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Simon, Rapha, Florent, Katarina, Pau, ainsi que tous les autres collègues
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Je tiens également à mentionner les amis que je me suis faits à l’Observatoire
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thèse. Un immense merci à Pierre-Antoine△ et Thibaut□ (aka le Thibster),
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années de thèse et ont participé à les rendre si belles.
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Abstract

We explore the transformative potential of symbolic machine learning in physics
and astrophysics, seeking to overcome the interpretability challenges of tradi-
tional methods in the era of data abundance. We introduce Φ-SO, a Physical
Symbolic Optimization framework that relies on deep reinforcement learning
to extract analytical symbolic expressions directly from data. This symbolic
regression (SR) framework achieves state-of-the-art performance by integrating
physical dimensional analysis and enabling the exploitation of diverse realiza-
tions of a singular class of phenomena — an approach we dub Class SR.

Focusing on the dark matter challenges at the galactic scale, we uncover
several new stellar streams from Gaia satellite data and perform follow-up ob-
servations using the INT and VLT telescopes. Notably, we discover a polar
stream from the outer halo passing through the Solar neighborhood, which
we dub Typhon. Finally, we propose a first observation-driven, unsupervised
learning approach to agnostically constrain the dark matter distribution of the
Milky Way from a snapshot of stellar coordinates using canonical transforma-
tions.

Keywords: symbolic machine learning, deep reinforcement learning, sym-
bolic regression, dark matter, stellar streams, Milky Way
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Abstract (fr.)

Nous explorons le potentiel novateur de l’apprentissage automatique symbol-
ique dans les domaines de la physique et de l’astrophysique, afin de surmonter
les limites d’interprétabilité des méthodes traditionnelles dans cette ère car-
actérisée par une profusion de données. Nous présentons Φ-SO, un paradigme
d’Optimisation Symbolique Physique qui exploite l’apprentissage profond par
renforcement pour générer des expressions symboliques analytiques directe-
ment à partir de données. Cette approche de régression symbolique (SR) at-
teint des performances de premier plan en intégrant l’analyse dimensionnelle
et en facilitant l’exploitation de diverses réalisations d’une unique classe de
phénomènes : une approche que nous nommons Class SR.

Nous nous penchons sur les enjeux liés à la matière noire à l’échelle galac-
tique et identifions plusieurs nouveaux courants stellaires grâce aux données
du satellite Gaia, complétées par des observations de suivi effectuées avec les
télescopes INT et VLT. Nous mettons en lumière l’existence d’un courant
polaire émanant du halo externe traversant le voisinage solaire, que nous bap-
tisons Typhon. Enfin, nous proposons une approche pionnière d’apprentissage
non supervisé pour déterminer de manière agnostique la distribution de la
matière noire dans la Voie Lactée, à partir d’un cliché des coordonnées stel-
laires en employant des transformations canoniques.

Mots-clés: apprentissage automatique symbolique, apprentissage profond
par renforcement, régression symbolique, matière noire, courants stellaires,
Voie Lactée.
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Summary

Physical theories, particularly in astrophysics, stem from empirical laws. How-
ever, with the rise of deep learning and the data abundance era we are entering,
many such laws have transitioned into complex neural network representations,
preventing their integration into broader theories.

Despite their power and flexibility in modeling almost any physical sys-
tems, neural networks largely consist of non-interpretable black boxes. Which
begs the question: how can one harness information from data while retaining
their ability to interpret and connect with theory? After training a deep neural
network to fit a dataset, can one open the black box, to understand the physics
modeled inside?

Through the present thesis, we propose that the solution to these unique
challenges in physics and astrophysics lies in the development of an innovative
machine learning paradigm — one that operates through the manipulation of
mathematical symbols in an unsupervised manner: one that is able to auto-
matically distill neural networks or datasets into physical models in the form
of concise symbolic analytic laws. This innovative approach complements con-
ventional methods by introducing a valuable dimension of interpretability and
has the potential of tackling the increasing challenge of connecting observa-
tions to theory in an agnostic manner.

Specifically, we introduce Φ-SO, a Physical Symbolic Optimization frame-
work that utilizes deep reinforcement learning to train a neural network to
formulate functional forms that obey specific constraints, such as fitting data
points — a problem known as Symbolic Regression.

We develop an algorithm capable of conducting highly informative dimen-
sional analyses on partially constructed equations during the expression gen-
eration process. This is useful not only in eliminating physically impossible
solutions, but because the “grammatical” rules of dimensional analysis restrict
enormously the freedom of the equation generator, thus vastly improving per-
formance.

In addition, we expand our Φ-SO framework to accommodate the search
for a unique functional form that fits multiple realizations of a single class of
physical phenomena, allowing each realization to have (possibly) unique free
parameter values — an approach particularly relevant to astrophysics. We refer
to this new type of approach as Class Symbolic Regression and demonstrate
its advantages over more traditional methods.

We show that Φ-SO sets a new standard in exact symbolic recovery, achiev-
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ing top performances on the standardized Feynman benchmark for Symbolic
Regression. We also apply it extensively across a variety of astrophysical prob-
lems to showcase its broad applicability and robustness. Additionally, we have
developed Φ-SO into a fully-featured, open-source symbolic optimization soft-
ware (PhySO) tailored for the physical sciences, which we make freely available
to the community.

The main theme of this thesis is the development of novel, agnostic, un-
supervised learning strategies that adhere to an observation-driven philosophy
— the only approach permitting the discovery of new physics. Due to the
inherently abstract nature of constructing new machine learning approaches
to physics and astrophysics, we ground our research in practical challenges,
particularly the dark matter problem, which presents numerous difficulties at
the galactic scale.

We explore new probes of dark matter within the Milky Way by detecting
stellar streams found in observational datasets from the Gaia space telescope,
supplemented by dedicated follow-up observations at the Isaac Newton Tele-
scope and at the Very Large Telescope. These structures — tidally disrupted
remnants of dwarf galaxies or globular clusters —are intimately linked to the
formation and evolution of the Milky Way and serve as excellent tracers of the
dark matter distribution. We specifically highlight the discovery of Typhon, a
stellar stream from the outer halo passing the Solar neighborhood.

We introduce a framework for agnostically recovering a free-form gravita-
tional potential and its underlying dark matter distribution from a snapshot of
stellar positions and velocities. This is the first framework capable of achiev-
ing this while leveraging canonical transformations to the space of orbits. We
validate our approach on a synthetic test case and show that Φ-SO can distill
the obtained neural potential into an analytic form.

Through this thesis we propose an ambitious framework and set of method-
ologies for extending the symbolic machine learning paradigm into the domain
of physics. Our strategies draw from our experiences being confronted to con-
crete astrophysical challenges. The overarching statement of the present thesis
being the establishment of a mutually beneficial relationship between the de-
velopment of such approaches and the maximization of science returns from
observational missions — and in particular the investigation of the dark matter
problem, one of the most prominent challenge of physics.

https://physo.readthedocs.io/
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Summary (fr.)

Les théories physiques, particulièrement en astrophysique, sont généralement
issues de lois empiriques. Toutefois, avec l’avènement du deep learning (ap-
prentissage profond) et notre entrée dans une ère d’abondance des données,
de nombreuses lois se sont muées en représentations complexes au travers de
réseaux neuronaux, ce qui entrave leur intégration dans des théories plus larges.

Bien que puissants et flexibles, ayant les capacités de modéliser presque
tous les systèmes physiques, les réseaux de neurones demeurent largement des
bôıtes noires non interprétables. Cela soulève la question suivante : comment
exploiter les informations sous-jacentes à un jeu de données tout en conservant
notre capacité à les interpréter et à les relier à la théorie ? Après avoir entrâıné
un réseau de neurones, peut-on “ouvrir” la bôıte noire qu’il constitue afin de
comprendre la physique qu’il modélise ?

À travers cette thèse, nous proposons que la réponse à ces défis uniques
en physique et en astrophysique réside dans le développement d’un nouveau
paradigme de machine learning (apprentissage automatique) : un paradigme
opérant par la manipulation de symboles mathématiques de manière non super-
visée, un paradigme capable de transformer automatiquement des réseaux neu-
ronaux ou des ensembles de données en modèles physiques sous forme de lois
symboliques et analytiques concises. Cette approche novatrice, en enrichissant
les méthodes conventionnelles d’une dimension d’interprétabilité précieuse, se
présente comme une solution prometteuse pour relever le défi croissant de con-
necter de manière agnostique les observations à la théorie.

Spécifiquement, nous introduisons Φ-SO, Physical Symbolic Optimization,
un paradigme d’optimisation symbolique physique qui respose sur le deep
reinforcement learning (apprentissage profond par renforcement) permettant
d’entrâıner un réseau de neurones à formuler des formes fonctionnelles respec-
tant des contraintes spécifiques, comme l’ajustement de points de données, une
problématique connue sous le nom de Symbolic Regression (régression symbol-
ique).

Nous développons également un algorithme capable de réaliser des analy-
ses dimensionnelles informatives sur des équations n’étant que partiellement
construites durant le processus de génération d’expressions. Cela nous per-
met d’éliminer les solutions physiquement impossibles et de restreindre con-
sidérablement la liberté du générateur d’équations grâce aux règles “gram-
maticales” de l’analyse dimensionnelle, améliorant ainsi considérablement les
performances de notre système en matière de régression symbolique.
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Nous étendons également notre paradigme (Φ-SO) afin d’inclure la recherche
d’une forme fonctionnelle unique pouvant ajuster plusieurs réalisations d’une
même classe de phénomènes physiques, chaque réalisation pouvant avoir des
valeurs de paramètres libres (potentiellement) uniques. Nous baptisons cette
nouvelle approche Class Symbolic Regression (régression symbolique de classe)
et démontrons ses avantages par rapport aux approches plus traditionnelles.

Nous démontrons que Φ-SO établit une nouvelle norme en matière de
récupération symbolique exacte de formules analytiques à partir de leur données
associées, atteignant des performances de premier plan sur des tests de perfor-
mance standardisés. Nous appliquons également Φ-SO à travers une variété de
problèmes astrophysiques, démontrant son applicabilité large et sa robustesse.
En outre, nous avons développé Φ-SO en un logiciel d’optimisation symbol-
ique open-source (code source ouvert) et aux fonctionnalités multiples (PhySO)
adapté aux sciences physiques, que nous rendons librement accessible à la com-
munauté.

Le thème principal de cette thèse est le développement de nouvelles stratégies
d’apprentissage machine agnostiques et non supervisées, adhérant à une philoso-
phie de travail guidée par les données observationnelles : la seule approche per-
mettant la découverte de nouvelles lois physiques. En raison de la nature in-
trinsèquement abstraite de la construction de nouvelles approches de machine
learning pour la physique et l’astrophysique, nous ancrons notre recherche dans
des défis pratiques, notamment le problème de la matière noire, qui présente
de nombreuses difficultés à l’échelle galactique.

Nous explorons de nouvelles sondes observationnelles à la matière noire de
la Voie Lactée en détectant de nouveaux courants stellaires dans des ensembles
de données observationnels du télescope spatial Gaia, que nous complètons par
des observations de suivi dédiées effectuées au Isaac Newton Telescope et au
Very Large Telescope. Ces structures, reliquats de galaxies naines ou d’amas
globulaires déchirés par les forces de marée, sont intimement liées à la formation
et à l’évolution de la Voie Lactée et constituent d’excellents traceurs de la
distribution de la matière noire. Nous mettons particulièrement en évidence la
découverte d’un nouveau courant stellaire s’étendant du halo externe de notre
Galaxie au voisinage Solaire que nous baptisons Typhon.

Nous introduisons également un premier paradigme pour cartographier de
manière agnostique un potentiel gravitationnel de forme libre et sa distribu-
tion de matière noire sous-jacente à partir d’un instantané de positions et de
vitesses stellaires, exploitant les transformations canoniques vers l’espace des
orbites. Nous validons notre approche sur un cas test synthétique et montrons
que Φ-SO peut distiller le potentiel neuronal résultant en une forme analytique
pertinente.

https://physo.readthedocs.io/
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À travers cette thèse, nous proposons un cadre de travail ambitieux et un
ensemble de méthodes algorithmiques pour étendre le paradigme du symbolic
machine learning (apprentissage automatique symbolique) au domaine de la
physique, en nous basant sur des confrontations à des défis astrophysiques
concrets. L’idée mâıtresse de cette thèse est de forger une relation symbi-
otique entre le développement de ces nouvelles méthodologies et la maximi-
sation des retombées scientifiques des missions observationnelles, en mettant
particulièrement l’accent sur l’exploration du problème de la matière noire,
l’un des défis les plus cruciaux de la physique moderne.
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Chapter 1

Introduction

Summary.
We tackle the increasingly critical issue of opacity in neural networks used

in physics and astrophysics, alongside the epistemological challenges posed by
this new approach to science. We propose a solution through the establishment
of a novel symbolic machine learning paradigm that leverages mathematical
constructs for model interpretability. We then highlight, this thesis’ philo-
sophical approach which revolves around an observation-driven, unsupervised
learning strategy, emphasizing agnosticism to facilitate new physical discover-
ies.
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Physical theories, in particular in the domain of astrophysics, traditionally
stem from empirical laws. Physicists typically observe natural phenomena,
formulate empirical laws to describe them, and subsequently construct over-
arching theories that encompass these laws. For example, Newton’s law of
universal gravitation [Newton, 1687] elegantly explains both terrestrial object
motion and Kepler’s planetary motion laws [Kepler, 1609]. However, with
the rise of deep learning, many empirical laws have transitioned into complex
neural network representations1, complicating their integration into broader
theories.

In astrophysics, thanks to new observational missions and surveys such as
Gaia [Gaia Collaboration et al., 2016a], Euclid [Laureijs et al., 2011], LSST
[Željko Ivezić et al., 2019, Collaboration, 2009] and SKA [Carilli and Rawlings,
2004], we are entering a new era of (∼Petabyte) data abundance, and there
is considerable excitement at the possibility of identifying new empirical laws
from these unprecedentedly rich and intricate datasets that could eventually
lead to the discovery of new physics. However, the colossal amount of data also
presents significant conceptual challenges. Although deep learning will allow
us to extract valuable information from the large surveys, it is both blessed
and plagued by the underlying neural networks that are one of its most potent
components.

Machine learning’s opaqueness problem

Neural networks are flexible and powerful enough to model any physical sys-
tem2 and work in high dimensions, but they unfortunately largely consist of
non-interpretable black boxes. Clearly, interpretability and intelligibility are
of great importance in physics, which begs the question: how can one harness
information from these large datasets while retaining their ability to interpret
and connect with theory? After training a deep neural network to fit a dataset,
can one open the black box, to understand the physics modeled inside?

A symbolic learning paradigm

Although immensely challenging, through the present thesis, we propose that
the solution to these unique challenges in physics and astrophysics lies in the
development of an innovative machine learning paradigm — one that operates
through the manipulation of mathematical symbols in an unsupervised man-
ner: one that is able to automatically distill neural networks or datasets into
physical models in the form of concise symbolic analytic laws. This innova-
tive approach complements conventional methods by introducing a valuable

1The concept of neural network will be formally detailed in in sub-section 2.1.2
2That can be described as a Lebesgue integrable function [Lu et al., 2017].
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dimension of interpretability and has the potential of tackling the increasing
challenge of connecting observations to theory in an agnostic manner.

1.1 The Need for Symbolic Approaches

Prediction vs. explanation : the epistemological dilemma posed by
neural networks

This important epistemological question raised by neural networks strikes at
the core of physics research. Should we be content with models that pre-
dict accurately yet offer no insight into the underlying mechanisms? Imagine,
hypothetically, an all-knowing but entirely opaque neural network capable of
predicting any physical outcome flawlessly. Would such a tool satisfy our sci-
entific curiosity? Likely not, as the inherent drive for understanding — the
physicist’s quest for explanations — would remain unfulfilled. This scenario
probes a deeper question: What is the ultimate goal of physics: is it merely
to predict, or to explain? And if required to choose, which aspect would more
fundamentally define the discipline?

Predictive power through unification

Historically, advancements in physics have often come through unifications in
the form of simpler, yet powerful theories that explain and predict phenomena
across various scales, again one can think of Newton’s laws. This preference
for simplicity and elegance, often encapsulated by Occam’s Razor, suggests a
bias towards theories with fewer parameters that still provide comprehensive
explanatory power.

Predictive power through complexity

In contrast, neural network models represent a paradigm shift. They excel
in making predictions within their trained scope but are typically parameter-
dense and lack the explanatory simplicity of analytic models. One might argue
that the sheer predictive power justifies deviating from Occam’s Razor — if a
model is able to predict phenomena that were previously unexplained, perhaps
its complexity can be forgiven ?
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Mathematics: the language of unification

However, we would argue that this is not (at least for now) a concern, as no
current deep learning model can universally learn from and predict all physical
phenomena. Instead, we observe a fragmentation of models across various
sub-disciplines of physics, each tailored to specific datasets or phenomena.
Intriguingly, hints toward new physics might already be lurking deep within
one or more of these specialized neural networks, trained on vast observational
or experimental datasets.

The historical method of synthesizing empirical observations into compre-
hensive theories has been through the universal language of mathematics. This
tradition suggests that even as we leverage the power of neural networks, there
remains a critical need for interpretable mathematical models. Such models are
essential for facilitating the communication of physical concepts across various
domains within physics.

Mathematical constructs in physics

Galileo famously intuited in Opere Il Saggiatore [Galilei, 1623] that the book
of the Universe “è scritto in lingua matematica”. Ever since, it has been a
central concern of physics to attempt to explain the properties of nature in
mathematical terms, by proposing or deriving mathematical expressions that
encapsulate our measurements from experiment and observation. This ap-
proach has proven to be immensely powerful. Through trial and error over the
centuries, the great masters of physics have developed and bequeathed us a
rich toolbox of techniques that have allowed us to understand the world and
build our modern technological civilization. But now, thanks to the develop-
ment of modern deep learning networks, there is hope that this endeavor could
be accelerated, by making use of the fact that machines are able to survey a
vastly larger space of trial solutions than an unaided human.

Symbolic regression

This brings us to the pivotal role of “Symbolic Regression” (SR) in this thesis.
Beyond traditional methods that have emerged since the onset of the computer
revolution, which typically involve fitting coefficients to predefined linear or
nonlinear functions (see, e.g., Press et al. 2007), SR delves deeper. It seeks
not just to optimize coefficients within a given mathematical function but to
discover the functional forms themselves. Specifically, SR aims to deduce a
free-form symbolic analytic function f : Rn1 −→ Rn2 that fits y = f(x) given
(x,y) data.
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1.2 Observation-Driven Modeling Philosophy

Machine learning’s bias problem

Common machine learning approaches to physics and astrophysics often in-
volve training neural networks in a supervised manner, where substantial phys-
ical assumptions are embedded into the training examples, e.g., by training
on examples derived from simulations based on established physical models.
While these approaches can be useful in some instances, they inherently limit
the discovery of new physics by enforcing conformity of resulting models to
pre-existing theoretical frameworks.

Agnosticity for scientific discovery

This thesis aims to pioneer new methodologies for scientific discovery in physics
and astrophysics, advocating for an observation-driven philosophy. This phi-
losophy, overarching the entire thesis, asserts that genuine physical discoveries
cannot be achieved merely by adhering to established models but instead re-
quire an agnostic exploitation of observational data.

In pursuit of this, we develop and implement frameworks that avoid model-
dependent learning in favor of unsupervised learning strategies. These strate-
gies do not rely on predefined physical models but instead aim to construct
physical models that inherently adhere to observational constraints. An illus-
tration of this approach is the Φ-SO framework for Physical Symbolic Opti-
mization, a centerpiece of this thesis. Φ-SO learns to formulate symbolic ana-
lytical expressions from scratch. It operates through a trial-and-error process,
driven solely by the constraint to conform to empirical data without prior ex-
posure to any symbolic expressions. This method exemplifies our commitment
to discovering physical models by enforcing behavioral constraints, devoid of
any presupposed models — true to the inductive bias-free approach.

Embracing the philosophy articulated by Donald Lynden-Bell [Bonaca and
Price-Whelan, 2024], we endeavor to “follow the data” allowing the inherent
patterns and truths within the observations to guide our theoretical devel-
opments. This approach not only fosters the potential for groundbreaking
discoveries but also aligns with the fundamental objective of physics: to elu-
cidate the underlying principles of the universe through the lens of empirical
evidence.

The dark matter problem

The pursuit of methodological advances can easily lead toward abstraction,
making it crucial to ground them in concrete scientific challenges. The dark
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matter problem, exemplifies such a challenge as its inconsistent behavior at
the galactic scale suggests potential gaps in our understanding and possible
hints towards new physics, offering a fertile ground for testing new theories
and methodologies.

The ultimate goal of this thesis is to foster a symbiotic relationship between
the development of innovative machine learning strategies as well as symbolic
learning approaches and their application in astrophysics, particularly in un-
raveling the mysteries of dark matter — one of the most pressing challenges
in modern physics.

1.3 Overview & Outline

Our objectives are twofold: first, to expand the horizons of symbolic ma-
chine learning beyond its current confines, which primarily serve the computer
science and control community, into new uncharted territories that offer sig-
nificant value to physics through interpretability. Second, applying these in-
novative methods to respond to the contemporary challenge of dark matter,
ensuring that the evolution of these methods remains firmly grounded in real
science cases.

This Chapter provided a high-level introduction, setting the stage for this
thesis by defining its philosophical foundation and core objectives. As out-
lined below, Chapters 2 and 8 will provide a more detailed contextualization
of symbolic machine learning and dark matter research at the galactic scale
respectively.

Outline

Chapter 2 delves into the variety of interpretable machine learning approaches
applicable to physics and astrophysics, presenting key strategies from the liter-
ature that have the potential to advance these fields. It highlights the central
role of symbolic learning within this spectrum and provides contextualization
for these methods.

Chapter 3 explores the conceptualization of mathematical problems as
graph optimization challenges and discusses the representation of formal math-
ematics as numerical data that can be learned on. It introduces our method
for training neural networks to generate mathematical expressions that sat-
isfy certain constraints — such as fitting a dataset (symbolic regression) —
through trial and error using deep reinforcement learning.
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In Chapter 4, I introduce a technique for incorporating physical dimensional
analysis constraints into symbolic optimization, which I then integrate with
our reinforcement learning strategy resulting in my Φ-SO framework which
reports state-of-the-art performances when evaluated on a standardized SR
benchmark.

Chapter 5 extends the Φ-SO framework to enable the search for a single
functional form that fits multiple realizations of a particular class of phenom-
ena, allowing each realization to possess potentially unique parameter values.
An approach we dub Class SR. I demonstrate the effectiveness of my new
approach by introducing and conducting a first benchmark for Class SR and
by successfully deriving a synthetic Galactic potential from associated stellar
streams data.

Chapter 6 provides insights into the PhySO software, which is our imple-
mentation of the Φ-SO framework.

Chapter 7 introduces complementary approaches to Φ-SO. These methods
employ neural networks to directly capture the graph structure underlying an-
alytic expressions, further broadening the applicability and effectiveness of our
symbolic learning approaches.

Chapter 8 outlines the challenges associated with understanding dark mat-
ter at the galactic scale, with a specific focus on our own Milky Way galaxy.
This chapter sets the stage for a deeper examination of dark matter’s role and
properties within our galaxy.

Chapter 9 details my contributions to the search for observational probes
of dark matter in the Milky Way, emphasizing the discovery and analysis of
new stellar streams. I notably introduce a newly identified stream, which we
have named Typhon.

Chapter 10 introduces a novel method for mapping the distribution of dark
matter in the Milky Way from stellar coordinates. This approach is rooted in
our model-agnostic and observation-driven philosophy, utilizing unsupervised
learning techniques.

Finally, Chapter 11 concludes the thesis by summarizing our findings and
discussing future research directions. It emphasizes prospective methodologies
aimed at revealing new constraints on dark matter and explores how the field
of symbolic learning can be advanced further.





Chapter 2

Interpretable Approaches for
(Astro)-Physics

Summary.
We discuss the limitations of the prevailing supervised learning paradigm

stemming from engineering fields which currently dominates applications in
physics and astrophysics. We outline alternative methods that may facilitate
genuine discoveries in the natural sciences — along with various refreshing illus-
trative examples from the astrophysical literature. We then explore symbolic
regression, detailing its advantages over traditional approaches and providing
a brief overview of the relevant literature.
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This Chapter aims at contextualizing our observation-driven approach to
physical machine learning.

In Section 2.1, we discuss the limitations of the prevailing supervised learn-
ing paradigm in machine learning, which currently dominates applications in
physics and astrophysics. We outline alternative methods that may facilitate
genuine discoveries in the natural sciences — along with various illustrative
examples from the astrophysical literature. In the goal of keeping this Chap-
ter stimulating, we introduce essential deep learning concepts by disseminating
them throughout our discussion. Specifically, we will touch on: the dense layer
architecture, activation functions, and auto-differentiation [Goodfellow, 2016].

Section 2.2 delves into symbolic regression (SR), a central theme of this
thesis. We highlight its advantages over traditional neural network approaches
and provide a concise overview of the SR literature.

Additional Remarks

As we introduce the machine learning components of this thesis, it is perti-
nent to clarify a few points. Although our primary focus is on deep learning
specifically (the study and usage of neural networks), we occasionally refer to
the broader field of machine learning to include topics like auto-differentiation.
Throughout this thesis, our discussions related to auto-differentiation and neu-
ral networks are based on implementations in PyTorch [Paszke et al., 2019],
which is currently the most popular deep learning library in research [Papers
With Code, 2023].

2.1 Scientific Discoveries in the Machine Learn-

ing Era

In sub-section 2.1.1, we analyze the prevailing computer science-centric super-
vised learning paradigm, discussing its limitations for discovering new physical
phenomena. We also highlight specific scenarios where supervised learning re-
mains beneficial. Sub-section 2.1.2 delves into fundamental deep learning con-
cepts, focusing on the core of neural architectures and their ability to model
non-linear phenomena. In Sub-section 2.1.3, we discuss the advantages of neu-
ral simulation emulators and their application in computational physics and
astrophysics.

Sub-section 2.1.4 introduces unsupervised and observation-driven learning
approaches, such as reinforcement learning and auto-differentiation, which hold
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potential for groundbreaking discoveries in physics. This includes a discussion
on differentiable physical simulations and innovative architectures like auto-
encoders and approaches for managing uncertainties in deep learning models.
Each concept is illustrated with astrophysical examples. Finally, Sub-section
2.1.5 provides a concise overview of the topics discussed in this Section.

2.1.1 The supervised learning paradigm

Deep learning, or the process of fitting a deep neural network, has evolved dra-
matically from its revival by LeCun et al. [1998]. Initially reignited within the
engineering research, it quickly permeated industrial applications1, owing to its
capability to model or emulate almost any system, effectively supplanting en-
tire fields like signal and image processing [Schmidhuber, 2015]. Deep learning
represents a paradigm shift not just in capability but in methodology, shifting
from expert-derived rules to empirical learning directly from data. This raises
a profound question: can a dataset itself be considered a direct model?2

An engineering-centric field ?

The need for fast and accurate inference

The engineering-centric focus of machine learning reflects a distinct set of
priorities: while interpretability is often secondary, the importance of rapid,
accurate inference is paramount. This orientation contrasts starkly with the
needs of natural sciences, where understanding and interpretability are crucial,
and while rapid inference is beneficial, it is not always central. A scientific
discovery being unique by definition, once a breakthrough is achieved, the
immediate need for repeated inference diminishes.

Supervised learning frameworks

The engineering emphasis on accuracy and speed has popularized the super-
vised learning paradigm, where neural networks are trained on paired input-
output examples. During inference, the model parameters are “frozen” (i.e.
fixed), allowing the network to predict outcomes based on its training. This
method typically performs well within the range of its training data due to the
neural networks’ inherent flexibility. However, this approach inherently lim-
its the scope of discovery in physics and astrophysics, where the goal extends
beyond prediction to understanding fundamental processes.

1This is underscored by the fact that although open-source, major deep learning frame-
works like TensorFlow [Abadi et al., 2016] and JAX [Bradbury et al., 2018] are developed by
large corporations like Google, while PyTorch [Paszke et al., 2019] is maintained by Meta.

2This notion parallels the definition of human languages, which are often understood
through corpora rather than predefined rules [Hunston, 2006].
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The limitations of supervised learning for discovering new physics

We have access to only one Universe

The fundamental limitation of applying supervised learning to discover new
physics lies in our unique observational dataset — the Universe itself. Unlike
other fields where data from varied sources can be used to train and validate
models, physics must contend with deriving universal laws from observations
constrained to a single instance. This unique situation restricts the utility of
supervised learning, which traditionally relies on diverse datasets to generalize
and predict outcomes in unfamiliar scenarios. To stretch the metaphor, if
we had access to multiple universes, each governed by different physical laws,
supervised learning could potentially “triangulate” physical laws applicable to
a previously unseen Universe.3

Fallacious approaches

While it is feasible to train neural networks on simulations that embed certain
physical assumptions, the real test comes when these models are applied to
actual observational data. Ideally, simulated data should closely mimic ob-
servational data to ensure the model operates within its trained parameters.
However, this approach assumes that the physical laws embedded in the sim-
ulation accurately reflect reality. There is a risk that researchers might inad-
vertently re-confirm the assumptions built into the simulation when applying
these models to real-world data, mistaking the echo of their assumptions for a
discovery. This highlights a critical pitfall in using supervised learning where
the model is only as good as the assumptions of its training data and might
not genuinely extend to uncovering new principles in observational data.

Sensible supervised learning approaches to (astro)-physics

Processing massive datasets

Despite its limitations in discovering new physical laws, supervised learning
can serve as an invaluable tool in the preliminary analysis of vast datasets
within astrophysics.

Let us illustrate our point with the analysis of stellar spectra4. In this con-
text, supervised learning models are exceptionally adept at deducing key stel-

3This is partly why Bayesian approaches to probability are often favored over frequentist
approaches in physics and astrophysics, where experimental repetition on a universal scale
is impossible.

4A particularly interesting example since it was precisely the analysis of stellar spec-
tra and the detection of the first patterns hinting towards stellar evolution that birthed
astrophysics from astronomy.
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lar characteristics, such as metallicity5 or surface gravity, from spectral data.
These models leverage large, well-characterized datasets where the properties
of stars are well-understood and consistent. By training neural networks on
these datasets, researchers can automate the analysis of stellar spectra, effec-
tively standardizing this aspect of astrophysical research as exemplified by the
approach used in the APOGEE catalog [Holtzman et al., 2018].

Utility-first modeling: When the outcome justifies the means

In some contexts, the process of model generation is less important than the
utility and accuracy of the model itself. This is especially true in scenarios
where the final model can be independently verified and tested, regardless of
its origin. In such contexts, the method of discovery — whether through tra-
ditional methods or via a black-box providing the solution — is secondary to
the model’s validity and applicability.

SR exemplifies this approach. SR uses machine learning techniques to gen-
erate a physical model in the form of an analytic expression that fits observa-
tional data. The key advantage here is that the output — analytic expressions
— is inherently interpretable and verifiable, standing apart from the compu-
tational method used to derive it.

Another similar application is the resolution of long-standing mathematical
conjectures through the generation of formal mathematical proofs. Here, the
focus is on the effectiveness of the solution provided, rather than the mechanics
of the neural network that produced it. If a neural network, even a black-box
model, can propose a valid proof to a mathematical problem, the proof itself
can be scrutinized and validated independently of the method used to discover
it.

Parameter optimization in astrophysics often involves adjusting simulation
parameters so that the simulation’s output aligns with observed data. While
traditional methods like Markov Chain Monte Carlo (MCMC)6 are prevalent
due to their robustness in uncertainty estimation, neural networks offer a direct
and potentially faster alternative. By training networks on pairs of simulation
outputs and parameters, we can use them to predict parameters that produce
a desired outcome, which are then easily verifiable through a single simulation
run. This method provides a direct pathway to solution verification, albeit
often without the uncertainty estimates provided by methods like MCMC —

5Metallicity in astrophysics refers to the proportion of mass in a star that is not hydrogen
or helium, often measured relative to the Sun’s metal content.

6This approach involves constructing a Markov chain within the parameter search space,
where the distribution of the chain represents the underlying distribution being explored.
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we will discuss solutions overcoming that limitation later in this Section.

More generally, the approach of using neural networks to emulate complex
simulations represents a growing trend. As by effectively capturing the dy-
namics of simulations, neural networks can offer faster alternatives to running
computationally expensive models.

2.1.2 Fundamental building blocks of deep learning

The effectiveness of neural networks in accurately modeling complex simu-
lations or physical systems is often remarkable. To shed light on this phe-
nomenon, we will discuss the most foundational architecture of deep learning
— a component that persists as a sub-element in nearly all cutting-edge ar-
chitectures to this day [Vaswani et al., 2017, Grathwohl et al., 2018, Ho et al.,
2020]: the dense layer and the concept of activation functions.

Dense layers

Output

Layer 0
of width 𝑛"

Layer 1
of width 𝑛#

Layer l-1
of width 𝑛$%#

Layer l
of width 𝑛$

….

Input

Figure 2.1: General representation of dense layers where neurons are symbolized by circles
and their connections by solid lines. See 2.1.2 for a detailed description.

The dense layer, also known as a fully-connected layer or multi-layer per-
ceptron (MLP) when multiple layers are stacked, represents a fundamental
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building block of many neural networks. An MLP consists of l layers of neu-
rons, nodes that typically hold values between 0 and 1. Conceptually, the
input vector can be considered the 0-th layer, with the final layer producing
the predictions.

The layers between the first layer and last layer are called hidden layers.
In MLPs each neuron of a given layer i (where i ̸= 1 and i ̸= l) is connected to
every neuron of the previous layer (i.e. layer i−1) and every neuron of the next
layer (i.e. layer i + 1) hence the name of fully connected. See Figure 2.1 for a
general overview of this architecture. Each neuron’s value is simply a sum of
linear functions of the values held in the previous layer with multiplicative co-
efficients called weights and the offset called a bias. Specifically the activation
of the i-th neuron of a given layer j > 0 is thus given by:

a
(j)
i = g

(
b
(j)
i +

nj−1∑

k=1

w
(j)
i,k · a

(j−1)
k

)
(2.1)

Where
{
b
(j)
i

}
k≤nj−1

and
{
w

(j)
i,k

}
k≤nj−1

denote the sets of all bias and weight

parameters for the j-th layer, respectively. These parameters are the trainable
parameters that can be tuned or fitted to best match target values based on
input values, this process is referred to as training. Here, g refers to the so-
called activation function.

Activation functions

Activation functions are pivotal in enabling neural networks to model complex
nonlinear phenomena. Though the underlying components of these networks
are linear, it is the nonlinear activation functions that enables them to capture
more intricate behaviors. These functions often also serve to constrain the
output values within a specific range, such as [0, 1].

In the context of the methodologies discussed in this thesis, we frequently
use the hyperbolic tangent (tanh) and the sigmoid (σ) functions. The sigmoid
function, in particular, is defined as follows:

σ(x) =
1

1 + e−x
(2.2)

These functions are not only fundamental for introducing non-linearity but
also crucial for ensuring that the outputs of neural network layers stay within
manageable bounds, facilitating stable learning.

Although we will discuss later in this Section, it is important to emphasize
that auto-differentiation is as fundamental a building block of deep learning as
neural architectures or activation functions, if not more so [Goodfellow, 2016].
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2.1.3 Neural emulation of simulations

Parameter searches

Neural emulations of simulations, commonly referred to as “simulation-based
inference” (SBI), offer a powerful tool for accelerating parameter searches
[Cranmer et al., 2020a]. Given that neural networks — even very large ones
— are typically orders of magnitude faster to evaluate than complex astro-
physics or physics simulations, they are particularly advantageous for high-
dimensional parameter search problems where traditional grid searches are
impractical. These approaches allow for occasional verification checks with
randomly selected parameters, ensuring the emulator’s accuracy without the
need for exhaustive simulations across a vast parameter grid.

For instance, research in cosmology has demonstrated that such approaches
can surpass Markov Chain Monte Carlo (MCMC) techniques in accurately
recovering posterior distributions7 of parameters [Zhao et al., 2022].

Furthermore, by running a series of simulations and employing neural prob-
ability distribution estimators (such as the normalizing flow models we will
explore in Section 10.2) researchers can approximate the entire posterior dis-
tribution. This method circumvents the need to explore many more parameters
within simulations, significantly facilitating the search process.

On the virtues of neural emulation

Beyond acceleration

While neural emulators significantly accelerate computational processes, their
value extends beyond mere speed. They offer unique advantages that can make
them indispensable, even in scenarios where simulations could be executed
instantaneously.

Tackling inverse problems

One significant advantage is their capability to address inverse problems. By
inverting the training of the neural network — training it to predict the input
parameters θ from a simulation output rather than the other way around —
we can simplify the process of finding initial conditions or parameters that
explain observed phenomena. This approach is depicted in Figure 2.2. For
instance, Chardin et al. [2019] demonstrates how a neural network distilled
from simulations can predict the cosmic reionization timeline field from current
day observations of the hydrogen 21 cm line.

7In Bayesian statistics, the likelihood of a parameter value is determined by its posterior
probability, which incorporates prior knowledge through the prior distribution and includes
a marginalization term that accounts for all other variables [Bayes, 1763].
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interest Model

Figure 2.2: Neural Emulator for Tackling Inverse Problems. A trained neural emula-
tor can reverse the typical simulation process. Instead of generating results from parameters,
it infers the parameters θ that would lead to a specific simulation outcome. This facilitates
solving inverse problems by predicting initial conditions or parameters that align with aribi-
trary outcomes.

A differentiable emulator

Another key advantage is the differentiability of neural emulators. Thanks to
auto-differentiation (detailed later in 2.1.4), it is possible to obtain derivatives
through neural networks, facilitating the use of gradient descent to optimize
simulation parameters directly against desired outcomes, typically to align
with observations.

While supervised learning techniques offer valuable tools for scientific in-
quiry, by construction they can not be employed to discover new physical laws.
These engineering-centric approaches are intrinsically limited in the context of
physics and astrophysics. As physicists, we need to employ these techniques
thoughtfully, stepping beyond conventional paradigms to leverage deep learn-
ing’s full potential.

2.1.4 Agnostic approaches

Framework and examples

Framework

A shift from traditional training paradigms leads us to consider methods where
neural networks are not just fed training examples with known outcomes. In-
stead, they are tasked to make predictions by adhering to a set of constraints,
typically physical or observational. This process, known as “unsupervised
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learning” involves training networks through trial-and-error without prede-
fined outcomes.

Examples

A prime example of this methodology is our approach to SR, where the network
outputs an analytic expression. The requirement here is for the expression to
fit observational data accurately, without the network having been exposed to
prior examples of symbolic expressions.

Another common application of unsupervised learning in (that is also com-
mon to engineering) is clustering, where the objective is to identify groups
of similar items within a dataset. For instance, Dodd et al. [2023] employed
clustering techniques to discern Milky Way structures within a vast dataset of
stellar positions and velocities near the Sun.

Another notable instance in astrophysics is the ActionFinder algorithm,
detailed by Ibata et al. [2021]. This method learns a canonical transformation
(and its underlying Hamiltonian) to the space of so-called actions — effectively
orbits — in an unsupervised manner, ensuring that stars from a single stellar
stream8 have similar values in the latent space. This is achieved without prior
examples or reliance on a physical dynamical model, the sole assumption being
that stars from a single stellar stream approximate a single orbit.

Agnosticity

In natural sciences, particularly when new physical models are under inves-
tigation, agnosticity becomes crucial. Unsupervised approaches ensure that
learning is not biased by pre-existing theories or simulations, thereby opening
the door to genuine physical advancements. Unsupervised learning represents
the only viable method where learning is free from biases typically introduced
by training on known outcomes.

On the power of auto-differentiation

Auto-differentiation is an underappreciated yet powerful tool introduced by
deep learning. Let us explore its fundamental concept and utility.

Approximation through over-parametrization

One might assume that the efficacy of deep learning stems merely from the ex-
tensive number of parameters within neural networks, enabling them to finely

8These elongated, thin structures are formed when celestial bodies are accreted by the
Milky Way. We will explore this concept further in the contextual discussions provided in
Chapter 8.



2.1 Scientific Discoveries in the Machine Learning Era 19

θ".grad = True
θ#.grad = True
w3 = θ"	* θ#
w4 = torch.sin(θ")
w5 = w3 + w4

+

𝑓 𝜃", 𝜃#

sin

𝜃"

×

𝜃#

𝑤"̇ 𝑤"̇ 𝑤#̇

𝑤,̇ = 𝑤"̇.𝑤# +𝑤".𝑤#̇

𝑤" 𝑤#

𝑤/̇ = cos 𝑤" .𝑤"̇
𝑤,𝑤/

𝑤3
𝑤3̇ = 𝑤,̇ +𝑤/̇

(b) Pytorch syntax(a) Computational graph

Figure 2.3: Auto-differentiation illustration. For a set of parameters θ = θ1, ..., θn,
the derivatives of each computational step are stored, enabling the use of the chain rule to
compute derivatives { ∂x

∂θ1
, ..., ∂x

∂θn
} with respect to θ for any variable x. This figure shows

a computational graph (a) and a typical syntax in the PyTorch framework [Paszke et al.,
2019] for a simple computation: sin(θ1) + θ1θ2.

approximate a wide range of functions, similar to Taylor series. This capability
is formally supported by the universal approximation theorem, which asserts
that a sufficiently large Multi-Layer Perceptron (MLP) can approximate any
Lebesgue integrable function [Hornik et al., 1989].

To illustrate, consider progressively complex physical models: a simple free
fall equation assuming no atmospheric resistance : z(t) = −1

2
gt2+v0t+z0 with

three parameters, is less precise than a model considering uniform atmospheric
pressure z(t) = H ln 1+e−2t/T

2
+ v0t + z0 with six parameters9, which in turn is

less accurate than a neural network that may involve thousands of parameters.
A compelling observation in contemporary deep learning research is that

neural networks with more parameters than data points often perform excep-
tionally well without overfitting, provided they are trained correctly, including
the use of a distinct control test set that the network has never encountered
during training [Li and Liang, 2018].

Auto-differentiation: deep learning’s secret sauce

While the vast number of parameters in neural networks undeniably con-
tributes to deep learning’s success, another critical factor is backpropagation.

9Where z, t, g, v0, z0 are the altitude, time, surface gravity, initial velocity, initial altitude
respectively and H and T are a scale height and a characteristic time respectively.
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This process involves tracking every mathematical operation during inference
— potentially amounting to millions — and recording its derivative in a com-
putational graph. This allows for the automatic and analytical differentiation
of the cost function with respect to the trainable parameters via the chain
rule, greatly aiding in convergence. Without this capability, although it would
be theoretically possible to set parameters allowing neural networks to emu-
late any function, practically finding these parameters i.e. training networks
through deep and complex layers would be infeasible. Auto-differentiation
make possible the propagation of cost function derivatives throughout even
very deep neural networks. This foundational technique is illustrated in Fig-
ure 2.3.

Differentiable Simulations

Implementing entire simulations in an auto-differentiable framework, where
every operation is differentiable or can be approximated as such, opens ex-
traordinary possibilities. For instance, Li et al. [2022] developed a cosmologi-
cal simulation entirely within this framework, allowing them to optimize initial
conditions to meet any specific observational criteria. This capability to “back-
propagate” through a simulation to adjust initial conditions or any variable
demonstrates the profound impact of auto-differentiation, initially popularized
by deep learning yet fundamentally independent from it. Such flexibility means
that one could theoretically optimize a simulated universe’s initial conditions
to align with any desired observational outcome, showcasing the powerful util-
ity of this approach.10

Deep learning techniques

Learning Methods

We have discussed unsupervised learning setups, which involve training neural
networks based on any differentiable constraint. These constraints can be
complex, extending to computations in physical simulations (as we will do
ourselves in Chapter 10) or any process that allows for differentiation.

Auto-differentiation stands alone as a powerful tool for learning parameters
within physical systems, offering a straightforward approach optimize values
with respect to observational data through a physical model.

When dealing with non-differentiable objective functions, deep reinforce-
ment learning becomes crucial. In this setup, neural networks, often referred
to as policies, learn to maximize a so-called reward by adapting their strategies

10Li et al. [2022] demonstrate the capabilities of this approach by optimizing the initial
conditions of a simulated universe so that present-day observations reveal a pattern spelling
out their software’s name, pmwd, across large-scale cosmic structures.
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based on the outcomes of their actions, guided by a reward function, effectively
approximating gradients. This method is pivotal to the frameworks developed
in this thesis and is extensively discussed in Section 3.3. Its ability to handle
non-differentiable objectives makes it particularly valuable for applications in
robotics and human interactions since we obviously can not auto-differentiate
reality, as well as non differentiable simulations i.e. most current day simu-
lations11. Despite its utility, it remains one of the few unsupervised learning
methods extensively developed within engineering fields due to its practical
applications [Schmidhuber, 2015].

Auto-encoders

An important mention must go to auto-encoders employed in an unsupervised
manner. In such frameworks, one aims to reproduce the input data after
processing it through a highly compressed, low-dimensional bottleneck layer.
This process not only reduces data dimensionality but also captures profound
insights into the data’s structure within the latent space.

Variational Auto-Encoders (VAEs) take this a step further by modeling the
distribution of data within the latent space, learning parameters like the mean
and variance. These models are invaluable for their ability to reduce complex
data into more manageable forms without losing essential information.

A notable application of this approach can be seen in the work by Laroche
and Speagle [2024], which demonstrated that entire stellar spectra could be
effectively encoded using just six scalar values through this method. This ex-
ample highlights the potential of VAEs to significantly condense vast amounts
of data while retaining critical information, a technique that has profound
implications given how it parallels physics research.

Addressing uncertainties

In the realm of natural sciences, accounting for uncertainties is paramount.
The technique known as dropout [Srivastava et al., 2014], initially designed to
prevent overfitting by randomly disabling a fraction of neurons during train-
ing, also facilitates uncertainty estimation [Gal and Ghahramani, 2016]. This
approach effectively trains multiple variants of the model simultaneously, each
operating with a different subset of neurons. As a result, the variability in the
network’s predictions can be interpreted as an uncertainty measure, providing
a range of possible outcomes instead of a single fixed prediction.

Building on this concept, one can envision each neuron not merely as a
deterministic unit but as a mini-distribution governed by its mean and vari-
ance. This notion forms the foundation of Bayesian Neural Networks [Goan

11This also includes e.g., video games.
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and Fookes, 2020], where exploiting these distributions allows for a quantifi-
able uncertainty in predictions, offering a deeper insight into the reliability of
the neural outputs.

Towards symbolic learning

Throughout this discussion, we have explored various ways deep learning can
contribute to scientific endeavors, occasionally offering a level of interpretabil-
ity. Neural networks are invaluable in fields like image processing or complex
systems modeling, where such “soft” models have the ability to capture subtle
nuances-qualities. We will explore how this may concern endeavors to map the
potential of the Milky Way in Chapter 10.

Yet, when our objective shifts towards uncovering fundamental physical
laws, the necessity for symbolic interpretability becomes apparent. The lan-
guage of mathematics provides a clearer, more definitive description of natural
phenomena. The following Section introduces symbolic regression, setting the
stage for Chapter 3 where we delve deeper into how symbolic approaches rep-
resent and manipulate formal mathematics.

• Supervised learning on model dependent examples

• Black box non-interpretable neural networks

• Model-agnostic observation-driven learning

• Auto-differentiation in physical simulations

• Symbolic machine learning

Figure 2.4: An iceberg of machine learning approaches to physics & astrophysics

2.1.5 Beyond the surface

The key takeaway from this Section is that beneath the conventional sur-
face of machine learning applications in physics and astrophysics — most of
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which are directly borrowed from engineering — lies a vast ‘iceberg’ of in-
novative approaches. These methodologies, deeply rooted in interpretability,
hold the potential to drive genuine scientific discoveries. This concept is visu-
ally summarized in Figure 2.4, which depicts an iceberg of machine learning
approaches, illustrating the substantial yet under-developed opportunities for
groundbreaking research in physics and astrophysics.

2.2 Symbolic Approaches

Since the beginning of the scientific revolution, researchers have tried to find
repeatable regularities in experiments and observations. Mathematical struc-
tures were used in this exploration, and many new ones including functions
and differential equations were developed to respond to this need to model na-
ture. Perhaps because of shared symmetries between nature and mathematics,
these abstract structures have often been found to work exceedingly well in
reproducing and predicting properties of the world, to the point where some
have even considered whether the universe is actually mathematical at heart
[Tegmark, 2008].

Symbolic Regression (SR) which is central to the present thesis is has a
long pedigree. Perhaps its most famous application was by Kepler to plane-
tary ephemerides, thereby finding the fitting law that bears his name [Kepler,
1609]. This empirical law gave the observational basis upon which Newton
was able to build the physical theories developed in his Principia Mathematica
[Newton, 1687].

In this Section, we introduce modern SR which aims to use the immense
computational resources at our disposal to search through possible analytic
descriptions in terms of a set of functions and operators (e.g. x, +, −, ×,
/, sin, cos, exp log, ...) to best fit some numerical dataset (x, y) we wish to
model. Concretely, one seeks some analytic function f : Rn −→ R that fits
y = f(x) given those data.

Sub-section 2.2.1 introduces keys aspects of SR, namely its potential for
compactness, generalization, intelligibility & interpretability and sub-section
2.2.2 offers a brief review of modern SR approaches. Further exploration of
novel and more sophisticated symbolic learning approaches, which extend be-
yond existing SR methods, will be discussed in the perspectives outlined in
Section 11.2.
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2.2.1 Symbolic regression

Symbolic regression addresses the aforementioned opaqueness of machine learn-
ing methods by producing compact, interpretable and generalizable models.
Indeed, the goal is to find very simple prescriptions such as Newton’s law of
universal gravitation that can explain well a vast number of experiments and
observations. There are many advantages to discovering physical laws in the
form of succinct mathematical expressions rather than large numerical models:

Compactness

SR methods can produce extremely compact models, e.g., with expressions
of containing ∼ 101 symbols [La Cava et al., 2021] which is on par with the
typical length of expressions in the Feynman Lectures on Physics [Feynman
et al., 1971] for example which is of 16 (with the higher end of SR methods
producing expressions well below a length of 103). In contrast numerical models
such as neural networks typically rely on many more parameters. This makes
the models computationally inexpensive to run and in principle also enables SR
to correctly recover the exact underlying mathematical expression of a dataset
using much less data than traditional machine learning approaches [Wilstrup
and Kasak, 2021] and with a robustness towards noise even for perfect model
recovery [Reinbold et al., 2021, La Cava et al., 2021].

Generalization

In addition, unless the target equations consist of arbitrarily long polynomials,
the compact expressions produced by SR are less prone to overfitting on mea-
surement errors and are much more robust and reliable outside of the fitting
range provided by the data than large numerical models, showing overall much
better generalization capabilities as demonstrated in [Sahoo et al., 2018, Kami-
enny et al., 2022, Kamienny and Lamprier, 2022, Wilstrup and Kasak, 2021]
(we will provide an example of this in Section 4.4.5). This makes SR a poten-
tially powerful tool to discover the most concise and general representation of
the measurements.

Intelligibility & interpretability

Since the models produced by SR consist of mathematical expressions, their
behavior is intelligible to us, unlike large numerical models. This is of enor-
mous value in physics [Wu and Tegmark, 2019] as SR models may enable one
to connect newly discovered physical laws with theory and make subsequent
theoretical developments. More broadly, this approach fits into the increasing
push towards intelligible [Sabbatini and Calegari, 2022], explainable [Arrieta
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et al., 2020] and interpretable [Murdoch et al., 2019] machine learning mod-
els.12

2.2.2 A brief survey of modern symbolic regression

Traditional approaches to SR

Genetic programming

SR has traditionally been tackled using genetic programming where a popula-
tion of candidate mathematical expressions are iteratively improved through
operations inspired by natural evolution such as natural selection, crossover,
and mutation. This type of approach includes the well known Eureqa soft-
ware [Schmidt and Lipson, 2009, 2011] (see Graham et al. 2013, Thing and
Koksbang 2025 for benchmarks evaluating the capabilities of Eureqa-type al-
gorithms on astrophysical test cases), as well as more recent works [Cranmer,
2023, de Franca and Aldeia, 2021, La Cava et al., 2019, Cava et al., 2019,
Virgolin et al., 2019, Cranmer et al., 2020b, Virgolin et al., 2021, Stephens,
2015, Kommenda et al., 2020].

Other traditional approaches

In addition, SR has been implemented using various methods ranging from
brute force to (un-)guided Monte-Carlo, all the way to probabilistic searches
[McConaghy, 2011, Kammerer et al., 2020, Bartlett et al., 2023a, Brence et al.,
2021, Jin et al., 2019], as well as through problem simplification algorithms
[Luo et al., 2022, Tohme et al., 2023].

Deep learning

Main approaches

Given the great successes of deep learning techniques in many other fields,
it is not surprising that they have now been applied to symbolic regression,
and now challenge the reign of Eureqa-type approaches [La Cava et al., 2021,
Matsubara et al., 2022]. Multiple methods for incorporating neural networks
into SR have been developed, ranging from powerful problem simplification
schemes [Udrescu and Tegmark, 2020, Udrescu et al., 2020, Cranmer et al.,
2020b], to end-to-end symbolic regression methods where a neural network
is trained in a supervised manner to map the relationship between datasets
and their corresponding symbolic functions [Kamienny et al., 2022, Lalande
et al., 2023, Biggio et al., 2020, 2021, Vastl et al., 2022, d’Ascoli et al., 2022,

12This is particularly important in fields where such models can affect human lives [Eu-
ropean Commission, 2021, 117th US Congress, 2022].
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Kamienny et al., 2023, Bendinelli et al., 2023, Holt et al., 2023, Li et al.,
2024a,b, Chen et al., 2024a, Meidani et al., 2024, Becker et al., 2022, Shojaee
et al., 2024, Alnuqaydan et al., 2022, Aréchiga et al., 2021], all the way to
incorporating symbols into neural networks and sparsely fitting them to enable
interpretability or to recover a mathematical expression [Fiorini et al., 2024,
Scholl et al., 2023, Martius and Lampert, 2017, Brunton et al., 2016, Zheng
et al., 2022, Sahoo et al., 2018, Valle and Haddadin, 2021, Kim et al., 2020,
Panju and Ghodsi, 2020, Ouyang et al., 2018], an approach often refer to as
neuro-symbolic. See [La Cava et al., 2021, Makke and Chawla, 2022, Angelis
et al., 2023], for recent reviews of symbolic regression algorithms.

Deep reinforcement learning

While some of the aforementioned algorithms excel at generating very accurate
symbolic approximations, the reinforcement learning based deep symbolic re-
gression framework proposed by Petersen et al. [2021a] is the new standard for
exact symbolic function recovery, particularly in the presence of noise [La Cava
et al., 2021, Matsubara et al., 2022]. This has resulted in a number of studies
in the literature built on this framework [Tenachi et al., 2023a,b, 2024, Landa-
juela et al., 2021a,b, Kim et al., 2021, Petersen et al., 2021b, Landajuela et al.,
2022, Faris et al., 2024, He et al., 2024a, Bastiani et al., 2024, Du et al., 2022,
Tian et al., 2024, Michishita, 2024, DiPietro and Zhu, 2022, Zheng et al., 2022,
Landajuela et al., 2021b, Usama and Lee, 2022].

Overview

Finally, we highlight PySR [Cranmer, 2023], an open source attempt at imple-
menting the Eureqa software [Schmidt and Lipson, 2009, 2011] that has similar
performances. Although PySR does not utilize deep learning techniques, it has
gained significant traction in the astrophysics community. We show that the
approach proposed as part of this thesis significantly outperforms PySR in sub-
section 4.3.2.

A comparative analysis of major SR methodologies, including our own deep
reinforcement learning approach — which is the subject of Chapters 3-6 —
will be presented through the standard Feynman benchmark [La Cava et al.,
2021] in Figure 4.3. Our approach is notable as the only one to date where a
neural network manipulates mathematical symbols developed within any field
of physics or astrophysics.

We will also explore a problem simplification approach in Section 7.1 and
a neuro-symbolic approach in Section 7.2.
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Learning Symbolic
Mathematics

Portions of the content presented in this Chapter have been previously dis-
cussed in the following publications:

2023 Physical Symbolic Optimization
W. Tenachi, R. Ibata, F. Diakogiannis
NeurIPS MLPS 2024 89, arXiv:2312.03612

2023 Deep symbolic regression for physics guided by units constraints: toward the automated
discovery of physical laws
W. Tenachi, R. Ibata, F. Diakogiannis
ApJ 959 99, arXiv:2303.03192

Summary.
We explore how the symbolic language of mathematics can be numerically

encoded using graph representations, enabling neural networks to generate and
learn formal mathematical concepts. We detail the automated generation of
analytic expressions, ensuring their validity through systematic principles.

We then introduce a deep reinforcement learning strategy that trains neural
networks to formulate functional forms that meet specific constraints, such as
fitting data points in the case of symbolic regression.

https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_89.pdf
https://arxiv.org/abs/2312.03612
https://doi.org/10.3847/1538-4357/ad014c
https://arxiv.org/abs/2303.03192
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The essence of interpretability and intelligibility in science traditionally
hinges on the language in which most scientific models have historically been
written: mathematics. A language that some argue to be the language of the
Universe itself [Galilei, 1623].

In this Chapter, we explore how mathematical language, traditionally rep-
resented in symbolic form, can be translated into numerical data — a trans-
lation process commonly referred to as embedding. We then show how such
representations can be exploited to enable statistical models and neural net-
works to generate and learn on formal mathematical representations.

In Section 3.1, we explain how mathematical knowledge can be represented
through graphs and how both formal mathematical problems and analytical
modeling problems can be approached as combinatorial graph optimization
problems. In Section 3.2, we elaborate on how these concepts facilitate the de-
scription of analytic expressions as mere probabilistic distributions and detail
how they can be sequentially generated by algorithms employing the so called
prefix notation. Lastly, Section 3.3 shows how one can use deep Reinforce-
ment Learning (RL) to solve such combinatorial problems within the domain
of formal mathematics. In particular, we present a RL framework designed
for generating analytic expressions that obey specific constraints, such as ac-
curately fitting data points — a process known as Symbolic Regression (SR).

This Chapter is integral to one of the overarching themes of this manuscript:
the Φ-SO framework for Physical Symbolic Optimization that was developed
as part of the present thesis. At the core of this framework is the automated
generation and management of arbitrary analytic mathematical expressions,
designed to enable interaction with machine learning techniques — a subject
that is thoroughly explored within this Chapter. Additionally, a critical com-
ponent of the Φ-SO framework is its reinforcement learning algorithm, which
enables the optimization of symbolic expressions to meet specified objectives,
and in particular SR — a process that is also detailed here.

3.1 Encoding Symbolic Mathematics as Graphs

This section explores the creation of interpretable models in physics in the form
of mathematical expressions. However, the principles discussed here can be ap-
plied more broadly, encompassing automated computer program generation,
automated proof generation and even the automated creation or extension of
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mathematical theories themselves such as the Zermelo–Fraenkel set theory1

This interdisciplinary applicability is particularly relevant given the theoreti-
cal aspect of physics.

To represent these structures as numerical data, one might initially contem-
plate encoding them as plain text using conventional text-encoding techniques,
much like current generation Large Language Models, which processes informa-
tion as sequences of string characters [OpenAI, 2023]. However, this approach
overlooks a crucial element: the inherently hierarchical information structure
common to these applications. Such structures are poorly represented by plain
text encoding, yet they are critical for effectively generating and learning math-
ematical structures — a process we will elaborate on further in this Chapter.
To prevent the loss of this vital information, we will demonstrate how graph
representation can be effectively utilized to encode these structures.

In sub-section 3.1.1, we demonstrate how formal theories can be encoded as
graphs. This discussion leads into the encoding challenges specific to physical
theories, particularly regarding analytic expressions, which we explore further
in sub-section 3.1.2. Finally, in sub-section 3.1.3, we show how these challenges
fall into the category of NP-hard graph optimization problems.

3.1.1 Encoding formal theories

Mapping theories with directed graphs

Mathematical theories can be effectively represented as directed graphs, where
axioms serve as root nodes. From these axioms, theorems and propositions
emerge as subsequent nodes, connected by edges that represent proofs. This
directed, computable representation can be used to interface statistical meth-
ods to formal mathematical theories.

In this graph structure, each proof, represented as an edge, can itself be
viewed as a separate graph if examined more closely. This detailed graph be-
gins with hypothesis nodes necessary for proving a theorem and progresses
through a series of derived true statements until the conjecture is verified.

In practice, the application of these graph-based concepts to existing math-
ematical knowledge has culminated in the creation of the MLFMF dataset (Ma-
chine Learning for Mathematical Formalization) [Bauer et al., 2023a], which
currently stands as the largest collection of formalized mathematical knowl-
edge in a machine-readable format. This dataset includes over 250,000 theorem

1Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC) constitutes the founda-
tional axiom system predominantly employed in the construction of modern mathematics.
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and proposition nodes interconnected by proof edges. Additionally, other no-
table initiatives include the CoqGym environment [Yang and Deng, 2019] which
provides a platform for training automated proof agents, featuring more than
71,000 proofs.

Axiom

Proposition
Lemma

Theorem

Axiom

Theorem

Law

Empirical 
law

Law

Empirical 
law

Physical 
principle

Physical 
principle

Observation Observation

U
pdating theory principles to fit observations

(b) Physical Theory(a) Mathematical Theory

Figure 3.1: Representing mathematical and physical theories as graphs. An il-
lustration of how mathematical and physical theories can be represented as graphs. While
mathematical theories can grow freely from their axioms, physical theories derived from
fundamental principles must adhere to experimental observations — discrepancies between
theoretical predictions and observations often triggering updates to the underlying physical
principles.

Automated theorem proving

This type of computerized representation of mathematics — applicable across
a variety of contexts2 — is typically utilized to develop and refine proof as-
sistants capable of automatically identifying nodes (premises in the form of

2For example such representations are also relevant given the ongoing debates [Ochigame,
2024] regarding the use of computers to verify the correctness of mathematical proofs during
the peer-review process. Such verification can prevent erroneous proofs from going unde-
tected for years, as seen in the case of the notorious Four Colour Conjecture Kempe [1879].
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axioms, propositions or theorems) critical for theorem proving or even suggest
proofs. Examples of such systems include Coq [The Coq Development Team,
2024], Lean [De Moura et al., 2015] and Minimo [Poesia et al., 2024].

Recent literature has introduced numerous powerful methods in this field
Li et al. [2024c], including automated premise selection which can be treated
as a classification problem. Here, premises can be classified as either useful
or not, with the knowledge processed sequentially in seminal works using e.g.,
Recurrent Neural Networks (RNNs) [Irving et al., 2016] and leveraging the
graph structure of mathematical theories with Graph Neural Networks (GNNs)
as proposed in more recent works [Oľsák et al., 2020].

Furthermore, there has been significant progress in automatically generat-
ing proof steps and even in fully automated theorem proving. For instance,
some studies have employed large transformer models trained in a supervised
manner — an approach similar to Large Language Models training [Polu and
Sutskever, 2020, Han et al., 2022, Polu et al., 2023]. However, the state-
of-the-art performance has been achieved using deep reinforcement learning
strategies reminiscent of AlphaZero [Silver et al., 2018], where a player and
a critic engage in self-play using automatically generated problems to learn
efficient exploration and demonstration strategies Lample et al. [2022]. Addi-
tionally, the notable AlphaGeometry [Trinh et al., 2024], specifically designed
for solving geometry problems was proposed. This system was trained in a su-
pervised manner on synthetic problems and approaches the performance levels
of an average International Mathematical Olympiad (IMO) gold medalist on
previously unseen problems.

Toward a computational paradigm in formal mathematics

With the rise of automated conjecture generators and theorem provers, one
can envision the growth of our mathematical knowledge base in an unsuper-
vised yet verifiable manner through a computable embedding. By decompos-
ing each proof into a detailed graph, and recursively applying this process to
the sub-proofs, one can ensure that each link between nodes becomes suffi-
ciently simple for verification by deterministic formal mathematics software.
Such methods suggest a potential paradigm shift toward a computer science-
oriented approach of formal mathematical research.

Exploring physical theories with computational methods

This approach is particularly significant for physics, not only because it can ad-
vance its foundational language — mathematics — but also because it allows
the computerization of physics theories in a similar manner. However, un-
like mathematical theories, which can expand indefinitely by elaborating upon
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their axioms, physics operates under a fundamentally different paradigm: un-
derstanding and predicting natural phenomena through empirical validation.
Although physics theories have fundamental principles analogous to axioms,
from which empirical laws are derived, these derived laws must ultimately
predict and align with experimental and observational data.

Significant discrepancies between observed phenomena and theoretical pre-
dictions often necessitate theoretical shifts or the formulation of new theories.
For instance, one can think of the development of quantum mechanics which
addresses observations stemming from the atomic scale, or the introduction of
dark matter through the standard Λ Cold Dark Matter (ΛCDM) cosmological
model prompted by observations of the Cosmic Microwave Background (CMB)
and galaxy rotation curves [Bullock and Boylan-Kolchin, 2017]. This crucial
distinction between mathematical theories and physics theories is illustrated
in Figure 3.1.

3.1.2 Encoding analytic expressions

As illustrated in Figure 3.1, the development of interpretable analytic physical
theories involves a critical step where theories are confronted to observational
data : empirical laws. Given the reliance of physical theories on analytic
expressions, this subsection addresses the crucial question of how to effectively
encode these expressions.

In this subsection, and throughout the rest of this Chapter, we will explore
the encoding of analytic expressions — a process drawing upon principles from
both computational symbolic mathematics (often referred to as computer alge-
bra) [Davenport et al., 1993], and natural language processing [Manning and
Schutze, 1999].

Tokenization

In the field of natural language processing, tokenization traditionally involves
enumerating all possible words in a dataset, typically numbering around ∼
10, 000, and assigning each a unique categorical label. For instance, with a
vocabulary of size nvocab = 4, such as {beaver, tree, galaxy, planet}, ‘beaver’
would be encoded as category #1 with a one-hot encoded vector or categorical
distribution e1 = (1, 0, 0, 0), ‘tree’ as category #2 with e2 = (0, 1, 0, 0), and so
forth.

Recent advancements, however, have refined this approach. Tokens may
now represent sub-words, which are identified and encoded using statistical
methods to better capture linguistic nuances. For example, with state-of-the-
art tokenization techniques [OpenAI, 2023], the word ‘tokenization’ would be
split into two tokens: ‘token’ and ‘ization’. This allows statistical models to
learn the functions of base words and their suffixes separately, enhancing the
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granularity and effectiveness of language processing3.

Similarly, in encoding mathematical expressions, the process mirrors that
of text. Given a library of mathematical symbols, such as a 6 symbol set
{+, /, log, cos, a, b}, each symbol is tokenized into a categorical vector. For
example, ‘+’ would be represented as τ1 = e1 = (1, 0, 0, 0, 0, 0), and ‘/’ as
τ2 = e2 = (0, 1, 0, 0, 0, 0), allowing statistical models to effectively process and
analyze symbolic mathematical data.

Representing expressions with DAGs

Unlike simple text processing, mathematical expressions inherently contain
hierarchical information that can also be encoded. Consider the toy example
of expression a+ cos(b). Here, ‘+’ functions as a mathematical operation that
takes two arguments: ‘a’ and ‘cos(b)’, with ‘cos(b)’ further decomposed into
‘cos’ and its argument ‘b’. This hierarchical relationship can be structured into
a tree, where each node represents a token and its children (or leaves) represent
the arguments of the operation. This translation is illustrated between panels
(a) and (b) of Figure 3.2.

The concept of arity, or the number of arguments a token can accept, is
crucial in defining this hierarchical structure. For instance, in our example,
the tokens {+, /} are binary and take two arguments each, while {log, cos} are
unary, taking a single argument. The tokens {a, b} serve as terminal nodes,
representing values that do not take any arguments.

Assuming no multiple references to a single subtree, such a structure can
be effectively described as a Directed Acyclic Graph (DAG). Furthermore, in
simple scenarios where a maximum of two arguments is assumed for any math-
ematical operation, the structure can be encoded as a so called binary tree.

3.1.3 NP-hard graph optimization problems

Many of the challenges discussed earlier, such as automated theorem proving,
automated analytic expression generation satisfying a given constraint, and
computer program generation, share commonalities as they all involve opti-
mizing directed graph structures to meet specific constraints. While in most
cases, it is relatively straightforward and quick to verify if a solution is correct,
exploring the vast potential solutions is considerably more difficult4. This is

3See Tat Dat Duong’s tiktokenizer for a live demonstration. (https://tiktokenizer.
vercel.app/)

4A notable exception lies in automated computer program generation, where the com-
plexity and feasibility of solution verification can vary significantly depending on the specific

https://tiktokenizer.vercel.app/
https://tiktokenizer.vercel.app/
https://tiktokenizer.vercel.app/
https://tiktokenizer.vercel.app/
https://tiktokenizer.vercel.app/
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Infix notation

𝑎 + cos	(𝑏)
* *

1

2 3

4

Tree representation

+

𝑎 𝑐𝑜𝑠

𝑏

+ 𝑎 𝑐𝑜𝑠 𝑏

Prefix notation (“Polish” notation)

1 2 3 4

(a) (b) (c)

Figure 3.2: Illustration of various representations of a toy symbolic expression.
Panel (a) displays the familiar infix notation. Panel (b) shows the tree representation, where
arguments are positioned as leaf nodes under their respective operators. Panel (c) presents
the prefix notation, which can be computed by taking nodes first by depth and then from left
to right. Prefix notation eliminates the need for parentheses. In prefix notation, expression
validity can be verified by counting the total number of arguments required by all tokens.
Terminal tokens may be appended as needed to guarantee the expression’s correctness.
Here, * indicates a one-to-one equivalence among all three types of representations. For this
example, we use the toy expression a + cos(b).

notably true for automated theorem proving, where solutions can be readily
validated using deterministic theorem checkers like Coq and Lean. Similarly,
for analytic expression generation, particularly in SR (a key focus of this the-
sis) — which focuses on finding expressions that fit data — the verification
process is simple, but the search space is immense.

SR is NP-hard

To grasp the complexity of SR, it is instructive to consider the challenges this
problem presents when approached naively. Imagine attempting to generate
trial analytic expressions with a length of 35 symbols, selecting from 15 differ-
ent possible variables or operations (e.g., , x, +, −, ×, /, sin, log, ...), as we will
do in subsequent Chapters. A brute-force attempt to match these expressions
to a dataset would require evaluating up to 1535 ≈ 1.5 × 1041 trial solutions
which is obviously vastly beyond our computational means to test against the
data at the present day or at any time in the foreseeable future. Although it
has long been suspected, it was recently formally proven by Virgolin and Pissis
[2022] that SR, like many similar problems such as automated theorem prov-

problem.
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ing, falls into the category of “NP-hard” (nondeterministic polynomial time)
problems. This categorization does not even take into account the additional
complexity introduced by optimizing free constants within the expressions.

NP-hardness

This classification means that the problem cannot be solved within a poly-
nomial time, though solutions can be verified within such a polynomial time.
This is exemplified in the well-known Traveling Salesman Problem, which in-
volves finding the shortest route that visits a list of cities and returns to the
origin. This problem is a classic example of an NP-hard challenge in combi-
natorial optimization [Gavish and Graves, 1978]. Notably addressed by some
researchers using reinforcement learning to develop models capable of gener-
ating tours by sequentially selecting cities Stohy et al. [2021].

Cross-polination

The techniques developed to address this family of problems — NP-hard di-
rected graph combinatorial challenges — offer substantial opportunities for
cross-pollination, presenting a range of intriguing possibilities. In this Chapter,
we will focus specifically on reinforcement learning, a strategy widely employed
across various problems within this category, including automated theorem
proving, as highlighted by studies such as Lample et al. [2022]. Further dis-
cussions (in sub-section 3.3.3) will explore how SR can leverage methodologies
from other areas that tackle similar combinatorial challenges.

3.2 Computational Symbolic Mathematics

This section explores the computational approaches used to manipulate sym-
bolic mathematics effectively. We begin by showing how one can sample math-
ematical symbols from a model in the form of tokens, as detailed in sub-section
3.2.1. We then examine how expressions can be sequentially sampled and their
validity and termination ensured by employing the so-called prefix notation, in
sub-section 3.2.2. Lastly, we explore how this method of sequential sampling
facilitates the formulation of deterministic priors that can impose constraints
on the arrangement of symbols, as presented in sub-section 3.2.3.
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3.2.1 Sampling tokens

Distribution function across the library

Given a library of possible tokens representing nlib mathematical symbols
{τi}i≤nlib

, e.g., {a, b,+,−,×, /, cos, exp, log,□2}, one can use a statistical model
or a neural network (as we will describe in the Section 3.3) to generate a cat-
egorical distribution across the space of mathematical symbols in the library
{p(τi)}i≤nlib

.

𝑎 𝑏 + − × / cos exp log □0

Categorical distribution

+

Sampled symbol

<latexit sha1_base64="CanrR8/SMSpcSuL7FK7PkgcU/KA="></latexit>{p(⌧i)}inlib

Figure 3.3: Token sampling illustration. Illustration of the process by which a token
representing a mathematical symbol is sampled from a distribution generated by a model
covering the space of tokens available in the library. For this example, we use the library
of possible symbols {τi}i≤10 = {a, b,+,−,×, /, cos, exp, log,□2} from which τ3 = e3 =
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0) representing ‘+’ is sampled.

Softmax

It is useful to apply a softmax function to the output vector {zi}i≤nlib
of the

model, transforming it into a probabilistic distribution. This transformation
is mathematically expressed as:
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p(τi) =
ezi

nlib∑
j=1

ezj
(3.1)

From this distribution, one can then sample to select a specific token, τ ,
effectively choosing a mathematical symbol, as illustrated in Figure 3.3.

3.2.2 Sampling symbolic expressions

Prefix notation

As explored in sub-section 3.1.2, symbolic expressions can be effectively en-
coded as DAGs. By processing each node first in depth and then from left
to right, it is possible to transform these graphs into a one-dimensional vec-
tor, or prefix notation,

(
τ ⟨t⟩
)
t≤nexpr

, where τ ⟨t⟩ denotes token at position t in

the expression and nexpr represents the size of the expression. In this format,
operators precede their corresponding operands, thereby eliminating the need
for parentheses. This notation, often referred to as “Polish” notation, can
seamlessly be converted back to a tree representation or to the more familiar
“infix” notation, given their one-to-one correspondence. For instance, the toy
expression a + cos(b) would be represented in prefix notation as (+, a, cos, b).
This transcription is depicted in Figure 3.2 between panels (b) and (c).

As demonstrated in sub-section 3.1.2, any token can be encoded as a cate-
gorical vector. Thus, employing prefix notation allows any analytic expression
to be rendered as a sequential array of categorical vectors. This one-to-one re-
lationship between the categorical representations and the expressions ensures
that any analytic expression can be directly converted into numerical form and
vice versa. This process is further illustrated in Figure 3.4.

Given a library of available tokens {+, /, log, cos, a, b} our toy expression
a + cos(b), that is (+, a, cos, b) in prefix notation, can be encoded as:

(
τ ⟨t⟩
)
t≤4

= (τ ⟨1⟩, τ ⟨2⟩, τ ⟨3⟩, τ ⟨4⟩) = (τ1, τ5, τ4, τ6) = (e1, e5, e4, e6) (3.2)

As for simplicity, we consider a token and its one hot encoding across the
library as equivalent e.g., in this example the token encoded at position t = 3
in the sequence (‘cos’) can be noted as τ ⟨3⟩ = τ4, as it represents the 4-th token
in the library, and with a one hot encoding τ ⟨3⟩ = e4 = (0, 0, 0, 1, 0).

Expression validity & termination condition

The use of prefix notation eliminates the need for parentheses, enabling contin-
uous sampling of new tokens from a model to extend the sequence representing
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Figure 3.4: Illustration of how an analytic expression can be encoded into nu-
merical form. This diagram illustrates how analytic expressions can systematically be
represented as mere numerical arrays rendering them machine-readable by encoding math-
ematical symbols with categorical distributions and arranging them using prefix notation.
For this example, we use the toy expression a+cos(b) with a library {+, /, log, cos, a, b}. This
expression is encoded as (+, a, cos, b) i.e.

(
τ ⟨t⟩
)
t≤4

= (τ ⟨1⟩, τ ⟨2⟩, τ ⟨3⟩, τ ⟨4⟩) = (τ1, τ5, τ4, τ6) =

(e1, e5, e4, e6).

an analytic expression. A key advantage of prefix notation is its inherent flex-
ibility. Regardless of the mathematical symbols added, the expression main-
tains the potential for validity. As tokens are added, the corresponding tree or
graph representation expands, though some leaf nodes may initially lack argu-
ments. The count of these dangling, or unconnected, nodes can be determined
by summing the arities of each token within the expression:

ndangling = nexpr −
nexpr∑

t=1

arity(τ ⟨t⟩) (3.3)

This principle is illustrated using our toy expression in Figure 3.5. An
expression is valid and its associated tree is complete as long as there remains
exactly 1 dangling node:

Expression is valid ⇐⇒ ndangling = 1 (3.4)

A count greater than one (ndangling > 1) indicates an excess of arguments,
while a count less than one signifies insufficient arguments. In practice, when
sampling expressions, any tokens drawn after achieving ndangling = 1 can be
disregarded. Furthermore, the validity of any expression can be ensured by ap-
pending terminal nodes-tokens that represent values and require no arguments.
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To prevent indefinite sampling without achieving ndangling = 1, the model’s
output probabilities can be adjusted to favor the selection of terminal nodes
once a certain length of the expression is reached. This adaptive probability
tuning leverages the sequential generation of tokens, enabling the formulation
of deterministic priors that significantly enhance the sampling process, as we
will explore in the next sub-section.

/

𝑙𝑜𝑔

𝑐𝑜𝑠

𝑎

𝑏

Binary 
operations

+

Unary 
operations

Terminal
symbols

(arity = 2)

(arity = 1)

(arity = 0)

+ 𝑎 cos 𝑏

Total arity  =   2    +   0   +   1   +    0    =   3

Length       =   1    +   1   +   1   +    1    =   4

Figure 3.5: Illustration of expression validity assessment. An expression is deemed
valid if and only if the difference between its length and the sum of the arity of its com-
ponents equals 1. For this example, we use the toy expression a + cos(b) with a library
{+, /, log, cos, a, b}.

3.2.3 Incorporating priors through sequential sampling

In situ priors

It is crucial to highlight that the categorical distribution generated during the
sampling process can be deterministically tuned to integrate prior knowledge
directly (in-situ) as expressions are being sampled. For instance, probabilities
of certain tokens can be selectively nullified based on the contextual informa-
tion encoded within the developing expression tree, thereby significantly nar-
rowing the search space [Petersen et al., 2021a,b]. This process is illustrated
in Figure 3.6.

The ability to formulate such effective priors stems from the sequential
nature of the sampling process. This approach is particularly advantageous
compared to traditional methods like genetic algorithms used in symbolic ex-
pression optimization. While mutations in genetic algorithms can somewhat
adhere to predetermined rules, the crossover process often complicates compli-
ance, potentially necessitating numerous trials to identify successful crossovers
that respect these deterministic rules. The fundamental distinction here lies
in our method’s reliance on a tunable model actively generating new expres-
sions, as opposed to genetic programming approaches that manipulate already
existing expressions stemming from previous iterations.
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Figure 3.6: Incorporation of prior knowledge in symbolic arrangement. This il-
lustration shows how prior knowledge about the available tokens can tune the distribution
emitted by a model to facilitate the selection of an appropriate token. In the example shown,
an expression is being generated where a velocity v0 is summed to a length x divided by a
node currently being selected, denoted as ‘?’. Given the context, this node must represent
time t or a more complex expression that eventually equates to a time, stemming from a
parent node such as {+,−,×,□2}, but it cannot be another length x, a velocity v0, or di-
mensionless operators like {exp, log}. Utilizing this prior information alongside the model’s
output helps guide the selection of the most suitable token.

Substantial literature has explored the development of techniques that in-
corporate prior knowledge into symbolic optimization. Notably, some studies
have formulated priors based on typical symbolic arrangements found in aca-
demic publications [Guimerà et al., 2020, Bartlett et al., 2023b] or even from
resources like the Wikipedia encyclopedia [Kim et al., 2021].

In practical applications, we adjust the probability distribution emitted by
the model using the following equation:

p(τi) =
ezi+log(priori)

nlib∑
j=1

ezj+log(priorj)

(3.5)

Here, priori denotes the prior probability of selecting the token τi from a
library of nlib possible tokens. Below, we will elaborate on the specific priors
employed within the context of this thesis.

The majority of these priors are dependent on specific hyper-parameters,
for which we provide the values utilized in our studies. These values are used
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consistently throughout the work presented in this thesis, unless specified oth-
erwise. However, it is important to note that these parameters are adjustable
within our implementation, allowing for flexibility and adaptation to different
scenarios.

Length priors

We implement priors designed to maintain reasonable expression sizes, which
is particularly critical when expressions are sampled from a learnable model,
such as a neural network as in the initial learning phases, the distribution
emitted by the model may resemble a near-random pattern. Thus leading
to a scenario where a significant fraction of trial expressions might extend
indefinitely without satisfying the expression termination condition.

To mitigate this, we constrain expression sizes to a maximum of ≤ N with
N = 35 tokens. This is achieved by preventively zeroing out the probability
of selecting non-terminal tokens, ensuring that the length of the expression
remains within this limit throughout the sampling process:

nexpr + ndangling ≤ N (3.6)

Moreover, to promote brevity within expressions, we apply a soft length
prior modeled as a Gaussian distribution with a variance of σ2 = 5 centered
around a length of 8. This approach subtly biases the selection process to-
wards more “concise” expressions, aligning with our objective of generating
intelligible expressions.

Other priors

We also implement a set of more specific priors, designed to preclude atypical
symbolic arrangements that are rarely seen in physics. These priors’ relevance
has been empirically validated through assessments of our methods on physical
test cases.

One such prior restricts expressions to no more than two levels of nested
trigonometric functions. For example, expressions like cos(f · t + sin(x/x0 +
tan(□))) are prohibited, whereas cos(f ·t+sin(x/x0)) remains permissible. Ad-
ditionally, we prevent the self-nesting of exponential and logarithmic functions,
such as forbidding expressions like ee

□
.

Furthermore, we eliminate redundant inverse unary operations, such as
elog□, which unnecessarily consume symbolic space and learning resources
that could be more effectively allocated towards exploring meaningful sym-
bolic structures.
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Summary & conflicts

Although not utilized in the SR experiments presented in this work, we have
implemented additional priors, which will be described in detail in sub-section
6.1.2. Beyond these relatively straightforward priors that leverage local tree
structure, one can formulate much more sophisticated priors, for example based
on dimensional analysis. This is the subject of Chapter 4.

It is important to note that the combination of different priors can some-
times result in conflicts. For example, the physical units constraints prior
detailed in Chapter 4 may require a certain number of additional tokens to
comply with the rules of dimensional analysis, potentially conflicting with the
length prior that would enforce premature termination of the expression. In
such cases, the conflicting candidate is discarded.

3.3 Learning Analytic Models

In this Section, we explore how neural networks can be utilized to automatically
generate symbolic expressions that conform to a set of constraints. While these
constraints can be varied, our focus here is on producing analytic functions
that fit given data i.e. symbolic regression. We will therefore illustrate these
techniques specifically in the context of this problem.

Considering the success of deep reinforcement learning methods in accu-
rately recovering not only accurate but exact symbolic expressions (as indi-
cated in Section 2.2.2 and shown in Figure 4.3), which is particularly important
in the field of physics where precise physical law recovery is crucial we have
chosen to incorporate this methodology into the machine learning component
of our SR approach.

In sub-section 3.3.1, we describe how we generate analytic expressions us-
ing a neural network, in sub-section 3.3.2 we show how we train our neural
network to produce accurate expressions by trial and error using deep rein-
forcement learning and finally in sub-section 3.3.3 we discuss this approach,
its limitations and potential improvements. Results and applications of our
method are presented later on in Chapters 4 and 5.
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3.3.1 Generating symbolic expressions with a neural net-
work

As in previous SR studies employing a neural network [e.g., Petersen et al.,
2021a, Landajuela et al., 2021a, 2022, Kamienny et al., 2022, Lalande et al.,
2023, Biggio et al., 2020, 2021, Vastl et al., 2022], and as detailed in earlier
sections, treating mathematical expressions as sequences allows us to utilize
techniques similar to those used in natural language processing. This approach
is particularly relevant during the sampling process described in Section 3.2.

Expression (prefix notation)

/

L.T-1

-

-

L.T-1

# dangling = 1

L.T-1

-

L.T-1

L.T-1

# dangling = 2

L.T-1

L.T-1

L.T-1

L.T-1

# dangling = 1

L.T-1

-

L.T-1

-

# dangling = 2

t

/ L.T-1

L

L

T

# dangling = 1

/

RNN

Categorical
distribution

Physical units prior
(+ other priors)

Sampled
token

Contextual information
around next token

# dangling

sibling and units
parent and units

previous token and units

1

2 3

4 5

Expression tree

Expression

Library of choosable
tokens

current required units

Figure 3.7: Sampling an expression from a recurrent neural network. The process
starts at the top left RNN block. For each token, the RNN is given the contextual information
regarding the surroundings of the next token to generate, namely: the parent, sibling and
previously sampled token along with their physical units, the required units for the token
to be generated and the dangling number (i.e. the minimum number of tokens needed to
obtain a valid expression). Although the integration of dimensional analysis into analytic
expression generation is illustrated here, it is further explored in Chapter 4. Based on this
information, the RNN produces a categorical distribution over the library of available tokens
(top histograms) as well as a state which is transmitted to the RNN on its next call. The
generated distribution is then masked based on local units constraints (bottom histograms),
forbidding tokens that would lead to nonsensical expressions. The resulting token is sampled
from this distribution, leading to the token ‘+’ in this example. Repeating this process, from
left to right, allows one to generate a complete physical expression, here (+, v0, /, x, t) which
translates into v0 + x/t in the infix notation we are more familiar with.

Recurrent neural networks

Token sequences are generated by using an RNN, which in essence, is a neural
network that can be invoked multiple times to create a logical chain of similar



44 Chapter 3: Learning Symbolic Mathematics

operations. At each invocation t < N (N representing the maximum number
of steps), the RNN generates a time-dependent output and a corresponding
memory state S⟨t⟩. The RNN takes as input some time dependent observations5

O⟨t⟩ as well as the state of the previous call S⟨t−1⟩. In practice, we use the RNN
to generate a categorical probability distribution over the library of available
tokens, which we then simply sample to draw a definite token. Once a token is
generated, we feed the minimum number of tokens still needed to obtain a valid
analytic expression (i.e. the number of dangling nodes ndangling), the token’s
properties and the properties of its surroundings in graph representation as
observations for the next RNN call. Namely, we give the nature of the token
which was sampled at the previous step τ ⟨t−1⟩ (since the RNN does not have
access to this information6 which is derived from a stochastic process), the
sibling (if any at this step) τ ⟨s⟩ and parent τ ⟨p⟩ tokens of the token to be
generated in a tree representation (s and p here respectively referring to the
position of the sibling and parent tokens in prefix notation). That is:

O⟨t⟩ = {ndangling, τ
⟨t−1⟩, τ ⟨s⟩, τ ⟨p⟩} (3.7)

This allows the inner mechanisms of the neural network to take into ac-
count the local structure of the expression for generating the next token. The
process described above can be repeated multiple times until a whole token
function is generated in prefix notation, as illustrated in Figure 3.7.

It is important to note that while expressions are treated sequentially, their
intrinsic graph structure is utilized in multiple aspects of the model’s operation.
This utilization includes the integration of priors that depend on the graph
structure, informing the RNN about local graph structure directly through
observations, and through the RNN’s training approach. Specifically, the RNN
interacts with its environment via a trial-and-error process during training,
which fundamentally depends on an evaluation process involving fit quality
assessment, a process that is directly representative of the graph structure7.

5We refer to “observations” in the context of RL, here pertaining to contextual analytic
information related to the expression being generated, rather than to the scientific data
being fitted in the context of symbolic regression.

6Not providing this information typically hinders performance.
7Although this indirect interaction with graph structure through the evaluation of func-

tional forms that depends on symbolic combinations expressed by the model might seem
intuitive, it marks a significant departure from the conventional approaches used in tradi-
tional supervised learning approaches where datasets are plainly mapped to corresponding
sequences of tokens.
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Long-short term memory

In our RNN configuration, we employ a stack of Long-Short Term Memory
(LSTM) cells [Hochreiter and Schmidhuber, 1997], with dense layers positioned
both before and after the LSTM layers. This architecture is designed to ef-
fectively produce and analyze sequences of vectors. Each LSTM cell is called
upon multiple times during the sequence processing, allowing it to maintain
and transmit a state in latent space between calls, denoted as S⟨t⟩. Specifi-
cally, our LSTM setup is tasked with analyzing a sequence of input vectors
x⟨t⟩, corresponding to the time-dependent observations of the symbolic graph,
x⟨t⟩ = O⟨t⟩, as previously described, and generating a sequence of output vec-
tors y⟨t⟩ — referred to as ‘actions’ in the context of RL. These output vectors
represent a probability distribution over the library of tokens available for se-
lection, y⟨t⟩ = {{zi}i≤nlib

}⟨t⟩. From this distribution, a specific token τ ⟨t⟩ is
then sampled. The architecture and its operational details are illustrated in
Figure 3.8.
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Figure 3.8: RNN and LSTM diagrams. Panel (a) illustrates an RNN framework com-
posed of stacked LSTM cells. Panel (b) details the information flow within a single LSTM
cell. Refer to the descriptions provided in 3.3.1 for details.

What makes the LSTM cell particularly effective is its ability to maintain
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both a long-term memory, c⟨t⟩, and a short-term memory, h⟨t⟩, which directly
influences the output. Thus, the overall state of the LSTM at any time step
t is given by S⟨t⟩ = {c⟨t⟩, h⟨t⟩}. The LSTM cell consists of multiple dense lay-
ers functioning as trainable logic gates. Upon receiving an input, the LSTM
employs a forget gate to selectively remove information from the long-term
memory. It then uses the input gate to integrate new information into the
long-term memory. Finally, based on the current input and the updated long-
term memory, the LSTM generates an output.

Multiple LSTM layers are stacked within our model to achieve greater
depth and enhance the model’s capability to capture more subtle and complex
patterns. The process is orchestrated as follows: the observation x⟨t⟩ is initially
processed through a dense layer, which prepares it for input into the LSTM
sequence. The prepared input is first passed to the initial LSTM layer, which
utilizes its preceding state S

⟨t−1⟩
j=1 = {c⟨t−1⟩

j=1 , h
⟨t−1⟩
j=1 } to generate an output. This

output then serves as the input to the subsequent LSTM layer, which similarly
accesses its prior state S

⟨t−1⟩
j=2 = {c⟨t−1⟩

j=2 , h
⟨t−1⟩
j=2 }, and so on, through the stack

until the final LSTM layer. The output from the last LSTM layer is then
conveyed to an output dense layer, which synthesizes the final result y⟨t⟩.

About transformers

Our embedding framework is compatible with multiple neural network archi-
tectures, including the transformers architecture, the current state-of-the-art
in sequence processing [Vaswani et al., 2017]. Although we are in the process
of transitioning to this advanced architecture, our current system utilizes the
traditional LSTM approach. We will therefore only provide a brief overview
of transformers here.

Transformers operate on a different principle compared to recurrent neural
networks (RNNs). Instead of sequentially processing elements and maintaining
a state across iterations, transformers employ a mechanism where queries are
emitted for all elements of a sequence simultaneously. These queries represent
specific information needs relevant to the task at hand. In response, the model
generates keys based on these queries, facilitating cross-communication across
the entire sequence. This method allows for the detection and utilization of
subtle and distant patterns within the data.

Given the operational mechanics of transformers, they depend heavily on a
so-called ‘positional encoding’ — typically a position dependent function that
is applied to inputs before they are fed to the network. This technique is crit-
ical for preserving the sequence order within their representations. While the
graph structure inherent in the observations O⟨t⟩ is not directly maintained
through this form of embedding, it is possible to learn this structure empiri-
cally. Moreover, it is conceivable to develop an encoding process that explicitly
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incorporates graph structure, potentially enhancing the model’s ability to rec-
ognize and utilize complex relational information.

Transformers’ relevance to SR, was previously demonstrated in works such
as : Kamienny et al. 2022, Lalande et al. 2023, Biggio et al. 2020, 2021, Vastl
et al. 2022 which employ transformers within a supervised learning framework.

3.3.2 Learning

One might imagine that SR problems could be solved by directly optimizing
the choice of symbols to fit the problem, using the auto-differentiation capa-
bilities of modern machine learning frameworks8 in an unsupervised manner.
Unfortunately this approach cannot be used for general SR footnoteWe will
moderate that point in Section 7.2 which explores such approaches. because
the cost function is non differentiable (the choice of selecting say the sin func-
tion over log is not differentiable with respect to the data), which prevents one
from using gradient descent. A practical solution is to use a neural network
as a “middle man” to generate a categorical distribution from which we can
sample symbols. One can then optimize the parameters of this neural network
whose task is to generate these symbols according to fit quality and physical
units constraints.

Reinforcement learning

The training of the network that generates the distribution of symbols relies on
the “reinforcement learning” (RL) strategy [Sutton and Barto, 2018], which
is a common method used to train artificial intelligence agents to navigate
virtual worlds such as video games9, or master open-ended tasks [Bauer et al.,
2023b]. In the present context, the idea is to generate a set (usually called a
“batch” in machine learning) of trial symbolic functions, and compute a scalar
reward for each function by confronting it to the data. We can then require
the neural network to generate a new batch of trial functions, encouraging it
to produce better results by reinforcing behavior associated with high reward
values, approximating gradients and applying them to a so-called “policy” here
our neural network model. The hope is that, by trial and error, the learnable
parameters of the network will converge to values that are able to generate a
symbolic function that fits the data well.

Following the insight by Petersen et al. [2021a], we adopt the risk-seeking
policy gradient strategy along with the entropy regularization scheme found

8Most machine learning tasks use the differentiability of the implemented model with
respect to the data to implement a (stochastic) gradient descent towards an optimal model
solution that fits the data best.

9See, e.g., https://youtu.be/igZ6IPQimjQ

https://youtu.be/igZ6IPQimjQ
https://youtu.be/igZ6IPQimjQ
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by Landajuela et al. [2021a]. In essence, we only reinforce on the best 5 % of
candidate solutions, not adjusting the neural network based on the 95 % of
other candidates, therefore maximizing the reward of the few best performing
candidates rather than the average reward. With our chosen batch size of 10k,
this strategy reinforces the leading 500 candidates. This enables an efficient
exploration of the search space at the expense of average performance, which is
of particular interest in SR as we are often mostly concerned in finding the very
best candidates in particular if the goal is exact symbolic recovery and do not
care if the neural network performs well on average. This is contrary to many
other applications of RL (e.g., robotic automation) which can even sometimes
require risk-adverse gradient policies (e.g., self driving cars) [Rajeswaran et al.,
2017]. This novel risk-seeking policy, inspired by Rajeswaran et al. [2017] and
first proposed by Petersen et al. [2021a], has significantly boosted performance
in SR.
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Figure 3.9: Reinforcement learning-based symbolic regression framework. The
data itself is not directly utilized, instead, it informs the computation of a reward that
reflects the quality of fit. This reward creates an environment in which the neural network
policy operates, learning to maximize the fit quality over iterations. This framework employs
a risk-seeking policy, where only the top-performing expression candidates (highlighted in
red) are used to reinforce and train the neural network.

Annealing temperature parameter

Among various enhancements presented throughout this thesis, we extend the
framework of Petersen et al. [2021a] by introducing an adjustable temperature
parameter, θT . This parameter modulates the distribution over the space
of tokens derived from the model’s output vector, {zi}i≤nlib

, and is trainable
alongside other model parameters during the learning process. The probability
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of selecting a token τi from a library of nlib possible tokens is computed as
follows:

p(τi) =
ezi+log θT

nlib∑
j=1

ezj+log θT

(3.8)

A higher value of θT increases the exploration by flattening the probability
distribution, making the model more likely to sample less probable tokens.
Conversely, a lower value of θT sharpens the distribution, prioritizing exploita-
tion by focusing on the highest-probability tokens [Sutton and Barto, 2018].

By making the temperature parameter θT adjustable, the sharpness of the
probability distribution can be dynamically tuned during training. This so-
called “annealing”10 approach [Kirkpatrick et al., 1983], is particularly advan-
tageous in reinforcement learning contexts. Specifically:

1. The level of exploration can be empirically learned based on the task
requirements, allowing the model to autonomously balance exploration
and exploitation depending on the SR task.

2. During the initial stages of training, when the agent is learning the struc-
ture of the environment, higher exploration can lead to the discovery of
novel or effective solutions. As the model improves, it can automati-
cally reduce exploration and concentrate on refining the most promising
candidates.

Evaluating expressions

We allow the candidate functions f to contain “constants” with fixed physical
units specified by the user, but with free numerical values. These free con-
stants allow us the possibility to model situations where the problem has some
unknown physical scales. A (somewhat contrived) example from galactic dy-
namics could be if we were provided a set of potential values Φ, and cylindrical
coordinate values (R, z) of some mystery function that was actually a simple
logarithmic potential model:

Φ =
1

2
v20 ln

(
R2

c + R2 +
z2

q2

)
, (3.9)

whose parameters are the velocity parameter v0, the core radius Rc and the
potential flattening q. Of course, we will generally not know in advance either

10The term annealing originates from metallurgy, where materials are gradually cooled to
achieve a stable structure. In machine learning, annealing refers to the gradual adjustment
of a temperature parameter, which controls the randomness (or entropy) of an algorithm’s
decisions.
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the number of such parameters that the correct solution requires, or their
numerical values. Yet to be able to evaluate the loss of the trial functions f ,
we need to assign values to all such free “constants” they may contain. We
accomplish this task by processing each trial function, with the L-BFGS [Zhu
et al., 1997] optimization routine in PyTorch [Paszke et al., 2019] (optimizing
over 20 steps and using a mean squared error metric), leveraging the fact
that we can encode the symbols of f using PyTorch functions. Since PyTorch

has in-built auto-differentiation, finding the optimal value of the constants via
gradient descent is extremely efficient.

Then, for each candidate f , we compute a reward r that is representative
of fit quality:

r =
1

1 + NRMSE
(3.10)

Where NRMSE is the root mean squared error normalized by the deviation of
the target (σy) :

NRMSE =
1

σy

√√√√ 1

N

N∑

i=1

(yi − f(xi))2 (3.11)

R2 and reward r

To assess fit quality, a commonly used metric is the coefficient of determination,
R2, defined as:

R2 = 1−

N∑

i=1

(yi − f(xi))
2

N∑

i=1

(yi − ȳ)2

(3.12)

Where ȳ is the mean of the target values. The relationship between R2 and
the reward r is given by:

R2 =
2

r
−
(

1

r

)2

, (3.13)

Evaluating policy gradients

Having computed the rewards, we next approximate gradients to optimize the
parameters of our neural network, θ. First, we use these rewards to identify
the top 5 % of candidates -those with rewards r > rϵ, where rϵ represents the
ϵ-th quantile and ϵ = 5%. These top-performing candidates are then used as
targets [Petersen et al., 2021a] to guide the neural network towards generating
similar expressions, effectively treating the problem like a classification task at
the token level.
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Lθ = Lθ,risk + α.Lθ,entropy (3.14)

Risk-seeking loss:

The primary component of our loss function, Lθ,risk, is modeled after a cross-
entropy loss that is modulated by the rewards of the candidates. This con-
figuration ensures that higher-quality candidates exert a stronger influence on
the model than those with lower rewards. Specifically, for a given candidate
expression encoded as

(
τ ⟨t⟩
)
t≤nexpr

with an associated reward r, we define the

main component of the loss as:

Lθ,risk = −(r − rϵ)

nexpr∑

t=1

nlib∑

i=1

eτ ⟨t⟩,i. log p
⟨t⟩
θ (τi) (3.15)

Here, p
⟨t⟩
θ (τi) represents the probability assigned by our model for selecting

the i-th token from the library at the t-th position in the sequence. The term
eτ ⟨t⟩ denotes the token at position t from the target expression that received
the reward r, encoded as a one-hot categorical vector — this vector assigns
a probability of one to the actual token position in the library and zero else-
where. The notation used her corresponds to the one outlined in 3.2.2.

Entropy loss:

The secondary component of our loss function, Lθ,entropy, implements an en-
tropy regularization scheme [Landajuela et al., 2021a]. This component is
designed to enhance the diversity of the generated symbolic expressions by in-
corporating a decay factor, γ, applied along the sequence dimension to variably
weight the importance of nodes across the expression. This decay prioritizes
root nodes to discourage the model from converging too quickly around the
same initial nodes and encourages exploration of varied starting points:

Lθ,entropy = −
nexpr∑

t=1

γt

nlib∑

i=1

p
⟨t⟩
θ (τi). log p

⟨t⟩
θ (τi) (3.16)

Overview:

In practice, we optimize the neural network by calculating the loss across the
top 500 candidates and applying gradients derived from this loss using an
Adam optimizer [Kingma and Ba, 2015]. Essentially, this process involves
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Learning parameters
Batch size 10 000

Learning rate 0.0025
Risk factor (ϵ) 5 %

Entropy coefficient (α) 0.005
Entropy decay (γ) 0.7

Annealing parameter (log θT )
initial value

1.54

Table 3.1: Reinforcement learning hyper-parameters

comparing the neural network’s outputs with those of the 500 leading candi-
dates and minimizing the discrepancies. Thus, the neural network does not
directly access the data; rather, it ‘learns’ indirectly through trial and error,
being adjusted based on the rewards associated with the leading candidates.
These rewards are themselves derived from the data through a fit quality as-
sessment. This learning process is depicted on Figure 3.9. The values for
hyper-parameters pertaining to RL used throughout this thesis, unless other-
wise specified, are listed in Table 3.1.

For a live demonstration of our system applied to a symbolic regression
task, refer to [Å SR demo]11. In this example, the system aims to derive a
model fitting data points corresponding to a damped harmonic oscillator. The
video illustrates the iterative process, displaying the curves associated with
trial candidate expressions over successive iterations, highlighting their pro-
gressive improvement in fit quality until convergence.

Non-differentiable reward:

It is worth noting that in the RL framework, the the reward function can be
considered as as a black box, which does not have to be differentiable, therefore
one could use anything as the reward12. For example, we can also include the
complexity of the symbolic function in the reward function, so as to have a
criterion akin to Occam’s razor. But actually one could in principle implement
many ideas into the reward function: symmetries, constraints on primitives
or derivatives, fitness in a differential equation, the results of some symbolic
computation using external packages such as Mathematica [Wolfram, 2003]
or SymPy [Meurer et al., 2017], behavior of the function when implemented
an n-body simulation, and so on. Note that in the context of this work,

11https://youtu.be/wubzZMkoTUY
12As long as a positive correlation between symbolic arrangement and the reward metric

exists.

https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
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although there are more sophisticated schemes to define complexity (see e.g.,
Vladislavleva et al. 2009) we simply define it as length i.e. the number of tokens
appearing in the expression excluding parentheses or the number of nodes in
a tree representation.

3.3.3 Discussion

Incorporating prior knowledge in RL-based SR

Our approach is based on a deep reinforcement learning methodology, where
the neural network is reinitialized at the start of each SR task. It is there-
fore trained independently for each specific problem, and so does not benefit
from past experience nor is it pre-trained on a dataset of well known physical
functional forms. One could argue that this makes our approach in principle
“unbiased” akin to unsupervised learning setups and therefore well suited for
discovering new physics [Karagiorgi et al., 2022]. However, this also intrinsi-
cally limits SR capabilities as exploiting such prior knowledge is of great value
for resolving the curse of accuracy guided SR described below. One can ex-
ploit such prior knowledge by formulating it as an in situ prior [Kim et al.,
2021, Guimerà et al., 2020] or by learning on it in a supervised manner using
transformers learning techniques [Kamienny et al., 2022, 2023, Bendinelli et al.,
2023, Biggio et al., 2021, Vastl et al., 2022]. However, although state-of-the-art
supervised SR methods, as of now, shine in providing accurate approximations,
they show poorer exact symbolic expression recovery rates than other meth-
ods (see e.g., the performances of NeSymReS in Figure 4.3 or the ablation study
conducted by Landajuela et al. [2022]).

While the combination of supervised and RL may seem promising, Landa-
juela et al. [2022] demonstrated that such a combination offers only marginal
enhancements in exact symbolic recovery. Nonetheless, in the age of large lan-
guage models, there is potential to harness vast internet-scale knowledge (see
e.g., Valipour et al. 2021). By learning the association between data points
and mathematical expressions in realistic scenarios, and aligning with domain-
specific assumptions using supervised learning techniques, it is conceivable to
integrate this knowledge into a RL framework, as exemplified by Fan et al.
[2022]. This approach might allow the recovery of expressions of substantially
greater complexity than those we explore in Section 4.4.

Furthermore, one might envision using supervised approaches as a prelimi-
nary step to detect which non-linear tokens (e.g., cos, log, etc.) should appear
in the expression underlying a dataset, leaving the RL framework with the
task of properly combining them. This would be similar to how a physicist
conducting SR might identify periodicity and damping in the data and then
attempt to manually assemble them.
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Data exploitation in accuracy-guided SR

Existing RL-based SR frameworks [Petersen et al., 2021a, Landajuela et al.,
2021a, Petersen et al., 2021b, Landajuela et al., 2022, Faris et al., 2024,
Michishita, 2024, Tian et al., 2024, He et al., 2024a, Du et al., 2022] and
most other SR methods primarily focus on maximizing fit quality. This ap-
proach often results in limited constraints on symbol arrangement driven only
by a non-differentiable (with respect to symbolic arrangement) scalar value
indicative of fit quality. Unfortunately, the pathways that lead to optimal fit
quality and those leading to accurate symbolic arrangement do not necessar-
ily align. This misalignment can result in the “curse of accuracy-guided SR”
[Grindle, 2021] where minor improvements in fit quality may mask significant
deviations in the functional form of solutions, and vice versa. Consequently,
enhancing the fit quality of candidates across learning iterations might inad-
vertently distance them from the correct symbolic arrangement.

To address this issue, a more nuanced approach to data exploitation could
be beneficial. Currently, since the data remains constant, directly feeding it
into the neural network proves ineffective, as the network would be unable
to discern correlations between the static data and symbolic arrangements.
A potential solution could involve a hybrid learning strategy that combines
reinforcement learning with supervised learning. Specifically, this approach
would involve using supervised learning to map the search space locally. This
could be executed by training the neural network forward with reinforcement
learning and backward with supervised learning, using expressions generated
by our model to help it associate data and expressions locally. Both approaches
would rely on a single neural network, which is a technique referred to as hard
parameter sharing.

Practically, this method would entail maintaining our current setup but
introducing synthetic data generation at each output of an expression by the
neural network. Between each cycle of reinforcement learning, a round of su-
pervised learning would be conducted using these synthetic datasets and their
corresponding expressions. It is hoped that given these associations, once con-
fronted with data of interest, the neural network would be able to effectively
utilize it, having mapped the local correlations between data and symbolic ar-
rangements in a supervised manner. This combined SR and supervised learning
approach aims for a less ambitious, thus potentially more manageable, solu-
tion compared to approaches attempting to map all possible expressions to all
datasets as seen in other supervised learning strategies for SR. This strategy
is depicted in Figure 3.10 and is somewhat reminiscent of strategies used in
automated theorem proving, such as those employed in AlphaZero.
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Figure 3.10: Perspective setup for going beyond accuracy guided SR. See 3.3.3 for a detailed
description.

Complexity-accuracy metric

In addition, while our approach generates a Pareto front that gives accuracy-
complexity trade-offs, future enhancements that integrate both complexity and
accuracy into a singular metric (as in Bartlett et al. 2023a) could potentially en-
hance SR performances and address model selection challenges. However, one
should note that our approach incorporates complexity requirements through
several mechanisms: the entropy component of the loss function, the length
priors and the Pareto-front which filters the results returned by the system to
favor low complexity expressions at a similar accuracy.

Problem simplification schemes

As we will show in Section 4.4.3, it is straightforward to improve our method
by combining it with the powerful problem simplification schemes devised in
[Udrescu and Tegmark, 2020, Udrescu et al., 2020, Luo et al., 2022, Tohme
et al., 2023, Cranmer et al., 2020b] exploiting separabilities, symmetries and
more to divide SR problems into simpler sub-problems. The results of the
separability procedures implemented in the AI Feynman [Udrescu et al., 2020]
algorithm are conveniently recorded in separate datafiles, which makes it com-
pletely straightforward to use their approach as a pre-processing step for our
approach. We anticipate that integrating their method within our algorithm,
following the approach of Landajuela et al. [2022], should enhance the per-
formance of our method. A preliminary framework combining an improved
version of AI Feynman style simplification schemes with our framework will be
discussed in Section 7.1.
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Physical Symbolic Regression

Portions of the content presented in this Chapter have been previously dis-
cussed in the following publication:

2023 Deep symbolic regression for physics guided by units constraints: toward the automated
discovery of physical laws
W. Tenachi, R. Ibata, F. Diakogiannis
ApJ 959 99, arXiv:2303.03192

Summary.
Research on symbolic regression methods has not been focused on physics,

where we have important additional constraints due to the units associated
with our data. We present a framework for recovering analytical symbolic
expressions from physics data using deep reinforcement learning techniques by
learning units constraints. Our system is built, from the ground up, to propose
solutions where the physical units are consistent by construction.

This is useful not only in eliminating physically impossible solutions, but
because the “grammatical” rules of dimensional analysis restrict enormously
the freedom of the equation generator, thus vastly improving performance. We
test our machinery on a standard benchmark of equations from the Feynman
Lectures on Physics, achieving state-of-the-art performances and showcase its
abilities on a panel of examples from astrophysics.

https://doi.org/10.3847/1538-4357/ad014c
https://arxiv.org/abs/2303.03192
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As established in the previous Chapter, although the prospect of using sym-
bolic regression (SR) for discovering new analytical physical laws from data
may be very appealing, it is also a very challenging combinatorial problem
requiring one to develop highly efficient strategies to prune poor guesses

In this Chapter we build upon principles established in Chapter 3 and show
how dimensional analysis can be exploited for this purpose and how our Φ-SO
— Physical Symbolic Optimization — method combining deep reinforcement
learning and dimensional analysis performs. This Chapter is primarily based
on [Tenachi et al., 2023a], which led to a press release included in Appendix
A.

The layout of this Chapter is as follows. We first detail our motivations
in Section 4.1, in Section 4.2 we give our methodology for performing in situ
dimensional analysis in partially written expressions and show how we exploit
it to effectively learn the rules of dimensional analysis. In Section 4.3, we apply
our method to a benchmark of 120 equations from the Feynman Lectures on
Physics and other physics textbooks and compare it to 17 other popular SR
algorithms, reporting state-of-the-art performances. In Section 4.4 we show-
case Φ-SO’s capabilities on a panel of astrophysical test cases and perform an
ablation study. In Section 4.5 we show that our method can also be used to dis-
cover both physical laws and fundamental constants of nature from empirical
data. Finally in Section 4.6 we discuss our results.

Remark on physical validity:

In the context of this Chapter, “physically valid” refers specifically to equa-
tions where the units are balanced, ensuring their coherence with dimensional
analysis. We further discuss the enforcement to other physical principles in
Section 11.2.

4.1 Motivations

This section outlines the rationales for the development of our method. We
highlight its utility in ensuring the physical correctness of expressions in terms
of unit dimensions (sub-section 4.1.1) and its effectiveness in significantly re-
ducing the search space, thereby enhancing performance (sub-section 4.1.2).
Additionally, we discuss the originality of our approach compared to existing
literature (sub-section 4.1.3).
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4.1.1 Ensuring the physicality of expressions

There are multiple approaches to SR (detailed in Section 2.2.2) which are ca-
pable of generating accurate analytical models. However, in the context of
physics, we have the additional requirement that our equations must be bal-
anced in terms of their physical units, as otherwise the equation is simply
non-sensical, irrespective of whether it gives a good fit to the numerical val-
ues of the data. Although powerful, to the best of our knowledge, all of the
available SR approaches spend most of their time exploring a search space
where the immense majority of candidate expressions are unphysical in terms
of units and thus often end up producing unphysical models (with the excep-
tion of approaches in which variables are rendered dimensionless beforehand
as discussed in 4.2.3).

A very simple solution to this problem would have been to use an exist-
ing SR code, and check post hoc whether the proposed solutions obey that
constraint. But not only does that constitute an immense waste of time and
computing resources, which could render many interesting SR tasks impossi-
ble, it also makes a significant fraction of the resulting “best” analytical models
unusable and uninterpretable. We note that for the sake of clarity, throughout
this Chapter we refer to a system of unique quantities such as physical di-
mensions {L,M, T, I,Θ, N, J} i.e. with physical units {m, kg, s,A,K,mol, cd}
a subset thereof, or problem-specific quantities such as {L, V, ρ, P, v} i.e. with
physical units {m,m3, kg/m−3,Pa,m.s−1} as “units” 1.

4.1.2 Search space reduction

At first glance, one could think of the units constraints as severe restrictions
that limit the capabilities of SR as they would prevent the generation of un-
physical intermediary expressions. However, in this work we show that re-
specting physical constraints actually helps improve SR performance not only
in terms of interpretability but also in accuracy by guiding the exploration of
the space of solutions towards exact analytical laws. This is consistent with
the studies of [Petersen et al., 2021a,b, Kammerer et al., 2020] who found that
using in situ constraints during analytical expression generation is much more
efficient as it vastly reduces the search space of trial expressions (though we
note that incorporating such constraints in those frameworks would not be
straightforward as one would need to recompute the whole relational graph
representing an analytical expression and its underlying units constraints each
time a new symbol is added).

1Although this can also be extended to systems with non-physical quantities, such as
{scalar, vector,matrix} or even {dollars, capita, annum}.
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Here we present our Physical Symbolic Optimization framework (Φ-SO)
which was designed from the outset to incorporate and take full advantage
of physical units information during SR by storing and managing informa-
tion related to dimensional analysis. This addresses in part the combinatorial
challenge discussed in sub-section 3.1.3. Our Φ-SO framework includes the
units constraints in situ during the equation generation process, such that
only equations with balanced units are proposed by construction, thus also
greatly reducing the search space as illustrated in Figure 4.1.

Search space Search space with our in situ physical units prior
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Figure 4.1: Illustration of the symbolic expression search space reduction enabled
by our in situ physical units prior. We represent paths (in prefix notation) leading
to expressions with physically-possible units (in red), a sample of the paths that lead to
expressions with unphysical units (in black) with other unphysical paths redacted for read-
ability summarized with dotted lines and their total number. Here we consider the recovery
of a velocity v using a library of symbols {+, /, cos, v0, x, t} where v0 is a velocity, x is a
length, and t is a time (limiting ourselves to 5 symbol long expressions for readability). This
reduces the search space from 268 expressions to only 6. Note that the performance gain
should scale exponentially with the expression length we allow the system to survey.

4.1.3 Innovativity

In the present study, we develop a foundational symbolic embedding for physics
that enables the entire expression tree graph to be tackled, as well as local units
constraints. Unlike previous attempts to consider units in which datasets were
rendered dimensionless before applying standard SR techniques [Udrescu and
Tegmark, 2020, Matchev et al., 2022, Keren et al., 2023], our approach allows
us to anticipate the required units for the subsequent symbol to be generated
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in a partially composed mathematical expression. By adopting this approach,
we not only focus on training a neural network to generate increasingly precise
expressions, as in Petersen et al. [2021a], but we also generate labels of the
necessary units and actively train our neural network to adhere to such con-
straints. In essence, our method equips the neural network with the ability to
learn to select the appropriate symbol in line with local units constraints.

To the best of our knowledge such a framework was never built before.
This constitutes a first step in our planned research program of building a
powerful general-purpose symbolic regression algorithm for astrophysics and
other physical sciences. The purpose of this Chapter is to present our algorithm
and show its workings and its potential.

4.2 Exploiting In situ Units Constraints

Our work is part of the broader field of grammar-guided SR [Ali et al., 2022,
Brence et al., 2021, Crochepierre et al., 2022, Korns, 2011, Hoai et al., 2002,
Manrique et al., 2009, Worm and Chiu, 2013] which aims at constraining the
symbolic arrangement of mathematical expressions based on domain specific
rules. Specifically and as discussed above, in physics we already know that
some combinations of tokens are not possible due to units constraints. For
example, if the algorithm is in the process of generating an expression in which
a velocity (v0) is summed with a length (x) divided by a token or sub-expression
which is still to be generated (□):

v0 +
x

□
, (4.1)

then based on the expression tree (this is illustrated in Figure 3.7), we already
know that that □ must be a time variable or a more complicated sub-tree that
eventually ends up having units of time, but that it is definitely not a length
or a dimensionless operator such as the log function.

Sub-section 4.2.1 provides details about the algorithm we use to generate in
situ units constraints, which are used to teach the neural network dimensional
analysis rules and help to reduce the search space. In sub-section 4.2.2, we
describe the reinforcement learning strategy we adopted to make our neural
network not only produce accurate expressions but also physically meaningful
ones. And finally in sub-section 4.2.3 we discuss other resembling approaches
from the literature.
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4.2.1 In situ dimensional analysis

Dimensional analysis in (in)-complete expressions

Computing such constraints in situ i.e. in incomplete, only partially sampled
trees (containing empty placeholder nodes) is much harder than simply check-
ing post hoc if the units of a given equation make sense, because in some
situations it is impossible to compute such constraints until later on in the se-
quence, leaving the units of some nodes free (i.e. compatible with any units at
this point in the sequence). For example, it is impossible to compute the units
requirement in the left child node of a (binary) multiplication operator token
□×△, as any units in the □ left child node could be compensated by units in
the △ right child node. Following the dimensional analysis rules summarized
in Table 4.1, we devised Algorithm 1.

Dimensional analysis rules
Expression Units
τA ± τB ΦA or ΦB

−τA ΦA

τA × τB ΦA + ΦB

τA/τB ΦA − ΦB

τA
n n× ΦA

op0(τA) 0

Units requirements rules
Expression Requirement
τA ± τB ΦA = ΦB

y = τA Φy = ΦA

op0(τA) ΦA = 0

Table 4.1: Dimensional analysis prescriptions to enforce. With τA, τB , y, ΦA, ΦB , Φy refer-
ring to two nodes, the output variable and the powers of their units vectors, op0 denoting a
dimensionless operation (e.g., {cos, sin, exp, log}) and τA

n representing any power operation

(including e.g., 1/τA = τA
−1,
√
τA = τA

1
2 )

Maximally informing algorithm

This algorithm gives the pseudo-code of the procedure we devised to compute
the required units whenever possible and leaving them as free otherwise. The
procedure is applied to a token at position t < N in an incomplete or complete
sequence of tokens {τ ⟨t⟩}t<N of size N , knowing the units of terminal nodes
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and of the root node (e.g., respectively {v0, x, t} and {v} in the example of
Figure 3.7). The sequence may be partially made up of placeholder tokens of
yet undetermined nature (representing dangling nodes). Running algorithm
1 before each token generation step allows one to have a maximally informed
expression tree graph in terms of units.

Algorithm 1: In situ units requirements algorithm

1

Input: (In)-complete expression {τ ⟨t⟩}t<N , Position of token t
Output: Required physical units Φ⟨t⟩ of token at t

2 Function ComputeRequiredUnits({τ ⟨t⟩}t<N , t)

3 p← PositionOfParent(t)
4 s← PositionOfSibling(t)

5 Φ⟨p⟩ ← Units(τ ⟨p⟩)

6 Φ⟨s⟩ ← Units(τ ⟨s⟩)
7 NodeRank← 1 if left side node and 2 if right node
8 AdditiveTokens← {+,−}
9 MultiplicativeTokens← {×, /}

10 PowerTokens← {1/□,
√
□,□n}

11 PowerValues← {1/□ : −1,
√
□ : 1/2,□n : n}

12 DimensionlessTokens← {cos, sin, tan, exp, log}
13 if τ ⟨p⟩ is in AdditiveTokens and Φ⟨s⟩ is known then
14 Φ⟨t⟩ ← Φ⟨s⟩

15 else if τ ⟨p⟩ is in AdditiveTokens and Φ⟨p⟩ is free and NodeRank is 2 and

Φ⟨s⟩ is free then
16 BottomUpUnitsAssignement(start = s, end = t− 1)

17 Φ⟨t⟩ ← Φ⟨s⟩

18 else if Φ⟨p⟩ is free and τ ⟨p⟩ is not in MultiplicativeTokens and τ ⟨s⟩ is not
a placeholder then

19 Φ⟨t⟩ ← free;
20 else if t = 0 then
21 Φ⟨t⟩ ← Units(root)

22 else if τ ⟨p⟩ is in AdditiveTokens then
23 Φ⟨t⟩ ← Φ⟨p⟩

24 else if τ ⟨p⟩ is in PowerTokens then
25 n← PowerValues[τ ⟨p⟩]

26 Φ⟨t⟩ ← Φ⟨p⟩/n

27 else if Φ⟨p⟩ = 0 or τ ⟨p⟩ is in DimensionlessTokens then
28 Φ⟨t⟩ ← 0

29 else if τ ⟨p⟩ is in MultiplicativeTokens then
30 if τ ⟨t⟩ is a placeholder and τ ⟨s⟩ is a placeholder then
31 Φ⟨t⟩ ← free
32 else if NodeRank is 1 then
33 Φ⟨t⟩ ← free

34 else if Φ⟨p⟩ is free then
35 Φ⟨t⟩ ← free
36 else
37 BottomUpUnitsAssignement(start = s, end = t− 1)

38 if τ ⟨t⟩ is {×} then
39 Φ⟨t⟩ ← Φ⟨p⟩ − Φ⟨s⟩;

40 else if τ ⟨t⟩ is {/} then
41 Φ⟨t⟩ ← Φ⟨s⟩ − Φ⟨p⟩;

42 return Φ⟨t⟩
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4.2.2 Learning from physical units

Having access in situ to the (required) physical units of tokens allows us to
not only to inform the recurrent neural network (RNN) of our expectations in
terms of units as well as to feed it units of surrounding tokens, thus allowing the
model to leverage such information, but also to express a prior distribution over
the library. This is illustrated on Figure 4.2 which is a dimensional analysis
centric version of Figure 3.7 highlighting the flow of physical units information.
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Figure 4.2: Dimensional analysis centric expression generation sketch highlighting
the flow of physical units information. The process starts at the top left RNN block.
For each token, the RNN is given the contextual information regarding the surroundings of
the next token to generate in the graph, including physical units information. Based on this
information, the RNN produces a categorical distribution over the library of available tokens
(top histograms) as well as a state which is transmitted to the RNN on its next call. The
generated distribution is then masked based on local units constraints (bottom histograms),
forbidding tokens that would lead to nonsensical expressions. The resulting token is sampled
from this distribution, leading to the token ‘+’ in this example. Based on the new symbolic
graph, the in situ dimensional analysis updates physical units information and constraints
which are used to inform the RNN and emit the prior distribution. Repeating this process,
from left to right, allows one to generate a complete physical expression, here (+, v0, /, x, t)
which translates into v0 + x/t in the infix notation we are more familiar with.

Implicit guarantee of units consistency

This enables the algorithm to zero-out the probability of forbidden symbols
that would result in expressions that violate units rules. Combining this prior
distribution with the categorical distribution given by the RNN while expres-
sions are being generated results in a system where by construction only correct
expressions with correct physical units can be formulated and learned on by
the neural network.
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This is rendered possible by the fact that in addition to the straightforward
priors described earlier in sub-section 3.2.3 whose formulation depends on the
local tree structure (parent, sibling, ancestors), our method is able to accom-
modate any priors that take into account the entire tree structure without
having to recompute it from scratch at each step. This is possible thanks to
the fact that contrary to other deep learning based SR algorithms, in the Φ-SO
framework we compute and keep track of the full graph of the tree representa-
tion and its underlying grammatical information (such as units, symbol types
like functions, free parameters, fixed constants or the number of arguments a
symbol requires) — as detailed in sub-section 6.1.1 — while the expression is
being generated, as it is an essential ingredient to compute units constraints
as detailed in the following sub-section. Note that this also enables Φ-SO to
accommodate any future prior relying on such information.

Informing the neural network of physical units constraints

As detailed in Section 3.2, symbolic expressions can be regarded as binary
trees where each node represents a symbol of the expression in the library of
available symbols, i.e., an input variable (e.g., x, t), a constant (e.g., v0) or an
operation (e.g., +, −, ×, /, sin, log, ...). In this representation, input variables
and constants can be referred to as terminal nodes or symbols (having no child
node), operations taking a single argument (e.g., sin, log, ...) are unary sym-
bols (having one child node) and operations taking two arguments (e.g., +, −,
×, /, ...) are binary symbols (having to child nodes that can be considered sib-
ling nodes). By considering each node first in depth and then left to right, one
can compute a one dimensional list i.e. a prefix2 notation in which operators
are placed before the corresponding operands in the expression, alleviating the
need for parentheses. Using the prefix notation and treating symbols, referred
to as tokens, as categories allows us to treat any expression as a mere sequence
of categorical vectors. E.g., considering short toy library of tokens {+, cos, x},
the operator + can be encoded as (1, 0, 0), the function cos as (0, 1, 0) and the
variable x as (0, 0, 1).

In the framework of our dimensional analysis approach, the RNN is pro-
vided with an enriched set of observations beyond those previously described
in 3.3.1. In addition to the number of dangling nodes ndangling, the nature of
the token sampled at the previous step τ ⟨t−1⟩, and the sibling τ ⟨s⟩ and parent
τ ⟨p⟩ tokens at the current step, the RNN is also informed about the physical
units relevant to each token. Specifically, we augment the observations with

2This is also called “Polish” notation, and can be converted to a tree representation or
the “infix” notation which we are more familiar with, as there is a one-to-one relationship
between them.
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the units of the previously generated token Φ⟨t−1⟩, the sibling Φ⟨s⟩, and the par-
ent Φ⟨p⟩, as well as the required units Φ⟨t⟩ for the token being generated such
that as to ensure compliance with dimensional analysis rules. The observations
provided to the RNN at each step t are therefore as follows:

O⟨t⟩ = {ndangling, τ
⟨t−1⟩, τ ⟨s⟩, τ ⟨p⟩,Φ⟨t−1⟩, Φ⟨s⟩,Φ⟨p⟩,Φ⟨t⟩} (4.2)

Where τ ⟨t⟩ refers to the token at position t in prefix notation, p and s respec-
tively denote the position of the parent and sibling tokens of τ ⟨t⟩ and Φ⟨t⟩ refers
to the physical units of token at t.

This allows the inner mechanisms of the neural network to take into account
not only the local structure of the expression for generating the next token,
but also to take into account the local units constraints. The process described
above can be repeated multiple times until a whole token function is generated
in prefix notation, as illustrated in Figure 4.2.

Deep learning considerations

As detailed in Chapter 3 our framework could be applied to virtually any one
of the SR approaches described in Section 2.2.2 where tokens are sampled
sequentially, we chose to implement our algorithm in PyTorch (Paszke et al.
2019), building our method from scratch yet using some of the mathematical
principles and key strategies pioneered in the state-of-the-art Deep Symbolic
Regression framework proposed in Petersen et al. [2021a] and Landajuela et al.
[2021a] which rely on reinforcement learning via a risk-seeking policy gradient
(which is based on Rajeswaran et al. 2017).

Our learning hyper-parameters were given in Table 3.1. It is worth noting
that the empirically tuned batch size we found (10k) is larger than the one
found by Petersen et al. [2021a] which was of 1k. We attribute this to the
very strong constraints offered by our Φ-SO setup in symbolic arrangements
which require a strong exploration counterpart to avoid getting stuck in local
minima. This helps ensure that the model does not prematurely converge by
continuously reinforcing a locally optimal expression, but rather seeks more
solutions until identifying the most favorable one.

It is worth noting that our approach reinforces candidates which are sam-
pled based on not only the output of the RNN, but also the local units con-
straints derived from the units prior distribution, which ensures the physical
correctness of token choices. As a result, our approach effectively trains the
RNN to make appropriate symbolic choices in accordance with local units
constraints, in a quasi supervised learning manner. This combined with the
general reinforcement learning paradigm enables us to produce both accurate
and physically relevant symbolic expressions.



4.2 Exploiting In situ Units Constraints 67

4.2.3 Comparison to other approaches in the literature

We acknowledge a previous attempt by [Udrescu and Tegmark, 2020] in the
AI Feynman algorithm to consider units in the context of SR. The approach
adopted by AI Feynman addresses SR problems by first transforming the vari-
ables to make them dimensionless, often leading to a reduction in the number
of variables and allowing the generation of physically balanced expressions.
However, if this method fails, the algorithm reverts to the original problem
setup. This results in AI Feynman resorting to fitting high-order polynomials
or complicated expressions that although very accurate lack physical meaning
from a dimensional analysis perspective most of the time when it is not able to
find a perfect fit solution. For instance, even in the shorter range of expressions
it proposes, one can find equations such as K = arcsin(0.169e−3.142m+w) where
K, m and w denote an energy, a mass and a velocity for Feynman problem
I.13.4 (details about the Feynman symbolic regression problems can be found
in sub-section 4.3.1). In contrast, Φ-SO is designed to yield only physically
plausible expressions (in terms of their units) by construction all of the time.
Contrary to AI Feynman, Φ-SO works on dimensional data by leveraging con-
straints on the functional forms while generating expressions as outlined in
Table 4.1. It is worth noting, however, that making problems dimensionless,
as implemented in AI Feynman, is a valuable approach that can work in pair
with any SR method to ensure outputs are not non-sensical.

Indeed, it could be argued that we could have tackled the physical units va-
lidity of expressions in SR by taking advantage of the Buckingham Π theorem
[Buckingham, 1914], with variables and constants rendered dimensionless by
means of multiplicative operations amongst them. Such an approach can ac-
tually be adopted as a preliminary step in conjunction with any SR framework
(see, e.g., Matchev et al. 2022, Keren et al. 2023). However, although working
with so called Π groups ensures the generation of physically valid expressions
(since all terms become dimensionless), it simultaneously removes constraints
imposed by dimensional analysis, complicating the SR process. It is interesting
to note that nature (or at least physics) is not dimensionless, so information
is lost during the process of making variables and constants dimensionless,
preventing us from leveraging the powerful constraints on the functional form
associated with this dimensional information. Drawing from the example pre-
sented in Udrescu and Tegmark [2020], let us consider a dataset associated
with the target expression

F =
Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
. (4.3)
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When rendered dimensionless, the target expression becomes

y =
m2

m1

(x2

x1
− 1)2 + ( y2

x1
− y1

x1
)2 + ( z2

x1
− z1

x1
)2

. (4.4)

While this transformation decreases the number of input variables to
{m2

m1
, x2

x1
, y2
x1
, z1
x1
}, it simultaneously nullifies the inherent dimensional analysis

constraints. Consequently, the SR algorithm could potentially produce
expressions such as m2

m1
− x2

x1
or (x2

x1
−1)2 + y2

x1
. In contrast, with our in situ con-

straints, lengths could only be summed with lengths terms, similarly, squared
lengths could only be summed with squared lengths and having Gm1m2 in
the numerator would be enforced by the requirement of the expression being
homogeneous to a force. In essence, while rendering variables dimensionless
ensures physicality of the expressions, it simultaneously relinquishes valuable
constraints on their functional forms.

Finally, we note that since the initial submission of our work, three similar
approaches have been introduced, further underscoring the utility and rele-
vance of our method in the field. The first approach integrating dimensional
analysis with a sparsity-fitting method [Purcell et al., 2023], the second em-
ploying a probabilistic search strategy [Brence et al., 2023], and the third lever-
aging a genetic programming framework [Reissmann et al., 2024]. Notably, the
latter approach was benchmarked directly against our method using the same
dataset and protocol as described in Section 4.3, with our approach demon-
strating superior performance, as documented in [Reissmann et al., 2024].

4.3 Feynman Benchmark

To validate the efficacy of our Φ-SO method, we conducted benchmark tests
using the widely-recognized Feynman symbolic regression benchmark. This
set of challenges, first introduced by Udrescu and Tegmark [2020] and subse-
quently formalized in SRBench [La Cava et al., 2021], encompasses 120 equa-
tions including 100 sourced from the renowned Feynman Lectures on Physics
[Feynman et al., 1971] with the other 20 sourced from other textbooks: Gold-
stein et al. 2002, Jackson 2012, Weinberg 1972, Schwartz 2014. The primary
objective is to retrieve these equations using only the provided data points at
various levels of noise.

Although this benchmark has inherent limitations, such as treating
constants of nature (e.g., G, c, ℏ) and discrete physical values from quantum
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mechanics as continuously varying input variables (which places a higher em-
phasis on the implementation of the problem simplification schemes developed
in Udrescu and Tegmark [2020]), it offers a comprehensive representation of
the diversity of physical functional forms and remains a valuable standard for
comparison as most SR methods have been thoroughly benchmarked on it
(see La Cava et al. 2021).

Details on the benchmarking procedure can be found in 4.3.1. Results
on exact symbolic recovery are provided in 4.3.2, while findings regarding fit
quality are presented in 4.3.3. Finally, we provide training curves in 4.3.4.

4.3.1 Benchmarking procedure

Benchmarking rules

We meticulously adhered to the established protocol delineated in SRBench by
La Cava et al. [2021], setting our PhySO algorithm to identify expressions that
fit 10,000 data points corresponding to each Feynman benchmark equation.
PhySO was only allowed to evaluate a maximum of one million expressions
during each run and exact symbolic recovery was assessed by ensuring the
difference between the expression generated by PhySO and the target expression
reduced to a constant or that the fraction simplified to a constant using the
SymPy library for symbolic mathematics [Meurer et al., 2017]. In addition, fit
quality was assessed on 100,000 noiseless test data points using the R2 metric
defined as :

R2 = 1−

N∑

i=1

(yi − f(xi))
2

N∑

i=1

(yi − ȳ)2

(4.5)

As per benchmark rules, in order to ensure robustness, for each equation, this
procedure was repeated multiple times (opting here for 5 trials over 10 due to
the considerable computational demands associated with such benchmarks),
each with a unique random seed, and the recovery rates were subsequently
averaged. In alignment with SRBench stipulations, equations I.26.2, I.30.5,
and test 10 (containing arccos and arcsin functions) as well as II.11.17 were
excluded from our results. The whole benchmark tests were conducted
across four noise levels: 0%, 0.1%, 1% and 10%, leading to the evaluation of
2,320,000,000 expressions.3

3Additional details about the implementation of this protocol can be found in 6.1.3 and a
straightforward way to technically reproduce the results presented here is given in paragraph
6.3.
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Method Technique(s) Description Reference

PhySO RL, DA Physical Symbolic Optimization Tenachi et al. [2023a]
uDSR RL, GP, Simp., Sup. A Unified Framework for Deep Symbolic Regression Landajuela et al. [2022]
AIFeynman 2.0 Simp., DA Symbolic regression exploiting graph modularity Udrescu et al. [2020]
AFP FE GP AFP with co-evolved fitness estimates, Eureqa-esque Schmidt and Lipson [2009]
DSR RL Deep Symbolic Regression Petersen et al. [2021a]
AFP GP Age-fitness Pareto Optimization Schmidt and Lipson [2011]
gplearn GP Koza-style symbolic regression in Python Stephens [2015]
GP-GOMEA GP GP-Optimal Mixing Evolutionary Algorithm Virgolin et al. [2021]
ITEA GP Interaction-Transformation EA de Franca and Aldeia [2021]
EPLEX GP ϵ-lexicase selection La Cava et al. [2019]
NeSymReS Sup. Neural Symbolic Regression that Scales Biggio et al. [2021]
Operon GP SR with Non-linear least squares Kommenda et al. [2020]
SINDy NeuroSym Sparse identification of non-linear dynamics Brunton et al. [2016]
SBP-GP GP Semantic Back-propagation Genetic Programming Virgolin et al. [2019]
BSR MCMC Bayesian Symbolic Regression Jin et al. [2019]
FEAT GP Feature Engineering Automation Tool Cava et al. [2019]
FFX Rand. Fast function extraction McConaghy [2011]
MRGP GP Multiple Regression Genetic Programming Arnaldo et al. [2014]

Table 4.2: Baseline SR methods. Summary of baseline symbolic regression methods
along with the the underlying techniques they rely on: reinforcement learning (RL), genetic
programming (GP), problem simplification schemes (Simp.), end-to-end supervised learning
(Sup.), dimensional analysis (DA), neuro-symbolic / auto-differentiation based sparse fitting
techniques (NeuroSym), Markov chain Monte Carlo (MCMC) and random search (Rand.).

PhySO evaluation

We ran PhySO using the hyper-parameters and reward metric given
in Section 3.3 (with the notable exception of the trigonometric prior
which was set to a maximum nesting of one) and allowing the use of
{+,−,×, /, 1/□,

√
□,□2,−□, exp, log, cos, sin} as well as two dimensionless

adjustable free constants and a constant equal to one {c1, c2, 1}. After each
run, the first few expressions (in accuracy) of the Pareto front were inspected,
which proved beneficial for cases where SymPy faced simplification challenges
only and making a marginal difference of approximately 1% in recovery
rate. Notably, while the Feynman dataset includes unit information for each
variable, PhySO is the only method that capitalizes on this feature since
its introduction in Udrescu and Tegmark [2020], a testament to its unique
physics specific design. For the sake of reproducibility, we provide all the
code required to execute the benchmark using PhySO as well as the detailed
SRBench-style results regarding each run.

Comparison notes

We compare the performance of our Φ-SO approach to other SR algorithms
with documented exact symbolic recovery rates, as reported in [La Cava et al.,
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2021] and [Landajuela et al., 2022]. These algorithms are summarized in Table
4.2.

Remarkably, this includes AFP FE a Eureqa-like method, by the same au-
thors combining AFP with Eureqa’s method for fitness estimation [La Cava
et al., 2021] and which we denote as AFP FE (∼ Eureqa).

In La Cava et al. 2021, DSR [Petersen et al., 2021a] was not permitted
to use any free parameters when generating expressions, greatly hindering its
capabilities; we therefore also consider the performance of the latest version of
DSR [Landajuela et al., 2021a] self-reported in the ablation study of Landajuela
et al. [2022] which relies on more suitable hyper-parameters as a baseline.
However, we note that is important to exercise caution when interpreting this
additional DSR performance data-point as well as the performances of SINDy,
NeSymReS, and uDSR as our available data only offers their final scores on
a composite dataset, which encompasses both the Feynman benchmark and
the Strogatz benchmark [La Cava et al., 2016] — the latter accounting for
approximately 5% of the total score. This aggregated score is what we illustrate
in our figures throughout this Section. In addition, it is worth noting that
the exact conditions under which SINDy and NeSymReS were benchmarked are
unknown and that in the case of uDSR and the additional DSR data-point, the
benchmarking respectively permitted an evaluation of up to 2 million and 0.5
million expressions respectively, in contrast to the 1 million limit set for other
methods.

Furthermore, detailed results for these methods, in particular those re-
garding the specific expressions they identified, are unavailable, preventing
their inclusion in our comparative analysis when concerning expression met-
rics (complexity or number of free parameters). Although, per SRBench rules,
we permitted our method to evaluate up to 1 million expressions compared
to DSR’s 0.5 million, PhySO typically identifies the correct expression well be-
fore reaching this limit or not at all. Additionally, while DSR’s 42% score is
influenced by another benchmark, the impact is very low, accounting for only
5%. This external benchmark is relatively straightforward, with DSR achieving
around 25% even without free parameters [La Cava et al., 2021], indicating its
limited effect on the overall score. Thus, we believe a direct comparison be-
tween PhySO’s score and DSR’s from Landajuela et al. [2022] is valid especially
considering the gap in performance as detailed in the next sub-section.

4.3.2 Exact symbolic recovery

Performances on noisy data

Figure 4.3 presents the performance of PhySO against baseline algorithms
from Table 4.2 on the Feynman benchmark. This includes the average exact
symbolic recovery rate, accurate expression rate (defined as those with a fit
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Figure 4.3: Performances of PhySO against baseline methods on the Feynman
benchmark. Exact symbolic recovery rates, rates of accurate expressions (having R2 >
0.999) and same rates normalized by the number of free parameters appearing in expressions
for PhySO and other baseline methods on the Feynman benchmark. PhySO vastly outper-
forms all other methods in symbolic recovery in the presence of even minimal levels of noise
(> 0.1%). In addition, the effectiveness of the dimensional analysis schemes of our Φ-SO
approach are clearly visible when comparing DSR (a purely RL method) with our imple-
mentation: PhySO (combining RL with dimensional analysis). Error-bars indicate a 95%
confidence interval, ♦ denotes performances of DSR [Landajuela et al., 2021a] reported in
Landajuela et al. [2022] on noiseless data with free constants allowed and * denotes that
benchmarking conditions may vary and scores are polluted by approximately 5% of results
from another benchmark.

coefficient R2 > 0.999), and normalized accurate expression rate considering
the number of free parameters in the expressions, across different noise levels.
Compared to DSR, which strictly relies on reinforcement learning, PhySO

utilizes both reinforcement learning and dimensional analysis. With DSR’s
score at roughly 42%, our method’s 58.5% score highlights the significant
benefits of incorporating dimensional analysis. In the realm of physics, the
exact symbolic recovery rate is a paramount metric and given that real-world
physics data is often noisy, the resilience of an algorithm to noise is also
crucial. However, with a minor noise level of 0.1%, many high-performing
methods see their recovery rates almost halved. In contrast, PhySO maintains
consistent performances. Remarkably, at a 10% noise level, where most
methods’ recovery rates dip below 20%, and even high performers like uDSR

and AI Feynman 2.0 score only 10.7% and 0.7% respectively, PhySO continues
to accurately recover expressions over 53% of the time.
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Performances on noiseless data

In noiseless scenarios PhySO is only surpassed by uDSR which relies on a
cocktail of five of the most potent SR techniques: reinforcement learning
for iterative adjustments, genetic programming for enhanced randomization
and exploration, supervised learning to leverage existing knowledge, neuro-
symbolic style sparse coefficient fitting for its linear symbolic modules and
powerful simplification strategies, similar to those utilized by AI Feynman

2.0, which narrowly lags behind PhySO. These techniques rely on the ex-
ploitation of separability (e.g., simplifying the search of f(x1, x2) to the search
of the simpler functions f1(x1) and f2(x2) with f(x1, x2) = f1(x1) + f2(x2)),
symmetry (e.g., simplifying the search of f(x1, x2) to the search of f1(x1, x2)
and f2(x2) with f(x1, x2) = f1(x1, f2(x2))), and many other schemes to
circumvent the intricate functional forms in the benchmark. Despite relying
solely on reinforcement learning and dimensional analysis, on noiseless
data PhySO rivals uDSR and surpasses AI Feynman 2.0, demonstrating the
effectiveness of our approach.

Overview

It is worth noting that while the aforementioned AI Feynman-style “divide
and conquer” simplification strategies are effective, they are extremely noise
sensitive, a scenario where PhySO’s approach remains stable. In summary,
this benchmark shows that incorporating dimensional analysis constraints into
SR significantly bolsters performance. Given the improvements shown from
PhySO over DSR thanks to the inclusion of units constraints, and given uDSR’s
impressive performances in noiseless scenarios, we believe combining Φ-SO
with uDSR could elevate outcomes even further.

Performance comparison with PySR

PySR, an open-source implementation of the Eureqa software, which has gained
popularity in the astrophysics community was shown to exhibit performance
levels comparable to those of Eureqa [Cranmer, 2023].

Had PySR [Cranmer, 2023] been included in this benchmark alongside the
methods evaluated in [La Cava et al., 2021], we anticipate that our PhySO

approach would have demonstrated superior performance in both noisy and
noiseless scenarios. Given that PySR is essentially a reimplementation of
Eureqa, we estimate that PhySO would achieve approximately double the
exact symbolic recovery rate of PySR. This advantage would persist regardless
of the use of dimensional analysis features, since even without this feature,
our performance would remain at least marginally superior to that of DSR’s
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self reported performance.

Noise level 0% 0.1% 1% 10%
PySR - 59 - -

PhySO 71 70 69 67

Table 4.3: Comparison of PySR and PhySO performance. The table reports the num-
ber of expressions exactly recovered by PySR and PhySO from their associated data across
different noise levels, out of the bulk 100 Feynman benchmark problems. The single data
point for PySR at 0.1% noise is sourced from [Grayeli et al., 2024], while PhySO results are
computed under the same benchmarking protocol.

However, a recent study has directly reported the performance of PySR

on the Feynman benchmark [Grayeli et al., 2024]4 Unfortunately, this study
evaluated PySR at a single noise level of 0.1%, which emphasizes the system’s
performance, as it notably impacts one of the top-performing systems, uDSR5.
The study did not extend to higher noise levels that would likely pose more sig-
nificant challenges for PySR and might reveal behavior akin to that of Eureqa.
Additionally, the comparison did not include other state-of-the-art systems
known for greater noise resilience, such as the current PhySO approach [Tenachi
et al., 2023a] or DSR [Petersen et al., 2021a] at its full potential6.

The authors self-benchmarked their PySR system on the 100 bulk chal-
lenges (excluding the 20 “hard” challenges) from the Feynman benchmark.
Surprisingly, the reported performance surpasses that of Eureqa, as assessed
by an independent benchmark in SRBench. To the best of our knowledge, no
explanation has yet been provided for this inconsistency. There is currently
no straightforward way to replicate these experiments and the study does not
offer problem-by-problem results or a detailed list of the specific problems
solved, as is in other SR studies. Instead, it presents only an aggregate
count of successfully recovered expressions. Furthermore, the authors did not
conduct multiple runs to calculate a recovery rate, opting instead to report
whether their system could solve each problem in a single attempt.

4The reported performances are available through an ablated version of a system com-
bining PySR. with an additional component designed to perform SR from data supplemented
by user-provided text hints about the dataset revealing its features (e.g., , indicating the
presence of dampening or periodicity etc.).

5uDSR is particularly sensitive to noise when its AI Feynman-style “divide and conquer”
scheme is activated.

6Allowing the system to use free constants.
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Case Expression
I.11.19 x1y1 + x2y2 + x3y3
I.50.26 x1 (α cos2 (ωt) + cos (ωt))
II.6.15b 3pd cos (θ) sin (θ)/(4πϵr3)

III.15.14
(

h
2π

)2
/2End

2

Table 4.4: Examples of Feynman benchmark expressions recovered by PhySO but
not by PySR. This table provides a non-exhaustive sample of expressions from the Feynman
benchmark where PySR fails to recover the exact solution, but PhySO succeeds. Information
derived from [Grayeli et al., 2024].

To facilitate a direct comparison, we adapted our benchmarking protocol
to align with the one described in the referenced study and computed corre-
sponding performance figures for our system. The self-reported performance
metrics of PySR from [Grayeli et al., 2024] are juxtaposed with the results of
PhySO under this specific Feynman benchmark setup in Table 4.3. At a noise
level of 0.1%, PhySO demonstrates superior performance, successfully recover-
ing 11 additional expressions compared to PySR. We further hypothesize that
this performance gap would increase at higher noise levels, given the tendency
of Eureqa-style systems to exhibit substantial performance degradation under
elevated noise conditions, as illustrated in Figure 4.3.

Although the authors do not provide a comprehensive list of expressions
that PySR can or cannot solve, they do present a sample. Using this informa-
tion, we identify examples of expressions that PySR fails to recover but PhySO
successfully solves. These cases are detailed in Table 4.4.

4.3.3 Fit quality

Regarding the fraction of expressions with an R2 > 0.999, many methods
achieve high scores by incorporating an extensive number of free constants,
resulting in intricate expressions that often lack interpretability and are non-
sensical from a dimensional analysis standpoint. For example, AI Feynman

2.0, when not identifying the precise symbolic expressions, tends to generate
complex expressions comprising, post-simplification, an average of 147 symbols
and 18 free constants due to its brute-force polynomial fitting approach. Simi-
larly Operon 7 and MRGP expressions contain on average respectively 17 and 88
free constants post-simplification at a 10% noise level. This is not a problem in
many fields where human-interpretability is not a priority. However, given the
importance of this criterion in physics we also show in Figure 4.3 the rate of

7It should be noted that a recent improvement of Operon (see Burlacu [2023]) allowing
it to produce simpler expressions was introduced after the publication of our method. We
expect this improved version to perform better on the Feynman benchmark.
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Figure 4.4: Complexity vs. accuracy performances of PhySO against baseline
methods on the Feynman benchmark. Complexity versus rate of expressions hav-
ing R2 > 0.999 at a 10% noise level for PhySO and other symbolic regression methods from
the literature on the Feynman benchmark [La Cava et al., 2021]. Lines and colors denote
the 1st, 2nd, 3rd, 4th, 5th and 6th Pareto fronts following the SRBench algorithm comparison
framework. PhySO is a Pareto optimum producing simple yet effective expressions.

accurate expressions normalized by the number of free constants plus 1. PhySO
emerges as the leading method in generating succinct, physically coherent, and
interpretable expressions that best approximate a dataset, that is when it is
not able to recover the exact underlying expression all together.

This is further illustrated in Figure 4.4, where we show Pareto frontiers
of expression complexity versus fit quality at a 10% noise level for all bench-
marked methods with available output expression information. On this plot
PhySO is a Pareto optimum demonstrating its ability to produce simple yet
good-fitting expressions.

4.3.4 Learning curves

Due to its very constraining nature, using a yet untrained neural network, our
in situ units prior often conflicts with the length prior which is essential to
avoid the expression generation phase going on forever. This typically results
in the majority of expressions being discarded due to this conflict during the
first iterations of the training process. However, enabling the neural network
to learn on physically correct expressions, and enabling it able to observe
local units constraints, allows it to actively learn dimensional analysis rules.
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Figure 4.5: Learning curves. R2 value on training data and percentage of expressions na-
tively proposed by the neural network that have balanced physical units averaged across the
Feynman benchmark with error regions indicating a 95% confidence interval. Φ-SO’s neural
network learns to produce not only good fitting expressions but also physically meaningful
ones.

This is shown in Figure 4.5, which gives the fraction of physical expressions
successfully generated over iterations of learning averaged over all runs of the
Feynman benchmark at each level of noise.

Moreover, Figure 4.5 presents the evolution of the R2 fit coefficient on
training data for the best expression identified at each iterations. The figure
demonstrates that as the iterations progress, the neural network not only im-
proves in generating expressions with better fits but also refines its capacity
to produce expressions that are physically meaningful.

In our observations, while Φ-SO occasionally escapes local minima through
stochastic variations, convergence is typically characterized by the neural net-
work mostly producing identical expressions. This state of convergence is
typically reflected by both average fit quality and rate of physical expression
remaining static, as well as by the reward distribution peaking. The rate of
convergence is dependent on the difficulty of the case, the level of noise and
the chosen hyper-parameters. As depicted in Figure 4.5, under the hyper-
parameters detailed in this study, Φ-SO typically reaches convergence well
within several hundred iterations. Note that since it is operating in a rein-
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forcement learning framework, Φ-SO is trained on ‘moving targets’ as its tar-
gets consist of expressions generated by itself during the last iteration which is
characterized by the loss not decreasing during training except when it starts
consistently producing similar equations while converging.

4.4 Astrophysical Case Studies

In this Section, we showcase our Φ-SO method on a panel of astrophysical test
cases: the relativistic energy of a particle is examined in sub-section 4.4.1,
the law describing the expansion of the Universe in sub-section 4.4.2, the
isochrone action from galactic dynamics in sub-section 4.4.3 and additional
toy test cases given in 4.4.4. We give the results along with an ablation
study, disabling specific components our system to determine their impact on
performance, in 4.4.5. We perform this ablation study in a noiseless scenario
using mock data but still demonstrate Φ-SO’s abilities on observational noisy
data for the case detailed in sub-section 4.4.2, showing that the method can
successfully recover physical laws and relations from real or synthetic data.
Mock data generation details are given in sub-section 4.4.6 along with units
of all variables and constants involved.

Protocol

Note that for each of these showcases, we explicitly add the free constants
described in sub-section 4.4.6 along with their units in Φ-SO’s library of avail-
able tokens. We use the hyper-parameters and and reward metric detailed in
3.3 and limit ourselves to the exploration of 10 million trial expressions which
roughly takes ∼ 4 hours (using the parallelization feature and the computa-
tional systems examined in paragraph 6.2) and is only necessary for the most
difficult case (the relativistic energy). In addition, for the relativistic energy
showcase, we give a Pareto front which shows the most accurate expression
based on RMSE (root mean squared error) for each level of complexity. More-
over, similarly to the benchmarking in Section 4.3, we define the successful
exact symbolic recovery of an expression by its symbolic equivalence using
the SymPy symbolic simplification subroutine [Meurer et al., 2017]. Finally,
we agnostically rely on the same library of choosable tokens for all test cases:
{+,−,×, /, 1/□,

√
□,□2, exp, log, cos, sin, 1} to which we only add input vari-

ables and free or fixed constants depending on the test cases.
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Figure 4.6: Pareto-front encoding accuracy-complexity trade off of recovered
physical formulae typically recovered using our Φ-SO method when applied to
data for the relativistic energy of a particle. We recover the relativistic expression as
well as the classical approximation. Note that although the exact classical expression 1

2mv2

is encountered by Φ-SO it is Pareto dominated by the simpler mv2 expression.

4.4.1 Relativistic energy of a particle

Let us consider the expression for the relativistic energy of a particle:

E =
mc2√
1− v2

c2

, (4.6)

where m, v and c are respectively the mass of the particle, its velocity and the
speed of light.

Using the aforementioned library of tokens as well as the {m, v} input
variables and a free constant {c}, Φ-SO is able to successfully recover this
expression 100% of the time. Figure 4.6 contains the Pareto front of recovered
expressions where similarly to Udrescu et al. [2020], we showcase that we are
able to recover the relativistic energy of a particle as well as the classical
approximation which has a lower complexity.

However, we note that our system is able to recover the exact expression for
the relativistic energy test case without any of the powerful simplification on
which relies the AI Feynman 2.0 approach proposed in [Udrescu et al., 2020]
(in particular, the identification of symmetries as well as the identification
of additive and multiplicative separability), nor by simplifying the problem
further by treating c (a constant of nature) as a variable taking a range of
different values as in [Udrescu et al., 2020]. Neither DSR [Landajuela et al.,
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2021a] nor AI Feynman [Udrescu et al., 2020] are able to crack this case under
these more stringent conditions.

4.4.2 Expansion of the Universe

The next case study we examine is the Hubble Diagram of supernovae type Ia,
namely the change in the observed luminosity of these important standard can-
dles as a function of redshift z. This is one of the major pieces of evidence that
indicates that the Universe is experiencing an accelerating expansion, and it is
also one of the observational pillars underlying Λ Cold Dark Matter (ΛCDM)
cosmology in which Dark Energy dominates the energy-density budget of the
Universe.

We will use the so-called Pantheon state-of-the-art compilation dataset
[Scolnic et al., 2018], shown in Figure 4.7. We use a similar calibration and
follow an almost identical methodology as Bartlett et al. [2023a], to find the
Hubble parameter H(z) from the measured supernova magnitude and redshift
pairs. Following Bartlett et al. [2023a], we use the auxiliary function

y(x ≡ 1 + z) ≡ H(z)2 , (4.7)

which for ΛCDM in a flat Universe with negligible radiation pressure is

yΛCDM(x) = H2
0 (Ωmx

3 + (1− Ωm)) , (4.8)

where Ωm is the matter density parameter and H0 is the Hubble constant. In
a flat Universe model the cosmological luminosity distance is

dL(z) = (1 + z)

∫ z

0

c dz′

H(z′)
, (4.9)

where c is the speed of light.
We adapt our machinery to the Hubble diagram problem by integrating

numerically the H(z ≡ x − 1) =
√
y(x) functions proposed by the algorithm

under Equation 4.9 to derive the implied luminosity distance dL. These are
then trivially converted into a distance modulus µ(z) = 5 log10(dL(z)/10 pc),
which we compare to the Pantheon data following the procedure given in sub-
section 3.3.2.

This Hubble Diagram example showcases the capability of the software to
include free “constants” (here we include one having the units of H0 and the
other being dimensionless as Ωm) in the expression search, whose values are
found thanks to auto-differentiation via L-BFGS optimization, as mentioned
in Section 3.3.2. The optimal values of these constants need to be calculated
after being passed through the numerical integration step (integrating Eqn. 4.9
via PyTorch differentiable cumulative trapezoids), which turns out to be the
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Figure 4.7: Fit found applying Φ-SO to supernovae Ia data. SR results when applying
the Φ-SO algorithm (allowing two free parameters) to the Hubble Diagram of supernovae
Ia from the Pantheon sample. Φ-SO rediscovers the ΛCDM relation (in red) as well as
another relation (in blue) which has a slightly better fit than ΛCDM when solely considering
Pantheon’s observational constraints due to the over-abundance of low z SNe.

Expression Complexity H̃ c R2

H̃2
√

c2 + log (c + x) 14 5.175 -0.01 0.9955

H̃2
√
c + x 9 4.692 -1.01 0.9946

H̃2 log (x) 6 7.499 - 0.9627

H̃2 log2 (x) 8 28.276 - 0.9523

H̃2 (cx3 − c + 1) a 14 73.3 0.315 0.9166

a ΛCDM expression for reference.

Table 4.5: Accuracy vs. complexity results applying Φ-SO to supernovae Ia data.
Pareto accuracy-complexity trade-off expressions (for the auxiliary function y(x ≡ 1 + z) ≡
H(z)2) applying the Φ-SO algorithm (allowing two parameters) to the Hubble Diagram of
supernovae Ia from the Pantheon sample. Although Φ-SO generates the ΛCDM expression,
it is not a Pareto optimum when solely considering Pantheon’s observational constraints due
to the over-abundance of low z SNe. We include it for reference as the last line of this Table.



82 Chapter 4: Physical Symbolic Regression

main bottleneck of the problem in terms of computational cost. However,
this also shows that the algorithm allows one to derive expressions that are
subsequently passed through complicated operations (such as an integral in
this example) before being compared to data.

The Pareto front is given in Table 4.5 alongside the ΛCDM expression.
Although we are able to recover it using synthetic data, we note that as
Bartlett et al. [2023a], using observational data our system finds more
accurate solutions at lower complexities than the ΛCDM model. Although
this could signify that the ΛCDM theory is inaccurate, here we refrain from
jumping to this conclusion because our system is only given the chance to
confront its trial model of H(z) to a relatively noisy dataset of standard
candles where there is an over abundance of low z events, and is not provided
other observational constraints such as the cosmic microwave background
which might tilt the balance in favor of ΛCDM as the most accurate model
at its level of complexity. However, although the ΛCDM expression is not the
global minimum with this set of observational constraints, while exploring
a space of increasingly accurate expressions our system recognizes it as an
intermediate step, recording it in its history, before eventually converging
to a different expression. In addition, we note that it is not surprising that
our system recovers the ΛCDM expression as we allowed a maximum of two
free parameters since the main goal was simply to demonstrate our system’s
capabilities. We defer multi-parameter studies to future contributions. Finally
we are able to recover this expression by typically exploring < 50k expressions
(which takes less than a minute on the computational systems examined
6.2), the same order of magnitude as in the exhaustive symbolic regression
approach proposed in Bartlett et al. [2023a] but allowing more functions
(cos, sin, exp, log).

4.4.3 Isochrone action from galactic dynamics

Another interesting application of symbolic regression is to derive perfect an-
alytical properties of analytical models of physical systems. To this end, we
chose to attempt to find the radial action Jr of the spherical isochrone poten-
tial.

Φ(r) = − GM

b +
√
b2 + r2

, (4.10)

where G is the gravitational constant, M is the mass of the model, b is a length
scale of the model, and r is a spherical radius [Binney and Tremaine, 2011].
Action variables are special integrals of motion in integrable potentials which
can be used to describe the orbit of an object in a system, and they are of
particular interest in Galactic Archaeology as they are adiabatic invariants,
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so they are preserved if a galaxy or stellar system has evolved slowly. The
isochrone is the only potential model to have actions known in analytic form
in terms of elementary functions8. For the case of the isochrone model, the
radial component of the action of a particle can be expressed as

Jr =
GM√
−2E

− 1

2

(
L +

1

2

√
L2 − 4GMb

)
, (4.11)

where E and L are, respectively, the particle energy and total angular momen-
tum [Binney and Tremaine, 2011].

We provide our algorithm numerical values of Jr (which has units of angular
momentum) given L and E, and leave b as a free scaling parameter. Since
we expect each occurrence of M to be accompanied by an occurrence of the
gravitational constant, we provide the algorithm with GM as a single variable.

This expression (Eqn. 4.11) could not be solved either by the standard
DSR algorithm [Landajuela et al., 2021a], or by the AI Feynman 2.0 algorithm
[Udrescu and Tegmark, 2020]. Our algorithm was also not able to identify the
equation in 10 million guesses. However, one of the steps of the AI Feynman

2.0 algorithm is a test for additive and multiplicative separability of the mys-
tery function, and it creates new datasets for each separable part. For the
case of additive separability, the units remain unchanged, and so it is trivial to
simply provide our Φ-SO algorithm separated data generated by AI Feynman

2.0 to be fitted in turn, one at a time. Thus the first term of the right hand
side of Eqn. 4.11 (with an E dependence) was easily solved together with a
fitted additive free constant. We then subtracted the fitted constant from the
second dataset, and Φ-SO correctly recovered the second term on the right
hand side of Eqn. 4.11 (with an L dependence).

4.4.4 Supplementary cases

In addition to the cases above, we consider the following set of textbook equa-
tions for the ablation study in 4.4.5. We include Newton’s law of universal
gravitation:

F =
Gm1m2

r2
, (4.12)

where G is the universal gravitational constant, m1 and m2 are the masses of
the attracting bodies and r is the distance separating them. For this test case,
we use {m1,m2, r} as input variables and leave G as a free constant.

We also include a damped harmonic oscillator which appears in a wide
range of (astro)-physical contexts:

y = e−αt cos(ωt + Φ) , (4.13)

8It has recently been shown that actions can be calculated numerically from samples of
points along orbits in realistic galaxy potentials using deep learning techniques [Ibata et al.,
2021].
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Ablation configuration Aa B C Db E Fc

Physical units prior ✓ ✓ ✓
Physical units informed neural network ✓ ✓
Neural network enabled ✓ ✓ ✓ ✓

Expression # expressions

E = mc2√
1−v2/c2

10M 100 % 0 % 60 % 0 % 20 % 0 %

Jr = GM√
−2E
− 1

2

(
L + 1

2

√
L2 − 4GMb

)
4M 100 % 0 % 80 % 0 % 60 % 0 %

ρ = ρ0/
(

r
Rs

(1 + r
Rs

)2
)

2M 100 % 100 % 40 % 100 % 20 % 100 %

y = e−αt cos(ωt + Φ) 1M 100 % 0 % 0 % 0 % 0 % 0 %
F = Gm1m2

r2
100K 100 % 80 % 100 % 20 % 80 % 0 %

H2(x ≡ 1 + z) = H0
2(Ωmx

3 + (1− Ωm)) 100K 100 % 100 % 100 % 100 % 40 % 40 %
Average 100 % 47 % 63 % 37 % 37 % 23 %

a Full Φ-SO method.
b Similar to Landajuela et al. [2021a].
c Solely relying on a random number generator.

Table 4.6: Ablation study. Exact symbolic recovery rate summary and ablation study on
our panel of astrophysical examples using noiseless synthetic data, averaged across 5 runs.
By studying the performance in combinations of ablations of the in situ units prior, the
neural networks’s ability to be informed of local units constraints, and of the neural network
itself (i.e. replaced by a random number generator when not marked as enabled), we show
that all three are essential ingredients of the success of our Φ-SO method. Input variables
and free parameters are colored in red and blue respectively with fixed constants left in
black.

where α and ω are respectively the damping parameter and the angular fre-
quency of oscillations (both homogeneous to the inverse of a time) and Φ is
the (dimensionless) phase. We leave these three parameters as free constants
and use t as our input variable.

Finally, we consider a Navarro–Frenk–White (NFW) halo profile [Navarro
et al., 1996] which is an empirical relation that describes the density profile
ρ(r) of halos of collisionless dark matter in cosmological N-body simulations:

ρ =
ρ0

r
Rs

(
1 + r

Rs

)2 , (4.14)

where r is the radius which we use as an input variable and ρ0 and Rs are
respectively the density and radius scale parameters which we leave as free
constants.

4.4.5 Ablation study

In physics, we often seek to build approximate models, such as might be ob-
tained via a polynomial function or a Fourier series fit to some data. In those
instances, the root mean square error is usually the criterion of relevance to
determine whether the procedure worked well or not. However, here we wish
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to recover the “true” underlying model, in which case the recovery rate should
be the criterion of success.

The performance of Φ-SO on noiseless mock data from the test cases de-
tailed above is summarized in the ablation study reported in Table 4.6. There
we also report SR performance after disabling the units prior (only using the
units informed RNN), disabling the RNN’s ability to be informed of local units
units constraints (only using the units prior and a standard SR RNN), disabling
both the units prior and units information (only using a standard RNN which
is similar to the Landajuela et al. 2021a setup), doing a units guided random
search by using a random number generator in lieu of the RNN, and finally
doing a purely random search.
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Figure 4.8: Generalization capability illustration. Example of the generalization ca-
pability of SR. Here we show randomly drawn data points (black dots) from the damped
harmonic oscillator model given in Eqn. 4.13 (black line). The data are well fitted by an
MLP (green line), which however fails in regions beyond the range of the training data
(vertical dotted lines). In contrast, our SR algorithm Φ-SO (red dashed line) manages to
provide much more reliable extrapolation.

We show that merely constraining the choice of symbols using the exter-
nal units prior distribution scheme (described in 4.2) is not enough to ensure
perfect symbolic recovery of physical laws, but that informing the RNN of
local units constraints (as described in 4.2.2) is essential as it allows the RNN



86 Chapter 4: Physical Symbolic Regression

to actively learn units rules. In addition, we show that our system does not
only rely on a mere brute force approach combined with units constraints, but
that the deep reinforcement learning setup described in 4.2.2 is an essential
ingredient of the success of Φ-SO.

It should be noted that in the NFW test case, simply expressing the inverse
of a third-degree polynomial is sufficient to solve the problem. However, using
the units prior without enabling the RNN to observe local units constraints or
utilizing the units prior in conjunction with a random number generator can
result in a lower recovery rate compared to the use of a standalone random
number generator. This is due to the highly restrictive nature of the units
prior which in a simple case like this can actually slow down the convergence
toward the solution.

Finally, we also illustrate the generalization capabilities offered by virtue
of finding the exact analytical expression9 underlying a dataset compared to a
good approximation in Figure 4.8, where we show that such analytical expres-
sions, as expected, vastly outperform a multilayer perceptron (MLP) neural
network (here a 5 layers of 32 units MLP having sigmoid activations and be-
ing trained until convergence on a test set, following a mean squared error
loss function at 10−3 learning rate using an Adam optimizer, Kingma and Ba
2015).

4.4.6 Datasets details

This sub-section gives details regarding the synthetic datasets for the astro-
physical examples. For each case, we generate 1000 noiseless data points fol-
lowing a random uniform law using arbitrary scales for the mock data. Table
4.7 gives the target expressions and Table 4.8 and 4.9 give details regarding
the variables and constants appearing in those expressions.

9We will also show that symbolic approximations also tend to outperform neural networks
in generalization capabilities in 7.2.
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Case Expression

Relativistic Energy E = mc2√
1−v2/c2

Isochrone Action Jr = GM√
−2E
− 1

2

(
L + 1

2

√
L2 − 4GMb

)

NFW Profile ρ = ρ0/
(

r
Rs

(1 + r
Rs

)2
)

Damped Harmonic Oscillator y = e−αt cos(ωt + Φ)
Classical Gravity F = Gm1m2

r2

Expansion Law H2(x ≡ 1 + z) = H0
2(Ωmx

3 + (1− Ωm))

Table 4.7: Astrophysical examples target expressions. Input variables and free pa-
rameters choosable by Φ-SO as symbols are colored in red and blue respectively, with fixed
constants left in black.

Output Variable 1 Variable 2 Variable 3
Name Units Name Range Units Name Range Units Name Range Units
E M.L2.T−2 m [-10,10] M v [-9,9] L.T−1

Jr L2.T−1 L [2.3, 3] L2.T−1 E [-4, -6] M.L2.T−2

ρ M.L−3 r [0.2, 3] L
y 1 t [1.5π, 7π] T
F M.L.T−2 m1 [0,1] M m2 [0,1] M r [1,4] L
H2 T−2 z [0.01, 2.5] 1

Table 4.8: Data range and units of the output and input variables appearing in the astro-
physical examples.

Constant 1 Constant 2 Constant 3
Name Value Units Name Value Units Name Value Units

c 10 L.T−1

GM 0.467 L3.T−2 b 1.234 L
rs 1.391 L ρ0 0.984 M.L−3

ω 0.784 T−1 α 0.101 1 ϕ 0.997 1
G 1.184 L3.M−1.T−2

H0 1.072 T−1 Ω 1.315 1

Table 4.9: Target value and units of constants appearing in the astrophysical examples.

4.5 Discovering Both Analytical Laws & Con-

stants of Nature

We note that for new scientific discovery, there are instances where the ap-
propriate free parameters and their corresponding units are not immediately
evident. In such situations, we propose a protocol wherein Φ-SO is allowed
one free parameter for each input variable, sharing the same units, and
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another free parameter reflecting the units of the output variable. Specifically,
for an SR problem consisting in the deduction of y from {x1, ...xn}, we would
permit the inclusion of {cy, cx1 , ...cxn} as free constants. This grants Φ-SO the
flexibility to selectively combine or omit these free parameters to construct
new parameters that align with dimensional analysis constraints. In light of
these combinations, we adjust the center of the soft length prior to a length
of 12, facilitating longer expressions.

In this more demanding setup, we demonstrate that Φ-SO can adeptly
resolve the SR challenges outlined in Table 4.10 (with dataset details given in
Table 4.11 and 4.12), yielding both the precise symbolic expressions and their
corresponding physical constants with accurate units. The scripts employed
for these experiments are accessible in our repository.

Case Expression
Ideal Gas Law P = nRT

V

Free Fall Terminal Velocity vt =
√

2mg
ρACd

Classical Gravity F = Gm1m2

r2

Black Body Photon Count n = 1/(e
hν
kbT − 1)

Wave Interference E = E1 + E2 + 2
√
E1E2 + cos ∆Φ

Table 4.10: Target expressions. Input variables are colored in red.

Output Variable 1 Variable 2 Variable 3
Name Units Name Range Units Name Range Units Name Range Units

P L−1.T−2.M n [1,5] N T [1,5] Θ V [1,5] L3

vt L.T−1 m [1, 10] M ρ [1, 6] M.L−3 A [1, 5] L2

F L.T−2.M m1 [1, 5] M m2 [1, 5] M r [1, 5] L
n 1 ν [1, 5] T−1 T [1, 5] Θ
E L E1 [1, 5] L2.T−2.M E2 [1, 5] L2.T−2.M ∆Φ [-5, 5] 1

Table 4.11: Data range and units of the output and input variables appearing in the exam-
ples.

For illustration, Φ-SO successfully derives the equation describing the
equation of state of an ideal gas P = C nT

V
with C = cP cV

cncT
having units

M.L2.T−2.K−1.N−1 effectively rediscovering the ideal gas constant usually
denoted by R. Similarly, Φ-SO is able to recover the expression for the
terminal velocity of a free falling object as a function of its mass m, its

surface area A and the density of the medium it traverses ρ as vt =
√

C m
ρA

by unveiling its proportionality to the square root of an acceleration
√
C,
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Constant 1 Constant 2
Name Value Units Name Value Units

R 8.314 L−2.T−2.M.N−1.Θ−1

g 9.807 L.T−2 Cd 0.470 1
G 6.674 L.T−2.M
h 6.626 L2.T−1.M kb 1.123 L2.T−2.M.Θ−1

- - -

Table 4.12: Target value and target units of constants appearing in the examples.

formulated by Φ-SO as
√

cvt/
√
cA, corresponding to the Earth surface

gravity
√
g and other scale factors. Furthermore, Φ-SO identifies the

gravitational force in relation to the involved masses m1, m2 and distance
r as F = Cm1m2/r

2 discovering the need for a constant C having units
L3.T−2.M formulated by Φ-SO as C = cF cr

2/cm1
2, effectively rediscovering

the gravitational constant G in the process. In an other scenario, deriving
the number density of photons recovered from a black body at any given
temperature T and frequency ν, Φ-SO is able to recover n = 1/(eνC/T − 1)
where C represents the quotient C = h/kb, h and kb denoting the Planck
and Boltzmann constants, respectively. In most aforementioned cases, Φ-SO
judiciously combined a subset of the available free parameters to pinpoint
the precise constants needed to resolve the SR problems through a physically
consistent physical law. In this last example, we show that Φ-SO recognizes
scenarios where free parameters are largely redundant as it is able to derive
the energy E resultant from the interference of two waves, given their ener-
gies E1, E2 and their phase shift ∆Φ without the need for any of {cE, cE1 , cE2}.

4.6 Discussion & Conclusions

Overcoming the curse of accuracy-guided SR by constraining sym-
bolic arrangement

Since the Deep Symbolic Regression framework [Petersen et al., 2021a]
and most other SR methods work by maximizing fit quality, there are few
constraints on the arrangement of symbols. However, the paths in fit quality
and the paths in symbol arrangement toward the global minima (perfect fit
quality and perfect symbol arrangement) are not necessarily correlated. This
results in the curse of accuracy guided SR, as small changes in fit quality
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can hide dramatic changes in functional form and vice-versa. In essence, one
can improve fit quality of candidates over learning iterations while getting
further away from the correct solution in symbolic arrangement. Therefore
strong constraints on the functional form, such as the one we are proposing
in our setup, are of great value for guiding SR algorithms in the context of
physics. This is an advantage that physics has and that Φ-SO leverages by:
(i) reducing the search space and (ii) enabling the neural network to actively
learn dimensional analysis rules and leverage them to explore the space of
solutions more efficiently. Although the possibility of making a physical units
prior was hinted by Petersen et al. [2021b], to the best of our knowledge such
a framework was never built before.

Dimensional analysis in SR

The guidance offered by the units constraints gives Φ-SO an edge over other
methods for finding the exact symbolic solutions, improving performance
from a purely predictive standpoint. This makes Φ-SO a potentially useful
tool for opening up black-box physics models such as neural networks fitted
on data of physical phenomena. In addition, we note that in the context of
physics, components of our Φ-SO framework can not only be used to improve
the performance of algorithms built upon Petersen et al. [2021a]’s framework
[Landajuela et al., 2022, 2021a, DiPietro and Zhu, 2022, Du et al., 2022], but
can also be used in tandem with other approaches. For instance, our in situ
units prior can be used to reduce search space in the context of probabilistic
or exhaustive searches [Bartlett et al., 2023a, Kammerer et al., 2020, Brence
et al., 2021, Jin et al., 2019], by severing physically impossible symbolic links
in neuro-symbolic approaches [Martius and Lampert, 2017, Brunton et al.,
2016, Zheng et al., 2022, Sahoo et al., 2018, Valle and Haddadin, 2021, Kim
et al., 2020, Panju and Ghodsi, 2020], during the seeding or mutation phases of
genetic programming algorithms [Schmidt and Lipson, 2009, 2011, de Franca
and Aldeia, 2021, La Cava et al., 2019, Cava et al., 2019, Virgolin et al., 2019,
Cranmer, 2023, Cranmer et al., 2020b, Virgolin et al., 2021, Stephens, 2015,
Kommenda et al., 2020, Landajuela et al., 2022] or for making a physically
motivated dataset of expressions, which in conjunction with enabling the RNN
to be informed of local units constraints, could improve the performance of
supervised approaches [Kamienny et al., 2022, Biggio et al., 2021, 2020, Vastl
et al., 2022, Becker et al., 2022, Kamienny et al., 2023, Landajuela et al., 2022].
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Physical units of free parameters

We recognize that in its current form, Φ-SO needs to be provided the physical
units of the free parameters it is allowed to use. Although this is typically
not an issue for SR problems that tend to fall on the more theoretical side
as constants that can appear in expressions if any are usually well known, in
scenarios of novel empirical scientific exploration, the appropriate selection and
units of free parameters may not be immediately evident. In such scenarios,
we suggest the inclusion of one free parameter for each variable, matching their
units. This approach grants Φ-SO the flexibility to combine these parameters,
or a subset thereof, to derive the most coherent combination that seamlessly
integrates into the expression from a units perspective. As detailed in Section
4.5, utilizing this protocol enables Φ-SO to accurately deduce formulae and
the physical constants appearing in those. Examples include the recovery of
expression for the terminal velocity during free fall, and its proportionality
with the square root of an acceleration, by adeptly combining a velocity with
an area to derive the acceleration parameter. In other examples, we show that
Φ-SO is able to effectively rediscover the universal gravitational constant or
the ideal gas constant along with their units in addition to the expressions
they intervene in.

Arguably, permitting a multitude of free parameters of various physical
units, could inadvertently expand the search space. While this is a valid
observation, it is worth noting that the algorithm remains significantly
constrained, both by the limited assortment of these parameters and by the
inherent units constraints between input variables, especially when considering
dimensionless operations like cos, exp and so forth. Moreover, given that
the algorithm combines parameters based on the units of the variables and
prioritizes solutions of lower complexity, the units of new physical constants
typically align closely with the family of units of the problem, rather than
assuming arbitrary values. Finally, it is worth noting that in addition to
dimensional analysis constraints, another key finding of our study is that
making the neural network able to observe units of symbols and currently
required units in partially written expressions while they are being generated
typically improves the recovery rate even without enforcing constraints
directly. However, resolving SR problems without knowing a priori the units
of the free parameters that can appear in the expressions is typically more
difficult. We acknowledge this limitation and are actively considering future
enhancements to Φ-SO that would enable it to intelligently and autonomously
ascertain the units of its free parameters.
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Conclusion

We have presented a new symbolic regression algorithm, built from the ground
up to make use of the highly restrictive constraint that we have in the phys-
ical sciences that our equations must have balanced units. The heart of the
algorithm is an embedding that generates a sequence of mathematical sym-
bols while cumulatively keeping track of their physical units. We adopt the
very successful deep reinforcement learning strategy of Petersen et al. [2021a],
which we use to train our RNN to not only produce accurate expressions but
physically sound ones by making it learn local units constraints.

The algorithm was benchmarked and compared to 17 other baseline SR
approaches on 120 cases from the Feynman Lectures on Physics and other
textbooks. The results demonstrated the usefulness of constraints arising from
dimensional analysis compared to Petersen et al. [2021a], a purely reinforce-
ment learning based baseline approach. In addition our approach achieved
state-of-the-art leading performances in the presence of even minimal levels of
noise (exceeding 0.1%) and showing consistent performances up to 10% noise
levels.

The algorithm was applied to several test cases from astrophysics. The
first was a simple search for the energy of a particle in Special Relativity
(Section 4.4.1), which our algorithm was able to find, yet is a problem that the
standard Petersen et al. [2021a] code fails on. The second test case applied the
algorithm to the famous Hubble diagram of supernovae of type Ia. While the
form of the Hubble parameter H(z) in standard ΛCDM cosmology was indeed
recovered, the algorithm finds that other simpler solutions fit the supernova
data (in isolation) better. This result is consistent with the findings of Bartlett
et al. [2023a]. Another test examined a relatively complicated function in
galactic dynamics, where we searched for the functional form of the radial
action coordinate in an isochrone stellar potential model. This is an equation
that neither the Petersen et al. [2021a] nor the Udrescu et al. [2020] methods
are able to find. Although our algorithm initially fails in this test, we managed
to recover the correct equation by first splitting the dataset using the additive
separability criterion as implemented by Udrescu and Tegmark [2020].

These tests have demonstrated the applicability of the algorithm to model
data of the real world as well as to derive non-obvious analytic expressions for
properties of perfect mathematical models of physical systems. Although we
realise that the physical laws potentially discovered by our method will depend
on data range, choice of priors, etc, this is a step toward a full agnostic method
for connecting observational data to theory. Future contributions in this re-
search program will extend the algorithm to allow for differential and integral
operators, potentially permitting the solution of ordinary and partial differen-
tial equations with physical units constraints. However, our primary goal will
be to use the new machinery to discover as yet unknown physical relationships
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from the state-of-the-art large surveys that the astrophysical community has
at its disposal.





Chapter 5

Class Symbolic Regression

Portions of the content presented in this Chapter have been previously
discussed in the following publication:

2024 Class Symbolic Regression: Gotta Fit ’Em All
W. Tenachi, R. Ibata, T. L. François, F. Diakogiannis
ApJL 969 L26, arXiv:2312.01816

Summary.
We introduce Class Symbolic Regression a first framework for automatically

finding a single analytical functional form that accurately fits multiple datasets
— each realization being governed by its own (possibly) unique set of fitting
parameters. This hierarchical framework leverages the common constraint
that all the members of a single class of physical phenomena follow a common
governing law.

Additionally, we introduce the first Class SR benchmark, comprising a
series of synthetic physical challenges specifically designed to evaluate such al-
gorithms. We demonstrate the efficacy of our novel approach by applying it to
these benchmark challenges and showcase its practical utility for astrophysics
by successfully extracting an analytic galaxy potential from a set of simulated
orbits approximating stellar streams.

https://doi.org/10.3847/2041-8213/ad5970
https://arxiv.org/abs/2312.01816
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Our modern computational abilities have allowed us to examine nature
in unprecedented quantitative detail, with cameras, spectrographs and
other detectors amassing vast quantities of numerical data. It is likely that
the clues to next-generation physics and understanding lie therein, and so
we are tasked to devise methodologies capable of handling this wealth of
information and translating it into coherent, interpretable and intelligible
physical models. Symbolic regression (SR) — which is defined as the search
of an analytic description of that best fits a dataset — may allow us in
part to answer this need to find accurate and intelligible empirical laws in
giant datasets to best capitalize on the community’s observational investments.

However, as pointed out in sub-section 3.1.3 the search space becomes
exponentially larger the longer the analytic expression is that we seek to find.
Hence the key to SR is to develop efficient schemes to search through the
possibilities, and most importantly, to prune out poor choices.

While SR has been extensively applied in scientific research, its focus has
largely been on single dataset analysis, overlooking the rich potential in ex-
amining multiple datasets linked to a specific physical phenomenon. The
present Chapter extends our Φ-SO framework for Physical Symbolic Opti-
mization (presented in Chapters 3 and 4) further by allowing the search for a
functional form that can simultaneously fit several datasets at once, each re-
alization having (possibly) different fitting parameters. This “Class Symbolic
Regression” (Class SR) approach opens up the new possibility of implementing
a functional search on the properties of a class of objects. This hierarchical
framework leverages the common constraint that all the members of a single
class of physical phenomena follow a common governing law.

This approach is relevant across various natural sciences, but it par-
ticularly shines in astrophysics, where multiple observations of a single
phenomenon are often available, providing a rich multi-dataset setup enabling
us to devise ‘universal’ laws that apply to a range of celestial objects of interest.

In particular, we apply this new framework to the recovery of a Milky
Way-like analytic galactic potential from simulated orbits that can be inferred
from stellar streams. Specifically, our approach recovers a single analytical
form for the energy of stellar stream members, incorporating a ‘universal’
term that encapsulates the dark matter distribution alongside a nuisance term
that accounts for the specifics of individual streams — containing parame-
ters allowed to have object-specific values. Unlike traditional black-box deep
learning methods, such as auto-encoders, our method generates a physically
meaningful, low-dimensional model in the form of an analytical model.

The layout of this Chapter is as follows: In Section 5.1, we present the
methodology of our approach. Section 5.2 details a first benchmark for Class
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Figure 5.1: Class Symbolic Regression framework sketch. Searching for a unique func-
tional form simultaneously fitting multiple datasets. The process starts at the left hand side,
a batch of trial class analytical expressions are generated using our Φ-SO framework [Tenachi
et al., 2023a]. The free parameters appearing in those expressions are then optimized in a
dataset-specific manner i.e. allowing each dataset to have its own unique associated values
for each parameter. The neural network used to generate the trial expressions is then rein-
forced based on the fit quality of the trial symbolic functions. This process is repeated until
convergence.

SR, consisting of a series of physics problems designed to assess the perfor-
mance of Class SR systems; here, we also evaluate our method against these
benchmarks. In Section 5.3, we illustrate the practical application of our
method in the more complex scenario of a Milky Way-like potential recov-
ery from orbits. Finally, Section 5.4, offers a discussion.

5.1 Method

We build our Class SR on Φ-SO which combines deep reinforcement learning
with in situ dimensional analysis constraints to construct solutions that avoid
physically nonsensical combinations of units. The algorithm currently achieves
state-of-the-art performance on physics datasets, and significantly outperforms
competitors on the standard Feynman SR benchmark [La Cava et al., 2021] in
exact symbolic recovery in the presence of even slight levels of noise (≥ 0.1%).

Figure 5.1 gives an overview of our Class SR framework. In sub-section
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5.1.1 we discuss the implication of such a system on free parameters and in
sub-section 5.1.2 we detail the specifics of our Class SR learning strategy.

5.1.1 Free parameters

Class vs realization-specific parameters

Using Φ-SO we generate a batch of analytical expressions via a recurrent neu-
ral network (RNN). In these expressions, class-parameters (c) — which are
shared across the entire class and have consistent values across all datasets
— can appear alongside realization-specific parameters (k). Subsequently, we
optimize the free parameters appearing in each expression (c,k), assigning
unique values to realization-specific parameters {ki}i<Nr for each of the Nr

datasets.

Free parameters optimization

This optimization is conducted using the L-BFGS nonlinear optimization rou-
tine [Zhu et al., 1997]. Encoding our mathematical symbols with PyTorch

[Paszke et al., 2019], enables us to use PyTorch’s implementation of the L-
BFGS routine, which benefits from PyTorch’s auto-differentiation capabilities
to efficiently and simultaneously optimize both class and realization-specific
parameters employing a mean squared error (MSE) cost function:

MSE =
1

Nr.
Nr∑
i=1

N(i)

Nr∑

i=1

N(i)∑

j=1

(yij − f(c,ki,xij))
2 (5.1)

Where xij are the input variables, yij are the target values and N(i) is the
number of samples which depends on the dataset1.

5.1.2 Generating expressions

Learning

We then use reinforcement learning to update the RNN’s parameters following
a risk-seeking gradient policy [Petersen et al., 2021a], as detailed in 3.3. This
update is based on a reward R = (1 + NRMSE)−1 that is representative of the
fit quality of the trial functional form f across all datasets — evaluated using

1Our implementation accommodates this variability while maintaining the use of vector-
ization, ensuring no compromise in computational efficiency.



5.2 Multi-Dataset Symbolic Regression Challenges 99

a normalized root mean squared error (NRMSE):

NRMSE =
1

σy

√√√√√√
1

Nr.
Nr∑
i=1

N(i)

Nr∑

i=1

N(i)∑

j=1

(yij − f(c,ki,xij))
2 (5.2)

Where σy is the standard deviation of target values evaluated across all
datasets. We repeat this process until the RNN converges to a unique high
quality expression and its associated parameter values simultaneously fitting
all datasets.

For a live demonstration of our system applied to a class symbolic
regression task, refer to [Å Class SR demo]2. In this example, the system
aims to derive a model fitting data points corresponding to the stellar stream
challenge that will be the subject of Section 5.3. The video illustrates
the iterative process, displaying the curves associated with trial candidate
expressions for each realization over successive iterations, highlighting their
progressive improvement in fit quality until convergence.

Priors

Furthermore, the sequential nature of expression generation in our Φ-SO
framework enables the incorporation of various priors regarding the resulting
expressions as demonstrated in [Tenachi et al., 2023a, Bartlett et al., 2023b,
Petersen et al., 2021b, Kim et al., 2021]. This allows for customized constraints
on the generated expressions such as adherence to the rules of dimensional
analysis (which was one of the focal points of Chapter 4) but also simpler
priors such as constraints on the number of occurrences of given parameters,
the length of the expression and more.

5.2 Multi-Dataset Symbolic Regression Chal-

lenges

Despite existing research efforts to establish benchmarks for SR [La Cava et al.,
2021, Matsubara et al., 2022, Marinescu et al., 2023, Graham et al., 2013,

2https://youtu.be/Mu51K9EKMms

https://youtu.be/Mu51K9EKMms
https://youtu.be/Mu51K9EKMms
https://youtu.be/Mu51K9EKMms
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Thing and Koksbang, 2025], a benchmark tailored specifically for Class SR
has yet to be developed, reflecting the innovative nature of this approach. To
address this, we introduce our own Class SR challenges, designed to evalu-
ate a system’s ability to analyze multiple datasets. These datasets represent
varied observations of a similar phenomenon occurring at different scales but
governed by a consistent functional form. Table 5.1 outlines these challenges,
each focusing on accurately recovering the symbolic expression from synthetic
datasets having varied scale parameter values. To heighten the challenge, we
include multiple scenarios incorporating class parameters that are common to
all realizations in addition to other realization-specific parameters. We detail
our benchmarking protocol in sub-section 5.2.1 and give the performances of
our method in sub-section 5.2.2.

# Challenge Formula Variables
Realization-specific

free parameters

1 Harmonic Oscillator A cos (Φ + ωt)
t ∈ [0.0, 9.4]

-

A ∈ [0.6, 1.2]

ω ∈ [0.2, 1.5]

Φ ∈ [0.9, 1.1]

2 Radioactive Decay n0e
−t
T

t ∈ [0.5, 6.0]

-

n0 ∈ [0.4, 2.0]

T ∈ [0.9, 1.4]

3 Free Fall 1
2
9.81t2 + tv0 + z0

t ∈ [0.0, 1.0]

-

v0 ∈ [−2.0, 8.0]

z0 ∈ [−3.0, 3.0]

4 Damped Harmonic Oscillator A e−kt cos (Φ + 1.389t)
t ∈ [0.0, 9.4]

-

k ∈ [0.2, 1.0]

Φ ∈ [−0.2, 0.3]

5 Damped Harmonic Oscillator B e−0.345t cos (Φ + ωt)
t ∈ [0.0, 9.4]

-

ω ∈ [0.6, 1.4]

Φ ∈ [−0.2, 0.3]

6 Black Body Photon Count
1

e5.9ν/T − 1

ν ∈ [1.0, 5.0]

-

T ∈ [1.0, 5.0]

-

7 Ideal Gas Law n8.314T
V

T ∈ [1.0, 5.0]

V ∈ [1.0, 5.0]

n ∈ [1.0, 5.0]

-

8 Free Fall Terminal Velocity
√

2m9.807
0.47Aρ

m ∈ [1.0, 10.0]

A ∈ [1.0, 5.0]

ρ ∈ [1.0, 6.0]

-

Table 5.1: Class Symbolic Regression challenges. Each row details a distinct challenge,
with the objective being the exact symbolic recovery of the designated target expression
using multiple synthetic datasets. Each dataset being generated using unique realization-
specific parameter sets sampled from the given parameter ranges by sampling from the target
expression within the given variable ranges.

5.2.1 Benchmarking protocol

Benchmark settings

We evaluate our algorithm by randomly sampling 10 datasets of 102 samples
for each of the 8 challenges described in Table 5.1 and allowing a maximum
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of 200, 000 expressions to be explored during each run. In order to ensure
robustness, for each challenge, the procedure was repeated 5 times, each time
with a unique random seed, and the recovery rates were subsequently averaged.
The whole benchmark tests were conducted across four noise levels: 0%, 0.1%,
1% and 10% with noise being added individually to each dataset as per the
SRBench [La Cava et al., 2021] standardized SR benchmarking protocol :

ynoise = y + ϵ, ϵ ∼ N
(

0, γ

√
1

N

∑

i

y2i

)
(5.3)

Where γ is the level of noise. We conduct runs having access to a single
dataset (SR) and having access to all 10 datasets (Class SR), leading to the
total evaluation of 64, 000, 000 expressions through 320 runs.3

Method settings

We run our algorithm using the hyper-parameters detailed in Table 3.1, with
dimensional analysis disabled to ensure a fair comparison with other algo-
rithms (as a consequence the batch size is lowered to 2000). This adjustment
allows future comparisons with our system to be focused solely on the machine
learning technique used (here reinforcement learning), rather than the problem
simplification achieved through dimensional analysis. We allow the use of
the following operations: {+,−,×, /, 1/□,

√
□,□2,−□, exp, log, cos, sin}, a

constant equal to one {1}, two adjustable realization specific free constants
k = {k1, k2} allowed to have dataset-specific values and one adjustable
class free constant c = {c1}. The recovery rate is evaluated by examining
each expression in the Pareto front, which contains optimum expressions
found in conciseness / accuracy i.e. : best fitting expressions at each level
of complexity generated by our algorithm. Successful recovery is noted if
an expression on the Pareto front is symbolically equivalent to the target
expression. Exact symbolic recovery is assessed by formally comparing these
expressions with the target expression using the SymPy library for symbolic
mathematics [Meurer et al., 2017], following a methodology similar to the one
in the SRBench [La Cava et al., 2021]. Specifically, expressions are deemed
equivalent if their fraction is symbolically equivalent to 1 or a constant or if
their difference is symbolically equivalent to 0 or a constant.

3Additional details about this benchmark and the one presented in the next Section
regarding implementation of their protocols and procedures to technically reproduce the
results presented can be found in 6.1.3 and in 6.3 respectively.
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5.2.2 Performances

Figure 5.2 presents a comparison of exact symbolic recovery rates be-
tween our Class SR framework and the traditional SR approach under
both noiseless and noisy conditions using an SRBench-style benchmarking
pipeline, with detailed challenge-by-challenge results published online (see
sub-section 6.3). Our results demonstrate the superiority of Class SR over
traditional SR in exact symbolic recovery, particularly in noisy scenarios
where noise overfitting is generally an important concern [La Cava et al., 2021].

0 25 50 75 100
Exact symbolic recovery (%)

PhySO   
[Class SR]

PhySO   
[SR]     

0 25 50 75 100
R2 > 0.999 (%)

PhySO   
[Class SR]

PhySO   
[SR]     

Target Noise
0%
0.1%
1%
10%

Figure 5.2: Performances of PhySO on our Class SR benchmark. Comparison of exact
symbolic recovery rates and rate of accurate expressions (having R2 > 0.999) between Class
SR and standard SR on our Class SR challenges using an SRBench-style benchmarking
pipeline [La Cava et al., 2021]. This figure demonstrates the enhanced effectiveness of
Class SR in identifying common underlying functions across multiple datasets with varying
scale parameters, resulting in a higher success rate compared to the traditional SR method
exploiting only one dataset at a time — especially in the presence of noise.

Exact symbolic recovery

While one might consider employing traditional SR individually on each
dataset and subsequently aggregating the results, this approach would not
only be substantially more computationally demanding, but it would also
fail to differentiate class constants from realization-specific scale parameters,
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thus yielding a less interpretable model. Furthermore, our analysis uncovers
several instances where traditional SR did not successfully identify the
correct expression in any of the 5 attempts but in which Class SR effectively
discovered the correct expressions. This concerns Problem #3 and #6 at 10%
noise level scenarios, as well as Problem #5 across all noise levels. These
findings highlight the superior robustness and efficiency of Class SR over
traditional methods.

Accuracy

Following the SRBench protocol, we also include, on Figure 5.2, the rate of
accurate expressions (having R2 > 0.999) with the R2 metric defined as :

R2 = 1−
∑N

i=1(yi − f(xi))
2

∑N
i=1(yi − ȳ)2

(5.4)

We evaluate fit quality by refitting all constants of candidate expressions
on newly generated previously unseen test datasets. This approach ensures a
fair comparison between Class SR expressions, whose numerical parameters
must accommodate multiple observations, and expressions derived from
traditional SR, which only fit a single observation. Our results demonstrate
that Class SR is not only more efficient at recovering the exact expressions
but also more effective at deriving accurate approximations than traditional
SR, in scenarios with noise levels exceeding 0.1%.

5.3 Recovering an Analytic Potential form

Stellar Streams

We now turn to an astrophysical application of the algorithm: to try to find
the underlying potential of a gravitational system from a set of orbit segments
within it. Sub-section 5.3.1 contextualizes this problem, sub-section 5.3.2 de-
tails the testing protocol, and sub-section 5.3.3 presents the results.

5.3.1 Context

This could be practically applicable for finding an analytic potential model
of a galaxy from a set of stellar streams. These linear structures form from
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Figure 5.3: Synthetic stellar stream data utilized by our algorithm to recover the
galactic potential. The left and middle panels display the spatial positions of stream
members relative to the Milky Way, while the right panel illustrates the kinetic energy of
these members as a function of their radial distance from the galactic center.

the tidal dissolution of globular clusters and dwarf satellite galaxies. When
their progenitors are of low mass, the escaping stars have similar energy to
the progenitor, and therefore follow a similar orbit. Hence stellar streams
approximate orbits in the host galaxy. As has recently been shown by Ibata
et al. [2021], for many real streams one can calculate a “correction function” to
convert an orbit model into a stream track, and these functions are relatively
insensitive to the adopted potential. This procedure can be inverted to give
the orbit from the stream.

For this test we imagine having access to full 6-dimensional phase-space
measurements of a sample of streams. For each structure i, the kinetic energy
per unit mass Ei,kin(x) is simply:

1

2
v2 = Ei

t − Φ(x) . (5.5)

The total energy per unit mass Ei
t, which is constant, but different, for

each stream, can be considered to be nuisance terms in our search for the
underlying potential Φ.

5.3.2 Testing protocol

Method settings

We run our algorithm with the objective of recovering the analytic
form for Ei,kin(x). We use the the hyper-parameters detailed in
Tenachi et al. [2023a], allowing the use of the following operations:
{+,−,×, /, 1/□,

√
□,□2,−□, exp, log, }, a constant equal to one {1}, one ad-

justable realization specific free constant (having units of energy) and three
adjustable class free constants (one having units of energy, one having length
units and the other being dimensionless).
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Benchmark settings

Again we conduct runs at four noise levels (0%, 0.1%, 1% and 10%), having
access to a single orbit (SR), 25% of the orbits, 50% of the orbits and 100% of
the orbits (Class SR), repeating experiments 16 times with different random
seeds and allowing a maximum of 250, 000 expressions to be explored during
each run, leading to the total evaluation of 64, 000, 000 expressions through
256 runs.

Stellar streams

For the present analysis we generated a sample of artificial orbit data (shown
in Figure 5.3) that approximates the sample of 29 thin and long streams stud-
ied by Ibata et al. [2021]. To this end we used the present day progenitor
positions estimated by Ibata et al. [2021], and integrated orbits within a uni-
versal (NFW) dark matter halo model [Navarro et al., 1997] that very roughly
approximates the large-scale mass distribution in the Milky Way. The adopted
potential [ Lokas and Mamon, 2001] is

ΦNFW = −M200.g.
R

r
. log

(
1 +

r

R

)
(5.6)

where M200 is the virial mass of the halo, g ≡ (ln(1 + c) − c/(1 + c))−1 is
a function of the halo concentration c and R is the scale radius. We chose
M200 = 1012 M⊙, c = 10 and R = 20.0 kpc. The orbits consist of 100 phase
space points at locations between ±1 Gyr from the current progenitor location.

5.3.3 Results

Figure 5.4 presents the results of our analysis in terms of exact symbolic recov-
ery and fit quality, evaluated using the R2 metric. This metric was determined
by refitting candidate expressions on noiseless test data and computing the
median across various random seeds.

Exact symbolic recovery and accuracy

As anticipated, our results underscore that utilizing more realizations during
the SR process significantly enhances model accuracy and the likelihood of
exact symbolic recovery. This trend is particularly evident as noise levels rise,
reinforcing our findings of Section 5.2. Notably, at a 1% noise level, none of the
16 runs that analyzed stellar stream individually succeeded in recovering the
correct functional form. In contrast, when all 29 stellar streams were utilized,
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Figure 5.4: This figure presents the exact symbolic recovery rate and median R2 achieved
by our Class SR algorithm in the task of recovering an NFW dark matter halo model
[Navarro et al., 1997] from synthetic datasets of stellar stream positions and velocities. The
performance metrics are displayed as functions of noise levels and the number of realizations
exploited. The edge case, in which a single realization is used, corresponds to the conditions
of traditional SR. The results distinctly demonstrate that Class SR substantially outperforms
traditional SR, particularly in noisy environments.

the correct functional form was identified nearly half of the time, showcasing
the advantages of Class SR under noisy conditions.

Degeneracies in the space of functional forms

We observe that the inability of our algorithm to recover the exact symbolic
expression in the presence of 10% noise can be attributed to the fact that,
under such high noise conditions, the difference in fit quality between the
expressions typically identified by our algorithm and the true solution yields
only a minimal improvement in terms of reward, ∆R ∼ 10−5. This minute
improvement, which corresponds to a difference in R2 of approximately
(10−6), is the sole metric available to guide the algorithm, as it operates on
a trial-and-error basis. Unfortunately, such a small difference often remains
undetected due to it falling below the tolerance threshold of the free constants
optimization procedure. This scenario highlights a known intrinsic limitation
of purely empirical SR, where degeneracies in the space of functional forms
can go undetected.
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Overview

Excluding scenarios where noise levels render the numerically found expres-
sion indistinguishable from the true solution, our Class SR algorithm typically
converges toward the correct functional form by exploring under 250, 000 ex-
pressions, despite the presence of multiple alternative functional forms that
provide a near-perfect fit to individual streams. Φ-SO identifies an offset pa-
rameter specific to each stream (corresponding to Ei

t) and a functional form
parameterized by class-parameters common to all streams corresponding to
ΦNFW . These results show that our algorithm can effectively recover a concise
intepretable model for a Milky-Way like potential in the form of an analytic
expression based solely on stellar positions and velocities without any prior
information about the system.

5.4 Discussion and Conclusions

We presented a first framework for discovering symbolic analytical functions
that simultaneously fit multiple datasets by allowing for (possibly) unique
dataset-specific parameter values. This new framework which we dub “Class
Symbolic Regression” is built upon our earlier Φ-SO framework which already
delivers state-of-the-art performances in symbolic recovery in the presence of
noise.

We demonstrated the efficacy of Class SR through simple textbook physics
examples which we compiled into a first Class SR benchmark, finding better
performance in exact symbolic recovery over traditional SR, especially in noisy
situations. Additionally, we applied our method to a more complex astrophys-
ical scenario, successfully rediscovering an NFW galaxy potential model from
orbits approximating stellar streams.

Class SR’s edge

Regular SR, when applied to a single dataset, often risks overfitting to specific
characteristics of an observation, such as observational biases or transient
events, and noise. In contrast, our Class SR framework should facilitate the
finding of universal analytical laws that apply to a range of observations
within a single class of physical phenomena. This enables our framework to
model the underlying physics rather than the specifics of individual obser-
vations, with dataset-specific free parameters modeling the unique aspects
of each observation. For instance, an application within galactic dynamics
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that we intend to explore in a future contribution is the analysis of galactic
rotation curves. Here, a universal law derived through Class SR could provide
insights into the general behavior of dark matter, whereas traditional SR, if ap-
plied to a single galaxy, might merely find the specific attributes of that galaxy.

It should be noted that while Class SR might superficially resemble regular
SR applied to unbalanced datasets with dataset-specific parameters being akin
to additional input variables, this comparison is not entirely accurate. In Class
SR, these additional degrees of freedom represent unknown values that must
be determined, differentiating it as a distinct problem with its own unique
challenges.

A persistent issue in SR is model selection as the correct expression can
often be overlooked in favor of those that fit better or are less complex (these
concerns led to e.g., the development of single objective criterion Bartlett
et al. 2023a). Our framework, by searching for expressions that fit multiple
datasets, effectively utilizes information about the physical phenomena’s
class structure. This approach significantly mitigates model selection chal-
lenges, helping avoid incorrect model choices influenced by dataset-specific
peculiarities. In addition, exploiting multiple datasets with regular SR
techniques would require fitting the individual datasets independently, and
then identifying the solutions in common between the objects, which may
not be possible if the measurements are uncertain, would be computationally
inefficient and would result in lower performances in exact symbolic recovery
and fit quality alike in the presence of noise.

Perspectives

Finally, we note that after our approach was released, another Class SR
approach built on Operon [Kommenda et al., 2020] — a genetic algorithm
approach to SR — was applied to supernovae photometry in Russeil et al.
[2024] and that [Cranmer, 2023] was upgraded to incorporate this feature as
well as our free constants fitting method.

In future work, we intend to improve on the machine learning aspects of our
method to more effectively leverage multiple datasets. As each dataset might
distinctly highlight certain symbolic terms or sub-expressions more promi-
nently than others, a promising strategy could be to periodically shift the
neural network’s training emphasis between datasets. This technique could
potentially refine the performance of Class SR by sequentially learning dif-
ferent segments of the expression, rather than attempting to learn the entire
expression simultaneously, thereby facilitating the learning process.



Chapter 6

PhySO : A Physical Symbolic
Optimization software

Summary.
We give details about the PhySO software for Physical Symbolic Optimiza-

tion developed during this thesis. We outline its features, particularly those
not utilized in the experiments presented here, and showcase how its distinctive
capabilities position it as an ideal tool for future research projects.

We give its computational performances and detail its parallelization fea-
ture and unique vectorized handling of batches of symbolic expressions. Ad-
ditionally, we discuss the benefits of adopting an open-source approach, which
has allowed PhySO to become a foundational framework relied upon by multiple
research projects. We show that through this openness we provide benchmark-
ing tools to the SR community, ensure transparency, and promote reproducibil-
ity within the community.

Notably, we include technical details necessary to reproduce the outcomes
presented in our benchmarking experiments in this Chapter.
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This Chapter is dedicated to the PhySO — Physical Symbolic Optimization
— software that was developed as part of the present thesis. This software
notably integrates the Φ-SO framework for symbolic regression (SR)1 that
was described in Chapters 3-5.

The PhySO software is publicly available on GitHub at github.com/

WassimTenachi/PhySO © with a comprehensive documentation deposited
on the same repository and live at physo.readthedocs.io. It is important
to note that PhySO is a live software that may evolve in the future. For the
purposes of this discussion, references will be made to the most recent stable
release as of July 2024, available under the release tag v1.1.0 ©.

PhySO is a symbolic optimization package built for physics. It takes the
form of a Python package relying on PyTorch [Paszke et al., 2019] for its deep
learning and auto-differentiation component. Its SR module employs deep
reinforcement learning to derive analytical laws from datasets, exploring the
space of functional forms through a process of trial and error. This software is
engineered to be as fast as technically feasible, while also being user-friendly
and straightforward to install.

PhySO is unique in its capability to leverage :

• Physical units constraints : using the rules of dimensional analysis to
constrain the search space. [Tenachi et al., 2023a,b, Tenachi et al., 2023a]

• Class constraints : to infer a single analytical functional form that accu-
rately fits multiple datasets, each governed by its own (possibly) unique
set of fitting parameters. [Tenachi et al., 2024]

In Section 6.1, we delineate the functionalities of PhySO. Following that,
Section 6.2 provides detailed insights into the implementation of the software,
including its computational performances. Lastly, Section 6.3 discusses the ad-
vantages of making the software open source. This section also emphasizes the
enhanced reproducibility of our experiments — a direct result of the software’s
accessibility.

1SR involves searching for an analytical function that best fits a given dataset.

https://github.com/WassimTenachi/PhySO
github.com/WassimTenachi/PhySO
https://github.com/WassimTenachi/PhySO
github.com/WassimTenachi/PhySO
https://github.com/WassimTenachi/PhySO
https://physo.readthedocs.io/
physo.readthedocs.io
https://github.com/WassimTenachi/PhySO/releases/tag/v1.1.0
https://github.com/WassimTenachi/PhySO/releases/tag/v1.1.0
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6.1 Capabilities & Features

PhySO is designed to be a versatile symbolic optimization software with the
potential for organic growth to meet various future needs, including those
discussed in Section 11.2. It aims to engage and stimulate the machine learning
enthusiasts within the astrophysics and physics communities.

In the following sub-sections, we delve deeper into the structure and capa-
bilities of PhySO. Sub-section 6.1.2 outlines its current features, while sub-
section 6.1.3 details the benchmarking systems developed to evaluate our
method. These systems are integrated within PhySO not only to assess our
own methodology but also to offer a means for evaluating other symbolic sys-
tems, ensuring fairness and transparency in comparative analyses.

6.1.1 Symbolic graph

The core of PhySO — its encoding and management of symbolic expressions
— was developed to support a variety of projects related to physics and sym-
bolic methods. The symbolic management system operates independently of
its machine learning framework, allowing it to potentially integrate with any
system, although it integrates many features that are particularly relevant for
systems generating expressions in a sequential manner.

Graph management system

PhySO continuously monitors the full graph structure of any symbolic expres-
sion during its generation. For each node within the graph, PhySO tracks its
parent, sibling, and child nodes, ensuring comprehensive connectivity without
incurring additional computational overhead. This capability is crucial for ef-
ficiently conducting the in situ dimensional analysis described in Chapter 4.
Each time a new token is introduced into the expression graph, the physical
units constraints are dynamically updated. This ensures the graph always con-
tains the most complete and current information possible. This is illustrated
in Figure 6.1.

This entire process is executed in a fully vectorized manner across the batch
of expressions, which is non-trivial due to the unique graph structure of each
expression. This vectorization is particularly crucial for future projects that
may require managing significantly larger batches — potentially more than
the current ∼ 104 expressions — simultaneously.
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Complete expression

Figure 6.1: Illustration of the symbolic graph encoded within PhySO at vari-
ous stages of its generation. Each node’s physical units are denoted using L, T,
M (length, time, mass) dimensions. Nodes with established physical units are high-
lighted in blue, placeholder nodes for dangling branches are marked in red, and nodes
with yet-to-be-determined units are shown in black. This graph representation, easily
accessible via the expressions.show tree() function, demonstrates the dynamic evo-
lution of the graph structure during the generation process. The graph representa-
tion of the expression E = 1

2mv2 − GM
r log(1 + r

R ), expressed in prefix notation as(
−,×, /, 1, 2,□2, v,×,×,M, /,G, r, log,+, 1, /, r, R

)
, is depicted at various stages — specifi-

cally during the generation of tokens ⟨06⟩, ⟨12⟩, ⟨13⟩, and upon completion of the generation
process.

Computational graph

The evaluation of symbolic expressions is a critical component of many sym-
bolic approaches. In PhySO, the computational graph for these expressions
is constructed using PyTorch functions, which facilitate rapid evaluation and
auto-differentiation (see sub-section 2.1.4 for a detailed discussion of auto-
differentiation). This capability is crucial, as it allows PhySO to perform fit-
tings of free constants efficiently, leveraging the computational graph to gain
an advantage over other SR implementations. Typically, fitting arbitrary con-
stants in arbitrary functional forms rapidly (a necessity given time constraints
per equation) yields suboptimal results with conventional methods that do not
utilize such a graph. To date, PhySO is the only SR framework to exploit a
differentiable graph structure of candidate expressions for its free constants
optimization component.

Moreover, PhySO enhances the efficiency of this process through the paral-
lelization of the free constants fitting process. To further enhance robustness
and prevent numerical issues during evaluations outside their definition ranges,
PhySO employs protected variants of functions, e.g., using logabs instead of log,
though this feature can be disabled as needed.
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Interfaces

PhySO offers an interface with SymPy [Meurer et al., 2017] — a well estab-
lished library for symbolic mathematics in Python, comparable to Mathe-
matica [Wolfram, 2003]. This integration allows users to seamlessly interact
with any equation generated by PhySO. Additionally, at the conclusion of the
exploration within the equation space, PhySO archives optimal solutions on
the Pareto front-those that balance fitness and simplicity-including the overall
best-fitting equation and the best-fitting equation across all iterations. Fur-
thermore, PhySO maintains a comprehensive log of all equations generated
during the process, ensuring detailed documentation and reproducibility of
the computational experiments.

6.1.2 Symbolic optimization

Arbitrary symbolic optimization task

PhySO is a general-purpose symbolic optimization software, designed to opti-
mize symbolic expressions for various objectives beyond the typical data fitting
objective associated with SR. The software can manage any objective quantifi-
able by a scalar reward r ∈ [0, 1], derived from trial expressions generated by
the neural network. This versatility enables users to define custom objectives
via the rewards computer parameter. However, it is essential to acknowledge
that the success of this approach depends on a positive correlation between
the symbolic arrangement and the reward.

Complementary features

As previously mentioned, PhySO’s main features are the dimensional analysis
(the subject of Chapter 4) and Class SR functionalities (the subject of
Chapter 5). Beyond these complex features, the software also incorporates
several simpler yet useful features.

One of the prominent features is the use of priors. In addition to the
complex dimensional analysis prior and the various priors detailed in 3.2.3 —
including hard length prior, soft length prior, nesting priors, and the prior
forbidding inverse unary operations — PhySO offers multiple other priors.

Uniform arity prior

We implement a uniform arity prior, which applies a uniform probability dis-
tribution over tokens based on their arities. This prior aims to balance the
representation of tokens by normalizing token probabilities according to the
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number of tokens sharing the same arity, thereby promoting under-represented
arities and discouraging over-represented ones.

Relationship constraints

Another important prior is the general relationship constraint prior, which
ensures that expressions adhere to specified relationship constraints. For in-
stance, it enforces rules preventing user-defined target tokens from being de-
scendants, children, or siblings of user-defined effector tokens.

Occurrences constraints

Additionally, the occurrences prior restricts the frequency of certain target
tokens, ensuring they do not appear more than a specified maximum number
of times within expressions.

Symbolic constraints

Lastly, the symbolic prior allows for the enforcement of specific tokens at
designated positions within the symbolic expressions, e.g., enforcing that the
expression should start with log x + □ or contain cos(x)/x.

Weighted data points

PhySO incorporates a straightforward method for applying weights to data
points, which can reflect experimental or observational errors. This weighting
can be applied on a point-by-point basis or realization-wise within Class SR
frameworks, allowing for the prioritization of one realization over another.

Custom symbolic functions

Furthermore, PhySO facilitates the inclusion of new symbolic operation tokens.
Users can easily integrate custom tokens by defining their name and providing
an auto-differentiable function associated with them. Additionally, users can
specify how these tokens behave during dimensional analysis and define any
protected variants.

Arbitrary symbolic optimization

Given data pairs {x, y}, the PhySO software’s wrapper feature allows for more
complex optimizations than the standard SR approach of optimizing a func-
tion f such that y = f(x). Instead, users can perform indirect optimizations
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by fitting y = gwrap(f, x), where gwrap is a wrapper function that takes f and x
as arguments and returns a prediction after executing arbitrary intermediate
steps before comparison to the target data y. If gwrap is auto-differentiable,
it even allows for the optimization of free constants within such frameworks,
highlighting the versatility of our software. This approach was crucial in ap-
plying our algorithm to the expansion of the Universe scenario, which involved
indirect comparisons to data from cosmological standard candles as detailed
in Section 4.4.2.

6.1.3 Benchmarking sub-module

As part of our research efforts in SR, we have developed and implemented a
comprehensive set of benchmarking protocols. These protocols are designed to
rigorously evaluate SR systems and have been made available to the broader SR
community. Details on these protocols and how they were applied to evaluate
our own system can be found in Section 4.3 for the Feynman benchmark and
Section 5.2 for the Class SR benchmark.

This sub-section introduces the benchmarking utilities incorporated within
PhySO. We offer user-friendly access to benchmarking challenges, ensuring re-
producibility and adherence to standardized practices (e.g., , using standard
data ranges, constant values and more). For each challenge, we describe meth-
ods to generate data and evaluate how candidate expressions compare to the
ground truth. Our protocols align with the standard benchmarking practices
outlined in SRBench [La Cava et al., 2021].

Moreover, we have enhanced the benchmarking process by automatically
incorporating assumptions about variable characteristics (such as positivity)
within these challenges, thus facilitating fair comparisons of symbolic equiva-
lence. For example, we ensure that

√
a.b is recognized as equivalent to

√
a.
√
b

by properly encoding the assumption that a > 0. Additionally, we have de-
veloped custom-built trigonometric tools to address issues like cos(x− 1.5708)
not being recognized as equivalent to sin(x) due to slight errors between 1.5708
and π

2
.

Feynman benchmark

The Feynman benchmark is designed to assess symbolic regression sys-
tems, particularly those aimed at scientific discovery. That is methods able
to produce compact, predictive, and interpretable expressions from poten-
tially noisy data. The benchmark was initially introduced by Udrescu and
Tegmark [2020] and later formalized by La Cava et al. [2021]. It consists of
120 unique challenges, each associated with a distinct ground truth expres-
sion. PhySO’s interface is based on the original files (FeynmanEquations.csv,
BonusEquations.csv, units.csv) from Udrescu and Tegmark [2020], with
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adjustments to correct errors in units and other discrepancies found in the
original dataset.

We offer to the community a convenient interface for using our implemen-
tation of the Feynman benchmark, running: pb = FeynmanProblem(i) will
instantiate challenge number i ∈ {0, 1, ..., 119} of the Feynman benchmark
({0, ..., 99} corresponding to bulk challenges and {100, ..., 119} to bonus
challenges) of the Feynman benchmark. This interface offers simple ways
to generate data points (via pb.generate data points) and compare a
candidate expression to the target (via pb.compare expression).

Class SR benchmark

The purpose of the Class benchmark is to evaluate Class symbolic regression
systems, that is: methods for automatically finding a single analytical func-
tional form that accurately fits multiple datasets — each governed by its own
(possibly) unique set of fitting parameters. See 5.2 [Tenachi et al., 2024] in
which we introduce this first benchmark for Class SR methods.

We similarly offer to the community a convenient interface for using
our Class SR benchmark, running: pb = ClassProblem(i) will instan-
tiate challenge i ∈ {0, 1, ..., 7} of the Class benchmark presented in
Table 5.1. This interface offers simple ways to generate data points (via
pb.generate data points) and compare a candidate expression to the target
(via pb.get sympy).

6.2 Implementation

Code Structure

Our codebase is methodically organized into several distinct sub-modules, ad-
hering to the interface segregation principle [Martin, 2009]. The core compo-
nents of our software are contained in the physo.physym and physo.learn sub-
modules, which contain the algorithms for managing symbolic expressions and
the machine learning algorithms, respectively. The physo.task sub-module
provides high-level functions that users can employ to perform standard Sym-
bolic Regression (physo.SR) and Class Symbolic Regression (physo.ClassSR).
Additionally, the physo.config sub-module offers pre-set hyper-parameters
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configurations, while the physo.benchmark sub-module includes the aforemen-
tioned benchmarking utilities aimed at the SR community.

Each sub-module is equipped with multiple unit test scripts, designed to
test the individual components of the code independently. This testing frame-
work is not only crucial for ensuring the robustness and reliability of the soft-
ware during the development of new features but also supports community
engagement by facilitating modifications and enhancements. PhySO currently
achieves a coverage score2 of 81%, indicating that 81% of the code lines are
executed during unit tests.

Computational performances
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Figure 6.2: Computational performances of PhySO in SR and Class SR scenarios.
(SR scenario) Computational time optimizing free constants {c1, c2} in y = c1 sin(c2.x)+e−x

over 20 iterations using 103 data points when running this task 10 000 times in paral-
lel. (Class SR scenario) Computational time optimizing class free constants {c1, c2} and
realization-specific free constants {k1, k2, k3} in k1e

−k2t cos(c1t+k3)+ c2x over 50 iterations
using 100 data points per realization over 30 realizations running this task 10 000 times in
parallel. Performances are assessed on an Apple M1 laptop (a machine with 4 fast CPU
cores) and an Intel Xeon W-2155 CPU (a machine with a high number of cores).

Due to the substantial number of trial expressions that need to be evaluated
at each iteration during symbolic regression tasks, and considering that each
expression must undergo multiple evaluations to optimize its free constants,
the optimization step constitutes a significant performance bottleneck in the
PhySO algorithm. To address this, we have parallelized this step across batches,

2https://coveralls.io/github/WassimTenachi/PhySO

https://coveralls.io/github/WassimTenachi/PhySO
https://coveralls.io/github/WassimTenachi/PhySO
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achieving optimization times for free constants of a given expression typically
on the order of 1 ms. The efficiency of this process in realistic scenarios is
illustrated in Figure 6.2.

Testing was conducted on an Apple M1 machine, which features 4 high-
performance cores and 4 energy-efficient cores, explaining the observed perfor-
mance plateau when the core count is increased to 8. While parallel execution
generally enhances performance, in Class SR scenarios, no improvements are
seen beyond the use of 2 CPUs on most machines. With the notable ex-
ception of machines with exceptionally fast CPU cores. Note that here our
manual parallelization strategy imposes parallel processing across the batch
of expressions, whereas PyTorch natively parallelizes across the dimension of
data points.

In addition, the management of symbolic information necessary for com-
puting priors and providing contextual data to the neural network also occupies
a considerable portion of computational time. In PhySO, these operations are
efficiently vectorized across both expression lengths and batches, enhancing
overall computational efficiency.

Currently, PhySO is capable of running in parallel on a single computer
node but does not yet support multi-node execution for a single run. A com-
mon workaround involves running multiple instances of the same problem with
varying seeds, hyper-parameters, and setups to enhance the probability of
discovering an effective model. Looking forward, an interesting development
would be enabling PhySO to utilize multiple nodes simultaneously for a single
symbolic regression task.

6.3 An Open Source Software

Our objective with PhySO is to embrace the open source ethos fully. Our
entire codebase is publicly available on GitHub (see Figure 6.3). Each function
and object within the code is accompanied by a comprehensive documenting
header. We provide extensive documentation, which is also maintained as
open source on GitHub and is automatically compiled with each update. To
further support user engagement and facilitate the integration of new features,
we offer tutorials, demonstration notebooks, and even release our unit tests as
open source. This approach not only enhances the transparency of our process
but also encourages active community participation and contribution.

https://github.com/WassimTenachi/PhySO
https://physo.readthedocs.io/
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(a) Repository (b) Documentation

Figure 6.3: Repository (a) and documentation (b) of PhySO.

Community interactions

Embracing an open source model has proven mutually beneficial. By making
PhySO freely available, we have observed its adoption across various scientific
fields. Instances of PhySO being utilized for research — as of December 2024
— are detailed in Table 6.1.

Conversely, the community has actively contributed to the enhancement of
PhySO by identifying and correcting bugs through pull requests3. A particularly
notable contribution was recently made by He et al. [2024b], where our code
was forked to incorporate a transformer-based neural network architecture
[Vaswani et al., 2017], aligning with our research plan as outlined in 3.3.2.
Additionally, Li et al. [2024d] made an outstanding contribution by leveraging
PhySO’s capabilities to express in situ priors and perform live dimensional
analysis. This innovation enables the enforcement of prior knowledge about
equation structures, ensuring the use of sub-equations with known units and
dependencies on specific subsets of variables, in line with the research plan
outlined in Section 7.3.3.

This exemplifies the powerful synergies enabled by our open source ap-
proach.

Reproducibility

Reproducibility stands as a cornerstone of the open source philosophy and is
especially pivotal in scientific research. To this end, we have made it extremely
straightforward to replicate the results presented in our experiments. The
following paragraphs give the specific steps to reproduce the experiments

3A mechanism in the Git protocol allowing users to suggest changes to a repository.

https://github.com/WassimTenachi/PhySO
https://physo.readthedocs.io/
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Title Ref.

A universal crack tip correction algorithm discovered by physical deep
symbolic regression

Melching et al. [2024]

Advancing symbolic regression for earth science with a focus on
evapotranspiration modeling

Li et al. [2024d]

An Efficient and Generalizable Symbolic Regression Method for Time Series
Analysis

Xie et al. [2024]

Channel Modeling Based on Transformer Symbolic Regression for
Inter-Satellite Terahertz Communication

He et al. [2024b]

Class Symbolic Regression: Gotta Fit ’Em All Tenachi et al. [2024]

Constraining Genetic Symbolic Regression via Semantic Backpropagation Reissmann et al. [2024]

Deep symbolic regression for numerical formulation of fundamental period
in concentrically steel-braced RC frames

Rahman et al. [2024]

Discovery of physically interpretable wave equations Cheng and Alkhalifah [2024]

Enhancing Symbolic Regression And Universal Physics-informed Neural
Networks With Dimensional Analysis

Podina et al. [2024]

From inflation to dark matter halo profiles: the impact of primordial
non-Gaussianities on the central density cusp

Stahl et al. [2024]

Function Class Learning with Genetic Programming: Towards Explainable
Meta Learning for Tumor Growth Functionals

Sijben et al. [2024]

Interpretable Machine Learning for Science with PySR and
SymbolicRegression.jl

Cranmer [2023]

Machine Learning in Proton Exchange Membrane Water Electrolysis – Part
I: A Knowledge-Integrated Framework

Chen et al. [2024b]

Machine learning the governing principle of strong coupling constant across
the global energy scale

Wang et al. [2024]

Physics-constrained robust learning of open-form PDEs from limited and
noisy data

Du et al. [2024]

Physics Education and Symbolic Regression Shin et al. [2024]

Recent advances in the SISSO method and their implementation in the
SISSO++ code

Purcell et al. [2023]

Reinforced Symbolic Learning with Logical Constraints for Predicting
Turbine Blade Fatigue Life

Li et al. [2024e]

Revisiting Disparity from Dual-Pixel Images: Physics-Informed Lightweight
Depth Estimation

Kurita et al. [2024]

Unit-Constrained Data-Driven Turbulence Modeling for Separated Flows
Using Symbolic Regression

Zhang and Lei [2024]

Table 6.1: Research papers relying on the Φ-SO framework as of December 2024 — 21
months after its release in March 2023.

described in Chapter 4 on Physical Symbolic Regression and Chapter 5 on
Class Symbolic Regression.
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Physical SR:

A frozen version related to our work on Physical Symbolic Regression [Tenachi
et al., 2023a] is released under tag v1.0.0 © and deposited on zenodo:
10.5281/zenodo.8415435.

For the sake of result reproducibility, we offer a simple method to replicate
the outcomes presented in Figure 4.3 by simply executing the following com-
mand: python feynman run.py --equation i --noise n. This command
will run PhySO on challenge number i ∈ {0, 1, ..., 119} of the Feynman bench-
mark, employing a noise level of n ∈ [0, 1].

In addition, we include challenge-by-challenge and run-by-run perfor-
mances results tables at PhySO/benchmarking/FeynmanBenchmark/results.

Class SR:

A frozen version related to this work on Class Symbolic Regression is released
under tag v1.1.0 © and deposited on zenodo: 10.5281/zenodo.11663147.

For the sake of result reproducibility, we similarly offer a simple
method to replicate the outcomes presented in Figure 5.2 by simply ex-
ecuting the following command: python classbench run.py --equation

i --noise n --n reals Nr. This command will run PhySO on challenge
number i ∈ {0, 1, ..., 7} of the Class benchmark presented in Table 5.1,
employing a noise level of n ∈ [0, 1] and exploiting Nr ∈ N realizations.
We also include the script we used to estimate performances post-run :
classbench results analysis.py.

Similarly, we offer a straightforward method to replicate the outcomes pre-
sented in Figure 5.3 by simply executing the following command: python

MW streams run.py --noise n --frac real fr. This command will run
PhySO on the stellar stream problem described in Section 5.3, employing a noise
level of n ∈ [0, 1] and exploiting a fraction of fr ∈ [0, 1] realizations. Again,
we include our results analysis script: MW streams results analysis.py.

In addition, we include challenge-by-challenge and run-by-run perfor-
mances results tables: see PhySO/benchmarking/ClassBenchmark/results

for results pertaining to the Class SR benchmark and PhySO/demos/demos_

class_sr/demo_milky_way_streams/results for results pertaining to the
stellar stream problem.

https://github.com/WassimTenachi/PhySO/releases/tag/v1.0.0
https://github.com/WassimTenachi/PhySO/releases/tag/v1.0.0
https://doi.org/10.5281/zenodo.8415435
https://github.com/WassimTenachi/PhySO/tree/v1.0.0/benchmarking/FeynmanBenchmark/results
https://github.com/WassimTenachi/PhySO/releases/tag/v1.1.0
https://github.com/WassimTenachi/PhySO/releases/tag/v1.1.0
https://doi.org/10.5281/zenodo.11663147
https://github.com/WassimTenachi/PhySO/tree/v1.1.0/benchmarking/ClassBenchmark/results
https://github.com/WassimTenachi/PhySO/tree/v1.1.0/demos/class_sr/demo_milky_way_streams/results
https://github.com/WassimTenachi/PhySO/tree/v1.1.0/demos/class_sr/demo_milky_way_streams/results




Chapter 7

Neural Networks as Symbolic
Graph Representations

Portions of the content presented in this Chapter have been previously
discussed in the following publication:

2024 Generalizing the SINDy approach with nested neural networks
C. Fiorini, C. Flint, L. Fostier, E. Franck, R. Hashemi, V. Michel-Dansac, W. Tenachi
ESAIM 24 1 1-10, arXiv:2404.15742

Summary.
We examine methods that leverage neural networks to directly capture and

embody the graph structure of a dataset, reflecting its underlying analytical
representation.

We introduce a method that identifies additive and multiplicative separa-
bilities within data. This approach incrementally deconstructs a dataset into
simpler components, progressively uncovering its graph structure to facilitate
interpretability and subsequent symbolic regression.

We explore how incorporating non-linear basis functions into a neural net-
work — while promoting sparsity can gradually transform the network into
an interpretable, compact symbolic expression. We discuss promising cross-
pollination avenues in symbolic regression.

https://arxiv.org/abs/2404.15742
https://arxiv.org/abs/2404.15742
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In previous Chapters (3-5), our discussion centered on the use of neural net-
works to generate and learn from symbolic graph representations of analytical
expressions.

In this Chapter, we delve into the use of neural network models to directly
embody symbolic expressions within their architectures. This method is piv-
otal in the field of symbolic regression (SR) — aimed at deriving compact
analytical functions that accurately fit datasets — as such direct integration
enables neural networks to effectively encapsulate data in an intelligible, sym-
bolic graph format. As we will demonstrate, this approach facilitates the ex-
traction of functional analytical forms, with the representations being learned
directly from data points.

An unsupervised learning approach

It is important to note that the methods previously discussed involve sampling
expressions from neural networks that tokenize symbols in a manner akin to
natural language processing frameworks — although adapted to handle the
complexities of computational symbolic mathematics. These methods can be
employed within both reinforcement learning (RL) frameworks, where neural
networks learn through trial and error to generate expressions that satisfy cer-
tain constraints (e.g., fitting data in SR), and supervised learning frameworks,
where neural networks learn from a vast number of examples to generate ex-
pressions that meet specific conditions (e.g., matching a dataset in SR).

Unsupervised learning has traditionally been considered unfeasible in this
context, as selecting one mathematical symbol over another is not a differen-
tiable operation. In RL methods, the neural network indirectly interacts with
the data through a non-differentiable scalar reward that reflects fit quality.
However, the promise of unsupervised learning lies in its potential for data to
directly influence graph structure through gradients, enabling a more direct
and potentially insightful learning process.

Nevertheless, as we will demonstrate in this Chapter, representing the ex-
pression directly within a neural network architecture enables the application
of such unsupervised learning techniques. Unsupervised learning here uniquely
facilitates the exploitation of gradients for tuning graph structure with respect
to data. This capability allows for the optimization of functional forms in
a manner that can complement the reinforcement learning strategies imple-
mented in our Φ-SO framework.

Outline

In Section 7.1, we introduce a method that breaks down a dataset into a
graph of simpler sub-functions by exploiting separabilities and symmetries,
significantly enhancing approaches akin to the AIF (i.e. AI Feynman) [Udrescu
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and Tegmark, 2020, Udrescu et al., 2020]. Section 7.2 discusses a technique
for refining a dataset into an increasingly sparse neural network structure,
incorporating polynomial components and non-linear basis functions such as
{exp, log, cos, sin,

√
□, ...} thereby facilitating the derivation of an analytical

function. Finally, Section 7.3 outlines how these methods can be integrated
into our Φ-SO framework to broaden its capabilities.

The content in this chapter is the result of collaborative efforts led by
Alejandro M. Illescas Gimenez1 with Rodrigo Ibata and myself (Section 7.1),
as well as a collaborative effort equally led by Clément Flint, Louis Fostier, and
Reyhaneh Hashemi with Camilla Fiorini, Emmanuel Franck, Victor Michel-
Dansac and myself2 (Section 7.2).

7.1 Uncovering Structures using Differential

Precision Learning

Modularity

In this Section, we explore how datasets can be represented within neural
networks to detect inherent hierarchical structures related to the input vari-
ables, such as separabilities and symmetries. For example, a complex function
f(x1, x2) can be decomposed into simpler functions f1(x1) and f2(x2) with
f(x1, x2) = f1(x1) + f2(x2)), Similarly, symmetries might simplify f(x1, x2)
into f1(x1, f2(x2)).

Recursive structure search

Once these sub-functions are identified, they can be modeled as distinct neural
networks. This modularization allows for an iterative process where each sub-
function is further analyzed and simplified if possible. By repeating this pro-
cess, a complex dataset can be methodically simplified into an intelligible graph
of simpler sub-models. This technique is especially valuable in physics, where
datasets often display an underlying graph structure [Udrescu and Tegmark,
2020]. This iterative disentangling process is illustrated in Figure 7.1.

1As part of Alejandro M. Illescas Gimenez’s master research project.
2As part of the research project undertaken by Clément Flint, Louis Fostier, and Rey-

haneh Hashemi at the Scientific Machine Learning CEMRACS 2023 summer school, super-
vised by Camilla Fiorini, Emmanuel Franck, Victor Michel-Dansac, and myself hosted at
CIRM, Marseille during July 17 — August 25, 2023
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Figure 7.1: Unveiling graph structures by detecting separabilities in data.
This figure illustrates the process of disentangling a complex data representation into
a graph of simpler sub-models through the detection of multiplicative (denoted by ‘×’)
and additive (denoted by ‘+’) separabilities. Without prior knowledge of the underlying
mathematical expression, our method identifies that the function f(x1, x2, x3, x4, x5) =

sin(x1x2)x5

(
1
x3

+ 1
x4

)
can be decomposed into two distinct sub-functions: sin(x1x2)x5 and

(
1
x3

+ 1
x4

)
, which are multiplicatively separable. This iterative process is repeated on each

newly identified component until a comprehensive graph structure is obtained, with each
node (or leaf) represented by a distinct instantiation of our GradNet architecture. Each
leaf’s underlying functional form is denoted on its side in red.

Symbolic regression

This approach is not only advantageous for enhancing interpretability through
structured representations but also significantly simplifies SR processes. By
breaking down complex functions into sub-function models that can later be
translated into analytical representations, we facilitate a more manageable SR
workflow. This “divide and conquer” strategy, which aids in streamlining the
entire SR process, was initially introduced by Luo et al. 2017, 2022 and has
been further explored in subsequent works [Cranmer et al., 2020b, Tohme et al.,
2023, Landajuela et al., 2022], including the popular AI Feynman approaches:
AIF [Udrescu and Tegmark, 2020] and AIF [Udrescu et al., 2020].
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A first multiplicative separability detection scheme

In this section, we introduce a novel method capable of detecting not just
additive separabilities but also multiplicative separabilities — e.g., , identify-
ing structures within f(x1, x2) such that it can be expressed as f1(x1).f2(x2).
While methods for identifying multiplicative separabilities have been suggested
by Udrescu et al. [2020], they have not been successfully exploited or imple-
mented to date. As we will see, effective exploitation of multiplicative sep-
arabilities necessitates exceptionally precise gradients, which in turn require
unconventional neural network architectures.

Outline

We introduce the innovative GradNet — Gradient Network — architecture,
which is pivotal for differential precision learning in sub-section 7.1.1. We
then outline our methodology for detecting separabilities in sub-section 7.1.2.
Finally, we discuss the results of these techniques in sub-section 7.1.3, high-
lighting their effectiveness and implications.

7.1.1 The GradNet architecture

Physics-informed neural networks (PINNs) have garnered significant attention
in the scientific community. Despite the implication of their name, PINNs do
not represent a specific architecture; rather, they refer to a training methodol-
ogy that enforces the physical consistency of models by evaluating their gradi-
ents and enforcing that they fit relevant differential equations. This approach
allows for the embedding of prior theoretical knowledge directly into the neural
network’s framework. In contrast, the GradNet architecture we present offers
a more defined structure that provides perfectly accurate gradients, making it
an ideal foundation for PINN-like applications.

The GradNet architecture3 features a shallow structure paired with an
accuracy-focused optimizer. This design is pivotal: the shallow architecture
ensures the availability of analytically precise gradients, which are crucial for
accurate modeling and the innovative4 optimization approach allows the net-
work to maintain a substantial size through width despite its shallow depth,
effectively overcoming the typical challenges associated with shallow networks
in complex modeling scenarios.

3This architecture is currently being developed by Rodrigo Ibata and collaborators at
the Observatoire Astronomique de Strasbourg.

4Innovative in the context of deep learning.
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A shallow architecture

The GradNet utilizes a notably shallow architecture, consisting of a mere sin-
gle dense layer. This foundational neural network component was previously
detailed in 2.1.2.

Given input data x ∈ Rnx , the output of the model y ∈ Rny is computed
as follows:

y = a log(1 + exp(Kx + b)) (7.1)

Where K represents the weight matrix with dimensions (h, nx), b is a bias
vector of size h, and a is a scale matrix of dimensions (ny, h). The tunable
parameters of the model, denoted by θ, include θ = {K, b, a}.

This streamlined architecture allows us to derive the Jacobian of the en-
tire neural network model analytically — a distinct advantage over deeper
networks, where gradients must be obtained through the iterative applica-
tion of the chain rule through auto-differentiable frameworks, often leading
to inaccuracies in higher-order derivatives. The Jacobian and Hessian of our
architecture are computed as follows:

∇y = KTa.σ(Kx + b) (7.2)

∂2y

∂xi∂xj

= Ka(1− σ(Kx + b))σ(Kx + b)KT (7.3)

Despite the ability to access precise analytical gradients, such shallow neu-
ral network architectures typically face limitations in complex modeling tasks,
which prompted the development of deeper learning models [LeCun et al.,
2015].

Interestingly, despite these practical limitations, the universal approxima-
tion theorem [Hornik et al., 1989] suggests that increasing the width — here
variable h — of even a single-layer neural network could, in theory, enable
it to model any function. Indeed, theoretically, with a sufficiently wide layer
an ideal parametrization in a, K, and b can approximate any desired smooth
function. This principle highlights the potential of shallow architectures un-
der ideal conditions, although practical constraints often necessitate deeper
configurations.

Optimization

In practice, even with a sufficiently large layer, finding the optimal parameter
values using standard optimization procedures such as Adam [Kingma and
Ba, 2015] or Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951]
can be infeasible. These conventional methods rely on minimizing a scalar
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loss function, Lθ, which depends on the model parameters θ. They rely on
derivatives of this cost function with respect to each parameter, obtained via

auto-differentiation (this concept was detailed in 2.1.4):
{

∂L
∂θ1

, ∂L
∂θ2

, . . .
}

.

To enhance our optimization capability, we implement the sophisticated
second-order Levenberg-Marquardt algorithm [Levenberg, 1944, Marquardt,
1963]. This approach uses the Jacobian matrix J = ∂f(xi)/∂θj of the model
f(xi) together with the Hessian matrix approximated as JTJ to solve a si-
multaneous system of M equations (one for each of the M parameters of the
problem) for the parameter update vector ∆θ that will minimize χ2. The
method thus directly derives an estimate of the ideal update vector, instead of
simply deriving the direction in which the update should move to reduce the
cost function (like SGD, for instance). For a detailed review of this method,
see Ranganathan [2004].
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Figure 7.2: Comparative efficacy of optimization algorithms: Adam, LBFGS, and
LM. This figure demonstrates the performance of the Levenberg-Marquardt (LM) algorithm
[Levenberg, 1944, Marquardt, 1963], comparing it against the Adam optimizer [Kingma and
Ba, 2015] and LBFGS [Zhu et al., 1997] on a toy multi-layer perceptron modeling the function
sin(10πx)/(10πx). The LM algorithm shows enhanced optimization capabilities, achieving
more accurate fits and faster convergence, illustrating its superior handling of complex model
adjustments compared to traditional first-order methods like Adam and specialized methods
like LBFGS designed for non-linear optimization tasks.

This optimization technique has proven significantly more effective at ac-
curately capturing low scales of data, as demonstrated in Figure 7.2. It also
reduces the number of necessary parameters and achieves faster convergence
due to its capacity to utilize more comprehensive information [Taylor et al.,
2022]. While the Levenberg-Marquardt (LM) algorithm is highly effective, it
can be resource-intensive, primarily due to the matrix inversion step it involves,
which typically limits the size of neural networks it can optimize. However,
this constraint is manageable in physical systems, which are fundamentally
less complex, and we further mitigate this issue by implementing parameter
batching.
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Implementing the LM algorithm in popular frameworks like PyTorch or
TensorFlow is non-trivial due to its requirement for a matrix of gradients
rather than a simple vector5. In our work, we address this challenge by lever-
aging PyTorch’s custom vectorization features and by batching along parame-
ters, enabling efficient execution of the LM optimization process within these
frameworks.

7.1.2 Detecting separabilities

In our methodology, we employ the GradNet to model any given dataset
{x, y} = {x1, ..., xn, y}, where y = f(x). This approach provides us with
access to accurate analytical gradients, which are crucial for detecting separa-
bilities in the data. Our system not only enhances efficiency beyond that of
AIF 2, but it also facilitates the implementation of multiplicative separability
approaches, as suggested by Udrescu et al. [2020]. This capability significantly
broadens the potential applications and effectiveness of our model in identify-
ing hierarchical structures within datasets.

Additive separability

We evaluate additive separability by determining if the dataset can be decom-
posed into sub-functions fa and fb, which operate on distinct subsets of the
input variables xa and xb, respectively, such that y = fa(xa) + fb(xb).

To assess the additive separability between two given variables xi and xj

(i ̸= j), we verify the following condition:

∂2y

∂xi∂xj

< ϵadd (7.4)

where ϵadd is a small numerical threshold empirically determined to indicate
negligible interaction between the variables.

After testing separability across all variable pairs, in cases where multi-
ple separable configurations are possible, we prioritize the configuration that
minimizes the number of variables in xb. This approach aims to simplify the
function fb as much as possible. This process is recursive, allowing for further
separations to be explored in subsequent iterations.

Multiplicative separability

We assess multiplicative separability by identifying if the dataset can be de-
composed into sub-functions fa and fb, operating on distinct subsets of input
variables xa and xb, such that y = fa(xa) · fb(xb).

5The JAX framework is a promising alternative as it inherently supports operations with
matrices of gradients.
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To establish multiplicative separability, we leverage the property that a
function’s logarithm transforms multiplicative separability into additive sep-
arability. Specifically, this transformation allows y to be represented as
y = log fa(xa) + log fb(xb). Therefore, to test multiplicative separability be-
tween two variables xi and xj (i ̸= j), we evaluate the following criterion:

∂2 log y

∂xi∂xj

< ϵmul (7.5)

where ϵmul is an empirically determined numerical threshold. The second
derivative of the logarithm of y with respect to xi and xj is given by:

∂2 log y

∂xi∂xj

=
1

y

∂2y

∂xi∂xj

− 1

y2
∂y

∂xi

∂y

∂xj

(7.6)

This analytical approach helps us ascertain whether interactions between xi

and xj can be expressed in a multiplicative manner.

Addressing the offset problem

While exploring multiplicative separability, we must consider potential offsets
in the functional relationship, such as y = fa(x1)·fb(x2)+d. Direct application
of logarithmic transformation on such functions, where d is non-zero, disrupts
the additive separability. To address this, we adopt an initial assumption of
multiplicative separability and concurrently estimate an offset d that satisfies:

(y − d)
∂2y

∂xi∂xj

=
∂y

∂xi

∂y

∂xj

(7.7)

across all (x, y) pairs in the dataset.
In practice, we compute d for each pair and evaluate its median. If the

median of d is less than a predefined threshold ϵoff, we consider that d =
0 and proceed with the condition described in Equation 7.5. If the offset
proves significant, we calculate the Median Root Squared Relative Deviation
(MRSRD) of d:

MRSRD =
1

med(d)
·med

(√
(di −med(d))2

)
i<N

(7.8)

where med denotes the median. The separability is accepted if:

MRSRD < ϵMRSRD (7.9)

This intricate methodology hinges on the availability of highly accurate
derivative values, a requirement not met by standard multi-layer perceptron
architectures (such architectures are detailed in 2.1.2) used in approaches like
AIF 2, making an architecture such as the GradNet indispensable.
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7.1.3 Performances

We evaluate the effectiveness of our graph structure detection method, which
capitalizes on the detection of separabilities, using the Feynman benchmark
as proposed by Udrescu and Tegmark [2020]. This benchmark was initially
tailored to assess approaches like ours that focus on structural discovery in
data as it was first proposed to evaluate the AIF algorithm (refer to Section
4.3 for a detailed discussion on this benchmark).

Hyper-parameters

The hyper-parameter values, which we have empirically determined to yield
optimal results on the Feynman benchmark, are documented in Table 7.1.
These values have been fine-tuned to enhance the performance and accuracy
of our separability detection procedure.

Criterion Value

ϵadd 10−4

ϵmul 5× 10−3

ϵoff 5× 10−3

ϵMRSRD 10−1

Table 7.1: Hyper-parameter values for our separability detection procedure.

Results

Upon applying our approach to the 44 cases that our Φ-SO algorithm for SR
could not resolve in Section 4.3, we achieved notable results. Our method
accurately judged separabilities in 31 out of the 44 cases, culminating in a
70% success rate. Success was categorized as follows: complete simplification
to the simplest form possible in 14 cases (32%), partial simplification in 9 cases
(20%), and correct identification of non-separability in 8 cases (18%). Despite
these positive outcomes, there remain 13 instances (29%) where the algorithm
misjudged separability, either through false positives or by failing to detect
existing separabilities due to training limitations.

These results are particularly impressive, given that they address the most
challenging and complex problems within a benchmark specifically designed
to test such capabilities. Our approach demonstrates the potential of directly
modeling physical phenomena within a neural network structure, which al-
lows for the recursive application of additive and multiplicative separability
detection, thereby uncovering the underlying graph structure of the data. We
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anticipate that integrating our Φ-SO framework with this approach — a de-
velopment currently in progress — will result in exceptional performance on
the Feynman benchmark.

7.2 Nested SINDy

This Section explores an alternative approach for encoding hierarchical sym-
bolic structures within neural networks from data, which can complement the
methods previously discussed.

Supervised learning approaches to SR offer rapid inference but lack a self-
correction mechanism. If the generated expression is suboptimal, there are
little means of correction. In contrast, unsupervised approaches enable itera-
tive correction based on fit quality. However, they often rely on reinforcement
learning frameworks (as we did in Chapters 3-5) to approximate gradients
because direct optimization using auto-differentiation is infeasible due to the
discrete nature of the problem, which involves discrete symbolic choices.

However, other unsupervised methods include neuro-symbolic approaches,
wherein mathematical symbols are integrated into neural network frameworks.
The goal being to sparsely fit the neural network to enable interpretability,
generalization or even recover a compact mathematical expression. Prominent
examples include SINDy [Brunton et al., 2016], which stands for Sparse
identification of non-linear dynamics and is central to this study, and others
such as Martius and Lampert 2017, Scholl et al. 2023, Sahoo et al. 2018, Valle
and Haddadin 2021, Kim et al. 2020, Panju and Ghodsi 2020, Ouyang et al.
2018.

SINDy-like approaches are the only type of unsupervised techniques
capable of directly utilizing gradients from data to iteratively refine function
expressions as they effectively render the discrete symbolic optimization
problem continuous. Moreover, SINDy-like frameworks possess the advantage
of being well-suited for exact symbolic recovery by enabling the creation of
concise, intelligible analytical expressions through the promotion of sparse
symbolic representations while yielding highly accurate and general expres-
sions when exact symbolic recovery is unsuccessful or impossible. However, a
limitation of the current SINDy framework is its inability to handle nested
symbolic functions, which often results in suboptimal performances, especially
in more complex problems as shown by our comparative benchmark in 4.3.
This is the primary motivation for our study, where we introduce a Nested
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SINDy approach.

We outline our nested SINDy architecture in sub-section 7.2.1, describe our
fitting procedure and sparsity enforcement methods in sub-section 7.2.2, and
present our findings in sub-section 7.2.3.

7.2.1 Architecture: going deeper

The standard SINDy approach involves fitting polynomial combinations of
differentiable non-linear basis functions. This framework can theoretically in-
corporate an extensive array of non-linear functions, provided they are dif-
ferentiable. For the purposes of this study, we consider the following basis
functions: {id,□2, arctan, sin, cos, exp,

√
□, e−□2

, log(1 + e□)}.
Given N data points (x, y), our objective is to discover a function f such

that y = f(x) — a SR challenge. We define F = {f1, . . . , fl} as the library of
possible basis functions. The space of linear combinations of these functions,
denoted by L(F), is defined as follows:

f ∈ L(F) ⇐⇒ ∃θ ∈ Rl, such that f =
l∑

i=1

θifi. (7.10)

Recognizing the limitations of shallow architectures in capturing complex
relationships, our goal is to explore deeper, more structured models to enhance
the expression capability and accuracy of SR solutions.

Polynomial-Radial model

The Polynomial-Radial (PR) model introduces a structured layering approach
by incorporating a polynomial transformation prior to the standard SINDy
‘radial’ non-linear operations. This dual-layer architecture enhances the basic
SINDy framework by first applying a polynomial layer that manipulates the
input variables into a series of monomial forms.

Specifically, the polynomial layer is defined as:

fpoly(x) =
d∑

i=0

ωix
i,

where d denotes the highest degree of polynomial allowed, and ωi represents the
coefficients. The coefficient ω0 serves as the constant component, analogous to
the bias in traditional neural network layers.

For multidimensional inputs, this layer extends to handle multivariate poly-
nomials, enabling intricate combinations of input variables. For instance, for
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two variables x and y, the polynomial becomes:

fpoly(x, y) =
d∑

i=0

d∑

j=0

ωi,jx
iyj,

with ω0,0 representing the polynomial’s constant term. To manage complexity
and the number of terms, the summation can be constrained so that i + j ≤
d, forming bivariate polynomials up to degree d. This formulation not only
broadens the modeling capacity but also embeds a deeper interaction between
variables right from the initial transformation stage.
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Figure 7.3: Polynomial-Radial architecture of our Nested SINDy approach. See
paragraph 7.2.1 for a detailed description.

As an example, given one input variable, if F = {sin, cos} and d = 2, then
the PR model can express functions such as:

λ cos(a1 + b1x + c1x
2) + µ sin(a2 + b2x + c2x

2).

This opens up much more combination than the standard SINDy approach,
where functions such as cos(2□) or sin(1 + □2) would have to be manually
added to the library to be able expres this combination.

This PR layer can also be seen as a pure polynomial layer combined with a
linear layer. We, hence, consider the PR model to have four layers: a polyno-
mial layer, a linear layer, a radial layer, and a final linear layer. The last two
layers are identical to the standard SINDy model, while the first two layers are
new additions. 7.3 illustrates this structure.
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The entire expression for the PR model can be formalized as follows:

fθ,PR(x) =
l∑

j=1

cjfj

(
d∑

i=0

ωi,jx
i

)
+ B, (7.11)

where θ encapsulates all trainable parameters of the model. Where fj are func-
tions selected from the predefined library F and ωi,j represent the coefficients
of the polynomial transformations for each radial basis function fj. cj and B
denote the coefficients and bias of the output linear layer, respectively.

This architecture introduces a significant enhancement in expressivity by
allowing for the integration of complex polynomial transformations prior to
applying the radial functions. The PR model is particularly effective in han-
dling multivariate data by constructing and leveraging intricate inter-variable
interactions before further transformations. In contrast to conventional SINDy
approaches, this model reduces the dependency on a large function library by
enabling discovery and optimization of linear combinations of functions directly
from the data.

Our experimental results show that the PR model can efficiently converge
to accurate solutions even in complex SR tasks, demonstrating substantial im-
provements over traditional methods. The efficacy of this approach in solving
problems will be detailed in 7.2.3, where we discuss the model’s performance
in a few test scenarios.

Polynomial-Radial-Polynomial model

The Polynomial-Radial-Polynomial (PRP) model builds upon the PR model
by incorporating an additional polynomial layer following the radial func-
tion layer. This advancement significantly broadens the model’s capabil-
ity to capture complex data interactions that were previously unattainable.
For instance, the PRP model is capable of expressing functions such as
f(x) = arctan(x) sin(x), provided that arctan and sin are included in the
function set F , surpassing the PR model’s limitations in representing such
multiplicative interactions between functions.

In the PRP model, the outputs from the radial layer pass through a linear
transformation layer, typically constrained in size (in our implementation, we
fix it to 2 units), acting as an intermediary that reshapes these outputs into
new variable forms. These transformed outputs are subsequently processed
by another polynomial layer, which facilitates the creation of diverse mono-
mial forms by combining these intermediate variables in various ways, such as
squaring or product terms.

This layered architecture not only enhances the model’s expressivity but
also provides a flexible framework capable of approximating complex non-linear
phenomena within datasets more effectively. Such structural complexity allows
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the PRP model to achieve a higher degree of representation accuracy and
adaptability across varied SR tasks.

The expression for the PRP model can be formalized as follows:

fθ,PRP(x) =
∑

1≤|i|≤d

ωPR
i1,i2,...,il

fθ1,PR(x)i1fθ2,PR(x)i2 . . . fθl,PR(x)il + B′, (7.12)

Where |i| = i1 + i2 + . . . + il is the length of the multi-index (i1, . . . , il), θ
includes all the trainable parameters of the model, ωPR

i1,i2,...,il
are the weights of

the final linear layer, B′ is the bias of the final linear layer, l is the size of the
output chosen for the intermediate linear layer (set to 2 in our experiments),
and fθ1,PR(x), fθ2,PR(x), . . . , fθl,PR(x) correspond to the output of the PR
model given in 7.11. The coefficients θ1, θ2, . . . , θl correspond to the parameters
of the PR models, which are the same as θ, except for the weights of the final
linear layer (cj and B in 7.11). 7.4 gives a graphical representation of this
model.
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Figure 7.4: Polynomial-Radial-Polynomial architecture of our Nested SINDy ap-
proach. See paragraph 7.2.1 for a detailed description.

The inclusion of a second polynomial layer significantly enhances the PRP
model’s capacity to express complex mathematical relationships. This ad-
ditional layer allows the model to capture more nuanced interactions within
the dataset, proving particularly advantageous for analyzing complex datasets
where simpler models might not suffice. The PRP model’s ability to handle in-
tricate interactions between variables makes it exceptionally effective for such
scenarios.

In conclusion, the PRP model, with its dual polynomial layers, represents
an advanced evolution of the SINDy approach. It offers a robust framework
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capable of modeling sophisticated systems, adept at uncovering higher-order
interactions and non-linear dynamics prevalent in complex datasets. This en-
hanced expressivity makes the PRP model a valuable SR approach.

7.2.2 Fitting method

Enforcing sparsity

Given the potentially complex architectures described earlier, which can in-
clude hundreds of parameters and given our goal of obtaining compact and
interpretable models that can be written as analytical expressions, we employ
specific strategies to prune as many network parameters as possible. To achieve
this, sparsity is enforced during the model fitting process. We incorporate a
lasso regularization term [Tibshirani, 1996] into the loss function, which en-
courages the reduction of parameter magnitudes, effectively pruning negligible
weights during training when they fall below a defined threshold. The overall
loss function for our model is articulated as follows:

Lθ = LMSE,θ + LLasso,θ (7.13)

Lθ =
N∑

i=1

(yi − fθ(xi))
2 +

l∑

i=1

|θi| (7.14)

Here, λ is the regularization parameter that balances the mean squared error
(MSE) and the lasso penalty, ensuring that complexity is directly managed
through the optimization of the loss function, promoting a balance between
accuracy and model simplicity.

In practice, we remove a parameter θi from the active set if it remains
below a threshold ϵprune over nprune consecutive epochs, provided that the
overall mean squared error (MSE) is below a predefined threshold MSEprune.
This approach allows us to learn the model’s structure in an unsupervised
manner that directly leverages the information within the data, promoting an
optimal balance of model complexity and explanatory power.

Learning strategy

Our Nested SINDy approach introduces more local minima than the standard
SINDy approach, primarily due to the addition of linear layers which, when
combined with non-linear layers, can create complex optimization landscapes.
To mitigate the risk of being trapped in these local minima, we have imple-
mented several empirically effective learning strategies.
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Firstly, we dynamically adjust the importance of the Lasso component in
the loss function across iterations (it): λ(it) = λ0(1 + 0.4 sin(it/10)), where
λ0 is the initial Lasso coefficient. This oscillation between 0.6λ0 and 1.4λ0 is
facilitated by a sine function, allowing for periodic adjustments to the regular-
ization strength, which helps escape local minima.

In addition, we opt for the LBFGS optimizer [Zhu et al., 1997], an un-
conventional choice in neural network training due to it being designed for
optimizing constants in non-linear analytic functions. However, given its effi-
cacy and given that here the optimization of neural network parameters shares
similarities with constant optimization in non-linear setups — although with
many more constants in this case — its application here is particularly bene-
ficial.

7.2.3 Results & discussion

Results

Employing the PR and PRP frameworks, we successfully recovered very
simple models such as − sin(x2 + 1) directly from the data, demonstrating
the frameworks’ capability to prune from a large parameter space efficiently.
The PRP architecture proved particularly effective, recovering more complex
models such as 2 cos(x1) cos(x2), showcasing its ability to handle multiplicative
relationships between functions not explicitly included in the library — a
significant improvement over traditional SINDy methods. Typically, a naive
SINDy approach would require a significantly larger function library to
accommodate potential products of functions for multi-dimensional inputs.

In a distinct experiment involving the perimeter of ellipses, defined by the
parametric equations x = a cos(α) and y = b sin(α) for α ∈ [0, 2π), we explored
the limitations of elementary functions in describing ellipse perimeters. The
perimeter, traditionally computed using an integral6, has been approximated
through various formulas, including Ramanujan’s well-known approximation:
P (a, b) ≈ π(3(a + b) −

√
(3a + b)(a + 3b)). Utilizing our PRP model, we

developed a new approximation which shows increased accuracy for larger
values of a (a > 5)7:

PPRP(a) = 0.535a + 0.966(0.394a + 0.721 arctan(0.278a2 + 0.393) + 1

+ 0.111 exp(−0.063a4))2 + 0.978 arctan(0.278a2 + 0.393) + 1.36

+ 0.15 exp(−0.063a4),

6The perimeter is given by P (a, b) = 4
∫ π

2

0

√
a2 cos2(α) + b2 sin2(α), dα

7Assuming b = 1 for simplicity, since scaling does not alter the elliptical nature.
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These results highlight the practical efficacy of our model in generating accu-
rate and complex approximations that challenge existing models.

Discussion

Conclusion

While challenges applying this approach to more diverse SR tasks remains
challenging due to its inability to express compositions of non-linearites, the
results demonstrate its potential to derive new combinations of basis functions.
These novel combinations can serve as effective basis functions in various phys-
ical contexts and assist SR methodologies, as further explored in the next Sec-
tion. Moreover, our approach has shown a capacity at inferring complex but
highly accurate and computationally efficient approximations, extending its
utility beyond mere interpretability.

Perspective

Another promising direction for extending SINDy-like approaches involves in-
tegrating the basin-hopping algorithm, which combines the LBFGS optimizer
with global search techniques to circumvent local minima, as suggested by
Scholl et al. [2023]. Additionally, incorporating a supervised learning compo-
nent could further enhance the framework’s efficacy. As proposed by Scholl
et al. [2023], pre-training a model to identify relationships between datasets
and sparse SINDy-like patterns could provide high-quality initial guesses that
can subsequently be fine-tuned to specific cases, thereby streamlining the pro-
cess of deriving analytical expressions. This hybrid strategy could substantially
improve the initial condition setup, allowing for more focused and effective re-
finement phases.

7.3 Synergies & Perspectives

This Section explores the integration of the aforementioned unsupervised
approaches utilizing a neural network to represent and discover hierarchical
structures, with the Φ-SO reinforcement learning framework detailed in
Chapters 4-6. We will examine how these methodologies can complement
each other, enhancing the overall efficacy and scope of SR applications within
our framework.
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Sub-section 7.3.1 discusses the potential integration of a nested SINDy
model as a token within our reinforcement learning framework. Sub-section
7.3.2 explores how leveraging the Levenberg-Marquardt optimizer one can en-
hance neuro-symbolic SINDy-like approaches. Finally, sub-section 7.3.3 exam-
ines the incorporation of these approaches within the Φ-SO framework.

7.3.1 A nested-SINDy token

Token

The nested-SINDy approach, with its capability to compose relevant higher
level functions from simple basis functions by exploiting data directly, offers a
unique opportunity for integration into the Φ-SO framework. Considering
that nested-SINDy essentially functions as a comprehensive sub-expression
containing numerous constants to optimize, it aligns well with the constant
optimization problems typical in our Φ-SO framework. By treating nested-
SINDy as a token, it can complement existing tokens which represent simple
functions. This special token would not only contain multiple free parameters
requiring optimization but also employ a unique pruning process to encourage
sparsity. Such a token would be particularly useful in complex expressions
where sub-components demand intricate modeling, allowing Φ-SO to utilize a
nested-SINDy token for these parts, optimizing it alongside other constants
during the fitting phase.

Example

For instance, consider the challenge of performing SR on a dataset whose
underlying function is ex − sin(x2 + 1). While this complexity might be be-
yond the individual capabilities of nested-SINDy, integrating it as a τPRP to-
ken within Φ-SO could simplify the task. By representing the expression as
ex + τPRP (i.e., in prefix notation {+, exp, x, τPRP}), the τPRP token could au-
tonomously model − sin(x2 + 1) in an unsupervised manner. This approach
significantly enhances Φ-SO’s efficiency by abstracting a complex sub-function
into a manageable token, rather than requiring the framework to deduce the
entire function from scratch, which would conventionally be represented as
{+, exp, x,−, sin,+,□2, x, 1}).

Comparison with existing literature

This proposed approach extends the concept of the linear token found in uDSR

[Landajuela et al., 2022], which allows for a linear combination of input vari-
ables within the symbolic regression process. However, our approach offers
enhanced capabilities for two primary reasons:



142 Chapter 7: Neural Networks as Symbolic Graph Representations

First, unlike uDSR, which does not utilize auto-differentiation for constant
optimization and thus struggles with fitting numerous constants, our method
leverages auto-differentiation. This reliance on auto-differentiation avoids the
need to computationally invert sub-functions across their ancestral graph to
resolve linear relationships, simplifying the optimization process.

Second, our specialized token transcends the mere linear combinations of
uDSR, incorporating a more versatile modeling capacity. It can represent com-
plex polynomial relationships involving non-linear functions of input variables.
This capacity for handling sophisticated mathematical structures significantly
augments the expressive power of our symbolic regression toolkit, enabling it
to tackle more complex and nuanced problems.

7.3.2 Enhancing neuro-symbolic methods with LM op-
timization

Considering future developments, the Levenberg-Marquardt (LM) optimizer
[Ranganathan, 2004] presents a promising enhancement for neuro-symbolic
approaches, particularly for unsupervised learning in physics-related problems
as outlined in 7.1.1. In our reinforcement learning discussions in 3.3.2, the opti-
mization centered on a scalar objective function-referred to as a reward-which
did not directly utilize data-driven gradients and thus required reinforcement
learning to approximate these gradients. Conversely, in 7.2, we leveraged scalar
objective functions with direct data-derived gradients, allowing for more data-
informed constraints on the functional forms.

Building on this, integrating the LM optimization process could further
refine these approaches by utilizing the Jacobian, which expresses the deriva-
tives of each adjustable parameter relative to each data point. This method
can capture a richer set of data-specific information, potentially transforming
the landscape of unsupervised learning by enhancing model accuracy and re-
ducing dependency on large data samples. The ability of the LM optimizer to
handle complex, non-linear relationships with high precision makes it a com-
pelling choice for advancing neuro-symbolic integration, where precise gradient
information is crucial.

7.3.3 Incorporating graph structure priors from AIF

AIF as a pre-processor

As demonstrated in Section 7.1, identifying the underlying graph structure of
a dataset through the detection of separabilities offers significant advantages.
This approach enhances SR by decomposing complex SR tasks into simpler,
manageable sub-tasks. Each sub-function discovered within the graph struc-
ture can be independently resolved through SR, and the resulting expressions
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can subsequently be integrated to construct the comprehensive model. This
method not only streamlines the SR process but also potentially increases
the accuracy and interpretability of the results. Such a strategy of using AI

Feynman-style pre-processing has been effectively employed in uDSR [Landa-
juela et al., 2022], yielding impressive outcomes, particularly on the Feynman
benchmark, which is specifically designed to test the capabilities of such ap-
proaches.

AIF as a prior

While AIF-style approaches are transformative in revealing potential graph
structures within datasets, they are also susceptible to producing false posi-
tives, leading to partially incorrect graphs. To mitigate against this, such find-
ings could be utilized as preliminary priors. As previously outlined in 3.2.3, it
is feasible to integrate deterministic priors into methods where expressions are
sequentially generated. Consequently, we propose enhancing the Φ-SO frame-
work to leverage an initial graph structure provided by our approach described
in Section 7.1. This integration would enable Φ-SO to iteratively assess the
reliability of these priors and adaptively adjust or discard them if they are
found to be erroneous.

This approach not only increases safety by reducing reliance on potentially
incorrect graph structures but also enhances the optimization process. By
optimizing all constants collectively rather than independently for each sub-
function potentially fraught with noise induced inaccuracies, it ensures a more
cohesive and robust learning environment. Furthermore, allowing a single
recurrent neural network to generate all sub-functions within the discovered
graph structure encourages cross-pollination of features and insights across
different parts of the model.

Moreover, integrating an AIF-like discovery tool with a comprehensive SR
approach enhances the overall capability of the system. While AIF methods
excel at simplifying the SR problem, they typically do not extend to solving
it, often resorting to elementary brute-force methods as seen in Udrescu and
Tegmark [2020]. By coupling these methods with a robust SR framework such
as Φ-SO the resulting combined approach has the potential to effectively solve
complex SR challenges.

Comparison with existing literature

Encoding an entire expression directly into a neural network while imposing
and discovering separabilities and symmetries is the foundation of Kolmogorov-
Arnold Networks (KANs) [Liu et al., 2024], which adopt a representation
strategy similar to SINDy, but replace basis functions with free-form spline
functions. While this adds flexibility, it also introduces challenges in terms of
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interpretability and complexity, which may impede the extraction of an ana-
lytical symbolic representation. Furthermore, KANs impose a condition that
each spline function should operate independently on one dimension at a time,
facilitating the detection of separabilities and promoting sparse, simple repre-
sentations akin to those in SINDy-like methods and AI Feynman approaches.

However, there is no guarantee that the learned spline functions learned
will be sufficiently simple to translate into analytical forms, thus limiting full
SR capabilities. Although utilizing free-form spline functions simplifies the
modeling compared to using predefined basis functions, it shares many of the
training difficulties inherent in SINDy-like approaches, such as achieving effec-
tive learning and convergence.

KANs represent a compelling midpoint between our approach, which pri-
oritizes interpretability with a secondary focus on accuracy, and traditional
black-box neural networks, which prioritize accuracy at the expense of trans-
parency. They could be described as “grey boxes” that occasionally can be
converted into “transparent boxes”, offering a balance between understanding
and performance.



Chapter 8

Dark Matter at the Galactic
Scale

Summary.
We examine the prevailing cold dark matter paradigm that dominates cos-

mology, focusing particularly on the challenges it encounters at smaller, galac-
tic scales. We discuss alternative models that may offer solutions to these
discrepancies. We then review key galactic dynamics concepts that are critical
for galactic dark matter studies.

Special emphasis is placed on the Milky Way and the data provided by the
Gaia space telescope. We specifically highlight how studying stellar streams
— long, thin tidal debris formed by the accretion of smaller structures into
our host Galaxy — can help constrain the nature of dark matter.
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In building entirely new machine learning methods for physics and as-
trophysics one could easily drift towards abstractions, which underscores the
need to ground these innovations in tangible physics & astrophysics research.
The enigma of dark matter (DM) [Bullock and Boylan-Kolchin, 2017] is
a perfect example of such a challenge, presenting a unique opportunity to
explore potential new physics, while also serving as an ideal proving ground
for these methods.

In this context, we delve into the issue of constraining the nature of
DM. Despite its success in explaining cosmic phenomena on large scales, the
prevailing DM models encounter significant obstacles at smaller scales — a
situation that often signals the need for new physical theories. The Galactic
scale, in particular, allows for an intimate examination of DM, supported by
a wealth of high-resolution astronomical data.

This Chapter sets the foundation for further discussions exploring the con-
straining on DM through the study of its effects at the galactic scales, setting
the stage for subsequent Chapters focused on this theme. In Section 8.1, we
provide an overview of the contemporary DM paradigm and highlight its chal-
lenges at smaller scales. Section 8.2 examines the influence of DM on galactic
dynamics, introducing essential concepts. Lastly, Section 8.3 explores how our
own galaxy, the Milky Way (MW) aligns with these theories and discusses
methodologies to further constrain the characteristics of DM through galactic
studies.

8.1 Dark Matter

This section offers a concise overview of the Cold Dark Matter (CDM)
paradigm, which currently serves as the dominant model in cosmology (sub-
section 8.1.1). We will also discuss the challenges this model faces at smaller
scales (sub-section 8.1.2) and briefly explore potential resolutions to these ten-
sions (Sub-section 8.1.3).

8.1.1 The cold dark matter paradigm

Dark matter (DM) is a fundamental component of the standard cosmological
model, accounting for approximately 85% of the universe’s total matter con-
tent, or about 27% of its total energy budget. In contrast, dark energy consti-
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tutes about 68%, and baryonic matter-comprising protons and neutrons-makes
up only about 5% [Planck Collaboration, 2016]. Within our own MW, DM
is estimated to constitute roughly 90% of the Galaxy’s mass, with estimates
ranging from 0.90 × 1012 to 1.40 × 1012M⊙ [Cautun et al., 2020]. This mass
predominantly forms a halo extending about 500 kpc, while luminous matter
contributes only about 5 × 1010M⊙ within a stellar halo of approximately 50
kpc [Callingham et al., 2019, Cautun et al., 2020].

Despite not having been directly observed, multiple lines of evidence sup-
port the existence of DM. These include the rotation curves of galaxies [Rubin
and Ford Jr, 1970], gravitational lensing effects [Bartelmann, 2010], the distri-
bution of mass during galactic collisions [Clowe et al., 2004], and constraints
from the cosmic microwave background [Smoot et al., 1992]. Given its over-
whelming abundance relative to baryonic matter, DM predominantly governs
gravitational interactions both at galactic scales and at larger scales.

The quest for the dark matter particle

Direct search:

In both astrophysics and particle physics, determining the nature of DM is
pivotal as particle physics aims at modeling all matter and elementary inter-
actions via a set of particles, yet DM eludes direct observation, detectable only
through its gravitational influences. It is hypothesized to be non-interactive
through electromagnetic forces and minimally interactive, if at all, through
weak nuclear forces. Current experimental constraints place the cross-section
for DM interaction via the weak nuclear force at less than 10−42 cm2, assuming
a DM particle mass greater than 8 GeV [Agnese et al., 2014]. This is exceed-
ingly small compared to even the most unlikely neutron capture events, such
as hydrogen neutron capture at 105 eV, which has a cross-section greater than
10−31 cm2 [Kopecky et al., 1997].

Direct searches for DM involve constructing large-scale astro-particle
detectors on Earth, designed to detect potential DM particles directly. These
experiments are crucial for advancing our understanding of DM’s weak
interactions, if any [Gascon, 2015]. However, as experimental constraints on
the cross-section of DM particles become progressively lower, the prevailing
view is shifting towards a consensus that DM may not interact via the weak
force at all [Oks, 2021]. Recent results from the XENONnT experiment
[Aprile et al., 2012] have further constrained the interaction cross-section of
dark matter particles, approaching the sensitivity limits posed by the neutrino
floor1.

1The neutrino floor refers to a limit in direct dark matter detection experiments where
the signal from neutrinos, ubiquitous subatomic particles, becomes indistinguishable from
potential dark matter signals. This background noise creates a fundamental threshold that
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Beyond the standard model:

Numerous extensions to the standard model of particle physics have been pro-
posed to accommodate DM, each suggesting various hypothetical particles
[Bullock and Boylan-Kolchin, 2017]. Notably, the concept of weakly interac-
tive massive particles (WIMPs), with mass-energy around m.c2 ∼ 100 GeV2,
emerged from theories predicting a freeze-out production/destruction process
active until the Universe cooled to a temperature T such that k.T ∼ m.c2.
This scenario has been famously dubbed the WIMP miracle. Potential WIMP
candidates include particles predicted by extensions such as supersymmetry
[Sohnius, 1985] and the Little Higgs models [Schmaltz and Tucker-Smith, 2005].
Additionally, more conservative extensions of the standard model suggest other
candidates like axions, which could also resolve the strong interaction charge/-
parity symmetry problem [Kim and Carosi, 2010], and sterile neutrinos-right-
handed neutrinos with m.c2 ∼ 1 eV that interact predominantly through grav-
ity. Beyond these, there exists a “zoo” of other particle candidates, each pri-
marily interacting via gravity and varying widely in mass. For a comprehensive
review, see Feng [2010].

Cold dark matter

The majority of particle candidates align with the ΛCDM framework, where Λ
represents dark energy, and CDM denotes cold dark matter. In this cosmologi-
cal model, DM is categorized as cold, meaning its velocity was significantly less
than the speed of light at the epoch of radiation-matter equivalence, and dark,
indicating that it interacts solely through gravitational forces. This implies
that DM does not engage in electromagnetic interactions and has minimal, if
any, interactions through nuclear forces, rendering it effectively dissipationless
and collisionless.

The ΛCDM model excels in explaining large-scale phenomena (over 1 Mpc),
such as the formation and structure of the cosmic microwave background
(CMB), the distribution of matter on large scales, the observed abundances of
hydrogen, helium, and lithium, and the accelerating expansion of the universe
[Bullock and Boylan-Kolchin, 2017]. ΛCDM gives robust predictions for the
current counts of DM halos as well as their structure. In addition, the ΛCDM
paradigm as a backbone of galactic formation theory is also able to predict

complicates the detection of weakly interacting massive particles, necessitating more ad-
vanced detection technologies or methods to differentiate between neutrino interactions and
genuine dark matter signals.

2Throughout this Section, k and c refer to the Boltzmann constant, and the speed of
light in vacuum, respectively.
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macroscopic properties of galaxies that form within DM halos with an increas-
ing accuracy (counts, colors, morphologies, evolution over time) [Vogelsberger
et al., 2014, Schaye et al., 2014].

8.1.2 Cold dark matter at small scales

Within the CDM framework, smaller objects are theorized to collapse first,
later merging hierarchically to form larger, more massive structures in a
bottom-up hierarchical formation. This pattern is due to the shape of the
power spectrum of the cosmic microwave background [Durrer, 2020].

Nevertheless, the CDM model encounters significant challenges when com-
pared with observational data at smaller scales-specifically, lengths smaller
than ∼ 1 Mpc and masses below ∼ 1011M⊙. These discrepancies raise ques-
tions about the sufficiency of the CDM model.

Missing satellite problem

A significant challenge for the CDM paradigm is the discrepancy known as
the missing satellite problem. Observationally, there are only about 50 galax-
ies with stellar masses M∗ > 300M⊙ within 300 kpc of the MW. In contrast,
CDM predicts the presence of approximately 1000 dark subhalos with masses
exceeding 107M⊙ around MW-like galaxies. However, accounting for our cur-
rent detection limits through completeness corrections, many studies [see, for
example, Doliva-Dolinsky et al., 2022] have suggested that this missing satellite
problem may be overstated.

In addition, several mechanisms have been proposed to reconcile these
predictions with a potentially lower count of observed dwarf galaxies. For
instance, it is suggested that many of the DM halos do exist but remain devoid
of luminous matter due to baryonic feedback effects, which inhibit galaxy
formation in lower mass halos. Additionally, it is possible that interactions
with larger galaxies could have stripped some dwarf galaxies, preventing their
detection [Bullock and Boylan-Kolchin, 2017]. Despite the lack of direct
evidence for subhalos in general, their existence is not ruled out, and their
detection is an active area of research, as will be discussed in subsequent
sections of this chapter.

Cusp core discrepancy

The cusp-core discrepancy represents a more significant challenge to the CDM
paradigm. In the central regions of DM-dominated galaxies, particularly
dwarf galaxies, CDM predicts a DM density profile that is considerably
cusped, modeled as ρ(r) ∼ r−α with α typically between 0.8 and 1.4.
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However, observational data from galaxy rotation curves suggest a much
flatter density profile, with α values ranging from 0 to 0.5 (ρ and r rep-
resenting the density and the radius respectively). While it is proposed
that baryonic feedback might modify the DM distribution in these galaxies,
such mechanisms are estimated to account for the observed profiles in only
about 50% of DM-dominated dwarf galaxies [Battaglia and Nipoti, 2022,
Bullock and Boylan-Kolchin, 2017]. This discrepancy remains a critical issue,
pointing towards potential modifications needed within the CDM framework
or alternative explanations.

Too big to fail problem

The “too big to fail” problem presents another formidable challenge within
the CDM framework. This issue arises from the assumption that baryonic
feedback mechanisms prevent galaxy formation in smaller subhalos (with
virial masses less than 1010M⊙), which could reconcile some observations
with the predictions of ΛCDM. Under this assumption, only larger subhalos
would facilitate galaxy formation, aligning with the relatively small number
of observed galactic satellites. Contrary to this, studies have found that
galaxy formation is feasible in even smaller halos, highlighting a contradiction
in this assumption [Boylan-Kolchin et al., 2011]. Some theories propose
that galaxies formed in these smaller halos might be so small that baryonic
feedback mechanisms, which could disrupt halo structure and impede star
formation, have little to no effect, rendering these galaxies anomalies to the
feedback mechanism narrative [Ogiya and Burkert, 2015]. Furthermore, while
some argue that the scarcity of observed dwarf galaxies could be attributed
to interactions with larger galaxies, which absorb or disrupt their smaller
counterparts, this does not account for the absence of field dwarfs unbound to
any major galaxy group [Jiang and van den Bosch, 2015].

Cold dark matter tensions

The three aforementioned challenges — missing satellites, the cusp-core
discrepancy, and the too big to fail problem — have received significant
attention in the literature. However, it is important to acknowledge that
additional significant tensions have also emerged, further complicating the
ΛCDM narrative at these scales.
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Rotation curves:

One notable issue is the diverse rotation curves observed in dwarf galaxies.
These galaxies display a wide variety of curve shapes in their inner regions.
While recent simulations suggest that baryon-induced core formation in dwarf
galaxies of medium to high mass is possible and even common, reproducing
the diversity of these rotation curves across different mass ranges remains
a challenge for all current models [Santos-Santos et al., 2020]. This issue is
further complicated by strong correlations observed between features in the
baryonic mass distribution and features in the rotation curves, contrary to
expectations under the DM hypothesis. This correlation, often referred to
as “Renzo’s rule”, is notably evident in several spiral galaxies [Famaey and
McGaugh, 2012].

Satellite planes:

Enhanced observational capabilities in the Local Group have led to another
intriguing discovery: nearly all of the satellites orbiting the MW [Kroupa et al.,
2005] and about half of those orbiting our neighboring Andromeda galaxy
(M31) [Ibata et al., 2013] are arranged in kinematically coherent, thin planar
distributions.

This phenomenon could be attributed to specific accretion events involving
massive satellites such as the Large Magellanic Cloud (LMC) for the MW or
M33/M32 for Andromeda, which can significantly influence the planarity of
their respective satellite populations by accreting multiple satellites on similar
orbits and enhancing the planarity of existing satellites [Samuel et al., 2021, Li
and Helmi, 2008, Garavito-Camargo et al., 2021]. In addition, the alignment
within the Local Group as a whole may also play a role in explaining this
observed planarity [Pawlowski and McGaugh, 2014].

However, recent observations of satellite systems beyond the Local Group,
particularly around dozens of MW analogs that are more cosmologically rep-
resentative than just the MW and M31, indicate that this planar distribution
of satellites is not an isolated phenomenon but a more widespread occurrence
[Geha et al., 2017, Mao et al., 2021] that is not explained by current CDM
simulations. Nevertheless, some studies suggest that such planar structures
may be transient phenomena. For instance, Sawala et al. [2023] argue that
these planes are short-lived and not necessarily in conflict with the standard
ΛCDM model.

A comprehensive review of the small-scale challenges faced by the ΛCDM
model, including these satellite planes observations, was provided by Bullock
and Boylan-Kolchin 2017, Sales et al. 2022.
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8.1.3 CDM alternatives

Warm Dark MatterCold Dark Matter

Figure 8.1: Cold Dark Matter vs. Warm Dark Matter Halos. This figure, adapted
from Lovell et al. [2014], displays results from N-body simulations comparing Cold Dark Mat-
ter (CDM) and Warm Dark Matter (WDM) configurations. The image intensity represents
the projected squared density of dark matter, while the hue indicates the density-weighted
mean velocity dispersion. The simulations reveal that, in contrast to the lumpy dark mat-
ter distribution predicted by CDM models for MW-like halos, WDM models (here with a
particle mass of 1.456 keV) predict fewer, yet more massive, dark matter lumps.

Dark matter alternatives

The standard ΛCDM model, while phenomenologically successful in various
scenarios, faces challenges at small scales, prompting consideration of alterna-
tive DM models. One such alternative, the Warm Dark Matter (WDM) model,
proposes that DM particles have non-negligible velocities that smooth out dis-
tributions on small scales, potentially addressing the “too big to fail” problem.
This is illustrated on Figure 8.1. In contrast, Hot Dark Matter (HDM) would
facilitate smoothing only at supra-galactic scales due to its top-down formation
mechanism-forming superclusters first and galaxies later-unlike the bottom-up
approach of CDM where smaller structures form first [Peter, 2012, Bullock and
Boylan-Kolchin, 2017]. Figure 8.1 summarizes key parameters distinguishing
these models.

Another innovative model is the self-interacting dark matter (SIDM)
model, which introduces interactions between DM particles akin to a screened
Coulomb potential. This interaction mechanism is designed to resolve the
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Parameter Hot Dark Matter Warm Dark Matter Cold Dark Matter

vz=0
th = kB.T/m 30 km.s−1 0.03 km.s−1 ∼ 0 km.s−1

Mass (m.c2) 1eV 1keV 100GeV

Table 8.1: Mass and vz=0
th for Hot, Warm and Cold Dark Matter models. Mass

and thermal velocity (at redshift z=0) vz=0
th of dark matter in the Cold Dark Matter, Warm

Dark Matter and Hot Dark Matter paradigms [Bullock and Boylan-Kolchin, 2017].

cusp-core discrepancy by allowing DM to self-interact and thereby alter its
distribution within galaxy cores [Spergel and Steinhardt, 2000].

Modified Newtonian Dynamics

In response to unresolved tensions within the ΛCDM model, some researchers
propose that our understanding of gravity itself might be incomplete. Modi-
fied Newtonian Dynamics (MOND) introduces an empirical law that seeks to
explain galactic phenomena without the need for DM [Milgrom, 1983, Beken-
stein and Milgrom, 1984]. It incorporates a fundamental acceleration scale,
a0 effectively substituting the degrees of freedom introduced by DM with this
new parameter.

MOND modifies the Newtonian dynamics at low accelerations. Specifically,
the acceleration g under MOND is described by g =

√
a0gN , where gN is

the Newtonian gravitational acceleration. This modification allows MOND
to explain various observational phenomena, especially the rotation curves
of galaxies, using only their baryonic matter [Famaey and McGaugh, 2012].
The theory is now being tested within the Local Group [Oria et al., 2021].
However, MOND remains an empirical framework tailored primarily to fit
galaxy rotation curves and faces significant challenges in explaining phenomena
at larger scales, such as galaxy clusters, gravitational lensing, and cosmological
observations [Angus et al., 2006].

A challenge for small-scale physics ?

Although these models often require additional parameters when compared
to ΛCDM they allow for the resolution of some small-scale paradoxes posed
by ΛCDM. However, it is not clear yet if these small-scale issues can simply
be accommodated by a better understanding of small-scale physics such
as galactic dynamics, feedback phenomena or if they will instead require a
radical revision of the standard cosmological model and of our understanding
of the nature of DM. In any case, any correct description of the Universe must
at least match ΛCDM on large scales (> 1Mpc). Understanding which of
these options is correct is a pressing matter for both astrophysics and physics
in general.
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Insights

This thesis contributes to ongoing efforts to resolve the challenges associated
with understanding DM at small scales. Specifically, this work is aligned with
broader initiatives that aim to derive a reliable and high-resolution map of the
spatial distribution of DM in galaxies, based on observations from the local
universe. Here, “reliable” implies minimal assumptions about the nature of
DM, while “high resolution” suggests a level of detail sufficient to potentially
reveal DM substructures, should they exist.

Such a map would be invaluable, potentially confirming or refuting ΛCDM
predictions at galactic scales and clarifying whether discrepancies at small
scales arise from the ΛCDM model itself or from difficulties of accurately
modeling baryonic physics on scales smaller than 1 Mpc. For instance, ΛCDM
posits that the dense centers of small halos should withstand the hierarchical
merging process, implying that DM halos should host numerous substructures
[Ghigna et al., 1998]. The review by Bullock and Boylan-Kolchin [2017] un-
derscores the importance of observational projects aimed at constraining DM
distributions, categorizing them as one of the most critical — yet achievable
— objectives in this domain over the coming decade. Since essential properties
of non-linear small scale structures are governed by the particle nature of DM,
this type of approach might provide valuable constraints (such as the particle
mass, for instance) [Bullock and Boylan-Kolchin, 2017].

8.2 A Dynamical Picture of Galaxies

This section delves into the dynamics of galaxies, reviewing foundational no-
tions critical for understanding the dynamical clues about dark matter dis-
cussed in this thesis.

Sub-section 8.2.1 discusses various halo profile models that describe the
distribution of DM in galaxies. Sub-section 8.2.2 explores how galactic orbits
can be characterized through so called actions, utilizing Jeans’ Theorems as a
theoretical framework. Finally, sub-sections 8.2.3 and 8.2.4 respectively exam-
ine the hierarchical structure formation of galaxies and how merging fragments
can be stripped into tidal streams.
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8.2.1 Halo models

In the CDM model, DM forms extensive halos that envelop galaxies. Through
N-body simulations of CDM several empirical DM density profiles have been
identified. A well-established model is the Navarro, Frenk, and White [1997]
(NFW) profile, described by:

ρNFW(r) =
ρ0

r
rs

+ (1 + r
rs

)2
(8.1)

where ρ represents the DM density, r is the radial distance from the center, ρ0
is the central density, and rs is the scale radius. These parameters vary from
one halo to another.

Another significant profile is the Einasto profile, which is often favored in
dark-matter-only simulations [Einasto, 1965]:

ρEin(r) = ρ0 exp

[
−2

γ

((
r

rs

)γ

− 1

)]
(8.2)

Here, γ is a shape parameter that determines the steepness of the profile’s
slope, and rs is the scale radius.

Contrasting these “cuspy” profiles, where density increases sharply towards
the center, is the Burkert profile, which is often applied to dwarf galaxies and
suggests a more “cored” inner structure — accommodating a flatter density
distribution at their centers. [Burkert, 1995]:

ρBurk(r) =
ρ0(

1 + r
rs

)(
1 +

(
r
rs

)2) (8.3)

The gravitational potential Φ related to these density profiles can be derived
using the Poisson equation given by:

∇2Φ = 4πGρ (8.4)

The diverse array of halo profiles, often employed as empirical tools in
such investigations, present an ideal scenario for the application of symbolic
regression (SR) —- which aims at automatically finding analytical functions
fitting data. This approach which was the subject of Chapters 4-7 can
efficiently navigate through numerous potential analytical combinations to
identify the most relevant models.

This methodology is particularly valuable here, where halo profiles are ex-
pected not only to align with simulation data but also to yield analytically
tractable expressions for integrated mass and potential, which must be physi-
cally valid at infinity. Incorporating these criteria into the objective function
of a SR analysis can further enhance the relevance of such approaches. Addi-
tionally, these profiles should correspond to observable stellar distributions to
facilitate direct comparisons with empirical data.
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8.2.2 Actions

Let us consider a probability density function f of stars in a phase-space co-
ordinate (which includes both position x and velocity v ) evolving within a
gravitational potential Φ. According to Jeans’ weak theorem [Binney and
Tremaine, 2011], the dynamical state of such a system can be elegantly de-
scribed using integrals of motion:

Jeans’ weak theorem:

Theorem 1. The probability density function of orbits in phase-space f can
fully be described by integrals of motion such that f = f(J1, ..., Jn), n ∈ N ⇔
The probability density function of orbits in phase-space f is a solution of the
steady-state collisionless Boltzmann equation (CBE).

The CBE being given by:

df

dt
= v.

∂f

∂x
− ∂Φ

∂x
.
∂f

∂v
= 0 (8.5)

Each unique orbit can in that context be associated with a unique value of
J. θ specifies the position of the star on this orbit. Thus, for each star, J is
conserved along the orbit. Hence, J vectors are named integrals of motion. An
integral of motion I is described as a quantity which does not change along the
orbit dI

dt
(x,v) = 0. In certain scenarios, Jeans’ strong theorem can be applied

to further simplify this representation:

Jeans’ strong theorem:

Theorem 2. Almost all orbits of the system are regular (i.e. non chaotic) with
non-resonant frequencies⇒ The probability density function of orbits in phase-
space f can fully be described by only three integrals of motion J = (J1, J2, J3)
such that f = f(J1, J2, J3) which can be named actions.

Hereafter, when referring to actions, we denote them as the vector J. In
cylindrical coordinates, which are typically used to describe the MW, action
coordinates are expressed as J = (Jr, Jϕ, Jz), representing the amplitude of or-
bital motion in the radial, azimuthal, and vertical directions, respectively. This
is visually depicted in Figure 8.2. Actions are especially valuable for galactic
modeling due to their nature as adiabatic invariants, they remain constant if
the galactic potential evolves slowly over time [Binney and Tremaine, 2011].
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Figure 8.2: Illustrating the physical significance of actions in galactic dynamical
models. When Jeans’ strong theorem is satisfied, one can describe orbits by three actions-
integrals of motion-expressed in cylindrical coordinates as J = (Jr, Jϕ, Jz). Displayed here
are the effects of each component of these action coordinates within a McMillan [2017a]
MW-like potential. The Milky Way is represented in black. A toy orbit encoded by J0 =
(500, 20, 2500) kpc · km · s−1, is shown in light grey. Successive panels illustrate the orbital
changes induced by individually increasing each action component: ∆J = (5000, 0, 0) kpc ·
km·s−1 (top panel), ∆J = (0, 5000, 0) kpc·km·s−1 (middle panel), and ∆J = (0, 0, 8000) kpc·
km · s−1 (bottom panel) computed using the AGAMA [Vasiliev, 2019] software for action-
based modeling. These adjustments reveal how Jr, Jϕ, Jz specifically influence the radial,
azimuthal, and vertical components of orbital motion, respectively.
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8.2.3 Hierarchical structure formation

Hierarchical formation

In the ΛCDM cosmology, galaxies form hierarchically — a process where mas-
sive galaxies grow by accreting smaller mass structures, including low-mass
galaxies [Mo et al., 2010]. The first evidence for proto-galactic fragments was
actually discovered in the MW and provided empirical support for this theoret-
ical framework, demonstrating that galaxies grow, at least partly, by merging
with these smaller constituents [Searle and Zinn, 1978]. One should note that
an intriguing prediction of ΛCDM that is not yet confirmed observationally is
the absorption of starless DM halos [Deason and Belokurov, 2024].

Galactic archaeology

This concept of hierarchical assembly paved the way for the emergence of the
field of Galactic Archaeology, which investigates the formation and evolution
of galaxies. Fueled by extensive astronomical surveys, Galactic Archaeology
has rapidly advanced in the past two decades, yielding significant insights from
both observational and theoretical studies. Despite its progress, as we will see
this field still grapples with fundamental challenges, triggering an never ending
appetite for more data [Bland-Hawthorn and Gerhard, 2016].

Tidal streams

One of the promising methods in galactic archaeology involves studying the
tidal streams formed from the disruption of infalling low-mass fragments by
their larger hosts. If these disruptions occur gradually — where the energy
imparted is just sufficient to unbind the outermost stars — these stars trace
out orbits closely resembling that of their progenitor fragment, forming what
is known as a “tidal stream.” These streams offer a direct method to map the
gravitational potential of the host galaxy, providing valuable insights into its
mass distribution and therefore the underlying nature of DM [Combes et al.,
1999].

8.2.4 Stellar streams

About sellar streams

These stellar streams represent the elongated trails of tidal debris that origi-
nate from disrupted dwarf galaxies and globular clusters (GCs) — dense and
gravitationally bound systems 103-106 stars. These structures often endure sig-
nificant tidal forces exerted by the gravitational field of a host galaxy, leading
to their gradual disintegration [Lynden-Bell and Lynden-Bell, 1995].
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Figure 8.3: Illustration of a stellar stream. Artistic view of a dwarf galaxy being ripped
apart by tidal forces of a galaxy and forming a stellar stream. Illustration courtesy of Jon
Lomberg.

Formation mechanism

The mechanism of stream formation involves tidal forces pulling stars away
from their parent bodies at Lagrange points, where the gravitational forces
of the satellite and the galaxy balance the centripetal force of orbiting stars.
This dynamic results in the creation of two distinct features: the leading tidal
tail, composed of stars that orbit faster and move ahead of the progenitor,
and the trailing tidal tail, which consists of stars that orbit slower and thus
lag behind [Binney and Tremaine, 2011]. See Figure 8.3 for an illustration of
a stellar stream. These tails trace the orbital path of the original cluster or
dwarf galaxy, providing a unique probe into the distribution of matter.

About progenitors

However, streams originating from dwarf galaxies tend to be longer, wider, and
smoother compared to those from GCs. This difference stems not only from
their initial mass but also from their star density. Dwarf galaxies, possessing
higher initial masses and velocity dispersions, produce streams that are more
substantial, wider, and develop more rapidly [Simon and Geha, 2007].
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Dark matter and accretion history

Stellar streams serve as both fossil records of galactic histories and as probes
of the galactic acceleration field, reflecting the distribution of dark matter that
dominates the mass of most galaxies [Moster et al., 2010].

Streams beyond the Milky Way

Beyond the MW, numerous stellar streams have been observed throughout the
Local Universe, referred to as extragalactic streams. These streams present a
rich diversity of merger histories across various host galaxies. However, current
observations typically capture only their 2D positions3, making their analysis
particularly challenging [Nibauer et al., 2023].

Moreover, recent surveys have uncovered many low surface-brightness fea-
tures across the local Universe, revealing that what were thought to be isolated
features are often extensive networks of tidal streams and shells [B́ılek et al.,
2020, Sola et al., 2022]. Similarly infalling structures have been reported within
the Local Group, although these observations often lack velocity data and are
only projections, complicating their use in dynamic modeling [Doliva-Dolinsky
et al., 2022, 2023].

8.3 The Milky Way

This section reviews why the Milky Way (MW) is an ideal laboratory for study-
ing DM. We begin by discussing how near-field cosmology can be leveraged to
study DM within the MW (sub-section 8.3.1), followed by a concise overview
of the structural components of the MW (sub-section 8.3.2). We then high-
light the transformative impact of Gaia observations on our understanding of
galactic archaeology (sub-section 8.3.3), and explore methodologies for using
these observations to constrain the properties of DM. This includes analyz-
ing stellar streams (sub-section 8.3.4) and utilizing snapshots of phase-space
stellar coordinates (this will be the subject of Section 10.1).

3We will nuance that point in sub-section 11.2.1.
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8.3.1 A dark matter laboratory

Data availability

Given our residence within the MW, referencing its ‘proximity’ is quite the
understatement. This unique positioning grants us access to exceptionally
high-quality data, establishing the MW as an unparalleled laboratory for con-
straining DM models and deepening our understanding of galaxy formation.
The ability to resolve individual stars allows for precise measurements of ve-
locities via spectral redshift analysis and distances through parallax methods4.

Archaeology

This exceptional data quality facilitates in-depth studies of stellar populations,
including analyses of metallicity that can be correlated with dynamical prop-
erties to reveal patterns in the galactic structure and history. Such rich local
data triggered a profound interest in the history of the MW itself for its own
purpose, akin to the geological study of Earth.

Sagittarius

The discovery of the Sagittarius stream within the MW marked a significant
milestone in galactic archaeology [Ibata et al., 1994]. It was crucial in providing
early constraints on the shape of the MW’s halo, suggesting it could be prolate,
mildly oblate, or even triaxial [Ibata et al., 2001, Helmi, 2004, Johnston et al.,
2005, Law and Majewski, 2010]. Its detailed features continue to be a subject
of study, revealing more about our galactic environment [see e.g., Oria et al.,
2022a].

The Sagittarius stream’s radial velocities have been instrumental in devel-
oping accurate models of its dynamics, facilitated by the abundance of bright
stars in such a massive satellite [Majewski et al., 2004] — a key advantage of
studying local objects.

Near-field cosmology

This focus on our immediate neighborhood is termed near-field cosmology, a
field that leverages detailed observations of the MW and its surroundings to
infer universal physical processes that govern cosmic time scales [Freeman and
Bland-Hawthorn, 2002, Bland-Hawthorn and Gerhard, 2016].

4This method involves measuring the apparent positional shift of a star observed from
opposite ends of the Earth’s orbit around the sun and applying basic trigonometry to de-
termine distance.
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8.3.2 Milky Way structure

Figure 8.4: Illustration of the Milky Way. This artistic representation depicts the
various components of the Milky Way, as outlined in Sub-section 8.3.2. Illustration courtesy
of Pablo Carlos Budassi.

This subsection provides a topological overview of our galaxy, the MW. The
MW has an estimated total mass ranging between 1.2×1012 and 1.9×1012 M⊙
[Fragione and Loeb, 2017].

Inner component

Structurally, it is categorized as a barred spiral galaxy, featuring a central bar-
shaped structure of stars. This central area includes a boxy/peanut-shaped
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bulge with a diameter of 6 kpc and thickness of 4 kpc, comprising both young
and old stars5. At the core of this bulge lies the supermassive black hole
Sagittarius A* (Sgr A*), which has a mass of approximately 4.3× 106 M⊙.

Stellar component

The galaxy also includes a warped disk extending up to 30 kpc in diameter
and 0.3 kpc in thickness, populated with young and old stars, gas, dust, and
open clusters. These open clusters are loosely bound and tend to dissolve
quickly. Our solar system is located within this disk, approximately 8 kpc
from the center. Surrounding the disk is a spherical, gasless, and dustless
stellar halo with a diameter of about 40 kpc, predominantly containing old
stars and globular clusters (GCs) [Mo et al., 2010, Brau, 2001].

Outer components

Moreover, significant infalling structures need to be considered when mod-
eling the MW’s potential, such as the Large Magellanic Cloud (LMC), the
Small Magellanic Cloud (SMC), and their associated streams, as well as the
highly disrupted Sagittarius dwarf galaxy, now mostly in the form of a tidal
stream [Brau, 2001]. These features are depicted in Figure 8.4. Lastly, the
DM halo, comprising approximately 90% of the galaxy’s mass and extending
to ∼ 100 kpc in radius, remains the most enigmatic component of our galaxy’s
structure.

8.3.3 Gaia

Motivations

The mapping of DM distribution across the MW necessitates extensive data,
particularly detailed kinematics of stellar streams, which were not adequately
available prior to the Gaia mission. The complexity of the MW’s halo, ev-
idenced by interactions among structures like the Palomar 5 [Küpper et al.,
2015] and GD-1 [Grillmair and Dionatos, 2006] streams, alongside the signifi-
cant disequilibrium induced by interactions such as those with the Large Mag-
ellanic Cloud [Gómez et al., 2015], demands more nuanced and time-dependent
models which in turn require larger datasets to achieve accurate potential re-
constructions.

The European Space Agency’s Gaia mission addresses this need by map-
ping the positions and velocities for nearly two billion stars [Gaia Collabora-
tion, 2016]. This unprecedented data collection which — which saw its latest
release through Data Release 3 (DR3) [Gaia Collaboration, 2022] — supports a

5Older stars are generally metal-poor as they were formed in an early universe.
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wide array of projects, ranging from constraining the MW’s potential through
observations of its disk [see e.g., Horta et al., 2024] to detailed analyses of its
stellar streams [e.g., Malhan and Ibata, 2018, Koposov et al., 2010, Sanders
and Binney, 2013, Malhan and Ibata, 2019, Ibata et al., 2021, Ibata et al.,
2021, Nibauer et al., 2022].

The Gaia revolution

Observational data

With the Gaia mission, as astronomers we now have access to unprecedented
five-dimensional (5D) astrometric data for for hundreds of millions of stars.
This 5D data set includes three-dimensional positional information — stellar
coordinates on the sky combined with distances calculated using the parallax
method — and two-dimensional velocity information derived from proper mo-
tions, which simply reflect the apparent motion of stars across the sky corrected
for distance.

However, it is important to recognize the inherent uncertainties in these
measurements. Stellar distances are subject to significant errors6. Addition-
ally, the outer regions of the MW’s DM halo-areas critically important for
understanding DM properties-tend to have fewer tracers, complicating efforts
to derive detailed characteristics of DM from this data [Gaia Collaboration,
2016].

Archaeological and algorithmic revolutions

The wealth of data provided by Gaia has revolutionized our understanding
of the MW’s structure and history. We have identified several dwarf galaxies
that have been accreted and phase-mixed into the MW [Belokurov et al., 2018,
Myeong et al., 2019, Helmi et al., 2018], as well as moving groups and dissolved
star clusters within the Solar neighborhood [Ramos et al., 2018, Antoja et al.,
2018]. Additionally, Gaia’s precise measurements have facilitated the detec-
tion and confirmation of numerous new stellar streams, leading to an order of
magnitude increase-from about ten to over a hundred-in the known number of
such streams [Bonaca and Price-Whelan, 2024] mostly thanks to Malhan and
Ibata [2018], Malhan et al. [2018], Malhan et al. [2022].

On the computational front, which plays a critical role in this thesis, the
era of Gaia has sparked the development of innovative methods for detecting
new streams around the MW [Necib et al., 2020, Dodd et al., 2023, Shih et al.,
2021, Pettee et al., 2023]. A prime example is the STREAMFINDER algorithm,
which identifies overdensities of stars near computed orbits based on a model

6Approximately 100µas, and the velocity components perpendicular to the line of sight
can have uncertainties around 1, 000µas.
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of the MW’s mass distribution [Malhan and Ibata, 2018]. This algorithm will
be briefly described in sub-section 9.3.1.

For a comprehensive atlas of streams identified in the MW up to Gaia DR3,
see Ibata et al. [2021a]. For detailed reviews of MW archaeology in the era of
Gaia, refer to [Deason and Belokurov, 2024, Bonaca and Price-Whelan, 2024].
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Figure 8.5: Gaia Coverage. This figure illustrates the relative density of stars observed
by Gaia, with color gradients indicating stellar density-ranging from very high densities
(purple-blue) near the Sun to lower densities (pink) farther away. The background provides
two perspectives of the Milky Way: an edge-on view of the galaxy (Gigagalaxy Zoom,
ESO/S. Brunier/S. Guisard: as seen from ESO, Chile) and an artistic face-on impression
(NASA/JPL-Caltech/R. Hurt) [Robin et al., 2012].

The 6D sample

Availability

With the release of Gaia DR3 [Gaia Collaboration, 2022], we now possess
comprehensive 6D phase-space information (three-dimensional positions and
velocities) for approximately 33 million stars allowing action-based modeling.
This is rendered possible by the inclusion of radial velocity measurements de-
rived from stellar spectra. It is important to note, however, that proper motion
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measurements rely on accurate distance estimations, which in turn depend on
parallax. The further a star, the less precise its parallax measurement due to
the limitations of trigonometric methods.

Constraints and coverage

Most stars for which we have complete 6D data, and exhibit a parallax signal-
to-noise ratio greater than 10, are therefore located relatively close to our Sun-
within about 3 kpc. These observational constraints have limited the depth of
Gaia’s general astrometric coverage, affecting more than just radial velocity
measurements, as illustrated in Figure 8.5. Despite this spatial limitation,
the availability of full orbital data from a uniform survey framework presents
significant opportunities for advancing our understanding of galactic dynamics,
even though the survey depth is somewhat restricted.

It is important to recognize that while some stars from stellar streams near
the Sun were previously detected [Helmi et al., 1999], it was not until Gaia
Data Release 2 (DR2) that a significant number of stellar stream structures in
the inner Galaxy were cataloged [Ibata et al., 2019].

Near-Sun structures

Contrary to the expectation that tidal debris in the vicinity of the Sun would
phase-mix rapidly due to short dynamical times, the release of Gaia DR3 has
enabled us (this is a pivotal subject of Chapter 9) and others to demonstrate
otherwise [Gaia Collaboration, 2022]. Specifically, this data release sparked
a significant increase in the discovery of stellar streams and structures by
utilizing the comprehensive 6D data set available for a select group of stars
[Viswanathan et al., 2023, Tenachi et al., 2022, Oria et al., 2022b, Dodd et al.,
2023] very much like the notable Nyx stellar stream, which was identified by
focusing on samples near the Sun [Necib et al., 2020].

8.3.4 Probing Dark Matter with Stellar Streams

Stellar streams are crucial for mapping the DM distribution within the MW,
having already shown the presence of massive DM halos around both the MW
and the LMC [Bonaca and Price-Whelan, 2024].

Mapping the halo shape

Theoretical studies suggest that the extensive phase-space distribution of stel-
lar streams, which can stretch beyond 100 kpc, makes them excellent probes
for measuring both the mass and the shape of the DM halo at large scales [Du-
binski et al., 1999]. Their great extent offers unique insights into the DM halo
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structure, positioning them as one of our most informative tracers [Deason and
Belokurov, 2024].

Detecting subhalos

Furthermore, stellar streams could facilitate the detection of DM subhalos
at smaller scales [Ibata et al., 2002]. Observations of underdensities or gaps
within these streams often indicate interactions with subhalos, providing a
direct method to detect otherwise invisible star-free DM halos, a key prediction
of the ΛCDM model [Carlberg, 2012]. Notably, Bonaca et al. [2019] have
analyzed features in the GD-1 stream, such as gaps and spurs, attributing
them to encounters with dark matter substructures.

Challenges and priorities

While the data from stellar streams is invaluable, it is also complex. Each
stream studied in detail suggests additional dynamical interactions affecting its
density structure. Identifying these subhalos would not only support ΛCDM
predictions but also help resolve the long-standing missing satellites puzzle
[Klypin et al., 1999]. Current community priorities include discovering new
streams in the outer halo and conducting large-scale spectroscopic follow-ups
to obtain radial velocities [Bonaca and Price-Whelan, 2024] — a work we
conduct in Chapter 9.

Additionally, it is worth mentioning that the acceleration field can be
probed using the near Sun 6D sample from Gaia located in the disk, which of-
fers alternative insights into galactic dynamics. This alternative methodology
will be explored in Chapter 10.
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Milky Way Archaeology

Portions of the content presented in this Chapter have been previously
discussed in the following publications:

2022 Typhon: A Polar Stream from the Outer Halo Raining through the Solar Neighborhood
W. Tenachi, P.-A. Oria, R. Ibata, B. Famaey, Z. Yuan, A. Arentsen, N. Martin,
A. Viswanathan
ApJL 935 L22, arXiv:2206.10405

2022 Antaeus: A Retrograde Group of Tidal Debris in the Milky Way’s Disk Plane
P.-A. Oria, W. Tenachi, R. Ibata, B. Famaey, Z. Yuan, A. Arentsen, N. Martin,
A. Viswanathan
ApJL 936 L3, arXiv:2206.10404

2023 Charting the Galactic acceleration field II. A global mass model of the Milky Way from
the STREAMFINDER Atlas of Stellar Streams detected in Gaia DR3
R. Ibata, K. Malhan, W. Tenachi, et al
ApJ 967 89, arXiv:2311.17202

Summary.
We discuss our contributions to identifying new probes of dark matter

within the Milky Way through the detection of stellar streams. Specifically,
we detail the discovery of two new streams, Typhon and Antaeus, identified
from Gaia’s near-Sun 6D sample. Additionally, I outline my involvement in
follow-up observational campaigns that have leveraged 5D data from Gaia DR3
to detect multiple new stellar streams.

https://doi.org/10.3847/2041-8213/ac874f
https://arxiv.org/abs/2206.10405
https://doi.org/10.3847/2041-8213/ac86d3
https://arxiv.org/abs/2206.10404
https://doi.org/10.3847/1538-4357/ad382d
https://arxiv.org/abs/2311.17202
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As explored in the previous Chapter, understanding the accretion history of
the Milky Way — a field known as Galactic Archeology — through the study of
stellar streams1 can assist us in testing the ΛCDM model2 of galaxy formation.
It is also of crucial importance for probing the acceleration field of the Milky
Way and its underlying dark matter distribution, thereby providing insights
into its nature. However, due to the complex nature of accretion events, these
studies demand an increasing amount of observational probes data.

Accordingly, a primary focus within the community is the detection and
dynamical characterization of new stellar stream structures [Bonaca and
Price-Whelan, 2024]. In this Chapter, we present our contributions to this
effort. We explore methodologies for discovering and analyzing stellar streams
in the era of the Gaia mission, with a particular emphasis on leveraging the
extensive data available from Gaia Data Release 3 (DR3) [Gaia Collaboration,
2022].

First, we introduce two new structures identified by analyzing the near-
Sun 6D sample3 from Gaia, focusing on members passing through the solar
neighborhood at high velocities. Specifically, in Section 9.1, we describe a
newly discovered stream, which we have named Typhon. This polar stream
extends to the outer halo of the MW, reaching distances up to ∼ 100 kpc. In
Section 9.2, we discuss Antaeus, a retrograde moving group located within the
disk plane of the MW, and explore its connections to other significant accretion
events in the MW’s history.

Note that Section 9.2 is the result of collaborative efforts led by Pierre-
Antoine Oria with myself, Rodrigo Ibata, Benoit Famaey, Zhen Yuan, Anke
Arentsen, Nicols Martin, Akshara Viswanathan.

Finally, Section 9.3 provides an overview of the most comprehensive atlas
of stellar streams in the MW up to the release of Gaia DR3, including up-
dated parameters for current MW mass models. This atlas incorporates new
detections made possible through an enhanced version of the STREAMFINDER

algorithm [Malhan and Ibata, 2018]4.
Note that Section 9.3 is the result of collaborative efforts led by Rodrigo

Ibata with Khyati Malhan, myself, Anke Ardern-Arentsen, Michele Bellazzini,
Paolo Bianchini, Piercarlo Bonifacio, Elisabetta Caffau, Foivos Diakogiannis,
Raphael Errani, Benoit Famaey, Salvatore Ferrone, Nicolas F. Martin, Paola
di Matteo, Giacomo Monari, Florent Renaud, Else Starkenburg, Guillaume

1Thin elongated tidal structures formed during accretion events between a host galaxy
and a smaller structure, as detailed in Section 8.1.

2The dominant cosmological model which relies on a cold dark matter paradigm as de-
tailed in Section 8.1.

3This sample comprises high quality 3D position and 3D velocity information.
4This algorithm is capable of utilizing 5D data lacking radial velocity information.
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Thomas, Akshara Viswanathan, and Zhen Yuan. Here I mostly focus on my
specific contribution to that effort which takes the form of dedicated spectro-
scopic follow-up observations using VLT/UVES5 and INT/IDS6 telescopes/in-
struments, which have enabled us to acquire radial velocity measurements and
confirm the identification of 28 new stellar streams increasing the number of
MW long and thin stellar streams identified by the community to a total of
87.

9.1 Typhon: An Outer Halo Stream raining

through the Solar Neighberhood

One of the principal goals of the Gaia space mission [Gaia Collaboration et al.,
2016a] is to survey the Milky Way, so as to allow us to understand how our
home galaxy was built up over cosmic time. Although we only observe the end
state of this majestic structure, fortunately the processes of formation and
growth have left copious amounts of evidence in the form of debris that is now
scattered throughout our Galaxy [Belokurov et al., 2006, Shipp et al., 2018,
Ibata et al., 2021b, Malhan et al., 2022a]. Some of these residues are due to the
accretion of small galaxies and globular clusters, which disrupted under the
action of tidal forces, leaving long stellar streams. In some cases they can still
remain as elongated structures, many billion years after the dissolution of their
progenitors [Helmi, 2008]. Studying these structures is of great importance
since their trajectories probe the galactic acceleration field and the underlying
dark matter distribution [e.g., Koposov et al., 2010, Sanders and Binney, 2013,
Malhan and Ibata, 2019, Ibata et al., 2021].

As detailed in sub-section 8.2.2, a particularly powerful means to uncover
such fossil remnants is by searching for groups of stars with common integrals
of motion. Action coordinates are perhaps the best choice for this, as they are
adiabatic invariants that will have been preserved along orbits if the Milky
Way’s potential evolved only slowly through time [Binney and Tremaine,
2011]. However, to transform our stellar measurements into actions (and their
conjugate angles), we require the full 6D positions and velocities. With present
instrumentation this is only achievable close to the Solar position in the Galaxy.

5Very Large Telescope, European Southern Observatory, Cerro Paranal, Chile
6Isaac Newton Telesceope, Roque de los Muchachos Observatory, La Palma, Canary

Islands, Spain
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The Gaia mission has recently made accessible its third data release (DR3)
[Gaia Collaboration, 2022] of its all-sky survey. It contains approximately
33 million stars with mean radial velocities down to G ∼ 15, which, com-
plemented with the excellent proper motions and parallaxes published in the
earlier EDR3 release [Gaia Collaboration, 2021], provide the required phase-
space constraints. Because the DR3 radial velocity limit is quite shallow, it
almost exclusively probes the very nearby regions of the Galaxy (the median
distance of the sample with 10σ parallaxes is only 1.26 kpc). In the vicinity of
the Sun, dynamical times are short and tidal debris are expected to phase-mix
rapidly [Helmi et al., 1999, 2003], erasing any initial stream-like coherence that
might have been present.

In this Section we show that, surprisingly and contrary to those expecta-
tions, the Solar neighborhood contains a very wide yet kinematically coherent
metal poor stellar stream, which we name Typhon7, whose apocenter reaches
out to > 100 kpc – the edge of the Galactic halo.

Sub-section 9.1.1 details our selection process from Gaia data, sub-section
9.1.2 offers a chemo-dynamical characterization of the stream, sub-section 9.1.3
discusses our finding and sub-section 9.1.4 gives our Typhon sample.

9.1.1 Selection

Pre-selection

From the Gaia DR3 catalog, we select the 25,355,580 stars with well-
constrained distances (having parallaxes ϖ/δϖ > 10), radial velocities
measured by Gaia’s Radial Velocity Spectrometer (RVS) instrument
[Recio-Blanco et al., 2022], having at least a 5-parameter astrometric so-
lution, and with magnitudes in the range 0 ≤ G ≤ 22, 0 ≤ GBP ≤ 30,
0 ≤ GRP ≤ 30. To convert the apparent motions to motions in a frame8

at rest with respect to the Galaxy, we assume that the Sun is located
at (x, y, z)⊙ = (−8.2240, 0, 0.0028) kpc (Solar radius from Bovy 2020 and
z-position of the Sun from Widmark et al. 2021), and that it moves with
a peculiar velocity (vx, vy, vz)⊙ = (11.10, 7.20, 7.25) km s−1 (Schönrich et al.
2010, with the ϕ-direction velocity from Bovy 2020), and we take the circular
velocity at the Solar radius to be 243 km s−1 [Bovy, 2020]. We use the
resulting phase space measurements to derive the orbital parameters of the
stars, including the pericenter and apocenter distances, as well as action-angle
coordinates calculated using the AGAMA package [Vasiliev, 2019a] in a
realistic potential model [McMillan, 2017a] for the Milky Way. Since we

7The serpent Typhon is the child of Gaia and Tartarus (the deep abyss) in Greek myth.
8Throughout this Chapter, we use a right-handed Galactic Cartesian coordinate system.
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are particularly interested in finding debris from the outer halo that could
be associated to ancient merger events, we impose an apocenter cut at
rapo > 75 kpc, which yields a sub-sample of 870 stars.
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Figure 9.1: Selection process in the space of actions. Typhon members are indicated
by star-symbols along with the 573 pre-selected stars having ϖ/δϖ > 10, rapo > 75 kpc and
d⊙ < 4 kpc (denoted by circles). Stars are colored by their apocenter values in the upper
panel and and by their vertical action values in the lower row of panels. Upper panel: (Jϕ, Jz)
plane used for the selection where the overdensity was discovered. The most significant
detection obtained using a Hough transform technique [Illingworth and Kittler, 1988] on
stars with Jz > 1000 kpc km s−1 (i.e. with large departures from the Galactic mid-plane)
is shown with a red line. This line runs through the Typhon structure. The parallelogram
selection of the structure is depicted in a solid line encompassing 16 stars, and is defined by:
Jz ∈ [2000, 3100] kpc km s−1 and 3.3Jϕ + 3500 kpc km s−1 < Jz < 3.3Jϕ + 5000 kpc km s−1.
The symmetric (retrograde) selection with respect to the Jϕ = 0 line is shown with a dashed
line. Bottom-left and bottom-right panels respectively show the (Jϕ, Jr) and (Jϕ, Etot)
planes.
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Typhon selection

Further analysis is performed in the space of actions (Jr, Jϕ, Jz), which encode,
respectively, the amplitude of orbital motion in the radial, azimuthal, and ver-
tical directions. In particular, we plot the (Jϕ, Jz) projection colored by rapo
in Figure 9.1. There, a polar structure can be spotted as a tight, almost ver-
tical, linear grouping between (Jϕ ∼ −650 kpc km s−1, Jz ∼ 2100 kpc km s−1)
and (Jϕ ∼ −400 kpc km s−1, Jz ∼ 3000 kpc km s−1). We find that this feature
is most striking when the sample is limited to stars with heliocentric distances
d⊙ < 4 kpc, approximately at the limit of useful 6-D phase-space data in the
DR3 catalog. In particular, performing the Hough transformation [Illingworth
and Kittler, 1988] line detection technique on the stars in the (Jϕ, Jz) plane
(binning the action data into pixels of size 30 kpc km s−1 on a side and adopt-
ing a 1◦ discretization for the angle of the fitted lines), we find that the most
significant linear grouping of stars with Jz > 1000 kpc km s−1 (i.e. that ex-
perience large excursions from the Galactic mid-plane) corresponds to this
quasi-linear overdensity (red line in Figure 9.1). These 16 stars possess simi-
lar apocenter distances (rapo ≈ 100 kpc), and are also highly correlated in the
angle coordinates (θr, θϕ, θz) conjugate to the actions.

We then separate this structure from the bulk of the data by ap-
plying a simple parallelogram selection in the (Jϕ, Jz) plane, as follows:
Jz ∈ [2000, 3100] and 3.3Jϕ + 3500 < Jz < 3.3Jϕ + 5000, which results in
a final sample of 16 stars. This selection box is displayed as a solid black
parallelogram in Figure 9.1.

Typhon structure

Furthermore, it should be noted that the symmetric control selection around
Jϕ = 0, shown as a dashed parallelogram, encompasses only two stars and they
do not possess homogeneous dynamical properties. Assuming that the halo is
symmetric in angular momentum, there is no a priori reason for the prograde
selection to contain significantly more stars than the symmetric retrograde
selection as is the case here, other than the selection containing a coherent
dynamical group. Taking the symmetric selection as a control sample we
estimate the significance of the detection to be ≈ 3.5σ. We note in passing
that the Gaia Universe Model Snapshot (GUMS, Robin et al. 2012a, updated
for Gaia DR3) contains no artificial stars with the selection criteria used to
detect Typhon, suggesting that Typhon is a coherent structure that can only
be explained by an external body not included in that simulation.
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9.1.2 Characteristics

Dynamical characteristics

The positions and velocities of the sample members of the Typhon stream are
shown in Figure 9.2. We find that member stars of this polar stream are spread
out all around us, passing through the Solar neighborhood with a high vertical
velocity, and exiting the disk at an angle of ∼ 50◦ with respect to it.
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Figure 9.2: Typhon members. Positions and velocity vectors in galactic Cartesian coor-
dinates of Typhon sample members. Velocity vectors scale 1 : 3 × 103. The sample shows
very clear streaming motion. For reference, the position and velocity vector of the Sun is
also shown in red.

In Figure 9.3 we show the result of integrating Typhon members back-
wards in time for 5 Gyr in the [McMillan, 2017a] Milky Way potential model.
Although the stars were selected from a small region in the (Jϕ, Jz) plane
(but with no constraint on Jr), and so should therefore possess similar or-
bits, there was no a-priori reason for the sample to be in phase, as is
clearly the case from an inspection of Figure 9.3. The sample is dynami-
cally coherent, with very similar orbital parameters: rperi = 6.0 ± 0.5 kpc,
rapo = 99± 15 kpc, Jr = 6400± 1000 kpc km s−1, Jϕ = −560± 110 kpc km s−1,
Jz = 2500± 300 kpc km s−1 and eccentricity e = 0.88± 0.02.

We estimate the 3-dimensional velocity dispersion of the stream to be
σv,3D ≈ 13 km s−1 by considering the velocity differences of the stars to
the computed orbit of the star with Gaia ID 3939346894405032576 (whose
orbit through the Solar neighborhood appears closest to the middle of the
sample). Assuming isotropy, the one-dimensional velocity dispersion is then
σv ≈ 7.5 km s−1.

Chemical characteristics

We cross-matched our sample with the LAMOST DR8 [Wang et al., 2022a]
catalog, in particular the “FEH PASTEL” column which covers a wide range
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Figure 9.3: Typhon orbit. Trajectories of the sample members of Typhon during a 5 Gyr
backward integration in the [McMillan, 2017a] potential in galactic Cartesian coordinates.
Trajectories of the 7 stars whose metallicity is available through LAMOST DR8 [Wang et al.,
2022a] are colored in blue.

of metallicities especially on the very metal-poor regime, enabling us to ob-
tain high quality spectroscopic metallicities for 7 stars of the Typhon stream
(the stellar parameters of which lie within the reliable range of the PASTEL
catalog). These measurements span between [Fe/H] = −2.23 ± 0.06 dex and
[Fe/H] = −1.25± 0.09 dex.

As shown in Figure 9.3, where we color orbits of stars of known metal-
licity in yellow, these stars are dynamically representative of the full sam-
ple. In Figure 9.4 (left panel), we show the likelihood distribution (black
contour lines) for the mean metallicity and for the intrinsic dispersion of
the metallicity distribution (correcting for the LAMOST uncertainty esti-
mates, assuming that they are reliable). We find ⟨[Fe/H]⟩ = −1.60+0.15

−0.16 dex,
and σ([Fe/H]) = 0.32+0.17

−0.06 dex, which indicates that the system has a re-
solved dispersion in metallicity. We note however, that this result depends
on the inclusion of the most metal-poor star in the sample; if it is re-
moved (although we have no a-priori reason to do so) these values become
⟨[Fe/H]⟩ = −1.41+0.05

−0.09 dex, and σ([Fe/H]) = 0.06+0.17
−0.06 dex, consistent with no

dispersion at the 1σ level.

These metallicities are consistent with the color magnitude diagram shown
in Figure 9.4, where we use the 3D extinction estimates by Anders et al. 2022
to deredden the stars. In addition, based on the PARSEC stellar population
models [Bressan et al., 2012], and using the canonical two-part-power law
initial mass function corrected for unresolved binaries [Kroupa, 2001], and
Gaia’s detection limit, we compute the order of magnitude of the density of
the Typhon stream to be of ∼ 25 M⊙/ kpc−3 in the d⊙ < 1.5 kpc solar vicinity
fragment. However, without further information we refrain from extrapolating
this value out to compute the mass of the full stream structure.
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Figure 9.4: Chemical characteristics of Typhon. Left: Likelihood contours of the
mean metallicity and metallicity dispersion of the spectroscopic sample, shown for the full
7 star sample (black lines), and removing the most metal poor star (grey lines). Right:
Color magnitude diagram of the sample members of Typhon. For reference, the grey line
shows a PARSEC isochrone model [Bressan et al., 2012] of age 12.5 Gyr and of metallicity
[Fe/H] = −1.60 dex. The reasonable correspondence of this model shows that the population
is predominantly very old.

9.1.3 Discussion and conclusions

Although the search for new stellar streams is currently a very active field,
to the best of our knowledge the structure discussed here (Typhon) that we
isolated thanks to the new and excellent Gaia DR3 data was never identified
before. It should be noted that although Typhon is very close to the DTG-11
stream identified in [Yuan et al., 2020a] in the (Jϕ, Jz) plane, we verified that
Typhon is a distinct structure. In particular, we see that Typhon members
have much higher apocenters (≈ 100 kpc vs. ≈ 15 kpc for DTG-11) which
becomes obvious when comparing their very different Jr values. In addition,
we compared our sample to the thorough Malhan et al. [2022a] atlas of stellar
streams and found no previously mapped equivalent structure. We note that
the discovery of the Typhon structure was confirmed by Dodd et al. [2022a]
shortly after the first release of our work using a formal clustering metric.
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Chemical considerations

In addition, a follow up observational study focusing on the chemical abun-
dances of Typhon was conducted by Ji et al. [2022] usign the Las Campanas
Observatory. That contribution presents high resolution spectra for 7 Typhon
members chosen solely based on observability, including 3 members whose
metallicities are not available in LAMOST DR8, which nevertheless show con-
sistent metallicities with the LAMOST sub-sample, thereby supporting our
conclusions regarding the metallicity distribution of the structure.

The characteristics of Typhon members given in sub-section 9.1.1 lead us
to believe that Typhon is likely the tidal remnant of a dwarf galaxy. In partic-
ular the metallicity spread, vertical action spread and structure width appear
completely incompatible with a globular cluster progenitor. With metallici-
ties reaching [Fe/H] ∼ −1.3 dex, and with a mean of [Fe/H] ∼ −1.6 dex, the
mass-metallicity relation of dwarf galaxies [Kirby et al., 2013a] suggests that
the progenitor likely possessed a luminosity of 106 – 107 L⊙, perhaps similar to
the Sculptor dSph. Ji et al. [2022] concur with us on this point. The estimated
velocity dispersion value of σv ≈ 7.5 km s−1 lies between that of the Orphan
Stream (σv ≈ 5 km s−1, Koposov et al. 2019) and the stream of the Sagittarius
dwarf galaxy (σv ≈ 13 km s−1, Gibbons et al. 2017), suggesting that the mass
of the Typhon progenitor likely exceeded 108 M⊙ (an estimate for the mass of
Orphan Stream progenitor, Fardal et al. 2019), but was not as massive as the
Sagittarius dwarf.

Dynamical considerations

We noticed that although in the heavy McMillan [2017a] gravitational poten-
tial (Mvir = 1.3 × 1012 M⊙) all stars in the sample are bound, in the lighter
MWPotential2014 (Bovy 2015a, Mvir = 8 × 1011 M⊙), half of the Typhon
stream members are unbound9. This underlines how having constraints on the
trajectories of streams such as Typhon is of great value as the trajectories of
these streams are very dependant on the acceleration field of the Milky Way
and its underlying dark matter distribution.

We also checked whether the Typhon members could have close encounters
with the Large Magellanic Cloud (LMC) or the Sagittarius dwarf galaxy.
Taking the trajectories of the two satellites from Vasiliev et al. [2021], we
find that the LMC remains always very distant ( >∼ 40 kpc). However, the
Typhon stars probably did experience a relatively close flyby of Sagittarius
(∼ 20 kpc, 0.10 Gyr ago). We note that Typhon and Sagittarius share very
similar orbital planes, although they possess opposite angular momentum
vectors (i.e. the direction of motion in the plane is opposite). The interaction

9Note that none of the Typhon stars were flagged as hyper-velocity stars in the Marchetti
et al. [2019] census.
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between Typhon and Sagittarius will be interesting to analyse with N -body
simulations, but we defer that investigation to a future contribution.

Perspectives

The identification of this high apocenter polar stream passing so close to the
Sun raises many questions. Assuming that the Solar vicinity is not special and
is representative of an average location in the disk, the present detection could
be used to place constraints on the number of highly radial accretions that
took place during the formation of the Milky Way. The picture suggested by
Typhon is that there may be a large population of outer halo dwarf galaxies
or dwarf galaxy fragments residing near their apocenters, akin to the “Oort
Cloud” around the Sun. A more thorough survey of local phase space for
other Typhon-like structures and also deeper next-generation sky surveys (with
LSST, for instance) that might detect them in place in the outer halo will help
quantify this possibility.

This discovery also underlines the relevance of stream research in the Solar
vicinity where great quantities of high quality data are available in addition
to spatially wider searches. This poses several challenges and may require the
development of new algorithmic approaches suited to exploit Gaia era data
for nearby structures with incomplete astrometry (e.g. missing line of sight
velocities) as sections of streams passing near us are not easily identifiable as
streams when projected onto a sky map.

In future work, it will be very useful to attempt to extend the detections
along the stream so as to chart it out further in its orbit through the Galaxy.
As we alluded to above, such stars may provide very useful dynamical probes
for the Milky Way’s dark halo, and they will be invaluable to inform follow-up
simulation studies attempting to model the N-body evolution of the system.
Similarly, having full metallicity information for the member stars would be
of great value in order to confirm the present hypothesis regarding the nature
of the progenitor.

9.1.4 Data availability

The final Typhon sample is provided at DOI:10.5281/zenodo.6979887, includ-
ing both Gaia data and other parameters deduced here such as action-angle
coordinates.

https://doi.org/10.5281/zenodo.6979887
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9.2 Antaeus: A Retrograde Tidal Group in

the Milky Way Disk Plane

The complex formation and merging history of the Milky Way (MW) can
perhaps be best understood by examining its stellar halo, host to many tidal
debris of disrupted galaxies and globular clusters. Dynamical times in the halo
are long, so the debris can persist there as coherent phase space structures for
billions of years (see e.g. Helmi and de Zeeuw 2000), making them easier for
us to detect.

With the advent of the Gaia mission [Gaia Collaboration et al., 2016b] and
its superb astrometric data, the task of digging into the stellar halo to uncover
the past has been made more accessible. The stellar halo of the MW is now
understood to be the product of several important accretion events making up
most of its population [Di Matteo et al., 2019], the biggest of which being Gaia-
Sausage/Enceladus [Belokurov et al., 2018, Helmi et al., 2018]. Stream finding
algorithms [Malhan et al., 2018, Ibata et al., 2021b] have now detected dozens
of kinematically coherent structures which will help chart the acceleration field
of our Galaxy, providing a wealth of model-agnostic information.

The Gaia data also makes it possible to use action coordinates (Jr, Jϕ, Jz)
to detect stellar structures. Actions keep relevance over very long times if the
potential evolves slowly and are thus especially useful to trace past mergers.
Recently, Yuan et al. [2020b], Naidu et al. [2020] and Malhan et al. [2022b]
used these quantities to detect and construct maps of the MW’s dynamical
groups and link them to important merger events.

A similar technique was employed by Myeong et al. [2018] to find several
retrograde structures in the stellar halo, which were then tentatively associated
to the ω Centauri globular cluster, which Majewski et al. [2012] had already
suspected of bringing in such material. Retrograde structures have been linked
to accretion events for a long time [Carollo et al., 2007], and it has been con-
firmed by Helmi et al. [2017] that the less bound stars in the halo are typically
on retrograde orbits. Sestito et al. [2021] also highlight the importance of the
metal poor retrograde halo population for tracing the early building blocks of
the galaxy.

Myeong et al. [2019] reexamined the structures from Myeong et al. [2018]
and linked them to a substantial merger event they named Sequoia. The
Sequoia progenitor galaxy could have brought those retrograde groups and
possibly ω Centauri as well. The fact that its stellar population is distinct
in metallicity and orbital parameters from the Gaia-Sausage makes the event
another important piece of the stellar halo puzzle.
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In this Section we present the discovery of Antaeus10, a retrograde high
energy group of tidal debris in the MW’s disk plane, made using action-angle
coordinates derived from the Gaia DR3 catalog [Gaia Collaboration, 2022] and
the Stäckel fudge implemented in Agama [Vasiliev, 2019b]. The new structure
has several properties which are similar to those of Sequoia stars, so we discuss
its possible affiliation to this event, although both its position in the disk of
the MW and its extraordinary low vertical action make it stand out.

Sub-section 9.2.1 details our selection process from Gaia data, sub-section
9.2.2 offers a chemo-dynamical characterization of the structure, sub-section
9.2.3 discusses our finding and sub-section 9.2.4 gives our Antaeus sample.

9.2.1 Selection process

Pre-selection

Throughout this article, we use the right-hand side Galactic Cartesian coordi-
nates for the MW with the Sun located at (x, y, z)⊙ = (−8.2240, 0, 0.0028) kpc
(taking the Solar radius from Bovy 2020 and the height above the mid-
plane from Widmark et al. 2021) having peculiar velocity (vx, vy, vz)⊙ =
(11.10, 7.20, 7.25) km s−1 (Schönrich et al. 2010, but with the velocity in the
direction of Galactic rotation taken from Bovy 2020), and circular velocity
vc(R = R⊙) = 243 km s−1 [Bovy, 2020]. Our starting point is the Radial Ve-
locity Spectrometer (RVS, Recio-Blanco et al. [2022]) sample of Gaia DR3, for
which we derive action-angle coordinates (Jr, Jϕ, Jz) and orbital parameters
using Agama [Vasiliev, 2019b] in the MW gravitational potential of McMillan
[2017b]. From this catalog, we take the stars with good parallax measure-
ments (ϖ/δϖ ≥ 10) and d ≤ 1.5 kpc so as to retain a good quality Solar
neighborhood sample. Since our aim is to investigate the structures that are
falling down onto the Milky Way, we choose to select stars with large apoc-
enter distances, rapo ≥ 25 kpc. These cuts leave us with 3624 stars; we plot
the resulting selection in the JϕJz plane, coloured by rapo, in Figure 9.5 (top
panel).

Antaeus selection

Among the many interesting structures that stand out from this view, we focus
our attention on the low Jz, retrograde moving group of stars delimited by the
black rectangle (2500 ≤ Jϕ ≤ 3500 km s−1 kpc, Jz ≤ 150 km s−1 kpc), into
which we zoom in Figure 9.5 (middle panel). We notice a good agreement in

10In Greek mythology, Antaeus is the child of Gaia and Poseidon, a giant whose name
comes from “opponent”.
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Figure 9.5: Selection process in the space of actions. Top panel: Gaia DR3 stars
from the selection process described in Section 9.2.1 (i.e. ϖ/δϖ > 10, rapo ≥ 25 kpc and
d ≤ 1.5 kpc). Middle panel: zoom on the low Jz region delimited by the rectangle in the
top panel (2500 ≤ Jϕ ≤ 3500 km s−1 kpc, Jz ≤ 150 km s−1 kpc). Bottom panel: same region
as the middle panel, but for our final cut using distances d ≤ 1 kpc from the Sun.

apocenters for stars in this region, further suggesting the presence of a stellar
structure with coherent motion.

Finally, we experimented with the heliocentric distance cut to see how
the selection changes. We noticed that by selecting stars within a distance of
d ≤ 1 kpc from the Sun (Figure 9.5, bottom panel) the agreement in apocenters
is slightly better, removing in particular some extreme values from the previous
cut. This leaves a sample of 80 stars which are given in 9.2.4.
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Antaeus structure

In order to establish the statistical significance of this detection, we repeat the
same selection on the Gaia Universe Model Snapshot (GUMS, Robin et al.
[2012b]) simulation updated for DR3. The initial d ≤ 1.5 kpc cut on GUMS
gives 3781 stars, very close to the number of stars in our DR3 selection. Nor-
malizing for this small difference, we find that there is, in the final selection
(black rectangle), more than 5 times the number of stars in DR3 than there is
in GUMS. Furthermore, the distribution along the Jϕ axis is bimodal in the
GUMS data, with a main peak in the prograde region (Jϕ ≈ −3000) and a
small peak around Jϕ = 0, while the same distribution in our DR3 selection
is trimodal with an additional peak in the retrograde region (Jϕ ≈ 3000) cor-
responding to Antaeus, and the peak around Jϕ = 0 being more pronounced.
Using the GUMS simulation as an estimate of the expected Galactic popula-
tions, the Antaeus feature corresponds to a ≈ 7σ detection.

9.2.2 Sample characteristics

Dynamical characteristics

We show the positions and velocities of our selection of stars in Figure 9.6
(top panel). It appears clear that the stars belong to a coherent structure
dynamically, moving in a retrograde motion in the disk plane of the MW. The
structure is rather thick, with a width of at least 1.5 kpc. We identify some
outliers from this bulk motion, which all have a distinctive positive velocity in
the x direction (vx ≥ 0). For the remainder of this study, we will exclude those
15 outliers from our sample, leaving us with 65 stars of the Antaeus stream.
In Figure 9.6 (middle panel), we plot velocity planes vrvϕ, vrvz, vϕvz with this
separation taken into account, showing the compactness of Antaeus stars in
those projections.

Chemical characteristics

We crossmatch our selection with the LAMOST DR8 catalog [Wang et al.,
2022b] and find 8 stars in common, for which we obtain metallicities from
their “FEH PASTEL” values. These LAMOST stars have a mean [Fe/H] =
−1.74+0.06

−0.07, with an intrinsic spread of σ = 0.11+0.10
−0.04 (correcting for the LAM-

OST metallicity uncertainty estimates) and individual values ranging from
[Fe/H] = −1.33 ± 0.23 to [Fe/H] = −2.09 ± 0.30. The colour magnitude di-
agram (CMD) of the sample is shown on Figure 9.7, compared to old metal
poor isochrones (12 Gyr, [Fe/H] = −1.75 and [Fe/H] = −1.50) from the PAR-
SEC library [Bressan et al., 2012]. The photometry is corrected for interstellar
extinction using the 3D extinction estimates calculated by Anders et al. [2022].
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Figure 9.6: Antaeus members. Top panel: position and velocity vectors of our selection
of stars from Section 9.2.1 colored by total velocity; we plot bulk motion outliers with a
slightly transparent line. The orange ball represents the Sun. Antaeus stars are currently
passing through our Solar neighbourhood, going in a retrograde motion in the Milky Way’s
disk plane. Middle panel: velocity planes vrvϕ, vrvz, vϕvz with the outliers (red dots) from
the top panel bulk motion separated from Antaeus’ stars (black). Note that we inverted the
vϕ axes to be coherent with usual velocity plots. Bottom panel: position of Antaeus (green
dots) in energy E and actions Jr, Jϕ, and Jz, compared to Sequoia-associated retrograde
structures from Myeong et al. [2018] (orange crosses) and Arjuna/Sequoia/I’itoi-associated
streams and globular clusters from Malhan et al. [2022b] (brown stars).

Orbit integration

Finally, we integrate back in time the orbits of the Antaeus stars in the
McMillan MW potential for 1.5 Gyr, and in the MWPotential2014 [Bovy,
2015b]; we show the results in Figure 9.8. Here also the structure ap-
pears very coherent dynamically. We find, for the McMillan MW potential
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Figure 9.7: Antaeus CMD. Colour magnitude diagram for our sample of Antaeus stars,
compared to PARSEC model isochrones [Bressan et al., 2012] of age 12 Gyr and metallicities
[Fe/H] = −1.75 (red) and [Fe/H] = −1.50 (green). The colorbar gives the [Fe/H] for the 8
LAMOST stars.

(Mvir = 1.3 × 1012 M⊙), a mean pericenter radius of rperi = 7.3 kpc, a mean
apocenter radius of rapo = 39.3 kpc, a mean orbital eccentricity of e = 0.69,
and a mean orbital time of torbit = 1.1 Gyr. For the lighter MWPotential2014
however (Mvir = 8×1011 M⊙), those values become mean rperi = 7.3 kpc, mean
rapo = 71.9 kpc, mean e = 0.81, and mean torbit = 1.5 Gyr. The 8 LAMOST
stars, whose orbits are plotted in solid black, appear to be good representative
members of the stream.

The mean actions of stars in the structure are (Jr = 1761, Jϕ = 2990, Jz =
39) kpc km s−1, and their mean energy is E = −105 km2 s−2 (in the McMil-
lan 2017b potential model); we show this information for individual stars in
Figure 9.6 (bottom panel).
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Figure 9.8: Antaeus orbit. Orbits of members stars seen in Galactic Cartesian coordinates,
integrated backwards in the McMillan [2017b] MW potential for 1.5 Gyr (top panel), and
in the MWPotential2014 model for 2.5 Gyr (bottom panel). Notice the change of scales, as
stars go farther when integrated in the lighter MWPotential2014. Orbits of the LAMOST
sample (8 stars) are in solid black, and orbits of the rest of our sample (57 stars) are in
purple.

9.2.3 Discussion and Conclusions

Progenitor

Based on the characteristics derived in sub-section 9.2.2, in particular the
thickness of the structure (width ≃ 1.5 kpc) and the range of metallicity of its
constituent stars, it seems highly likely that this group of stars is the remnant
of a tidal stream of a disrupted dwarf galaxy. The CMD (Figure 9.7) seems to
indicate that the progenitor is seemingly very old, probably around ∼ 12 Gyr
in age. The agreement is better with a model metallicity of [Fe/H] = −1.50,
although we derive a mean value of [Fe/H] = −1.74+0.06

−0.07. It would thus be very
helpful to extend our sample of metallicities to help decide the matter. Such
metallicities give an estimated stellar mass of 106 to 107 M⊙ according to the
z = 0 mass-metallicity relation of Kirby et al. [2013b]. Taking into account
the redshift evolution of such relations (for a given metallicity, higher mass at
higher redshift is required), we can consider that those constitute lower bounds
and that the progenitor probably has a rather high stellar mass of ≥ 107 M⊙,
making it likely that it is linked to an already known accretion event.
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Related structures

Indeed, when comparing with known halo structures, we find that the mean Jϕ,
energy, and eccentricities of our sample of Antaeus stars show many similarities
with the Arjuna/I’itoi/Sequoia group of mergers [Naidu et al., 2020]. However
Antaeus seems more akin to the retrograde structures of Myeong et al. [2018]
and to the retrograde tail of the Sequoia event [Myeong et al., 2019] (see the
bottom row in Figure 9.6 for a comparison to the previously mentioned groups),
especially when factoring in the metallicity of its population. The ∼ 12 Gyr
age derived from the CMD comparison is also consistent with estimates for
Sequoia groups [Ruiz-Lara et al., 2022].

Nonetheless, Antaeus’ extraordinarily low mean Jz and its position in the
disk plane of the MW both make it unique, even when compared to the global
atlas of halo structures from Malhan et al. [2022b]. It may be the distinct,
low Jz tail of the L-RL64 cluster discovered by Ruiz-Lara et al. [2022] and also
detected by Dodd et al. [2022b]. If the structure is indeed related to Sequoia,
this difference has to be explained.

Origin

The mere existence of such a streamy, retrograde structure in the disk of the
MW is very puzzling. It is not clear how such kinematic coherence could be
retained if this population came in with Sequoia 9 ∼ 11 Gyr ago [Myeong
et al., 2019]. Of course Antaeus’ progenitor could have arrived initially with
a small inclination, although this possibility appears somewhat contrived. See
however the simulations from Amarante et al. [2022] in which nearly radial
mergers could potentially produce such populations. It seems more natural to
explain the very low quantity of vertical motion by dissipation due to dynam-
ical friction, which might be consistent with an early arrival in the MW. This
scenario would invite the possibility that Antaeus is the debris of the dense
core of the Sequoia progenitor, which would have stabilized in the disk through
dynamical friction before tidal disruption completely destroyed it.

Perspectives

The discovery of Antaeus opens many exciting possibilities for follow-up stud-
ies. A first step would be finding other members of the structure in Gaia with
the information we now possess. Creating an N -body model for the infall of
the progenitor dwarf galaxy in the potential well of the MW and exploring
the possibilities for its survival in the disk would also be highly informative.
Finally, it would be very helpful to measure the metallicity of more stars of our
selection in order to facilitate discussions regarding the origin of the structure,
and links to Sequoia in particular.
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9.2.4 Data availability

The final Antaeus sample is provided at DOI:10.5281/zenodo.6912366, includ-
ing both Gaia data and other parameters deduced here such as action-angle
coordinates.

9.3 The Atlas of Milky Way Stellar Streams

This Section provides a brief overview of the comprehensive atlas of Milky Way
stellar streams, compiled following the release of Gaia DR3 [Gaia Collabora-
tion, 2022]. For detailed information, see [Ibata et al., 2021a].

Sub-section 9.3.1 briefly discusses the STREAMFINDER algorithm used to
identify stellar streams from the Gaia dataset. Sub-section 9.3.2 details the
observational follow-up campaign to which I have contributed. Sub-section
9.3.3 presents the 87 compiled thin stellar streams, including 28 newly identi-
fied streams that emerged from our efforts. Finally, Sub-section 9.3.4 outlines
how these streams can be utilized to constrain mass models of the Milky Way.

9.3.1 The STREAMFINDER algorithm

This promise of being able to map out the acceleration field of our Galaxy
has motivated the development of a dedicated stream-detection algorithm, the
STREAMFINDER, with the intention to deploy it on the Gaia mission catalogs
[Gaia Collaboration et al., 2016b].

Overview

The STREAMFINDER is effectively a friend-finding algorithm, with a “distance”
in the parameter space of observables defined so as to make objects on similar
orbits and with similar stellar populations appear close together. The proce-
dure is presented in detail in Malhan and Ibata 2018, Malhan et al. 2018, Ibata
et al. 2021, Ibata et al. 2021a. [Malhan and Ibata, 2018] applied the algorithm
to the Gaia DR2 catalog, based on 22 months of astrometric observations,
while [Ibata et al., 2021] extended the search to the Gaia EDR3 catalog, with
33 months of observations. In [Malhan et al., 2018] the STREAMFINDER sources
were cross-matched with the Pristine survey catalog [Starkenburg et al., 2017,
Martin et al., 2023], providing metallicity estimates for the stars and hence
better discrimination against contamination, which allowed for lower the de-
tection threshold and so find further stream candidates.

https://doi.org/10.5281/zenodo.6912366
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Alterations for DR3

Here, the STREAMFINDER algorithm is applied to the full Gaia DR3 [Gaia Col-
laboration, 2022] catalog, hunting for these structures using an improved ver-
sion of the STREAMFINDER algorithm, employing a stream template with a
spatial width of 100 pc so as to find structures resulting from the expected
dissolution of globular clusters or very small dwarf satellite galaxies. It is also
modified so as to be able to exploit the 33 millions radial velocity measure-
ments provided in DR3, which are complemented with measurements from
other large spectroscopic surveys, specifically, DR3 is cross-matched with the
APOGEE-2 survey [Majewski et al., 2017], the GALAH DR3 survey [Buder
et al., 2018], the LAMOST DR7 survey [Cui et al., 2012], the Radial Veloc-
ity Experiment (RAVE DR5) [Kunder et al., 2017], the SDSS/Segue survey
[Yanny et al., 2009], the Gaia-ESO survey [Randich et al., 2022], and the S5
survey [Li et al., 2019].

9.3.2 Spectroscopic observations

VLT/UVES follow-up

We used the VLT/UVES spectrograph [D’Odorico et al., 2000] to follow up
selected STREAMFINDER sources detected in the Gaia EDR3 and DR3 cata-
logs. These runs comprise runs 105.20AL.001 (2.5 nights in visitor mode),
110.246A.001 (40 hours service in service mode), and 111.2517.001 (3.6 nights
in visitor mode). Our instrumental setup uses the DIC2 dichroic beamsplitter

in the “437+760” setting, covering the wavelength ranges 3730–4990
◦
A and

5650–9460
◦
A. To reduce read noise, we binned the CCD in 2× 2 pixel blocks,

which in conjunction with a 1′′.0 wide slit yields a spectral resolution of approx-
imately 40,000. Exposure times were selected on a star-by-star basis to reach
S/N ∼ 3–5 for the fainter stars in the sample, so as to measure their radial
velocities, but we set a minimum exposure time of 5 min. For the brighter
stars, this minimum exposure time also allowed some elemental abundances
to be measured. The spectra were reduced with the “esoreflex” pipeline us-
ing daytime calibration arc lamps and flat-field images, resulting in extracted
wavelength-calibrated one-dimensional spectra.

INT/IDS follow-up

We also secured observations with the IDS long-slit spectrograph on the 2.5m
Isaac Newton Telescope in several runs over the course of 2022. Bright northern
hemisphere stream stars were targeted with typically ∼ 1 hour exposures at
G = 16 mag. The instrument was configured with the RED+2 detector, the
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R1200R grating with a central wavelength set to 8500
◦
A, a 1′′. wide slit and

the GG495 order sorting filter.

The radial velocities of the target stars were measured with the IRAF
fxcor algorithm, using the bright and relatively metal-poor star HD 182572
as a radial velocity standard. The UVES spectra were of sufficient quality and
resolution to obtain excellent radial velocity measurements with < 1 km s−1

uncertainty for stars to G = 18 mag, while the IDS spectra resulted in velocity
uncertainties of ∼ 10 km s−1 at G = 16 mag.

9.3.3 Atlas of Milk Way streams

Utilizing the STREAMFINDER algorithm and subsequent spectroscopic follow-up
observations, 87 thin stream-like structures have been identified within the
Milky Way. This includes 59 streams previously detected by the community
— the bulk by [Malhan and Ibata, 2018, Malhan et al., 2018] — and 28 new
discoveries, culminating in the most comprehensive and current atlas of thin
streams available as of Gaia DR3 [Bonaca and Price-Whelan, 2024]11 The
87 streams are depicted in Figure 9.9 with a color scheme that facilitates
distinction among them.

9.3.4 Mass constraints

Let us now detail how such streams were exploited to refine our current mass
model for the MW.

Stream progenitors are modeled as Plummer spheres, a classical spherical
model where the potential is given by:

Φ(r) = − G.M√
r2 + b2

(9.1)

where M is the mass and b is a scale length parameter.

For the Milky Way’s disk component, the adopted density distribution is
described by:

ρd(R, z) =
Σd

2hz

exp

(
− R

hR

− |z|
hz

)
(9.2)

where Σd represents the central surface density, hR the scale length, and hz

the scale height.

11It is important to note that this compilation does not include the numerous streams
which like Typhon, were identified by studying their near-Sun members and for which we
only have access to a limited section near the Sun and not their full extended structure to
date.
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The halo component is modeled as:

ρs(s) = ρ0

(
s

r0

)−γ (
1 +

s

r0

)γ−β

e−s2/r2t (9.3)

0 180

210

240
270

300

330

0

30

60

90

11

12131415

16

17

18
1920

21

23

24

25

26

27

2829

30

31

32

33

34

35

36

3738

39

4041

42

43

44

45

46

47

48

49

50

5152
53

5455

56
57

58
5960

6162

64

66

67

69
72

0

30

60
90

120

150

180

-90

-60

-30

0

1

234

5

6

7

8

9

10

22

63 65

6870

71

73
74

75

76

77
78

79

80

81

82

83

84

85

8687

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

22

2425
27

28 29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44
45

46
47

49

50

5152

53

54
55

56

57

58

59
60

6162

63

64

65

66

68

70
71

0

30

60

90

120

150

180

210

240

270

300

330

-90

-60

-30

0

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21

23

26

48

67

69
72

73
74

75

76

77
78

79

80

81

82

83

84

85

86

87

0 2 4 6 8
mod(stream ID, 8)

North

South

North
Gal. cap

South
Gal. cap

C-20
New-1
NGC288
ATLAS
Phoenix
Kwando
New-2
New-3
C-13
Gaia-12
Hydrus
NGC1261

NGC1261a
NGC1261b
Indus
NGC1851
New-4
New-5
Leiptr
C-12
New-6
New-7
NGC2298
C-25

C-11
NGC2808
New-8
New-9
New-10
C-10
New-11
New-12
Gaia-10
Gjoll
C-9
C-24

New-13
New-14
Slidr
New-15
Ylgr
Sylgr
New-16
Gaia-7
Gaia-8
New-17
Fjorm
Orphan

Gaia-1
C-23
LMS-1
C-22
GD1
Fimbulthul
Fimbulthul-S
New-18
NGC5466
New-19
Gaia-6
New-20

Pal-5
M5
Kshir
Svol
Gaia-9
Ophiuchus
NGC6101
M92
NGC6397
Gaia-11
Hrid
C-7

New-21
New-22
Phlegethon
NGC7089
NGC7099
New-23
New-24
New-25
New-26
New-27
New-28
NGC7492

C-19
Jhelum
Tuc-3

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84

85
86
87

Figure 9.9: Atlas of stellar streams of the Milky Way. This figure displays the pro-
jected members of the 87 stellar streams identified in the Milky Way as detailed in Ibata
et al. [2021a]. Each stream is color-coded using a modulo 8 scheme to differentiate between
them.
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where ρ0 is the central density, β and γ are the inner and outer power-law
slopes, respectively, r0 is the scale radius, rt is the truncation radius, and
s =

√
R2 + z2/q2m represents an ellipsoidal coordinate, with qm indicating

density flattening.

The Large Magellanic Cloud (LMC) is modeled using an NFW profile.
With considerations for reflex motion and dynamical friction all free pa-
rameters - including those for the Milky Way, its satellites, and 29 long,
thin, velocity-confirmed streams (that offer robust probing capabilities) are
optimized using a Markov Chain Monte Carlo methods [Ibata et al., 2011,
Goodman and Weare, 2010]. The resulting parameters of this state-of-the-art
model of the Milky Way with its satellites and streams, are detailed in Ibata
et al. [2021a].

This approach is emblematic of traditional galactic modeling strategies,
where assumed shapes, expressed as functional forms, define the components
of our Milky Way models. Yet, the true nature of these components may be
more nuanced or complex than our current analytical models suggest. What
if instead, we allowed for models with free-form structures? Exploring this
possibility and its implications will be the focus of the next Chapter.



Chapter 10

Free-Form Potential
Recovery from Stellar

Coordinates

Portions of the content presented in this Chapter have been previously
discussed in the following publication:

2024 An end-to-end strategy for recovering a free-form potential from a snapshot of stellar
coordinates
W. Tenachi, R. Ibata, F. Diakogiannis
IAU S379 147, arXiv:2305.16845

Summary.
We present an observation-driven agnostic unsupervised learning frame-

work we name MassFinder for recovering a free-form gravitational potential
and its underlying dark matter distribution from a mere snapshot of stellar
positions and velocities. Our method leverages a canonical transformation to
the space of orbits through a normalizing flow neural network and by making
use of auto-differentiation — the automated tracking of derivatives through
a computational graph. We then discuss the potential of such approaches to
dynamics and its application to Gaia’s 6D sample.

https://arxiv.org/abs/2305.16845
https://arxiv.org/abs/2305.16845
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As detailed in Chapter 8, the Λ cold dark matter (ΛCDM) paradigm is
very successful at reproducing large scale observations. However, it poses
several challenges at the galactic scale [Bullock and Boylan-Kolchin, 2017]
that could be resolved by having access to a high resolution map of the
potential of the Milky Way and its underlying dark matter distribution. This
challenging task is being rendered feasible by the European Space Agency’s
Gaia mission which is measuring the distance and radial velocity of 33 million
stars of the Milky Way (MW), enabling us to have access for the first time
to a very large dataset of 6D (position and velocity) stellar coordinates [Gaia
Collaboration, 2022].

This Chapter introduces a novel framework, which we dub MassFinder,
designed to compute a detailed map of the acceleration field and its underlying
dark matter distribution from observational data.

In Section 10.1, we provide the observational and methodological contexts
that motivate this study. Section 10.2 delves into the normalizing flow neural
architecture, which is at the heart of our and many other unsupervised learning
approaches to dynamics. Section 10.3 details our framework for deriving a free-
form neural network model of the galactic potential using auto-differentiation
from currently available stellar data snapshots and demonstrates our approach
by applying it to a toy textbook synthetic case. In Section 10.4, we demon-
strate how the captured neural potential can be distilled into a physically
meaningful functional form through symbolic regression, exploring the space
of possible equations. Lastly, Section 10.5 discusses the implications of our
findings and outlines future research directions.

10.1 Context & Motivations

In sub-section 10.1.1, we detail the observational context of our method and
sub-section 10.1.2 discusses the methodological implications of our approach
to dynamics.

10.1.1 Observational context

Luminous tracers of dark matter

Given the impossibility of directly observing dark matter, the movement of
stars, which are luminous and observable, provides a practical means to infer
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the underlying gravitational field predominantly influenced by dark matter
(DM). While the spatial distribution of DM can, to a first approximation, be
determined from the gravitational field using Newtonian physics, the challenge
lies in accurately recovering this gravitational field from stellar observations.
It is critical to note that summing the mass of stars, dust, gas, and other
visible matter only accounts for about 10% of the mass in our Galaxy, which is
insufficient to describe the total gravitational influence [Battaglia et al., 2005,
Kafle et al., 2014].

Direct observation of the acceleration field

Directly measuring the acceleration field of the MW by observing changes in
stellar velocities over time is not feasible due to the vast galactic time scales in-
volved. Under current observational capabilities, it would take approximately
106 years to observe any meaningful change in a star’s orbital velocity, with
exceptions only in regions of extreme gravitational influence such as near the
Galactic center or black holes [Ravi et al., 2019, Quercellini et al., 2008]. Given
this impossibility of reading the MW’s acceleration field directly, we are limited
to snapshots of stars’ positions and velocities — essentially, their 6D phase-
space coordinates.

Near-Sun Gaia sample

The 6D data available from Gaia, primarily concentrated near the Sun, in
the disk, may not be heavily dominated by DM. However, accessing the ac-
celeration field through this data can assist in detecting DM substructures.
Furthermore, this sample includes stars that, although currently near the Sun,
traverse much larger distances across the galaxy as we saw in Chapter 9 —
providing a broader dynamical perspective. As we will see, our methodol-
ogy mitigates the spatial constraints of the 6D sample by employing canonical
transformations to the action space, which allows for a direct exploitation of
the orbits themselves.

10.1.2 Exploiting a frozen phase-space snapshot

Intrinsic acceleration field recovery

One could argue that stellar streams are unique in their ability to trace orbits
and therefore gauge accelerations by simply reading the difference in velocity
along this orbit (∆v)1. However, despite the aforementioned observational

1With the notable exception of approaches that track stellar populations by their metal-
licities, which can provide consistent orbits even within the stellar samples from the disk
[Horta et al., 2024], offering another perspective on the acceleration field.
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challenges, innovative unsupervised learning techniques have been developed
to infer the acceleration field from even phase-mixed stellar coordinates.

The foundational Deep Potential framework by Green and Ting [2020] has
paved the way to multiple studies [An et al., 2021, Buckley et al., 2023, Lim
et al., 2023, Kalda et al., 2024, Tenachi et al., 2023b] demonstrating the po-
tential of these methods. In such approaches one essentially computes the
acceleration field or potential map — represented by a neural network — that
stabilizes the observed stellar distribution, represented using a so called nor-
malizing flow architecture.

It is important to emphasize here that these approaches, focused solely on
recovering a numerical acceleration or potential, are agnostic with respect to
the underlying theoretical framework. Consequently, the results could align
with predictions from Cold Dark Matter (ΛCDM), alternative DM theories, or
even Modified Newtonian Dynamics (MOND).

Free form models

A contrario, the conventional approach to modeling the Galactic potential
(such as the one described in subsection 9.3.3), typically involves simplified
analytic models for both the distribution function and gravitational poten-
tial. Yet, as pointed out by Green and Ting [2020] recent surveys [Antoja
et al., 2018, Trick et al., 2019], have uncovered a richly structured distribution
function within the Milky Way — a complexity that might surpass the capa-
bilities of traditional parametric functional forms such as the ones in Binney
and Tremaine [2011]. This realization prompts a shift beyond the classical
methodologies toward more adaptable and intricate modeling techniques.

In contrast to these traditional methods, new approaches involve repre-
senting both the gravitational potential and the stellar probability distribution
function through neural networks. These networks, particularly adept at mod-
eling any functional form2, are free to capture the subtle intricacies observed
in galactic structures or even unknown physics.

This novel modeling paradigm typically employs normalizing flow neural
networks to represent probability distribution functions, details of which will
be elaborated in the next Section.

2That is any smooth functions regardless of its complexity as detailed in sub-section
2.1.2.
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10.2 Normalizing Flows

In this section, we delve into the inner workings of the normalizing flow (NF)
architecture used for modeling probability distribution functions. A normal-
izing flow transforms a given probability space, denoted as X, into a target
probability space, Z. The only prerequisite for the initial space X is the avail-
ability of sample data necessary for the transformation process. Conversely,
the target space Z requires a coordinate sampler and a known analytical prob-
ability function fZ to permit the training of the NF transformation. This
transformation is designed to be invertible and bijective, ensuring a one-to-
one correspondence between elements in X and Z [Kobyzev et al., 2020].x
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Figure 10.1: Normalizing Flow transformation. Here from a toy Moons distribution to
a Gaussian

The utility of this technique extends to inferring a smooth probability den-
sity function from an arbitrary distribution of points in space X, denoted as
{(x,v)i}i<n∗ . By mapping this distribution to a Gaussian probability space
(where Z ≡ Gaussian), the transformation leverages the well-understood prop-
erties of Gaussian distributions to construct the corresponding density function
in the original space X.

Sub-section 10.2.1 gives an intuitive overview of the NF architecture and
sub-section 10.2.2 details its formalism.

10.2.1 Overview

This sub-section presents the NF architecture using a 2D “Moons” distri-
bution for illustrative purposes, which simplifies the visualization compared
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to a 6D space. Figure 10.1 shows how the NF can transform coordinates
from an arbitrary space X (represented here by the Moons distribution) into
coordinates in space Z (represented here by a Gaussian), where these coor-
dinates correspond to equivalent probabilities. Importantly, the training of
an NF does not require prior knowledge of the probability function in space X.

Figure 10.2 depicts the core process of the NF transformation. Beginning
with input data points from the space X, specifically the Moons ’phase-space’
distribution: {Xi}i<n∗ = {(Xx, Xv)i}i<n∗ = {(x,v)i}i<n∗ , Xi ∈ X, ∀i < n∗,
these points are fed into the upper left portion of the diagram. Initially, these
points are split according to their dimensions (typically in dynamics, samples
are separated position component vs. velocity components wise : {XxXv}) and
channeled into the initial, or 0th, coupling layer. This initial layer operates as
an invertible function, f−1

0 (β), dictated by a set of tunable parameters β.

Within the first coupling layer, the velocities, Xv, undergo an alteration
influenced by a second-order term stemming from a coupling function that
processes the position data, Xx. This alteration adheres to a defined coupling
law, here a straightforward summation. The coupling function is executed via
a multi-layer perceptron (MLP) (this fundamental architecture was previously
detailed in 2.1.2), dependent on the parameters β. As a result, the velocities

are modified to: X
⟨0⟩
v = Xv + MLPβ(Xx), where X

⟨0⟩
v indicates the adjusted

velocities at the 0th coupling layer. Concurrently, the positions X
⟨0⟩
x retain their

initial values Xx through an identity. This sequential modification is repeated
through multiple layers, with the positions and velocities undergoing periodic
exchanges. After several transformations through these layers, the coordinates
initially from space X transition into Z, ultimately rendering X

⟨n⟩
x = Zx and

X
⟨n⟩
v = Zv at the nth layer.

About invertibility

Although we rely on an MLP architecture that is not inherently invertible,
the entire NF computation remains invertible due to the coupling law utilized.
This is because, even in reverse mode, the MLP is computed in a forward
manner. To clarify, consider Figure 10.2. Reversing, for example, the n-th
coupling layer block (on the right) to retrieve values at the (n − 1)-th layer,

X
⟨n−1⟩
x and X

⟨n−1⟩
v , from X

⟨n⟩
x and X

⟨n⟩
v can be achieved by recognizing the

trivial relationship: X
⟨n⟩
v = X

⟨n−1⟩
v . This can be used to compute the forward

MLP of this layer to obtain the residual that can be substracted from X
⟨n⟩
x

to recover X
⟨n−1⟩
x , i.e., X

⟨n−1⟩
x = X

⟨n⟩
x −MLPβ⟨n⟩

(
X

⟨n−1⟩
v

)
. By iterating this

process layer by layer, the NF can be traversed in reverse to recover the original
input coordinates.
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Figure 10.2: Inner workings diagram of the normalizing flow architecture. Case of
an arbitrary phase-space input distribution. {(x,v)i}i<n∗ , mapped to a Gaussian distribu-
tion resulting in a smooth, differentiable and normalized density function f(x,v).

10.2.2 Formalism

The precision of this transformation method in effectively transforming coordi-
nates depends on the adjustment of the parameters β used in the intermediate
MLPs and the formulation of the loss function that steers the parameter fit-
ting. To delve deeper into the theoretical roots of the NF architecture, lets us
now consider the change of variables formula:

pβ(X) = pβ(f−1(X))

∣∣∣∣det

(
∂f−1(X)

∂X

)∣∣∣∣ (10.1)

This translates to pβ(X) = pβ(Z)
∣∣det

(
∂Z
∂X

)∣∣, or equivalently, pβ(X) =
pβ(Z) det(J). Here, f represents the entire sequence of transformations in the
normalizing flow, and J is the Jacobian of the transformation. The transfor-
mation function fβ is depends on the parameters β of its MLP components
and unfolds through a series of layer operations (coupling layers):

X = fβ(Z) = fn ◦ ... ◦ f2 ◦ f1(Z) (10.2)

i.e. Z = f−1
β (X) = f−1

n ◦ ... ◦ f−1
2 ◦ f−1

1 (X) (10.3)

Here, (fi)i<n denotes the individual coupling layers. The dataset X flows
through a series of these coupling functions (fi)i<n. Furthermore, during these
transformations, the samples from X are normalized at each stage, ensuring
that

∫
β
p(X)dX =

∫
β
p(Z)dZ = 1 , as indicated in the following equation,

justifying the name of the normalizing flow architecture.



200 Chapter 10: Free-Form Potential Recovery from Stellar Coordinates

pβ(X) = pβ(Z)
n∏

1

∣∣∣∣det

(
∂f−1

i

∂Z⟨i⟩

)∣∣∣∣ = pβ(Z)

∣∣∣∣det

(
∂f−1

∂X

)∣∣∣∣ (10.4)

Therefore, the log-probability in X space is given by:

log pβ(X) = log pβ(Z) +
n∑

i=1

log

∣∣∣∣det

(
∂f−1

i

∂Z⟨i⟩

)∣∣∣∣ (10.5)

As depicted in Figure 10.2, our implementation involves calculating the
logarithm of the determinant of Jacobians for each coupling layer during
processing, which are then integrated into the loss calculation by adding
them to the logarithmic probability in space Z,in which there is a defined
probability density function.

For the implementation in this work, we predominantly employ the method
outlined by Dinh et al. [2016], which introduces a variation from the standard
NF framework detailed in Rezende and Mohamed [2015] and illustrated in
Figure 10.23. In our approach, the transformations applied in the coupling
layers, (fi)i<n, execute the following updates: X

⟨i⟩
x = X

⟨i−1⟩
x , X

⟨i⟩
v = X

⟨i−1⟩
v ⊙

exp
(
s(X

⟨i−1⟩
x )

)
+ t(X

⟨i−1⟩
x )

)
. Here, s and t represent R3 → R3 scaling and

translation functions respectively, and ⊙ denotes the Hadamard product (or
element-wise product). This results in the Jacobian of the NF being structured
as:

J =
∂f−1(X)

∂X
=

[
Id 0
∂Zv

∂XT
x

diag
(

exp[s(Xx)]
)
]

(10.6)

This matrix arrangement makes the NF invertible and computing its in-
verse computationally inexpensive. A formal demonstration can be found in
Kobyzev et al. [2020].

10.3 The MassFinder Framework

In this Section we present the MassFinder framework for agnostically recover-
ing a free form neural network potential that stabilizes an observed probability

3We highlight recent advancements in the field, including continuous normalizing flow
methodologies [Grathwohl et al., 2018] and neuro-symbolic regression-inspired frameworks
applied to normalizing flows [Tohme et al., 2024].
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distribution function. Sub-section 10.3.1 details each step of our framework,
sub-section 10.3.2 gives insights about the auto-differentiation aspect of our
approach and sub-section 10.3.3 presents a toy experiment that we performed
to test our framework.
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Figure 10.3: The MassFinder framework. Proposed strategy for recovering a free form
neural network potential that stabilizes a distribution of stars {(x,v)i}i<n∗ using auto-
differentiation and gradient descent. See Section10.3 for a full description of the workflow.

10.3.1 Workflow presentation

Our potential recovery framework is shown in Figure 10.3 where we use a
normalizing flow as our density estimator. The input data of this framework
consists of phase-space stellar coordinates {(x,v)i}i<n∗ obtained from cata-
logues such as Gaia.

A. These stars are integrated in a trial gravitational potential Φα repre-
sented by a flexible free form neural network that depends on parameters
α.

B. These trajectories are then used to deduce orbits in action space using
a differentiable canonical coordinates estimator. For this purpose, the
neural network based ACTIONFINDER method [Ibata et al., 2021] can be
used. This transformation to the space of orbits represented by three
integrals of motions i.e. actions : J = (Jr, Jϕ, Jz) enforces physicality
through the Collisionless Boltzmann equation (weak Jeans theorem) and
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assumes that the samples are mostly regular (i.e. non chaotic) with non-
resonant frequencies (strong Jeans theorem) as detailed in sub-section
8.2.2, which is a reasonable first-order assumption for the Milky Way
[Michtchenko et al., 2017].

C. A differentiable density estimator can then be employed to deduce the
density function of orbits in action space f(J). For this purpose, a nor-
malizing flow [Papamakarios et al., 2021] or a diffusion4 model adapted
to tabular data such as TabDDPM [Kotelnikov et al., 2022] can be used.

D. Sampling this function enables us to obtain new orbits {Ji}i<Norbits
in

realistic proportions.

E. These can in turn be sampled to deduce stellar coordinates in actions
and angles: {(J, θ)i}i<N∗ .

F. By applying an inverse differentiable transformation, one can obtain the
Cartesian coordinates of this augmented and phased-mixed stellar pop-
ulation: {(x,v)i}i<N∗ .

G. These can be used to infer a smooth density function in phase-space
f(x,v).

H. Finally, this density function can be compared to initial observations,

using a Poisson negative log-likelihood loss function :
n∗∑
i=1

log(fα((x,v)i)).

I. Since this final density function depends on the potential neural net-
work’s parameters α through all of the steps described above, these can
be adjusted to minimize this discrepancy. This process can be repeated
iteratively until convergence of Φα.

In essence, in our workflow, we are assuming that the system is quasi-
stationary (which is arguably verified within a ∼ 200 Myr time-scale for the
Milky Way [Hou and Han, 2015]) and computing the free form potential that
stabilizes the observed stellar distribution.

4A deep learning technique [Ho et al., 2020] that involves training a model to gradually de-
noise data, until it is able to ‘de-noise’ data from pure Gaussian noise, effectively training
it to generate realistic synthetic data from scratch. This method is responsible for the
success of current generation image generators such as DALL-E [Ramesh et al., 2021] or
StableDiffusion [Rombach et al., 2022].
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10.3.2 Backpropagation

It is worth noting that fitting the large number of parameters that make up
neural networks is made possible through backpropagation, which involves
computing gradients for each single mathematical operation performed in
the workflow 5. While this approach is powerful, it presents challenges as
it necessitates the tracking of all gradients and the utilization of differen-
tiable operations only. We utilize PyTorch [Paszke et al., 2019] for this purpose.

In practice, during the training phase, the network evaluates the log proba-
bility of observed stellar coordinates under the modeled density function. Ide-
ally, if the model accurately captures the underlying data distribution, these
log probabilities should be maximized, resulting in a lower loss, which is com-
puted as the negative sum of these log probabilities. This approach leverages
the benefits of the Poisson loss function, notably its convex nature irrespective
of the model’s complexity. This property ensures that gradient descent meth-
ods can be effectively applied to optimize the model’s parameters, continually
adjusting them to minimize the overall loss and improve the fidelity of the
gravitational field estimation derived from the stellar distributions.

10.3.3 Experiment

We demonstrate the efficacy of our scheme using a toy system, substituting
Gaia data with synthetic data from an isochrone whose potential is given by:

Φ(r) = − G.M

(b +
√
r2 + b2)

(10.7)

Where M and b are mass and length parameters and using the analytical
canonical transformation to actions and angles [see Binney and Tremaine,
2011].

In this toy showcase, we are able to recover the isochrone potential within
a mean relative error of 0.1% showing that it is possible to use gradients to
backpropagate through all of the steps necessary to recover a gravitational
field from observations, including: an orbit integration, a density estimation, a
change of coordinates to actions/angle and a data augmentation using actions.

5Auto-differentiation was detailed in sub-section 2.1.4.
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10.4 Distilling the MassFinder Network into an

Analytic Function

Symbolic distillation

Although the agnostic recovery of a neural network Φα enclosing a potential
model for the Milky Way would be of enormous value. We note that such a
black box model would contrast with usual empirical laws in that it would
be very difficult if not impossible to it connect with theory. Therefore, we
suggest the use of symbolic regression which consists in the inference of a
free-form symbolic analytical function f : Rn −→ R that fits y = f(x) given
(x, y) data for distilling the potential neural network into an intelligible and
interpretable analytical function.6
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Figure 10.4: Symbolic distillation of a neural Galactic potential. Distilling a neural
network representing a Galactic gravitational potential into a interpretable analytical ex-
pression with Φ-SO (Chapters 4-6). An RNN generates trial expressions, their ability to
reproduce the neural network Φα is assessed and the best ones are reinforced. This process
is repeated iteratively until convergence of the RNN and the extraction a set of high quality
expressions.

Here we adopt the Physical Symbolic Optimization (Φ-SO) framework de-
tailed in Chapters 4-6. As illustrated in Figure 10.4 Φ-SO relies on a recurrent
neural network (RNN) to generate multiple trial analytical expressions. Fit
quality of these expressions can then be assessed against data generated using
the Φα neural network. Best expressions are then reinforced and the process
is repeated until the RNN converges and a set of high quality expressions
that reproduce Φα predictions is obtained. We note that since this framework
relies on reinforcement learning, in addition to fit quality any criteria (even

6Symbolic regression is distinct from numerical parameter optimization procedures in
that it consists in a search in the space of functional forms themselves by optimizing the
arrangement of mathematical symbols (e.g. x, +, −, ×, /, sin, exp, log, ...) as well as their
parametrizations.
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non-differentiable ones) can be used including the condition: lim
r→∞

Φ(r) = 0.

Using the Φ-SO framework, we are able to successfully recover the potential
of the toy isochrone system described in Section 10.3.

On the utility of SR

While distilling the resulting numerical potential into an analytical function
aligns with our principle of agnosticism — since it avoids imposing any specific
functional form — it might conflict with our aim to develop a large, free-form
model that can capture the intricate phenomena of the Milky Way, which
compact and intelligible analytical functions typically cannot handle.

Nevertheless, we recognize that this additional step could be beneficial for
several reasons. First, a substantially more complex analytical function than
traditional models that can be found in [e.g., Binney and Tremaine, 2011] —
yet compact enough to be intelligible, could potentially provide a sufficiently
accurate representation of the Milky Way’s potential.

Secondly, even if the Milky Way’s potential involves highly intricate struc-
tures, symbolic regression could effectively extract lower-order components of
this complexity, thereby enhancing the model’s interpretability. For instance,
the potential could be modeled as Φ(x) = Φ0(x)+MLP(x), combining an ana-
lytical foundational function Φ0(x) with a lower-order neural network MLP(x).
The MLP component would be able to fine-tune the model to address lower
orders complex features of the Milky Way.

10.5 Strategies for Mapping Milky Way Dark

Matter

In this section, we explore the methodological implications of our framework as
well as similar approaches in the field. We consider enhancements and avenues
that could benefit not only our method but also other Deep Potential -based
models such as : Green and Ting 2020, An et al. 2021, Buckley et al. 2023,
Lim et al. 2023, Kalda et al. 2024.

Sub-section 10.5.1 highlights the uniqueness of our approach, particularly
our work within the space of actions. Sub-section 10.5.2 discusses the potential
of leveraging additional dynamical probes beyond Gaia’s 6D near-Sun sample
and finally, sub-section 10.5.3 discusses our the current deep learning paradigm
in dynamics and how it could be expended.
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10.5.1 On the virtues of working in the space of actions

Leveraging canonical transformations

Deep Potential -based methods in the literature often involve fitting a NF to
represent a probability distribution function f(x,v) directly from observational
data which is then used to derive a neural representation of the gravitational
potential, Φ(x). Enforcing the potential’s compliance with the Collisionless
Boltzmann Equation (refer to Equation 8.5), enforcing that f is stabilized by
Φ. In contrast, our approach focuses on stabilizing the distribution of orbits
themsevles by generating new synthetic samples in realistic proportions within
the space of actions. This strategic focus gives us an advantage, particularly
when dealing with the spatial limitations of accessible samples, which are pre-
dominantly confined to within 3 kpc of the Sun.

Lim et al. [2023] were pioneers in applying a Deep Potential -esque frame-
work to actual observational data from Gaia, providing constraints on the
MW’s potential within 3 kpc of the Sun. We are optimistic that our model,
which includes a canonical transformation to action-angle coordinates, will lay
the groundwork for spatially extending this approach. Assuming the near-Sun
sample of orbits is representative of the broader disk dynamics, our approach
could potentially model the entire disk’s gravitational potential by working in
the space of actions i.e. orbits themselves.

Our current model is but an initial iteration of our framework, with nu-
merous enhancements already planned. However, it is the first of its kind to
utilize canonical transformations in this context.

Towards a differentiable action estimator

For this purpose, we currently employ ActionFinder [Ibata et al., 2021]. How-
ever, integrating ActionFinder presents challenges, as it is itself an unsuper-
vised learning method requiring its own convergence through iterative updates.
A potential workflow could involve alternating updates — one step for the over-
all system and one step for ActionFinder each epoch — but this integration
is inherently complex.

To streamline this process, we might explore developing a traditional de-
terministic action estimator, such as those based on the Stäckel fudge approxi-
mation for axi-symmetric systems [Binney, 2012]. The forthcoming versions of
the AGAMA framework are expected to introduce a canonical coordinates trans-
formation that is differentiable with respect to input coordinates [Vasiliev,
2019]. However, there are no immediate plans to develop an action estimator
that is differentiable relative to the potential itself, which presents a unique
opportunity for future research initiatives in this area.



10.5 Strategies for Mapping Milky Way Dark Matter 207

10.5.2 Expanding dynamical constraints by exploiting
stellar streams and 5D samples

The Milky Way is known to be in significant disequilibrium [Bonaca and Price-
Whelan, 2024], a factor that our current framework, like many others, does
not account for due to the absence of time-dependence in our models. Ideally,
this time-dependence could be modeled by evolving the entire system from
an initial state such as to reproduce current observational data accurately by
modeling accretion events as time dependent perturbations resulting in new
free parameters. One potential elegant solution might involve a model that
learns a continuous mapping from a past state — when the Milky Way was
spherically symmetric and in equilibrium — to its current state’s probability
distribution function7.

However, time-dependent approaches are notoriously data-intensive, which
leads us to consider the broader implications of data availability and its con-
straints on our modeling capabilities.

Exploiting stellar streams

While our framework currently does not specifically incorporate stellar
streams, it can potentially be enhanced to utilize the rich data from the nu-
merous stellar streams identified in recent years (as detailed in Section 9.3).
Ideally, the potential model would be refined to ensure that stars from a single
stream adhere closely to the same orbit, represented by a constant action J.
However, the dynamics of most stellar streams are complex, often necessitating
more sophisticated modeling approaches going beyond the assumption that all
stream members share identical orbits.

A differentiable stream/progenitor model

To address the complexities of modeling stellar streams, we propose the de-
velopment of a differentiable progenitor/stream model. Traditional stream
models often simulate the ejection of stars from a spherical potential repre-
senting the progenitor, where stars are randomly ejected to mimic the effects
of tidal forces. This method, while effective, relies on discrete operations that
are inherently non-differentiable, such as sudden ejections effectively modeled
by Heaviside functions.

To make this process differentiable — and thus compatible with gradient-
based optimization techniques — we suggest relaxing these discrete operations.
For instance, instead of modeling star ejections as binary events (not ejected
vs. ejected), we could represent them on a continuous scale using a smooth,

7We will mention the FFJORD method in sub-section 10.5.3, which is ideally suited for
this task.
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differentiable function like the arctangent in lieu of Heaviside functions. This
approach would allow for partial ejections with varying intensities over time,
providing a more flexible and tractable model for the complex dynamics of
stellar streams.

De-projecting 5D Data

In addition to exploiting fully characterized 6D data, our framework could
leverage the vast majority of Gaia’s catalog, which primarily consists of 5D
data (missing radial velocity). This would involve a novel approach to de-
project these data by inferring probable radial velocities based on the available
5D parameters.

To implement this, we could introduce a radial velocity probability distri-
bution function as an additional free parameter in the model. This distribution
would be conditioned on the other five dimensions of data, providing a sta-
tistically informed estimate of the missing velocities. The inclusion of this
estimated sixth dimension could significantly expand the scope of data us-
able for modeling the Milky Way’s gravitational field, thereby enhancing the
robustness and accuracy of the derived potential. The hope being that the
degrees of freedom thereby introduced would be compensated by the wealth
of additional information exploited.

In practice, this inferred radial velocity distribution could be learned as a
secondary correction to an existing reasonable first approximation Milky Way’s
dynamics in order to facilitate the fitting process [Dropulic et al., 2021].

10.5.3 Deep learning considerations

Improving neural components

Smoothness challenges

The NF architecture we employ here represents an early iteration within the
field of neural probability density models. As this area of study grows, nu-
merous advanced alternatives to traditional NF models are being developed.
Among these, we previously discussed the TabDDPM [Kotelnikov et al., 2022]
method, which is a diffusion method tailored for tabular data. However, the
leading technique is currently still a NF : the FFJORD (Free-Form Jacobian of
Reversible Dynamics) approach [Grathwohl et al., 2018]. FFJORD generalizes
the core principles of NFs, as outlined in Section 10.2, by transforming the
discrete steps between probability spaces into a continuous flow, removing the
need for multiple discrete transformations. Despite its advances, FFJORD and
similar approaches encounter significant challenges with ensuring smoothness
in the probability density function and in particular its derivatives resulting in
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artifacts, a problem highlighted by Kalda et al. [2024] and one that we have
also encountered.

GradNet

To address these issues, the GradNet method, as introduced in sub-section
7.1.1, offers a promising alternative. This approach has the potential to model
the probability density function in such a way that its predicted gradients
would be as reliable as its integral predictions by construction, which could
significantly mitigate the artifact problem encountered in traditional NF im-
plementations.

Symbolic regression

Moreover, an alternative solution could involve employing symbolic regres-
sion to model both the probability density function and the associated poten-
tial. This method would utilize arbitrary functional forms optimized directly
through symbolic regression techniques, offering a smoother and less overfit-
ted model due to the reduced number of degrees of freedom and the inherent
differentiability of analytical functions. If the primary objective is to enhance
the smoothness of the model, one might even consider using extended and ex-
tremely accurate, albeit potentially complex, analytical expressions that may
not be immediately intelligible. Implementing this approach with the frame-
work we presented in Chapter 3 would effectively necessitate the use of rein-
forcement learning techniques.

Towards a reinforcement learning framework

One might question the necessity of ensuring that our framework is fully dif-
ferentiable. Direct access to gradients via auto-differentiation is certainly ad-
vantageous over traditional gradient approximations. Historically, the astro-
physics community has relied on methods like Markov Chain Monte Carlo
[Gilks et al., 1995] in which gradients are approximated for its optimization
needs.

However, the intricacies of neural networks, with their extensive interde-
pendent parameters, make them impossible to optimize using such traditional
gradient approximation methods. Nonetheless, the process of approximating
gradients to train neural networks effectively without differentiable loss func-
tions is actually an accurate description of the field of deep reinforcement
learning (a technique explored in Section 3.3).

Our framework could indeed benefit from employing reinforcement learn-
ing, circumventing some of the limitations associated with auto-differentiation.
This approach would allow for the integration of non-differentiable elements,
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such as action estimators, within a more conventional framework. It is worth
noting that reinforcement learning remains unfortunately underutilized within
the astrophysics field, yet it offers significant potential for training neural net-
works where objective functions are derived from non-differentiable systems
like simulations.



Chapter 11

Conclusion

Summary.
We synthesize our main findings and discuss the broader implications of

this thesis on machine learning approaches to physics and astrophysics.
We then delve into the future prospects for galactic dark matter research

offered by our observation-driven, agnostic approach to machine learning. We
also discuss, in depth, potential advancements in symbolic learning involving,
the extension of this paradigm to incorporate differential equations, the auto-
mated formulation of theories, and the impact of symbolic approaches on large
language models.

In our final reflections, we emphasize the unique position of astrophysics in
addressing the challenges posed by the opaqueness of machine learning in the
physical sciences.
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This chapter concludes the thesis. In Section 11.1, we synthesize the main
findings and contributions of this work. Section 11.2 then explores the broader
implications of our findings, with a particular emphasis on the role of induc-
tive bias in local Universe dark matter research and the potential and future
prospects of symbolic learning approaches within the fields of physics and as-
trophysics. Finally, Section 11.3 briefly offers some concluding thoughts and
reflections.

11.1 Summary & Overview

We provide a summary of the thesis in sub-section 11.1.1 and highlight the
overarching principles that guided our research throughout this work in sub-
section 11.1.2.

11.1.1 Summary

In Chapter 3, we explored the encoding of formal mathematics into graph
structures and discussed methodologies for learning from and generating such
graphs. We showed how formal mathematical problems can be viewed as graph
optimization problems. Our discussion particularly focused on symbolic regres-
sion (SR), which seeks to discover analytical expressions that fit a dataset from
scratch. We employed a deep reinforcement learning framework where a neural
network sequentially constructs expressions of iteratively increasing fit quality
through a trial-and-error process. We described our approach for ensuring the
validity of automatically generated expressions using a prefix notation and in-
corporating priors that inherently limit the length of sequences generated by
the neural network.

In Chapter 4, we equipped our method, which we dubbed Φ-SO for Phys-
ical Symbolic Optimization, with the ability to exploit physical dimensional
analysis constraints, significantly narrowing the search space for potential ex-
pressions. We achieved this by developing an algorithm capable of conduct-
ing highly informative dimensional analyses on partially constructed equations
during the expression generation process. Physical units constraints were then
applied to ensure the inherent physicality of the expressions using a prior and
to teach the neural network, the rules of dimensional analysis, thereby pre-
venting conflicts among the priors.

We demonstrated that Φ-SO is the leading algorithm for exact symbolic
recovery by benchmarking it against 17 other SR algorithms using the standard
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Feynman benchmark — including 120 equations derived from the Feynman
lectures on physics and other textbooks, to be recovered from their associated
datasets.

In Chapter 5, we expanded the Φ-SO framework to accommodate the
search for a unique functional form that fits multiple realizations of a single
class of physical phenomena, allowing each realization to have (possibly)
unique free parameter values — an approach particularly relevant to as-
trophysics. We refer to this new framework as Class SR. Recognizing the
novelty of our method, we developed the first benchmark specifically designed
to evaluate Class SR systems, demonstrating that Class SR significantly
outperforms traditional SR in scenarios where multiple realizations are
available. We also showcased the effectiveness of our system using a synthetic
dataset of Milky Way streams, successfully deriving an input potential from
stellar positions and velocities.

Chapter 6 detailed the PhySO software implementation of our Φ-SO frame-
work — demonstrating its unique capabilities and features. We emphasized our
commitment to an open-source approach, fostering community interaction and
adoption. This commitment is especially vital in the domain of machine learn-
ing, where transparency and reproducibility are key. As a result of these efforts,
and thanks to the software’s clean, robust, and extensible design, PhySO has
garnered significant adoption within the several physics research communities.
Several teams have substantially built upon the PhySO framework, enhancing
its performances and expanding its capabilities, further solidifying its impact
and utility.

In Chapter 7, we explored complementary approaches to our Φ-SO method,
able to leverage neural networks to directly capture and embody the graph
structure of a dataset, reflecting its underlying analytical representation.
Such approaches have the potential to exploit derivatives informing the
graph structure with respect to data. Specifically, we introduced a novel
method capable of detecting both additive and multiplicative separabilities
in a dataset by analyzing the gradients of its neural network representation.
Additionally, we discussed an innovative approach where a neural network
itself emulates an analytic expression, incorporating basis functions within
its structure and promoting sparsity. We then discussed cross-pollination
strategies within the field of SR.

We introduced several key improvements to the state-of-the-art in rein-
forcement learning-based SR. These range from minor refinements to more sub-
stantial advancements, including the introduction of an annealing temperature
parameter, significant enhancements to the free constants fitting procedure via
auto-differentiation, the introduction of Class SR, and the development of new
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priors. The most notable of these is the incorporation of dimensional analysis,
which informs the neural network of physical units and enables search space
reduction while ensuring physical consistency.

Our SR framework has been tested extensively on hundreds of bench-
marking synthetic cases, as well as real observational data, such as the
study of standard candles to deduce the law of the expansion of the Uni-
verse. Additionally, multiple research teams have applied our software
to real experimental or observational data across a wide range of physics
fields, including astrophysics, aeronautics, mechanics, particle physics, fluid
dynamics, telecommunications, and physical geology and even biology.
Furthermore, we are currently conducting experiments on data derived from
complex simulations, with a focus on the evolution of globular clusters and ex-
ploring alternative models for dark matter profiles, as discussed in Section 11.2.

We believe that while developing abstract approaches to physics and
astrophysics, it is essential to maintain a strong connection to real-world
physics problems. Consequently, we directed our focus to the tangible issue of
dark matter at the galactic scale, a topic introduced in Chapter 8.

In Chapter 9, we pursued our observation-driven approach to physical in-
vestigations by exploring dark matter probes in the form of structures being
accreted by the Milky Way. Studying the near-Sun stellar sample from Gaia,
which includes full positional and velocity information, we discovered a new
stellar stream which we named Typhon. We expect this polar stream’s full
sample to extend to the outer halo of the Milky Way at approximately 100 kpc,
potentially making it an exceptional probe of dark matter. Following a chemo-
dynamical analysis, we identified Typhon as the remnant of a dwarf galaxy —
suggesting that many other dwarf galaxy fragments may be lurking in the
outer halo. We also contributed to the discovery of another structure — which
we named Antaeus — by detecting its members near the Sun, challenging the
prevailing view that dynamical times in the disk are short and tidal structures
phase-mix quickly, erasing any initial stream-like features.

Chapter 10 focused on methods for recovering the gravitational potential
of the Milky Way and its underlying dark matter distribution in a model-
agnostic manner. Our approach, dubbed MassFinder, essentially requires the
potential to stabilize the observed stellar distribution. By employing canonical
transformations to work in the space of orbits in the process, we address the
spatially limited availability of 6D (position and velocity) samples from Gaia.
The chapter concludes by discussing potential advancements in this emerging
sub-field of Galactic phenomenology.
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11.1.2 Overview

The core principle of this thesis centers around an observation-driven approach,
which has steered our integration of machine learning into physics and astro-
physics. Contrary to many conventional machine learning methods that learn
from examples derived from existing models or simulations, we designed our
approaches to generate solutions in an unsupervised manner — without re-
lying on prior models — by inherently requiring adherence to observational
data. This model-agnostic strategy is crucial in physics, as it represents the
sole pathway to discovering new models that more accurately reflect natural
phenomena

Throughout this thesis, we have consistently applied an observation-driven
philosophy to our research. For instance, in our work on SR, we did not train
neural networks on a pre-established library of mathematical expressions.
Instead, we designed models capable of devising a priori unknown expressions
by requiring them to fit the data but also comply with the rules of dimensional
analysis and class constraints. Similarly, in addressing the complexities of
dark matter, we avoided relying on predetermined simulations incorporating
inductive biases. Our approach has been to develop an unsupervised learning
framework that inherently constrains dark matter properties by enforcing
adherence to observational constraints, again, aligning our model development
with empirical evidence.

On a technical level, we aspire for the methodologies explored in this thesis,
particularly auto-differentiation and reinforcement learning techniques, to gain
wider adoption within the astrophysical community. We believe that these ap-
proaches, though currently underutilized in astrophysics, possess tremendous
potential for advancing model-agnostic analyses.

On a deeper level, we aspire for this thesis to mark the beginning of a
paradigm shift towards interpretable and meaningful methods in physics and
astrophysics, spearheading the integration of symbolic deep learning tech-
niques. Our symbolic learning framework, Φ-SO, represents a pioneering
achievement as it is the first and currently only method developed within
the physics and astrophysics communities where a neural network directly ma-
nipulates mathematical symbols. This work underscores the belief that the
prevailing trend of relying solely on supervised learning and black-box models
merely scratches the surface of what machine learning can offer to the scientific
investigation of natural phenomena.
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11.2 Perspectives

This Section explores broad and challenging future directions opened by the
research presented in this thesis. While we have discussed numerous potential
developments throughout this manuscript, here we focus on the most transfor-
mative prospects in sub-sections 11.2.1, 11.2.2, 11.2.3 and 11.2.4, the details
of which we will introduce in their respective sub-sections.

Before we delve into these major avenues, let us first recapitulate the most
significant perspectives highlighted throughout the thesis. To aid in navigating
these discussions, we will reference the sections of the manuscript where these
perspectives were previously discussed. Additionally, we will present some
new, more straightforward perspectives that, while less central to the thesis’s
core contributions, we believe still offer valuable pathways for future research.

Advancing symbolic learning

As highlighted in earlier discussions, particularly in sub-section 3.3.3, a critical
priority is to enhance the effectiveness of symbolic learning systems. Current
methodologies, whether based on neural networks like ours or genetic program-
ming, typically refine symbolic expressions using a scalar, non-differentiable
(with respect to symbolic arrangement) metric of fit quality. This approach
can inadvertently lead to what we term the curse of accuracy-guided SR, where
optimization of the metric does not necessarily converge towards the most ac-
curate functional form.

To address this, a significant research direction involves improving the self-
correction mechanisms of trial-and-error systems by enabling them to utilize
gradients relative symbolic arrangement with respect to symbolic arrangement.
This enhancement could involve integrating a supervised learning component
that actively learns the local geometry of the functional form search space, as
outlined in sub-section 3.3.3. Additionally, fostering synergies with other sym-
bolic regression methodologies could enrich the breadth and depth of symbolic
learning, as discussed in sub-section sub-section 3.3.3 and Section 7.3. Further
specific prospects related to our approaches incorporating dimensional analy-
sis and class-based symbolic regression have been detailed in Section 4.6 and
sub-section 5.4, respectively.

Applying SR to physics & astrophysics

The increasing application of SR methods within the fields of physics and
astrophysics represents a significant development, as illustrated by the use of
Φ-SO in research as listed in Table 6.1.
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Inductive biases

As previously discussed in paragraphs 3.3.2 and 6.1.2, one effective way to
enhance the application of SR beyond our current use of class constraints and
dimensional analysis is to incorporate domain-specific prior knowledge into
the search process. For instance, if the search is for a functional form that
is expected to exhibit certain symmetries, limit behaviors, or specific charac-
teristics within a differential equation, these aspects should be integrated into
the reward function of Φ-SO. Importantly, because these constraints do not
need to be differentiable, Φ-SO can accommodate a wide range of scientifically
meaningful restrictions to refine and guide the search process effectively.

Learning analytic approximations to expensive physics

While this thesis primarily focused on observation-driven approaches, sym-
bolic learning also offers significant potential for addressing computationally
expensive aspects of simulations. A flourishing area involves neural emulators
designed to mimic the complex computations found in cosmological simula-
tions, such as those associated with feedback [Dai and Seljak, 2021]. SR might
be particularly well-suited for this role due to its capabilities for generalization
and interpretability, potentially offering advantages over other methods.

In galactic dynamics, SR could be utilized to derive approximate analytic
expressions for phenomena like dynamical friction [François et al., 2024] or the
computationally demanding aspects of stellar physics [Bianchini et al., 2016].
These efficient and comprehensible equations could substantially reduce the
need for extensive N-body simulation grids. For instance, a mean field / test
particle approach paired with an analytical emulator might be used during
parameter searches to bypass frequent simulation runs, with a final validation
step involving the full simulation to verify the accuracy of the parameters
identified by the emulator.

Learning optimal N-body approximations

Continuing with the theme of enhancing simulation efficiency, N-body simula-
tions, which traditionally approximate the N2 interactions among all bodies,
could benefit significantly from advanced learning methods. These simulations
often simplify interactions through techniques that can be conceptualized as
graph-based approximations.

There exists a promising opportunity to employ SR or its underlying graph
optimization techniques directly to learn these optimal approximations. In-
spired by the reinforcement learning methods discussed in Chapter 3, which
exploit graph structures, we could develop a system to automatically iden-
tify and implement the most effective simplifications for N-body simulations.
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This approach has the potential to not only refine the accuracy of N-body
simulations but also reduce their computational demands.

Mapping the Milky Way

Investigating Near-Sun structures

In previous discussions, specifically in paragraphs 9.1.3 and 9.2.3, we explored
perspectives related to the Typhon and Antaeus stellar streams. One par-
ticularly promising avenue is to extend the sampling of the Typhon stream.
Although initially detected near the Sun, this stream is projected to extend
up to the outer halo. Thus, its complete sampling could provide an excep-
tional probe for studying dark matter. Additionally, the discovery of such
coherent dynamical structures near the Sun prompts further investigation into
how these structures can remain non-phased mixed, given the short expected
dynamical times near the Sun. This inquiry could lead to valuable insights,
potentially through targeted simulations of such structures.

Exploiting 5D Samples

As noted in Section 10.5, another intriguing perspective involves the learning
of de-projections for 5D samples that lack radial velocity information. By
effectively learning the distribution function of the missing dimension, the
hope being that the enhanced input of information will offset the additional
degrees of freedom introduced by needing to learn this distribution.

Differentiable dynamical methods

As explored in Section 10.5, we discussed the potential to develop a differ-
entiable model for stellar streams that could be integrated into mean field
approaches. Additionally, we considered the feasibility of constructing a dif-
ferentiable and deterministic action estimator that operates in canonical co-
ordinates. This would involve utilizing classical approximations, which would
be adapted to allow for differentiability.

11.2.1 Constraining dark matter

Constraining the dark matter particle mass

An interesting avenue would be to compute tractable and intelligible equations
that encapsulate key properties of stellar streams along their length as a
function of the dark matter particle mass. To achieve this, we could utilize
multiple streams obtained from simulations conducted at varying particle
mass levels [Carlberg et al., 2024]. By fitting these functional expressions
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to actual stream observations, on can then extract the parameter values
that encode the dark matter particle mass using the Class SR framework
we designed (Chapter 5). The equations generated in this process would be
designed by construction to capture the particle mass-dependent behavior,
allowing us to harness the presence of gaps resulting from potential sub-halos
in a statistically meaningful way. This statistical approach may enable us to
establish connections between all available observations and multiple models,
using an intelligible bottleneck in the form of an equation. Such an approach
offers a plethora of opportunities for constraining dark matter properties as a
function of observational constraints.

Learning dynamical profiles

Beyond the NFW Profile

We are currently applying the Φ-SO framework to develop alternatives to the
empirical [Navarro, Frenk, and White, 1996] — NFW profile given in Eqn.
8.1, traditionally used to describe dark matter distributions within galaxies.
Preliminary results on the NIHAO set of simulations [Wang et al., 2015] in-
dicate that we have identified several profiles that are both simpler and more
accurate than the NFW profile: “Pareto-dominating” it in terms of predictive
power and complexity in both hydro-dynamical and dark matter only scenar-
ios. Additionally, we are working at addressing a significant drawback of the
NFW profile — its non-converging enclosed-mass at infinity — by incorporat-
ing this constraint in our reward function, ensuring physical validity in our
newly discovered profiles.

Modeling Globular Cluster Rotation Curves

The standard empirical model currently used for globular cluster (GC) rotation
curves fails to capture post-peak velocity trends and lacks temporal dynamics,
which are crucial given the evolutionary nature of these clusters due to mass
loss [Bianchini et al., 2018]. We are developing a new profile based on state-
of-the-art simulations data of GCs1 that not only models the velocity as a
function of radius but also incorporates temporal changes. Initial successes
include modeling the time-dependent evolution of peak velocities, offering a
robust tool potentially useful for determining the ages of globular clusters
from their dynamic profiles in the Milky Way.

1These N-body simulations, conducted by Paolo Bianchini at the Observatoire As-
tronomique de Strasbourg, represent the first to model globular clusters with a one-to-one
correspondence of stars over a 13 Gyr timeframe while accounting for stellar evolution, tidal
fields, and initial rotational dynamics, providing a comprehensive and realistic representa-
tion of globular cluster evolution.
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Recovering a general distribution from extra-galactic streams.

Another exciting possibility is to build upon the unsupervised learning
framework described in Chapter 10 to recover a “universal” dark matter
distribution fitting multiple observational constraints related to low surface
brightness structures surrounding distant galaxies [Nibauer et al., 2023, Sola
et al., 2022]. Varghese et al. [2011] pioneered the exploitation of such features
to constrain mass distributions. These constraints can be sourced from
observational data collected through CFHT, Euclid [Laureijs et al., 2011], or
the Roman Space Telescope. To accomplish this, we consider developing a
differentiable framework designed to de-project the numerous structures and
compute the free-form potential (only parameterized by a few galaxy-specific
scale parameters) that can reproduce these structures in an unsupervised
manner, fitting de-projection parameters in the process2. Despite the number
of degrees of introduced, one can be hopeful that the extensive amount of
observational constraints available will render this project both viable and
informative. Note that although the velocity of extra-galactic tidal features
is typically not measured, recent studies suggest if could be traced by their
globular clusters for which 6D information is available [Ferrone et al., 2023].

We will see in the next-subsection, that one can also envision exploiting
extra-galactic velocity maps for similar purposes.

11.2.2 Uncovering differential equations from data

In the the future, we plan to push the boundaries of symbolic learning methods
by delving into the realm of automatic analytical differential equation genera-
tion as illustrated on Figure 11.1. The aim is to extend Φ-SO with the ability
to generate differential equations whose solutions fit a given dataset or meet
specific criteria, (e.g., additional physical principles, symmetries, or asymptotic

conditions) extending operators to e.g., {∂/∂t, ∂/∂x, ∇⃗.□, ∇⃗ ×□...}. The in-
clusion of differential equations in symbolic learning marks a transition away
from empirical laws and toward more abstract yet interpretable constructs.
Working in the space of differential equations is particularly relevant since
they can express simple counterparts to solutions that can be very complex or
might not even exist explicitly.

Generating differential equations inherently requires a sequential process,
which is currently only possible within a few symbolic learning frameworks3

2This de-projection approach would be akin to the one we suggested for Milky Way stars,
enabling cross-pollination in methodological approaches to this problem or even neural cross-
pollinations in the form of transfer learning.

3A requirement for frameworks in which a neural network generates mathematical sym-
bols directly such as ours.
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Figure 11.1: Uncovering differential equations governing observations. A planned
extension of our Φ-SO framework involves the search for symbolic differential equations
whose numerical solution fit a dataset. In the context of dark matter research, this could
be used to learn alternatives or extensions to the Poisson equation governing dark matter
and dynamics in galaxies based on e.g., their velocity maps. Here we illustrate our point
by showing line-of-sight (los) velocity fields from two galaxies adapted from [Urrejola-Mora
et al., 2022].

like Φ-SO. This sequential generation is crucial as it enables the integration
of the necessary in situ priors required to handle multi-dimensional variables
effectively and enforce a maximum nesting of differential operators for
numerical stability.

Existing methods in this area often simply involve a regular SR framework
in which one includes derivatives by treating them as additional variables,
such as {x1,

∂x1

∂t
, x2,

∂x2

∂t
, t} in lieu of {x1, x2, t}, rather than integrating them

dynamically into the learning process. While our current implementation of
Φ-SO already supports this straightforward possibility, the approach we pro-
pose goes beyond by allowing for the nesting of differential operators and the
incorporation of vector operations such as scalar and cross products alongside
a ∇ operator.

This methodological expansion is somewhat uncharted in machine learn-
ing, primarily because it aims to produce interpretable models in the form of
differential equations which would have to be solved to be used, making them
much more computationally intensive than typical machine learning objectives
— which often prioritize predictive accuracy and computational efficiency over
interpretability.

Learning alternatives to the Poisson equation governing dark matter

Our plans include utilizing this more advanced symbolic learning framework to
delve into alternative formulations or higher-order expansions of the Poisson
equation (given in Eqn. 8.4), which is central to understanding the dynamics
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of dark matter within galaxies. This exploration will be based on observational
velocity maps of galaxies.

This approach could be used as a systematic method to assess whether
observational data from galaxies support the ΛCDM (Λ Cold Dark Matter) or
MOND (Modified Newtonian Dynamics) frameworks as discussed in Section
8.1, or perhaps indicate the presence of entirely new physical phenomena. By
combining this approach with our Class SR framework, detailed in Chapter
5, we aim to enable the learning of a ‘universal’ differential equation that
encapsulates the dynamics of multiple galaxies at the same time as illustrated
in Figure 11.1.

Learning alternative cosmologies

Other interesting applications include galaxy evolution, especially with the
aid of JWST data [Gardner et al., 2006] as well as cosmological investigations.
Specifically, in light of the Planck mission [Aghanim et al., 2020], we plan on
exploring extensions to the Friedman equation by requiring the resulting ana-
lytical model to predict both the observed cosmic expansion through standard
candles and the cosmic microwave background (CMB), which encodes crucial
information about matter distribution in the early Universe.

11.2.3 Toward the automatic formulation of theories

What is a theory?

While the discovery of new extensions or alternatives to laws governing spe-
cific scales, such as the cosmological or galactic scales, would undoubtedly be
of immense value, it would not equate to developing a comprehensive theory.
Defining what constitutes a “theory” is a delicate epistemological question.
Considering an observation-driven perspective, here we define a theory as a
cohesive set of interrelated equations capable of accurately predicting natural
phenomena across vastly different scales. For instance, Newton’s laws were
historically regarded as a first ‘theory of everything’ because they could pre-
dict both the trajectory of an apple falling from a tree and the movements of
celestial bodies — phenomena that occur at drastically different scales. This
concept underpins the challenges faced by quantum gravity theories [Rovelli,
2004] and, albeit on a less grand scale, the challenges we encounter in recon-
ciling phenomena across galactic and cosmological scales.

Physical theory optimization

For this purpose, we aim to push the boundaries of the symbolic learning
paradigm by developing a framework capable of formulating comprehensive
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Figure 11.2: Toward the automatic formulation of theories Illustration of the planned
extension of the Φ-SO framework allowing it to autonomously learn “theories” i.e. multiple
analytical (possibly differential) equations referencing one another satisfying multiple obser-
vational constraints (each constraint possibly consisting of multiple realizations of a single
phenomena). We illustrate our point by suggesting the automated exploration of “theo-
ries” fitting standard candles, a key galactic property across multiple realizations and the
cosmological microwave background (CMB).

“theories”. This involves creating an algorithm that can autonomously gen-
erate and refine systems of interrelated (possibly differential) equations to
precisely match multiple observational constraints (each constraint possibly
consisting of multiple realizations of a single phenomenon). This concept is
visually represented in Figure 11.2.

In practice, we envisage the development of a framework that refines N +n
equations, where the first N equations are tailored to fit N distinct observa-
tional datasets-leveraging our Class framework optimized for multi-realization
datasets (such as observations of distant galaxies). The additional n equations
would function as auxiliary equations, potentially encoding redundancies that
capture the core underlying principles of the theory. The objective would be
to derive the simplest possible set of equations that collectively describe all
observed phenomena effectively.

Applications

Given the complexity and the abstract nature of such a system, along with
the anticipated challenges of ensuring its robust performance in real scientific
applications, we propose an initial focus on the recovery of a “simple theory”,
such as Maxwell’s laws of electromagnetism. Subsequently, the aim is to
transition toward addressing substantial real-world astrophysical scenarios to
maintain practical relevance. The specific applications may vary. However,
one promising avenue involves applying this system to develop a predictive
model able to predict behavior at both the galactic and cosmological scales as
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illustrated in Figure 11.2.

11.2.4 Making large language models data and
mathematics-literate

Current-generation LLMs

Throughout the duration of this PhD, we have observed the rapid development
and adoption of Large Language Models (LLMs) that utilize Generative Pre-
trained Transformer architectures (similar to those employed in pre-trained
approaches to symbolic regression discussed in Section 2.2.2). While these
models have achieved human-level or near-expert performance in various tasks,
including language translation and programming language tasks, their profi-
ciency in scientific domains remains relatively underdeveloped [Saxena et al.,
2023].

Tokenization and learning challenges

One potential pathway to enhance the scientific capabilities of LLMs lies in
optimizing how they process and learn from scientific content. Science fun-
damentally involves observing natural phenomena and formulating predictive
models. Current LLMs struggle with scientific tasks partly due to their train-
ing approach, which heavily relies on supervised learning from vast corpora of
text that are tokenized in a specific manner, as detailed in Section 3.1.2.

The tokenization process for mathematical equations it typically apllied
directly to Latex strings. This method poses a significant limitation: if an
LLM proposes the equation b + a but the correct format in the training data
is a + b, the model is penalized despite the mathematical equivalence, due to
its token-by-token learning approach. Additionally, LLMs must independently
learn the syntax and structure of valid mathematical expressions, including the
rules of parentheses and expression formatting, without the aid of specialized
embeddings for mathematical constructs. This contrasts sharply with their
language processing capabilities, where embeddings for words or sub-words
significantly simplify the learning process by abstracting away the need to
construct words from individual letters.

In essence, current LLMs lack direct access to the underlying graph struc-
ture of mathematical expressions; they only interact with their Latex represen-
tations. This limitation underscores a significant gap in their training: without
embeddings analogous to those used for textual data, LLMs are tasked with a
far more complex learning challenge when dealing with analytical expressions.
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Multi-modality

Emerging advancements in multi-modality are now allowing LLMs to engage
directly with diverse data forms, including images and audio, in addition to
text. This development introduces a transformative capability where LLMs
can process data through modality-specific inputs — such as an audio neural
head capable of directly analyzing voice recordings4.

Symbolic & data modalities

Given recent advances in deep learning SR, we suggest the introduction of
specialized science-focused modalities into LLMs, as illustrated in Figure 11.3
This adaptation aims to enhance LLMs’ ability to handle scientific tasks by
incorporating domain-specific knowledge directly into their framework.

Potential platforms for incorporating these new modalities include the
AstroLlama LLM [Nguyen et al., 2023], fined tuned for astrophysics appli-
cations, and nanoGPT [Karpathy, 2023], which offers a simplified architecture5

built for prototyping. Additionally, the current state-of-the-art Llama 3.1

[Llama Team, 2024] could provide a robust environment for deploying these
complex, multi-modal learning strategies.

Symbolic modality

We suggest a specific “symbolic” modality that would enable LLMs to inter-
pret and learn from the underlying graph structure of mathematical expres-
sions, proofs, or even computer programs6. This specialized symbolic head
could adopt a trial-and-error approach: instead of generating an expression in
a single attempt, it could iteratively refine the expression, starting from an
initial latent space representation — a method akin to diffusion processes [Ho
et al., 2020] or Kamienny et al. [2023]’s approach in the context of SR. Imple-
menting such a system would necessitate a robust symbolic expression graph
management tool, which we have developed as part of the Φ-SO framework.
Our system is uniquely capable in this regard, offering full graph represen-
tation and vectorization across both batch and equation length dimensions,
positioning Φ-SO at the forefront of this exciting endeavor.

4This integration allows the models to respond to nuances in audio data, such as emo-
tional intonations, tunes or contextual sounds which would be lost in translation through a
traditional speech-to-text transcription process.

5Though offering performances on par with GPT2 [Radford et al., 2019]
6Automated computer program generation, holds significant industrial interest and is

likely to drive substantial innovation (see, e.g., , Lin et al. [2024]).
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Figure 11.3: Towards symbolic & data modalities for LLMs. This diagram illustrates
proposed enhancements (highlighted by the red contour) to Large Language Models (LLMs)
that would enable them to process and learn on scientific data and mathematical expressions
in addition to their existing capabilities with text and images. The extensions include
specialized heads for ingesting and outputting symbolic expressions [SYMB] or tabular data
[TABLE] in lieu of tokens, enhancing their literacy in data and formal mathematics. For a
detailed discussion, refer to sub-section 11.2.4.

Graph distance metric

An additional advancement could involve developing a differentiable metric
for measuring distances between equations. This metric would account for
properties like commutativity (e.g., assigning zero distance between expressions
like a + b and b + a) and incorporating more complex algebraic identities to
evaluate similarity. Implementing this would require a neural network, which,
while not infallible, offers the speed and differentiability necessary for such a
task. This approach aims to create a rapid and universally applicable symbolic
expression distance metric, harnessing the capabilities of neural networks to
achieve efficiency and scalability.

Tabular data modality

Current-generation LLMs often encode numerical values as text strings, such
as e.g., s.aaa.10bb, where s represents the sign (positive or negative), aaa are
digits, and bb are the exponent digits, with each digit treated as a distinct
class. Consequently, the LLM must empirically learn numerical closeness-for
instance, that 42.1 is closer to 42.2 than to 92.1, given that all digits are being
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treated as separate classes. Given pioneering efforts by Lalande et al. [2023] to
integrate actual numerical values into transformer models rather than treating
them as discrete tokens, there is potential to develop a robust method for
incorporating tabular data directly into LLMs. This approach would handle
data in a column and line invariant manner, differentiating it from image
modalities as suggested by e.g., Kotelnikov et al. [2022].

SR pre-training

To enhance the LLM’s capacity for integrating complex relationships between
symbolic and data modalities, we propose pre-training the LLM’s symbolic
and data heads on SR tasks. This initial training phase would focus solely on
modeling the relationship between symbolic expressions and data before the
LLM is trained on an ensemble of multimodal datasets such as research pa-
pers, which often include text, numerical data, and mathematical expressions.
Additionally, pre-training the symbolic head on formal mathematical problems
could further refine its ability to handle complex symbolic information. This
foundational training is expected to significantly boost the LLM’s proficiency
in scientific tasks where precise data interpretation and symbolic manipulation
are crucial.

Scientific LLMs prospects

Throughout this thesis, and particularly within this section, we have incorpo-
rated a rich tapestry of prior knowledge into our symbolic frameworks, such as
the inherent graph structure of mathematical expressions, prefix notation, and
the integration of dimensional analysis. These elements-combined with the
requirement to fit multiple realizations, and the application of Occam’s razor
to favor concise expressions have framed our current approach. Yet, the rapid
evolution of LLMs suggests that many of the constraints we have meticulously
encoded might soon become redundant, learned implicitly by more advanced
models.7

Modern LLMs, for instance, no longer require explicit rules like prefix no-
tation to generate balanced mathematical expressions. Errors like producing
a + +b instead of a + b or producing (a+)b.c instead of (a + b).c are exceed-
ingly rare, indicating a significant leap in their understanding of syntactic rules
without direct programming. This natural proficiency raises a compelling ques-
tion about the future capabilities of multi-purpose models: Could they, one

7This situation parallels the early resistance encountered by proponents of black box
neural networks, who argued against manually coding rules with the help of experts. In-
stead, they advocated for systems that learn rules directly from data without explicit human
intervention, a shift that marked a pivotal moment in the history of artificial intelligence
[Schmidhuber, 2015].
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day, perform tasks like SR directly out of the box? Imagine a scenario where
an LLM, merely by processing a dataset, could autonomously generate an
analytic expression reflecting on all previously encountered data/expressions
occurrences, without specific training for SR tasks.

This prospect mirrors the unexpected abilities seen in early versions of GPT
[Radford et al., 2019], where the model demonstrated a capacity for translat-
ing English to French — despite not being explicitly trained for translation
— by applying its broad learning from English to the negligible French exam-
ples encountered during its training. This type of cross-application of learned
knowledge hints at a future where advanced models not only meet but exceed
their training directives, tackling complex and unanticipated tasks 8.

11.3 Concluding Remarks

In conclusion, unlike some other domains like computer vision, control, or
computer science, I firmly believe that, physics and astrophysics necessitate
not only traditional machine learning approaches but also an additional
symbolic learning paradigm to advance effectively in the era of Big Data.
Through this thesis we propose an ambitious framework and set of method-
ologies for extending the symbolic machine learning paradigm into the domain
of physics. Our strategies draw from our experiences being confronted to
concrete astrophysical challenges. The overarching statement of the present
thesis being the establishment of a mutually beneficial relationship between
the development of such approaches and the maximization of science returns
from observational missions — and in particular the investigation of the dark
matter problem, one of the most prominent challenge of physics.

The current landscape of machine learning is dominated by industrial
applications that offer remarkable predictive capabilities but often fall short
in terms of intelligibility and interpretability, aspects that hold paramount
importance in the natural sciences. Given the current technological context,
particularly regarding language processing, and the data abundance era we
are entering in astrophysics, I firmly believe that the time is ripe to develop
symbolic machine learning tools capable of producing comprehensible models
in the form of analytical expressions.

8Beyond simple translations, GPT4 has demonstrated proficiency in various complex tasks
that it was not explicitly trained to perform, showcasing its generalization capabilities
[de Wynter, 2024, Bubeck et al., 2023, Fan et al., 2022].
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Obviously these methods hold the potential to benefit various branches of
physics, but their particular relevance shines brightest in astrophysics, given
the unprecedented influx of data in our field. Historically, astrophysics has
frequently pioneered new numerical methods that later benefited the broader
natural sciences. I believe that now more than ever, astrophysics has the
responsibility to remain at the forefront of physical sciences by addressing
these critical new challenges.
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Ce chapitre offre un résumé détaillé de la thèse, rédigé en français. Il débute
par l’introduction et la contextualisation des méthodologies d’apprentissage
automatique interprétables pour la physique et l’astrophysique. Ce résumé
articule ensuite de manière succincte les contributions scientifiques réalisées
au cours de cette thèse, accompagnées des perspectives futures détaillées.
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Introduction

Les théories physiques, notamment en astrophysique, sont historiquement is-
sues de lois empiriques. Les physiciens, observant les phénomènes naturels,
élaborent des lois empiriques pour les décrire, puis construisent des théories
englobantes qui intègrent ces lois. À titre d’exemple, la loi de la gravitation
universelle de Newton rend compte avec élégance tant du mouvement des ob-
jets terrestres que des lois du mouvement planétaire de Kepler. Toutefois,
l’avènement de l’apprentissage profond a transformé de nombreuses lois em-
piriques en modèles complexes basés sur des réseaux de neurones, rendant leur
intégration dans des théories plus vastes nettement plus complexe.

Avec le lancement de nouvelles missions observationnelles telles que Gaia,
Euclid, LSST et SKA, l’astrophysique se trouve à l’aube d’une ère prolifique en
données, avec des volumes approchant le pétaoctet. Cette profusion de données
suscite un vif intérêt pour l’identification de nouvelles lois empiriques qui pour-
raient, potentiellement, ouvrir la voie à des découvertes physiques inédites.
Cependant, cette abondance de données impose également d’importants défis
conceptuels. Si l’apprentissage profond permet d’extraire des informations
précieuses de ces vastes corpus, il est néanmoins doublement influencé par les
réseaux neuronaux qui constituent l’un de ses composants les plus efficaces,
mais aussi les plus problématiques.

Le problème de l’opacité en apprentissage automatique

Les réseaux de neurones, tout en étant extrêmement flexibles et puissants, ca-
pables de modéliser presque tous les systèmes physiques et de fonctionner dans
des espaces de haute dimension, demeurent pour la plupart des bôıtes noires
opaques. L’interprétabilité et la compréhensibilité, essentielles en physique, in-
terrogent ainsi sur notre capacité à tirer parti des vastes ensembles de données
tout en préservant la faculté d’interpréter et de relier ces informations à des
théories substantielles. Peut-on, après avoir entrâıné un réseau neuronal pro-
fond, dévoiler les mécanismes internes de cette bôıte noire ? Peut-on en extraire
et comprendre la physique sous-jacente ?

Un paradigme d’apprentissage symbolique

Face à ces défis uniques à la physique et à l’astrophysique, cette thèse pro-
pose le développement d’un nouveau paradigme en apprentissage automatique
: un paradigme qui manipule les symboles mathématiques de manière non
supervisée, un paradigme capable de transformer des réseaux neuronaux ou
des ensembles de données en modèles physiques exprimés par des lois ana-
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lytiques et symboliques concises. Cette approche novatrice, en enrichissant
les méthodes conventionnelles d’une dimension d’interprétabilité précieuse, se
présente comme une solution prometteuse pour relever le défi croissant de con-
necter de manière agnostique les observations à la théorie.

La nécessité des approches symboliques

Prédiction vs. explication : le dilemme épistémologique posé par les réseaux
de neurones

Puissance prédictive par l’unification. Cette question
épistémologique, soulevée par l’avènement des réseaux neuronaux, se
situe au cœur même de la recherche physique. Devons-nous nous satisfaire de
modèles qui, bien que précis dans leurs prédictions, ne nous offrent aucune
lumière sur les processus sous-jacents ? Imaginez, à titre hypothétique, un
réseau neuronal entièrement opaque, certes omniscient, capable de prédire
avec une exactitude irréprochable tout phénomène physique. Un tel outil
pourrait-il vraiment assouvir notre soif de connaissance scientifique ? Proba-
blement pas, car le désir intrinsèque de comprendre, cette quête d’explications
qui anime chaque physicien, demeurerait inassouvi. Ce scénario nous amène à
une interrogation fondamentale : quelle est la vocation ultime de la physique
? Est-elle simplement de prédire ou aussi d’expliquer ? Et, le cas échéant,
quel aspect définit le plus profondément la discipline ?

Puissance prédictive à travers la complexité. Historiquement, les
avancées significatives en physique ont souvent résulté de l’unification de
théories, à la fois simples et puissantes, aptes à expliquer et à prédire des
phénomènes à différentes échelles. Newton et ses lois en sont un exemple
éloquent. Cette propension pour la simplicité et l’élégance, fréquemment
résumée par le principe du rasoir d’Occam, suggère une préférence pour des
théories moins paramétrées mais dotées d’une capacité explicative exhaustive.

Les mathématiques : le langage de l’unification. À l’opposé, les
modèles basés sur les réseaux de neurones marquent une rupture de paradigme.
Ils excèlent dans la prédiction au sein de leur domaine d’entrâınement mais
se caractérisent souvent par une densité paramétrique élevée et une absence
de la simplicité explicative propre aux modèles analytiques. On pourrait
arguer que la puissance prédictive, à elle seule, justifie un écart par rapport au
principe d’Occam — si un modèle peut élucider des phénomènes jusqu’alors
inexpliqués, ne peut-on pas alors excuser sa complexité ?

Néanmoins, nous soutenons que cette question ne se pose pas encore, car
aucun modèle actuel d’apprentissage profond n’est capable d’apprendre et
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de prédire universellement tous les phénomènes physiques. Nous assistons
plutôt à une fragmentation des modèles à travers diverses sous-disciplines de
la physique, chaque modèle étant spécifiquement adapté à certains ensembles
de données ou phénomènes. Il est concevable que des indices de nouvelles
physiques soient déjà présents, dissimulés au sein de l’un ou plusieurs de ces
réseaux spécialisés, formés sur d’immenses corpus de données observationnelles
ou expérimentales.

La méthode traditionnelle de synthèse des observations empiriques en
théories globales s’est toujours effectuée à travers le langage universel des
mathématiques. Cette tradition nous enseigne que, malgré l’exploitation des
capacités des réseaux de neurones, il demeure un impératif critique pour des
modèles mathématiques interprétables. Ces derniers sont indispensables pour
faciliter la communication des concepts physiques entre les divers domaines de
la physique.

Constructions mathématiques en physique

Galilée, dans son œuvre Opere Il Saggiatore, a perceptivement observé que
le livre de l’Univers est “écrit en langue mathématique”. Depuis lors, l’une
des préoccupations centrales de la physique a été de tenter d’expliquer les pro-
priétés de la nature en termes mathématiques, en proposant ou en dérivant des
expressions mathématiques qui encapsulent nos observations et expériences.
Cette démarche s’est avérée d’une efficacité remarquable. Au fil des siècles,
grâce à une méthode d’essai et d’erreur, les grands mâıtres de la physique ont
développé et légué une panoplie de techniques nous permettant de déchiffrer
le monde et de bâtir notre civilisation technologique moderne. Aujourd’hui,
avec l’évolution des réseaux neuronaux, se profile l’espoir d’une accélération de
cette entreprise, exploitant le fait que les machines peuvent explorer un espace
de solutions bien plus vaste que ne le pourrait un être humain seul.

Régression Symbolique

Cette perspective souligne le rôle crucial de la “Régression Symbolique”
dans cette thèse. Au-delà des méthodes traditionnelles émergeant depuis
l’avènement de l’informatique, qui impliquent généralement l’ajustement de
coefficients à des fonctions linéaires ou non linéaires prédéfinies, la régression
symbolique ambitionne davantage. Elle aspire non seulement à optimiser les
coefficients au sein d’une fonction mathématique donnée mais aussi à découvrir
les formes fonctionnelles elles-mêmes. Plus précisément, elle vise à déduire une
fonction analytique symbolique libre f : Rn1 −→ Rn2 qui ajuste y = f(x) à
partir de données (x,y).
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Une philosophie de modélisation axée sur l’observation

Le problème de biais en apprentissage automatique

Les méthodologies traditionnelles d’apprentissage automatique en physique
et en astrophysique reposent fréquemment sur l’entrâınement supervisé de
réseaux de neurones, où d’importantes hypothèses physiques sont intégrées
de manière prépondérante dans les exemples d’entrâınement, notamment par
le biais de simulations fondées sur des modèles physiques établis. Si de
telles démarches peuvent s’avérer utiles dans certains contextes, elles confinent
inéluctablement la découverte de nouvelles physiques en alignant rigidement
les modèles résultants sur les paradigmes théoriques préexistants.

L’agnosticisme nécessaire à la découverte scientifique

Cette thèse aspire à inaugurer des méthodologies novatrices pour la découverte
scientifique en physique et astrophysique, en prônant une philosophie
résolument guidée par l’observation. Cette philosophie, qui imprègne
l’ensemble du travail présenté, postule que les véritables découvertes physiques
ne sauraient émerger de la simple adhésion à des modèles pré-établis, mais
requièrent plutôt une exploitation éclairée et agnostique des données observa-
tionnelles.

Nous déployons ainsi des paradigmes novateurs qui s’affranchissent
de l’apprentissage dépendant des modèles au bénéfice de stratégies
d’apprentissage non supervisées. Ces dernières ne s’appuient pas sur des
modèles physiques prédéfinis, mais aspirent plutôt à édifier des modèles
physiques intrinsèquement fidèles aux contraintes imposées par les observa-
tions. Le paradigme Φ-SO Optimisation Symbolique Physique, établi au
travers de cette thèse, illustre parfaitement cette approche. Φ-SO s’attache
à formuler des expressions analytiques symboliques ex nihilo, par le biais d’un
processus itératif d’essais et erreurs, strictement encadré par l’impératif de con-
formité aux données empiriques, sans aucune exposition préalable à des expres-
sions symboliques. Cette méthodologie incarne notre engagement à révéler des
modèles physiques par le prisme de contraintes comportementales strictes, af-
franchies de toute présupposition modélisatrice : une démarche véritablement
libre de tout biais inductif.

En épousant la philosophie formulée par Donald Lynden-Bell, nous nous
engageons résolument à “suivre les données”, permettant ainsi aux motifs
intrinsèques et aux vérités contenues dans les observations de guider nos
avancées théoriques. Cette approche ne stimule pas seulement le potentiel de
découvertes fondamentales mais s’harmonise également avec la mission cen-
trale de la physique : élucider les principes régissant l’univers à travers le
prisme de la preuve empirique.
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Le problème de la matière noire

La quête de progrès méthodologiques, bien que porteuse d’innovations, peut
aisément nous entrâıner vers l’abstraction. Il est donc essentiel d’ancrer ces
avancées dans des défis scientifiques tangibles. Le mystère de la matière noire
illustre parfaitement ce type de défi, son comportement énigmatique à l’échelle
galactique laissant présager des manques dans notre compréhension et peut-
être des pistes vers de nouvelles physiques, offrant ainsi un terreau fertile pour
l’éprouve de nouvelles théories et méthodologies.

L’ambition ultime de cette thèse est de cultiver une relation symbiotique en-
tre le développement de stratégies d’apprentissage automatique innovantes et
d’approches d’apprentissage symbolique, et leur application en astrophysique,
notamment dans la démystification de la matière noire, l’un des défis les plus
ardus de la physique contemporaine.

Plan & Objectifs

Nos objectifs se déclinent en deux axes : primo, étendre les frontières de
l’apprentissage automatique symbolique au-delà de ses domaines traditionnels,
qui privilégient souvent les communautés informatiques et de contrôle, pour
explorer de nouveaux terrains prometteurs qui confèrent à la physique une
valeur ajoutée par l’interprétabilité. Secundo, mettre en œuvre ces méthodes
avant-gardistes pour relever le défi actuel posé par la matière noire, en veillant
scrupuleusement à ce que l’évolution de ces méthodologies demeure solidement
ancrée dans des études de cas scientifiques concrets.

Ici, nous proposons un résumé de la thèse. À titre indicatif et pour faciliter
la navigation, voici une esquisse de sa structure, détaillant chaque chapitre.

Le chapitre 2 examine une diversité d’approches interprétables en appren-
tissage automatique adaptées à la physique et à l’astrophysique, et expose
des stratégies fondamentales issues de la littérature susceptibles de catalyser
des avancées dans ces disciplines. Il met en exergue l’importance cruciale de
l’apprentissage symbolique dans ce cadre et fournit une contextualisation ap-
profondie de ces techniques.

Le chapitre 3 s’attarde sur la conceptualisation des problématiques
mathématiques comme des problèmes numériques d’optimisation de graphes
et aborde la représentation des mathématiques formelles en tant que données
numériques pouvant être traitées numériquement. Ce segment présente notre
méthode destinée à entrâıner des réseaux de neurones à élaborer des ex-
pressions mathématiques répondant à des contraintes spécifiques, telles que
l’ajustement à un jeu de données, il s’agit de la problématique de la régression
symbolique, par une méthode d’essais et d’erreurs utilisant l’apprentissage pro-
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fond par renforcement.

Dans le chapitre 4, nous proposons une technique d’intégration des con-
traintes d’analyse dimensionnelle physique à l’optimisation symbolique, que
nous combinons par la suite à notre stratégie d’apprentissage par renforce-
ment, aboutissant à notre paradigme Φ-SO qui affiche des performances de
premier plan évalué sur un benchmark de régression symbolique standardisé.

Le chapitre 5 développe le paradigme Φ-SO afin de permettre la recherche
d’une forme fonctionnelle unique qui s’adapte à plusieurs réalisations d’une
classe spécifique de phénomènes, chaque réalisation pouvant comporter des
valeurs paramétriques potentiellement distinctes. Nous baptisons cette ap-
proche Régression Symbolique de Classe (Class SR). L’efficacité de cette nou-
velle méthode est démontrée par la mise en place et l’exécution d’un premier
benchmark pour Class SR, ainsi que par l’optimisation d’un potentiel grav-
itationnel galactique synthétique analytique à partir de données de courants
stellaires correspondantes.

Le chapitre 6 détaille le logiciel PhySO, qui constitue notre implémentation
du paradigme Φ-SO.

Le chapitre 7 expose des méthodologies complémentaires à Φ-SO. Ces
techniques utilisent des réseaux de neurones pour représenter directement
la structure hiérarchique sous-jacente des expressions analytiques, augmen-
tant ainsi la portée et l’efficacité de nos approches d’apprentissage symbolique.

Le chapitre 8 aborde les défis liés à la compréhension de la matière noire
à l’échelle galactique, en se concentrant spécifiquement sur la Voie Lactée. Ce
chapitre introduis ces problématiques pour une étude plus poussée du rôle et
des caractéristiques de la matière noire dans notre galaxie.

Le chapitre 9 précise nos contributions à l’investigation de sondes obser-
vationnelles de la matière noire dans la Voie Lactée, soulignant la découverte
et l’analyse de nouveaux courants stellaires. Nous présentons notamment un
courant nouvellement identifié, que nous baptisons Typhon.

Le chapitre 10 présente une méthode innovante pour cartographier la dis-
tribution de la matière noire dans la Voie Lactée à partir de coordonnées
stellaires. Cette méthode s’inscrit dans notre philosophie agnostique et guidée
par l’observation, faisant appel à des techniques d’apprentissage non supervisé.

Le chapitre 11 clôt cette thèse en synthétisant nos découvertes et en
présentant nos perspectives. Il accentue l’importance des méthodologies
prospectives destinées à dévoiler de nouvelles contraintes sur la matière noire et
envisage des avancées futures dans le domaine de l’apprentissage symbolique.
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Approches Interprétables en
Physique et en Astrophysique

Les Découvertes Scientifiques à l’Ère du Machine Learn-
ing

Le paradigme de l’apprentissage supervisé

L’apprentissage profond, ou le processus de calibrage d’un réseau neuronal
profond, a considérablement évolué depuis sa revitalisation par LeCun et al.
[1998]. Réanimé initialement dans le secteur de la recherche en ingénierie, il
s’est rapidement diffusé dans les applications industrielles9, grâce à sa capacité
à modéliser ou simuler presque tous les systèmes, supplantant effectivement des
champs entiers comme le traitement des signaux et de l’image [Schmidhuber,
2015]. L’apprentissage profond marque un tournant non seulement en termes
de capacités mais aussi de méthodologie, passant de règles établies par des
experts à un apprentissage empirique directement à partir des données. Cela
soulève une question fondamentale : un jeu de données peut-il lui-même être
considéré comme un modèle direct ?10

Un domaine axé sur l’ingénierie ?

Le besoin d’une inférence rapide et précise. L’orientation du machine
learning centrée sur l’ingénierie reflète un ensemble de priorités distinctes :
bien que l’interprétabilité soit souvent reléguée au second plan, l’importance
d’une inférence rapide et précise est cruciale. Cette orientation contraste
fortement avec les exigences des sciences naturelles, où la compréhension
et l’interprétabilité sont essentielles, et bien que l’inférence rapide soit
avantageuse, elle n’est pas toujours primordiale. Étant donné que chaque
découverte scientifique est unique, une fois une percée réalisée, le besoin
d’inférences répétées s’amoindrit.

Paradigme d’apprentissage supervisé. L’accent mis par l’ingénierie
sur la précision et la rapidité a favorisé le paradigme de l’apprentissage su-

9Ce qui est souligné par le fait que, bien que open-source, des plateformes majeures
d’apprentissage profond comme TensorFlow [Abadi et al., 2016] et JAX [Bradbury et al.,
2018] sont développées par de grandes corporations telles que Google, tandis que PyTorch

[Paszke et al., 2019] est géré par Meta.
10Cette idée fait écho à la définition des langues humaines, qui sont souvent appréhendées

à travers des corpus plutôt que des règles préétablies [Hunston, 2006].
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pervisé, où les réseaux de neurones sont formés sur des exemples d’entrée-
sortie appariés. Pendant l’inférence, les paramètres du modèle sont “figés”
(i.e. fixés), permettant au réseau de prédire les résultats reflétant son proces-
sus d’apprentissage. Cette méthode est généralement efficace dans la gamme
de ses données d’entrâınement en raison de la flexibilité inhérente aux réseaux
de neurones. Cependant, cette approche restreint intrinsèquement la portée
des découvertes en physique et en astrophysique, où l’objectif va au-delà de la
simple prédiction pour inclure la compréhension de nouveaux processus fon-
damentaux.

Les limitations de l’apprentissage supervisé pour la découverte de nouvelles
physiques

Nous n’avons accès qu’à un seul Univers.. La contrainte fondamen-
tale de l’application de l’apprentissage supervisé pour découvrir de nouvelles
physiques réside dans notre unique jeu de données d’observation : l’Univers
lui-même. Contrairement à d’autres domaines où des données provenant de
sources variées peuvent servir à former et valider des modèles, la physique
doit faire face à la tâche de dériver des lois universelles à partir d’observations
limitées à une seule instance. Cette situation unique limite l’utilité de
l’apprentissage supervisé, qui repose traditionnellement sur des ensembles de
données divers pour généraliser et prédire des résultats dans des contextes
non familiers. Si nous avions accès à plusieurs univers, chacun régi par des
lois physiques différentes, l’apprentissage supervisé pourrait potentiellement
“trianguler” des lois physiques applicables à un univers jusque-là inconnu.11

Approches fallacieuses. Bien qu’il soit possible d’entrâıner des réseaux
de neurones sur des simulations intégrant certaines hypothèses physiques, le
véritable test se présente lorsque ces modèles sont appliqués à de véritables
données observationnelles. Idéalement, les données simulées devraient imiter
étroitement les données observationnelles pour assurer que le modèle fonc-
tionne dans les paramètres pour lesquels il a été entrâıné. Cependant, cette
méthode présuppose que les lois physiques intégrées dans la simulation reflètent
fidèlement la réalité. Il y a un risque que des chercheurs employant ce type
d’approches puissent involontairement confirmer les hypothèses intégrées dans
la simulation lors de l’application de ces modèles aux données réelles, confon-
dant l’écho de leurs suppositions pour une découverte. Ceci met en lumière un
piège critique de l’utilisation de l’apprentissage supervisé, où le modèle n’est
aussi bon que les hypothèses de ses données d’entrâınement et pourrait ne pas
véritablement s’étendre à la découverte de nouveaux principes dans les données

11C’est pourquoi les approches bayésiennes de la probabilité sont souvent privilégiées
par rapport aux approches fréquentistes en physique et en astrophysique, où la répétition
expérimentale à l’échelle universelle est impossible.
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observationnelles.

Approches raisonnables d’apprentissage supervisé en (astro)-physique

Traitement de vastes ensembles de données Malgré ses limitations pour
découvrir de nouvelles lois physiques, l’apprentissage supervisé reste un outil
précieux dans l’analyse préliminaire de vastes ensembles de données en astro-
physique.

Prenons pour exemple l’analyse des spectres stellaires12. Dans ce contexte,
les modèles d’apprentissage supervisé sont aptes à déduire des caractéristiques
stellaires essentielles, telles que la métallicité13 ou la gravité de surface, à
partir des données spectrales. Ces modèles exploitent de larges ensembles
de données bien caractérisés où les propriétés des étoiles sont bien comprises
et cohérentes. En entrâınant des réseaux de neurones sur ces ensembles de
données, les chercheurs peuvent automatiser l’analyse des spectres stellaires,
standardisant ainsi efficacement cet aspect de la recherche astrophysique,
comme démontré par l’approche utilisée dans le catalogue APOGEE [Holtzman
et al., 2018].

Approches utilitaristes : Quand la fin justifie les moyens
Dans certains contextes, le processus de génération du modèle devient

secondaire face à l’utilité et la précision de celui-ci. Cela est particulièrement
pertinent dans des cas où le modèle final peut être indépendamment vérifié
et testé, sans égard pour son origine. Dans de telles circonstances, la
méthode de découverte, qu’elle soit conventionnelle ou via une bôıte noire pro-
duisant la solution, est subordonnée à la validité et à l’applicabilité du modèle.

La régression symbolique (SR) incarne parfaitement cette approche. Util-
isant des techniques d’apprentissage automatique, la SR génère un modèle
physique sous forme d’expression analytique qui s’adapte aux données obser-
vationnelles. L’atout majeur ici est que le résultat, les expressions analytiques,
est intrinsèquement interprétable et vérifiable, se distinguant nettement de la
méthode computationnelle employée pour le trouver.

Un autre domaine d’application est la résolution de conjectures
mathématiques par la génération de preuves mathématiques formelles.
L’accent est ici mis sur l’efficacité de la solution apportée, plutôt que sur
les mécanismes du réseau neuronal qui l’a générée. Si un réseau neuronal,
même un modèle de type bôıte noire, peut proposer une preuve valide pour

12C’est notamment l’analyse des spectres stellaires et la détection des premiers motifs
indiquant l’évolution stellaire qui ont marqué la naissance de l’astrophysique à partir de
l’astronomie.

13En astrophysique, la métallicité désigne la proportion de masse d’une étoile qui n’est ni
hydrogène ni hélium, souvent mesurée relativement au contenu métallique du Soleil.
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un problème mathématique, cette preuve peut être examinée et validée
indépendamment de la méthode de découverte.

L’optimisation des paramètres en astrophysique implique fréquemment le
réglage des paramètres de simulation afin que les résultats de celle-ci con-
cordent avec les données observées. Alors que les approches traditionnelles
telles que la Châıne de Markov Monte Carlo (MCMC)14 prévalent en rai-
son de leur robustesse pour l’estimation des incertitudes, les réseaux de neu-
rones présentent une alternative directe et potentiellement plus rapide. En
entrâınant des réseaux sur des paires de sorties de simulation et de paramètres,
il est possible de prédire les paramètres qui engendreront un résultat désiré,
lesquels peuvent ensuite être vérifiés par un unique cycle de simulation. Cette
méthode offre un accès direct à la validation de la solution, bien qu’elle ne four-
nisse souvent pas les estimations d’incertitude caractéristiques des méthodes
telles que MCMC. Nous aborderons ultérieurement dans cette section des
stratégies palliant cette limitation.

De manière plus globale, l’usage de réseaux de neurones pour émuler des
simulations complexes devient une pratique de plus en plus courante. En
capturant efficacement la dynamique des simulations, les réseaux de neurones
peuvent proposer des alternatives plus rapides à l’exécution de modèles coûteux
en calcul.

Émulation neuronale de simulations

Recherches de paramètres

Optimisation de paramètres via l’inférence basée sur la simula-
tion. L’émulation neuronale de simulations, souvent désignée sous le terme
d’“inférence basée sur la simulation” (SBI), constitue un outil puissant pour
l’accélération de la recherche de paramètres [Cranmer et al., 2020a]. Les
réseaux neuronaux, même de grande taille, étant nettement plus rapides
à évaluer que les simulations complexes en astrophysique ou en physique,
ils s’avèrent particulièrement bénéfiques pour les problèmes de recherche
paramétrique de haute dimension où les approches en grille traditionnelles se
révèlent immensément coûteuses. Ces méthodologies permettent des contrôles
ponctuels avec des paramètres choisis aléatoirement, garantissant ainsi la
précision de l’émulateur sans nécessiter des simulations exhaustives sur une
vaste étendue de paramètres.

Application de SBI en cosmologie. Par exemple, des études en
cosmologie ont prouvé que ces approches peuvent surpasser les techniques de

14Cette méthode consiste à construire une châıne de Markov dans l’espace de recherche des
paramètres, la distribution de cette châıne représentant la distribution sous-jacente étudiée.
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Monte Carlo par châınes de Markov (MCMC) pour récupérer avec précision
les distributions postérieures15 des paramètres [Zhao et al., 2022].

Cartographie des distributions postérieures avec les modèles de
flux normalisés (NF). De plus, en menant une série de simulations et
en utilisant des estimateurs de distribution de probabilité neuronaux (tels
que les modèles de flux normalisants (NF) qui sont examinés dans la Sec-
tion 10.2), les chercheurs peuvent estimer approximativement la distribution
postérieure complète. Cette méthode élimine le besoin de sonder une pléthore
de paramètres au sein des simulations, simplifiant considérablement le proces-
sus de recherche.

Les vertus de l’émulation neurale

Au-delà de l’accélération. Les émulateurs neuronaux, tout en accélérant
considérablement les processus de calcul, offrent des avantages qui dépassent
la simple rapidité. Ils présentent des atouts distinctifs qui peuvent les rendre
essentiels, même dans des contextes où les simulations pourraient être réalisées
instantanément.

Aborder des problèmes inverses L’un des principaux atouts des
émulateurs neuronaux est leur aptitude à résoudre des problèmes inverses. En
inversant le processus d’entrâınement du réseau de neurones, le conditionnant
à prédire les paramètres d’entrée θ à partir d’un résultat de simulation et
non l’inverse, nous simplifions la recherche des conditions initiales ou des
paramètres expliquant les phénomènes observés. Cette méthodologie est
illustrée dans la Figure 12.1.

Un émulateur différentiable Un autre avantage crucial est la
différentiabilité des émulateurs neuronaux. Grâce à l’auto-différenciation
(approfondie dans 2.1.4), il est possible de dériver des gradients à travers les
réseaux de neurones, facilitant l’utilisation de la descente de gradient pour
optimiser les paramètres de simulation directement en fonction des résultats
souhaités, typiquement pour correspondre aux observations.

Bien que les techniques d’apprentissage supervisé fournissent des out-
ils précieux pour l’investigation scientifique, elles ne sont pas conçues
pour découvrir de nouvelles lois physiques. Ces approches, centrées sur
l’ingénierie, sont naturellement limitées dans le contexte de la physique et

15Dans le cadre de la statistique bayésienne, la probabilité d’une valeur de paramètre
est évaluée par sa probabilité postérieure, qui intègre des connaissances antérieures via la
distribution a priori et inclut un terme de marginalisation qui prend en compte toutes les
autres variables [Bayes, 1763].
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Figure 12.1: Émulateur neuronal pour aborder les problèmes inverses. Un
émulateur neuronal formé peut renverser le processus de simulation habituel. Au lieu de
générer des résultats à partir de paramètres, il infère les paramètres θ qui mèneraient à un
résultat de simulation spécifique. Cette capacité facilite la résolution de problèmes inverses
en prédisant les conditions initiales ou les paramètres qui correspondent à des résultats
arbitraires.

de l’astrophysique. En tant que physiciens, il est essentiel de mettre en œuvre
ces technologies de manière judicieuse, en transcendant les paradigmes tradi-
tionnels pour exploiter au maximum le potentiel de l’apprentissage profond.

Approches agnostiques

Cadre et exemples

Cadre Un éloignement des paradigmes d’entrâınement conventionnels nous
incite à envisager des méthodes où les réseaux de neurones ne se limitent
pas à apprendres à partir d’exemples d’entrâınement aux issues connues.
Dans ce cadre, ils sont sollicités pour effectuer des prédictions tout en
respectant un ensemble de contraintes, généralement d’ordre physique ou
observationnel. Ce procédé, désigné sous le terme d’“apprentissage non
supervisé”, engage l’entrâınement des réseaux au moyen d’essais et d’erreurs
sans issues prédéterminées.

Exemples Un exemple éminent de cette méthodologie est notre démarche
de régression symbolique (SR), où le réseau génère une expression analytique.
L’impératif ici est que l’expression corresponde avec exactitude aux données
observationnelles, sans que le réseau n’ait préalablement été exposé à des ex-
emples d’expressions symboliques.
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L’apprentissage non supervisé trouve aussi son application dans le clus-
tering, qui consiste à identifier des groupes d’éléments similaires au sein d’un
jeu de données. À titre d’illustration, Dodd et al. [2023] a mis en œuvre des
techniques de clustering pour distinguer les structures de la Voie Lactée à
partir d’un vaste ensemble de données sur les positions et vitesses stellaires à
proximité du Soleil.

En astrophysique, l’algorithme ActionFinder établi par Ibata et al. [2021]
illustre également cette approche. Cet algorithme apprend une transforma-
tion canonique (et son Hamiltonien sous-jacent) vers l’espace des actions,
essentiellement les orbites, de manière non supervisée, en assurant que les
étoiles d’un même courant stellaire16 présentent des valeurs similaires dans
l’espace latent. Cette réalisation se fait sans aucun exemple préalable ni
dépendance à un modèle dynamique physique, l’unique postulat étant que les
étoiles d’un même courant stellaire suivent approximativement la même orbite.

Agnosticité. Dans le domaine des sciences naturelles, surtout lorsque de
nouveaux modèles physiques sont à l’étude, l’agnosticité se révèle essentielle.
Les démarches non supervisées assurent que l’apprentissage est exempt de
biais induits par des théories ou des simulations préexistantes, pavant ainsi la
voie à de réelles avancées physiques. L’apprentissage non supervisé constitue
la seule approche viable exempte des biais habituellement introduits par un
entrâınement sur des résultats connus.

Sur la puissance de l’auto-différenciation

L’auto-différenciation est un outil précieux, quoique souvent sous-estimé,
introduit par l’apprentissage profond. Examinons son principe fondamental
et son utilité.

Approximation par surparamétrisation. Il pourrait être tentant de
penser que la performance de l’apprentissage profond découle simplement de
l’abondance de paramètres au sein des réseaux neuronaux, leur permettant de
modéliser finement une vaste gamme de fonctions, semblablement aux séries de
Taylor. Cette faculté est formellement validée par le théorème d’approximation
universelle, selon lequel un perceptron multicouche (MLP) de taille adéquate
peut approximer n’importe quelle fonction intégrable au sens de Lebesgue
[Hornik et al., 1989].

Pour exemple, comparons des modèles physiques de complexité croissante
: un modèle de chute libre simpliste supposant une absence de résistance

16Ces structures étendues et fines se forment lorsque des corps célestes sont accretés par la
Voie Lactée. Nous approfondissons ce concept dans les discussions contextuelles du Chapitre
9.
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Figure 12.2: Illustration de l’auto-différenciation. Pour un ensemble de paramètres θ =
θ1, ..., θn, les dérivées de chaque étape de calcul sont mémorisées, permettant l’application
du théorème de la dérivation des fonctions composées pour calculer les dérivées ∂x

∂θ1
, ..., ∂x

∂θn
relativement à θ pour toute variable x. Cette figure illustre un graphe de calcul (a) et une
syntaxe typique dans le cadre de PyTorch [Paszke et al., 2019] pour une opération simple :
sin(θ1) + θ1θ2.

atmosphérique, z(t) = −1
2
gt2 + v0t + z0, avec trois paramètres, est moins

précis qu’un modèle incluant une pression atmosphérique uniforme, z(t) =

H ln 1+e−2t/T

2
+ v0t + z0, avec six paramètres17, qui est à son tour moins précis

qu’un réseau de neurones pouvant impliquer des milliers de paramètres.

Une observation notable dans la recherche actuelle sur l’apprentissage pro-
fond est que les réseaux de neurones surparamétrés fonctionnent souvent ex-
ceptionnellement bien sans surajustement, à condition d’être correctement en-
trâınés, y compris l’utilisation d’un ensemble de test distinct que le réseau n’a
jamais rencontré durant l’entrâınement [Li and Liang, 2018].

L’auto-différenciation : le secret de l’apprentissage profond

Bien que le nombre élevé de paramètres contribue sans aucun doute
au succès de l’apprentissage profond, un autre facteur déterminant est
la rétropropagation. Ce processus consiste à suivre chaque opération
mathématique durant l’inférence, potentiellement des millions, et à enreg-
istrer sa dérivée dans un graphe de calcul. Cela permet la différentiation

17Où z, t, g, v0, z0 représentent respectivement l’altitude, le temps, la gravité terrestre,
la vitesse initiale, l’altitude initiale et H et T désignent une hauteur d’échelle et un temps
caractéristique, respectivement.
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automatique et analytique de la fonction de coût par rapport aux paramètres
ajustables via le théorème des dérivées composées, facilitant grandement la
convergence. Sans cette capacité, bien qu’il serait théoriquement possible de
régler les paramètres permettant aux réseaux de neurones d’émuler n’importe
quelle fonction, il serait pratiquement irréalisable de les trouver, c’est-à-dire
de former des réseaux à travers des couches profondes et complexes. L’auto-
différenciation rend possible la propagation des dérivées de la fonction de coût
à travers même des réseaux neuronaux très profonds. Cette technique fonda-
mentale est illustrée dans la Figure 12.2.

Simulations différentiables

L’implémentation de simulations entières dans un cadre auto-différentiable, où
chaque opération est différentiable ou peut être approximée comme telle, ouvre
des horizons extraordinaires. Par exemple, Li et al. [2022] a développé une sim-
ulation cosmologique entièrement dans ce cadre, leur permettant d’optimiser
les conditions initiales pour répondre à des critères observationnels spécifiques.
Cette capacité à “rétropropager” à travers une simulation pour ajuster les
conditions initiales ou toute autre variable illustre profondément l’impact de
l’auto-différenciation, initialement promue par l’apprentissage profond mais
fondamentalement indépendante de celui-ci. Une telle flexibilité signifie que
l’on pourrait théoriquement optimiser les conditions initiales d’un univers
simulé pour correspondre à tout résultat observationnel souhaité, démontrant
l’utilité puissante de cette approche.18

Techniques d’apprentissage profond

Apprentissage non supervisé : Nous avons exploré des configurations
d’apprentissage non supervisé, qui engagent la formation de réseaux de
neurones basés sur toute contrainte différentiable. Ces contraintes peuvent
être complexes, s’étendant aux calculs dans des simulations physiques (comme
nous le faisons nous-mêmes au Chapitre 10) ou à tout processus permettant
la différentiation.

Auto-différenciation : L’auto-différenciation se distingue comme un
outil puissant pour l’apprentissage des paramètres au sein des systèmes
physiques, offrant une méthode directe pour optimiser les valeurs en fonction
des données observationnelles à travers un modèle physique.

18Li et al. [2022] démontrent les capacités de cette approche en optimisant les conditions
initiales d’un univers simulé de manière à ce que les observations actuelles révèlent un motif
épelant le nom de leur logiciel, pmwd, à travers des structures cosmiques à grande échelle.



Detailed Summary (fr.) 249

Apprentissage par renforcement : Face à des fonctions objectives non
différentiables, l’apprentissage par renforcement profond devient essentiel.
Dans ce cadre, les réseaux de neurones, souvent qualifiés de politiques (poli-
cies), apprennent à maximiser une récompense en adaptant leurs stratégies
basées sur les résultats de leurs actions, guidés par une fonction de récompense,
approximant efficacement les gradients. Cette méthode est cruciale pour
les paradigmes développés dans cette thèse et est amplement discutée dans
la Section 3.3. Sa capacité à gérer des objectifs non différentiables la rend
particulièrement précieuse pour des applications en robotique et interactions
humaines, puisque nous ne pouvons évidemment pas auto-différencier la
réalité, ainsi que pour des simulations non différentiables, i.e. la plupart des
simulations actuelles19. Malgré son utilité, elle reste l’une des rares méthodes
d’apprentissage non supervisé largement développées dans les domaines de
l’ingénierie en raison de ses applications pratiques [Schmidhuber, 2015].

Auto-encodeurs. Un point d’honneur doit être accordé aux auto-
encodeurs utilisés de manière non supervisée. Dans ces configurations,
l’objectif est de reproduire les données d’entrée après les avoir traitées à travers
une couche de goulot d’étranglement très compressée et de faible dimension.
Ce processus réduit non seulement la dimensionnalité des données mais révèle
également des éclairages profonds sur la structure des données dans l’espace
latent.

Les Auto-Encodeurs Variationnels (VAEs) étendent cette idée en
modélisant la distribution des données dans l’espace latent, apprenant des
paramètres tels que la moyenne et la variance. Ces modèles sont inestimables
pour leur capacité à simplifier des données complexes en formes plus gérables
sans perdre des informations essentielles.

Un exemple remarquable de cette approche est illustré par le travail
de Laroche and Speagle [2024], qui a démontré que des spectres stellaires
entiers pourraient être efficacement codés en utilisant seulement six valeurs
scalaires grâce à cette méthode. Cet exemple souligne le potentiel des VAEs à
condenser considérablement de vastes quantités de données tout en conservant
des informations cruciales, une technique qui présente des implications
profondes étant donné la manière dont elle se rapproche de la recherche en
physique.

Gestion des incertitudes. Dans le domaine des sciences naturelles, la
prise en compte des incertitudes est primordiale. La technique connue sous le
nom d’abandon (dropout) [Srivastava et al., 2014], initialement conçue pour
prévenir le surajustement en désactivant aléatoirement une fraction des neu-
rones durant l’entrâınement, facilite également l’estimation des incertitudes

19Cela inclut également, par exemple, les jeux vidéo.
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[Gal and Ghahramani, 2016]. Cette approche forme efficacement plusieurs vari-
antes du modèle simultanément, chacune fonctionnant avec un sous-ensemble
différent de neurones. En conséquence, la variabilité des prédictions du réseau
peut être interprétée comme une mesure d’incertitude, offrant une gamme de
résultats possibles au lieu d’une prédiction fixe.

En s’appuyant sur ce concept, on peut envisager chaque neurone non seule-
ment comme une unité déterministe mais aussi comme une mini-distribution
régulée par sa moyenne et sa variance. Cette notion est à la base des Réseaux
Neuronaux Bayésiens [Goan and Fookes, 2020], où l’exploitation de ces distri-
butions permet une quantification de l’incertitude dans les prédictions, offrant
une vision plus approfondie de la fiabilité des sorties neuronales.

Vers l’apprentissage symbolique

Tout au long de cette discussion, nous avons exploré diverses manières par
lesquelles l’apprentissage profond peut contribuer aux entreprises scientifiques,
offrant parfois un degré d’interprétabilité. Les réseaux de neurones sont ines-
timables dans des domaines comme le traitement d’images ou la modélisation
de systèmes complexes, où de tels modèles “souples” sont capables de saisir
des nuances subtiles. Nous examinons comment cela peut se rapporter aux
efforts pour cartographier le potentiel de la Voie Lactée au Chapitre 10.

Cependant, lorsque notre objectif se tourne vers la découverte de lois
physiques fondamentales, l’exigence d’une interprétabilité symbolique se man-
ifeste clairement. Le langage des mathématiques offre une description plus
nette et plus définitive des phénomènes naturels. La section suivante intro-
duit la régression symbolique, préparant le terrain pour le Chapitre 3 où nous
plongerons plus profondément dans la manière dont les approches symboliques
représentent et manipulent les mathématiques formelles.

Vue d’ensemble

La leçon fondamentale de cette section réside dans la constatation que sous
la surface habituelle des applications de l’apprentissage machine en physique
et astrophysique, des applications souvent héritées directement du domaine
de l’ingénierie, se cache un immense “iceberg” de méthodes novatrices. Ces
stratégies, ancrées profondément dans l’interprétabilité, possèdent un réel po-
tentiel pour catalyser des découvertes scientifiques authentiques. Cette réalité
est illustrée visuellement dans la Figure 12.3, qui esquisse cet iceberg des ap-
proches d’apprentissage machine, mettant en lumière les vastes possibilités
encore peu exploitées pour la recherche avant-gardiste en physique et astro-
physique.
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• Apprentissage supervisé sur des exemples dépendants
du modèle

• Réseaux de neurones non interprétables en
boîte noire

• Apprentissage guidé par l'observation agnostique
du modèle

• Auto-différenciation dans les simulations 
physiques

• Apprentissage automatique symbolique

Figure 12.3: Un iceberg des approches d’apprentissage machine pour la physique et
l’astrophysique

Approches Symboliques

Depuis le début de la révolution scientifique, les chercheurs ont tenté de trou-
ver des régularités répétables dans les expériences et les observations. Des
structures mathématiques ont été utilisées dans cette exploration, et de nom-
breuses nouvelles, y compris les fonctions et les équations différentielles, ont
été développées pour répondre à ce besoin de modéliser la nature. Peut-être
en raison des symétries partagées entre la nature et les mathématiques, ces
structures abstraites se sont souvent avérées exceptionnellement efficaces pour
reproduire et prédire les propriétés du monde, au point que certains ont même
envisagé que l’univers soit en réalité mathématique dans son essence [Tegmark,
2008].

La Régression Symbolique (SR), qui est centrale dans cette thèse, a un long
pedigree. Peut-être son application la plus célèbre a été celle de Kepler aux
éphémérides planétaires, lui permettant ainsi de trouver la loi de régression qui
porte son nom [Kepler, 1609]. Cette loi empirique a fourni la base observation-
nelle sur laquelle Newton a pu construire les théories physiques développées
dans ses Principia Mathematica [Newton, 1687].

Dans cette Section, nous introduisons la SR moderne qui vise à utiliser les
immenses ressources informatiques à notre disposition pour rechercher parmi
les descriptions analytiques possibles en termes d’un ensemble de fonctions
et d’opérateurs (par exemple x, +, −, ×, /, sin, cos, exp log, ...) pour
mieux ajuster un ensemble de données numériques (x, y) que nous souhaitons
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modéliser. Concrètement, on cherche une fonction analytique f : Rn −→ R
qui ajuste y = f(x) étant donné ces données.

Régression symbolique

La régression symbolique (SR) pallie l’opacité des méthodes conventionnelles
d’apprentissage automatique en élaborant des modèles qui allient compacité,
interprétabilité et capacité de généralisation. L’ambition est de formuler des
principes aussi élémentaires que la loi de la gravitation universelle de New-
ton, qui expliquent de manière exhaustive un large éventail d’expériences
et d’observations. Les avantages de formuler les lois physiques sous forme
d’expressions mathématiques succinctes, plutôt que comme de vastes modèles
numériques, sont multiples.

Compacité

La SR est capable de générer des modèles remarquablement compacts, par
exemple, des expressions contenant environ ∼ 101 symboles [La Cava et al.,
2021], un ordre de grandeur comparable à la longueur typique des expressions
trouvées dans les Feynman Lectures on Physics [Feynman et al., 1971], qui
est de 16. Les techniques les plus performantes de SR peuvent même pro-
duire des expressions bien en deçà d’une longueur de 103. À l’inverse, les
modèles numériques, tels que les réseaux de neurones, s’appuient sur un nom-
bre considérablement plus élevé de paramètres. Cette économie de moyens
rend l’exécution des modèles SR moins coûteuse et, théoriquement, permet à
la SR de redécouvrir l’expression mathématique exacte sous-jacente à un jeu
de données avec beaucoup moins de données que les méthodes d’apprentissage
machine conventionnelles [Wilstrup and Kasak, 2021], tout en offrant une
résilience notable au bruit même dans le cadre d’une récupération parfaite
du modèle [Reinbold et al., 2021, La Cava et al., 2021].

Généralisation

En outre, sauf dans le cas où les équations cibles sont constituées de polynômes
de longueur arbitraire, les expressions concises générées par la SR tendent
à être moins sujettes au surajustement sur les erreurs de mesure. Elles se
montrent également beaucoup plus robustes et fiables hors de la gamme des
données initiales, exhibant de meilleures capacités de généralisation, comme
l’ont démontré plusieurs études [Sahoo et al., 2018, Kamienny et al., 2022,
Kamienny and Lamprier, 2022, Wilstrup and Kasak, 2021]. Cela positionne la
SR comme un outil potentiellement puissant pour élucider les représentations
les plus concises et universelles des données mesurées.
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Intelligibilité et interprétabilité

Les modèles élaborés par la SR, constitués d’expressions mathématiques, sont
intrinsèquement compréhensibles pour les scientifiques, contrairement aux
vastes modèles numériques. Cette caractéristique est d’une importance cap-
itale en physique [Wu and Tegmark, 2019], où les modèles de SR peuvent
faciliter l’intégration de nouvelles lois physiques découvertes dans un cadre
théorique existant, ouvrant la voie à d’autres développements théoriques.
Plus généralement, cette démarche s’inscrit dans un mouvement plus large
favorisant des modèles d’apprentissage machine intelligibles [Sabbatini and
Calegari, 2022], explicables [Arrieta et al., 2020] et interprétables [Murdoch
et al., 2019], ce qui est d’autant plus crucial dans les domaines où ces modèles
peuvent impacter directement les vies humaines [European Commission, 2021,
117th US Congress, 2022].

Un bref aperçu de la régression symbolique moderne

Approches traditionnelles de la SR

Programmation génétique. Historiquement, la SR a été principalement
traitée via la programmation génétique, où un ensemble d’expressions
mathématiques potentielles est raffiné de manière itérative grâce à des
techniques inspirées de l’évolution naturelle, telles que la sélection naturelle,
le croisement et la mutation. Cette méthode comprend le célèbre logiciel
Eureqa [Schmidt and Lipson, 2009, 2011], reconnu pour ses performances
(voir Graham et al. 2013 pour une évaluation de Eureqa sur des tests
astrophysiques), et est complétée par des recherches plus récentes [Cranmer,
2023, de Franca and Aldeia, 2021, La Cava et al., 2019, Cava et al., 2019,
Virgolin et al., 2019, Cranmer et al., 2020b, Virgolin et al., 2021, Stephens,
2015, Kommenda et al., 2020].

Autres approches conventionnelles. La SR a également été appliquée
via diverses méthodes, allant de la force brute aux approches Monte-Carlo
(guidées ou non), jusqu’à des recherches probabilistes [McConaghy, 2011, Kam-
merer et al., 2020, Bartlett et al., 2023a, Brence et al., 2021, Jin et al., 2019],
et même par le biais d’algorithmes de simplification de problèmes [Luo et al.,
2022, Tohme et al., 2023].

Deep learning

Approches principales. Les avancées substantielles des techniques de
deep learning dans de nombreux domaines ont naturellement conduit à leur
application en régression symbolique, remettant en question la prédominance
des méthodes traditionnelles comme Eureqa [La Cava et al., 2021, Matsubara
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et al., 2022]. Une gamme variée de méthodes intégrant des réseaux de neurones
à la SR a été développée, depuis des stratégies sophistiquées de simplification
de problèmes [Udrescu and Tegmark, 2020, Udrescu et al., 2020, Cranmer
et al., 2020b], jusqu’à des méthodes de régression symbolique de bout en bout
où un réseau de neurones est entrâıné de manière supervisée à associer des
jeux de données à leurs fonctions symboliques correspondantes [Kamienny
et al., 2022, Lalande et al., 2023, Biggio et al., 2020, 2021, Vastl et al., 2022,
d’Ascoli et al., 2022, Kamienny et al., 2023, Bendinelli et al., 2023, Holt
et al., 2023, Li et al., 2024a,b, Chen et al., 2024a, Meidani et al., 2024, Becker
et al., 2022, Shojaee et al., 2024, Alnuqaydan et al., 2022, Aréchiga et al.,
2021], en passant par l’intégration de fonctions symboliques dans des réseaux
neuronaux et leur ajustement par sparsité pour renforcer l’interprétabilité ou
pour récupérer des expressions mathématiques [Scholl et al., 2023, Martius
and Lampert, 2017, Brunton et al., 2016, Zheng et al., 2022, Sahoo et al.,
2018, Valle and Haddadin, 2021, Kim et al., 2020, Panju and Ghodsi, 2020,
Ouyang et al., 2018]. Pour des revues récentes des algorithmes de régression
symbolique, voir [La Cava et al., 2021, Makke and Chawla, 2022, Angelis
et al., 2023].

Apprentissage profond par renforcement. Bien que certaines
méthodes précédemment évoquées se soient distinguées dans la production
d’approximations symboliques extrêmement précises, le cadre de régression
symbolique basé sur l’apprentissage profond par renforcement, proposé par
Petersen et al. [2021a], est désormais considéré comme la référence pour la
récupération exacte de fonctions symboliques, particulièrement en présence de
bruit [La Cava et al., 2021, Matsubara et al., 2022]. Cette approche a engendré
plusieurs études significatives [Landajuela et al., 2021a,b, Kim et al., 2021, Pe-
tersen et al., 2021b, Landajuela et al., 2022, Faris et al., 2024, He et al., 2024a,
Du et al., 2022, Tian et al., 2024, Michishita, 2024, DiPietro and Zhu, 2022,
Zheng et al., 2022, Landajuela et al., 2021b, Usama and Lee, 2022].

Vue d’ensemble

Pour conclure, nous mettons en lumière PySR [Cranmer, 2023], une initiative
open source visant à recréer le logiciel Eureqa [Schmidt and Lipson, 2009,
2011], offrant des performances comparables. Bien que PySR n’emploie pas de
techniques de deep learning, il a rapidement gagné en popularité au sein de la
communauté astrophysique.

Une analyse comparative des principales méthodologies de régression sym-
bolique, y compris notre propre méthode d’apprentissage profond par ren-
forcement, qui est l’objet des Chapitres 3-6 sera exposée via le benchmark de
Feynman standardisé [La Cava et al., 2021] dans la Figure 4.3 démontrant
sa supériorité nette en terme de performances. Notre méthode est partic-
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ulièrement notable, car elle est la seule jusqu’à présent où un réseau de neurones
manipule des symboles mathématiques développée au sein d’une quelconque
communauté physique ou astrophysique.

Nous explorerons également une méthode de simplification de problèmes
dans la Section 7.1 et une approche neuro-symbolique dans la Section 7.2.

Résumé du corps

Dans le chapitre 3, nous avons investigué la transcription des mathématiques
formelles en structures de graphes et avons examiné des méthodologies
d’apprentissage à partir et de génération de ces graphes. Nous avons démontré
que les problèmes mathématiques formels peuvent être abordés comme des
problèmes d’optimisation de graphes. Notre discussion s’est spécialement fo-
calisée sur la régression symbolique (SR), qui aspire à découvrir des expressions
analytiques correspondant parfaitement à un ensemble de données initial. Nous
avons mis en œuvre un paradigme d’apprentissage profond par renforcement
où un réseau de neurones construit de manière séquentielle des expressions
d’une qualité d’ajustement croissante au fil d’un processus d’essais et d’erreurs.
Nous avons exposé notre méthode visant à garantir la validité des expressions
générées automatiquement en utilisant une notation préfixe et en intégrant des
principes qui limitent intrinsèquement la longueur des séquences produites par
le réseau de neurones.

Dans le chapitre 4, nous avons enrichi notre méthode, que nous avons bap-
tisée Φ-SO pour Physical Symbolic Optimization, avec la capacité d’exploiter
les contraintes de l’analyse dimensionnelle physique, restreignant ainsi signi-
ficativement l’espace de recherche pour les expressions potentielles. Cela a
été réalisé en développant un algorithme capable de réaliser des analyses di-
mensionnelles extrêmement informatives sur des équations en cours de con-
struction durant le processus de génération des expressions. Des contraintes
sur les unités physiques ont ensuite été appliquées pour assurer la consistance
physique des expressions grâce à un principe a priori et pour inculquer au
réseau de neurones les règles de l’analyse dimensionnelle, prévenant ainsi les
conflits entre les principes établis.

Nous avons montré que Φ-SO est l’algorithme prééminent pour la
récupération symbolique précise en le comparant à 17 autres algorithmes de
SR via le benchmark standard de Feynman, incluant 120 équations issues des
conférences de Feynman sur la physique et d’autres manuels, à extraire de
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leurs ensembles de données associés.

Dans le chapitre 5, nous avons élargi le paradigme Φ-SO pour permettre
la recherche d’une forme fonctionnelle unique adaptée à plusieurs réalisations
d’une même classe de phénomènes physiques, autorisant chaque réalisation
à posséder des valeurs de paramètres libres (potentiellement) uniques, une
approche particulièrement pertinente pour l’astrophysique. Nous avons bap-
tisé ce nouveau cadre de travail Class SR. Étant donné l’originalité de notre
méthode, nous avons développé le premier benchmark spécifiquement conçu
pour évaluer les systèmes de Class SR, démontrant que Class SR surpasse sig-
nificativement la SR traditionnelle dans les scénarios où plusieurs réalisations
sont disponibles. Nous avons aussi démontré l’efficacité de notre système en
utilisant un jeu de données synthétique de courants de la Voie Lactée, dérivant
avec succès un potentiel d’entrée à partir des positions et vitesses stellaires.

Le chapitre 6 a détaillé l’implémentation logicielle PhySO de notre
paradigme Φ-SO, en démontrant ses capacités et fonctionnalités uniques. Nous
avons mis en avant notre engagement envers une démarche open-source, en-
courageant l’interaction et l’adoption par la communauté. Cet engagement
est particulièrement essentiel dans le domaine de l’apprentissage automatique,
où la transparence et la reproductibilité sont cruciales. Grâce à ces efforts,
et à la conception du logiciel qui est à la fois concise, robuste et extensible,
PhySO a connu une adoption significative au sein de plusieurs communautés
de recherche en physique. Plusieurs équipes ont considérablement enrichi
l’algorithme de PhySO, améliorant ses performances et élargissant ses capacités,
renforçant ainsi son impact et son utilité.

Dans le chapitre 7, nous avons exploré des approches complémentaires
à notre méthode Φ-SO, capables d’exploiter les réseaux de neurones pour
capturer directement et incarner la structure de graphe d’un ensemble de
données, reflétant sa représentation analytique sous-jacente. Ces approches
ont le potentiel d’exploiter les dérivées informant la structure du graphe
par rapport aux données. Nous avons notamment introduit une méthode
novatrice capable de détecter les séparabilités additives et multiplicatives dans
un ensemble de données en analysant les gradients de sa représentation par
réseau de neurones. De plus, nous avons discuté d’une approche innovante où
un réseau de neurones lui-même émule une expression analytique, intégrant
des fonctions de base dans sa structure et favorisant la sparsité. Nous avons
ensuite abordé des stratégies de fertilisation croisée dans le domaine de la SR.

Nous avons introduit plusieurs améliorations clés à l’état de l’art de la
régression symbolique basée sur l’apprentissage par renforcement. Celles-
ci vont des raffinements mineurs aux avancées plus substantielles, incluant
l’introduction d’un paramètre de température de recuit, des améliorations
significatives du processus d’ajustement des constantes libres via l’auto-
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différenciation, l’introduction de la Class SR, ainsi que le développement de
nouvelles contraintes. La plus notable de ces améliorations est l’incorporation
de l’analyse dimensionnelle, qui informe le réseau de neurones des unités
physiques et permet une réduction de l’espace de recherche tout en garan-
tissant la cohérence physique.

Notre algorithme de SR a été testé de manière approfondie sur des
centaines de cas synthétiques, ainsi que sur des données réelles observées,
comme l’étude des chandelles standards pour déduire la loi de l’expansion
de l’Univers. De plus, plusieurs équipes de recherche ont appliqué notre
logiciel à des données expérimentales ou observationnelles réelles dans un large
éventail de domaines de la physique, tels que l’astrophysique, l’aéronautique,
la mécanique, la physique des particules, la dynamique des fluides, les
télécommunications, la géologie physique, et même la biologie. En outre, nous
menons actuellement des expériences sur des données issues de simulations
complexes, avec un accent sur l’évolution des amas globulaires et l’exploration
de modèles alternatifs pour les profils de matière noire, comme discuté dans
la Section 11.2.

Nous souscrivons à l’idée selon laquelle en développant des approches
abstraites pour la physique et l’astrophysique, il est essentiel de maintenir un
lien solide avec les problèmes physiques concrets. Par conséquent, nous avons
orienté notre attention vers la question tangible de la matière noire à l’échelle
galactique, un sujet introduit dans le chapitre 8.

Dans le chapitre 9, nous avons poursuivi notre démarche guidée par
l’observation des enquêtes physiques en explorant des sondes de matière noire
sous forme de structures étant accrétées par la Voie Lactée. En étudiant
l’échantillon stellaire proche du Soleil de Gaia, qui comprend des informa-
tions complètes sur la position et la vitesse, nous avons découvert un nou-
veau courant stellaire que nous avons baptisé Typhon. Nous prévoyons que
l’échantillon complet de ce courant polaire s’étende jusqu’à l’halo externe de
la Voie Lactée à environ 100 kpc, potentiellement en faisant une sonde ex-
ceptionnelle de la matière noire. Après une analyse chémo-dynamique, nous
avons identifié Typhon comme le reliquat d’une galaxie naine, suggérant que
de nombreux autres fragments de galaxies naines pourraient se cacher dans
l’halo externe. Nous avons également contribué à la découverte d’une autre
structure, que nous avons nommée Antaeus, en détectant ses membres près du
Soleil, remettant en question la vue prédominante selon laquelle les temps dy-
namiques dans le disque sont courts et que les structures de marée se mélangent
rapidement, effaçant toutes les caractéristiques initiales de type courant. Par
ailleurs, nous avons partcipé à une large campagne observationnelle à l’Isaac
Newton Telescope ainsi qu’au Very Large Telescope ayant permis de mettre
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en évidence 28 nouveaux courants stellaires résultant au catalogue le plus ex-
haustif des courants de la Voie Lactée à ce jour.

Le chapitre 10 s’est concentré sur les méthodes de récupération du potentiel
gravitationnel de la Voie Lactée et de sa distribution sous-jacente de matière
noire de manière agnostique au modèle. Notre approche, baptisée MassFinder,
nécessite essentiellement que le potentiel stabilise la distribution stellaire ob-
servée. En employant des transformations canoniques pour travailler dans
l’espace des orbites dans le processus, nous abordons la disponibilité spatiale-
ment limitée des échantillons 6D (position et vitesse) de Gaia. Le chapitre
conclut en discutant des avancées potentielles dans ce domaine émergent de la
phénoménologie galactique.

Vue d’ensemble

La pierre angulaire de cette thèse est ancrée dans une démarche résolument
guidée par l’observation, qui a profondément influencé notre intégration de
l’apprentissage automatique au cœur de la physique et de l’astrophysique.
À rebours des méthodes conventionnelles d’apprentissage automatique, qui
s’appuient généralement sur des exemples issus de modèles ou simulations
préexistants, nous avons élaboré nos méthodes dans l’optique de générer des
solutions de manière non supervisée, sans dépendre de modèles antérieurs,
en requérant de manière intrinsèque une conformité aux données observation-
nelles. Cette orientation agnostique au modèle est indispensable en physique,
car elle constitue l’unique voie pour l’émergence de nouveaux modèles qui
reflètent avec une plus grande fidélité les phénomènes naturels.

Durant l’ensemble de ce travail doctoral, nous avons scrupuleusement
adhéré à une philosophie de recherche guidée par l’observation. À titre
d’exemple, dans notre étude sur la régression symbolique, nous avons évité
d’entrâıner les réseaux de neurones sur une collection prédéfinie d’expressions
mathématiques. Nous avons plutôt élaboré des modèles aptes à formuler des
expressions a priori inédites, en exigeant non seulement qu’elles s’ajustent
aux données mais également qu’elles respectent les principes de l’analyse di-
mensionnelle et les contraintes de classes. De même, dans notre approche
des complexités liées à la matière noire, nous avons délibérément délaissé
les simulations prédéfinies qui incluent des biais inductifs. Nous avons choisi
de développer un cadre d’apprentissage non supervisé qui contraint de façon
inhérente les propriétés de la matière noire à se conformer aux contraintes ob-
servationnelles, harmonisant ainsi le développement de nos modèles avec les
preuves empiriques.

Sur le plan technique, nous ambitionnons que les méthodologies
évoquées dans cette thèse, notamment l’auto-différenciation et les techniques
d’apprentissage par renforcement, soient davantage adoptées au sein de la com-
munauté astrophysique. Nous sommes convaincus que ces approches, bien que
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peu exploitées actuellement en astrophysique, détiennent un potentiel con-
sidérable pour révolutionner les analyses indépendantes des modèles.

À une échelle plus profonde, nous espérons que ce travail doctoral in-
augure une ère nouvelle vers des méthodologies interprétables et porteuses
de sens en physique et astrophysique, menant à l’intégration des techniques
d’apprentissage profond symbolique. Notre cadre d’apprentissage symbol-
ique, Φ-SO, est une innovation majeure : il représente la première et, à ce
jour, la seule méthode développée dans les domaines de la physique et de
l’astrophysique où un réseau de neurones manipule directement des symboles
mathématiques. Ce travail renforce la conviction que la tendance dominante
à se reposer exclusivement sur l’apprentissage supervisé et les modèles de type
bôıte noire ne fait qu’effleurer les possibilités offertes par l’apprentissage au-
tomatique dans l’exploration scientifique des phénomènes naturels.

Perspectives

Progrès en apprentissage symbolique

Comme cela a été souligné dans les discussions précédentes, notamment dans
la sous-section 3.3.3, il est primordial d’améliorer l’efficacité des systèmes
d’apprentissage symbolique. Les méthodologies actuelles, qu’elles s’appuient
sur des réseaux neuronaux comme les nôtres ou sur la programmation
génétique, raffinent généralement les expressions symboliques en utilisant une
métrique scalaire non différentiable (par rapport à l’arrangement symbolique)
de la qualité de l’ajustement. Cette approche peut conduire involontairement
à ce que nous désignons par la malédiction de la SR guidée par la précision,
où l’optimisation de la métrique ne converge pas nécessairement vers la forme
fonctionnelle la plus exacte.

Pour pallier ce problème, une orientation de recherche importante con-
siste à améliorer les mécanismes d’auto-correction des systèmes d’essais et
d’erreurs en leur permettant d’utiliser des gradients relatifs à l’arrangement
symbolique. Cette amélioration pourrait nécessiter l’intégration d’un com-
posant d’apprentissage supervisé qui apprendrait activement la géométrie lo-
cale de l’espace de recherche de la forme fonctionnelle, comme décrit dans
la sous-section 3.3.3. Par ailleurs, encourager les synergies avec d’autres
méthodologies de régression symbolique pourrait enrichir la portée et la pro-
fondeur de l’apprentissage symbolique, comme discuté dans la sous-section
3.3.3 et dans la Section 7.3. Des perspectives spécifiques liées à nos approches
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intégrant l’analyse dimensionnelle et la régression symbolique basée sur les
classes ont été détaillées dans la Section 4.6 et la sous-section 5.4, respective-
ment.

Application de la SR en physique et en astrophysique

L’adoption croissante des méthodes de SR dans les domaines de la physique
et de l’astrophysique représente un développement notable, comme illustré
par l’utilisation de Φ-SO dans la recherche énumérée dans la Table 6.1.

Biais inductifs. Comme déjà discuté dans les paragraphes 3.3.2 et 6.1.2,
une méthode efficace pour améliorer l’application de la SR au-delà de notre
utilisation actuelle des contraintes de classe et de l’analyse dimensionnelle
consiste à intégrer des connaissances préalables spécifiques au domaine
dans le processus de recherche. Par exemple, si la recherche concerne une
forme fonctionnelle censée présenter certaines symétries, des comportements
limites ou des caractéristiques spécifiques dans une équation différentielle, ces
aspects devraient être intégrés dans la fonction de récompense de Φ-SO. En
particulier, puisque ces contraintes ne nécessitent pas d’être différentiables,
Φ-SO peut accommoder un large éventail de restrictions scientifiquement
significatives pour affiner et orienter efficacement le processus de recherche.

Apprentissage des approximations analytiques pour des
physiques coûteuses. Bien que cette thèse se soit principalement
concentrée sur des approches guidées par l’observation, l’apprentissage
symbolique offre aussi un potentiel significatif pour aborder les aspects
computationnellement exigeants des simulations. Un domaine en expansion
concerne les émulateurs neuronaux conçus pour simuler les calculs complexes
trouvés dans les simulations cosmologiques, tels que ceux liés aux rétroactions
[Dai and Seljak, 2021]. La SR pourrait être particulièrement bien adaptée à
ce rôle en raison de ses capacités de généralisation et d’interprétabilité, offrant
potentiellement des avantages sur d’autres méthodes.

En dynamique galactique, la SR pourrait être utilisée pour dériver des
expressions analytiques approximatives pour des phénomènes tels que la
friction dynamique [François et al., 2024] ou les aspects de la physique
stellaire exigeants en calcul [Bianchini et al., 2016]. Ces équations efficaces et
compréhensibles pourraient grandement réduire le besoin de vastes grilles de
simulation N-corps. Par exemple, une approche de champ moyen / particule
test couplée à un émulateur analytique pourrait être utilisée lors de recherches
de paramètres pour éviter des simulations fréquentes, avec une étape de
validation finale utilisant la simulation complète pour vérifier l’exactitude des
paramètres identifiés par l’émulateur.
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Apprentissage des approximations optimales N-corps. En contin-
uant sur le thème de l’amélioration de l’efficacité des simulations, les simu-
lations N-corps, qui approximent traditionnellement les interactions N2 entre
tous les corps, pourraient bénéficier grandement de méthodes d’apprentissage
avancées. Ces simulations simplifient souvent les interactions à travers des
techniques pouvant être conceptualisées comme des approximations basées sur
des graphes.

Il existe une opportunité prometteuse d’utiliser la SR ou ses techniques
d’optimisation de graphes sous-jacentes directement pour apprendre ces ap-
proximations optimales. Inspirés par les méthodes d’apprentissage par ren-
forcement discutées dans le Chapitre 3, qui exploitent les structures de graphes,
nous pourrions développer un système pour identifier et mettre en œuvre au-
tomatiquement les simplifications les plus efficaces pour les simulations N-
corps. Cette approche a le potentiel non seulement d’affiner l’exactitude des
simulations N-corps, mais aussi de réduire leurs exigences computationnelles.

Cartographie de la Voie Lactée

Exploration des structures proches du Soleil. Dans nos discussions
précédentes, notamment dans les paragraphes 9.1.3 et 9.2.3, nous avons
examiné les perspectives concernant les courants stellaires Typhon et An-
taeus. Une piste particulièrement prometteuse réside dans l’extension de
l’échantillonnage du courant Typhon. Bien qu’initialement détecté à prox-
imité du Soleil, ce courant est prévu pour s’étendre jusqu’à l’halo externe.
Par conséquent, un échantillonnage complet pourrait constituer une sonde
exceptionnelle pour l’étude de la matière noire. De surcrôıt, la découverte de
telles structures dynamiques et cohérentes près du Soleil encourage une inves-
tigation approfondie sur la façon dont ces structures peuvent demeurer non
mélangées en phase, compte tenu des courts temps dynamiques prévus près
du Soleil. Cette exploration pourrait générer des connaissances précieuses, po-
tentiellement à travers des simulations spécifiquement ciblées de ces structures.

Exploitation des échantillons 5D. Comme mentionné dans la Section
10.5, une autre perspective fascinante est celle d’apprendre à déprojeter les
échantillons 5D dépourvus d’informations sur la vitesse radiale. En mâıtrisant
de manière efficace la fonction de distribution de la dimension manquante,
l’espoir est que le surplus d’informations compensera les degrés de liberté
additionnels induits par la nécessité d’apprendre cette distribution.

Méthodes dynamiques différentiables. Comme abordé dans la Sec-
tion 10.5, nous avons envisagé le développement d’un modèle différentiable
pour les courants stellaires qui pourrait être intégré à des approches de champ
moyen. En outre, nous avons examiné la possibilité de mettre au point un es-
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timateur d’action différentiable et déterministe opérant en coordonnées canon-
iques. Cela nécessiterait l’adoption d’approximations classiques, qui seraient
adaptées pour permettre une différentiabilité.

Contraindre la matière noire

Contrainte sur la masse de la particule de matière noire

Il serait fructueux de développer des équations claires et maniables qui
récapitulent les propriétés essentielles des courants stellaires en fonction de
la masse des particules de matière noire. Pour réaliser cela, nous pourrions
exploiter divers courants issus de simulations menées à différents niveaux de
masse particulaire [Carlberg et al., 2024]. En ajustant ces modèles fonction-
nels aux observations actuelles des courants, il serait alors possible d’extraire
les valeurs paramétriques décrivant la masse de ces particules en utilisant
le paradigme de Régression Symbolique de Classe que nous avons élaboré
(Chapitre 5). Les formules ainsi générées seraient spécifiquement conçues pour
refléter les comportements dépendant de la masse des particules, permettant
d’exploiter la présence de lacunes dues à des sous-halos potentiels de manière
statistiquement significative. Cette méthode statistique pourrait nous permet-
tre de lier toutes les observations disponibles à plusieurs modèles, via une sim-
plification intelligible sous forme d’équation, offrant ainsi de vastes possibilités
pour contraindre les propriétés de la matière noire basées sur des contraintes
observationnelles.

Apprentissage de profils dynamiques

Au-delà du profil NFW. Nous nous employons actuellement à mettre en
œuvre le paradigme Φ-SO pour développer des alternatives au profil empirique
NFW, tel qu’il est formulé dans l’Eqn. 8.1. Traditionnellement utilisé pour
décrire les distributions de matière noire au sein des galaxies, ce profil est
remis en question par nos résultats préliminaires obtenus sur l’ensemble de
simulations NIHAO [Wang et al., 2015]. Nous avons identifié plusieurs profils
qui, en termes de capacité prédictive et de simplicité, surpassent nettement
le profil NFW. De plus, nous nous attaquons à un problème majeur du
profil NFW, sa masse intégrée non convergente à l’infini, en intégrant cette
limitation à notre fonction de récompense, garantissant ainsi la validité
physique de nos nouveaux profils.

Modélisation des courbes de rotation des amas globulaires. Le
modèle empirique couramment utilisé pour les courbes de rotation des amas
globulaires ne parvient pas à saisir les tendances de vitesse au-delà du pic
ni à intégrer la dynamique temporelle, essentielle compte tenu de la nature
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évolutive de ces amas liée à la perte de masse [Bianchini et al., 2018]. Nous
élaborons un nouveau profil fondé sur les données des simulations les plus
récentes concernant ces amas globulaires20, qui modélise la vitesse en fonc-
tion du rayon tout en intégrant des modifications temporelles. Nos premiers
succès incluent la modélisation de l’évolution temporelle des vitesses maxi-
males, offrant un outil robuste potentiellement utile pour estimer l’âge des
amas globulaires à partir de leurs profils dynamiques observés dans la Voie
Lactée.

Extraction d’une distribution générale à partir de courants extragalactiques

Une autre perspective stimulante consisterait à s’appuyer sur le cadre
d’apprentissage non supervisé décrit dans le Chapitre 10 pour élaborer une dis-
tribution de matière noire “universelle” répondant à diverses contraintes obser-
vationnelles relatives aux structures de faible luminosité de surface entourant
des galaxies lointaines [Nibauer et al., 2023, Sola et al., 2022]. Varghese et al.
[2011] a ouvert la voie à l’exploitation de ces caractéristiques pour contraindre
les distributions de masse. Ces données pourraient être tirées d’observations
réalisées par CFHT, Euclid [Laureijs et al., 2011], ou le Télescope Spatial
Roman. Nous envisageons de développer un cadre différentiable destiné à
déprojeter ces nombreuses structures et à calculer le potentiel libre (paramétré
uniquement par quelques paramètres d’échelle spécifiques à chaque galaxie)
qui reproduirait ces structures de manière non supervisée, tout en ajustant les
paramètres de déprojection en cours de processus21. Malgré le nombre élevé de
degrés de liberté introduits, on peut espérer que l’abondance des contraintes
observationnelles rendra ce projet viable et riche en informations. Il est à noter
que, bien que la vitesse des caractéristiques de marée extragalactiques ne soit
généralement pas mesurée, des études récentes indiquent qu’elle pourrait être
déduite de leurs amas globulaires pour lesquels des informations en 6D sont
disponibles [Ferrone et al., 2023].

Nous aborderons dans la sous-section suivante la possibilité d’utiliser
également des cartes de vitesse extragalactiques à des fins similaires.

20Ces simulations N-corps, réalisées par Paolo Bianchini à l’Observatoire Astronomique
de Strasbourg, sont les premières à modéliser les amas globulaires avec une correspondance
un-à-un des étoiles sur une période de 13 Gyr tout en prenant en compte l’évolution stellaire,
les champs de marée, et la dynamique rotationnelle initiale, offrant ainsi une représentation
exhaustive et réaliste de l’évolution des amas globulaires.

21Cette méthode de déprojection serait semblable à celle que nous avons proposée pour
les étoiles de la Vo

ie Lactée, permettant ainsi une pollinisation croisée des approches méthodologiques face
à ce défi ou même une pollinisation croisée neuronale sous la forme de l’apprentissage par
transfert.
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Figure 12.4: Génération d’équations différentielles régissant des observations. Une
extension envisagée de notre paradigme Φ-SO vise la découverte d’équations différentielles
symboliques dont les solutions numériques ajustent un ensemble de données. Dans le cadre
de la recherche sur la matière noire, cela pourrait être employé à apprendre des alternatives
ou des extensions à l’équation de Poisson qui régit la matière noire et les dynamiques dans
les galaxies, basées sur, par exemple, leurs cartes de vitesse. Nous illustrons ce point en
montrant les champs de vitesse en ligne de mire (los) de deux galaxies, adaptés de [Urrejola-
Mora et al., 2022].

À l’avenir, nous projetons de repousser les limites des méthodes
d’apprentissage symbolique en explorant le domaine de la génération automa-
tique d’équations différentielles analytiques, comme illustré sur la Figure 12.4.
L’objectif est d’étendre le paradigme Φ-SO afin de lui permettre de générer des
équations différentielles dont les solutions correspondent à un jeu de données
donné ou répondent à des critères spécifiques, tels que des principes physiques
supplémentaires, des symétries ou des conditions asymptotiques, étendant
les opérateurs à, par exemple: ∂/∂t, ∂/∂x, ∇⃗.□, ∇⃗ ×□.... L’intégration
des équations différentielles dans l’apprentissage symbolique marque un
éloignement des lois empiriques vers des constructions plus abstraites mais
interprétables. Travailler dans le domaine des équations différentielles est
particulièrement pertinent car elles permettent d’exprimer des solutions
simples à des problèmes qui peuvent être très complexes ou dont les solutions
explicites peuvent même ne pas exister.

La génération d’équations différentielles requiert naturellement un proces-
sus séquentiel, actuellement réalisable uniquement dans quelques paradigmes
d’apprentissage symbolique22 tels que Φ-SO. Cette génération séquentielle
est cruciale car elle permet l’intégration des priors in situ nécessaires pour

22Dû à la nécessité pour les paradigmes dans lesquels un réseau de neurones génère di-
rectement des symboles mathématiques comme le nôtre.
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gérer efficacement les variables multidimensionnelles et pour imposer un
enchevêtrement maximal des opérateurs différentiels assurant la stabilité
numérique.

Les méthodes existantes dans ce domaine se contentent souvent d’un cadre
de régression symbolique régulier dans lequel on intègre des dérivées en les
traitant comme des variables supplémentaires, telles que x1,

∂x1

∂t
, x2,

∂x2

∂t
, t au

lieu de x1, x2, t, plutôt que de les intégrer dynamiquement dans le proces-
sus d’apprentissage. Bien que notre implémentation actuelle de Φ-SO prenne
déjà en charge cette possibilité de manière directe, l’approche que nous pro-
posons va plus loin en permettant l’enchevêtrement des opérateurs différentiels
et l’incorporation d’opérations vectorielles telles que les produits scalaires et
vectoriels aux côtés d’un opérateur ∇.

Cette extension méthodologique est quelque peu inexplorée en apprentis-
sage automatique, principalement parce qu’elle vise à produire des modèles
interprétables sous la forme d’équations différentielles qui doivent être résolues
pour être utilisées, les rendant bien plus exigeantes en calcul que les objectifs
typiques de l’apprentissage automatique, qui privilégient souvent la précision
prédictive et l’efficacité computationnelle plutôt que l’interprétabilité.

Apprentissage d’alternatives à l’équation de Poisson régissant la matière noire

Nos projets incluent l’utilisation de ce cadre d’apprentissage symbolique avancé
pour explorer des formulations alternatives ou des expansions d’ordre supérieur
de l’équation de Poisson (donnée dans l’Eqn. 8.4), qui est essentielle pour com-
prendre la dynamique de la matière noire dans les galaxies. Cette exploration
se basera sur les cartes de vitesse observationnelles des galaxies.

Cette démarche pourrait servir de méthode systématique pour évaluer si les
données observationnelles des galaxies appuient les paradigmes ΛCDM (Λ Cold
Dark Matter) ou MOND (Dynamique Newtonienne Modifiée), comme discuté
dans la Section 8.1, ou pourraient même révéler la présence de phénomènes
physiques entièrement nouveaux. En combinant cette méthode avec notre
cadre de Régression Symbolique de Classe, détaillé dans le Chapitre 5, nous
aspirons à permettre l’apprentissage d’une équation différentielle “universelle”
qui encapsule la dynamique de plusieurs galaxies simultanément, comme il-
lustré sur la Figure 12.4.

Apprentissage de cosmologies alternatives

Parmi les autres applications intéressantes figurent l’évolution des galaxies,
notamment avec le soutien des données JWST [Gardner et al., 2006], ainsi
que la recherche cosmologique. Spécifiquement, à la lumière de la mission
Planck [Aghanim et al., 2020], nous envisageons d’explorer des extensions à
l’équation de Friedman, en exigeant que le modèle analytique résultant prédise
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à la fois l’expansion cosmique observée à travers des chandelles standard et le
fond diffus cosmique (CMB), qui contient des informations cruciales sur la
distribution de la matière dans l’Univers primitif.

Vers la génération automatique de théories

Qu’est-ce qu’une théorie ?

Bien que la découverte de nouvelles extensions ou alternatives aux lois
qui régissent des échelles spécifiques, telles que cosmologiques ou galac-
tiques, représenterait un apport indéniable, cela ne constituerait pas en soi
l’élaboration d’une théorie exhaustive. Définir ce qui constitue une “théorie”
relève d’une interrogation épistémologique complexe. Adoptant une perspec-
tive orientée par l’observation, nous concevons une théorie comme un ensem-
ble cohérent de lois interconnectées, capable de prédire avec précision des
phénomènes naturels à des échelles extrêmement variées. Historiquement, les
lois de Newton ont été perçues comme une première “théorie de tout”, capables
de prédire aussi bien la trajectoire d’une pomme tombant d’un arbre que les
mouvements des corps célestes, des phénomènes se manifestant à des échelles
diamétralement opposées. Ce principe illustre les défis posés par les théories de
la gravité quantique [Rovelli, 2004] et, bien que de manière moins formidables,
les défis que nous rencontrons en tentant de concilier les phénomènes aux
échelles galactiques et cosmologiques.

Optimisation de théories physiques

Dans cet objectif, nous aspirons à repousser les frontières du paradigme de
l’apprentissage symbolique en développant un cadre capable de formuler des
“théories” complètes. Cela implique la création d’un algorithme capable de
générer et de raffiner de manière autonome des systèmes d’équations inter-
connectées (éventuellement différentielles) pour se conformer précisément à de
multiples contraintes observationnelles (chaque contrainte pouvant compren-
dre plusieurs manifestations d’un seul phénomène). Ce concept est illustré
visuellement dans la Figure 12.5.

Dans la pratique, nous envisageons le développement d’un cadre de travail
où sont optimisées N +n équations, où les N premières équations sont conçues
pour ajuster N jeux de données observationnelles distincts, avec la possibilité
pour chaque équation d’ajuster des jeux de données à multiples réalisations
(comme les observations de galaxies lointaines) en exploitant le paradigme
Class SR. Les n équations supplémentaires agiraient comme des équations aux-
iliaires, encodant potentiellement des redondances qui saisissent les principes
fondamentaux de la théorie. L’objectif serait de dériver l’ensemble d’équations
le plus simple possible qui décrive collectivement tous les phénomènes observés



Detailed Summary (fr.) 267

System of equations 
referencing one another

Equation #1
Equation #2
Equation #3

…
Equation #N

Φ(r) = − 4πGρ0R3
s

r
ln (1 + r

Rs ) + arctan ( r
Rs )

Φ(r) = − 4πGρcR3
s

r ( Rs + r
Rs )

α−1

[1 + Rs + r
Rs ]

β−γ

Φ(r) = − 4πGρsR3
s

r [ln(1 + r
Rs

) − r
r + Rs ]

Φ " = 4%&'()*	,
" ln 1 + "

)*
	

Reinforcing on best candidates

Computing 
discrepancyΦ-SO

35

40

45

µ
b

Pantheon sample

©-SO expression (best fit)

©-SO expression (§CDM)

0 1 2
z

0

100

co
u
n
ts

35

40

45

µ
b

Pantheon sample

©-SO expression (best fit)

©-SO expression (§CDM)

0 1 2
z

0

100

co
u
n
ts

Observational constraint #3

Observational constraint #2

Observational constraint #1

Figure 12.5: Vers l’élaboration automatique de théories. Cette illustration illustre
l’extension prévue de notre paradigme Φ-SO qui lui permettrait d’apprendre de manière au-
tonome des “théories”, soit plusieurs équations analytiques (éventuellement différentielles)
se référant mutuellement et satisfaisant à diverses contraintes observationnelles (chaque con-
trainte pouvant impliquer plusieurs réalisations d’un même phénomène). Nous soulignons
notre propos en proposant une exploration automatisée de “théories” ajustant des chandelles
standard, une caractéristique galactique clée à travers de multiples réalisations, et le fond
diffus cosmologique (CMB).

de manière efficace.

Applications

Compte tenu de la complexité et de la nature abstraite de ce système, ainsi que
des défis anticipés pour garantir sa performance robuste dans des applications
scientifiques réelles, nous proposons de concentrer initialement nos efforts sur
la récupération d’une “théorie simple”, telle que les lois de l’électromagnétisme
de Maxwell. Par la suite, l’objectif serait de s’attaquer à des scénarios astro-
physiques concrets significatifs pour maintenir une pertinence pratique. Les
applications spécifiques peuvent varier. Toutefois, une voie prometteuse con-
sisterait à appliquer ce système pour développer un modèle prédictif capable de
prévoir les comportements tant à l’échelle galactique que cosmologique, comme
illustré dans la Figure 12.5.

Améliorer la compétence des grands modèles de langage en matière
de données et de mathématiques

Modèles LLM de génération actuelle

Ce projet doctoral, a été témoins du développement rapide et de l’adoption
généralisée des grands modèles de langage (LLMs) exploitant des architectures
de transformateurs génératifs pré-entrâınés (similaires à ceux utilisés dans les
approches pré-entrâınées de régression symbolique discutées dans la Section
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2.2.2). Ces modèles ont atteint des performances de niveau humain ou
quasi-expert dans diverses tâches, y compris la traduction linguistique et la
programmation, mais leur mâıtrise dans les domaines scientifiques demeure
relativement embryonnaire [Saxena et al., 2023].

Tokenisation et défis d’apprentissage. L’amélioration des capacités
scientifiques des LLMs pourrait résider dans l’optimisation de leur traitement
et apprentissage du contenu scientifique. La science implique essentiellement
l’observation de phénomènes naturels et la formulation de modèles prédictifs.
Les LLMs actuels rencontrent des difficultés avec les tâches scientifiques, en
partie à cause de leur méthode d’entrâınement qui repose sur l’apprentissage
supervisé à partir de vastes corpus de textes tokenisés de manière spécifique,
comme expliqué dans le paragraphe 3.1.2.

Le processus de tokenisation pour les équations mathématiques est souvent
directement appliqué aux châınes Latex. Cette approche présente une con-
trainte majeure : si un LLM génère l’équation b + a alors que le format correct
dans les données d’entrâınement est a + b, le modèle est sanctionné malgré
l’équivalence mathématique, du fait de son approche d’apprentissage basée sur
les tokens. En outre, les LLMs doivent apprendre de manière autonome la syn-
taxe et la structure des expressions mathématiques valides, y compris les règles
de parenthésage et de formatage des expressions, sans l’aide de plongements
(embeddings) spécialisés pour les constructions mathématiques. Cette situa-
tion contraste nettement avec leurs capacités de traitement linguistique, où
les plongements pour mots ou sous-mots simplifient grandement le processus
d’apprentissage.

En définitive, les LLMs actuels n’ont pas accès directement à la structure
de graphe sous-jacente des expressions mathématiques ; ils interagissent
seulement avec leurs représentations en Latex. Cette lacune souligne une
importante limitation dans leur entrâınement : sans plongements analogues
à ceux utilisés pour les données textuelles, les LLMs sont confrontés à un
défi d’apprentissage bien plus complexe lorsqu’ils traitent des expressions
analytiques.

Multi-modalité. Les avancées récentes en multi-modalité permettent
désormais aux LLM d’interagir directement avec divers types de données, in-
cluant images et audios, en plus des textes. Cette évolution introduit une
capacité transformative où les LLMs peuvent traiter des données via des
entrées spécifiques à chaque modalité, comme une unité neuronale audio ca-
pable d’analyser directement les enregistrements vocaux23.

23Cette intégration permet aux modèles de répondre aux subtilités des données audio,
telles que les intonations émotionnelles, les mélodies ou les sons contextuels qui seraient
perdus lors d’une transcription traditionnelle de parole en texte.
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Modalités symboliques et de données

Au vu des récentes avancées en régression symbolique profonde, nous proposons
d’intégrer des modalités spécialisées orientées vers la science dans les LLM,
comme le montre la Figure 12.6. Cette adaptation vise à renforcer la capacité
des LLM à accomplir des tâches scientifiques en intégrant directement des
connaissances spécifiques au domaine dans leur structure.

Les plateformes potentielles pour intégrer ces nouvelles modalités incluent
le LLM AstroLlama [Nguyen et al., 2023], spécifiquement créé pour des
applications en astrophysique, et nanoGPT [Karpathy, 2023], qui propose une
architecture simplifiée24 conçue pour le prototypage. De plus, le modèle de
pointe Llama 3.1 [Llama Team, 2024] pourrait offrir un environnement ro-
buste pour déployer ces stratégies d’apprentissage complexes et multi-modales.
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Figure 12.6: Vers des modalités symboliques et de données pour les LLMs. Ce
schéma illustre les améliorations proposées (mises en évidence par le contour rouge) aux
Grands Modèles de Langage (LLMs) qui leur permettraient de traiter et d’apprendre à
partir de données scientifiques et d’expressions mathématiques, en plus de leurs capacités
existantes avec le texte et les images. Les extensions comprennent des unités spécialisées
pour ingérer et produire des expressions symboliques [SYMB] ou des données tabulaires
[TABLE] au lieu de tokens, améliorant leur compétence en données et en mathématiques
formelles.

Modalité symbolique. Nous suggérons une modalité “symbolique”
spécifique qui permettrait aux LLM d’interpréter et d’apprendre à partir

24Offrant des performances comparables à GPT2 [Radford et al., 2019]
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de la structure de graphe sous-jacente des expressions mathématiques, des
preuves ou même des programmes informatiques25. Cette unité symbolique
spécialisée pourrait adopter une approche d’essais et d’erreurs : plutôt
que de générer une expression en une seule tentative, elle pourrait affiner
itérativement l’expression, en partant d’une représentation initiale dans
l’espace latent, une méthode similaire aux processus de diffusion [Ho et al.,
2020] ou à l’approche de Kamienny et al. [2023] dans le contexte de la
SR. La mise en œuvre d’un tel système nécessiterait un outil robuste de
gestion de graphes d’expressions symboliques, que nous avons développé
dans le cadre du Φ-SO. Notre système est unique en son genre, offrant
une représentation et vectorisation complètes des graphes à la fois en lot et
en longueur d’équation, plaçant Φ-SO à l’avant-garde de cet effort passionnant.

Métrique de distance de graphe. Un progrès supplémentaire pourrait
consister à développer une métrique différentiable pour mesurer les distances
entre les équations. Cette métrique tiendrait compte de propriétés telles
que la commutativité (par exemple, attribuant une distance nulle entre des
expressions telles que a+ b et b+ a) et intégrant des identités algébriques plus
complexes pour évaluer la similitude. La mise en œuvre de cela nécessiterait
un réseau neuronal, qui, bien que non infaillible, offre la rapidité et la
différentiabilité nécessaires pour une telle tâche. Cette approche vise à créer
une métrique de distance d’expression symbolique rapide et universellement
applicable, exploitant les capacités des réseaux neuronaux pour atteindre
l’efficacité et la scalabilité.

Modalité de données tabulaires. Les LLM de génération actuelle
codent souvent les valeurs numériques sous forme de châınes de texte, par
exemple s.aaa.10bb, où s représente le signe (positif ou négatif), aaa sont les
chiffres, et bb sont les chiffres de l’exposant, chaque chiffre étant traité comme
une classe distincte. En conséquence, le LLM doit apprendre empiriquement
la proximité numérique, par exemple, que 42.1 est plus proche de 42.2 que de
92.1, étant donné que tous les chiffres sont traités comme des classes séparées.
Étant donné les efforts pionniers de Lalande et al. [2023] pour intégrer des
valeurs numériques réelles dans des architectures transformers plutôt que de
les traiter comme des tokens distincts, il existe un potentiel pour développer
une méthode robuste pour incorporer des données tabulaires directement
dans les LLM. Cette approche traiterait les données de manière invariante par
colonne et ligne, la différenciant des modalités d’image comme suggéré par
exemple par Kotelnikov et al. [2022].

25La génération automatisée de programmes informatiques suscite un intérêt industriel
considérable et est susceptible de stimuler une innovation importante (voir, par exemple,
Lin et al. [2024]).
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Pré-entrâınement SR. Pour améliorer la capacité du LLM à intégrer
des relations complexes entre les modalités symboliques et de données, nous
proposons un pré-entrâınement des têtes symboliques et de données du LLM
sur des tâches SR. Cette phase initiale de formation se concentrerait unique-
ment sur la modélisation de la relation entre les expressions symboliques et les
données avant que le LLM ne soit entrâıné sur un ensemble de données mul-
timodales telles que des articles de recherche, qui incluent souvent du texte,
des données numériques et des expressions mathématiques. De plus, un pré-
entrâınement de la tête neurale symbolique sur des problèmes mathématiques
formels pourrait affiner davantage sa capacité à gérer des informations symbol-
iques complexes. Cette formation de base devrait considérablement améliorer
la compétence du LLM dans les tâches scientifiques où l’interprétation précise
des données et la manipulation symbolique sont cruciales.

Perspectives pour les LLMs scientifiques

Tout au long de cette thèse, et particulièrement dans cette section, nous
avons suggéré l’intégration d’un riche ensemble de connaissances préalables
dans nos paradigmes symboliques, tels que la structure de graphe inhérente
aux expressions mathématiques, la notation préfixe, et l’intégration de
l’analyse dimensionnelle. Ces éléments, combinés à la nécessité d’ajuster
plusieurs réalisations et à l’application du rasoir d’Occam pour favoriser
des expressions concises, ont façonné notre approche actuelle. Cependant,
l’évolution rapide des LLMs suggère que de nombreuses contraintes que nous
avons méticuleusement encodées pourraient bientôt devenir redondantes,
apprises implicitement par des modèles plus avancés.26

Les LLMs modernes, par exemple, n’exigent plus de règles explicites
comme la notation préfixe pour générer des expressions mathématiques
sensées. Les erreurs consistant à produire par exemple a + +b au lieu de
a + b ou produire (a+)b.c au lieu de (a + b).c sont extrêmement rares,
indiquant un bond significatif dans leur compréhension des règles syntax-
iques sans programmation directe. Cette compétence naturelle soulève
une question intrigante sur les capacités futures des modèles polyvalents :
pourraient-ils, un jour, effectuer des tâches comme la régression symbolique
directement clé en mains ? Imaginons un scénario où un LLM, simplement
en traitant un jeu de données, pourrait générer de manière autonome une

26Cette situation fait écho à la résistance initiale rencontrée par les partisans des réseaux
neuronaux bôıte noire, qui contestaient l’encodage manuel des règles avec l’aide d’experts.
Au lieu de cela, ils préconisaient des systèmes qui apprennent les règles directement à partir
des données sans intervention humaine explicite, un changement qui a marqué un moment
pivot dans l’histoire de l’intelligence artificielle [Schmidhuber, 2015].
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expression analytique reflétant toutes les occurrences de données/expressions
précédemment rencontrées, sans entrâınement spécifique pour les tâches de SR.

Cette perspective reflète les capacités inattendues observées dans les
premières versions de GPT [Radford et al., 2019], où le modèle a démontré une
capacité à traduire de l’anglais au français, bien qu’il n’ait pas été explicitement
entrâıné dans cet objectif, en appliquant son apprentissage étendu de l’anglais
aux quelques exemples français rencontrés pendant son entrâınement. Ce type
de transfert de connaissances apprises laisse entrevoir un avenir où les modèles
avancés ne se contentent pas de répondre à leurs directives d’entrâınement,
mais les dépassent, en abordant des tâches complexes et imprévues 27.

Considérations Finales

En guise de conclusion, il est manifeste que, contrairement à d’autres domaines
comme la vision par ordinateur, le contrôle ou l’informatique, la physique
et l’astrophysique requièrent non seulement l’application des approches
classiques d’apprentissage automatique mais exigent également l’adoption
d’un paradigme supplémentaire d’apprentissage symbolique pour progresser
efficacement à l’ère de l’abondance des données. Cette thèse propose ainsi
un cadre de travail novateur et un ensemble de méthodologies destinées à
étendre le paradigme de l’apprentissage machine symbolique au domaine de
la physique. Nos stratégies tirent parti de nos confrontations à des problèmes
astrophysiques tangibles. L’objectif principal de cette thèse est de forger
une relation symbiotique entre le développement de ces nouvelles approches
et la maximisation des retombées scientifiques des missions d’observation,
notamment en ce qui concerne l’énigme de la matière noire, l’un des plus
grands défis de la physique actuelle.

Le paysage actuel de l’apprentissage automatique est dominé par des
applications industrielles offrant des capacités prédictives exceptionnelles mais
souvent dépourvues de compréhensibilité et d’interprétabilité, des qualités es-
sentielles dans les sciences naturelles. Compte tenu du contexte technologique
actuel, notamment en ce qui concerne le traitement du langage, et de l’entrée

27Au-delà de simples traductions, GPT4 a fait preuve de compétence dans diverses tâches
complexes pour lesquelles il n’avait pas été explicitement formé, démontrant ainsi ses ca-
pacités de généralisation [de Wynter, 2024, Bubeck et al., 2023, Fan et al., 2022].
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dans une ère caractérisée par une profusion de données en astrophysique, il
est impératif de développer des outils d’apprentissage machine symbolique
capables de générer des modèles analytiques intelligibles.

Ces méthodes présentent un potentiel indéniable pour enrichir diverses
branches de la physique, mais leur applicabilité est particulièrement pertinente
en astrophysique, compte tenu de l’abondance de données sans précédent dans
ce domaine. Historiquement, l’astrophysique a souvent été à l’origine de nou-
velles méthodes numériques qui ont ensuite bénéficié aux sciences naturelles
dans leur ensemble. Plus que jamais, l’astrophysique est appelée à jouer un
rôle de pionnier dans les sciences physiques, en relevant ces nouveaux défis
cruciaux.
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F. Castander, A. Cimatti, O. Le Fèvre, H. Kurki-Suonio, M. Levi, P. Lilje, G. Mey-
lan, R. Nichol, K. Pedersen, V. Popa, R. Rebolo Lopez, H. W. Rix, H. Rottgering,
W. Zeilinger, F. Grupp, P. Hudelot, R. Massey, M. Meneghetti, L. Miller, S. Pal-
tani, S. Paulin-Henriksson, S. Pires, C. Saxton, T. Schrabback, G. Seidel, J. Walsh,
N. Aghanim, L. Amendola, J. Bartlett, C. Baccigalupi, J. P. Beaulieu, K. Benabed,
J. G. Cuby, D. Elbaz, P. Fosalba, G. Gavazzi, A. Helmi, I. Hook, M. Irwin, J. P. Kneib,
M. Kunz, F. Mannucci, L. Moscardini, C. Tao, R. Teyssier, J. Weller, G. Zamorani, M. R.
Zapatero Osorio, O. Boulade, J. J. Foumond, A. Di Giorgio, P. Guttridge, A. James,
M. Kemp, J. Martignac, A. Spencer, D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto,
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Jonker, A. Jorissen, F. Julbe, A. Karampelas, A. Kochoska, R. Kohley, K. Kolenberg,
E. Kontizas, S. E. Koposov, G. Kordopatis, P. Koubsky, A. Kowalczyk, A. Krone-Martins,
M. Kudryashova, I. Kull, R. K. Bachchan, F. Lacoste-Seris, A. F. Lanza, J. B. Lavigne,
C. Le Poncin-Lafitte, Y. Lebreton, T. Lebzelter, S. Leccia, N. Leclerc, I. Lecoeur-Taibi,
V. Lemaitre, H. Lenhardt, F. Leroux, S. Liao, E. Licata, H. E. P. Lindstrøm, T. A. Lister,
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D. J. Marshall, J. M. Mart́ın-Fleitas, M. Martino, N. Mary, G. Matijevič, T. Mazeh, P. J.
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Eduardo Balbinot, and Sofie Lövdal. The Gaia DR3 view of dynamical substructure in
the stellar halo near the Sun. arXiv e-prints, art. arXiv:2206.11248, June 2022b.

João A. S. Amarante, Victor P. Debattista, Leandro Beraldo e Silva, Chervin F. P. Laporte,
and Nathan Deg. GASTRO library I: the simulated chemodynamical properties of several
GSE-like stellar halos. arXiv e-prints, art. arXiv:2204.12187, April 2022.

Else Starkenburg, Nicolas Martin, Kris Youakim, David S. Aguado, Carlos Allende Pri-
eto, Anke Arentsen, Edouard J. Bernard, Piercarlo Bonifacio, Elisabetta Caffau, Ray-
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pini, Gal Matijevič, Alessand ro Siviero, Patrick de Laverny, Alejandra Recio-Blanco,
Albert Bijaoui, Rosemary F. G. Wyse, James Binney, E. K. Grebel, Amina Helmi, Paula
Jofre, Teresa Antoja, Gerard Gilmore, Arnaud Siebert, Benoit Famaey, Olivier Bienaymé,
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Borja Anguiano, Maruša Žerjal, Ivan Minchev, Warren Reid, Joss Bland-Hawthorn, Janez
Kos, Sanjib Sharma, Fred Watson, Quentin A. Parker, Ralf-Dieter Scholz, Donna Bur-
ton, Paul Cass, Malcolm Hartley, Kristin Fiegert, Milorad Stupar, Andreas Ritter, Keith
Hawkins, Ortwin Gerhard, W. J. Chaplin, G. R. Davies, Y. P. Elsworth, M. N. Lund,
A. Miglio, and B. Mosser. The Radial Velocity Experiment (RAVE): Fifth Data Release.
AJ, 153(2):75, February 2017. doi: 10.3847/1538-3881/153/2/75.

Brian Yanny, Constance Rockosi, Heidi Jo Newberg, Gillian R. Knapp, Jennifer K. Adelman-
McCarthy, Bonnie Alcorn, Sahar Allam, Carlos Allende Prieto, Deokkeun An, Kurt
S. J. Anderson, Scott Anderson, Coryn A. L. Bailer-Jones, Steve Bastian, Timothy C.
Beers, Eric Bell, Vasily Belokurov, Dmitry Bizyaev, Norm Blythe, John J. Bochanski,
William N. Boroski, Jarle Brinchmann, J. Brinkmann, Howard Brewington, Larry Carey,
Kyle M. Cudworth, Michael Evans, N. W. Evans, Evalyn Gates, B. T. Gänsicke, Bruce
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laitis, D. Montes, T. Morel, C. Soubiran, L. Spina, H. M. Tabernero, G. Tautvaǐsiene,
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Press Release for the ApJ
959, 99 Publication

Our paper, Deep symbolic regression for physics guided by units constraints:
toward the automated discovery of physical laws1, authored by W. Tenachi, R.
Ibata, F. Diakogiannis was accompanied by a press release, which is included
here in full.

1ApJ 959 99, arXiv:2303.03192
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A.1 ObAS Press Release

Press release2 from the Observatoire Astronomique de Strasbourg (ObAS):

An AI rediscovers 74 physical laws
Dec. 11 2023

Is deep learning inevitably synonymous with “black boxes”?
These methods are often criticized for their lack of transparency,
resulting in unintelligible models. This issue is particularly relevant
in physics, where the goal is to model the laws governing our
universe as comprehensible equations, rather than opaque neural
networks composed of millions of numbers.

Wassim Tenachi, Rodrigo Ibata, two astrophysicists based in
France and Foivos Diakogiannis, a researcher at Australia’s national
science agency, CSIRO tackled this problem by creating an artificial
intelligence algorithm that produces analytical physical models
from raw scientific data. Their work was published in the American
journal, The Astrophysical Journal, on December 11.

2https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-

laws/

https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-laws/
https://iopscience.iop.org/article/10.3847/1538-4357/ad014c
https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-laws/
https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-laws/
https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-laws/
https://astro.unistra.fr/en/2023/12/11/an-ai-rediscovers-74-physical-laws/
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Manipulating even elementary mathematical symbols like addition or
division can be a complex challenge for neural networks. However, thanks
to advances in artificial intelligence techniques related to natural language
processing and drawing from methods used in symbolic computation, it is
now possible to create neural networks that generate equations.

Nevertheless, the quest for the ideal equation that perfectly models a
dataset while having the freedom to combine a plethora of mathematical sym-
bols can quickly become a combinatorial nightmare. As you may have been
told many times in school, in physics, you can’t “add potatoes and carrots to-
gether”, for example, you can’t add a length and a velocity because it doesn’t
make physical sense. These rules, known as dimensional analysis, prohibit cer-
tain combinations of mathematical symbols when writing a physical equation,
greatly reducing the combinatorial space.

Search space Search space with our in situ physical units prior

+
cos

v0

xt

cos v0

+

/

cos

v0

x

t

v0 x
t

v0
x

t v0 x t v0 x
t

v0

x

t

v0

x

t

v0
x

t

v0 x
t

cos

v0

x

t

v0

x

t

cos

t

v0

x
t

cos

v0
x

t

x
v0

x

t
cos

v0

x

t

v0
v0

x

t
cos

v0

x

t

v0

x

t

v0

x

t

v0

x

t

v0

x

t
+

cos

x

v0

x

t

cos

v0

x

t

v0

x

t

v0

v0

x

t

x

v0

x

tt
v0

x

t

/

v0
v0

x

tx

v0

x

t

t

v0

x
t

+

cos

t

v0
x

t

cos

v0
x

t

v0
x

t

v0

v0x
t

x

v0x t

t

v0
x

t

9

cos

v0

x

t

/

cos

v0 x
t

+v0

x

t
/

v0

x

t

cos

v0
x

t
v0

x

t

15

15

27

27

+

/
26

27

x

t

v0

+

v0

v0

+

/

v0

v0

v0

x

t

x

/

t

/
x

t

v0

Figure A.1: Illustration of the combinatorial space reduction provided by dimensional anal-
ysis.

The artificial intelligence method, known as “PhySO” (Physical Symbolic
Optimization), designed by these researchers French and Australian scientists
formulates thousands of equations per second and autonomously learns to for-
mulate increasingly high-quality equations through trial and error while capi-
talizing on these dimensional analysis rules.
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Figure A.2: [Å SR demo] (https://youtu.be/wubzZMkoTUY) PhySO, the artificial intelli-
gence developed by the Franco-Australian collaboration, rediscovering the equation of the
textbook harmonic oscillator from a dataset.

This study made a lot of noise on Twitter3, quickly becoming the most-
discussed scientific article of the week on the social network. It was even shared
by Professor Yann Lecun, the scientist often considered the father of modern
artificial intelligence and the head of the artificial intelligence department at
Meta (formerly Facebook).

3https://x.com/WassimTenachi/status/1633645134934949888

https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://x.com/WassimTenachi/status/1633645134934949888
https://x.com/WassimTenachi/status/1633645134934949888
https://x.com/WassimTenachi/status/1633645134934949888
https://x.com/WassimTenachi/status/1633645134934949888
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This kind of approach raises many questions about the role of humans in
the scientific process. “The goal is not to replace the physicist but simply
to equip us with a powerful tool to explore the space of equations that
empirically meet experimental or observational constraints,” emphasize the
authors.

In this first study, the Franco-Australian collaboration focused on the au-
tomated formulation of empirical equations, aligning more with observational
and experimental needs than the theoretical aspects of physics.

It is worth noting the impartiality of this type of unsupervised method
regarding the precise configuration of the equations sought. Could this
intrinsic impartiality one day lead to a more agnostic scientific research?

Scientific contacts:

• Wassim Tenachi (PhD Student) wassim.tenachi@astro.unistra.fr

• Rodrigo Ibata (DR CNRS) rodrigo.ibata@astro.unistra.fr

Article:

Wassim Tenachi, Rodrigo Ibata, Foivos Diakogiannis, Deep symbolic re-
gression for physics guided by units constraints: toward the automated dis-
covery of physical laws, ApJ (DOI: 10.3847/1538-4357/ad014c)

https://doi.org/10.3847/1538-4357/ad014c
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A.2 CNRS Press Release (fr.)

Press release4 from the Centre national de la recherche scientifique (CNRS):

Une intelligence artificielle retrouve des lois
physiques à partir de données scientifiques

Dec. 11 2023

L’apprentissage profond est-il inévitablement synonyme de “bôıtes noires”?
On reproche souvent à ces méthodes leur absence de transparence résultant
en des modèles inintelligibles. C’est un problème qui se pose tout partic-
ulièrement en physique, domaine dans lequel on cherche à modéliser les lois
régissant notre Univers sous la forme d’équations compréhensibles et non pas
de réseaux de neurones opaques constitués de millions de nombres. Une équipe
de recherche internationale comprenant des scientifiques du CNRS-INSU (voir
encadré), s’est attaquée à ce problème en créant un algorithme d’intelligence
artificielle produisant des modèles physiques analytiques à partir de données
scientifiques brutes.

4https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-

retrouve-des-lois-physiques-partir-de-donnees-scientifiques

https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-retrouve-des-lois-physiques-partir-de-donnees-scientifiques
https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-retrouve-des-lois-physiques-partir-de-donnees-scientifiques
https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-retrouve-des-lois-physiques-partir-de-donnees-scientifiques
https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-retrouve-des-lois-physiques-partir-de-donnees-scientifiques
https://www.insu.cnrs.fr/fr/cnrsinfo/une-intelligence-artificielle-retrouve-des-lois-physiques-partir-de-donnees-scientifiques
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Manipuler des symboles mathématiques même élémentaires tels que
l’addition ou la division peut s’avérer un défi complexe pour les réseaux
de neurones. Toutefois, grâce aux progrès réalisés dans les techniques
d’intelligence artificielle liées au traitement du langage et en s’appuyant sur
les approches utilisées en calcul symbolique, il est désormais possible de
créer des réseaux de neurones générant des équations. Néanmoins, la quête
de l’équation idéale modélisant parfaitement un jeu de données en ayant
la liberté conjuguer pléthore de symboles mathématiques peut rapidement
devenir un enfer combinatoire. Comme on vous l’a peut être répété mainte
fois à l’école, en physique on ne peut pas “additionner des patates et des
carottes”, par exemple on ne peut pas additionner une longueur et une
vitesse car cela n’a pas de sens physiquement. Ces règles dites d’analyse
dimensionnelle interdisent certaines combinaisons de symboles mathématiques
lors de l’écriture d’une équation physique et permettent de grandement
réduire l’espace combinatoire.
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Figure A.3: Illustration de la réduction de l’espace combinatoire offerte par l’analyse dimen-
sionnelle.

La méthode d’intelligence artificielle baptisée “PhySO” acronyme
d’Optimisation Symbolique Physique élabore des milliers d’équations par
seconde et apprend de façon autonome à formuler des équations de qualité
croissante par essai erreur tout en capitalisant sur ces règles d’analyse
dimensionnelle. Il convient de souligner l’absence de préjugés de ce type
de méthode non supervisée quant à la configuration précise des équations
recherchées. Ce type d’impartialité intrinsèque pourrait-il un jour conduire à
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une recherche scientifique plus agnostique ?

Figure A.4: [Å SR demo] (https://youtu.be/wubzZMkoTUY) PhySO, the artificial intelli-
gence developed by the Franco-Australian collaboration, rediscovering the equation of the
textbook harmonic oscillator from a dataset.

Laboratoires impliqués:

• Laboratoire CNRS : Observatoire astronomique de Strasbourg (ObAS)
Tutelles : CNRS / Univ. Strasbourg

• Autre laboratoire : Agence scientifique nationale australienne, CSIRO

Pour en savoir plus:

Wassim Tenachi, Rodrigo Ibata, Foivos Diakogiannis, Deep symbolic
regression for physics guided by units constraints: toward the automated
discovery of physical laws, The Astrophysical Journal, 2023.

Contact:

• Rodrigo Ibata Directeur de recherche CNRS à l’Observatoire as-
tronomique de Strasbourg rodrigo.ibata@astro.unistra.fr

• Wassim Tenachi Doctorant à l’Observatoire astronomique de Strasbourg
wassim.tenachi@astro.unistra.fr

https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY
https://youtu.be/wubzZMkoTUY








Wassim Tenachi

Symbolic Machine Learning for Physics & Astrophysics

Résumé

Nous explorons le potentiel novateur de l’apprentissage automatique symbolique dans les domaines de la
physique et de l’astrophysique, afin de surmonter les limites d’interprétabilité des méthodes tradition-
nelles dans cette ère caractérisée par une profusion de données. Nous présentons Φ-SO, un paradigme
d’Optimisation Symbolique Physique qui exploite l’apprentissage profond par renforcement pour générer
des expressions symboliques analytiques directement à partir de données. Cette approche de régression
symbolique (SR) atteint des performances de premier plan en intégrant l’analyse dimensionnelle et en
facilitant l’exploitation de diverses réalisations d’une unique classe de phénomènes : une approche que
nous nommons Class SR.

Nous nous penchons sur les enjeux liés à la matière noire à l’échelle galactique et identifions plusieurs
nouveaux courants stellaires grâce aux données du satellite Gaia, complétées par des observations de
suivi effectuées avec les télescopes INT et VLT. Nous mettons en lumière l’existence d’un courant
polaire émanant du halo externe traversant le voisinage solaire, que nous baptisons Typhon. Enfin, nous
proposons une approche pionnière d’apprentissage non supervisé pour déterminer de manière agnostique
la distribution de la matière noire dans la Voie Lactée, à partir d’un cliché des coordonnées stellaires en
employant des transformations canoniques.

Mots-clés: apprentissage automatique symbolique, apprentissage profond par renforcement, régression
symbolique, matière noire, courants stellaires, Voie Lactée.

Résumé en anglais

We explore the transformative potential of symbolic machine learning in physics and astrophysics, seeking
to overcome the interpretability challenges of traditional methods in the era of data abundance. We
introduce Φ-SO, a Physical Symbolic Optimization framework that relies on deep reinforcement learning
to extract analytical symbolic expressions directly from data. This symbolic regression (SR) framework
achieves state-of-the-art performance by integrating physical dimensional analysis and enabling the
exploitation of diverse realizations of a singular class of phenomena — an approach we dub Class SR.

Focusing on the dark matter challenges at the galactic scale, we uncover several new stellar streams from
Gaia satellite data and perform follow-up observations using the INT and VLT telescopes. Notably,
we discover a polar stream from the outer halo passing through the Solar neighborhood, which we dub
Typhon. Finally, we propose a first observation-driven, unsupervised learning approach to agnostically
constrain the dark matter distribution of the Milky Way from a snapshot of stellar coordinates using
canonical transformations.

Keywords: symbolic machine learning, deep reinforcement learning, symbolic regression, dark matter,
stellar streams, Milky Way
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