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Abstract

In this thesis we show the benefits of the novel MLIR compiler technology to the
generation of code from a DSL, namely EasyML used in openCARP, a widely used
simulator in the cardiac electrophysiology community. Building on an existing work we
deeply modified openCARP’s native code generator to enable efficient vectorized CPU
and GPU code generation (Nvidia CUDA and AMD ROCm). Generating optimized
code for different accelerators requires specific optimizations and we review how MLIR
has been used to enable multi-target code generation from an integrated generator.
To our knowledge, this is the first work that deeply connects an optimizing compiler
infrastructure to electrophysiology models of the human body, showing the potential
benefits of using compiler technology in the simulation of human cell interactions.
Additionally, we did a study on the polyhedral compilers and generalized our techniques
using Polygeist to improve the vectorization and heterogeneous code generation of
polyhedral compilers.

Résumé
Dans cette thèse, nous montrons les avantages de la nouvelle technologie de compi-
lateur MLIR pour la génération de code à partir d’un DSL, à savoir EasyML utilisé
dans openCARP, un simulateur largement utilisé dans la recherche en électrophysiolo-
gie cardiaque. S’appuyant sur un travail existant nous avons profondément modifié le
générateur de code natif d’openCARP pour permettre une génération efficace de code
CPU vectoriel et GPU (Nvidia CUDA et AMD ROCm). La génération de code optimisé
pour différents accélérateurs nécessite des optimisations spécifiques et nous examinons
comment MLIR a été utilisé pour permettre la génération de code multi-cible à partir
d’un générateur intégré. À notre connaissance, il s’agit du premier travail qui relie
profondément une infrastructure de compilateur d’optimisation aux modèles électro-
physiologiques du corps humain, montrant les avantages potentiels de l’utilisation de
technologies de compilation dans la simulation des interactions entre cellules humaines.
De plus, nous avons réalisé une étude sur les compilateurs polyédriques et généralisé
nos techniques en utilisant Polygeist pour améliorer la vectorisation et la génération
de codes hétérogènes des compilateurs polyédriques.

v





Contents

Acknowledgements iii

Abstract v

List of Figures xii

List of Tables xiv

List of Listings xv

1 Introduction 1
1.1 Hardware Advances in Computation . . . . . . . . . . . . . . . . . . . 1
1.2 Supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Compiler Proposed Code Optimizations . . . . . . . . . . . . . . . . . . 3
1.4 Context and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Cardiac Simulation 9
2.1 Cardiac Electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Cardiac Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Ionic Models and their Description . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Integration Methods (ODEs) . . . . . . . . . . . . . . . . . . . . 12
2.3.2 DSL for Ionic Models . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Code Generation from Ionic Models . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Ionic Computation Phase in OpenCARP . . . . . . . . . . . . . 15
2.4.2 Compute-intensive Kernels . . . . . . . . . . . . . . . . . . . . . 17

2.5 Critical Parts of Cardiac Simulators . . . . . . . . . . . . . . . . . . . . 17

3 Multi-Level Intermediate Representation 21
3.1 MLIR Dialects and Passes . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Dialects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Lowering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 MLIR Representation with its Compilation Flow . . . . . . . . . . . . . 25

vii



4 Heterogeneous Code Generation for Cardiac Simulation Application 29
4.1 Overview of CPU Vectorized and GPU Code Compilation Flow . . . . 29

4.1.1 LimpetMLIR for CPU and GPU . . . . . . . . . . . . . . . . . 32
4.1.2 Data Layout Transformation . . . . . . . . . . . . . . . . . . . . 34

4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 CPU Vectorization Performance . . . . . . . . . . . . . . . . . . 36
4.2.2 GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 LimpetMLIR Integration with a Task-based Run-time System . . . . . 44

5 A Survey of General-purpose Polyhedral Compilers 47
5.1 The Polyhedral Model Terminology . . . . . . . . . . . . . . . . . . . . 47

5.1.1 General-purpose Source-to-source Polyhedral Compilers . . . . . 50
5.1.2 General-purpose Built-in Polyhedral Compilers . . . . . . . . . 52
5.1.3 Application-specific and Target-specific Compilers . . . . . . . . 53
5.1.4 A Study on Polyhedral Compilers . . . . . . . . . . . . . . . . . 54

5.2 Benchmark Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Experimental Setup and Method . . . . . . . . . . . . . . . . . 57
5.3.2 Overall Performance of Sequential and Parallel Codes . . . . . . 61
5.3.3 Performance per Category . . . . . . . . . . . . . . . . . . . . . 62

5.4 Performance for Specific Benchmarks . . . . . . . . . . . . . . . . . . . 65
5.4.1 Sequential Execution Analysis. . . . . . . . . . . . . . . . . . . . 68
5.4.2 Parallel Execution Analysis. . . . . . . . . . . . . . . . . . . . . 70

5.5 Pluto with Different Tiling Options . . . . . . . . . . . . . . . . . . . . 74
5.6 PPCG: CUDA and OpenCL . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.1 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.2 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7.1 Sequential Code Optimization . . . . . . . . . . . . . . . . . . . 78
5.7.2 Parallel Code Optimization . . . . . . . . . . . . . . . . . . . . 78
5.7.3 Benchmark Suite . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Extending Polygeist to Generate OpenMP SIMD and GPU MLIR Code 81
6.1 Polygeist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 OpenMP SIMD Code Generation . . . . . . . . . . . . . . . . . . . . . 83
6.3 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusion and Perspectives 87

Bibliography 91
Personal Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Artifact Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
General Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Execution Time of General-purpose Polyhedral Compilers 103

– viii –



B Résumé en Français 109
B.1 Contributions Matérielles au Calcul . . . . . . . . . . . . . . . . . . . . 109
B.2 Super calculateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.3 Optimisations de Code par le Compilateur . . . . . . . . . . . . . . . . 111
B.4 Contexte et Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 112

– ix –





List of Figures

2.1 Different heart responses measured using ECG . . . . . . . . . . . . . . 10
2.2 Left picture is the microscopic view of cardiac tissues. The muscle fibers

are in purple color that are separated by collagen sheets (white). Dam-
age to cardiac tissues causes collagen growth and results in connectivity
loss. Image is from Dr. D. Benoist, IHU Liryc. Right picture shows a
cardiac tissue heavily penetrated by fatty tissues (white). This type of
tissue damage can lead to arrhythmia. Image is from Dr. M. Hoogendi-
jik, AMC, Amsterdam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Different scales of cardiac system . . . . . . . . . . . . . . . . . . . . . 11
2.4 A sample image of cardiac tissue from microcard.eu project. A cardiac

tissue is divided into cells and connected electrically with gap junctions
(jagged lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Overview of an cardiac simulator with two phases: (i) Ionic compute
phase and (ii) Electric potential (Vm) computation phase. . . . . . . . . 16

2.6 openCARP simulator code generation flow . . . . . . . . . . . . . . . . 16

3.1 Lowering of linalg dialect. . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Generalized compilation view of MLIR and C/C++ code . . . . . . . . . 28

4.1 Overview of the code generation, from the EasyML model to an object
file. The dashed line box shows how limpetMLIR fits into the original
code generation process, to emit optimized code for CPU and GPU. . . 30

4.2 Data layout optimization for vector size of 4. . . . . . . . . . . . . . . . 35
4.3 Speedup of the limpetMLIR vectorized CPU version of the code com-

pared to the baseline openCARP version, using one single thread (se-
quential) on an AVX-512 architecture. . . . . . . . . . . . . . . . . . . . 36

4.4 Speedup of the limpetMLIR vectorized CPU version of the code com-
pared to the baseline openCARP version, using 32 OpenMP threads on
a 32 cores AVX-512 architecture. . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Average execution times of three classes of ionic models: small, medium,
large (on AVX-512) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Geomean speedups for SSE, AVX2, and AVX-512 across varying threads
(in the power of two) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Roofline model for the different ionic models with AVX-512 vectors on 32
cores when compared to baseline openCARP (peak performance of our
experimental platform: 760 GFlops/s, DRAM bandwidth: 199 GB/s,
L1 cache bandwidth: 1052 GB/s) . . . . . . . . . . . . . . . . . . . . . 40

xi



4.8 Performance on Nvidia A100, in giga floating operations per second . . 41
4.9 Performance on AMD MI50, in giga floating operations per second . . . 42
4.10 Energy efficiency on Nvidia A100, in GFLOP per Joule . . . . . . . . . 43
4.11 Energy efficiency on AMD MI50, in GFLOP per Joule . . . . . . . . . 43
4.12 LimpetMLIR with StarPU GPU wrappers to support load balancing on

heterogeneous systems during runtime. . . . . . . . . . . . . . . . . . . 44

5.1 Geomean sequential execution speedups on PolyBench/C on an Intel CPU 61
5.2 Geomean sequential execution speedups on PolyBench/C on AMD Ma-

chine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Geomean parallel execution speedups on 21 PolyBench/C on an Intel

CPU (40 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Geomean parallel execution speedups on 21 PolyBench/C on AMD Ma-

chine (48 cores). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Geomean speedups for GRAPHITE, Pluto (-tile), PoCC, and PPCG

using gcc. On the x-axis are the six categories of benchmarks in Poly-
Bench/C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Geomean speedups of Polly, Polygeist, Pluto (-tile), PoCC, and PPCG
using clang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Geomean speedups of Pluto (-tile), PoCC, and PPCG using icc . . . . 65
5.8 Geomean speedups of ROSE/PolyOpt compared to the baseline ROSE

compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Intel VTune reports of cores utilization for promising cases . . . . . . . 74
5.10 Intel VTune reports of cores’ utilization for ill cases . . . . . . . . . . . 74
5.11 Geomean parallel speedups of Pluto with different tiling options using

different compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.12 Geomean speedups of PPCG CUDA and OpenCL codes compared to

the best: (left fig.) sequential code compiled with icc; and (right fig.)
parallel code produced by Pluto-tile + icc. . . . . . . . . . . . . . . . . 76

6.1 Overview of Polygeist compilation-flow. . . . . . . . . . . . . . . . . . . 82
6.2 Overview of Polygeist compilation-flow being modified by our proposed

technique. Green arrows show our extended/modified version of CPU
code generation. Red arrows show our newly proposed GPU code gen-
eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

– xii –



List of Tables

5.1 Dependency Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Thirty different numerical computations programs from different real

world problem in Polybench 4.2 suite (from the PolyBench 4.2 docu-
mentation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Polyhedral compilers with their versions and tested options . . . . . . . 58
5.4 Compile-time errors, run-time errors, warnings, and parallelization is-

sues of PolyBench/C with respect to different polyhedral compilers. . . 60
5.5 Performance ratios for various profiling metrics against their respective

compiler for six benchmarks using the perf profiling tool on an Intel
machine (sequential execution). GRA - GRAPHITE; Pluto - Pluto
with --tile; P’gst - Polygeist; P’opt - PolyOpt. . . . . . . . . . . . . . . 67

5.6 Performance ratios for various profiling metrics against their respective
compiler for six benchmarks using the perf performance profiling tool on
an Intel machine (parallel execution on 40 cores). GRA - GRAPHITE;
Pluto - Pluto with --tile; P’gst - Polygeist; P’opt - PolyOpt. . . . . . . 71

5.7 The total number of parallel regions, number of cores utilized, and
speedups of the parallel optimized code of source-to-source polyhedral
compilers compared to the baseline version (base) and the sequential
optimized version (opt). Pluto with --tile; m - is millions. . . . . . . . . 72

A.1 Execution time in seconds of all PolyBench/C benchmarks with respect
to PPCG’s CUDA and OpenCL optimized code on an A100 GPU; ERR
- error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Sequential execution time in seconds of all PolyBench/C benchmarks
with respect to baseline compilers and the polyhedral compilers on an
Intel machine. GRA - GRAPHITE; P’gst - Polygeist; P’opt - PolyOpt;
WR - wrong output; ERR - error; TO - timed-out. . . . . . . . . . . . 104

A.3 Parallel execution time in seconds of all PolyBench/C benchmarks with
respect to the polyhedral compilers on an Intel machine. GRA - GRAPHITE;
P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error;
TO - timed-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.4 Sequential execution time in seconds of all PolyBench/C benchmarks
with respect to baseline compilers and the polyhedral compilers on an
AMD machine. GRA - GRAPHITE; P’gst - Polygeist; P’opt - PolyOpt;
WR - wrong output; ERR - error; TO - timed-out. . . . . . . . . . . . 106

xiii



A.5 Parallel execution time in seconds of all PolyBench/C benchmarks with
respect to the polyhedral compilers on an AMD machine. GRA - GRAPHITE;
P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error;
TO - timed-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.6 Best execution time (both sequential and parallel) for all benchmarks in
PolyBench/C on Intel machine across standard compilers and polyhedral
compilers; (*) Tiny benchmarks with execution time shorter than 1.5s
(gcc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

– xiv –



Listings

2.1 An ionic model proposed by Hodgkin and Huxley written in EasyML . 14
2.2 An equivalent C code emitted by a cardiac simulator for Hodgkin and

Huxley ionic model shown in Listing 2.1. . . . . . . . . . . . . . . . . . 18
2.3 Warning by clang compiler while trying to auto-vectorize the code gen-

erated by openCARP for Hodgkin and Huxley model. . . . . . . . . . . 19
3.1 An example C program with loops and arithmetic operations. . . . . . 25
3.2 MLIR representation of example C program (Listing 3.1) using affine

and arith dialects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The affine loops in Listing 3.2 are tiled with the help of polyhedral

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 The affine dialect (high-level abstraction) from Listing 3.3 is lowered

to scf dialect (mid-level abstraction) using MLIR lowering pass. . . . . 26
3.5 The scf and arith dialects from Listing 3.4 is further lowered to llvm

dialect (last low-level abstraction) using MLIR lowering pass. . . . . . . 26
3.6 Finally the MLIR translation pass converts the llvm dialect in MLIR

representation to LLVM IR. . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 MLIR code snippet for vectorized CPU generated by limpetMLIR for

the Hodgkin and Huxley ionic model shown in listing 2.1. . . . . . . . . 31
4.2 MLIR code snippet for GPU generated by limpetMLIR for the Hodgkin

and Huxley ionic model shown in listing 2.1. . . . . . . . . . . . . . . . 32
4.3 MLIR code snippet generated for GPU by limpetMLIR for the Bon-

darenko model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Original nested loop code . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Transformed code (by the Pluto polyhedral compiler) of original C code

in listing 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 Compute intensive loops of the syr2k kernel. . . . . . . . . . . . . . . . 83
6.2 Polyhedral optimized MLIR code generated by Polygeist for the loops

shown in Listing 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 OpenMP SIMD loop generation by our proposed technique for vector

annotated loop(s) from Listing 6.2. . . . . . . . . . . . . . . . . . . . . 84

xv





Chapter 1

Introduction

The impact of computers on human real-life applications is very wide and it revolu-
tionizes the day-to-day activities of human life. Here are a few significant areas where
computers have made an enormous impact: Healthcare - starting from electronic med-
ical records, medical image processing, diagnostic tools to telemedicine; E-commerce
- doorstep delivery of household items; Communication - starting from emails, video
conferencing, social media platforms to virtual reality technology; Transport Systems
- navigation tools, traffic management systems, and autonomous vehicles; Science and
Research - climate modeling, genomics, drug discovery, and simulations. Computer
technology has itself undergone several evolutions over the past 50 years and still
evolving to make itself compatible with different domains. Particularly, the personal
computing era in the 1980s saw the rapid growth of personal computers in homes and
offices thereby igniting the fire of computing capabilities. Later advancements in the
microprocessor and storage further add fuel to the computing power. The mobile and
internet era in the early 2000s resulted in handheld smartphone computer devices for
every individual. And, everybody knows the present cloud computing and artificial in-
telligence (AI) impact and its benefits. The French version of this chapter is available
in Appendix B.

In this thesis, we want to discuss the advancements in computational systems target-
ing large scale applications and how the code generation and code optimization should
adapt to these advancements to maximize the efficient usage of supercomputers.

1.1 Hardware Advances in Computation

Both hardware and software advance together to improve the computational power of
computers. We now discuss a few advancements made in computer hardware:

Multi-Core Processors. Integrating multiple processing cores onto a single chip thereby
allowing parallel execution of threads/tasks.

Graphics Processing Units. Specially designed electronic circuits initially intended for
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graphics rendering in video games, but it has evolved a lot and now being used in many
other application domains particularly to say machine learning, scientific simulations
and 3D imaging.

Field-Programmable Gate Arrays. An FPGA is an integrated circuit that provides the
capability of dynamic reconfiguration to perform a wide variety of tasks, particularly
in digital signal processing.

Vector Instruction Sets. A specially designed instruction set to enhance the perfor-
mance of similar operations on multiple data, commonly known as vector or SIMD (Sin-
gle Instruction, Multiple Data) operations. Intel’s SSE/AVX/AVX512, Arm’s Neon
and Nvidia’s warps are a few examples.

Distributed Systems. Interconnection of several computers together that communicate
and coordinate together to complete a common goal. These systems share computa-
tional tasks, storage, and processing nodes to provide high computational power and
scalability.

Quantum Computing. Though in the early stages of development, quantum comput-
ing arises as a promising methodology for improving computational power far beyond
the classical computing system. It uses the principles of quantum mechanics to per-
form computation on quantum bits instead of the classical bits used in traditional
computers.

1.2 Supercomputers

Supercomputers are very high-performance computing systems specially designed to
tackle complex computations that require massive parallelism and to handle large-
scale data processing. Most supercomputers are heterogeneous systems as they are
capable of supporting different architectures like x86, AArch64, RISC-V, and GPU.
The target is scientific and engineering applications that are required to solve inten-
sive problems that are far beyond the computational power of conventional computers.
They typically consist of millions of cores running in parallel to achieve a high number
of floating-point operations per second (Flop/s). They do have high-end parallel or
distributed architectures with multiple processing units like CPUs, GPUs, and special-
ized accelerators (e.g., FPGAs). Supercomputers are highly scalable to handle large
data, interconnected through high-speed networks, and have specialized architectures
(like Tensor-processing Units) to support machine learning/AI applications. As they
consume large amounts of electric power and generate a significant amount of heat
during computation, they are equipped with efficient cooling systems.

The Top5001 website ranks the world’s available supercomputers in terms of their
computing power. Since June 2022, the Frontier supercomputer hosted at Oak Ridge
National Laboratory is the world’s fastest supercomputer with 8.7 million cores and

1https://www.top500.org/
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with a computing power of 1206 PFlop/s2, that is more than an exaFlop/s. Now, it’s
our responsibility to effectively use these hardware resources to reap the full benefits
of these supercomputers.

1.3 Compiler Proposed Code Optimizations

In this section, we discuss optimization techniques that could be used to automatically
transform the software to leverage the capabilities of hardware, which can be better
exploit parallelism or avoid bottlenecks.

Parallelism. Thread and task-level parallelization involves splitting the computation
into smaller parts and executing these parts simultaneously using multiple processing
units (cores, CPUs or GPUs). For example, OpenMP (Open Multi-Processing) is a
parallel programming API widely used in C, C++, or Fortran that supports task-
level and thread-level parallelism in shared memory systems. MPI (Message Passing
Interface) is another widely used standard for parallel programming in distributed
systems.

Vectorization (SIMD). It is an optimization technique to exploit the possible SIMD in-
structions in the code thereby enabling faster and more efficient computation with the
help of a vector instruction set. Many standard compilers (like gcc, clang, and icc) do
auto-vectorization with standard compiler analysis techniques to generate equivalent
SIMD vector instructions. However, in many cases, the compilers cannot auto-vectorize
code where manual vectorization could be applied. This involves invoking a few com-
piler analyses (like dependency analysis), rewriting code to include vector directives,
or writing vector instruction at the intermediate representation (IR)/assembly level.

Cache Coherence. A system with multiple processing units (CPUs or cores) may share
a common memory hierarchy. It needs to be ensured that the memory is consistent
across them by maintaining coherence between the data stored in their respective
caches. There are many cache coherence protocols (like MESI) being used to maintain
the cache coherence.

Software Pipelining. Compiler can take advantage of instruction-level parallelism of-
fered by processors to re-order instructions (called out-of-order execution. In this way
the hardware pipeline of instructions can be fed more efficiently and realize parallelism
at the instruction level.

Shared Resources. If multiple threads execute concurrently it is very important to
manage the shared resources properly to avoid data races and deadlocks. The critical
aspect is not only computational improvement but also to ensure the correctness of
the program. Different synchronization mechanisms like mutexes, semaphores, critical
sections, and atomic operations help us to effectively manage these shared resources.

Data Locality. Data management plays a vital role in distributed systems. However,
achieving optimal data locality in a distributed system is quite challenging due to many

2https://top500.org/project/linpack/
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parameters, like network latency, data partition, and system scalability. There are
situations where the performance gains in computation have been ruined by inefficient
data placement resulting in excessive data copies. Here are some key considerations
the software developer has to investigate for data locality in distributed systems: data
replication, data partitioning, data movement, and network topology.

The support for the multi-processing and distributed systems has resulted in the
evolution of many parallel and distributed languages (like X10 [1, 2, 3], Chapel [4],
Cilk [5], Erlang, Go [6]) to ease the programming effort needed to use these super-
computers. In these languages, the compiler has the ability to generate an optimized
assembly code targeting those multi-core heterogeneous architectures.

A compiler is typically a computer program capable of translating a human-readable
source code into an optimized assembly file which is later on converted into machine
instructions and executed on the computer hardware. Thus, the compiler plays a
very crucial role in software development as it not only transforms an input code into
an executable but it also does apply a lot of optimizations to generate an efficient
code. However, in many cases, the compiler is limited to applying safe optimization
techniques to pieces of code it achieves to analyze, and, because of the complex nature
of the program the developers need to manually intervene to optimize it further.

1.4 Context and Contributions

In this thesis, we introduce a new domain-specific heterogeneous compilation and
code generation technique targeting exascale supercomputers, to optimize parallel loop
structures in cardiac simulation applications. We provide hints to the compiler to gen-
erate vector code for complex loop statements (which are not auto-vectorized by the
compiler) and execute them on the CPU using different vector instruction sets. We fur-
ther enhance the code generation process to emit GPU code for those loop statements
and execute them using the accelerators like Nvidia and AMD GPUs.

Compute Intensive Code

A scientific application spends generally most of the time in iterative computation
phases as they contain the most statements to get executed. The statements are often
compute-intensive kernels that require significant computational resources and heavily
relies on CPU or GPU processing power. These compute-intensive kernels mostly
involve:

• Simulations like molecular/fluid dynamics, weather patterns, and biological deriva-
tions,

• Data analysis: processing of very large data sets, statistical analysis or training
an ML model that requires extensive computation,
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• Mathematical computations like solving differential or integral equations,

• Image or signal processing.

Mostly, these kernels are enclosed inside loops with large iteration counts. Iden-
tifying and optimizing these kernels are essential for improving the performance and
efficiency of these large applications. Developers often profile their applications to
identify such compute-intensive kernels and optimize them, using standard optimiza-
tion techniques or by proposing new hardware-specific optimizations. There are cases
where the compiler itself could identify these patterns and apply optimizations (for
example auto-vectorization).

Can those kernel optimizations be further improved?

Several optimization factors needed to be considered while generating an optimized
code targeting supercomputers. The main focus would be invoking massive paral-
lelism resulting in maximized usage of all the cores. Sometimes, the complex nature
of the application results in difficulties applying these optimizations, for example the
dependencies between instructions prevents some loop transformations. Moreover, the
presence of complex statements like a function/library call or irregular control flow
within the loop can prevent the compiler’s auto-vectorization, even though the loop
carries no dependencies and is annotated with vector directives.

Another aspect is code generation: many applications rely on their domain-specific
language (DSL) as it is more convenient for their experts to write code with less
programming knowledge. Then, it is the responsibility of the DSL compiler to generate
efficient code. Most of the designed code generators target one architecture, either CPU
or GPU, not both.

Compiler technology has evolved a lot and there are many new compiler frame-
works introduced to help the developers generate optimized code for their applica-
tions, the MLIR [7] compiler is one such example. MLIR (Multi-Level Intermediate
Representation) from LLVM [8] is the state-of-the-art compiler technology that aims
to represent various levels of abstraction and optimization in a unified form, thanks to
several coexisting intermediate representations. It is a very recent framework designed
to address the challenges of modern compiler infrastructure, able to target heteroge-
neous computing systems where multiple programming languages, hardware targets,
and optimization passes need to be coordinated efficiently.

Heterogeneous Code Generation for a Cardiac Simulation Application

Cardiac simulation refers to the computational modeling of the human heart’s struc-
ture and its function. It involves creating mathematical ordinary differential equations
(ODEs) representing the flow of Iion within the channels, which electrical activity
drives the heartbeat (electrophysiology), and the physical behavior of heart tissues
(mechanics). These simulations are mainly used as medical aid in diagnosing heart
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conditions by providing insights into abnormal heart rhythms (arrhythmias), ischemia
(reduced blood flow), and other cardiac disorders. The state-of-the-art cardiac sim-
ulators can simulate only a portion of the heart or simulate it roughly. Due to the
advancements in the computer’s computing power and the evolution of more powerful
supercomputers, the research in cardiac technology will soon reach the precise simu-
lation of the entire human heart. The heart is composed of approximately 2 billion
muscular cells and simulating the entire heart involves processing those 2 billion cells.
Even with the most powerful supercomputers, the simulation on 2 billion cells will
be challenging considering the complex mathematical equations and also depend on
how effectively the simulation code is optimized on a heterogeneous architecture. In
Chapter 2, we address the limitations in the state-of-the-art cardiac simulator’s code
generation and optimization process. And in Chapter 3, we provide information about
dialects and optimization passes in MLIR.

In Chapter 4, we introduce an optimized code compilation/generation technique
with the help of MLIR to emit vectorized CPU and GPU code for cardiac simula-
tion applications to target different architectures in supercomputers. We implemented
our techniques on the openCARP [9] open-source cardiac simulator and used 48 dif-
ferent computational (ionic) models available in openCARP to test our implementa-
tion. Those 48 computational models are different combinations of ODE equations
and are widely used in cardiac research. We evaluated their performance using two
large-scale test beds: (i) Grid’5000 (https://www.grid5000.fr) and (ii) PlaFRIM
(https://plafrim.fr). Both test beds contain the various architectures to execute
the generated heterogeneous code. In Chapter 4 Section 4.2, the performance results of
48 models are reported for CPU vectorized code (SSE, AVX, AVX-512) and GPU code
(Nvidia and AMD). Our execution results show that helping the compiler to generate
an optimized code results in effective usage of multi-cores and heterogeneous architec-
ture available in those large-scale machines. We also captured the energy consumption
and explained how efficient our techniques were in reducing the power consumption.
We published our techniques in two conferences [10] and [11].

This work presented in Chapter 4, is a collaborative work with a research engineer
(initially started with Tiago Trevisan Jost and succeeded by Raphaël Colin). Also, this
work led to a collaboration with the STORM research team at Inria Bordeaux where
our compilation flow is integrated with StarPU [12], a task-based run-time system, to
distribute the execution on the target architecture at run-time [13].

Improvements to Polyhedral Loop Optimization Techniques

With the promising improvements in performance of the cardiac simulation application,
we generalized our techniques in polyhedral loop optimizations. Polyhedral optimiza-
tion techniques are used to transform programs with regular loop nests like matrix
operations, stencil computation, and image processing applications. They first start
with representing the loop nest as polyhedra in a geometrical space and then perform a
dependency analysis between statements. They mostly help to perform three loop op-
timizations: tiling, loop parallelism, and vectorization. Tiling is done by re-structuring
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the loops and aim to improve data locality. The loops are annotated with parallel and
vector directives for loop parallelism and vectorization, respectively.

There are many different types of polyhedral compilers available like general-purpose
source-to-source compilers, built-in compilers, application-specific, and target-specific
compilers. In Chapter 5, we first made a detailed survey on the available general-
purpose polyhedral compilers using our large-scale test beds to find out their advan-
tages and limitations. We used the widely recognized PolyBench/C [14] - a set of
thirty numerical benchmarks targeting various domain applications to conduct a de-
tailed study on the polyhedral compilers. The analysis using hardware performance
counters provided insights and scope for further improvements in polyhedral compilers
particularly in enhancing vector optimization and GPU code generation.

In Chapter 6, we address a couple of limitations in the state-of-the-art polyhedral
compilers: (i) the vector annotations using directives are merely a recommendation to
the compilers and are ignored in a few cases, and (ii) there is no unified approach to
generate a heterogeneous code. We relied on Polygeist [15] to generalize our earlier
introduced techniques as a solution to the two above-mentioned problems. We choose
Polygeist [15], the reason being an MLIR/LLVM based framework to lower C/C++ code
to Polyhedral MLIR code and generalizing our techniques using Polygeist will require
reduced effort as the required environment is already established. We modified the
code generation flow of Polygeist to emit OpenMP SIMD MLIR loops for vector an-
notated loops. Our experimental results do not show any performance improvements
on the PolyBench/C programs, because of limited OpenMP SIMD support by MLIR.
The MLIR framework is undergoing very active development phases to support vari-
ous compiler optimizations. So, in the very near future MLIR could provide complete
optimization support for OpenMP SIMD loops and we hope that our proposed tech-
nique improves vectorization. We left the implementation of GPU code generation as
future work. The study on polyhedral compilers is published in ACM TACO [16] and
the Polygeist SIMD loop generation technique is accepted for publication at a PhD
symposium [17].

This thesis outlines the advances in the computing power of supercomputers, limita-
tions in code optimization techniques targeting those supercomputers, and a solution to
overcome those limitations particularly enhancing vectorization and GPU code genera-
tion. Our goal is to show how optimizing code in very large applications can effectively
use the massive resources in supercomputers for performance improvements of appli-
cations that have an impact on human real life. The remainder of this thesis exposes
how we proceeded.

The thesis was funded by the European High-Performance Computing Joint Under-
taking EuroHPC under grant agreement No 955495 (MICROCARD), co-funded by the
Horizon 2020 programme of the European Union (EU), and France, Italy, Germany,
Austria, Norway, and Switzerland (https://microcard.eu).
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Chapter 2

Cardiac Simulation

In this chapter we discuss about the basics of cardiac electrophysiology simulation, the
ionic models that drive the cardiac simulation, the available state-of-the-art cardiac
simulators, the code generation process from ionic models, and its limitations.

2.1 Cardiac Electrophysiology

One common way of monitoring the cardiac electrical activity is electrocardiography
which produces an electrocardiogram (ECG). Figure 2.11 shows three different re-
sponses of the human heart by ECG in which arrhythmia and ischemia are the ab-
normal behaviors. Arrhythmia is a state where the heartbeat is irregular. It can be a
fast or slow or inconsistent heartbeat but occurs mainly because the heart’s electrical
system does not respond properly to the input electrical signals. Ischemia refers to
heart weakening due to a reduced flow of blood into the heart thereby damaging the
heart tissues. Coronary artery diseases are one of the main causes of ischemia.

The heart’s electrical activity is defined by the current that flows into the cardiac
tissue wrapping the heart. Figure 2.2 shows a microscopic view of real cardiac tissue.
The left side of the image is a healthy tissue where the muscle fibers are in purple
color and are separated by white sheets. Whereas the right side of the image is a
damaged tissue and we can see heavy penetration of fatty tissue between the muscle
fibers. These fatty tissues prevent electrical interconnectivity and weaken the electrical
functionality of the human heart. These types of damaged tissues can lead to heart
beat abnormalities such as arrhythmia.

Electrically active cells generate electrical signals named action potentials that are
found in nerves and muscles mainly to communicate and synchronize cellular functions
within them. The difference in ion concentration between the inside and outside of these
cells generates brief changes in electrical potential across the cell membranes: ions cross
the membrane through ion channels. The ion concentrations are slightly impacted if

1Image taken from https://istockphoto.com
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there are a reasonable number of action potentials. There are transient openings in ion
channels which are controlled by molecular mechanisms based on the transmembrane
voltage. Thus, the transient openings and the conductivity in certain ions inside the
channel can be represented using non-linear first-order differential equations.

Figure 2.1: Different heart responses measured using ECG

The objective of cardiac simulation is to model and reproduce the observed phenom-
ena, and then extrapolate behaviors in different scenarios. In reality, cardiac simulation
resorts to model the current flows traversing the cardiac tissue, which amounts to com-
pute the current intensity of ions and voltage that make the ions traverse membranes
to flow from one cardiac cell to another. Figure 2.32 shows the different scales of the
cardiac systems namely ion channel, membrane, tissue, organ, and organism.

About 2 billion muscle cells together constitute the human heart thus forming a
network of electrically interconnected fibers.

2.2 Cardiac Simulation

In many scientific fields, numerical simulation is based on mathematical modeling of
the physical behavior of the matter of interest. For instance, biologists want to model
cells or protein interactions, physicists are interested in the behavior of particles not
only governed by the Newtonian laws, but also in quantum physics, and mechanical
engineers are concerned with mechanical structures such as bridges. One possibility
for the mathematical modeling of such systems may use some abstract description
language, typically a domain-specific language (DSL), which provides the necessary
instrument to describe the computations.

2Image taken from https://microcard.eu
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Figure 2.2: Left picture is the microscopic view of cardiac tissues. The muscle fibers
are in purple color that are separated by collagen sheets (white). Damage to cardiac
tissues causes collagen growth and results in connectivity loss. Image is from Dr. D.
Benoist, IHU Liryc. Right picture shows a cardiac tissue heavily penetrated by fatty
tissues (white). This type of tissue damage can lead to arrhythmia. Image is from Dr.
M. Hoogendijik, AMC, Amsterdam.

Figure 2.3: Different scales of cardiac system

2.3 Ionic Models and their Description

The modeling of the ionic flows in the cardiac tissue amounts to describe the evolution of
the two physical quantities: the current Iion and the voltage Vm over the cell membrane
for a time period. This description is called an ionic model.

The transmembrane voltage is defined as Vm = ϕi−ϕe where (i) ϕi is the intracellular
potential, and (ii) ϕe is the extracellular potential. The sum of individual currents from
the ion channel constitutes the Ionic current (Iion). Hodgkin and Huxley [18] proposed
a general form for action potential and described the above process as:

Cm∂tVm + Iion(Vm, y) = 0
∂ty = F(Vm, y)

(2.1)
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Figure 2.4: A sample image of cardiac tissue from microcard.eu project. A cardiac
tissue is divided into cells and connected electrically with gap junctions (jagged lines).

where F is a non-linear vector-valued function, together Iion and F constitutes a mem-
brane (Ionic) model; y is the state vector which includes the gate information for each
current and the ion concentrations. These systems of equations F can be very large and
computationally expensive to evaluate, and it has to be computed for every element in
the simulation and for thousands of time steps. Figure 2.4 shows cardiac muscle cells
that are electrically inter-linked through gap junctions.

Central to the models are the ODEs, used to compute the evolution of Iion. We
describe hereafter the most commonly used methods to compute those ODEs. Over
time, research in cardiac simulation has proposed more and more refined models, which
imply the use of more and more ODEs in the models for sake of more accurate modeling,
while leading to an increasing computational complexity.

2.3.1 Integration Methods (ODEs)

An important aspect of an ordinary differential equation lies in the selection of the
appropriate method for the temporal discretization of an approximate solution. Here
we list some of the commonly used methods in an ionic model [18]. In the below
equations, h - is a step value; function f() - is to compute the slope; t - is time;

• Forward euler (fe) [19] is a fast and explicit first-order method for solving ODEs.
It is usually the default method used by simulators when none is specified by the
user.
One step of the Euler method is:

yn+1 = yn + hf(tn, yn)

• Runge-Kutta with 2 steps (rk2) [20] is an explicit second-order method. It pro-
vides better accuracy than fe, with twice as many computations (two calls to the
f function).

yn+1 = yn + hf(tn + 1
2h, yn + 1

2f(tn, yn))

• Runge-Kutta with 4 steps (rk4) [20] is an explicit fourth-order method that pro-

– 12 –



Cardiac Simulation

vides more accuracy than rk2 with more than twice computations,

yn+1 = yn + 1
6hf(k1 + 2k2 + 2k3 + k4)

where
k1 = f(tn, yn), k2 = f(tn + h

2 , yn + h
k1

2 )

k3 = f(tn + h

2 , yn + h
k2

2 ), k4 = f(tn + h, yn + hk3)

• Rush-Larsen [21] is one of the most popular first-order methods for discretizing
ODEs in dynamic models of cardiac electrophysiology [22]. Easy to implement
and it is the preferred method for simulating gates, which represent the movement
of proteins forming the ion channel in response to the membrane potential. It
uses first-order.

• Sundnes method [23] is an extension of the Rush-Larsen in a second-order scheme,
which is proven to be more efficient than its predecessor over stiff problems. This
method uses second-order of RL.

• Markov_be is a backward method inspired by Euler. It uses an implicit first-order
Runge-Kutta method, where models require values to be in between 0 and 1. A
refinement process is used to keep values as precise as possible, so this method is
used for models where accuracy is paramount.

2.3.2 DSL for Ionic Models

The widespread practice in this field is for bio-medical experts to describe their ionic
model in a domain-specific language (DSL). The use of a DSL brings the obvious
advantage to let experts concentrate on the modelling itself, relieving them from the
programming details they would have to take care of if they used a general-purpose
programming language. There are several DSL introduced by the cardiac research
community. We can cite CellML [24], EasyML [25], MMT, and SBML [26]. Note that
translators are available to translate from a DSL representation to another, like for
example from EasyML to CellML (and vice-versa). Let us take EasyML DSL as a
reference to outline its pre-eminent characteristics. EasyML:

1. uses an SSA (static single assignment) [27] representation, so that all variables
are defined as mathematical equalities in an arbitrary order;

2. uses specific variables prefixes/suffixes (such as _init, diff_, etc.) to indicate
the operational semantics of the variable using ODE;

3. offer calls to math library functions;

4. uses markup statements to specify various variable properties, such as: which
method to use for integrating differential equations (.method(m)), whether to
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1 V; . external (Vm); . nodal (); // external variables
2 Iion; . external (); . nodal (); // external variables
3
4 // initial values for ODE variables
5 V_init = -60.0;
6 m_init = 0.05;
7 h_init = 0.6;
8 n_init = 0.325;
9

10 E_R = -60.0;
11
12 GNa = 120.0; . param (); // parameters
13 E_Na = (E_R+ 115.0 );
14 INa = GNa*m*m*m*h*(V-E_Na);
15 alpha_m = ( 0.1 *(V+ 25.0 ))/( exp (( 0.1 *(V+ 25.0 )))- 1.0 );
16 beta_m = ( 4.0 *exp(V/ 18.0 ));
17 dm_dt = (( alpha_m *( 1.0 -m)) -( beta_m *m));
18 alpha_h = ( 0.07 *exp(V/ 20.0 ));
19 beta_h = 1.0 /( exp (( 0.1 *(V+ 30.0 )))+ 1.0 );
20 dh_dt = (( alpha_h *( 1.0 -h)) -( beta_h *h));
21
22 GK = 36.0; . param (); // parameters
23 E_K = (E_R - 12.0 );
24 alpha_n = ( 0.01 *(V+ 10.0 ))/( exp (( 0.1 *(V+ 10.0 )))- 1.0 );
25 beta_n = ( 0.125 *exp(V/ 80.0 ));
26 dn_dt = (( alpha_n *( 1.0 -n)) -( beta_n *n));
27 IK = (GK*n*n*n*n*(V-E_K));
28
29 g_L = 0.3; . param (); // parameters
30 E_L = (E_R+ 10.613 );
31 IL = (g_L *(V-E_L));
32 dV_dt = -Iion;
33
34 Iion = (INa+IK+IL); // Updates to ion concentration

Listing 2.1: An ionic model proposed by Hodgkin and Huxley written in EasyML

pre-compute a lookup table of predefined values over a given interval (.lookup),
which variables to output (.trace), etc.;

5. it is not Turing-complete since it does not let the programmer express loops, con-
trol flow, or sequence of elements – but there can be tests expressed as restricted
if/else statements or as C-like ternary operators. All the control flow is fixed
by the simulation framework.

Let us illustrate EasyML further with an example. Listing 2.1 shows an ionic
model proposed by Hodgkin and Huxley [18]. If we look closer to the action items of
this model, we can see:

1. Lines 1 and 2 defines external variables Vm and Iion. At the beginning of the
simulation, the Vm value is set to represent the initial voltage, that becomes
afterward the difference between the intra and extracellular potential difference
(ion changes). Similarly, Iion gets updated with respect to the changes of Vm.

2. Lines 5 to 8 set the initial values for the four variables that will be used by ODE
computation.

3. Lines 12, 22, and 29 define controlable parameters (they can be modified at run-
time). For example, the parameter GNa is local for solving equations from lines
13 to 20. Similarly, GK is local to lines 23-27 and g_L is local to lines 30-31.
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4. Lines 17, 20, 26, and 32 describe the ODE computation (d*_dt) using Rush
Larsen method to finally compute INa, IK, and IL. We can see that the external
variable V (Vm) is used at many places for evaluating intermediate variables.

5. Line 34 updates Iion with the sum of its components INa + IK + IL.

2.4 Code Generation from Ionic Models

After having described a model using a DSL, the next stage consists in the genera-
tion of code that computes the model. This task is realized by a module called code
generator. We can distinguish two phases for this task: the code generator first acts
as a front-end to parse the ionic model description written in the DSL to produce the
operational semantics of the model’s specifics under the form of an Abstract Syntax
Tree (AST). It then traverses the AST nodes that are translated into code in a given
programming language. This generated code is inserted into a skeleton template code
that implements the simulation mechanics common to all models. Examples of such
generators can be found in Myokit [28] and openCARP [9]. Myokit accepts ionic models
written using the MMT DSL and has a Python-based tool that can export models into
multiple formats and programming models, such as C, OpenCL, CUDA, and Matlab.
openCARP (the software we will be using in this work) takes as input ionic models
written in EasyML and generates C and C++ source code. The whole source code is
then compiled to produce the complete cardiac simulator.

Figure 2.5 shows the overview of a cardiac simulator. It is composed of the Ionic
Computation and Electric Potential (Vm) Computation (solver) phases. From an initial
voltage value, representing a small impulse of external voltage, the first ionic compu-
tation phase computes Iion. Subsequently, this value is used in the electrical poten-
tial computation which solves for Vm, the electric potential of each cell membrane.
Then, with the newly computed Vm, the gating/intermediate variables and ion are re-
computed. This process of computing Vm and Iion (current) is conducted in a cyclic
fashion for a given period of time for each cell.

Notice that the electrical potential computation phase which solves a system of
equations can rely on any general-purpose solver. There are various linear-solver soft-
ware/frameworks available. In particular PETSc [29] and Ginkgo [30] are used in the
openCARP cardiac simulation software. In our work, this phase is simply an invocation
of a solver as an external library call. Therefore, it is seen as a black box over which we
have no control and will be out of the scope of the cardiac simulator improvement. Our
work hence focuses on the ionic computation part, which we detail in the upcoming
section.

2.4.1 Ionic Computation Phase in OpenCARP

Let us now instantiate on the openCARP software, the principal elements that build
up an ionic model, from its description to the executable simulation. The model
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Figure 2.5: Overview of an cardiac simulator with two phases: (i) Ionic compute phase
and (ii) Electric potential (Vm) computation phase.
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Figure 2.6: openCARP simulator code generation flow

description is written in EasyML. It is then parsed by the code generator, implemented
as a python program called limpet_fe, which produces an AST using the ast python
module. From the AST, the code generator emits C/C++ code with (i) functions to
initialize parameters, lookup tables, and state variables, and (ii) a compute function
that scans all cells in a for loop, to calculate the output Iion current and update the
state variables of each cell. Finally, the generated code is compiled using a standard
C/C++ compiler and the object file is used for simulation. Figure 2.6 sketches these
steps. We call this original compilation flow of openCARP the baseline.

Listing 2.2 shows the C code emitted by the ionic computation phase of openCARP
for the Hodgkin and Huxley ionic model in listing 2.1. The analysis of the generated
code is as follows:

1. The constants are defined and declared in lines from 2 to 9.

2. Initialization of Vm, Iion, and local parameters are done in function initialize().

3. The Iion computation happens in function compute_ionic_ODE(). Lines 23 to
37 do the computation for solving Rush Larsen ODE. Lines 40 to 42 updates
the cell’s state variables. In line 45, p→GK is the usage of the parameter.
The external variables: V is loaded from V _ext (line 20) which holds the value
computed by the solver ; Iion - line 49 stores the ionic flow calculated with the
Rush Larsen method to an external variable Iion_ext. Later, the solver uses this
value to re-compute the electric potential. During the simulation, openCARP
has an outer loop that iterates over a fixed time stamp to call the function
compute_ionic_ODE() followed by a call to the linear-system solver.
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2.4.2 Compute-intensive Kernels

A critical part of the generated code is the one related to the computation of the ODEs
that contain many complex mathematical operations on real numbers, thus making it
a compute intensive kernel. The code generator simply translates the expressions in
EasyML to the C code shown in Listing 2.2, lines 20 to 49. For example, we can see
that exp and expm1 are heavily used. In our investigation of the 48 different ionic
models available in openCARP, we found that the following math operations were
frequently used: pow, log, tanh, cube, fabs, exp, sqrt, and expm1. These kinds of
kernels consume a major part of the execution time apart the solver and optimizing
them is expected to largely contribute to the performance improvement.

Moreover, the above code is the ODE calculation for one cell membrane. As told
previously, the heart is composed of 2 billion (approx.) such cells and if the target is to
model individual cells, using model elements that are much smaller than a cell, then we
need to do the ODE calculation for 2 billion times. Even the very basic methodology
of simulating a part of the organ would require processing at least 10 million cells. So,
the minimum number of times the ODEs are calculated is 10 millions times the number
of timesteps for the whole simulation. This confirms 99.9% of ionic computation time
would be spent in this function.

2.5 Critical Parts of Cardiac Simulators

The cardiac simulator generates code from ionic models with a standard structure. It
contains a loop over time steps and for each time step a compute function is called.
This compute function iterates over all the cells and does ion calculation. As each
cell computation is independent, the iterations over cells can be parallel. The loop is
made parallel by the code generator by inserting the OpenMP directives (for example
#pragma omp parallel for, shown in line 19 of Listing 2.2). Here we propose two
advancements to the code generators of cardiac simulators: (i) vectorization, and (ii)
GPU code generation.

Vectorization. Both openCARP and Myokit generate parallel loops but they de-
pend on the standard compiler for vectorization of the parallel loop. It is not always
the case that compilers auto-vectorize a parallel loop. They have to get positive results
on vector-cost model analysis and the loop should not contain any complex statements
that would result in ambiguity to apply vectorization. We did an initial investigation
on 48 different ionic models available in openCARP and found that the compiler can-
not vectorize the parallel loop in many cases as the loop contains complex statements
because of ODEs. Here is the list of a few warnings shown by the compilers (gcc and
clang) while trying for auto-vectorization: (i) pointer/array deference, (ii) irregular
control flow, (iii) function/library calls, (iv) switch statements, and (v) couldn’t deter-
mine the loop iterations. Even annotating the loop with vector directives doesn’t solve
the problem. Listing 2.3 shows the warning by the clang compiler when trying to auto-
vectorize the code emitted by openCARP for the Hodgkin and Huxley model. Line 3
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1 // Define all constants
2 #define E_R ( double )( -60.0)
3 #define V_init ( double )( -60.0)
4 #define h_init ( double ) (0.6)
5 #define m_init ( double ) (0.05)
6 #define n_init ( double ) (0.325)
7 #define E_K ( double )((E_R -(12.0) ))
8 #define E_L ( double )(( E_R +10.613) )
9 #define E_Na ( double )(( E_R +115.0) )

10
11 void initialize (...)
12 {
13 // This function is to initialize Vm , Iion , and local parameters .
14 }
15
16 void compute_ionic_ODE (...)
17 {
18 #pragma omp parallel for schedule ( static )
19 for (int cell_id = start ; cell_id <end; cell_id ++) {
20 double V = V_ext [ cell_id ];
21 ...
22 //C code for Rush Larsen Update
23 double alp_h = (0.07*( exp ((V /20.0) )));
24 double alp_m = ((0.1*( V +25.0) )/(( exp ((0.1*( V +25.0) ))) -(1.0)));
25 double alp_n = ((0.01*( V +10.0) )/(( exp ((0.1*( V +10.0) ))) -(1.0)));
26 double beta_h = (1.0/(( exp ((0.1*( V +30.0) ))) +1.0) );
27 double beta_m = (4.0*( exp ((V /18.0) )));
28 double beta_n = (0.125*( exp ((V /80.0) )));
29 double h_rush_larsen_A = ((( - alp_h )/( alp_h + beta_h ))*( expm1 ((( - dt)*( alp_h + beta_h ))

)));
30 double h_rush_larsen_B = (exp ((( - dt)*( alp_h + beta_h ))));
31 double m_rush_larsen_A = ((( - alp_m )/( alp_m + beta_m ))*( expm1 ((( - dt)*( alp_m + beta_m ))

)));
32 double m_rush_larsen_B = (exp ((( - dt)*( alp_m + beta_m ))));
33 double n_rush_larsen_A = ((( - alp_n )/( alp_n + beta_n ))*( expm1 ((( - dt)*( alp_n + beta_n ))

)));
34 double n_rush_larsen_B = (exp ((( - dt)*( alp_n + beta_n ))));
35 double h_new = h_rush_larsen_A + h_rush_larsen_B *sv ->h;
36 double m_new = m_rush_larsen_A + m_rush_larsen_B *sv ->m;
37 double n_new = n_rush_larsen_A + n_rush_larsen_B *sv ->n;
38
39 // Update to state variables .
40 sv ->h = h_new ;
41 sv ->m = m_new ;
42 sv ->n = n_new ;
43
44 // Update Iion
45 double IK = (((((p->GK*sv ->n)*sv ->n)*sv ->n)*sv ->n)*(V -( E_K)));
46 double IL = (p->g_L *(V -( E_L)));
47 double INa = (((((p->GNa*sv ->m)*sv ->m)*sv ->m)*sv ->h)*(V -( E_Na)));
48 Iion = (( INa+IK)+IL);
49 Iion_ext [ cell_id ] = Iion;
50 }
51 }
52
53 void output_trace (...)
54 {
55 // Emit output or debugging trace
56 }

Listing 2.2: An equivalent C code emitted by a cardiac simulator for Hodgkin and
Huxley ionic model shown in Listing 2.1.
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1 [ 20%] Building CXX object physics / limpet / CMakeFiles / limpet .dir/src/ imps_src /HH.cc.
o

2
3 / openCAR / physics / limpet / CMakeFiles / limpet .dir/src/ imps_src /HH.cc.o :393:42: remark :

loop not vectorized :call instruction cannot be vectorized [-Rpass - analysis =loop -
vectorize ]

4 Ca_i_row [ KsCa_idx ] = (1.0+(0.6/(1.0+( pow ((3.8e -5/ Ca_i) ,1.4)))));
5
6 / openCAR / physics / limpet / CMakeFiles / limpet .dir/src/ imps_src /HH.cc.o :386:3: remark :

loop not vectorized : could not determine number of loop iterations [-Rpass -
analysis =loop - vectorize ]

7 for (int __i=Ca_i_tab -> mn_ind ; __i <= Ca_i_tab -> mx_ind ; __i ++) {
8
9 / openCAR / physics / limpet / CMakeFiles / limpet .dir/src/ imps_src /HH.cc.o :785:5: remark :

loop not vectorized :loop contains a switch statement [-Rpass - analysis =loop -
vectorize ]

10 LUT_interpRow (&IF -> tables [ Ca_i_TAB ], sv ->Ca_i , __i , Ca_i_row );
11
12 / openCAR / physics / limpet / CMakeFiles / limpet .dir/src/ imps_src /HH.cc.o :778:22: remark :

loop not vectorized : value that could not be identified as reduction is used
outside the loop[-Rpass - analysis =loop - vectorize ]

13 GlobalData_t v = v_ext [__i ];

Listing 2.3: Warning by clang compiler while trying to auto-vectorize the code
generated by openCARP for Hodgkin and Huxley model.

shows it cannot vectorize the statement of line 4 as it contains a math library call (kind
of a function call) to perform power operation. It cannot vectorize the statement of
line 7 as it cannot determine the number of loop iterations because the loop-induction
variable is pointer deference. Though the clang can inline function in line 10, it cannot
vectorize it because of the switch statement (irregular control flow) within the function.
As it is not able to identify the reduction variable it doesn’t vectorize the statement in
line 13.

GPU code generation. Only Myokit can generate code targeting different computer
architectures. They emit C, openCL, and CUDA kernels. Also, they have translators
that would help to convert an ionic model in one DSL representation to another DSL
representation. Though Myokit is the only simulator to emit CUDA code targeting
GPU architecture its purpose is different. In recent advancements, there are many
GPU architectures but Myokit targets only CUDA. OpenCARP only has a CPU code
generator, not the GPU or other architectures.

With the rapid advancements in computing technology and access to exascale su-
percomputers, the cardiac community urges the importance of advancing from part of
organ simulation to whole organ simulation. OpenCARP is one such initiative for the
simulation of the entire human heart. But, openCARP neither has a very optimized
code generation process nor a heterogeneous code targeting different architectures.

Chapter 4 addresses all these limitations and introduces an optimized heterogeneous
code generation and compilation flow targeting the different hardware architectures
in exascale supercomputers. We guided standard compilers with vectorization hints,
packed 2, 4, or 8 cells together to exploit the SIMD instructions, and relied on the
vector instruction sets (SEE, AVX2, and AVX-512 respectively) available in those
supercomputers. Unlike the other code generators, we followed a unified approach
to emit one abstraction of code for CPU/GPU, and with the help of MLIR (further
described in Chapter 3) the code is lowered to target either CPU vectorized machine,
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Nvidia GPU machine, or AMD GPU machine, respectively.

There are many techniques available to generate optimized and heterogeneous code
(like compiler intrinsics), we chose the recent MLIR [7] compiler technology because of
its flexibility to represent a domain application at higher levels of abstraction. With
lowering and translation passes available in MLIR, the high-level abstraction can be
lowered to any specific architecture. Compiler intrinsics are low-level functions or
operations provided by a compiler to directly access specific hardware features or low-
level operations. They are specific to a particular compiler and target architecture,
and also each time different intrinsics have to be generated concerning the target. In
contrast, MLIR requires generating one high-level representation with which the code
can be lowered to either CPU, Vector CPU, openMP CPU, Nvidia GPU, AMD GPU,
or OpenCL code. In the near future, if MLIR supports any other architecture, with
minimal effort and with the same abstraction the new architecture can be targeted.
It is very convenient and easy for the developers to write/generate code at high-level
IR with less knowledge of target architecture, rather than directly emitting low-level
IR using intrinsics. With built-in support of python bindings, MLIR further eases the
code generation process for users.

Because of many advantages over other techniques, MLIR emerges to be the best
choice for heterogeneous code generation and is proven to correct on looking at the per-
formance improvements by these techniques on cardiac simulation applications (shown
in Chapter 4 Section 4.2 Experiments and Results). Chapter 3 introduces MLIR with
its flexibility in representing a problem irrespective of any domain, optimization passes,
and novelty.
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Multi-Level Intermediate
Representation

MLIR (Multi-Level Intermediate Representation) [7] is a compiler infrastructure devel-
oped by the LLVM [8] framework. MLIR offers a means to express code operations and
types through an extensible set of different common intermediate representations (IR),
called dialects, each dedicated to a specific concern, at different levels of abstraction.
Those dialects can be used by various other compilers and tools within the compiler
stack. MLIR is designed to be flexible and extensible, allowing developers to define
custom dialects and optimizations tailored to their specific needs. The different abstrac-
tion levels allow MLIR to accommodate a wide range of languages, hardware targets,
and optimization techniques. MLIR has gained attention in the compiler community
for its potential to simplify the development of compilers and optimization passes, as
well as for its ability to facilitate the integration of different compiler components. It is
used in various projects, including TensorFlow, Swift for TensorFlow, and LLVM. De-
velopers can build on top of MLIR to create compilers tailored to their needs without
having to develop a compiler from scratch, thanks to the LLVM compiler back-end. For
example, MLIR can be used to create compilers for domain-specific languages (DSLs),
where custom dialects can be defined to represent the semantics of the DSL efficiently.

MLIR has also driven the idea of using it as a building block for new IRs in order to
permit interleaving levels of abstractions and further optimization opportunities. Gysi
et al. [31] propose a hierarchy of dialects (IRs) for GPU-based stencil computations
that is effective in weather and climate applications. A multi-level rewriting flow is
proposed to progressively lower abstractions level-by-level, applying optimizations at
the most appropriate abstraction. The approach has shown significant speedup in
comparison to state-of-the-art solutions for climate and weather simulation, proving
that extra levels of abstractions can help to devise new optimizations. Sommer et
al. [32] propose a dialect, and a lowering process to optimize sum-product network
inference in both CPUs and GPUs. DistIR [33] is an IR for distributed computation
that employs MLIR to optimize neural networks. Recently, many works have proposed
to extend MLIR with new dialects to analyze, optimize and accelerate heterogeneous
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applications in a variety of domains [34, 35, 36]. We make use of MLIR as an enabling
tool for our code generator and compiler transformations, similar to some previous
works [37, 38, 39]: Bondhugula [38], and Katel et al. [37] present evaluations of the
modularity of MLIR with sequences of transformations and customizable passes to
optimize matrix multiplications. Vasilache et al. [39] builds composable abstractions
for leveraging tensor algebra computation. Polygeist [15] acts as a C/C++ frontend to
MLIR and generates affine dialect code to better utilize the polyhedral optimization
and code generation available in MLIR.

3.1 MLIR Dialects and Passes

In this section, we discuss dialects and optimization passes that distinguish MLIR from
other compiler frameworks. They are as follows:

3.1.1 Dialects

MLIR supports various types of dialects, each serving a purpose or representing differ-
ent aspects of programming languages, hardware architectures, or optimization passes.
Let us classify the MLIR dialects into four categories:

1. High-level Dialects: These dialects provide a high-level representation for ex-
pressing the semantics of programming languages or domain-specific constructs
in a concise and structured manner. These dialects facilitate the representation
and optimization of programs written in high-level languages within the MLIR
framework. They include constructs specific to these languages, such as data
types, control flow statements, and language-specific operations. A few high-
level dialects in MLIR are: the ml_program dialect contains operations and types
for machine learning frameworks such as TensorFlow, PyTorch, and JAX; The
tensor dialect is intended for the creation and manipulation of tensors targeting
AI and ML application domains; The linalg dialect aims at expressing linear
algebra operations and computations like matrix multiplication, convolution, and
tensor contractions.

2. Standard Dialects: MLIR comes up with a set of standard dialects that define
basic operations and types commonly used across other dialects. Such a standard
dialect serves as a foundation for building custom dialects and ensures interop-
erability between different parts of the compiler stack. They include primitive
operations like arithmetic operations, control flow constructs, and data types
such as integers and floats. Example standard dialects in MLIR are: arith - to
represent basic operations like add, subtract, multiply, and division; math - to
perform scientific operations like exponential, power, absolute value and others;
scf - to represent standard control flow structures like if-then, for loop, and while
loop.
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3. Specific Dialects: There are dialects which are created specifically for a particu-
lar framework but are widely used across many applications. For example, the
omp and mpi dialects are used to represent the constructs of OpenMP and MPI
frameworks, respectively. The vector dialect is to represent vector instructions
and related vector operations.

4. Backend Dialects: Backend dialects are used to represent the target hardware ar-
chitecture or instruction set architecture (ISA) for code generation. They include
operations and constructs specific to the target platform, enabling the transla-
tion of high-level IR into low-level machine code or intermediate representations
specific to the target. Among backend dialects there are: gpu, nvgpu, nvvm,
and rocdl dialects targeting different GPU architectures, or the x86vector,
arm_neon, and arm_sve dialects to target different vector instruction sets.

3.1.2 Lowering

Lowering a dialect in MLIR refers to the process of transforming operations and con-
structs from a higher-level dialect into a lower-level representation that is closer to
the target execution environment or hardware platform. MLIR has a wide range of
lowering passes to transform high-level operations from the source dialect into equiva-
lent or semantically similar operations in the target dialect. These passes may involve
pattern matching, rewriting rules, or translation routines to map high-level constructs
to lower-level representations.

An example of a high-level abstraction dialect is linalg which defines operations
on matrices, and comes with a set of optimizations that can take advantage of some
mathematical properties. For instance linalg offers a matrix multiplication operation,
whose arguments are two input matrices and one output matrix, expressed as either
memory areas or tensors. Below is an example with memory areas specified for fixed
sized 8x8 matrices of floats.

%r= linalg . matmul { %A, %B, %C }: memref <8 x8xf32 >, memref <8 x8xf32 >, memref <8 x8xf32 >

The way this matrix multiplication is implemented is deferred to a lowering process
implemented as an MLIR pass. Figure 3.1 illustrates the three available options to
lower linalg.matmul in a more concrete expression (the relevant passes’ names are
indicated on arrows).

These lowering passes have in common to generate loop nests to implement the
matrix multiplication, but the one to choose depends on the type of code transfor-
mation desired afterwards. It might me a lowering to: (a) affine.for to further
apply polyhedral-related optimizations on the loop nests; (b) affine.parallel to
evince parallel execution, that can later translate into the omp dialect for example; or
(c) scf.loop which is the standard way of representing control flows. Finally, the code
is lowered in the llvm dialect.
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linalg.matmul

affine.parallelaffine.for scf.for

-linalg-to-
affine-loops

-linalg-to-loops
-linalg-to-
parallel-loops

Figure 3.1: Lowering of linalg dialect.

3.1.3 Translation

The final phase is the translation of the llvm dialect MLIR code into LLVM IR. MLIR
has a translation pass that helps the user to achieve this transformation. Then, with
standard LLVM compilation the translated code is compiled into an object code.

3.1.4 Example

Let us illustrate the lowering and translation passes with an example shown in List-
ing 3.1. We show the MLIR representation at different abstraction levels and the
successive lowering.

1. Example. Listing 3.1 is a C program consisting of a two-level nested loop that
contains one arithmetic operation. A and B are two-dimensional arrays, with A
being updated with B along with a constant value.

2. MLIR representation. Listing 3.2 is the hand written MLIR representation for
the example C program, shown in listing 3.1. The two-level nested loops are
expressed using the affine dialect and the operations using the arith dialect.
Note that the loop could also have been represented using scf, but to apply
optimization with affine transformation the loops need to be in affine. For
example, we can extract polyhedral representation from these affine loops and
apply polyhedral-related optimizations.

3. Polyhedral optimization. Listing 3.3 is the polyhedral tiled affine loops. The
tile size is set to 32 and the loops are tiled accordingly.

4. Lowering. The nested affine (high-level abstraction) loops are lowered to scf
(mid-level abstraction) loops. Listing 3.4 shows the lowered MLIR with the help
of lowering passes on Listing 3.3.

5. Lowering. Listing 3.5 shows the further lowering of MLIR and all the statements
are represented in the llvm (low-level abstraction) dialect. The lowering has made
the loops be represented using basic blocks with branch statements denoting the
control flow. The arithmetic operations are represented using llvm arithmetic
operations.
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1 value = 4.0;
2 for (int i = 0; i < 416; i++) {
3 for (int j = 0; j < 416; j++) {
4 A[i][j] = B[j][i] + value ;
5 }
6 }

Listing 3.1: An example C program with loops and arithmetic operations.
1 affine .for %arg3 = 0 to 416 {
2 affine .for %arg4 = 0 to 416 {
3 %cst = arith . constant 4.000000 e+00 : f32
4 %0 = affine .load %arg2[ symbol (% arg4), symbol (% arg3)] : memref <? x416xf32 >
5 %1 = arith .addf %0, %cst : f32
6 affine . store %1, %arg0[ symbol (% arg3), symbol (% arg4)] : memref <? x416xf32 >
7 }
8 }

Listing 3.2: MLIR representation of example C program (Listing 3.1) using affine
and arith dialects.

6. Translation. Listing 3.6 is the final translated LLVM IR from Listing 3.5 with the
help of a MLIR translation pass. Then, the LLVM IR can be further optimized
with the help of LLVM optimization passes and compiled into an object file.

Overall, MLIR’s unified representation (dialects), modular architecture, and opti-
mization infrastructure make it well-suited for developing efficient and scalable compiler
pipelines for a wide range of programming languages and target platforms.

3.2 MLIR Representation with its Compilation Flow

In Chapter 2 we discussed the compute intensive kernels as they consume most of the
computation time and optimizing them results in high performance gains. So in our
approach, the main focus is on optimizing compute intensive kernels using MLIR and
let the rest of the code be in C/C++.

Two issues have to be addressed in order to generate MLIR code for the compute
intensive kernels. The first one is to extract the code of those kernels from the rest
of the application. Such extraction is carried out on the AST. An AST is constructed

1 # map = affine_ map <(d0) -> (d0 * 32) >
2 # map1 = affine_ map <(d0) -> (d0 * 32 + 32) >
3 affine .for %arg3 = 0 to 13 {
4 affine .for %arg4 = 0 to 13 {
5 affine .for %arg5 = #map (% arg3) to #map 1(% arg3) {
6 affine .for %arg6 = #map (% arg4) to #map 1(% arg4) {
7 %cst = arith . constant 4.000000 e+00 : f32
8 %0 = affine .load %arg2[ symbol (% arg6), symbol (% arg5)] : memref <? x416xf32 >
9 %1 = arith .addf %0, %cst : f32

10 affine . store %1, %arg0[ symbol (% arg5), symbol (% arg6)] : memref <? x416xf32 >
11 }
12 }
13 }
14 }

Listing 3.3: The affine loops in Listing 3.2 are tiled with the help of polyhedral
representation.
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1 %c0 = arith . constant 0 : index
2 %c13 = arith . constant 13 : index
3 %c1 = arith . constant 1 : index
4 scf.for %arg3 = %c0 to %c13 step %c1 {
5 scf.for %arg4 = %c0 to %c13 step %c1 {
6 %c32 = arith . constant 32 : index
7 %0 = arith .muli %arg3 , %c32 : index
8 %1 = arith .muli %arg3 , %c32 : index
9 %2 = arith .addi %1, %c32 : index

10 scf.for %arg5 = %0 to %2 step %c1 {
11 %3 = arith .muli %arg4 , %c32 : index
12 %4 = arith .muli %arg4 , %c32 : index
13 %5 = arith .addi %4, %c32 : index
14 scf.for %arg6 = %3 to %5 step %c1 {
15 %cst = arith . constant 4.000000 e+00 : f32
16 %0 = memref .load %arg2 [% arg6 , %arg5] : memref <? x416xf32 >
17 %1 = arith .addf %0, %cst : f32
18 memref . store %1, %arg0 [% arg5 , %arg6] : memref <? x416xf32 >
19 }
20 }
21 }
22 }

Listing 3.4: The affine dialect (high-level abstraction) from Listing 3.3 is lowered to
scf dialect (mid-level abstraction) using MLIR lowering pass.

1 %16 = llvm.mlir. constant (0 : index ) : i64
2 %17 = llvm.mlir. constant (13 : index ) : i64
3 %18 = llvm.mlir. constant (1 : index ) : i64
4 llvm.br ^bb1 (%16 : i64)
5 ^bb1 (%19: i64): // 2 preds : ^bb0 , ^ bb11
6 %20 = llvm.icmp "slt" %19 , %17 : i64
7 llvm. cond_br %20 , ^bb2 , ^bb12
8 ^bb2: // pred : ^bb1
9 llvm.br ^bb3 (%16 : i64)

10 ^bb3 (%24: i64): // 2 preds : ^bb2 , ^ bb10
11 %25 = llvm.icmp "slt" %24 , %17 : i64
12 llvm. cond_br %25 , ^bb4 , ^bb11
13 // some code skipped ...
14 %116 = llvm.mlir. constant (4.000000 e+00 : f32) : f32
15 %117 = llvm. extractvalue %15[1] : !llvm.struct <(ptr , ptr , i64 , array <2 x i64 >,

array <2 x i64 >) >
16 %118 = llvm.mlir. constant (416 : index ) : i64
17 %119 = llvm.mul %arg8 , %118 : i64
18 %120 = llvm.add %119 , %arg7 : i64
19 %121 = llvm. getelementptr %117[%120] : (! llvm.ptr , i64) -> !llvm.ptr , f32
20 %122 = llvm.load %121 : !llvm.ptr -> f32
21 %123 = llvm.fadd %122 , %116 : f32
22 %124 = llvm. extractvalue %7[1] : !llvm.struct <(ptr , ptr , i64 , array <2 x i64 >,

array <2 x i64 >) >
23 %125 = llvm.mlir. constant (416 : index ) : i64
24 %126 = llvm.mul %arg7 , %125 : i64
25 %127 = llvm.add %126 , %arg8 : i64
26 %128 = llvm. getelementptr %124[%127] : (! llvm.ptr , i64) -> !llvm.ptr , f32
27 llvm. store %123 , %128 : f32 , !llvm.ptr

Listing 3.5: The scf and arith dialects from Listing 3.4 is further lowered to llvm
dialect (last low-level abstraction) using MLIR lowering pass.
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1 36: ; preds = %77 , %21
2 %37 = phi i64 [ %78 , %77 ], [ 0, %21 ]
3 %38 = icmp slt i64 %37 , 13
4 br i1 %38 , label %39 , label %79
5 39: ; preds = %36
6 br label %40
7 40: ; preds = %75 , %39
8 %41 = phi i64 [ %76 , %75 ], [ 0, %39 ]
9 %42 = icmp slt i64 %41 , 13

10 br i1 %42 , label %43 , label %77
11 43: ; preds = %40
12 %44 = mul i64 %37 , 32
13 %45 = mul i64 %37 , 32
14 %46 = add i64 %45 , 32
15 br label %47
16 // some code skipped ...
17 %131 = extractvalue { ptr , ptr , i64 , [2 x i64], [2 x i64] } %30 , 1
18 %132 = mul i64 %8, 416
19 %133 = add i64 %132 , %7
20 %134 = getelementptr float , ptr %131 , i64 %133
21 %135 = load float , ptr %134 , align 4
22 %136 = fadd float %135 , 0.000000 e+00
23 %137 = extractvalue { ptr , ptr , i64 , [2 x i64], [2 x i64] } %23 , 1
24 %138 = mul i64 %7, 416
25 %139 = add i64 %138 , %8
26 %140 = getelementptr float , ptr %137 , i64 %139
27 store float %136 , ptr %140 , align 4

Listing 3.6: Finally the MLIR translation pass converts the llvm dialect in MLIR
representation to LLVM IR.

by a front-end, which might be the one built by a general purpose compiler, such as
Clang, or a specialized one when we use a DSL. In the former case, the identification
of the kernel is most often realized by the programmer who is responsible for marking
the code, for instance with directives. We will see in Chapter 6 that the marked
sections can be static control parts, marked with #pragma scop. In the latter case, the
program’s structure most often implies a same template for all programs, in which the
compute intensive kernels are always contained in some specific constructs. In our case
of the EasyML DSL, we know that the code generator (the frontend) always generates
a compute function that represents the compute intensive part of the model (see for
example the code of Listing 2.2 generated from Listing 2.1).

The second issue is to generate an equivalent MLIR code for the compute intensive
functions in a reasonably portable way. First, we must be able to map all compute
and control instructions from the AST to some equivalent instructions available in any
of the MLIR dialects. All along our work, we found that it was possible to establish
a one-to-one mapping between the AST-encoded instructions and MLIR instructions
available in the arith, math, and affine dialects.

Once this mapping established, we could output raw MLIR code (that is output
native MLIR instructions directly to a file). However, given the fast evolution of MLIR
that results in frequent changes in both syntax and structure of dialects, we take
advantage of the python bindings that come with MLIR. The MLIR python bindings1

provide a simpler and more portable means to generate MLIR code.

1More details about python bindings is available at https://mlir.llvm.org/docs/Bindings/
Python/
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Figure 3.2: Generalized compilation view of MLIR and C/C++ code

Thus, instead of generating raw MLIR, we generate a python program that in turn
will output the raw MLIR. For example, assume we have the AST corresponding to
the program presented in Listing 3.1. When reaching the AST node containing the
addition instruction inside the loop nest (line 3), we add to the python program the
method call dialects.arith.AddFOp(op1, op2) so that when executed it registers
an arithmetic floating-point addition to the current context. Eventually, the execution
of the python program generates for this line an equivalent arith.addf %0, %cst :
f32 MLIR instruction, where %0 is the array deference value (B[j][i]) and %cst is
the value. Both of type f32 and the instruction does floating-point addition.

The python bindings support different functions to map different types for an op-
eration. Likewise, we can generate MLIR representation for other C/C++ statements.
And, if the compute intensive code is a parallel loop with complex statements then
those statements can be represented directly using MLIR vector instructions and that
will force the compiler to vectorize compute instructions.

Compilation Flow. Figure 3.2 shows the generalized compilation view of MLIR and
C/C++ code using the LLVM compiler infrastructure. From the MLIR translation pass,
we have the final LLVM IR for the compute intensive kernels and with the help of
LLVM infrastructure we emit LLVM IR for the rest of the code that is in C/C++. Then,
we link both of them together into an optimized IR. The standard LLVM compiler
further compiles them to an object code. Finally, at the time of software execution the
optimized MLIR represented compute intensive code can be executed with a function
call from the C/C++ file. This MLIR representation and compilation technique can be
applied to any kernel irrespective of the application domain.

In this Chapter, we showed the advantages of MLIR dialects and their optimization
passes with an example. We also discussed the techniques to generate MLIR represen-
tation for a piece of kernels and a generalized view of compiling MLIR and C/C++ code
together to an object file. In the next Chapter, we will see how MLIR and the discussed
techniques get incorporated into a cardiac simulator for generating heterogeneous code.
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Heterogeneous Code Generation for
Cardiac Simulation Application

In this chapter, we apply the MLIR code generation techniques seen in the previous
chapter to the openCARP cardiac simulator. One of the challenges addressed here is
to enable code generation for two types of accelerators, namely vector units of CPUs,
and GPUs. First, in Section 4.1, we show how the techniques to generate MLIR
representation (discussed in Chapter 3) get incorporated into openCARP and also the
other required changes in openCARP to support the overall compilation flow. Then,
a detailed evaluation is reported in Section 4.2 using the 48 different ionic models
available in openCARP. We show improvements both in terms of performance and
energy efficiency, for (a) an Intel machine with an AVX-512 vector instruction set,
(b) an Nvidia GPU, and (c) an AMD GPU.

4.1 Overview of CPU Vectorized and GPU Code Compi-
lation Flow

In this section we detail our contribution that extends the initial openCARP code
generator. As explained in Section 2.4.1, the limpet_fe python script of openCARP
parses a model written in EasyML as an AST encoded with python data structures,
from which C/C++ code is generated. Our extension consists in extending limpet_fe
with an auxiliary script limpetMLIR, capable of substituting part of the code genera-
tion to produce MLIR code instead. From this MLIR code we can then choose to emit
vectorized CPU or GPU code.

Based on the principles discussed in section 3.2, especially the dedicated view of
the compilation process of Figure 3.2, we develop the global compilation flow depicted
in Figure 4.1, showing how our extension fits in the framework. Let us describe the
different phases as numbered in the figure:
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Figure 4.1: Overview of the code generation, from the EasyML model to an object
file. The dashed line box shows how limpetMLIR fits into the original code generation
process, to emit optimized code for CPU and GPU.

1⃝ From the EasyML description the limpet_fe python program creates an AST,
which serves as a common entry point for the baseline openCARP and limpetM-
LIR.

2⃝ The limpetMLIR code generator emits MLIR code for the compute-intensive
kernel loop using the scf, arith, math, vector and memref dialects. The emitted
code is slightly different for CPU or GPU:

• For CPU vector code generation: we let the user choose the vector size -of
either 2, 4, or 8- with the help of an environment variable and following
which all the emitted MLIR instructions will be of type vector<?xf64>.
In listing 4.1, the vector size is chosen to be 8 targeting AVX-512 vector
instruction set with double types.

• For GPU code generation: the type used is <f64> and the control flow
expressed in scf allows the latter MLIR passes to lower it to a parallel
control flow in the gpu dialect. In listing 4.2, lines 2-3 show the two scf.for
loops, which will be translated into an outer loop and an inner loop iterating
over the GPU blocks and threads within a block respectively.

3⃝ The MLIR lowering pass converts the MLIR code either to:

• an OpenMP CPU vectorized code where the scf.for shown in line 2 of
listing 4.1 is lowered to an OpenMP work-sharing and parallel loop.

• a GPU device code part using a specific GPU low-level dialect. This low-
level dialect can be either nvvm (the Nvidia CUDA IR) or rocdl (the AMD
ROCm IR) depending on the target GPU architecture.

4⃝ The MLIR translator pass converts the MLIR code (represented using the llvm
dialect) into a vectorized CPU or GPU device (as part of GPU compilation) code
part to LLVM IR.

5⃝ Last is the linking phase, where C/C++ and LLVM IR CPU and GPU files are
linked together into an object file using LLVM.
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1 %c8 = arith . constant 8 : index
2 scf.for %arg9 = %0 to %1 step %c8 { // parallel loop
3 %14 = func.call load_vector (%13 , % c0_i32_3 ) : (memref <1xi8 >, i32) -> vector <8 xf64

>
4 // ... code skipped for space
5 % cst_8 = arith . constant dense <7.000000e -02 > : vector <8 xf64 >
6 % cst_9 = arith . constant dense <2.000000 e+01 > : vector <8 xf64 >
7 %35 = arith .divf %20 , % cst_9 : vector <8 xf64 >
8 %36 = math.exp %35 : vector <8 xf64 >
9 %37 = arith .mulf %cst_8 , %36 : vector <8 xf64 >

10 % cst_10 = arith . constant dense <1.000000e -01 > : vector <8 xf64 >
11 % cst_11 = arith . constant dense <2.500000 e+01 > : vector <8 xf64 >
12 %38 = arith .addf %20 , % cst_11 : vector <8 xf64 >
13 %39 = arith .mulf %cst_10 , %38 : vector <8 xf64 >
14 %40 = arith .addf %20 , % cst_11 : vector <8 xf64 >
15 %41 = arith .mulf %cst_10 , %40 : vector <8 xf64 >
16 %42 = math.exp %41 : vector <8 xf64 >
17 % cst_12 = arith . constant dense <1.000000 e+00 > : vector <8 xf64 >
18 %43 = arith .subf %42 , % cst_12 : vector <8 xf64 >
19 %44 = arith .divf %39 , %43 : vector <8 xf64 >
20 % cst_13 = arith . constant dense <1.000000e -02 > : vector <8 xf64 >
21 % cst_14 = arith . constant dense <1.000000 e+01 > : vector <8 xf64 >
22 %45 = arith .addf %20 , % cst_14 : vector <8 xf64 >
23 %46 = arith .mulf %cst_13 , %45 : vector <8 xf64 >
24 %47 = arith .addf %20 , % cst_14 : vector <8 xf64 >
25 %48 = arith .mulf %cst_10 , %47 : vector <8 xf64 >
26 %49 = math.exp %48 : vector <8 xf64 >
27 %50 = arith .subf %49 , % cst_12 : vector <8 xf64 >
28 %51 = arith .divf %46 , %50 : vector <8 xf64 >
29 // ... code skipped for space
30 %104 = arith .mulf %99 , %15 : vector <8 xf64 >
31 %105 = math.fma %90 , %94 , %104 : vector <8 xf64 >
32 func.call store_vector (%8 , %105 , % c16_i32_22 ):( memref <1xi8 >, vector <8 xf64 >, i32)

-> ()
33 % c0_i32_23 = arith . constant 0 : i32
34 func.call store_vector (%11 , %34 , % c0_i32_23 ):( memref <1xi8 >, vector <8 xf64 >, i32)

-> ()
35 // ... code skipped for space

Listing 4.1: MLIR code snippet for vectorized CPU generated by limpetMLIR for the
Hodgkin and Huxley ionic model shown in listing 2.1.

Notice that the final system linking phase requires a vector-capable mathematical li-
brary (that is not the case for the standard libm) in order for the mathematical function
calls to be vectorized, even though they have been vectorized in the MLIR code. We
rely on Intel’s Short Vector Math Library (SVML) library for this purpose in our
experiments presented below.

Listing 4.1 and listing 4.2 show the vector CPU and GPU code snippets generated
by limpetMLIR for the parallel loop for the Hodgkin and Huxley ionic model shown
in listing 2.2. At this point, we cannot avoid to take into account the required parallel
loop structure which depends on the hardware target.

For the CPU code, we target an OpenMP parallel for loop, so we generate a
single scf.loop, as seen in listing 4.1, line 2. Regarding the compute instructions, the
target vector instruction set is AVX-512 and 8 is chosen as the vector size. Lines 5-9 are
the equivalent MLIR code using the arith and math dialects for line 21 in listing 2.2.
The vector loads and stores are done with the help of Accessor functions (discussed
later) seen in lines 3, 32, and 34.

For the GPU code, lines 2 and 3 in listing 4.2 are the two scf.for loops within
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1 %7 = memref .load %6[% c0_3] : memref <? xf64 >
2 scf.for %arg9 = %0 to %3 step %c1 { // iterate over blocks
3 scf.for % arg10 = %c0 to %c512 step %c1 { // iterate over threads
4 // ... code skipped for space
5 scf. execute_region {
6 %11 = arith .cmpi slt , %9, %1 : index
7 cf. cond_br %11 , ^bb1 , ^bb2
8 ^bb1: // pred : ^bb0
9 // ... code skipped for space

10 % cst_22 = arith . constant 7.000000e -02 : f64
11 % cst_23 = arith . constant 2.000000 e+01 : f64
12 %50 = arith .divf %31 , % cst_23 : f64
13 %51 = math.exp %50 : f64
14 %52 = arith .mulf %cst_22 , %51 : f64
15 % cst_24 = arith . constant 1.000000e -01 : f64
16 % cst_25 = arith . constant 2.500000 e+01 : f64
17 %53 = arith .addf %31 , % cst_25 : f64
18 %54 = arith .mulf %cst_24 , %53 : f64
19 %55 = arith .addf %31 , % cst_25 : f64
20 %56 = arith .mulf %cst_24 , %55 : f64
21 %57 = math.exp %56 : f64
22 % cst_26 = arith . constant 1.000000 e+00 : f64
23 %58 = arith .subf %57 , % cst_26 : f64
24 %59 = arith .divf %54 , %58 : f64
25 // ... code skipped for space
26 %118 = arith .mulf %113 , %25 : f64
27 %119 = math.fma %104 , %108 , %118 : f64
28 %125 = arith . truncf %119 : f64 to f32
29 % c0_42 = arith . constant 0 : index
30 memref . store %125 , %124[% c0_42 ] : memref <? xf32 >
31 %127 = memref .view %22[% c0_46 ][% c4_47 ] : memref <1xi8 > to memref <? xf64 >
32 % c0_48 = arith . constant 0 : index
33 memref . store %31 , %127[% c0_48 ] : memref <? xf64 >
34 // ... code skipped for space

Listing 4.2: MLIR code snippet for GPU generated by limpetMLIR for the Hodgkin
and Huxley ionic model shown in listing 2.1.

which all the loop statements are embedded, such that the outer loop iterates over
blocks and the inner loop over the threads within blocks on the GPU. For the GPU
computations, we use the default <f64> (double) type instead of the vector type.

4.1.1 LimpetMLIR for CPU and GPU

In this section, we describe the additional changes that are required for the compilation
of generated MLIR code along with openCARP.

Data access. Accessor functions are implemented to retrieve values of external variables
of ionic models, and state variables of a cell. Stride accesses are enabled by gather and
scatter operations from the vector dialect, allowing to fetch state variables stored
in non-contiguous memory addresses. We also generate accessor functions for single-
valued broadcasts, and contiguous memory accesses, the latter being necessary for our
code transformation discussed in section 4.1.2. Lines 3 and 32 from listing 4.1 show
examples of accessors for contiguous and non-contiguous memory accesses that fetch
data from eight cells in parallel.

Multimodel support. Electrophysiology simulations also allow multiple models to in-
teract, accessing the same data. This leads to a hierarchy of cells relying on a parent-
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offspring relation. Offspring cells are allowed to access and modify the content (or
state) of their parent. In the openCARP framework, this feature is supported through
a combination of conditional statements that check the existence of the parent and
its values, and function pointers that connect the appropriate parent data with its
offspring. We support this feature by conditionally accessing data from the parent
through MLIR gather and scatter operations that also handle such conditions. If
the parent information cannot be found, it falls through the common local variable
storage.

The code generation process described previously supports all of the features found
in the original openCARP code generator. More precisely, all 48 ionic models for
cardiac cell simulation are supported, illustrating the flexibility and completeness of
our code design.

Helper Functions. During the compute stage (so inside the kernel) openCARP typ-
ically performs function calls that cannot be inlined with MLIR. By analyzing the
generated assembly code and checking the hardware performance counters in our bench-
marks, we noticed that in many models, these function call were costly. The first type
are calls are to the lookup table (LUT) to retrieve pre-computed interpolated values
for complex mathematical functions (in order to speed-up computations). LUT related
functions are called very often and found in almost all models. In addition, there are
calls in some models to specific integration methods, such as Rosenbrock (to perform
LU decomposition and integration). These types of calls escapes the MLIR code gen-
eration because it is very hard to automatically generate MLIR code for those function
calls.

Initially, we followed a naive approach and relied on the original scalar implemen-
tation of these functions but there was a considerable slowdown in both CPU and
GPU codes. This is because of the execution shift from vector to scalar and vice-versa
for CPU execution, and the system calls and memory copy between device and host
for GPU execution. To overcome this issue, we implemented a fully vectorized MLIR
version of LUT interpolation and Rosenbrock functions, leading to a considerable gain
in CPU performance. For GPU, we write their respective implementations in GPU
device code such that they are called and executed on GPU without any call back to
CPU. For example in listing 4.3, lines 5 and 7 are the respective function calls.

GPU Memory Management. One well-known pitfall regarding performance is the data
transfers between host and device because of the PCIe bus bottleneck. These necessary
transfers are not part of the MLIR code generation process, but are inserted into the
code that wraps the ionic model computation for the following reasons: (i) we want to
keep the structure of the MLIR code as similar as possible for all types of devices, so we
focus on generating MLIR for the compute function only, (ii) other openCARP software
parts access this memory (e.g solvers), and (iii) we want to precisely control the data
movements behavior regarding performance. We implement the memory management
preferably using unified memory with cudaMallocManaged or hipMallocManaged. As
a side note, it happened on our AMD test platform that hipMallocManaged is not
supported and falls back to inefficient data transfers. In that case, we could easily
change it to explicit allocation and memory copies between host and device.
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1 // ... code skipped for space
2 scf. execute_region {
3 // ... code skipped for space
4 %147 = memref .view %146[% c0_127 ][] : memref <?xi8 > to memref <1xi8 >
5 func.call LUT_interpRow (%144 ,%122 ,%147) :(f64 ,i32 ,memref <1xi8 >) ->()
6 // ... code skipped for space
7 func.call rosenbrock_StepX (%814 ,%830 ,% c3):( memref <1xi8 >,f32 , i32) ->()
8 // ... code skipped for space

Listing 4.3: MLIR code snippet generated for GPU by limpetMLIR for the
Bondarenko model

Implementation Effort. For our implementation, we wrote about 10k source lines of
code (39% python, 26% MLIR, 23% C++, some GPU kernel and CMake code). The
total auto generated lines of code for all 48 ionic models are as follows: baseline: 39621;
vectorized limpetMLIR: 111883; GPU: 78025.

4.1.2 Data Layout Transformation

A data layout transformation is implemented to avoid the effects of non-consecutive
data storage of variables within ionic models in memory. From the data perspective,
ionic models are described as a combination of shared and private information among
cells. While the former is defined as a read-only region that delivers no optimization
opportunities (SIMD memory loads of a single data are usually efficiently implemented
by the hardware), the latter has been originally modeled as to regroup values of a single
cell in a contiguous manner (an array-of-structures, AoS). This design becomes non-
optimal when multiple cells are processed in parallel, as is the case of vector memory
accesses in our solution.

We implemented a data layout transformation to avoid the effects of non-consecutive
data storage of cell variables within ionic models. This classical approach consists of
rearranging the same state variable from successive ionic cells consecutively: data
is stored in an array-of-structures-of-blocks (or array-of-structures-of-arrays, AoSoA)
form [40, 41], a combination of the classical array-of-structures (AoS, non-consecutive)
and structure-of-arrays (SoA, completely consecutive but large) forms. Using the
AoSoA data storage format, we:

1. avoid memory operations on addresses that are far from one another - and thus
avoid TLB misses,

2. improve data locality - and thus improve cache accesses,

3. enable contiguous efficient vector load/store hardware operations.

Figure 4.2 shows the proposed data layout optimization for the vector size of 4. The
data storage is transformed to array-of-structures-of-arrays (AoSoA), such that with
respect to the vector size the cell elements are packed together. As a result during
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Cell 1 Cell 2 Cell 3 Cell 4

Vector of size 4

non-continuous load

continuous load

Vector of size 4

Figure 4.2: Data layout optimization for vector size of 4.

vector load/store, we could perform a contiguous load/store with respect to the vector
size. This transformation is implemented as part of the code generation process, and
can be enabled/disabled through a compiler flag.

4.2 Experiments and Results

We implemented limpetMLIR on top of the openCARP source from the git repository.
We compile them using the LLVM compiler infrastructure tag 15.0.2, which has all
necessary compilation tools including Clang and MLIR. LimpetMLIR targets hetero-
geneous code generation, hence the following CPU and GPU machines were used to
evaluate our generated optimized code:

• a 2x 18-core Cascade Lake Intel Xeon Gold 6240 @2.6GHz (850 GFLOP/s, 2x
150W), turbo boost and hyperthreading disabled, 192GB of RAM @2933MT/s,

• an A100 Nvidia GPU (9,700 GFLOP/s peak performance on doubles, 400W),

• an AMD Radeon Instinct MI50 GPU (6,600 GFLOP/s, 300W).

The Intel Xeon Cascade Lake processor architecture supports all the three SSE,
AVX2, and AVX-512 vector instruction sets that we tested for CPU vectorized code.
We run all 48 ionic models available in the openCARP benchmarks, using the bench
executable to run the compute step alone and get a trace every 100 steps. Each model
is run five times, the two extreme measures are eliminated and the remaining three
are averaged. In the following section 4.2.1, the performance of CPU vectorized code
on different vector architectures across threads 1 to 32 are discussed, in section 4.2.2
we report GPU performance improvements, and finally in section 4.2.3 we discuss the
energy efficiency of the limpetMLIR code generator.
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Figure 4.3: Speedup of the limpetMLIR vectorized CPU version of the code compared
to the baseline openCARP version, using one single thread (sequential) on an AVX-512
architecture.

4.2.1 CPU Vectorization Performance

Each model is run using a small total of 8,192 cells with a 100, 000 step simulation,
in order for the largest models not to take more than two hours to execute, and thus,
limiting the duration of the experiments to a few hours.

Experiments were conducted using three vector architectures: SSE - with a vector
size of two doubles; AVX2 (four doubles); AVX-512 (eight doubles). On each architecture,
we evaluated the codes on a number of threads (and cores) ranging from 1 to 32, and
used the geometric mean (geomean) to average speedup results in all cases.

Single Thread Execution. Figure 4.3 shows speedups comparing the execution time
of the baseline openCARP version to our limpetMLIR version, both on one thread.
The horizontal axis is composed of 48 ionic models, ordered from the shortest to the
longest execution time from the baseline openCARP version. We arbitrarily split those
models into three sets of small, medium, and large ionic models. The small set is
composed of the twelve models running in less than a minute on our experimental
platform, the medium one of 19 models running in 1-5 minutes, and the large one of
17 models taking more than 5 minutes. Large models are usually the most precise and
close to the physiology, and as such, they are the most relevant ones for many practical
applications, e.g., virtual drug testing in cardiac research.

The limpetMLIR vectorized CPU version achieves a geomean speedup of 4.37× on
AVX-512 architecture. These results show one important aspect of our code genera-
tion: the acceleration can be much higher than the size of the vectors, up to more
than 25×. Although it may sound surprising, the effects of our optimizations go far
beyond the raw vectorization and CPU computation power, reaching also how memory
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Figure 4.4: Speedup of the limpetMLIR vectorized CPU version of the code compared
to the baseline openCARP version, using 32 OpenMP threads on a 32 cores AVX-512
architecture.

is accessed (simultaneous load/store assembly instructions) and taking advantage of
our data layout optimization (efficient use of the memory caches). A different version
of the code might also trigger other compiler optimizations that affect, e.g., register
allocation, pipelined execution, and out-of-order execution.

The observed speedups are low and irregular in small models, and more significant
and consistent for larger models. This is expected: on short codes executing short
optimized loops in less than a fraction of a millisecond, it is more difficult to achieve
good performance than on longer loops containing more computationally-expensive
operations. Some notable exceptions (e.g., ISAC Hu) are more operationally intensive
than appeared to be: they share the characteristics of (1) calling costly mathematical
functions that were efficiently vectorized by our optimizer and (2) not using lookup-
tables (LUT).

Thirty-two Threads Execution. Figure 4.4 presents the speedup results on a 32
OpenMP threads execution (using 32 physical cores). The measured speedups compare
the baseline and limpetMLIR versions in the same conditions, both running in parallel
on 32 threads: the 1× line represent the execution time of the baseline openCARP
parallel code on 32 cores. The limpetMLIR version achieves a geomean speedup of
1.92×, but only 0.83× on small models, 1.34× on medium models, and a very good
6.03× on large models. Smaller models with very short execution times suffer a slow-
down, mainly because of the synchronization and optimization overheads, or because
they are by nature memory-bound and not compute-bound.

Execution Time and Speedup over Varying Number of Threads. We confirmed our
analysis of those differences between small, medium, and large models in fig. 4.5. We
compare the average execution times (y-axis) of the three classes of models running on
1 to 32 cores (x-axis). The dashed lines represent linear speedup. All models running
in less than some 50 seconds suffer a slowdown compared to the dashed line. In small
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Figure 4.5: Average execution times of three classes of ionic models: small, medium,
large (on AVX-512)

models, we observe that the scalability is very poor due to the execution of very short
parallel loops: the overhead of synchronizations between threads is very high compared
to the computation time itself, and the curve flattens as the number of cores increases.
Although our optimizations (filled symbols) have some positive effect using a small
number of threads, they induce a slowdown when reaching 32 cores, as the gain due
to parallelism also completely disappears. This is less perceptible in medium models,
but still present starting at 8 cores: the limpetMLIR execution times get closer to the
baseline version at this point. In large models, the limpetMLIR version consistently
executes 8 − 10× faster than the baseline, along with an almost ideal parallel speedup
both on the baseline and the optimized version.

Figure 4.6 shows the geometric mean speedups, with respect to the baseline open-
CARP version, achieved by the limpetMLIR version on all the three (SSE, AVX2,
and AVX-512) vector architectures across varying threads from 1 to 32. In all cases
the AVX-512 architecture outperforms AVX2 and AVX2 outperforms SSE (in overall ge-
omean). This behavior is expected as AVX-512 calculates eight values for one hardware
operation, whereas AVX2 calculates four, and SSE calculates two (double types). No-
tice that this is true even if instructions cost and frequency might differ between these
three vector architectures.

The difference flattens as the number of cores increases, mainly due to the slow-
downs of small models. When restricting those results to the set of large models, we
get consistent speedups of 3.80× on SSE, 5.13× on AVX2, and 6.03× on AVX-512 on 32
cores. The overall geomean speedup over all models and all architectures is 2.90×.

Impact of Data Layout Optimization. We found that the data layout optimization was
essential in increasing the speedups of medium and large ionic models. This happens
because they access more memory (state value) than smaller models. For instance,
the S_Niederer model has its speedup increased from 4.98× to 6.03× in a 32-thread
AVX-512 configuration. The geomean speedup of all models, in a 1 to 32 thread AVX-512
configuration, goes from 3.12× to 3.37× thanks to the data layout optimization.
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Figure 4.6: Geomean speedups for SSE, AVX2, and AVX-512 across varying threads (in
the power of two)

Roofline Model. Figure 4.7 shows the roofline model for our various ionic models. The
operational intensity on the x-axis is the number of floating point arithmetic operations
divided by the number of memory operations (in Flops/Byte). The number of memory
loads and stores were extracted by instrumenting the generated MLIR code of the ionic
models. The number of arithmetic operations were measured for each ionic model using
the processor performance counters.

The y-axis of fig. 4.7 represents the GFlops/s performance, as the number of arith-
metic operations divided by the execution time, on our 32 cores AVX-512 platform.
The peak performance using 32 cores was measured experimentally with the Empirical
Roofline Tool (ERT) [42] as 760GFlops/s, DRAM bandwidth as 199GB/s, and L1 cache
bandwidth as 1052GB/s. Notice that the maximum DRAM bandwidth according to
the architecture specification is 140.8GB/s (shown as the lowest gray dashed line in
the figure).

One can observe in fig. 4.7 that many of these codes have an operational intensity
lower than the DRAM bandwidth versus performance limit (around 4 Flops/Byte); the
majority of them are memory-bound. Codes of the large class perform quite well: those
on the right of the figure are compute-bound and a bit lower the peak 760 GFlops/s
limit (GrandiPanditVoigt for example), and those on the left are also close to the
memory maximum bandwidth limit (OHara and WangSobie for example). OHara and
some medium models (e.g., Courtemanche) exceed the DRAM bandwidth thanks to
their efficient cache usage.

There are models with less than 20 GFlops/s performance from the small and
medium models and they are mostly memory-bound. The DrouhardRoberge model in
particular does 19 GFlops/s, but its operational intensity is less than 1/4 Flops/Byte.
We observed the slowdown for the small models (the limpetMLIR version is below the
baseline version), as explained earlier (fig. 4.5) by their very short execution time.

Overall, those roofline results are as expected. The roofline model just confirms our
previous analyses and shows that many of our optimized codes are reasonably close to
the maximal performance of this architecture. Some improvements still seem possible
in some of them (e.g., Hodgkin, Maleckar), and this will be investigated in the future.
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Figure 4.7: Roofline model for the different ionic models with AVX-512 vectors on 32
cores when compared to baseline openCARP (peak performance of our experimental
platform: 760 GFlops/s, DRAM bandwidth: 199 GB/s, L1 cache bandwidth: 1052
GB/s)

Comparison with Auto-vectorization. We did force the standard compilers to vectorize
the parallel for loop by annotating with OpenMP simd directive. However, clang
and gcc failed to vectorize the loop along with aggressive optimization options. Intel
icc 19.1.3 could vectorize the loop when annotated with the OpenMP simd directive,
but only reached an overall AVX-512 geomean speedup of 2.19×, much lower than
limpetMLIR (3.06× as seen in fig. 4.6).

4.2.2 GPU Performance

We used 819,200 cells (higher number than the CPU experiments) with a 10,000 step
simulation, in order to report the real performance benefits of GPU machine which have
higher computational power. On CPU we ran (i) the 36 OpenMP threads baseline
openCARP, and (ii) the 36 OpenMP threads AVX-512 vectorized CPU limpetMLIR
version.

The total number of floating point operations necessary to run each ionic model was
measured with the hardware counters on the CPU. The GPU probably does less oper-
ations due to mathematical functions being optimized, but we used the same baseline
value measured on CPU for a fair comparison.

For the GPU execution we chose a block and thread dimension of 1, a number
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Figure 4.8: Performance on Nvidia A100, in giga floating operations per second

of threads per block (CTA size) of 64, and a number of blocks of {number of
cells/64}. We empirically determined that this provides the best performance results
on our platforms on average for all models. This value can be easily adjusted if running
on different hardware.

Nvidia CUDA Performance. Figure 4.8 shows the floating-point operations executed
per second by the CPU baseline, limpetMLIR AVX-512 vectorized, and A100 GPU ver-
sions of openCARP. The x-axis lists all 48 ionic models and the y-axis is the GFLOP/s
performance. On the x-axis, we sorted the ionic models from the shortest to the
longest execution time (of the baseline).

From fig. 4.8 we can observe with no surprise that the GPU code performs better
than the CPU openCARP versions in all ionic models. GPU optimized codes report the
highest GFLOP/s for the large models, that perform the most computations. Overall,
considering the geometric mean, we reach 185 GFLOP/s on this platform, the GPU
optimized code executes 3.17× faster than the vectorized CPU code, and 7.4× faster
than the baseline openCARP.

However, the model that exhibits the best performance reaches 713 GFLOP/s, that
is only 1/13 of the raw performance the A100 can deliver. Also, the A100 has 11.4x
the raw performance of our test bed CPU (850 GFLOP/s) so the average gain of 3.17x
seems pretty low. The reason is that those ionic models, taken from a real simula-
tion application, have a pretty low compute intensity: a geomean of 0.35 flop/byte.
This means that they execute many memory operations along with floating point cal-
culations. Better performance on large models is explained by their greater compute
intensity: a geomean of 3.02 flop/byte if we exclude Bondarenko and Aslanidi.
Those two specific models have lower performance results than the other ones, as they
have in common to call a memory intensive integration method (Rosenbrock). Overall,
the low compute intensity explains that the GPU performance is far from the maximal
hardware performance, and that the CPU with multiple levels of fast and large caches
is better at this.
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Figure 4.9: Performance on AMD MI50, in giga floating operations per second

We also report that one of those best performing model (Steward) was manually
written in CUDA by our HPC expert, using explicit memory copies. We measured
very similar performance between this code and the limpetMLIR generated code (the
handwritten code is less than 5% faster).

AMD ROCm Performance. We did the same experiments on the AMD MI50, as
reported in fig. 4.9. We reach a geomean performance of 156 GFLOP/s on this platform,
and the overall results are pretty similar except for one point: the MI50 performs better
than the A100 on small and medium ionic models while we can observe the opposite
for the large models. The AMD version is sometimes even outperformed by the CPU
vectorized version (for example on Grandi and Augustin). The difference in memory
management (see section 4.1.1 GPU memory management) between the CUDA and
ROCm implementations is the main reason for this lower performance on large models
and better performance on small models.

Considering the geometric mean, the AMD ROCm limpetMLIR code executes
2.67× faster on MI50 than the vectorized CPU version. This number compares to
3.17× on A100, since the A100 has almost 50% more maximal raw performance than
the MI50.

4.2.3 Energy Efficiency

We reported GFLOP/s raw performance results as it is good practice, but those num-
bers are not very meaningful when comparing completely different architectures with
very different raw computing power. The FLOP per consumed Joule is a much better
scale to compare them with the perspective of running on energy-aware supercomput-
ers. We measured the total energy consumption by running the benchmarks on the
CPU using the hardware counters, as the sum of package and RAM consumption; on
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Figure 4.10: Energy efficiency on Nvidia A100, in GFLOP per Joule
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Figure 4.11: Energy efficiency on AMD MI50, in GFLOP per Joule

the Nvidia GPU, we used the nvidia-smi command to regularly poll instant power
consumption during the kernels execution, and averaged them; a similar command
(rocm-smi) was used on AMD GPUs.

Figure 4.10 shows the energy efficiency (y-axis) of the limpetMLIR generated code
on the A100 GPU compared to the CPU baseline and vectorized versions, for all 48 ionic
models (x-axis). A first remark from this figure is that the difference between small,
medium, and large models is much less significant than on the previous figures. Only
the very small models performing very few floating point operations, and in general the
ones that have a small compute-intensity (e.g., as already noticed, Bondarenko and
Aslanidi), have a low efficiency on GPU. The numbers reported in this plot pretty
closely relate to the compute-intensity of those different benchmarks. For example,
ISAC Hu (col. 4) has an intensity of 1.6 flop/byte, while DefibAshihara (col. 5)
has only 0.28 flop/byte and is much less power efficient.

The geomean energy gain of the CPU AVX-512 vectorized version compared to
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Figure 4.12: LimpetMLIR with StarPU GPU wrappers to support load balancing on
heterogeneous systems during runtime.

the baseline openCARP CPU version is 2.3×, and it is especially significant on the
large models (7.1×): on CPU, the largest benchmarks have the most energy gain
when vectorized. On the other hand, for all benchmarks, the efficiency of the GPU
is consistently higher than the best CPU version. Considering all ionic models the
geomean energy gain of the A100 GPU over the vectorized CPU version is 8.72×.

We performed the same measurements on the AMD MI50 GPU (shown in fig. 4.11)
and obtained similar results: as reported before, the MI50 is faster and has also better
energy efficiency than the A100 on small models, but worse efficiency on the medium
and large ones. The geomean power efficiency of the MI50 is 1.54 GFLOP/J, a bit
lower than the A100 1.92 GFLOP/J, but still much better than the vectorized CPU
version 0.22 GFLOP/J.

4.3 LimpetMLIR Integration with a Task-based Run-time
System

The limpetMLIR is capable of generating optimized codes targeting different machine
architectures. Taking advantage of this, the optimizing capability of limpetMLIR
can be further improved by integrating it with a task-based runtime systems like
StarPU [12]. And this integration will allow limpetMLIR for simultaneous exploration
of CPU and GPU architectures, so able to run experiments at larger scales.

Our code generation techniques are extended in collaboration with the STORM
research team at Inria Bordeaux and we introduced GPU wrappers in limpetMLIR to
integrate with StarPU. Additionally, the STORM team proposed and implemented two
distribution algorithms in StarPU: (i) dynamic load-balancing to distribute the work-
loads efficiently across nodes and (ii) automatic resource dimensioning to select a good
number of computing resources for running this simulation. Figure 4.12 shows the mod-
ified limpetMLIR with GPU wrappers supporting StarPU integration. They evaluated
their implementation with multiple Nvidia GPUs (up to 8 GPUs) and obtained about
13× geo-mean speedups compared to vectorized CPU limpetMLIR version. They also
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evaluated it using a hybrid approach where a combination of CPUs and Nvidia GPUs
are used for computation and obtained geo-mean speedups of 9.97×.

The limpetMLIR integration with StarPU is not part of this thesis and more de-
tails about integration, algorithms, and evaluations can be found in our collaborative
publication [13]. It is very promising to see that our techniques are being used and
extended by other research labs.
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A Survey of General-purpose
Polyhedral Compilers

In previous chapters, we introduced heterogeneous code generation of parallel loops
using the MLIR compiler framework for a cardiac application. The evaluation results
show promising performance improvements and hence we tried to generalize those
techniques in polyhedral compilation. Polyhedral techniques are effective in optimizing
regular loop nests and there are many polyhedral compilers available, with differences
in nature: general-purpose, built-in, application-specific, and target-specific compilers.
We first made a detailed survey on those available general-purpose polyhedral compilers
to find out their advantages and limitations, then generalize our technique concerning
those needs.

In this chapter, we discuss the polyhedral model, brief information about different
polyhedral compilers, detailed study on general-purpose polyhedral compilers using
PolyBench/C benchmark programs and limitations of these general-purpose polyhedral
compilers.

5.1 The Polyhedral Model Terminology

In computer science, many compiler optimizations from high level languages to effi-
cient machine dependent code were introduced long years back. With the evolution
of distributed, multi-processor, and multi-core architectures many optimization tech-
niques proposed by computer scientists target compute intensive loops. The polyhedral
model [43] appeared in the early 1990’s, and since then many loop optimization tech-
niques using the polyhedral framework have been proposed.

Polyhedral scheduling originates from the seminal work of Feautrier [44]: the depen-
dence analysis of a SCoP permits to statically determine which computations depend
on other ones, and therefore the constraints to be respected by a linear schedule for
the transformed program to be valid, i.e. to perform the same computations as the
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1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < N; j++)
3 C[i][j] = C[i][j] * B[i][j]; // S1
4
5 for (int k = 0; k < N; k++)
6 for (int l = 0; l < N; l++)
7 A[k][l] = A[k][l] + C[l][k]; // S2

Listing 5.1: Original nested loop code

original one, possibly in a different order. The problem of finding a valid linear schedule
reduces to solving a non-linear system of constraints, that can be linearized to an ILP
(integer linear programming) with the help of the Farkas lemma, and solved by an ILP
solver like PIP [45], the Omega Library [46], FPL [47], or ISL [48] for example.

Several specific objective functions can be added to the ILP system to be solved
in order to, e.g., maximize outer- or inner-loop parallelism, increase data locality, or
reduce control. One of the key idea to expose such objective functions in the solver was
proposed by Bondhugula [49], who first implemented it in the source-to-source Pluto
compiler. Polyhedral optimizing compilers usually rely on three main steps:

Step 1: Raising a static control part (SCoP) of a program into its polyhedral repre-
sentation. SCoPs are program parts whose control flow can be statically determined
at compile-time. They can contain loop nests and conditions, but all bounds and
tests must be affine functions of surrounding loop iterators and constant parameters.
For precise dependence analysis, they also require the accesses to arrays to be affine
functions of the loop iterators and parameters. While some (often built-in) polyhedral
compilers can automatically detect all SCoPs in any input code, other (usually source-
to-source) compilers require to manually annotate the regions of the source code to take
into account as SCoPs. At the end of this step, a polyhedral representation of a SCoP
is a set of program statements, each of them associated to a polyhedron representing
the iterations and execution time of those statements. The polyhedral representation
incorporate the following information for each loop statement:

Iteration Domain. The iteration domain refers to the set of all points (or itera-
tions) in an iteration space that corresponds to the execution of a particular statement
enclosed within loops in a program. They are represented mathematically for loop
statements using polyhedra, which are multi-dimensional geometric shapes defined by
a set of linear inequalities. The iteration domain can also be a union for example if
the input code splits into two control flows then the iteration domain will be the union
of disjoint polyhedra. Equation (5.1) shows the iteration domain for the statement
S1 of the original code in Listing 5.1. Its coordinate values are taken from induction
variables i and j.

DS1(N) =

() →
(

i
j

)
∈ Z2

∣∣∣∣∣∣


1 0 0 0
0 1 0 0

−1 0 1 −1
0 −1 1 −1




i
j
N
1

 ≥ 0⃗

 (5.1)

Step 2: Finding an optimizing schedule for this problem. The central step of a

– 48 –



A Survey of General-purpose Polyhedral Compilers

polyhedral compiler is to find a schedule, that will associate a new execution time to
each statement such that (a) the original program semantics is respected and (b) some
objective functions are optimized. This step usually relies on finding a valid linear
schedule, and applying pre- and post- processing to the problem (e.g., loop fusion/-
fission, tiling, parallelism, etc.). It is to be noted that the iteration domain does not
provide information about the time to execute loop statements.

Mapping Relations. The mapping relation f : D −→ S is a linear map, from the
iteration domain to a multidimensional time domain. It describes a relation between
loop statements and the time at which the statements have to be executed. An identity
schedule function refers to the execution of a loop statement in the lexicographical
ordering of the original loop statement. If two statements map to the same logical
time, they can be executed in any order (or in parallel). There are also other types of
mapping functions available: (i) Affine mapping - To represent loop transformations
such as skewing, reversal, and interchange; (ii) Parallel mapping - describes the relation
of mapping iterations of loop nests to parallel processing units (multi-core or distributed
systems). (iii) Spatial mapping - map to represent the spatial parallelism and data
locality optimizations (like tiling).



1 0 0 0 0 0
0 1 0 0 0 0

−1 0 1 −1 0 0
1 0 0 0 0 0
1 0 0 −1 0 0
0 1 −1 0 0 0





i
j
k
l

N
1



≥ 0
≥ 0
≥ 0
≥ 0
= 0 #i = l
= 0 #j = K

(5.2)

Access Relation. Access relation is used to model memory reference for a given
access. It could be an array reference or a statement reference to memory. These
relations capture data accesses made by each iteration of the loop nests. Polyhedral
techniques perform dependency testing (like the GCD test) on these access relation
models to find potential data dependencies between the loop iterations. Then, with
the help of dependency testing results it performs dependency analysis and constructs
dependency polyhedra to represent data dependencies between two loop statements.
Equation (5.2) shows the dependency polyhedra between the statements S1 and S2
for Listing 5.1. There is a dependency from P and Q if (i) there exists an instance P [i]
and Q[j] such they perform read or write to the same memory location and one of them
is a write, and (ii) the statement P [i] may happen before Q[j], that means i ≺ j. There
are four dependency types available which are shown in Table 5.1. Input(i) (RAR) is
only read and this dependency can be ignored. With the help of standard compiler
optimizations (like renaming) anti(a) (WAR) and output(o) (WAW) dependencies can
be removed. Only Flow(f) (RAW) is the actual dependency that needs to be taken
care of.

Code Transformations. The dependency polyhedra help to identify dependencies
of the loop statements between the iterations of the loop nest. Without breaking
dependencies, we can apply different transformations to the polyhedral representation
that help to apply loop optimizations like tiling, parallel loops, and loop vectorization.
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Name Definition
Input(i) When both P [i] and Q[i] are reading (RAR)
Flow(f) When P [i] writes and Q[i] reads (RAW)
Anti(a) When P [i] reads and Q[i] writes (WAR)

Output(o) When both P [i] and Q[i] are writing (WAW)

Table 5.1: Dependency Types

Step 3: Lowering the resulting polyhedral representation into code. The last step is
to revert to a classical program form, by converting back the polyhedral representation
with its associated schedule into code. There are various code generators available,
e.g. CLooG [50], ISL [48], or CodeGen [51] which produce an AST from polyhedral
representation. The AST takes into account the iteration domain and the schedule
generated in the optimizing phase. As said earlier, polyhedral techniques mainly do
three loop optimizations: loop tiling, parallelization, and loop vectorization. Tiling is
achieved by re-structuring the loop nest. Parallel loops can be expressed by inserting
omp parallel for OpenMP directives and vectorization loop opportunities can be marked
with vector always or ivdep directives.

Listing 5.2 shows the transformed code by the Pluto [49] polyhedral compiler for
the original code shown in Listing 5.1. From the listing, it is visible that the three loop
optimizations (tiling, parallelism, and vectorization) discussed above are applied to the
original code with the help of polyhedral techniques. The size of the tile is chosen to be
32 by default. Line 4 is the pragma omp parallel for annotation to the for loop at line
5, such that the iterations of the loop run in parallel. The loop at line 12 is annotated
with vector directives and is a recommendation to the compiler for auto-vectorization.

Over the years, many polyhedral compilers were implemented in different con-
texts [52, 53, 54, 55, 56, 57]. They have been built on top of different libraries developed
by polyhedral research community: PIP [45], Omega [46], PolyLib [58], ISL [48], Open-
SCOP [59], CLooG [50], and PET [60]. In the upcoming subsections, we will briefly
describe the three categories of available polyhedral compilers, their status and a short
brief about each of them.

5.1.1 General-purpose Source-to-source Polyhedral Compilers

These types of polyhedral compilers listed hereafter are open-source and perform
source-to-source polyhedral optimizations. Most of these compilers accept C code as
input in which the nested loop structures are enclosed within scop directives. The gen-
erated optimized code can be either: C, OpenMP parallel C code, CUDA, or OpenCL.
The emitted code can be compiled into an executable by any standard compiler like
gcc, clang, or icc. A brief introduction about the available general-purpose source-
to-source compilers is as follows:

Pluto. Pluto [49] is an actively maintained automatic polyhedral source-to-source
transformation framework to optimize imperfectly nested loops in regular C programs.
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1 if (N >= 1) {
2 lbp =0;
3 ubp= floord (N -1 ,32);
4 #pragma omp parallel for private (lbv ,ubv ,t2 ,t3 ,t4 ,t5)
5 for (t1=lbp;t1 <= ubp;t1 ++) {
6 for (t2 =0;t2 <= floord (N -1 ,32);t2 ++) {
7 for (t3 =32* t1;t3 <= min(N -1 ,32* t1 +31);t3 ++) {
8 lbv =32* t2;
9 ubv=min(N -1 ,32* t2 +31);

10 #pragma ivdep
11 #pragma vector always
12 for (t4=lbv;t4 <= ubv;t4 ++) {
13 C[t3 ][ t4] = C[t3 ][ t4] * B[t3 ][ t4 ];;
14 A[i][j] = A[i][j] + C[j][ t4 ];;
15 }
16 }
17 }
18 }
19 }

Listing 5.2: Transformed code (by the Pluto polyhedral compiler) of original C code
in listing 5.1

With the help of affine transformations Pluto finds an efficient way to tile parallel
loop(s) for parallelism and data locality. Pluto extracts polyhedral information with
the help of PET [60] or clan [61], uses the Integer Set Library (ISL) [48] or candl [62] as
a dependency tester and uses ISL [48] or PIP [45] as an ILP solver. After applying its
own tiling optimization technique it generates code using CLooG [50]. It also provides
options to control the loop fusion heuristic. Different command line options are avail-
able to choose different tiling options (standard tile, two level tile, and diamond tile),
ILP solver, dependency tester, and many others. The diamond tile option supports
load-balanced tile execution across cores for stencil computations.

PoCC. PoCC [63] is a collection of different source-to-source translators, tools and
other libraries to provide support for polyhedral optimization. It includes Pluto, and
the Legal transformation Space explorator (LetSee) permits iterative compilation using
different schedules. PoCC provides multiple options to try various combinations of
polyhedral extractors, dependency testers, ILP solvers, schedulers and code generators.
It does also include POnOS [64] - a loop optimizer with the help of convex formulation.
PoCC is maintained by the developer and provides supports to users on how to use the
compiler effectively.

ROSE/PolyOpt. ROSE [54] is an open source compiler infrastructure developed at
Lawrence Livermore National Laboratory (LLNL). PolyOpt [65] is a polyhedral loop
optimization framework, integrated within the ROSE compiler. It can auto extract
the SCoPs that can be optimized using the polyhedral model based on PoCC [55] (for
dependency analysis, code generation, parametric tiling and others). It uses Pluto
available in PoCC to perform tiling. It is maintained along with the ROSE compiler.

PPCG. Polyhedral Parallel Code Generator (PPCG) [57] is a source-to-source compiler
generating C, OpenCL and CUDA GPU code from the input program. PPCG is the
only polyhedral compiler in this category to generate all 4 different types of optimized
code. It takes C programs as input, and (i) extracts a polyhedral representation with
the help of the Polyhedral Extraction Tool (PET) [60], (ii) does dependency testing
using ISL, (iii) exposes tiling opportunities with the same algorithm as Pluto, (iv) de-
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cides the host and GPU code, including memory management, and (v) finally generates
C/OpenMP, OpenCL or CUDA code with its own code generator. PPCG is maintained
by the ISL development team and provides support to report bugs, feature requests,
and user questions.

CHiLL. Composable High-Level Loop (CHiLL) [56] is a source-to-source compiler to
improve the performance of nested loop calculations. It uses the ROSE compiler to
parse the input program. Contrarily to the above polyhedral compilers it is not fully
automatic: the user has to manually write a python script which specifies the loops
and transformations to be applied. There is also a CUDA version of CHiLL.

TRACO. TRACO [66] is a source-to-source compiler to increase program locality and
generate parallel tiled code on nested loop sequences, via polyhedral techniques and
Iteration Space Slicing [67]. TRACO uses the transitive closure of loop nest dependency
graph to perform tiling, so that all loop dependencies are preserved. It uses the CLooG
code generator to emit the final parallel-tiled code.

5.1.2 General-purpose Built-in Polyhedral Compilers

The next set of polyhedral compilers are the ones that are built-in within a compiler.
They are integrated within the compiler and are invoked like an optimization pass.
Unlike the source-to-source compilers which would require the user to enclose the loop
nest within scop, the built-in compilers can automatically detect the scop from the
input code and apply polyhedral transformations. We have very few general-purpose
built-in compilers that are integrated within either gcc or clang. They are as follows:

Gcc/GRAPHITE. GRAPHITE [52] is the first research project which has implemented
the polyhedral techniques into a widely used compiler, gcc [68]. It follows a three
step approach: (i) extract polyhedral information from GIMPLE (the IR of gcc),
(ii) apply polyhedral optimizations using ISL, and (iii) finally generate code using
CLooG. Gcc has the Polyhedral Compilation Package (PCP) [69] interface to interact
with GRAPHITE. It is maintained along with the gcc compiler.

LLVM/Polly. Polly [53] is an actively maintained project from the LLVM [8] compiler
infrastructure which proved itself an effective tool to apply the benefits of polyhedral
optimizations at the intermediate representation (IR) level. Similarly to gcc/GRAPHITE,
Polly uses a three step approach: it takes LLVM-IR as the input and (i) identifies the
static control parts (SCoPs) of interest, using Z-polyhedra provided by ISL for rep-
resenting polyhedral domains; (ii) applies inbuilt polyhedral optimizations, and also
provides support to export the polyhedral representation, call an external polyhedral
compiler and import it back; (iii) generates a generic AST from the optimized poly-
hedral representation with the help of CLooG, and the final optimized LLVM-IR is
created by merging it with the original AST.

MLIR/Polygeist. Polygeist raises C/C++ to Polyhedral MLIR [15] as an LLVM/M-
LIR [7] based approach. It is introduced recently and in active development phase.
Polygeist takes an input source program, and (i) extract the high level information,
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(ii) converts them to MLIR representation, (iii) extracts polyhedral representation, and
allows a call to an external polyhedral optimizer like Pluto, and (iv) finally converts it
to LLVM IR. As it operates from high-level structure to low-level IR of the program,
it has the opportunity to explore optimizations at both levels. Polygeist also supports
additional transformations like statement splitting and reduction parallelization.

5.1.3 Application-specific and Target-specific Compilers

These set of compilers are either application-specific or target-specific, e.g. Tensor
Comprehensions is an application-specific polyhedral compiler mainly focusing on op-
timizing deep learning-related applications. Many of these compilers do not accept the
standard programming languages as input, they accept DSL as an input or the code
should be converted to the DSL representation. Most of these compilers are developed
by technology-supported companies and are either in-house (specifically developed for
their company products) or commercial. Those compilers are as follows:

IMB XL. The IBM XL C/C++ compilers contain an internal polyhedral pass using
a Pluto-like scheduling algorithm. This suite of compilers targets only IBM specific
systems and processors.

R-Stream [discontinued]. R-Stream [70] is a source-to-source compiler from Reser-
voir Labs to optimize loop nests manipulating dense matrices and arrays in high-
performance scientific and embedded computing. It accepts C programs as input and
generates generalized dependence graph (GDG) - a kind of polyhedral representation
to model the computations, dependences and memory references of loop nests. It
performs parallel-tile optimizations on the nested loops using a scheduling algorithm
inspired from Pluto, and generates parallel code for multi-cores and various accelerators
(including GPUs and FPGAs). The R-Stream team joined Qualcomm and they now
develop the Qualcomm polyhedral mapper, an iterative hierarchical scheduler special-
ized to target AI applications. It enables code generation for the specific Qualcomm
Hexagon processor, exhibiting parallelism at multiple levels: nodes distribution, multi-
thread, and SIMD units.

Tensor Comprehensions. Facebook (Meta) develops Tensor Comprehensions [71, 72], a
C++ library and a domain-specific language for deep learning models. Their polyhedral
just-in-time compiler based on PPCG targets CUDA kernels, and includes operator
fusion and size specialization. Unfortunately, the project is now in defunct stage.

Huawei’s MindSpore/AKG. MindSpore [73] is a deep learning framework developed
by Huawei, targeting their Ascend processor, Nvidia GPUs and x86 CPUs. AKG
(Auto Kernel Generator) [74] includes a polyhedral scheduler that permits to fuse AI
operators, tile, parallelize, and vectorize the resulting code.

Cerebras. Cerebras develops a target specific polyhedral compiler [75] for AI applica-
tions to generate efficient multi-level SIMD instructions for their CS-1 architecture.

Tiramisu. Tiramisu [76, 77] is a compiler framework using polyhedral techniques to
optimize complex loop patterns for dense and sparse deep learning model (RNN, CNN)
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applications and data parallel algorithms. They target optimized code generation for
heterogeneous architectures.

PolyMage. PolyMage labs [78] has developed PolyBlocks which is used to build com-
pilers and optimized code generators for high performance computing targeting the
domain of Artificial Intelligence and Machine Learning. PolyBlocks is built using the
MLIR infrastructure and it performs efficient computations for high-dimensional data
space application with the help of polyhedral optimization techniques.

APOLLO. Automatic speculative POLyhedral Loop Optimizer [79] is based on the
LLVM compiler and performs complex loop optimizations with the help of polyhedral
techniques at run-time. APOLLO’s run-time system (i) profiles a few iterations of loop
chunks, (ii) identifies a linear prediction model, (iii) encodes the model in its polyhedral
representation, and finally (iv) performs loop transformations with the help of Pluto.
The prediction correctness is checked at runtime and in case it is wrong, it rollbacks
to the original code.

Intel’s PlaidML. PlaidML is an open-source tensor compiler developed and supported
by Intel for deep learning applications. They introduce a domain-specific IR named
Stripe [80] to represent tensor operations and generate efficient machine learning kernels
using the nested polyhedral model.

5.1.4 A Study on Polyhedral Compilers

With the difference in nature of polyhedral compilers, a detailed study on them would
help the polyhedral community to spread their research. Additionally, it will help to
identify the existing limitations in the polyhedral compilers and provides the path for
further improvements.

There are many [81, 82, 83, 84, 85, 86, 87, 88, 89, 90] surveys and empirical studies
available on compiler optimizations, but only very few of them discuss polyhedral
loop optimizations. Schneck [86] did a survey on the compiler optimizations and it is
considered as one of the earliest such survey work. Mustafa [91] did a survey on parallel
applications, in which he conducted a brief study on polyhedral compilers. The survey
lists the available polyhedral compilers and only compares performance of Cetus [92]
against Pluto. Simbürger et al. [93] did an empirical study on polyhedral optimization
on various applications. The authors took many real-world applications and studied the
benefits of polyhedral optimization (at run-time and compile-time) using Polly on those
applications. Pfaffe et al. [94] did a detailed study on the gemm benchmark running
on GPU. The authors used Polly, combined with their tuner to exploit the benefits
of polyhedral optimization. They did performance tests on PolyBench/C. Fontaine
et al. [95] did a case study on polyhedral dataflow programming, combining dataflow
programming with polyhedral compilation in order to exploit the parallelism in loop
nests. They used Pluto for polyhedral optimization and the ∑c dataflow language for
their case study. All of these works have a range of evaluation limited to one or two
polyhedral compiler, while our survey compares most of them.
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In Section 5.3, a very detailed study on the general-purpose polyhedral compilers
using PolyBench/C [14] set of benchmarks is presented. An intensive evaluation using
Intel and AMD machines, detailed performance analysis with the help of hardware
counters, and profiling the source-to-source optimized code for finding the degree of
parallelismt that has been made. We listed the limitations with the current polyhedral
compilers and mentioned the need for new set of benchmarks for testing AI/ML related
polyhedral compilers.

Furthermore, we try to address one of the listed limitations in the polyhedral com-
pilers. For polyhedral vector optimizations, the loops are marked with vector always
and ivdep directives. This latter directive is merely a recommendation for the compilers
to vectorize the upcoming loop structure but we observed that in few cases standard
compilers do not actually vectorize it. The study found that the main reasons reported
by compilers to not vectorize the marked code were: (i) could not determine the num-
ber of loop iterations, (ii) complex loop statements (like function calls, irregular control
flow, and pointer/array deference), (iii) multiple nested loops, (iv) control flow inside
loops, and (v) inner-loop count not invariant. Further, in a few cases the vectorization
is not applied because the vector cost-model estimates that it is not profitable. Thus,
we are not able to fully reap the benefits of polyhedral techniques. Another aspect is
the heterogeneous code generation, only PPCG (in general-purpose compiler) is able
to generate CUDA targeting only Nvidia machines.

In Chapter 6, we introduce an optimization technique with the help of MLIR and
Polygeist to enhance the vectorization opportunities in polyhedral techniques. Sim-
ilarly, we propose an heterogeneous compilation flow in that a unified approach is
followed to emit one abstraction of code for CPU/GPU from the polyhedral represen-
tation and with the help of MLIR the code is lowered to target either CPU vectorized
machine or Nvidia GPU machine or AMD GPU machine, respectively.

5.2 Benchmark Suite

We chose PolyBench/C [14] amongst a wide range of loop nests benchmarks: NAS
Parallel Benchmarks [96], UTDSP Benchmarks [97], Livermoore Benchmarks [98], and
many others. PolyBench/C is the most widely recognized benchmark in the polyhedral
research community.

It comprises a set of thirty numerical benchmarks targeting various real application
domains, available in both C and Fortran languages. Table 5.2 from the README
of PolyBench/C [14] shows the thirty available benchmark programs. PolyBench/C
supports various features like five different problem sizes, options to flush the cache,
and dump-out the benchmark results to verify their correctness. It also provides various
options to the user like timing/profiling options (such as PAPI [99] support), stack or
heap memory allocation, array padding, and using the C99 standard. We used the
following options for our evaluations:

• POLYBENCH_TIME - to measure the kernel execution time,
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Benchmark Description
linear-algebra/kernels

2mm 2 Matrix Multiplications (alpha * A * B * C + beta * D)
3mm 3 Matrix Multiplications ((A*B)*(C*D))
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver
doitgen Multi-resolution analysis kernel (MADNESS)
mvt Matrix Vector Product and Transpose

linear-algebra/blas
gemm Matrix-multiply C=alpha.A.B+beta.C
gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication
symm Symmetric matrix-multiply
syr2k Symmetric rank-2k update
syrk Symmetric rank-k update
trmm Triangular matrix-multiply

linear-algebra/solvers
cholesky Cholesky Decomposition
durbin Toeplitz system solver
gramschmidt Gram-Schmidt decomposition
lu LU decomposition
ludcmp LU decomposition followed by Forward Substitution
trisolv Triangular solver

datamining
correlation Correlation Computation
covariance Covariance Computation

medley
deriche Edge detection filter
floyd-wars Computes shortest path in a graph data structure
nussinov Dynamic programming algorithm for sequence alignment

stencils
adi Alternating Direction Implicit solver
fdtd-2d 2-D Finite Different Time Domain Kernel
head-3d Heat equation over 3D data domain
jacobi-1D 1-D Jacobi stencil computation
jacobi-2D 2-D Jacobi stencil computation
seidel 2-D Seidel stencil computation

Table 5.2: Thirty different numerical computations programs from different real world
problem in Polybench 4.2 suite (from the PolyBench 4.2 documentation).
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• EXTRALARGE_DATASET - we chose the maximum available input data-size for our
experiments,

• POLYBENCH_DUMP_ARRAYS - to emit the output of benchmarks,

• POLYBENCH_USE_SCALAR_LB - to use scalar loop bounds (not parametric bounds),

• POLYBENCH_USE_RESTRICT - to tell the compiler that no aliasing occurs between
arrays,

• POLYBENCH_USE_C99_PROTO - to use standard C99 function prototypes.

The thirty benchmarks are divided into six categories based on their nature: kernels
(linear-algebra), blas (linear-algebra), solvers (linear-algebra), datamining, medley, and
stencils. In the further sections, we present our results and analysis with respect to
those categories as they have similar characteristics within their group.

5.3 Evaluations

Our evaluation regarding performance, mostly expressed as speedups relative to the
native code of the eight available general-purpose polyhedral compilers on the Poly-
Bench/C benchmark is done from several view points.

First, we evaluate the overall performance of each polyhedral compiler, averaged
over the thirty programs of PolyBench/C. This evaluation is done for both sequen-
tial and parallel generated codes, on an Intel processor and an AMD processor (Sec-
tion 5.3.2). Second, we present (Section 5.3.3) the detailed performance for each of
the six categories of PolyBench/C. Third, we choose one representative benchmark
in each category to better understand its behavior. For that purpose, we provide an
analysis based on hardware counter values (Section 5.4). Fourth, as Pluto provides dif-
ferent tiling options, we present the impact of each in a separate section (Section 5.5).
Finally, we report the performance for PPCG’s CUDA and OpenCL code on GPU
(Section. 5.6).

5.3.1 Experimental Setup and Method

In this section, we present the hardware setup and the polyhedral compilers tested in
our experiments. We used:

• a 2x20-cores CascadeLake Intel Xeon Gold 5218R @2.1GHz CPU,

• a 1x48-cores Zen 2 AMD EPYC 7642 @2.3 GHz CPU,

• an A100 Nvidia GPU.
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Compiler Version Option(s)
Polly LLVM 15.0.2 --polly, --polly-parallel
Polygeist LLVM 13.0.21 --demote-loop-reduction, --extract-scop-stmt,

--canonicalize, --pluto-opt=‘parallelize=1’,
-reg2mem, -insert-redundant-load

GRAPHITE GCC 12.1.1 --fgraphite, --floop-parallelize-all
PolyOpt 0.11.100 --polyopt-fixed-tiling, --polyopt-scalar-privatization,

--polyopt-safe-math-func
Pluto 0.11.4 --tile/--l2tile/--diamond-tile, --parallel, --smartfuse,

--prevector
PoCC 1.6.0 --pluto-tile, --pluto-parallel, --pragmatizer,

--vectorizer, --pluto-scalpriv, --pluto-fuse smartfuse
PPCG 0.09.1 --tile, --target=c (or cuda, or opencl), --openmp
CHiLL 7.4 --tile, --loop-split, --loop-fusion
1 Polygeist uses an older version of LLVM than Polly in its distribution

Table 5.3: Polyhedral compilers with their versions and tested options

Both CPUs turbo boost and hyper-threading were disabled. We carried out the experi-
ments with eight polyhedral compilers (GRAPHITE, Polly, Polygeist, PolyOpt, Pluto,
PoCC, PPCG, and CHiLL). There were some challenges, especially while installing
TRACO as the code is pretty old and facing run-time errors while applying tiling. We
contacted most of the developers/maintainers of those eight polyhedral compilers and
applied the right flag options for our experiments, such that the polyhedral compilers
perform best against the benchmarks. The detailed version of the compilers and the
optimization flags we used are shown in Table 5.3.

For Pluto the benchmarks are compiled in three flavours using the --tile (called
Pluto-tile in the following), --l2tile (Pluto-l2tile), and --diamond-tile (Pluto-dia-
tile) along with the other options; for PPCG we used options to generate code for C,
CUDA and OpenCL. For CHiLL we used --tile (along with fusion for a few benchmarks,
see below). PolyOpt’s -fixed-tiling is a combination of fuse, tile, parallel, and
prevector from Pluto. We did our experiments for both sequential and parallel versions,
and for sequential runs we excluded the compiler options which emits parallel code.
We used gcc (12.1.1), clang (15.0.2), and icc (2021.4.0) to compile the polyhedral
optimized code from source-to-source translators (Pluto, PPCG, PoCC, and CHiLL),
and the rose compiler (0.11.100) for PolyOpt.

We evaluated all the thirty benchmark programs available in PolyBench/C against
the available eight polyhedral compilers, along with aggressive compiler optimiza-
tions (-O3 -march=native -mprefer-vector-width=256 -ffast-math). We fixed
the vector size to 256 to select the AVX2 instruction set and activated fast-math,
for all compilers to be evaluated fairly: by default the -O3 optimization level does not
select them in the same manner. We chose the highest problem size (EXTRALARGE) from
PolyBench/C. Execution times were measured by running each benchmark five times,
eliminating the two extremes, and averaging the remaining three.
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Errors. We came across errors which prevented to get results for some experiments.
PolyOpt throws an assertion error during affine conversion for cholesky and «fails to find
hyper-planes» for seidel-2d. Pluto fails to extract polyhedra for the adi benchmark. We
also had to stop Pluto during its source-to-source compilation of heat-3d with diamond
tile option activated after two hours of execution without a result. PoCC throws a candl
error for ludcmp, deriche, and nussinov and a clan error for adi. The PPCG emitted
CUDA code of nussinov fails to compile. Some kernels pose difficulties regarding the
data dependency analysis and no parallel code is generated. This is the case for cholesky
(Polygeist), durbin (PolyOpt, Pluto-tile), ludcmp (Polygeist, Pluto-tile, PPCG), trisolv
(Polygeist), deriche (Polygeist), nussinov (Polygeist, PolyOpt). CHiLL generates codes
that suffers segmentation faults at run-time for gramschmidt, ludcmp and nussinov.
CHiLL also refuses to fuse two loops inside a loop in all benchmarks. It cannot apply
tiling for the inner loop statement as it finds a dependence violation (fdtd-2d, heat-
3d, jacobi-1d/2d, and seidel-2d). For many benchmarks it cannot apply fusion and
tiling together. For some benchmarks with tiling activated, CHiLL fails to calculate
the loop upper bound value, warns the user and stops. Table 5.4 summarizes errors
and warnings which occurred during the translation, compilation, and execution of
PolyBench/C using the polyhedral compilers.

Output Verification. We used the POLYBENCH_DUMP_ARRAYS option from PolyBench/C
and dumped all output to files for both sequential and parallel executions, and com-
pared them to their reference standard compiler. For example, we compared the output
of Polly with the output of clang, and similarly the Pluto (-tile) gcc output with the
output of the original code using gcc. Because of the aggressive optimization options
(-ffast-math) the output of a few benchmarks differ slightly in precision, and we did
not consider those as failures.

Polly generates wrong outputs for gemver and trmm (in parallel only). PolyOpt
emits wrong outputs for symm, ludcmp, and deriche. PoCC also emits wrong outputs
for symm and durbin. Polygeist generates wrong outputs for the parallel execution
of lu. CHiLL generated wrong results for seven benchmarks (atax, doitgen, gesummv,
symm, durbin, adi, and fdtd-2d).

Considering errors and output verification Pluto, Polly, and Polygeist fail in one
benchmark (adi, gemver, and lu respectively). PolyOpt and PoCC fail in 5 benchmarks
whereas CHiLL fails in 10 benchmarks. The other compilers (GRAPHITE and PPCG)
generates valid output for all 30 benchmarks in PolyBench/C.

Methodology for Comparison. In the rest of the chapter, we evaluate several per-
formance metrics for both built-in and source-to-source compilers using the following
baseline.

For built-in optimizing-compilers, we compare the performance of the binary pro-
duced by the optimizer against the binary produced by the optimizer’s respective stan-
dard compiler: a binary compiled by Polly is compared against the one generated by
clang, and GRAPHITE against gcc.
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C
hapter

5
Benchm. PolyOpt Plulto-tile Pluto-l2tile Pluto-dia-tile PoCC PPCG Polygeist CHiLL
symm - Failed to par-

allelize
- - - - -

cholesky Assertion
error during
affine conver-
sion

- - - - - Failed to par-
allelize

-

durbin Failed to par-
allelize

Failed to par-
allelize

- - - - -

gramschmidt- - - - - - - Segmentation
error

ludcmp - Failed to par-
allelize

- - Candl error:
schedule is
not identity
2d+1 shaped

Failed to par-
allelize

Failed to par-
allelize

Segmentation
error

trisolv - - - - - - Failed to par-
allelize

-

correlation - - - - - Segmentation
violation:
parallel exe-
cution in icc
compiler

- -

deriche - - - - Candl error:
schedule is
not identity
2d+1 shaped

- Failed to par-
allelize

-

nussinov Failed to par-
allelize

- - - Candl error:
schedule is
not identity
2d+1 shaped

Segmentation
violation:
parallel ex-
ecution in
icc compiler.
CUDA com-
piler error.

Failed to par-
allelize

Segmentation
error

fwarshall - - - - - Failed to par-
allelize

-

adi Failed to par-
allelize

Error while
extracting
polyhedra

Error while
extracting
polyhedra

Error while
extracting
polyhedra

Clan error - - -

jacobi-
1d/2d

- - - - - Failed to par-
allelize

- -

seidel-2d PLuTo can-
not find any
more hyper-
planes

- - - - Failed to par-
allelize

- -

heat-3d - - - Time-Out: C
file not emit-
ted in 2 hrs

- Segmentation
violation:
parallel exe-
cution in icc

- -

Table 5.4: Compile-time errors, run-time errors, warnings, and parallelization issues of PolyBench/C with respect to different polyhedral compilers.
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Figure 5.1: Geomean sequential execution speedups on PolyBench/C on an Intel CPU

For source-to-source polyhedral compilers, once the native source code is trans-
formed into an optimized source code, it is compiled with gcc, clang and icc. Their
three executions are then compared to the ones obtained by compiling the original
source code with these respective compilers. When ambiguous, we name a compiled
transformed source after the scheduler and compiler used to produce it, for example
PoCC+gcc or PoCC+clang. For PolyOpt, the optimized code is compiled and compared
only with ROSE.

5.3.2 Overall Performance of Sequential and Parallel Codes

Sequential. Figures 5.1 and 5.2 show the sequential geomean speedups of polyhe-
dral optimized codes on Intel and AMD processors respectively of all benchmarks
in PolyBench/C. The left box groups the results for built-in polyhedral compilers
(GRAPHITE, Polly, Polygeist), and PolyOpt, while the right box presents results for
source-to-source polyhedral compilers, for each binary compiled with gcc, clang and
icc respectively. The left box also contain bars with value set to 1 for the standard
compilers (gcc, clang, icc and ROSE) as a reference. For errors, wrong results and
time-outs happening using polyhedral compilers, we have replaced their results with
the execution time of their respective baseline compiler (yielding a speedup of 1 for
benchmarks with an error).

From the figures, we can see that Polly, Polygeist and PolyOpt perform better than
their baseline compiler on both our Intel (1.08×, 1.26×, and 1.43× resp.) and AMD
(1.27×, 1.51×, and 1.47× resp.) machines. On the contrary, GRAPHITE binaries are
slower than those produced by gcc alone with speedups of 0.97× on Intel and 0.95×
on AMD.

Among source-to-source compilers, PLuTo’s and PoCC’s optimized codes perform
significantly better using gcc and clang. When using icc we see a modest gain on the
Intel processor and a slight slowdown on AMD. PPCG+gcc and PPCG+clang perform
better on both processor types, but PPCG+icc is always slower than the native source
compiled with icc. CHiLL performs on average worse using all three compilers.
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Figure 5.2: Geomean sequential execution speedups on PolyBench/C on AMD Ma-
chine.

Parallel. Figures 5.3 and 5.4 show the parallel geomean speedups of 21 benchmarks
in PolyBench/C against polyhedral compilers. A few benchmarks have very short
execution time and are not suitable for parallelization. So, we considered only 21
benchmarks2 with an execution time greater than 1.5 seconds using the gcc-compiled
sequential version, for inclusion in the geomean speedup calculation reported here.
CHiLL does not provide support for automatic parallel code generation and therefore
is not included in those figures. We observed that Polly (geomean 5.5×), PolyOpt,
PoCC, and Pluto (-tile with gcc geomean: 15×) are quite efficient in parallelizing this
set of codes with geomean speedups of 4.6× to 18× on both our platforms (40-cores
Intel and 48-cores AMD).

We report speedups with respect to the baseline sequential code, as the end-user
is mainly interested in the overall gain obtained from its original code. By averaging
the speedups we get a global picture of the performance one can expect from these
automatic polyhedral compilers. However, if we express the speedups listed in those
figures as efficiency (the ratio of speedup to number of cores), they range from a
modest 0.35 to a problematic 0.05, regardless of the test platform (AMD or Intel).
Even without computing a reference to the machine best reachable performance, some
benchmarks obviously pose serious issues. As we will detail later (Section 5.4.2) these
averages conceal extremely varied performance depending on the benchmark.

5.3.3 Performance per Category

We now refine the observations with a breakdown of the performance averaged by
category. Each figure in this section presents both sequential and parallel versions,
using gcc, clang, icc, and ROSE when applicable. We did not report CHiLL since
it fails to optimize many of these benchmarks and is not fully automatic. Like in the
previous sub-section, we considered only 21 suitable benchmarks for parallel execution.

2The excluded benchmarks are atax, bicg, doitgen, mvt, gemver, gesummv, durbin, trisolv, and
jacobi-1d.
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Figure 5.4: Geomean parallel execution speedups on 21 PolyBench/C on AMD Ma-
chine (48 cores).
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Figure 5.5: Geomean speedups for GRAPHITE, Pluto (-tile), PoCC, and PPCG using
gcc. On the x-axis are the six categories of benchmarks in PolyBench/C.
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Figure 5.6: Geomean speedups of Polly, Polygeist, Pluto (-tile), PoCC, and PPCG
using clang

Gcc. Figure 5.5 shows the sequential and parallel speedups obtained by the polyhedral
compilers (GRAPHITE, Pluto (-tile), PoCC, and PPCG) using gcc for the six Poly-
Bench/C categories. GRAPHITE cannot effectively optimize any set of benchmarks
compared to the baseline gcc (speedups: 0.67×-1.11×). Pluto-tile and PoCC produce
effective optimizations for the blas, solvers, datamining, and medley categories. They
fail to optimize kernels and stencils in sequential execution, but they report speedups
(5×-42×) in parallel3. PPCG reports speedups for kernels (parallel), blas, solvers (se-
quential), and datamining. PPCG adds overheads4 to the parallelized code and shows
a lower performance using gcc for solvers, medley, and stencils.

Clang. Figure 5.6 shows the speedups with clang in the same conditions as above.
Polly and Polygeist report speedups in sequential for kernels, blas, solvers, and datamin-
ing, but fails for the other two categories. Except for the medley category, Polly
has a good parallelization impact. Polygeist failed to parallelize a few loops in the
solvers benchmarks (as mentioned in section 5.3.1 errors) and that is the reason for
low speedups. Pluto-tile and PoCC fail to optimize medley and stencils in sequential,
but for all other categories and in parallel they perform good. PPCG sequential op-
timized code fails to perform better for the kernels, medley, and stencils categories.
Similarly, PPCG’s parallel codes show slowdowns for solvers, medley, and stencils.

Icc. Figure 5.7 shows the speedups using icc in the same conditions as above. The
baseline icc compiler is very efficient in optimizing the kernels category benchmarks,
leaving no space for optimization. The polyhedral compilers transform those kernels
codes, that are no longer recognized by icc and eventually perform worse than the
baseline in sequential. They report only small speedups in parallel. For all the other
categories Pluto-tile and PoCC improve performance. PPCG underperforms the base-
line for datamining (sequential), stencils (sequential), and solvers (parallel).

ROSE. Figure 5.8 shows the sequential and parallel speedups obtained by PolyOpt
3Benchmarks atax, bicg, doitgen, mvt from kernels and jacobi-1d from stencils are excluded in

speedup calculation.
4Due to more thread creation/synchronization or inefficient usage of processor cores, as discussed

below in section 5.4.2.
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Figure 5.7: Geomean speedups of Pluto (-tile), PoCC, and PPCG using icc
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Figure 5.8: Geomean speedups of ROSE/PolyOpt compared to the baseline ROSE com-
piler

compared to ROSE. PolyOpt reports speedups for most of the categories excluding
medley (sequential) and stencils (sequential).

5.4 Performance for Specific Benchmarks

Observation metrics. In this section, we pick one benchmark from each of the six cat-
egories to find the reasons for the differences in performance observed among different
versions. The representative benchmarks are: 2mm (kernels), syr2k (blas), lu (solvers),
covariance (datamining), floyd-warshall (medley), and jacobi-2d (stencils). We chose
them on conditions that they have long execution time, and they are being compiled
and executed without error by all polyhedral compilers. We provide an analysis based
on the observation of some execution data collected with the hardware counters using
the linux perf profiling tool. Table 5.5 presents measurements collected for sequential
runs. They can be split in two categories of metrics:

(1) Scalar and Vector Instructions The scalar-ins and vector-ins lines of the table
report the ratio of the number of scalar (resp. vector) instructions to the number of
floating-point instructions counted in the baseline. The number of vector instructions
is computed counting each vector instruction as its equivalent number of floating-point
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operations on doubles, that is 2, 4 and 8 for respectively 128, 256 and 512 bits vector
instruction sets. We chose this representation to easily see on one hand, to what
extent the native compiler could vectorize the code and the nature of the benchmark’s
computations (some benchmarks like floyd-warshall only compute on integers), and on
another hand how these shares change on the transformed code.

For instance, we can read in the Table 5.5 that for 2mm, the compilers gcc, clang
and icc could vectorize almost all floating-point instructions, or that the binary pro-
duced from Polly executes more floating-point vector instructions (+17%) than the
baseline compiled with clang. The trend is comparable between the baseline and
the optimized codes: the vectorization opportunities have not been diminished by the
transformations. On the contrary, in jacobi-2d for example, the code produced by
Polygeist results in only 6% vector instructions compared to 99.5% in the base version
(clang). In this case, it is clear that the vectorization opportunities were not detected
by the compiler in the transformed code. We provide an in-depth analysis with vector
debug passes in the following sections for this poor vectorization.

There are multiple factors that explain the variations in vectorization. On one hand,
source-to-source polyhedral compilers add vectorization directives5 by exploiting the
result of their dependency analysis, that can enable more vectorization opportunities.
However, these are merely recommendations to the compiler which may just ignore
them. On the other hand, the codes produced by polyhedral compilers generally expose
more complex loop nests which may annihilate vectorization attempts by the auto-
vectorizers.

The total number of floating-point instructions may vary for diverse reasons. The
-O3 optimization level generally requests the auto-vectorizer to generate adaptive code
driven by a cost model6. The cost model computations themselves are costly when
repeated frequently to control an inner-loop with few iterations. Another example is
that fused operations such as fma is possible in one version of the code and not in
another.

(2) LLC-miss, page-fault and branch misprediction These metrics globally reflect the
data-locality and branch prediction efficiency of the execution. In Table 5.5, the lines
LLC-miss, page-fault and branch-miss report ratios of event counts of the optimized
version over the base version. We choose to report LLC-miss over L2-miss, because an
LLC-miss involves an access to main memory, that has a high impact on performance.

5for example #pragma ivdep, #pragma vector always, or #pragma simd.
6gcc for instance sets the switch -fvect-cost-model to dynamic at the -O3 level, while it is set

to very-cheap with -O2. With dynamic a runtime code guards the vectorized code-path to enable
vectorization only when estimated profitable. The very-cheap model only vectorizes the code if the
scalar iteration count is known to be a multiple of the vector size.
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gcc clang ROSE icc
Benchm. metric gcc GRA Pluto PoCC PPCG clang Polly P’gst Pluto PoCC PPCG ROSE P’opt icc Pluto PoCC PPCG
2mm scalar-ins 0.013% 0.013% 0.758% 0.775% 1.599% 0.358% 1.652% 0.620% 0.816% 0.758% 1.661% 100.0% 0.606% 0.209% 1.394% 0.703% 3.175%
(kernel) vector-ins 99.99% 100.0% 128.3% 101.8% 107.3% 99.64% 117.1% 82.66% 117.2% 90.69% 116.7% 0.000% 80.99% 99.79% 125.4% 93.36% 134.6%

LLC-miss 2.8E+08 1.091 0.141 0.143 0.042 3.5E+08 0.052 0.131 0.107 0.091 0.052 3.6E+08 0.103 2.9E+06 11.96 9.894 5.867
page-fault 3.1E+03 1.001 0.987 0.982 0.983 3.2E+03 0.995 0.808 1.003 1.153 1.155 3.7E+03 0.859 3.1E+03 1.028 1.534 1.190
branch-miss 4.5E+06 0.996 1.504 0.105 1.389 6.8E+06 1.983 0.126 1.000 0.978 1.475 6.8E+06 2.070 6.8E+06 1.958 1.980 1.981
speedups 1 1.032 2.104 3.804 2.356 1 1.729 5.158 1.884 2.536 1.871 1 2.179 1 0.174 0.200 0.145

syr2k scalar-ins 99.99% 99.88% 0.633% 0.634% 0.657% 0.117% 0.116% 120.3% 0.643% 0.650% 0.651% 0.038% 0.036% 0.020% 1.281% 1.278% 1.272%
(blas) vector-ins 0.010% 0.010% 102.6% 101.5% 103.0% 99.88% 100.8% 0.000% 111.8% 111.5% 109.4% 99.96% 100.7% 99.98% 105.6% 105.6% 103.8%

LLC-miss 1.0E+09 0.997 0.007 0.006 0.029 1.0E+09 0.029 0.001 0.030 0.029 0.031 1.1E+09 0.025 2.3E+08 0.129 0.141 0.136
page-fault 2.1E+03 0.998 0.933 1.176 1.174 3.1E+03 0.670 0.660 0.808 0.642 0.808 2.1E+03 0.959 2.5E+03 0.782 0.983 0.984
branch-miss 2.5E+06 0.995 2.716 2.714 0.213 4.3E+06 1.605 1.621 1.635 1.631 1.576 4.7E+06 1.482 3.4E+06 1.987 2.032 2.009
speedups 1 0.980 6.253 6.168 7.953 1 3.380 2.310 7.831 8.503 7.408 1 4.680 1 2.338 2.659 2.625

lu scalar-ins 25.02% 24.99% 0.028% 0.165% 0.019% 24.94% 0.059% 0.111% 24.55% 24.79% 0.165% 24.97% 12.51% 12.60% 24.73% 0.482% 24.86%
(solver) vector-ins 74.98% 75.05% 100.10%99.91% 100.7% 75.06% 99.87% 99.78% 75.33% 75.19% 99.91% 75.03% 87.50% 87.40% 73.39% 99.60% 74.54%

LLC-miss 1.1E+10 0.993 0.787 0.790 0.788 1.4E+09 0.883 0.195 0.173 0.180 0.198 6.5E+09 0.672 1.4E+09 0.004 0.042 0.004
page-fault 2.7E+03 1.000 1.007 1.337 0.987 3.3E+03 0.996 0.839 1.001 1.000 0.982 3.1E+03 0.981 2.2E+03 0.958 0.90 0.96
branch-miss 3.2E+07 1.002 0.850 0.933 0.827 3.7E+07 0.662 0.479 0.485 0.486 1.052 3.2E+07 1.318 1.7E+07 1.390 0.739 1.491
speedups 1 1.010 11.62 11.54 10.71 1 1.184 5.483 2.616 2.597 6.807 1 2.949 1 2.199 6.773 1.834

covari- scalar-ins 0.017% 0.017% 0.091% 0.148% 1.601% 0.299% 1.840% 1.690% 1.541% 1.119% 1.854% 100.0% 0.058% 0.112% 0.121% 0.079% 3.159%
ance vector-ins 99.98% 100.2% 104.2% 104.9% 100.8% 99.70% 122.2% 101.4% 101.7% 103.3% 121.5% 0.000% 100.8% 99.89% 102.7% 97.80% 122.1%
(datam.) LLC-miss 4.8E+08 0.956 0.042 0.043 0.039 4.9E+08 0.066 0.044 0.041 0.040 0.047 4.5E+08 0.026 4.6E+08 0.037 0.037 0.045

page-fault 2.2E+03 1.000 0.674 0.675 0.950 1.6E+03 1.265 0.899 1.222 1.223 0.965 2.2E+03 0.933 1.6E+03 0.975 0.973 1.328
branch-miss 3.5E+06 1.000 0.114 0.115 2.747 3.5E+06 3.026 0.271 3.782 3.630 2.956 3.5E+06 2.898 7.1E+06 1.467 1.491 1.448
speedups 1 0.993 8.475 8.478 2.743 1 1.726 5.050 6.724 6.861 1.708 1 3.407 1 2.045 2.142 0.901

floyd- scalar-ins - - - - - - - - - - - - - - - - -
warshall vector-ins - - - - - - - - - - - - - - - - -
(medley) LLC-miss 6.0E+07 1.004 54.51 54.08 39.59 5.2E+07 0.947 158.4 84.02 84.33 165.9 5.9E+07 148.4 1.3E+10 0.031 0.031 0.030

page-fault 1.8E+03 1.001 1.218 0.935 1.184 3.4E+04 0.052 0.040 0.062 0.097 0.053 1.8E+03 0.967 2.3E+03 0.796 0.791 1.010
branch-miss 3.2E+07 1.001 6.483 6.533 0.107 3.2E+07 0.998 0.228 5.348 4.448 0.211 3.2E+07 5.282 3.5E+07 4.952 4.947 31.066
speedups 1 0.999 1.471 1.529 1.780 1 0.998 0.483 0.250 0.251 0.735 1 1.096 1 4.329 4.352 3.316

jacobi- scalar-ins 0.000% 0.000% 0.077% 0.071% 99.87% 0.500% 99.77% 93.65% 100.00%99.89% 99.90% 0.000% 0.071% 0.357% 0.150% 0.144% 99.97%
2d vector-ins 100.00% 100.0% 99.97% 99.97% 0.000% 99.50% 0.000% 6.239% 0.035% 0.037% 0.017% 100.00% 100.1% 99.64% 100.1% 100.2% 0.019%
(stencil) LLC-miss 9.2E+08 1.017 0.065 0.004 0.001 1.0E+09 0.070 0.037 0.009 0.009 0.001 1.0E+09 0.006 9.9E+08 0.006 0.006 0.001

page-fault 2.4E+03 1.000 0.768 0.792 1.000 1.9E+03 1.390 1.185 0.999 1.505 1.298 3.8E+03 0.494 1.9E+03 0.999 0.938 1.031
branch-miss 5.7E+06 1.000 0.130 1.524 1.574 5.7E+06 87.47 4.241 1.600 1.668 41.388 5.7E+06 1.472 5.7E+06 1.480 1.486 1.642
speedups 1 1.036 1.011 0.915 0.825 1 0.334 0.992 1.068 0.975 0.777 1 0.927 1 1.038 2.188 0.826

Table 5.5: Performance ratios for various profiling metrics against their respective compiler for six benchmarks using the perf profiling tool on an Intel machine (sequential
execution). GRA - GRAPHITE; Pluto - Pluto with --tile; P’gst - Polygeist; P’opt - PolyOpt.
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The raw numbers of misses or page-faults are given in the base version column (first
column of each group of compiler, in blue). We compare different versions compiled
with the same compiler and options. A lower than 1 ratio is an indication that the
compiled code does better in terms of locality or branch prediction. For instance, the
LLC-miss count of the code generated by Polly for 2mm is only 5.2% (0.052×) the
one observed when executing the base version 2mm (both compiled with clang). A
decrease in branch miss is an indication that the branch prediction is effective and
the optimized code performs better. For example, the branch-miss count of the code
generated by Polygeist is only 12.6% (0.126×) the one observed when executing the
base version of 2mm.

(3) Speedup Finally, the table gives for each benchmark the speedup of the trans-
formed version compared to the baseline compiler version.

5.4.1 Sequential Execution Analysis.

2mm (kernels). Overall, we see in Table 5.5 a slight increase (above 100%) in the
number of vector instructions for one polyhedral compiler out of two, and sometimes a
slight decrease, but these small variations do not account significantly in the observed
speedups. Notice that the ROSE compiler does not vectorize the native 2mm code at
all, while PolyOpt’s generated code exhibits a number of vector instructions similar to
the other polyhedral compilers. Most of the optimized codes (except those compiled
with GRAPHITE and icc) do show a significant speedup thanks to a 10× reduction
in LLC-misses. On top of that, PoCC+gcc and Polygeist generated codes have better
branch prediction and show the best speedups. The optimized codes compiled with icc
have execution times on par with other compilers and the observed slowdowns in the
table are due to the fact that the original code generated by icc performs about 10×
faster than its counterparts. This is due to a 100× reduction in LLC-misses compared
to gcc and clang. This confirms the observation we made in section 5.3.3, that icc
optimizes very effectively the native kernels codes.

syr2k (blas). We observe important discrepancies regarding vectorization between
the compilers. While almost all floating-point instructions can be vectorized, gcc fails
to detect them on the native code, while it achieves it on all the transformed codes
(except GRAPHITE). For the other compilers the vectorization rate is 100% on the
native and on the optimized codes, except for Polygeist where the clang compiler does
not vectorize them. The optimized codes also show a significant reduction in the LLC-
misses. We can pinpoint in this benchmark the effect of branch-misses as Pluto+gcc,
PoCC+gcc and PPCG+gcc show similar counts for all the hardware counters except
branch-misses: a reduction of 10× in this count (PPCG+gcc) leads to an increased
speedup of 27-29%. As in 2mm, the better use of cache mostly contributes to the
observed speedups of Pluto, PoCC and PPCG. Polly had an increase in the total
number of instructions (not shown in table) compared to clang and that is the reason
for smaller speedups than its counterparts.
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For symm (another blas benchmark), only PPCG produces a code with better per-
formance by dividing the counts for LLC-misses by 35; the other polyhedral compilers
perform similar to the baseline. For all the other benchmarks in the blas category,
most source-to-source polyhedral compilers generate code that performs better than
the baseline.

lu (solvers). A large part of the optimized codes show significant speedups (2×-11×).
What appears to contribute most to the speedup is the number of floating-point in-
structions promoted from scalar to vector instructions. For instance the Pluto+gcc
code achieves to vectorize almost all floating-point instructions (less than 0.03% scalar
instructions remain) resulting in a 11.6× speedup. On the contrary, Pluto+clang code
executes with the same number of scalar and vector instructions as the native code and
has a speedup of 2.6× only. Still, this is a significant speedup due to a better cache
utilization: the number of LLC-misses is 0.17× the one of the native code. We may
underline here the effect of reduction in LLC-misses in this benchmark as Polly and
Polygeist show similar counts for all counters except LLC-misses: comparing those two
versions, a reduction of 4.5× in LLC-misses leads to a speedup of 4.6×.

Similar to symm, for ludcmp (solvers) the PPCG optimized code has better execu-
tion time compared to all other polyhedral compilers.

covariance (datamining). Most optimized codes show a significant speedup of 2×-8×.
The general trend in this benchmark is again a massive reduction in LLC-misses. Polly,
PPCG+clang, and PPCG+icc increase the total number of executed instructions (not
shown in the table) and that is the reason for reduced speedups than their counterparts.
One particular case here is, like in 2mm, the ROSE compiler not being able to vectorize
the native code while PolyOpt can. The inefficient branch prediction in PPCG+gcc
reduces the speedups as compared to its counterparts (Pluto+gcc and PoCC+gcc).
The Polygeist code generates less branch misses than Pluto/PoCC+clang, but reports
lower speedups because of a greater number of total instructions.

floyd-warshall (medley). The optimized codes show almost no speedup in this bench-
mark. There are no floating-point operations at all in this code. Although Pluto+icc
and PoCC+icc have speedups of 4×, this result is misleading because the icc native
compiled code takes 6× more execution time compared to gcc and clang. We ob-
serve a large number of LLC-misses in the icc native version. After optimization,
the LLC-misses decrease and there is a 4× speedup. Nonetheless the execution time
is twice as long as the Pluto+gcc version. Using the other compilers, all polyhedral
compilers increase the number of LLC-misses for this benchmark, but it is three orders
of magnitude smaller than the one of the icc version.

We observe no correlation between the speedup and the hardware counters pre-
sented in this table. However, we observe a strong linear correlation between the ratios
of cycle stalls and the speedups. The reason for those cycle stalls is probably a different
instruction reordering resulting in worse pipeline usage, or a less performing register
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allocation. In both cases, the icc compiler on the base code performs better but at
the cost of a huge increase in LLC-misses ending up to a slowdown.

jacobi-2d (stencils). The polyhedral optimizations improve data locality by tiling the
code, but they also hinder vectorization opportunities, for the clang compiler and
for the PPCG generated code with any compiler. As a result, the speedup of these
versions is reduced. Further analysis with the help of clang and gcc vector debugging
pass shows a forward-dependency across the innermost loop in the polyhedral optimized
jacobi-2d code. This dependency prevents vectorization by clang, but gcc achieved to
unroll and re-order those loop statements to vectorize them.

Although almost all polyhedral compilers largely reduced the LLC-miss counts, this
does not induce any speedup. Considering each compiler separately, the version that
has the less page-faults is among the ones that have the best speedup, but the correlation
is pretty weak and does not hold amongst different compilers. Moreover, the Pluto+gcc
version for example has much lower values for all cache-misses (0.06×), page-faults
(0.77×) and branch-misses (0.13×) than the gcc baseline, and still only achieves a 1%
speedup! We suspect, as in floyd-warshall, that another factor like efficient instruction
pipelining or register allocation of this stencil code is the main factor of performance.
Overall, most versions show very small variations in speedup, which stays around
1×. Only PoCC+icc reaches a 2× speedup although there is no special improvement
in vectorization, LLC-misses, pages-faults, nor branch misses compared to the other
versions.

5.4.2 Parallel Execution Analysis.

The benefit of parallelization by polyhedral compilers varies a lot depending on the
perspective we adopt to analyze the results: either with respect to the base code
(which is the user’s primary concern) or with respect to the sequential optimized code.
In the former case, the benefit of polyhedral compilation combines the benefits of all
loop transformations and parallelization, and in the latter case we see the sole effect of
parallelization.

Table 5.7 shows in the main columns the speedups obtained for 7 benchmarks (the
6 discussed in sequential analysis + heat-3d) in the two cases for all three compilers
(gcc, clang, icc), and three polyhedral source-to-source parallelizing compilers (Pluto,
PoCC, PPCG). PPCG is not mentioned for floyd-warshall and jacobi-2d because it did
not produce a parallel code. We can see that compared to the sequential optimized
version, the efficiency when using all 40 cores ranges from low (about 0.4 for a 16×
speedup) to very low (about 0.05 for a 2× speedup)7. However, comparing the parallel
execution times with the base sequential version leads to results ranging from super-
linear speedups (over 40×) to some rare slowdowns.

7The only exception is lu with Pluto+clang and PoCC+clang with an efficiency of more than 0.8.
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gcc clang ROSE icc
Benchm. metric gcc GRA Pluto PoCC PPCG clang Polly P’gst Pluto PoCC PPCG ROSE P’opt icc Pluto PoCC PPCG
2mm scalar-ins 0.013% 0.013% 73.73% 0.839% 118.2% 0.358% 1.713% 0.680% 40.71% 44.17% 93.98% 100.0% 0.626% 0.209% 1.035% 0.652% 2.625%
(kernel) vector-ins 99.99% 99.4% 52.98% 113.9% 0.000% 99.64% 112.2% 73.78% 62.07% 38.91% 0.033% 0.000% 85.58% 99.79% 98.52% 92.46% 135.6%

LLC-miss 2.8E+08 1.025 0.017 0.015 0.014 3.5E+08 0.013 0.027 0.008 0.006 0.011 3.6E+08 0.015 2.9E+06 4.755 3.781 5.807
page-fault 3.1E+03 0.999 1.166 1.166 1.327 3.2E+03 0.047 0.346 0.448 0.448 0.410 3.7E+03 4.152 3.1E+03 1.013 1.013 1.027
branch-miss 4.5E+06 1.002 43.81 2.090 3.512 6.8E+06 1.720 1.484 1.306 1.380 2.672 6.8E+06 2.031 6.8E+06 2.319 2.216 1.859
speedups 1 1.050 25.60 47.01 15.12 1 33.38 25.65 25.08 34.18 18.88 1 21.04 1 2.452 4.135 2.273

syr2k scalar-ins 99.99% 100.04%99.45% 99.81% 99.41% 0.117% 0.118% 119.6% 0.651% 0.629% 1.256% 0.038% 0.038% 0.020% 0.893% 0.827% 1.133%
(blas) vector-ins 0.010% 0.010% 0.000% 0.000% 0.000% 99.88% 100.4% 0.095% 115.9% 96.73% 102.5% 99.96% 109.1% 99.98% 83.39% 69.23% 72.91%

LLC-miss 1.0E+09 1.000 0.002 0.002 0.001 1.0E+09 0.035 0.001 0.021 0.020 0.021 1.1E+09 0.013 2.3E+08 0.093 0.075 0.073
page-fault 2.1E+03 1.241 1.198 0.958 0.956 3.1E+03 0.045 0.433 0.576 0.575 0.584 2.1E+03 9.532 2.5E+03 0.596 0.596 0.604
branch-miss 2.5E+06 0.992 2.902 2.856 2.798 4.3E+06 1.574 2.363 2.380 2.002 2.307 4.7E+06 1.598 3.4E+06 2.655 2.460 2.376
speedups 1 0.813 50.46 50.86 39.32 1 59.02 25.86 71.42 68.10 83.76 1 73.39 1 34.55 34.68 37.44

lu scalar-ins 25.02% 24.99% 0.027% 0.174% 0.019% 24.94% 0.155% - 0.18% 0.30% 0.215% 24.97% 12.52% 12.60% 24.55% 0.422% 24.77%
(solver) vector-ins 74.98% 74.99% 100.6% 102.6% 99.92% 75.06% 99.60% - 99.86% 100.9% 99.60% 75.03% 87.58% 87.40% 70.73% 93.10% 71.83%

LLC-miss 1.1E+10 1.007 0.807 0.803 1.244 1.4E+09 0.072 - 0.765 0.673 1.421 6.5E+09 0.798 1.4E+09 0.019 0.028 2.476
page-fault 2.7E+03 1.227 1.257 1.258 8.436 3.3E+03 0.016 - 1.043 0.989 1.962 3.1E+03 23.274 2.2E+03 0.892 0.900 1.741
branch-miss 3.2E+07 1.008 1.329 1.192 55.61 3.7E+07 0.458 - 1.202 0.601 35.93 3.2E+07 1.360 1.7E+07 1.786 0.951 70.71
speedups 1 1.029 129.4 110.5 0.153 1 19.75 - 90.95 85.70 0.545 1 53.66 1 28.05 70.84 0.368

covari- scalar-ins 0.017% 99.78% 0.034% 0.024% 102.4% 0.299% 1.890% 1.107% 1.013% 0.970% 1.635% 100.0% 0.036% 0.112% 0.065% 0.052% 3.290%
ance vector-ins 99.98% 0.000% 108.5% 109.0% 0.000% 99.70% 124.4% 102.0% 112.2% 113.0% 134.3% 0.000% 106.6% 99.89% 115.7% 112.7% 117.4%
(datam.) LLC-miss 4.8E+08 1.020 0.043 0.042 0.070 4.9E+08 0.088 0.066 0.045 0.046 0.057 4.5E+08 0.021 4.6E+08 0.043 0.040 0.053

page-fault 2.2E+03 1.327 1.265 1.291 0.955 1.6E+03 0.978 1.074 1.502 1.508 1.436 2.2E+03 1.304 1.6E+03 1.291 1.603 1.520
branch-miss 3.5E+06 1.014 3.128 3.145 3.138 3.5E+06 3.053 4.878 4.150 4.016 3.910 3.5E+06 3.163 7.1E+06 1.614 1.541 1.775
speedups 1 0.782 47.41 52.94 19.93 1 21.04 34.92 46.48 45.96 17.17 1 36.99 1 22.04 17.83 9.850

floyd- scalar-ins - - - - - - - - - - - - - - - - -
warshall vector-ins - - - - - - - - - - - - - - - - -
(medley) LLC-miss 6.0E+07 1.038 80.23 80.46 38.17 5.2E+07 0.870 157.4 59.63 59.69 171.0 5.9E+07 103.4 1.3E+10 0.224 0.226 0.022

page-fault 1.8E+03 0.999 2.155 2.064 0.902 3.4E+04 1.006 5.271 2.698 2.657 41.69 1.8E+03 1.651 2.3E+03 2.083 3.187 32.82
branch-miss 3.2E+07 0.998 12.77 12.87 0.110 3.2E+07 1.003 50.28 16.74 16.29 0.211 3.2E+07 8.158 3.5E+07 13.15 13.70 5.012
speedups 1 0.734 3.305 3.126 1.692 1 1.002 2.470 2.630 2.641 0.713 1 3.362 1 21.05 21.03 4.195

jacobi- scalar-ins 0.000% 0.000% 0.078% 99.98% 99.90% 0.500% 99.77% 92.31% 99.48% 101.0% 99.83% 0.000% 0.073% 0.357% 0.172% 0.137% 99.56%
2d vector-ins 100.0% 100.0% 100.1% 0.038% 0.000% 99.50% 0.000% 6.246% 0.034% 0.034% 0.046% 100.0% 99.37% 99.64% 97.97% 95.70% 0.032%
(stencil) LLC-miss 9.2E+08 1.014 0.096 0.003 0.001 1.0E+09 0.070 0.015 0.008 0.008 0.001 1.0E+09 0.009 9.9E+08 0.006 0.007 0.001

page-fault 2.4E+03 1.260 0.933 0.905 1.002 1.9E+03 1.575 0.965 1.211 1.216 40.44 3.8E+03 9.078 1.9E+03 1.497 1.073 40.25
branch-miss 5.7E+06 1.010 1.633 1.900 1.573 5.7E+06 6.148 6.541 4.466 4.310 41.45 5.7E+06 1.876 5.7E+06 3.639 2.758 1.711
speedups 1 0.982 10.39 11.71 0.825 1 3.525 15.53 5.168 5.593 0.768 1 9.965 1 11.08 22.62 0.787

Table 5.6: Performance ratios for various profiling metrics against their respective compiler for six benchmarks using the perf performance profiling tool on an Intel machine
(parallel execution on 40 cores). GRA - GRAPHITE; Pluto - Pluto with --tile; P’gst - Polygeist; P’opt - PolyOpt.
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polyhedral #parallel core- gcc-speedups clang-speedups icc-speedups
Bench. compiler region used base opt base opt base opt
2mm Pluto 2 all 40 25.60 12.17 25.08 13.31 2.452 14.09

PoCC 2 all 40 47.01 12.36 34.18 13.48 4.135 20.67
PPCG 2 all 40 15.12 6.418 18.88 10.09 2.273 15.66

syr2k Pluto 2 all 40 50.46 8.070 71.42 9.121 34.55 14.78
PoCC 2 all 40 50.86 8.245 68.10 8.009 34.68 13.04
PPCG 1 all 40 39.32 4.944 83.76 11.31 37.44 14.27

lu Pluto 250 all 40 129.4 11.13 90.95 34.77 28.05 12.75
PoCC 250 all 40 110.5 9.58 85.70 32.99 70.84 10.46
PPCG 21.08m 32 0.153 0.014 0.545 0.080 0.368 0.201

covari- Pluto 7 all 40 47.41 5.594 46.48 6.912 22.04 10.78
ance PoCC 7 all 40 52.94 6.245 45.96 6.700 17.83 8.32

PPCG 5 all 40 19.93 7.265 17.17 10.05 9.850 10.94
floyd- Pluto 1.96m all 40 3.305 2.247 2.630 10.52 21.05 4.863
warshall PoCC 1.96m all 40 3.126 2.044 2.641 10.51 21.03 4.832

PPCG - - - - - - - -
jacobi- Pluto 182 30 10.39 10.27 5.168 4.839 11.08 10.67
2d PoCC 182 30 11.71 12.81 5.593 5.735 22.62 10.34

PPCG - - - - - - - -
heat- Pluto 100 3 1.543 1.024 1.052 0.704 4.483 1.546
3d PoCC 100 3 1.389 2.100 1.004 0.598 4.350 1.559

PPCG 31.08m 32 0.012 0.011 0.023 0.012 1.000 0.217

Table 5.7: The total number of parallel regions, number of cores utilized, and speedups of the parallel
optimized code of source-to-source polyhedral compilers compared to the baseline version (base) and the
sequential optimized version (opt). Pluto with --tile; m - is millions.

While we have collected the same hardware counters as for the sequential executions
(reported in Table 5.6) we found out that two other factors are mostly governing the
performance of parallel executions: the total number of OpenMP parallel regions, and
the maximum number of cores (out of 40) utilized during a run. Both are reported in
Table 5.7.

Based on these two factors, we separate the benchmarks in two groups:

• the promising cases gather executions that create a reasonable number of parallel
regions and use most of the available cores;

• the ill cases contain the executions with an excessive number of parallel regions
(inducing large synchronization overhead) or distribute the work to a small frac-
tion of the available cores (inducing low parallelism).

Hereunder, we group the parallelized benchmarks based on these criteria and discuss
their behavior at the light of their parallel efficiency, that is the ratio of speedup with
respect to their sequential optimized version to the number of available cores:

promising cases:

- 2mm (kernels) and syr2k (blas) are effectively parallelized with a minimal number
of parallel regions and utilize all the available cores. However, the efficiency is
not very good (0.3 and 0.2 resp.). For symm (also in the blas category, not shown
in table), only PPCG can emit correct parallel code, but only one statement out
of two is parallelized due to dependencies in the other one. As a result it shows a
very low efficiency (0.05). Pluto is unable to parallelize it. PoCC emits an invalid
parallel code.
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- For lu (solvers), Pluto and PoCC achieve to parallelize the second loop of the
6-level loop nest (after tiling) with a contrasted efficiency: it ends up with the
best efficiency over all results with clang (more than 0.8) and only 0.35 with
gcc. PPCG parallelizes an inner loop which results in millions of parallel regions
creations and hence a performance collapse. This is the main reason for PPCG’s
large slowdown in the solvers category (Figs. 5.5-5.7 (b)).

- covariance (datamining) is effectively parallelized, but shows a limited efficiency
for all polyhedral compilers (e.g., 0.15 for gcc+Pluto), which can be explained
by the large increase in the number of branch-misses in the parallel executions
(see Table 5.6).

- jacobi-2d (stencils), similarly to lu, spawns parallel regions in the order of a
hundred. However the parallelism is limited to 30 cores and the efficiency is
lower than with lu (0.127 with clang, 0.275 with gcc).

ill cases:

- For floyd-warshall (medley), Pluto and PoCC generate a code that creates a huge
number of parallel regions resulting in a low efficiency of 0.05. PPCG does not
parallelize it.

- heat-3d (stencils): though the Pluto and PoCC versions have a reasonable number
of parallel regions, they parallelize a (parametric) loop with 3 iterations and
therefore utilize only 3 out of the 40 cores.

- not shown in table, ludcmp (solvers): none of the polyhedral compilers could
parallelize this code because of a dependency on an intermediate variable.

- not shown in table, doitgen (kernels) has a longer execution time in parallel
than in sequential. Its execution both generates an excessive number of parallel
regions and makes a low utilization of cores, due to the dependencies which
prevent parallelization of the two outer loops.

Parallel Performance Analysis. We used Intel’s VTune and Pluto-tile compiled with
icc to collect the cores’ utilization for some of our benchmarks exposing different par-
allel behaviors. Figures 5.9 and 5.10 show the utilization for promising and ill cases
respectively. Time (in seconds) is represented horizontally and the bar(s) over the
timeline are the parallel region(s); the vertical axis represents the threads; the green
color intensity denotes the cores’ activity; and the bottom bars shows the average (over
40 cores) CPU utilization. For 2mm (Figure 5.9a), the left and upper regions show a
perfect utilization of cores. The imbalance observed at bottom right is due to a low
number of iterations of the parallel loop (after 40 iterations run on 40 threads, only
10 remain in the second part of the parallel region). In lu (Figure 5.9b), we observe
a large number of parallel regions and a low compute intensity. This leads to a per-
formance reduction even though we classified it as a promising case. Floyd-warshall
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(a) 2mm (b) lu
Figure 5.9: Intel VTune reports of cores utilization for promising cases

(a) floyd-warshall

(b) heat-3d
Figure 5.10: Intel VTune reports of cores’ utilization for ill cases

(Figure 5.10a) has a very large number of parallel regions (1.96 million) and a very
low compute intensity, as expected. For heat-3d (Figure 5.10b), we observe a very
low utilization of cores: only 3 threads are active throughout the execution. These
measurements just confirm the different behaviours that we analyzed in the previous
paragraph.

5.5 Pluto with Different Tiling Options

Figure 5.11 shows geomean speedups of the --tile, --l2tile, and --diamond-tile options
of Pluto compared against the baseline standard compilers for 21 Polybench/C bench-
marks. The Pluto-tile and Pluto-dia-tile versions show very similar speedups, except
for stencils: using clang Pluto-dia-tile generates more efficient (+22%) code than
Pluto-tile, but using icc it is the opposite (-40%). We can also see that the --tile
and --diamond-tile options perform better than the --l2tile option for all categories
except stencils. We investigated the hardware counter values and found out that the
number of LLC-misses is often higher using --l2tile. We observe the same behaviour in
sequential runs where --l2tile performs worse even for stencils.
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Figure 5.11: Geomean parallel speedups of Pluto with different tiling options using
different compilers

Considering some individual benchmarks in sequential run (not shown in the figure),
there are some exceptions: for a few tiny benchmarks like atax, bicg, doitgen, gemver
and gesummv the --l2tile code is best. The reason is a reduction in total instruction
count and branch-misses of these versions. In parallel runs, the Pluto-l2tile optimized
codes of most benchmarks are slower than with the other tiling options. This can be
further explained by a lower degree of parallelism and more imbalance, since there are
fewer tiles of larger size than with the other tiling options. Only nussinov (medley), and
the stencils seidel-2d, fdtd-2d, heat-3d with --l2tile perform better. In particular, heat-
3d shows a speedup of more than 3× because when activating --l2tile Pluto chooses
another parallel loop that utilizes all 40 cores, while the other tiling versions could not
utilize all of them.

5.6 PPCG: CUDA and OpenCL

PPCG is the only polyhedral open-source compiler that we could use to generate an
effective GPU code. We compare this PPCG GPU generated codes to the CPU runs
in sequential and in parallel, on the same 21 PolyBench/C benchmarks used in Sec-
tion 5.3.2. The emitted CUDA code is executed on an A100 Nvidia GPU, OpenCL
code using OpenCL version 3.0.1 on the same GPU, and the CPU code on the same
40-core Intel CPU as above.

Figure 5.12 shows the geomean speedups of PPCG emitted CUDA and OpenCL
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Figure 5.12: Geomean speedups of PPCG CUDA and OpenCL codes compared to
the best: (left fig.) sequential code compiled with icc; and (right fig.) parallel code
produced by Pluto-tile + icc.

codes for PolyBench/C. We compare the performance of these optimized codes running
on GPU to the baseline icc CPU sequential code (left figure), since it had the best
geomean execution time in sequential. We also compare (right figure) with the parallel
CPU execution of Pluto+icc with the --tile option.

5.6.1 CUDA

The PPCG generated CUDA codes perform better than the sequential CPU versions
(Fig. 5.12(a)), but they report small speedups (1.5× - 3.2×) for kernels, solvers and
medley, and the other ones report 10× - 33× speedups. Comparing with the parallel
Pluto+icc versions (Fig. 5.12(b)), the CUDA optimized codes report slowdowns for
all of them except for the stencils category.

In their paper from 2013 [57], the authors of PPCG report similar experimental
results. Despite the fact that we do not find the same speedups due to the evolu-
tion of the hardware since this publication, we observe the same trends. The authors
report speedups compared to the sequential code of more than 100× on some bench-
marks using the MEDIUM_DATASET (correlation, covariance, 2mm, 3mm, gemm)
while our measures are in the order of 10× for those. Even though we used the EX-
TRALARGE_DATASET, the execution times on GPU in most cases (4 out of 5) are
lower than 1 second, which explains the low ratio of computation to data transfer and
initialization times. All the benchmarks have a constant 0.2 to 0.3 seconds overhead
for initialization (memory allocation and copy), which is a large part of the total exe-
cution time for many of them. We tried to manually increase the size of the datasets
and observed better speedups in some of those cases.

Regarding the pathological cases reported in the original paper, we noted the same
codes that could not be parallelized efficiently on GPU due to dependencies or due to
many CPU-GPU synchronizations.

To investigate further, we used the Nvidia profiler (nvprof) to better analyze the
executed CUDA codes. Here are our findings:
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• many of those benchmarks are much too short to be executed efficiently on GPU
in the categories kernels, blas, datamining, and medley.

• the kernels that were not parallel on CPU obviously could not be parallelized on
GPU. This is the case for ludcmp, cholesky and durbin (solvers category), all of
them containing at least one loop that could not be run in parallel on the GPU.

• the PPCG emitted nussinov CUDA code throws a compiler error.

• floyd-warshall and doitgen have too many synchronizations between CPU and
GPU. They make many calls to cudaLaunchKernel since the parallelization is
not efficient: the two outer loops are not parallel.

• the only cases where the GPU code runs faster than the CPU parallel code, are
symm (blas) and the stencils category benchmarks (all of them except jacobi-1d,
which is too short).

However, the speedup obtained for those six benchmarks, when compared to the
CPU parallel execution, is 6.3× on geomean. This is low compared to the 19×
performance ratio (theoretical peak GFLOP/s) between the 40-core CPU and
the A100 GPU.

5.6.2 OpenCL

We compiled and executed the PPCG OpenCL codes using the gcc compiler (with
-lOpenCL). Overall, the OpenCL codes report a small slowdown compared to their
counterpart CUDA versions, due to longer initialization and kernels launch times, but
the overall trends are similar to the ones presented above.

The PPCG emitted nussinov OpenCL code compiles and runs correctly while the
CUDA code did not. But this benchmark is short and reports a slowdown compared
to the parallel Pluto+icc version.

5.7 Discussion

In this section we summarize the main findings of this survey. Most of the benchmarks
for which polyhedral optimization does not bring an improvement are those whose
execution times are short. We include those tiny benchmarks in the comparison al-
though it is debatable to optimize such short executions. Overall, we observe that for
sequential execution polyhedral compilers eventually produce faster codes for 19 out
of 30 benchmarks, and win in all but two benchmarks if we do not consider the tiny
benchmarks. Hence, it can be concluded that polyhedral compilers are very effective
at optimizing those sequential codes. Moreover, they automatically generate parallel
code.
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Among polyhedral compilers, Pluto ranks best in many benchmarks (10 in sequen-
tial execution and 14 in parallel execution). We can also notice that the source-to-
source polyhedral compilers win over built-in polyhedral compilers in almost all cases.

5.7.1 Sequential Code Optimization

The benefit from polyhedral optimization on a sequential code can be summarized
in light of our analysis in Section 5.4.1. We identify three factors that contribute
to the speedups: (i) data locality (LLC-hits, page-hits), (ii) branch prediction, and
(iii) vectorization.

Data locality is greatly improved by polyhedral compilers and is by far the prime
contributor for increased performance. Loop tiling shows a reduction in LLC misses
to a notable extent. The level of tiling has some influence, the one level tiling and
diamond tiling often being more efficient in reducing the cache-misses than the two
level tiling. There is also a reduction in number of overall cache references (not shown
in the tables) for most of the benchmarks, which means that register allocation is more
efficient. There is a significant reduction in page faults for a few benchmarks.

A minor counterpart to the data locality benefit is an increased number of branch
instructions and branch misses. Indeed, restructuring the code into more complex loop
nests as part of the tiling optimization leads to more numerous tests in many of the
benchmarks (syr2k for instance).

Polyhedral transformations do not favor in general the vectorization opportunities
for current compilers auto-vectorizers. On one hand we found cases where the code
restructuring actually favors vectorization, in particular PolyOpt allows the ROSE com-
piler to partially vectorize loops that ROSE did not vectorize in the native code because
of the depth (at least 3) of the loop nest and its complex access pattern (2-d array
access). Another example is lu in which gcc, clang, and icc have further vectorized
the loops produced by Polly, Polygeist, Pluto+gcc, PoCC+gcc, and PPCG+gcc. On the
other hand, we observed many cases where the transformation hinders vectorization
as for example for the stencil benchmarks. The auto-vectorization pass reports the
following reasons to not vectorize some loops that were vectorized in the native code:
«multiple loop nests» (in gcc), «unsafe dependent memory operations in loop», or
«loop nests having two or more consecutive inner loops» for example. The typical
jacobi-2d benchmark is perfectly vectorized in its native version but almost not in the
transformed versions.

5.7.2 Parallel Code Optimization

In the multi-threaded CPU experiments, we find that the parallelization performed by
the polyhedral compilers exhibits only modest speedups or even slowdowns in some
ill cases. Those ill cases are typically characterized by a parallel loop nested inside
sequential loops, resulting in a huge number of parallel regions creation and destruction,
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or low parallelism. Given the short execution times of some benchmarks, this becomes
an overwhelming overhead. In favorable cases when the parallel dimension can be
chosen as one of the outer loops, the distribution of memory-bound computations to
40 cores can benefit from distributed cache, but can conversely lead to RAM access
congestion and cache false sharing overheads, reducing the benefit of tiling. In addition,
we observe that some of these parallel codes are not vectorized by the compiler while
they are vectorized in the sequential code. The vector cost model of the compiler is
probably responsible for that, and an explicit vectorization directive generated by the
source-to-source polyhedral compiler could help in these cases.

In the GPU experiments, we observe that, for most of the codes that run efficiently
in parallel on CPU, the EXTRALARGE_DATASET size of PolyBench/C is too small to
observe good speedups on current GPUs, except for stencils.

5.7.3 Benchmark Suite

Although PolyBench/C is favoured by the polyhedral community, the benchmark suite
has been created long years back and there were no recent significant improvements or
extensions made to it. In recent advancements, the polyhedral techniques are widely
used in AI/ML applications and there are many new ML related polyhedral compilers.
PolyBench/C does not include benchmarks involving ML affine computation patterns
(like dense matrices and dense tensors) that are prevalent in most domains of natural
language processing, AI vision, and generative AI. Few polyhedral compilers are used
to optimize convolution-based neural networks (CNN) and there are no benchmarks to
test convolution with common point-wise operation.

Another limitation is the size of the datasets. Though PolyBench/C supports five
different sizes, they are now outdated when running on today’s available computing
power. The sizes of some benchmarks must be increased by orders of magnitude to
target high-performance computing nodes. However this has to be done thoughtfully
for each benchmark, to avoid huge memory allocation increase.
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Extending Polygeist to Generate
OpenMP SIMD and GPU MLIR Code

In the previous chapter, we noticed that the state-of-the-art source-to-source polyhe-
dral schedulers annotate loops that can be vectorized with directives, which are merely
recommendations to the compiler. However, standard compiler auto-vectorizers may
fail to vectorize them because of the complexity of the loop structure or nested state-
ments in the restructured code. With the help of vector debugging passes, we find the
main reasons reported by compilers to not vectorize the marked code was, for exam-
ple: (i) could not determine the number of loop iterations, (ii) multiple nested loops,
(iii) complex loop statements (like function calls, irregular control flow, and pointer/ar-
ray deference), (iv) control flow inside loops, and (v) inner-loop count not invariant.
Further, in a few cases, the vectorization is not applied because the vector cost-model
of the back-end compiler estimates that it is not profitable.

PPCG is the only polyhedral compile capable of emitting heterogeneous code, but
it uses many code generation and compilation flows with respect to the target archi-
tecture. The optimization techniques introduced in Chapter 4 could help solve these
two limitations as we directly emit vector instructions for loop statements and with
one abstract level of MLIR representation, the code can be lowered to different target
architectures including different GPUs.

We choose Polygeist to generalize our technique as it is based on the MLIR compiler
and would require reduced effort for generalization because the development environ-
ment (MLIR) is already set up by Polygeist. It generates polyhedral optimized (tiling
and parallel loops) MLIR code, but it neither annotates the loops with vectorization
directives nor auto-generates the vectorized code. Our generalization would benefit
Polygeist and thereby enhance the polyhedral optimization techniques.

In this chapter, we describe a proposal to extend Polygeist to generate OpenMP
SIMD MLIR code for vector loops. Later, these OpenMP SIMD loops can be lowered
to vector instructions. We also want to further extend the code generation process to
support GPU MLIR code thereby targeting accelerated architectures.
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Figure 6.1: Overview of Polygeist compilation-flow.

6.1 Polygeist

Polygeist [15] is an MLIR based compilation tool that lowers C/C++ code to Polyhedral
MLIR code. Figure 6.1 shows the Polygeist compilation process. It takes an input
source program, and

1⃝ extracts the high level-information using clang and generates a Clang AST,

2⃝ with a code generator named cgeist, Polygeist generates MLIR equivalent code
from the Clang AST,

3⃝ with a built-in tool named polymer-opt, the polyhedral representation is extracted
(via SCoP Extractor), and using Pluto (or another external polyhedral sched-
uler) the extracted polyhedral representation is optimized for loop tiling and
parallelization,

4⃝ from the optimized OpenSCoP file, the CLooG code generator emits an AST which
serves as an input for cgeist to generate MLIR code. Cgeist retains the informa-
tion of the parallel loop identified by Pluto by marking it with the scop.parallel
loop attribute,

5⃝ an MLIR pass lowers the scop.parallel attribute loop to an OpenMP parallel
loop,

6⃝ finally the lowered MLIR code is translated into LLVM IR, that is passed to
LLVM to generate an object file.

Listing 6.2 shows the polyhedral MLIR code generated by Polygeist for the loops of
the syr2k kernel (from PolyBench/C [14]) shown in Listing 6.1. The scop.parallel
annotated affine.for loop at line 2 and 8 will be converted to MLIR OpenMP parallel
loop during lowering. Lines 3-5 and 9-13 are tiled loops executing statements S0 and
S1, respectively. It is to be noticed that Pluto identifies the affine.for loop in line
5 of Listing 6.2 as vectorizable using vector directives, but Polygeist does not use this
information as it can not lower the loop statements to an MLIR vector code.

Considering this context, we propose to extend the MLIR code generation process of
Polygeist to convert the loops which are vector annotated by the polyhedral compiler to
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1 #pragma scop
2 for (i = 0; i < n; i++) {
3 for (j = 0; j <= i; j++)
4 C[i][j] *= beta; // S0
5 for (k = 0; k < m; k++)
6 for (j = 0; j <= i; j++)
7 C[i][j] += A[j][k]* alpha *B[i][k] + B[j][k]* alpha *A[i][k]; // S1
8 }
9 #pragma endscop

Listing 6.1: Compute intensive loops of the syr2k kernel.
1 // ... code skipped for space
2 affine .for %arg7 = 0 to #map () [%0] {scop. parallel }
3 affine .for %arg8 = 0 to #map 1(% arg7)
4 affine .for %arg9 = #map 2(% arg7) to min #map 3(% arg7)[%0]
5 affine .for % arg10 = #map 2(% arg8) to min #map 4(% arg9 , %arg8)
6 S0
7
8 affine .for %arg7 = 0 to #map () [%0] {scop. parallel }
9 affine .for %arg8 = 0 to #map 1(% arg7)

10 affine .for %arg9 = 0 to #map () [%1]
11 affine .for % arg10 = #map 2(% arg7) to min #map 3(% arg7)[%0]
12 affine .for % arg11 = #map 2(% arg8) to min #map 4(% arg10 , %arg8)
13 affine .for % arg12 = #map 2(% arg9) to min #map 3(% arg9)[%1]
14 S1

Listing 6.2: Polyhedral optimized MLIR code generated by Polygeist for the loops
shown in Listing 6.1.

an MLIR OpenMP SIMD loop, thereby emitting SIMD instructions for loop statements
with the help of OpenMP.

6.2 OpenMP SIMD Code Generation

This section presents three major changes in CPU code generation to be able to generate
SIMD code, as follows:

1⃝ Identify which loop(s) can be vectorized from the Pluto output,

2⃝ Annotate those affine.loop’s with the attribute scop.vector,

3⃝ A new optimization pass that converts those marked loops to omp.simdloop.
The pass should compute the arguments of the simd constructs: (i) size of the
vector (simdlen), (ii) the step value between the loop iterations, and (iii) the
lower/upper bound loop variables.

The green compilation flow in Figure 6.2 shows the modified/extended approach of
our MLIR CPU code generation technique. We rely on the affine and omp dialects
for simd loop creation. Listing 6.3 line 11 shows the affine.for loop in line 5 of
Listing 6.2 is converted to omp.simdloop by our modified approach. Firstly, Pluto
scheduler identifies the loops that could be vectorized and informs Polygeist. We
modified cgeist so that it annotates the vectorizable loop(s) with the scop.vector
attribute. Our simd converter pass then converts those annotated loops to omp.simd
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Figure 6.2: Overview of Polygeist compilation-flow being modified by our proposed
technique. Green arrows show our extended/modified version of CPU code generation.
Red arrows show our newly proposed GPU code generation

1 affine .for %arg7 = 0 to #map () [%0]
2 affine .for %arg8 = 0 to #map 1(% arg7)
3 affine .for %arg9 = #map 2(% arg7) to min #map 3(% arg7)[%0]
4 %c1 = arith . constant 1 : index
5 %2 = arith .muli %arg8 , %c32 : index
6 %3 = arith .addi %arg9 , %c1 : index
7 %4 = arith .muli %arg8 , %c32 : index
8 %5 = arith .addi %4, %c32 : index
9 %6 = arith .cmpi slt , %3, %5 : index

10 %7 = arith . select %6, %3, %5 : index
11 omp. simd loop simd len (4) for (% arg10 ): index = (%2) to (%7) step (% c1){
12 S0
13 omp. yield
14 }
15 // ... code of S1 skipped for space

Listing 6.3: OpenMP SIMD loop generation by our proposed technique for vector
annotated loop(s) from Listing 6.2.

loop. Using an environmental variable the pass allows the user to choose the simdlen
(set to either 2, 4, 8, or 16 targeting SSE, AVX2, or AVX512 vector architectures). In
line 11 of Listing 6.3, the simd length is set to 4 targeting AVX2 architecture with using
double types. The step value is set to the default value of one. Arguments %2 and
%7 in line 11 are the lower and upper bound values of the simd loop, respectively.
In Listing 6.2, the lower and upper bounds are expressed as affine maps (#map2 and
#map4), such expression is not defined in the OpenMP dialect. Therefore, we have
to substitute the map definition with arithmetic operations as shown in lines 4-10
of Listing 6.3. Finally, the Polygeist existing compilation flow will lower the simd loop
to LLVM IR.

6.3 Preliminary Experiments

We implemented the proposed CPU compilation flow on top of the Polygeist source
from the git repository version 18.0.0. We used a 2x20-cores CascadeLake Intel Xeon
Gold 5218R @2.1GHz CPU and AVX2 vector architecture set for our evaluation. We
choose six benchmarks (2mm, syr2k, gramschmidt, correlation, nussinov, and heat-3D),
one from each category of PolyBench/C [14] with EXTRALARGE data-set for evaluating
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our implementation for CPU code generation. Unfortunately, the OpenMP SIMD op-
timized MLIR code took the same execution time as the code without our optimization
and does not improve the use of the vector instructions. Indeed, the omp.simd loop was
not vectorized. Since this functionality is newly added to MLIR, it has limited support.
The MLIR framework is undergoing very active development phases to support various
compiler optimizations. So, in a very near future MLIR could provide complete opti-
mization support for OpenMP SIMD loops and we hope that our proposed technique
improves vectorization.

Another work-around would be to emit the vector instructions directly with the help
of MLIR’s vector dialect instead of relying on SIMD loops, but this would duplicate
the work that omp.simd should do unless the loop contains complex statements (like
function calls, irregular control flow, and pointer/array deference).

6.4 Discussion

Using the multiple code generation capabilities of MLIR, we will further extend Polygeist
(red compilation flow in Figure 6.2) to implement the polyhedral GPU MLIR code gen-
eration for nested loop structures. We propose to generate MLIR GPU code for the
loops enclosed within scop and let the rest of the code be in C/C++. The generated
MLIR GPU code will be enclosed within two nested scf.for loops which are later
lowered into an outer and an inner loop iterating over the GPU blocks and threads,
respectively. The MLIR GPU code is first lowered to its GPU specific low-level dialect.
This can be for example either nvvm (the Nvidia CUDA IR) or rocdl (the AMD ROCm
IR) with respect to the target GPU architecture. Next is the MLIR translation pass
that converts the low level MLIR code (llvm dialect) into an LLVM IR representation.
The last step is the linking phase, where the C/C++ emitted LLVM IR host code with
the help of clang and the MLIR translated optimized LLVM IR are linked together
into an object file using the LLVM compiler framework.

One challenge we may face is the function or library calls inside the nested loops.
An equivalent GPU code is required for those function calls to keep the computations
within the GPU rather than making frequent and costly context switches between
host and device. Another challenge is the memory management on GPU. We have to
choose between the unified memory model or a manual allocation and data transfers
between the host and device for efficient management. The implementation of GPU
code generation is left as a future work.

– 85 –





Chapter 7

Conclusion and Perspectives

Summary of Contributions

We have presented how the quite recent multi-level intermediate representation (MLIR)
concept that arose from the compilation research community can be applied to a
production-level scientific application, namely openCARP, a cardiac electrophysiol-
ogy simulator (Chapter 4). The challenge is to integrate into the existing code base
the generation of highly optimized code for both CPU and GPU. We have explained
the modifications we have brought to the code generation process which originally gen-
erated C/C++ code from the ionic models expressed with a DSL. The thesis discusses
the design choices that arise when it comes to choosing among the available dialects to
represent the code structures and statements at the appropriate abstraction level. We
show that we were able to factorize a large part of the MLIR-generated code that was
used for vectorization in CPU, and we explained how the necessary additions to gen-
erate GPU code are implemented through the lowering passes. Finally, MLIR allows
us to produce code that has the same simulation results as native code but in a more
portable way to various hardware targets. The evaluation of our vectorized CPU and
GPU version is carried out on the full set of ionic models shipped with openCARP and
brings a significant performance improvement over the baseline non-optimized version
both in terms of execution time and energy efficiency (Section 4.2 Chapter 4). We have
artifacts to reproduce our results for vectorized CPU [100] and GPU [101].

Moreover, we could see that our work has been extended by a research team, and
taking advantage of the heterogeneous code generation nature of our techniques they
integrated our approach with the StarPU task-based runtime system to allow dynamic
load balancing and resource allocation. They reported good performance improvements
by evaluating their methodology using the ionic models on multi-GPU and hybrid
architectures. This work has resulted in a joint publication [13].

Building up on this achievement regarding performance improvements brought to
the ionic models generated code in openCARP, we wanted to extend our findings to
the optimization of loop nests in the polyhedral framework. In the last decades, the
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research community has developed a rich set of techniques and tools to transform reg-
ular loop nests so as to extract potential parallelism and tiled loops to improve data
cache locality. We wanted to explore the possibility to use the polyhedral analysis
results and extend it to generate MLIR code. As there are many polyhedral compilers
available with differences in nature we started a survey of these polyhedral compilers
to find out if we could have a chance to make a difference. In this survey, we have
presented an up-to-date study on general-purpose static polyhedral compilers and their
optimizations on the PolyBench/C set of benchmarks. We have compared eight dif-
ferent general-purpose polyhedral compilers, compiled the generated codes using three
standard compilers, and reported their failures and benefits (Chapter 5).

Overall, even if polyhedral techniques can dramatically improve performance on
some of the benchmarks, especially when loop tiling results in optimal data locality and
use of cache, the loop restructuring leads to side effects that are difficult to predict. For
instance, we observed that this restructuring favors auto-vectorization by the standard
compiler in some cases while it hinders it in other cases. In automatic parallelization,
many of the benchmarks effectively used the multi-core hardware, but there are also
cases where (i) the degree of parallelism is low and (ii) the large number of fork-join
regions (entering and exiting a parallel region) leads to synchronization overheads.
The polyhedral compilers would benefit from an improved code generation, making
use of a wider range of OpenMP directives. Scheduling algorithms explicitly targeting
vectorization and explicit vector directives in the generated code would also be useful
to generate more efficient code.

Based on this study, we identified Polygeist to be the most appropriate polyhedral
framework to extend, in order to bring in the techniques developed within openCARP.
The principal argument is that Polygeist already produces its intermediate represen-
tation in MLIR. In Chapter 6 we have presented our efforts to extend Polygeist so
that identified (by Pluto) vectorizable computations inside loop nests can be explicitly
expressed as such by emitting MLIR code that can further translate to OpenMP SIMD
instructions. Though our evaluations do not show performance improvements because
of the limited support for the OpenMP SIMD loop by MLIR, we hope the rapid on-
going development of MLIR will quickly address this issue and will enable to evaluate
the potential benefits.

Perspectives

Other vector architectures. The vectorized CPU code generation studied in this the-
sis targets only x86 architecture. However, there have been important developments
in the recent years regarding vector architectures. For instance, the ARM SVE archi-
tecture [102] offers registers with variable length allowing implementations to choose a
vector register length between 128 and 2048 bits. Similarly, the RISC-V architecture
through its RVV extension offers a vector register than can contain from 64 or 128
to 65,536 bits. MLIR already provides support for the ARM SVE architecture with
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the arm_sve dialect. We estimate that modifications of our existing compilation flow
to add support for the ARM SVE vectors would hence only require a limited effort.
For RISC-V architecture, we depend on the basic vector dialect and as of now would
require additional passes to lower the MLIR code to target a RISC-V architecture.

Wider accelerator targets. Another possible area worth exploring is heterogeneous
code generation. Extending our techniques to support the generation of OpenACC
MLIR code using the acc dialect will help to target parallel multi-core and acceler-
ator machines in general. Furthermore, if MLIR supports any new architecture, we
can modify our code generator with minimal effort to provide support for those new
architectures. And, that is the prime reason for having chosen the MLIR framework
in this work.

MLIR as a standard. Broad adoption of MLIR requires standardizing certain aspects
of its design to ensure compatibility and interoperability between different projects and
tools. Encouraging widespread use and contributing to open-source initiatives can help
in establishing MLIR as a standard in compiler infrastructure. While MLIR facilitates
advanced optimizations, ensuring that these transformations lead to significant per-
formance gains on various architectures remains an ongoing challenge. Continuous
benchmarking, profiling, and tuning are necessary to maximize the benefits of MLIR
in real-world applications.

Polygeist extension for GPU. In Chapter 6 (Figure 6.2) we proposed heterogeneous
code generation targeting GPU architectures and left the implementation as a fu-
ture work. The first priority would be to implement the compilation flow for GPU
architectures targeting Nvida and AMD GPU machines. Another interesting aspect
could be improving the support of OpenMP SIMD loops in the MLIR framework that
would automatically improve the performance of our CPU SIMD code generation using
Polygeist.

Extend polyhedral benchmarks. Another broad perspective would be the improve-
ment of benchmark programs to evaluate various polyhedral compilers. The present
PolyBench/C set of benchmarks is pretty old and outdated. The new set of bench-
marks should have very large data sets targeting supercomputers and should include
benchmarks to evaluate ML/AI-related applications.

Improve polyhedral scheduling. Recent advancements [73, 75] explore integrating
machine learning techniques in polyhedral compilation to predict the most effective
transformations for a given code segment. This integration aims to further automate
the optimization process and adapt to diverse hardware architectures dynamically.
Polyhedral compilation intersects with various fields such as computational geometry,
linear algebra, and combinatorial optimization. Collaborative research across these
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disciplines can lead to novel optimization techniques and broader applicability of the
polyhedral model.

The mathematical complexity of the polyhedral model can be seen as a barrier
to its wider adoption. Simplifying the model without losing its expressiveness is an
ongoing challenge. Extending support for polyhedral compilation in modern program-
ming languages and paradigms, such as functional and reactive programming, is also
an interesting direction.
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Appendix A

Execution Time of General-purpose
Polyhedral Compilers

Benchm. CUDA OpenCL
linear-algebra/kernels

atax 0.412 0.558
2mm 0.451 0.663
3mm 0.471 0.740
bicg 0.388 0.540
doitgen 1.730 2.752
mvt 0.400 0.560

linear-algebra/blas
gemm 0.435 0.670
gemver 0.416 0.586
gesummv 0.427 0.580
symm 0.432 0.623
syr2k 0.562 0.664
syrk 0.495 0.639
trmm 0.641 0.780

linear-algebra/solvers
cholesky 0.720 1.193
durbin 0.901 1.105
gschmidt 1.929 2.165
lu 0.968 1.647
ludcmp 963.1 833.5
trisolv 0.446 0.688

datamining
correlation 0.450 0.680
covariance 0.489 1.041

medley
deriche 0.522 0.945
nussinov ERR 3.683
fwarshall 206.6 883.0

stencils
adi 5.186 5.434
jacobi-1d 0.400 0.600
seidel-2d 1.532 1.670
fdtd-2d 0.789 1.659
jacobi-2d 0.668 1.498
heat-3d 0.867 2.095

Table A.1: Execution time in seconds of all PolyBench/C benchmarks with respect to PPCG’s
CUDA and OpenCL optimized code on an A100 GPU; ERR - error.
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Pluto(tile) Pluto(l2tile) Pluto(dia) PoCC PPCG CHiLL
Benchm. gcc clang icc rose GRA Polly P’gst P’opt gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc

linear-algebra/kernels
atax 0.003 0.003 0.003 0.006 0.003 0.006 0.008 0.008 0.008 0.007 0.008 0.005 0.005 0.005 0.007 0.008 0.008 0.007 0.008 0.008 0.004 0.004 ERR WR WR WR
2mm 8.254 12.73 0.722 19.48 7.997 7.364 2.468 8.937 3.923 6.756 4.147 13.60 12.45 0.723 3.927 6.806 4.204 2.170 5.020 3.607 3.504 6.802 4.973 3.877 7.306 6.928
3mm 9.143 19.62 1.201 32.79 9.537 9.630 5.189 14.91 5.824 5.693 7.633 16.41 20.59 1.171 5.838 5.666 7.847 3.019 3.891 4.920 5.484 7.623 7.449 5.715 10.42 9.951
bicg 0.003 0.002 0.002 0.009 0.003 0.006 0.009 0.008 0.007 0.008 0.008 0.005 0.005 0.005 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.011 0.011 0.003 0.003 0.003
doitgen 1.321 1.596 0.555 3.880 1.320 1.580 0.833 0.862 0.777 0.843 0.945 0.398 0.596 0.589 0.778 0.845 0.917 0.775 0.841 0.886 1.914 3.490 2.448 WR WR WR
mvt 0.036 0.042 0.019 0.066 0.048 0.033 0.062 0.054 0.045 0.044 0.061 0.059 0.055 0.053 0.044 0.044 0.061 0.053 0.044 0.056 0.022 0.034 0.041 0.063 0.056 0.058

linear-algebra/blas
gemm 6.065 6.148 6.521 6.597 6.123 2.003 2.802 2.636 1.690 2.028 2.203 5.821 6.016 0.662 1.688 2.059 2.179 1.786 2.027 3.174 3.496 6.620 4.795 6.952 10.56 7.742
gemver 0.047 0.052 0.029 0.081 0.059 WR 0.050 0.083 0.035 0.038 0.051 0.021 0.021 0.020 0.034 0.039 0.053 0.034 0.038 0.052 0.043 0.051 0.048 0.092 0.067 0.105
gesummv 0.009 0.009 0.009 0.019 0.009 0.017 0.022 0.013 0.015 0.013 0.013 0.010 0.009 0.009 0.015 0.013 0.013 0.013 0.014 0.013 0.017 0.017 0.018 WR WR WR
symm 12.42 12.63 12.56 12.43 12.97 12.43 13.01 WR 12.48 12.56 12.43 12.61 12.61 12.43 12.81 12.43 12.48 WR WR WR 5.039 6.645 5.274 WR WR WR
syr2k 17.39 17.95 6.550 18.98 17.74 5.310 7.770 4.055 2.782 2.292 2.801 6.482 6.061 6.519 2.809 2.143 2.541 2.820 2.111 2.463 2.187 2.423 2.496 5.254 6.495 6.280
syrk 6.403 6.210 2.870 6.579 6.282 3.517 4.998 2.089 1.927 1.132 1.305 2.709 2.473 2.499 1.978 1.350 1.321 2.063 1.281 1.295 1.072 1.222 1.293 4.647 6.223 5.471
trmm 7.138 7.515 6.083 7.199 7.193 3.704 1.331 1.055 1.090 0.970 1.227 2.187 2.223 2.219 1.088 0.962 1.243 4.324 3.954 3.840 9.585 3.677 3.967 5.566 5.588 4.369

linear-algebra/solvers
cholesky 12.16 11.97 12.28 12.12 12.10 11.96 7.877 ERR 7.631 8.218 6.909 12.21 12.02 12.19 7.625 8.142 6.741 7.700 8.262 6.963 3.338 6.475 6.717 8.093 8.253 ERR
durbin 0.005 0.004 0.004 0.005 0.005 0.004 0.011 0.005 0.005 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004 WR WR WR 0.005 0.004 0.004 WR WR WR
gschmidt 15.10 15.49 14.71 18.46 14.93 17.40 8.078 13.25 9.127 13.73 10.72 15.19 15.61 14.93 8.555 13.37 10.86 6.297 6.080 6.247 12.09 13.76 12.42 ERR ERR ERR
lu 46.29 39.16 27.76 45.81 45.84 33.06 7.141 15.53 3.982 14.97 12.62 12.59 11.18 13.93 3.955 14.94 12.57 4.012 15.08 4.098 4.322 5.753 15.13 50.71 28.76 51.94
ludcmp 28.70 27.96 28.38 28.95 28.86 27.40 39.43 WR 28.61 27.48 28.86 28.78 28.34 29.01 28.87 28.32 29.08 ERR ERR ERR 12.67 12.71 12.77 ERR ERR ERR
trisolv 0.010 0.010 0.010 0.010 0.010 0.010 0.007 0.020 0.019 0.008 0.007 0.010 0.010 0.011 0.021 0.008 0.007 0.015 0.009 0.007 0.016 0.018 0.019 0.021 0.019 0.013

datamining
correlation 8.889 13.87 4.973 15.60 12.20 8.114 2.618 4.768 1.433 2.014 1.930 4.991 5.144 4.875 1.431 1.990 1.934 1.404 1.979 2.504 4.373 8.067 5.555 9.895 13.32 5.213
covariance 12.10 13.86 5.069 15.66 12.17 8.026 2.744 4.596 1.427 2.061 2.479 4.884 5.266 5.240 1.422 2.027 2.458 1.427 2.020 2.366 4.409 8.114 5.629 8.001 10.55 8.562

medley
deriche 1.505 0.790 0.579 1.522 1.504 1.073 0.993 WR 1.538 0.836 0.572 1.547 0.789 0.574 1.504 0.870 0.571 ERR ERR ERR 1.386 0.802 0.571 1.081 1.081 1.057
nussinov 33.56 31.48 40.36 35.42 34.61 31.47 21.09 39.33 21.56 21.98 23.76 35.08 31.42 41.91 21.53 22.08 23.16 ERR ERR ERR 62.70 53.95 44.67 ERR ERR ERR
fwarshall 109.6 112.9 669.2 109.5 109.8 113.1 233.9 99.90 74.54 451.7 154.6 109.5 112.8 668.5 71.66 451.2 153.8 71.70 449.4 153.8 61.61 153.5 158.8 93.18 94.83 113.8

stencils
adi 72.54 65.84 48.58 78.71 72.65 81.20 89.03 77.92 ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR 85.81 87.98 90.38 WR WR WR
jacobi-1d 0.002 0.004 0.002 0.002 0.002 0.004 0.008 0.009 0.008 0.006 0.002 0.009 0.005 0.002 0.010 0.007 0.005 0.009 0.006 0.006 0.007 0.007 0.007 0.023 0.023 0.036
seidel-2d 72.37 64.69 140.6 72.40 72.29 64.71 127.7 ERR 44.75 141.8 122.2 72.37 96.66 140.7 44.6 141.8 122.2 44.4 141.7 122.1 64.6 144.0 66.29 72.5 64.7 140.8
fdtd-2d 20.44 20.02 20.17 20.29 20.30 23.79 13.38 12.27 12.73 11.21 12.18 12.69 12.03 9.996 18.01 17.93 33.01 8.840 20.61 10.89 13.61 13.03 63.93 WR WR WR
jacobi-2d 19.32 19.21 18.92 19.49 18.64 57.48 19.37 21.03 19.10 17.99 18.23 21.13 20.02 18.12 24.29 22.12 41.07 21.12 19.70 8.65 23.40 24.71 22.90 55.42 74.96 83.52
heat-3d 27.51 25.93 51.73 28.25 26.89 25.91 17.70 47.07 18.26 17.36 17.85 19.45 18.84 19.88 TO TO TO 41.60 15.45 18.55 25.43 13.46 11.21 63.78 77.46 135.5

Table A.2: Sequential execution time in seconds of all PolyBench/C benchmarks with respect to baseline compilers and the polyhedral compilers on an Intel machine. GRA -
GRAPHITE; P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error; TO - timed-out.

–
104

–



A
ppendix

A

Pluto(tile) Pluto(l2tile) Pluto(dia) PoCC PPCG
Benchm. GRA Polly P’gst P’opt gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc

linear-algebra/kernels
atax 0.002 0.005 0.014 0.001 0.003 0.015 0.014 0.059 0.034 0.042 0.002 0.018 0.015 0.003 0.015 0.016 0.002 0.017 0.016
2mm 7.863 0.381 0.496 0.925 0.322 0.508 0.294 0.897 0.901 0.156 0.326 0.507 0.295 0.176 0.372 0.174 0.546 0.674 0.317
3mm 9.627 0.482 0.706 1.089 0.589 0.455 0.435 1.523 1.583 0.455 0.588 0.454 0.436 0.243 0.299 0.294 0.720 0.892 0.469
bicg 0.002 0.004 0.017 0.001 0.003 0.015 0.017 0.063 0.033 0.032 0.004 0.016 0.016 0.003 0.018 0.016 0.004 0.016 0.015
doitgen 1.328 1.644 17.35 2.866 2.961 0.930 1.438 444.0 115.4 143.2 2.853 0.943 1.467 2.967 0.997 1.200 2.062 1.153 0.939
mvt 0.047 0.007 0.024 0.005 0.009 0.022 0.020 0.011 0.026 0.019 0.009 0.021 0.020 0.007 0.021 0.019 0.009 0.025 0.019

linear-algebra/blas
gemm 5.427 0.100 0.301 0.108 0.101 0.150 0.133 0.381 0.381 0.399 0.101 0.150 0.133 0.101 0.152 0.131 0.373 0.439 0.243
gemver 0.078 WR 0.025 0.005 0.008 0.021 0.021 0.107 0.057 0.056 0.008 0.023 0.018 0.008 0.022 0.018 0.009 0.027 0.019
gesummv 0.010 0.004 0.018 0.002 0.004 0.021 0.010 0.003 0.015 0.013 0.004 0.016 0.014 0.004 0.016 0.016 0.004 0.016 0.013
symm 13.62 12.85 1.090 WR 13.85 12.52 13.72 15.05 12.80 15.11 15.01 12.48 15.75 WR WR WR 2.696 2.806 2.726
syr2k 21.40 0.304 0.694 0.259 0.345 0.251 0.190 0.621 0.707 0.535 0.352 0.249 0.187 0.342 0.264 0.189 0.442 0.214 0.175
syrk 6.718 0.206 0.499 0.135 0.264 0.129 0.108 0.434 0.236 0.235 0.265 0.130 0.107 0.269 0.131 0.120 0.275 0.126 0.102
trmm 20.29 WR 0.164 0.053 0.064 0.102 0.087 0.139 0.123 0.121 0.064 0.099 0.089 0.203 0.220 0.230 0.200 0.255 0.240

linear-algebra/solvers
cholesky 13.27 12.20 0.863 ERR 0.453 0.477 0.479 0.642 0.591 0.343 0.452 0.477 0.486 0.523 0.474 0.479 5467 1422 1498
durbin 0.005 0.004 1.369 0.006 0.005 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004 WR WR WR 0.122 0.068 0.065
gschmidt 16.55 1.685 4.490 13.42 0.713 0.787 1.064 1.372 1.602 4.031 0.711 0.824 1.079 2.289 3.655 0.888 41.10 41.74 43.05
lu 45.00 1.982 WR 0.854 0.358 0.431 0.990 1.133 1.138 1.105 0.357 0.475 0.989 0.419 0.457 0.392 303.1 71.87 75.41
ludcmp 28.64 22.39 45.63 WR 28.69 27.99 46.98 28.70 28.29 45.84 28.67 28.20 38.72 ERR ERR ERR 12.64 12.69 12.70
trisolv 0.010 0.010 0.033 0.005 0.005 0.018 0.020 0.096 0.050 0.059 0.005 0.018 0.019 0.006 0.017 0.018 3.037 1.091 1.149

datamining
correlation 15.47 0.680 0.455 0.412 0.195 0.286 0.238 0.503 0.395 0.409 0.195 0.285 0.232 0.215 0.290 0.279 0.608 0.819 ERR
covariance 15.47 0.659 0.397 0.423 0.255 0.298 0.230 0.435 0.364 0.371 0.256 0.297 0.229 0.228 0.301 0.284 0.607 0.807 0.515

medley
deriche 0.883 1.444 0.220 WR 0.855 1.473 0.876 0.848 1.419 0.871 0.850 1.417 0.876 ERR ERR ERR 0.745 1.313 0.262
nussinov 30.66 81.82 6.177 39.12 1.028 5.563 0.998 0.901 4.480 0.643 1.032 5.769 0.997 ERR ERR ERR 733.7 776.4 ERR
fwarshall 149.4 112.6 45.7 32.57 33.18 42.92 31.79 854.4 456.3 329.6 36.13 40.93 30.16 35.08 42.75 31.82 64.79 158.3 159.5

stencils
adi 87.74 60.01 5.39 78.84 ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR 5.270 4.951 5.528
jacobi-1d 0.003 0.005 0.093 0.004 0.006 0.093 0.020 0.089 0.816 0.054 0.003 0.071 0.014 0.005 0.079 0.016 0.007 0.007 0.007
seidel-2d 101.4 64.73 10.03 ERR 2.870 10.79 4.422 1.891 3.116 2.735 2.860 10.76 4.421 2.721 11.12 4.424 64.88 143.7 66.33
fdtd-2d 20.80 21.19 1.317 1.084 1.705 3.195 1.660 1.652 2.281 1.618 1.571 2.210 3.195 1.083 4.240 1.361 12.76 12.80 69.86
jacobi-2d 19.68 5.450 1.237 1.956 1.860 3.717 1.708 2.320 2.985 2.199 1.778 1.861 2.429 1.649 3.435 0.836 23.40 25.00 24.03
heat-3d 27.29 27.81 7.020 19.83 17.83 24.65 11.54 4.523 5.188 4.579 TO TO TO 19.81 25.83 11.89 2285 1121 ERR

Table A.3: Parallel execution time in seconds of all PolyBench/C benchmarks with respect to the polyhedral compilers on an Intel machine. GRA - GRAPHITE;
P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error; TO - timed-out.
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Pluto(tile) Pluto(l2tile) Pluto(dia) PoCC PPCG CHiLL
Benchm. gcc clang icc rose GRA Polly P’gst P’opt gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc

linear-algebra/kernels
atax 0.002 0.002 0.009 0.007 0.002 0.006 0.008 0.006 0.005 0.005 0.017 0.003 0.003 0.006 0.005 0.005 0.018 0.005 0.005 0.017 0.004 0.004 ERR WR WR WR
2mm 7.371 16.35 9.255 19.73 7.380 3.393 1.886 8.090 2.891 4.678 9.973 11.14710.9259.260 2.890 4.593 9.992 1.832 4.205 9.587 3.332 3.325 13.74 3.359 9.795 15.68
3mm 9.187 27.29 15.32 32.29 9.298 5.268 4.152 13.12 4.899 4.169 19.90 14.30 22.01 15.31 4.899 4.164 20.10 2.518 3.207 15.0875.328 4.609 22.46 5.401 15.86 33.05
bicg 0.002 0.002 0.006 0.016 0.002 0.003 0.009 0.006 0.005 0.005 0.017 0.003 0.003 0.006 0.005 0.005 0.017 0.005 0.005 0.017 0.007 0.007 0.016 0.002 0.002 0.006
doitgen 1.416 1.452 2.564 3.660 1.448 1.429 0.852 0.923 0.849 0.843 2.797 0.437 0.609 2.539 0.843 0.907 2.870 0.885 0.882 2.837 2.315 2.853 5.441 WR WR WR
mvt 0.020 0.033 0.024 0.042 0.034 0.028 0.038 0.023 0.029 0.031 0.063 0.033 0.034 0.040 0.029 0.031 0.068 0.038 0.028 0.061 0.017 0.028 0.097 0.035 0.034 0.037

linear-algebra/blas
gemm 3.645 4.683 8.390 5.066 3.699 1.851 2.380 2.277 1.480 1.789 9.008 3.671 4.672 8.452 1.482 1.797 8.962 1.519 1.797 8.227 3.035 3.128 12.79 8.650 12.13 14.91
gemver 0.029 0.041 0.050 0.051 0.042 WR 0.034 0.080 0.017 0.026 0.100 0.013 0.015 0.045 0.018 0.026 0.100 0.018 0.026 0.105 0.027 0.029 0.062 0.042 0.038 0.064
gesummv 0.005 0.005 0.010 0.052 0.005 0.010 0.018 0.015 0.014 0.012 0.029 0.007 0.006 0.013 0.014 0.012 0.029 0.013 0.012 0.029 0.009 0.010 0.031 WR WR WR
symm 17.12 13.88 20.96 16.77 17.66 13.78 12.65 WR 14.42 13.81 22.51 14.45 13.80 22.44 14.54 13.79 22.98 WR WR WR 6.588 8.441 9.604 WR WR WR
syr2k 11.73 15.94 9.142 15.90 11.94 3.124 4.980 4.018 2.947 1.499 9.299 3.991 4.231 9.034 2.934 1.502 9.292 2.961 1.508 9.431 1.797 1.579 10.77 5.537 7.389 9.471
syrk 4.562 7.451 5.343 7.372 4.600 1.823 4.788 2.193 1.412 0.922 5.289 2.477 2.191 5.357 1.401 0.920 5.288 1.298 0.914 5.387 0.983 0.956 6.935 5.293 7.378 8.430
trmm 8.488 10.0289.912 8.500 8.494 4.766 1.319 0.858 1.325 1.120 3.689 2.052 1.870 3.773 1.315 1.130 3.686 3.625 5.033 5.873 13.00 4.781 5.944 6.600 8.148 8.176

linear-algebra/solvers
cholesky 11.17 17.37 17.29 11.27 11.12 17.37 6.680 ERR 6.764 9.004 12.61 11.44 17.39 17.57 6.764 8.964 12.46 6.689 8.964 12.44 3.788 7.651 12.02 5.621 5.940 ERR
durbin 0.006 0.004 0.011 0.005 0.005 0.004 0.010 0.005 0.005 0.004 0.013 0.005 0.004 0.013 0.005 0.004 0.013 WR WR WR 0.005 0.004 0.011 WR WR WR
gschmidt 19.54 19.53 21.45 19.76 19.61 16.05 5.059 12.06 7.689 9.969 15.91 19.38 19.47 21.24 7.604 10.07416.07 5.050 4.645 20.15 16.83 17.00 18.82 ERR ERR ERR
lu 32.47 41.95 31.93 32.26 32.31 26.43 6.20 16.17 3.68 16.61 19.94 11.02 9.197 17.42 3.677 16.59 19.88 3.492 16.37820.69 3.333 4.691 22.30 51.12 32.07 58.69
ludcmp 28.83 28.61 28.79 28.69 28.82 28.60 32.14 WR 28.70 28.58 28.77 28.69 28.49 28.82 28.85 28.54 28.93 ERR ERR ERR 16.36 16.51 16.68 ERR ERR ERR
trisolv 0.009 0.013 0.013 0.009 0.009 0.013 0.013 0.007 0.013 0.014 0.020 0.009 0.013 0.013 0.013 0.014 0.020 0.016 0.014 0.019 0.010 0.012 0.016 0.008 0.008 0.010

datamining
correlation 8.614 16.88 8.904 17.02 16.82 3.803 1.994 5.229 1.338 1.584 6.784 3.411 4.531 8.874 1.339 1.581 6.783 1.337 1.579 6.936 3.726 3.778 10.89 8.577 16.92 8.773
covariance 16.77 16.83 8.900 17.05 16.83 3.776 1.988 5.181 1.316 1.577 6.905 3.430 4.548 8.829 1.326 1.576 6.932 1.316 1.577 6.940 3.722 3.769 10.54 13.55 13.93 16.45

medley
deriche 0.530 0.702 0.710 0.554 0.529 1.072 0.487 WR 0.530 0.707 0.991 0.531 0.701 0.711 0.529 0.712 1.002 ERR ERR ERR 0.421 0.606 1.007 0.605 0.802 0.964
nussinov 38.55 56.42 36.96 38.40 38.52 56.04 29.32 40.64 18.77 30.54 18.92 38.51 56.50 37.24 18.95 30.54 18.77 ERR ERR ERR 84.26 70.14 48.70 ERR ERR ERR
fwarshall 114.7 138.2 304.0 114.6 114.6 137.8 104.1 103.9 75.00 283.1 252.0 114.6 137.8 301.4 74.90 281.2 252.4 74.59 281.5 256.3 74.43 94.86 250.8 98.48 131.0 108.4

stencils
adi 73.14 94.11 150.3 99.51 73.17 83.91 90.79 99.95 ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR 94.75 111.7 178.0 WR WR WR
jacobi-1d 0.002 0.005 ERR 0.002 0.002 0.005 0.008 0.008 0.008 0.011 0.015 0.013 0.011 0.015 0.010 0.011 0.010 0.009 0.011 0.015 0.011 0.011 0.014 0.021 0.023 0.051
seidel-2d 67.72 89.61 276.1 67.35 67.51 89.61 134.2 ERR 37.20 151.2 243.2 67.73 75.03 275.0 37.00 150.0 242.9 37.07 153.8 242.6 64.46 153.3 242.0 68.02 90.66 276.3
fdtd-2d 10.83 10.99 18.42 11.12 10.89 14.01 11.32 13.08 14.90 10.06 17.96 12.82 10.01 33.27 18.40 28.33 92.35 9.446 11.69 18.39 23.72 24.47 79.28 WR WR WR
jacobi-2d 11.36 10.83 24.49 10.98 11.44 55.63 15.08 17.86 16.45 14.98 24.62 20.84 13.67 24.67 22.31 16.95 70.64 17.71 15.21 25.16 23.75 19.02 29.23 51.59 73.23 111.3
heat-3d 12.30 11.46 52.39 12.52 12.33 11.44 13.61 39.19 13.54 10.65 53.53 15.24 8.465 52.54 TO TO TO 38.15 10.69 54.23 24.25 17.88 28.19 73.63 88.82 173.4

Table A.4: Sequential execution time in seconds of all PolyBench/C benchmarks with respect to baseline compilers and the polyhedral compilers on an AMD machine. GRA -
GRAPHITE; P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error; TO - timed-out.
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Pluto(tile) Pluto(l2tile) Pluto(dia) PoCC PPCG
Benchm. GRA Polly P’gst P’opt gcc clang icc gcc clang icc gcc clang icc gcc clang icc gcc clang icc

linear-algebra/kernels
atax 0.003 0.005 0.011 0.001 0.003 0.012 0.012 0.052 0.024 0.026 0.003 0.012 0.013 0.003 0.012 0.012 0.003 0.011 0.014
2mm 8.805 0.161 0.349 0.640 0.265 0.360 0.448 0.434 0.500 0.375 0.267 0.359 0.448 0.106 0.309 0.456 0.397 0.582 0.495
3mm 11.62 0.234 0.489 0.554 0.464 0.439 0.808 0.847 1.013 0.604 0.464 0.438 0.807 0.159 0.237 0.661 0.607 0.881 0.680
bicg 0.003 0.004 0.011 0.001 0.003 0.012 0.013 0.052 0.025 0.026 0.004 0.012 0.013 0.004 0.013 0.014 0.003 0.011 0.013
doitgen 1.486 1.455 12.08 1.986 2.004 0.696 0.922 364.2 104.0 109.2 2.002 0.707 0.957 2.023 0.633 0.921 1.802 1.120 0.867
mvt 0.034 0.006 0.014 0.005 0.006 0.013 0.014 0.005 0.014 0.013 0.007 0.013 0.015 0.005 0.015 0.014 0.007 0.016 0.017

linear-algebra/blas
gemm 3.762 0.069 0.247 0.090 0.073 0.122 0.329 0.343 0.331 0.348 0.073 0.123 0.328 0.071 0.120 0.331 0.319 0.448 0.408
gemver 0.047 WR 0.015 0.008 0.007 0.015 0.018 0.107 0.042 0.050 0.007 0.014 0.017 0.007 0.015 0.016 0.010 0.019 0.019
gesummv 0.006 0.003 0.010 0.000 0.003 0.011 0.013 0.002 0.011 0.011 0.003 0.011 0.013 0.003 0.011 0.012 0.003 0.011 0.011
symm 17.59 14.12 0.673 WR 14.83 13.94 23.28 14.47 13.90 21.00 14.40 13.82 21.93 WR WR WR 3.683 3.682 3.829
syr2k 12.20 0.147 0.274 0.185 0.295 0.150 0.408 0.494 0.423 0.519 0.294 0.150 0.405 0.310 0.148 0.407 0.306 0.136 0.468
syrk 5.321 0.096 0.238 0.105 0.274 0.080 0.245 0.286 0.230 0.302 0.274 0.080 0.247 0.222 0.081 0.246 0.201 0.087 0.290
trmm 8.70 WR 0.093 0.039 0.041 0.057 0.125 0.093 0.066 0.132 0.041 0.056 0.124 0.110 0.160 0.172 0.144 0.160 0.197

linear-algebra/solvers
cholesky 11.20 17.09 0.534 ERR 0.388 0.474 0.604 0.411 0.565 0.544 0.388 0.475 0.604 0.345 0.487 0.605 4152 1134 1146
durbin 0.005 0.004 1.129 0.005 0.005 0.004 0.013 0.005 0.004 0.013 0.005 0.005 0.013 WR WR WR 0.111 0.051 0.048
gschmidt 20.14 0.613 2.295 12.83 0.697 0.633 0.666 0.778 0.784 0.724 0.599 0.625 0.665 0.879 1.589 1.812 33.85 33.78 28.79
lu 32.42 0.506 WR 0.479 0.219 0.318 0.905 0.279 0.237 0.541 0.218 0.317 0.907 0.268 0.322 0.896 253.7 64.89 63.44
ludcmp 28.70 22.73 34.75 WR 28.75 28.64 28.78 28.69 28.54 28.73 28.85 28.54 28.79 ERR ERR ERR 16.36 16.38 16.63
trisolv 0.009 0.013 0.025 0.006 0.005 0.012 0.012 0.088 0.033 0.045 0.005 0.012 0.014 0.005 0.012 0.014 3.060 0.839 0.827

datamining
correlation 17.18 0.204 0.277 0.252 0.136 0.151 0.357 0.590 0.495 0.497 0.131 0.156 0.358 0.133 0.153 0.371 0.334 0.298 ERR
covariance 17.34 0.194 0.268 0.255 0.137 0.161 0.359 0.526 0.483 0.480 0.135 0.154 0.359 0.106 0.163 0.372 0.333 0.305 0.552

medley
deriche 0.535 0.831 0.036 WR 0.514 0.691 0.849 0.518 0.690 0.843 0.516 0.691 0.854 ERR ERR ERR 0.409 0.502 0.777
nussinov 38.65 56.11 1.644 41.64 0.696 1.016 0.668 0.658 1.970 0.749 0.693 1.017 0.666 ERR ERR ERR 746.4 375.2 ERR
fwarshall 115.8 137.9 148.7 25.95 25.95 18.31 16.13 742.4 207.8 222.9 25.31 18.38 16.23 25.84 18.31 16.32 74.57 95.3 277.2

stencils
adi 117.8 71.00 11.62 99.63 ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR ERR 6.141 5.034 6.163
jacobi-1d 0.002 0.005 0.018 0.003 0.004 0.012 0.012 0.085 0.034 0.036 0.003 0.012 0.011 0.004 0.012 0.012 0.011 0.011 0.014
seidel-2d 113.1 89.64 7.615 ERR 1.805 7.45 11.80 1.160 1.715 5.860 1.802 7.46 11.80 1.824 7.44 11.81 64.02 151.4 242.5
fdtd-2d 11.09 12.89 1.591 0.780 1.677 1.753 1.378 0.694 0.696 0.549 1.281 1.475 4.354 0.800 1.419 1.272 23.68 24.00 77.07
jacobi-2d 11.39 0.742 0.713 1.401 1.188 1.106 1.685 0.617 0.509 0.723 1.104 0.934 2.709 1.123 1.213 1.717 23.83 18.94 29.85
heat-3d 12.25 11.67 3.741 20.41 14.77 14.65 28.19 1.542 0.957 2.134 TO TO TO 19.23 14.96 28.15 1735 503.9 ERR

Table A.5: Parallel execution time in seconds of all PolyBench/C benchmarks with respect to the polyhedral compilers on an AMD machine. GRA - GRAPHITE;
P’gst - Polygeist; P’opt - PolyOpt; WR - wrong output; ERR - error; TO - timed-out.
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Polyhedral compiler(s)/Std. compiler(s) with best execution time
Benchmark sequential parallel

linear-algebra/kernels
atax* Std. compilers Std. compilers
2mm icc Pluto(-l2)+icc, PoCC+gcc,

PoCC+icc
3mm icc, Pluto(-l2)+icc PoCC+gcc, PoCC+clang, PoCC+icc
bicg* Std. compilers Std. compilers
doitgen* Pluto(-l2)+gcc Std. compilers
mvt* Std. compilers Std. compilers

linear-algebra/blas
gemm Pluto(-l2)+icc Polly, Pluto(-tile)+gcc, Pluto(-

dia)+gcc, PolyOpt, PoCC+gcc
gemver* Std. compilers Std. compilers
gesummv* Std. compilers Std. compilers
symm PPCG+gcc, PPCG+icc Polygeist
syr2k PoCC+clang, Pluto(-dia)+clang,

PPCG+gcc
PPCG+icc, Pluto(-tile)+icc, Pluto(-
dia)+icc, PoCC+icc

syrk PPCG+gcc, Pluto(-tile)+clang,
PPCG+clang

PPCG+icc, Pluto(-tile)+icc, Pluto(-
dia)+icc

trmm Pluto(-dia)+clang, Pluto(-
tile)+clang, PolyOpt

PolyOpt, Pluto(-tile)+gcc, Pluto(-
dia)+gcc

linear-algebra/solvers
cholesky PPCG+gcc Pluto(-l2)+icc
durbin* Std. compilers Std. compilers
gramschmidt PoCC+gcc, PoCC+clang, PoCC+icc Pluto(-tile)+gcc, Pluto(-dia)+gcc
lu Pluto(-dia)+gcc, Pluto(-tile)+gcc,

PoCC+gcc, PoCC+icc
Pluto(-tile)+gcc, Pluto(-dia)+gcc

ludcmp PPCG+gcc, PPCG+clang,
PPCG+icc

PPCG+gcc, PPCG+clang

trisolv* Std. compilers Std. compilers
datamining

correlation PoCC+gcc, Pluto(-dia)+gcc, Pluto(-
tile)+gcc

PoCC+gcc, Pluto(-dia)+gcc, Pluto(-
tile)+gcc

covariance PoCC+gcc, Pluto(-dia)+gcc, Pluto(-
tile)+gcc

PoCC+gcc, Pluto(-dia)+icc, Pluto(-
tile)+icc

medley
deriche icc, Pluto+icc, PPCG+icc Polygeist, PPCG+icc
nussinov Polygeist Pluto(-l2)+icc
floyd-wars PPCG+gcc Pluto(-dia)+icc

stencils
adi icc PPCG+clang, PPCG+gcc, Polygeist
jacobi-1d* Std. compilers Std. compilers
seidel-2d PoCC+gcc, Pluto(-dia)+gcc, Pluto(-

tile)+gcc
Pluto(-l2)+gcc

fdtd-2d PoCC+gcc PolyOpt, PoCC+gcc
jacobi-2d PoCC+icc PoCC+icc
heat-3d PPCG+icc Pluto(-l2)+gcc, Pluto(-l2)+clang,

Pluto(-l2)+icc

Table A.6: Best execution time (both sequential and parallel) for all benchmarks in PolyBench/C on Intel
machine across standard compilers and polyhedral compilers; (*) Tiny benchmarks with execution time
shorter than 1.5s (gcc).
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Résumé en Français

L’impact des ordinateurs sur les applications humaines est très vaste et cela révolu-
tionne les activités quotidiennes de la vie. Voici quelques domaines importants dans
lesquels les ordinateurs ont eu un énorme impact : Santé - à partir du dossier médi-
cal électronique, de l’image médicale, des outils de diagnostic à la télémédecine; E-
commerce - livraison à domicile d’articles ménagers; Communication - à partir des
e-mails, des visioconférences, des plateformes de médias sociaux à la technologie de
la réalité virtuelle; Systèmes de transports - outils de navigation, systèmes de ges-
tion du trafic et véhicules autonomes; Science et recherche – modélisation du climat,
génomique, découverte de médicaments et simulations physiques. La technologie in-
formatique elle-même a connu plusieurs évolutions au cours des cinquante dernières
années pour devenir compatible avec différents domaines. En particulier, l’ère de
l’informatique personnelle dans les années 1980 a vu la croissance rapide des ordi-
nateurs dans les maisons et les bureaux, explosant ainsi les capacités informatiques.
Des progrès dans les microprocesseurs et le stockage ajoutent encore à la puissance de
calcul. L’ère du mobile et de la démocratisation d’internet au début des années 2000
a donné naissance aux smartphones pour chaque individu. Et tout le monde connaît à
présent l’impact du cloud computing et de l’intelligence artificielle et ses avantages.

Dans cette thèse, nous discutons des avancées dans les systèmes informatiques
ciblant des applications scientifiques à large échelle et comment le processus de généra-
tion de code ou d’optimisation du code doit s’adapter à ces avancées pour maximiser
l’utilisation des supercalculateurs.

B.1 Contributions Matérielles au Calcul

Le matériel et les logiciels progressent ensemble pour améliorer la puissance de calcul
des ordinateurs. Nous abordons maintenant les quelques avancées réalisées en matière
de matériel informatique :

Processeurs multicœurs. Intégration de plusieurs cœurs de traitement sur une seule
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puce permettant ainsi l’exécution parallèle de threads/tâches par un CPU.

Unités de traitement graphique. Circuits électroniques initialement destinés au rendu
graphique dans les jeux vidéo, mais qui ont beaucoup évolué et sont maintenant util-
isés dans de nombreux autres domaines d’application, notamment pour l’apprentissage
automatique, les simulations scientifiques et l’imagerie 3D.

Field-Programmable Gate Arrays. Un FPGA est un circuit intégré qui fournit la
capacité de reconfiguration dynamique pour effectuer une grande variété de tâches, en
particulier en traitement du signal numérique,

Jeux d’instructions vectorielles. Une architecture de jeu d’instructions spécialement
conçue pour améliorer les performances d’opérations similaires sur plusieurs données,
communément appelées opérations vectorielles ou SIMD (Single Instruction, Multiple
Data). SSE/AVX/AVX-512 d’Intel, Neon d’ARM et CUDA de Nvidia en sont quelques
exemples.

Systèmes distribués. Interconnexion de plusieurs ordinateurs entre eux qui commu-
niquent et se coordonnent pour atteindre un objectif commun. Ces systèmes partagent
tâches de calcul, nœuds de stockage et de traitement pour fournir une puissance de
calcul élevée et évolutive.

Informatique quantique. Même si nous en sommes aux premiers stades de son développe-
ment, l’informatique quantique apparaît comme un champ de recherche prometteur,
qui pourrait révolutionner les notions de puissance de calcul que nous connaissons
actuellement.

B.2 Super calculateurs

À l’heure actuelle, on appelle supercalculateurs les systèmes informatiques regoupant
un très grand nombre d’unités de calcul reliées par un réseau de communication très
performant. Ils se composent de milliers, voire de millions de cœurs fonctionnant en
parallèle pour atteindre un nombre élevé d’opérations en virgule flottante par seconde
(Flop/s). Ils disposent d’architectures parallèles ou distribuées haut de gamme avec
plusieurs unités de traitement telles que des processeurs, des GPUs et potentiellement
des accélérateurs spécialisés (par exemple les FPGAs ou les TPU). Ces systèmes sont
spécialement conçus pour traiter des calculs très complexes qui nécessitent un paral-
lélisme massif et pour gérer des données massives. Leurs applications cibles sont les
applications scientifiques et techniques résolvant des problèmes nécessitant des calculs
intensifs qui dépassent de loin la puissance de calcul des ordinateurs classiques, comme
par exemple des simulations de phénomènes physiques ou aujourd’hui l’apprentissage
automatique en intelligence artificielle.

Le site Top5001 classe les supercalculeurs existants dans le monde en termes de
puissance de calcul. Depuis juin 2022, Frontier, hébergé au laboratoire national d’Oak
Ridge, est la machine la plus puissante au monde grâce à ses 8,7 millions de cœurs et une

1https://www.top500.org/
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puissance de calcul de 1206 PFlop/s, soit plus d’un exaFlop/s. Désormais, il incombe
au logiciel d’utiliser efficacement ces ressources matérielles pour tirer pleinement parti
de ces performances.

B.3 Optimisations de Code par le Compilateur

Dans cette section, nous discutons des techniques d’optimisation que le logiciel doit
intégrer pour utiliser les avancées du matériel.

Parallélisme. La parallélisation au niveau des threads et des tâches distribuées im-
plique de diviser le calcul en parties plus petites et exécuter ces parties simultanément
en utilisant plusieurs cœurs. Par exemple, OpenMP (Open Multi-Processing) est une
API de programmation parallèle largement utilisée en C, C++ ou Fortran qui prend
en charge des tâches et des threads dans les systèmes multi-cœurs à mémoire partagée.
MPI (Message Passing Interface) est une autre norme largement utilisée pour la pro-
grammation parallèle des systèmes distribués.

Ressources partagées. Si plusieurs threads ou tâches s’exécutent simultanément, il est
essentiel de gérer correctement les ressources partagées pour éviter les accès concurrents
aux données non synchronisés (provoquant de potentiels datarace) et les interblocages.
L’aspect critique n’est pas seulement l’amélioration du calcul, mais aussi la garantie
de l’exactitude du programme. Différents mécanismes de synchronisation (comme les
mutex et les sémaphores), sections critiques, et les opérations atomiques nous aident à
gérer efficacement ces ressources partagées.

Vectorisation. C’est une technique d’optimisation exploitant les instructions SIMD
permettant ainsi un calcul plus rapide et plus efficace à l’aide de jeux d’instructions
vectorielles. De nombreux compilateurs standards (comme gcc, clang et icc) ef-
fectuent de l’auto-vectorisation avec les techniques standard d’analyse du compilateur
pour générer des instructions SIMD équivalentes aux instructions arithmétiques clas-
siques. Dans certains cas, les compilateurs ont du mal à vectoriser automatiquement le
code là où une vectorisation manuelle pourrait être appliquée. Cela implique de faire
réaliser des analyses par le compilateur (comme l’analyse des dépendances), de réécrire
le code pour inclure des directives vectorielles ou d’écrire des instructions vectorielles
directement dans le code source.

Cohérence des Caches. Un système avec plusieurs unités de traitement (CPU ou
cœurs) peut partager partiellement une hiérarchie mémoire. Il faut s’assurer que la
mémoire est cohérente à travers l’ensemble de ces unités en maintenant la cohérence
entre les données stockées dans leurs caches respectifs. De nombreux protocoles de
cohérence de cache (comme MESI) sont utilisés pour maintenir la cohérence du cache.

Software Pipelining. C’est une technique pour transformer des itérations de boucles
séquentielles en un pipeline d’instructions concurrentes, maximisant ainsi le paral-
lélisme au niveau des instructions processeur et réduisant le coût de leur exécution.

Localité des Données. La gestion des données joue un rôle essentiel dans les systèmes
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distribués. Cependant, atteindre une localité optimale des données dans un système
distribué complexe est difficile en raison de nombreux paramètres, comme la latence
du réseau, de la partition des données et du passage à l’échelle. Il existe des situations
où les gains de performances de calcul sont anéantis par des placement de données
inadéquats, nécessitant des copies excessives de données. Voici quelques considérations
clés pour la localité des données dans les systèmes distribués : réplication de données,
partitionnement de données, mouvement de données et topologie du réseau.

La prise en charge des systèmes multi-cœurs et distribués a abouti à l’évolution de
nombreux langages parallèles et distribués (comme X10, Chapel, Cilk, Erlang, Go), qui
ont réduit l’effort de programmation nécessaire à l’utilisation de ces supercalculateurs.
Dans ces langages, le compilateur est capable de générer un code assembleur ciblant
des architectures hétérogènes multicœurs.

Un compilateur est un programme informatique qui traduit un code source lisible
par l’homme en un code assembleur lisible par machine qui est ensuite converti en
instructions machine et exécuté sur le matériel informatique. Le compilateur joue
donc un rôle crucial dans développement de logiciels car il transforme non seulement
un code d’entrée en exécutable, mais applique également beaucoup d’optimisations
pour générer un code efficace. Cependant, dans de nombreux cas, le compilateur se
limite à appliquer certaines techniques d’optimisation sûres sur le code qu’il parvient
à analyser, et en raison de la nature complexe du programme nécessite l’intervention
du développeur pour l’optimiser davantage.

B.4 Contexte et Contributions

Dans cette thèse, nous introduisons une nouvelle technique de compilation et de généra-
tion de code pour architectures hétérogènes, ciblant les supercalculateurs exascale, afin
d’optimiser des structures de boucles dans des applications spécifiques de simulation
cardiaque. Nous fournissons au compilateur la possibilité de générer du code vectoriel
pour instructions de boucles complexes (qui ne sont pas automatiquement vectorisées
par le compilateur) et les exécuter sur un CPU en utilisant différents jeux d’instructions
vectoriels. Nous étendons encore le processus de génération de code pour produire du
code GPU pour ces boucles et les exécuter sur des GPU Nvidia et AMD.

Code de calcul intensif

Une application scientifique passe l’essentiel de son temps d’exécution en phase de calcul
car il contient les instructions les plus nombreuses et complexes à être exécutées. Ces
instructions complexes sont souvent des noyaux de calcul qui nécessitent des ressources
importantes et reposent fortement sur la puissance de traitement du CPU ou du GPU.
Ces noyaux gourmands en calcul impliquent principalement:

• des simulations telles que la dynamique moléculaire/fluidique, les modèles météo-
rologiques et les dérivations,
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• l’analyse des données : le traitement de très grands ensembles de données,
l’analyse statistique ou les modèles d’apprentissages (ML),

• les calculs mathématiques qui nécessitent la résolution différentielle ou intégrale
d’équations,

• le traitement d’image ou du signal.

La plupart du temps, ces noyaux sont enfermés dans des boucles avec un grand nom-
bre d’itérations. L’identification et l’optimisation de ces noyaux sont essentielles pour
améliorer les performances et l’efficacité de ces grandes applications. Les développeurs
profilent souvent leurs applications pour identifier ces noyaux gourmands en calcul et les
optimiser, à l’aide de techniques d’optimisation standard, ou en proposant de nouvelles
optimisations spécifiques au matériel ou au logiciel. Il existe des cas où le compilateur
lui-même suffit à les identifier et les appliquer (par exemple avec l’auto-vectorisation).

Ces optimisations du noyau peuvent-elles être encore améliorées ?

Plusieurs facteurs d’optimisation doivent être pris en compte lors de la génération
d’un code optimisé ciblant les supercalculateurs. L’objectif principal est d’invoquer un
parallélisme massif résultant en une utilisation efficace de tous les cœurs. Parfois, la
nature complexe du logiciel rend l’application de ces optimisations difficile, par exem-
ple lorsque les dépendances entre les instructions empêche certaines transformations
de boucles. De plus, la présence d’instructions complexes comme un appel de fonc-
tion/bibliothèque ou un flux de contrôle irrégulier dans une boucle peut empêcher la
vectorisation automatique du compilateur, même si la boucle ne porte aucune dépen-
dance et est annotée avec des directives vectorielles.

Un autre aspect est la génération de code : de nombreuses applications s’appuient
sur un langage dédié (Domain Specific Language, ou DSL) car il est plus commode
pour les experts de ces domaines d’écrire du code avec moins de connaissances en pro-
grammation. Ensuite, c’est la responsabilité du compilateur pour ces DSL de générer
un code efficace. La plupart de ces générateurs de code ciblent une architecture CPU
ou GPU, mais rarement les deux.

La technologie des compilateurs a beaucoup évolué et il existe de nombreux nou-
veaux environnements de compilation pour aider les développeurs à générer du code
optimisé pour leurs applications, par exemple le compilateur MLIR [7]. MLIR (Multi-
Level Intermediate Representation) de LLVM [8] est une technologie de compilation
innovante qui vise à représenter différents niveaux d’abstraction et d’optimisation sous
une forme unifiée, à l’aide de plusieurs représentations intermédiaires coexistantes.
Il s’agit d’une infrastructure très récente conçue pour relever les défis des compila-
teurs modernes, capable de cibler les systèmes hétérogènes, où plusieurs langages de
programmation, cibles matérielles et passes d’optimisation doivent être coordonnés ef-
ficacement. Dans le chapitre 3 de ce manuscrit, nous fournissons une vue d’ensemble
des dialectes et des passes d’optimisation de MLIR.
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Génération de code hétérogène pour une application de simulation cardiaque

La simulation cardiaque fait référence à la modélisation informatique de la structure
du cœur humain et de son fonctionnement. Il s’agit de créer des équations différen-
tielles ordinaires (ODE) représentant l’anatomie cardiaque, dont l’activité électrique
détermine le battement du cœur (électrophysiologie cardiaque) et le comportement
physique des tissus cardiaques (mécanique). Ces simulations sont principalement util-
isées comme aide médicale au diagnostic des maladies cardiaques, et pour permettre de
mieux comprendre les rythmes cardiaques anormaux (arythmies), l’ischémie (réduction
du flux sanguin), et d’autres troubles cardiaques. Les simulateurs cardiaques actuels
ne peuvent simuler qu’une partie du cœur humain, ou le faire de manière assez impré-
cise. En raison des progrès de la puissance de calcul des ordinateurs et de l’évolution
des supercalculateurs exascale, la recherche en simulation cardiaque permettra bien-
tôt la simulation précise d’un cœur humain entier. Le cœur est composé d’environ
2 milliards de cellules, et simuler le cœur entier implique de traiter ces 2 milliards
de cellules. Même avec les plus gros supercalculateurs, ces simulations sont difficiles
compte tenu des équations mathématiques complexes et de l’efficacité avec laquelle le
code de simulation est optimisé sur une architecture hétérogène. Dans le chapitre 2,
nous abordons les limitations dans le processus de génération et d’optimisation de code
des simulateurs cardiaques de pointe.

Dans le chapitre 4, nous introduisons une technique de compilation et de généra-
tion de code optimisée avec l’aide de MLIR (chapitre 3), pour émettre du code vecto-
riel CPU et GPU pour les applications de simulation cardiaque ciblant différentes
architectures de supercalculateurs. Nous avons implémenté nos techniques sur le
simulateur cardiaque open source openCARP [9] et utilisé les 48 modèles informa-
tiques (modèles ioniques) disponibles dans ce simulateur pour tester notre implémen-
tation. Ces 48 modèles ioniques sont différentes combinaisons d’équations (ODE) et
sont largement utilisés dans la recherche cardiaque. Nous avons réalisé des évalu-
ations de performances sur deux plate-formes d’expérimentation à grande échelle :
(i) Grid’5000 (https://www.grid5000.fr) et (ii) PlaFRIM (https://plafrim.fr).
Ces deux plate-formes contiennent les diverses architectures nécessaires pour exécuter
le code hétérogène généré. Dans le chapitre 4, section 4.2 les résultats de performances
des 48 modèles sont rapportés pour le code vectoriel CPU (SSE, AVX, AVX-512) et
le code GPU (Nvidia et AMD). Nos résultats expérimentaux montrent qu’en aidant
le compilateur à générer un code optimisé on obtient une utilisation très efficace de
l’architecture multicœur et hétérogène disponible dans les supercalculateurs. Nous
avons également mesuré la consommation d’énergie et montré l’efficacité énergétique
de nos techniques. Nous avons publié ces résultats dans deux conférences interna-
tionales [10, 11].

Ce travail présenté dans le chapitre 4 est un travail collaboratif avec un ingénieur
de recherche (initialement commencé par Tiago Trevisan Jost, puis poursuivi par
Raphaël Colin). Il a conduit à une collaboration avec l’équipe de recherche STORM
de l’Inria Bordeaux, où notre flux de compilation est intégré à StarPU [12], un système
d’exécution dynamique basé sur des tâches, pour distribuer dynamiquement l’exécution
sur l’architecture cible [13].
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Améliorations des techniques d’optimisation des boucles polyédriques

Après les améliorations prometteuses des performances des applications de simulation
cardiaque, nous avons généralisé nos techniques dans les optimisations de boucles polyé-
driques. Les techniques d’optimisation polyédriques sont utilisées pour transformer les
programmes avec des nids de boucles régulières comme les opérations matricielles, le
calcul de stencils et les applications de traitement d’images. Elles commencent par
représenter le nid de boucles sous forme de polyèdres dans un espace géométrique,
puis effectuent l’analyse de dépendance entre les itérations de boucles. Elles aident
surtout à réaliser trois optimisations : pavage, parallélisme de boucles et vectorisation.
Le pavage se fait en restructurant les boucles dans le but d’améliorer la localité des
données. Les boucles sont annotées avec des directives parallèles et vectorielles pour le
parallélisme de boucle et la vectorisation, respectivement.

Il existe de nombreux types différents de compilateurs polyédriques disponibles
comme des compilateurs source-à-source généraux, ceux intégrés à des compilateurs
généraux, ou encore spécifiques à une application ou spécifiques à une cible. Dans
le chapitre 5, nous avons d’abord effectué une étude détaillée des compilateurs polyé-
driques à usage général disponibles en utilisant nos plate-formes d’expérimentation
à grande échelle, pour connaître leurs avantages et leurs limites. Nous avons utilisé
PolyBench/C [14], un ensemble de trente benchmarks numériques largement reconnus,
ciblant divers domaines d’application pour mener une étude détaillée sur les compi-
lateurs polyédriques. L’analyse à l’aide de compteurs de performances matérielles a
fourni des informations et des directions d’amélioration supplémentaire des compila-
teurs polyédriques, en particulier dans l’amélioration de la vectorisation et la génération
de code GPU.

Dans le chapitre 6, nous abordons quelques limitations des compilateurs polyé-
driques de pointe : (i) les directives de compilation vectorielles ne sont qu’une recom-
mandation aux compilateurs et sont ignorées dans certains cas, et (ii) il n’y a pas
d’approche unifiée pour générer des codes hétérogènes. Nous nous sommes appuyés
sur Polygeist [15] pour généraliser notre technique précédente comme solution aux
deux problèmes mentionnés ci-dessus. Nous avons choisi Polygeist [15], étant un en-
vironnement basé sur MLIR/LLVM pour transformer un code C/C++ en code MLIR
polyédrique, et généraliser nos techniques à l’aide de Polygeist nécessitera un effort
réduit car l’environnement requis est déjà établi. Nous avons modifié le flux de généra-
tion de code de Polygeist pour émettre une boucle OpenMP SIMD en MLIR pour
les boucles annotées vectorielles. Nos résultats expérimentaux ne montrent aucune
amélioration des performances sur les programmes PolyBench/C, à cause de la prise
en charge limitée des directives OpenMP SIMD de MLIR. L’environnement MLIR est
en phase de développement très active pour prendre en charge diverses optimisations
du compilateur. Donc, dans un futur très proche MLIR pourrait fournir un support
d’optimisation complet pour les boucles OpenMP SIMD et nous espérons que notre
technique proposée améliore la vectorisation. Nous avons laissé l’implémentation de
la génération de code GPU dans le cadre de travaux futurs. L’étude sur les compila-
teurs polyédriques est publiée dans ACM TACO [16], et la technique de génération de
boucles Polygeist SIMD est acceptée à un symposium [17].
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Cette thèse présente les progrès de la puissance de calcul des supercalculateurs, les
limites des techniques d’optimisation de code ciblant leurs architectures hétérogènes et
une solution pour surmonter ces limitations, ciblant en particulier la vectorisation de
code CPU et la génération de code GPU. Notre objectif est de montrer comment un
code optimisé dans des applications complexes peut utiliser efficacement les ressources
massives des supercalculateurs pour améliorer les performances d’applications ayant
un impact sur la vie réelle humaine.

Cette thèse a été financée par le European High-Performance Computing
Joint Undertaking EuroHPC, sous la convention de subvention numéro 955495
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Génération de code optimisée pour des nids de boucles parallèles et
polyédriques à l’aide de MLIR

Abstract

In this thesis we show the benefits of the novel MLIR compiler technology to the generation of code
from a DSL, namely EasyML used in openCARP, a widely used simulator in the cardiac electro-
physiology community. Building on an existing work we deeply modified openCARP’s native code
generator to enable efficient vectorized CPU and GPU code generation (Nvidia CUDA and AMD
ROCm). Generating optimized code for different accelerators requires specific optimizations and we
review how MLIR has been used to enable multi-target code generation from an integrated generator.
To our knowledge, this is the first work that deeply connects an optimizing compiler infrastructure to
electrophysiology models of the human body, showing the potential benefits of using compiler tech-
nology in the simulation of human cell interactions. Additionally, we did a study on the polyhedral
compilers and generalized our techniques using Polygeist to improve the vectorization and heteroge-
neous code generation of polyhedral compilers.

Résumé

Dans cette thèse, nous montrons les avantages de la nouvelle technologie de compilateur MLIR pour
la génération de code à partir d’un DSL, à savoir EasyML utilisé dans openCARP, un simulateur
largement utilisé dans la recherche en électrophysiologie cardiaque. S’appuyant sur un travail exis-
tant nous avons profondément modifié le générateur de code natif d’openCARP pour permettre une
génération efficace de code CPU vectoriel et GPU (Nvidia CUDA et AMD ROCm). La génération de
code optimisé pour différents accélérateurs nécessite des optimisations spécifiques et nous examinons
comment MLIR a été utilisé pour permettre la génération de code multi-cible à partir d’un générateur
intégré. À notre connaissance, il s’agit du premier travail qui relie profondément une infrastructure de
compilateur d’optimisation aux modèles électrophysiologiques du corps humain, montrant les avan-
tages potentiels de l’utilisation de technologies de compilation dans la simulation des interactions
entre cellules humaines. De plus, nous avons réalisé une étude sur les compilateurs polyédriques et
généralisé nos techniques en utilisant Polygeist pour améliorer la vectorisation et la génération de
codes hétérogènes des compilateurs polyédriques.
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