permettent pas

intrinsèquement des opérations globales ou non locales. La mise en œuvre d’opérations

multi-qubits nécessite des décompositions complexes en séquences d’opérations locales

à un ou deux qubits, tandis que les opérations non locales peuvent être réalisées via

le transport de qubits [22, 23], bien que ces processus soient coûteux. De plus, la

préparation et le contrôle des états intriqués à N particules sont extrêmement sensibles

à la décohérence induite par l’interaction avec l’environnement [24–27].

Dans ce contexte, le développement de protocoles efficaces pour la génération d’intrication

et les opérations de calcul quantique multi-qubits, ainsi que la compréhension et la quan-

tification des effets de décohérence, sont d’une importance capitale.

L’électrodynamique quantique en cavité (cavity QED) constitue une alternative promet-

teuse [28, 29]. Dans ces systèmes, des émetteurs quantiques interagissent avec un champ

à l’intérieur d’une cavité aux parois hautement réfléchissantes. Ce champ, quantifié, se

vii



comporte comme un ensemble d’oscillateurs harmoniques, dont l’un est en résonance ou

quasi-résonance avec une transition à deux niveaux d’un émetteur quantique, formant

ainsi la base de la cavity QED.

L’objectif principal de cette thèse est d’examiner ces aspects dans le cadre des systèmes

de cavity QED en régime de couplage fort. Dans ce régime, l’intensité du couplage entre

les émetteurs quantiques et le mode de la cavité dépasse la largeur de raie des émetteurs

et celle de la cavité. Plusieurs émetteurs peuvent ainsi se coupler à un même mode de

cavité, établissant une connectivité globale à travers l’échange de bosons, facilitant ainsi

les opérations non locales.

Depuis les travaux pionniers de Pellizzari et al. [30], de nombreux protocoles de génération

d’intrication et de portes quantiques ont été proposés ou réalisés avec des atomes neutres

ou des ions [31–34]. Cependant, peu de protocoles peuvent être étendus aux opérations

multi-qubits [35–37].

Dans cette thèse, nous explorons une approche différente consistant à piloter directement

le mode de la cavité avec un champ classique modulé temporellement, sans excitation

externe des qubits. Cette méthode permet de mettre en œuvre de nouveaux proto-

coles de portes quantiques multi-qubits déterministes, notamment une porte de phase

géométrique et une porte de phase adiabatique. Nous démontrons que ces protocoles

présentent des taux d’erreur proportionnels à N/
√
C en présence de pertes, avec C la

coopérativité des particules individuelles.

Nous proposons également une génération d’intrication multi-qubits via un blocage

de polaritons de cavité, avec une excitation globale supplémentaire agissant sur les

qubits [38, 39]. Nous réalisons une analyse complète du système et caractérisons an-

alytiquement l’erreur de préparation d’un état W, ainsi que la mise en œuvre optimale

de portes CZ et C2Z.

La deuxième partie principale de cette thèse étudie la création d’états intriqués multi-

particules robustes et préparés de manière optimale, conçus pour des applications de

détection quantique même dans des environnements bruyants. Bien que les états com-

primés offrent une résilience contre la décohérence, la compression seule n’est pas une

condition préalable à l’obtention d’un enchevêtrement significatif pour les applications

de détection. Dans notre travail, nous nous concentrons sur la préparation d’états in-

triqués pouvant atteindre la limite de Heisenberg pour la détection quantique dans des

conditions idéales (sans bruit). Nous exploitons l’utilité de nos protocoles de porte de

phase géométrique déterministes en employant des techniques de contrôle optimal, ce qui

rend notre protocole de détection influencé par le bruit et donc optimalement robuste

aux environnements bruyants dans les expériences de détection.



L’installation que nous avons en tête est illustrée à la Fig. 1. Elle se compose de N

systèmes à trois niveaux avec des états de base computationnels |0⟩ et |1⟩, ainsi qu’un

état excité |e⟩ avec des fréquences de transition ω0 et ω1 entre |1⟩ et |0⟩ et entre |e⟩ et

|1⟩, respectivement. Un mode de cavité avec des opérateurs d’annihilation (création)

â (â†) et une fréquence ωc couple les états |1⟩ et |e⟩ avec une force de couplage g.

Ce mode de cavité est excité par un champ classique (complexe) de force η(t) selon

Hdrive = 2|η(t)| sin(ωLt− arg(η(t)))(â† + â). Ce champ classique est désaccordé par

rapport à la cavité et à la transition |1⟩ ↔ |e⟩ de δ = ωc − ωL et ∆ = ωe − ωL,

respectivement.

L’Hamiltonien dans l’approximation des ondes tournantes et dans le référentiel tournant

défini par Ûr(t) = exp
[
it(ωL(â†â+ n̂e) +

∑
j ω0 |0j⟩ ⟨0j |)

]
s’écrit (ℏ = 1)

Ĥ(t) = δâ†â+ (∆ − iγ/2)n̂e + [(gŜ− + iη(t))â† + h.c.], (1)

avec n̂e =
∑

j |ej⟩⟨ej |, Ŝ+ =
∑

j |ej⟩⟨|1j |, Ŝ− =
(
Ŝ+
)†

et 1/γ la durée de vie de |e⟩.

Nous modélisons l’évolution du système quantique ouvert à l’aide de l’équation mâıtresse

de Lindblad ρ̇ = −iHρ+ iρH† + LρL† − {L†L, ρ}/2 avec l’opérateur de saut L =
√
κâ

et 1/κ la durée de vie des excitations dans le mode de cavité. La décroissance de |e⟩
est traitée comme une fuite de population, décrite par un terme non-hermitien dans Ĥ.

Pour tous les protocoles, une impulsion temporelle η(t) de durée T avec η(0) = η(T ) = 0

est appliquée, tandis que g, δ et ∆ sont maintenus constants dans le temps.

Figure 1: (a) Un registre de qubits est couplé à une cavité commune avec un taux
de décroissance κ. En excitant simplement la cavité avec un champ classique unique
η(t) décalé de δ par rapport à la fréquence de résonance de la cavité, un état entrelacé
non local comme |GHZ⟩ est généré, ou, avec une séquence d’excitations, des portes non
locales comme une C2Z sont implémentées. (b) Schéma de niveaux pour chaque qubit
composé des états de base computationnelle |0⟩ et |1⟩ (avec une durée de vie infinie),
et un état excité auxiliaire |e⟩ (avec une durée de vie 1/γ). La transition |1⟩ ↔ |e⟩ est
couplée à la cavité avec une force de couplage g et décalée de la résonance de la cavité

par ∆ − δ.



II. Résultats et discussions

1. Nonlocal multiqubit quantum gates via a driven cavity

Dans ce travail, nous présentons deux protocoles pour réaliser des portes quantiques

multi-qubits non locales et déterministes sur des qubits couplés à un mode de cavité

commun. Les protocoles reposent uniquement sur une excitation classique du mode

de cavité, sans nécessiter de commande externe des qubits. Appliqués à seulement

deux qubits, les deux protocoles fournissent un ensemble de portes universelles pour

l’informatique quantique, ainsi que des portes à un qubit. Dans le premier protocole,

l’état de la cavité suit une trajectoire fermée dans l’espace des phases et accumule une

phase géométrique dépendant de l’état des qubits. Cette porte de phase géométrique

peut être utilisée avec des portes globales à un qubit pour générer des états GHZ de haute

fidélité. Le second protocole utilise une évolution adiabatique du système combiné qubit-

cavité pour accumuler une phase dynamique. Des applications répétées de ce protocole

permettent de réaliser une famille de portes de phase avec des phases arbitraires, par

exemple, des portes de rotation de phase et des portes multi-contrôlées-Z. Pour les deux

protocoles, nous fournissons des solutions analytiques pour les taux d’erreur, qui évoluent

comme ∼ N/
√
C en présence de pertes pertinentes, où C est la coopérativité et N est le

nombre de qubits. Nos protocoles sont applicables à une variété de systèmes et peuvent

être généralisés en remplaçant la cavité par un mode bosonique différent, comme un

mode phononique. Nous fournissons des estimations des fidélités et durées des portes

pour les qubits atomiques et moléculaires ainsi que pour les qubits superconducteurs

fluxonium couplés à des cavités optiques ou micro-ondes et décrivons les implications

pour la correction d’erreurs quantiques.

Le premier protocole de Porte de Phase Géométrique (protocole GPG) fonctionne dans

la limite d’une excitation forte. Il implémente une porte de phase géométrique non

locale multi-qubits exp
{

(iθn̂21)
}

, avec n̂1 =
∑N

j=1 |1j⟩⟨1j | l’opérateur nombre pour les

qubits dans l’état |1j⟩. Pour N = 2, le protocole GPG forme un ensemble de portes

universelles pour le calcul quantique — avec les portes à un seul qubit —, tandis que

pour un N arbitraire, il peut être utilisé pour générer des états GHZ.

Le protocole GPG est opéré dans la limite ∆/g, η/g → ∞, avec ∆ = O(η) et =

O(g). Dans cette limite, la dynamique du système peut être efficacement décrite par

l’Hamiltonien qui est analogue à l’Hamiltonien géométrique de Molmer-Sorensen [32].

L’Hamiltonien de Molmer-Sorensen (MS) a révolutionné le domaine du traitement de

l’information quantique des ions piégés, et avec ce protocole GPG, nous fournissons une

réalisation généralisée de l’Hamiltonien MS pour un système général avec des systèmes

à trois niveaux couplés à un mode bosonique commun, et ainsi nous l’étendons aux



systèmes atome-cavité et molécule-cavité. L’Hamiltonien effectif Ĥeff est obtenu comme

suit :

Ĥeff = δâ†â+
(
−iγ1

2
+ ζâ† + ζ∗â

)
n̂. (2)

où ζ = g2α/
√

4g2|α|2 + ∆2, α̇ = −η − (iδ + κ/2)α, (α(t = 0) = 0), et γ1 = γ
2 (1 −√

1 − 4|ζ|2/g2). Nous obtenons l’Hamiltonien effectif dans l’Éq.(2) à partir de l’Éq.(1)

en effectuant deux transformations de base respectant les deux limites ∆/g → ∞ et

η/g → ∞.

Implémentation de portes quantiques : Nous choisissons ζ dans l’Hamiltonien

effectif de l’Éq. (2) de manière telle que Re(ζ(t)) = −2δ
√

(2θ/(3δt)) sin2 (πt/T ) et

Im(ζ(t)) = (2π/T )
√

(2θ/(3δt)) sin (2πt/T ). Ce choix de pulse ζ, appliqué pendant une

durée T , implémente l’évolution unitaire effective en l’absence de pertes (γ = κ = 0)

donnée par Û(T ) = exp
(
iθn̂21

)
.

Expression analytique de la fidélité de la porte en présence de pertes : Pour

évaluer les performances de la porte en présence de pertes, nous calculons la fidélité

moyenne de la porte F , particulièrement dans la limite de T → ∞ et κ, γ ≫ g, δ, où

1 − F est évalué analytiquement comme

1 − F = Nθ/
√

2(1 + 2−N )C, (3)

où C = g2/(κγ) désigne la coopérativité de la particule unique. À notre connaissance,

il s’agit de la première solution analytique de 1 − F pour des Hamiltoniens du type de

l’Éq. (2) en présence des pertes pertinentes.

Le protocole GPG peut être utilisé pour implémenter une porte CZ en choisissant N = 2

et θ = π/2. L’infidélité 1 − F est montrée dans la Fig. 2 (a) en fonction de la durée de

la pulse gT pour plusieurs valeurs de C et de rapports γ/κ. L’infidélité dans la limite

∆ → ∞ (lignes pleines) atteint sa valeur asymptotique 1.99/
√
C déjà pour des T de

l’ordre de quelques dizaines de g−1 et diminue le plus rapidement pour γ/κ = 1. Le

panneau (a) montre également l’infidélité pour ∆ fini (points), choisi pour une intensité

de conduite maximale maxt|η(t)| = 30g. Cette dernière est suffisante pour garantir des

écarts négligeables entre les infidélités pour ∆ fini et ∆/g → ∞. Le panneau (b) compare

les résultats numériques (cercles) avec les résultats analytiques (ligne pointillée) pour

1−F en fonction de C dans la limite T,∆ → ∞, montrant une bonne concordance pour

tous les rapports γ/κ.
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Figure 2: Protocole GPG : (a) Infidélité d’une porte CZ en fonction de la durée de
la pulse T pour différentes valeurs de C et γ/κ. Les lignes pleines montrent l’infidélité
(résultat analytique) dans la limite ∆/g → ∞, les cercles montrent l’infidélité (calcul
numérique) pour une valeur finie de ∆, choisie de sorte que maxt |η(t)| = 30g. Pour
chaque T , C et γ/κ, δ est optimisé pour obtenir la valeur minimale de 1-F . (b) Valeur
numérique (cercles) et analytique (ligne pointillée) de l’infidélité en fonction de C dans

la limite ∆, T → ∞ pour différentes valeurs de γ/κ.

Le deuxième protocole de Porte de Phase Adiabatique (protocole APG) fonc-

tionne dans la limite d’une excitation faible et donc dans la limite opposée à celle du

protocole GPG. Il utilise une évolution adiabatique du système conjoint cavité-qubit

pour implémenter une porte de phase exp(iφ(n̂)), avec φ(n̂) = c1/(c2 − n̂) pour des

constantes dépendant des paramètres de l’excitation. Des applications répétées du pro-

tocole GPG, chacune avec des paramètres d’excitation différents, peuvent être utilisées

pour implémenter des portes de phase avec des phases arbitraires φ(n̂). Nous discutons

explicitement de l’implémentation de portes de rotation de phase et de portes multi-

contrôlées-Z en utilisant cette approche et montrons que leurs fidélités surpassent celles

des décompositions standard de portes à un et deux qubits pour N > 2.

Le protocole APG utilise le même Hamiltonien que dans l’Éq. (1) que le protocole GPG,

mais fonctionne pour des valeurs finies de ∆ et pour η → ∞. Nous montrons qu’une seule

pulse η(t) appliquée adiabatiquement peut être utilisée pour implémenter des portes de

phase avec des phases φ(n̂) = −I/(δ − n̂g2/∆), avec I =
∫ T
0 |η(t)|2dt l’énergie de la

pulse.

Une combinaison de plusieurs pulses avec des décalages δ et ∆ différents peut alors être

utilisée pour implémenter des portes de phase avec des phases arbitraires, par exemple,

des portes de rotation de phase ou des portes multi-contrôlées-Z.

Pour implémenter une porte CZ (N = 2), jusqu’aux portes à un qubit, I doit être choisi

de manière à ce que |φ2−2φ1 +φ0| = π. Étant donné ce choix, les valeurs de δ et ∆ qui

maximisent F peuvent être trouvées numériquement, ce qui donne 1−F = 1.79/
√
C. La



Fig. 3(a) montre l’infidélité en fonction de T pour une porte CZ en utilisant le protocole

APG pour différentes valeurs de C et γ/κ. Pour atteindre l’adiabaticité, η(t) est choisi

pour atteindre son maximum avec des bords en forme de sin2 d’une durée T0 ≤ T/2.

Nous trouvons que 1 − F atteint sa valeur asymptotique 1.79/
√
C pour des durées de

pulse T ∼ 102 − 103g−1, tandis que pour des T plus petits, elle augmente en raison des

erreurs diabatiques.

En appliquant le protocole APG N − 1 fois avec des décalages de pulse δ1, · · · δN−1 et

∆1, · · ·∆N−1 et des énergies I1, · · · IN−1, tout ensemble de phases φ(n) souhaité peut être

implémenté. Nous illustrons cette procédure pour deux classes de portes multi-qubits

: les portes de rotation de phase exp(−iαZ1 ⊗ · · · ⊗ Zn) – correspondant aux phases

φn = −α(−1)n – et les portes multi-contrôlées-Z N -qubits (portes CZ), c’est-à-dire des

portes de phase avec φ(N) = π et φ(n) = 0 pour n < N .

L’infidélité pour les deux portes multi-qubits en fonction de N est montrée dans la Fig.

3(b-c) pour différentes valeurs de γ/κ. Nous obtenons que notre protocole surpasse les

implémentations utilisant des décompositions en portes CZ individuelles et en portes à

un qubit (parfaites) dans les deux cas pour tout N > 2.

Estimations réalistes des erreurs de porte et durées des portes : Les protocoles

GPG et APG peuvent être appliqués à différentes plateformes de calcul quantique. Par

exemple, les états |1⟩ et |e⟩ peuvent être des états Rydberg couplés via un résonateur

micro-ondes supraconducteur, par exemple |1⟩ = |902P3/2⟩ et |e⟩ = |902S1/2⟩ dans le Cs,

avec des durées de vie de 2 ms et 820 µs, respectivement, ωe ≈ 2π×5 GHz et g ≈ 2π×4

MHz[42]. Des facteurs de qualité Q > 3 × 108 ont été rapportés pour des résonateurs à

ligne micro-ondes[43], ce qui donne κ = ωe/Q ≈ 2π × 17 Hz, C = 5 × 109, et γ/κ ≃ 12.

En incluant la décroissance de |1⟩, l’infidélité est 1 − F = 3 × 10−3 pour une durée de

pulse T = 20/g ≈ 800 ns pour le protocole GPG (à ∆ = 250g), et 1 − F = 5 × 10−3

à T = 200/g ≈ 8µs pour le protocole APG. En utilisant les niveaux rotationnels dans

l’état fondamental électronique des molécules polaires (par exemple Ca79Br) au lieu des

états Rydberg, des fidélités encore plus faibles peuvent être obtenues au prix d’un temps

de porte plus long T ≈ 80− 400, µs. Des portes très rapides avec T = 10− 100 ns et des

infidélités de quelques pourcents peuvent être obtenues en utilisant des qubits atomiques

dans l’état fondamental piégés dans des cavités Fabry-Perot en fibre [44–46] avec un C

raisonnable ≈ 1500.

2. Entanglement-enhanced quantum sensing
via optimal global control

Dans ce travail, nous étendons l’application de notre protocole de cavité GPG avec des

rotations globales supplémentaires de qubits uniques et en utilisant des techniques de
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Figure 3: Protocole APG : (a) Infidélité (calcul numérique) pour une porte CZ en
fonction de la durée de la pulse T pour différentes valeurs de C et de γ/κ. (b) Infidélité
d’une porte de rotation de phase avec α = π/4 dans la limite T → ∞ en fonction de
N . L’infidélité de la même porte est également montrée, implémentée en utilisant une
décomposition en portes CZ et portes à un qubit selon le circuit de la Réf. [40]. (c)
Infidélité d’une porte CN−1Z en fonction de N lorsqu’elle est implémentée en utilisant
le protocole APG et par décomposition en portes CZ et portes à un qubit à l’aide d’un

code Gray sans ancilla [41].

contrôle optimal pour montrer la préparation d’un état arbitraire dans le sous-espace

symétrique de Dicke. Nous nous concentrons spécifiquement sur la préparation d’un état

intriqué qui est métrologiquement utile pour les mesures de champ. Nous considérons un

champ le long de la direction n⃗ qui est couplé aux N qubits de spin avec l’Hamiltonien

d’interaction Ĥn⃗ = JĴn⃗, avec J la force de couplage. Ĥn⃗ est appliqué pendant un temps

t tel qu’un état de sonde donné ρ soit tourné le long de l’axe du champ d’un angle β = Jt.

L’objectif de l’expérience de détection de champ est d’estimer l’angle de rotation β de

manière aussi précise que possible en effectuant des mesures sur les spins en utilisant un

observable M̂ . Pour tout M̂ donné (estimateur non biaisé), β peut être estimé avec une

variance

(∆β)2 = (∆M̂(β))2/
∣∣∣∂β⟨M̂(β)⟩

∣∣∣2 . (4)

Le problème sur lequel nous nous concentrons est de trouver l’état de sonde optimal ρopt

qui peut être préparé en présence de bruit pour un Ĥn⃗ donné et un M̂ accessible dans



les expériences, c’est-à-dire un état qui minimise (∆β)2. L’opération de préparation de

l’état sur un état initial ρ0 est donnée par ρ0 → E(ρ0), avec une séquence de P étapes

notée Eq = EP · EP−1 · · · E1, où Ej = Ûj · (Egpg)j . Ici (Egpg)j désigne l’application du

protocole GPG en présence de pertes, Ûj = e−iθ
αjĴze−iθ

βjĴye−iθ
γjĴz est défini comme

les rotations globales de spin appliquées à l’étape j. Dans ce travail, nous commençons

avec un état initial ρ0 obtenu sous la forme ρ0 = Û0 · ρin avec ρin = |00 . . . 0⟩⟨00 . . . 0|.
Nous notons l’état final obtenu par la carte d’opération comme ρf = E(ρ0). En par-

ticulier, nous discutons des résultats de l’erreur de préparation d’état en présence de

pertes dues à la cooperativité finie C lors de l’application du protocole de cavité A.

Les angles optimaux θ
(α,β,γ)
j pour j = 1, 2, . . . P ainsi que les paramètres θj et δj

utilisés dans le Protocole GPG sont obtenus en utilisant la méthode d’optimisation

Broyden–Fletcher–Goldfarb–Shanno [47, 48] avec la variance d’estimation de paramètres

(∆β)2 comme fonction de coût.

Nous illustrons le protocole en choisissant deux observables différentes M̂ d’importance

expérimentale : (I) la parité le long de l’axe x M̂ =
⊗N

i=1 σ̂
(i)
x [49, 50], et (II) le carré de

l’observable de spin collectif M̂ = Ĵ2
z le long de ẑ [51]. Les choix (I) et (II) correspondent

aux observables qui, pour κ = γ = 0, sont théoriquement connus pour saturer l’inégalité

de Cramer-Rao quantique avec des états de sonde idéaux GHZ et Dicke
∣∣∣DN

N/2

〉
pour

les champs le long des directions n⃗ = ẑ et ŷ, respectivement [52, 53].

La figure 4 résume nos résultats pour l’optimal (∆β)2 en fonction du nombre de qubits

N , pour différentes cooperativités C et rapports de largeur de ligne γ/κ, calculés dans

la limite gT → ∞. Pour chaque N , C et γ/κ, l’optimisation est réalisée O(N) fois

avec des paramètres initialisés de manière aléatoire et la meilleure valeur est tracée.

Pour le cas (I), les états de sonde optimaux préparés avec le protocole informé par le

bruit surpassent la SQL avec une variance (∆β)2GHZ qui évolue avec N comme ∼ N−1.24

pour des cooperativités aussi faibles que C = 25, comme ∼ N−1.52 pour C = 100, et

s’approchant de la limite de Heisenberg pour C ≳ 104, avec une échelle ∆β2 ∼ N−α

et α > 1.93. Pour le cas (II), l’optimal (∆β)2N/2 ∼ N−α évolue avec α ≈ 1.4 pour

C = 25, α ≈ 1.5 pour C = 102, 104 et α ≈ 1.6 pour C = 106, montrant une amélioration

considérable par rapport à la SQL pour toutes les valeurs de C. Dans tous les cas, les

résultats optimaux sont essentiellement indépendants du rapport γ/κ.
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petites que C = 25.

3. Cavity polariton blockade for non-local entangling gates
with trapped atoms

Dans ce travail, nous proposons un schéma pour réaliser des états intriqués multi-qubits

de type W et des portes non-locales CZ et C2Z via un mécanisme de blocage de po-

laritons dans un système de qubits atomiques couplés à un mode de cavité commun.

Le blocage de polaritons est obtenu en ajustant le système, un registre de N qubits, de

manière à ce qu’aucun deux atomes ne soient simultanément excités dans l’état excité

du qubit, et qu’il n’y ait un couplage effectif qu’entre l’état fondamental et un état W

de qubit singulièrement excité. L’étape de contrôle nécessite seulement une excitation

externe du mode de cavité et une impulsion globale sur les qubits, sans besoin de traiter

individuellement chaque qubit. Nous obtenons analytiquement l’erreur de préparation

d’état pour un état W de N qubits, qui évolue comme
√

(1 − 1/N)/
√
C, où C est la

coopérativité pour une particule. Nous montrons également l’application du mécanisme

de blocage de polaritons pour réaliser une porte non-locale CZ et C2Z en utilisant

un ensemble différent d’états de qubits computationnels, et caractérisons les erreurs de

porte qui évoluent comme ∼ 1/
√
C.



III. Conclusion générale

Dans cette thèse, nous avons introduit une série de protocoles novateurs conçus pour

mettre en œuvre un large éventail de portes quantiques multi-qubits non-locales et de

génération d’entrelacement dans des systèmes où plusieurs émetteurs quantiques sont

couplés à un mode bosonique partagé, rendant ainsi notre approche largement applicable

aux configurations générales de QED de cavité. Les deux premiers protocoles clés sont

le protocole de Porte de Phase Géométrique (GPG) et le protocole de Porte de Phase

Adiabatique (APG)[54], pour lesquels nous avons dérivé des expressions analytiques

pour les infidélités d’opération évoluant comme ∼ N/
√
C – en fonction du nombre de

qubits N et de la coopérativité C – un paramètre clé caractérisant tout système de QED

de cavité en présence de pertes dues à la fois des émetteurs et des photons de cavité

vers l’environnement. Ces solutions exactes sont les premières de leur genre, et grâce

à elles, nous avons démontré l’efficacité d’une classe de ces protocoles en atteignant un

renforcement de l’entrelacement pour la détection quantique. En particulier, nous avons

développé un protocole de préparation d’état informé par le bruit pour optimiser les états

de sonde intriqués pour la détection quantique dans des environnements bruyants. Nous

avons également présenté un protocole de blocage de polaritons de cavité qui facilite la

génération d’entrelacement de type état W et offre des perspectives pour la réalisation

de portes CZ et C2Z optimales en temps dans les cadres de QED de cavité. Tous les

protocoles reposent sur des excitations classiques simples appliquées au mode de cavité,

certains utilisant également des impulsions globales sur les qubits, éliminant ainsi le

besoin d’excitation individuelle des qubits. Ces approches sont conçues pour une mise

en œuvre immédiate dans des expériences de pointe, en particulier celles utilisant des

atomes froids dans des réseaux de pinces dans des cavités[55]. Il est important de noter

que la polyvalence de nos protocoles étend leur applicabilité à une gamme de systèmes

quantiques, y compris les atomes de Rydberg, les châınes d’ions piégés, les molécules

polaires et les qubits supraconducteurs, ainsi qu’à divers modèles de bruit dans notre

protocole de détection informée par le bruit.

Les avancées présentées dans cette thèse non seulement jettent les bases du progrès

de l’informatique quantique et de la détection renforcée par l’entrelacement sur di-

verses plateformes expérimentales, mais mettent également en évidence le potentiel des

principales architectures de calcul quantique basées sur des systèmes d’atomes neutres,

en proposant l’intégration transparente de nos protocoles simples pour des opérations

multi-qubits. Plus important encore, ce travail établit les bases pour la réalisation

d’applications évolutives et fiables en informatique quantique, y compris la correction

d’erreurs quantiques, et prépare le terrain pour l’avenir de l’internet quantique.
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text Sec. 7.3.1) obtained in the limit T → ∞. (f) Infidelity (1 − F ) as
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corresponding to the cavity drive with strength η are denoted by red
arrows. The blockade condition is achieved by setting ϵ−2 = 0, which
makes the cavity drive resonant to the |210e0ph⟩ ↔ |p−2 ⟩ transition. (c)
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|Ω| ≪ |λ±|(See text Sec. 7.2.3). . . . . . . . . . . . . . . . . . . . . . . . 111



List of Figures xxix

7.3 (a) W state preparation error for N = 2 as a function of the total opera-
tion time for κ/g = 10−3, γ/g = 10−3. The error due to the decay from
|e⟩ state, the error due to loss of photons and the error due to finite time
(calculated in the limit C → ∞) adds up to give the total error (dash-dot
line). The dashed line is the analytical error given by 4.05/

√
C calculated

in the limit T → ∞. (a, inset) Final state population (in log-scale) in
relevant states |a1bemph⟩ as a function of the pulse duration gT for the
same parameters as in (a). The final state as T → ∞ has non-vanishing
components along the state |010e0ph⟩ and |210e0ph⟩ apart from the near-
unity population in the target |110e0ph⟩ state. (b) Final state populations
(in log-scale) in the atomic symmetric Dicke states |Dn⟩ for N = 10 and
N = 2 (inset) for κ/g = 10−3, γ/g = 10−3. . . . . . . . . . . . . . . . . . 119

7.4 Gate error for as a function of the total operation time for (a) CZ gate and
(b) C2Z gate for C = 102, 104, 106, 108, 1010 and γ/κ = 0.01, 0.1, 1, 10, 100.
The infidelity converges to the analytical estimate (dashed lines) 1−F ∝
1/
√
C (See text Sec. 7.4.1, 7.4.2) obtained in the limit T → ∞. . . . . . 122





Dedicated to my parents and sister

xxxi





Chapter 1

Introduction

Entanglement generation and quantum gate operations lie at the very core of quantum

information processing, driving revolutionary advances in computing and communica-

tion. From being regarded as a purely theoretical curiosity aimed at probing potential

gaps in quantum mechanics [1], and later as the basis for tests comparing quantum me-

chanics with local realism [2–4], entanglement has now become a cornerstone of quantum

technology, crucial for applications in quantum cryptography, sensing, and computation.

The success of these quantum technologies relies on high-fidelity manipulation of entan-

gled states often comprising numerous qubits, and tremendous progress has been made in

the last decades in achieving control of many-body systems [5–11]. In quantum comput-

ing, achieving high-fidelity multi-qubit quantum gates is pivotal for reducing gate count

and enabling fault-tolerant computation schemes tailored to specific platforms [12–14].

Similarly, in quantum sensing, multi-partite entangled states have the potential to push

measurement sensitivities beyond the standard quantum limit [15–21].

However, a major challenge in realizing such capabilities lies in the challenging control

of N-body systems and the fragile nature of macroscopic quantum superpositions. In

quantum computing, many physical systems, including neutral atom-based setups, do

not inherently support many-body or non-local operations. To realize multi-qubit oper-

ations, complex decompositions into sequences of local single- and two-qubit operations

are required, and non-local operations can be realized through qubit shuttling (which

has been demonstrated, for example, in neutral atom setups [22, 23]), though these are

costly operations. Moreover, the preparation and control of N -particle entangled states

are highly susceptible to decoherence due to interactions with the surrounding environ-

ment [24–27]. Consequently, it is of significant importance to (i) develop novel, efficient

protocols for entanglement generation and multi-qubit quantum computing operations,

1
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(ii) gain a clear understanding and quantification of decoherence effects on specific com-

putational or sensing tasks, and (iii) devise methods to mitigate and suppress quantum

noise in realistic settings.

In the context of the native availability of non-local interactions, the emergence of cavity

quantum electrodynamics (cavity QED) systems offers a powerful alternative [28, 29].

In cavity QED, quantum emitters interact with the field inside a cavity with highly

reflective walls. The field is quantized within the cavity, which behaves as a collection

of harmonic oscillators with different frequencies, one of which is resonant or nearly

resonant with a two-level transition in the quantum emitter, which behaves as a spin-

like system. The coherent interactions of these spins with the field bosons of the cavity

mode form the basis of cavity QED.

An interesting regime of cavity QED is the strong coupling regime, where the coupling

strength between the individual quantum emitters and the cavity mode surpasses both

the emitter transition linewidth and the cavity resonance linewidth. In this strong

coupling regime of cavity QED, multiple emitters can couple to a single cavity mode,

establishing all-to-all connectivity through boson exchange within the shared cavity

mode and thus facilitating non-local operations. Since the pioneering work of Pellizzari

et al. [30], many ideas have been proposed to harness cavity QED to perform quantum

gates, but only a few can be generalised to more than two qubits. The primary objective

of this thesis is to address points (i) to (iii) above within the framework of strongly

coupled cavity QED systems.

Cavity QED systems in strong coupling regime for applications in quantum technolo-

gies can be realized with a range of quantum emitters interacting with corresponding

resonant or near-resonant bosonic field modes, where the emitter’s transition frequency

is close to the field mode frequency. Atomic, molecular, and optical (AMO) systems

are among the most promising candidates, offering well-controlled excitations and ben-

efiting from significant advancements in atom cooling, trapping, and manipulation due

to rapid developments in laser and computational technologies. Some of the earliest

AMO systems used in cavity QED experiments involved neutral atoms excited to Ryd-

berg states (high principal quantum number states), including circular Rydberg states

(high principal quantum number and high angular momentum states) interacting with

microwave photons [42, 65–75]. Another widely used platform today consists of neu-

tral atoms with ground hyperfine energy levels interacting with optical cavity photons,

which continues to make substantial progress [44–46, 50, 55, 76–79]. Polar molecules

with rotational states coupled to microwave stripline coplanar waveguide cavities present

another promising cavity QED setup [80–82].
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Cavity QED physics can be emulated on alternative platforms that provide distinct

physical settings yet exhibit similar underlying behaviour and dynamics. One such

alternative is the trapped-ion systems, where the internal states of ionic quantum emit-

ters interact with the phononic motional modes of an ion chain [6, 31, 32, 83]. In

solid-state systems, superconducting qubits with microwave couplers are promising can-

didates for realizing cavity QED physics [84–91], and so are other quantum emitters such

as nitrogen-vacancy centers in diamond [92] and emitters based on 2D materials [93, 94].

In the conceptual descriptions that follow, I primarily use the framework of neutral atom

quantum emitters interacting with optical cavities.

In the remainder of this introduction, I provide a brief overview of the general top-

ics addressed in this thesis. Section 1.1 contains a brief introduction to cavity QED,

with the description of the state-of-the art fiber based fabry perot cavities. Section 1.2

discusses quantum computing protocols and entanglement-enhanced quantum sensing

protocols with cavity QED systems from the literature. Lastly section 1.3 discusses the

contribution of this thesis and provides an overview of the chapters.

1.1 Cavity QED: from perturbative to strong coupling era

Cavity QED started in the so called “perturbative era of cavity QED” which was based

on modification of the spontaneous emission rate of an excited atomic state in the

presence of boundaries as discovered by Edward Purcell[95, 96]. Purcell invoked the

Fermi Golden Rule to explain that the modifications in the density of final field states

available for an atom radiating near a metallic structure proportionally also modified

the spontaneous emission rate by a factor of η = (3/(4π2))Qλ3/Vc, where Q is the cavity

quality factor - a measure of how underdamped a cavity resonator is i.e which quantifies

the cavity’s ability to store energy relative to its rate of energy loss, Vc is the cavity

mode’s volume - the effective spatial region within the cavity where the electromagnetic

field is confined, and λ the wavelength of the transition (same effect expected for an atom

in an optical cavity). Although the η factor increases with increase in the cavity quality

factor and decreasing mode volume, Purcell effect only applies in the damped cavity

limit, which is limit where the cavity mode is highly lossy i.e. has a broad resonance

linewidth κ, and is considered as a continuum. For even higher quality factors, the

perturbative cavity QED approach no longer holds true and the atom-cavity or emitter-

cavity dynamics qualitatively change and the system enters the strong coupling regime.

In the strong coupling regime of cavity QED, the quality factor Q of the cavities is

pushed to the point that the photon lifetime in the cavity 1/κ would become larger than

that of the excited atom in the presence of boundaries- which decreases as (VcQ)−1. To
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reach the strong coupling regime, it is hence essential to build cavities with large Q but

also very small mode volume Vc such that the field per photon Ec = (ℏωc/2ϵ0Vc)1/2 is

as large as possible. Let the parameter measuring the coupling strength between the

atom and the cavity mode be denoted by g which is proportional to dEc(in the units

of ℏ), where d is the electric dipole matrix element of the atomic transition. Then the

strong coupling regime is defined by the conditions g > κ and g > γ, where γ is the

spontaneous emission rate of the excited atomic state in free space.

1.1.1 Signature of strong coupling and obtaining g in experiments

The first observation of the spectacular manifestation of strong-coupling dates back to

an experiment reported in 1992 [56]. In this experiment, thermal Cs atoms were passed

through a cavity tuned to the atomic resonance with maximal electric field intensity at

the cavity center, and the transmission of a weak probe cavity field was recorded. Let

us assume that the atom has ‘spin-like’ internal structure with two levels |e⟩ and |g⟩.
When no atom is coupled to the cavity, the probe spectrum is a single lorentzian peaked

at the cavity frequency. In the presence of strong coupling with a single atom, the probe

couples |g, 0⟩ state (atom in state |g⟩ and cavity in vacuum) with the dressed states

|0,+⟩ and |0,−⟩ (hybrid atom - cavity states which are superpositions of states |g, 1⟩
and |e, 0⟩), and these two transitions are split by an amount ℏg, known as the “vacuum

Rabi splitting”. The appearance of two peaks in the probe transmission spectra hence

indicates the formation of the atom-photon dressed states and is a signal of strong-

coupling indicating resonant energy exchanges between the atom and the cavity photons-

possible when g is greater than the atomic and the cavity decay rates. Figure 1.1(a)

shows the experimental probe transmission spectra reported from the 1992 experiment,

and Figure 1.1(b) shows a similar spectrum obtained in a latest experiment from 2024.

The stark difference between the magnitude of the vacuum Rabi splitting, which directly

measures the coupling strength g of the cavity QED systems, is a positive indication of

the immense technological progress made in the field over the past decades.

In the early days, experiments on cavity QED with atoms were driven by a significant

fundamental interest which later on also led to their development for atom-counting

technology. A probe laser beam tuned at cavity resonance is fully transmitted when the

cavity is empty, and when an atom crosses the mode, the cavity response is dramatically

modified. In fact, in this latter case, the laser frequency falls midway between the two

Rabi peaks and the light transmission drops sharply. The laser beam is then reflected

back on the entrance cavity mirror instead of being transmitted. A few years later, de-

tection method allowed for counting of single atoms in coherent atomic waves extracted

from Bose Einstein condensates with a very high efficiency [57], see Figs. 1.2(a)-1.2(b).
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(a) (b)

Figure 1.1: First and the latest observation of the vacuum Rabi splitting
(a)Intracavity photon number n̄ as a function of the probe frequency Ω. The numerical
points are from the experiment, curve (i) is a theoretical fit accounting for fluctuations
in atom position and number, curve (ii) is the theoretical curve predicted when the
atom couples to the cavity mode at the origin with maximal coupling strength g. Plot
from Ref. [56], measured g = 20.1(13) MHz. (b) Photon count spectra (similar to (a))
as a function of the detuning of a weak incident probe for a single atom trapped in an
optical tweezer placed at a point of maximal coupling strength g with the cavity mode.

Plot from Ref.[55], measured g = 100.0(8) MHz.

Today, it is used to perform non-destructive qubit readout of trapped qubits interacting

with cavity mode to accelerate quantum error correction schemes [39, 55, 97, 98], see

Figs. 1.2(c)-1.2(d).

The coupling strength g as well as the cavity resonance linewidth are obtained by the-

oretical fits to the transmission spectra as shown in Fig. 1.1. The theoretical fits of the

average photon number are obtained as the steady state solution of the open system

dynamics in the limit of a weak probe cavity drive.

1.1.2 Fabry-Perot cavity: the simplest cavity and how they evolved

The experiments referenced above are all performed with one of the most fundamental

and widely used optical cavity designs called the Fabry-Perot cavity. It consists of two

mirrors, with each mirror having specific reflection and transmission properties. From a

classical perspective, light bounces back and forth between these two mirrors, creating

a resonant cavity where certain wavelengths constructively interfere, depending on the

mirror separation and the wavelengths of the light.

The performance of a Fabry-Perot cavity is often characterized by a property known as

finesse, which is a measure of how effectively the cavity confines light. Given the physical

cavity parameters - radii of curvatures at the mirrors, reflectivities etc., the cavity finesse

F depends on the cavity mirror coating reflectivity properties and is obtained as the
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(a) (b)

(c) (d)

Figure 1.2: Utility advancements of cavity QED setups- from atom counting to non-
destructive qubit readout. (a) Schematic of experimental setup for atom-counting ex-
periment from Ref. [57]. An atom laser beam is released from a BEC and passed
through a high finesse cavity center which is probed by a weak laser.(b) Light trans-
mission spectrum of the cavity during the passage of the atom beam, the dips in the
transmission spectrum count the single atom transits. (c) Schematic for cavity-assisted
detection of atomic qubit from Ref. [39]. When the qubit is in state |0⟩, the cavity
probe light is mostly transmitted and when in |1⟩, the incident photons are mostly
reflected. (d) Photon count signal for (c) showing the cavity transmission(blue) and

reflection(red) for an atom initially in |1⟩ decaying to |0⟩ over time.

ratio of free spectral range (frequency separation between the different cavity modes)

given by c/(2L) where L is the cavity length and the width of the cavity resonances

κ, usually expressed as the full width at half maxima (FWHM): F = c
2Lκ , and hence

can be quantitatively seen as a measure of how narrow the cavity resonances are with

respect to their frequency separation. A higher finesse indicates lower scattering losses

and greater light confinement, which is highly desirable in experiments.

Advances in cavity design have led to the development of fiber-based Fabry-Perot cav-

ities. These modern cavities maintain the fundamental principles of the traditional

Fabry-Perot setup but are designed with mirrors integrated into optical fibers, signifi-

cantly reducing the physical size of the cavity and improving its performance. One of

the primary advantages of fiber-based cavities is their ability to achieve small radii of

curvature (ROC) and small cavity lengths at the same time, which leads to exceptionally
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small mode waists (typically in the range of 1 − 2µm) and mode volumes Vc around

λ3, where λ is the wavelength of the light. These compact mode volumes allow for high

single-mode coupling efficiencies with any quantum emitter inside the cavity making

fiber-based Fabry-Perot cavities highly effective in cavity QED experiments, especially

when precise control and coupling of photons are required.

In pioneering works on fiber-based Fabry-Perot cavities, high finesse values of F =

37000 ± 5000 is achieved in these compact cavities [44]. These large values of F are

crucial for advancing cavity QED applications, as fiber-based cavities can achieve both

high finesse and tunability while maintaining stable coupling to single-mode optical

fibers.

Table 1.1 illustrates the advancements in cavity technology between 2005 and 2024,

showing how improvements in cavity mode coupling strength (by decreasing mode waists

while maintaining high finesse) reflect the continuous progress in cavity engineering,

enabling ever-greater precision and performance in state-of-the-art cavity QED experi-

ments.

Year atoms L ROC ωr Vc g Finesse

2005 [57] 1 178µm 77.5 mm 26µm 2×105λ3 65.4 MHz 300 000

2024 [55] 20 100µm 145 − 165µm 4.28µm 3000 λ3 100.0(8)MHz 25 904

Table 1.1: Advancements in optical cavity technology between 2005 and 2024, il-
lustrating improvements in atom trapping capabilities in terms of sytem size, cavity
length L, radii of curvatures (ROC) of cavity mirrors, mode waist ωr, mode volume
Vc for λ = 780 nm, coupling strength g with 87Rb F = 2 → F ′ = 3 D2 transition line
and cavity finesse. Note that the state of the art experiments based on fiber based
Fabry-perot cavities can trap ∼ 20 atoms while maintaining very small mode volume.

1.1.3 Technical progress in microwave based cavities

Substantial technical advancements have been made in the development of microwave-

based cavities in recent years. One prominent category includes chip-based coplanar

waveguide (CPW) microwave resonators [66, 99], with state-of-the-art CPW resonators

now achieving quality factors exceeding Q > 3 × 108 [43]. Significant efforts are also

focused on the construction of 3D microwave cavities for quantum information process-

ing. Initially developed as superconducting photon boxes [5, 100], these 3D microwave

cavities have benefited from considerable technical advancements, resulting in ultra-

high-quality factors in modern implementations [101–106].
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1.2 Quantum information processing and quantum sensing

with cavity QED systems

In this section, we discuss the existing results from literature on various applications

of cavity QED systems in the context of quantum computing and quantum sensing. In

section 1.2.1, we discuss the various cavity-mediated gate protocols and their perfor-

mances from the literature. In section 1.2.2, we motivate quantum sensing applications

with multi-partite entangled states and discuss the success of cavity QED systems in

achieving a quantum advantage in sensing.

1.2.1 Cavity-mediated non-local quantum gates

The implementation of quantum gates between qubits in a cavity QED architecture is

fundamentally motivated by the inherent all-to-all connectivity among qubits, which

facilitates the realization of non-local quantum gates involving two or more qubits.

This all-to-all connectivity can significantly reduce the circuit depth of typical quantum

circuits when compared to geometrically local connectivity [58]. Fig. 1.3 demonstrates

the drastic reduction in circuit depths as a function of problem size with increasingly

connected architechtures. Moreover, the capacity to perform non-local multi-qubit gates

may enhance the applicability of quantum error correction (QEC) codes with non-local

stabilizers, such as with recently proposed low-density parity-check (LDPC) codes [107–

111], which offer substantially lower overhead than the conventional surface codes for

QEC [112].

Figure 1.3: Impact of qubit connectivity on quantum algorithm performance of im-
portant quantum algorithms. Figure from Ref. [58]

The basic idea of a two-qubit cavity-mediated quantum gate can be imagined with the

proposed setup of Ref. [30] shown in Figure 1.4, which assumes atomic qubits with

individual atom control, and is as follows: a laser directed at an atom can manipulate
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its state, thereby controlling the photon emission from the atom into the cavity mode.

The emitted photon depends on the atom’s state and can be absorbed by another atom

coupled to the same cavity mode, conditional on the state of both the second atom and

the photon. This cavity-mediated state-dependent exchange of photons results in an

entangling two-qubit operation between the two atoms. The latter can be then used to

generate two-qubit gates between any pair of atoms in the cavity.

Figure 1.4: Schematic of setup for quantum computer based on atomic qubits com-
municating via interaction with a single quantized cavity mode. Figure from Ref. [30]

After the first proposal a non-local gate in cavity QED by Pellizzari et al. [30], many

other proposals of non-local gates in cavity QED architechtures have been proposed

or realized with neutral atoms or ions by mediating interactions between qubits via

a quantized bosonic mode, using motional modes of trapped ions [31–34] or optical

cavity modes for neutral atom spin qubits [30, 35, 37, 59, 113–116]. Below, I present a

comprehensive list of proposals involving atoms and optical cavities from prior work.

Before proceeding, I introduce here cooperativity C which is a key parameter to char-

acterise qubit-cavity mode coupling strength g relative to photon loss rate κ and spon-

taneous emission of the qubit γ, and is given by C ∼ g2/(κγ). It is hence used to also

characterise the performance of any quantum operation involving coherent exchange

between the qubit emmitters and cavity mode. The term used for this is the gate oper-

ation fidelity F, which is the measure of how accurately the gate performs its intended

transformation, generally quantified as the overlap between the desired output state and

the actual output state. Higher fidelity indicates less deviation from the ideal operation.

For examples stated below, the fidelity of a quantum gate or entangling operation is

expressed in terms of cooperativity.

� Measurement-induced probabilistic entanglement generation

Many early protocols for non-local entanglement-generation with atoms in opti-

cal cavities setups are probabilistic and are based on measurement induced en-

tanglement which necessarily require high efficiency photon detectors for high fi-

delity [36, 117–119].

For example, the protocol in Ref. [117] for entangling two two-level atoms (labelled

a and b, with levels |0⟩ and |1⟩) in the cavity is based on simply understanding the
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eigenstates of the two-atom plus cavity system - among the three dressed states,

one is a stationary state |λ0⟩ which has a zero eigenvalue, whereas the other two,

where the cavity is populated, decay in time (the cavity decay channel is assumed

much stronger than the atomic decay channel). The stationary state here is in fact

a tensor product state of the cavity in vacuum and the maximally entangled atomic

state: |λ⟩ = |0⟩cav |0⟩a|1⟩b−|1⟩a|0⟩b√
2

, and one hence needs a mechanism that destroys

population in the cavity mode, which is done by using a leaky cavity and detecting

all photons coming out through the mirrors. The protocol starts by preparing the

system in the state |0⟩cav|1⟩a|0⟩b (assuming individual laser addressing of atoms)

and relies on the efficient detection of a single photon leaking out of the cavity

: if a photon is detected, the system is in the ground state |0⟩cav|0⟩a|0⟩b and the

experiment has to be repeated, but if not, the system goes into a state which

cannot decay - that is the atoms should end up in the entangled state. This

protocol was further extended to propose teleportation of the state of an atom

trapped in a cavity to a second atom trapped in a distant cavity, in Ref. [118].

Note that here the success probablity of the protocol is 50 %, owing to the fact

that the overlap of the initial state with |λ0⟩ is precisely 1/2.

In a later work (Ref. [119]), an improved protocol was proposed, incorporating

three energy levels in each atom arranged in a Λ configuration. In this setup, the

transition |L⟩ ↔ |e⟩ is coupled to left-circularly polarized light, while |R⟩ ↔ |e⟩ is

coupled to right-circularly polarized light. Both atoms are symmetrically prepared

in the same state, and a left-circularly polarized photon is injected into the cavity.

This photon can be absorbed by either atom, and detection of a right-circularly

polarized photon leaking from the cavity confirms an entangled state, an equal su-

perposition of states with one atom in |L⟩ and the other in |R⟩. Unlike the previous

protocol, this approach does not require an initially antisymmetric atomic state

and allows the experiment to be repeated by simply reinjecting another photon,

a feature absent in the prior proposal. However, it requires a reliable source of

single left-circularly polarized photons and efficient single-photon detection. Like

the previous approach, it is probabilistic, with an estimated success probability

of p ≊ 0.45. Yet, since the experiment can be easily looped by connecting the

left-circularly polarisation photon path back to the cavity, and since the failure

probability (1 − p)n exponentially decreases with number of trials n, the protocol

is also termed as quasi-deterministic.

These and similar protocols inspired efforts to entangle large macroscopic atomic

ensembles [120, 121] using similar measurement-based probabilistic protocols, where

high fidelity is achieved only through repeated trials.
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Finally, Ref. [36] proposes an efficient scheme for multi-atom entanglement using

four-level atomic systems without requiring individual atom addressing, though

it also relies on detecting cavity decay through single-photon detectors, with a

success probability of p = 1/2 in the ideal case of unit-efficiency detectors.

In all these proposals, since the protocols depend on detecting cavity decay events,

the cavity decay channel is assumed to be significantly stronger than atomic de-

cay, allowing for rapid detection, while spontaneous emission from the atoms is

considered small or negligible.

� Deterministic entanglement generation and quantum gate operation be-

tween two atoms

For measurement-induced but deterministic entanglement generation the fidelity

scales as ∼ (1/C) log(C) and for deterministic two-qubit gates, prior art finds the

fidelity error as O(C−1) [115].

I first describe here the entanglement generation protocol in Ref. [115] which is also

measurement-induced but deterministic. This protocol uses a three-level atomic

system with two stable ground levels, |g⟩ and |f⟩, and an excited level |e⟩. The

protocol starts with an equal superposition state of the two ground states for both

atoms. The two-atom state is written as |ψ⟩ = (|gg⟩ + |gf⟩ + |fg⟩ + |ff⟩)/2. By

performing an atom-counting measurement or a quantum nondemolition (QND)

measurement (similar to those discussed in Section 1.1.1), which measures the

number of atoms N in state |f⟩, the state vector is projected into the maximally

entangled state |ψEPR⟩ = (|gf⟩ + |fg⟩)/
√

2, provided N = 1 is measured. . This

was one of the first works to report the scaling of the entanglement generation

fidelity F with the cavity QED parameters, including the spontaneous emission

rate of the atoms. The fidelity here is expressed as F= ⟨ψEPR|ρ|ψEPR⟩, where

ρ is the atomic density matrix, and the error scaling is obtained as 1 − F ∼
(1/C) log(C), valid up to a success rate of p = 50 %. Unlike previous protocols,

this approach uses only coherent light sources and homodyne detection, making

it more efficient and allowing for deterministic entanglement generation with two

measurements on average. Furthermore, using this deterministic entanglement

generation protocol, a two-qubit controlled-NOT gate protocol is proposed, which

requires additional levels and a similar homodyne detection of light. This achieves

a similar error scaling as above for entanglement generation.

Another strategy for quantum gates in optical cavities in this category is based

on constructing controlled interactions between the atoms and the cavity field [30,

113, 122] (including the pioneering work from 1995). These are based on the basic

idea that we discussed earlier, assuming individual control of atoms: controlled
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emission of a photon from an atom, which can be absorbed by another atom. For

these deterministic gate protocols, the error scales as 1−F∼ O(C−1/2) [115].

I briefly present here the protocol from Ref. [113], which realizes a controlled-NOT

(CNOT) operation between two three-level atoms in a cavity QED setup. First,

an entangling operation is realized between the atoms using just two levels in

each: let |gj⟩ and |ej⟩, (j = 1, 2) denote the ground and excited states of the jth

atom. Assuming a dispersive interaction between |gj⟩ ↔ |ej⟩ and the cavity mode

with a detuning ∆ between the atomic transition and cavity mode frequencies, a

Hamiltonian is obtained with photon-number-dependent Stark shifts on the levels

|gj⟩, |ej⟩ and a direct dipole coupling term between the two atoms induced by the

cavity mode. All these terms in the Hamiltonian scale with λ = g2/∆. Further

assuming the cavity starts in vacuum, the following interaction Hamiltonian is

realized:

Ĥint = λ

∑
j=1,2

|ej⟩⟨ej | + (σ̂+1 σ̂
−
2 + σ̂−1 σ̂

+
2 )

 , (1.1)

where σ̂+j = |ej⟩⟨gj |. With this interaction Hamiltonian, the following state evo-

lution is realized for an initial state |e1⟩|g2⟩ for the two-atom system:

|e1⟩|g2⟩ → e−iλt[cos(λt)|e1⟩|g2⟩ − i sin(λt)|g1⟩|e2⟩]. (1.2)

For an evolution time of t = π/(4λ), the final state obtained is the maximally

entangled Bell state: |ψ⟩ = (|e1⟩|g2⟩−i|g1⟩|e2⟩)/
√

2. Now, to realize a CNOT gate,

three levels are assumed in a ladder configuration with an extra level denoted by

|ij⟩ such that the |ej⟩ ↔ |ij⟩ transition is highly detuned from the cavity mode

and is not affected by it. Let atom 1 be the control atom and atom 2 the target

atom. Assuming two individual classical drives on atom 2 in free space tuned to

the transitions |g2⟩ ↔ |e2⟩ and |e2⟩ ↔ |i2⟩, the computational states in atom 2 can

be made to evolve as follows (with appropriate amplitudes, phases, and times of

the classical drive):

|e2⟩ →
1√
2

(|e2⟩ + |g2⟩) →
1√
2

(|i2⟩ + |g2⟩)

|g2⟩ →
1√
2

(|g2⟩ − |e2⟩) →
1√
2

(|g2⟩ − |i2⟩). (1.3)

Now, both atoms are made to interact with the cavity (by moving them simul-

taneously inside the cavity). The interaction Hamiltonian does not cause any

cavity-induced dynamics for the states |g1⟩|g2⟩ and |g1⟩|i2⟩, but the state |e1⟩|i2⟩
acquires a phase of e−iλt, while the state |e1⟩|g2⟩ undergoes evolution according to
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Eq. (1.2). After an interaction time of π/λ, the following operations are realized:

|e1⟩|i2⟩ → −|e1⟩|i2⟩

|e1⟩|g2⟩ → |e1⟩|g2⟩. (1.4)

Now, two classical drives are applied again on atom 2, which are tuned to |e2⟩ →
|i2⟩ and |g2⟩ → |e2⟩ transitions, respectively. Choosing appropriate amplitudes

and phases, one obtains

|g2⟩ → 1√
2

(|g2⟩ + |e2⟩)

|i2⟩ → |e2⟩ →
1√
2

(|e2⟩ − |g2⟩). (1.5)

Overall, the two-atom computational states undergo the transformation:

|g1⟩|g2⟩ → |g1⟩|g2⟩,

|g1⟩|e2⟩ → |g1⟩|e2⟩,

|e1⟩|g2⟩ → |e1⟩|e2⟩,

|e1⟩|e2⟩ → |e1⟩|g2⟩. (1.6)

This transformation corresponds to the CNOT gate operation, in which, if and only

if the control atom (atom 1) is in state |e⟩, the target atom (atom 2) flips its state.

Note that in all these proposals for realizing deterministic two-qubit quantum

gates, individual qubit control with classical laser fields selectively addressing a

qubit is required.

� Heralding entanglement generation

Another class of relatively recent proposals is based on heralding [35, 37, 59] —

where successful cavity-mediated single-photon transfers are indicated by the de-

tection of an auxiliary particle or signal (often a photon). This detected signal

serves as a “herald” or a sign that an expected quantum operation has occurred

successfully without disturbing the system’s primary quantum state. These proto-

cols also require additional detector resources, where non-local gates are achievable

with error O(C−1) but with a failure probability of O(C−1/2) [35]. A recent scheme

using heralded photon transfers has an improved success probability but places

stringent requirements on the level structure of the qubits so that all scattering

and photon loss events are detectable [59].

In Ref. [59], the authors propose a cavity QED architecture with local nodes

consisting of a memory qubit and a communication qubit, where the communi-

cation qubits can be non-locally connected via cavity-mediated interactions, see
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Fig. 1.5(a). Figure 1.5(c) summarizes the protocol for realizing a non-local CNOT

gate between distant memory qubits at nodes A and B by first generating cavity-

mediated non-local entanglement between the communication qubits at A and B,

and then applying local CNOT gates and single qubit operations at each node.

Figure 1.5(b) shows the level scheme for the communication qubits showing the

cavity coupled and laser coupled transitions with strength gi and Rabi frequency

Ωi, respectively, where i denotes the node index. The entanglement generation

protocol starts with the communication qubit at A in an equal superposition of

|r0⟩ and |r1⟩, the qubit at B in |0⟩, while all other communication qubits are stored

in |1⟩, which do not couple to the cavity, and the environment E of modes external

to the cavity is in the vacuum state. A photon is transferred from A to B, condi-

tioned on A being in |r0⟩A using a resonant stimulated Raman adiabatic passage

(STIRAP) by ramping up ΩA while ramping down ΩB. During this transfer, the

photon may also leak out of the cavity or scatter off |e⟩ states to |0⟩ or |1⟩ states

in the ground manifold, hence resulting in the state

|ψ⟩ =
1√
2

(α|0⟩A|r0⟩B|vac⟩E + β|Loss⟩) +
1√
2
|r1⟩A|0⟩B|vac⟩E , (1.7)

where |Loss⟩ is a generic state where the photon has scattered into a mode outside

the cavity and atoms A and B are left in a collection of ground states. Following

this, local swap operations are performed on A and B to swap the states |r0⟩ and

|r1⟩, and also the two ground states in A, resulting in (note that these operations

map the |Loss⟩ state into itself, as the atoms A and B cannot evolve out of their

ground states in this operation):

|ψ⟩ =
1√
2

(α|1⟩A|r1⟩B|vac⟩E + β|Loss⟩) +
1√
2
|r0⟩A|0⟩B|vac⟩E , (1.8)

Now a second STIRAP sequence is applied which affects only the last term, giving:

|ψ⟩ =
1√
2

(α|1⟩A|r1⟩B|vac⟩E + |0⟩A|r0⟩B|vac⟩E) + β
1√
2

(|Loss⟩ + |Loss′⟩), (1.9)

where |Loss′⟩ is the photon scatterred state in the second STIRAP. An entangled

state is hence achieved within the α component of |ψ⟩. Measuring whether or not

atom B occupies a ground state projects |ψ⟩ into either the entangled state or the

loss state, hence heralding the generation of the entangled state upon obtaining

an empty B ground state.

State-of-the-art two-qubit quantum gates, which have been realized with a neutral

atom-based cavity QED setup [55], propose a protocol that heralds success based

on atomic state, without needing additional photon detection.
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(a)

(b) (c)

Figure 1.5: (a) Proposed architecture for cavity-mediated quantum gate between
any two qubits from Ref. [59]. (b) Atomic level scheme for communication qubits.
Excited state |e⟩ decays to |r0⟩ and |r1⟩ are suppressed. (c) Entanglement generation
scheme between distant communication qubits (in blue). Subsequent high-fidelity local
operations enable a teleported quantum gate between distant memory qubits (in red).

Figure from Ref. [59].

� Entangled fixed points

In contrast, non-local entangled states can be prepared as fixed points of dissipative

maps with an O(C−1) fidelity error [123], though a fixed phase relation must be

maintained between the fields addressing the qubits.

While some of the proposals above can be extended to N -qubit Toffoli gates [35–37], for

large scale digital quantum simulations and computing a unified approach that provides

native implementations of larger families of multi-qubit gates would be highly desirable.
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1.2.2 Cavity-mediated entanglement generation for quantum sensing

Quantum sensing leverages the principles of quantum mechanics to achieve measurement

precision beyond the capabilities of classical sensors. While classical sensors are limited

by the standard quantum limit (SQL), which sets a bound on their precision, quantum-

enhanced sensors utilize entangled states or those with nonclassical correlations, to over-

come these limitations. By exploiting multi-partite entanglement, quantum sensors can

achieve measurement precision that scales more efficiently than classical systems, reach-

ing the Heisenberg limit. At this limit, the precision improves from the 1/
√
N scaling

of the SQL to 1/N , which represents the fundamental limit for quantum measurements.

The ultimate goal of quantum sensing is to harness entanglement-enhanced techniques to

reach this fundamental limit, making entanglement-enhanced sensing the ”Holy Grail”

of quantum-powered sensing applications.

However, typically the entangled probe states are fragile to errors, posing challenges to

quantum sensors that need to be simultaneously sensitive to the unknown field strength

they are measuring but insensitive to noise. There are even limits, at least asymp-

totically, to the improvement quantum error correction can provide to remedy errors

[124, 125] (although see [126]). Indeed, experiments have so far relied on preparing

simpler, spin squeezed states that are somewhat robust to noise, but that achieve mea-

surement uncertainties scaling only moderately better than the SQL [50, 76–79, 127].

Many proposals for quantum-enhanced sensors, similar to gate proposals using atom-

light interactions in cavity QED systems, have concentrated on creating entangled

atomic states via processes where the optical electromagnetic field primarily serves as a

mediator of interactions between atoms [128–134]. In the microwave domain, however,

atom-light interactions have often been used more directly, such as in experiments with

Rydberg atoms [133, 134].

Overall, cavity QED serves as a powerful platform for advancing quantum sensing,

allowing for the precise manipulation of atom-light interactions essential for achieving

entangled states necessary for measurements approaching the Heisenberg limit.

1.3 Contribution of this thesis

In nearly all gate proposals referenced in Sec. 1.2.1, entangling quantum gates are re-

alized by a direct drive of the qubits via a free space mode, e.g. a laser, to turn the

interaction between the qubits on or off. In this thesis, we propose and explore a differ-

ent approach based on simply driving the cavity mode directly with a classical field that
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is modulated time-dependently, without requiring an external drive of the qubits. We

find that this approach enables entirely new protocols for the implementation of large

families of deterministic non-local multi-qubit quantum gates - namely a new geometric

phase gate protocol and new adiabatic phase gate protocol. Applied to just two qubits,

the protocols provide, together with single qubit gates, a universal gate set for quantum

computing. For both protocols, we provide analytic solutions for the error rates, which

scale as ∼ N/
√
C in the presence of relevant losses, with C the cooperativity and N the

qubit number. To our knowledge, these are the first of its kind exact analytic solutions

of protocol fidelities. This error scaling of O(C−1/2) is similar to the protocols driving

the qubits directly. Applied to more than two qubits, however, each protocol provides a

family of deterministic, multi-qubit non-local gates requiring minimal control, showing

a unique combination of desirable features such as versatility in gate design, speed, and

robustness. Our protocols are applicable to a variety of systems and can be generalized

by replacing the cavity by a different bosonic mode, such as a phononic mode. We pro-

vide estimates of gate fidelities and durations for atomic and molecular qubits as well

as superconducting fluxonium qubits coupled to optical or microwave cavities.

Additionally, with close relation with recent experimental efforts employing quantum

zeno dynamics based deterministic entanglement generation [38, 39], we propose deter-

ministic multi-qubit entanglement generation via a non-local cavity polariton blockade

with an additional global drive acting on the qubits. In this work, we perform a full

quantum-mechanical treatment of the system and characterise analytically the state

preparation error of a so-called W state, and also demonstrate the possibility to realize

time-optimal CZ and C2Z gates for two and three qubits, using a new cavity blockade

interaction method, for all of which the errors scale as O(C−1/2).

The second major part of this thesis investigates the creation of robust, optimally pre-

pared multi-particle entangled states designed for quantum sensing applications even

in noisy environments. While squeezed states do offer resilience against decoherence,

squeezing alone is not a prerequisite for achieving significant entanglement for sensing

applications. In our work, we focus on preparing entangled states that can attain the

Heisenberg limit for quantum sensing under ideal (noise-free) conditions. In this work,

we leverage the utility of our determistic geometric-phase-gate protocols by employing

optimal control techniques, which make our sensing protocol noise-informed and hence

optimally robust to noisy environment in sensing experiments.

Below, I provide an overview of the chapters in this thesis, also describing the contribu-

tion of each.
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Chapter 2 provides a theoretical background of all concepts and calculations used in this

thesis. This includes introductory quantum optics, open quantum systems, and optimal

control methods.

Chapter 3 discusses the cavity QED model Hamiltonain and components used through-

out in this thesis. Some precise example systems where the model has already been

realised or can poetntially be realised are presented.

Chapter 4, discusses the geometric phase gate (GPG) protocol proposed with the cavity

QED setup described in chapter 3. The GPG protocol operates in the limit of a strong

drive on the cavity. It implements a family of geometric phase gates ÛA = exp
(
iθn̂2

)
,

where n̂ is the number operator of qubits in state |1⟩, by displacing the state of cavity in a

closed loop in phase space. We provide analytic solutions for the error rates, which scale

as ∼ N/
√
C with C the cooperativity and N the qubit number, show how a multi-qubit

GHZ state can be generated with the GPG protocol and discuss the gate performance for

the case of inhomogeneous cavity coupling stengths. Lastly, estimates of gate fidelities

and durations for atomic and molecular qubits coupled to optical or microwave cavities

are provided, and applications for quantum error correction are suggested.

Chapter 5, presents a deterministic protocol for the preparation of arbitrary entangled

states in the symmetric Dicke subspace of N spins coupled to a common cavity mode.

By combining the geometric phase gate (GPG) protocol, its analytic solution of the

noisy quantum channel dynamics and optimal control methods, the protocol prepares

entangled states that are useful for quantum sensing, achieving a precision significantly

better than the standard quantum limit in the presence of photon cavity loss, spon-

taneous emission and dephasing. This work opens the way to entanglement-enhanced

sensing with cold trapped atoms in cavities and is also directly relevant for experiments

with trapped ions.

In Chapter 6, a second protocol - namely the adiabatic phase gate (APG) protocol is

discussed. The APG protocol operates in the limit of a weak drive and thus in the

opposite limit of the GPG protocol. It makes use of an adiabatic evolution of the joint

cavity-qubit system to implement a family of phase gates ÛB = exp[ic1/(c2n̂)], where c1

and c2 are parameters depending on the intensity, duration and detuning of the applied

drive. Repeated applications of this protocol allow for the realization of a family of phase

gates with arbitrary phases, e.g. phase-rotation gates and multi-controlled-Z gates. An

analytic solution of the gate error rate scaling as ∼ N/
√
C, similarly as for the GPG

protocol is obtained.
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Chapter 7, discusses a cavity polariton blockade based approach, again in the limit of

a weak cavity drive, and an additional free-space coupling between the qubit compu-

tational states. The polariton blockade is achieved by tuning the system, an N−qubit

register, such that no two atoms are simultaneously excited to the qubit excited state,

and there is an effective coupling only between the ground state and a singly-excited W

state of the qubit register. The state preparation error is analytically obtained for an

N−qubit W state which scales as
√

(1 − 1/N)/
√
C where C is the cooperativity. We

additionally show the application of the polariton blockade mechanism in realising a

non-local CZ and C2Z gate by using a different set of computational qubit states, and

characterise the gate errors which scale as 1/
√
C.

Chapter 8 presents the conclusion and outlook.

List of manuscripts submitted in peer-reviewed journals
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3. Srivastava Vineesha, Sven Jandura, Gavin K. Brennen, and Guido Pupillo. ”Cav-

ity polariton blockade for non-local entangling gates with trapped atoms.” arXiv

preprint : 2502.14781 (2025).

A note on work contribution I have had the privilege of contributing extensively to

the three manuscripts included in this thesis, each representing significant advancements

in multi-qubit quantum gates and entanglement generation for both quantum computing

and quantum sensing.

In the first paper, titled “Non-Local Multi-Qubit Quantum Gates via a Driven Cavity”,

I collaborated closely with my colleague Sven Jandura to develop the conceptual frame-

works for both the geometric and adiabatic phase gates. I was deeply involved from the

project’s inception through its completion, rigorously testing, verifying, and refining all

calculations and gate protocols Sven proposed.
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For the second manuscript, titled “Entanglement-Enhanced Quantum Sensing via Op-

timal Global Control”, I led the project as the first author, significantly contributing to

the conceptual development of the protocol, and performing all numerical computations,

including the implementation of optimal control techniques essential to the work.

In the third manuscript titled “Cavity polariton blockade for non-local entangling gates

with trapped atoms”, I also served as the lead author, expanding on the original concept

for generation of W states, leading the development of Cz and C2Z gates (with Sven

Jandura), and producing all numerical results. This manuscript was conceptualized

alongside the adiabatic phase gate protocol and showcases our joint efforts in pioneering

innovative techniques for multi-qubit control.



Chapter 2

Theory background

2.1 Quantum optics

The description of light, like everything in nature1, must be framed in the context

of quantum mechanics. This was not quite obvious until 1970s when light was still

treated classically and quantum mechanics was primarily needed to quantize matter,

such as atoms. This semi-classical approach of light-matter interaction was sufficient to

describe many optical phenomena including propagation, interference, absorption stim-

ulated emission, and also laser physics. Then why quantize light? In the pursuit of

strengthening the theoretical foundations of laser physics, it soon became clear that the

semiclassical approach was insufficient, particularly when it came to explaining sponta-

neous emission.

Although the quantum theory of light existed since its development by Dirac in the

early 1930s, quantum optics theory in its modern sense started when Roy J. Glauber

developed, in the early 1960s, a clear quantum formalism to describe optics. Glauber

introduced the notion of quasi-classical or coherent states of light, a theoretical tool

that allowed physicists to understand why all available sources of light, including lasers,

delivered light whose properties could be totally explained in the framework of the

semi-classical approach. Glauber’s formalism revolutionized the field, earning him half

of the 2005 Nobel Prize in Physics for his contributions to the quantum theory of opti-

cal coherence. This theoretical breakthrough paved the way for discovery of even newer

phenomena that could be understood only through the quantization of light. These

include the prediction and realization of single photons, as well as squeezed and en-

tangled photons. Such discoveries have had profound implications, not only leading

to several more Nobel Prizes- which include the 2012 Nobel prize in Physics awarded

1maybe except gravity

21
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to Serge Haroche, David Wineland for ground-breaking experimental methods that en-

able measuring and manipulation of individual quantum systems and the 2022 Nobel

Prize in Physics awarded to Alain Aspect, John F. Clauser, and Anton Zeilinger for

their groundbreaking experiments with entangled photons, which enabled fundamental

tests of quantum mechanics- but also giving rise to entirely new fields -namely quantum

information science and quantum metrology.

2.1.1 Field modes in a cavity and interesting photon states

The notion of a photon and other non-classical behaviour of light is obtained by quan-

tizing the free electromagnetic field, far from sources. In this section let us consider the

case with field inside a cavity defined by two parallel mirrors. When the electromagnetic

field solutions obtained in a coulomb gauge are quantised in the presence of boundary

conditions set by the cavity mirrors, we obtain field modes in a cavity acting as one-

dimensional oscillators- similar to harmonic oscillator modes for a set of independent

mechanical oscillators. The cavity field Hamiltonian is given by

Ĥc =
∑
l

ℏωl
(
â†l âl +

1

2

)
, (2.1)

where âl and â†l are the single photon annihilation and creation operators in the mode l

which satisfy the commutation relations [âl, â
†
l′ ] = δll′ . This Hamiltonian is diagonalised

by the so called Fock states or the photon number states |nl⟩, such that Ĥ|nl⟩ = ℏωl(nl+
1/2)|nl⟩. The electric field operator at point r corresponding to the cavity field modes

with each mode l characterised by its wavevector kl and polarization ϵ⃗l is given by [135,

136]

Ê(r) =
∑
l

El
[
fl(r)âl + fl(r)∗â†l

]
,

where El are the normalisation factors with dimension of an electric field, and the vector

function fl = fl(r)⃗ϵl describes the spatial structure of the field mode l. Equating the

electronagnetic energy in the photon state |nl⟩ given by ⟨nl|
∫
ϵ20|Ê(r)|2d3r|nl⟩ (where ϵ0

is the vacuum permittivity) with ℏωl(nl + 1/2), one obtains

El =
√
ℏωl/(2ϵ0Vl), (2.2)

where Vl =
∫
|fl(r)|2d3r denotes the effective mode volume of the cavity. The value El

is often expressed as the electric field per photon.
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In this thesis and in the context of cavity quantum electrodynamics discussed from now

on, we consider only one mode of the cavity field and label the selected mode with

l = c, with ωc hence denoting the single cavity mode frequency. The single mode cavity

Electric field operator is simply described as (dropping the subscript for creation and

annihilation operators and spatial mode function for mode c)

Êc = Ecf(r)(â+ â†), (2.3)

with max|f |2 = 1 and ∇ · f = 0. Throughout, we also consider the energy of the cavity

field to be shifted by the amount ℏωc/2 and work with the shifted Hamiltonian which

reads

Ĥc = ℏωcâ†â, (2.4)

which is now again diagonalised by the Fock states |n⟩ with energies nℏωc. The field

evoltion of the single mode can be obtained by using the Heisenberg picture dynamics

˙̂a = − i
ℏ [Ĥc, â] and we obtain

â(t) = â(0)e−iωct. (2.5)

2.1.1.1 Coherent states and displacement operator

We introduced above the energy eigenstates of the cavity mode Hamiltonian, which are

photon number states denoted by |n⟩. As can be checked, these states correspond to a

zero average electric field, that is, ⟨n|Êc|n⟩ = 0 irrespective of the photon number n.

In this section, we introduce another important class of states which have a non-zero

electric field average, these are termed as the coherent states or Glauber states [137]. A

coherent state is denoted as |α⟩, where α is a complex number, and are the eigenstates

of the field annihilation operator:

â|α⟩ = α|α⟩. (2.6)

The states ⟨α| then become the left eigenstates of â† with eigenvalue α∗: ⟨α|â† = α∗⟨α|.

In terms of the number states |n⟩, |α⟩ is expanded as

|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n⟩. (2.7)

The expectation value of the electric field operator is proportional to |α|Ec, where Ec is

the field amplitude and is similar to the classical field expression.
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A coherent state |α⟩ can be created from a vacuum state |0⟩ by the application of a

displacement operator which reads [137]

D̂(α) = eαâ
†−α∗â, (2.8)

such that

D̂(α)|0⟩ = |α⟩. (2.9)

2.1.2 Quantum optical phase space

Similar to the quadrature position and momentum operators for a quantum mechanical

harmonic oscillator, we can define the quadradure operators for the quantised field of

the cavity mode as

X̂1 =
(â+ â†)

2
(2.10)

X̂2 =
(â− â†)

2i
. (2.11)

A coherent state α has the expectation values of the quadrature operators as ⟨α|X̂1|α⟩ =

Re(α) and ⟨α|X̂2|α⟩ = Im(α). The state |α⟩ can hence be representated as a point on

the quantum optical phase space formed by the complex plane of α.

2.2 Cavity QED models

2.2.1 Single quantum emitter coupled to single cavity mode

Jaynes and Cummings in their seminal work in 1963 introduced the fully quantized model

describing the simple one atom- one cavity mode interaction [138]. The Hamiltonian is

expanded as

ĤJC = Ĥa + Ĥc + Ĥac, (2.12)

with Ĥa, Ĥc and Ĥac denoting the atomic Hamiltonian, the cavity mode Hmailtonian

and the atom-cavity mode interaction Hamiltonian terms respectively. We consider the

‘spin-like’ atom describe above with levels |e⟩ and |g⟩ with an electric-dipole transition

at frequency ωa, which correspond also to the eigen states of the Pauli σ̂z operator with

eigen values +1 and −1 respectively. The atomic Hamiltonian hence has the form Ĥa =
ℏωa
2 σ̂z. The atomic dipole- field coupling is given by −D·Ec where D is the atomic dipole

operator and Êc(r) is the electric field operator for the cavity mode at the atomic location
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r (see Eq. (2.2)). The atomic dipole operator is expanded as D = −d(σ̂− + σ̂+), where

d = dϵ⃗a is the atomic transition dipole vector with the atomic transition polarisation

ϵ⃗a and we have defined the atomic raising and lowering operators given by σ̂+ = |e⟩⟨g|
and σ̂− = |g⟩⟨e|, respectively. The atom-cavity interaction Hamiltonian is expressed as

Ĥac = d[σ̂− + σ̂+] · Ecf(r)[â+ â†]. (2.13)

In the product above, we have two terms proportional to σ̂+â and its conjugate σ̂−â†

corresponding to resonant processes when ωeg ≈ ωc; and other two terms proportional

to σ̂+â† and σ̂−â which are highly non-resonant. We saw that the field operators evolve

with time as â(t) = â(0)e−iωct, â†(0) = e−iωct(see Eq. (2.5)), similarly the spin operators

evolve according to ˙̂σ± = − i
ℏ [Ĥa, σ̂±] as σ̂±(t) = σ̂±(0)e±iωegt and we obtain the time-

dependencies of the resonant and non-resonant terms in Ĥac given by

σ̂+â ∼ ei(ωeg−ωc)t (2.14)

σ̂−â† ∼ e−i(ωeg−ωc)t (2.15)

σ̂+â† ∼ ei(ωeg+ωc)t (2.16)

σ̂−â ∼ e−i(ωeg+ωc)t. (2.17)

We see that for ωeg ≈ ωc, the last two terms oscillate very rapidly as compared to the

first two. Now we make the rotating wave approximation and drop the fast rotating

terms which have a very negligible effect on the dynamics of the system. The inter-

action Hamiltonian is then reduced to the well known Jaynes-Cummings interaction

Hamiltonian which reads

Ĥac = ℏg[σ̂+â+ σ̂−â†], (2.18)

where

g = Ec
d · f(r)

ℏ
=

√
|d · f(r)|2ωc

2ℏ0Vc
. (2.19)

The Jaynes-Cummings Hamiltonain of the single atom- single mode then reads

ĤJC =
ℏωa

2
σ̂zj + ℏωcâ†â+ ℏg(σ̂+â+ σ̂−â†). (2.20)

The Hamiltonian conserves the total number of excitations in the system, that is
[
ĤJC , |e⟩⟨e| + â†â

]
=

0, and Ĥac only couples states of the type

|e⟩a|n⟩c ↔ |g⟩a|n+ 1⟩c, (2.21)
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where |.⟩a denotes an atomic bare state and |n⟩c denotes a bare state of the cavity mode

with n photons.

The Jaynes-cummings Hamiltonian can hence be diagonalised in the basis of these bare-

state doublets {|e⟩a|n⟩c, |g⟩a|n+1⟩c}, which leads to eigenstates which have both atomic

and photonic components. These states are termed as dressed states of the atom-cavity

system and for a given n are given by

|+, n⟩ = cos(θn/2)|e, n⟩ + sin(θn/2)|g, n+ 1⟩, (2.22)

|−, n⟩ = − sin(θn/2)|e, n⟩ + cos(θn/2)|g, n+ 1⟩, (2.23)

where θn = tan−1(2g/∆ac) with the atom-cavity detuning ∆ac = ωa − ωc. The energies

of these states are

E±
n =

(
n+

1

2

)
ℏωc ±

ℏ
2

√
∆2
ac + 4g2(n+ 1). (2.24)

Fig. 2.1 schematically describes the Jaynes-Cummings coupling and the eigen spectrum.

Figure 2.1: (Left)Bare energy states of the atom and the cavity mode when the
cavity mode is resonant with the atomic transition (ωc = ωa) and (Right) the energy
eigenstates of the Jaynes Cummings interaction Hamiltonian with atom-cavity mode
coupling strength g (ℏ = 1). We have used the shorthand |e, n⟩ for |e⟩a|n⟩c. The green
dashed arrows indicate the transitions which are coupled when a weak external probe
drives the system, resulting in observation of vacuum Rabi splitting peaks in the probe

transmisison spectrum (see Sec. 1.1.1, Fig. 1.1).
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2.2.2 Many quantum emitters coupled to a single cavity mode

The Tavis Cummings Hamiltonain is a straightforward generalisation of the Jaynes

Cummings Hamiltonian describing the coupling of N identical quantum emitters to a

single cavity mode, rather than a single emitter [139]. The Tavis-Cummings Hamiltonian

reads (ℏ = 1)

ĤTC =

N∑
j=1

(ωa
2
σ̂zj + gj(σ̂

+
j â+ σ̂−j â

†)
)

+ ωcââ
†, (2.25)

where σ̂zj = |ej⟩⟨ej | − |gj⟩⟨gj | is the Pauli-z operator for the quantum emitter labelled

with index j, and similarly σ̂+j = |ej⟩⟨gj |, σ̂−j = |gj⟩⟨ej | are the emitter excitation and

de-excitation operators for the jth emitter.

2.2.2.1 Symmetric Dicke subspace

To better understand the system of N quantum emitters, we can represent it using the

formalism of N spin-12 particles(| ↑⟩ ≡ |e⟩, | ↓⟩ ≡ |g⟩). We utilize a collective spin basis,

which is formed by the simultaneous eigenstates of the collective spin operators, defined

as Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z and Ŝz. Here, the operators Ŝα for α ∈ {x, y, z} are given by

Ŝα =
∑

j σ̂
α
j . The basis states are represented as

{|J,M⟩}, where 0 ≤ J ≤ N/2, −J ≤M ≤ J. (2.26)

The respective eigenvalues of Ŝ2 and Ŝz correspond to J(J + 1) and M , respectively.

The system of N quantum emitters can hence be seen as a spin J , with the ground state

|g, g · · · g⟩ = |N/2,−N/2⟩. This collective basis is called the generalised Dicke basis,

named after the person who introduced the formalism to describe collective supperra-

diance phenomenon of atomic ensembles when confined in a volume smaller than the

wavelength [140].

We now define a useful subspace of this generalised Dicke basis, called the permutation

invariant or the symmetric Dicke subspace given by

|DN
n1
⟩ ≡ |n1⟩ ≡ |J = N/2,M = n1 −N/2⟩. (2.27)

We now define the collective spin raising and lowering operators given by Ŝ+ =
∑

j σ̂
+
j

and Ŝ− =
∑

j σ̂
−
j , respectively. With this and assuming each quantum emitter couples

identically to the single-mode cavity with strength g, the Tavis -Cummings Hamiltonian
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can be re-written as

ĤTC =
ωa
2
Ŝz + ωsâ

†â+ g(Ŝ+â+ Ŝ−â†). (2.28)

We will use this model to describe our cavity QED setup in the following chapter 2. Note

however that each quantum emitter is assumed to be strongly coupled with the single

mode in the cavity with maximal coupling strength g, and with the emitters placed with

enough spacing between them such that collective effects are neglected.

2.2.3 Representation of symmetric states on collective bloch sphere

To visualize quantum states in the symmetric Dicke subspace, we can use the Husimi

Q distribution. This representation offers a way to map the state’s structure onto the

collective Bloch sphere, providing an intuitive view of its orientation and coherence

properties. For a given quantum state ρ in this subspace, the Husimi Q function is

defined as:

Q(Ω) =
1

π
⟨Ω|ρ|Ω⟩, (2.29)

where |Ω⟩ denotes a coherent spin state specified by the angles θ (polar angle) and ϕ

(aximuthal angle) on the Bloch sphere. This distribution effectively projects the density

of ρ onto the sphere, revealing how the quantum state is ”spread” or concentrated in

particular directions.

In the symmetric Dicke subspace, where states are characterized by collective spin align-

ments, the Q function highlights features such as phase coherence, population imbalance,

and entanglement structure by showing the probability-like distribution across the Bloch

sphere. This visualization provides a powerful tool for interpreting the spatial and phase

properties of symmetric Dicke states in quantum sensing and metrology tasks, as we will

see in Chapter 5.

2.3 Open Quantum Systems

In quantum mechanics, the concept of an open quantum system is fundamental to under-

standing real-world quantum dynamics. Unlike idealized closed systems, which evolve

in isolation, open quantum systems interact with their surrounding environment. These

interactions can result in energy exchange, loss of coherence, or dephasing within the
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system. Essentially, any quantum system that we attempt to measure or manipulate

unavoidably interacts with its environment, making perfect isolation impractical in ex-

perimental and natural scenarios.

Interactions between a quantum system and its environment can lead to phenomena such

as energy dissipation or dephasing. For instance, an atom in an excited state might un-

dergo spontaneous emission, losing energy as it decays to a lower state, or a photon

within a cavity could escape, leading to a loss of information from the system. On

the other hand, certain types of environmental interactions—such as indirect measure-

ments—can induce dephasing, where the coherence between different quantum states

is lost without an accompanying energy loss. These interactions lead to entanglement

between the system and its environment, resulting in complex, non-unitary dynamics

that require specialized models to describe accurately.

2.3.1 Markovian Lindblad Master Equation

In practical applications, particularly in quantum optics, open quantum systems pro-

vide a framework to analyze and predict the dynamics of quantum states interacting

with a continuous environment, such as the electromagnetic field [28, 141, 142]. This

framework is essential in understanding phenomena where the environment acts as a

bath, continually influencing the system’s behavior. Often, the environmental influence

can be modeled as a Markovian bath [142] (memoryless), meaning that the environment

responds instantaneously and independently to each state of the system, significantly

simplifying the analysis [141, 142].

The Lindblad master equation is a powerful tool for describing the dynamics of Marko-

vian open quantum systems [143]. This equation models the time evolution of the

system’s density matrix while incorporating the effects of the environment in a math-

ematically consistent manner. For a system with density matrix ρ [142], the Lindblad

equation takes the form:

dρ

dt
= − i

ℏ
[Ĥ, ρ] +

∑
j

(
L̂jρL̂

†
j −

1

2
{L̂†

jL̂j , ρ}
)

(2.30)

where Ĥ represents the system’s Hamiltonian, governing its intrinsic dynamics, and

L̂j are Lindblad operators representing the interactions with the environment. These

operators capture different dissipative processes, such as energy decay or dephasing, and

can vary based on the specific nature of the system-environment interaction.
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The Lindblad equation is particularly valuable because it preserves the physical prop-

erties of the density matrix, such as its trace and positivity, which are essential for

ensuring a valid quantum description. Under the Markovian approximation, we assume

that the environment does not have memory effects; the system’s evolution depends

solely on its present state and not on its history. This simplifies the modeling process,

as we can treat the environmental influences as stationary, allowing for a steady-state

solution where time evolution is only dependent on the current system properties.

The Markovian Lindblad framework finds applications across a broad range of quantum

technologies, including quantum computing, quantum optics, and quantum thermody-

namics. Its use in simulating energy losses and decoherence mechanisms allows for a

detailed understanding of system behaviors under realistic conditions, such as photon

loss in optical cavities or spin relaxation in magnetic environments.

2.3.2 Non-Hermitian Terms in the Hamiltonian

An alternative approach to modeling open quantum systems is by incorporating non-

Hermitian terms in the Hamiltonian. Traditionally, the Hamiltonian of a closed quantum

system is Hermitian, ensuring real eigenvalues that correspond to observable energy lev-

els. However, when a system interacts with an environment, effective non-Hermitian

terms can be introduced to represent dissipative dynamics directly within the Hamilto-

nian framework.

In this approach, the system Hamiltonian Ĥ is modified to include a non-Hermitian

component Ĥ ′ = Ĥ − iΓ, where Γ is a term representing decay rates or losses. This

term effectively introduces complex eigenvalues in the Hamiltonian, with the imaginary

part indicating the rate of energy dissipation or decay. For instance, in a quantum

optical cavity with photon leakage, Γ can represent the rate at which photons are lost

to the environment, causing a gradual reduction in the photon population over time.

Non-Hermitian dynamics are often used to represent the conditional evolution of a

quantum system under the assumption that no quantum jumps (or losses) have oc-

curred. This conditional evolution approach is closely related to the quantum trajecto-

ries method, which is a popular framework for simulating the dynamics of open quantum

systems.

In the quantum trajectories approach, a system interacting with its environment can be

described by a stochastic series of quantum jumps interspersed with deterministic evo-

lution governed by a non-Hermitian Hamiltonian. The non-Hermitian term represents

the conditional evolution of the system between jumps, assuming that no measurement
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or interaction with the environment has taken place. As such, the probability of a jump

occurring over a small time interval is proportional to the loss rate encoded by the

imaginary part of the non-Hermitian term. If a jump does not occur, the system con-

tinues to evolve according to this non-Hermitian Hamiltonian, causing a gradual decay

in population. This decay reflects the likelihood of losing a particle or energy to the

environment at each infinitesimal time step.

Using non-Hermitian dynamics to represent conditional evolution is efficient for calcu-

lating state evolution under the assumption of no losses, which allows insight into the

dynamics of a ”pure” trajectory. However, it does not account for the stochastic nature

of environmental interactions, where decay or decoherence events could occur. The full

open quantum system dynamics, averaged over many such trajectories (including jump

events), are captured more comprehensively in the Lindblad master equation formal-

ism discussed in Sec. 2.3.1, where both no-jump evolution and jump events are treated

within the same framework.

For the example of an atom undergoing spontaneous emission treated with a non-

Hermitian term, the Hamiltonian may be modified as: Ĥ ′ = Ĥ − iγ2 |e⟩⟨e|, where |e⟩
is the excited atom state and γ is its rate of spontaneous emission. This term introduces

an imaginary component to the energy associated with the excited state, resulting in a

decay of the population in |e⟩. Physically, this is equivalent to assuming that once the

atom decays, it leaves the system’s Hilbert space, rather than transitioning to another

state within the system (such as a ground state).

This approach captures the decay out of the Hilbert space but neglects internal transi-

tions within the system, meaning that it does not model the atom’s state after decay

or any back-action from this transition. In situations where the decay product remains

accessible within the system, such as in a quantum gate where fidelity is critical, this

non-Hermitian method could lead to computing of lower bounds on gate fidelities. The

decay out of the system reduces fidelity since information about decay events is lost.

To validate results from non-Hermitian simulations, one strategy is to include an ancil-

lary state within the Hilbert space and model the decay as a transition to this ancillary

state. This allows us to track the population that has ”left” the primary system states

and observe its effect without assuming an irreversible loss of information.
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2.4 Quantum Optimal Control Methods

Quantum optimal control methods are essential for tuning quantum dynamics to achieve

precise outcomes by optimizing classical control parameters that affect a quantum sys-

tem’s Hamiltonian. These techniques, both analytical and numerical, enable steering

of quantum systems along specific trajectories or toward desired states, thus enhancing

performance in various quantum technologies. Quantum optimal control has proven

especially valuable in domains like quantum computing, where it facilitates tasks such

as state preparation, error correction, and gate optimization across platforms includ-

ing superconducting qubits, trapped ions, and neutral atoms [144, 145]. For instance,

the Gradient Ascent Pulse Engineering (GRAPE) method was initially developed for

nuclear magnetic resonance (NMR) spectroscopy but has since been widely applied in

quantum control to design time-continuous pulse sequences [146]. These pulse sequences

allow smooth, precise control over quantum state evolution by continuously modulating

the parameters that influence the system’s Hamiltonian.

However, not all quantum control problems necessitate continuous pulses. In many cases,

especially when optimizing discrete control variables rather than time-dependent fields,

simpler parameter tuning techniques can achieve the desired objectives without the need

for complex pulse design, which is the case in this thesis where optimal control methods

are utilised in Chapter 5. In this work, we utilise the quasi-Newton optimization meth-

ods named as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The BFGS

method is computationally efficient as it approximates the Hessian matrix, avoiding the

direct calculation of second derivatives. This approach makes BFGS particularly advan-

tageous in high-dimensional optimization problems, common in quantum control tasks

where one seeks to optimize a finite set of parameters.

The BFGS algorithm is an iterative, quasi-Newton method for solving unconstrained

nonlinear optimization problems. By leveraging an approximation of the Hessian matrix,

it balances computational efficiency with rapid convergence, a crucial aspect in large-

scale optimization problems. Unlike Newton’s method, which requires costly Hessian

calculations, BFGS constructs an inverse Hessian approximation that updates at each

step using available gradient information, thereby offering a practical trade-off between

precision and speed.

To apply BFGS, a differentiable cost function f(x) is defined over the control parameters

x. BFGS seeks the x that minimizes f(x) by iteratively refining both the parameter

vector x and an approximation of the inverse Hessian matrix. The method begins with

an initial guess x0 and an initial positive-definite matrix B0 that approximates the

inverse Hessian.
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Access to analytic gradients ∇f(x) significantly enhances BFGS performance, enabling

precise gradient calculations. When analytic gradients are unavailable, numerical ap-

proximations can be used, though they may reduce the accuracy and computational

efficiency of the optimization.

The BFGS update rule for control variables xk at each iteration is:

xk+1 = xk − αkB
−1
k ∇f(xk),

where Bk is the current approximation of the inverse Hessian matrix and αk is a step

size determined through line search. This update allows xk to approach the minimum

of f(x) by balancing convergence speed and stability.

The BFGS algorithm updates the inverse Hessian approximation Bk through:

Bk+1 = Bk +
∆yk∆y

T
k

∆yTk ∆sk
−
Bk∆sk∆s

T
kBk

∆sTkBk∆sk
,

where ∆sk = xk+1 − xk and ∆yk = ∇f(xk+1) − ∇f(xk). This approach integrates

information about changes in x and ∇f(x), constructing a quasi-Newton approximation

without explicit second-derivative calculations.

BFGS offers several advantages:

� Fast Convergence: BFGS achieves superlinear convergence, making it suitable

for complex, high-dimensional optimization problems.

� Efficiency with Quasi-Newton Approach: The quasi-Newton approximation

of the Hessian enables BFGS to deliver high convergence rates without the burden

of full Hessian calculations.

� Stability with Analytic Gradients: When analytic gradients are available,

BFGS performs exceptionally well by leveraging accurate gradient information,

improving descent direction accuracy in high-dimensional spaces and minimizing

potential errors.

Despite its strengths, BFGS has limitations:

� Sensitivity to Local Minima: Like many gradient-based methods, BFGS may

converge to local minima in non-convex landscapes.

� Dependency on Differentiability: BFGS requires a continuously differentiable

cost function, limiting its application in scenarios where gradient calculations are

infeasible or noisy.
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In Chapter 5, we employ the BFGS optimisation method to find the classical parameters

of a protocol that is designed for the state preparation of an optimal probe state for

a defined quantum sensing task. Moreover, the protocol is such that it allows analytic

computation of the gradients with respect to the optimisation parameters, making the

optimisation highly effective.

2.5 From Symmetric subspace to a collective Hilbert space

We saw in Sec. 2.2.2.1, the description of a permutation invariant or the symmetric Dicke

subspace for a system of N spin-1/2 particles, which is formed by the states {|J,M⟩}
for J = N/2. The Dicke states for J < N/2 can be constructed iteratively and each

state |J,M⟩ has a degeneracy [60, 147]

dJN = (2J + 1)
N !

(N/2 + J + 1)!(N/2 − J)!
, (2.31)

meaning there are dJN number of ways to combine N spin-1/2 particles to obtain an

total angular momentum J . We will see below that this degeneracy is not lifted when

describing collective and local homogeneous processes on the system of N spin-1/2

particles.

All collective decay mechanisms and local-homogeneous decay mechanisms in a system

of N spin-1/2 particles can be described using the Lindblad master equation,

ρ̇ = − i

ℏ
[Ĥ, ρ] +

γ⇓
2
LJ− [ρ] +

γΦ
2
LJz [ρ] +

γ⇑
2
LJ+ [ρ]

+

N∑
n=1

(γ↓
2
LJ−,n [ρ] +

γϕ
2
LJz,n [ρ] +

γ↑
2
LJ+,n [ρ]

)
, (2.32)

where ρ is the density matrix of the full system and Ĥ is the N spin−1/2 ensemble

Hamiltonian, which we assume to be constructed only with the collective operators Jα =∑N
n Jα,n, where Jα,n = σα,n/2 for α = {x, y, z}, and J±,n = Jx,n + iJy,n. The LA[ρ] are

the Lindblad superoperators which are defimed by LA[ρ] = 2AρA†−A†Aρ− ρA†A, and

γi terms are rates corresponding to emission, dephasing, and pumping, corresponding to

local and collective processes acting on the spins. Fig. 2.2(a) from Ref. [60] schematically

describes these processes. The states in the Dicke ladders for J < N/2 become relevant

for the processes described in Eq. (2.32), which do not limit their action in the (N +

1)−dimensional symmetric Dicke subspace. But the good news is that, for an initial state

prepared with permutation symmetric collective operators, all the terms in Eq. 2.32 still
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preserve the permutational symmetry of the system, that is Eq. 2.32 does not create

coherences between (elements with M ̸= M ′) Dicke states with J ̸= J ′. So the relevant

Hilbert space for any density matrix of the N spin-1/2 particles is spanned by the states

{|J,M⟩} for J varying from Jmin to J = N/2 and −J ≤ M ≤ J . We term this Hilbert

space as the collective Hilbert space Hc. Any system density matrix in this collective

Hilbert space is written as

ρ =
∑

J,M,M ′

pJMM ′ |J,M⟩⟨J,M ′|, (2.33)

with pJMM ′ = ⟨J,M |ρ|J,M ′⟩. Note that Eq. (2.33) is a block-diagonal density matrix,

with each block corresponding to a J value of dimension 2J + 1. The dimension of this

collective Hilbert space is thus dimHc =
∑N/2

J=Jmin
(2J + 1) = (N + 3)(N + 1)/4 if N is

odd (Jmin = 1/2) or (N + 2)2/4 if N is even (Jmin = 0). This formalism is extensively

used in Chapter 5 for evaluating the effect of local homogeneous dephasing processes

acting on spins in the context of quantum sensing.
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Figure 2.2: Schemmatic of open system dynamics for an ensemble of N spin-1/2 par-
ticles interacting with a shared bosonic mode through coherent dynamics. The action
of dissipative processes on the two-level system dynamics is quantified by different rates
for homogeneous local (dashed box) and collective processes (dot-dashed box), given by
Lloc[ρ] and Lcol[ρ], respectively: local and collective emission, set by γ↓ and γ⇓, local
and collective dephasing, set by γϕ and γΦ, and local and collective pumping, set by γ↑

and γ⇑ (see Eq. (2.32)). Figure from Ref. [60].
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Cavity QED Setup and Model

In this chapter, we discuss the cavity QED setup, Hamiltonian and the open system

model describing its dynamics. In Section. 3.1, we describe all the components of the

setup and write down the system Hamiltonian. In Sec. 3.2, we discuss the model used

to describe the system dynamics. In Sec. 3.4,, we describe shortly several physical

platforms where such a setup has been or can be realised, and hence demostrating the

generality of the protocols described in the following chapters.

3.1 Setup and Hamiltonain

The setup we work with is rather general and is shown in Fig. 3.1. It consists of N

atomic systems with three relevant energy levels - two the computational basis states

|0⟩ and |1⟩ and an excited state |e⟩, with energies (ℏ = 1) ω′
0, ω

′
1 and ω′

e respectively.

A cavity mode with annihilation (creation) operators â(â†) and frequency ωc couples

the states |1⟩ and |e⟩ with coupling strength g. We assume that all individual systems

couple with the identical coupling strength g to the cavity mode. Additionally, the

cavity mode is driven by a (complex) classical field of strength η(t) and frequency ωL.

The full Hamiltonian of the system reads

Ĥf = Ĥa + Ĥc + Ĥac + Ĥdrive, (3.1)

where Ĥa, Ĥc, Ĥac and Ĥdrive denote respectively the Hamiltonian terms for the atomic

systems, the cavity, the atoms-cavity interaction and the cavity drive. We have (ℏ = 1)

Ĥa =

N∑
j=1

(
ω′
0|0j⟩⟨0j | + ω′

1|1j⟩⟨1j | + ω′
e|ej⟩⟨ej |

)
, (3.2)

Ĥc = ωcâ
†â. (3.3)

37



Chapter 3. Cavity QED Setup and Model 38

The interaction Hamiltonian Ĥac of the atoms with the single cavity mode is obtained as

the N−body generalisation of the Jaynes-Cummings Hamiltonian, known as the Tavis-

Cummings Hamiltonian which was first delevoped and exactly solved in Ref. [139]. It

reads

Ĥac = g

 N∑
j=1

|ej⟩⟨1j |â+ h.c.

 . (3.4)

Finally, we describe the cavity mode drive described by a classical field with frequency

ωL, which can for example be passed through an optical fibre coupled to one of the

cavity mirrors. This drive term reads

Ĥdrive = 2|η(t)| sin(ωLt− arg(η(t)))(â† + â). (3.5)

We now set the zero energy at the energy of |1⟩ state, i.e set ω′
1 = 0, and define the

transition frequencies ω0 = −ω′
0 for the |1⟩ ↔ |0⟩ and ωe = ω′

e for the |1⟩ ↔ |e⟩
transition. We define the number operators n̂0 =

∑
j |0j⟩ ⟨0j |, n̂1 =

∑
j |1j⟩ ⟨1j | and

n̂e =
∑

j |ej⟩ ⟨ej |, and the collective raising and lowering operators as Ŝ+ =
∑

j |ej⟩ ⟨1j |,
Ŝ− = (Ŝ+)† respectively. The full Hamiltonian is re-written as

Ĥf = −ω0n̂0 + ωen̂e + ωcâ
†â+ g

(
Ŝ+â+ Ŝ−â†

)
+ 2|η(t)| sin(ωLt− arg(η(t)))(â† + â).

(3.6)

We now move into a rotating frame defined by

Ûr(t) = exp
[
it(ωL(â†â+ n̂e) − ω0n̂0)

]
. (3.7)

The rotated Hamiltonian is obtained as

Ĥ = ÛrĤf Û
†
r + i

(
∂tÛr

)
Û †
r (3.8)

(3.9)

Definining Ô = ωL(â†â + n̂e) − ω0n̂0, then each of the Hamiltonian terms in Ĥf is

transformed under Ûr = eitÔ as eitÔĤfe
−itÔ into

eitÔn̂0e
−itÔ = n̂0, e

itÔn̂ee
−itÔ = n̂e (3.10)

eitÔâe−itÔ = e−iωLtâ, eitÔâ†e−itÔ = eiωLtâ†, (3.11)

eitÔŜ+e−itÔ = eiωLtŜ+, eitÔŜ−e−itÔ = e−iωLtŜ−. (3.12)

In writing the above results, we make use of the Baker–Campbell–Hausdorff formula

and the commutation relations [â, â†] = 1 and [n̂e, Ŝ
+] = Ŝ+. With i

(
∂tÛr

)
Û †
r = −Ô,
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Figure 3.1: (a) A register of qubits is coupled to a common cavity with decay rate
κ. The cavity mode is externally driven with a single classical field η(t) detuned by δ
from the resonance frequency of the cavity. (b) Level scheme for each atomic system
consisting of the computational basis states |0⟩ and |1⟩ (with infinite lifetime), and an
ancillary excited state |e⟩ (with lifetime 1/γ). The |1⟩ ↔ |e⟩ transition is coupled to
the cavity with coupling strength g and detuned from the cavity resonance by ∆ − δ.

the Hamiltonian in the rotating frame then reads

Ĥ(t) = (ωe − ωL)n̂e + (ωc − ωL)â†â+ g
(
Ŝ+â+ Ŝ−â†

)
(3.13)

−i(η(t)∗eiωLt − η(t)e−iωLt)(â†eiωLt + âe−iωLt).

We apply now the rotating wave approximation defined by the limit ωL ≫ |η(t)|, which

leads to discarding the fast rotating terms with frequency 2ωL. We define the detunings

of the classical field from the cavity and the |1⟩ ↔ |e⟩ transition by δ = ωc − ωL and

∆ = ωe−ωL, respectively. The Hamiltonian in the rotating frame and with the rotating

wave approximation then reads

Ĥ(t) = δâ†â+ ∆n̂e + [(gŜ− + iη(t))â† + h.c.]. (3.14)

3.1.1 Free-space laser coupling of computational states

In addition to the cavity drive, global or local free-space laser drives (acting on the

atoms from side) coupling the atomic computational states can be added allowing for

more control knobs of the atomic system. The free space laser-atom coupling is described

by

ĤΩ =
∑
j

(
Ωj(t)

2
|1j⟩⟨0j | + h.c.

)
, (3.15)

where Ωj is the laser Rabi frequency driving the |0⟩ ↔ |1⟩ transition in atom j. In this

thesis, we consider Ωj = Ω ∀j whenever ĤΩ is added.
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3.2 Open System Dynamics

We generally consider two loss mechanisms in our model - the finite lifetime of the

excited state |e⟩ with a spontaneous emission rate γ, and the finite lifetime of a photon

in a cavity, which decays at a rate κ. Throughout this thesis, unless stated otherwise,

the decay of |e⟩ is treated as a population loss, represented by a non-Hermitian term

in Ĥ. Consequently, all analytic derivations and results obtained with this model will

be exact if none of the decay channels from |e⟩ can repopulate |0⟩ or |1⟩. In cases

where repopulation is possible, our results may provide, for instance, a lower bound on

operation fidelities.

To address the decay of the cavity mode, we employ the master equation approach

within the framework of the Markovian approximation. This approximation is particu-

larly useful, as it allows us to simplify the dynamics by assuming that the system has

negligible memory effects. In this approach, we assume the system’s interactions with

the environment are instantaneous, effectively disregarding any history of past interac-

tions. This leads to a tractable equation for the system’s density matrix, facilitating

analysis of the time evolution of the system states while incorporating decay processes

in a manageable form.

The Markovian approximation is widely applicable to atomic systems interacting with

electromagnetic fields, particularly when the coupling to the environment (such as a

photonic bath – here, the modes outside the cavity) is weak, and the bath correlation

time is much shorter than the system’s intrinsic dynamical timescales. Under these

conditions, memory effects are minimal, making the Markovian approximation a reliable

approach for describing decay mechanisms.

In this model, to address the cavity mode decay specifically, we examine the system’s

evolution using the Lindblad master equation, with the jump operator given by L̂ =
√
κâ. The system Hamiltonian and the master equation reads

Ĥ(t) = δâ†â+ (∆ − iγ/2)n̂e + [(gŜ− + iη(t))â† + h.c.], (3.16)

ρ̇ = −iHρ+ iρH† + LρL† − {L†L, ρ}/2, (3.17)

where ρ is the joint atoms-cavity density operator. We define here the single-atom of

cooperativity C which characterises the coupling regime of any cavity QED system, as

C =
g2

κγ
. (3.18)

Throughout this work, we work in the strong-coupling regime of cavity QED, which is

defined as g > (κ, γ) implying C > 1.
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In Table, 3.1 we list and define all the parameters characterising our setup.

|0⟩, |1⟩ long-lived computational levels

|e⟩ finite-lifetime excited energy level

ω0 |0⟩ ↔ |1⟩ transition frequency

ωe |1⟩ ↔ |e⟩ transition frequency

g single atom ( |1⟩ ↔ |e⟩ transition) - cavity mode coupling strength

η(t) |η(t)|ei(arg η(t))t, strength of classical drive on cavity mode

Ω Rabi frequency of free-space laser coupling between |0⟩ ↔ |1⟩
δ detuning between the cavity mode frequency and the classical drive frequency

∆ detuning between |1⟩ ↔ |e⟩ transition frequency and the classical drive frequency

κ empty cavity resonance linewidth (FWHM)

γ |1⟩ ↔ |e⟩ transition atomic linewidth (FWHM)

C g2/(κγ), single atom-cavity cooperativity

Table 3.1: Cavity QED setup and model parameter definitions.

3.3 Initialisation and qubit addressability

In the following chapters, we present several protocols for entanglement generation,

quantum computing, and quantum sensing that can be implemented using the setup

described above. In experiments, to restrict our gates to address only a subset of qubits

in a register (for example, to implement a quantum gate between spatially separated

atoms in a cavity), the |1⟩ state of spectator qubits can be transferred to an ancillary

atomic state |a⟩ that does not couple to the bosonic mode. This isolation can occur

either because the frequency of the |a⟩ ↔ |e⟩ transition is far off-resonant with the

cavity mode frequency or due to selection rules that forbid direct coupling between |a⟩
to |e⟩. Alternatively, a spatially addressable off-resonant laser beam can be used in

experiments to apply an ac-Stark shift to the qubits, shifting the |1⟩ ↔ |e⟩ transition

far enough out of resonance with the cavity to neglect the coupling [148, 149]. Another

approach in neutral atom cavity QED experimental setups is using optical tweezers to

trap and move selectively atoms in and out of the cavity (see example setup in Sec. 3.4.1).

3.4 Existing and proposed physical platforms for our setup

In this section, we review the state-of-the-art for experimental setups in which our

model is realized or could potentially be implemented. We also provide the achieved or

estimated coupling strengths for these systems.
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(a)

(b)

(c) (d)

Figure 3.2: (a) Schematic of experimental setup from Ref. [55]. Atoms are loaded
in optical tweezers above a Fabry-Perot fiber cavity(FPFC) and are transported in
the cavity mode. (b) Fit of atom-cavity coupling strength g as a function of position
along the cavity of experiment in Ref. [55]. The atom tweezers are positioned at the
regions of maximal g. (c) Energy level diagram of 87Rb. The 780 nm cavity mode of
the FPFC couples the D2 2 ↔ 3′ transition of Rb. (d) Resonant probe transmission
spectra of the bare cavity(gray), one atom(blue) and two atoms(red) coupled to the
cavity mode. The spectra are fitted with theoretical curves, yielding g = 100.0(8) MHz

and κ = 65(1) MHz. Plot from Ref. [55].
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3.4.1 Fiber based Fabry-Perot cavity with atomic tweezer traps

Fiber based Fabry-Perot cavities (FFPC) are microcavities with low scattring losses,

which allow achieving high cooperativity. We recall from section 1.1.2 the definition

of an important characterising property of such cavities called the finesse, which is

a measure of how narrow the cavity resonances are with respect to their frequency

separation. It depends on the cavity mirror coating reflectivity properties and is given

by the ratio of the free spectral range c/(2L) and the resonance linewidth κ: F = c
2Lκ ,

where L is the cavity length. The quality factor Q of the cavity is a measure of how

underdamped the resonator is and is defined by the ratio of cavity’s centre frequency

c/λ (where λ is the wavelength of the trapped light) to its linewidth : Q = (2LF)/λ. A

very recent experiment demonstrates a fiber Fabry-Perot cavity of length L = 100µm

with coating reflectivities > 99.993% centered around λ = 780 nm obtaining a resonance

linewidth of κ = 57.9 MHz and hence achieving a finesse of F = 25904, and quality

factor Q = 6.6 × 106 [55].

Such Fiber based cavities also provide access for optical tweezers, such that the atoms

interact with the cavity mode while being trapped in optical tweezers placed at the

antinodes of the cavity mode (with maximal coupling strength g), see Fig. 3.2(a)-

(c). For the state-of-the-art example with Rubidium atoms shown in Fig. 3.2(c), an

additional optical lattice formed with 850 nm light is overlapped with 780 nm cavity

mode forming a beat note with a period of 4.7µm, and a cavity of 100µm can hence

accommodate 20 atoms trapped at the regions of maximal overlap or maximal g. In

each atom, the computational states can be chosen for example, as the hyperfine levels of

87Rb which are |0⟩ = |5S1/2, F = 1,mF = 0⟩ and |1⟩ = |5S1/2, F = 2,mF = 0⟩, while |e⟩
can be chosen as the electronically excited state |e⟩ = |5P3/2, F

′ = 3,mF = 1⟩ (see Fig.

3.2(d)). The effective two level system coupled to the cavity mode is hence realised by the

|1⟩ ↔ |e⟩ transition which has a natural linewidth of γ = 2π×6 MHz. The cavity drive is

realised through a single mode input port, which is also used for the atom-cavity system

characterisation and non-destructive qubit readout schemes. The transmission spectrum

(see Fig. 1(e)) of the atom-cavity system reveals coupling strength g = 100.0(8) MHz and

cavity resonance linewidth κ = 65(1) MHz hence achieving a cooperativity C ≈ 25 [55].

3.4.1.1 Future implementations of FFPCs with large cavity lengths

In the pioneering work realising the first FFPC, a maximal finesse of F ≈ 130 000 is

envisioned for a cavity made from two fibre mirrors with identical coatings [44] and

F ≈ 170 000 if the transmission of one mirror is suppressed. With further technical

advancements, a finesse of F = 2 × 105 should be achievable in near future. Defining
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the cavity waist size ωr (which is a function of cavity length L, radius of curvature R

of cavity mirrors and wavelength λ), the cavity cooperativity can be written as C =

3λ2F/(2π3ω2
r ). Combining the maximal finesse of F = 130000 with a realistic cavity

waist size of ωr = 1.3µm at λ = 780 nm (and L = 2µm), a maximal cooperativity of

C = 2280 is thus projected.

Note however that for trapping two or more atoms with a spacing of ≈ 4.7µm as

described above, we must consider longer FFPCs. Similar to Ref. [55], let us then

consider a cavity length of L = 100µm which can trap N ≈ 20 atoms. We consider radii

of curvature of FFPC mirrors as R = 55µm in accordance with the recent fabrication

limits of R = 50µm. With these, we obtain the cavity waist size at λ = 780 nm as [44].

ωr =

√
λ

2π
(L(2R− L))1/4 = 1.98µm. (3.19)

Combining this with a maximal optimistic finesse of F = 200 000, we obtain a projected

cooperativity value of C ≈ 1500. Similarly, g =
√

3λ2cγ/(2π2w2
rL) ≈ 2π × 260 MHz

and κ = πc/(LF ) ≈ 2π × 7.5 MHz. With the atomic resonance linewidth for the D2

transition in 87Rb given by γ = 2π × 6 Mz, we have γ/κ ≈ 0.8.

3.4.2 Rydberg atoms coupled to a superconducting microwave cavity

Choosing the microwave domain for cavities would ideally provide very long photon

lifetimes 1/κ = Q/ωc, as very high quality factors Q can be achieved at relatively

low frequencies. Consequently, one would require a quantum emitter with a strong

dipole transition in the microwave domain. A natural choice for this is atoms in highly

excited atomic Rydberg states with high principal quantum number n. These atoms

have large electric dipole moments associated with transitions in the microwave regime

between Rydberg states, which is > 1000ea0 for n ≳ 30 [150] (scaling roughly as ∼
n2ea0 [151]) , where e is the electron charge and a0 the Bohr radius, and is strong

enough to realise the strong-coupling regime of cavity QED with extremely high single

atom-cavity cooperativity. Additionally, the lifetime of Rydberg states increases with n

and scales approximately as n3 (a typical lifetime for n = 50 is of ∼ 100µs [151]), which

supports the use of high-n Rydberg states to enhance coherence times in such systems.

One recent type of microwave cavities are realised as superconducting microwave stripline

resonators known as coplanar waveguide(CPW) resonators which achieve quality factors

Q > 3 × 108 [43], yielding κ = ωe/Q ≈ 2π × 17 Hz. We consider here the example from

Ref. [42]. In order to couple the CPW resonators with Rydberg atoms, the atoms are

trapped just above the electric field antinode of the CPW as shown in Fig. 3.3(a).
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(a) (b)

Figure 3.3: (a) Schematic of atom trapped above the electric field antinode of super-
conducting coplanar waveguide resonator [42] (b) Proposed level scheme for Cs atom

coupled to microwave coplanar waveguide resonator.

The cavity coupled states |1⟩ and |e⟩ are chosen as the Rydberg states |1⟩ =
∣∣90 2P3/2

〉
and |e⟩ =

∣∣90 2S1/2
〉

in Cs with lifetime 2 ms and 820 µs, respectively, see Fig. 3.3(b),

while |0⟩ is chosen as a long-lived state in the ground manifold of the atoms. In this

case, the |1⟩ ↔ |e⟩ transition has the frequency ωe ≈ 2π × 5 GHz, and is thus in

the microwave regime. The states |1⟩ and |r⟩ may be coupled via a superconducting

microwave resonator with reasonable coupling strength g ≈ 2π × 4 MHz and thus a

cooperativity C = 5 × 109, with γ/κ ≃ 12.

When using this system, we must be careful to include the decay of the state |1⟩ in

our analysis, which is important as the latter is now a Rydberg state with a lifetime

comparable to that of |e⟩.

Additionally this platform may pose other challenges:

� Sensitivity to electric fields and stray field effects: Rydberg states are

highly hensitive to electric fields due to their large polarizability with static polar-

izability scaling as ∼ n7. This makes them vulnerable to stray electric fields, field

noise, and fluctuations, which can lead to dephasing, particularly in the presence

of unintended electric fields near the cavity or in the trapping environment.

� Dipole-dipole interactions and unwanted blockade effects : A natural con-

sequence of the large dipole moments of Rydberg atoms is strong interactions be-

tween them. This can induce energy shifts and lead to unintended interactions

in protocols that require isolated qubit states in a multi-atom setting. For ex-

ample, Rydberg blockade can occur, where an excited Rydberg state in one atom

suppresses excitation of nearby atoms..
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� Thermal and blackbody radiation effects : Radiative and blackbody-induced

transitions reduce the coherence times of low angular momentum Rydberg states,

effectively shortening the lifetimes of the Rydberg states |1⟩ and |e⟩ [152].

� Challenges with atom positioning and stability : Precisely positioning Ry-

dberg atoms to interact with microwave fields can be challenging, especially in

strong-coupling regimes..

3.4.3 Circular Rydberg atoms coupled to a superconducting microwave

cavity

Among the many available states in the Rydberg manifold, the large angular momentum

states are an ideal choice, as they are insensitive to optically coupled decay channels.

These states are called the circular Rydberg states [153]. These states have longer

lifetimes, reaching approximately 10 ms at cryogenic temperatures (owing to only a single

microwave-frequency radiative decay channel to next highest circular state). Pioneering

experiments with circular Rydberg atoms and superconducting microwave photon boxes

were realized and improved in the years 1984-2007 [65, 67–75]. These systems, in fact,

were among the first to realize cavity QED setups.

Researchers currently working with circular Rydberg atoms aim to bridge the technical

gap in preparing these states and are focused towards trapping these large circular

atoms in optical tweezers [154, 155]. Specifically, it is very difficult to excite atoms to

the circular Rydberg states with high fidelity [156], and the highest reported fidelity

to date is 96 % [157, 158]. Recently, there are proposals which sidestep this challenge

by using multiple circular Rydberg states to encode qubits, in the context of quantum

computing [154] and quantum simulation [159] applications.

Given that Rydberg-atom arrays are a leading platform for quantum computing and

simulation due to their strong interactions, high coherence, and flexible geometries,

current efforts with circular Rydberg states are focused on extending these capabilities

to potentially overcome current limitations in fidelity, which are often due to finite

Rydberg-state lifetimes and technical imperfections, such as atomic motion.

3.4.4 Polar molecules coupled to a stripline microwave cavity

Ultracold polar molecules coupled to a microwave resonator [80–82] provide yet another

prospective candidates for quantum emitters interacting with microwave photons. They

have very large coherence times of transitions between rotational states with fairly large
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Figure 3.4: First four fluxonium wave functions from Ref. [61].

electric dipole moments. Following Ref. [80], one can assume Ca79Br molecules [160]

trapped electrostatically in the vicinity of a superconducting microwave stripline res-

onator. The computational basis states can be chosen as |0⟩ = |N = 1,mN = 0, F = 1,mF = 0⟩,
|1⟩ = |N = 1,mN = 0, F = 2,mF = 1⟩, which are different hyperfine levels of the first

excited rotational manifold of the molecule, where N is the rotational quantum number.

The state |e⟩ is then chosen in the second excited rotational level, |e⟩ = |N = 2,mN = 0, F = 2,mF = 1⟩.
These states are chosen to ensure that |0⟩ , |1⟩ and |e⟩ are simultaneously trappable [80].

For this choice of states the frequency of the |1⟩ ↔ |e⟩ transition is given by ωe = 2π×11

GHz and is thus in the microwave regime. Coupling strengths up to g = 2π × 400 kHz

can be achieved with realistic experimental parameters [80]. Assuming Q = 3 × 108 (as

in Sec. 3.4.2) yields κ = ωe/Q ≈ 2π × 37 Hz, while the decay from |e⟩ is γ ≲ 10−2Hz

[161] and can be neglected.

3.4.5 Superconducting fluxonium qubits in circuit QED architechture

Our cavity QED model can also be realised in a setup with superconducting qubits

coupled via a driven microwave resonator. For our purposes, we consider fluxonium

qubits [86] which have a level structure compatible with our protocols.

Considering the experimental parameters from [61] at an external flux of Φext = 0.49Φ0

(near, but not at the so-called sweet spot of 0.5Φ0), we obtain the ground state |0⟩ and

the long lived state |1⟩ (T1 in the millisecond regime [162]) separated by ∼ 2π×100MHz,

while the next higher excited state |e⟩ is separated by 2π × 3.5GHz from |0⟩ [163, 164],

see Fig. 3.4.

We note that the dominant error in this regime is a finite dephasing time T ∗
2 ≈ 20µs of

the |0⟩ ↔ |1⟩ transition [165], which is in fact not included in the error analysis of the

protocols described in the following chapters (dephasing effects are analysed numerically
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in Chapter 5 for quantum sensing protocol). One must hence estimate the effect of these

errors as an additional T/T ∗
2 contribution to the operation infidelities.

A coupling strength of g = 2π × 10MHz (much smaller than the spacing between |0⟩
and |1⟩) can be assumed to selectively couple the |0⟩ ↔ |e⟩ transition to the microwave

resonator. This transition is chosen instead of the |1⟩ ↔ |e⟩ transition and roles of |0⟩
and |1⟩ are flipped since the coupling of the |1⟩ ↔ |e⟩ transition to the cavity is weaker

than the coupling of |0⟩ ↔ |e⟩, further suppressing the unwanted coupling of |1⟩ ↔ |e⟩
to the cavity. Further, we can take 1/γ = 5µs including decay and dephasing of |e⟩,
and Q = 3 × 108.



Chapter 4

Geometric Phase Gate Protocol

The current chapter is an adaptation of Protocol A from the publication ”Non-Local

Multi-Qubit Quantum Gates via a Driven Cavity” [54]. In this chapter, we refer to

Protocol A as the geometric phase gate(GPG) protocol, and describe its working with

our setup and model discussed in Chapter 2. For number of qubits N = 2, the geometric

phase gate forms a universal gate set for quantum computation together with single qubit

gates; while for arbitrary N it can be used to generate GHZ states. The geometric phase

gate protocol operates in the limit of a large detuning ∆1 between the cavity and the

|1⟩ ↔ |e⟩ transition (coupled to cavity mode with strength g) and of the cavity driving

strength η of the same order (i.e., ∆/g, η/g → ∞ and ∆ = O(η)). We take δ (the

detuning between the cavity mode and the cavity drive field) to be of order O(g) and

choose the pulse duration T to be of the order of O(g−1), such that it does not diverge

in the limit ∆/g, η/g → ∞.

Geometric phase gates were first introduced in the context of trapped-ion quantum

computing schemes [31, 32]. Here, we present the first protocol for implementing these

gates in general cavity QED setups. We provide the solution of its dynamics in the

presence of losses due to atomic spontaneous emission and photon leakage from the

cavity mode, which we believe is being done for the first time.

The GPG protocol implements a family of geometric phase gates ÛA = exp
(
iθn̂21

)
, where

n̂1 =
∑N

j=1 |1j⟩⟨1j | is the number operator of qubits in state |1⟩, by displacing the state

of the cavity in a closed loop in phase space. Any angle θ can be achieved by choosing

an appropriate drive η(t) of the cavity mode. One distinguishing feature of the GPG

protocol is its speed: In many previous proposals, the cavity is far detuned from the

1Strictly speaking, the detuning between the cavity and the |1⟩ ↔ |e⟩ transition is ∆ − δ, which is
proportional to ∆. Here, hence we loosely refer the limit of large detuning between the cavity and atom
transition as ∆/g → ∞, given that δ = O(g)

49



Chapter 4. Geometric Phase Gate Protocol 50

qubit frequency to avoid a large number of photons in the cavity and thus a large error

through photon losses. This comes at the cost of a long gate duration of the order ∆/g2,

where ∆ is the detuning of the cavity and g is the coupling between the qubits and the

cavity. In the GPG protocol, the cavity is also far detuned, but a driving strength which

is of the order of ∆ and adapted to the photon loss rate allows for gate durations of

order g−1. An additional advantage of the GPG protocol is its robustness: Similar to the

Mølmer-Sørensen gate for trapped ions [32], ÛA is independent of the initial state of the

cavity mode, which is of particular importance if the cavity mode is in the microwave

regime and may exhibit significant thermal population. Furthermore, the protocol is

inherently robust against pulse imperfections in the drive of the cavity, since only the

area enclosed and not the exact trajectory in phase space determines ÛA.

In Sec. 4.1, we begin by discussing the derivation of an effective Hamiltonian, valid in the

limits defined above. We start by applying a time-dependent basis transformation on

the cavity in Sec. 4.1.1, followed by a time-dependent basis transformation on the qubits

in Sec. 4.1.2 to eliminate the state |e⟩. The resulting effective Hamiltonian resembles

that of a Mølmer-Sorensen gate for trapped ions [32] and is then used in Sec. 4.2 to

derive a family of geometric phase gates ÛA = exp
(
iθn̂2

)
. This section also discusses

how ÛA can be used, together with global single-qubit gates, to generate an N -qubit

GHZ state.

The fidelity of the gate for arbitrary N is calculated analytically in Sec. 4.3 as a function

of the finite qubit transition linewidth γ and cavity linewidth κ. This fidelity scales as

∼ N/
√
C, where C = g2/(κγ) is the cooperativity. This calculation is the first of its

kind, obtained by exactly solving the quantum open-system dynamics for non-zero γ and

κ. Section 4.4 verifies these analytical results against numerical simulations of the full

Lindblad dynamics for a CZ gate using the GPG protocol, showing excellent agreement.

Finally, Sec. 4.5 provides estimates of CZ gate fidelities and durations for atomic qubits

coupled to an optical cavity, as well as molecular qubits, and superconducting fluxonium

qubits coupled to a microwave cavity, and Sec. 4.6 presents the chapter conclusion and

outlook.

4.1 Derivation of an Effective Hamiltonian for implement-

ing a geometric phase gate

In this section, we show a detailed derivation of an effective Hamiltonian Ĥeff derived in

the limits ∆/g → ∞ and η/g → ∞ starting from the full Hamiltonian Ĥ(t). We recall
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here the full Hamiltonain from Eq. (3.16) which reads (described in detail chapter 3)

Ĥ(t) = δâ†â+ (∆ − iγ/2)n̂e + [(gŜ− + iη(t))â† + h.c.]. (4.1)

4.1.1 Basis Transformation on the Cavity

To motivate the first basis transformation, acting on the cavity, we note that due to the

limit η/g → ∞ the cavity typically contains many photons. To see this quantitatively,

we look first at the average number of photons in the cavity because of drive η when

no qubits are coupled to the cavity mode. We discuss below the exact solution of the

cavity state at any time t when n1 = 0 at t = 0, that is when no qubits are coupled to

the cavity mode at time t = 0. The state of the cavity evolves independently under

ρ̇cav = −i[Ĥcav, ρcav] + L̂ρcavL̂
† − {L̂†L̂, ρcav}/2, (4.2)

with Ĥcav = δâ†â+ (iηâ† + h.c.). Note that for an initial pure state, the cavity remains

in a pure state at all times, even if it undergoes decay. Hence we use the Ansatz for

ρcav(t) given by

ρcav(t) = | − α(t)⟩⟨−α(t)|, (4.3)

Now on substituting the Ansatz from Eq. (4.3) in the Lindblad equation in Eq. (4.2),

we obtain on the left side

L.H.S = ρ̇cav = −α̇â†ρcav − α̇∗ρcavâ−
d|α|2

dt
ρcav, (4.4)

where we have used the property of the coherent state that is d
dt |α(t)⟩ = α̇â† |α⟩ −

1
2
d|α|2
dt |α⟩. The right side of the equation is similarly obtained as

R.H.S =
(

(η + (iδ + κ/2)α)â†ρcav + h.c.
)

+ (η∗α+ ηα∗ + κ|α|2)ρcav. (4.5)

On equating the above two equations, we hence obtain the solution given by

α̇ = −η − (iδ + κ/2)α. (4.6)

Note also that the state ρcav(t) can be rewritten as being created using a time-dependent

displacement operatorD(α(t)) = exp
(
α(t)â† − α∗(t)â

)
(see Sec. 2.1.1.1), giving ρcav(t) =

D̂(−α(t))ρcav(0)(D̂(−α(t)))†.

In the steady state we have α̇ = 0, so that Eq. (4.6) yields an average number of photons

of
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|α|2 =
|η|2

δ2(1 + κ2/(4δ2))
≈ |η|2

δ2
(4.7)

We see that the cavity contains photons ∼ η2/δ2, which diverge in the limit η/g → ∞,

δ = O(g). It is thus useful to switch into a time-dependent frame of the cavity which

reduces the number of photons. Since due to the simultaneous limit ∆/g → ∞ the

number of photons only weakly depends on n1 (i.e the number of qubits in state |1⟩),
we choose a frame which is given by the evolution that the cavity would undergo if it

were not coupled to the qubits. We find this frame above, which is given by the simple

displacement D̂(α) where α(t) is the solution of Eq. (4.6) for α(t = 0) = 0.

Now if n1 = 0, a cavity starting in the empty state |0⟩ will be in the coherent state

|ψcav(t)⟩ = |−α(t)⟩ at time t, so that for a cavity state |ψcav(t)⟩, D̂(α) |ψcav(t)⟩ = |0⟩.

Given the evolution of ρ for n = 0, we now treat the evolution of the joint cavity-

qubit system for a general n. For this, we now proceed with the basis transformation

ρ̃(t) = D̂(α(t))ρ(t)D̂(α(t))†. For general n1, the evolution of ρ̃ is then given by (see

Appendix A.1)

˜̂
H = δâ†â+ (∆ − iγ/2)n̂e + g[(â† − α∗)Ŝ− + h.c.] (4.8)

and
˜̂
L = L̂ =

√
κâ. Hence, the drive of the cavity mode is converted into an effective

drive of the qubits with strength −igα. Because the decay in the original frame is

compensated by a κ-dependent choice of α, in this new frame there are no excitations

in the cavity mode and no decay events if n1 = 0 – even if in the original frame there

may be many excitations and decay events.

4.1.2 Basis Transformation on the Qubits

In order to derive an effective Hamiltonian on the computational states |0⟩ , |1⟩, and the

cavity and to eliminate the state |e⟩, we now use the limit ∆/g → ∞. For this, we

consider Ĥ(0) = ∆n̂e − (gα∗S− + h.c.), which is the part of
˜̂
H which scales with ∆.

(Recall that as ∆/g → ∞ we also consider the limit η/g → ∞, and thus |α| → ∞).

We perform a time-dependent basis transformation on the qubits so that the new basis

states are the instantaneous eigenvectors of
˜̂
H(0). Such a basis transformation is given

by (see Appendix A.2)

Û = exp

[
λ

2

(
−eiµŜ+ + e−iµŜ−

)]
(4.9)
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with cosλ = ∆/
√

4g2|α|2 + ∆2 and µ = arg(α). In this new basis, the Hamiltonian is

given by
¯̂
H = Û

˜̂
HÛ † + i

˙̂
UÛ †. The inertial term is of the form i

˙̂
UÛ † = O(1)S+ + h.c.,

where O(g) denotes a term which does not diverge as ∆/g → ∞. Crucially, since the

gap between the eigenstates of Ĥ(0) diverges as ∆/g → ∞ and we consider a pulse

duration T independent of ∆, the inertial term can be neglected as ∆/g → ∞, leaving
¯̂
H = Û

˜̂
HÛ †.

A direct calculation (see Appendix A.2) now shows

¯̂
H = δâ†â+

(
ε1 − i

γ1
2

)
n̂1 +

(
εe − i

γe
2

)
n̂e (4.10)

+ (ζâ† + ζ∗â)(n̂− n̂e)

where

εe/1 = (∆ ±
√

∆2 + 4g2|α|2)/2 + O(1) (4.11)

ζ =
g2α√

4g2|α|2 + ∆2
(4.12)

γe/1 =
γ

2

(
1 ±

√
1 − 4|ζ|2/g2

)
(4.13)

where the expressions above are evaluated with the + sign for εe and γe and the − sign

for ε1 and γ1. We note that Eqs. (4.11)–(4.13) are time-dependent. In Sec. 4.2 below

we use the time-dependency of ζ to implement the desired quantum gate.

If we assume that none of the qubits start in state |e⟩, the terms in Eq. (4.10) pro-

portional to n̂e can be neglected. Furthermore, the ε1n̂1 term just corresponds to a

frequency shift of the qubits, which can be compensated for either by single qubit z-

rotation at the end of the gate, or by a change of reference frame. We are thus left with

the effective Hamiltonian

Ĥeff = δâ†â+
(
−iγ1

2
+ ζâ† + ζ∗â

)
n̂1. (4.14)

This effective Hamiltonian simply describes a driven cavity, where the driving strength

ζn̂ depends on the number n of qubits in state |1⟩. It is thus analogous to the Hamilto-

nian for a Mølmer-Sørensen gate [32].

The finite lifetime γ of the state |e⟩ leads to an effective error rate γ1n̂1. Note that

since the basis transformation in this section only affected the space of the qubits, the

Lindblad operator L̂eff = L̂ =
√
κâ is unchanged. We discuss the influence of these error

sources in Sec. 4.3 below.
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4.2 Implementation of the Geometric Phase Gate: Decay-

free case

In this section we use the effective Hamiltonian (4.14) to derive a shape of ζ(t) which

implements a quantum gate ÛA = exp
(
iθn̂21

)
on the qubits only and leaves the system

in a state with no entanglement between the photons and the qubits. We first consider

the loss free case γ = κ = 0, while the infidelity for finite values of γ and κ is calculated

in the next section.

We show that if ζ(t) is chosen of the form ζ(t) = −δf(t) + iḟ(t), the effective Hamilto-

nian (4.14) implements the quantum gate ÛA = exp
(
iθn̂21

)
with

θ = δ

∫ T

0
dtf(t)2. (4.15)

We note that here f can be any real function satisfying f(0) = f(T ) = 0, ḟ(0) = ḟ(T ) =

0, and δ2f(t)2 + ḟ(t)2 < g2/4 for all t. These constraints follow from the two points

below:

(i) To find a pulse η(t) in the original Hamiltonian (4.1) which leads to the desired ζ(t)

in the effective Hamiltonian (4.14), Eqs. (4.12) and (4.6) have to be inverted to first find

α(t) and then η(t). Equation (4.12) is only invertible if |ζ(t)| < g/2, which imposes the

constraint δ2f(t)2 + ḟ(t)2 < g2/4 on the choice of f , while Eq. (4.6) can be solved for

η(t) for any differentiable α(t).

(ii) However, we require α(0) = α(T ) = 0, so that the new frame introduced in Sec. 4.1.2

coincides with the lab frame at t = 0 and t = T . This is guaranteed by f(0) = f(T ) = 0

and ḟ(0) = ḟ(T ) = 0.

Now we show that the choice ζ(t) = −δf(t) + iḟ(t) indeed leads to the implementation

of ÛA with the phase θ given by Eq. (4.15). While this derivation is analogous to that

of a Mølmer-Sorensen gate [32], we rederive it here in a way which allows for the easy

addition of the effects of finite γ and κ in the next section.

We first assume that the qubits start in a computational basis state |q⟩ (q ∈ {0, 1}N )

with exactly n1 =
∑N

j=1 qj qubits in state |1⟩ (i.e. n̂1 |q⟩ = n1 |q⟩). Additionally,

we assume that the cavity starts in a coherent state |β(0)⟩. Since any initial state of

the joint cavity-qubit system can be written as a superposition of states of the form

|ψ(0)⟩ = |β(0)⟩ ⊗ |q⟩, those states suffice to uniquely determine the dynamics of the

system under Ĥeff for any initial state.
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We now make the Ansatz |ψ(t)⟩ = eiφn1 (t) |βn1(t)⟩ ⊗ |q⟩, which indeed satisfies the

Schrödinger equation for Ĥeff if

β̇n1 = −iδβn − in1ζ (4.16)

φ̇n1 = −n1Re(ζ∗βn1) (4.17)

Making the choice ζ(t) = −δf(t) + iḟ(t), the solution to Eq. (4.16) is given by

βn1(t) = β(0)e−iδt + n1f(t) (4.18)

Plugging this into Eq. (4.17) yields

φn1(T ) = −n1Re

[∫ T

0
dt(−δf(t) − iḟ(t))

(
β(0)e−iδt + n1f(t)

)]
= −n1Re

[∫ T

0
dt
(
−n1δf(t)2 + ḣ(t)

)]
, (4.19)

where

h(t) = −i
(
β(0)f(t)e−iδt +

1

2
n1f(t)2

)
. (4.20)

Using that h(0) = h(T ) = 0, we obtain φn(T ) = n21θ.

Thus, the final state at time t = T is |ψ(T )⟩ = eiθn
2
1

∣∣β(0)e−iδT
〉
⊗ |q⟩ =

∣∣β(0)e−iδT
〉
⊗

(ÛA |q⟩). Since the final state of the cavity is independent of n, there is no entanglement

between the qubits and the cavity at time T . Furthermore, since ÛA is independent of

β(0), and any arbitrary initial state of the cavity can be written as a superposition of

different coherent states |β(0)⟩, the implemented unitary is in fact independent of the

initial state of the cavity.

4.2.1 Generation of GHZ states

The unitary ÛA can be used together with global single qubit gates to generate the GHZ

state [166, 167]

|GHZ⟩ = (|0...0⟩ + |1...1⟩)/
√

2 (4.21)

on N qubits as follows: Start by preparing the system in |+⟩⊗N , where |+⟩ = (|0⟩ +

|1⟩)/
√

2. Then apply ÛA for θ = π/2, followed by the single qubit gate Ûsq = Û3Û2Û1 on

each qubit, where Û1 = exp(iπσz/4), Û2 = (σx+σz)/
√

2 and Û3 = exp(iπ(N + 1)σz/(4N)).

For convenience, we restate the proof of this known result in Appendix A.5.
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4.3 Geometric Phase Gate Performance in the presence of

losses

In this section we calculate the gate fidelity for the implementation of ÛA in the presence

of losses. In contrast to the previous section we restrict ourselves to an initial state |0⟩
of the cavity. We start by solving the Lindblad equation with the effective Hamiltonian

Ĥeff and the jump operator L̂. This allows us to find the quantum channel E acting on

the qubits which is obtained if the cavity is traced out after the gate. Given E , we then

find an expression for the infidelity. In the limit γ, κ → 0 and T → ∞, the infidelity is

found analytically to be

1 − F =

(
κ

4(1 + 2−N )δ
+

γδ

2g2

)
Nθ. (4.22)

To our knowledge this is the first analytical solution of 1 − F for Hamiltonians of the

type of Eq. (4.14) in the presence of the relevant losses.

4.3.1 Solution of the Lindblad Equation

In this section, we present the solution of the Lindblad equation for Ĥeff of Eq. (4.14) and

L̂, which is to our knowledge has never been done before for a Hamiltonain of the form

Ĥeff . We proceed analogously to Sec. 4.2 by first providing an Ansatz for the density

matrix of the joint cavity-qubit system and then verifying that this Ansatz provides the

correct solution of the time-dependent Lindblad equation.

To determine E , it is sufficient to consider initial operator of the form ρ(0) = |0⟩ ⟨0| ⊗
|q⟩ ⟨q′| of the joint cavity-qubit system, where |q⟩ and |q′⟩ (q, q′ ∈ {0, 1}N ) are compu-

tational basis states with exactly n =
∑

j qj and m =
∑

j q
′
j qubits in state |1⟩.

We now make the Ansatz

ρ(t) = eiφnm |βn⟩ ⟨βm| ⊗ |q⟩
〈
q′
∣∣ / ⟨βn|βm⟩ . (4.23)

In Appendix A.3 we show that this Ansatz solves the Lindblad equation if

β̇n = −(iδ + κ/2)βn − inζ (4.24)

φ̇nm = (m− n)(ζβm + ζ∗βn) + i(m+ n)γ1/2 (4.25)

The quantum operation on the Hilbert space of the qubits is given by

E(|q⟩
〈
q′
∣∣) = trcav(ρ(T )) = eiφnm(T ) |q⟩

〈
q′
∣∣ . (4.26)
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This latter expression for E is used in the next subsection to determine the fidelity F .

4.3.2 Analytic calculation of the fidelity for γ, κ ̸= 0

With Eq. (4.26), the averaged gate fidelity can be computed as

F =

∫
dψ ⟨ψ| e−iθn̂2

1E(|ψ⟩ ⟨ψ|)eiθn̂2
1 |ψ⟩ (4.27)

=

∑N
n=0

(
N
n

)
eiφnn +

∑N
n,m=0

(
N
n

)(
N
m

)
eiφnm−i(n2−m2)θ

2N (2N + 1)
,

where the integral is taken over the whole computational subspace, and the second

expression follows from [168].

Equation (4.27) now allows us to calculate the gate fidelity for arbitrary values of δ, T ,

γ and κ by inserting the solutions of Eqs. (4.24) and (4.25), given by

βn(t) = −in
∫ t

0
dt′ζ(t′)e−(iδ+κ/2)(t−t′) (4.28)

and

φnm(T ) =

∫ T

0

[
(m− n)(ζ(t)βm(t)∗ + ζ(t)∗βn(t))

+ i(m+ n)γ−(t)/2
]
dt, (4.29)

respectively. In the limit γ, κ → 0 and T → ∞ this can be evaluated to Eq. (4.22),

see Appendix. A.3.1. From Eq. (4.22) we observe that δ can be used to trade between

the infidelity arising from the decay of photons in the cavity (proportional to κ) and

decay of the ancillary state |e⟩ (proportional to γ). The infidelity is minimized for

δ =
√
κ/[2(1 + 2−N )γ]g, which gives

1 − F = Nθ/
√

2(1 + 2−N )C, (4.30)

where C = g2/(γκ) denotes the cooperativity.

4.4 CZ gate: Numerical Results

In the following, we confirm our analysis above and find the infidelity of the ÛA gate away

from the limit ∆/g, η/g → ∞ via a numerical simulation of the full Lindblad equation for

the specific case of the CZ gate (N = 2). The latter is implemented, up to single qubit

gates, for θ = π/2, see Fig. 4.2. To achieve this, we choose f(t) =
√

4π/(3δT ) sin2(πt/T ),
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Figure 4.1: Numerical verification of CZ gate with geometric phase gate protocol:
(a) Infidelity of a CZ gate vs pulse duration T for different values of C and γ/κ. Solid
lines show the infidelity (analytic result) in the ∆ → ∞ limit, circles show the infidelity
(numerical calculation) at a finite value of ∆, chosen such that maxt |η(t)| = 30g. For
each T , C and γ/κ, δ is optimized to obtain the minimal 1-F . (b) Numerical (circles)
and analytical (dashed line) value of the infidelity vs C in the ∆, T → ∞ limit for

different values of γ/κ.

which satisfies the requirement δ
∫ T
0 f(t)2dt = π/2 (see Eq. (4.15)). We numerically

verify that there is a δ with |ζ(t)| < g/2 for all t as long as gT ≥ 8.3. Fig. 4.3 shows

the ideal evolution of the cavity state |βn1⟩ in the quantum optical phase space, in

the effective frame, for different two-qubit computational basis states. We see that the

cavity evolution always forms a closed loop in the phase space, and the the loop is scaled

with n1, the number or qubits in the the |1⟩ state along each axes, hence giving an area

under the loop proportional to n21, which also corresponds to the phase aquired by the

computational qubit states.

Figure 4.2: Action of ideal geometric phase gate unitary ÛA on the computational
qubit states for a system of N = 2 qubits. The choice of θ = π/2 implements a CZ

gate.

For the chosen f , the infidelity 1 − F is shown in Fig. 4.1(a) as a function of the pulse

duration T for several values of the cooperativity C and ratios γ/κ. The solid lines
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Figure 4.3: Ideal CZ gate dynamics: ideal dynamics of the cavity state |βn1
⟩ in the

quantum optical phase space during the application of ÛA = ei(π/2)n̂
2
1 . The cavity

undergoes no evolution when no qubit is coupled to the cavity. For one qubit coupled
to the cavity, i.e when one qubit starts in state |1⟩, the cavity performs a closed loop
evolution. For n1 = 2, the cavity performs a similar phase space evolution but with

area scaling with n21.

(a) (b)

Figure 4.4: Example cavity drive pulses implementing CZ gate (a) in the effective
frame and (b) in the original frame for .for maxt|η(t)| = 30g, δ = 0.98g, ∆ = 26.67g,
κ = 0.05g and γ = 0.015g. The pulse ζ(t) in the effective frame is given by ζ(t) =
−δf(t) + iḟ(t) (imaginary part goes as the derivative of the real part) for f(t) =√

4π/(3δT ) sin2(πt/T ) such that θ = π/2. The pulse in the original frame is obtained
by inverting ζ using Eqs. (4.12) and (4.6).

show the infidelity in the limit ∆/g → ∞ calculated analytically using Eqs. (4.27)-

(4.29). The choice of δ has been optimized to achieve the best fidelity at each value of

the pulse duration T . As T → ∞ the infidelity approaches its asymptotic value, which is

as predicted by Eq. (4.22) independent of γ/κ and only depends on the cooperativity C.

For shorter pulse durations, there is a slight dependency on γ/κ, with the best infidelity

always being achieved at γ/κ ∼ 1. Note that the asymptotic value of the infidelity as

T → ∞ is often already closely approached for durations T ∼ 20g−1, underlining the

fast speed of the gate protocol.

The dots in Fig. 4.1(a) show the infidelity which is achieved at a finite value of ∆, chosen

such that maxt η(t) = 30g. These values were found through a numerical integration of
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the Lindblad equation given by Ĥ [Eq. (4.1)] and the jump operator L̂. Only small devi-

ations between the numerical and the analytical results can be observed, showing that a

maximum driving strength of 30g is sufficient to implement the GPG protocol with high

fidelity. Fig. 4.4(b)-(c) shows example cavity drive pulses ζ(t) and the corresponding

η(t) in the original frame for maxt|η(t)| = 30g, δ = 0.98g, ∆ = 26.67g, κ = 0.05g and

γ = 0.015g, achieving θ = π/2.

Finally, Fig. 4.1(b) compares the asymptotic value of the infidelity from Fig. 4.1(a)

with its analytical prediction 1 − F = 1.99/
√
C from Eq. (4.30). A good agreement is

observed for all values of C and γ/κ.

4.5 Fidelity estimates in realistic systems

In this section we provide estimates for the achievable gate fidelity and pulse duration

for CZ gate with the geometric phase gate protocol for different physical systems. The

systems are described in detail in section3.4. Table 4.1 summarises the results. We

discuss atoms coupled to an optical cavity in Sec. 4.5.1, Rydberg atoms coupled to

a microwave cavity in Sec. 4.5.2, polar molecules coupled to a microwave cavity in

Sec. 4.5.3, and superconducting fluxonium qubits coupled to a microwave cavity in

Sec. 4.5.4.

4.5.1 Neutral atoms coupled to an optical cavity

We consider neutral 87Rb atoms trapped in optical tweezers and coupled to a fiber

Fabry-Perot cavity as described in section 3.4.1. As qubit states, we choose the electronic

groundstates |0⟩ =
∣∣5 2S1/2 F = 1mF = 0

〉
and |1⟩ =

∣∣5 2S1/2 F = 2mF = 0
〉
, while the

ancillary state |e⟩ is the electronically excited state |e⟩ =
∣∣5 2P3/2 F = 3mF = 0

〉
. The

linewidth of the |1⟩ ↔ |e⟩ transition (λ = 780 nm) is γ = 2π × 6 MHz (FWHM).

For the cavity we assume a finesse F ≈ 2 × 105, a waist radius wr ≈ 2µm and a length

L ≈ 40µm resulting in a cooperativity of C = 3λ2F/(2π3w2
r) ≈ 1500 with a coupling

strength of g ≈ 2π × 400 MHz and κ ≈ 2π × 20 MHz (FWHM), so that γ/κ ≈ 0.3.

With the numbers above, a CZ gate on two atoms can be achieved with a fidelity of

1 − F ≈ 5.1% in the limit T,∆/g → ∞. Finite values for ∆ can be chosen as long as

∆ < ω0, with the latter the energy separation between the states |0⟩ and |1⟩ (which is

about 6.8 GHz for the states given above). For example, for a detuning ∆ = 1 GHz,

the infidelity only slightly increases to 1 − F = 6.4% for a choice of a finite (fast) pulse

duration T = 80 ns. Other choices of ∆ and T are possible [see plot Fig. 4.1(a)].
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4.5.2 Rydberg atoms coupled to a microwave cavity

Higher fidelities at the expense of longer gate durations can be achieved by taking both

|1⟩ and |e⟩ to be Rydberg states. We take the example described in section 3.4.2 with

|1⟩ =
∣∣90 2P3/2

〉
and |e⟩ =

∣∣90 2S1/2
〉

in Cs with lifetime 2 ms and 820 µs, respectively ,

while |0⟩ is chosen as a long-lived state in the ground manifold of the atoms. The states

|1⟩ and |e⟩ may be coupled via a superconducting microwave resonator with reasonable

coupling strength g ≈ 2π× 4 MHz [42]. Quality factors Q > 3× 108 have been reported

for microwave stripline resonators [43], yielding κ = ωe/Q ≈ 2π × 17 Hz, and thus a

cooperativity C = 5 × 109, with γ/κ ≃ 12.

We include the decay of the state |1⟩ in our analysis, which is important as the latter is

now a Rydberg state with a lifetime comparable to that of |e⟩. Therefore, the minimal

infidelity is not achieved anymore as ∆, T → ∞, but at finite values of T . As an

example we choose ∆ = 2π × 400 MHz, which is much smaller than the spacing of |1⟩
and |e⟩ to adjacent Rydberg states (approximately 5 GHz). The minimal infidelity of

1 − F = 2.3 × 10−4 is then achieved at T = 800ns. Furthermore, the GPG protocol

could be used to generate a GHZ state on 40 qubits with an infidelity below 10−2, in a

duration of T = 800 ns (the same duration as for a CZ gate).

4.5.3 Polar Molecules coupled to a microwave cavity

We consider ultracold polar molecules coupled to a microwave resonator [80–82]. Fol-

lowing the discussion in section 3.4.4, we chose the computational basis states as|0⟩ =

|N = 1,mN = 0, F = 1,mF = 0⟩, |1⟩ = |N = 1,mN = 0, F = 2,mF = 1⟩ to be different

hyperfine levels of the first excited rotational manifold of the CaBr molecule, where N is

the rotational quantum number. The ancillary state |e⟩ is chosen in the second excited

rotational level, |e⟩ = |N = 2,mN = 0, F = 2,mF = 1⟩.

For this choice of states the frequency of the |1⟩ ↔ |e⟩ transition is given by ωe = 2π×11

GHz and is thus in the microwave regime. Coupling strengths up to g = 2π × 400 kHz

can be achieved with realistic experimental parameters [80]. Assuming Q = 3 × 108 (as

in Sec. 4.5.2) yields κ = ωe/Q ≈ 2π × 37 Hz, while the decay from |e⟩ is γ ≲ 10−2Hz

[161] and can be neglected. If we assume γ = 0, arbitrarily low fidelities can be reached

if we allow for arbitrarily long gate times. At finite pulse duration, the GPG protocol

can achieve an infidelity of 1−F = 1.0× 10−5 already at a pulse duration of T = 80µs,

at ∆ = 2π×1.2 MHz ≫ g. Again, other choices of T and ∆ are possible, see Fig. 4.1(a).
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4.5.4 Superconducting Fluxonium qubits

Lastly, we choose the system of fluxonium qubits which have a compaticle level structure

for our protocol. Following discussion in section 3.4.5, we choose the ground state |0⟩ and

the long lived state |1⟩ (T1 in the millisecond regime [162]) separated by ∼ 2π×100MHz,

while the next higher excited state |e⟩ is separated by 2π × 3.5GHz from |0⟩ [163, 164].

The dominant error in this regime is a finite dephasing time T ∗
2 ≈ 20µs of the |0⟩ ↔ |1⟩

transition [165], which is in fact not included in the error analysis in this chapter. We

estimate the effect of this errors as an additional T/T ∗
2 contribution to the infidelity. We

assume a coupling strength of g = 2π×10MHz (much smaller than the spacing between

|0⟩ and |1⟩) to selectively couple the |0⟩ ↔ |e⟩ transition to the microwave resonator. We

choose this transition instead of the |1⟩ ↔ |e⟩ transition and flip the roles of |0⟩ and |1⟩
since the coupling of the |1⟩ ↔ |e⟩ transition to the cavity is weaker than the coupling of

|0⟩ ↔ |e⟩, further suppressing the unwanted coupling of |1⟩ ↔ |e⟩ to the cavity. Further,

we take 1/γ = 5µs (including decay and dephasing of |e⟩) and Q = 3×108. These values

allow for an infidelity of 4.0% for a CZ gate (dominated by the contribution from T ∗
2 of

3.2%) at ∆ = 2π × 30 MHz, δ = 2π × 13 MHz and T = 640 ns. The T ∗
2 contribution

could be reduced by using a larger coupling strength g, which would however lead to an

increased unwanted coupling of the |1⟩ ↔ |e⟩ transition to the cavity, the effect of which

is beyond the scope of this work.

We note that while this fidelity estimates are lower than that for traditional nearest

neighbor two qubit gates on fluxonium qubits [169], the non-local nature of our gate

allows to couple distant qubits, which is only possible with several CZ gates – implying

a reduced fidelity in systems with only nearest neighbor coupling. We also note that

dynamical decoupling schemes have been proposed to extend T ∗
2 of a fluxonium qubit

beyond 100µs [170], which would reduce the infidelities to 1.5%.

Emitter type Neutral Rydberg Molecules Fluxonium

Field type optical microwave microwave microwave

Coupling strength g 400 MHz 4 MHz 400 kHz 10 MHz

Cavity linewidth κ 20 MHz 17 Hz 40 Hz -

Emitter transition linewidth γ 6 MHz 204 Hz < 10−2 Hz 0.8 MHz

Cooperativity C 1500 5 × 109 > 1011 -

Gate infidelity 0.05 3 ×10−3 6 ×10−5 0.04

Pulse duration T 8 ns 800 ns 80µs 640 ns

Table 4.1: GPG protocol in realistic setups: achievable gate fidelity and pulse dura-
tion for CZ gate with the geometric phase gate protocol for different physical systems:
Neutral 87Rb atoms coupled to a fiber-based Fabry Perot optical cavity, Cs Rydberg
atoms coupled via superconducting microwave resonator, Polar Ca79Br molecules cou-
pled to microwave resonator and superconducting fluxonium qubits coupled to mi-

crowave resonator.
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4.6 Conclusion and outlook

We have demonstrated that by driving the strongly detuned cavity with a strong drive

η, the unitary ÛA = exp
(
iθn̂21

)
can be implemented through the proper choice of η(t).

We derived the infidelity of the GPG protocol and showed that it agrees with numerical

simulations. Finally, we demonstrated how the GPG protocol can be used together with

single qubit gates to generate a GHZ state on N qubits.

We evaluated the fidelity of the protocols in the presence of a finite lifetime of the

ancillary state |e⟩ of the qubits and of the photons in the cavity, finding that the infidelity

scales as O(C−1/2). For Rydberg atoms or polar molecules coupled via a microwave

cavity, we expect that our protocol can achieve infidelities below 10−3 with realistic

parameters, while for neutral atoms coupled via optical cavities infidelities of the order

of a few percent can be reached. We expect that our protocol may significantly benefit

from optimization of the time-dependent pulse-shape η(t). In particular, while the

infidelity for the various gates in the limit T → ∞ is independent of the exact choice

of η, we expect that the infidelity at finite T could be improved by applying quantum

optimal control techniques to optimize the pulse-shape of η(t) [171, 172], making our

protocol both achieve higher-fidelity and faster.

In Chapter 5, we demonstrate the utility of the GPG protocol, when combined with

optimal control methods, for the preparation of metrologically useful optimal probe

states which achieve a significant entanglement-enhanced advantage in quantum sensing

beyond the standard quantum limit, in the presence of noise.





Chapter 5

Environment Adaptive

Entanglement-Enhanced

Quantum Sensing

The current chapter is an adaptation of the manuscript “Environment Adaptive En-

tanglement Enhanced Quantum Sensing” [173]. We combine the geometric phase gate

described in chapter 4 along with its analytic solution of the noisy quantum channel

dynamics with optimal control methods to prepare entangled states that are useful for

quantum sensing, achieving a precision significantly better than the standard quantum

limit in the presence of photon cavity loss, spontaneous emission, and dephasing. This

work opens the way to entanglement-enhanced sensing with cold trapped atoms in cav-

ities and is also directly relevant for experiments with trapped ions. The chapter is

organised as follows: Sec. 5.1 intoduces entanglement enhanced quantum sensing and

describes a basic field-sensing experiment where the designed state-preparation for sens-

ing protocol can be applied. For the protocol, we work with the same cavity QED setup

that we describe in chapter 3. Sec 5.2 presents the quantum channel of the geometric

phase gate discussed in chapter 4 and recalls the exact solution of the quantum channel

dynamics in the presence of losses, here focusing on the dynamics in the symmetric

Dicke subspace. In Sec. 5.3, we introduce the state-preparation protocol consisting of

sequence of pulses where the geometric phase gate operations are combined with global

single-qubit rotations to consecutively steer and squeeze an initial coherent Dicke state

for a finite number of steps P . Section 5.4 discusses the preparation of an arbitrary

final state in the symmetric Dicke subspace which is optimised for a cost function cor-

responding to the variance of a desired measurement with an observable M̂ , where the

final state is the probe state in the quantum sensing experiment. Section 5.5 discusses

65
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the extensive numerical results obtained by our protocol, including discussion of experi-

mental observability of the performance of the optimally prepared states in the presence

of dephasing Sec. 5.5.2, effects of dephasing during the state preparation protocol in

Sec. 5.5.5, and insights on results when the spontaneous emission is treated in the Lind-

blad formalism in Sec. 5.5.6. Finally, Sec. 5.6 provides performance estimates of our

state preparation protocol for an example system with neutral atoms and optical cavity

and Sec. 5.7 presents the chapter conclusion and outlook.

5.1 Introduction to entanglement-enhanced quantum sens-

ing

In quantum sensing, entanglement-enhanced strategies exploit the properties of entan-

gled quantum states to achieve sensitivities beyond the classical limits, often approach-

ing or even reaching the Heisenberg limit. Such enhancements make quantum sensing

particularly powerful for detecting weak fields, measuring time intervals with extreme

precision, or probing delicate changes in physical parameters, all of which are important

for applications for example in in metrology, and gravitational wave detection.

5.1.1 Sensitivity Limits

For typical system of N spin-1/2 paticles interacting with a field pointing in n⃗ direction,

the Hamiltonian can be described as Ĥn⃗ = JJn⃗, where J is spin-field coupling strength

and Jn⃗ is the component of the collective spin angular momentum parallel to the field

direction. This Hamiltonian generates the dynamics Û = e−iβJn⃗ , where we define

β = Jt. (5.1)

A very general sensing experiment can be designed with the task of estimating this

small parameter β by measuring the expectation value of a Hermitian operator M̂ . For

a constant evolution time t, and with the knowledge of the spins’ coupling component

(eg. electric dipole moment or gyromagnetic ratio), this is equivalent to measuring

the field strength. The precision with which we can estimate the parameter β in this

quantum field sensing setup is fundamentally constrained by quantum mechanics, which

can be associated with the variance in the estimation of β written as

(∆β)2 =
(∆M̂(β))2∣∣∣∂β⟨M̂(β)⟩

∣∣∣2 , (5.2)



Chapter 5. Entanglement-Enhanced Quantum Sensing 67

where (∆M̂)2 = ⟨M̂2⟩ − ⟨M̂⟩2. Specifically, this precision of a parameter estimate is

bounded by the Quantum Cramér-Rao Bound (QCRB), which gives a minimum variance

(∆β)2 ≥ 1/(mFQ[ρ]), where m is the number of independent measurements, and FQ[ρ]

is the Quantum Fisher Information (QFI) associated with the probe state ρ. The QFI is

maximized for entangled states, which provides a mechanism for surpassing the classical

shot noise limit that characterizes unentangled, or classical, sensing schemes [52].

For an entangled state, the QFI scales quadratically with the number of particles N ,

leading to the so-called Heisenberg scaling, where (∆β)2 ∝ 1/N2. In contrast, for a

product (unentangled) state, the scaling is linear in N , known as the standard quan-

tum limit (SQL), where (∆β)2 ∝ 1/N . This distinction underscores the potential for

entanglement to dramatically improve sensing precision.

For example, let us consider the case of a Greenberger-Horne-Zeilinger (GHZ) state,

which for N spins is defined as

|GHZ⟩ =
1√
2

(|0⟩⊗N + |1⟩⊗N ), (5.3)

where |0⟩ ≡ | + 1/2⟩z and |1⟩ ≡ | − 1/2⟩z. Now consider the dynamics generated by a

field along z⃗ of the form Û = e−iβJz . Under such dynamics, the state is evolved as

|GHZ⟩ ∼ 1√
2

(|0⟩⊗N + e−iNβ|1⟩⊗N ), (5.4)

with a difference of phases of the two terms scaling as ∼ N . Now choosing a measurement

operator M̂ as the parity along x−basis, one obtains for this state ⟨M̂⟩ = cos(Nθ),

(∆M̂)2 = sin2(Nθ) [52]. Hence obtaining

(∆β)2|β=0 =
1

N2
, (5.5)

which means saturating the Heisenberg scaling.

Thus when entangled probe states are used, the effective rotation caused by the interac-

tion Hamiltonian Ĥn⃗ results in a correlated phase evolution across all qubits, amplifying

the observable shift induced by a small change in β. This amplification can be exploited

by carefully chosen measurements to detect field strengths or other physical parameters

with enhanced sensitivity.
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5.1.2 Optimal strategies in quantum sensing

In practical terms, achieving the precision promised by the QFI requires selecting an op-

timal measurement observable M̂ that maximizes sensitivity to changes in β [174, 175].

The variance of the estimator for β is minimized by choosing an observable that aligns

closely with the dynamics generated by the Hamiltonian Ĥn⃗ = JĴn⃗, where Ĵn⃗ is the

collective spin operator along the field direction. The optimal measurement observable

is generally constructed from components of the spin operator that yield the maximum

sensitivity, often involving squeezing or entangling the spin state along specific direc-

tions. This process reduces the variance in one quadrature of the spin state at the

expense of increased variance in the orthogonal quadrature, an effect characterized by

spin squeezing.

However another alternative approach, which we explore in this work, is to fix an op-

erator M̂ available in experiments for a defined field sensing task, and find the optimal

entangled state that maximizes sensitivity to changes in β.

5.2 Geometric phase gate on symmetric Dicke subspace

We first recall here the setup from chapter 3 consisting of N three-level spin systems

with computational qubit basis states |0⟩ and |1⟩ and an excited state |e⟩. The levels |1⟩
and |e⟩ are coupled via a cavity mode with annihilation (creation) operators â(â†) with

coupling strength g (Fig. 5.1(a)). The cavity mode is driven by a complex classical field

of strength η(t) which is detuned from the cavity and the |1⟩ ↔ |e⟩ transition by δ and

∆, respectively. The relevant Hamiltonian reads

Ĥ = δâ†â+
(

∆ − i
γ

2

)
n̂e +

[(
gŜ− + iη(t)

)
â† + h.c.

]
with n̂e =

∑
j |ej⟩⟨ej |, Ŝ+ =

∑
j |ej⟩⟨1j |, Ŝ− = (Ŝ+)†, and γ the spontaneous emission

rate from |e⟩ state.

In chapter 4, we show that in the limit of strong cavity driving η/g → ∞ and large

detuning ∆/g → ∞, and δ = O(g), the system dynamics can be reduced to the effective

Hamiltonian

Ĥeff = δâ†â+
(
−iγ1

2
+ ζâ† + ζ∗â

)
n̂1, (5.6)

with n̂1 =
∑

j |1j⟩ ⟨1j |, γ1 = γ(1 −
√

1 − 4|ζ|2/g2)/2, and ζ = g2α/
√

4g2|α|2 + ∆2

where α̇ = −η− (iδ+κ/2)α with α(t = 0) = 0. Here we recall the basic elements of the

derivation: Eq. (5.6) is obtained from Ĥ by first moving into a frame rotating with the

cavity by applying a time-dependent displacement operator D̂(α(t)) = exp
(
αâ† − α∗â

)
,
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Figure 5.1: (a) A register of spins with states {|0⟩, |1⟩, |e⟩} is coupled to a cavity mode
with coupling strength g addressing the |1⟩ ↔ |e⟩ transition, with detuning ∆− δ. The
cavity mode is externally driven by a laser with amplitude |η(t)|, and a global laser
pulse is applied on the |0⟩ ↔ |1⟩ spin transition. Panels (b1,b2): Cavity drive pulses
of the optimal state preparation protocol for N = 40, C = 104 and γ/κ = 0.01, for
GHZ-like and Dicke-like states, respectively. Throughout, we make a choice of the

cavity drive pulse ζ(t) in the effective frame with Re(ζ(t)) = −2δ
√

2ϕ
3δT sin2(πt

T ) and

Im(ζ(t)) = −∂tRe(ζ(t))/δ (see [62] and [54]). The obtained minimal measurement
precision variances here are N(∆β)2GHZ = 0.03 and N(∆β)2N/2 = 0.08. The parameters

used in optimal state preparation protocol can be found in tables. 5.1 and 5.2. (c1,
c2): State trajectories in Husimi-Q representation of the spin states in the symmetric

Dicke subspace after the application of each protocol step j ∀j = 1, . . . , P .

with the amplitude α(t). The η, κ−dependent choice of α ensures that in the rotated

frame the cavity drive η(t) effectively appears as a collective drive of the qubits as

−g(αŜ+ + α∗Ŝ−). Further rotating in a frame that diagonalizes the qubit subspace

in the limit ∆/g → ∞ and assuming that ne = 0 at time t = 0 leads to Eq. (5.6).

Interestingly, Eq. (5.6) is equivalent up to single spin rotations to the Mølmer-Sørensen

Hamiltonian [32], originally developed for trapped ions, and can be thus used to generate

fast geometric phase gates – albeit now for spin systems coupled to a cavity.

In this chapter as well, we are interested in the open system dynamics determined by

Eq. (5.6) containing the non-hermitian contribution of γ and within a Lindblad master

equation approach with ρ̇ = −iĤeffρ + iρĤ†
eff + L̂ρL̂† − {L̂†L̂, ρ}/2, with ρ the system

density matrix and L̂ =
√
κâ the jump operator where κ is the the cavity mode decay

rate. Later in section 5.5.6 decay from |e⟩ with rate γ is also included as a local-

homogeneous collective process in the Lindblad master equation defined in a collective
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Hilbert space and results are analysed numerically.

We define the quantum channel of the geometric phase gate (realised with a single cavity

drive of duration T ) acting on a basis state |qn⟩⟨qm| of the qubit density matrix, where

n̂1|qn⟩ = n|qn⟩, (qn ∈ {0, 1}N ) as

Egpg(|qn⟩ ⟨qm|) = eiφnm(T ) |qn⟩ ⟨qm| . (5.7)

The channel Egpg is obtained after tracing out the cavity from the joint spin-cavity state,

which results in phase accumulation as a function of n,m (i.e., the number of qubits in

the |1⟩ state).

In the following, we recall the exact solution of the geometric phases φnm(T ) in Eq. 5.7.

We describe the state of the joint spin-cavity system at any time t as ρ(t) =
∑

n,m ρnm(t),

and use an Ansatz for the state components ρnm(t) given by

ρnm(t) = eiφnm(t) |βn⟩ ⟨βm| ⊗ |qn⟩ ⟨qm| /⟨βn|βm⟩, (5.8)

where φnm(t) are the geometric-phases acquired by the qubit state component |qn⟩ ⟨qm|,
and |βn⟩ ⟨βm| is the corresponding state of the cavity mode. With this Ansatz, we

exactly solve the open quantum system for ρnm(t) with κ, γ ̸= 0. The latter is described

by the Lindbladian master equation given by

ρ̇nm = −iĤn
effρnm + iρnm(Ĥm

eff)† + L̂ρnmL̂
† − 1

2{L̂
†L̂, ρnm},

with Ĥn
eff = δa†a+ (−iγ12 + ζ(t)â† + ζ(t)∗â)n. On substituting the Ansatz for ρnm in the

master equation, we obtain the derivatives for βn(t) and φnm(t) as

β̇n = −(iδ + κ/2)βn − inζ, (5.9)

φ̇nm = (m− n)(ζβm + ζ∗βn) + i(m+ n)γ1/2. (5.10)

We now take the initial state of the joint spin-cavity system as ρ(0) = |βn(0)⟩ ⟨βm(0)| ⊗
|qn⟩ ⟨qm|, which forms the basis for all possible initial states and is hence sufficient to

obtain a general solution for the state evolution. The solutions corresponding to β(t)

and ψnm(t) are then given by (refer to chapter 4 for details)

βn(t) = βn(0)e−(iδ+κ/2)t − in

∫ t

0
dt′ζ(t′)e−(iδ+κ/2)(t−t′), (5.11)
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and

φnm(t) =

∫ t

0

[
(m− n)(ζ(t)βm(t)∗ + ζ(t)∗βn(t))

+ i(m+ n)γ1(t)/2
]
dt. (5.12)

The cavity drive pulses ζ(t) in Ĥeff are chosen of duration T such that ζ(0) = ζ(T ) = 0

so that βn(0) = βn(T ), ensuring that the cavity mode is decoupled from the spins at

the end of the geometric phase gate. One can hence write the corresponding quantum

channel of the geometric phase gate on a spin basis state by tracing out the cavity mode

as in Eq. (5.7). In the limit T → ∞, a simple analytic solution to Eqs. (5.9) and (5.10) is

obtained via an adiabatic approximation and to the first order in κ, γ, by setting β̇n = 0

in Eq. (5.9) as

φnm
ϕ

= n2 −m2 + (m− n)2
iκ

2δ
+ (m+ n)

iγδ

2g2
, (5.13)

where

ϕ = δ−1

∫ T

0
dt|ζ(t)|2, (5.14)

is the geometric phase corresponding to the unitary evolution Ûgpg = eiϕn̂
2
1 in the lossless

case (κ, γ = 0). To our knowledge, this is the first analytic solution of geometric gate

dynamics in the presence of relevant noise.

Recall from section 2.2.2.1 the symmetric Dicke subspace, which is the vector space

spanned by states

|DN
n ⟩ =

1√(
N
n

) ∑
{P | n̂1|qn⟩=n|qn⟩}

P|qn⟩, (5.15)

where P denotes all qubit permutations resulting in computational states |qn⟩ with a

fixed number of spins n in |1⟩. These are the simultaneous eigenstates of the collective

spin angular momentum operators Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z and Ĵz. We note that for a choice

of initial state
∣∣DN

0

〉
in the symmetric Dicke subspace, the qubit dynamics during a

geometric phase gate remains restricted to the symmetric Dicke subspace. The action

of the quantum channel Egpg on ρ expanded in the Dicke basis then reads

Egpg(ρ) =
∑
n,m

eiφnm(T )
〈
DN
n

∣∣ ρ ∣∣DN
m

〉 ∣∣DN
n

〉 〈
DN
m

∣∣ , (5.16)

see Eq. (5.7).
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5.3 State preparation of arbitrary state in symmetric Dicke

subspace

The state-preparation protocol for obtaining arbitraryN -particle entangled states within

the Dicke subspace is now realized by a pulse sequence with P steps, where each step j

consists of the cavity geometric phase gate (Egpg)j followed by a global qubit rotation:

Ûj = e−iθ
α
j Ĵze−iθ

β
j Ĵye−iθ

γ
j Ĵz . (5.17)

These global rotations can be realised with a side-drive on the spins.We recall the Hamil-

tonian for the side drive with Rabi frequency Ω from 3.1.1, written now in terms of the

collective spin operators:

ĤΩ =
Ω(t)

2
Ĵ+ +

Ω(t)∗

2
Ĵ− (5.18)

≡ |Ω(t)|(cos(arg(Ω))Ĵx − sin(arg(Ω))Ĵy) (5.19)

e−iĤΩt = e−i(π/2)Ĵze−i arg(Ω(t))Ĵze−i|Ω(t)|tĴy (5.20)

where Ĵ+ = Ĵx + iĴy, Ĵ− = Ĵx − iĴy and Ω(t) = |Ω(t)|ei arg(Ω)t. In writing the last

equation above, we note that in a frame rotating along z with phase arg(Ω) + π/2,

the Hamiltonian ĤΩ is equivalent to Ĥ ′
Ω = |Ω|Ĵy which produces a unitary evolution

e−i|Ω(t)|tĴy . On transforming back to the original frame, the total unitary evolution is

given by Eq. (5.20).

We now define the quantum channel Eq which reads

Eq = EP · EP−1 · · · E1 · Û0, (5.21)

with Ej = Ûj · (Egpg)j . In Refs. [176–178], it has been shown that such a sequence with

a finite number of steps P combining global spin rotations and squeezing-like geometric

phase operations can synthesize any arbitrary state in the symmatric subspace Dicke

subspace. However here, we find optimal solutions for open quantum systems.

In the limit T → ∞, (Egpg)j is fully characterised by the geometric phase ϕj and cavity-

drive detuning δj for fixed loss rates κ, γ (see Eq. (5.13)). The state-preparation protocol

is thus characterised by the set of parameters given by

Θ = {θα0 , θ
β
0 , θ

γ
0 , θ

α
j , θ

β
j , θ

γ
j , ϕj , δj . . . ; ∀j = 1, 2 . . . P}, (5.22)

consisting of the global rotation angles θα,β,γj , the geometric phases ϕjs and correspond-

ing δjs in Eq.
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5.4 Optimal probe state preparation for field sensing ex-

periment

In this section, we employ the state-preparation protocol described above to prepare

an optimally robust probe state for a defined field-sensing experiment. We define a

very general field sensing experiment as introduced in section 5.1 by considering a field

along the direction n⃗ that is coupled to the N spin qubits with interaction Hamiltonian

Ĥn⃗ = JĴn⃗, with J the coupling strength. Ĥn⃗ is applied for a time t such that a given

probe state ρ is rotated along the field axis by an angle β = Jt. The goal of the

field-sensing experiment is to estimate the rotation angle β as accurately as possible

by performing measurements on the spins using an observable M̂ . For any given M̂

(unbiased estimator), β can be estimated with a variance

(∆β)2 =
(∆M̂(β))2∣∣∣∂β⟨M̂(β)⟩

∣∣∣2 , (5.23)

where M̂(β) = e−iĤn⃗βM̂eiĤn⃗β and (∆X)2 = ⟨X2⟩ − ⟨X⟩2. The minimal (∆β)2 is

bound by the quantum Cramer-Rao inequality (∆β)2 ≥ 1/FQ(ρ, Ĥn⃗), where FQ(ρ, Ĥn⃗)

is the quantum Fisher information, with FQ = N and FQ = N2 for uncorrelated and

maximally entangled N -spin states, respectively [179].

The problem we focus on is finding the optimal probe state ρopt that can be pre-

pared in the presence of noise for given Ĥn⃗ and M̂ accessible in experiments. This

is achieved by choosing (∆β)2 in Eq. (5.23) as the protocol cost function and mini-

mizing it with respect to Θ in Eq, for the chosen M̂ , keeping β as an additional free

parameter in the optimisation [180]. The latter is performed numerically using the Broy-

den–Fletcher–Goldfarb–Shanno method [47, 48], where gradients of the cost function are

computed analytically. Since the optimal parameters Θopt are found for κ, γ ̸= 0, the

obtained cavity drive and global qubit pulses are noise-informed.

We illustrate below the protocol by choosing two different observables M̂ of experimental

relevance:(I) parity along the x axis M̂ =
⊗N

i=1 σ̂
(i)
x [49, 50], and (II) square of the

collective spin observable M̂ = Ĵ2
z along ẑ [51]. Choices (I) and (II) correspond to

the observables that for κ = γ = 0 are theoretically known to saturate the quantum

Cramer-Rao inequality with ideal GHZ and Dicke
∣∣∣DN

N/2

〉
probe states for fields along

n⃗ = ẑ and ŷ directions, respectively [52, 53].
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5.4.1 Analytic gradients of cost function

In this section we provide the derivatives of our protocol cost function (∆β)2 with respect

to all parameters Θ in Eq. (5.22). We first start out by writing the derivatives of the

states obtained after each step j in the protocol given by Eq in Eq. (5.21).

Our protocol starts with the application of Û0 on the initial state ρin = |D0⟩, giving

ρ0 = Û0ρinÛ†
0 . The states ρj obtained after application of each Ej for j = 1, 2 . . . P are

obtained as

ρj = ÛjEgpg(ρj−1)Û†
j . (5.24)

It is then straightforward to write the derivatives of ρ0 and ρj ∀j = 1, 2, . . . P with

respect to the parameters Θ, which are obtained as given below

∂θ0ρ0 = (∂θ0Û0)ρinÛ
†
0 + Û0ρin(∂θα0 Û

†
0),

∂θjρ0 = ∂ϕjρ0 = ∂δjρ0 = 0,

∂θjρj = (∂θj Ûj)Egpg(ρj−1)Û
†
j + ÛjEgpg(ρj−1)(∂θj Û

†
j ),

∂ϕjρj = Ûj(
∑
n,m

∂ϕj (φnm)eiφnm ⟨Dn| ρj |Dm⟩ |Dn⟩ ⟨Dm|)Û †
j ,

∂δjρj = Ûj(
∑
n,m

∂δj (φnm)eiφnm ⟨Dn| ρj |Dm⟩ |Dn⟩ ⟨Dm|)Û †
j

∂Θk<j
ρj = Ej . . . Ek+1(∂Θk

ρk), ∂Θk>j
ρj = 0.

We have used the shorthand θj for θαj , θ
β
j , θ

γ
j and Θj refers to all elements in the set

{θαj , θ
β
j , θ

γ
j , ϕj , δj} in the equations above. Note that the derivatives of the state ρj are

simply obtained by performing similar operations- applying the geometric-phase-gate op-

eration Egpg and global spin rotation operations. For example, obtaining ∂ϕjρj and ∂δjρj

are similar to calculating Egpg(ρj) but with modified phases eiφnm → ∂ϕj (φnm)eiφnm and

eiφnm → ∂δj (φnm)eiφnm respectively. The optimal probe state is prepared after at j = P

protocol steps which we denote by ρP = ρopt. With the prescription described above we

obtain the exact derivatives corresponding to ∂Θρopt, for all parameters Θ. In the fol-

lowing, we obtain the derivatives of the protocol cost function (∆β)2 for the two choices

of the measurement operator M̂ corresponding to (∆β)2GHZ and (∆β)2N/2 for case I and

II below respectively.
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5.4.1.1 Case I: Choosing M̂ = P̂x =
⊗N

i=1 σ̂
(i)
x

The operator Px =
⊗N

i=1 σ̂
(i)
x measures the parity of the state along x. Using eiπ/2σx =

iσx, we rewrite M̂ as

M̂ = eiπ(Ĵx−N/2). (5.25)

We choose the field generator corresponding to a field along z for this case as Ĥz⃗ = JĴz.

Let the state obtained after the rotation of the optimal probe state ρopt by an angle

β = Jt along the field axis be denoted by ρβopt. We obtain

ρβopt = e−iβĴzρopte
iβĴz , ∂βρ

β
opt = i

[
ρβopt, Ĵz

]
, (5.26)

∂Θ∂βρ
β
opt = i

[
∂Θρ

β
opt, Ĵz

]
, (5.27)

⟨P̂x(β)⟩ = Tr(P̂x, ρβopt), (5.28)

∂Θ⟨P̂x(β)⟩ = Tr(P̂x, ∂Θρβopt), (5.29)

where ∂Θρ
β
opt = e−iβĴz(∂Θρopt)e

iβĴz . Similarly, ⟨P̂2
x(β)⟩ = Tr(P̂2

x, ρ
β
opt), ∂Θ⟨P̂2

x(β)⟩ =

Tr(P̂2
x, ∂Θρ

β
opt), ∂β⟨P̂x(β)⟩ = Tr(P̂x, ∂βρβopt) and ∂Θ∂β⟨P̂x(β)⟩ = Tr(P̂x, ∂Θ∂βρβopt).

With these, we obtain the derivatives of (∆β)2GHZ as

∂Θ(∆β)2GHZ =

[(
∂Θ⟨P̂2

x(β)⟩ − ∂Θ(⟨P̂x(β)⟩)2
) ∣∣∣∂β⟨P̂x(β)⟩

∣∣∣2
−
(
⟨P̂2

x(β)⟩ − ⟨P̂x(β)⟩2
)
∂Θ

∣∣∣∂β⟨P̂x(β)⟩
∣∣∣2] / ∣∣∣∂β⟨P̂x(β)⟩

∣∣∣4 . (5.30)

5.4.1.2 Case II: Choosing M̂ = Ĵ2
z

For this choice of measurement operator M̂ , we choose the field along y axis correspond-

ing to Ĥy⃗ = JĴy. The second and the fourth moments for M̂ = Ĵ2
z after rotation of the

probe state ρopt by angle β = Jt, written with ⟨X̂⟩ = Tr(X̂, ρopt) are given by

⟨Ĵ2
z (β)⟩ = ⟨Ĵ2

z ⟩ cos2 β + ⟨Ĵ2
x⟩ sin2 β − ⟨{Ĵz, Ĵx}⟩ sinβ cosβ, (5.31)

⟨Ĵ4
z (β)⟩ = ⟨Ĵ4

z ⟩ cos4 β + ⟨Ĵ4
x⟩ sin4 β (5.32)

+ (⟨{Ĵz, Ĵx}2⟩ + ⟨{Ĵ2
z , Ĵ

2
x}⟩) cos2 β sin2 β

− ⟨Â⟩ cos3 β sinβ − ⟨B̂⟩ cosβ sin3 β,

where Â = {Ĵ2
z , {Ĵz, Ĵx}} and B̂ = {Ĵ2

x , {Ĵz, Ĵx}}.
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The variance of the measurement results is then obtained as (∆Ĵ2
z (β))2 = ⟨Ĵ4

z (β)⟩ −
⟨Ĵ2
z (β)⟩2. The derivative term in the denominator of (∆β)2 is obtained as

∂β⟨Ĵ2
z (β)⟩ = 2(⟨Ĵ2

x⟩ − ⟨Ĵ2
z ⟩) cosβ sinβ (5.33)

− ⟨{Ĵz, Ĵx}⟩(cos2 β − sin2 β).

By writing ∂Θ⟨X̂⟩ = Tr(X̂, ∂Θρopt), it is straightforward to obtain ∂Θ(∆β)2N/2 similar

to Eq. (5.30).

5.4.2 Protocol optimisation at gT → ∞ and at finite T

For finding the optimal state preparation protocol parameters for the case of gT → ∞,

we make use of Eq. (5.13) in the application of Egpg where we have ϕ = 1
δ

∫ T
0 |ζ(t)|2, and

hence we must have the same sign for ϕj and δj in each step j while finding the optimal

parameters. We hence perform a boundless optimisation using φnm = (n2 −m2)ϕj +

(m− n)2 iκ2

∣∣∣ϕjδj ∣∣∣+ (m+ n) iγ
2g2

|ϕjδj |, and post adjust the sign of δj corresponding to the

sign of ϕj .

For finding the optimal protocol parameters for a finite cavity pulse duration gT , the

quantum channel Egpg from Eq. 5.7 is applied using the solution in Eqs.5.11- 5.12 with

βn(0) = 0, that is assuming the cavity mode starts in vacuum (note that the protocol

is independent of the initial cavity state, see chapter 4). The optimisation is partially

bounded where the bounds are introduced for the δj values arising from the physical

constraint of limiting the pulse duration to the finite value of gT while keeping reasonable

maxt|η(t)|. The constraint can be explicitly written from the transformation from the

full Hamiltonian to the effective Hamiltonian in Eq. (5.6), as |ζ|2 < g2/4, which sets the

bounds δ(j) ∈
(
2π
T ,

3g2T
32ϕ(j)

)
. We start the optimisation with the parameters corresponding

to the T → ∞ case, with δ(j)s adjusted within the bounds mentioned above.

5.5 Results

We perform extensive numerical simulations in the parameter ranges 10 ≤ N ≤ 100,

25 ≤ C ≤ 106, 10−2 ≤ γ/κ ≤ 102 for cavity pulse durations 10 ≤ gT ≤ 102. For both

cases (I) and (II), we find that the noise-informed protocol prepares final probe states

resulting in measurement variances (∆β)2 that scale better with N than the SQL in

all cases with C ≳ 20 and closely approach the Heisenberg scaling (∆β)2 ∼ N−2 for

C ≳ 103, independently of the ratio γ/κ. The resulting global control pulses have a

smooth, continuous form for all protocol steps P .
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Figure 5.1(b1) and (b2) show example results of optimal cavity drive pulses η(t) found

to minimize (∆β)2 for observables (I) and (II), respectively, for N = 40, C = 104,

γ/κ = 0.01 and gT = 40. The plots show a continuous, smooth profile for both real and

imaginary parts of η(t). The protocol for case (I) requires only P = 1 step, identically

to the noiseless case [181]. Surprisingly, for case (II), the protocol converges to the

asymptotic results in just P = 3 steps, instead of the generically expected P ∼ N4 [177]

for constructive unitary synthesis or P ∼ N [176, 178] for state synthesis by search.

For each P , panels (c1) and (c2) show the corresponding state trajectories in Husimi-Q

representation of qubit state in the symmetric Dicke subspace. As expected, they appear

similar, but not identical, to those of GHZ and symmetric Dicke states: asymmetries

due to squeezing-like behavior are visible, resulting on only ∼ 57% and ∼ 15% overlap

with ideal GHZ and symmetric Dicke states, respectively. Nevertheless, we term them

as GHZ-like and
∣∣∣DN

N/2

〉
-like states.

Fig. 5.2 summarize our results for optimal (∆β)2 as a function of qubit number N , for

different cooperativities C and linewidth ratios γ/κ, computed in the limit gT → ∞.

For each N , C and γ/κ, the optimisation is performed O(N) times with randomly

initialised parameters and the best value is plotted. For case (I) [panel (a)], the optimal

probe states prepared with the noise-informed protocol surpass the SQL with variance

(∆β)2GHZ scaling with N as ∼ N−1.24 for cooperativities as small as C = 25, as ∼ N−1.52

for C = 100, and closely approaching the Heisenberg limit for C ≳ 104, with scaling

∆β2 ∼ N−α and α > 1.93. For case (II) [panel (b)], the optimal (∆β)2N/2 ∼ N−α

scale with α ≈ 1.4 for C = 25, α ≈ 1.5 for C = 102, 104 and α ≈ 1.6 for C = 106,

showing considerable improvement over the SQL for all C. In all cases, optimal results

are essentially independent of the ratio γ/κ. While our sensing protocol does not allow

for arbitrarily high precision, i.e. arbitrarily large N , as to be expected since no QEC

is employed, it provides a simple method using minimal quantum control resources to

achieve quantum advantage in the presence of realistic noise.

For each N and γ/κ, (∆β)2 decreases monotonically with increasing P , reaching the

analytic predictions for C → ∞ in just a few steps, Fig. 5.3 shows an example with

N = 10. We also compare the (∆β)2 values of the unoptimized protocol—designed for

ideal, noise-free conditions—with those of the optimized protocol for case I, as shown in

Fig. 5.3(a). The results demonstrate a clear advantage of our noise-informed protocol.

Moreover, pulse durations gT ≲ 40 are sufficient to converge to analytic results obtained

in the adiabatic limit gT → ∞ from Eqs. (5.7) and (5.13), in all shown cases. As an

example, Fig.5.4 shows the obtained optimal (∆β)2GHZ and (∆β)2N/2 for N = 10 as a

function of the cavity pulse duration in each application of Egpg. The obtained optimal

values optimal (∆β)2GHZ and (∆β)2N/2 show a dependence on γ/κ and is minimal for
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Figure 5.2: (a) Optimal (∆β)2GHZ for P = 1 and (b) (∆β)2N/2 for P = 3 obtained
as a function of number of qubits N , plotted for spin-cavity cooperativities C = 25
with γ/κ = 1, and C = 102, 104, 106 with different ratios γ/κ = 0.01, 0.1, 1, 10, 100,
obtained for the case of gT → ∞. The optimal states prepared in the presence of finite

C successfully surpass the SQL for values as small as C = 25.

γ = κ. For large cooperativities of C > 100, the optimal values converge close to the

values corresponding to gT → ∞ case for pulse durations gT ≈ 30 − 40g−1.

5.5.1 Optimal state preparation protocol parameters

In this section, we tabulate the obtained optimal parameters Θ in Eq which prepare

the optimal probe states ρopt minimising (∆β)2GHZ and (∆β)2N/2 in Tables 5.1 and 5.2

respectively.

5.5.2 Experimental observability

In order to explore the experimental observability of the above predictions, in this sec-

tion we show the performance of the prepared optimal probe states during signal col-

lection in a field-sensing experiment with the field generator Ĥn⃗ where spin qubits are

additionally subjected to homogeneous local dephasing with rate γϕ, as originated for

example by optical trapping of atoms in independent tweezers [182]. Homogeneous lo-

cal dephasing can be described as a collective process [147], with each N -qubit state
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Figure 5.3: (a) Optimal (∆β)2GHZ for P = 1 step obtained as a function of coopera-
tivity C , plotted for N = 10 and different ratios γ/κ. The circle markers correspond to
the results obtained with the application of unoptimised pulses referring to the pulses
which prepare the ideal GHZ state with (∆β)2GHZ = 1/N2 for the case κ = γ = 0. (b)
(∆β)2N/2 for P = 1, 2, 3, 5 steps obtained as a function of Cooperativity C , plotted for

N = 10 and different ratios γ/κ.
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Figure 5.4: (a) Optimal (∆β)2GHZ for P = 1 step and (b) (∆β)2N/2 for P = 3 steps
obtained as a function of the cavity drive pulse duration gT , plotted for N = 10,

cooperativities C = 102, 104, 106 and different ratios γ/κ.
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N C γ/κ N(∆β)2GHZ (θα0 , θ
β
0 , θ

γ
0 )

(ϕ1, δ1, θ
α
1 , θ

β
1 , θ

γ
1 ), ∆1

10 102 0.01 0.61 (0.98, 1.57, 0.88)
(0.86, 2.18g, -1.16, 1.57, 0.96), 26g

1.0 0.20 (1.57, 1.41, 0.34)
(1.56, 0.48g, 0, 1.57, 1.36), 237g

104 0.01 0.109 (0, 1.56, 0.50)
(1.56, 2.15g, 0, 1.57, -0.04), 9g

1.0 0.107 (-0.22, 1.55, 0.36)
(1.57, 0.44g,0, 1.57, 0.19), 267g

40 102 1.0 0.096 (-0.34, 1.14, 0.50)
(1.61, 0.30g, 0, 1.57, 0.07), 457g

104 0.01 0.030 (1.51, 1.54, 0.37)
(1.57, 2.03g , 0.08, 1.57, 1.58), 12g

1.0 0.029 (-0.04, 1.53, 0.37)
(1.57, 0.28g, 0.08, 1.57,0.02), 497g

100 102 0.01 0.15 (1.51, 0.98, 0.69)
(1.56, 2.13g, 0, 1.57, 1.32), 10g

1.0 0.07 (1.47, 0.87, 0.69)
(1.64, 0.24g, 0, 1.57, 1.29), 597g

104 0.01 0.013 (1.42, 1.51, 0.22)
(1.57, 1.80g, 0.03, 1.57, 1.66 ), 19g

1.0 0.013 (1.38, 1.51, 0.22)
(1.57, 0.18g, 0.03, 1.57, 1.63), 844g

Table 5.1: Optimal state preparation protocol parameters Θopt minimizing (∆β)2GHZ.
The listed values correspond to the cavity pulses in the application of geometric phase
gate Egpg of duration of T = 40g−1. The ∆j values are derived from the optimal ϕj , δj
by inverting the pulse ζ(t) in Eq. (5.6) to η(t) in the full Hamiltonian(see [62], and 4).

An extra rotation along ẑ direction to set βopt = 0 is incorporated in θα1 [180].

ρ in the collective Hilbert space HC of dimension
∑Jmax

J=Jmin
(2J + 1), with Jmax = N/2

and Jmin = (N mod 2)/2. Having the field generator Ĥn⃗ = JĴn⃗, where J is the

coupling strength of the spins with the field, we describe the homogeneous local de-

phasing (fluctuations in transition frequency) on the two-level spin with index ’j’ us-

ing the jump operator A(j) = 1
2 σ̂

(j)
z where σ̂

(j)
z = |1j⟩⟨1j | − |0j⟩⟨0j |. The optimal

probe state ρopt evolves according to ρ̇opt = −i
[
Ĥn⃗, ρopt

]
+ γϕ

∑N
j=1 L(j)[ρopt], where

L(j)[ρopt] = A(j)ρopt(A(j))†− 1
2{(A(j))†A(j), ρopt}. We solve the model numerically using

piqs package [60], using the prepared optimal probe states as initial states at Jt = 0.

In Fig. 5.5, we evolve the optimal probe states prepared for N = 40, C = 104 and

γ/κ = 1.0 as initial state at Jt = 0 under the field with the local homogeneous dephasing

acting on the spins. We see that (∆β)2GHZ increases rapidly with time t as ∼ eNγϕt for

any given γϕ/J using GHZ-like probe states. Results for
∣∣∣DN

N/2

〉
−like states appear

instead to be essentially independent of γϕ/J for the shown t.



Chapter 5. Entanglement-Enhanced Quantum Sensing 81

N C γ/κ N(∆β)2N/2 (θα0 , θ
β
0 , θ

γ
0 ), θβ−1

(ϕ1, δ1, θ
α
1 , θ

β
1 , θ

γ
1 ), ∆1

(ϕ2, δ2, θ
α
2 , θ

β
2 , θ

γ
2 ), ∆2

(ϕ3, δ3, θ
α
3 , θ

β
3 , θ

γ
3 ), ∆3

10 102 0.01 0.51 (1.19, 2.10, 0.66), 2.22
(0, -, -2.11, 1.50, 0.70), -

(0.21, 8g, -2.46, 2.15, -1.72), 8g
(0.02, 7.06g, -0.96, 2.86, -2.01), 39g

1.0 0.47 (1.15, -0.97, 0.43), 0.24
(0.08, 1.17g, 0.49, 1.08, 0.92), 323g

(-0.14, -0.83g, -0.25, 0.96, 0.92), 393g
(0.06, 1.06g, -0.99, -0.59, 0.13), 427g

104 0.01 0.165 (-0.08, -1.57, 0.63), 0.09
(0.10, 7.22g, 0.29, 2.52, -0.48), 17g
(0.30, 5.66g, 1.91, 0.18, -0.42), 11g

(1.38, 1.86g, 0.92, 0, 1.57), 21g

1.0 0.163 (-0.34, 1.57, 0.42), 2.09
(0.10, 1.14g, 1.68, 0.61, -0.23), 293g
(0.29, 0.67g, 0.49, 0.18, 1.25), 362g
(1.38, 0.25g, 3.14, 2.00, 0.79), 611g

40 102 0.01 0.21 (0.04, 0, 0.41), -0.03
(0.95, 0.41g, -1.03, 1.51, 0.43), 265g
(-0.07, -7.07g, -2.59, 0.63, -0.19), 21g
(0.03, 7.07g, 1.82, -0.26,-2.74 ), 33g

1.0 0.20 (0.36, -1.51, 0.49), -1.08
(0.06, 0.82g, -0.90, 2.47, 0.45), 600g

(-0.04, -0.71g, -0.41, 0.56, -0.84), 900g
(0.01, 0.94g, 0.33, 1.16, -0.90), 1200g

104 0.01 0.081 (0.29, 1.57, 0.74), 0.51
(0.05, 6.34g, 1.50, 0.42, -0.02), 32g
(0.22, 5.72g, -0.35, 0.09, 0.97), 15g

(1.47, 0.89g, 0, 0.48, -0.60), 90g

1.0 0.086 (0.26, 1.57, 0.74), 0.51
(0.04, 5.30g, 1.28, 0.43, -0.05), 44g
(0.21, 0.67g, -0.67, 0.09, 0.75), 400g
(1.45, 0.17g, 0, -0.48, -0.92), 900g

100 102 0.01 0.133 (0.23, 0, 0.72), 2.16
(0.32, 0.64g, -1.93, -1.58, 0.92), 300g
(-0.04, -7.07g, 1.83, -0.34, -1.05), 28g
(0.04, 3.26g, -0.11, 0.97, 1.33), 90g

104 0.01 0.045 (-1.17, 1.55, 0.53), 0
(0.02, 15.69g, 0.078, -0.34, -1.07), 11g

(0.17, 4.55g, 0.84, 0.10, 0.80), 26g
(-0.08, -7.07g, 1.07, 0.04, 0.88), 19g

Table 5.2: Optimal state preparation protocol parameters Θopt minimizing (∆β)2N/2.
The listed values correspond to the cavity pulses in the application of geometric phase
gate Egpg of duration of T = 40g−1.The ∆j values are derived from the optimal ϕj ,
δj by inverting the pulse ζ(t) in Eq. (5.6) to η(t) in the full Hamiltonian(see [62] and

chapter 4). The angles θβ−1 refer to the extra rotation along the field axis ŷ at the end
of the protocol steps to set βopt = 0 [180].
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Figure 5.5: Measured (∆β)2 as a function of dimensionless signal acquisition time Jt
by evolving the optimal state minimising (∆β)2 under a field coupled with the spins
with coupling strength J with local homogeneous dephasing acting on the spins with
rates γϕ/J = 0, 0.01, 0.1, 1.0 for N = 40, C = 104, γ/κ = 1.0. Green solid lines (darker
shade for larger γϕ) correspond to GHZ-like states while red dash-dot lines correspond

to the
∣∣∣DN

N/2

〉
-like states. Dotted black curves are the optimal (∆β)2 obtained with

analytic solution of Egpg for γϕ/J = 0.

In the following, we first present the analytic expressions for the measured (∆β)2 with

ideal GHZ and
∣∣∣DN

N/2

〉
states in the presence of local homogeneous dephasing of the

spins as a function of time during signal acquisition in field sensing experiment, and

further present the numerical results of the measured (∆β)2 with the optimal probe

states prepared with different N at finite cooperativities. All results are summarized in

Fig.5.6.

5.5.3 GHZ-like states undergoing dephasing during signal collection

Analytical results of evolution of an ideal GHZ state acted upon by a field Ĥz⃗ = JĴz in

the presence of local homogeneous dephasing on the spins are presented in Ref. [183].

We summarize the results here, and write the analytic expression for (∆β)2 of ideal

GHZ states (rotated by π/2N along z such that βopt = 0).

In accordance with the definition of jump operator Aj = 1
2 σ̂z in the master equation

dynamics(see main text), the local dephasing map on a single spin is defined as At(σ̂x±
iσ̂y) = e−i

γϕ
2
te∓iJt(σ̂x + iσ̂y), and At(σ̂z) = σ̂z, At(Î) = Î. This map can be directly

applied on the ideal GHZ state expanded as [183]

ρGHZ =
1

2N+1

(
⊗N
j=1(Î + σ̂z;j) + ⊗N

j=1(Î− σ̂z;j) + ⊗N
j=1(σ̂x;j + iσ̂y;j) + ⊗N

j=1(σ̂x;j − iσ̂y;j)
)
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Now for the GHZ state rotated by π/2N along ẑ given by e−i(π/2N)ĴzρGHZe
i(π/2N)Ĵz ,

and under the dephasing map, for M̂ = Px we obtain

⟨M̂⟩ = e−N
γϕ
2
t cos (NJt+ π/2), (∆M̂)2 = 1 − e−Nγϕt cos2 (NJt+ π/2), (5.34)

(∆Jt)2 =
eNγϕt

N2

1 − e−Nγϕt cos2 (NJt+ π/2)

| sin (NJt+ π/2) + (γϕ/2J) cos (NJt+ π/2)|2
. (5.35)

For the obtained noisy GHZ-like optimal probe states, we fit ⟨M̂⟩ with

⟨M̂⟩ =
1∑

m=N/2

αme
−mγϕt cos (2m(Jt+ π/(2N))) + α0, (5.36)

and expect a similar ∼ exp{Nγϕt} scaling in (∆Jt)2. For the case of γϕ/J = 0.01 in

Fig.5.5, we obtain non-zero fit parameters αN/2−1 = 0.78, αN/2−2 = 0.16, α0 = 0.05.

5.5.4
∣∣∣DN

N/2

〉
-like states undergoing dephasing during signal collection

We can perform a similar calculation to evaluate the effect of dephasing during signal

accumulation on the
∣∣∣DN

N/2

〉
state by a field Ĥy⃗ = JĴy. In this scenario, the map

generated by the signal and that due to dephasing in the ẑ basis do not commute. To

simplify this calculation, we assume that the input state is a perfect
∣∣∣DN

N/2

〉
, which

then undergoes dephasing at a rate γϕ over a time t, followed by perfect rotation of the

system by the unitary U = e−iJtĴy without dephasing. This models a field profile where

the field strength J(τ) is near zero until time t where it turns on strongly so that the

integrated action angle is β =
∫ t
0 J(τ)dτ = Jt. The variance of the estimation of β given

the measurement operator M̂ = Ĵ2
z is given by [52]:

(∆β)2 =
(∆Ĵ2

x)2f(β) + 4⟨Ĵ2
x⟩ − 3⟨Ĵ2

y ⟩ − 2⟨Ĵ2
z ⟩(1 + ⟨Ĵ2

x⟩) + 6⟨ĴzĴ2
x Ĵz⟩

4(⟨Ĵ2
x⟩ − ⟨Ĵ2

z ⟩)2
(5.37)

where

f(β) =
(∆Ĵ2

z )2

tan2(β)(∆Ĵ2
x)2

+ tan2(β).

Now we define the set of n bit strings with Hamming weight w as Bnw = {x⃗|
∑

j xj = w}
and furthermore the distance between two binary strings as d(x⃗, y⃗) =

∑
j |xj − yj |. The

Dicke state can be written

∣∣∣DN
N/2

〉
=

√
1(
N
N/2

) ∑
x⃗∈Bn

w

|x⃗⟩ ⊗
∣∣∣DN−n

N/2−w

〉√( N − n

N/2 − w

)
.
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Let the output of dephasing map after time t acting on a state ρ be written St(ρ). Notice

that the expression for the variance in Eq. (5.37) involves second and fourth moments

of angular momentum operators. This fact together with the permutation invariance

property of the Dicke states, and the local action of the dephasing map, implies that

the we can focus on the action of the map on a decomposition of the input state into

a partition of the state into a subsystem of the first two or four qubits and the rest.

Specifically we have the following decomposition of the output state:

St

( ∣∣∣DN
N/2

〉〈
DN
N/2

∣∣∣ ) = 1

( N
N/2)

∑
w

∑
x⃗,y⃗∈Bj

w
|x⃗⟩ ⟨y⃗| e−d(x⃗,y⃗)γϕt ⊗ St

( ∣∣∣DN−j
N/2−w

〉〈
DN−j
N/2−w

∣∣∣ )( N−j
N/2−w

)
+
(

terms having St

( ∣∣∣DN−j
N/2−w

〉〈
DN−j
N/2−w′

∣∣∣ )with w ̸= w′
)
.

where we can focus on this decomposition for j = 2, 4. The last terms which are off

diagonal in the Dicke basis will not contribute to expectation values of weight 2 or 4

Pauli operators, when we take the trace, namely ⟨Ô⟩ = Tr
[
ÔSt

( ∣∣∣DN
N/2

〉〈
DN
N/2

∣∣∣ )]. The

input state is invariant under rotations about ẑ as is the dephasing map so ⟨Ĵ2
x⟩ = ⟨Ĵ2

y ⟩.
Also because there are an equal number of diagonal terms with even and odd Hamming

weight we have ⟨Ĵ2
z ⟩ = ⟨Ĵ4

z ⟩ = 0. Now we write

Ĵ2
x =

1

4

∑
j ̸=k

XjXk +
N

4
1, Ĵ4

x =
1

16

∑
j ̸=k,j′ ̸=k′

XjXkXj′Xk′ +
N

8

∑
j ̸=k

XjXk +
N2

16
1.

For ⟨Ĵ2
x⟩ the two point expectation value

⟨XjXk⟩ =
e−2γϕtN

2(N − 1)

for j ̸= k, of which there are N(N − 1) terms, and hence

⟨Ĵ2
x⟩ =

1

4

(e−2γϕtN2

2
+N

)
.

For ⟨Ĵ4
x⟩, the four point expectation value

⟨XjXkXℓXm⟩ =
e−4γϕt3N(N − 2)

8(N − 1)(N − 3)
,

for j ̸= k ̸= ℓ ̸= m, of which there are N(N − 1)(N − 2)(N − 3) terms. The number

of terms involving ⟨1⟩ are 3N2 − 2N . The remaining terms only involve two point

expectation values ⟨XjXk⟩ with j ̸= k and there are N4 −N(N − 1)(N − 2)(N − 3) −
(3N2 − 2N) of them. Hence

⟨Ĵ4
x⟩ =

1

16

(
(3N2 − 2N) + e−2γϕt(3N3 − 4N2) +

e−4γϕt3N2(N − 2)2

8

)
.
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Finally, we find

⟨ĴzĴ2
x Ĵz⟩ = Tr

[
ĴzĴ

2
x ĴzSt

( ∣∣∣DN
N/2

〉〈
DN
N/2

∣∣∣ )]
= Tr

[
Ĵ2
x ĴzSt

( ∣∣∣DN
N/2

〉〈
DN
N/2

∣∣∣ )Ĵz]
= Tr

[
Ĵ2
xSt

(
Ĵz

∣∣∣DN
N/2

〉〈
DN
N/2

∣∣∣ Ĵz)]
= 0

using the fact that Ĵz commutes with the dephasing channel, and Ĵz

∣∣∣DN
N/2

〉
= 0. Hence

we arrive at for β = Jt

(∆Jt)2 =
16e2γϕt(2e2γϕt +N) + (16e4γϕt(N − 1) + 16e2γϕtN(N − 2) +N(12 − 12N +N2)) tan2(Jt)

8N(2e2γϕt +N)2
.

(5.38)

Notice as expected, at t = 0 the variance (∆β)2 = 2
N(N+2) .

In Fig.5.6, we plot the measured (∆β)2 = (∆Jt)2 as a function of the signal acquisition

time Jt for ideal GHZ and
∣∣∣DN

N/2

〉
probe states(panel (a)) with local homogeneous

dephasing rates γϕ/J = 0, 0.01, 0.1, 1.0 for N = 10, 40, 60 and compare their performance

in field-sensing experiment against the performance of the optimal probe states(similar

to Fig.5.5 but for longer signal collection times) prepared for C = 104, γ/κ = 1.0(panel

(b)) and C = 102, γ/κ = 1.0(panel (c)). We observe a qualitatively similar behaviour

of the optimal probe states prepared at finite cooperativities.

5.5.5 Spins under local homogeneous dephasing during state prepara-

tion

In this section, we study the robustness of our state preparation protocol against the local

homogeneous dephasing process. We consider the dephasing effects introduced as local

homogeneous dephasing processes, which can be described as a collective process[147],

and we work in the collective Hilbert space HC of dimension
∑Jmax

J=Jmin
(2J + 1) where

Jmax = N/2 and Jmin = (N mod 2)/2. We study primarily the effects of the local homo-

geneous dephasing process during the application of the geometric phase gate Egpg and

consider negligible dephasing during the fast global spin rotation operations. We per-

form the numerical calculations in the collective Hilbert space using the piqs solver[60].

In our geometric phase gate protocol implemented during the state preparation protocol,

we make use of the cavity mode coupled with the |1⟩ ↔ |e⟩ transition with strength g,

while the state |0⟩ remains uncoupled. To add finite local homogeneous dephasing in

the three-level system, we model the three level dephasing with the jump operators

A(j)
γeϕ

= |ej⟩ ⟨ej | and A(j)

γ1ϕ
= |1j⟩ ⟨1j | corresponding to dephasing of states |e⟩ and |1⟩ with
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Figure 5.6: (a) (∆β)2 = (∆Jt)2 as a function of dimensionless signal acquisition time

Jt for ideal GHZ states and ideal
∣∣∣DN

N/2

〉
states evolving under a field coupled with

strength J with local homogeneous dephasing acting on spins obtained in Eqs. (5.35)
and (5.38) respectively, for dephasing rates γϕ/J = 0, 0.01, 0.1, 1.0 and N = 10, 40, 60.
The dotted red lines correspond to (∆β)2 = 2/(N(N + 2). (b) Measured (∆β)2 as a
function of dimensionless signal acquisition time Jt by numerically evolving the optimal
probe states prepared at cooperativity C = 104, γ/κ = 1.0 under a field coupled
with spins with coupling strength J , with local dephasing on spins with rates γϕ (for
similar values as in panel (a)). Dotted black curves are the optimal (∆β)2 obtained
with analytic solution of Egpg for γϕ/J = 0. (c) Similar to panel (b) for optimal
states prepared at cooperativity C = 102, γ/κ = 1.0. The cooperativity C values
corresponding to an entire panel (row) and N values corresponding to an entire column
are indicated to the left and the top sides respectively. Throughout, green solid lines
(darker shades for larger γϕ) correspond to GHZ-like states while red dash-dot lines

correspond to
∣∣∣DN

N/2

〉
states.

rates γeϕ and γ1ϕ respectively [184]. We include as before the cavity mode decay with

rate κ and the corresponding jump operator Aκ = â. The state ρ in the original frame

evolves according to ρ̇ = −i
[
Ĥ, ρ

]
+ L[ρ] where

L[ρ] = κLκ[ρ] +
N∑
j=1

(
γ1ϕL

(j)

γ1ϕ
[ρ] + γeϕL

(j)
γeϕ

[ρ]

)
, (5.39)

with Lα[ρ] = AαρA†
α − 1

2{A
†
αA, ρ}.
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We move from the original frame to the effective frame by performing two basis trans-

formations. The first basis transformation acts only on the cavity subspace mapping

ρ → ρ′ and Ĥ → Ĥ ′ with L[ρ′] = L[ρ]. The second basis transformation defined

by Û = exp
[
λ
2 Ô
]

with Ô = −eiµŜ+ + e−iµŜ−, where µ = arg(α) and λ such that

cos(λ) = ∆/
√

∆2 + 4g2|α|2(see 4, section 4.1.2) acts on the qubit subspace alone which

maps ρ′ → ρ̃ = Ûρ′Û †. We hence obtain

˙̃ρ =
(
−iÛĤ ′Û † + ∂t((λ/2)Ô)

)
ρ̃

+ ρ̃
(
iÛĤ ′Û † + ∂t((λ/2)Ô†)

)
+ ÛL[ρ]Û †

≡ ρ̇eff = −i
[
Ĥeff , ρ̃

]
+ L(ρeff).

(5.40)

In the effective frame, we map ρ̃ → ρeff where we restrict the dynamics only to the

computational states |0⟩ and |1⟩, by assuming that we initially always start with a state

with ne = 0, neglecting energy terms of the order O(∆), and coupling terms of the

order O(g) between the states with energy difference diverging with ∆/g → ∞. We

use ÛĤ ′Û † + i∂t((λ/2)Ô = Ĥeff + O(g)(Ŝ+, Ŝ−) ≈ Ĥeff . We map similarly L̃[ρ̃] =

ÛL[ρ]Û † → L(ρeff). The transformed jump operators Ã(j) = ÛA(j)Û † are obtained as

˜A(j)

γ1ϕ
= A(j)

γ1ϕ

1

2

(
1 +

√
1 − 4|ζ|2/g2

)
+A(j)

γeϕ

1

2

(
1 −

√
1 − 4|ζ|2/g2

)
−(eiµ(A(j)

γ )† + e−iµ(A(j)
γ ))

1

2
(|ζ|/g), (5.41)

˜A(j)
γeϕ

= A(j)
γeϕ

1

2

(
1 +

√
1 − 4|ζ|2/g2

)
+A(j)

γ1ϕ

1

2

(
1 −

√
1 − 4|ζ|2/g2

)
+(eiµ(A(j)

γ )† + e−iµ(A(j)
γ ))

1

2
(|ζ|/g) (5.42)
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The Lindbladian L[ρeff ] = is obtained from ÛLÛ † after applying similar assumptions

described above as in the derivation of Ĥeff , given by

L[ρeff ] = κLκ[ρeff ] +
N∑
j=1

(
γ′ϕL

(j)
γ′ϕ

[ρeff ] + γ′L(j)
γ′ [ρeff ]

)
,

Lκ[ρeff ] = Lκ[ρeff ],

L(j)
γ′ϕ

[ρeff ] = A(j)
γ′ϕ
ρeff(A(j)

γ′ϕ
)† − 1

2
{(A(j)

γ′ϕ
)†A(j)

γ′ϕ
, ρeff},

L(j)
γ′ [ρeff ] = −1

2
{n̂(j)1 , ρ},

(5.43)

where

γ′ϕ = γ1ϕ
(1 +

√
(1 − 4|ζ|2/g2))2

4
+ γeϕ

(1 −
√

(1 − 4|ζ|2/g2))2

4
,

A(j)
γ′ϕ

=
1

2
σ(j)z , γ′ = (γ1ϕ + γeϕ)

|ζ|2

g2
. (5.44)

We combine L(j)
γ′ [ρeff ] in the Hamiltonian as non-hermitian contribution resulting in

solving the system with

Ĥeff = δâ†â+

(
−i(γ1 + γ′)

2
+ ζâ† + ζ∗â

)
n̂1,

L[ρeff ] = κLκ[ρeff ] + γ′ϕ

N∑
j=1

L(j)
γ′ϕ

[ρeff ] (5.45)

In Fig. 5.7, (∆β)2N/2 and (∆β)2GHZ is plotted by simulating the master equation dynam-

ics with the model described above (solid lines) with dephasing rates γ1ϕ = γeϕ = γϕ =

0, 10−4 g, 10−3 g for N = 10, C = 102, γ/κ = 1.0. The results with γϕ/g = 0(circle

markers) coincide with the results obtained with analytical solution(dashed lines) in

Eqs. (5.11)-(5.12), which validate our state preparation protocol. We see that the opti-

mal probe states remain quite robust against dephasing rates of the order γϕ/g < 10−4.

5.5.6 Local homogeneous spontaneous emission treated as a collective

process

In this section, we treat the local homogeneous spontaneous emission rate γ of state

|e⟩ in the master equation approach with jump operator A(j)
γ = |1j⟩ ⟨ej |. The trans-

formed jump operator
˜A(j)
γ = ÛA(j)

γ Û †(similar to qubit basis transformation performed
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Figure 5.7: (∆β)2N/2 and (∆β)2GHZ obtained with our optimal state preparation pro-

tocol when local homogeneous dephasing of states |1⟩ and |e⟩ is added with rates
γ1ϕ = γeϕ = γϕ, for N = 10, C = 102, γ/κ = 1.0. The markers correspond to nu-
merical results obtained with simulations performed with the effective model derived
in Eq. (5.45) in the collective Hilbert space. The dashed lines correspond to the values

obtained with analytical solutions in Eqs. (5.11)-(5.12).

in Eqs. (5.41)-(5.42)) is obtained as

˜A(j)
γ = A(j)

γ

1

2

(
1 +

√
1 − 4|ζ|2/g2

)
−(A(j)

γeϕ
−A(j)

γ1ϕ
)eiψ(|ζ|/g)

−(A(j)
γ )†

ei2ψ

2

(
1 −

√
1 − 4|ζ|2/g2

)
. (5.46)

We obtain a similar effective Lindbladian Leff in the same form as in Eqs. (5.43), with

γ′ϕ = γ|ζ|2/g2, Aγ′ϕ
=

1

2
σ(j)z , (5.47)

γ′ = γ
(1 −

√
(1 − 4|ζ|2/g2))2

4
. (5.48)

The effective model is reduced to

Ĥeff = δâ†â+

(
−iγ

′

2
+ ζâ† + ζ∗â

)
n̂1, (5.49)

L[ρeff ] = κLκ[ρeff ] + γ′ϕ

N∑
j=1

L(j)
γ′ϕ

[ρeff ]. (5.50)

In Fig. 5.8, (∆β)2N/2 and (∆β)2GHZ for N = 10, C = 104, γ/κ = 0.01 is plotted by simu-

lating the master equation dynamics with the model described above (solid lines). It is

compared against the values obtained when γ is treated as a non-hermitian contribution

(dashed lines, see Eq. (5.6)). We see that the solid lines always lie very close or below



Chapter 5. Entanglement-Enhanced Quantum Sensing 90

x 10-2

1.0

1.2

1.4

1.6

1.8

2.0

Cavity pulse duration gT

Heisenberg limit

20 40 80 10060

γ as non-hermitian
contribution

γ in Lindbladian

Figure 5.8: (∆β)2N/2 and (∆β)2GHZ obtained with our optimal state preparation pro-

tocol for N = 10, C = 104, γ/κ = 0.01 with the spontaneous emission from the |e⟩
state treated as a non-hermitian contribution (dashed lines, star markers) compared
with the values obtained when decay is treated as a Lindbladian jump operator in the

master equation formalism(solid lines, circle markers).

the dashed lines, hence implying an upper bound on the variance corresponding to the

(∆β)2 values obtained in the main text by treating γ as a non-hermitian contribution.

5.6 Example system

Our results are directly relevant to state-of-the-art experiments with neutral atoms

trapped in optical cavities. As an example, we consider 87Rb atoms trapped in optical

tweezers and coupled to a fiber Fabry-Perot cavity [44–46]. We choose qubit states |0⟩ =∣∣52S1/2, F = 1,mF = 0
〉
, |1⟩ =

∣∣52S1/2, F = 2,mF = 0
〉
, and |e⟩ =

∣∣52P3/2, F = 3,mF = 0
〉
,

where the linewidth of the |1⟩ ↔ |e⟩ transition (λ = 780 nm) is γ = 2π×6 MHz (FWHM).

We assume a cavity finesse F ≈ 2×105, a waist radius ωr ≈ 2µm and a length L ≈ 40µm

resulting in a cooperativity of C = 3λ2F/(2π3ω2
r ) ≈ 1500 with a coupling strength of

g =
√

3λ2Cγ/(2π2ω2
rL) ≈ 2π × 400 MHz and κ = πC/LF ≈ 2π × 20 MHz (FWHM), so

that γ/κ ≈ 0.3. Our noise-informed state preparation protocol obtains for N = 10 atoms

a minimal (∆β)2N/2 = 0.022 with P = 3 protocol steps and a minimal (∆β)2GHZ = 0.013

with P = 1 protocol step, where in each step the cavity pulse is applied for a duration

T = 20g−1 ≈ 8 ns. Tweezer induced dephasing rates on state |1⟩ can be as small as

γϕ/g = 0.03 × 10−6 [185], which we find to be negligible (see Fig. 5.7 for reference).
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5.7 Conclusion and outlook

In this chapter, we presented a simple, deterministic protocol to prepare entangled states

in the symmetric Dicke subspace of spins that we show for medium sized systems, N

up to 100, provide a quantum advantage for sensing and are optimally robust in the

presence of a noisy environment. We focused on spins coupled to a common cavity

mode in the regime of strong coupling of cavity quantum electrodynamics, as can be

realized, for example, with cold atoms trapped in optical cavities. No direct interactions

are required between the spins, though that can provide another handle for Dicke state

control [186]. When applied to the measurement of the strength of a weak external field,

the protocol prepares multi-particle entangled states leading to a scaling with N of the

measurement precision characterised by the variance of the estimated field strength that

is significantly better than the SQL in the presence of relevant noise, such as photon

cavity loss, spontaneous emission and dephasing already for moderately large strengths

of light-matter interactions. Surprisingly, the protocol requires only a few global pulses of

the cavity mode drive and global rotations, whose parameters we provide. We discussed

the performance of different classes of entangled states that can be prepared using the

protocol for field signal acquisition in the presence of spin dephasing.

Finally, state-preparation protocol described in this chapter is sufficient to achieve uni-

tary synthesis in the Dicke subspace. The control algebra {Ĵ2
z , Ĵx, Ĵy, Ĵz} is universal

for Dicke state preparation starting from a canonical product state like
∣∣DN

N

〉
[187] and

is efficient [177, 178]. By a simple modification that enables multi-controlled phase

gates, our protocol is exactly universal for such unitary synthesis: in chapter 6 we pro-

pose a new adiabatic phase gate using the same cavity setup but in the weak drive,

long pulse time limit with detunings ∆, δ = O(g). There we show that sequential

application of N adiabatic gates can generate a multi-controlled phase gate determin-

istically V (ϕ) = eiϕ|DN
N ⟩⟨DN

N |. Writing an arbitrary unitary in the Dicke subspace in

its spectral decomposition, U =
∑N+1

j=1 eiλj |λj⟩⟨λj |, the following decomposition suffices

U =
∏N+1
j=1 W (λj)

†V (λj)W (λj), where W (λj)
† is any unitary extension of the state

mapping W (λj)
† ∣∣DN

N

〉
= |λj⟩.

While the results presented in this work are directly relevant to state-of-the-art exper-

iments with cold atoms trapped in tweezer arrays in cavities [55], we anticipate that

our noise-informed protocols can be generalized to different physical setups and noise

models, e.g. for Rydberg atoms and cold ion chains. This will be subject of future work.





Chapter 6

Adiabatic Phase Gate Protocol

This chapter is an adaptation of Protocol B from the publication titled ”Non-Local

Multi-Qubit Quantum Gates via a Driven Cavity” [54]. In this chapter, we refer to

Protocol B as the Adiabatic Phase Gate (APG) protocol, and describe its working with

our setup and model discussed in Chapter 2. Similar to the geometric phase gate (GPG)

protocol from chapter 4, for number of qubits N = 2, the APG forms a universal gate

set for quantum computation together with single qubit gates. In contrast to the GPG

protocol, the APG protocol, as the name suggests is an adiabatic protocol that operates

in the limit of a weak cavity drive pulse strength η/g → 0, with detunings ∆, δ = O(g),

and a pulse duration T = O(η−2). It makes use of an adiabatic evolution of the joint

cavity-qubit system to implement a family of phase gates ÛB = exp[ic1/(c2 − n̂)], where

c1 and c2 are parameters depending on the intensity, duration and detuning of the applied

drive. Similar to the GPG protocol, here again we obtain a closed-form expression for

the operation fidelity of the APG protocol which scales as ∼ 1/
√
C, with C the single

atom- cavity cooperativity. The distinguishing feature of APG protocol is its versatility:

Since ÛB depends nonlinearly on c2, the repeated application of ÛB with different values

of c1 and c2 can be used to synthesise arbitrary phase gates exp(iφ(n̂)). This can

be used to implement phase-rotation gates of the form exp
(
iασ

(1)
z ⊗ ...⊗ σ

(N)
z

)
with

arbitrary phases α where σ̂
(j)
z is the pauli z operator acting on qubit j, which appear

in many variational quantum algorithms for fermionic systems [40, 188]. It can also be

used to implement multi-controlled Z gates, enabling generalized Toffoli gates which are

frequently used as primitives in QEC to perform majority voting circuits for syndrome

extraction and for measurement free QEC [189–191]. Note that synthesizing multi-

controlled Z gates using only single- and two-qubit gates either requires circuits of large

depths or additional ancilla qubits [41], both of which can be avoided using the APG

protocol.

93
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In Sec. 6.1 we discuss the APG protocol in the absence of losses, followed by the calcu-

lation of the infidelity for finite values of γ and κ in Sec. 6.2. We confirm our analysis

through a numerical simulation in Sec. 6.3. In Sec. 6.4 we discuss how several repetitions

of APG protocol can be used to implement arbitrary phase gates. Finally in Sec. 6.5,

we summarise the gate times and fidelity estimates for a CZ gate implemented with the

APG protocol in realistic example setups, and Sec. 6.6 presents the chapter conclusion

and outlook.

6.1 Implementation of the Adiabatic Phase Gate: Decay-

free case

We recall here again the Hamiltonian and model for our cavity QED setup from chap-

ter 3:

Ĥ(t) = δâ†â+ (∆ − iγ/2)n̂e + [(gŜ− + iη(t))â† + h.c.], (6.1)

ρ̇ = −iHρ+ iρH† + LρL† − {L†L, ρ}/2, (6.2)

We start by assuming γ = κ = 0. We consider an initial state |ψ(0)⟩ = |0⟩ ⊗ |q⟩,
with the cavity starting in state |0⟩ and the qubits in a computational basis state |q⟩
(q ∈ {0, 1}N ), with exactly n =

∑
j qj qubits in state |1⟩. Note that |ψ(0)⟩ is an

eigenstate of the Hamiltonian Ĥ [Eq. (6.1)] for η = 0. If now η is varied slowly enough,

the system will stay in an eigenstate of H and accumulate a dynamical phase. Since

at the final time we have again η(T ) = 0, we obtain |ψ(T )⟩ = eiφn |0⟩ ⊗ |q⟩, where the

dynamical phase is given by

φn = −
∫ T

0
⟨ψn(t)|H(t) |ψn(t)⟩dt. (6.3)

Using second order perturbation theory, one obtains (see Appendix B.1)

φn = − I

δ − ng2/∆
, (6.4)

where I =
∫ T
0 |η(t)|2dt is the pulse energy. Thus, the pulse implements a unitary

UB = exp
[
−iI/(δ − n̂g2/∆)

]
.
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6.2 Adiabatic phase gate performance in the presence of

losses

For γ, κ ̸= 0 the quantum operation on the space of the qubits can be approximated by

(see Appendix B.2)

E(|q⟩
〈
q′
∣∣) = cnme

i(φn−φm) |q⟩
〈
q′
∣∣ . (6.5)

Again, |q⟩ and |q′⟩ are computational basis states of the qubits with exactly n =
∑

j qj

and m =
∑

j q
′
j qubits in state |1⟩, respectively. The coefficients cnm are given by

cnm = 1 − [(γn + γm + (sn − sm)2], (6.6)

with

γn =
γng2

(∆δ − ng2)2
I = − γ

∆

ng2

∆δ − ng2
φn (6.7)

sn =

√
κ∆

∆δ − ng2

√
I = ±

√
κ∆√

|∆δ − ng2|

√
|φn|. (6.8)

where in the last equality the sign is + if ∆/(∆δ − ng2) > 0 and − otherwise.

The fidelity can be calculated analogously to Eq. (4.27) as

F =

∑N
n=0

(
N
n

)
cnn +

∑N
n,m=0

(
N
n

)(
N
m

)
cnm

2N (2N + 1)
(6.9)

To implement a CZ gate (N = 2), up to single qubit gates, I has to be chosen such that

|φ2 − 2φ1 + φ0| = π. Given this choice, the values of δ and ∆ that maximize F can be

found numerically as δ = 0.529
√
κ/γg, ∆ = −2.09

√
γ/κg, which gives 1−F = 1.79/

√
C.

The scaling of the optimal δ and ∆ with γ and κ can be explained as follows: Inserting

the second expressions from Eq. (6.7) and (6.8) into Eq. (6.9) shows that for any given

phases φ0, ..., φN , the infidelity is of the form 1−F = γh1(δ∆)/|∆|+κh2(δ∆)|∆|, where

h1 and h2 are positive functions independent of γ and κ which only depend on δ and

∆ through their product δ∆. At a fixed value of δ∆, the optimal choice of ∆ is thus

|∆| =
√
γ/κ

√
h1(δ∆)/h2(δ∆), and the infidelity is 1−F =

√
2γκh1(δ∆)h2(δ∆). Since

h1 and h2 are independent of γ and κ, the optimal value of the product δ∆ is also

independent of γ and κ. Since ∆ ∝
√
γ/κ it follows δ ∝

√
κ/γ.
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Figure 6.1: Numerical results of CZ gate and performance of phase rotation gate and
CN−1Z gate with adiabatic phase gate protocol: (a) Infidelity (numerical calculation)
for a CZ gate as a function of pulse duration T for different values of C and γ/κ. (b)
Infidelity of a phase-rotation gate with α = π/4 in the T → ∞ limit as a function of N .
Also shown is the infidelity of the same gate implemented using a decomposition into
CZ and single-qubit gates using the circuit from Ref. [40]. (c) Infidelity of a CN−1Z
gate vs N when implemented using APG protocol and by decomposition into CZ and

single qubit gates using an ancilla-free Gray-code [41].

6.3 CZ gate: Numerical Results

To confirm our formula for the infidelity and to determine the infididelity for finite pulse

durations T , we numerically solve the Lindblad equations for different pulse durations

T and different values of γ and κ. To achieve adiabaticity, η(t) is chosen as a flat-top

pulse, rising to its maximium value ηmax with a sin2-shaped flank of duration T0 ≤ T/2,

staying at ηmax for a duration T −2T0, and then falling back to 0 in a sin2-shaped flank.

T0 and ηmax are numerically chosen to satisfy |φ2 − 2φ1 + φ0| = π with the minimal

possible slope maxt |η̇(t)|.

Figure 6.1(a) shows the infidelity as a function of T for a CZ gate using APG protocol

for different values of C and γ/κ. We find that 1 − F approaches its asymptotic value
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1.79/
√
C for pulse durations 102g−1 ≲ T ≲ 103g−1, while for smaller T it increases

due to diabatic errors. The different behavior for different γ/κ ratios arises due to a

nontrivial behavior of |φ2 − 2φ1 + φ0| away from the perturbative approximation made

above.

6.4 Implementation of arbitrary phase gates

In the following we show howN−1 repetitions of APG protocol can be used to implement

an arbitrary symmetric phase gate exp(iφ(n̂)) for any function φ(n̂), up to single qubit

gates and a global phase.

To see this, let us consider applying the APG protocol N − 1 times, with different

detunings δ1, ..., δN−1 and ∆1, ...,∆N−1 and different pulse energies I1, ..., IN−1 in each

pulse. We require the that ∆k − δk is independent of k, so that the different pulses can

be implemented by only changing the amplitude, duration and detuning of the external

drive of the cavity, while the detuning between the cavity frequency and the |1⟩ ↔ |e⟩
transition stays constant. Each of these pulses now implements a phase gate exp(iφk(n̂))

with φk(n̂) given through Eq. (6.4). Taking all pulses together and adding a global phase

θg and a single qubit phase θs, the implemented phase gate is

φ(n̂) = θg + n̂θs −
N−1∑
k=1

Ik
δk − n̂g2∆k

(6.10)

Observe that the φ(n̂) depend linearly on the N + 1 variables θg, θs and I1, ..., IN−1.

Thus, since there are N + 1 possible values of n (from 0 to N), Eq. (6.10) has a unique

solution of the θg, θs and I1, ..., IN−1 as a function of φ(·) and the δk and ∆k. Hence

there are pulse energies I1, ..., IN−1 to implement exp(iφ(n̂)) up to single qubit gates

and a global phase. Note that such I1, ..., IN−1 can be found for any choice of the δk

and ∆k. In Appendix B.4 we give a method based on linear programming to find the

δk and ∆k which minimize the gate infidelity.

We exemplify the procedure described above for two classes of multi-qubit gates: Phase-

rotation gates exp(−iαZ1 ⊗ ...⊗ Zn) – corresponding to phases φn = −α(−1)n – and

N -qubit multi-controlled-Z gates (CN−1Z gates), i.e. phase gates with φN = π and

φn = 0 for n < N . The infidelity for both multi-qubit gates as a function of N is shown

in Fig. 6.1(b,c) for different values of γ/κ. Here, we take δk − ∆k = 2.09g/
√
κ/γ +

0.529g
√
κ/γ (the optimal choice for N = 2), and choose the δ1, ..., δN−1 to maximize the

fidelity (See Appendix B.4). Note that for CN−1Z gates we consider the minimal fidelity

Fmin = min|ψ⟩ ⟨ψ|CN−1ZE(|ψ⟩ ⟨ψ|)CN−1Z |ψ⟩ instead of the average gate fidelity for a
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fair comparison between different N . An approximately linear scaling of the infidelity

with N is observed for both gates in Fig. 6.1(b,c). Our protocol outperforms implemen-

tations using decompositions into individual CZ and (perfect) single qubit gates in both

cases for any N > 2. An application of GPG protocol is to perform non-local CN−1Z

gates, which are locally equivalent to multi-controlled Toffoli gates, for majority voting

circuits. These are frequently used e.g. in measurement free quantum error correction

[189–191]. Even though for N > 2 the gate is not Clifford and our implementation is not

fault tolerant, the gate can be used for fault tolerant quantum error correction when it

involves controls that are ancilla that carry error syndrome data that is classical [189].

6.5 Realistic fidelity estimates

In this section we provide estimates for the achievable gate fidelity and pulse duration

for CZ gate with the adiabatic phase gate protocol for different physical systems. The

systems are described in detail in section 3.4, and other specificities are described in

section 4.5. Table 6.1 summarises the results.

Emitter type Neutral Rydberg Molecules Fluxonium

Field type optical microwave microwave microwave

Coupling strength g 400 MHz 4 MHz 400 kHz 10 MHz

Cavity linewidth κ 20 MHz 17 Hz 40 Hz -

Emitter transition linewidth γ 6 MHz 204 Hz < 10−2 Hz 0.8 MHz

Cooperativity C 1500 5 × 109 > 1011 -

Gate infidelity 0.046 5 ×10−3 6 ×10−4 0.037

Pulse duration T 120 ns 8µs 400µs 640 ns

Table 6.1: APG protocol in realistic setups: achievable gate fidelity and pulse duration
for CZ gate with the geometric phase gate protocol for different physical systems: Neu-
tral 87Rb atoms coupled to a fiber-based Fabry Perot optical cavity, Cs Rydberg atoms
coupled via superconducting microwave resonator, Polar Ca79Br molecules coupled to
microwave resonator and superconducting fluxonium qubits coupled to microwave res-

onator.

6.6 Conclusion and outlook

In this chapter, we showed that by driving the cavity with a weak and slowly changing

pulse η(t), a multi-qubit quantum gate can be implemented by adiabatic evolution. Like

for the GPG protocol, the infidelity in the limit T → ∞ only depends on the coopera-

tivity and not on the ratio γ/κ. We also showed how N − 1 repetitions of the protocol

with different pulse parameters can be used to implement any symmetric phase gate,

which has significant implications in digital quantum simulations. Implementation of
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these native arbitrary phase gates without decomposing them into single- and two-qubit

gates significantly enhances the prospect of realizing non-local stabilizers and quantum

error correction schemes such as LDPC codes [108, 109] with reduced qubit overheads

compared to current leading schemes, in particular if our protocols are parallelized in

architectures that exploit multiple modes (e.g. frequency, polarization, spatial modes

for overlapping cavities) as necessary for parallel operations to support QEC.





Chapter 7

Cavity polariton blockade for

non-local entangling gates with

trapped atoms

The current chapter is an adaptation of the manuscript “Cavity polariton blockade

for non-local entangling gates with trapped atoms” [192]. In the spirit of exploiting

non-locality and multi-qubit interactions with cavity QED setups, in Chapter 4 and

Chapter 6, we saw two practical protocols for realising non-local multi-qubit quantum

gate operations - of a geometric phase gate and an adiabatic phase gate - mediated by

a common cavity mode by solely driving the cavity mode to implement non-local multi-

qubit phase gates such that the gate operations are achieved in a single control step.

Also in Chapter 5, we have demonstrated the utility of the geometric phase gate, when

combined with optimal control methods, for the preparation of metrologically useful

optimal probe states which achieve a significant entanglement-enhanced advantage in

quantum sensing beyond the standard quantum limit, in the presence of noise [173].

In this chapter, also with close relation with the current experimental efforts [38, 39],

we propose deterministic multi-qubit entanglement generation via a non-local excitation

blockade with an additional global drive acting on the qubits.

In the pioneering work [193], the authors introduced a deterministic protocol to generate

multi-qubit entangled states by employing Quantum Zeno Dynamics (QZD) [194, 195].

This is based on nondestructive measurement [196] in a cavity QED setup with a single-

mode cavity that couples to N atomic qubits: Let each atomic qubit be comprised of

computational states |0⟩ and |1⟩; All the atoms are initialized in the qubit excited state

101
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|1⟩ and acted upon by a resonant pulse on the qubit transition resulting in a coherent evo-

lution of the system which is combined with a simultaneous and continuous measurement

performed by probing the cavity resonantly. The measurement is such that the cavity

probe is resonant with the cavity mode when all the atoms are in the qubit state |0⟩, and

the measurement effectively probes the ground state of the qubit register |D0⟩ = |0⟩⊗N .

The measurement back-action on the state |D0⟩ prevents it from being populated, due to

Quantum Zeno Dynamics. Instead, states very similar to the so-called W state are pre-

pared, with the latter denoted as |D1⟩ = (1/
√
N)(|10 . . . 0⟩+ |010 . . . 0⟩+ · · ·+ |00 . . . 1⟩)

in the following. These states are robust to particle loss and can be used as a resource

for some tasks like distributed sensing [197]. While the results of Ref. [193] constitute

a significant breakthrough in the experimental manipulation of many-particle quantum

states, it is an interesting open question whether the QZD scheme can be generalized to

new protocols ensuring a high-fidelity of preparation of the desired multi-particle state.

In addition, it would be highly interesting both theoretically and experimentally whether

QZD-like protocols could be devised that allow for performing deterministic multi-qubit

quantum operations – including full quantum gates – of use for quantum computing

and sensing. Very recent breakthrough experiments with cold neutral atoms trapped

in optical tweezers in fiber based Fabry-Perot optical cavity have demonstrated that

realizing quantum gates and operations with high-fidelity is becoming possible thanks

to the possibility to trap multiple atomic qubits inside an optical cavity in a regime of

strong light-matter coupling [198]. These works open the way to non-local entanglement

generation using the delocalized photon field and are possible key components of future

architectures for distributed quantum computing and sensing [199–201].

In this work, we propose a new protocol that generalizes the idea of QZD-based state

preparation to account for the formation of mixed light-matter polariton states for qubits

coupled to the cavity mode, and use it to demonstrate theoretically a viable pathway to

generating multi-qubit entangled W states as well as two-qubit controlled-Z (CZ) and

three-qubit C2Z quantum gates. Due to coupling to the delocalized cavity mode, the

latter gates can be non-local. Our protocol relies on a new cavity polariton blockade

mechanism for multiqubit entanglement generation, which impedes the formation of

polariton modes with more than one excitation, due to strong measurement induced

excitation blockade. The latter is a combination of Quantum Zeno Dynamics and energy

detuning of a selectively probed cavity polariton state from the coherent global qubit

drive. Interestingly, the protocol only requires global drives of the cavity for generating

a multi-particle entangled state and of the cavity and of a single global laser on the

qubit transition to drive the two-qubit and three-qubit quantum gates. We present a full

quantum-mechanical treatment of the system dynamics and derive analytical expressions

for the W state preparation error, as well as the CZ and C2Z gate errors. These errors
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are evaluated while taking fully into account the relevant physical losses in experiments,

arising from a finite cavity resonance linewidth κ and atomic linewidth γ, using optimal

values for drive strength ratios and detuning parameters. We assume coupling of atoms

with the cavity mode with coupling strength g in the strong coupling regime, such

that the single-particle cooperativity C = g2/(κγ) ≫ 1. To our knowledge, this is

the first time that a full analytical treatment is carried out in the presence of losses for

deterministic quantum gates – with the exception of the protocols in Ref. [54]. This work

opens the way to the realization of multi-particle non-local entangled states generation

and quantum gates based on a new polariton blockade mechanism. While we provide

precise predictions for experiments with neutral atoms trapped in cavities, the present

work can be relevant to other physical platforms, such as exciton polaritons in the solid

state [202–204], depending on achievable light-matter couplings, intrinsic non-linearities

and polariton lifetimes in those systems.

The chapter is organized as follows: In Sec. 7.1, we recall the system Hamiltonian for N

atomic spin qubits coupled to a common cavity mode controlled with two laser drives –

one acting on the cavity mode and the other acting globally on the qubits. Additionally

here we introduce the cavity polariton states which are the eigenstates of the atoms-

cavity coupling Hamiltonian.In Sec. 7.2 we first derive an effective Hamiltonian in the

regime where the cavity drive and the losses (cavity decay and spontaneous emission)

are treated perturbatively with respect to the cavity-qubit coupling. We then establish

the cavity polariton blockade, where a cavity polariton state becomes resonant to the

cavity drive at a specific detuning. The cavity drive then induces dressing of the states

it couples to, and can no longer be treated perturbatively in the corresponding subspace

formed by the dressed states (blockaded subspace). This creates an energy barrier

(blockade-like) or energy leakage (QZD like) in the system depending on whether the

strength of detuning of the global drive exceeds the loss rates. By treating the coupling

from the global qubit drive between the blockaded subspace with other cavity polariton

states perturbatively, one can suppress population in the blockaded subspace. Here, we

choose the blockaded subspace such that simultaneous excitation of two qubits to the

|1⟩ state is suppressed. The resulting effective Hamiltonian, after tracing out the cavity

mode in vacuum and in the absence of losses, is analogous to a driven two-level system

with the logical states |D0⟩ (all qubits in |0⟩) and the W state |D1⟩ (equal superposition

of all states with one qubit in |1⟩ state and rest in the |0⟩ state), which we term as the

effective blockade Hamiltonian. In Sec. 7.3, we describe the W state preparation in the

presence of losses and present an analytical expression for state preparation infidelity.

We obtain the W state-preparation error scaling as
√

1 − 1/N/
√
C, hence saturating

with the total number of atoms N . In Sec. 7.4, we adapt the cavity polariton approach

for the implementation of time-optimal CZ and C2Z gates. By introducing a new
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computational state |1′⟩, we use |1⟩ state as an auxiliary state to realize a blockade-like

interaction, enabling a CZ or C2Z gate with the computational states |0⟩ and |1′⟩. We

also semi-analytically present the CZ and C2Z gate errors, which scale as 1/
√
C. This

scaling of errors with C for our protocols is consistent with the expected error scaling

for deterministic protocols [205].

7.1 Model

In this section we recall our system model and Hamiltonian from chapter 3 mainly in

the context of atomic qubits coupled to an optical cavity, and additionally introduce the

cavity polariton states. We first describe the various system components and parameters,

and write the Hamiltonian of the system in the laboratory frame. Next we apply a

rotating wave approximation and further split the Hamiltonian intro three components

set by different energy scales which becomes relevant for the derivation of the effective

blockade Hamiltonian using perturbation theory in Sec. 7.2. In Sec. 7.1.1, we introduce

the cavity polariton states in terms of a convenient symmetric basis for the system

Hamiltonian.

We consider a system of N atoms coupled to an optical cavity which supports a single

mode with frequency ωc as shown in Fig. 7.1(a). Each atom is modeled as a three-level

system [Fig. 7.1(b)] with two computational qubit states |0⟩ and |1⟩, and an excited

state |e⟩ with finite lifetime 1/γ. We define the energies of the states |0⟩, |1⟩ and |e⟩ as

ω0, ω1 and ωe respectively (ℏ = 1). The cavity mode creation and annihilation operators

are â† and â respectively, and the cavity excitation has a finite lifetime 1/κ. The atomic

levels |1⟩ and |e⟩ are coupled via the cavity mode with coupling strength g. An external

cavity probe- a drive laser with frequency ωL drives the cavity mode with amplitude

η(t). In addition, there is a free-space coupling between the states |0⟩ and |1⟩ with

Rabi-frequency Ω(t), which can be realized by a global laser pulse on the qubits with

frequency ωgl, given by Ω(t) cos(ωglt)|1⟩⟨0| + h.c. We define n̂s =
∑N

j=1 |sj⟩⟨sj | which

denotes the number operator for atoms in state |s⟩ for s ∈ {0, 1, e} and j denotes the

atom-index.
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Figure 7.1: (a) Schematic of atoms trapped inside a cavity and coupled to a common
cavity mode, which is externally driven by a classical field η(t). An additional global
pulse addresses all the qubits. A multi-qubit entangled W state can be prepared with
arbitrarily selected atoms atoms(in red) modeled as three-level systems (as shown in
(b)) and a C2Z gate can be implemented with atoms (in yellow) modeled as four-
level systems(as shown in (c)). (b,c) Level schematic for atoms implementing W state
preparation and CZ or C2Z gate. The |1⟩ ↔ |e⟩ coupling is mediated by the cavity
with coupling strength g. An additional (global) laser drive couples the states |0⟩ and
|1⟩ with Rabi frequency Ω(t). The computational qubit states are highlighted in blue.
(d) State population dynamics obtained numerically by simulating the dynamics under
the full Hamiltonian in Eq. (7.3), plotted for states |D0⟩, |D1⟩, and |D2⟩ denoted by
P|D0⟩, P|D1⟩ and P|D2⟩ respectively for a system with N = 2. The populations P|D0⟩
(dashed lines), P|D1⟩ (solid lines), and P|D2⟩ (dash-dot lines) at each time add up to the
trace of the reduced atomic density matrix (dotted lines) Tr(ρsymm) ≤ 1 where ρsymm

corresponds to the subspace spanned by states {|Dn⟩∀n = 0, 1, . . . N}. (e) Infidelity
(1−F ) as a function of the total pulse duration gT for W state preparation with N = 2
for C = 102, 106, 1010 and γ/κ = 0.01, 0.1, 1, 10, 100. The infidelity converges to the
analytical estimate(dashed lines) 5.73

√
1 − 1/N/

√
C (See text Sec. 7.3.1) obtained in

the limit T → ∞. (f) Infidelity (1−F ) as a function of single particle cooperativity for
W state preparation with N = 50, CZ gate and C2Z gate. The dashed lines represent
the analytically calculated errors, and numerical points obtained by simulating the
dynamics with the full Hamiltonian (Eq. (7.3)) are plotted for γ/κ = 0.01, 0.1, 1, 10, 100
for a fixed pulse duration of gT = 108. (g,h) Time optimal pulses for implementing CZ

gate and C2Z gate from [63, 64]

The full Hamiltonian Ĥfull reads

Ĥfull = ω0n̂0 + ω1n̂1 + (ωe − iγ/2)n̂e + (ωc − iκ/2)â†â (7.1)

+ g

N∑
j=1

(|ej⟩⟨1j | + |1j⟩⟨ej |) (â† + â)

+ 2|η(t)| sin(ωLt+ arg[η(t)])(â† + â)

+

N∑
j=1

(Ω(t) cos(ωglt)|1j⟩⟨0j | + h.c.) .
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We define the detuning between the frequency of the cavity drive laser and of the

|1⟩ ↔ |e⟩ transition as ∆ = (ωe−ω1)−ωL, the detuning between the laser and the cavity

mode frequency as δ = ωc − ωL, and the detuning of the |0⟩ ↔ |1⟩ qubit transition and

the global laser as δgl = (ω1 − ω0) − ωgl.

We proceed by defining the following unitary operator

Û(t) = exp
{[
i(ωL(â†â+ n̂e) + ω1(n̂1 + n̂e) + ω0n̂0)t

]}
. (7.2)

In the rotating frame given by Û(t), Ĥfull is transformed as Ĥ = ÛĤfullÛ
† + idÛdt Û

†. In

the rotating wave-approximation valid for g, |η| ≪ ωL, |Ω| ≪ ωgl, we then obtain the

following non-Hermitian Hamiltonian for the system given by,

Ĥ = Ĥ(∆,δ,g) + Ĥ(κ,γ,η) + Ĥ(Ω)

Ĥ(∆,δ,g) = δâ†â+ ∆n̂e + g(Ŝ−â† + Ŝ+â)

Ĥ(κ,γ,η) = − i

2
κâ†â− i

2
γn̂e + iη(t)

(
â† − â

)
Ĥ(Ω) =

N∑
j=1

(
Ω(t)

2
|1j⟩⟨0j | +

Ω∗(t)

2
|0j⟩⟨1j |

)
,

(7.3)

where Ŝ− =
∑N

j=1 |1j⟩⟨ej | and Ŝ+ =
∑N

j=1 |ej⟩⟨1j | are collective operators. The Hamil-

tonian Ĥ in Eq. (7.3) consists of three components that represent distinct physical pro-

cesses. The first component, Ĥ(∆,δ,g), includes the Tavis-Cummings interaction Hamil-

tonian, which describes the coupling of atoms to the shared cavity mode [206]. The

second component Ĥ(κ,γ,η), describes the cavity drive and the loss mechanisms, with

non-Hermitian contributions from cavity decay (rate κ) and spontaneous emission from

the excited state |e⟩ (rate γ). The third component, Ĥ(Ω), represents the free-space

laser coupling (transversal drive) between the qubit states |0⟩ and |1⟩, driven by a time-

dependent Rabi frequency Ω(t). In Eq. (7.3) we define Ω(t) = Ω0 exp[i(φ(tΩ0) + δglt)],

where Ω0 is the Rabi-frequency of the laser coupling the qubit transition and φ(tΩ0)

is a phase depending on the dimensionless time tΩ0. Both photon loss from the cavity

and the decay of population from the state |e⟩ are treated as non-Hermitian terms in

Eq. (7.3), corresponding to (−iκ/2)â†â and (−iγ/2)n̂e, respectively. For the cavity de-

cay, this corresponds to a conditional evolution under the condition that no photon is

lost. For the latter term, this implies the assumption that all population decays outside

the computational basis states. We come back to this point in Sec. 7.3.
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7.1.1 Cavity polariton states

Cavity polariton states refer to the eigenstates of the atoms-cavity coupling Hamiltonian

Ĥ(∆,δ,g), which are the hybrid atom-photon states.

To diagonalise Ĥ(∆,δ,g), we identify the operators n̂ =
∑N

j=1(|1j⟩⟨1j | + |ej⟩⟨ej |) and

k̂ =
∑N

j=1 |ej⟩⟨ej | + â†â such that
[
Ĥ(∆,δ,g), n̂

]
=
[
Ĥ(∆,δ,g), k̂

]
= 0. This suggests that

Ĥ(∆,δ,g) is block-diagonal in eigenstates of n̂ and k̂. Also, with
[
n̂, k̂

]
= 0, both n̂ and

k̂ can be diagonalised simultaneously. We define a convenient symmetric basis defined

by the states |a1bemph⟩ with 0 ≤ a + b ≤ N , mph = 0, 1, . . .∞. The state |a1bemph⟩
corresponds to a symmetric superposition of all states with a atoms in state |1⟩, b
atoms in state |e⟩ and m photons in the cavity. Thus, n̂ |a1bemph⟩ = (a+ b) |a1bemph⟩,
k̂ |a1bemph⟩ = (b+m) |a1bemph⟩ with a+b = n = 0, 1, . . . , N , and b+m = k = 0, 1, . . .∞.

Here and in the remainder of the section, we restrict our analysis to the subspace of

Ĥ(∆,δ,g) spanned by the basis states
{
|ψ⟩ : n̂|ψ⟩ = n|ψ⟩; k̂|ψ⟩ = k|ψ⟩

}
with n = 0, 1, 2

and k = 0, 1, which suffices for the discussion of the intended blockade mechanism. In

the k = 0 subspace of Ĥ(∆,δ,g), we have the eigenstates |n10e0ph⟩ ≡ |Dn⟩ ⊗ |0⟩cav with

zero energy. Here |Dn⟩ refers to the qubit state which is a symmetric superposition of

computational states with n qubits in |1⟩ and the rest in |0⟩.

The k = 1 subspace of Ĥ(∆,δ,g) is written as

Ĥ
(∆,δ,g)
n,k=1 =

[
δ

√
ng

√
ng ∆

]
(7.4)

in the basis spanned by {|n10e1ph⟩ , |n− 111e0ph⟩}. As a reminder, |n10e1ph⟩ corresponds

to the state with equal superposition of all basis states with n atoms in state |1⟩, no

atoms in state |e⟩, and one cavity photon. The state |n− 111e0ph⟩ refers to the equal

superposition of all states with n − 1 atoms in state |1⟩, one atom in state |e⟩, and

cavity in vacuum state. The eigenstates of Ĥ
(∆,δ,g)
n,k=1 are then the polariton states |p±n ⟩

(superposition of states |n10e1ph⟩ and |n− 111e0ph⟩) with eigenenergies ϵ±n , given by

|p+n ⟩ = cos(θ/2) |n10e1ph⟩ + sin(θ/2) |n− 111e0ph⟩ , (7.5)

|p−n ⟩ = − sin(θ/2) |n10e1ph⟩ + cos(θ/2) |n− 111e0ph⟩], (7.6)

where cos(θ) = (δ − ∆)/(
√

(δ − ∆)2 + 4ng2). The eigenenergies are given by

ϵ±n =
1

2
(δ + ∆) ± 1

2

√
(δ − ∆)2 + 4ng2. (7.7)
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We hence obtain

Ĥ
(∆,δ,g)
n,k=1 = ϵ+n |p+n ⟩⟨p+n | + ϵ−n |p−n ⟩⟨p−n |. (7.8)

Note that for n = 0, we have only the |p+0 ⟩ = |n10e1ph⟩ state with ϵ+0 = δ. Figure 7.2(a)

visualizes the energy spectrum of Ĥ(∆,δ,g) with eigenstates |n10e0ph⟩ in the k = 0 sub-

space and states |p±n ⟩ in the k = 1 subspace.

In the following Sec. 7.2 we derive an effective blockade Hamiltonian, with Eq. (7.3)

as the starting point and by assuming the three components of the Hamiltonian Ĥ in

Eq. (7.3) as being associated with different timescales in the system. We start in the diag-

onalized basis of Ĥ(∆,δ,g) formed by cavity polariton states introduced in Sec. 7.1.1, then

add Ĥ(κ,γ,η) and Ĥ(Ω) as perturbative couplings by assuming a hierarchy of timescales:

T(Ĥ(∆,δ,g)) ≪ T(Ĥ(κ,γ,η)) ≪ T(Ĥ(Ω)).

7.2 Effective Blockade Hamiltonian

In this section, we detail the cavity polariton blockade mechanism which prevents two

qubits to be simultaneously excited to the |1⟩ state. We demonstrate this blockade

mechanism by first deriving the blockade condition which sets the cavity probe resonant

with the N -atom-cavity system when exactly two atoms are in the state |1⟩. Second,

we describe the dynamics under the blockade mechanism by deriving an effective non-

Hermitian Hamiltonian Ĥeff restricted to the subspace with states |D0⟩, initial state

with all qubits in |0⟩ and |D1⟩ (see Eq. (7.9) below), which is a state close to the

W state |D1⟩ – resulting from the blockade condition – from the total Hamiltonian

Ĥ = Ĥ(∆,δ,g) + Ĥ(κ,γ,η) + Ĥ(Ω) of Sec. 7.1.

We work in the regime ∆, δ, g ≫ η, κ, γ and Ω0 ≪ η to derive the blockade condition

and the effective Hamiltonian. In this regime, the cavity mode, driven with strength η,

is excited much more slowly than the atom-cavity coupling dynamics, with timescales

comparable to the losses characterized by κ and γ. Meanwhile, the qubit transition

occurs even more slowly than the dynamics governed by the cavity drive. This separation

of timescales allows us to treat Ĥ(κ,γ,η) as a perturbation to Ĥ(∆,δ,g), with Ĥ(Ω) serving

as an additional perturbation to the effective system.

The derivation has the following three steps: (i) We establish the blockade condition

which results in the cavity polariton state with two qubits in |1⟩ to resonantly interact

with the cavity drive. More precisely, this condition leads to the transition between two

cavity polariton states in the n = 2 subspace resonant with the cavity drive. (ii) Next,

we add the Hamiltonian term with the cavity drive Ĥ(κ,γ,η). This has two effects - a) In

the n = 2 subspace, owing to the resonance condition set by the blockade condition, the
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cavity drive further dresses the resonant cavity polariton states into new dressed states.

And (b) in other n subspaces (n ̸= 2), this coupling can be treated perturbatively

because of the limit ∆, δ, g ≫ η, κ, γ, which results in effective energy shifts on the

cavity polariton states. We calculate the dressed state energies for the former states,

and calculate the energy shifts to the latter polariton states. (iii) Finally, we add the

coupling term Ĥ(Ω) and obtain the effective Hamiltonian. Steps (i), (ii) and (iii) are

detailed in Secs. 7.2.1, 7.2.2 and 7.2.3 below, respectively.

The resulting effective Hamiltonian Ĥeff defined on the qubit subspace has the form

given by

Ĥeff =

(
E0 − i

Γ0

2

)
|D0⟩⟨D0| +

(
E1 − i

Γ1

2

)
|D1⟩ ⟨D1|

+

√
NΩ(t)

2
|D1⟩⟨D0| +

√
NΩ∗(t)

2
|D0⟩|D1⟩,

(7.9)

where E0, E1 and Γ0,Γ1 are the effective energies and the linewidths corresponding to

the states |D0⟩ and |D1⟩, respectively. In Eq. (7.9), |D0⟩ = |00 . . . 0⟩ corresponds to all

qubits in the |0⟩ state. The state

|D1⟩ = |D1⟩ + O(κ, γ)|D2⟩ (7.10)

is our target state – a many-particle (and possibly non-local) W state in the presence

of atom and photon losses. For κ, γ = 0, it corresponds to the W state, |W ⟩ = |D1⟩ =(
1√
N

∑N
j=1 |100 . . . ⟩ + |010 . . . ⟩ + . . . |00 . . . 1⟩

)
, which is a symmetric Dicke state with

one atom in state |1⟩. Similarly, the state |D2⟩ corresponds to a symmetric Dicke state

with two atoms in state |1⟩, and thus the second term in the r.h.s. of Eq. (7.10)

represents the first order corrections to |D1⟩ in the presence of finite losses with rates

κ, γ ̸= 0.

An explicit form for the state |D1⟩ is obtained by evolving the state |D0⟩ with Hamil-

tonian Ĥeff , with Ω(t) chosen such that the |D0⟩ ↔ |D1⟩ transition is driven resonantly

for a time T = π/(
√
NΩ0). We find that the final state |ψ(T )⟩ after the time evolution

T is given by

|ψ(T )⟩ = −i sin

(
πΩ′

2Ω0

)
Ω0

Ω′ |D1⟩

+

(
cos

(
πΩ′

2Ω0

)
− sin

(
πΩ′

2Ω

)
(Γ0 − Γ1)

2
√
NΩ′

)
|D0⟩

(7.11)

where Ω′ = Ω0

√
1 − (Γ0 − Γ1)2/(4NΩ2

0). The final state |ψ(T )⟩ obtained above has

a non-vanishing component along |D0⟩ because Γ0 ̸= Γ1 ̸= 0. However as κ, γ → 0,

|ψ(T )⟩ → |D1⟩. We take T ∝ Ω−1
0 and as we will see in the following, the blockade
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regime is set in the limit Ω0 → 0 and hence the effective Hamiltonian is derived in the

limit T → ∞.

In the following Secs. 7.2.1-7.2.3, we discuss in detail the steps (i)-(iii) above leading to

the effective blockade dynamics. We then use the effective dynamics to illustrate the

W state preparation and the realization of the CZ and C2Z gates in Secs. 7.3 and 7.4,

respectively.

7.2.1 Cavity polariton blockade condition

In this section we start with the diagonalised Hamiltonian Ĥ(∆,δ,g) discussed in Sec. 7.1.1

and establish the cavity polariton blockade condition.

Consider first the energy spectrum of the Hamiltonian Ĥ(∆,δ,g) in the n = 0, 1, 2 and

k = 0, 1 subspace as shown in Fig. 7.2(a). Note that Ĥ(κ,γ,η) couples the states in k

with states in k + 1 within the same n subspace. The state |n10e0ph⟩ is hence coupled

to the states |p±n ⟩ via Ĥ(κ,γ,η) (See Fig. 7.2(b)).

The cavity polariton blockade condition makes the η coupling mediated by cavity drive

term iη(t)(â† − â) from Ĥ(κ,γ,η) resonant with the atom-cavity system with two qubits

in |1⟩ state. That is, the transition between the cavity polariton states |210e0ph⟩ ≡
|D2⟩ ⊗ |0⟩cav and |p−2 ⟩ in the n = 2 subspace is made resonant with the cavity drive.

This is achieved by tuning the cavity drive detuning δ such that

δ = 2g2/∆. (7.12)

This is similar to setting ϵ−2 = 0 in Eq. (7.7). As a result, light enters the cavity and is

transmitted when δ is chosen according to Eq. (7.12).

In the following Sec. 7.2.2, we discuss the implications of this condition when the Hamil-

tonian Ĥ(κ,γ,η) is introduced.

7.2.2 Dressed states and energy shifts due to perturbative couplings

from Ĥ(κ,γ,η)

In this section, we add couplings from the Hamiltonian Ĥ(κ,γ,η) consisting of the cavity

drive term and the loss rates. This coupling is treated perturbatively in the n ̸= 2

subspaces and non-perturbatively in the n = 2 subspace because of a resonant coupling

introduced by the cavity polariton blockade condition set by Eq. (7.12). We start first
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Figure 7.2: Level schematic overview of the blockade mechanism. (a) Eigenstates and
eigenenergies of Ĥ(∆,δ,g) truncated to the subspace spanned by states in n = 0, 1, 2,
k = 0, 1 (See text Sec. 7.1.1). (b) Couplings from Ĥ(κ,γ,η) corresponding to the cavity
drive with strength η are denoted by red arrows. The blockade condition is achieved
by setting ϵ−2 = 0, which makes the cavity drive resonant to the |210e0ph⟩ ↔ |p−2 ⟩
transition. (c) In the n = 0 and n = 1 subspaces, weak η coupling shifts the respective
states |010e0ph⟩ and |110e0ph⟩ in energy (red dashed lines) which also acquire linewidths
to the first order in κ, γ. In the n = 2 subspace, the states |210e0ph⟩ and |p−2 ⟩ are dressed
by the η interaction into new states |χ±⟩ (red solid lines) with eigenvalues λ± (See text
Sec. 7.2.2). The couplings from Ĥ(Ω) are shown by blue dash-dot arrows. (d) The
effective Hamiltonian restricted to the states |010e0ph⟩ and |110e0ph⟩ (dressed state

due to coupling to n = 2 subspace via Ĥ(Ω)) is obtained in the limit |Ω| ≪ |λ±|(See
text Sec. 7.2.3).
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by calculating the energies and linewidths of the dressed polaritons states in the n = 2

subspace. We then calculate the energy shifts on the polariton states in the n = 0 and

n = 1 subspaces.

Let the dressed polariton states formed by the η coupling between |210e0ph⟩ and |p−2 ⟩
in the n = 2 subspace be denoted by |χ±⟩ (See Fig. 7.2(c)). These states correspond

to the eigenstates of the Hamiltonian Ĥ(∆,δ,g) + Ĥ(κ,γ,η) in the n = 2 subspace. The

corresponding eigenvalues λ± are obtained as the eigenvalues of the matrix[
⟨210e0ph| Ĥ(κ,γ,η) |210e0ph⟩ ⟨210e0ph| Ĥ(κ,γ,η)|p−2 ⟩

⟨p−2 |Ĥ(κ,γ,η) |210e0ph⟩ ⟨p−2 |Ĥ(κ,γ,η)|p−2 ⟩

]

=

[
0 iη∆/

√
∆2 + 2g2

−iη∆/
√

∆2 + 2g2 −i(κ∆2 + 2γg2)/(2(∆2 + 2g2))

]
.

(7.13)

In Eq. (7.13), we have used |p−2 ⟩ obtained by setting n = 2 and δ = 2g2/∆ in Eq. (7.6).

It is obtained as

|p−2 ⟩ =
−∆ |210e1ph⟩ +

√
2g |111e0ph⟩√

∆2 + 2g2
. (7.14)

Defining ηeff = η/(
√

∆ + 2g2/∆) and γeff = (κ∆ + 2γg2)/(∆ + 2g2/∆), we obtain,

λ± = ±

√
η2eff −

γ2eff
16

− i
γeff
4
. (7.15)

We will analyse these eigenvalues in the next section.

In the n = 0 and n = 1 subspaces, |η| ≪ |ϵ±n=0,1| results in weak couplings mediated

by Ĥ(κ,γ,η) between the states |010e0ph⟩ and |110e0ph⟩ in k = 0 to the corresponding

polariton states |p+0 ⟩ and |p±1 ⟩ in k = 1 respectively. These perturbative couplings shift

the states |010e0ph⟩ and |110e0ph⟩ downward in energy, which up to third order in Ĥ(κ,γ,η)

are calculated as ∆E0 and ∆E1 respectively. They are given by (see Appendix C.1)

∆E0 = −η
2

δ
− i

κη2

2δ2
(7.16)

∆E1 = − η2

δ − g2/∆
− i

2

(
η2(κ∆2 + γg2)

∆2(δ − g2/∆)2

)
. (7.17)

The energy corrections are obtained up to the first order in κ, γ. Note from Eqs. (7.16)

and (7.17) that the states |010e0ph⟩ and |110e0ph⟩ also acquire a linewidth owing to

the weak coupling to decaying states |p+0 ⟩ and |p±1 ⟩ respectively. The corrections to the

states can be neglected as the energy contributions of the residual states are in second
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order of κ, γ. We will consider these energy shifts in the next section to write down the

effective Hamiltonian.

7.2.3 Coupling from Ĥ(Ω) and effective Hamiltonian

In this section, we add the qubit coupling term Ĥ(Ω) which couples the states among

different n subspaces. As shown in Fig. 7.2(c), Ĥ(Ω) couples the state |010e0ph⟩ with

state |110e0ph⟩, and the state |110e0ph⟩ is further coupled to the states |χ±⟩ in n = 2

subspace (recall from Eq. (7.15) the corresponding eigenvalues λ±).

The goal of this section is to obtain the effective Hamiltonian as in Eq. (7.9), which is

done in the following steps. (i) First we establish the limit Ω0 ≪ |λ±| such that the

coupling between |110e0ph⟩ and |χ±⟩ is either strongly detuned or the states |χ±⟩ are

strongly decaying, preventing excitation of the system from |110e0ph⟩ to |χ±⟩. We have

from Eq. (7.15) the following two cases.

ηeff



(case 1) ≥ γeff/4

=⇒ |λ−| = |λ+| = ηeff ∝
√

Ω0

(case 2) < γeff/4

=⇒ |λ−| > |λ+| = γeff/4 −
√
γ2eff/16 − η2eff

=⇒ |λ+| ≥ γeff
4

(
1 −

(
1 − 8η2eff

γ2eff

))
=

2η2eff
γeff

∝ Ω0
γeff

.

(7.18)

In writing the proportionality in the two cases above, we assumed η ∝
√

Ω0. Later in

Sec. 7.3 and Sec. 7.4, we show that an optimal choice of η2/Ω0 results in a minimum

operational infidelity of W state preparation and CZ, C2Z gates, respectively. Hence

from Eq. (7.15) and Eq. (7.18) Ω0/|λ±| → 0 as Ω0, κ, γ → 0. Note here that in the case

of ηeff ≤ γeff/4, λ± are purely imaginary and hence correspond to only the broadening

of the states |χ±⟩. In this limit, the blockade effect can be seen to be arising from a

decay induced QZD-like effect instead of that arising from far-detuned transitions.

(ii) Secondly, in this limit, that is when Ω0 ≪ |λ±|, we have a weak coupling between

|110e0ph⟩ and |χ±⟩ in n = 2 subspace mediated by Ĥ(Ω), and as a result |110e0ph⟩
experiences an additional energy correction ∆E′

1, and is weakly dressed giving state

corrections which are first order in κ, γ. Let the dressed state be denoted by |110e0ph⟩
(See Figs. 7.2(c)-(d)).
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To obtain the energy and state corrections, we define the Hamiltonian in n = 2 subspace

as Ĥn=2 given by

Ĥn=2 = Ĥ
(∆,δ,g)
n=2 + Ĥ

(κ,γ,η)
n=2 =


0 −iη 0

iη δ − iκ/2
√

2g

0
√

2g ∆ − iγ/2

 . (7.19)

The Hamiltonian matrix in Eq. (7.19) is written in the basis {|210e0ph⟩ , |210e1ph⟩ , |111e0ph⟩}.

The energy corrections to state |110e0ph⟩ and the dressed state |110e0ph⟩ are then ob-

tained as

∆E′
1 = ⟨110e0ph| Ĥ(Ω)

(
Ĥn=2

)−1
Ĥ(Ω) |110e0ph⟩

= −Ω2
0

2
(N − 1) ⟨210e0ph|

(
Ĥn=2

)−1
|210e0ph⟩

=
−iΩ2

0(N − 1)

2η2

(
κ

2
+
γg2

∆2

)
,

(7.20)

|110e0ph⟩ = |110e0ph⟩ −
(
Ĥn=2

)−1
Ĥ(Ω) |110e0ph⟩

= |110e0ph⟩ −
i
√

2(N − 1)Ω∗

4η2

(
κ+

2g2γ

∆2

)
|210e0ph⟩ .

(7.21)

In evaluating Eqs. (7.20) and (7.21), we have used δ = 2g2/∆ from Eq. (7.12) and

Ĥ(Ω) |110e0ph⟩ = (Ω∗√N − 1/
√

2) |210e0ph⟩. Note that Ĥ(Ω) |110e0ph⟩ also has a com-

ponent along |010e0ph⟩, which is not relevant for the calculation of ∆E′
1.

Finally by combining the energy shifts ∆E1 from Eq. (7.17) obtained from perturbative

couplings mediated by Ĥ(κ,γ,η), and ∆E′
1 from Eq.(7.20) obtained from perturbative

couplings mediated by Ĥ(Ω), we can write the energy of state |110e0ph⟩ as

E1 −
i

2
Γ1 = ∆E1 + ∆E′

1

= −η
2∆

g2
− i

2

(
η2∆2κ

g4
+
η2γ

g2
+

(N − 1)Ω2
0

η2

(
κ

2
+
γg2

∆2

)) (7.22)

We obtain the energy of |010e0ph⟩ state as obtained in Eq. (7.16) as

E0 −
i

2
Γ0 = ∆E0 = −η

2∆

2g2
− i

2

(
η2∆2κ

4g4

)
(7.23)
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Equation (7.22) and Eq. (7.23) summarize the main results of this section, providing

the energies E0 and E1 of the effective two level system with states |D0⟩ and |D1⟩, re-

spectively, which scale as η2∆
g2

. These equations also describe the corresponding effective

linewidths Γ0 and Γ1, which depend on the loss rates κ and γ. Using the obtained

values, we can now write the effective Hamiltonian restricted to the states |010e0ph⟩ and

|110e0ph⟩ as

Ĥ ′
eff =

(
E0 − i

Γ0

2

)
|010e0ph⟩ ⟨010e0ph|

+

(
E1 − i

Γ1

2

)
|110e0ph⟩ |110e0ph⟩

+

√
NΩ(t)

2
|110e0ph⟩ ⟨010e0ph| + h.c.

(7.24)

By tracing out the cavity field, which remains in the vacuum state |0⟩cav throughout the

effective dynamics, and using the definitions |010e0ph⟩ = |D0⟩ ⊗ |0⟩cav and |110e0ph⟩ =

|D1⟩ ⊗ |0⟩cav, we obtain the effective Hamiltonian Ĥeff in Eq. (7.9). This Hamiltonian

describes a driven two-level system with states |010e0ph⟩ and |110e0ph⟩.

7.3 Non-local W state preparation

In this section, we exploit the effective blockade dynamics to deterministically prepare

the state |D1⟩, which approaches the W state |D1⟩ in the limit κ/g, γ/g → 0 (see

Eq. (7.10)). Additionally, we derive an analytical expression for the state-preparation

infidelity when κ, γ ̸= 0. We recall the effective Hamiltonian Ĥeff from Eq. (7.9) and

Eqs. (7.23), (7.22) as

Ĥeff =

(
−η

2∆

2g2
− i

2
Γ0

)
|D0⟩⟨D0| +

(
−η

2∆

g2
− i

2
Γ1

)
|D1⟩ ⟨D1|

+

√
NΩ(t)

2
|D1⟩⟨D0| +

√
NΩ∗(t)

2
|D0⟩⟨D1|,

(7.25)

where

Γ0 =
κη2∆2

4g4
(7.26)

Γ1 = η2
(
κ∆2

g4
+
γ

g2

)
+

(N − 1)Ω2
0

η2

(
κ

2
+
γg2

∆2

)
. (7.27)
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By going into a rotating frame given by Û = exp
[
i
(
−η2∆

2g2
(|D0⟩⟨D0| + |D1⟩ |D1⟩) − δgl|D1⟩ ⟨D1|

)
t
]

and by choosing η2∆/(2g2) = δgl for resonant transfer, with Ω(t) = Ω0e
iδglt (with

φ(Ω0t) = 0), we obtain

Ĥeff = − i

2
Γ0|D0⟩⟨D0| + − i

2
Γ1|D1⟩ ⟨D1|

+

√
NΩ0

2
|D1⟩⟨D0| +

√
NΩ0

2
|D0⟩⟨D1|.

(7.28)

In the absence of loss (Γ0 = Γ1 = 0), starting with initial state |D0⟩ and by choosing a

pulse of duration T = π/(
√
NΩ0), the state |D1⟩ = |D1⟩ is prepared with unit fidelity.

In the following, we obtain an analytical expression for the state preparation error in

the presence of loss (Γ0,Γ1 ̸= 0).

7.3.1 W state preparation fidelity calculation

In this section, we obtain the state-preparation error 1 − F of state |D1⟩ as

1 − F =
π

2
√
NΩ0

(Γ0 + Γ1) (7.29)

=
π

2
√
N

[
η2

Ω0

(
5κ∆2

4g4
+
γ

g2

)
+

(N − 1)Ω0

η2

(
κ

2
+
γg2

∆2

)]
. (7.30)

In writing Eq. (7.30), the values of Γ0 and Γ1 are substituted from Eq. (7.26) and

Eq. (7.27) respectively. Note that since we consider the population decay from the |e⟩
state decaying outside of the computational subspace in our model, the fidelity estimate

that we obtain here corresponds to a lower bound on the actual fidelity.

To derive Eq. (7.29), we rewrite Ĥeff = Ĥ0+Ĥnh with Ĥ0 = (
√
NΩ0/2)|D1⟩⟨D0|+h.c. and

Ĥnh = −i(Γ0/2)|D0⟩⟨D0| − i(Γ1/2)|D1⟩ ⟨D1|. Let Û0(t) and Û(t) be the time-evolution

operators for time t under Ĥ0 and Ĥeff respectively. For a duration T , up to first order

in Γ0,Γ1, we have

Û(T ) = Û0(T ) − i

∫ T

0
Û0(T )Û †

0(t)ĤnhÛ0(t)dt. (7.31)

We define the fidelity F of the |D1⟩ state preparation as the squared overlap between

the final state |ψ(T )⟩ = Û(T )|D0⟩ and the target state |D1⟩. The infidelity 1 − F is

given by

1 − F = 1 −
∣∣∣⟨D1|Û(T )|D0⟩

∣∣∣2 . (7.32)
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Using Û(T ) from Eq. (7.31) and defining |ψ0(t)⟩ = Û0(t)|D0⟩, 1 − F in Eq. (7.32) is

obtained as

1 − F = Γ0

∫ T

0
dt |⟨D0|ψ0(t)⟩|2 + Γ1

∫ T

0
dt
∣∣∣⟨D1|ψ0(t)⟩

∣∣∣2 . (7.33)

The integrals
∫ T
0 dt |⟨s|ψ0(t)|2 in Eq. (7.33) denote the time spent in state |s⟩ ∈ {|D0⟩, |D1⟩}

during the unitary evolution Û0 under Ĥ0 of initial state |D0⟩ for time T . In this case,

both states |D0⟩ and |D1⟩ are occupied for equal times T/2. Hence, with T = π/(
√
NΩ0),

we obtain 1 − F as in Eq. (7.29).

The optimal values of η2/Ω0 and ∆ that minimize 1 − F in Eq. (7.30) are derived

analytically as follows. First, 1 − F is expressed as a function of the variable x = ∆2,

such that 1 − F = f(x) = ax + x/b + c. By setting its derivative ḟ = 0, the minimum

value of f(x) is found to be (1 − F )min = 2
√
ab+ c, occurring at x =

√
b/a = (∆2)opt.

This result allows (1−F )min to be further expressed in terms of η2/Ω0 as (1−F )min =

a′(η2/Ω0) + b′/(η2/Ω0) + c′. Following a similar procedure, minimizing (1 − F )min with

respect to η2/Ω0 yields the optimal value 1−Fopt. = 2
√
a′b′+c′ at

(
η2/Ω0

)
opt.

=
√
b′/a′.

These steps provide the optimal parameters

∆W
opt. =

(
8

5

)1/4√γ

κ
g, (7.34)(

η2

Ω0

)W
opt.

=

√
N − 1

2

κ

γ
g. (7.35)

With the optimal values from Eq. (7.34) and Eq. (7.35), and by defining cooperativity

C = g2/(κγ), we finally obtain the state preparation error from Eq. (7.30) as

1 − FWopt. = π

√
(1 − 1/N)(

√
5/8 + 7/8)/

√
C ≈

5.73
√

1 − 1/N√
C

. (7.36)

In order to verify our effective model (Eq. (7.28)) and the analytic expression for

the state preparation error (Eq. (7.36)), in Fig. 7.1(d), we numerically simulate the

Schrödinger evolution under the full Hamiltonian (Eq. (7.3)), starting from the initial

state |010e0ph⟩ = |D0⟩ ⊗ |0⟩cav. We plot the state populations dynamics of the states

|D0⟩, |D1⟩ and |D2⟩ along with the trace of density operator in the symmetric subspace

(after tracing out the cavity mode) given by Tr(ρsymm.) =
∑N

n=0 |⟨Dn|Dn⟩|2. These re-

sults are computed for N = 2 with single particle cooperativities C = 102, 1010, keeping

γ/κ = 1. Our results show that the state preparation infidelity - quantified by the final

state population in |D1⟩ (Eq. (7.32)) is primarily due to Tr (ρsymm) < 1. This leakage
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out of the symmetric subspace, arising from non-zero decay rates Γ0 and Γ1 (due to

non-zero κ, γ), is as predicted by our effective model in Eq. (7.28). Furthermore, in

Fig. 7.1(e), we plot the state preparation infidelity 1 − F as a function of the total

pulse duration T for N = 2 for different values of cooperativities C and different γ/κ

ratios. These numerical results are compared against the analytical infidelity obtained

in Eq. (7.36). In the limit T → ∞, the numerical infidelity converges to the analytical

estimate, scaling as ∝ 1/
√
C and independent of γ/κ for large C. Finally, in Fig. 7.1(f)

we extend this analysis to a larger system with N = 50. Here we compare the analytic

infidelity (Eq. (7.36)) in the T → ∞ limit and compare it against the CZ (N = 2) and

C2Z (N = 3) gate errors which are discussed in Sec. 7.4. We find an excellent agree-

ment between the numerical results from with the full Hamiltonian dynamics (Eq. (7.3))

and the analytic errors derived for large single-particle cooperativities C, which further

validates our effective blockade dynamics.

Next, in order to show that our model accurately captures all error sources and correctly

predicts the final state populations, we compute separately the contributions from decay

of the |e⟩ state (non-zero spontaneous emission rate γ), cavity decay rate (non-zero κ)

and non-adiabatic drive effects, and then verify that their sum agrees with the total

infidelity computed numerically. In Fig. 7.3(a), we show the error distribution as a

function of T for N = 2, where the error due to decay of |e⟩ state is computed as

γ
∫ T
0 ⟨ψ(t)|n̂e|ψ(t)⟩dt and the cavity decay error as κ

∫ T
0 ⟨ψ(t)|â†â|ψ(t)⟩dt; an additional

error, due to non-adiabatic effects at short times, is obtained by setting C → ∞. The

sum of these three errors is in excellent agreement with the independently computed

infidelity (indicated by the dashed-dotted line), confirming that our model accounts

accurately for all the error sources for over finite T and as T → ∞. The inset of

Fig. 7.3(a) shows the final population |⟨ψs|ψ(T )⟩|2 in different states |ψs⟩ for a range of

total pulse duration gT for N = 2. The final population in all states → 0 as T → ∞
except for the target state |110e0ph⟩ ≡ |D1⟩⊗|0⟩cav. and states |010e0ph⟩ , |210e0ph⟩ which

have order one correction of amplitude in κ, γ in the final state |ψ(T )⟩. Fig. 7.3(b)

shows the final state populations in all the atomic-symmetric Dicke states |Dn⟩∀n =

0, . . . N completing the atomic symmetric subspace with density operator ρsymm. =

Trcav. (|ψ(T )⟩⟨ψ(T )|), for N = 2 and N = 10. The final population in |Dn⟩ then

corresponds to ⟨Dn|ρsymm.|Dn⟩. The population leak into the states |D0⟩ and |D2⟩ is

consistent with our analysis, being proportional to terms that are second order in κ and

γ.
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Figure 7.3: (a) W state preparation error for N = 2 as a function of the total
operation time for κ/g = 10−3, γ/g = 10−3. The error due to the decay from |e⟩
state, the error due to loss of photons and the error due to finite time (calculated in
the limit C → ∞) adds up to give the total error (dash-dot line). The dashed line is
the analytical error given by 4.05/

√
C calculated in the limit T → ∞. (a, inset) Final

state population (in log-scale) in relevant states |a1bemph⟩ as a function of the pulse
duration gT for the same parameters as in (a). The final state as T → ∞ has non-
vanishing components along the state |010e0ph⟩ and |210e0ph⟩ apart from the near-unity
population in the target |110e0ph⟩ state. (b) Final state populations (in log-scale) in
the atomic symmetric Dicke states |Dn⟩ for N = 10 and N = 2 (inset) for κ/g = 10−3,

γ/g = 10−3.

7.4 Non-local CZ and C2Z gate implementation

In this section, we exploit the effective Hamiltonian derived in Eq. (7.9) to implement

a CZ and a C2Z gate with N = 2 and N = 3 distant atoms respectively. For this,

each atom is modeled as a four-level system with states {|0⟩, |1′⟩, |1⟩, |e⟩}. We introduce

an additional state |1′⟩ with energy ω′
1 such that the computational subspace is now

spanned by the states {|0⟩, |1′⟩} (See Fig. 7.1(c)). All other energies and couplings

remain the same as described in Sec. 7.1.

We obtain the full Hamiltonian with the |1′⟩ state as

Ĥfull = ω′
1n̂1′ + ω0n̂0 + ω1n̂1 + (ωe − iγ/2)n̂e

+ g

N∑
j=1

(|ej⟩⟨1j | + |1j⟩⟨ej |) (â† + â) + Ĥdrive

+
N∑
j=1

(Ω(t) cos(ωglt)|1j⟩⟨0j | + h.c.) ,

(7.37)

with n̂1′ =
∑N

j=1 |1′j⟩⟨1′j |. Transforming Ĥfull under the rotating frame given by

Û(t) = exp
{[
i(ωL(â†â+ n̂e) + ω1(n̂1 + n̂e) + ω0n̂0 + ω′

1n̂1′)t
]}

(7.38)
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and in the rotating-wave approximation, we obtain the same starting Hamiltonian as in

Eq. (7.3), and hence the same approach can be followed to arrive at an effective Blockade

Hamiltonian as derived in Sec. 7.2. All additional eigenstates of Ĥ(∆,δ,g) with atoms in

states |0⟩, |1′⟩- with no atoms in |1⟩- acquire an energy shift similar to that for |010e0ph⟩.

In Sections 7.4.1 and 7.4.2 below, we write down the effective Hamiltonians for imple-

menting a CZ and C2Z gate respectively. We simulate the gates using the time-optimal

pulses found in Refs. [63, 64], and obtain optimal gate parameters for minimizing infi-

delity for both CZ and C2Z gates. We also show that gate errors scale as 1/
√
C for both

gates. We would like to note here that other optimal solutions for this gate protocol can

be obtained more formally, for example by directly finding optimal pulses with the full

Hamiltonian, which could in principle perform better for this system than the pulses

from Refs. [63, 64].

7.4.1 CZ gate

In this section, we exploit the effective blockade hamiltonian obtained in Section 7.2

to implement a controlled-Z (CZ) gate between two distant atoms. For CZ gate, we

consider the two- atom computational basis states {|1′1′⟩, |1′0⟩, |00⟩}. For initial atom

states {|1′1′⟩, |1′0⟩, |00⟩}, the effective Hamiltonian acts in the subspace spanned by

{|1′1′⟩}, {|1′0⟩, |1′1⟩} and {|00⟩, |W ⟩}, respectively where |W ⟩ = (|01⟩ + |10⟩)/
√

2. In

each of the three decoupled subspaces, we can write the effective Hamiltonian in the

same way as in Eq. (7.9), but with N replaced by N0, the number of atoms initialized

in state |0⟩. We denote the effective Hamiltonians in each of these subspaces as Ĥ1′1′ ,

Ĥ1′0, and Ĥ00. Let the effective decay of the state with N0 atoms initialized in state |0⟩
be Γ

(N0)
1 with

Γ
(N0)
1 =

η2∆2κ

g4
+
η2γ

g2
+ (N0 − 1)Ω2

0

(
κ

2η2
+

g2γ

η2∆2

)
. (7.39)

We obtain up to single-qubit operations,

Ĥ1′1′ = − iΓ0

2
|1′1′⟩⟨1′1′|

Ĥ1′0 =

(
Ω(t)

2
|1′1⟩⟨1′0| + h.c

)
+

−iΓ0

2
|1′0⟩⟨1′0|

+ − iΓ
(1)
1

2
|1′1⟩⟨1′1|

Ĥ00 =

(√
2Ω(t)

2
|W ⟩⟨00| + h.c

)
+ − iΓ0

2
|00⟩⟨00|

+ − iΓ
(2)
1

2
|W ⟩⟨W |

(7.40)
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Let eiξN0 be the phases acquired from the evolution of each of the computational basis

states {|1′1′⟩, |1′0⟩, |00⟩} with N0 = 0, 1, 2 respectively. The evolution implements a CZ

gate when ξ0 = 0, ξ1 = θ and ξ2 = 2θ + π for a single-qubit phase θ. Hence up to

single qubit phase gates acting on |0⟩ state, a CZ operation can be realized exactly

for Γ0,Γ1 = 0 by evolving the qubits under the effective Hamiltonian. We note that

approach is similar to that used in Ref. [63] to implement a time-optimal CZ gate. In

the presence of losses, by following a similar treatment as in Sec. 7.3.1, we can write the

error of the CZ gate operation as

1 − F =
1

4Ω
(Γ0(τ1′1′ + 2τ1′0 + τ00) + 2Γ

(1)
1 τ1′1 + Γ

(2)
1 τW ), (7.41)

where τq is the dimensionless time spent in the state |q⟩. The prefactor 2 with τ1′0

and τ1′1 is to take into account all states |1′0⟩, |01′⟩ and |1′1⟩, |11′⟩, respectively. By

inserting the Γ values from Eq. (7.26) and Eq. (7.39), we find optimal values of ∆ and

Ω0/η
2 which minimize the gate error for fixed g, γ, κ. The optimal values are given by

(∆)CZopt. =

(
8(τ1′1 + τ1′0)

τ1′1′ + 2τ1′0 + τ00 + 4τ1′1 + 4τW

)1/4√γ

κ
g (7.42)

(
Ω0

η2

)CZ
opt.

=

√√√√ 1
16(τ1′1′ + 2τ1′0 + τ00 + 4τ1′1 + 4τW )∆

2κ
g4

+ 1
4(τ1′1 + τ1′0)

γ
g2

τW (κ2 + γg2

∆2 )
(7.43)

The optimal values (∆)CZopt. and
(
Ω0
η2

)CZ
opt.

can be computed by numerically obtain-

ing the values of τq. For this, we solve the Schrodinger dynamics for the effective

Hamiltonians Ĥ1′1′ , Ĥ1′,0, Ĥ00 with Γ0 = Γ
(N0)
1 = 0 for total pulse duration T . We use

Ω(t) = Ω0 exp[i(φ(tΩ0)] with Ω0T = 7.612, corresponding to the time-optimal solution

for the blockade CZ gate for Rydberg qubits [63]. The phase φ(tΩ0) is taken from the

time-optimal pulse plotted in Fig. 7.1(g). We obtain τq = Ω0

∫ T
0 |⟨q|ψs(t)⟩|2dt where

|ψs(t)⟩ is the state at time t for initial state |s⟩ in a given subspace. That is, |s⟩ corre-

sponds to the states |1′1′⟩, |1′0⟩, |00⟩ for |q⟩ associated with Ĥ1′1′ , Ĥ1′0, Ĥ00 respectively.

By substituting the obtained optimal parameters, we get the gate error for Γ0 ̸= Γ1 ̸= 0

from Eq. (7.41) as

1 − FCZopt. = 6.45
1√
C

(7.44)

In Fig. 7.1(f) and Fig. 7.4(a), we numerically obtain the gate error by simulating the

dynamics of the state |ψin⟩ = (|1′1′⟩+ |1′0⟩+ |01′⟩+ |00⟩)/2 under the full Hamiltonian

(Eq. (7.3)) for time T using the time-optimal pulse to obtain the final state |ψ(T )⟩.
We use Ω(t) = Ω0 exp[i(φ(tΩ0) + δglt)] with δgl = η2∆/(2g2) (as discussed in Sec. 7.3),

Ω0T = 7.612 and the laser phase φ(Ω0t) corresponding to the time-optimal pulse as

shown in Fig. 7.1(g). The expected final state under a CZ gate is |ψf ⟩ = (|1′1′⟩ +
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eiθ|1′0⟩ + eiθ|01′⟩ + ei(2θ+π)|00⟩)/2 where θ is the single qubit phase. The single-qubit

phase θ is optimized to minimize the gate error computed as 1 − F = |⟨ψf |ψ(T )⟩|2.
In Fig. 7.1(d), the obtained gate error is plotted as a function of cooperativity C for

gT = 108. The numerical results (square markers) are independent of γ/κ ratio and

for large C match excellently with the analytical estimate (dashed line) as obtained

in Eq.(7.44). In Fig. 7.4(a), the gate error is plotted as a function of the total pulse

duration gT for different values of cooperativities and linewidth ratios γ/κ. The dashed

lines corresponds to the analytical error obtained in Eq. (7.44). We see that for large

cooperativities, in the limit T → ∞, the gate error converges to our analytical estimate

which depends only on C = g2/(κγ) and is independent of the ratio γ/κ.

In the next section, we naturally extend the application of the effective blockade Hamil-

tonian to implement a non-local C2Z gate which acts on arbitrarily initialized N = 3

atoms.
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Figure 7.4: Gate error for as a function of the total operation time for (a) CZ gate
and (b) C2Z gate for C = 102, 104, 106, 108, 1010 and γ/κ = 0.01, 0.1, 1, 10, 100. The
infidelity converges to the analytical estimate (dashed lines) 1 − F ∝ 1/

√
C (See text

Sec. 7.4.1, 7.4.2) obtained in the limit T → ∞.

7.4.2 C2Z gate

In this section, similar to the CZ gate, we show the implementation of a C2Z gate in

the blockade regime with the time-optimal pulse shown in Fig. 7.1(h). Here, we consider

three-atom computational states {|1′1′1′⟩, |1′1′0⟩, |1′00⟩, |000⟩}. The effective blockade

Hamiltonians (up to single qubit gates) are obtained in each of the decoupled subspaces
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corresponding to these states respectively as

Ĥ1′1′1′ = − iΓ0

2
|1′1′1′⟩⟨1′1′1′|

Ĥ1′1′0 =
Ω(t)

2

(
|1′1′0⟩⟨1′1′1| + h.c

)
− iΓ0

2
|1′1′0⟩⟨1′1′0|

− iΓ
(1)
1

2
|1′1′1⟩⟨1′1′1|

Ĥ1′00 =

√
2Ω(t)

2

(
|1′00⟩⟨1′W | + h.c

)
− iΓ0

2
|1′00⟩⟨1′00|

− iΓ
(2)
1

2
|1′W ⟩⟨1′W |

Ĥ000 =

√
3Ω(t)

2
(|000⟩⟨W1| + h.c) − iΓ0

2
|000⟩⟨000|

− iΓ
(3)
1

2
|W1⟩⟨W1|

(7.45)

where |1′W ⟩ = |1′⟩ ⊗ |W ⟩ and |W1⟩ = (|001⟩ + |010⟩ + |100⟩)/
√

3.

Following a similar treatment as in Sec. 7.3.1, we can write the C2Z gate error and the

optimal parameters as

1 − FC2Z
opt. =

1

8Ω0

(
(τ1′1′1′ + 3τ1′1′0 + 3τ1′00 + τ1′1′1′)Γ0 + 3τ1′1′1Γ

(1)
1 + 3τ1′WΓ

(2)
1 + τW1Γ

(3)
1

)
(7.46)

(∆)C2Z
opt. =

(
8tB
tA

)1/4√γ

κ
g (7.47)

(
η2

Ω0

)C2Z

opt.

=

√√√√ 1
8(3τ1′W + 2τW1)(

κ
2 + γg2

∆2 )
1
32

∆2κ
g4
tA + 1

8
γ
g2
tB

, (7.48)

where tA = τ1′1′1′ + 3τ1′1′0 + 3τ1′00 + τ000 + 12τ1′1′1 + 12τ1′W + 4τW1 and tB = 3τ1′1′1 +

3τ1′W + τW1. We obtain the numerically calculated values τq as described in Sec. 7.4.1,

here by using Ω(t) = Ω0 exp[i(φ(tΩ0) + δglt)] with δgl = 0, Ω0T = 10.809 and φ(tΩ0)

corresponding to the time-optimal pulse for C2Z gate as shown in Fig. 7.1(h). On

substituting the τq values, we obtain

1 − FC2Z
opt. = 14.66

1√
C
. (7.49)

In Figs 7.1(d) and 7.4(b), we numerically obtain the C2Z gate error by simulating the

dynamics of the state |ψin⟩ = (|1′1′1′⟩ + |1′1′0⟩ + |01′1′⟩ + |1′01′⟩ + |1′00⟩ + |01′0⟩ +

|001′⟩ + |000⟩)/
√

8 under the full Hamiltonian (Eq. (7.3)) for time T using the time-

optimal pulse for C2Z gate. That is, we use Ω(t) = Ω0 exp[i(φ(tΩ0) + δglt)] with δgl =

η2∆/(2g2) (as discussed in Sec. 7.3), Ω0T = 10.809, and φ(tΩ0) from the time-optimal
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pulse plotted in Fig. 7.1(h). Note that here the time-optimal pulse is designed such that

the conditional phase is acquired by the state |1′1′1′⟩, i.e. the expected final state under

the C2Z gate operation is |ψf ⟩ = (ei(3θ+π)|1′1′1′⟩ + ei2θ (|1′1′0⟩ + |01′1′⟩ + |1′01′⟩) +

eiθ (|1′00⟩ + |01′0⟩ + |001′⟩) + |000⟩)/
√

8 [64], where θ is a single-qubit phase. For the

final state |ψ(T )⟩, the gate error or infidelity is calculated as 1 − F = |⟨ψf |ψ(T )⟩|2.

Figure. 7.1(f) verifies the gate error scaling as a function of cooperativity C. The

numerical points (triangles) obtained for different values of γ/κ have a good match with

the analytical estimate (dashed line) obtained in Eq. (7.49) for large cooperativities

which is independent of γ/κ. In Fig. 7.4(b), the gate error is plotted as a function of

different total pulse duration gT for different ratios γ/κ and different cooperativities

C. We see a general trend of the error decreasing with increasing T for all γ/κ ratios,

and converging close to the analytical estimate (dashed line) depending only on C and

independent of γ/κ.

In this section, we have seen the application of the blockade mechanism in implementing

a non-local CZ and C2Z gate between distant physical qubits. The effective blockade

dynamics result in a differential evolution of the states with different number of atoms

initialized in the |0⟩ state corresponding to different initial computational qubit states

with qubit subspace spanned by {|0⟩, |1′⟩}. In the next section, we give fidelity estimates

for some realistic cavity QED parameters for neutral atom and molecular qubits.

7.5 Realistic fidelities for experiments with neutral atoms

and molecules

In this section, we present some examples of experimental quantum computing platforms

where the non-local excitation blockade can be implemented.

As a first example, we consider neutral atom systems of 87Rb atoms coupled to a fiber

Fabry-Perot optical cavity [198, 207, 208] similar to the cavity in Ref. [193]. We consider

the states |0⟩ = |5S1/2 F = 1mF = 0⟩, |1⟩ = 52S1/2 F = 2mF = 0⟩, |1′⟩ = |52S1/2 F =

2mF = 1⟩ and |e⟩ = |52P3/2 F = 3mF = 0⟩ such that the D2 transition line in 87Rb

with wavelength λ = 780 nm and γ = 2π × 6 MHz corresponds to the cavity-coupled

|1⟩ ↔ |e⟩ transition. We consider a Fabry-Perot fiber cavity with finesse F ≈ 2 × 105,

waist radius ωr ≈ 2µm, and L = 40µm which gives C = 3λ2F/(2π3ω2
r ) ≈ 1500,

g =
√

3λ2cγ/(2π2w2
rL) ≈ 2π × 400 MHz and κ = πC/LF ≈ 2π × 20 MHz. With this

system, the W state preparation with N = 10 atoms is achieved with fidelity F = 86%

in time T ≈ 104/g = 4µs. A CZ,C2Z gate is realized in with fidelities ≈ 80%, 69%

respectively in time T = 104/g ≈ 4µs.
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Secondly, we consider the case of achieving strong coupling by coupling Rydberg-Rydberg

transitions with large electric dipole moments to a microwave on-chip resonator [209,

210]. Here we assume both |1⟩ and |e⟩ states as Rydberg states |902P3/2⟩ and |902S1/2⟩ in

Cs respectively. We have 1/γ = 820µs and also a non-negligible decay rate γ1 of the |1⟩
state given by 1/γ1 = 2 ms. We have the transition frequency ωe−ω1 = ω1e = 2π×5.03

GHz and coupling strength g ≈ 2π×4 MHz[210]. Assuming an achievable quality factor

of microwave resonator of Q ≈ 3×108 [211], we have κ = ω1e/Q = 2π×17 Hz correspond-

ing to cavity photon lifetime 1/κ ≈ 9.3 ms. With this system, we can hence achieve a co-

operativity of C ≈ 5×109. Incorporating the additional decay γ1 of state |1⟩, the effective

decay of the target W state is modified as Γ′
1 = Γ1 +

(
1 + η2∆2

g4
+

(N−1)Ω2
0(1+g

2/∆2)
η2

)
γ1.

The W-state preparation infidelity hence has an extra contribution proportional to

γ1T/2, and diverges in the limit T → ∞ after an initial decrease for finite T . With

this system, a maximum fidelity of F = 98.3% is obtained for a pulse duration of

T ≈ 930/g ≈ 37µs for N = 10 atoms. A CZ gate with infidelity 1 − F = 4.5 × 10−3, is

realized in time T = 280/g ≈ 11µs, and a C2Z gate with infidelity 1 − F = 7 × 10−3 is

realized in time T = 530/g ≈ 21µs.

We note that the use of Rydberg states can be further leveraged by exciting them

to maximal angular momentum states known as circular Rydberg states which have

inherently long lifetimes of several seconds. It is possible to similarly couple transitions

within circular Rydberg states (with principal quantum numbers of the order 50) to a

high-quality Fabry-Perot microwave resonator with superconducting mirrors [212, 213].

The Rydberg atoms can be further trapped inside a micro structure such that the

spontaneous emission from circular states is inhibited [214, 215] giving an increased

lifetime of ≈ 100s.

Another platform of interest is a system of cold polar molecules coupled to a super-

conducting high-Q stripline cavity. Here, we show the example of CaF molecules.

We choose the states in the basis |N,S, J, I, F,mF ⟩ as |0⟩ = |0, 1/2, 1/2, 1/2, 0, 0⟩,
|1⟩ = |0, 1/2, 1/2, 1/2, 1, 0⟩ and |e⟩ = |1, 1/2, 1/2, 1/2, 1, 0⟩. Here ωe−ω1 = ω1e ≈ 2π×21

GHz and γ < 10−2 Hz [216] is negligible. A coupling strength of g ≈ 2π×10 kHz for the

|1⟩ ↔ |e⟩ is achievable [217]. With a quality factor Q ≈ 3×108, κ = ω1e/Q = 2π×70Hz

corresponding to cavity-photon lifetime 1/κ ≈ 2.3 ms. With this system, choosing

∆ = 2π × 50 kHz, a W state with N = 10 atoms can be prepared with 91% fidelity

in time T ≈ 1.9 ms.
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7.6 Conclusion and Outlook

We have presented a cavity polariton blockade mechanism in a cavity QED setup which

is exploited for generation of a non-local multi-atom W-state and non-local CZ and

C2Z gates. The latter are obtained just by driving the cavity externally with a probe

laser along with an additional global pulse acting on the atoms. A complete quantum

mechanical treatment of the system, including the effects of spontaneous emission and

cavity decay, allows to characterize the W-state preparation fidelity and the CZ,C2Z

gate errors as a function of the single particle cooperativity C. The errors are found to

scale as O(C−1/2), moreover the error of N-atom W-state preparation saturates with

N . We present the protocol results with example setups of neutral atoms coupled to a

common optical cavity mode, and Rydberg atoms and cold polar molecules coupled to a

common microwave mode. The former achieve the W state preparation for moderately

sized systems of N = 10 in fast operation times of a few microseconds; while the latter

achieve high state preparation fidelities.

Moreover, a cavity-QED setup with minimal control knobs- the cavity probe and global

qubit pulse- supported by the current experimental progress with neutral atoms in op-

tical cavities [198], can be used as a toolbox to prepare arbitrary many-qubit entangled

states by employing optimal control techniques. These techniques can be tailored to

prepare optimal states for quantum sensing [218], or increasingly complex entangled

states optimized for quantum Fisher information, which is a subject of future work.



Chapter 8

Conclusion and outlook

In this thesis, we introduced a suite of novel protocols designed to implement a broad

spectrum of non-local multi-qubit quantum gates and entanglement generation in sys-

tems where multiple quantum emitters couple to a shared bosonic mode, making our

approach widely applicable to general cavity QED setups. The first two key protocols

are the Geometric Phase Gate (GPG) and the Adiabatic Phase Gate (APG) proto-

cols [54], for which we derived closed-form expressions for operation infidelities scaling

as ∼ N/
√
C – as a function of qubit number N and cooperativity C – a key parameter

characterizing any cavity QED system in the presence of losses from both emitters and

cavity photons to the environment. These exact solutions are the first of their kind, and

using them, we demonstrated the efficacy of one class of these protocols by achieving

entanglement-enhanced quantum sensing. Specifically, we developed a noise-informed

state preparation protocol to optimize entangled probe states for quantum sensing in

noisy environments [173]. We also presented a cavity-polariton blockade protocol that

facilitates W-state entanglement generation and holds promise for realizing time-optimal

CZ and C2Z gates within cavity QED frameworks [192]. All protocols rely on simple

classical drives applied to the cavity mode, with some also utilizing global qubit pulses,

eliminating the need for individual qubit drives. These approaches are designed for

immediate implementation in state-of-the-art experiments, particularly those using cold

atoms in tweezer arrays within cavities [55]. Importantly, the versatility of our protocols

extends their applicability to a range of quantum systems, including Rydberg atoms,

trapped ion chains, polar molecules, and superconducting qubits, as well as to various

noise models in our noise-informed sensing protocol. This work provides a strong foun-

dation for advancing both quantum information processing and entanglement-enhanced

sensing across a range of experimental platforms, with significant implications for the

NISQ era [219] and for quantum error correction (QEC) in the future.
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There are several main implications of the GPG and APG protocols. While there are

proposals for N -qubit Toffoli gates on qubits coupled via a cavity [35, 37], our protocols

give the first native implementation for a large family of other multi-qubit gates. In

particular, the GPG protocol introduces for the first time a way to implement geometric

phase gates for more than two qubits on these systems, while APG protocol even allows

for the implementation of native arbitrary phase gates without decomposing them into

single- and two-qubit gates. This significantly enhances the prospect of realizing non-

local stabilizers and quantum error correction schemes such as LDPC codes [108, 109]

with reduced qubit overheads compared to current leading schemes, in particular if our

protocols are parallelized in architectures that exploit multiple modes (e.g. frequency,

polarization, spatial modes for overlapping cavities) as necessary for parallel operations

to support QEC (see below). For near term applications, the GPG protocol enhances

the toolbox for the generation of large high-fidelity entangled states such as GHZ states,

while the arbitrary phase gates implementable by APG protocol are of significant interest

for quantum simulation. All of these tasks can for the first time be accomplished without

the need of an external drive of the qubits. Additionally, both protocols applied to just

two qubits form, together with single qubit gates, a universal gate set for quantum

computation. For Rydberg atoms or polar molecules coupled via a microwave cavity,

we anticipate that our protocols can achieve two-qubit gate infidelities below 10−3 with

realistic parameters. In the case of neutral atoms coupled via optical cavities, infidelities

on the order of a few percent can be achieved, but with remarkably fast timescales

– on the order of 10 ns for the GPG protocol and hundreds of nanoseconds for the

APG protocol. These protocols may in principle also be applied to other leading qubit

platforms for quantum computing that exploit delocalized boson modes, such as trapped

ions coupled via a motional mode.

We expect that our protocols may significantly benefit from optimization of the time-

dependent pulse-shape η(t). In particular, while the infidelity for the various gates in

the limit T → ∞ is independent of the exact choice of η, we expect that the infidelity at

finite T could be improved by applying quantum optimal control techniques to optimize

the pulse-shape of η(t) [171, 172], making our protocols both higher-fidelity and faster.

In a quantum computing architecture, our protocols could be applied in several manners,

either as the only entangling gate of the architecture, or in conjunction with other, local,

entangling protocols. For example, in an array of Rydberg atoms, entangling operations

between nearby atoms could be performed using the Rydberg blockade mechanism, while

entangling atoms further apart could be done with our protocols. It is also possible to use

our protocols only for certain error correction tasks, while other entangling operations

are done by local gates. Finally, our protocols could also be extended to overlapping

cavities [59] to connect even more atoms.
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The protocols, together with fast and reliable near neighbour gates may be integrated

into an architecture to support fault tolerant quantum computation. For an application

of non-local entangled states prepared using GPG protocol, consider a setup where each

register qubit has one or more neighbouring ancillary qubits that are addressable. A

useful primitive gate is the non-local measurement of a Pauli operator with support on

a set of distantly separated register qubits {qk}. This could be used for stabilizer mea-

surements or a non-destructive Pauli measurement gate in an LDPC code for example,

which has already been demonstrated in a recent work in Ref. [111]. Such measure-

ments are proposed to be performed à la Shor [220] using a |GHZ⟩ on the set of ancilla

{ak} neighbouring the {qk} and prepared via GPG protocol, so that the ancilla con-

trolled gates targeting the register qubits would be spatially near neighbour. The usual

|GHZ⟩ verification steps before the controlled operations would themselves be non-local,

but they can be obviated using the Aliferis-DiVincenzo method [221]. In this proce-

dure, errors in the |GHZ⟩ preparation (encoding) are be accounted for by unpreparing

(decoding) the state, which is achievable non-locally since our method is unitary, and

measuring the ancilla to infer errors which can be accounted for by adapting the Pauli

frame of the computation.

The method above is particularly advantageous when measurements are slow and can be

made fault tolerant by performing a second level repetition code on the ancilla. That is

achievable via near neighbour controlled operations between the {ak} and a second set of

neighbouring ancilla {bk} after the controlled operations acting on the {qk}. A syndrome

measurement compatible with a bit flip error in both ancilla sub-blocks implies a fault

in the non-local encoding that propagated to the data register and can be accounted for

in subsequent gates. Otherwise the error likely occured during the non-local decoding

and the process can be repeated. Note an alternative method for non-local stabilizer

measurments is to use flag qubits [222]. This uses fewer ancilla (as few as 2) but would

require faster resets and k non-local CZ gates to measure a weight k non-local stabilizer.

Using GPG protocol, for C ≫ 1 the fidelity for preparing a |GHZk⟩ state vs. a circuit

of k CZ gates are comparable but the time to prepare the former for a fixed fidelity is

shorter, essentially independent of k, potentially favoring the former approach in this

context.

An application of APG protocol is to perform non-local CN−1Z gates, which are locally

equivalent to multi-controlled Toffoli gates, for majority voting circuits. These are fre-

quently used e.g. in measurement free quantum error correction [189–191]. Even though

for N > 2 the gate is not Clifford and our implementation is not fault tolerant, the gate

can be used for fault tolerant quantum error correction when it involves controls that

are ancilla that carry error syndrome data that is classical [189].
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The GPG protocol, along with its exact solution of quantum dynamics in the presence

of noise, combined with optimal control methods, opens the door to the preparation

of metrologically useful optimal probe states that achieve a significant entanglement-

enhanced advantage in quantum sensing beyond the standard quantum limit, even in

the presence of noise [173]. This work introduces the first deterministic protocol for

preparing entangled states in the symmetric Dicke subspace of N spins that are not only

useful for sensing but also optimally robust in noisy environments, without introducing

significant overhead in control complexity. Through this protocol, we demonstrate that

a substantial quantum advantage in sensing—specifically in the measurement precision

of weak external fields (quantified by the variance in estimated field strength)—can be

achieved. The prepared optimal entangled probe states significantly surpass the stan-

dard quantum limit, and this advantage is realizable in near-term cold atom experiments

in a deterministic, noise-robust manner with the application of just one or a few control

pulses. While the results presented in this thesis are directly applicable to cutting-edge

experiments with cold atoms trapped in tweezer arrays within cavities [55], we also

anticipate that our noise-informed protocols can be extended to a variety of physical

setups and noise models.

Lastly, a cavity polariton blockade mechanism in a cavity QED setup is exploited for

the generation of a non-local multi-atom W-state, as well as non-local CZ and C2Z

gates [192]. These applications are realized by externally driving the cavity with a probe

laser, along with an additional global pulse acting on the initialized atoms. A complete

quantum mechanical treatment of the system, including the effects of spontaneous emis-

sion and cavity decay, allows for the characterization of the W-state preparation fidelity

and the CZ, C2Z gate errors as a function of cooperativity C. The errors are found

to scale as O(C−1/2), and moreover, the error in N-atom W-state preparation saturates

with N . With the availability of suitable energy levels, the applications can be gener-

alized to any physical platform where a single common bosonic mode can couple the

relevant transition. Furthermore, a cavity-QED setup with minimal control parameters

– the cavity probe and global qubit pulse – can serve as a toolbox to prepare arbitrary

many-qubit entangled states by employing optimal control techniques. These techniques

can be tailored to prepare optimal states for quantum sensing [173], or increasingly com-

plex entangled states optimized for quantum Fisher information.

For all protocol proposals throughout this thesis, we modeled each qubit as a three-

level system and the cavity as a single bosonic mode. We expect that our protocols

can be generalized to more complex models, such as those involving several excited

states, a nonzero coupling from |0⟩ to |e⟩, or multiple bosonic modes (e.g., light modes

of different polarizations) supported in the cavity. For instance, the derivations of both

protocols can be extended in a straightforward manner to include the coupling of |1⟩ to
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a second excited state, |e′⟩. Such an additional coupling would only affect the phase θ

in the GPG protocol, which implements ÛA = eiθn̂
2
1 , where n̂1 represents the number

operator counting the number of qubits in the |1⟩ state. Additionally, it would modify

the dependence of φ(n̂1) on n̂1 in the APG protocol, which implements ÛB = eiφ(n̂1).

Finding the optimal gate parameters and achievable fidelities for more general models

of the qubit and cavity will be a subject of future work.

To conclude, cavity QED provides a critical quantum interface between light and matter,

forming essential quantum interconnects that enable the reversible conversion of quan-

tum states between physical systems. As such, these interconnects are fundamental to

the realization of the quantum internet [223]. Therefore, the protocols proposed in this

thesis make significant contributions to this endeavor, representing one of the key future

directions stemming from this work.

Moreover, it is evident that the field of quantum computing – particularly with neutral

atom-based systems – holds great promise. Atoms trapped in reconfigurable 2D or 3D

arrays are at the forefront of this progress [185, 224–226]. Current advancements are

focused on integrating these neutral atom architectures with cavity-based systems, en-

hancing their capabilities and paving the way for the realization of distributed quantum

processors capable of scaling quantum computation beyond 10,000 physical qubits [227].

This modular approach would rely on high-fidelity remote entanglement distribution, en-

abling quantum computation to be spread across processors linked by fast, high-fidelity

quantum network channels. Recent pioneering work has demonstrated the trapping of

atoms in optical tweezers inside fiber-based optical cavities [55, 228, 229], facilitating

direct coupling to photons in a well-defined mode.

The advancements presented in this thesis not only lay a foundation for the progress

of quantum computing and entanglement-enhanced sensing across various experimental

platforms, but also highlight the potential of leading quantum computing architectures

based on neutral atom systems, by proposing the seamless integration of our simple pro-

tocols for multi-qubit operations. Most importantly, this work establishes the ground-

work for realizing scalable and reliable quantum computing applications and sets the

stage for the future quantum internet.
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Appendix A: Supporting

calculations for the Geometric

Phase Gate protocol

A.1 First basis transformation on the cavity

Here we discuss the first time-dependent basis transformation on the subsystem of the

cavity. For a function α(t) consider the displacement operatorD(α(t)) = exp
(
α(t)â† − α∗(t)â

)
.

Recall that it satisfies D(α)âD(α)† = â−α and D(α)â†D(α)† = â†−α∗, and furthermore

d
dtD(α) = [α̇â† − α̇∗â+ iIm(α̇∗α)]D(α)

= D(α)[α̇â† − α̇∗â− iIm(α̇∗α)].
(A.1)

Now we define ρ̃ = D(α)ρD(α)†. It satisfies

˙̃ρ = −i(H ′ρ̃− ρ(H ′)†) + L′ρ̃(L′)† − 1
2{(L′)†L′, ρ̃}

+
(
d
dtD(α)

)
D(α)†ρ̃+ ρ̃D(α)

(
d
dtD(α)†

) (A.2)

where H ′ = D(α)HD(α)† and L′ = D(α)LD(α)†.

We calculate
H ′ = δâ†â+ (∆ − iγ/2)n̂e + g(â†Ŝ− + âŜ+)

+ (iη − δα)â† − (iη∗ + δα∗)â+ −gα∗Ŝ−

− gαŜ+ + δ|α|2 + i(ηα∗ − η∗α)

(A.3)

L′ρ̃(L′)† −1
2{(L′)†L, ρ̃} = Lρ̃L† − 1

2{L
†L, ρ̃}+

κ
2 (−α∗âρ− αρâ† + α∗ρâ+ αâ†ρ)

(A.4)
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and (
d

dt
D(α)

)
D(α)†ρ̃+ ρ̃D(α)

(
d

dt
D(α)†

)
= [α̇â† − α̇∗â, ρ̃] (A.5)

Plugging this into Eq. (A.2) gives

˙̃ρ = −iH̃ρ̃+ iρ̃H̃† + LρL† − 1

2
{L†L, ρ} (A.6)

with

H̃ = δâ†â+ (∆ − iγ/2)n̂e + g(â†Ŝ− + âŜ+) (A.7)

− gα∗Ŝ− − gαŜ+ +
[
(iη − (δ − iκ/2)α+ iα̇)â† + h.c.

]

Now we take α(t) such that

α̇ = −η − (iδ + κ/2)α (A.8)

which is satisfied by

α(t) =

∫ t

0
dt′η(t′)e−(iδ+κ/2)(t−t′). (A.9)

With this choice, H̃ becomes simply

H̃ = δâ†â+ (∆ − iγ/2)n̂e + g(â†Ŝ− + âŜ+) − gα∗Ŝ− − gαŜ+ (A.10)

A.2 Second basis transformation on the qubits

We perform the time dependent basis transformation H̄ = UH̃U † + iU̇U † for

U = exp

[
λ

2

(
−eiµŜ+ + e−iµŜ−

)]
(A.11)

and

H̃ = δâ†â+ (∆ − iγ/2)n̂e + gâ†Ŝ− + gâŜ+ − gαŜ+ − gα∗Ŝ−. (A.12)

We calculate
U =

[
|0⟩ ⟨0| + cos

(
λ
2

)
(|1⟩ ⟨1| + |e⟩ ⟨e|)

+ sin
(
λ
2

) (
−eiµ |e⟩ ⟨1| + e−iµ |1⟩ ⟨e|

) ]⊗N (A.13)

which gives

UŜ+U † =
(
UŜ−U †

)†
= cos2

(
λ

2

)
Ŝ+ − e−2iµ sin2

(
λ

2

)
Ŝ−

+ e−iµ sin

(
λ

2

)
cos

(
λ

2

)
(n̂1 − n̂e), (A.14)
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and

Un̂eU
† = cos2

(
λ

2

)
n̂e + sin2

(
λ

2

)
n̂1 (A.15)

+ sin

(
λ

2

)
cos

(
λ

2

)(
e−iµŜ− + eiµŜ+

)
Now first consider H(0) = ∆n̂e − gαŜ+ − gα∗Ŝ−, the part of H̃ that scales with ∆. We

choose λ and µ so that UH(0)U † is diagonal. We find

U H(0)U † =

[
∆ cos2

(
λ

2

)
+
g

2

(
αe−iµ + c.c.

)
sin (λ)

]
n̂e

+

[
∆ sin2

(
λ

2

)
− g

2

(
αe−iµ + c.c.

)
sin (λ)

]
n̂1 (A.16)

+

[
∆

2
eiµ sin (λ) + e2iµ sin2

(
λ

2

)
gα∗ − gα cos2

(
λ

2

)]
Ŝ+

+

[
∆

2
e−iµ (λ) + e−2iµ sin2

(
λ

2

)
gα− gα∗ cos2

(
λ

2

)]
Ŝ−

The coefficients of Ŝ+ and Ŝ− vanish for µ = arg(α) and λ such that ∆ sin
(
λ
2

)
cos
(
λ
2

)
=

gα(cos2
(
λ
2

)
− sin2

(
λ
2

)
), which is satisfied for cosλ = ∆/

√
∆2 + 4g2|α|2. We denote by

ε− and ε+ the coefficients of n̂ and n̂e, respectively, and find

ε− = ∆ sin2

(
λ

2

)
− 2g|α| sin

(
λ

2

)
cos

(
λ

2

)
(A.17)

=
1

2

(
∆ −

√
∆2 + 4g2|α|2

)
ε+ = ∆ cos2

(
λ

2

)
+ 2g|α| sin

(
λ

2

)
cos

(
λ

2

)
(A.18)

=
1

2

(
∆ +

√
∆2 + 4g2|α|2

)
Now we consider H̃−H(0) = δâ†â− iγ2 n̂e+ gâŜ+ + gâ†Ŝ− and calculate U(H̃−H(0))U †

term by term (the notation O(g) refers to the limit ∆/g → ∞).

Uâ†âU † = â†â (A.19)

U n̂eU
† =

1 − cosλ

2
n̂1 +

1 + cosλ

2
n̂e + O(g)Ŝ+ + O(g)Ŝ−

=
n̂1 + n̂e

2
− ∆ (n̂1 − n̂e)

2
√

∆2 + 4g2|α|2
+ O(g)Ŝ+ + O(g)Ŝ− (A.20)

UŜ+U † =
α∗√

∆2 + 4g2|α|2
(n̂1 − n̂e) + O(g)Ŝ+ + O(g)Ŝ− (A.21)
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so that in total we find

UH̃U † = δâ†â+ (ε1 − iγ1/2)n̂1 + (εe − iγe/2)n̂e (A.22)

+ (ζâ† + ζ∗â)(n̂− n̂e) + O(g)Ŝ+ + O(g)Ŝ−

where

γ± =
γ

2

(
1 ± ∆√

∆2 + 4g2|α|2

)
, (A.23)

ζ =
g2α√

∆2 + 4g2|α|2
. (A.24)

Now using the fact that iU̇U † is O(g) and acts on the qubits only (i.e. contains no a or

a† terms) we obtain the expression (5) from the main text for H̄.

A.3 Analytic solution of time evolution under Ĥeff

In this section we find the analytic solution of the Lindblad equation ρ̇ = −iĤρ+iρĤ†+

LρL̂† − 1
2{L̂

†L̂, ρ} under Ĥ = δâ†â + (−iγ1(t)/2 + ζ(t)â† + ζ(t)∗â)n̂1 and L̂ =
√
κâ for

an arbitrary drive ζ(t) and time dependent decay rate γ1(t). For this, we assume an

initial state ρ(0) = |βn(0)⟩ ⟨βm(0)| ⊗ |q⟩ ⟨q′|, where βn and βm are coherent states and

|q⟩(|q′⟩) are computational basis states with n(m) qubits in state |1⟩. Note that initial

states of this form are a basis of space of all possible initial density matrices, so solving

the Lindblad equation for the initial state ρ(0) suffices to solve it for an arbitrary initial

state.

In the following we show that the solution to the Lindblad equation is given by

ρ(t) = eiφnm(t) |βn(t)⟩ ⟨βm(t)| ⊗ |q⟩ ⟨q′|
⟨βm(t)|βn(t)⟩

(A.25)

where β̇n = −(iδ + κ/2)βn − inζ, i.e.

βn(t) = βn(0)e−(iδ+κ/2)t − in

∫ t

0
dt′ζ(t′)e−(iδ+κ/2)(t−t′) (A.26)

and

φnm(t) =

∫ t

0
dt′
[
(m− n)(ζ(t′)βm(t′)∗ (A.27)

+ ζ(t′)∗βn(t′)) + i(m+ n)γ1(t
′)/2

]
.
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Tracing out the cavity then gives the reduced density matrix ρeff = eiφnm(t) |q⟩ ⟨q′| dis-

cussed in the main text.

To show Eq. (A.25), we make the Ansatz ρ = ρnm⊗|q⟩ ⟨q′| with ρnm(t) = cnm(t) |βn(t)⟩ ⟨βm(t)|.
The Lindblad equation gives

ρ̇nm = −iĤnρnm + iρĤ†
m + L̂ρnmL̂

† − 1

2
{L̂†L, ρnm}, (A.28)

with Ĥn = δâ†â+ (−iγ1/2 + ζâ† + ζ∗â)n.

We start by calculating the left side of Eq. (A.28). It is a property of coherent states

that
d

dt
|βn(t)⟩ = β̇nâ

† |βn⟩ −
1

2

d|βn|2

dt
|βn⟩ (A.29)

so that

ρ̇nm = cnmβ̇nâ
† |βn⟩ ⟨βm| + cnmβ̇

∗
m |βn⟩ ⟨βm| â (A.30)

+

(
ċnm − cnm

2

d(|βn|2 + |βm|2)
dt

)
|βn⟩ ⟨βm|

Now we evaluate the right side of Eq. (A.28):

Ĥnρnm/cnm =
[
(δβn + nζ) â† (A.31)

+ nζ∗βn − inγ1/2] |βn⟩ ⟨βm|

ρnmĤ
†
m/cnm = [(δβ∗m +mζ∗) â (A.32)

+ mζβ∗m + imγ1/2] |βn⟩ ⟨βm|

L̂ρnmL̂
†/cnm = κβnβ

∗
m |βn⟩ ⟨βm| (A.33){

L̂†L̂, ρnm

}
/cnm =

[
κβnâ

† + κβ∗mâ
]
|βn⟩ ⟨βm| (A.34)

Together, Eq. (A.32)-(A.34) give

−iĤnρnm + iρnmĤ
†
m + L̂ρnmL̂

† − 1

2
{L̂†

nmL̂, ρnm}

= cnm(−iδβn − inζ − κβn/2)â† |βn⟩ ⟨βm|

+ cnm(iδβ∗m + imζ∗ − κβ∗m/2) |βn⟩ ⟨βm| â

+ cnm(−inζ∗βn + imζβ∗m + κβnβ
∗
m

− (n+m)γ1/2) |βn⟩ ⟨βm| (A.35)

Equating Eq. (A.31) and Eq. (A.35) gives Eq. (A.26), as well as

ċnm/cnm =
1

2

d(|βn|2 + |βm|2)
dt

(A.36)

− inζ∗βn + imζβ∗m + κβnβ
∗
m − (n+m)γ1/2
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Now we take cnm = eiφnm/ ⟨βm|βn⟩. Using ⟨βm|βn⟩ = exp
(
−1

2(|βn|2 + |βm|2) + β∗mβn
)

we obtain

iφ̇nm =
ċnm
cnm

+
d

dt

(
−1

2
(|βn|2 + |βm|2) + β∗mβn

)
(A.37)

= −inζ∗βn + imζβ∗m + κβnβ
∗
m

− (n+m)γ1/2 + β̇∗mβn + β∗mβ̇n

= i(m− n)ζ∗βn + i(m− n)ζβ∗m − (n+m)γ1/2

where in the last equality we inserted β̇n = −(iδ+κ/2)βn− inζ. Integrating Eq. (A.37)

gives Eq. (A.28).

A.3.1 Calculation of the Fidelity in the limit T → ∞

In the following we show that in the limit T → ∞ and to first order in γ and κ the

infidelity of the GPG protocol is given by

1 − F =

(
κ

4(1 + 2−N )δ
+

γδ

2g2

)
Nθ. (A.38)

In the limit T → ∞ the solution to β̇n = −(iδ + κ/2)βn − inζ can be obtained by an

adiabatic approximation. For this, we insert β̇n = 0 and obtain

βn =
−inζ

iδ + κ/2
≈ −nζ

δ

(
1 + i

κ

2δ

)
. (A.39)

With Eq. (7) and (10) (main text) we obtain

φnm = (n2 −m2)θ + (m− n)2
iκ

2δ
θ + i(m+ n)

∫ T

0
dtγ1(t)/2 (A.40)

where θ = 1
δ

∫ T
0 dt|ζ(t)|2. Since in the limit T → ∞ we have ζ → 0 we approximate

γ1 =
γ

2

(
1 −

√
1 − 4|ζ|2/g2

)
≈ γ|ζ|2

g2
(A.41)

so that

φnm
θ

= n2 −m2 + (m− n)2
iκ

2δ
+ (m+ n)

iγδ

2g2
(A.42)

Inserting this into Eq. (22) (main text) and using that

N∑
n,m=0

(
N

n

)(
N

m

)
(m− n)2 = 4N

N

2
(A.43)
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and
N∑
n=0

(
N

n

)
(n+ n) = 2NN, (A.44)

N∑
n,m=0

(
N

n

)(
N

m

)
(n+m) = 4NN, (A.45)

we obtain Eq. (A.38).

A.4 Effects of coupling inhomogeneities on the fidelity

In this section we calculate the effect different couplings g1, ..., gN of each qubit to the

cavity on the gate fidelity. We assume that the g1, ..., gN are independent and identically

distributed random variables and have the quadratic mean ḡ =
√
E[g2j ]. Furthermore

assume that the drive η(t), and thus α(t), is chosen as given in the main text, with the

homogeneous coupling g replaced by ḡ.

To be able to obtain analytical solutions we restrict ourselves to the case T → ∞, but

expect a similar scaling for finite T .

Following the same steps as in the main text, an effective Hamiltonian can be found as

Ĥeff = δa†a+
∑

q∈{0,1}N
(ζqa

† + ζ∗q a) |q⟩ ⟨q| (A.46)

where

ζq =
N∑
j=1

qj
g2jα√

4g2j |α|2 + ∆2
≈ α

∆

N∑
j=1

qjg
2
j (A.47)

where the last approximation holds in the T → ∞ limit, where |α| ≪ ∆.

Starting in the initial state |ψ(0)⟩ = |0⟩⊗|q⟩ for a computational basis state q ∈ {0, 1}N ,

the state at the final time T is given by |ψ(T )⟩ = eiφq(T ) |βq⟩⊗|q⟩, where β̇q = −iδβq−iζq
and φ̇q = −Re(ζ∗qβq). In the limit T → ∞ we obtain βq(t) = −ζq(t)/δ and

φq(T ) =

∑
j

qjg
2
j

2 ∫ T

0
dt

|α(t)|2

∆δ
(A.48)

=

∑
j

qjg
2
j

2

θ

ḡ4

≈ nθ2 +
2nθ

ḡ2

∑
j

qj(g
2
j − g2)
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where n =
∑

j qj is the number of qubits in state |1⟩. Crucially, βq(T ) = 0, so that

the action of the gate can still be described by a unitary operation, given by U =∑
q e

iφq(T ) |q⟩ ⟨q|. In the following, we will evaluate the averaged fidelity for the difference

U †
AU between the gate UA which we aim to implement, and the gate U which is actually

implemented.

The averaged fidelity can be evaluated as [168]

1 − F =
1

2N (2N + 1)

2N +

∣∣∣∣∣∣
∑

q∈{0,1}N
ei(φq(T )−nθ2)

∣∣∣∣∣∣
2

≈ 1 +
1

2N (2N + 1)

[(∑
q

(φq − n2θ)

)2

− 2N
∑
q

(φq − n2θ)2

]
(A.49)

We obtain the upper bounds

1 − F ≤ 1

2N

∑
q

(φq − n2θ)2 (A.50)

=
4θ2

ḡ4
1

2N

∑
q∈{0,1}N

n∑
j

qj(g
2
j − ḡ2)

2

The expected value of the infidelity can be upper bounded, using the independence of

the gj , as

E[1 − F ] ≤ 4θ2

ḡ4

∑
q

n2
∑
j

q2jE[(g2j − ḡ2j )
2] (A.51)

=
4θ2

ḡ4
Var[g21]

1

2N

N∑
n=0

(
N

n

)
n3 (A.52)

= N2(N + 3)
θ2

2ḡ4
Var[g21]. (A.53)

Note that since we assume that the gj are independent and indetically distributed, the

Var[g21] can be replace by Var[g2j ] for any j.

A.5 Generation of GHZ states

In the following, we show that a GHZ state can be generated by applying ÛA with

θ = π/2 to |+⟩⊗N , followed by the three single qubit gates Û1 = exp(iπσz/4), Û2 =
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(σx + σz)/
√

2 and Û3 = exp(iπ(N + 1)σz/(4N)). For this, we proceed in two steps.

First, we show that |ψ⟩ = Û⊗N
1 ÛA |+⟩⊗N is the graph state of the complete graph with

N vertices. Then we employ the known result that this graph state is equivalent to

a GHZ state up to global single qubit gates [166, 167] to explicitly find Û2 and Û3 to

convert the graph state to the GHZ state.

To see that |ψ⟩ is this graph state, we calculate that (up to an irrelevant global phase)

Û⊗N
1 ÛA = exp(−iπn̂1/2) exp

(
iπn̂21/2

)
(A.54)

= exp

iπ∑
j<k

n̂
(j)
1 n̂

(k)
1


where n̂

(j)
1 is the single qubit operator |1⟩ ⟨1| on qubit j, so that n̂1 =

∑N
j=1 n̂

(j)
1 . Thus,

Û⊗N
1 ÛA applies a CZ gate simultaneously on each qubit pair. Hence, the state |ψ⟩ is

indeed the graph state of the complete graph with N vertices

To convert |ψ⟩ into a GHZ state, we use that |ψ⟩ is stabilized by the N independent

stabilizers

Ŝ1 = σx ⊗ σz ⊗ ...⊗ σz (A.55)

Ŝ2 = σz ⊗ σx ⊗ σz ⊗ ...⊗ σz (A.56)

...

ŜN = σz ⊗ ...⊗ σz ⊗ σx (A.57)

i.e. it satisfies Ŝk |ψ⟩ = |ψ⟩ for each k. Thus, Û⊗N
2 |ψ⟩ is stabilized by Û⊗N

2 ŜkU
⊗N
2 (note

that Û †
2 = Û2). A direct calculation shows that also the state

|GHZα⟩ = (|0...0⟩ + eiα |1...1⟩)/
√

2 (A.58)

with α = π(N + 1)/2 is stabilized by the Û⊗N
2 ŜkÛ

⊗N
2 . Hence, we conclude Û⊗N

2 |ψ⟩ =

|GHZα⟩, up to an irrelevant global phase. A GHZ state can now be generated by

applying Û⊗N
3 to Û⊗N

2 |ψ⟩ to convert |GHZα⟩ to the GHZ state.

Another way to see this is to write ÛA = ei
π
2
n̂2
1 = ei

π
2
(NŜz+(Ŝz)2). Since ÛA is per-

mutation symmetric, if we start in the symmetric state |+⟩⊗N then we stay in the

maximally symmetric subspace of the spins with total spin S = N/2 spanned by

the Dicke states {|M⟩} for M = −N/2, . . . , N/2. The action of ÛA on this space is

ÛA |M⟩ = ei
π
2
M(N+M) |M⟩. For N = 2ℓ (even), then up to a global phase the action

on this space is Û = e(−1)ℓ+1iπ
4
(P̂+−P̂−), where P̂± is the projector onto states with

even(odd) Hamming weight. Writing the parity operator σ⊗Nz = P̂+ − P̂− we have
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ÛA = e(−1)ℓ+1iπ
4
σ⊗N
z . We see that applying the uniform Hadamard gate afterward pre-

pares the GHZ state up to a local phase gate

Ĥ⊗N ÛA |+⟩⊗N = H⊗N ÛAĤ
⊗N |0⟩⊗N

= e(−1)ℓ+1iπ
4
σ⊗N
x |0⟩⊗N

= (|0 . . . 0⟩ − iN+1 |1 . . . 1⟩)/
√

2.

(A.59)

A similar argument follows for N odd.
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Appendix B: Supporting

calculations for the Adiabatic

Phase Gate protocol

B.1 Eigenenergies of Ĥ in perturbation theory

In this section we calculate perturbations of the eigenenergies of Ĥ in the limit η → 0.

To find the eigenenergy for a computational basis state |q⟩ with n qubits in state |1⟩ it

is sufficient to consider the three states |0, q⟩, |1, q⟩ and |χ⟩ = Ŝ+ |0, q⟩ /
√
n, where the

first entry in a ket vector denotes the number of excitations in the cavity mode, and

the second entry denotes the state of the qubits. Projected onto these three states, Ĥ

is given by

Ĥ = δ |1, q⟩ ⟨1, q| + ∆ |χ⟩ ⟨χ| + g
√
N(|1, q⟩ ⟨χ| + |χ⟩ ⟨1, q|)︸ ︷︷ ︸

Ĥ0

+ iη |1, q⟩ ⟨0, q| − iη∗ |0, q⟩ ⟨1, q|︸ ︷︷ ︸
V̂

(B.1)

Denote by |p±⟩ the eigenstates of Ĥ0 and by E± their corresponding energies. The

second order perturbation of the eigenenergy of |0, q⟩ is

εn = −
∑
j

| ⟨0, q| V̂ |pj⟩ |2

Ej
(B.2)

= −η2 ⟨1, q|H−1
0 |1, q⟩

= − |η|2∆
∆δ − ng2

143
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The corresponding eigenstate is

|ψq(t)⟩ = |0, q⟩ − i
η(t) (∆ |1, q⟩ − g

√
n |χ⟩)

∆δ − ng2
(B.3)

B.2 Effect of losses

In this section we calculate process E of the adiabatic phase gate protocol to first order

in γ and κ in the adiabatic limit. We assume an initial state ρ(0) = |0, q⟩ ⟨0, q′|. Let

U(t) be unitary evolution in the absence of noise, and let ρ̃(t) = Û(t)†ρ(t)(t). Then

˙̃ρ = −γ
2 Û

†n̂eÛ ρ̃− γ
2 ρ̃Û

†n̂eÛ + κÛ †âÛ ρ̃Û †â†U

− κ
2 Û

†â†âÛ ρ̃− κ
2 ρ̃Û

†â†âÛ
(B.4)

To first order in γ and κ we thus find using the adiabatic approximation Û(t) |0, q⟩ =

e−iφn(t) |ψq(t)⟩ with φn(t) =
∫ t
0 dt′εn(t′) that

ρ̃(T ) = |0, q⟩
〈
0, q′

∣∣ (B.5)

+

∫ T

0
dt
[
− 1

2
e−iφn(t)Û †(t)(γn̂e + κâ†â) |ψq(t)⟩

〈
0, q′

∣∣
− 1

2
eiφm(t) |0, q⟩

〈
ψq′(t)

∣∣ (γn̂e + κâ†â)Û(t)

+ κe−i(φn(t)−φm(t))Û †(t)â |ψq(t)⟩
〈
ψq′(t)

∣∣ â†Û(t)
]

We obtain

cnm := ei(φn(t)−φm(t)) ⟨q| E(|q⟩
〈
q′
∣∣) ∣∣q′〉 (B.6)

=
∞∑
k=0

⟨k, q| ρ̃(T )
∣∣k, q′〉

Up to second order in η only terms with k = 0 contribute, so we obtain

cnm = 1 +
∫ T
0 dt− [12 ⟨ψq(t)| (γn̂e + κâ†â) |ψq(t)⟩

− 1
2

〈
ψ′
q(t)
∣∣ (γn̂e + κâ†â)

∣∣ψ′
q(t)
〉

+ κ ⟨ψq(t)| â |ψq(t)⟩
〈
ψ′
q(t)
∣∣ â† ∣∣ψ′

q(t)
〉 ]
.

(B.7)

Using that ⟨ψq| n̂e |ψq⟩ = |η|2g2n/(∆δ − ng2)2, ⟨ψq| â†â |ψq⟩ = |η|2∆2/(∆δ − ng2)2 and

⟨ψq(t)| â |ψq(t)⟩ = −iη∆/(∆δ − ng2) we find

cnm = 1 − γn + γm
2

− s2n + s2m − 2snsm
2

(B.8)
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with

γn =
γng2

(∆δ − ng2)2
I sn =

√
κ∆

∆δ − ng2

√
I. (B.9)

B.3 Effects of coupling inhomogeneities on the fidelity

Analogously to Sec. B.3 we now calculate the effect of inhomogeneities in the coupling

strength in APG protocol. We assume again that the g1, ..., gN are independent and

identically distributed random variables and have the quadratic mean ḡ =
√
E[g2j ].

Repeating the derivation in the main text with couplings g1, ..., gN which are different

for each qubit gives a phase

φq = − I
δ− 1

∆

∑N
j=1 qjg

2
j

≈ − I
δ−nḡ2/∆ − I∆

(δ∆−nḡ2)2
∑

j qj(g
2
j − ḡ2)

(B.10)

which is accumulated when starting with the qubits in state |q⟩ (for q ∈ {0, 1}N . Here,

as in Sec. B.3, we use n =
∑

j qj . Analogously to Eq. (A.51) we obtain

1 − F ≤ 1

2N

∑
q∈{0,1}N

 I∆

(δ∆ − nḡ2)2

∑
j

qj(g
2
j − ḡ2)

2

(B.11)

so that

E[1 − F ] ≤ Var[g21]
1

2N

N∑
n=0

(
N

n

)
n

[
I∆

(δ∆ − nḡ2)2

]2
(B.12)

B.4 Using the adiabatic phase gate for arbitrary phase

gates

In this section we discuss how the APG protocol can be used to implement phase gates

exp(iφ(n̂)) for arbitrary φ = (φ(0), ..., φ(N)) (Here and in the following a bold font is

used to indicate vector quantities). We aim to do this by applying K pulses with detun-

ings δ1, ..., δK and ∆1, ...,∆K , as well as driving fields η1(t), ..., ηK(t) and corresponding

pulse energies I = (I1, ..., IK) with Ik =
∫ Tk
0 |ηk(t)|2dt. With this, we implement a phase

gate with φ = AI, where A is a (N + 1) ×K matrix with

Ank = − 1

δk − ng2/∆k
. (B.13)
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By adding the infidelities of the individual pulses we obtain an average gate infidelity

b · I, where

bk =
1

2N (2N+1)

 N∑
n=0

(
N

n

)
ϵ
(n,n)
k +

N∑
n,m=0

(
N

n

)(
N

m

)
ϵ
(n,m)
k

 (B.14)

with
ϵ
(n,m)
k = γg2

(
n

(∆kδk−ng2)2
+ m

(∆kδk−mg2)2

)
+ κ∆2

(
1

∆kδk−ng2
− 1

∆kδk−ng2

)2
.

(B.15)

Thus, for a fixed set of detunings δ1, ..., δK and ∆1, ...,∆K , finding the optimal values

of I becomes a linear programming problem:

Find I

that minimizes b · I

subject to AI = φ

and I ≥ 0

The solution to this linear program can be readily found using the simplex method,

which is implemented in various software packages.

Since the solution of the given linear program is always on an extremal point of the

simplex given by AI = φ and I ≥ 0, there are exactly N + 1 indices k such that

Ik ̸= 0. To find the optimal pulse detunings one can thus take the following approach:

First take K ≫ N and take the δ1, ..., δK to form a uniformly spaced grid. Take ∆k− δk
some constant independent of k to ensure that the different pulses can be implemented

by only changing the pulse frequency, not the frequency of the cavity or the |1⟩ ↔ |e⟩
transition. Now the linear program given above is solved, giving N + 1 indices k1,...,

kN+1 at which Ik ̸= 0. To implement the phase gate given by φ, N + 1 pulses with

detunings δk1 ,...,δkN+1
and ∆k1 ,...,∆kN+1

as well as pulse energies Ik1 , ..., IkN+1
have to

be applied.

A reduction to N − 1 instead of N + 1 required pulses is obtained if one only aims

to implement the phase gate exp(iφ(n̂)) up to a global phase and single qubit gates.

Formally, this means replacing the constraint AI = φ by

∀n ≥ 2 (AI)n − n(AI)1 + (n− 1)(AI)0 = φn (B.16)

Since this condition is still linear in I, the optimal I can be found as before through a

linear program.
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With the procedure outlined above, I is chosen to maximize the average gate fidelity.

For implementing a CN−1Z gate, our goal is instead to maximize the minimal fidelity.

This is not possible with our linear programming approach in a straight forward manner,

so we resort to a heuristic approach. For this, we replace the bk (Eq. (B.14)) by

bk =
1

(N + 1)2

N∑
n,m=0

ϵ
(n,n)
k (B.17)

and solve the corresponding linear program. Compared to Eq. (B.14) this approach has

the advantage that it weights the performance of the gate for all n and m equally, while

Eq. (B.14) weights terms with n,m ∼ N/2 higher than terms with extreme n and m.

The resulting I are then used to evaluate the minimal fidelity.
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Appendix C: Supporting

calculations for cavity polariton

blockade protocol

C.1 Energy shifts due to perturbative couplings from cav-

ity drive

In this section, we present the calculation of the perturbative energy shifts on the states

|010e0ph⟩ and |110e0ph⟩, due to the couplings governed by the non-Hermitian Hamilto-

nian Ĥ(κ,γ,η) in the k = 0 and k = 1 subspaces of Ĥ(∆,δ,g).

Using time-independent perturbation theory, we calculate the energy shifts up to third

order in Ĥ(κ,γ,η), which also correspond to effective linewidths up to first order in κ and

γ. The shifts on states |010e0ph⟩ and |110e0ph⟩ are denoted as ∆E0 and ∆E1 respectively,

which are obtained as

∆E0 = ⟨010e0ph| Ĥ(κ,γ,η) |010e0ph⟩ +
⟨010e0ph| Ĥ(κ,γ,η)|p+0 ⟩⟨p

+
0 |Ĥ(κ,γ,η) |010e0ph⟩

−ϵ+0

+
⟨010e0ph| Ĥ(κ,γ,η) |010e0ph⟩ ⟨p+0 |Ĥ(κ,γ,η)|p+0 ⟩⟨p

+
0 |Ĥ(κ,γ,η) |010e0ph⟩

(−ϵ+0 )2

∆E1 = ⟨110e0ph| Ĥ(κ,γ,η) |110e0ph⟩ + ⟨110e0ph| Ĥ(κ,γ,η)

(
|p+1 ⟩⟨p

+
1 |

−ϵ+1
+

|p−1 ⟩⟨p
−
1 |

−ϵ−1

)
Ĥ(κ,γ,η) |110e0ph⟩

+ ⟨110e0ph| Ĥ(κ,γ,η)

(
|p+1 ⟩⟨p

+
1 |

−ϵ+1
+

|p−1 ⟩⟨p
−
1 |

−ϵ−1

)
Ĥ(κ,γ,η)

(
|p+1 ⟩⟨p

+
1 |

−ϵ+1
+

|p−1 ⟩⟨p
−
1 |

−ϵ−1

)
Ĥ(κ,γ,η) |110e0ph⟩ .

(C.1)
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To simplify Eq. (C.1), we use(
|p+1 ⟩⟨p

+
1 |

ϵ+1
+

|p−1 ⟩⟨p
−
1 |

ϵ−1

)
=
(
Ĥ

(∆,δ,g)
n=1,k=1

)−1
, (C.2)

with Ĥ
(∆,δ,g)
n=1,k=1 =

[
δ g

g ∆

]
, (C.3)

and Ĥ
(κ,γ,η)
n=1,k=1 =

[
−iκ2 0

0 −iγ2

]
, (C.4)

where the matrices are written in the basis {|110e1ph⟩, |011e0ph⟩}. On calculating Eq. (C.1)

using the above matrices, one obtains the energy shifts as in Eq. (7.16) and Eq. (7.17).
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[35] J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen, and M. D. Lukin. Heralded

Quantum Gates with Integrated Error Detection in Optical Cavities. Physical

Review Letters, 114:110502, 2015.

[36] L.-M. Duan and H. J. Kimble. Efficient Engineering of Multiatom Entanglement

through Single-Photon Detections. Physical Review Letters, 90:253601, 2003.

[37] Philippe Lewalle, Leigh S. Martin, Emmanuel Flurin, Song Zhang, Eliya Blu-

menthal, Shay Hacohen-Gourgy, Daniel Burgarth, and K. Birgitta Whaley. A

Multi-Qubit Quantum Gate Using the Zeno Effect. arXiv:2211.05988, 2022.

[38] Giovanni Barontini, Leander Hohmann, Florian Haas, Jérôme Estève, and Jakob
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[70] X. Mâıtre, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Rai-

mond, and S. Haroche. Quantum memory with a single photon in a cavity. Phys.

Rev. Lett., 79:769–772, Jul 1997.

[71] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and

S. Haroche. Seeing a single photon without destroying it. Nature, 400(6741):239–

242, 1999.

[72] Arno Rauschenbeutel, Gilles Nogues, Stefano Osnaghi, Patrice Bertet, Michel

Brune, Jean-Michel Raimond, and Serge Haroche. Step-by-step engineered multi-

particle entanglement. Science, 288(5473):2024–2028, 2000.



Bibliography 158

[73] A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J. M.

Raimond, and S. Haroche. Entanglement of a mesoscopic field with an atom

induced by photon graininess in a cavity. Phys. Rev. Lett., 91:230405, Dec 2003.

[74] P. Maioli, T. Meunier, S. Gleyzes, A. Auffeves, G. Nogues, M. Brune, J. M.

Raimond, and S. Haroche. Nondestructive rydberg atom counting with mesoscopic

fields in a cavity. Phys. Rev. Lett., 94:113601, Mar 2005.
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Steffen J Glaser. Optimal control of coupled spin dynamics: Design of nmr

pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance,

172(2):296–305, 2005.

[147] Bradley A. Chase and J. M. Geremia. Collective processes of an ensemble of

spin-1/2 particles. Phys. Rev. A, 78:052101, Nov 2008.

[148] Henning Labuhn, Sylvain Ravets, Daniel Barredo, Lucas Béguin, Florence No-
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and Arghavan Safavi-Naini. Efficient state preparation for metrology and quantum

error correction with global control. arXiv preprint arXiv:2312.05060, 2023.

[179] Samuel L Braunstein and Carlton M Caves. Statistical distance and the geometry

of quantum states. Physical Review Letters, 72(22):3439, 1994.

[180] Without loss of generality, we set βopt = 0 by adding a step in the protocol

corresponding to global qubit rotation by the found βopt along the field-axis n⃗

(known).

[181] Thomas Monz, Philipp Schindler, Julio T Barreiro, Michael Chwalla, Daniel Nigg,

William A Coish, Maximilian Harlander, Wolfgang Hänsel, Markus Hennrich, and

Rainer Blatt. 14-qubit entanglement: Creation and coherence. Physical Review

Letters, 106(13):130506, 2011.

[182] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschen-

beutel, and D. Meschede. Analysis of dephasing mechanisms in a standing-wave

dipole trap. Physical Review A, 72:023406, 2005.

[183] Anil Shaji and Carlton M Caves. Qubit metrology and decoherence. Physical

Review A—Atomic, Molecular, and Optical Physics, 76(3):032111, 2007.
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