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1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Introduction and background . . . . . . . . . . . . . . 3

1.2.1 Foams and emulsions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Interfacial tension and effective interfacial tension . . . . . . . 4
1.2.3 Constant mean curvature surfaces and minimal surfaces . . . . 5
1.2.4 Adhesion and elasticity of interfaces . . . . . . . . . . . . . . . 9
1.2.5 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Motivation
Foams and emulsions are structures with a continuous and a dispersed phase. Foam

has a liquid continuous phase and a dispersed gaseous phase, the bubbles. An emulsion
consists of two immiscible liquids, one being the continuous phase and the other the
dispersed phase (the drops). Foams and emulsions are widely used in applications and
industrial processes, such as in food industries, personal care and cosmetic products, in
agrochemicals, pharmaceuticals, paints, oil industries, mining industries and recycling
processes, to mention only a few. They are also frequently observed in nature, for example
at the coasts after a storm in the presence of plankton, at an active volcano or in animal
products like milk. It is therefore crucial to understand their properties [4, 5, 6, 7, 8].

Foams and emulsions have many advantageous properties like the macroscopic yield
stress behavior, good thermal insulation, high sound absorption, the low continuous
volume fraction in comparison to the total volume, the self assembly of bubbles or drops in
a foam or emulsion, etc.. With help of solidification methods, some of these properties are
conserved in solid foams. This extends the range of applications, for example for building
materials. Other properties play a greater role there, such as the Young’s modulus or
the stiffness. However, this brings to light a major disadvantage, the small compression
modulus and stiffness against deformation of foams. It is related to the characteristic
structure of the continuous phase which is mainly defined by Plateaus’ and Young-Laplace
laws, discussed in more detail in Section 1.2. This makes solid foams less attractive
for many applications. By modifying the bubble/bubble or drop/drop interactions in a
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2 Chapter 1. Introduction

foam or emulsion, new structures with new properties would be accessible, which could
use the advantages of foams/emulsions by minimising their disadvantages. The ERC
Consolidator Grant (agreement 819511 METAFOAM) aims to understand with different
model systems the influence of elasticity, adhesion and friction in interplay with interfacial
tension on the final structures. Subsequently, the knowledge gained will be used to
produce meta-materials with the desired material properties. The effect of mechanical
self-assembly will be used in order to work reproduce-ably and cost-effectively. The
first step is to find the right model system. The criteria for this are reproducibility and
control of the parameter space. Important parameters that define a foam/emulsion are
the continuous phase volume fraction, the bubble/drop size distribution, the interfacial
tension, the attractive forces between bubbles/drops or the rheological properties of
the interface/skin. Furthermore, it is desired to distinguish between the influence of
elasticity, adhesion, friction and interfacial tension on the interactions of the individual
bubbles/drops and on the final foam/emulsion structure. This opens up another question.
Which experimental measurement method and which setup is suitable for this? This thesis
is part of the Metafoam project, trying to find the right model systems and answering in
the meantime the question about the experimental setup and measuring method. The
complexity of foams and emulsion is undisputed. This is only intensified by elasticity
and adhesion. A good approach is to split the complex system in to smaller subsystems.
By investigating only one bubble/drop [9], some of the interplay between interfacial
tension and visco-elasticity can be understood. But an important ingredient is missing,
the bubble/bubble or drop/drop interaction. The approach in this thesis is therefore to
model a foam/emulsion with a subset of two bubbles/drops in contact. Starting with two
simple bubbles or drops in contact, the investigation goes up to two capsules in the same
configuration. The aim is to show a continuous transition from surface tension controlled
systems to fully elasticity controlled systems. The effect of adhesion between two bubbles
or drops is investigated in the same manner.

The general structure of the thesis with its six chapters is illustrated in Fig. 1.1. This
thesis starts with a general introduction providing a general background to this topic and
ending with a conclusion and outlook, which summarise the most important findings and
discuss it in context to the existing literature and possible future investigations. The main
results obtained during the three years of investigation are presented in the four chapters
in between. Chapter 2 talks about minimal surfaces close to the catenoid surface with
help of experiments, simulations and a perturbation theory. As minimal surfaces can be
used as a model system for soap films, they have a special interest for foams. The catenoid
is a well investigated configuration and its understanding can be used to generate a better
understanding of new surfaces, close to the catenoid. Chapter 3 treats two bubbles or
drops in contact with constant interfacial tension. This configuration therefore models an
ordinary foam that is only controlled by interfacial tension. It serves as a starting point
for more complex systems, since the physical principles for ordinary foams are already
understood. Chapter 4 shows the fabrication and mechanical characterisation of a single
"capsule" or "dropbloon". The tension at the interface of a capsule is purely related to
elastic tensions and for a dropbloon interfacial and elastic tension play both a significant
role. The aim is to characterise as much as possible the properties of the interface in order
to concentrate afterwards just on the interactions between the two capsules or dropbloons.
Chapter 5 explores the interactions of two capsules in contact.
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Figure 1.1: Illustrations of the general idea and structure of this thesis with the six different
chapters.

1.2 General Introduction and background

1.2.1 Foams and emulsions

Different length scales play a role in foams and emulsions. The smallest length scale is
that of the interface, which is at the length of molecules. It depends on the used solutions
and is between 1 to 10 nm [5]. The thickness of a film separating two bubbles is commonly
between 5 nm to 1 µm. It depends on the interactions between the interfaces and on the
liquid fraction Φ. The size of drops and bubbles can vary between hundreds of nm and a
cm. The size of the macroscopic foam or emulsion can reach the length scale of a meter.
Phenomena of all length scales interact with each other, making foams and emulsions in
the general case a strongly dynamic, non-linear system. Their properties depend on many
parameters [4, 5], like the volume fraction of the different phases, the bubble/drop size
distribution, the used surfactant, etc..

Considering for now by simplicity only foams, one very important parameter is the
liquid volume fraction Φ. A critical point is where the bubbles touch each other and build
a network, the jamming point, which is approximately at Φ = 0.36 for a disordered and
reasonably mono-disperse foam, as illustrated in Fig. 1.2. For larger liquid fractions one
talks rather about bubbly liquids than about foams. If the liquid fraction tends towards
zero, one talks about dry foams, which have a special equilibrium structure defined by
Plateau’s laws [5, 4, 10]. They state that films separating bubbles can be modeled as
constant mean curvature surfaces due to the Young-Laplace law, as explained in more
detail in Section 1.2.3.

In these dry foams, always three films meet each other in a line creating the Plateau
borders. The angle between two films is always 120◦. Four of the "Plateau borders" meet
each other in a vertex with angles of 109.47◦. In the limit of low liquid fraction this is
exact. However, it also gives a very good approximation for foams up to a liquid fraction
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Figure 1.2: Scheme of foam aspects for different liquid volume fractions Φ, (C. Wiebke Drenckhan)

of Φ = 0.1. That is why foams are called "dry" for Φ < 0.1 and "wet" for 0.36 > Φ > 0.1.
These principles are also true for emulsions. Even if they are called "high internal phase
emulsions" for continuous fractions above the jamming point. Since jammed emulsions
are often less stable than foams, Plateau’s laws are observed mostly in foams and not in
emulsions.

Foams and emulsions are in a meta-stable state and continuously changing their
shape and structure, due to three mechanisms: drainage, gas or liquid diffusion and
coalescence. Drainage describes the transport of liquid through the continuous phase
due to gravitational and capillary forces [4]. Gas or liquid diffuses between different
bubbles/drops due to Young-Laplace pressure difference. This changes the bubble/drop
size distribution. Coalescence between two bubbles/drops appears if the film between
them breaks. All three mechanisms influence each other.

Surfactants or emulsifiers are necessary to prevent the foam/emulsion from collapsing
due to a hydrophobic and hydrophilic part in their molecular structure. Surfactants
or emulsifiers absorb at the gas/liquid or liquid/liquid interface and stabilise against
coalescence by reducing the interfacial energy and creating an energy barrier for film
rupture.

Investigations of foams and emulsions are therefore very complex even for the "simple"
case with purely liquid interfaces of constant interfacial tension. The Metafoam project
aims to modify the interfaces or films, by adding elastic or adhesive contributions. Since
the interfaces control the whole system, they have an impact on all phenomena discussed
above. Smaller subsets of a foam or emulsion can help to simplify the system and develop
a general understanding.

1.2.2 Interfacial tension and effective interfacial tension

The interfacial energy per interface area γ is the cost of energy per interface area
between two phases, as sketched in Fig. 1.3. It can be an interface between phase 1 and
vacuum, γ1, or between phase 1 and phase 2, γ12. The interfacial tension between phase 1
and a vacuum is a hypothetical tension important for some theoretical explanations (see
Fig. 1.6). An interface between a liquid and a vacuum is not physical, as the vacuum
disappears through evaporation. Since physical systems try to minimise their total energy
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E , interfaces try to minimise their total interface area A, which is proportional to the
interfacial energy, i.e E = γA. The consequence is an interfacial tension tangential to the
interface (Fig. 1.3b) and identical in absolute value to the energy per interface element.
The interfacial energy per interface area can therefore be interpreted as interfacial tension
and inverse. This is why the same formula symbol γ is used for both.

A liquid film consists of two interfaces and a small liquid phase in between. Since
both interfaces of the film are very close to each other, a liquid film is often modelled
as a single interface with an effective interfacial tension of γeff = 2γ as illustrated in Fig.
1.3c. This is generally a good approximation if interactions between the two interfaces
are negligible.

Figure 1.3: Illustration of an interface in Euclidean space in a), an interfacial element in b) and
a film element in c) and their geometrical properties, r⃗ the vector description of the interface
with the parametrisation u and v, A the interface area, dA an interfacial element, R1 and R2 the
inverse of the principal curvatures and the forces with p1 and p2 the pressures on both sides of
the interface or film, pfilm the pressure inside of the film and γdu, γdv and γeffdu and γeffdv the
line tension or effective line tensions of the interface or film. The surface tension forces are always
tangential to the interface/film and the pressure forces always normal. The arrows in b) and c)
symbolise the direction of the interfacial tension.

1.2.3 Constant mean curvature surfaces and minimal surfaces
One important ingredient of a foam or emulsion is the interface between the discrete

and the continuous phase or a film with two interfaces and their effective surface tension
γeff .

A general interface in an Euclidean space is illustrated in Fig. 1.3a. If we make the
assumption that γeff is constant in space, the total free energy of an open interface or
film is given by

E = γeff

∫∫
A

dA = γeff

∫∫
A

∥∥∥∥∂r⃗∂u × ∂r⃗

∂v

∥∥∥∥du dv = γeff

∫∫
A

L du dv, (1.1)

with E the free energy, A the surface area of the interface/film, r⃗ the surface coordinates,
u and v the surface parameterisation and L the analog of a Lagrangian. "Open" means
in this case that one can reach the other side of the film without crossing the film, i.e.
the pressures on both sides are identical: p1 = p2. We are interested in physically stable
surfaces in equilibrium at a local energy minimum. Equ. (1.1) shows that extremising E is
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equivalent to extremising A. To find the extrema of Equ. (1.1), it is helpful to represent
the surface r⃗ in an implicit form with Cartesian coordinates (x, y, z) with

rz = f(rx, ry), (1.2)

and rj the Cartesian coordinates of r⃗. The Lagrangian becomes

L =
√

1 + f2
,x + f2

,y, (1.3)

with ( ),j the partial derivative with respect to j. The Euler-Lagrange equation is therefore

∂L
∂f

− ∂

∂x

(
∂L
∂f,y

)
− ∂

∂y

(
∂L
∂f,y

)
= 0, (1.4)

and gives the differential equation for extremal surfaces(
1 + f2

,y

)
f,xx − 2f,xf,yf,xy +

(
1 + f2

,x

)
f,yy = 0. (1.5)

In the literature, the obtained solutions of the differential equation are called "minimal
surfaces". Sometimes, only the local minima are called minimal surfaces and sometimes
all solutions, including the local maxima. We will stick to the more general case and
call all solutions of Equ. (1.5) minimal surfaces. Consequently, open liquid interfaces or
films in equilibrium are minimal surfaces in a local minimum. Soap films are liquid films
that remain stable for a long time and are therefore predestined for analysing minimal
surfaces.

Minimal surfaces are of special interest, since they are the solution of optimisation
problems. The question of the existence of a minimal surface for given boundary conditions
is known as the Plateau problem [11] and of particular interest. Only the minima of Equ.
(1.1) are physically stable. That adds the question of stability of minimal surfaces. Soap
films in equilibrium are always stable minimal surfaces (surfaces in a local minimum),
which makes them even more interesting for minimal surface analysis.

Only few analytical solutions for minimal surfaces are known. That is why the known
analytical solutions are of high interest. The simplest and trivial minimal surface is the
plane. The catenoid, shown in Fig. 1.4, is the minimal surface connecting two coaxial
circles with each other. Apart from the plane, it is the only axisymmetric minimal surface.
The rc(z) profile (difined in Fig. 1.4) is the catenary

rc(z) = ac cosh
(
z

ac

)
, (1.6)

with ac the smallest radius of the profile rc. It can be used to model lipid membranes
between colloids [12]. Besides the catenoid and the plane, there are other known, more
complex minimal surfaces. The helicoid is the minimal surface obtained with a helix
boundary curve [13], represented in Fig. 1.4. The Weierstrass representation produces
minimal surfaces in a more general way [13] with

rx = Re
(∫

o
(
1 − g2

)
dw
)
,

ry = Re
(∫

io
(
1 + g2

)
dw
)
,

rz = Re
(∫

ogdw
) (1.7)
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Figure 1.4: Different minimal surfaces, the catenoid, the helicoid [16], the Scherk surfaces [16] and
the Karcher towers [15].

with g a meromorphic function, og an analytic function and the complex number w = u+iv
with i the imaginary unit [13] and u and v the parametrisation of the surface. Two examples
of minimal surfaces, which are obtained with the Weierstrass representation, are the
Scherk surfaces [14] and Karcher towers [15]. Both are represented in Fig. 1.4.

By adding a volume constraint to the problem in Equ. (1.1), the free energy of the
system becomes

E =
∫∫

A
γeffdA + ∆p

∫∫∫
V

dV, (1.8)

with ∆p the pressure difference between the two sides of the interface and V the volume
of the body. The pressure difference is from the mathematical point of view the Lagrange
multiplier for the volume constrain. With extremising Equ. (1.8) using the Euler-Lagrange
Equ. (1.4), the differential equation

0 = 2γeff

(
1 + f2

,y

)
f,xx − 2f,xf,yf,xy +

(
1 + f2

,x

)
f,yy(

1 + f2
,x + f2

,y

)3/2 − ∆p, (1.9)

is obtained. Comparing Equ. (1.9) with the differential equation for the mean curvature

H =

(
1 + f2

,y

)
f,xx − 2f,xf,yf,xy +

(
1 + f2

,x

)
f,yy(

1 + f2
,x + f2

,y

)3/2 , (1.10)
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we obtain the Young-Laplace law [17, 18]

p1 − p2 = ∆p = 2γeffH, (1.11)

which relates the pressure difference ∆p between the two sides of an interface or a film
in equilibrium to the mean curvature H and the interfacial tension or film tension γeff .
In Fig. 1.3 the different geometrical elements and forces (pressures and tensions) are
illustrated for an interface in a) and b) and a film in c).

The mean curvature H is the averaged curvature κ over all directions at a point of a
doubly differentiable surface

H =
∫ 2π

0
κ(ϕ)dϕ. (1.12)

It can be shown that this is equivalent to

H = 1
2 (H1 +H2) = 1

2

( 1
R1

+ 1
R2

)
(1.13)

with H1 and H2 the principal curvatures and R1 and R2 the principal radii, of curvature.
This Young-Laplace law (1.11) is exact for a fluid interface from the continuum

mechanical point of view. It therefore describes the shape of the interfaces of bubbles and
drops in foams and emulsions in equilibrium. Changes in γeff and ∆p along the surface
are often small and can be neglected. Consequently the mean curvature H is constant
along the surface and all liquid films in foams and emulsions are constant mean curvature
surfaces. Even Plateau borders can be modeled with constant mean curvature surfaces.

In the special case of ∆p = 0 surfaces are minimal surfaces with H = 0 [19], which
can be also obtained by comparing Equ. (1.10) and Equ. (1.5).

In many cases, only one or two bubbles or drops are investigated in axisymmetric
configuration held by frames. Then the special group of axisymmetric constant mean
curvature surfaces (Delaunay Surfaces) [20] can be exploited for a better understanding
of the interactions between two bubbles (drops) confined between two circular frames.
Fig. 1.5 shows the four subgroups of Delaunay Surfaces: nodoids, spheres, unduloids and
cylinders with the surface coordinates r(z, φ). The catenoid is the only other axisymmetric
constant mean curvature surfaces [21, 22, 23]. Equ. (1.8) is simplified with the help of
the divergence theorem and the assumption of an axisymmetric surface to

E(r) = 2π
∫ [

γeffr
√

1 + r2
,z − ∆p

2 r2
]

dz. (1.14)

Equ. (1.9) then simplifies to

0 = γeff
1 + r2

,z − rr,zz(
1 + r2

,z

)(3/2) − r∆p. (1.15)

Integrating Equ. (1.15) over φ and z (see also Beltramy identity [24]) one obtaines

Fz = ±γeff
2πr√
1 + r2

,z

− πr2∆p. (1.16)

Equ. (1.16) is the differential equation, which gives the Delaunay Surfaces. Fz is the
integration constant, which is equal to the force in z-direction exerted on the upper end
of the surface and composed of the the sum of pressure and interfacial tension forces.
These surfaces are discussed in more detail in Chapter 3.
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Figure 1.5: illustration of the four periodic, constant mean curvature surfaces (Delaunay surfaces):
nodoids, spheres, undoluids and cylinders on the left, and a top and side view of the surface profile
with cylindrical coordinates r, z and φ and the inner and outer pressure p1 and p2.

1.2.4 Adhesion and elasticity of interfaces
What happens now to these interfaces when adhesion or elasticity play a role? What

kind of surfaces would one obtain?

1.2.4.1 Adhesion

Let us first take a closer look at the adhesion between two interfaces. Adhesion is
related to the change in free energy by separating two different objects or phases [25].
The energy changes with the amount of work per unit surface W performed. One may
illustrate this process as shown in Fig. 1.6a for two fluids 1 and 2. One starts with a
continuous interface between the two fluids. Afterwards we create two new interfaces
between phase 1 and 2 and vacuum. The free energy per surface area changes by half
the work per surface area required to separate phase 1 or 2 from itself, 0.5(W11 +W22).
The final step is to bring the two surfaces that were in contact with vacuum together and
form a new interface between phase 1 and 2. The required work per surface area for this
step is −W12. One may therefore write

γ12 = 0.5W11 + 0.5W22 −W12 = γ1 + γ2 −W12, (1.17)

with Wjj = 0.5γj the work needed to separate phase j and the surface energy of these
phases and vacuum, W12 the work needed to create a new interface between phase 1 and
2 and γ12 the interfacial tension between this two phases [25]. The adhesion energy per
surface area is therefore the surface tension between the two phases and the simplest case
of adhesion between two objects, in this case two fluids. The interfacial tension between
two fluids is therefore a measure of the strength of the adhesion between them.

Here we are interested in the adhesion between two interfaces. The adhesion energy
between them can be defined in a similar way. Fig. 1.6b shows phase 1 as two bubbles



10 Chapter 1. Introduction

Figure 1.6: Illustrations of a) the work per surface element needed to separate a fluid interface
between two phases 1 and 2, b) of the work per surface element needed to create a film in
equilibrium between two bubbles or drops and c) an example of a disjoining pressure Π vs.
distance δ curve.

or drops and phase 2 the continuous phase separating the two bubbles or drops with a
distance δ. Since the distance δ between the two interfaces can be of the order of a nm,
they interact with each other. The potential which is related to the interaction of the
two interfaces is called disjoining pressure Π. It is a function of δ and depends strongly
on the used surfactants, surfactants concentrations and fluids used for phase 1 and 2.
An illustration of a possible disjoining pressure curve is shown in Fig. 1.6c. Possible
interactions are related to Van-der-Waals forces, electrostatic forces due to charges on the
interface, steric repulsive forces or depletion forces due to micelles or polymers in phase 2
[25]. Equ. (1.17) is modified to

γeff;12 = 0.5W11 + 0.5W22 −W12 = γ1 + γ2 −W12 + 0.5WΠ, (1.18)

with WΠ the work per area performed by decreasing the film thickness, from one where
the interfaces do not see each other to the thickness δ0, the final thickness, where they
interact with each other. WΠ can be obtained with

WΠ =
∫ ∞

δ0
Πdδ. (1.19)

The adhesion energy Eadh of two bubbles or drops is the energy which is needed to separate
them. Separated in this context means the disjoining pressure and the change of the
disjoining pressure with respect to δ is zero. Since before the separation and after the
separation, there are two interfaces between phase 1 and 2 the energy is Eadh = WΠA.
Another interpretation of WΠ is an effective film tension γfilm = WΠ acting tangentially
to the two interfaces, illustrated in Fig. 1.7a. One may write

γeff;12 = 0.5γfilm + γ12. (1.20)

Even if a film has a γfilm ≠ 0 the assumption of a constant mean curvature surface stays
true, if γeff;12 is constant over the interface. Therefore E from Equ. (1.8) is proportional
to γeff;12. The difference in a foam or emulsion structure can be observed at the edges
of the films, shown in Fig. 1.7b. Since γeff;12 depends on Π and Π depends on δ, γeff;12
changes in the meniscus. For the length scale of the film thickness δ, this is a continuous
change [26, 27], illustrated in Fig. 1.7a. For a scale larger than δ, a non zero contact angle
θc between the interface at the film and the interface at the meniscus or Plateau border
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Figure 1.7: A liquid film with the transition to a Plateau border or meniscus in a) and different
Plateau borders with the important geometrical parameters as n⃗ the normal vector on the
interface, δ the distance between the two interfaces and θc the macroscopic contact angle between
the interfaces at the film and Plateau border and the different tensions as γ the interfacial tension
and γfilm the 2D film tension.

is observed [27], shown in Fig. 1.7b. This is a consequence of the force equilibrium at the
film edge. Films in a foam are bounded by Plateau borders and vertices. Consequently
the shape of the Plateau borders and vertices are changed in the cases, where δ is smaller
than the characteristic lengths of Plateau borders or vertices and γfilm ̸= 0. This has an
influences on the global foam structure and therefore on drainage [28], the mechanical
properties of the foam and more [29].

1.2.4.2 Visco-Elasticity

The energy per surface area in Equ. (1.8) becomes an integral-differential equation in
space and time if visco-elasticity is considered

E =
∫∫

A
γeff(r⃗, ⃗̇r, r⃗,i, ...)dA + ∆p

∫∫∫
V

dV, (1.21)

with ⃗̇r the time derivative of the interface and r⃗,i the space derivative of the surface in the
three directions in space. The energy per interfacial area has three different contributions:
(1) the already discussed interfacial tension of the interface between the two phases, (2)
energy due to elastic deformations and (3) the viscous dissipation energy. An interface can
be elastic in a liquid state (Fig. 1.8a) or in a solid state (Fig. 1.8b). In the liquid state (Fig.
1.8a) the interface concentration of surfactants decreases and consequently, the interfacial
tension γ12 increases, if the surface area of a liquid interface is increased and exchange of
surfactants with the bulk prohibited. Going back to the original surface area one obtains
again the original surfactant concentration at the interface and interfacial tension. This
is referred to as Gibbs elasticity. Most of the time this process is not 100% elastic due
to adsorption and desorption of surfactants at the interface. The combination of both
phenomena explains the visco-elastic behavior of a liquid interface, where the resitance
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against surfactant adsorption and desorption is responsible for the elastic response and
the adsorption and desorption for the viscous behavior. By oscillating the surface area,
the elastic and the viscous part can be measured. If the characteristic diffusion time of
the surfactants at the interface is large or the surfactants are not soluble in bulk, the
viscous part generally becomes negligibly small. Since the layer of surfactants is confined
at the interface, one talks about two-dimensional elasticity.

Figure 1.8: a) A scheme of the principle idea of Gibbs elasticity with phase 1 and 2, a representation
of surfactants and the interfacial tension γ12 between the two phases. b) A scheme of a skin (phase
2) between two different fluids (phase 1 and 3) with the interfacial tensions at the interfaces γ12
and γ23 and the effective interfacial tension of the skin γskin with the geometrical properties δskin
the thickness of the skin and t⃗ the tangential vector of the interface/skin.

The term "skin" is used when the interface is a solid. The skin of this thesis consists
of several layers of molecules and can no longer be regarded as a two-dimensional object.
Therefore, the skin has two interfaces, an inner and an outer interface as illustrated in
Fig. 1.8b. The two interfacial tensions γ12 and γ23 are not the same and depend on the
used gases and liquids in phase 1, 2 and 3, (Fig. 1.8). The effective interfacial tension of
the skin for Equ. (1.21) is therefore

γeff = γ12 + γ23 + γskin, (1.22)

assuming simple addition of all contributions. We summarise the interfacial tension parts
of a skin in the following with γ = γ12 + γ23. The skin-related tension has contribution of
viscous stresses and elastic stresses and depends on the stress tensor σ with

γskin = δskinσ · t⃗, (1.23)

and t⃗ the tangential vector of the interface, consequently orthogonal to the skin thickness
δskin. Equ. (1.23) assumes that the stress tensor σ is homogeneous across the skin
thickness, which is a strong simplification. If the surface is in equilibrium the viscous
stresses vanish and σ is purely elastic.
The stress tensor σ depends on the constitutive law and the deformation. If the skin
thickness δskin is several magnitudes smaller than the other length scales, it can be treated
as a "shell" or in special cases as a "membrane" [30]. One talks about shells if Kirchhoff’s
assumption are true:

• Normals to the undeformed middle surface remain straight and normal to the
deformed middle surface and undergo no extension. (This assumption implies that
all the strain components, normal and shear, in the direction of the normal to the
middle surface vanish [30].
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• The transverse normal stress is small compared to other normal stress components
and may be neglected. [30]

One talks about a membrane if the bending stresses vanish and Kirchhoff’s assumption
for a shell are true. Therefore one distinguishes between an absolutely flexible shell ("the
membrane") or the moment-less, the "membrane state of stress" [30]. In the first case,
the membrane is not supporting any kind of moments. It would immediately buckle. In
the second case the shell supports moments but due to the actual load, no moments are
present in the structure. To summarise, all types of shells are stable under a membrane
state of stress, in contrast to a state of compression in which only a shell with finite
flexural stiffness resists and the membrane immediately buckles [30].
Linear elastic theory is applied if the deformation is small in comparison to the skin
thickness δskin. In the other case, nonlinear elastic theory is used. Due to the small skin
thicknesses δskin, linear elasticity theory gives in most cases only a first approximation for
the stress and deformation state of the skin. By considering non-linear deformations, even
for isotropic materials, a large number of constitutive equations are possible. By assuming
only elastic deformations, one talks about "hyper-elastic" materials. An example of a
constitutive law is the Neo-Hooke model, which is a special case of the Mooney-Rivelin
model [31]. Both are frequently used in rubber material modelling [31]. If viscous stresses
are also to be taken into account, the damped spring model would be appropriate. There,
the skin’s resistance to deformation is modelled using springs and dashpots in series and
in parallel.

In all discussed cases (liquid elasticity, skins as a shell or membrane), it is possible to
define a Young’s modulus of the bulk of the skin E3DY or the two-dimensional equivalent,
the dilational elastic modulus K2D, in the linear limit. It relates the normal strain to the
normal stress with [32]

K2D = δskinE3DY = |σ · t⃗|
ε

δskin, (1.24)

with ϵ the strain of the skin. We are interested in the regime in Equ. (1.22) where the
interfacial tension and the skin tension are significant. Therefore we compare K2D with
the interfacial tension and define the elastocapillary number α with

α = K2D
γ

. (1.25)

The interface has a constant interfacial tension with deformation if α << 1. We will call
these objects drops or bubbles. The interface is purely elastic if α >> 1. We will call
this objects capsules. If α an intermediate value, we will call these objects droploons or
bubloons.

In experiments, different interfacial rheological methods are used to characterise the
visco-elastic response of interfaces. Depending on how the interface is deformed, one
distinguishes between dilational and shear rheological methods. Fig. 1.9 shows three
examples, two dilational interfacial methods Fig. (1.9a and b) and one shear interfacial
methods (Fig. 1.9c) In Fig. 1.9a a drop/bubble is quasi statically inflated or deflated.
The material properties are obtained by measuring ∆p and the axisymmetric drop/bubble
profile and fitting it to a constitutive law [33, 34]. The software OpenCapsule can be used
for this purpose [34]. In Fig. 1.9a the capsule on the right has wrinkles. Since the wrinkle
wave length is small, the macroscopic shape can still be considered as axisymmetric. The



14 Chapter 1. Introduction

wrinkle wave length can be used to obtain the bending modulus of the skin. The software
Open Capsule is able to take this into account [34]. Important for this software is a
correct reference state of the capsule. It describes the shape of the capsule without elastic
stresses. In Fig. 1.9b the drop or bubble is inflated and deflated sinusoidally. This method
gives information about the elastic and viscous properties of the skin. It can be used to
measure Gibbs elasticity, even if absorption and desorption takes place, [35] or capsule
elasticity [36, 37].

In Fig. 1.9c the example of a double wall-ring geometry for "interfacial shear rheology"
is shown [9, 38]. The geometry deforms the interface in-plane, resulting in a pure shear
deformation. Simultaneously, the torque, due to the deformation, acting on the geometry
is measured, giving information about the interfacial shear properties.

The advantage of the technique with the pendant drops is their geometrical proximity
to foams and emulsions. On the other hand, non-linear geometric effects play a greater
role in contrast to the rather simple planar structure in interfacial shear rheology. Their
evaluation and interpretation is therefore often difficult. In general, both methods should
be used in combination for a complete characterisation, since for the pendant drops the
deformation is rather a dilational deformation and for the interfacial shear rheology a
pure shear deformation.

Figure 1.9: Illustration of three methods used to characterise liquid and solid interfaces. a) is the
dynamic sinusoidal inflation deflation method with a silicon oil as the continuous phase, a silicon
skin as the solid phase and PEG Platin catalysator emulsion as the drop phase. b) shows a quasi
static inflation deflation of a pendant drop and c) an example for interfacial shear rheology [38].

1.2.5 Perturbation theory
Regardless of whether one is considering minimal surfaces, constant mean curvature

surfaces or elastic skins, studies of non-axisymmetric configurations are still a challenge.
This is due to the fact that they are relatively difficult to model and characterise ex-
perimentally. But non-axisymmetric solutions are not atypical. They often occur due
to non-axissymmetric boundary conditions or non-isotropic or homogeneous materials.
However, stable non-axisymmetric solutions can also occur with perfect axisymmetric
boundary conditions and isotropic and homogeneous materials as a result of shape insta-
bilities. An example is Euler buckling of a beam [39]. Also columns of bubbles can buckle
away from the axisymmetric solution [40]. Even the simple configuration of two bubbles
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confined between two axisymmetric frames can buckle [41]. In most cases, there is no
analytical solution for the minimisation problem from Equ.s (1.1), (1.8) and (1.21). The
known analytical solutions and most of the available numerical approaches are limited to
the axisymmetric cases.

Perturbation theories are used to expand the known analytical solutions and numerical
approaches to non-axisymmetric configurations. For this purpose, an analytical solution
is extended by an ansatz that perturbs the known axisymmetric solution. The ansatz
contains the variables to be modified. The most general ansatz is the infinite degree Tailor
expansion in the perturbation term ϵ

f(ϕ, z) = rA(z) +
∞∑

k=1
ϵkAk(ϕ, z) (1.26)

with rA(z) the known solution, Ak the perturbation functions and f(ϕ, z) the perturbed
solution. In this case, rA is perturbed in cylindrical coordinates (ϕ and z). The problem to
be solved is to determine the appropriate functions Ak(ϕ, z). They depend on the desired
boundary conditions and energy functional from Equ.s (1.1), (1.8) and (1.21). The theory
is used to evaluate the stability of a known solution to an arbitrary perturbation or to
generate new shapes in a new parameter space including, for example, non-axisymmetric
solutions.

In general, the problem is simplified by considering only some order in ϵ in Equ. (1.26).
This gives an exact result infinitesimally close to the known solution, depending on which
degree in ϵ was considered. The fact that the theory is exact sufficiently close to the
known solution is used to analyse stability, by comparing E of the original shape and the
perturbed shape.

In Chapter 2 new minimal surfaces are generated by changing the boundary conditions
to non-axisymmetric ones. A linear perturbation approach around the axisymmetric
catenoid generates approximations for minimal surfaces.





Chapter 2

Minimal surface between arbitrary frames

Minimal surface problems arise naturally in many soft matter systems whose free
energies are dominated by surface or interface energies. Of particular interest are the
shapes, stability and mechanical stresses of minimal surfaces spanning specific geometric
boundaries. The "catenoid" is the best-known example where an analytical solution is
known which describes the form and stability of a minimal surface held between two
parallel, concentric circular frames. Here we extend this problem to non-axisymmetric,
parallel frame shapes of different orientations, by developing a perturbation approach
around the known catenoid solution. We show that the predictions of the perturbation
theory are in good agreement with experiments on soap films and finite element simulations
(Surface Evolver). Combining theory, experiment and simulation, we analyse in depth
how the shapes, stability and mechanical properties of the minimal surfaces depend on
the type and orientation of elliptic and three-leaf clover shaped frames. In the limit of
perfectly aligned non-axisymmetric frames, our predictions show excellent agreement with
a recent theory established by Alimov et al. (M. M. Alimov, A. V. Bazilevsky and K.
G. Kornev, Physics of Fluids, 2021, 33, 052104) [1]. Moreover, we put in evidence the
intriguing capacity of minimal surfaces between non-axisymmetric frames to transmit a
mechanical torque despite being completely liquid. These forces could be interesting to
exploit for mechanical self-assembly of soft matter systems or as highly sensitive force
captors.
This chapter is based on the already published article of F. Walzel, et al. with the title
"Perturbing the catenoid: Stability and mechanical properties of nonaxisymmetric minimal
surfaces" published in the journal Physical Review E 106.1 (2022): 014803 [42].

17
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2.1 Introduction
Minimal surfaces describe shapes of arbitrarily complex geometry which are char-

acterised by the fact that their surface has a minimal area fixed by a set of boundary
conditions. Minimal surfaces are fascinating mathematical objects introduced by the
pioneering work of Euler [21], Lagrange [43] and Plateau [10]. Today, they are related to
different mathematical fields such as calculus of variations, partial differential equations,
differential geometry and topology, and complex analysis via the Weierstrass represen-
tation [44, 45]. Minimal surfaces have also served as models for numerous applications.
Examples include architecture [46] or the development of materials combining antago-
nistic properties such as good mechanical rigidity and high electrical/thermal transport
capacities [47, 48, 49]. We can also mention their use as scaffold for tissue engineering
[50].

The relevance of minimal surfaces in different fields leads to different (yet equivalent)
mathematical definitions [45]. The property of having a zero mean curvature at all points
of the surface is particularly remarkable [22]. For physicists, the property of minimising
the area of the surface is even more important, since it makes it possible to make the
connection with physical problems where surface area can be associated with the energy
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of a system which needs to be minimised. Soap films are amongst the most popular
examples [10, 23].

The free energy E of soap films with uniform surface tension γ is given by Equ. (1.1).
The equilibrium shape is then given by the minimisation of the total area A, which
naturally leads to an easy realisation of minimal surfaces, discussed in more detail in the
general background in Section 1.2.3.

A specific class of soap film problems was defined by Plateau. The so-called "Plateau
problem" consists in studying the existence of minimal surfaces resting on given boundary
conditions [10, 51, 52]. The catenoid is the classical example for this group of minimal
surfaces. It consists of a minimal surface spanning two parallel circles of radius R separated
by a distance h with the two centres of the circles lying on an axis orthogonal to the
planes of each circle. Contrary to the majority of minimal surfaces, an analytical solution
is known for the catenoid [21, 22, 53, 54]. It predicts the conditions for the existence
of a solution and the exact shape of the minimal surface. The axisymmetric boundary
conditions ensure that the surface is also axisymmetric. It can thus be described simply
in cylindrical coordinates by a function giving the film radius rc depending on the vertical
coordinate z (see Fig. 2.1) in the range −h/2 to h/2 with Equ. (1.6) given in Section
1.2.3. The boundary conditions for the two frames are given by rc(z = ±h/2) = R. The
smallest radius is found in the mid-plane (z = 0) and is called the neck radius. Its value,
ac, is obtained with the equation

R = ac cosh
(
h

2ac

)
. (2.1)

and represented in Fig. 2.2b. This Equ. (2.1) has two solutions for h/R < µ⋆, one for
h/R = µ⋆ and no solution for h/R > µ⋆ where µ⋆ is the solution of the transcendental
equation (µ⋆/2) sinh((µ⋆/2)

√
1 + 4/µ⋆2) = 1 leading to µ⋆ ≈ 1.33 (illustrated in Fig.

2.2b). In the following h⋆ will be the critical height defined by h⋆ = µ⋆R. If there are
two solutions, one of them always corresponds to a maximum of the area A and the
other to a minimum Astable < Aunstable, see Fig. 2.2a. Experimentally, only the minimum
is observable since the maximum is physically unstable for open systems (Erle et al.
[53] were able to observe the second solution in the case of closed systems. We will
discuss this in Chapter 3). Close to h⋆, a small increase of the surface area leads to a
destabilisation of the catenoid, which undergoes a topological instability leading to the
so-called "Goldschmidt solution" [55] given by two disks parallel to the frames, see Fig.
2.2a.

The case of the catenoid has been much studied by physicists who have been particularly
interested in the stability of the surface [56, 57, 58], in the collapse of the catenoid towards
the Goldschmidt surface at the critical point [59, 60], or in the asymmetrical catenoid
supported by rings of different sizes [61].

In this chapter, we extend previous studies by investigating the shape, the stability
and the mechanical properties of a special group of minimal surfaces, spanning two
non-axisymmetric closed frames, which are contained in two parallel planes. The planar
boundaries C± (+ and − denoting the upper and lower frame, respectively) are centered
on the z axis and given in polar coordinates rC± (φ). They are separated by a distance h
and rotated by an angle ±φ0/2 around the Oz axis. More specifically, elliptic and clover
frames are used, as shown in Fig. 2.3.

Non-axisymmetric boundary conditions introduce a new degree of freedom, the angle
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Figure 2.1: Experimental (1ste and 2nd row) and numerical (3rd and 4rd row) shapes obtained
for minimal surfaces with axisymmetric circular frames (1 row) and elliptic boundary conditions
(eccentricity e = 0.866) and for an angle φ0 = 90◦ between the main axes (2nd to 4rd row). The
distance between the upper and lower frame is increasing from left to right. The rightmost images
correspond to transient since h is already larger than the critical distance.

Figure 2.2: The normalized surface area in a) and the normalized neck radius ac in b) are plotted
over the normalized height for all catenoids, stable and unstable. The Goldschmidt solution is
represented in a). In b) the two critical values a∗c and h∗ for the critical catenoid are illustrated
with straight lines.
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Figure 2.3: Upper (blue) and lower (red) frames, in the cases of the ellipse (a) and the clover (b),
with the different associated geometric parameters Rmean, RM, Rm and φ0.

φ0 between the upper and lower frame. This brings very interesting new properties to
the minimal surface. After quantifing the influence of the angle φ0 on the existence of
the minimal surface and the associated critical height, we pay special attention to their
mechanical properties. We study the forces exerted by the minimal surface on the frames.
In particular, we show that besides the normal force, which pulls each frame towards the
other one, non-axisymmetric shapes are also characterised by a measurable torque around
the Oz axis, which tends to rotate the two frames back to the position φ0 = 0.

To analyse the different surface properties, we combine experiments with soap films,
numerical simulations using the open source software Surface Evolver [62], and theoretical
modelling. The latter is a perturbation theory based on the catenoid solution. For all three
approaches we study the shapes and the critical height of the minimal surfaces together
with the resulting normal force and the torque on the frames. Very recently, Alimov et al.
[63, 1] used an analogy between fluid dynamics of potential flow and minimal surfaces to
provide an iterative algorithm allowing to calculate the exact surface shape between two
identical convex frames. However, their theory is restricted to systems without rotation
(i.e. for φ0 = 0). In the following, it will be used as benchmark for our investigations
together with the analytical predictions of the catenoid.

2.2 Materials and methods

2.2.1 Notations and boundary conditions

The shape of the minimal surface is represented in cylindrical coordinates with the
vector position r⃗ given by (x = r (φ, z) cosφ, y = r (φ, z) sinφ, z = z).

The planar boundary contours C± (+ and − denoting the upper and lower frame,
respectively) are centered on the z axis and given in polar coordinates rC± (φ). They are
separated by a distance h with the z coordinates z = h/2 and z = −h/2.
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We assume that it is possible to do a Fourier decomposition

rC± (φ) = R±
mean

(
1 +

+∞∑
k=2

a±
k cos (kφ) + b±

k sin (kφ)
)
, (2.2)

where R±
mean, a±

k and b±
k are respectively the mean radius and the Fourier coefficients of

C±. Note that the Fourier series starts at k = 2 to ensure that the frame is centered, i.e.
that ⟨x⟩ = ⟨r cosφ⟩ = 0 and similarly with y.

With the exception of some cases, the two frames will be identical up to a rotation of
an angle φ0, a condition which can be written rC±(φ) = rC(φ∓ φ0/2) where rC(φ) is the
unrotated contour defined via its Fourier decomposition

rC (φ) = Rmean

(
1 +

+∞∑
k=2

ak cos (kφ) + bk sin (kφ)
)
. (2.3)

As shown in Fig 2.3, we use two different types of non-axisymmetric frames: elliptic
shapes labelled rC = re and clover-type shapes labelled rC = rcl.

The elliptic frames are defined with an eccentricity e, major axis 2RM, and minor
axis 2Rm, with e2 = 1 − (Rm/RM)2 and RM = Rm/

√
1 − e2 (see Fig. 2.3a). The polar

equation of the non-rotated elliptic frame is given by

re (φ) = Rm√
1 − e2 cos2 φ

. (2.4)

The first 2 coefficients from the Fourier-like expansion of the elliptic frame re are equal to

Rmean (e) = 2
π
K[e2]Rm, (2.5)

a2 (e) = 2
e2

(
2 − e2 − E[e2]

K[e2]

)
, (2.6)

where K [x] , E [x] are the complete elliptic integrals of the first and second kind. ak with
higher k can be found in Section 2.3.7.1. Coefficients ak with odd indices and all bk are
zero due to the symmetry at φ = π and 2π of ellipses. Moreover, the perimeter of the
ellipse is defined as P = 4E[e2]RM.

The clover frames are defined with a3 = −ε and all other Fourier coefficients from
Equ. (2.3) equal to zero. The polar equation of the clover frames is given by

rcl (φ) = Rmean (1 − ε cos (3φ)) . (2.7)

2.2.2 Experiments
Minimal surfaces are studied using soap films held by 3D-printed frames with a set-up

schematised in Fig. 2.4a. The position of the lower frame remains fixed during the
experiment, while the upper frame, attached to a vertical translation stage, can move at
variable speed between controlled positions via a home written Labview program. The
lower frame is fixed on a laboratory scale (METTLER TOLEDO, precision: 0.1 g) to
measure the force Fz exerted on the lower frame by the soap film in z-direction. The
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ensemble is visualised from the side in front of a diffuse light source using a computer-
controlled CCD camera with a spatial resolution of 50 µm. We performed experiments for
two different elliptic frames: e = 0.866 (RM/Rm = 2) and e = 0.97 (RM/Rm = 4). The
frames are fabricated by a thermoplastic 3D printer Form 2 from Formlabs. The used
printing method was stereolithography with a layer thickness of 0.025 mm. The realtive
deviation between the mathematical description, Equ.s (2.4) and (2.7), and the printed
frame geometry is below 0.4%. Different mountings between the frame and the translation
stage or the Rheometer where necessary. A picture of two frames with e = 0.886 and
different mountings and a frame with e = 0.97 are shown in Fig. 2.4b. The used soap
solution is optimised for film stability: 500 ml of water, 22.5 ml of the dish washing liquid
"Fairy", 7.5 ml of Glycerol and 1.6 g Jlube. All ingredients are mixed for 24 hours using a
magnetic stirrer. The age of the solutions is maximally three month. The surface tension
is measured using a "Kibron V2" tensiometre and determined to be γ = 25.7 ± 0.5 mN/m
at a temperature of T = 21 ± 3 ◦C.

The minimal surface is produced by wetting the upper frame with the soap solution.
Afterwards the upper frame is moved downwards until it touches the lower frame. The
upper frame is moved up by a few millimetres and the lower frame is rotated by −φ0.
The distance h between the frames is then slowly increased in small intervals ∆h and
measurements are taken for the normal force and the shape. At each step, we checked
whether the soap film still connects the two frames, since the film is draining and
evaporating, which accelerate film rupture. For this reason, a humidifier was used to
keep the humidity high. If the film looses the connection and a Goldschmidt solution is
observed, the critical height h⋆ is measured by taking the average between the current h
and the previous height giving a stable shape. Between each height change, at least five
seconds wait time ensures static equilibrium of each shape. We improve the precision on
h⋆ by decreasing ∆h in its vicinity and by repeating measurements.

The images are treated by a home-made python code, which uses light intensity
gradients to determine the distance h between the frames and the projected contour of
the minimal surface.

Normal force Fz and vertical torque Γz are not measured simultaneously. The torque
Γz is measured with a Discovery HR-3 hybrid rheometre holding the same bottom frame
as in the normal force measurements and a frame with the same geometry but a different
mounting for the top frame, see Fig. 2.4b and c. The Fig. 2.4c shows a picture of the
rheometer during a measurement of Γz of a soap film between the two frames. The
upper frame rotates with a small angular velocity during the measurement to cause a
quasi-static deformation. The precision in the torque is 5 nNm. The uncertainties in the
measured quantities are mainly influenced by the differences between the mathematical
description of the contours and the actual shape of the frames, by imperfect alignment
of the frames (centering and parallelism), the resolution and sharpness of the camera.
Additional uncertainties are related to the precision of the scale. The final precision of
the force Fz was around 5 µN.

2.2.3 Surface Evolver simulations

2.2.3.1 Numerical simulation

Surface Evolver is an open source Finite Element program which represents a surface
via vertices, edges, facets and bodies [64]. Two vertices define an edge, three edges define a
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Figure 2.4: a) Scheme of the experimental set-up visualising soap films between 3D-printed
identical frames whose separation is set by a vertical translation stage. The scale is used to
measure the normal force Fz and a goniometer imposes a rotation angle φ0 between the frames.
b) Three examples of eliptical frames with different eccentricities and different mountings. c) The
rheometer with the experimental setup to measure the torque around the z-axis.

facet and several facets define a body (Fig. 2.5. Different energy terms define the surface
energy for every facet. The simplest case is if the surface energy is proportional to the
facet size. Other constitutive laws are possible, which consider bending energies or surface
elasticity [32]. Bodies have a specific mass, volume or pressure and are necessary to model
bubbles or drops. Boundary conditions and constraints can be added. Afterwards Surface
Evolver minimises the total energy by moving vertices of a defined shape in the opposite
direction of the energy gradient by considering the given boundary conditions, constrains
and masses, volumes and pressures.

The total energy is in the case of the catenoid proportional to the total area A, defined
here as the sum of the facets areas multiplied with the surface tension. A body is not
necessary since the volume or mass of the catenoid is variable and not fixed. Vertices on
the frame stay fixed at the position defined by the Equ.s (2.4) or (2.7). We start with
a model that fulfils only the most essential requirements, Fig. 2.5 upper left. Facets
connect the two frames, whereby the vertices are fixed to the frames. The mesh is then
refined and the surface is converged to a minimum, Fig. 2.5 upper right. This is repeated
several times until the model has the required accuracy, Fig. 2.5 bottom. Afterwards, our
simulation procedure is similar to the procedure in the experiment. The height h between
the two frames is increased in small steps ∆h until the surface becomes unstable. After
each change of height the surface is relaxed by moving the vertices until the relative energy
change is smaller than 10−10 after 100 such movements. The mesh is then optimised and
the process is repeated until the relative change is again smaller than 10−10 after 100
relaxations. Iterations between these two steps stop if the convergence criterion is met
twice in a row. To avoid that the system is trapped in a local minimum, all vertices
are randomly moved by a small distance ("jiggled") at least twice during the relaxation
process.
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Figure 2.5: A surface evolver model at different confinement states is shown. Vertices, an edge,
a facet and the upper and the lower bound at the original surface are represented in different
colours.

We investigate numerically elliptic frames of various eccentricities e, clover frames
with different ε and mixed frames with for example a elliptical upper and a clover bottom
frame.

2.2.3.2 Stability and hessian matrix

To obtain the best precision in the critical height h⋆ we use the Hessian matrix H of
the area functional A. The Taylor development of the area A at fixed h and φ0 up to the
second order is given by [65]

A(X⃗ + δX⃗) = A(X⃗) + ∇A · δX⃗ + 1
2δX⃗

THδX⃗. (2.8)

The free coordinates X⃗ are defined by the number of facets and their ability to change A
by a small perturbation of the coordinates of the vertices. If A represents an extremal
surface then ∇A = 0. For it to be a minimum (and hence physically stable) all eigenvalues
λ of H have to be strictly positive. Surface evolver can numerically determine any number
of eigenvalues of H in ascending order. We calculated only the smallest five eigenvalues,
Since the smallest eigenvalue has already all information’s about the stability of the
surface.

The smallest eigenvalue λmin at a critical surface is zero. A critical surface is the first
unstable extrema or the last stable extrema surface. To check the stability of the critical
point, higher derivatives of A in respect to X⃗ must be analysed. If the critical area is
known, the plateau problem is answered. We search the critical surface with Surface
Evolver by increasing the distance between the two frames step by step and calculating
the smallest eigenvalues for the converged surfaces. To get a good approximation of the
critical surface the evolution of the smallest eigenvalue with increasing height of the last
stable shapes is extrapolated to find the critical surface with h(λmin = 0) = h⋆.

h⋆ obtained with Surface Evolver depends on the number of facets. The precision
increases with increasing number of facets. Fig. 2.6 compares catenoids modeled with
Surface Evolver with different amounts of facets N . The evolution of λmin is multiplied
with the number of facets N and plotted against the relative distance to the known h⋆

for the catenoid in Fig. 2.6a with semilog scale and in Fig. 2.6b with loglog scale. To
compare different surfaces with different amounts of facets, it is necessary to multiply
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Figure 2.6: Smallest eigenvalue λmin (multiplied by the number of facets N) of the Hessian matrix
H of the total energy in Surface Evolver for different numbers of facets N in the case of the
axisymmetric catenoid, as a function of the reduced height (h⋆ − h)/h⋆, where h⋆ is the critical
height of the axisymmetric catenoid. As the value of the latter is known exactly, the error for
other simulations can be estimated depending on the number of facets used in this graph. a) and
b) show the same data, a) in log scale for the x-axis and b) in log scale for both axis.

λmin with N , since λ is proportional to N . One observes with increasing number of facets
N the relative error for the obtained critical height is converging towards zero in Fig.
2.6a. It also shows that the relative error is already small (< 0.04%) for a relatively
small number of facets (N = 1536). While there is a certain flexibility as far as defining
the δX⃗ degrees of freedom, the moment where the Hessian becomes singular should be
independent of such choice, up to numerical errors. This validates the general procedure
and provides at the same time an estimation of the precision of the simulation. In Fig.
2.6b we observe that h⋆ − h is proportional to λ2

min close to h⋆.

2.2.3.3 Force and torque

The normal force Fz and the torque Γz on the axis passing by the two frame centers
are related via

γdA = Γz(φ0, h)dφ0 + Fz(φ0, h)dh. (2.9)

The force and the torque applied on the frame are the same along the surface. The
derivatives dA, dφ0 and dh are approximated by finite differences of two simulated surfaces
with a small change in h or φ0. The precision of these calculations depends strongly on
the precision of the total area minimum, which, in turn, depends on the number of facets
and the iteration process.

2.2.4 Implementation of the Alimov et al. method [1]

We implemented the algorithm described in [1] using Python code. The code correct-
ness of the implementation was tested by comparing the critical heights, critical areas
and the shape parameters to the values given by Alimov et al. [1] in their Supplemental
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Materials. All values of the table were reproduced with a relative difference smaller than
5.10−5. The authors introduce a parameter called ΨB that we found directly proportional
to the vertical component of the force exerted on the lower frame by the soap film. The
convergence criterion used in the paper, which is based on the stability of the second
coefficient C2 in the Laurent series expansion had to be generalised for the clover case,
for which C2 remains zero. This method can only be used for identical, convex upper and
lower frames.

2.3 Perturbation theory
Here we present a new perturbation approach to approximate minimal surfaces close

to the catenoid. The two frames can be of different shapes, in contrast to the model
presented by Alimov et al. [1].

The computation of the perturbation theory concerning the non-axisymmetric minimal
surface consists in solving the minimal surface differential equation, corresponding to
a vanishing mean curvature. We start by recalling the form of this partial differential
equation in cylindrical coordinates, then we present in the general case the perturbative
scheme we have developed to solve this equation and we discuss the conditions of the
existence of a surface. Finally we show how the perturbative approach allows us to
calculate the normal force and the torque exerted by the minimal surface on the contours.

2.3.1 Notations and minimal surface differential equation

First, the coordinates of the vector position r⃗ are defined as follows

x (φ, z) = r (φ, z) cosφ (2.10)
y (φ, z) = r (φ, z) sinφ (2.11)
z (φ, z) = z. (2.12)

We will use the classical notations

r⃗,i (φ, z) = ∂r⃗

∂i
(2.13)

r⃗,ij (φ, z) = ∂2r⃗

∂i∂j
, (2.14)

with i, j = φ, z. The normal vector to the surface can be calculated thanks to its definition
n⃗ = r⃗,z × r⃗,φ/ ∥r⃗,z × r⃗,φ∥

n⃗ = 1(
r2 + r2

,φ + r2r2
,z

)1/2


−r cosφ− r,φ sinφ

−r sinφ+ r,φ cosφ

rr,z

 (2.15)

Then, the coefficients of the first fundamental form F1 are computed

E = r⃗,z.r⃗,z = 1 + r2
,z ; G = r⃗,φ.r⃗,φ = r2 + r2

,φ ; (2.16)
F = r⃗,z.r⃗,φ = r,φr,z, (2.17)
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as well as those of the second fundamental form F2

L = r⃗,zz.n⃗ = −rr,zz(
r2 + r2

,φ + r2r2
,z

)1/2 ; (2.18)

N = r⃗,φφ.n⃗ =
r2 + 2r2

,φ − rr,φφ(
r2 + r2

,φ + r2r2
,z

)1/2 ; (2.19)

M = r⃗,zφ.n⃗ = r,φr,z − rr,zφ(
r2 + r2

,φ + r2r2
,z

)1/2 . (2.20)

So the expression of the mean H and Gaussian K curvature arises from these six coefficients

H = 1
2 (H1 +H2) = EN +GL− 2FM

EG− F 2 , (2.21)

K = H1H2 = LN −M2

EG− F 2 . (2.22)

The two principal curvatures H1 and H2 are then given by:

H1 = H +
√
H2 −K, (2.23)

H2 = H −
√
H2 −K. (2.24)

The following partial differential equation results from this vanishing mean curvature
problem defining minimal surfaces (same equation as Equ. (1.5) only in cylindrical
coordinates)

r2
,φ + r

[
r
(
1 + r2

,z

)
− r,φφ

(
1 + r2

,z

)
− r2r,zz

+r,φ (2r,zr,zφ − r,φr,zz)] = 0. (2.25)

If we suppose that the minimal surface is invariant by rotation (corresponding to r,φ =
r,φφ = 0), we obtain

1 + r2
,z − rr,zz = 0. (2.26)

The solution of this equation is simply the symmetric catenoid for z ∈ [−h/2;h/2], which
was given in Equ. (1.6). The more general case of asymmetric minimal surface spanning
on circular frames of different radius R1 and R2 is discussed in more detail in the following
Section 2.3.2.

It is worthwhile to mention that the Equ. (2.25) corresponds to the Euler-Lagrange
equations minimising the surface formula

S[r(φ, z)] =
∫ h/2

−h/2
dz
∮

dφ
√
r2 + r2

,φ + r2r2
,z, (2.27)

which is Equ. (1.1) in cylindrical coordinates for a catenoid. This Lagrangian interpretation
of this optimisation problem allows to anticipate the conservation of a pseudo energy
function, namely the fact that

ah =
∮ dφ

2π
r2 + r2

,φ√
r2 + r2

,φ + r2r2
,z

(2.28)

is a constant independent of z (along the true minimal surface). If the solution for the
axisymmetric catenoid is plugged in this equation, one recovers for ah the neck radius ac

introduced in Equ. (1.6).
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2.3.2 Asymmetric catenoid

The asymmetric catenoid is important for some interpretation considering φ0 ̸= 0 and
for a more general perturbation theory with non-identical top and bottom frames. For
the asymmetric catenoid, we have to introduce a new constant Cc as

rc (z) = ac cosh
(
z

ac
+ Cc

)
. (2.29)

It shifts the neck away from mid-plane with z = 0. Consequently, it is zero for the
symmetric catenoid. ac and Cc are now solutions of

R+ = ac cosh
(
h

2ac
+ Cc

)
, (2.30)

R− = ac cosh
(

− h

2ac
+ Cc

)
,

with R+ and R− the radius of the upper and lower frame. The existence of solutions
is discussed in detail in [61]. Fig. 2.7 shows how the a(h) function changes with the
ratio R−/R+, how the critical neck radius a⋆ and height h⋆ depend on each other and on
R−/R+ and distinguish between stable and unstable asymmetric catenoids. h⋆/a⋆

c for a
given R−/R+ is obtained with [61]

tanh
(
h⋆

a⋆
c

)
= h⋆

a⋆
c

(
2R−
R+

cosh
(
h⋆

a⋆
c

)
− 1 −

R2
−

R2
+

)
/[

R−
R+

(
2 cosh

(
h⋆

a⋆
c

)
+ h⋆

a⋆
c

sinh
(
h⋆

a⋆
c

))
− 1 −

R2
−

R2
+

]
.

(2.31)

Equ.s (2.30) and the result of Equ. (2.31) gives the relation between the a⋆ and h⋆ for
different R−/R+, the black dotted line in Fig. 2.7 [61].

2.3.3 General perturbative approach for arbitrary frames

We start here with a general description for the perturbation approach near the
catenoid. Therefore we use the arbitrary planar closed boundary contours C± for the
upper and lower frame, given in polar coordinates rC± (φ), as described in Section 2.2.1
and assume that it is possible to do a Fourier decomposition, as in Equ. (2.2).

The idea of the perturbative approach is to solve Equ. (2.25) considering surfaces
close to the asymmetric catenoid. Therefore we take Equ. (2.29) and write the minimal
surface shape in the form of

r (φ, z) = a cosh
(
z

a
+ C

)
(1 + f (φ, z)) , (2.32)

and consider f(φ, z) as a perturbative term.
Rewriting the Equ. (2.25) on f and restricting it to the first order in f , we end up

with a linear differential equation in the form (the non linear differential equation is given
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Figure 2.7: Same as Fig. 2.2 for the asymmetric catenoid. In a) the neck radius is plotted
against the normalised height and in b) the free energy E against the height. The solid lines show
the stable catenoids and the dashed lines the unstable catenoids. The different colors represent
different ratio R−/R+. The dependency of the critical neck radius a⋆ on the critical height h⋆ is
represented with the black dotted line.

only for identical frames in Section 2.3.4) 1

2f (φ, z) + cosh2
(
z

a
+ C

)(
f,φφ (φ, z) + a2f,zz (φ, z)

)
= 0. (2.33)

To solve this equation, let us decompose f in Fourier series

f (φ, z) =
+∞∑
k=1

αk (z) cos (kφ) + βk (z) sin (kφ). (2.34)

Introducing this expansion in Equ. (2.33), we obtain the following equations for the
different modes

(
2 − k2 cosh2

(
z

a
+ C

))
αk (z) + a2 cosh2

(
z

a
+ C

)
α′′

k (z) = 0,(
2 − k2 cosh2

(
z

a
+ C

))
βk (z) + a2 cosh2

(
z

a
+ C

)
β′′

k (z) = 0, (2.35)

which can be solved to a given order k0, with boundary conditions on αk and βk which
are given by the geometry of the frames (boundary condition)

r (φ, h/2) = rC+ (φ) ,
r (φ,−h/2) = rC− (φ) , (2.36)

1This equation can also be obtained from the Euler-Lagrange equation of the second-order expansion
of Equ. (2.27) with respect to f , which reads : S[f ] = a

2

∫ h/2
−h/2 dz

∮
dφ[f2

,φ + (af,z)2 − 2f2sech2(z/a)] plus
boundary terms.
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leading to, using the boundary conditions above as well as Equ.s (2.32) and (2.34)

a cosh
(
C + h

2a

)
= R+

mean, (2.37)

a cosh
(
C − h

2a

)
= R−

mean, (2.38)

αk (±h/2) = ak±, (2.39)
βk (±h/2) = b±

k . (2.40)

For the different geometries investigated below, the differential Equ.s (2.35) were solved
using Python (function solve_bvp from scipy package).

Finally, It is interesting to note that for high order k ≫ 1, Equ.s (2.35) can be
simplified using k2 cosh2 z/a+ C ≫ 2 leading to much simpler homogeneous linear second
order equations

−k2αk (z) + a2α′′
k (z) = 0, (2.41)

−k2βk (z) + a2β′′
k (z) = 0. (2.42)

The solutions for these approximated differential equations are then

α̃k (z) =
a−

k sinh
(

k
a

(
h
2 − z

))
+ a+

k sinh
(

k
a

(
h
2 + z

))
sinh

(
kh
a

)
(2.43)

β̃k (z) =
b−

k sinh
(

k
a

(
h
2 − z

))
+ b+

k sinh
(

k
a

(
h
2 + z

))
sinh

(
kh
a

) .

2.3.4 General perturbation solution for identical frames with φ0

Here we solve Equ. (2.25) considering boundary contours which are small perturbations
of a circle and identical for the bottom and top frames. The Equ. (2.32) simplifies to

r (φ, z) = a cosh
(
z

a

)
(1 + f (φ, z)) , (2.44)
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since C = 0 due to R+
mean = R−

mean and Equ.s (2.37) and (2.38). Rewriting Equ. (2.25)
considering the ansatz with f from Equ. (2.44) one obtains

1
2

(
a2f,zz − 2 cosh

(
z

a

)2
f,φφ − 4f

)
(2.45)

+ 1
2

[
−10f2 + 2

(
−a sinh

(2z
a

)
fθθf,z + cosh

(
z

a

)2 (
f2

,φ + a2f2
,z

)
+ a sinh

(2z
a

)
f,φf,zφ

)

+ f

((
1 − 3 cosh

(2z
a

))
f,φφ − 6a2 cosh

(
z

a

)2
f,zz

)]
(2.46)

+
[
−4f3 + f

((
−3 + cosh

(2z
a

))
f2

,φ + 2af,z

(
− sinh

(2z
a

)
f,φφ + a cosh

(
z

a

)2
f,z

))

+ 2a sinh
(2z
a

)
f,φf,zφ

)
− 3f2

(
sinh

(
z

a

)2
f,φφ + a2 cosh

(
z

a

)2
f,zz

)

− a2 cosh
(
z

a

)2 (
f,φφf

2
,z + f,φ (−2f,zf,zφ + f,φf,zz)

)]
(2.47)

+
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−3 + cosh
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+ 2a2 cosh
(
z

a

)2 (
f,φφf

2
,z + f,φ (−2f,zf,zφ + f,φf,zz)

))]
(2.48)

= 0,

with Equ. (2.45) the first order terms in f , Equ. (2.46) the second order terms in f ,
Equ. (2.47) the third order terms in f and Equ. (2.48) the forth order terms in f . In
the following, we consider only the first order terms in f Equ. (2.45) and end up with a
linear differential equation with a similar form as for the arbitrary frames in Equ. (2.33)

2f (φ, z) + cosh2
(
z

a

)(
f,φφ (φ, z) + a2f,zz (φ, z)

)
= 0. (2.49)

The procedure to solve Equ. (2.49) is the same as for Equ. (2.33), f is decomposed into a
Fourier series and introduced in Equ. (2.49). One obtains Equ.s (2.35) with C = 0, which
can be solved independently for each order k, with different boundary conditions for αk

and βk.
The boundary conditions for the minimal surface are introduced with Equ.s (2.36),

which, in the case of two identical frames, leads to

a cosh
(
h

2a

)(
1 + α0(±h

2 )
)

= Rmean, (2.50)

αk (±h/2) = ak cos
(
k
φ0
2

)
∓ bk sin

(
k
φ0
2

)
, (2.51)

βk (±h/2) = ±ak sin
(
k
φ0
2

)
+ bk cos

(
k
φ0
2

)
. (2.52)
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The Ansatz (2.44) embodies a small departure (with |f | ≪ 1) from a reference catenoid
characterized by its parameter a. A convenient choice for this reference catenoid is
obtained by taking α0(±h/2) = 0 : In this case the boundary radius of this reference
catenoid is given by the mean radius Rmean of the actual elliptic or clover contour
(compare Equ.s (2.50) with (2.1)). As the solution for α0(z) is known and equal to
α

(1)
0 tanh(z/a) + α

(2)
0 ((z/a) tanh(z/a) − 1) (with α

(1,2)
0 some constants), the constraints

α0(±h/2) = 0 imply α0(z) = 0. It is worth noting that this approximation entails
therefore that the φ-averaged radius (2π)−1 ∮ rdφ describes the reference catenoid.

For a given frame we therefore need to calculate the coefficients ak and bk up to
an order of Fourier expansion kM , and then solve the differential Equ. (2.35) with the
boundary conditions (2.51) and (2.52). Since the shape is completely defined with ak and
bk, all properties of the surface, like normal forces and torque can be calculated now. Equ.
(2.50) (with α0 = 0) generalizes the condition of existence of the catenoid to more general
frames leading to the theoretical critical height h⋆

theo

h⋆
theo = µ⋆Rmean. (2.53)

When h < h⋆
theo, Equ. (2.50) has two solutions for a, just like the catenoid case. By

comparing Equ.s (2.50) and (1.6), one observes an equivalence between Rmean and rc of
the catenoid Equ. (1.6). As the zero order Fourier coefficient Rmean is independent of φ0
or e, at this level of perturbation, the criterion of existence is independent of the angle φ0
and e.

2.3.5 Force and torque predictions
The force and the torque applied by the minimal surface on the frames can also be

computed thanks to the perturbation theory. The elementary surface tension force acting
on a length element dℓ⃗tC± along a contour C± is given by

dF⃗C± = 2γt⃗C± ∧ n⃗dℓ, (2.54)

where n⃗ is the vector normal to the surface and t⃗C± is the tangent to the frames C±. The
total force acting on the contour is obtained with

FxC±

2γ =
∫ 2π

0
dφ

−r (φ,±h/2) r,z (φ,±h/2)
(
r′

C±
(φ) sinφ+ rC± (φ) cosφ

)
√
r (φ,±h/2)2

(
1 + r,z (φ,±h/2)2

)
+ r,φ (φ,±h/2)2

, (2.55)

FyC±

2γ =
∫ 2π

0
dφ

r (φ,±h/2) r,z (φ,±h/2)
(
r′

C±
(φ) cosφ− rC± (φ) sinφ

)
√
r (φ,±h/2)2

(
1 + r,z (φ,±h/2)2

)
+ r,φ (φ,±h/2)2

, (2.56)

FzC±

2γ =
∫ 2π

0
dφ

(
r,φ (φ,±h/2) r′

C±
(φ) + r (φ,±h/2) rC± (φ)

)
√
r (φ,±h/2)2

(
1 + r,z (φ,±h/2)2

)
+ r,φ (φ,±h/2)2

. (2.57)

It is possible to give a geometrical interpretation of this force. At equilibrium, the
force can be computed on any closed contour C not reducible to a point by calculating
2γ
∮

C n⃗ ∧ t⃗Cdℓ, where t⃗C is the tangent to the contour and dℓ is an element of length
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tangent to the contour. There is a particular contour, Cneck, for which at any point the
normal to the surface is horizontal, which generalises the notion of the "neck" for the
catenoid. In the case of a catenoid it is a circle in the mid-plane, whereas for arbitrary
frames this contour is more complex, generally not restricted to the mid-plane and in
some cases, can be discontinuous. When this contour is fully contained in the minimal
surface, the z component of the force can be calculated using the simple expression

Fz = 2γPC∥ , (2.58)

where PC∥ is the perimeter of C∥, the projection of Cneck onto the median plane. Fz is
therefore a direct measure of the perimeter of the projection onto the median plane of the
locus of points where the normal to the surface is horizontal.
The torque can be calculated using dΓ⃗C± = r⃗C± ∧ dF⃗ C± , leading to the components in x,
y and z defined in clockwise direction with

ΓxC± = 2γ
∫

C±
rC± (φ) sinφdFzC± − z(φ)dFyC± , (2.59)

ΓyC± = 2γ
∫

C±
z(φ)dFxC± − rC± (φ) cosφdFzC± , (2.60)

ΓzC± = 2γ
∫

C±
rC± (φ)

(
sinφdFxC± − cosφdFyC±

)
. (2.61)

Since the perturbative theory does not give an exact minimal surface, the force equilibrium
is not perfectly fulfilled and the calculated force and torque are slightly depending on the
integration contour.

2.3.6 Case h = 0
In the case h = 0 the minimal surface is perfectly known. If φ0 = 0 and the upper

frame and lower frame are identical, then it is an infinitely thin cylinder generated by
the frame. In that case the force is simply proportional to the perimeter of the ellipse
Fz = 2γP .

If φ0 ≠ 0 the minimal surface is planar and consists in symmetric difference S+∆S− =
S+ ∪ S− − S+ ∩ S− of the surface of the two frames (see Fig. 2.8 in the elliptic case) and
the force is vanishing. Therefor S+ is the planar surface inside of the upper frame and
S− of the lower frame.

In the case of elliptic frame it is easy to calculate the area of the symmetric difference
that is proportional to the energy of the film

E (φ0) = 2γ 4R2
m√

1 − e2

[
arctan

(
cot φ0

2√
1 − e2

)

+ arctan
(

tan φ0
2√

1 − e2

)
− π

2

]
. (2.62)

By deriving this relation with respect to φ0 (see Equ. (2.9)), we obtain the torque

Γz (φ0) = 2γ 8R2
me

2 cos (φ0)
(e2 − 2)2 − e4 cos2 (φ0) . (2.63)
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A+

B+B-

C-

D-

A-

C+

D+

Figure 2.8: In the case h = 0 the soap film consists in the symmetric difference S+∆S− of the
surface of the two frames as shown in the elliptic case. The points of intersection between the two
frames for h = 0 become the points A+, B+, C+ and D+ (respectively A−, B−, C− and D−) for
the top (respectively bottom) frame when h ̸= 0.

2.3.7 Application to different frames

2.3.7.1 Elliptical contours

Figure 2.9: Solution of the differential Equ.s (2.35) for αk (z) (a) and βk (z) (b) for k ≤ 12, elliptic
frames, e = 0.97, h = 0.5 (RM = 1, Rm = 0.24) and φ0 = 0.3π/2. The black dashed lines are the
approximation for k ≫ 1, Equ. (2.69).

A special case of the description developed above would be a minimal surface supported
by ellipses of eccentricity e, major axis 2RM, and minor axis 2Rm, introduced already in
Section 2.2.1. We will also need the perimeter of the ellipse that is given by P = 4E[e2]RM.

The Fourier transform of the ellipse gives re (φ) = Rmean
(
1 +∑+∞

k=2 ak (e) cos (kφ)
)
.

For odd k, ak(e) is zero due to the symmetry of the ellipse about the Ox axis. The first
Fourier coefficients are equal to
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Rmean (e) = 2
π
K
[
e2
]
Rm, (2.64)

a2 (e) = 2
e2

(
2 − e2 − E

[
e2]

K [e2]

)
, (2.65)

a4 (e) = 2
3e4

(
16 − 16e2 + 3e4 − 8

(
2 − 3e2 + e4)

(1 − e2)
E
[
e2]

K [e2]

)
, (2.66)

a6 (e) = 2
15e6

(
256 − 384e2 + 158e4 − 15e6 (2.67)

− 2
(
128 − 128e2 + 23e4

) E [e2]
K [e2]

)
, (2.68)

where K[e2], E[e2] are the complete elliptic integral of the first and second kind. We
have computed the Fourier coefficient of the ellipse up to order 12.

Knowing the ak coefficients, is it possible to solve differential Equ.s (2.35) on αk and
βk with boundary conditions (2.50), (2.51) and (2.52) and C = 0. We have plotted the
first 12 functions αk and βk on Fig. 2.9 for elliptic frames (e = 0.97, h = 0.5 (RM = 1,
Rm = 0.24) and φ0 = 0.3π/2). The approximated solutions from Equ.s ( 2.43), which
becomes

α̃k (z) = cosh( kz
a )

cosh( kh
2a ) cos

(
kφ0

2

)
ak,

β̃k (z) = sinh( kz
a )

sinh( kh
2a ) sin

(
kφ0

2

)
bk, (2.69)

for the elliptical frames, is plotted in Fig. 2.9 given by the black dashed lines. One
observes easily how the coefficients converge for higher k towards Equ.s (2.69).

A good test of the perturbation theory is to calculate the mean curvature H using Equ.
(2.21). We have plotted this curvature as a function of φ for different horizontal planes
z = 0 and z = h/4 in Fig. 2.10, with the principal curvatures κ1 and κ2. The perturbed
surfaces have similar mean and principal curvatures as the corresponding catenoid. The
mean curvature is not perfectly zero but has only small fluctuations around zero depending
on the z and φ coordinate.

2.3.7.2 Clover contours

The results for αk and βk for clover frames with ε = 0.1, introduced in Section 2.2.1
are represented in Fig. 2.11. Since all ak and bk except of k = 3 are zero, all αk and βk

vanish except of k = 3. Due to symmetries α3 and β3 vanish as well all 120◦ changes in
φ0. α3 vanishes at φ0 = n120◦ and β3 at φ0 = n120◦ + 60◦. This makes the clover frame
to one of simplest configurations.

2.3.7.3 Non-identical frames

To test our approach in the case of two different frame, we used an ellipse (e = 0.866,
R+

mean = 1.65) for the top frame and a three-leaves clover (ε = 0.3, Rmean = 1) for the
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Figure 2.10: Principal curvatures κ1 (red curves) and κ2 (blue curves) and mean curvature (black
curves) H for two horizontal planes z = 0 (solid lines) and z = h/4 (dashed lines) for e = 0.866,
h/Rmean = 1.2 and φ0 = 90◦. Dotted line gives the principal curvatures for the catenoid of the
same mean radius for comparison.

Figure 2.11: αk and βk for frames with clover shape with a) φ0 = 0◦ and b) φ0 = 30◦. All αk and
βk are zero except of k = 3.

lower one. In that case we have solved the differential Equ.s (2.35) leading to the solution
plotted on Fig. 2.12.

We also reported the shape and profiles on Fig. 2.13.

2.3.8 Forces and moments

As shown in Section 2.3.5, it is possible to calculate forces and moments which are
exerted on the frames due to the minimal surface. In the case of identical frames with at
least two symmetry axis only Fz and Γz are not vanishing. In Fig. 2.14 the argumentation
for this is illustrated, with two identical frames with a rotation of φ0 ̸= 0◦, one symmetry
axis and an arbitrary distance h between the two frames. The force exerted by the
minimal surface on the frames F⃗± is decomposed in a force parallel to the symmetry axis
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Figure 2.12: Solution of the differential equations (2.35) for αk (z) (a) and βk (z) (b) for k ≤ 12,
in the case of an upper elliptic frame (e = 0.866, RM = 2.4, Rm = 1.2, R+

mean = 1.65) and a lower
three-leaves clover frame (ε = 0.3, R−mean = 1) for h = 1.2 and φ0 = 0.3π/2. The black dashed
lines are the approximation for k ≫ 1, Equ. (2.43).

Figure 2.13: Minimal surfaces in the case of an upper elliptic frames (e = 0.866, R+
mean = 1.65)

and a lower three-leaves clover frame (ε = 0.3, R−mean = 1) for h = 1.2 and φ0 = 27◦: (Left):
surface shape and (Right) profiles for φ = 0◦ (orange) and φ = 90◦ (blue).

F±
∥ , vertical to the symmetry axis F±

⊥ and F±
z . For a surface in equilibrium it is

F⃗+ = −F⃗−. (2.70)

If the frame geometry C+ has a symmetry axis as in Fig. 2.14a, all points on the frame
geometry, as P+

1 , are reflected at the frame symmetry axis. If the bottom frame geometry
is identical up to a rotation φ0 there is a global symmetry axis, (see Fig. 2.14a), which
reflects all points P+ to P− on the minimal surface and the frames. Fig. 2.14a illustrates
this for the points on the frames in two dimensions. In three dimensions the global
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symmetry axis is in the plane z = 0.
We can split the frames with the global symmetry axis, by projecting the global symmetry
axis in to the plane of the frames in part 1 and 2 (Fig. 2.14c, d). For the top and
the bottom frame part one and two are identical except that they are mirrored on the
projected global symmetry axis, Fig. 2.14c,d. We define forces which are exerted by the
minimal surface on the frame part 1 (Fig. 2.14c) and 2 (Fig. 2.14d) in tangential and
vertical direction to the global symmetry axis for the upper and lower frame. Due to the
global symmetry, it is

F+
∥k = F−

∥k, (2.71)
F+

⊥k = −F−
⊥k, (2.72)

with k ∈ {1, 2}. Due to the Equ.s (2.70) and (2.71)

F+
∥ = −F−

∥ = F+
∥1 + F+

∥2 = −F+
∥1 − F+

∥2 = 0, (2.73)

and the force F±
∥ vanishes.

If a second symmetry axis is present, which is the case for two identical elliptical frames
or two identical clover frames, a second component of F⃗ vanishes and Fx = Fy = 0. The
same argumentation holds for the moments Γx and Γy.
If the upper frame and the lower frame are not identical, there are in the general case no

symmetry axis. We define therefore Fr and Γr and φF and φΓ with (illustrated in Fig.
2.15)

Fr =
√
F 2

x + F 2
y , (2.74)

Γr =
√

Γ2
x + Γ2

y, (2.75)
φF = arctan (Fy/Fx), (2.76)
φΓ = arctan (Γy/Γx). (2.77)
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Figure 2.14: Scheme of how the frame symmetry axis interfere with each other creating a global
symmetry axis in a). Scheme of two identical frames with a contour with one reflection symmetry
in b), c) and d). The blue contour is the upper frame +, red is the lower frame -. The frames
are shown from the top view in b) both frames completely with the symmetry axis, c) the upper
frame part above the symmetry axis and the lower frame part below the symmetry axis and d)
the upper frame part below the symmetry axis and the lower frame above the symmetry axis. In
all the sub figures b), c) and d) the different forces with their directions acting on the different
parts of the frame are illustrated.

Figure 2.15: Geometrical overview of φF , φΓ, Fr and Γr for an elliptical upper frame and a clover
bottom frame.
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2.4 Results and discussions

In the following, we systematically compare the measured and calculated quantities of
the soap film experiments (index "exp") and of the Surface Evolver simulations (index
"SE") with the predictions of the perturbation theory (index "P") and of the algorithm
provided by Alimov et al. [1] (index "A"). We analyse first the stability of the continuous
minimal surface (Section 2.4.1) and their shapes (Section 2.4.2), investigating in detail, in
the cases of elliptic and clover frames, the effect of the angle φ0 between the frames on
the critical height h⋆. We then turn to the analysis of the normal force (Section 2.4.3)
and the torque (Section 2.4.4) exerted on the frames by the film. At the end we extend
the perturbation theory to non identical frames.

2.4.1 Critical height

We first focus on minimal surfaces with elliptic boundary conditions. Fig. 2.16a
displays the critical height h⋆ normalized by the average radius Rmean(e) as a function of
eccentricity e for φ0 = 0. Experimental measurements, SE simulations and exact theory
(Alimov it et al. method [1]) are in perfect agreement for all e. This confirms the validity
of our experimental and numerical protocols. The perturbation theory also agrees very
well with the Alimov it et al. method [1] over a wide range of e, but keeps as discussed a
constant critical height h⋆/Rmean = µ⋆.

The next step is to evaluate the impact of the angle φ0 between the two elliptic frames
(see Fig.2.3a) on h⋆ with the different approaches. As shown in the Fig. 2.16c, experiments
and SE simulations show a very small variation of the critical height with the angle φ0
(less than 2% for e = 0.866), compatible with a cos (2φ0) variation. Experimentally, this
small difference of h⋆ for different φ0 is only evidenced by computation of the statistical
average over repeated measurements. This variation is not predicted by the perturbative
theory, as shown by equation 2.50, which systematically overestimates h⋆ (see Fig. 2.16c).
Fig. 2.17 displays the maximum normalised variation of h⋆ between the different angles
φ0 expressed via ∆h⋆ = (h⋆ (φ0 = 0) − h⋆ (φ0 = 90)) /Rmean as a function of eccentricity
e. The impact of the angle φ0 on h⋆ increases quite naturally with the increase of e.

We have extended numerically this study to other boundary conditions. Fig. 2.16b
and d display the results obtained for clover frames. Again, a very small but significant
variation of h⋆ is observed with φ0 (Fig. 2.16b). Relative changes in h⋆ with the change
of φ0 are very small (Fig. 2.16d), less than 0.4% with ε = 0.3. As expected from the
shape of the contours, we observe a three fold symmetry in the case of the clover in good
agreement with a cosine variation (see Fig. 2.16d). The comparison with theoretical
models is similar to the case of ellipses. Again h⋆

P is constant for all ε, Fig. 2.16b. The
Alimov et al. method [1], which can be applied only to convex shapes (i.e. for ε < 0.1 in
our case), predicts again very well the variation of h⋆ with ε (see Fig. 2.16). For small ε
values, all approaches are in good agreement with the SE simulations.

In conclusion, concerning the critical height h⋆, we have demonstrated both exper-
imentally and numerically, that a small but significant dependence of h⋆ on the angle
φ0 between the frames exists for different contour shapes (ellipses and clovers). This
variation is not predicted by the perturbative theory, and, to our knowledge, no alternative
theoretical prediction exists at this stage which captures this observation. Interestingly,
we can see that the perturbative theory predicts a constant critical height independently
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Figure 2.16: Normalized critical height (h⋆/Rmean(e)) of minimal surfaces with elliptic (left) and
clover frames (right) obtained with Surface Evolver simulations h⋆

SE (□), experiments h⋆
exp (×),

the perturbation theory h⋆
P (dashed line) and the the Alimov algorithm h⋆

A (solid line). a) and b)
show how h⋆ changes with e or ε for φ0 = 0◦. c) and d) show the dependence on φ0 for constant
values of e = 0.866 in c) and ε = 0.3 in d). The red dashed line in figure c) and d) is an empirical
fit with a cosine function.
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Figure 2.17: Normalized maximal variation of h⋆, ∆h⋆/Rmean for different eccentricities e. Only
simulations and experiments, which are able to show these changes, are presented.

of the number of Fourier coefficients taken into account. The variation of h⋆ is therefore
intrinsically linked to the non-linear character of the partial differential equation (2.44).

2.4.2 Shape description

In this section we focus on the shape of the minimal surfaces for h < h⋆. Fig. 2.18
shows the example of a minimal surface obtained via SE simulations for elliptic frames at
an angle φ0 = 45◦, h/Rmean = 1.02 and e = 0.866. The surface is represented by plotting
the vertices of the finite element mesh.

In order to make a quantitative comparison of our results, we extracted the experi-
mental, numerical and theoretical profiles corresponding to the intersection of the surface
with a vertical plane passing through the axis of rotation, and making an angle φ with the
x-axis (see Fig. 2.19 for 2 values of φ0 and φ). Experiments and simulations are in very
good agreement for both profiles. Far from the critical point (h ≪ h⋆), the perturbative
theory is in very good agreement with the experimental and numerical results. Near the
critical point (h ≤ h⋆), the agreement is less convincing (See Fig. 2.19a and b), and the
perturbative theory clearly overestimates the radius r(φ, z). As we have shown before, the
perturbative theory does not predict a variation of the critical height h⋆ with the angle
φ0. This means that this variation appears in the non-linear terms of the differential
Equ. (2.25), whereas there are of course corrections to the profile that depend on φ0 at
the linear order. Rather than comparing the experimental, numerical and theoretical
profiles for the same value of h/Rmean, as done before, we therefore compared them for
the same value of h/h⋆, i.e. at the same relative distance to the critical point. The results
presented in Fig. 2.19c and d show a good agreement for both types of profiles (top and
side views), which demonstrates that the perturbative theory describes quantitatively
very well the shape of the surface, even very close to the critical point, provided that



44 Chapter 2. Minimal surface between arbitrary frames

Figure 2.18: Shape of a minimal surface held by elliptic frames with φ0 = 45◦, h/Rmean = 1.02
and e = 0.866, obtained by SE simulations (all vertices are shown). The red solid line is the
approximated neck contour of this surface.

variations of h⋆ are taken into account.
All profiles show a point where r(z) is minimal and the normal to the surface is

horizontal corresponding to the Top view (see Fig. 2.19a and c). The location of these
points generalises the notion of the neck contour introduced in the case of the catenoid.
For non-axisymmetric frames, it is a closed loop, which is not necessarily planar. An
example is represented by the red solid line in Fig. 2.18. For large φ0 and small h, the
neck contour may lie partially outside the surface. Mathematically, the neck contour is
the curve that minimises its projected perimeter in the Oxy plane C∥. From a physical
point of view, the neck contour has a particularly interesting property. The total force
exerted by the minimal surface on the frame is 2γP∥, where P∥ is the projected length of
the neck contour in the Oxy plane C∥.

2.4.3 Normal forces on frames

We now discuss the results for the normal force Fz exerted by the soap film on the
elliptic frame (Section 2.2.2). In the Alimov et al. method, one has to calculate a value
(called ΨB in [1]), which is proportional to the projected neck perimeter C∥ and thus to
Fz. The Alimov algorithm thus allows to compute the force Fz;A , which will serve as a
reference case for φ0 = 0◦.

2.4.3.1 Force dependency on C

The force of the perturbation theory depends on the chosen integration contour C
in comparison to forces obtained with SE or the Alimov algorithm. Fig. 2.20 compares
the force Fz;SE obtained with Surface evolver with the force Fz;P obtained with the
perturbation theory for different φ0. The contour C for Equ. (2.57) is the cross section
of the surface in a plane parallel to the z = 0 plane with distance z. Fz;P and Fz;SE is
plotted against the different C(z). For φ0 = 0◦ the agreement between simulation and
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Figure 2.19: (Left) Side view (vertical profile in the symmetry plane of the surface defined by φ)
and (Right) top view (projected neck contour) of a minimal surface spanning elliptic frames with
e = 0.866 obtained with SE simulations rSE(z), the perturbation theory rP(z) and the soap film
experiment rexp(z) for two different angles φ0 on the left and three on the right at a height of
h = 1.2Rmean. On the right, the dashed lines are the predicted neck contours of the perturbation
theory and the open squares are the vertices closest to the neck contour of the Surface Evolver
simulation.

theory is better for small h/h∗ in comparison to larger φ0 where the agreement is better
for large h/h∗. The evolution of Fz;P (C(z)) is most of the time close to the constant
Fz;SE(C(z)). In conclusion, we can say that the force Fz;P (C(z)) depends only slightly on
C(z) and has almost the same value as Fz;SE .

2.4.3.2 Force Fz height h dependency

In Fig. 2.21, we compare Fz obtained with all methods (exp-experiments, P-perturbation
theory, SE-Surface Evolver and A-Alimov). Fz;P is in the following the force obtained with
the frame contour (z = ±1/2h). Fz depends on the distance h and the angle φ0 between
the two frames, as shown in Fig. 2.21. φ0 = 0◦, Fz is monotonically decreasing with h
until it reaches h = h⋆. For very small h and φ0 = 0◦ the maximal force is Fz;Max = 2γP ,
where P is the perimeter of the frame.
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Figure 2.20: The force component Fz obtained with SE and the Perturbation theory is represented
for different φ0 (0◦ a), 45◦ b), 90◦c) for different h/h∗ plotted against z/h∗. The contour C for
Equ. 2.57 is the cross section of the surface and a plane parallel to the plane z = 0 with distance
z.

Also for h = 0, an infinitely small angle φ0 ̸= 0 is sufficient for the force to vanish,
Fz = 0. This discontinuity of Fz (h = 0, φ0) for φ0 = 0, which may seem surprising, simply
reflects the fact that for h = 0, as soon as there is a non-zero angle between the frames,
the minimal surface is made up of horizontal films (see Fig. 2.8) and the force is null.

For φ0 ̸= 0, the force increases with h until it reaches a maximum and decreases again
up to h = h⋆. To understand this non-monotonic behavior of the force, let us first consider
the axisymmetric case, a catenoid supported by two circular frames of different radii (R−
and R+) [61] (introduced in Section 2.3.2). We are interested only in stable branches in
Fig. 2.7. We can distinguish three cases: (i) the height is h ≤ h(ac = Rmin), where Rmin
is the smaller radius of R− and R+. In this case the force is monotonic increasing with h
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until Rmin merges with ac. Before the neck contour is always virtual (in the prolongation
of the minimal surface) and the force is always increasing monotonously as ac in Fig. 2.7.
(ii) the height h(ac = Rmin) ≤ h ≤ h⋆(R−/R+), the force decreases monotonously with h
until h = h⋆, as ac decreases in Fig. 2.7. (iii) h⋆(R−/R+) < h, there is no stable catenoid
for the given boundary condition and one obtains two disks in the top and bottom frame.

In the case of an asymmetric catenoid, the maximum value of the force is proportional
to the perimeter of the smaller frame, which is also the perimeter of the intersection of
the surfaces bounded by the two frames. In the general case, the perimeter of C∥ is upper
bounded by the perimeter of the intersection of the projection of the two frames in the
mid-plane (grey area on Fig. 2.8) (It can be proven by integrating the interfacial tension
force along the closed contour (A+ → B+ → B− → C− → C+ → D+ → D− → A− → A+,
see Fig. 2.8). By construction, the parts of the contours connecting the two frames
(typically X+ → X− with X = A,B,C or D) do not give any contribution to the vertical
force, whereas the frame parts give a total vertical force which is lower than the perimeter
times 2γ, because the local angle can only give lower values. As the construction of C∥
ensures that its perimeter is equal to Fz/(2γ) it follows that the perimeter of the projected
neck contour is shorter than the projected intersection perimeter. This is illustrated in
the case of the elliptic frames on Fig. 2.21 which clearly shows that this theoretical upper
bound gives an excellent approximation of the numerical and experimental values of the
force.

At the critical point in Fig. 2.21a, the results seem to suggest that the normal forces
for different angles φ0 converge to the same value. In Fig. 2.21c, we therefore plot the
normal force at the critical point F ⋆

z as a function of φ0. The difference between the
forces is indeed small but clearly observable with the SE simulations. The perturbation
theory also predicts a change in the force but with a much smaller variation with φ0.

In summary, sufficiently far from the critical point, experiments, SE simulations,
perturbation theory and the Alimov et al. method [1] show excellent agreement in the
prediction of the normal force exerted on the elliptic frames by the minimal surface. This
was expected, since C∥ in Fig. 2.19 shows a good agreement between the different methods.
Close to the critical point, excellent agreement in the dependence of the force on the
angle φ0 is obtained only between the experiments and the SE simulations, while the
perturbation theory predicts only the general trend.

2.4.4 Torque on frames

An important feature of minimal surfaces spanning non-axisymmetric frames is that,
despite being fully liquid, they are able to exert an important torque Γz on the frames.
Here we investigate how this torque depends on the different frame geometries.

Fig. 2.22 summarises all our experimental, numerical and theoretical results on the
torque Γz for elliptic and for clover frames at two different heights. The main figure plots
the variation of the normalized torque Γz/2γR2

mean with the angle φ0. We first observe
that the torque varies periodically, with a periodicity directly related to that of the frame:
180◦ for elliptic frames and 120◦ for clover.

As expected, the torque vanishes when the axes of symmetry of the upper and lower
frame are parallel, corresponding to a physically stable state (φ0 = 0◦ or 180◦ for the
ellipses and φ0 = 0◦ or 120◦ for the clover) or a physically unstable state (φ0 = 90◦

for the ellipses and φ0 = 60◦ or 180◦ for the clover). The torque thus presents two
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Figure 2.21: a) Normalized normal force Fz/(2γP ) acting on elliptic frames for different heights h
and angles φ0, obtained with SE simulations Fz,SE, soap film experiments Fz,exp, the perturbation
theory Fz,P and the Alimov et al. method [1] Fz,A. All eccentricities are e = 0.886. b) Normalized
maximum force in the case of elliptic frames (e = 0.866 in blue and e = 0.97 in red) obtained
experimentally and numerically (SE). Lines correspond to the perimeter ABCD of the grey area
on Fig. 2.8 normalized by the perimeter of the frame. c) Variation of the critical, normalized
normal force on the elliptic frames at h = h⋆ with φ0, obtained with SE simulations F ⋆

z,SE, the
perturbation theory F ⋆

z,P and the Alimov et al. method [1] F ⋆
z,A. We remind the reader that h⋆ is

independent of φ0 in the perturbation theory. In the SE simulations all F ⋆
z,SE belong to different

h⋆. d) Shape diagram for two eliptical frames with e = 0.886 and different h and φ0.

extrema, a maximum and a minimum over one period. The angle φ0 at which they appear
depends on h, as it is clearly shown in Fig. 2.22. The torque has a linear behavior with a
torsion constant which depends on h and which increases with h until diverging for h = 0.
Interestingly, the limit h = 0 allows an analytical calculation of the torque since in this
case the minimal surface is composed of pieces of plane films connected by points (see top
right inset of Fig. 2.22). In the case of elliptic frames, one obtains Equ. (2.63) (see also
Section 2.3.6). This analytical result is represented by the black curve in Fig. 2.22 and is
in perfect agreement with the perturbative theory (black ⋆). It shows that the torque



2.4. Results and discussions 49

Figure 2.22: Torque on elliptic and clover frames for different h (see color code in the legend) and
φ0: experimental values Γexp for elliptic frames (×), Surface Evolver simulations ΓSE for elliptic
frames (□) and for clover frames (◦), perturbative theory ΓP (dashed lines) and an analytical
solution for h = 0 with Equ. (2.63) (black solid line). The excentricity of the elliptic frame is
e = 0.866 and ε = 0.3 for the clover frame. The lower inset shows a zoom for small Γz (same axis).
The upper left inset shows how the maxima of Γz depend on h for the case of ellipses. The upper
right inset shows an example of the configuration of the horizontal films for h = 0.

presents a discontinuity at φ0 = 0 for h = 0. The agreement between SE simulations
and the perturbation theory is very good for low h, for both elliptic and clover frames.
As one approaches the critical point (h ≤ h⋆), the torque becomes very small and the
agreement with the perturbation theory is less good. The top left inset of Fig. 2.22 plots
how the maxima of the torque Γmax vary with h, showing again a very good quantitative
agreement between the experiments, the SE simulations and the perturbation theory.

As shown in Fig. 2.22, in the case of elliptic frames, the torque tends to align the two
frames along the same axis. This shows that in this case the surface energy is minimal.
We do not know if it is possible to generalize this property to the general case of two
identical frames of arbitrary shape, even if it is obvious that it is correct when h → 0.

In summary, far from the critical point, experiments, SE simulations and perturbation
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theory show excellent agreement in the description of the torque exerted by minimal
surfaces on non-axisymmetric frames. Close to the critical point, the agreement with the
perturbation theory remains good, if one compares shapes at the same distance to the
critical point.

2.4.5 Tangential forces Fr and tilt moments Γr

As introduced in Section 2.3.8 non-zero forces and moments tangential to the frame
plane are only possible if the frames have less than two symmetry axes. This is the case
for two non identical frames. The Fig. 2.23 shows Fz in a), Fr in c), Γz and Γr in b) and
the angles, φF and φΓ in b), obtained with the perturbation theory and partially with
SE. The upper frame is an ellipse with e = 0.866 and R+

mean = 1.65 and the bottom frame
a clover with ε = 0.1 and R−

mean = 1. The agreement between the normal forces is as for
identical frames after the normalisation with h⋆ very good above the whole height (Fig.
2.23a). The overall behaviour of the function Fz(h) (vanishing Fz at h = 0, increasing
Fz until reaching a maximum, decreasing Fz until the point of instability at maximal
distance h = h⋆) is the same as for the asymmetric catenoid or identical frames with
φ0 ̸= 0 , for the same reason as already discussed in Sections 2.3.2 and 2.4.3.

The force Fr in Fig. 2.23c decreases with increasing h for small h until it reaches a
minimum. Afterwards it increases with increasing h reaching a maximum and decreasing
again before the surface becomes unstable at h = h⋆. The minimum is related to a phase
shift in φF (Fig. 2.23d). Consequently the force Fr is changing dramatically its direction
close to the minimum. A geometrical explanation could be, that the neck contour for
h = 0 is virtual, which means not between the two frames. With increasing h the neck
contour becomes more and more real (between the two frames). The moment a part of
the neck contour becomes real the tangential force dFr at this frame part vanishes and
changes direction. The minimum in the Fr(h) curve could be at a height where a large
part of the neck contour becomes real. This hypothesis is supported by the strong change
in φF near the minimum (Fig. 2.23d). The general behavior and even the absolute values
Fr and φF between Surface evolver and the Perturbation theory are in a good agreement
(Fig. 2.23c and d).

Fig. 2.23b) shows the change in Γr and Γz against the normalised height h/h⋆. At
h = 0 it is Γr = 0 and Γz ̸= 0. Due to Equ. (2.61) and z = 0 and dFz(ϕ) = 0 at h = 0,
the moment Γr is vanishing. Afterwards one sees a strong increase in Γr, reaching a
maximum far above the maximum of Γz. Afterwards the general trend is a decrease of Γr

with increasing h. It cannot be ruled out that a minimum in Γr occurs for certain φ0 and
h. In this example, only one inflection point can be observed. The angle φΓ is changing
continuously with h (Fig. 2.23d). For the unstable branch a phase shift as for Fr is
observed. I do not dare to give an interpretation for the different phenomena happening
at the moment curve, because many parameters (Fr, φF , Fz, r⃗) influence Γr and φΓ.

Fig. 2.24 shows the evolution of Γz, Γr and φΓ for different h over φ0 between 0◦ and
120◦ for an elliptical upper frame and a clover bottom frame with different R±

mean only
for the stable branches. The torques of the unstable shapes are magnitudes smaller. One
observes a periodicity with a period length of 60◦ for Γz and Γr. That is not surprising
since elliptical frames have a periodicity with 180◦ and clovers one of 120◦. Consequently,
one obtains all 60◦ the same configuration rotated by φ = 210◦, 180◦ from the period of
the elliptic frame and 30◦ from φ0/2 the rotation of the frame. The 210◦ shift can be
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Figure 2.23: The different force components, Fz in a), Fr in c), torque components Γz and Γr

in b), and angles, φF and φΓ in d), obtained with the perturbation theory are plotted against
the normalized height h/h⋆ for an elliptical upper frame with e = 0.866 and R+

mean = 1.65 and a
clover bottom frame with ε = 0.1 and R−mean = 1. The angle between the two frames is φ0 = 18◦.
For Fz, Fr and φF SE simulations are performed for a comparison.

observed in φΓ in Fig. 2.24d. Another general trend is the decreasing Γz and Γr in absolute
values for increasing h/h⋆. That was already observed for identical frames, Fig. 2.22. Γr

is never vanishing and decreases much slower than Γz. Another surprising observation
is the change of the maximum and minimum position of Γr between h/h⋆ = 0.34 and
h/h⋆ = 0.58, Fig. 2.24c. By looking at Fig. 2.24d one observes two limit cases one for
h/h⋆ = 0.06 and one for h/h⋆ = 0.58. Both are almost straight lines, one is increasing
(h/h⋆ = 0.06) and one decreasing (h/h⋆ = 0.58) with φ0. Between this two heights one
observes a spontaneous switch between a monotone increasing and monotone decreasing
function. The reason for that is probably related to the neck contour and there position.
If the neck contour changes from mainly outside the volume between the two frames
to mainly inside, the direction of Fr also changes and so does Γr and so φΓ. Another
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surprising observation is in Fig. 2.24c. The curve for h/h⋆ = 0.06 has two additional
local minima close to the maxima. Since they are not perfectly identically between the
first and the second period, they could also be numerical artefacts related to the small
height. Simulation or experiments would be interesting to verify that.

Figure 2.24: The different loads, Γz in a) and Γr in c) and angles φΓ are plotted against φ0 for an
elliptical top frame with e = 0.886 and R+

mean = 1.373 and a clover bottom frame with ε = 0.3
and R−mean = 1. The different colors represent different h/h⋆. Only results for the perturbation
theory are shown. The panel b) shows three illustrations of the minimal surface for different φ0.

Even with the linearisation of the differential equation for minimal surfaces, the
perturbation theory captures phenomena like forces Fr and moments Γz and Γr with a
surprisingly good agreement which are not existent in the catenoid.

2.5 Conclusions and outlook

We investigated experimentally, numerically and theoretically the properties of minimal
surfaces spanning two non-axisymmetric frames, with a particular focus on identical frames



2.5. Conclusions and outlook 53

specially elliptic and cloverleaf frames. We paid particular attention to the influence of
the distance h and the angle φ0 between the two frames on different properties of these
surfaces. From a theoretical point of view, we propose a perturbative approach allowing
to compute all the properties of the surface with good precision. The advantage of this
approach in contrast to currently existing methods, such as proposed by Alimov at al.
[1] (only for φ0 = 0◦), is that it is generalised to a wide range of frame shapes, including
surfaces contained between non-identical frames.

Our experimental, numerical and theoretical study focused first on the instability of
the continuous minimal surface leading to a discontinuous minimal surface (Goldschmidt
surface) at a critical height h⋆. We have shown experimentally and numerically that, h⋆

depends only slightly on the angle φ0. Perturbative theory fails to predict this non-linear
effect, and to our knowledge no currently available theory predicts this variation.

We then investigated in more detail the shapes of the minimal surfaces, showing
systematically excellent agreement between experiments and simulations, both agreeing
very well with the prediction by Alimov et al. [1] for the case of φ0 = 0. Perturbation
theory is found to capture these shapes very well far from the instability. Close to the
instability, this agreement is greatly improved when shapes at the same relative distance
to the critical height h⋆ are compared, rather than shapes at the same height h. We also
discussed the existence of a particular curve on the surface, consisting of points whose
normal is perpendicular to the normal of the frames, which generalises the neck commonly
defined for the catenoid.

We then studied the mechanical stresses (force and torque) exerted by the minimal
surface on the frames. Since we consider surface tension to be constant, these physical
quantities have purely geometrical interpretations. We show that they present non-trivial
behavior, including a discontinuity of both the force and the torque at h = 0, as well
as a non-monotonic character of the force for φ0 ̸= 0. Experiments, Surface Evolver
simulations, perturbation theory and the Alimov et al. method [1] are in very good
agreement.

Forces Fr and tilt moments Γr appear if the top and bottom frame contour are not
identical or have less than two symmetries. The direction of this forces and moments
depend on h and φ0. The perturbation theory predicts well this behavior, which is verified
with SE simulations.

Beyond the fundamental interest of this work, these results could pave the way for tools
for future investigations. One of the most intriguing property of the non-axisymmetric
minimal surfaces is its capacity to transmit not only normal stresses, but also a torque and
a tilt moment despite being liquid. They could therefore be used to transmit or measure
very small torques or normal forces. This could be used, for example, to investigate
the visco-elastic properties of soap films. Since perturbation theory predicts the torque
and normal force well, both can be determined unambiguously. By adjusting the frame
geometry, the measuring range of the two quantities could be adapted.

We concentrated here on the analysis of a specific choice of shapes (ellipses and
clovers), with both frames being identical, parallel and rotated around the central axis.
In future work it will be interesting to investigate in more depth arbitrary shapes and
also more general rotations, including the influence of the frames not being parallel. It
will also be interesting to extend this work to surfaces in which surface tension depends
on deformation, simulating an elastic response relevant in material design [66] or for the
description of biological membranes.
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Last but not least, while perturbation theory captures well a wide range of system
properties, we have seen that it neglects non-linear effects which become important close
to the instability. It would therefore be important to develop more accurate theoretical
tools, for example in generalising the approach proposed by Alimov et al. [1] to more
general surface shapes. Since the critcal height seems to be a characteristic length for
many other properties of the surface.



Chapter 3
Bubbles and drops between circular
frames

Interactions between bubbles or drops play an important role in many physical
phenomena. Whether we consider the interaction between two bubbles (drops) or between
many (foams or emulsions), these interactions are complex and still poorly understood.
An interesting case arises when two equal- and constant-volume bubbles (drops) interact
with each other while being held by two axisymetrically positioned capillaries of circular
cross-section - a configuration which is frequently used in characterisation devices. The
minimisation of the surface energy of this "double bubble" (or "double drop") configuration,
constrained by the fixed volume and the capillary boundaries, creates a complex landscape
of shape spaces where stable shapes are separated by different types of instabilities.
Combining experiment, finite element simulation and theory, we provide here for the first
time a complete analysis of these shape spaces, considering the adhesive energy between
the bubbles or drops (expressed by the contact angle) as an additional control parameter.
We provide the full shape diagrams for different contact angles (0°, 60° and 90°), including
a detailed discussion of four types of instabilities. Two of these break the axisymmetry
whilst the two others break the connectivity of the ensemble. As far as we are aware,

55
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two of these instabilities have never been reported before. We accompany the shape
and stability analysis with detailed mechanical characterisation using force and pressure
measurements. Experiments, simulations and theory showing excellent agreement, this
work will not only be useful in guiding the exploitation of double bubble (double drop)
experiments on capillaries, but it also opens the possibility to exploit these configurations
for the characterisation of increasingly complex bubble or drop interactions. Since the
contact angle of 90° corresponds to an "imaginary" film separating the two bubbles, our
analysis naturally includes the shapes and stability of a capillary bridge between two
circular frames. A significant part of this chapter has been the basics for the article
"Bubbles and drops between circular frames: Shape, force and stability analysis" under
review in Soft Matter.
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3.1 Introduction
Bubbles and drops play an important role in many physical phenomena. Their

interactions control the behaviour of assemblies of bubbles or drops, ranging all the
way from the simple assembly of two bubbles or two drops to the complex multi-body
interactions in foams and emulsions [67, 68, 69]. One of the most commonly used techniques
to characterise the properties of individual bubbles (drops) is the rising bubble (pendant
drop) tensiometer [70, 71, 72], which uses the shape analysis of an axisymmetric bubble
(drop) held by a capillary with circular cross-section. Here we propose to exploit this kind
of configuration after the addition of a second bubble (drop) held by an axisymmetrically
positioned capillary to investigate the interactions between bubbles (drops), as shown
in Fig. 3.1. Similar configurations have been used in the past in order to quantify
coalescence of bubbles (drops) [73, 74, 75, 76], the adhesive forces between cells [77]
or the adhesive energy between bubbles, drops or vesicles [78, 79, 80], the latter being
expressed by the contact angle θc created between the two bubbles (drops) (Fig. 3.1).
However, even in the case of bubbles (drops) of equal and constant volume V , constant
interfacial tension γ, fixed on identical, axisymetrically positioned capillaries with circular
cross-section of radius R and separated by a distance h (Fig. 3.1), surface minimisation
creates a highly complex landscape of possible shape configurations. The V -R-θc-h shape
space contains zones with different physically stable shapes that are separated by at least
four types of shape instabilities. These instabilities may either break the axisymmetry
of the ensemble or its connectivity. They are sketched in Fig. 3.2 together with the
convention for the naming and abbreviations which we will use throughout the chapter.
One illustrative example which includes three of these instabilities is shown in Fig. 3.3 for
the case of two soap bubbles in air. The two bubbles are initially separated ("Separated
bubbles", SB). Upon decreasing h, they "jump" into contact ("Connected bubbles", CB) at
h = hSB→CB during a first shape instability, creating a contact angle θc = 60◦ due to the
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natural attraction between soap bubbles in air. Further reducing h creates an increasing
"flattening" deformation of the two axisymmetric bubbles, until a second shape instability
is reached at h = hCB→TB [79, 41, 81] which breaks the axisymmetry by tilting of the two
bubbles ("Tilted bubbles", TB). Further decreasing h increases the tilt angle. Increasing
h again, the different shape configurations are re-accessed in a fully reversible manner
until h = hSB→CB. For h > hSB→CB, a range of elongated, axisymmetric bubble shapes is
accessible due to the attraction between the bubbles. At another critical distance, the
two bubbles may either detach from each other (top row of Fig. 3.3, "Separated bubbles",
SB) or detach from the frame (bottom row of Fig. 3.3, "Detached bubbles", DB). The
precise sequence of the shape configurations and the shape instabilities depends on V , R
and θc (Fig. 3.1). For different parameter ranges, other types of instabilities may arise,
which are described in more detail in Section 3.4.

In order to capture these complex behaviours for the entire V -R-θc-h parameter
space, we combine experiments, finite element simulations (Surface Evolver) and theory
(Delaunay surfaces). We provide a complete description of these "shape spaces", including
the mechanical stresses created by the bubbles (drops) between the capillaries.

Other research groups conducted similar investigations with three-dimensional or quasi-
two dimensional soap bubbles [82, 81, 41]. However, in most of the previous investigations,
the bubbles (drops) are confined between two parallel solid walls on which the bubbles
(drops) can move freely, i.e. the boundary condition is given by a fixed contact angle
between the bubble (drop) and the solid surface. The fact that in our setup the bubbles
(drops) are fixed by a capillary of constant radius R changes some degrees of freedom of
the problem and hence the shape behaviour. While Fortes et al. [82] and Bohn [81] discuss
also briefly this case, they do not show quantitative results. Since this configuration
is relevant for many physical scenarios, it is therefore important to establish a more
quantitative understanding.

In our analysis we concentrate on systems with constant interfacial tension γ. By
choosing wisely the gas/liquid or liquid/liquid configuration, we have access to different
contact angles θc between the bubbles (drops), as shown in Fig. 3.1. This contact angle
can be interpreted as the change in surface energy between the contact film of effective
tension γf and the "free" bounding surface with effective tension γb (discussed in more
detail in Section 1.2.4). The tensions are related to the contact angle θc via equilibrium
considerations at the contact line

2γb cos (θc) = γf . (3.1)

Three different θc are therefore easily accessible (Fig. 3.1), since the effective film and
boundary tensions are set by the number of interfaces of tension γ which they contain.
The first case is the one of two bubbles or two drops in contact in a liquid, or of two drops
in contact in air ("Bubble/drop" configuration in Fig. 3.1) which gives 2γb = γf = 2γ
and therefore θc = 0◦. The second configuration consists of two bubbles in air ("Soap
bubble" configuration in Fig. 3.1), which has a contact angle of 60◦ since γb = γf = 2γ. A
special case is the one of an imaginary film with γf = 0, which gives θc = 90◦ with γb = γ
(bubble or drop in a liquid or drop in air) or γb = 2γ (bubble in air). This corresponds in
reality to one single bubble or drop, i.e. a "Capillary bridge" between the two capillaries.
This little mental exercise opens a door to a slightly different configuration with different
applications in nature and industry for almost the same theory and experimental setup.

In all our considerations we neglect gravity. In the experiments we ensure this by
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Figure 3.1: Configurations considered in this article: "Bubble/drop": two drops or two bubbles in
contact surrounded by a liquid (θc = 0◦); "Soap bubbles": two bubble in contact in air (θc = 60◦);
"Capillary bridge": one bubble or drop separated by an "imaginary" central film of zero interfacial
tension, leading to θc = 90◦. All bubbles or drops are held by axisymmetrically positioned circular
frames. The geometrical variables are: h the distance between the frames, R the frame radius,
V the bubble or drop volume, θc the contact angle between the upper and lower bubble and θ
the angle of inclination of the r(z)-profile, which depends on the other geometrical boundary
conditions. Fze⃗z is the total force in z-direction exerted on the lower bubble by the lower frame,
pi and po are the inner and outer pressure of the bubbles (drops), respectively, and γf and γb are
the effective film and effective bubble/drop interfacial tension.

choosing configurations in which interfacial tension dominates gravity (Section 3.3.2). For
this to be the case, the characteristic length of the bubbles or drops must be smaller
than the capillary length, which is equivalent to a small Bond number. As the capillary
length varies greatly between bubbles, drops and soap bubbles, the size of the bubbles
or drops must also be adjusted. More informations the reader can find in the materials
Section 3.3.2.4. All surfaces are therefore constant mean curvature surfaces given by the
Young-Laplace law and the constant interfacial tension γ during one experiment. In the
case of axisymmetric shapes, the external surfaces are part of the family of Delaunay
Surfaces [20] whose theory we describe in more detail in Section 3.3.3.

In the following we will analyse in detail these different shape spaces by combining
experiments (Section 3.3.2), finite element simulations (Surface Evolver (SE)) (Section
3.3.4) and the theory of Delaunay surfaces (DS) (Section 3.3.3). In the theoretical part we
also provide the method to obtain the shapes which fit to the experiments and simulation
(Section 3.3.3). We combine all three methods to analyse first the normal forces in respect

Figure 3.2: Overview for different names of stable shapes for the three contact angles θc. For
simplicity only "bubble" is used even though the terminology applies equally to drops.
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Figure 3.3: Series of photographs of soap bubble experiments where the distance h between the
frames is first decreased and then increased in a quasi-static manner showing the different shapes
and instabilities which can be obtained. In the bottom row, the volume V of the bubbles is larger,
leading to a different instability upon increasing h

Figure 3.4: Overview of the different shape configurations for two bubbles (or drops) (left), two
soap bubbles (centre) and capillary bridges (right) (see Fig. 3.1a), which appear by changing h,
R, V and θc. One finds five different shapes witch are listed in Fig. 3.2: Connected bubbles (CB),
Separated Bubbles (SB), Detached Bubbles (DB), Tilted Bubbles (TB) with the tilt angle ψ, and
Shifted Bubbles (ShB).
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to the frame cross-section and pressures for the different experimental configurations
(Section 3.4.2). We then discuss in detail the associated shape diagrams for the three
different contact angles θc (Section 3.4.3).

Experiment, simulation and theory showing excellent agreement, we think that this
work will be useful for scientists working on double bubble (double drop) and capillary
bridge problems between capillaries. It does not only provide a solid basis to start
exploring more complex interactions (such as bubbles or drops with elastic interfaces),
but it is also hoped to inspire more in-depth investigations of some of the instabilities
which still await theoretical description.

3.2 Dimensionless lengths, forces and pressures

We combine results from three different methods to investigate the bubbles (drops) in
contact and the capillary bridges: experiments (Section 3.3.2), the theory of Delaunay
Surfaces (Section 3.3.3) and Surface Evolver simulations (Section 3.3.4). Since the bubble
(drop) volume V and the interfacial tension γb remain constant during one experiment,
they provide a natural length and stress scale for our specific problem. We will use them
in the Result Section 3.4 to compare all three methods with each other. Therefore, we
define the dimensionless lengths L̂ (such as r̂, R̂ or ĥ) and forces F̂ and pressures ∆p̂ with

L̂ = 1
V 1/3L, (3.2)

F̂z = 1
γbV 1/3Fz, (3.3)

∆p̂ = V 1/3

γb
∆p. (3.4)

3.3 Materials and Methods

3.3.1 Materials

For the soap bubbles we used a mixture of 30 wt% glycerol, 3 wt% Fairy dishwashing
liquid and di-ionised water (Milli-Q). We mixed them for 20 minutes with a magnetic
stirrer and used this solution for a period of 5 months. The interfacial tension of this
solution with air is γ = 26.0 ± 0.5 mN/m measured with pendant drop tensiometry
(TRACKER device from TECLIS).

Air bubbles were also created in an aqueous solution of Sodium Dodecyl Sulfate
(SDS) at a concentration of 6.5 g/L, which corresponds to 2.75 times the critical micelle
concentration. The solution was mixed for a couple of hours with a magnetic stirrer.
The same solution was used to create water drops with SDS in silicone oil (BLUESIL
FLD 47V100, LOT 9255610). At room temperature its density was determined to be
ρ = 0.965 ± 0.001 kg/L using a D4 METTLER TOLEDO densimetre. The interfacial
tension between the aqueous SDS solution and the silicone oil was measured to be
γ = 11.2 ± 0.5 mN/m using pendant drop tensiometry (TRACKER by TECLIS).
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3.3.1.1 Frame geometries

We used different frame radii for the soap bubble setup of R = [2.7 mm, 3.6 mm,
11.8 mm, 15.0 mm, 30.0 mm]. The frames were manufactured by different methods. The
frames with R = [15.0 mm, 3.6 mm] are 3D-printed with a thermoplastic 3D printer Form
2 from Formlabs (Fig. 3.5c center). The used printing method was stereolithography
with a layer thickness of 0.025 mm. The deviation between a circle and the printed frame
geometry is at maximum 0.4%. The frames with R = [2.7 mm, 11.8 mm] are metal disks
glued onto a microfluid connector (Fig. 3.5c left). The frame with R = [30 mm] is a
numerically milled cylinder made from aluminium (Fig. 3.5c right) using a numerical
milling device.

From a mathematical point of view, pinned bubbles are surfaces where some points
on the surface are fixed points in space. Here the fixed points are on circular frames.
The following explains how the pinning was realised in our experiments. We deal with
static interfaces controlled by interfacial tension. That means the only forces exerted on
the contact line between the frame and the interface are interfacial tensions. The force
equilibrium at the contact line in the frame plane in radial direction is expressed with the
Young-Dupré law [83]

γFi − γFo = γb cos θ, (3.5)

illustrated in Fig. 3.5a. The interfacial tension between the frame and the inner fluid is
γFi. The interfacial tension between the frame and the outer fluid is γFo. The interfacial
tension between the inner and outer fluid is γb. Since in most cases all three interfacial
tensions are constant, the angle θ at the contact line is constant as well. If now the volume
or other constraints change, the contact line between the frame surface and the bubble
interface can move to adapt to the new constraints. Here we want to work with pinned
interfaces. This is achieved when one of the three interfacial tensions on the contact line is
variable in direction or amplitude. Discontinuities in material or geometry could be seen
as an infinitely strong gradient in space for the interfacial tension, as sketched in Fig. 3.5b
for a geometrical discontinuity. To move the contact line above such discontinuities, the
angle θ has to make a jump, which ensures for a specific range of boundary conditions a
pinning of the contact line on the discontinuity. In our experiments we used only material
discontinuities, since it is simpler to control the position of the discontinuity. In Fig.
3.5b a geometrical discontinuity, for example an edge, is schematically illustrated. To
move the contact line over the edge of the pinning object the angle θ between the surface
and the horizontal plane is free to be a value between θ1g and θ2g ("g" for geometrical
discontinuity).

Nevertheless by making some parts of a surface hydrophobic or hydrophilic a material
discontinuity could be used in the same manner. For soap films the scenario is slightly
more complicated. Since the surface is a film and cannot be assigned to a specific contact
point. The film will always form a meniscus at the contact to the pinning object. The
geometry of the meniscus plays an important rule for the pinning strength. This geometry
is influenced by the two mentioned discontinuities. But also other parameters, like the
liquid fraction, play a significant rule for the geometry of the meniscus and so the pinning
strength. A good approximation for the contact angle between an object and a soap film
is θ = 90◦. It is exact for a soap film on a fully wet horizontal plane.

As we see in Fig. 3.5 the possibility to pin a liquid surface is limited to a range of θ
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Figure 3.5: Three schemes explaining how the frame geometries are chosen. a) Force equilibrium
between the different interfacial tensions at one point of the contact line between the bubble
interface and the frame. γb is the interfacial tension between the outer and inner fluid, γF o is
the interfacial tension between the frame and the outer fluid and γF i is the interfacial tension
between the frame and the inner fluid. The contact point is part of the contact line between the
frame surface and the bubble interface. b) Principal idea of pinning with help of a geometrical
discontinuity. The contact line is pinned for a contact angle θp between θ1g > θp > θ2g with
∆θ = θ1g − θ2g, "g" stands for geometrical discontinuity. c) Chosen frame geometries for different
boundary conditions, ĥ, R̂ and θc.

depending on the discontinuities. The pinning range is

∆θ = θ1g − θ2g. (3.6)

The maximal ∆θ for a geometrical discontinuity is therefore 180◦. For a combination
with a material discontinuity one can reach also higher ∆θ.

For our experimental setup it was important that the change in θ during the tilting
instability and a detachment instability was smaller than ∆θ defined by the setup. We
used for that different frame geometries, see Fig. 3.5c. For some (R, V ) we had to repeat
the experiment with different frame geometries to measure the tilting instability and a
detachment instability.

3.3.2 Experimental methods

We use two different setups (Fig. 3.6), one for the "Bubble/drop" configuration (Fig.
3.6 a) and one for the "Soap bubble" configuration (Fig. 3.6b). Each experiment consists
of a cycle where h is varied and V , R and θc stay constant. The pressure changes are
small compared to the atmospheric pressure. Consequently, the volume changes during
an experiment are negligible.
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Figure 3.6: The two experiments used in this article: a) "Bubble/drop setup" and b) "Soap bubble
setup". The Bubble/drop setup refers in reality to two different setups which follow the same
principles. One is a modified device from TECLIS and the other one (shown in (a)) is a home-made
device following the principles of the TECLIS device. In the images we can see: (1) the two
syringes to charge the system with a liquid, (2) the two frames for the soap bubbles, (3) the
syringes to control the volume of the drops with a linear motor, (4) the tilting mechanisms to
change the angular orientation of the needles, (5) the diffusive backlights, (6) the cameras, (7) the
vessel with temperature control, (8) the tubes which contain temperature controlled water, (9)
the two needles (one straight the other in U-shape), (10) the pressure sensor and (11) the micro
controller for a transverse displacement of the upper needle with tilting mechanism. The "Soap
bubble setup" (b) has the same overall configuration. The differences are the frame size ((9) vs
(2)) and the pressure sensor (10) in (a) and the normal force sensor (12) in (b).

3.3.2.1 Bubble/drop setup

We use two setups with almost the same configuration for the "Bubble/drop setup"
(Fig. 3.6a). One was developed by the society TECLIS in interaction with us. It consists
of a modified pendant drop tensiometre (TRACKER), to which a second syringe system
was added. The second one is a fully home-built, Labview-run device (shown in Fig.
3.6a). Both devices contain two syringes (3) of max 500 µl volume, each connected to
a needle (9) by a tubing system. On a sidearm of the tubing system a Miniature Low
Pressure Sensor 0.5 Psi 24PCEFB6G (10) is connected to measure the pressure difference
∆p = pi − po (see Fig. 3.1). To increase the precision of the pressure sensor, a home-made
electrical circuit was used. The needles have circular cross-sections of radius R with R =
[1.2 mm, 2.15 mm]. Each needle is fixed on a home-built tilting mechanism (4) allowing
to control the orientation of the symmetry axis of the needle end, (see Appendix Section
A.1). One of these tilt mechanisms is fixed on a board while the other one is fixed on a
high precision micro-controller (SmarAct) (11). This micro-controller moves on command
in arbitrary translational directions with a controlled speed. One of the needles has a
U-shape and the other a straight shape. This allows the ends of the two needles to be
positioned and moved along the same z-axis. The needle openings are immersed in a 25
mL vessel (7) with 25 mm square cross-section and 40 mm depth. The vessel, the syringes
and the pressure sensor are surrounded by metal blocks through which water is flowing
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continuously to maintain the temperature at 20 C◦ (8). The metal cube for the quartz
vessel has an opening in the top and circular windows in the four horizontal directions for
imaging purposes (7). Backlights (5) are positioned in front of two of these windows. On
the opposite sides of the backlights, IDS U3-3800CP-M-GL R2 cameras (6) are fixed to
obtain images of the two bubbles/drops from two orthogonal perspectives.

The verticality and coaxiality of the needle ends is adjusted at the beginning of
each experiment with the help of the tilting mechanism, the micro-controller unit and
a numerically evaluation of the images of the two cameras. The exact procedure is
explained in the Appendix Section A.1. Depending on the type of experiment to be
conducted, the quartz vessel was filled with an aqueous SDS solution for the investigation
of bubble-bubble interactions, or with a silicone oil for the investigation of drop-drop
interactions. In the first case the syringes, tubes and needles were filled with air, while in
the second case they were filled with SDS solution. We decided to make water drops in
silicone oil (rather than the opposite), as it is easier to clean the vessel than the syringe
system. Both systems can be easily inverted to investigate water drops in air or oil drops
in water.

At the beginning of each experiment the bubbles or drops were formed separately
with a defined volume. With help of the cameras coupled to a PID control the volume
is accurately controlled and kept constant for 60 s to allow surfactant adsorption on
the bubble (drop) surface. Then the bubbles (drops) are moved against each other
along the needle axis with help of the micro-controller until they touch and deform.
This deformation is progressively increased until the tilting instability occurs. Then the
distance between the bubbles (drops) is again increased until they detach from each other
or from the needle. We make sure that the deformation is slow enough to be considered
quasi-static upon using a displacement velocity of the needle of 20 µm/s. Even though
the PID volume control is switched off during this part of the experiment, its duration
is short enough to assume that the drop volumes remain constant. We verify this by
measuring the bubble (drop) volume before and after each experiment.

3.3.2.2 Pressure measurement

Fig. 3.7 shows the two pressure sensors for the upper and bottom bubble (drop) with
the important parameters which are needed to obtain the pressure difference between
the inside and outside of the two bubbles (drops). Since it is impossible to place the
pressure sensor directly at the interface of the bubbles (drops) there is always a distance
in space between the point where we measure the pressure difference and the point where
we want to know the pressure difference. In the general case these two pressures are not
the same due to hydrostatic and hydrodynamic pressures. In the absence of liquid flow,
the differences in pressure between the sensors and the drop interfaces are only related to
hydrostatic pressures. We will start with this simple case. Afterwards we will show that
for the applied flow rates we can also neglect hydrodynamic effects.

The pressure difference between the inside and outside of the lower bubble (drop) is

∆p−
A = 2H−

Aγ
−
b = p−

i − po = p−
S + (L− − L−

A)ρig − ρog(L−
F − L−

A), (3.7)

where the index "−" stands for "bottom", "i" for "inside", "o" for "outside", "A" for "Apex"
and "b" for "bubble". p−

S is the pressure measured at the sensor for the bottom bubble
and ∆p−

A the pressure jump at the bottom bubble interface at the apex. The distances
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L are illustrated in Fig. 3.7. The pressure jump at the apex is the Laplace pressure at
the apex. It is proportional to the mean curvature at the apex H−

A and the interfacial
tension of the bottom bubble (drop) γ−

b . Due to the axisymmetric shape of the bubbles
the two principle curvatures at the apex are identical. That is why we took the apex
as our calibration point. The two densities of the inner and outer phase, ρi and ρo, are
measured independently with Mettler Toledo D4 at 20 ◦C. By rearranging Equ. (3.7) we
obtain

p−
S + gL−

A(ρo − ρi) = 2H−
Aγ

−
b + ρogL

−
F − ρigL− = 2H−

Aγ
−
b +K−

sta, (3.8)

with K−
sta = ρogL

−
F − ρigL

−. Since the temperature, the bottom frame position and the
liquid level of the outer liquid are constant, K−

sta is constant as well. The liquid level stays
constant if the temperature is constant and the outer liquid is not evaporating. Otherwise
the liquid level has to be controlled. For the calibration of the pressure sensor the two
liquid phases are chosen in a manner that γ−

b is constant as well (high concentration of
low molecular weight surfactants). In this case, one can make a linear fit between the
measured H−

A and p−
S for quasi-static inflation and deflation of the bubble. The measured

pressure of the sensor has to be corrected with gL−
A(ρo −ρi) where only L−

A changes during
the experiment and is measured optically during the calibration with a precision of 10
µm. The same procedure is applied for the upper sensor S+. To obtain the respective
equations one has to replace only the index "−" with "+" and change the sign in front of
L−

A in (3.8) to obtain

p+
S − gL+

A(ρo − ρi) = 2H+
Aγb + ρogL

+
F − ρigL

+ = 2H+
Aγb +K+

sta, (3.9)

with the new constant K+
sta = ρogL

+
F − ρigL

+. Since the upper frame changes position
during an experiment, the constant K+

sta changes as well. That is why we relate the
variable K+

sta to the frame distance between the bottom and top frames LFF which is also
measured optically. It follows

K+
sta = K+

0;sta + g(LFF0 − LFF)(ρo − ρi), (3.10)

where the index "0" indicates the values at the onset of the experiment. The variables
K+

0;sta and LFF0 are constant and obtained during the pressure calibration of the upper
bubble. Consequently the calibration constant K+

sta is a function of LFF. Whenever
possible, the calibration was repeated before and after a set of experiments to verify that
the calibration constants did not change with time. Fig. 3.8 shows an example of a typical
pressure calibration inflation/deflation curve. On the left part in Fig. 3.8 the measured
pressure corrected with the changing bubble height L−

A is plotted against H−
A . The color

of the measurements symbolise the time: starting from purple at t0, it passes through
green at t1, before ending at yellow at t2. The red line is the obtained calibration curve,
which gives K−

sta and γb. The right part of Fig. 3.8 compares ∆p−
A obtained from image

analysis with the Young-Laplace equation and the pressure sensor for the inflation and
deflation. Both show excellent agreement.

3.3.2.3 Soap bubble setup

In the soap bubble setup (Fig. 3.6b) two soap bubbles ("Soap bubble" configuration)
or one soap bubble ("Capillary bridge" configuration) are created in air at the outlet of
air-tight frames with circular outlets of radius R, Fig. 3.5c. A soap film was first formed
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Figure 3.7: Scheme showing the relationship between the measured pressures in the Sensors S
(Fig. 3.6 (10)) and the pressure difference between the inside and the outside of the bubbles. L
are lengths, ρ densities and p pressures. The indices "+" and "-" stand for "top" and "bottom"
respectively, "i" and "o" for "inside" and "outside", "A" for "apex" and "F" for "frame".

Figure 3.8: Left: measured pressure of the bottom bubble (drop) corrected with the apex height
L−A plotted against the measured mean curvature at the bottom bubble apex H−A to obtain the
calibration constant K−sta and the interfacial tension of the bottom bubble γb using Equ. (3.8).
Right: pressure evolution at the apex of the bottom bubble obtained either with the pressure
sensor or with image analysis, plotted during an inflation and deflation of a bubble/drop.

on the outlet of the frames by immersing them in the soap solution. Afterwards, a given
volume of air was injected into the frames via syringes to create bubbles of volume V .
The sizes of the syringes were chosen for each experiment to optimise the precision in the
volume control for the desired bubble volumes, which ranged between 1 ml < V < 30 ml.
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The relative error is typically of the order of 1%. Afterwards, the bubbles were positioned
on the same symmetry axis with the help of two cameras (IDS U3-3800CP-M-GL R2)
positioned at an angle of 90° to each other. The upper bubble was moved in the vertical
direction using a linear table CKK and a motor MSN03. The movement was smooth with
a speed of 0.02 mm/s controlled by a home-made Labview program. We verified that this
speed is slow enough to neglect viscoelastic contributions of the soap films.

The vertical component of the force Fz exerted on the lower bubble by the lower frame
is measured by monitoring the apparent weight of the bottom frame with a high-precision
scale SECURA224-1S with a precision of 0.1 µN. The force exerted by the bubble and
frame weight imposes an offset which can be obtained with a precision of 1 µN. The shape
of the bubbles is obtained by imaging them in front of a diffusive screen using a digital
camera IDS U3-3800CP-M-GL R2. These images are also used to obtain the distance h
between the frames.

At the beginning of each experiment, the distance h between the two frames is decreased
until the film between the two bubbles is strongly tilted. Afterwards the measurement
starts by capturing images and saving the normal force Fz every two seconds. The upper
frame moves smoothly upwards. The measurement stops 10 s after the two bubbles detach
or one bubble detaches from a frame. The force Fz measured after a detachment was
used to calculate the offset.

The experimental procedure is the same for the Capillary bridge (contact angle
θc = 90◦) only with one large bubble of volume 2V , which connects the two frames. To
create this capillary bridge with 2V , two bubbles of the same size as before were created
brought into contact. The contact film may break and a capillary bridge is created. Since
it is difficult to control if the film breaks or remains intact, we started in the general
case directly with the capillary bridge by starting with ĥ = 0 and increasing the distance
between the two frames when injecting air at the same time.

3.3.2.4 Bond number

In order to ensure that the influence of gravity on the shape of the bubbles/drops
can be neglected in our experiments, we need to work at small Bond numbers Bo. The
Bond number is a dimensionless quantity measuring the importance of gravitational forces
compared to surface tension forces.

In the case of bubbles/drops, it is given by

Bo =
(
h

λc

)2
= ∆ρgh2

γ
, (3.11)

where h is the characteristic length in the vertical direction, and λc the capillary length
(λc =

√
γ/∆ρg). For the silicone oil / water system one obtains Bo < 2.51̈0−3 (see Fig.

3.9).
For soap bubbles, the average film thickness e0 must be taken into account (see for

example the work of Cohen et al.[84]) leading to

Bo =
(∆ρge0h

γ

)2
. (3.12)

In our experiments, with an estimated film thickness of 1 µm, Bo < 10−3.
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Figure 3.9: Influence of gravity (expressed by the Bond number Bo) on onset hCB←→T B of the
tilt instability for the case θc = 0◦ and R̂ = 0.7. The results are obtained with Surface Evolver.
The maximal Bo encountered in the experiments for the two used systems, soap bubbles (in red)
and water drops in silicone (blue), are highlighted. The influence of gravity is therefore negligible.

In both cases we obtain very small Bo and gravity is therefore negligible. The
assumption of a constant ∆p is therefore reasonable.

Never the less we estimate the influence of gravity for the range of Bo used in our
experiments with help of Surface evolver simulations. Fig. 3.9 shows how the onset of the
tilting instability hCB↔TB is expected to depend on Bo for the case θc = 0◦ and R̂ = 0.7.
It can be seen that for soap bubbles and water drops in silicone, the influence of gravity
is negligible in the range of Bo of our experiments.

3.3.3 Theoretical method: Delaunay surfaces

In the following, we only talk about bubbles to facilitate reading. However, all concepts
apply equally to drops.

One can divide the films and interfaces of the two bubbles in contact into three parts:
the upper bubble, the lower bubble and the film separating the two bubbles.

In all our considerations we neglect gravity. In the experiments we ensure this by
choosing configurations in which interfacial tension dominates gravity, i.e. we work at
sufficiently small Bond numbers Bo, as discussed in Section 3.3.2.4. We therefore assume
∆p as constant along z, meaning that the upper and lower part of the bubble shape are
constant mean curvature surfaces, see Section 1.2.3. If the two bubbles have the same
volume and the boundary conditions are mirror symmetric, the pressure difference between
both bubbles is zero and the separating film is a minimal surface. In the case where the
bubble configuration stays axisymmetric, the separating film remains a horizontal, flat
disk at mid-height and the upper and lower part can be described by a "Delaunay surface"
[20, 85], see also Section 1.2.3.

The energy of an axisymmetric shape defined by r(z) (Fig. 3.1) with constant
interfacial tension γ is given in Equ. (1.14). Searching for extrema of Equ. (1.14), one
obtains Equ. (1.16), the force equilibrium in z-direction. The constant Fz is equal to
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the total force in the z-direction exerted on the lower bubble by the lower frame [86], as
shown in Fig. 3.1a. It is constant over z. For Nodoids r,z has a singularity at the point
where the profile becomes horizontal. That is the point where the interfacial tension part
in Equ. (1.16) switches sign.

The inverse mean curvature H−1 is the characteristic length scale of the problem. We
therefore use it to make a unique assignment between a profile r(z) and a normalised
force F̃z, by normalising all key quantities with the absolute value of the inverse mean
curvature

r̃ = |H|r,
z̃ = |H|z,
h̃ = |H|h,
F̃z = |H|Fz/(2πγ),
∆p̃ = |∆p|/(2γ|H|) = 1. (3.13)

Conversely, this allows us to find all possible constant mean curvature surfaces that fulfil
all boundary conditions by scanning through all F̃z. Since this normalisation is not valid
for minimal surfaces with ∆p = 0, the catenoid is treated separately in Section 3.3.3.4. A
second factor 2πγ scales the force Fz and the pressure difference ∆p and can be interpreted
as the interfacial tension force of a circle of radius unity. Then, the normalised surface
shape depends only on one parameter, the normalised normal force F̃z [86],

F̃z = r̃2 ∓ r̃√
1 + r̃2

,z̃

. (3.14)

The relations given above show that two physical quantities control the mechanical and
geometrical properties of these surfaces: the interfacial tension γ and the mean curvature
H.

As dicussed in Section 1.2.3, four different groups of Delaunay surfaces are commonly
distinguished by the choice of F̃z (see Fig. 3.10) [87, 86]: "nodoids" for F̃z > 0, "spheres"
for F̃z = 0 , "unduloids" for 0 > F̃z > −0.25 and "cylinders" for F̃z = −0.25. The external
surfaces of the bubbles or drops have to be among these five groups of surfaces (including
the catenoid) if they maintain axisymmetry.

3.3.3.1 Parametrisation of Delaunay Surfaces

The five different axisymmetric constant mean curvature surfaces (nodoid, sphere,
unduloid, cylinder and catenoid) can be obtained by rolling a cone section (Fig. 3.10)
along the symmetry axis of the Delaunay surfaces and following one of the focal points
of the cone sections. Path of the focal point then draws the profile of the surface. For
example, the parametrisation of an unduloid is obtained by rolling an ellipse along the
symmetry axis. One obtains (Fig. 3.10b)

z̃(ω) = −2F̃z

∫ ω

ω0

du
(1 + e cosu)

√
1 − e2 cos2 u

, (3.15)

r̃(ω) =
√

−F̃z
1 − e cosω
1 + e cosω , (3.16)
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with e =
√

4F̃z + 1 being the eccentricity of the ellipse and u and ω the angular position
of the rolling ellipse above the symmetry axe of the Delaunay surfaces (Fig. 3.10b). ω0
corresponds to a reference point defining the z = 0 plane (upper grey shaded areas in
Fig. 3.10b). The implicit origin of ω in Equ. (3.16) belongs to the minimum radius of the
unduloid, the point where the rolling ellipse touches the plane with the major axis and
the focal point is closest to the plane.

The limit case of a cylinder is obtained when e = 0 with F̃z = −0.25. Equ.s (3.16)
then become

z̃(ω) = −2F̃z

∫ ω

ω0
du, (3.17)

r̃(ω) =
√

−F̃z = 1
2 . (3.18)

The parametrisation of a nodoid is obtained by rolling a hyperbola along the symmetry
axis of the nodoid and following one of the focal points. One obtains (Fig. 3.10b) [87]

z̃(ω) = −2F̃z

∫ ω

ω0

cosudu
(e+ cosu)

√
e2 − cos2 u

, (3.19)

r̃(ω) =
√

−F̃z
e− cosω
e+ cosω . (3.20)

The nodoid is the only Delaunay surface which exists under compression (Fz > 0) and
with a negative pressure difference (∆p < 0). By crossing an interface of a Delaunay
surface, the pressure changes by |∆p|. Depending on the direction in which the interface
is crossed, the pressure jump is positive or negative. The self-intersection of the nodoids
allows to cross two interfaces. Before crossing an interface p = p̃∞, after crossing the first
interface p = p̃∞ + ∆p̃ and after crossing the second interface p = p̃∞ + 2∆p̃, as shown by
the pink shaded areas in Fig. 3.10b. If we now define po = p̃∞ + 2∆p̃ and pi = p̃∞ + ∆p̃,
it is

∆p = p̃∞ + ∆p̃− (p̃∞ + 2∆p̃) = −∆p̃. (3.21)

The pressure difference changes sign. Since we also changed direction of ω, the normal
force exerted on the upper frame changes also sign. The two dashed circles in the cavalier
perspective at the nodoid profile in Fig. 3.10b (symbolising the beginning and the end
of a bubble profile) show an example of a profile with F̃z > 0, ∆p < 0 and Fz < 0.
The smallest theoretical distance between the frames is h = 0. This is the case when
z1(ω1) = z0(ω0) = 0. For this solution to be non-trivial, ω0 ̸= ω1 must hold. Whether
there is a profile that fulfils these conditions depends on F̃z and θc. Profiles that fulfil
these conditions always have F̃z > 0 and θc > 0◦.

One observes, that the eccentricity e depends only of F̃z. Consequently, the mean
curvature H scales the size of the conic section, and F̃z changes the angle of the cutting
plane for the conic section. By increasing F̃z, the plane becomes more vertical and by
decreasing F̃z more horizontal. With F̃z = −0.25, the plane is horizontal and cuts a circle
out of the cone. H shifts the cutting plane with increasing H up and with decreasing H
down, see Fig. 3.10.
If the tilt angle of the cutting plane is identical to the opening angle of the cone, then
e → 1 and F̃z → 0. One can distinguish two different cases. In the first case, H ̸= 0
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goes against a fixed value and we obtain a line as a conic section with a sphere as the
associated surface. One obtains the unit sphere (Fig. 3.10b)

z̃(ω) = sinω, (3.22)
r̃(ω) = cosω, (3.23)

with −π/2 ≥ ω ≥ π/2 and F̃z = 0. For the sphere we use the same parametrisation
variable ω, even if it is not the rolling parameter of the conic section.

If H = 0, the conic section is a parabola with a catenoid as the associated surface (Fig.
3.10a). For the catenoid we can no longer use our dimensionless representation where we
multiply by the mean curvature H, since it becomes zero. Therefore, we show here the
lengths with dimensions

z = a arsinh(ω)
r = a

√
1 + ω2,

(3.24)

with the neck radius a = limH→0; F̃z→0 F̃z/H. The catenoid is the only axisymmetric
constant mean curvature surface which is not periodic. By eliminating ω in Equ.s (3.24)
we obtain the classical equation of a catenoid Equ. 1.6. All five types of surfaces are
present in the double bubble experiments.

3.3.3.2 Boundary conditions

In our case, for axisymmetric shapes, each bubble is described by a part of a Delaunay
surface which has to fulfill a set of boundary conditions given by the experimental setup.
The cylindrical coordinates of the bubble profile are defined by

r = fr(ω, F̃z, H), (3.25)

z = fz(ω, ω0, F̃z, H), (3.26)

where ω0 is ω at the contact film and ω1 is ω at the frame. The mid-plane is defined by
z(ω = ω0) = 0. The profile coordinates of Equ.s (3.25) and (3.26) are obtained with Equ.s
(3.16), (3.18), (3.20), (3.23) and (3.24). The boundary conditions are given by

dr̃
dz̃ (ω = ω0) = cot (θc), (3.27)

r̃(ω = ω1) = |H|R, (3.28)

z̃(ω = ω1) = |H|h
2 , (3.29)∫ h̃/2

0
πr̃2dz̃ = |H|3V. (3.30)

ω0 is defined by the contact angle which defines the slope in dr̃/dz̃(ω) with Equ. (3.27).
The radius at ω0 has no constrains. The radius at ω1 is defined by R with Equ. (3.28).
The distance between the two frames gives the relation between z̃ and h̃ with Equ. (3.29).
Finally we need to ensure volume conservation with Equ. (3.30).

dz̃ in Equ. (3.30) can be negative for some ω at some parts of the shape in the case
of a nodoid. In this case the interfacial tension is acting in the opposite direction and the
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Figure 3.10: a) Cone with conic sections and the associated surfaces. F̃z rotates the cutting plane
for the conic section and H shifts the cutting plane up or down. The figure is a modified figure
from Wikipedia [88]. b) Examples of the normalised profiles r̃(z̃) of the four types of Delaunay
surfaces: cylinder, unduloid, sphere and nodoid obtained with Equ.s (3.18), (3.16), (3.23) and
(3.20) (shifted by r̃ = 2 for a better visualisation). The black dash-dotted lines are the rotation
axis of the shapes. The dashed, grey shaded circles in cavalier perspective are possible start and
end points/planes for the Delaunay profiles/surfaces with ω0 and ω1. The black crosses are the
turning points where the slope dr̃/dz̃ is maximal or minimal for unduloids and spheres. The
dotted lines are cone sections rotating above the symmetry axis with the focal points on the profile.
The nodoids have three pressure zones, one with p = p̃∞, one with p = p̃∞ + ∆p̃ and one with
p = p̃∞ + 2∆p̃, shown by the different pink shades. ω0 and ω1 show possible start and end points
for surfaces.

sign in Equ.s (3.14) and (1.16) is the same as for the pressure part. The volume in Equ.
(3.30) is counted negative for this part. Fig. 3.10b illustrates this for a nodoid shape.
Since this provides four equations for four unknowns (ω0, ω1, H and F̃z), we obtain a
uniquely defined surface.

3.3.3.3 Delaunay Surface Algorithm used for shape prediction

Finding a suitable surface for a specific set of boundary conditions is difficult, and
there is no unique solution. A more efficient method is to fix F̃z and search for all surfaces
which fulfill all boundary conditions except of one, for example the volume constraint or
the distance between the two frames. This gives you sets of surfaces which differ only
in one boundary condition for example h. This is also the relevant consideration for
our experiments, since in each experiment we change only the distance h. The exact
procedure of this method is as follows.

• Step 1: setting the problem
We choose a condition that changes during an experiment like h, V , R or θc. In our
case, it is h, but the method is more general and can be applied to other cases.
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Figure 3.11: Comparison between experiments and the theoretical profile of a nodoid with
F̃z = 0.25 and θc = 90◦ on the left, and F̃z = 0.34 and θc = 0◦ on the right, both obtained by the
procedure described in Section 3.3.3.3. The parameter ω0, ω1, R and h are also illustrated.

• Step 2: Accessible force range

We define a range of F̃z with F̃z;min ≤ F̃z ≤ F̃z;max. F̃z;min = −0.25, and we have to
choose a realistic value for F̃z;max, depending on the other boundary conditions and
on the investigated problem.

• Step 3: Setting the surface type

We choose a value F̃z ∈
[
−0.25, F̃z;max

]
, allowing to calculate the eccentricity e,

and the parametrisation r̃, z̃ and dr̃/dz̃. This step defines if the surface is part of a
cylinder, unduloid, sphere or nodoid.

• Step 4 : Setting the starting point ω0

To ensure the contact angle condition, we solve Equ. (3.27) giving all possible start
points ω0 for the given F̃z and θc. Depending on F̃z and θc, there are zero, one or
two solutions for Equ. (3.27).

• Step 5 : Setting the ending point ω1

For all starting point ω0 we have to ensure the pressure difference (mean curvature)
conditions. Calculating H(ω) with

H(ω)−1 = 3

√
V

Ṽ (ω)
, (3.31)

obtained with Equ. (3.30), gives us the end point ω = ω1 which solves Equ.
(3.28). This gives us the full profile which we can compare to a profile obtained by
experiments. In Fig. 3.11 we give two typical examples.

• Step 6: Removing non-physical solutions
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Figure 3.12: A fold with an opening to the right on the left and a fold with an opening to left on
the right for a Fz(h) curve [90].

Solutions defined by the values of ω0, H(ω1), and r̃(ω) are the Delaunay Surfaces
which fulfill all boundary conditions except the one chosen at step 1 (in our case the
distance between the two frames h). We have now to remove non-physical solutions.

First, It makes sense to remove solutions which include more than one period of a
Delaunay Surface, since they are unstable to small perturbations [89]. We therefore
eliminate all solutions with π ≥ |ω0 − ω1|.

It is still possible to obtain several solutions, but in general only one corresponds
to an energy minimum. Looking at the whole set of solutions which differ only in
the height h̃, one can distinguish different branches and bifurcations in the h-Fz

plane. The decision which branches are stable or unstable and to which extend is
not trivial. The second derivative of the surface energy H the Hessian matrix gives
a definitive answer about their stability. If one eigenvalue of the Hessian matrix
is negative the surface is unstable. To calculate this matrix analytically is most
of the time impossible. But we know from the publication of J. H. Maddocks [90],
that any fold in the h-Fz plane of curves representing extremel surfaces, must have
a change of sign of at least one eigenvalue of H. If the opening of the fold is to
the left (Fig. 3.12) the upper branch is unstable. One eigenvalue of H becomes
negative. Consequently, we can exclude all upper branches after a fold with the
opening to the left systematically

• Choice of F̃z;min and F̃z;max

To increase the accuracy and reduce the calculation time a small distance between
F̃z;min and F̃z;max is preferred. For the different types of Delaunay surface, defined
by the value of F̃z, the angle θ = cot−1 (r̃,z̃) (see Fig. 3.1) varies between two
extreme values θmin(F̃z) and θmax = 180◦ − θmin(F̃z). The minimum angle θmin is
plotted in Fig. 3.13 as a function of F̃z. The contact angle θc must be included in
this interval for a solution to exist. Consequently we find for θc = 0◦ only surfaces
which are parts of nodoids and spheres, for θc > 0◦ also some unduloids and for
θc = 90◦ all types of Delaunay surfaces, including cylinders (the cylindrical surface
is only accessible in the case of "capillary bridges").

Spherical solutions have always a F̃z = 0. There is only one solution for θc = 0◦ (a
simple sphere truncated by the frame) and two solutions for θc > 0◦ a simple sphere
truncated by the frame and a double truncated sphere by the frame and the other
bubble). Therefore, F̃z;min should be selected so that θmin(F̃z) ≥ θc (Fig. 3.13).
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Figure 3.13: The minimal contact angle θmin is plotted for different Delaunay surfaces with
different F̃z. The red and green areas illustrate the inaccessible and accessible F̃z respectively
for different θc. Only the F̃z larger than the crossing point between the horizontal dashed lines
illustrating different θc are accessible for the specific θc.

F̃z;max should be chosen so that all stable nodoids are taken into account. Since this
depends on the position of the instabilities CB↔TB and CB↔ShB, which cannot
be determined analytically, F̃z;max remains to be guessed but in any case positive.

3.3.3.4 Catenoid

Since the normalized force F̃z is not defined for the catenoid (because H = 0) (see
Section 3.3.3.1), we obtain the corresponding shapes separately from the other Delaunay
surfaces. We take the parameterisation of a catenoid (Equ. (1.6)) and the derivative with
resprect to z

r,z = sinh
(
z

a

)
. (3.32)

The standard catenoid is obtained with θc = 90◦. With θc < 90◦ the "diabolo" catenoid
[91] is obtained, (Fig. 3.14a). We are interested in the smallest R for a specific contact
angle θc and volume V , which has a solution with ∆p = 0. For larger R there are always
two solutions. With other words, we are looking for the smallest R̂ for a given contact
angle θc and ∆p̂ = 0. Therefore we are using for the first time the dimensionless values
from Section 3.2. For larger R̂ the pressure difference ∆p̂ becomes negative for some ĥ.
The height of the standard catenoid (distance between the two frames, Fig. 3.14a) is

h1 = 2a arccosh(R/a). (3.33)
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Figure 3.14: a) An illustration of the standard catenoid (top) and the diabolo catenoid (bottom)
with the important geometrical parameters, explained in the text. b) The smallest R̂ where the
surface is a part of a catenoid as a function of the contact angles θc (One catenoid solution),
separating the shape space with zero (blue area) and two (green area) catenoid solutions.

The volume of the standard catenoid (volume between one frame and the mid plane with
z = 0, see Fig. 3.14a) is

V1 =
∫ h1/2

0
πr2dz = πa

(
h1
2 + a

2 sinh h1
a

)
. (3.34)

The diabolo catenoid is the red part subtracted from the grey part in Fig. 3.14a. The
red part depends on θc, obtained with Equ. (3.32) and given with

h2 = 2a arcsinh(cot(θc)). (3.35)

The volume of the red part is obtained with the same equation

V2 =
∫ h2/2

0
πr2dz = πa

(
h2
2 + a

2 sinh h2
a

)
. (3.36)

The volume of the diabolo catenoid (Fig. 3.14a) is

V = V1 − V2. (3.37)

The distance between the two frames is

h = h1 − h2. (3.38)

As the neck a is smaller than R, the ratio a/R < 1. Therefore, a similar procedure as in
Section. 3.3.3.3 is used with 0 < a/R < 1 instead of F̃z;min ≤ F̃z ≤ F̃z;max. One obtains
all possible catenoid solutions for a given θc. With Equ.s 3.2 and 3.37, we obtain R̂ and
ĥ. Fig. 3.14b shows this dependency of the smallest R̂ on θc with ∆p̂ = 0 (One catenoid
solution). For larger R̂ there are always two catenoid solutions (green area in Fig. 3.14b)
with different ĥ and different â.
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3.3.4 Computational method: Surface Evolver
The same software (Surface Evolver [64]) as for the minimal surface investigations in

Chapter 2 is used. The principles of the program are explained in Section 2.2.3.
We model the bubbles or drops as two bodies with a fixed volume V and interfacial

tension γb, Fig. 3.1. To control the contact angle θc the facets shared by both bodies have
another interfacial tension equal to γf . The ratio between them defines the contact angle,
as defined by Equ. (3.1). A similar procedure as for the minimal surfaces in Section 2.2.3
is used, to obtain the converged surfaces in an equilibrium. A study with a similar setup
with surface evolver was performed before by Bradley et al. [41] in 2001.

In Surface Evolver we worked only with the dimensionless values from Equ.s (3.2), (3.3)
and (3.4) from Section 3.2. The step size between two simulations is ∆ĥ = 0.0004. The
coordinates R̂, ĥ for the non-axisymmetric shape transitions such as CB↔TB, CB↔ShB
and ShB↔CB are obtained by analysing the evolution of the two smallest eigenvalues
λ0 and λ1 of the Hessian matrix (the second derivative of the energy with respect to the
vertex coordinates) with the distance ĥ of totally converged surfaces in Surface evolver.

Fig. 3.15a shows the evolution of λ0 and λ1 with respect to the frame distance ĥ
around a CB↔TB for different R̂. For a specific height the smallest eigenvalue λ0 and
second smallest λ1 decrease rapidly and reach almost zero. Afterwards λ0 stays almost
zero and λ1 increases rapidly again.

If λ0 > 0, the surface is stable and the surface energy is in a minimum. Totally
converged surfaces are always stable and have consequently only positive eigenvalues.
In the case of axisymmetric shapes, two eigenvalues are identically if they belong to a
non-axisymmetric perturbation mode. As soon as they start to differ, the shape looses
the axisymmetry. Here the point where λ0 and λ1 start to differ is determined as a shape
transition. The branch on which the shapes in the shape diagram previously lay is now
unstable and has negative eigenvalues. The shapes that are obtained now belong to
another branch that was previously unstable or did not exist.

Another characteristic of a shape transition is, that at least one eigenvalue becomes
zero. In the case of CB↔TB, CB↔ShB and ShB↔CB the non-axisymmetric shapes
have λ0 = 0, since the surface can rotate around the z-axis without energy change. The
non-axisymmetric shapes are therefore Goldstone modes.

Both characteristics are observed for all simulations in Fig 3.15a. λ0 is not exactly
zero and not identical for the different cases in Fig. 3.15a, due to the finite discretisation
of the simulation and different discretisations of the surfaces.

We define the coordinates R̂, ĥ of the shape transition at the point, where λ0 and λ1
start to differ more than 20%. To obtain a curve in the shape space, the frame radius R̂
was increased by steps of ∆R̂ = 0.01.

The precision of the tilting/shifting point in Surface Evolver can be estimated with
help of a convergence study. Fig. 3.15b shows that the critical height ĥCB↔TB, where
the surface looses the axisymmetry, converges against a value for increasing number of
facets. We worked with approximately 5000-10000 facets, which gives us a precision of
approximately 0.1%.
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Figure 3.15: a) The two smallest eigenvalues λ0 and λ1 of the Hessian matrix obtained with
Surface evolver for different R̂ plotted over the frame distance ĥ. b) Height ĥCB↔T B where the
surface looses the axissymetry for a simulation in Surface evolver with different number of facets
([352, 1408, 5632, 22528]), R̂ = 0.4, θc = 60◦.

3.4 Results and discussion

3.4.1 General observations

In order to describe the different stable shapes and instabilities, we use the following
naming convention, which is summarised schematically in Fig. 3.2 with corresponding
images given in Fig. 3.4 for the three contact angles θc. The detailed example for one
contact angle is given in Fig. 3.3. For simplicity, we only use the word "bubble" here, but
most of these configurations can also be obtained using drops. The initial configuration is
given by two axisymmetric "Separate Bubbles", which we label "SB". When these are put
in contact by decreasing h, they "jump" into a new configuration, creating axisymmetric
"Connected Bubbles" ("CB"). The instability between these two is labelled "SB→CB".
By increasing h of a CB configuration with sufficiently large R (depending on θc) one
observes that the bubbles separate ("CB→SB"). This instability is also observed in the
work of Bohn [81] and Fortes et al. [82] in the case where the bubbles are confined
between two parallel walls. By decreasing h in the CB configuration for any R and θc, the
axisymmetry is lost and one observes "Tilted Bubbles" ("TB") for θc = 0◦ and θc = 60◦,
and a mirror symmetric buckling for θc = 90◦. Even if for θc = 90◦ the shape after
the transition has characteristic differences, we want to group it with the other tilting
instabilities since all of them appear only if the bubbles are under compression. The
onset of this tilting is a well-defined instability "CB→TB", which is also observed in the
case of bubbles confined between two parallel walls [81]. Bradley et al. [41] conducted
also Surface Evolver simulations of this problem. The difference with our configuration is
that for bubbles confined between two walls the point of instability is always at a double
truncated sphere [81, 82]. A geometrical explanation is given in the work of Bohn [81],
illustrated in Fig. 3.16. The total surface area and consequently the total free energy E
stays constant between the two illustrated configurations in Fig. 3.16. The surface area is
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Figure 3.16: Two double truncated spherical bubbles or drops in contact with an contact angle θc
and mean curvature H confined between two walls are illustrated with two different distances h
between the walls. The total surface area of both configuration is the same. For larger distance,
the bubbles or drops stay axisymmetric. For the smaller distance, the bubbles or drops are tilted
with the tilt angle ψ [81].

for both two times the surface of a sphere with mean curvature H minus the surface of
the spherical cups with the dashed lines.

Besides these two known instabilities, pinning the bubbles on frames creates new
instabilities for certain parameter ranges of h, R, V and θc, which are reported here for
the first time in detail. The article of Frostad et al. [79] observed for some experiments
Detached Bubbles. The Detached Bubbles DB are observed by increasing h coming from
a CB ("CB→DB"). For this instability to arise, R has to be small enough depending
on θc. For perfectly symmetric systems, this detachment should arise on both frames.
However, in reality, it typically arises only on one frame, as shown in Fig. 3.3b or 3.4.
For θc = 0◦ this instability does not exist due to the lack of attractive forces between
the bubbles (drops), (contact angle of θc = 0◦). The second new instability is a bubble
shifting ("ShB") away from the CB upon decreasing h, i.e. CB→ShB. There the film
between the two bubbles is shifted away from the z-axis, while maintaining the mirror
symmetry in the xy-mid plane. This instability is observed only for R above a critical
value which depends on θc and converges against infinity for θc = 0◦.

We combine results from three different methods to investigate the bubbles (drops) in
contact and the capillary bridges: experiments (Section 3.3.2), the theory of Delaunay
Surfaces (Section 3.3.3) and Surface Evolver simulations (Section 3.3.4).

Since the bubble (drop) volume V and the interfacial tension γb remain constant
during one experiment, they provide a natural length and stress scale of the problem,
as already mentioned in Section 3.2. Since they are more readily accessible than the
mean curvature H used in Section 3.3.3, we use them here to normalise all lengths L
(such as r, R or h) and forces F and ∆p as in Equ.s (3.2), (3.3) and (3.4). To obtain the
pressure difference ∆p̂ predicted by Delaunay Surfaces, ∆p and V in Equ. (3.4) have
to be replaced by 2∆p̃ and Ṽ . In the following we will work only with the normalised
values from Equ.s (3.2) - (3.4), which allow us to provide a coherent picture combining
experiments, theory and simulation. We discuss first the forces and pressures arising in
the system (Section 3.4.2) before turning to a detailed analysis of the shapes and their
stability (Section 3.4.3).
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Figure 3.17: a) Force in z-direction measurements for the soap bubble setup for four different
radii R̂ plotted against the physical distance between the frames h. b) Pressure difference ∆p for
two drops in contact for different R̂.

3.4.2 Force and pressure characterisation

This subsection compares forces and pressures obtained by experiments, simulations
and theory. In the case of soap bubbles and soap bubble capillary bridges, we measured
directly the force Fz, since it is proportional to the system size and hence large enough
to be measured directly (Section 3.3.2 and Fig. 3.17a). In the case of the bubble/drop
configuration, we have to work with much smaller systems to be able to neglect gravity.
This makes the forces too small to be measured directly. We therefore measure the
pressure difference between the bubbles (drops) and the surrounding liquid (Section 3.3.2
and Fig. 3.17b). It is inversely proportional to the system size and therefore large enough
to be measured with sufficient precision. To give the reader an order of magnitude of the
physically measured values of the pressure and normal forces, Fig. 3.17 shows the real
measured values plotted against the real frame distance. The measured normal forces
and pressure differences typically are in the range -0.005 N < Fz < 0.005 N and -50 Pa <
∆p < 50 Pa.

In Fig. 3.18, the normalised pressure difference ∆p̂ is plotted over the normalised
distance ĥ between the frames for the three methods (experiments, simulations and theory)
and for two contact angles (θc = 0◦ in Fig. 3.18a,b and θc = 90◦ in Fig. 3.18c,d). In Fig.
3.19, the normalised force F̂z is plotted over the normalised distance ĥ between the frames
for the three methods (experiments, simulations and theory) and for two contact angles
(θc = 60◦ in Fig. 3.19a,b and θc = 90◦ in Fig. 3.19c,d). In both figures, the panels a,c
show in detail how the pressure or the force depend on the distance between the frames
for the example of one frame radius R̂, indicating the different shapes and transitions
via arrows and a colour shading. The sub-panels b,d plot the pressure- or force-height
relation for different frame radii R̂ represented by different colours. The theory (solid
lines) shows the pressures and normal forces for all possible Delaunay surfaces which
meet the boundary conditions. They are not necessarily physically stable shapes. The
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Figure 3.18: Different dimensionless pressure differences ∆p̂ are plotted over the dimensionless
height ĥ for water drops in silicone oil. For the two figures a) and b) the contact angle is θc = 0◦
and for the figures c) and d) θc = 90◦. The figures a) and c) illustrate the different shapes and
the path related to the pressure measurements during one measurement, and the figures b) and d)
show how ∆p̂ changes with ĥ for different frame radii R̂. In all figures, experimental data (Exp) is
compared to simulations (SE) and the theory of Delaunay surfaces (DS). In the theoretical curve
spherical (F̂z = 0) and catenoid (∆p̂ = 0) solutions are highlighted with a filled circle and an open
triangle respectively. Force jumps are related to bubbles coming in to contact SB → CB, a bubble
bubble detachment CB → SB for larger frame radii or a bubble frame detachment CB → DB for
smaller frame radii. The ShB appears only for ∆p̂ < 0. The change in pressure is fairly small
and in most cases almost the same as for the axisymmetric solution. Consequently, the shape
transition CB ↔ ShB is only optically clearly observable.
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Figure 3.19: Different normalised force F̂z measurements are plotted over the normalised height ĥ
for soap bubbles. In the two figures a) and b) the contact angle is θc = 60◦ and in the two figures
c) and d) θc = 90◦. The figures a) and c) illustrate the different shapes and the path related to the
force measurements during one measurement and the figures b) and d) show how F̂z changes with
ĥ for different frame radii R̂. In all figures, experimental data (Exp) is compared to simulations
(SE) and the theory of Delaunay surfaces (DS). In the theoretical curve spherical (F̂z = 0) and
catenoid (∆p̂ = 0) solutions are highlighted with a filled circle and an open triangle respectively.
Force jumps are related to bubbles coming in to contact SB → CB, a bubble bubble detachment
for larger frame radii or a bubble frame detachment for smaller frame radii. The largest R̂ where
a bubble frame detachment appears depends on θc. The tilt instability appears only if the bubbles
are under compression with F̂z > 0. The instability presents a discontinuity in dF̂z/dĥ.

simulation and the experiments show only pressures and forces of stable shapes.
Let us start by considering more closely the pressure-height cycle shown in Fig. 3.18a
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for the case of R̂ = 0.62 and θc = 0◦. By starting at a point of two Separated Bubbles
(SB) the pressure difference ∆p̂ stays constant by decreasing ĥ until the two drops touch
each other. One obtains Connected Bubbles (CB) with the transition SB↔CB. Then ∆p̂
increases smoothly by decreasing ĥ. This changes at the Tilted Bubbles shape transition
CB↔TB, where d∆p̂/dĥ is discontinuous. By increasing ĥ one goes the same way back,
i.e. for θc = 0◦ the pressure-height cycle has no hysteresis. In Fig. 3.18b one observes the
influence of different needle radii. The general behavior stays the same. With increasing
R̂ the slope, d∆p̂/dĥ, increases in absolute value for CB, but ∆p̂ for SB decreases. ∆p̂ at
CB↔TB increases with increasing R̂.

An example of a force-height cycle is shown in Fig. 3.19a for the case of R̂ = 0.88 and
θc = 60◦. This corresponds to a sequence as the one shown in the top row of Fig. 3.3.
Starting at a point with two Separated Bubbles (SB), the distance ĥ is decreased (going
from right to left) until the bubbles touch each other. Since θc > 0◦, the bubbles are
attractive and there is a jump to negative values of F̂z , corresponding to the transition
SB→CB. Continuation of approaching the frames leads to a decrease in force reaching a
minimum in F̂z and then an increase in force if SB→CB was before the force minimum.
Otherwise the force only increases after the SB→CB for approaching frames. Whether the
SB→CB is before or after the minimum depends on R̂. At this stage, we lack a physical
interpretation for this observation. In both cases, an axisymmetric shape is maintained
reaching positive values of F̂z. When a critical distance is reached, the axisymmetry is
broken leading to the Tilted Bubble state (TB) via the tilt instability (CB↔TB). We
assume that at this point a second order shape transition takes place, since the first
derivative of the energy with respect to ĥ (F̂z) is identical before and after the shape
instability, as shown in Fig. 3.19 for the experiments and simulations. This interpretation
is discussed in more detail in Section 3.4.3.

Since F̂z changes strongly at CB↔TB, experiments tend to show strong fluctuations
for the onset of this instability in comparison to the simulations. This instability cannot
be described by the Delaunay theory. In the TB, the tilting angle ψ increases with
decreasing ĥ (see Fig.s 3.4 and 3.23) and dF̂z/dĥ changes. The tilting would increase until
the contact film touches the frame boundary. This behavior is similar to the behavior of
two bubbles confined between two parallel walls (Fig. 3.16). If a bubble touches the other
frame, the deformation often becomes irreversible due to the pinning of the bubble on the
frame geometry. That is why before reaching this point, we increase ĥ again (withdrawing
the frames from each other). The system follows again the TB and CB branch moving
back into negative F̂z which reaches a minimum before increasing again. In the case of
attractive bubbles (θc > 0◦), we observe a hysteresis, i.e. we have access to stable CB
shapes which we did not see upon decreasing the distance ĥ. Upon increasing ĥ further,
the bubbles detach from each other (CB→SB) and the force vanishes, F̂z = 0. We have
therefore returned to the initial configuration and can start another cycle. Depending
on θc and R̂, the final instability can also evolve towards a bubble detachment from the
frame (CB→DB), as shown in the bottom sequence of Fig. 3.3. The overall shape of the
F̂z(ĥ) curve depends on R̂. Different examples are plotted in Fig. 3.19b. They show that
with increasing R̂ the distance ĥ for a CB→SB decreases and the minimal and maximal
F̂z increases in absolute values. Catenoid shapes appear for larger frame radii as well.

A very similar cycle is obtained for the capillary bridge with θc = 90◦ shown in Fig.
3.18c,d and 3.19c,d. Detailed examples of these cycles are given in Fig. 3.18c for ∆p̂(ĥ)
and in 3.19c for F̂z(ĥ). Let us consider first the cycle of Fig. 3.19c with R̂ = 0.17: We
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start with two Separated Bubbles (SB) and decrease ĥ (approaching frames). When
the two bubbles touch each other, we observe the instability SB→CB. In this case, the
film between the two bubbles may break and one obtains a capillary bridge. Continuing
approaching the frames, we observe again the instability CB→TB, which looks in this
case more like a shifting, see Fig. 3.4. Then we increase ĥ again (withdrawing the frames
from each other). The system follows again the TB and CB branch moving back into
negative F̂z. Depending on R̂ one observes a CB→SB, or, like in the case of Fig. 3.19c,
a CB→DB. A hysteresis would also be possible between the DB and CB, but is rarely
observed in experiments since the DB configuration is often unstable due to gravity.

The pressure-height cycle in Fig. 3.18c has a R̂ = 1.17. This is a regime where
experiment and simulation can differ in their shape transitions, since in the experiment
the boundary conditions are never perfectly axisymmetric in comparison to the simulations
and the energies of the shapes ShB and CB are in this regime very close to each other.
Consequently we observe a SB→ShB in the experiment and in the simulation a SB→CB.
That adds for the experiment the shape transition ShB↔CB and CB↔ShB for the
approaching-withdrawing cycle. The simulation shows the same behavior for larger R̂.
The rest of the cycle is similar to the cycle shown in Fig. 3.19a.
With increasing R̂ the minimum of ∆p̂(ĥ) decreases and reaching also zero and negative
values (Fig. 3.18d). The absolute values of ∆p̂(ĥ) decrease with decreasing R̂ (see Fig.
3.18d).

3.4.3 Shape instabilities and shape diagrams

In what follows, we discuss in more detail the different instabilities that occur during
the approaching-withdrawing cycles. For a given bubble volume, the equilibrium forms
are characterised by the two scaled parameters ĥ (scaled distance between frames) and R̂
(scaled frame radius), and by the contact angle θc. In principle, θc can vary continuously
from 0◦ to 90◦. Theoretically and numerically this is not difficult. Experimentally, we
have only studied the cases θc = 0◦, 60◦ and 90◦, but we could imagine accessing other
angles by tuning the effective interfacial tension of the different interfaces. It is therefore
interesting to discuss in a general manner the different states of the system in the phase
space θc − ĥ− R̂. The instabilities are then given by surfaces (f

(
θc, ĥ, R̂

)
= Cte) whose

traces we can observe experimentally in the planes θc = 0◦, 60◦ and 90◦. We plot the
shape diagrams for these three cases in Fig. 3.20 and discuss in detail the different shape
transitions, given again by experiment, simulation and (in most cases) by theory.

3.4.3.1 Contact instability SB→CB

If we decrease the distance ĥ between two initially separated bubbles whose surfaces
correspond to spherical sectors, there is a value ĥSB→CB for which they come into contact
(SB→CB in Fig.s 3.18 and 3.19, and and blue dashed line in Fig. 3.20). The theoretical
prediction of this surface instability is trivial and twice the height of the no-deformed
bubbles (drops). Even though it is in very good agreement with experiment we do not plot
the experimental data here to keep the focus of the graphs on the less trivial instabilities.
When the bubbles are attractive (θc > 0), the system jumps to a new equilibrium shape
satisfying the contact angle θc and the boundary conditions. The associated contact force
can also be predicted exactly by Delaunay theory, as shown in Section 3.4.2.
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Figure 3.20: Three shape diagrams for the ĥ− R̂-plane corresponding to different contact angles
θc for (a) two soap bubbles (θc = 60◦), for (b) capillary bridges (θc = 90◦) and for (c) two bubbles
or drops in a liquid θc = 0◦. The solid lines are predicted shape transitions due to the theoretical
Delauney Surfaces, the dotted dashed lines are shape transitions obtained with help of Surface
Evolver. The dotted lines are special Delaunay surfaces, blue spherical cups which touch each
other in one point (F̂z = 0), red spherical double truncated surfaces in contact (F̂z = 0) and
magenta catenoid surfaces (∆p̂ = 0). The different colors of the experimental points refer to the
different phase transitions and show at which point the respective phase transition was observed
in the experiment. In the yellow area the Surface is a Connected Bubble (CB). In the blue area
one observes Separated Bubbles (SB), in the green area Detached Bubbles (DB), in the red area
Tilted Bubbles (TB) and in the magenta area Shifted Bubbles (ShB). The blue yellow and the
blue magenta pattern area symbolize the history dependency of the shape. If one comes from a
complete blue area the shape will be a SB if one comes from complete yellow or magenta area the
shape will be a CB or a ShB.
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3.4.3.2 Tilt instability CB↔TB

Upon decreasing the distance ĥ beyond the contact point, the force F̂z increases and
crosses zero. At this crossing point, the corresponding shape is composed of double
truncated spheres (see Fig. 3.19 and the red dotted line in Fig. 3.20). However this time
the bubbles are fully connected, i.e. this point is always at a distance ĥ < ĥSB→CB. For
even smaller ĥ, F̂z becomes positive and the axisymmetric solutions are parts of nodoids.
At a specific ĥCB↔TB, depending on R̂ and θc, the axisymmetry is broken and the film
between the two bubbles begins to tilt in a random direction(CB↔TB in Fig. 3.19 and
red dash dotted line in Fig. 3.20). The force measurements show this time not a jump
as for the SB→CB, the CB→DB or the CB→SB (see below) instabilities. Instead, one
observes merely a change in slope (Fig.s 3.18 and 3.19). The TB for the capillary bridge
looks more like a shift with a bulge formed in a random direction (Fig. 3.20). But since
the main characteristics, such as the nodoidical shapes before the shape instability at
F̂z > 0, or the change in the slope of dF̂z/dĥ, are the same for the capillary bridge and
for two bubbles, we decided to treat them together.

We determined the point of instability numerically, with help of the eigenvalues of
the Hessian matrix in Surface Evolver (Section 3.3.4), and experimentally by direct
visualisation (Section 3.3.2). The shape diagrams in Fig. 3.20 show the experimental
points for the CB↔TB with red crosses and the simulated points as a red dash-dotted
line, as already mentioned above. All simulated and almost all experimental points are
on the left side of F̂z = 0 (the red dotted line in Fig. 3.20). It follows that F̂z > 0 when
the tilt instability occurs. The difference between the simulation and the experiments is
due to geometric inaccuracies in the experiments and the difficulty to determine precisely
a rather smooth shape transition.

In contrast to the case of two bubbles confined between parallel plates [82, 81, 41],
some nodoids are stable when the bubbles are pinned on frames. In the case of two
bubbles between plates, the always spherical solution can be rotated and shifted in a
manner that for a decreasing distances between the plates h the surface (and hence the
surface energy) stays the same until the contact film touches the plates [82] (Fig. 3.16).
This is not possible for pinned bubbles. This is why the CB↔TB appears only for F̂z > 0
and the contact film between two tilted, pinned bubbles in contact is not flat, as discussed
in more detail in Section 3.4.4. The pinning adds an energy barrier for a shift of the
contact area between the bubble and the frame, which does not exist for the bubbles
between parallel walls.

3.4.3.3 Bubble-bubble detachment CB→SB and Bubble-frame detachment
CB→DB

Starting with Tilted bubbles (TB), and increasing ĥ (withdrawing frames), we first
come back to the axisymmetric Connected Bubbles (CB) without any hysteresis. Further
withdrawing can lead to two different behaviours depending on the value of the frame
radius R̂. When R̂ > R̂Tr1 (θc), an instability is observed where the two bubbles detach
from each other (bubble-bubble detachment CB→SB in Fig.s 3.18 and 3.19, blue solid line
in Fig. 3.20). When R̂ ≤ R̂Tr1 (θc), we observe an instability where the bubbles detach
from the frame (bubble-frame detachment CB→DB in Fig.s 3.18 and 3.19, and green solid
line in Fig. 3.20). In theory, the detachment should occur from both frames simultaneously.
However, in the experiment it occurs always from the upper frame, because of gravity.
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The value of R̂Tr1 (θc) can be obtained both numerically and theoretically and corresponds
to a triple point in the phase diagram ĥ− R̂ for a given θc (crossing point of green and
blue solid line in Fig. 3.20). The theoretically and computationally obtained values for
the R̂Tr1 and ĥTr1 of these triple points are listed in Table 3.1. The points are part of a
triple line in the θc − ĥ− R̂ space.

The bubble-bubble detachment instability CB→SB is observed when the theory of
Delaunay surfaces predicts the maximal distance ĥ, corresponding to the point where the
compressibility ∂ĥ/∂F̂z of the system changes sign. We obtained this point numerically by
converging the function ĥ(F̃z) to a maximum. The point of instability for both, simulation
and experiment, agree within the uncertainties, see Fig.s 3.18 and 3.19 CB→SB, and Fig.
3.20 (blue solid line). If one moves the frames up and down, exceeding the height where
the CB→SB occurs and going below the height of the simple truncated spherical solution
(SB→CB), one obtains a hysteresis already discussed with Fig.s 3.18 and 3.19, and shown
in Fig. 3.20 by the zone with blue and yellow stripes.

By observation we found out that the bubble-frame detachment CB→DB always
occurs when r̂,ẑ(±0.5ĥ) = 0, which is equivalent with a vertical interface at the frame.
Fig. 3.22d shows some examples for vertical interfaces at the frame, which is equivalent to
a contact angle to the frames of θ(z = ĥ/2) = 90◦. For the case of a cylindrical capillary
bridge (green dotted line in Fig. 3.20b) this is always the case. The cylindrical capillary
bridge becomes unstable at ĥ = 2πR̂ with R̂ = 0.4662 (where the green dotted line and
the green solid line meet each other in Fig. 3.20b). This cylinder height is also known as
the critical length of the Rayleigh instability for capillary bridges after which the surface
is physically unstable to small fluctuations [92]. It is also the ĥ of one period of the
Delaunay surface with F̃z = −0.25, i.e. ω1 − ω0 = π. Unduloids are also unstable with
respect to small fluctuations if they exceed one period [89, 93]. The solid green line in
Fig. 3.20b shows the function R̂(ĥ) for one period of a Delaunay surface for all F̃z < 0,
if one starts at an extremum of the profile r̂(ẑ). Since there is always a maximum and
a minimum in the profile r̂(ẑ) (except for the cylinder) one finds two solutions for one
ĥ, one with a smaller R̂ (the lower branch) and one with a larger R̂ (the upper branch).
Theoretically also all other R̂ in between the upper and lower branch are possible shapes.
But they are not mirror symmetric to the xy-plane. All of those shapes are already
unstable due to small fluctuations. The upper and lower branch meet each other at the
cylindrical shape of one period (the shortest unstable cylinder).

Since in experiments all frames have a rim thickness, the upper and lower pinning
positions are not necessarily the same, giving rise to Delaunay surfaces without mirror
symmetry (two different R̂). They occur only if this configuration has less surface area
for the same ĥ in comparison to the mirror symmetric solution and if one of the angles θ±

between the bubbles and the upper and lower frame (Fig. 3.5) is outside of the pinning
range ∆θ (Equ. (3.6)). This is, for instance the case for soap film capillary bridges close to
the cylindrical solution. An example of a non-axisymmetric capillary bridge is represented
in the Fig. 3.21. It is still a Delaunay Surface with two different R̂±.

The solid green line in Fig. 3.20a shows the curve R̂(ĥ) for θc = 60◦ and all F̃z < 0
where r̂,ẑ(±ĥ/2) = 0 and the total surface of both bubbles include at least one complete
period of a Delaunay surface. It follows that

ω1 = π (3.39)

|ω1 − ω0| > π. (3.40)
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Figure 3.21: A Delaunay Surfaces obtained with a capillary bridge, which is not mirror symmetric
to the xy-mid plane.

Basically they are the same surfaces as for θc = 90◦ only a little longer due to the change
in contact angle. Fig. 3.22 gives with the sub-figures a, b, c, d and e an overview about
the shapes and the position in the shape diagrams of CB→DB and the triple point Tr1 of
CB, SB and DB for different θc. Fig. 3.22a and b show the upper and lower branches for
CB→DB and the beginning of CB→SB with the intersection of CB→DB and CB→SB,
the triple point Tr1. Different colors represent different θc. Some examples of shapes on
CB→SB for different θc are represented in Fig. 3.22d. As already discussed, the upper
branch (Fig. 3.22a blue dashed line) for CB→DB with θc = 90◦ has a maximum in r̂(ω1)
and a minimum at r̂(ω0), the lower branch (Fig. 3.22a blue solid line) has a minimum
at r̂(ω1) and a maximum at r̂(ω0). In order to have a θc < 90◦, r̂ must increase with
changing ẑ at least in the close neighbourhood to ẑ = 0. Consequently, ω0 moves away
from the maxima and minima in r̂ with decreasing θc. In order to fulfill the condition
of Equ. (3.39) and the condition of Equ. (3.40), the upper branch is folded to larger ĥ
and smaller r̂ for θc < 90◦ (Fig. 3.22a). As θc decreases, the upper and lower branches
approach each other and become shorter (Fig. 3.22a).

One observes that Tr1 is within the precision of the calculation on the point, where
the upper and lower branch meet each other. The shapes related to this intersection
have a F̃z(θmin = θc) from Fig. 3.13 and fulfill Equ.s (3.39) and (3.40). They are unique
shapes for a specific contact angle θc. An exception is the case of a capillary bridge. The
triple point is not at the intersection of the upper and lower branches. It is inside of the
upper branch. The part of the upper branch above Tr1 is part of the unstable branch of
a typical withdrawing approaching experiment, see, for example, Fig. 3.19c and d.

Furthermore, a region in the phase diagrams in Fig. 3.22a and b close to Tr1 with
θc < 90◦ (shaded area in Fig. 3.22b) is not accessible for a typical withdrawing approaching
experiment. The size of this region decreases dramatically with a decreasing θc. To quantify
this decrease, we calculated the relative difference between the coordinates (R̂, ĥ) of the
maximum in R̂ and Tr1 and plot it against θc in Fig. 3.22c. ∆R̂/R̂Tr1 and ∆ĥ/ĥTr1

decrease exponentially with decreasing θc. Numerical and experimentally we did not
succeed to verify without doubt the stability in the shaded region in Fig. 3.22b. In
the experiments (θc = 60◦), this region is already very small, below our measurement
precision. In the simulations, the converging process turned out to be difficult for these
shapes. The difference between stable shapes and unstable shapes is very small in this
region. This makes it necessary to use a high number of facets to be able to distinguish
between them. Therefore, the shapes need a lot of calculation time to converge against a
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Tr1 Tr2

θc R̂ ĥ R̂ ĥ

0◦ 0.0 2.4814
60◦ 0.1782 ± 0.0001 3.48 ± 0.01 1.91 ± 0.01 0.939 ± 0.005
90◦ 0.632 ± 0.005 2.69 ± 0.02 1.70 ± 0.01 1.27 ± 0.01

Table 3.1: shows points in the R̂− ĥ− θc shape space, where three shape configurations meet. We
call them triple points. There are two triple points, Tr1 between CB, SB and DB, Tr2 between
CB, SB and ShB. The points are listed for θc = 0◦, θc = 60◦ and θc = 90◦.

minimum. A complex convergence study is needed to answer the problem with certainty,
which we have not done. It remains an open question, if the shaded region in Fig. 3.22b
belongs to stable or unstable shapes. It will be interesting to do this convergence study
in future work, to answer this question with certainty.

For θc = 0◦ the CB→DB does not exist, since there are never attractive forces between
the bubbles. Consequently there are no unduloids fulfilling all boundary conditions. The
upper and lower branch vanish in the triple point Tr1(θc = 0◦), which corresponds to the
shape of two spheres in contact in a point.

3.4.3.4 Shift instability CB↔ShB↔CB

Depending on R̂, θc and ĥ, the pressure difference ∆p̂ between the inside and the
outside of the bubbles can become zero and negative. This is shown by the magenta
dotted line for ∆p̂ = 0 and the area above the magenta dotted line for ∆p̂ < 0 in Fig.
3.20a and b. If ∆p̂ = 0 the surface is a part of a catenoid. The only axisymmetic constant
mean curvature surfaces with ∆p̂ < 0 are nodoids, see Section 3.3. Some of them are
unstable against non-axisymmetric perturbation, like in the case for the TB. In this case
the film between the two bubbles is shifted away from the frame axis, as shown in the
ShB examples of Fig. 3.4. The mirror symmetry to the xy-plane remains, as in the case
for the TB with θc = 90◦. However, here the contact film for two bubbles stays horizontal
and flat. We can identify a critical needle radius R̂Tr2 such that: If R̂ ≤ R̂Tr2 we go
from CB↔ShB and back from ShB↔CB before we obtain a CB→SB. If R̂ ≥ R̂Tr2 we go
from CB↔ShB and than directly to ShB→SB. Therefore R̂Tr2 is representing the triple
points where the dash dotted magenta line and the solid blue line meet each other in the
shape diagrams in Fig. 3.20 and the triple line for the same shapes in the θc-R̂-ĥ-space.
The numerically obtained values of R̂Tr2 and ĥTr2 associated with Tr2 can be found in
Table 3.1. The theoretical prediction for the CB→SB starts to be wrong at the Tr2 line.
Simulations are necessary to obtain the real point of detachment.

The last stable catenoid is the point in Fig. 3.20 where the dotted magenta line
(for catenoids) and the blue solid line (CB→SB) are tangential to each other. Starting
from this point, all catenoid solutions clockwise on the magenta dotted line are stable
and unstable counter clockwise. This is fundamentally different from the stable catenoid
solution without a volume constraint [53], see Chapter 2.
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Figure 3.22: a) Lines and points in the phase diagram R̂ over ĥ for different θc, such as the R̂(ĥ)
for CB→SB and CB→DB, where the latter has been split into an upper and lower branch. The
intersection of CB→SB and CB→DB (Tr1) is also shown. b) A zoom in to the triple point Tr1
for θc = 80◦ with the definition of ∆R̂ and ∆ĥ. c) The evolution of ∆R̂/R̂Tr1 and ∆ĥ/ĥTr1 with
increasing θc. d) Shapes with different θc and F̃z, which fulfill the conditions of Equ. (3.39) and
(3.40) shifted horizontally for a better visualisation. e) The legend for all sub figures.
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3.4.4 Shape of the tilted film and Landau approach

In the following we analyse more close the non-axisymmetric instabilities CB↔TB,
CB↔ShB and the non-axisymmetric shapes. We use an approach known from Landau’s
Theory, which normally describes phase transitions, to model our shape transitions. We
will start with CB↔TB.

The surface and the contact film of tilted bubbles is shown in Fig. 3.23a for two
different θc. It has to be a minimal surface since the pressure difference between the two
bubbles is zero. However the surface is not a plane anymore, as can be seen in Fig. 3.23a.
For a better representation we use a new coordinate system (x′, y′, z′) (Fig. 3.23a). e⃗z′ is
the normal vector to the best fitting plane of the contact surface. ψ is the angle between
e⃗z′ and e⃗z defined by

cos(ψ) = e⃗z · e⃗z′ . (3.41)

As the difference to a plane is only very small (note the different scaling for the z′ axis in
Fig. 3.23a), the undulations in the z′ direction could not be observed in the experiments.
In the simulations, one clearly observes a three undulated shape with a triple saddle point
in the origin, which was in this form unexpected.

The second observation for CB↔TB was the continuity of Fz across the instability,
which suggests a second order shape transition. In the following we model the energy
E close to CB↔TB with a Landau approach to quantify ψ and the undulations of the
contact film, which were in this form unexpected. Therefore we describe the shape of the
contact film in cylindrical coordinates (z, r and φ) as a complex Fourier series in φ and
polynom in r

z =
∞∑
n

Pnr
n

∞∑
−∞

Ake
ikφ, (3.42)

with Ak the complex Fourier coefficients and Pn the prefactor of the polynomial in r.
We know that A0 = 0, since the contact plane is not shifted along z. Ak is always
the conjugate complex of A−k (Ak = A−k), since z is always real. First, we make the
assumption of a flat tilting plane and consider only the first mode A1 and A−1, and
P1 = 1. All other Pn and Ak are zero. Consequently, |A1| can be interpreted as the tilt
angle with

sin(ψ) = |A1|. (3.43)

It is therefore the mode, that best describes the instability and lends itself as an order
parameter. We can then write the Landau potential as

E = a1(ĥ)|A1|2 + b1(ĥ)|A1|4. (3.44)

The height ĥ can be interpreted as a temperature and the tilt angle ψ or |A1| as the order
parameter if we compare it with the classical Landau approach for phase transitions. For
|A1|2 we can write

|A1|2 = A1A−1e
iφ−iφ = A1A−1. (3.45)

Consequently, the Landau potential given in Equ. (3.44) is independent of φ and symmetric
to z → −z. These two symmetries are required for the instability. As long a1 and b1 are
positive in Equ. (3.44), the only extremal point and minimum is at |A1| = sin(ψ) = 0. At
a point of instability, a1 must change sign. Close to the point of instability we can make
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the approximation

a1 = a∗
1(ĥ− ĥCB↔TB),

b1 = b∗
1, (3.46)

with a∗
1 and b∗

1 two constants. Differentiating Equ. (3.44) with respect to |A1| after
inserting Equ. (3.46) we obtain

dE
d|A1|

= 2a∗
1(ĥ− ĥCB↔TB)|A1| + b∗

13|A1|. (3.47)

The bubble shape is stable if the energy (Equ. (3.44)) is in a minimum, therefore Equ.
(3.47) must be zero and the second derivative positive. We obtain

|A1| = 0 for ĥ > ĥCB↔TB, (3.48)

|A1|2 = −a∗
1
b∗

1

(
ĥ− ĥCB↔TB

)
for ĥ < ĥCB↔TB. (3.49)

Fig. 3.23c compares the sinψ = |A1| for R̂ = 0.4 for θc between 0◦ and 90◦ with the
Landau approach from Equ. (3.49). −a∗

1/b
∗
1 and ĥCB↔TB are therefore fitting parameters.

One observes for all θc a quadratic increase in |A1| for ĥ < ĥCB↔TB as aspect. The
precision decreases with approaching θc = 90◦, because the contact film represents smaller
energies, which makes it more complicate for surface evolver to converge the contact
film correctly (Fig. 3.23c for θc = 80◦ and 85◦). There is no contact film for θc = 90◦.
Consequently, this approach is not working for θc = 90◦.

In Fig. 3.23d, a∗
1/b

∗
1 and ĥCB↔TB are compared for R̂ = 0.4 and different θc. a∗

1/b
∗
1

increases in absolute value approaching θc = 90◦ and ĥCB↔TB makes a jump from θc < 90◦

to θc = 90◦. The increasing a∗
1/b

∗
1 versus θc = 90◦ and the jump at θc = 90◦ are related

to each other: To change the surface area of a surface element, it has to be stretched
or compressed in one of the tangential directions (r⃗,φ or r⃗,z). The tilting stretches or
compresses the surface in r⃗,z direction where the two bubbles are in contact. The inverse
ratio of a∗

1/b
∗
1 can be interpreted as the resistance against tilting, which decreases with

increasing θc and vanishes at θc = 90◦ since all stretched surface elements are compensated
by all compressed surface elements. Consequently, the tilting has no effect on the shape
for θc = 90◦ and we cannot observe it. The jump in ĥCB↔TB at θc = 90◦ confirms that.
In reality, we observe another instability with other shape characteristics, which is much
closer to the shift instability CB↔ShB at this point.

Let us now expand the Landau potential from Equ. (3.44) to higher order in |Ak|. The
new potential still has to respect both symmetries, invariant to a rotation φ in direction
e⃗z and mirror symmetry to the middle plane with z = 0. All quadratic terms like |Ak|2
respect both, (Equ. (3.45)). But since only one term can destabilise (ak(ĥ) crosses zero),
we are interested in the coupled terms, as

|(A2
1A−2 +A2

−1A2)ei2(φ−φ)|. (3.50)

This term is invariant to rotation but not mirror symmetric, due to the power three in
the A2

1A−2 term. Consequently, a coupling between the second and the first order, which
respects all symmetries, happens only at higher order. For odd k the first coupling which
respects all symmetries is

|(Ak
1A−k +Ak

−1Ak)eik(φ−φ)|. (3.51)



94 Chapter 3. Bubbles and drops between circular frames

Figure 3.23: a) Two examples of tilted bubble simulated in Surface Evolver. Left: θc = 0◦. Right:
θc = 60◦. The upper part of the figure shows the shape of the contact film in the (x′,y′,z′)
coordinate system which has been rotated by ψ. b) An example of the minimal surface type
Karcher tower [15]. c) sinψ = |A1| plotted against ĥCB↔TB − ĥ for different θc and R̂ = 0.4,
compared with the fit to the minima of the Landau potential (Equ. (3.49)). d) Values for a⋆

1/b
⋆
1

and ĥCB↔TB for R̂ = 0.4 for different θc.

At the beginning we will consider only the third order (k = 3), since we observe it clearly
in the tilted contact surface (Fig. 3.23) and it is the smallest odd k after one. We will
consider only the term where the two couples with the lowest power, since |A1| and |A3|
should be small close to ĥCB↔TB. We obtain the new Landau potential

E = a1(ĥ)|A1|2 + b1(ĥ)|A1|4 + a3(ĥ)|A3|2 + b3(ĥ)|A3|4 + 2c3|(A3
1A−3 +A3

−1A3)|. (3.52)

Since A1 = A−1 and A3 = A−3, we can write

E = a1(ĥ)|A1|2 + b1(ĥ)|A1|4 + a3(ĥ)|A3|2 + b3(ĥ)|A3|4 + c3(ĥ)|A3
1A3| (3.53)

We want to describe the same instability as with the Landau approach from Equ. 3.46,
we again assume that a1 becomes negative and so the energy minimum shifts. This time
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we are looking for two unknown, |A1| and |A3|. Differentiating the potential with respect
to the two variables gives us

∂E
∂|A1|

= 2a∗
1(ĥ− ĥCB↔TB)|A1| + 4b∗

1|A1|3 + 3c∗
3|A1|2|A3| = 0, (3.54)

∂E
∂|A3|

= 2a∗
3|A3| + 4b∗

3|A3|3 + c∗
3|A1|3 = 0. (3.55)

As before we obtain for ĥ > ĥCB↔TB

|A1| = 0 and |A3| = 0. (3.56)

For ĥ < ĥCB↔TB we obtain

|A1| = −3c∗
3|A3|
4b∗

1
±
((3c∗

3A3
4b∗

1

)2
− a∗

1
2b∗

1
(ĥ− ĥCB↔TB)

)0.5

(3.57)

Close to ĥCB↔TB, |A3| << 1 and we obtain Equ. (3.49) again. Furthermore, we can
neglect higher orders of |A3| in Equ. (3.55) to obtain

2a∗
3|A3| = −c∗

3|A1|3. (3.58)

Consequently, |A3| should be proportional to |A1|3. To verify this, we fitted the contact
film to Equ. (3.42) up to the order k = 5 and plotted the evolution of Ak against
A1 = sinψ in Fig. 3.24a. The proportionality between |A3| and |A1|3 is clearly observed.
Even for k = 5 the expected proportionality to |A1|5 is visible. The even orders (k = 2
and 4) are small in comparison to the odd k.

Every mode has a direction φk in the complex plane defined via

tanφk = Im[Ak]
Re[Ak] . (3.59)

In Fig. 3.24b the difference φk − φ1 is plotted against ĥ− ĥCB↔TB. Since the Landau
potentials are invariant to rotation only the differences between the φk are of interest.
Only φ3 − φ1 was accurate enough and remains constant with approximately 25◦ over all
investigated ĥ.

In Fig. 3.24c, the fitted surfaces of Equ. (3.42) for φ = 0 are represented. One
observes with increasing ψ and decreasing ĥ an increase in ẑ′(φ = 0) of the modulation.
Since the curves seems to be self similar and the leading term |A3| for ẑ′ is proportional
to |A1|3, we normalise the curves from Fig. 3.24c with |A1|3 and obtain the master curve
with the uncertainty environment of one standard derivation in Fig. 3.24d.

Consequently, all forms are similar regardless of the distance to ĥCB↔TB. A completely
analytical solution to this problem therefore seems realistic. In addition, the contact film
can be more easily compared to other minimal surfaces, such as the Karcher tower in Fig.
3.23b.

3.4.4.1 Laundau approach for ShB

To use the same approach for CB↔ShB and ShB↔CB we have to compare the shifted
surfaces (obtained with Surface evolver) with the axisymmetric surfaces (a Delaunay
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Figure 3.24: a) Absolute values of the complex Fourier coefficients |Ak| up to the order k = 5
plotted against sinψ, the best fitting tilt angle, with |A1| = sinψ, which is also the case. b) The
change in phase shift φk of the complex Fourier coefficients between the first (φ1) and the other
orders (φk with k > 1). c) ẑ′ plotted against r̂′ for different ĥ and ψ, first part of Equ. (3.42)
for φ = 0. d) Master curve for curves from c) normalized by sinψ3 = |A1|3 with an uncertainty
environment of one standard derivation.

Surface). CB↔ShB stands for the instability where ĥ decreases and one goes from CB to
ShB. ShB↔CB stands for the instability where ĥ decreases and one goes from ShB to
CB. Before we compare them with each other we obtain the critical distances ĥCB↔ShB
and ĥShB↔CB by looking at the smallest eigenvalues, which are plotted in Fig. 3.25a.
Afterwards we compare two surfaces with the same ĥ obtained with Surface Evolver
simulations (SE) and the theory of Delaunay Surfaces (DS), using

∆r̂ = r̂SE(ẑ, φ) − r̂DS(ẑ). (3.60)

An example of ∆r̂ as a function of ẑ and φ with ĥ = 0.265 is shown in Fig. 3.25b. The
red points represent the vertices of the Surface Evolver model. The blue surface is a
surface fitted to the SE points. We notice that ∆r̂ depends only slightly on ẑ and quickly
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becomes zero approaching the frame. It is periodic in φ. Therefore, we take Equ. (3.42)
and replace ẑ with ∆r̂ and r̂ with ẑ,

∆r̂ =
∞∑
n

Pnẑ
n

∞∑
−∞

Ake
ikφ. (3.61)

Since ∆r̂ depends mostly only on φ, we neglect higher orders of Pn and use only the first
term with P0 = 1. An example of the fitted surface with Equ. (3.61) is represented in
Fig. 3.25b as the blue surface, which fits rather well. We immediately obtain the different
|Ak| and φk from the fit. The |Ak| are represented in Fig. 3.25c, e and f, the φk in Fig.
3.25d. In all cases, the range of ĥ is chosen in a manner that both instabilities (CB↔ShB
and ShB↔CB) are represented. In the general case, ĥ increases from the left to the right,
except in Fig. 3.25e, where it increases from the right to the left. With increasing k the
|Ak| become smaller. In general they all follow the same tendency. If |A1| increases or
decreases the other |Ak| also increases or decreases respectively. An exception is |A3|,
which has a singularity in between the two critical distances ĥCB↔ShB and ĥShB↔CB, see
Fig. 3.25c,e and f. We do not have an explanation for that. It is really surprising, since
all other modes behave as before, which means the behavior of |A3| is independent of
the other modes in this region. Farther investigations are necessary to understand this
phenomena.

The shift φk − φ1 in Fig. 3.25d is difficult to interpreted, due to a lot of noise. It is
represented mainly to complete the data set. Nevertheless we see for the smaller k in
some regions a dependency on ĥ. The jumps can be explained with symmetries between
the different modes. All modes are invariant to a phase shift of 2π/k. Consequently, the
shift φk − φ1 has k possibilities with an identical configuration.

Fig. 3.25e and f show the behavior of the different |Ak| as a function of ĥ close to
the critical distances ĥShB↔CB and ĥCB↔ShB in log-log scale. Close to ĥShB↔CB, |A1|2 is
proportional to ĥShB↔CB − ĥ as for the CB↔TB (Fig. 3.23c). Therefore, |A1| is again
a suitable order parameter. It would be interesting to find other coupled modes as for
the CB↔TB using the different slopes in Fig. 3.25e. The slope of 0.8 for |A2| is difficult
to relate to a specific mode since it does not scale with 0.5. The slopes of 1.0 for |A3|
and |A4| propose a proportionality between |A1|2 and |A3| or |A4|. There are no simple
modes with this dependency which respect the different symmetries of the problem. We
therefore stop here with our investigations. For the second instability represented in Fig.
3.25f, we do not find an order parameter, due to the slopes unequal to 0.5. The question
automatically arises as to whether the Landau approach is still the right one here, or
whether we should proceed differently.
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Figure 3.25: The data for all sub-panels is obtained with a Surface Evolver simulation, with
R̂ = 1.5, θc = 60◦ and different ĥ. a) The five smallest eigenvalues λ of the hessian matrix are
plotted against ĥ. The instabilities CB↔ShB and ShB↔CB with their critical distances ĥCB↔ShB
and ĥShB↔CB can be read off. b) A representation of the radial difference between a Delaunay
Surface and the simulated surface with the same ĥ = 0.265 in the top and a representation of
the corresponding Surface Evolver model. c) |Ak| plotted against ĥ in semi-log scale. d) φk − φ0
plotted against ĥ. e) |Ak| plotted against ĥShB↔CB − ĥ in log-log scale. f)|Ak| plotted against
ĥ− ĥCB↔ShB in log-log scale.
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3.5 Conclusion

In this chapter we investigated the shape, stability and mechanical properties of two
interacting bubbles or drops pinned on parallel, circular frames. These include capillary
bridges, which may be considered as two bubbles (drops) separated by a film of zero
surface energy.

In contrast to some previously investigated cases of bubbles or drops interacting
between two parallel plates [81, 93], the constraints imposed by the pinning create
complex shape spaces separated by different types of instabilities. We investigate here
in detail the force-shape-deformation relations using as control parameters the volume
of the bubbles (drops), the radius of the circular frames, the distance between the
frames, and the contact angle between the bubbles (drops). Whenever the surfaces are
axisymmetric, we combine systematic experiments and computer simulations (Surface
evolver [64]) with the Delaunay theory of constant mean curvature surfaces [20]. In all
cases, experiment, simulation and theory show very good agreement, generally within the
experimental/numerical errors. In the case of non-axisymmetric surfaces (TB and ShB),
for which no analytical theory exists to our knowledge, we have limited ourselves to a
comparison between experiments and numerical simulations. Once again, the agreement
is very good and within the experimental and numerical errors.

As shown in Fig.s 3.2 and 3.20, we find five different types of physically stable shapes
characterised by different force/pressure-deformation relations: Connected bubbles (CB),
Separated bubbles (SB), Detached bubbles (DB), Tilted bubbles (TB) and Shifted bubbles
(ShB). The system moves between these shapes through approaching and withdrawing
the frames from each other, passing through different types of instabilities which are
discussed in detail in Section 3.4. The theory of Delaunay Surfaces explains the other
three types of shapes and the instabilities between them. To the best of our knowledge, it
is the first time that DB and ShB - and the associated instabilities - are mentioned and
investigated. ShB only exist for bubbles (drops) pinned on frames and not for bubbles
(drops) interacting between parallel plates. The TB, CB and SB are also observed for
bubbles (drops) interacting between parallel plates [81, 82], but the detailed behaviour is
different. For example, for the case of the instability CB↔TB, which is already known
from previous investigations between parallel plates [81, 82, 41], we show that the bubbles
(drops) remain stable at higher compression F̂z > 0 if they are pinned on frames. We show
in Section 3.4.4 that this instability can be described as a second order shape transition
and that the tilted film become undulated with a three-fold symmetry. We are able to
describe and explain the three-fold symmetry with a Landau approach for a second order
shape transition. With the same approach the CB↔ShB was modelled. In comparison to
CB↔TB this approach was not able to explain the instability in detail. Future work will
establish the theoretical prediction of this instability and the associated film shapes.

While we concentrated for practical reasons on three different contact angles θc =
0o, 60o, 90o between the bubbles (drops), our calculations include naturally the intermedi-
ate contact angles, which are of increasing interest for communities working on adhesive
foams or emulsions [94, 29, 95].

The interest of the provided shape and force/pressure diagrams goes well beyond
general curiosities. Bubbles or drops in contact held by frames are increasingly used
to quantify the highly non-local interactions between bubbles (drops). Our work can
therefore be used to cleanly design and analyse experiments which investigate bubble or
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drop interactions.
While the presented investigations explore interactions between "simple" bubbles

(drops) of constant interfacial tension, future work will extend this work to interactions
between bubbles (drops) with complex interfacial properties, including the presence of an
interfacial elasticity.

3.6 Outlook
The boundary conditions of two bubbles in contact on circular frames, as described

in this chapter, are similar to a circular film limited by a liquid meniscus attached to
circular boundary conditions, demonstrated by Fig. 3.26b. This configuration resembles
the setup of a Thin Film Pressure Balance (TFPB in Fig. 3.26a), which is used to analyse
thin films, for example to determine the disjoining pressure Π between two interfaces
[96, 97, 98]. The problem of the classical TFPB is, that a big part of the disjoining
pressure curve is unstable (difference between red and black curve in Fig. 3.26a). For
now only Atomic force measurements are able to obtain a full disjoining pressure curve
[99]. But this is expensive and no visually access of the film is possible in comparison to a
TFPB. Only by changing the geometry of the meniscus boundary conditions to one as in
Fig. 3.26b, parts of the unstable branch become stable (Fig. 3.26b) under the condition
that the contact angle θc is large enough in function of the ratio ĥ/R̂. The dependencies
between the minimal stable pressure ∆p̂min, ĥ/R̂ and θc are predicted with the theory
of Delaunay from Section 3.3.3. In this case it is V and θc which are changing and not
h. Fig. 3.26c shows a first experimental setup, which was build to demonstrate this also
experimentally. But for now our fabrication precision is not precise enough to reach the
interesting regimes with Π = ∆p < 0 as illustrated in Fig. 3.26b, and to keep at the mean
time smooth circular boundary conditions. Future work could optimise the current setup
and investigate so far unknown phenomena in thin films as instabilities which should
appear if we reach the minimum in Π in the film.
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Figure 3.26: a) A scheme of a classical TFPB with a disjoining pressure curve Π. The red curve
highlights the stable pressures for the TFPB. b) The new TFPB with boundary conditions as
in Chapter 3 with the same disjoining pressure curve and the highlighted red part for the stable
pressures. c) Our first proposition of a new TFPB.
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4.1 Introduction

Capsules find use in many different applications such as pharmacy [100, 101], food
industry [102, 103], agriculture [104, 105], cosmetics [106], textile industry [107], printing
[108], biosensor engineering [109], active coatings [110] or construction [111]. In most
cases, they are not used individually but as a accumulation, such as shown in Fig. 4.1.
This brings a comparison with foams or emulsions close. In contrast, the interfacial
tension plays a minor role in most cases with capsules, due to high elasto-capillary
numbers, α >> 1 (Equ. (1.25)). Consequently, the assemblies behave differently from
foams and emulsions. In order to optimise the previously mentioned application areas
and to benefit simultaneosly from capsule properties and foam or emulsion properties,
elastic interfacial forces could be combined with interfacial tension forces by tuning the
skin properties (intermediate elastocapillary numbers α ≈ 1). We are interested in a
general understanding of the influence of the interfacial modification from a inelastic fluid
interface to a purely elastic solid-like interface and all intermediate states, as discussed
in the general introduction in Section 1.2.4. Therefore we look for a suitable model
system with tune-able skin properties and associated characterisation methods. A single
bubble/drop, droploon/bubloon or capsule must first be characterised, in order to under-
stand the global material behaviour of accumulations of bubbles/drops (foam/emulsion),
droploons/bubloons or capsules. The definitions of bubble/drop, droploon/bubloon or
capsule are given in Section 1.2.4.
There are different methods to characterise capsule mechanics for different force magni-
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Figure 4.1: Different capsule or droploon/bubloon accumulations: 1) Encapsulation of oil in
ca-alginate capsules (photographs of dry capsules under an optical microscope) [112]. 2) 3D
volume rendering of a PEG-in-silicone emulsion stabilised by a cross-linked silicone skin obtained
from X-ray tomography [2]. 3) Capsules with aqueous core and continuous phase, separated by
solid PDMS skin with different levels of deflation: (a) Spherical capsules after fabrication (b)
Capsules deflated by 36% [113]. 4) Double emulsion drops, having an ultra thin cross-linked wall
as an outer layer [114].

tudes, for example with opitical tweezers, micropipettes, shear flows, AFM or microma-
nipulations. They are summarised in the article of M. Neubauer et al. [115]. To relate the
global deformation with the applied force, a constitutive equation is necessary to obtain
the stress-strain relation. In most of the methods known to us, including those from
the article of M. Neubauer et al. [115], the constitutive law of the interface/skin is only
indirectly obtained by fitting the results to theoretical models. An exception are direct
interfacial rheology experiments. In the general introduction (Section 1.2.4) two examples
with the dilational interfacial shear rheology (Fig. 1.9a) and the shear interfacial rheology
(Fig. 1.9b) are introduced. In contrast to other methods, there the stress-strain relation
is measured directly for a specific deformation. The dilational interfacial shear rheology
works directly with bubbles/drops, bubloons/droploons or capsules. This makes this
method the most suitable for us. For a full picture of the problem both dilational and shear
interfacial rheology are necessary. We also plan to perform shear interfacial experiments
in near future. Dilational deformation dominate the main part of our problems. Another
reason to start with dilational experiments.

Our chosen model system consists out of two immiscible liquids. The first liquid is a
reactive silicone oil, a mixture of two different silicones, a vinyl-terminated PDMS with
two functional vinyl groups (Fig. 4.3a) and methylhydrosiloxane (MHDS, Fig. 4.3b)
with functional Si-H groups. The second liquid is a catalyst-in-PEG emulsion made with
polyethylene glycol (PEG, Fig. 4.3c) and a platinum catalyst, solved in a vinyl-terminated
PDMS (Fig. 4.3d). The catalyst forms small droplets in the PEG phase. The two
functional groups, the Si-H and the vinyl groups, react with each other in the present of
the catalyst.
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Fig. 4.2 shows two of our setups, where we create an interface between the catalyst-in-
PEG emulsion and the reactive silicone oil. They have different initial shapes. Fig. 4.2a
shows the planar setup with an initially flat interface. Fig. 4.2b shows the pendant drop
setup with an initially spherical interface. In both setups the emulsion droplets diffuse in
the PEG phase and release the catalyst into the silicone phase once they come into contact
with the interface. The released catalyst then diffuses in the silicone phase and starts the
reaction between the two functional groups building an increasingly cross-linked polymer
network. The "skin" is formed with a growing skin thickness δ (Fig. 4.2). Depending on
the interface shape, different phenomena can be observed: a wrinkling and folding for
the flat interface (Fig. 4.2a) and a buckling for the spherical interface (Fig. 4.2b). A
similar formulation was used before by Anais Giustiniani et al. [2] and Gael Ginot et al.
[3]. Their works are summarised in Section 4.2.1 and Section 4.2.2, respectively.

First, we present in Section 4.2 all known information from previous studies [2, 3]
about our chosen model system. Second, we characterised and optimised the catalyst-in-
PEG emulsion production to ensure that it is reproducible and sufficiently stable. In all
previous studies, the emulsion was never properly characterised and controlled. However,
it influences many processes at the emulsion-silicone interface, such as the reaction rate or
skin growth. Afterwards, we use the optimized catalyst-in-PEG emulsion to investigate
the interface between this emulsion and the reactive silicone blend in the material and
method Section 4.3. For this purpose, we use the two interface shapes shown in Fig.
4.2. The planar setup helps us to quickly determine interesting parameter spaces due
to its simplicity. It also provides initial information about the mechanical properties of
the skin through wrinkling and their wavelength. The pendant drop setup can then be
used to characterise the interesting parameter spaces more intensively, for example with
dilational interfacial shear rheology. Therefore, we exploit a newly developed method,
called General stress decomposition (GSD) [116, 37, 36] and use it for the first time
at a liquid/liquid interface, to determine the temporal evolution of the viscou-elastic
properties of the polymer skin. In Section 4.4 we show our measurement results and
try to interpreter them by comparing them with existing theories. At the end we give a
conclusion in Section 4.5.



4.1. Introduction 107

Figure 4.2: A scheme and a experimental example of (a) the planar setup (Petri dish) and of
b) the pendant drop setup. First, the interface between the catalyst-in-PEG emulsion and the
reactive silicone oil is liquid. The droplets with the catalyst diffuse in the emulsion phase and
come into contact with the emulsion/silicone interface. Second, the catalyst starts to diffuse in
the silicone phase and starts the reaction. A thin solid silicone phase (the skin) is created at
the interface. Third, the skin thickness δ increases with time. The interface winkles in a) and
buckles in b) after a characteristic time, which depends on the chosen silicone blend, the catalyst
concentration and the shape of the interface.
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4.2 Droploon model system
Ultimately, we are looking to create droploons with fully controlled and predictable

mechanical properties. To achieve this, we need to understand and control the various
influencing factors. For example, the reaction speed, the molecular weight of the polymer,
the distribution, number and ratio of the functional groups, the skin thickness δ, the
reaction homogeneity, the structure of the final polymer network, the temperature, to
name the most important ones. The ratio between the functional groups is

S = mNMHDS
2Nvinyl

, (4.1)

with Nvinyl the number of polymers of vinyl-terminated PDMS, NMHDS the number of
MHDS polymers and m the average number of Si-H groups in the MHDS polymer (Fig.
4.3). If S = 1 there is exactly the same number of Si-H groups and vinyl groups in the
blend. For S > 1, there are more Si-H than vinyl groups and for S < 1 more vinyl than
Si-H groups.

We profit from previous work by Anais Giustiniani et al. [2] (Section 4.2.1), and
Gael Ginot et al. [3] (Section 4.2.2), to obtain some first information about the different
influencing factors.

4.2.1 Anais Giustiniani et al. [2]
In her work the continuous phase is in contrast to our system only made out of MHDS.

The discrete drop phase is as in our case a catalyst-in-PEG emulsion. Instead, the amount
of vinyl-terminated PDMS in the drops with the platinum catalyst in the PEG phase
(Fig. 4.2) is changed. The amount of vinyl-terminated PDMS controls the final skin
thickness δ, since the reaction stops when all vinyl groups reacted with Si-H groups. The
resulting skin thicknesses are rather thin. The ratio between the Si-H and vinyl groups
is not controlled and unknown locally in the skin. The amount of vinyl groups should
decrease with increasing distance to the skin-PEG interface. Consequently the ratio S
cannot be used to control the mechanical properties of the skin in this setup.

4.2.2 Gael Ginot et al. [3]
In his work the continuous phase consists of three silicone oils: MHDS, vinyl-terminated

PDMS (Fig. 4.3) and a non-reactive PDMS. The emulsion in the drops is the same as in
our case. The reaction is stopped with the injection of an inhibitor (Dimethyl maleate),
which occupies the docking points of the catalyst. The inhibitor is injected after different
reaction times to obtain different skin thicknesses. The ratio S was kept constant at 1
and only the mass fraction

Φr = mMHDS +mvinyl
mtotal

, (4.2)

of the reactive silicones (mMHDS and mvinyl) in comparison to the total mass mtotal
(with the non-reactive PDMS included). The polymer network should be softened
differently by the different ratios, with the non-reactive polymers filling in places of
reactive polymers. Indeed, the mechanical properties changed with different non-reactive
PDMS concentrations. But it could not be completely clarified how the non-reactive
groups participate in the polymer network of the skin. Possible scenarios include
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Figure 4.3: Fischer projection of the chemical components of the chosen model system. On the left
side the continuous phase (silicone oil) with a) a vinyl-terminated PDMS with two functional vinyl
groups at the end of the polymer and b) methylhydrosiloxane (MHDS) with m functional Si-H
groups and n non-functional groups. On the right side the components of the catalyst-in-PEG
emulsion with c) polyethylene glycol (PEG) and d) the platinum catalyst as a complex with
vinyl-terminated PDMS.

• the non-reactive PDMS is trapped in the polymer network and participates to the
elastic stresses only by swelling the cross-linked network like a solvent.

• the non-reactive PDMS is pushed out of the skin and slows down the skin growth
and influences so the mechanical properties of the skin.

Several droploons were produced using the system of G. Ginots at the outset of this
thesis. Afterwards we analysed the interfaces using the beamline ANATOMIX at the
Syncrotron SOLEIL [117]. As this system was not used further on and differs from the
main system used in this thesis due to the non-reactive silicones, we decided to present
the results separately in the Appendix A.2. A characteristic profile could be identified at
all interfaces. However, this was not analysed further.

4.2.3 System used in this thesis
Here we use only reactive silicone oils in the continuous phase, but we change S, the

ratio between the reactive Si-H and vinyl groups and defined in Equ. (4.1). We use a
dilute catalyst-in-PEG emulsion with a defined drop size distributions and volumetric
droplet fraction,

Φd = Vdroplets
V

, (4.3)

with V the volume of the emulsion phase and Vdroplets the total volume of all catalyst
droplets in the emulsion. We define the local catalyst concentration Φcat(x, y, z) in the
silicone phase (droplets or continuous phase) with

Φcat(x, y, z) = Vcat
Vsilicone

, (4.4)

with Vsilicone a volume fraction of the continuous phase or the volume of the droplets
Vdroplets in the case of the emulsion. Therefore, Vcat is the volume occupied by the catalyst
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in the droplets of the emulsion or in the volume fraction of the continuous phase. We do
not know the exact platinum catalyst concentration in the solution we bough from Gelest.
They claim that the catalyst concentration in their solution is 3% of catalyst, but we
could not check it and do not trust the information 100%. We therefore define Φcat = 1
for the solution we bought from Gelest. The same definition was used in the studies by G.
Ginot et al. [3] and A. Giustiniani et al. [2]. Using dilution, Φcat in the emulsion droplets
becomes an additional control parameter.

We want to measure the mechanical properties of the silicone skin and its evolution
with time during the skin growth. Finally we stop the reaction with an inhibitor, when
the desired properties are achieved. We aim to understand the influence of

• the molecular weight of the chosen polymers and their relative concentrations given
by S with Equ. (4.1),

• the initial catalyst concentration Φcat (Equ. (4.4)) and catalyst droplet fraction Φd
(Equ. (4.3)) in the catalyst-in-PEG emulsion,

on

• the reaction speed and the skin growth,

• elastic properties of the skin (Youngs modulus and compression modulus in two and
three dimensions) during skin growth and after stopping the reaction,

• buckling and winkling instabilities.

4.2.3.1 Bulk properties of the silicone phase

Before characterising the skin properties, we determine the bulk properties of solid
silicone obtained for different S and Φcat. Luca Fiorucci carried out rheological and
mechanical tests on the same silicone for his master’s thesis. All used silicone with their
measured molar mass, functionalization degree, density at 20 ◦C and their viscosity at 20
◦C are presented in the Table 4.1. A "short" MHDS (HMS301), a "long" MHDS (HMS082),
a "short" vinyl terminated PDMS (DMSv21) and a "long" (DMSv31) were used for this
studies. "Short" and "long" refer to the molar mass. The molar mass was measured
with a Steric Exclusion Chromatography (SEC) in toluene using PDMS standards by
the Carmac platform at the ICS. The functionalization degrees were obtained by NMR
spectroscopy (400MHz in CDCl3). We assume the repartition of the functional groups
along the polymer chain to be stochastic. The density was measured with a Mettler
Toledo density meter D4. The viscosity was measured with a DHR3 rheometer with a
cone-plate configuration. The temperature was controlled with a Peltier plate.

Fig. 4.4 shows the measured Shore hardness (Fig. 4.4a) determined with a Hildebrand
durometer [118] and the Young’s modulus E (Fig. 4.4b) determined with a flat punch
indentation method [119]. One observes a maximum around S = 1 and a continuously
decreasing function away from the maximum for both measured quantities.

In order to understand the processes at the interface between the catalyst-in-PEG
emulsion and the reactive silicone oil, the gelation process in the reactive silicone oil is
important, especially the transition from liquid to solid. The gelation time tg indicates,
when a continous polymer network is present for a given S and Φcat. Consequently, the
solution is fluid for t < tg and solid for t > tg. tg was measured for different S and Φcat
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with oscilatory rheology using a DHR-3 rheometer with a parallel plate geometry. tg is
defined at the point where the derivative of the complex viscosity of the silicone blend is
maximal. Fig. 4.5 shows the measured tg for different catalyst concentration and S. With
increasing S and Φcat the gelation time tg decreases. The measured data is compared to
the fitted empirical model

tg = A1S
n1Φn2

cat, (4.5)

with the fitting parameters A1 = 10−7.92, n1 = −1.15 and n2 = −2.48 in Fig. 4.5. The
measurements were limited to a small range in Φcat, due to the too slow or fast reactions
for lower or higher Φcat. The relative precision of Φcat decreases with decreasing Φcat.
This is why we decided to use the model of Equ. (4.5), even if it does not manage to
display the exponent for S with Φcat = 0.00001 correctly (Fig. 4.5b).

Table 4.1: The used reactive silicones and polyethylene glycol (PEG) with their short names,
complete names and measured molar mass (g/mol), functionalization degree (Si-H or C=C),
density and viscosity at 20 ◦C, all measured by us.

Short
name

Complete name Molar
mass
(g/mol)

Functionalization
degree (Si-H)

Density
at 20 ◦C

Viscosity
at 20 ◦C
(Pa s)

HMS301 25% - 35% methylhy-
drosiloxane

5470 0.26 0.972 0.032

HMS082 7% - 9% methylhy-
drosiloxane

14970 0.07 0.972 0.150

(C=C)
DMSv21 vinyl terminated ply-

dimethylsiloxane
7990 0.015 0.968 0.092

DMSv31 vinyl terminated ply-
dimethylsiloxane

29480 0.004 0.974 1.144

PEG400 Poly(ethylene glycol) 1.126 0.104
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Figure 4.4: Mechanical properties of solidified silicone for different S and different MHDS (HMS301
and HMS082) and vinyl-terminated PDMS (DMSv31 and DMSv21) blends. In a) the Shore
hardness and in b) the Young’s modulus E.

Figure 4.5: a) Comparison of the measured gelation times tg (red points) with the fitted empirical
model from Equ. (4.5). b) The gelation time tg is plotted against S for two different Φcat and
compared to the empirical model of Equ. (4.5) obtained with the 3D fit from a).
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4.3 Material and methods

4.3.1 Materials

We used industrially available silicone oils listed in Table 4.1. All of them were ordered
from Gelest and used as provided. The poly(ethylene glycol) (PEG400, Table. 4.1) was
ordered from Sigma Aldrich. Before use, the PEG was dried by evaporating the potentially
dissolved water in a vacuum oven at 40◦C and pressure of 5 Pa for 4 hours. Higher
temperatures would damage the PEG polymers. The PEG was then sealed airtight and
protected with a layer of argon. Removing water is necessary to avoid additional reactions
involving water [3]. The Karstedt platinum catalyst was ordered from Gelest. The
complete name is "Complexe platine(0)-1,3-divinyl-1,1,3,3-tétraméthyldisiloxane solution",
where the platinum molecules take approximately 3% of the solution as mentioned in
Section 4.2.

4.3.2 Generation of the catalyst-in-PEG emulsion

The optimized protocol for the generation of the catalyst-in-PEG emulsion was ob-
tained by Qiwei Li (M2 student) [120] and Leandro Jacomine, by analysing the evaluation
of the droplet size distribution with Dynamic Light Scattering (DLS) [121] and optical
microscopy for different generation methods. Here we introduce only the method, which
was identified as most suitable for us and which was used exclusively for all further
experiments.

We take the desired volume of the catalyst solution with a micro pipette and 60 ml
of the dried PEG to obtain the desired Φd in the final emulsion. If Φcat < 1 is desired,
the solution is mixed with vinyl terminated PDMS (DMSv21, Table 4.1) so that in the
end Φcat and Φd are as desired. Second, we mix the PEG with the immiscible catalyst
solution with the double syringe method at least 40 times: We transfer rapidly the total
liquid trough a small connection from one syringe to another syringe with 60 ml volume
[122]. Third, the created emulsion is transferred to another vessel cooled with ice to 0◦C
and mixed with an Ultra-Turrax with a rotor diameter of 25 mm and a rotation speed
of 6000 rpm. The obtained drop size distribution starts at radii of 300 nm and stops at
radii of 2000 nm. For Brownian diffusion to outweigh gravitational effects of the droplets
to obtain a stable emulsion, the droplet radius must be smaller than 1300 nm [120]. That
is the case for the majority of drops as shown in the internship report of Qiwei Li [120].
The drop size distribution changes slightly within one day. Therefore, we repeat the third
step of the emulsion preparation in the morning before we start our experiments, to keep
the drop size distribution the same between different experiments.

4.3.3 Planar setup

Since phenomena such as buckling and winkling are shape dependent, we decided to
perform experiments with different interface geometries. The first interface geometry is a
planar interface in a circular Petri dish of 111 mm diameter as shown in Fig. 4.6. We fill
the Petri dish with the catalyst-in-PEG emulsion until it has a depth of 5 mm. Then we
let the silicone blend flow over a paper onto the catalyst-in-PEG emulsion surface until it
has approximately also a depth of 5 mm and pull out slowly the paper afterwards. This
allows to maintain the flat interface. The reaction starts as soon as the two liquids are in
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Figure 4.6: a) Scheme of the planar setup, with a light source below a Petri dish filled with the
catalyst-in-PEG emulsion as a first layer and the reactive silicone oil as a second layer, separated
by an already solidified skin. The skin shows a periodic deformation after a given time, at which
the light beams are transmitted, reflected and refracted. The transmitted and refracted light when
through a Fresnel lens, the Petri dish, a second lens and is finally projected on a white wall by a
mirror. b) the refraction patterns obtained with the camera from the transmitted and refracted
light.

contact. We make all 10 s an image of the projected refraction pattern via an overhead
projector, as sketched in Fig. 4.6a. At the beginning of the reaction, the interface is a flat
disk and the light is reflected or transmitted homogeneously. Due to the polymerisation
at the interface, the interface starts to deform. The light rays are now not only reflected
and transmitted, they are also refracted, which leads to intensity patterns emphasised
by the overhead projector. The deformations increase with advancing reaction time as
shown by the photographs in Fig. 4.6b.

4.3.4 Pendant droploon setup

We use the same setup as in the Chapter 3, shown in Fig. 3.6a. This allows us to
analyse two identical droploons at the same time, one hanging and one sitting. The
droploon phase is the catalyst-in-PEG emulsion and the continous phase the reactive
silicone blend.

Before we start the experiment, we measure the interfacial tension γ between the
emulsion and the reactive silicone oil. Since the chemical reaction at the interface due to
the diffusion of the catalyst changes the effective interfacial tension, we consider only the
first seconds after the drop creation, during which the tension stays constant. We obtain
an interfacial tension, independent of S, of 11±0.5 mN/m, which is the same as in the
literature [2]. Gravity can be neglected in our measurements, due to the small drop size
and the small density difference between the PEG and Silicone as discussed in Section
3.3.2.4. However, it is necessary for measuring the interfacial tension with pendant drop
tensiometry. Therefore, we measure the interfacial tension with larger drops and thus
larger bond numbers, than the ones used for the skin growth measurements.
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Figure 4.7: a) An example of a raw pressure signal pS(t). In the zoom, the different steps of the
experiment are illustrated: First, the control with a PID to obtain the initial volume. Second, a
small time period at which the volume is constant and not controlled for the static calibration.
Third, the volume oscillates around the initial volume for the dynamic calibration. b) The pressure
difference at the apex ∆pA(t) obtained with the static and dynamic calibration.

An example of a pressure measurement with the different steps for a typical interfacial
dilational rheology experiment is shown in Fig. 4.7. At the first step (Fig. 4.7a purple
zone), we define an initial drop volume V0 of 3 µl for the hanging and sitting drop. Then,
we control the drop volume for 50 s with a PID (Proportional Integral Differential control),
which uses the drop profile of the cameras as input and the piston position of the syringes
as output. Then we stop the control by the PID. It gives almost spherical drops, where
gravity plays a negligible rule. In the second step, the static calibration is carried out as
described in Section 3.3.2 (Fig. 4.7a red zone). As discussed above, the chemical reaction
at the interface changes the effective interfacial tension with time. A quasi-static inflation
and deflation as in Section 3.3.2 is therefore not possible before γeff changes. Therefore,
we take the measured data only over a small time period (Fig. 4.7a the red zone), at
the beginning of the measurements, when the interface is still liquid and the interfacial
tension 11 mN/m. From this static pressure calibration we obtain Ksta, which is the
same constant as in Section 3.3.2. The time period, where the interfacial tensions remains
constant, depends on the used silicone blend (S) and the two volume fractions Φcat and
Φd. It goes from 1 s to 300 s. During this time period all volume controls are switched off,
since the smallest movement of the syringe piston would affect the pressure measurement.
Afterwards the dynamic calibration described in Section 4.3.6.1 (yellow zone in Fig. 4.7a)
takes place. Then we start to characterise the skin (Section 4.3.6).

4.3.5 Optical skin thickness measurements

Due to a small changes of the refraction or attenuation index of the polymerized skin
in comparison to the liquid reactive silicone oil, the skin becomes visible for some S as
shown in Fig. 4.8. The reason is not yet fully clear to us, but it seem correlated with
the pressure of mechanical constraints. In this case the skin thickness δ was measured at
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Figure 4.8: Evolution of a drop of catalyst-in-PEG emulsion in the reactive siliocne blend. The
contrast was increased to observe the skin and to measure the skin thickness δ as a function of
time at position 1, 2 and 3, indicated in the first figure. The skin boundary is shown by the red
dashed line.

different positions of the pendant drop using ImagJ. This measurement is not very precise
due to the small difference in the refraction or attenuation index between the solid and
liquid silicone and that the skin thickness can rarely be measured perpendicular to the
solid liquid interface, as the drops buckle or otherwise deform as shown in Fig. 4.8. But
it allows us to obtain an approximate evolution of the skin thickness δ as a function of
time.

4.3.6 Interfacial dilational rheology between two viscous fluids

After the catalyst-in-PEG emulsion drop is in place in the reactive silicone blend, as
described in Section 4.3.4, we start with the dilational interfacial shear rheology to obtain
the rheological skin properties as a function of time. Therefore, we oscillate sinusoidally
the volume V of the drop

V (t) = V0 + ∆V sin 2πt
T
, (4.6)

with ∆V the amplitude of the oscillations and T the oscillation period. The pressure and
all geometrical parameters of the drop, such as the drop volume V , the drop surface area
A and the apex radius RA were measured as a function of time t with a sampling rate of
5 per s.

We aim to determine the rheological properties of the interface with an elastic skin
by relating the measured pressure to the measured deformation of the drop. As seen
in Fig.s 3.6a and 4.9, the pressure sensor is not located on the interface. In Section
3.3.2 we showed how the measured pressure can be related to the pressure drop at the
apex for a static measurement. Here, the dynamic effects (viscosity and inertia effects)
of the dispersed phase are too large to be neglected for the selected oscillation periods,
amplitudes, liquids and setup. For smaller amplitudes the pressure changes are to small
to be measured correctly. For larger periods times the skin growth is to fast to capture
all important features. We therefore established the measurement conditions, which
have as little flow resistance as possible. We identified the following conditions as the
best compromise: ∆V = 0.4µl and T = 50 s. These were used in all investigations,
stated otherwise. Nevertheless, important dynamic pressure effects remain and need to
be separated from the effects of the skin in a dynamic calibration discussed in Section
4.3.6.1.
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4.3.6.1 Dynamic calibration

Fig. 4.9a shows a scheme with the tube system (connecting the syringe, drop and
pressure sensor), the emulsion in the tube system, the vessel filled with silicone oil and all
important physical quantities, such as the liquid velocity v(ξ, t), the different pressures p
and different vertical coordinate z in the setup. The Bernoulli equation

ρv(ξ, t)2

2 + gz(ξ)ρ+ p(ξ, t) +
∫ ξ

ξ0
C(v(ξ, t), ξ)dξ = const(t), (4.7)

relates the different quantities at the different points with each other along the streamline
at the position coordinate ξ (red in Fig. 4.9a). The first term in Equ. (4.7) is the dynamic
pressure, the second the hydrostatic pressure, the third the pressure and the forth the
pressure lost due to viscous forces. C(v, ξ) is the local system resistance due to viscous
forces. ξ0 is at the syringe if the syringe is pushing and at the apex if the syringe is
withdrawing, since ξ is define in a manner that it always increases in the direction of flow.
First, we estimate the influence of the dynamic pressure at the height z = z1 in Fig. 4.9a.
At the apex and the sensor, the dynamic pressure is negligible, since the apex and the
syringe piston is moving only a few microns up and down during one period (Fig 4.9a).
The flow rate is the derivative of Equ. (4.6) with respect to t

dV

dt
= 2π∆V

T
cos

(2πt
T

)
. (4.8)

Since the flow rate is constant across the tube cross section, we obtain for the maximal
velocity at the height z = z1 in Fig. 4.9a during the oscillation period

v1;max = 2π∆V
TπR2

tube
, (4.9)

for Rtube ≈ 1 mm, T = 50 s and ∆V = 0.4 µl the estimated dynamic pressure from inertia
contributions is therefore

v2
1;maxρPEG

2 ≈ 10−6Pa (4.10)

for the density ρPEG from Table. 4.1. The characteristic overall pressure is a few Pa.
Consequently, it can be neglected. But it is therefore important to have a large connection
between the pressure sensor and the tube between the syringe and the needle with the
drop, keeping v1;max small. Therefore, all dynamic pressure corrections are of viscous
nature.

We are interested in the pressure difference across the interface with a skin at the
apex ∆pA = pAi − pAo and how the pressure is related to the measured pressure difference
pS = p1 − p∞ between the environmental pressure p∞ and the pressure in the sensor p1
(Fig. 4.9a). The outer pressures pAo and p∞ are not influenced by the flow in the tube
system. We can therefore use the same procedure as in Section 3.3.2 to relate them with
each other. The inner pressures pAi and p1 are related with each other via Equ. (4.7).
We obtain

∆p±
A(t) = p±

S (t) −K±
sta −K±

dyn(t) ± gh±(ρPEG − ρcat), (4.11)

with "±" the index representing the upper or lower drop respectively and h the vertical
distance between the apex and the opening of the needle. The calibration constant Ksta
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is from Section 3.3.2 and Kdyn(t) is the integral

K±
dyn(t) =

∫ A±

1
C±(ξ, v(ξ, t))dξ. (4.12)

Since the apex position changes slightly during an oscillation, we take the needle opening
as a reference height for Ksta to be constant, as in Section 3.3.2. Kdyn(t) depends on C,
which depends on the tube system and the local velocity v(ξ, t). v(ξ, t) in turn depends
on the selected oscillation amplitude ∆V and period time T . For the chosen flow rates
the assumption of a laminar flow in the tube system is correct. For one tube system, fluid
(catalyst-in-PEG emulsion), ∆V and T , Kdyn(t) remain identical.

Two different methods can be used to obtain Kdyn. In both methods the procedure
to obtain Kdyn follows the general procedure: A drop is created with the PID control
(Fig. 4.7a purple zone). Hsta is obtained, during a time at which V stayed constant (Fig.
4.7a red zone). The oscillation starts, following Equ. (4.6). The difference between the
two methods is, that in one case we used for the continuous phase a non-reactive silicone
(standard PDMS) of the same viscosity and in the second case we used a reactive silicone
blend for the continuous phase. With the non-reactive silicone the drop interface stays
liquid and the effective interfacial tension constant. ∆pA(t) can then be measured with
help of the apex radius and the Young-Laplace law. We obtain

K±
dyn(∆V, T, t) =

∫ A±

1
C±(ξ, t)dξ = p±

S (t) −K±
sta − ∆p±

A(t) ± gh±(ρPEG − ρcat). (4.13)

An example of Kdyn(t) for T = 50 s and ∆V = 0.4µL is shown in Fig. 4.9b. In the case of
a calibration with non-reactive silicone oil, Kdyn(t) is obtained from the periodic averaged
value of at least 10 periods. In Fig. 4.9b, Kdyn(t) shows two sharp peaks when the
volume becomes minimal or maximal. These peaks are setup-dependent and appear when
the syringe pistons change their direction of movement. We have problems to interpret
them. We suspect that it has something to do with the motor of the syringe pump or the
structure of the syringes, but we cannot say for sure. Since they are very reproducible and
at the largest and smallest deformation of the drop, they do not influence our evaluations.

The second method with the reactive silicone follows the same logic and assumes,
that for the first oscillation periods the interface stayed liquid with a constant interfacial
tension. The first periods are used in this case to obtain Kdyn.

The advantages of the method with the non-reactive silicone are:

• The interfacial tension stays constant during all measurements,

• oscillations can be repeated to increase accuracy.

The advantages of the method with the reactive silicone are:

• It is very efficient, since all calibrations and measurements are made in the same
experiments. This makes changes in T and ∆V easy.

• Exactly the same configuration of the setup is used for the measurements with silicone
skin and for the calibrations. That increases the accuracy of the measurements.

It is preferred to use the calibration with reactive silicone, but if the reaction is to fast
the calibration with non-reactive silicone must be used.
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Figure 4.9: a) Scheme of the dynamic pressure measurement of the pendant droploon setup. The
important physical quantities are the vertical z coordinate, the local flow velocity v, the local
pressures p, the apex radius RA, one streamline in red with the coordinate ξ. b) Top: Kdyn(t)
plotted for one period with T = 50 s and the corresponding Young-Laplace pressure at the apex
∆pA measured with the pressure sensor after correction. Bottom: the corresponding volume. The
gray lines are the measured data at several periods, the solid black line the periodic averaged
values.

4.3.6.2 General stress decomposition (GSD)

In order to determine the skin properties, the pressure drop ∆pA(t) between the PEG
phase and the liquid silicone phase separated by the solid silicone skin, obtained with the
procedure explained in Sections 4.3.4 and 4.3.6.1, is treated with a method called General
Stress Decomposition (GSD) [116, 37], whose underlying concepts are introduced in this
section. We assume an isotropic, homogeneous skin and deformation. As discussed in
Section 4.3.4, we work only at very small Bo, which allows us to neglect gravity. But even
if gravity is neglected, the skin deformation is disturbed by the fixed boundary on the
needle which creates inhomogeneous deformation close to the needle due to the clamping
of the skin to the needle [32]. Through the work of G. Ginot et al. [32], we choose the
volume of the drop in relation to the diameter of the needle so that we can approximate
the deformations as homogeneous deformation. That is equivalent to a approximation of
the droploon shapes with a spherical deflation and inflation. Therefore, we can define the
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homogeneous global and local strain as

λA(t) = A(t)
A0

, (4.14)

with A(t) the interfacial area at time t and A0 initial interfacial area in the reference
state. The effective tension γeff introduced in Section 1.2.4 and Fig. 1.8 is therefore

γeff = ∆pA

2RA
. (4.15)

The effective interfacial tension γeff should be determined at the apex, because in contrast
to fluid interfaces, the interfacial tension is generally not isotropic. However, in the case
where the two principal curvatures are equal, γeff is isotropic for an isotropic material.
Because of the axisymmetry of the pendant droploon, this is always the case at the
apex. Since we know that the deformation is not perfectly homogeneous (in comparison
to what we approximate previously), the investigation at the apex gives more accurate
results. Consequently, the following analysis is only correct if the droploon remains axially
symmetric. The interfacial stress γeff can now be linked to the surface strain at the apex
λA. The GSD assumes a sinusoidal deformation of the type

λA(t) = λ0 + ∆λA sin
(2πt
T

)
. (4.16)

If we are interested in the mechanical properties of the skin around the reference state,
we deform the drop around the reference state with λ0 = 1. In the work by S. Pivard et
al. [36] and A. Groot et al. [37] the surface area (and therefore via Equ. (4.14) also λA)
was controlled with a PID to obtain a deformation as described in Equ. (4.16). For a
liquid/liquid system like the one we used, this is not possible, as every intervention by
the PID controller changes the flow conditions in the tube system and thus the dynamic
pressure calibration Kdyn(t) (Section 4.3.6.1). S. Pivard and A. Groot worked with
bubbles, which gives negligible Kdyn due to the small viscosity of the gas compared to a
liquid. We avoid this problem by directly in passing the volume change. For this purpose,
the speed of the syringe piston moved in form of a sin-wave, so that we obtain a sinusoidal
change in volume as described in Equ. (4.6). Now, it has to be shown that this leads to a
sinusoidal deformation as in Equ. (4.16).

Aproximating the shapes of the droploons with spherical caps during the whole process
of deformation, we show that even with very large amplitudes ∆V in Equ. (4.6) and
different needle radii R, the difference of A(t) (and with Equ. (4.14), also λA(t)) to a sine
function remains negligible. Therefore, we calculate the volume for a spherical cap as
shown in Fig. 4.10a with

V = 1
6πh(R2 + h2). (4.17)

with the needle radius R and the spherical cap height h, represented in Fig. 4.10b. The
interfacial area of the same cap is

A = π(R2 + h2). (4.18)

We obtain h(t) with Equ.s (4.6) and (4.17) for a given R and V0, which gives us A(t) with
Equ. (4.18). Afterwards we can compare A(t) with a sinus function with

∆sin = A(t) −Am

max(A(t) −Am) − sin(ωt), (4.19)
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Figure 4.10: b) Scheme of a spherical cap truncated by a needle with the cap volume V , the cap
interfacial area A, the needle radius R and the cap height h. b) ∆sin (defined in Equ. (4.19))
plotted for different normalized needle radii R/V 1/3

0 and normalised time t/T , where T is the
oscillation period.

with Am the averaged interfacial area for one period. Fig. 4.10b plots ∆sin for ∆V = 0.2V0
for different normalised needle radii R/V 1/3

0 . If ∆sin = 0 the deformation is perfectly
sinusoidal. Even for very small or very large R/V 1/3

0 the surface area dependence in time
stays almost sinusoidal (Fig. 4.10b). In our experiments we worked at R/V 1/3

0 ≈ 0.6,
where ∆sin is always below 0.0005. The uncertainty due to this ∆sin is far below what we
can achieve with the volume control of our setup.

We showed that for our chosen system with the applied deformations the assumptions

• sinusoidal deformations λA(t) at the apex,

• the same Kdyn(t) for different oscillation periods,

are correct if

• the droploon keeps a spherical shape and the influences due to gravity (small Bo)
and clamping at the frame [32] are small,

• the volume V (t) changes sinusoidally and ∆sin is small (Fig. 4.10),

• the droploon stays axisymmetric (no buckling or other non axisymmetric deforma-
tions).

Consequently, we can use GSD to analyse our measurements.
To perform the GSD we apply the procedure explained in the publication of W. Yu et

al. [116] for the case of bulk rheology. First, the signal is divided into individual periods
of length T . Afterwards the individual periods are represented in a Fourier series

γeff(t) =
∞∑

k=0
qk sin(kωt+ ϕk), (4.20)
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with ω = 2π/T the angular velocity of the volume oscillation, and qk and ϕk the amplitudes
and phase shifts of the k-st order, respectively. With the Chebyshev polynomials [116]
the signal is represented as

γeff(x, y)
λ0

=
∞∑

k=0
b2k+1x

2k+1 +
∞∑

k=0
a2k+1y

2k+1 + xy
∞∑

k=0
c2ky

2k +
∞∑

k=0
d2ky

2k, (4.21)

with x(t) = sin(ωt) and y(t) = cos(ωt) and a2k+1, b2k+1, c2k, and d2k constants. The
different stresses are defined with

τ1 =
∞∑

k=0
b2k+1x

2k+1, (4.22)

τ2 =
∞∑

k=0
a2k+1y

2k+1, (4.23)

τ3 = xy
∞∑

k=0
c2ky

2k, (4.24)

τ4 =
∞∑

k=0
d2ky

2k. (4.25)

The advantage of the division into the different τ ’s is that they can be assigned to specific
phenomena. τ1 is the purely elastic component, since the stress is in phase with the
deformation. τ2 is the purely viscous component, since the stress is in phase with dλ(t)/dt.
τ3 and τ4 couple viscous and elastic components [116, 37, 36], such as plastic deformations
etc. Their precise interpretations is still lacking.

The linear elastic and viscous dilatational two-dimensional modulis K ′
2D and K ′′

2D are
given by [116, 37, 36]

K ′
2D = 2

Tλ0

∫ T/2

−T/2
sin(ωt)τ1(t)dt, (4.26)

K ′′
2D = 2

Tλ0

∫ T/2

−T/2
cos(ωt)τ2(t)dt. (4.27)

In our experiments the τ ’s are obtained for each oscillation period. Therefore, we split
the total signal γeff(t) in the individual periods as for Equ. (4.20). Afterwards we define
for every period

s1 = γeff(t), (4.28)

s2 = γeff(−t), (4.29)

s3 = γeff(T/2 − t), (4.30)

s4 = γeff(T/2 + t). (4.31)

The τ ’s are obtained by simple subtraction and addition of s1, s2, s3 and s4 as

τ1 = 1
4 (s1 − s2 + s3 − s4) , (4.32)

τ2 = 1
4 (s1 + s2 − s3 − s4) , (4.33)
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τ3 = 1
4 (s1 − s2 − s3 + s4) , (4.34)

τ4 = 1
4 (s1 + s2 + s3 + s4) , (4.35)

by exploiting different symmetries of the stresses from Equ. (4.21) [116].

4.4 Results and discussion

First, we compare the measured skin thickness δ(t) with a modelled skin thickness
with a finite volume method in spherical coordinates in Section 4.4.1. Afterwards we
give an overview of all measurements of the planar (Section 4.4.2) and the drop setup
(Section 4.4.3) described in Sections 4.3.3 and 4.3.4. At the end we relate the measured
skin thickness and the measured mechanical properties of the skin with the observed
shape instabilities in the two setups in Section 4.4.4.

4.4.1 Skin growth modelling

The skin thickness δ(t) is an important parameter to characterise the mechanical
properties of the silicone skin and as well the droploon. We could optically measure δ
as a function of the reaction time in some cases (Section 4.3.5), due to a small change
in the refractive index of the solidified silicone in comparison to the liquid silicone. Fig.
4.11 shows all measured δ(t) for different S and Φd. In the measured time interval, all
measurements fall on the same empirical power law

δ(t) = Cδt
nδ , (4.36)

regardless of S and Φd. Fitting all data points in Fig. 4.11 to Equ. (4.36) gives an
exponent of nδ = 0.44. A very similar exponent was found by G. Ginot et al. using X-ray
tomography and electron microscopy [3]. It is surprising, that in the experiments Cδ

seems to be independent of S and Φd. The skin thickness δ(t) could not be measured
for Φcat = 0.1 and Φd = 0.003. Probably because it was too thin in the considered time
period. To obtain a better understanding of the skin formation process, we model with a
continuum mechanical approach the diffusion of the droplets with catalyst in the emulsion,
the diffusion of the catalyst in the silicone phase and the solidification of the silicone with
help of the empirical law from Equ. (4.5).

The modelled volume is a sphere with radius Rmax, divided into two regions, an inner
sphere with radius Rd in the centre of the modelled volume and the rest of the modelled
volume, as sketched in Fig. 4.12. The inner sphere represents the catalyst-in-PEG
emulsion drop. The second region is the silicone blend, separated from the drop by the
emulsion-silicone interface. First, we use the definition of Φd and Φcat from Equ.s (4.3)
and (4.4) respectively and extend it to the continuum mechanical approach with

Φd(r, t) = dVdroplet(r, t)
dVemulsion

, (4.37)

and
Φcat(r, t) = dVcat(r, t)

dVsilicone
. (4.38)
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Figure 4.11: The optically measured skin thickness δ for different S and different Φd is plotted
against the time of reaction t.

r is the radial coordinate of a spherical coordinate system, dVdroplet(r, t) is the local
amount of droplets in the local volume of emulsion dVemulsion and dVcat(r, t) is the local
amount of catalyst in the local volume of silicone dVsilicone.

The diffusive flux of the catalyst droplets in the emulsion drop and the catalyst itself
in the reactive silicone blend is modelled with Fick’s first law of diffusion [123]

J = −DdΦ
dr , (4.39)

with J the flux and D the diffusion coefficient. The diffusion coefficient is determined by
the Stokes-Einstein equation [124]

D = kBT

6πrHν
, (4.40)

with kB the Boltzmann constant, T the temperature, rH the hydrodynamic radius of the
diffusive object and ν the dynamic viscosity of the surrounding liquid (PEG or silicone
oil). The hydrodynamic radius of the droplets in the emulsion (inner region in Fig. 4.12)
was determined with 200 nm< rd < 2000 nm in Section 4.3.2. This droplet size is small
enough to consider thermal motion as the main mechanism of propagation and that
gravitational creaming can be neglected. We can then determine the diffusion coefficient
of the droplets as 10−15 m2/s< Dd < 6 ∗ 10−15 m2/s with Equ. (4.40). In the silicone
phase, the molecule complex with the catalyst (Fig. 4.3d) itself diffuses. Its hydrodynamic
radius rcat was estimated by calculating an approximated size of the molecule complex
with the three vinyl-terminated PDMS polymers (Fig. 4.3). If we assume that all bonds
have and angle of 180◦, the complex is 6 nm long. We therefore use 3 nm as an upper
limit for rcat. This gives 8 ∗ 10−13 m2/s < Dcat.

If the droplets come into contact with the interface between the emulsion and the
silicone blend at r = Rd, they release the catalyst and disappear. Consequently it is

Φd(r = Rd) = 0, (4.41)
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and
Jcat(r = Rd) = Jd(r = Rd)Φcat(Φd), (4.42)

as shown in Fig. 4.12a. Φcat(Φd) is the catalyst concentration in the emulsion droplets.
The modelled volume is a closed system. No material enters or exists. Consequently, the
catalyst flow at r = Rmax is

Jcat(r = Rmax) = 0. (4.43)

We assume an initially homogeneous distribution of droplets in the emulsion

Φd(0 < r < Rd, t = 0) = Φd;0, (4.44)

and no catalyst in the silicone blend

Φcat(Rd < r < Rmax, t = 0) = 0. (4.45)

The condition of solidification is ∫ t

0

dt
tg(Φcat(t))

> 1, (4.46)

with tg(Φcat, S) being the gelation time given by Equ. (4.5). The equations are solved
with a one dimensional finite volume method with a lab-made python code. The radius
of the PEG drop was set to Rd = 500µm and the radius of the modelled volume to
Rmax = 20Rd. The radii Rd and Rmax are chosen so that they have no influence on the
diffusion process in the time span of the experiment (maximally a few hours). Fig. 4.12b
shows the Φcat(r) profiles for different times. Since the diffusion of the droplets is much
slower than the diffusion of the catalyst, the concentration in the PEG drop stays almost
constant. Only close to the interface we observe a decrease in concentration due to the
strong gradient in Φd. In the silicone phase the catalyst concentration Φcat stays very
small, below 10−4, which is in our interest, since we want a rather slow solidification
to have enough time to measure the mechanical properties of the skin with the GSD.
Fig. 4.12c compares δ(t) for different radial step sizes ∆r of the finite volume method by
holding the parameters D, ∆t, Φd(t = 0 s) and S constant. With decreasing ∆r the skin
growth starts earlier. With advancing time the different profiles δ(t) converge towards the
same prediction. The chosen ∆r = 2.5 µm is a compromise between calculation time and
precision. The chosen time step ∆t = 0.05 s is the largest time step before the simulation
becomes unstable for the chosen ∆r and diffusion coefficients.

Fig. 4.12d compares the influence of different rd and rcat on the diffusion process,
since the droplet radius rd is not uniform and rcat = 3 nm only an upper bound. The best
fitting radii for an experiment with S = 0.7 and Φd(t = 0 s) = 0.01 are rd = 300 nm and
rcat = 0.3 nm. Both are of the same order of magnitude. The diffusion of the catalyst
droplets is controlled by the smallest droplet size. rd = 300 nm is therefore reasonable.
The difference between the estimated upper limit and the obtained best fitting radius of
rcat is rather large.

In Fig. 4.13 we exploit systematically the parameter space of the diffusion process
with the chosen ∆r, ∆t, rd and rcat: Fig. 4.13a varies Φd, Fig. 4.13b varies S, Fig. 4.13c
varies Φcat in the emulsion droplets and Fig. 4.11 shows all measured experimental data.
As expected the simulation shows an increase in skin growth velocity for an increase in
Φd, Φcat and S. We expect an increase in skin growth velocity for an increasing S, since
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Figure 4.12: a) A scheme of a catalyst-in-PEG emulsion drop in a silicone blend. The index "d"
stands for droplets in the emulsion phase. The index "cat" stands for catalyst in the silicone phase.
D is the diffusion coefficient (Equ. (4.40)), J the flux (Equ. (4.39)), Φ the concentration. The
model size Rmax is 20 times larger than the emulsion drop radius R. The diffusion in the emulsion
drop is bounded by a fixed Φd(r = R) = 0. The diffusion of the catalyst in silicone is bounded
by a vanishing flux with Jcat(r = Rmax) = 0. b) An example of the time evolution of the Φcat
profiles. c) A convergence study of the radial step size ∆r. d) The skin growth obtained with the
diffusion model and the gelation time from Equ. (4.5) in comparison to optically measured skin
thicknesses as a function of time for S = 0.7. The calculation is repeated for different rcat and rd.

the gelation time tg decreases with increasing S (Section 4.2.3.1, Fig. 4.5). Independently
of S, rcat, rd, Φd and Φcat, the simulation give an exponent of the empirical function
from Equ. (4.36) of approximately nδ = 0.45, shown in Fig. 4.13d, e and f. Fig. 4.11
confirms this exponent with optical measurements for different parameters even if these
measurements are rather imprecise. As said previously, in the experiments Cδ of Equ.
(4.36) was independent from Φd and S. The simulation predicts in all cases a significant
change in Cδ as shown in Fig. 4.13a,b and c. Even if the influence of S seems to play a
minor role and therefore probably could not be observed in the experiments (Fig. 4.13b).
The experimental behaviour could therefore only partly confirmed.
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Figure 4.13: a) Simulated skin growth for rd = 300 nm, rcat = 0.3 nm, S = 0.7, droplet catalyst
concentration Φcat = 1, and different initial Φd. b) Simulated skin growth for rd = 300 nm,
rcat = 0.3 nm, Φcat = 1, Φd(t0) = 0.01 and different S. c) Simulated skin growth for rd = 300 nm,
rcat = 0.3 nm, S = 0.7, Φd = 0.01 and different Φcat = 0.01. d, e, f) The at long times fitted
exponent nδ for the simulated δ(t) to the empirical Equ. (4.36) for different d) Φcat, e) Φd and f)
S.

Apart from minor inconsistencies, such as

• too fast diffusion (rather to small rcat in the model)

• little to no influence of skin growth δ(t) by the parameter Φd,

it could be shown that

• Fick’s diffusion Equ. (4.39) combined with an empirical law for gelation time Equ.
(4.5) are able to model the skin growth δ(t),

• and to give the exponents nδ observed in the experiments for Equ. (4.36) (Fig.s
4.11 and 4.13).

Ultimately, the question must be asked at what point the physical processes described
in the modelling do not reflect the true events in the experiment. Since diffusion is
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understood at this length scale, only the influence of the interface between the emulsion
and silicone and the gelation process remains as a cause. For example, the influence of
the change in viscosity in the silicone oil on the diffusion process due to the chemical
reaction is not considered in the model. In addition, only very few catalyst droplets,
which were all localised initially close to the interface, reach the interface (Fig. 4.12b). It
is possible that other processes influence the movement of the droplets in this length scale.
For example, the deformation of the interface at the moment the droplets reach it. For
longer times, we compare mainly with a single dataset. But especially in the first hour
the measurements of the skin thickness are relatively inaccurate due to small δ. At longer
times, the droploons are often already very deformed, which makes the measurements
difficult or even impossible.

4.4.2 Skin formation in planar setup

With the help of Andres Guerrero (M2 intern in the team), we performed the ex-
periments described in Section 4.3.3 for different stoichiometries S = [0.24; 0.46; 0.7; 5;
23], initial droplet concentrations Φd(t = 0) = [0.003; 0.0003] in the catalyst-in-PEG
emulsion at Φcat = 1. We also varied Φcat = [1, 0.1] in the droplets of the emulsion while
holding Φd(t = 0) = 0.003. We distinguish different characteristics for the interfacial
evolution, which are represented in Fig 4.14. They show the development of the skin as a
function of time for S = 0.46 (Fig. 4.14a) and S = 23 (Fig. 4.14b) respectively. Similar
representations for all experiments can be found in the Appendix in Section A.3 in Fig.
A.5 for Φd = 0.003, Φcat(Φd) = 1 and all S, in Fig. A.6 for Φd = 0.0003, Φcat(Φd) = 1
and all S, and in Fig. A.7 for Φd = 0.003, Φcat(Φd) = 0.1 and all S.

The reaction starts at t0, which is the moment, when the catalyst-in-PEG emulsion
comes into contact with the reactive silicone blend. First, wrinkling at the edges of the
Petri dish at a time which we will call "t1" is observed. They are always perpendicular
to the edges and stop at a clear boundary, (yellow zone in Fig 4.14). Outside of this
zone the surface stays initially flat. We think that the boundary is not circular, because
the paper that separates the two liquids before the two liquids come into contact, must
be pulled out in one direction. This probably leads to heterogeneity at the edges. This
hypothesis is supported by the fact that the yellow zone in Fig 4.14 is always deformed
in the direction in which the paper was pulled out. At a later time, which we will call
"tw", the wrinkling also starts in the center of the Petri dish. Within a few seconds, the
entire interface is full of wrinkles. Most of the times it is possible to distinguish between
the inner (green) and outer (yellow) zones, as the folds have arbitrary directions in the
central zone while they are parallel to each other and perpendicular to the edges in the
outer zone. In many cases, two characteristic wrinkle wave lengths λ could be observed
in the central part. This became particularly clear for S = 23 shown in Fig. 4.14b. Since
they appear at different times, we define two tw. Sometimes the wrinkles with the short
wave length λshort appear first and sometimes the wrinkles with long wave length λlong
appear first. As they overlap, it is difficult to analyse them separately. Their appearance
and behavior is probably strongly coupled. If only one wavelength was identifiable, we
call it λshort. The wave lengths λ are measured manually using ImageJ by searching for
periodic patterns in the refraction image. We tried to analyse the images with a FFT
analysis. But the contrasts of the patterns were not height enough. For each time step,
at least five such wave lengths were measured and averaged. It was ensured that they
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had at least one centimetre distance to the edge in order to neglect boundary influences.
All wavelengths λ and initial wrinkling times tw are summarised in Fig. 4.15. We restrict
ourselves to the inner zone for the wavelength measurements, as we expect that the outer
zones are influenced by the edges.

At an even later time, called "t3", at least one fold increases its amplitude considerably
compared to the others and forms a large fold. For an example see the blue area at t3 in
Fig 4.14. "t4" is the moment at which we stop interpreting the skin deformation, as the
deformations are too far away from the initial plane interface.

Figure 4.14: The evolution of a skin in a planar setup with a) S = 0.46, Φcat = 1 and Φd = 0.003
and b) S = 23, Φcat = 1 and Φd = 0.003. Different characteristic times are highlighted: t0 the
time of the reaction start, t1 the time where the winkling appears the first time close to the border,
tw where the winkling with short wavelength λshort or long λlong appears the first time in the
center, t3 where the large folds appear the first time and t4 where large deformation with length
scales of the Petri dish appear the first time. The contrast was increased for the zoom at minute
10 to increase the visibility of the small wrinkles.
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Figure 4.15: a) tw for different stoichiometries S and emulsion properties for short λshort and long
λlong wave length. b) Legend for figure a, c and d. c) The two wrinkle wave length λshort and λlong
are plotted as a function in time t. The different colors represent different stoichiometries S, the
different symbols different droplet concentrations in the emulsion Φd or catalyst concentrations in
the droplets Φcat. Filled symbols represent λshort and empty symbols λlong. d) Zoom into c) for
all λ with S = 5 with linear y-axis.

We measured the wrinkling onset tw for the short and long wrinkles whenever possible
for the five S, two Φd and two Φcat (Fig. 4.15a). All tw follow the same behavior. They
decrease with increasing S until they reach a minimum and increase again. The minimum
is between 0.7 < S < 5 and could not be measured since the reaction was to fast. For
S = 5 it was difficult to distinguish between t1 and tw since the perpendicular wrinkling
starting from the edges occupied almost the full interface (Fig. A.5). Consequently, we
used t1 instead of tw in Fig. 4.15a. Φd has no measurable influence on tw. In contrast, a
smaller Φcat greatly delays the appearance of the wrinkles (Fig. 4.15a).
By comparing the different measured wrinkle wave lengths λ in Fig. 4.15c and d, we
observe that in most cases λ increases slightly with time, reaches a maximum and decreases
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in the following. In some cases, λ seems to converge against an upper limit. But the
variations in time are in all cases rather small. The zoom on the example of S = 5 in Fig.
4.15d demonstrates this behaviour very well. However, it is noticeable that even with the
same emulsion properties and the same reactive silicone blend, different behaviours are
observed, Fig. 4.15d. Both λshort and λlong have only small differences for the same S and
different Φd and Φcat. They are independent of the emulsion properties, only their time
of appearance depends on them. λshort(S) (solid symbols in Fig. 4.15c) increases with
decreasing tw(S) (Fig. 4.15c). This observation seems similar for λlong (empty symbols in
Fig. 4.15c) but is less clear due to the little data.

We can summarise that:

• The wrinkling appears after a characteristic time tw, which depend on Φcat and S.
It has a minimum between S = 0.7 and S = 5 (Fig. 4.15a);

• The wrinkle wave length λshort goes through a maximum in S which seems to be
the same as the minimum for tw (Fig. 4.15c)

• A second longer characteristic length or wave length λlong is present in most of the
Petri dish experiments (Fig.s 4.14 and 4.15c);

• The amplitude of the wrinkles increases until larger folds appear at t3. Unfortunately,
we could not measure the amplitude in our experiments;

• At a time t4 the interface lost most of its periodicity and is strongly deformed.

We cannot explain the appearance of the wrinkling with 100% certainty, but we will give
some interpretations in Section 4.4.4.

4.4.3 Skin formation on a drop
Firstly, let us take a look at the droploon shapes. Only axisymmetric shapes can be

analysed with the GSD introduced in Section 4.3.6.2. Fig. 4.16 shows the evolution in time
of pendant catalyst-in-PEG emulsion drops with different S at Φd = 0.003 and Φcat = 1.
At the beginning, except for S = 5, all shapes are axisymmetric (Fig. 4.16) claimed by
direct observation with the two cameras. For S = 5 the reaction is to fast to create a
spherical drop controlled by interfacial tension before the skin starts to grow. During
the creation of the drop through the syringe, a skin is already formed which significantly
influences the shape of the droploon as it is deformed by the further increase in droploon
volume. At a time, which we will call "tb", the droploons lose their axisymmetry. Fig. 4.17
shows for different Φd, Φcat and S the time tb. tb was measured visually. One observes a
similar behavior as for the wrinkling appearance tw from Section 4.4.2 (Fig. 4.15a):

• The minimum for tb is in between S = 1 and S = 5,

• Φd has a no measurable influence,

• and Φcat shifts tb to significantly higher values.

The non-axisymmetric drop shapes differ significantly between each other. We distinguish
different characteristic shapes by direct observations, shown in Fig. 4.18. First, the
"axisymmetric spherical" shape, which we are looking for to perform the GSD from Section
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4.3.6.2. Second, the "buckled shape", which is typical for spherical droploons under
compression and observed in many experiments [125, 126] and well understood also from
the theoretical point of view [127, 128]. Third, the "potato shape", at which the interface
is not any more homogeneously curved. Locally increased curvatures, which almost appear
like edges or corners, are typical of the potato shape. Forth, the "mushroom shape", in
which the droploon maintains an overall nearly spherical shape but significantly reduces
its curvature, and compensates this by curving around the edge of the needle.

The buckled shape is typical for S ≤ 0.7. It speaks for isotropic skin properties. The
potato shape is typical for S > 0.7. We suspect that the reaction is too fast for these
stoichiometries (see Fig.s 4.5, 4.11 and 4.13) to form a drop with a complete liquid interface
before a skin forms on it. Therefore, the skin is not isotropic from the start, which may
explains the non-homogeneous deformations. The mushroom shapes are observed for all
S but more often and more pronounced for sitting drops (Fig. 4.18). It becomes clear
that small changes such as sitting and hanging or the needle radius have an influence on
the later shape, probably due to the influence of gravity. Another factor, which is difficult
to control, is the spreading behaviour of the catalyst-in-PEG emulsion in the reactive
silicone oil on the needle surface. Often the droplet did not have perfect axisymmetric
boundary conditions on the needle.

4.4.3.1 Interfacial rheology of droploons via GSD

Only droploons which keep a spherical shape can be evaluated with a GSD. The
mushroom shapes can be evaluated under the condition that the curving around the
needle deforms only slightly during the volume oscillation and that the main part of the
interface stays spherical and axisymmetric (For example Fig. 4.18b the second sitting
droploon from the left). In this case, the lower part of the mushroom shape can be ignored
and only the upper spherical part can be analysed under the same conditions as discussed
in Section 4.3.6. From Fig.s 4.15a and 4.17 we observe that a lower Φcat (Φcat = 0.1)
slows down the skin growth, which allows a better calibration and gives more time for
the analysis before the droploon starts to buckle. Some experiments with Φcat = 1 and
Φd = 0.0003 are also suitable. But the emulsion properties are less reproducible (since
the amount of catalyst is very small, which has an influence on the mixing procedure
and the precision of Φd) and consequently the GSD experiments as well. Therefore, we
chose Φcat = 0.1 and Φd = 0.003 to analyse the skin with a GSD. Since our final goal
is to study the interactions of two droploons, we perform the experiments directly on
the double bubble setup of Fig. 3.6a. Consequently, the two initial droploons are almost
identical. Their volume oscillation starts at the same time, they have the same emulsions,
the same temperatures, the same environmental pressures, the same silicone blend, only
one droploon is hanging and the other is sitting. But this has almost no influence on
the initial shape, since the Bond number Bo is small. From Fig. 4.18 we know, that
even this small influence changes the shape evolution with time. Fig.s 4.19 and 4.20 have
both the same structure respectively for the hanging and sitting droploon and show the
results of a double droploon GSD for S = 0.7, Φcat = 0.1 and Φd = 0.003 with: in a) the
effective interfacial tension of Equ. (4.15), in b) a color time scale for the different volume
oscillations together with photographs of the investigated droploons for the different times,
in c) τ1 from Equ. (4.32), in d) τ2 from Equ. (4.33), in e) τ3 from Equ. (4.34) and in f) τ4
from Equ. (4.35). We observe for the hanging and sitting droploon a similarly behavior.
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Figure 4.16: The evolution in time of catalyst-in-PEG emulsion drops in a silicone blend with
different S and Φd = 0.003 and Φcat = 1. The first non-axisymmetric shape is highlighted in blue
if it buckles and in red if it deformed in another manner.

The influence of λA on γeff increases with time and the mean effective interfacial tension,

γeff;0 = 1
T

∫ T

0
γeffdt, (4.47)
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Figure 4.17: The time at which a pendant catalyst-in-PEG emulsion drop in a silicone blend with
stoichiometry S under a periodic deformation as described in Section 4.3.6 with ∆V = 0.4µl
and T = 50 s looses its axisymmetry due to buckling (in blue) or due to other deformations for
example a "potato" shape (in red).

Figure 4.18: a) Four different types of droploon shapes as a scheme and b) examples of experiments
showing simultaneously the top and bottom drop: Nearly spherical shapes (green), which are
observed at the beginning of each experiment. Buckled shapes (blue), which are observed mostly
for S ≤ 0.7. Potato shapes (red), which are observes mostly for S > 0.7. Mushroom shapes
(yellow), which are observed mostly for sitting droploons.
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decreases with time (Fig.s 4.19a and 4.20a). The functions of τ2 and τ3 in Fig.s 4.19 and
4.20d and e are very noisy and have small amplitudes for t < 23 min in comparison to τ1
and τ4 in Fig.s 4.19 and 4.20c and f. We conclude that τ1 and τ4 contain the important
information for these measurements and τ2 and τ3 have negligible influence on γeff . In τ1
we find the influence of λA on γeff and in τ4 the falling mean effective interfacial tension
γeff;0 (Fig.s 4.19 and 4.20c and f).

For reaction times longer than t > 23 min, the droploon starts to buckle for the
hanging droploon (Fig. 4.19b). This also has an influence on the measured (calculated)
γeff and thus on the different τk. However, since the droploon is no longer axisymmetric
and the measured surface area is not considering the buckled part correctly, this behaviour
can no longer be used to determine the skin properties. We can still try to understand
the different components in general terms. First we observe, that γeff stays constant after
the shape is buckled. λA at which the shape starts to buckle and reaches the constant γeff
in one period becomes larger with time (Fig. 4.19a). Secondly, the changes in the elastic
component τ1 in time become smaller, since it connects only the maximal and minimal
γeff . Third, we observe an increase in the dependency of τ3 and τ4 on λA (Fig.s 4.19e and
f). They are necessary to compensate the kink of the function γeff (Fig. 4.19a).

The sitting droploon does not buckle and keeps an axisymmetric shape until the end
of investigations. But we observe a slow transition from a spherical shape to a mushroom
shape (Fig. 4.18 for the mushroom shape and Fig. 4.20b for the shape evolution). This has
an influence on λA. The mean curvature of the mushroom head decreases. Consequently,
the same volume change results in a smaller area change, which explains the decrease
in λA in time in Fig. 4.20. Since the shape stays axisymmetric and most of the surface
spherical, we can evaluate all volume oscillations with the GSD for the sitting droploon
(Fig. 4.20).

In Fig. 4.21, we compare γeff;0 (Fig. 4.21a) and the dilational interfacial elasticity
K ′

2D (Fig. 4.21b) as a function of time for different S and for the hanging and sitting
droploon. Since τ2 is negligible, K ′′

2D is negligible too. The complete results of the GSD as
for S = 0.7 in Fig.s 4.19 and 4.20 are shown in the Appendix in Section A.4 for the other
stoichiometries S. We can recognise the temporal characteristics of the skin growth of the
different S, which we know from the Petri dish experiments (tw in Fig. 4.15a) and from
the buckle times (tb in Fig. 4.17). γeff;0 decreases earlier and faster while K ′

2D increases
earlier and faster by going closer to the minimum in tw and tb (Fig.s 4.15a and 4.17) at
stoichiometries between S = 0.7 and S = 5.1. The behavior for the sitting and hanging
droploon is almost identically for both quantities, γeff;0, K ′

2D, and all S. The kink at the
end of the data for the hanging droploon and S = 0.7 is related to the buckling (Fig.
4.19). For the data with S = 0.24, we observe a small variation between the hanging and
sitting droploon. Also the data for the sitting droploon is more noisy for γeff;0 and K ′

2D.
Looking at the GSD results in Fig.s A.8 and A.9 for S = 0.24, one observes, that the
hanging droploon is very spherical and the sitting droploon has some small defects at the
interface, which ultimately cause buckling. This could explain the difference between the
hanging and sitting droploon in γeff;0 and K ′

2D for S = 0.24 in Fig. 4.21.
To compare the measured data with existing theories for buckling and wrinkling

[127, 128, 129, 130, 131, 132], we fit γeff;0 and K ′
2D to the empirical laws

γeff;0 = γeff;0(t = 0) − Cγt
nγ , (4.48)

with γeff;0 = 11 mN/m the interfacial tension between the catalyst-in-PEG emulsion and
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the silicone blend and Cγ and nγ two fitting parameters. We also fit

K ′
2D = CKt

nK , (4.49)

with CK and nK two fitting parameters. The obtained values for the different fitting
parameters can be found in Table 4.2. The fitted curves are compared in Fig. 4.21a and
b with the experimentally obtained values from the GSD. These will be used in Section
4.4.4 for a more in-depth analysis.

S Cγ in mN
msnγ nγ CK in mN

msnK nK

0.23 2.7· 10−6 1.7 4.3 · 10−12 3.5
0.7 1.6· 10−7 2.3 4.7 · 10−11 3.8

Table 4.2: Empirical parameter for different S for Equ.s (4.48) and (4.49).

We can summarise that

• The droploons stay axisymmetric or even spherical for a time < tb (Fig. 4.17)

• Different shape types are observed (Fig. 4.18).

• For some emulsions and silicone blends GSD is capable to measure K ′
2D and γeff;0

(Fig. 4.21a and b).

• The time period at which measurements are possible with the GSD are rather small
due to the fast decrease of γeff;0 leading to buckling phenomena.

• The response of the skin can be considered purely elastic with τ2 (and hence K ′′
2D)

being negligible small in the measured parameter range.

• For all parameters the skin is expanding isotropical within the interface, which
causes a shape transition from a spherical shape to buckled, mushroom or potato
shape depending on silicone blend and the catalyst-in-PEG emulsion properties.

4.4.4 Interpretations of the skin growth, wrinkling and buckling
We are not able to show what causes the expansion of the skin during growth. For

this reason, we limit ourselves here to a hypothesis for an explanation that needs to be
proven in future work. Our first observation: In all experiments in which the catalyst
was homogeneously distributed in the silicone phase from the beginning, we could not
detect any expansion (all bulk experiments of Section 4.1). That was confirmed by a
Petri dish experiment, where the silicone blend was premixed with the catalyst. There
no wrinkling was observed, even after the total silicone phase was solidified. That let us
believe that the expansion of the skin is related to the catalyst gradient or the diffusion
of the catalyst in the silicone phase. The gradient in S vertical to the interface due to the
diffusion of the droplets in the catalyst-in-PEG emulsion could also have an influence. It
can be said with certainty that solidification takes place very quickly near the interface,
as there is a high catalyst concentration at the beginning. As the distance to the interface
increases, the solidification process slows down. This creates a gradient in the material
properties of the skin vertical to the interface. Near the interface, the skin has no time
to relax while the reaction takes place. Perhaps the subsequent relaxation of the skin
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leads to an expansion. The reaction gradient is important so that the expansion has
a favoured direction and does not behave isotropically. We hardly see any differences
between the optical properties of the solid and liquid silicone blend, which is why skin
thickness measurement is so difficult. Presumably the densities of the two phases are
also very similar. An expansion in one direction must therefore be accompanied by a
shrinking in another direction. This is only possible in a non-isotropic state, which could
explain the different solidification behavior between silicone with an initial homogeneous
distribution of the catalyst (isotropic) and silicone where the catalyst diffuses from an
interface. The gradient in Φcat, S or both could causes this non-isotropic state.

Even if we are not able to prove our hypothesis for the expansion of the skin, we can
interpret the resulting phenomena as the wrinkling of the skin from Section 4.4.2 and
the buckling from Section 4.4.3. Therefore we relate and compares our observations to
existing theories for similar problems. In the first part we present a theory explaining
the wrinkling, in the second part a theory explaining buckling and in the last part we
compare the theories to our measurements.

4.4.4.1 Wrinkling of flat elastic sheets

Wrinkling of elastic sheets on liquid interfaces was observed in different studies
[129, 130, 131, 132]. In the work by E. Brau et al. [129] and the thesis of E. Jambon-
Puillet [130] the wrinkling is causes by uni-axial compression and a density difference
between the upper and lower liquid phase. The studies of J. Huang et al. [131, 132]
investigate a similarly phenomenon, where additionally interfacial tension is significant.
In our case, the elastic sheet is the growing skin with thickness δ(t). Interfacial tension
γeff;0(t = 0) is of the same order of magnitude as the elastic stresses. We do not compress
the interface by reducing the intefacial area. However, the interface is limited by the
Petri dish. We hypothesise that by a mechanism unknown to us the skin expands in a
direction parallel to the interface, as the interface between the emulsion and the silicone
grows continuously once the reaction has started. We also hypothesise that this expansion
occurs isotropically within the interface. This assumption is supported by macroscopically
isotropic patterns of the folds in the circular Petri dishes for the start of the wrinkling
around tw (Fig.s 4.14, A.5, A.6 and A.7). This leads to compressive stresses, as in the
studies of F. Brau, E. Jambon-Puillet and J. Huang [129, 130, 131, 132]. In our work, the
compression is not uni-axial, it is isotropic. Despite the different stress state, we want to
compare the wave lengths with the theory from F. Brau et al. [129]. It considers the total
energy consisting of the bending energy of the elastic sheet and the potential energy, due
to the density difference ∆ρ between the upper and lower liquid phase. It then compares
the energies of the wrinkled and flat state of the interface. We only show the important
quantities here and interpret them directly to match our system and setup. The sheet
will winkle when the energy of the winkled state is lower than of the flat state. This leads
to a the critical surface pressure given by

γeff;w = 2(Bw∆ρg)1/2, (4.50)

with Bw the bending modulus of the skin at the moment when the interface starts to
wrinkle, corresponding to tw (Fig. 4.15a). The predicted wave length at tw for a uni-axial
state of stress is

λw = 2π
(
Bw
∆ρg

)1/4
. (4.51)
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The bending modulus of an isotropic thin sheet is given by

B = Eδ3

12(1 − ν2) , (4.52)

with E the Young’s modulus and ν the Poisson ratio in bulk. Since we are measuring
only two-dimensional material properties with the GSD in Section 4.4.3.1, we rewrite the
bending modulus with K ′

2D = Eδ and use the assumption of an incompressible rubber-like
skin with ν = 0.5

B = K ′
2Dδ

2

9 . (4.53)

Inserting B in Equ.s (4.50) and (4.51) gives

γeff;w(δ) = 2
3(K ′

2D;wδ
2∆ρg)1/2, (4.54)

and

λw(δ) = 2π
(
K ′

2D;wδ
2

9∆ρg

)1/4

. (4.55)

4.4.4.2 Buckling of droploons

The transition from spherical to buckled droploons, observed for some of our experi-
ments (Fig.s 4.18 and 4.17), has been investigated theoretically [127] and experimentally
[133]. The buckled and spherical states can also be compared energetically. The transition
takes place at a critical buckling pressure, which depends on the properties of the skin,
with thickness and Young’s modulus again being of particular importance. The critical
buckling pressure at which the transition from spherical to buckled shapes occurs, is [127]

∆pb = E

(
δ

Rd

)2
(4.56)

with Rd the spherical droploon radius. The pressure ∆pb can be used to measure the
Youngs modulus E if δ and Rd is known [133]. Inserting Equ. (4.56) in Equ. (4.15) gives
the effective interfacial critical buckling tension

γeff;b = −RAE

2

(
δ

RA

)2
= −K ′

2Dδ

2RA
(4.57)

with RA = Rd for the assumption of a spherical shape and K ′
2D the elastic two-dimensional

dilatational modulus from Equ. (4.26).

4.4.4.3 Comparison with experiments

To obtain the critical wrinkling and buckling effective interfacial tension γeff;w (Equ.
(4.54)) and γeff;b (Equ. (4.57)) all values are direct measurements from the GSD except of
δ. Nevertheless, to make a comparison with the measured wavelengths and critical times,
δ(t) is modelled with Equ. (4.36). The empirical Equ. (4.36) is based on experiments
with an emulsion of Φd = 0.003 or Φd = 0.0003 and Φcat = 1. However, the GSD results
are based on an emulsion with Φd = 0.003 and Φcat = 0.1. We know from the Petri dish
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and pendant drop experiments, that this significantly slows down the skin growth. To
compensate for this difference, we correct Equ. (4.36) with the factor Ccor and obtain

δ(t) = CcorCδt
nδ . (4.58)

From Section 4.4.1 we know, that the exponent nδ in Equ. (4.36) is independent of the
emulsion and silicone blend properties. To obtain Ccor we compare tw and tb for the two
emulsions from Fig.s 4.15a and 4.17 and obtain

Ccor =
tw/b(Φd=0.003,Φcat=0.1)
tw/b(Φd=0.003,Φcat=1) = 8 ± 1. (4.59)

Finally, we obtain γeff;w from Equ. (4.54) and γeff;b from Equ. (4.57) with the empirical
Equ.s (4.59) for δ(t) and (4.49) for K ′

2D(t). They are plotted against the time in Fig.
4.21c and compared with γeff;0 from Equ. (4.48) for different S. If γeff;w or γeff;b and γeff;0
overlap, the system starts to wrinkle or buckle respectively (asterisk in Fig. 4.21c). As
long as γeff;0 > 0 the flat or spherical shape is always the preferred state. The interfacial
tension γ creates a positive offset in γeff;0, which stabilises the flat and spherical state.

γeff;w is for the full considered time scale very small and mostly below our measurement
precision. The crossing between γeff;w and γeff;0 is small enough to approximate it with
γeff;w = 0 mN/m. We obtain the critical wrinkling time tw and the critical wrinkling wave
length λw from the model (Fig. 4.21a and c). We compare the theoretical obtained values
with the measured values from Fig. 4.15a and c in Fig. 4.22. Fig. 4.22 is identical to Fig.
4.15 with additionally the theoretical values. The solid lines in Fig. 4.22a are the function
λw(tw) from Equ. (4.55) with the empirical Equ.s (4.49) and (4.59) for two different S.
The asterisk in Fig. 4.22 are theoretical critical predictions at which the wrinkled state is
the energetically favoured state. We observe in Fig. 4.22b, that the theoretical predicted
tw are delayed in comparison to the measured tw, but they follow the same tendency in
respect to S. The predicted wave length λshort in Fig. 4.15c tend to be too large, but
they are in the right order of magnitude.

γeff;b and γeff;0 do not intersect with each other in Fig. 4.21c. This is in agreement
with the measurements, since the theory does not take into account the periodic volume
change, which is necessary for the GSD. If we look at Fig. 4.19, it is also noticeable, that
the drop shape has never buckled during a complete period, but only when γeff;0 ≈ 0.
For this early time span, as for γeff;w, γeff;b is very small and can be approximated with
γeff;b = 0 mN/m. It is apparent in Fig. 4.21c that γeff;b and γeff;0 do not have to intersect
and if they do intersect, they do it twice. This behaviour is partially confirmed in the
experiments, as not all drop shapes started to buckle, although a very negative γeff;0 was
measured in some cases (Fig. 4.21a). The behaviour, that a buckled shape changed back
to a spherical shape, was not observed, but can be explained by the fact, that buckling
influences skin growth due to the changed shape. We believe that γeff;b(t) and γeff;0(t) are
very close and therefore small differences between the drops, such as whether they are
hanging or sitting, can lead to an intersection between them, which causes buckling.

Fig. 4.21d shows an hypothetical Young’s modulus E of the skin with the assumption,
that the skin growth as with Equ. (4.59) predicted and the skin is an isotropic material,
so that applies E = K ′

2D(t)/δ(t) with K ′
2D(t) from Equ. (4.49). For a homogeneous

skin that is deformed around its reference state, E should remain constant. This is
obviously not the case (Fig. 4.21d). Two possible reasons for that are: the skin is not
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homogeneous and the skin is not deformed around its reference state. The second is
definitely the case, since γeff;0 is decreasing. Non-linear material behaviour could harden
the skin, when it is under compression. However, neither of these effects can explain
the extremely large or extremely small E in Fig. 4.21d (Attention in both cases it is an
extrapolation). We suspect that the skin growth by Equ. (4.59) is not appropriate for
the measured time period in the drop shape experiments. Due to the oscillations, the
catalyst-in-PEG emulsion silicone blend interface moves by a few µm back and forth,
which greatly influences the diffusion of the catalyst and finally the skin growth in this
area. Fig. 4.12b shows, that for t > 15 min most of the catalyst is only a few µm away
from the interface.
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Figure 4.19: Results for dilational interfacial shear rheology (Section 4.3.6.2) for S = 0.7,
Φd = 0.003 and Φcat = 0.1 of a hanging droploon: a) γeff from Equ. (4.15), b) Time legend with a
series of images of the corresponding droploons, c) τ1 from Equ. (4.32), d) τ2 from Equ. (4.33), e)
τ3 from Equ. (4.34) and f) τ4 from Equ. (4.35).
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Figure 4.20: Results for dilational interfacial shear rheology (Section 4.3.6.2) for S = 0.7,
Φd = 0.003 and Φcat = 0.1 of a sitting droploon: a) γeff from Equ. (4.15), b) Time legend
with a series of images of the corresponding droploons, c) τ1 from Equ. (4.32), d) τ2 from Equ.
(4.33), e) τ3 from Equ. (4.34) and f) τ4 from Equ. (4.35).
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Figure 4.21: a) The measured mean effective tension γeff;0 (Equ. (4.47)) in comparison to the
fitted empirical laws from Equ. (4.48). b) The measured dilational elastic shear modulus (Equ.
(4.26)) as a function in time for different S in comparison to the fitted empirical law from Equ.
(4.49). c) The estimated effective buckling tension from Equ. (4.57) and winkling tension from
Equ. (4.54) in comparison to the empirical obtained effective tension from Equ. (4.48) for different
S. d) The theoretical Young’s modulus E of the skin, assuming an isotropic skin and using the
empirical laws for the skin thickness δ(t) (Equ. (4.36)) and the dilational elastic shear modulus
(Equ. (4.49)) for different S. All measurements are made with an emulsion with Φcat = 0.1 and
Φd = 0.003.
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Figure 4.22: The experimental results from Fig. 4.15 are compared to the theory from Section
4.4.4.1 and the empirical laws for δ(t), K ′2D(t) and γeff;0(t). a) The wrinkling wave length λ against
the time t, b) the wrinkling time tw against S and c) the legend.
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4.5 Conclusion
The mechanical properties of the catalyst-in-PEG emulsion droploon in reactive

silicone oil is complete characterised, if the parameters γeff;0, K ′
2D and δ are measured

independently as a function of time. We showed in Section 4.4.3.1, that for a specific time
period and some emulsion and silicone blend properties a measurement of γeff;0 and K ′

2D
as a function of time is possible (Fig. 4.21). For the first time we used the GSD (Section
4.3.6.2) for a liquid/liquid interface with a dynamic calibration. Thin skin growth δ(t)
was modelled numerically and compared to some limited measurements to rather large
skin thicknesses of a few hundreds of µm. The problem is that the time periods in which
the skin thickness and the mechanical properties can be measured do not overlap.

The mechanical properties were tested on two known instabilities, in Section 4.4.1
on the wrinkling instability of elastic thin sheets on a liquid/liquid interface with a
density difference and interfacial tension and in Section 4.4.3 on the buckling instability of
droploons. Both instabilities depend on all three parameters γeff;0, K ′

2D and δ (Fig. 4.21).
The agreement between theory and experiments of the two instabilities is not perfect.
Only qualitative statements can be made by comparison with the theory. This is probably
mainly due to the poor skin thickness measurements and the imperfect model for skin
growth especially for small times after the start of catalyst diffusion.

The main open question is why the skin expands parallel to the catalyst-in-PEG
reactive silicone blend interface, which lowers γeff;0 and thus causes the two instabilities.
A first approach could be to test the hypothesis from Section 4.4.4 by analysing the
structure of the skin as a function of the distance to the interface. However, the difficulty
here is that the skin is very thin. It could also be tested whether similar observations can
be made for other systems in which a reactant diffuses from an interface.

Furthermore, we demonstrated in Section 4.4.3 that the combination of emulsion
and silicone blend properties as S = 0.7, Φd = 0.003 and Φcat = 0.1 could be used to
investigate the interactions between two such droploons. Since the mechanical interface
properties could be measured and the droploon remains axisymmetric over sufficient long
time. The reaction should be stopped at the reaction time at which the desired properties
are present. In addition, the measured mechanical properties could be compared more
systematically with known other methods, such as in the article of M. Neubauer et al.
[115], discussed in the introduction in Section 4.1.
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5.1 Introduction
As discussed in Chapter 4, droploons are used in many different areas. In most

cases, the droploons serve as a means of transport (e.g. fragrances or medicines) and as
protection against environmental influences. The mechanical properties of the droploons
[100, 101, 102, 103] and the interactions between them are therefore of crucial importance
for a save transport. But even to produce new materials with controlled mechanical
properties, the interactions between the droploons or bubloons must first be understood
and measured.

In this chapter we make a proof of concept, that it is possible to measure direct
interactions between two very soft droploons with the new double bubble device, which
was developed during this thesis and already used in Chapter 3 for the drop-drop
interactions and in Chapter 4 for interfacial dilational rheology of silicone droploons. The
device is represented in Fig. 3.6 and the droploons in Fig. 5.1b. To our knowledge,
a similar experiment has so far only been carried out by A. Giustiniani et al. [2].
In this case, however, no pressure measurements were carried out, which is why the
results are based only on the shape of the droploons. Other Studies on capsule-capsule
interactions are mainly numerical and treat the coupled response of two capsules in a shear
flow [134, 135]. Interactions through direct contact between two droploons have been
mostly overlooked. Other studies focus more on the macroscopic response of droploon
accumulations [136, 112, 2, 3] and do not look in detail at the direct interactions between
two droploons. It is therefore important to close this knowledge deficit. In the following
only primary results are presented to make a proof of concept. But the full quantitative
exploitation have to be done in future work.

5.2 Methods
All results in this chapter are from the same two droploons. They were obtained

using the same procedure described in Chapter 4. The catalyst-in-PEG emulsion has the
following values: Φd = 0.0003 and Φcat = 1 and the silicone blend has S = 10. The volume
of the droploons was kept constant during skin growth. Consequently, the mechanical
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Figure 5.1: a) The effective interfacial tension γeff as a function in time for the bottom and top
droploon obtained with Equ. (4.15). b) The projection of the droploons in the xz and yz plane at
the beginning and the end of the droploon creation.

properties of the skin are not known as no GSD was performed (see Chapter 4). The
pressure difference across the skin was determined using the same procedure as described
in Chapters 3 and 4. The effetive interfacial tension γeff was obtained with Equ. (4.15)
and plotted for the top and bottom droploon in Fig. 5.1a. It is used to validate the
correctness of all pressure calibrations and the formation of the skin at the interface.
Fig. 5.1b shows the xz and yz projection of the two droploons at the beginning and
end of this measurement. The shapes of both droploons remain almost unchanged in
time. The effective interfacial tension of the bottom droploon in Fig. 5.1a behaves as
expected. At the beginning, γeff is around 11 mN/m and decreases progressively due to
the skin formation. γeff of the top droploon shows irregular fluctuations, which cannot
be explained by shape instabilities, as the shape is not changing. We therefore suspect
that this is an artefact and that there are air entrapments in the tube system between
the droploon and the pressure sensor, which disturb the measurement. Therefore, only
the pressure at the bottom droploon is shown in Section 5.3 for measurements, where
high accuracy is required.

In this preliminary experiments chemical reactions in the silicone blend were not
stopped. However, as the catalyst-in-PEG emulsion has a very low catalyst concentration,
the reaction only takes place very slowly. The influence on the subsequent measurements
is therefore small.

5.2.1 Experimental procedure

Two different types of experiments were carried out, "contact experiments" and "sliding
experiments", illustrated in Fig. 5.2. For a contact experiment (Fig. 5.2a), the upper
droploon is first moved with a constant approaching velocity va in z direction forward the
bottom droploon. At a distance hmin the movement is stopped and the two droploons
stay in contact for a relaxation time tr. At the end the upper droploon is moved upwards
with the withdrawing velocity vw until the two droploons loose their contact again.
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Figure 5.2: a) The principle procedure of a "contact experiment", with the approaching velocity va,
the relaxation time tr and the withdrawing velocity vw. b) The principle procedure of a "sliding
experiment" with the sliding velocity vs.

The beginning and end of the sliding experiment (Fig. 5.2b) is the same as for a
contact experiment. The top droploon approaches the bottom droploon with the veolocity
va and is withdrawn at the end with the velocity vw. During the contact duration (ts),
the top droploon is kept at constant distance hmin and moved in a horizontal direction at
a speed vs (Fig. 5.2b).

5.3 Results and discussion

The Table 5.1 shows in a chronological order five performed experiments with the
two created droploons from the methods Section 5.2. The order is important since we
expect a history-dependent response. The type of experiment, the figure showing the
measurements, the minimal distance between the needles hmin, the approaching and
withdrawing velocity va/w are given in the Table 5.1. The experiments were carried out
one after the other without much delay (in total after the skin formation 30 min). It can
therefore be assumed that the chemical reaction between the first and last experiment
did not cause a major change. The distances when the two droploons come into contact
the first time at h = hc;start or when they loose the contact at h = hc;end are measured by
eye. Since it is difficult to distinguish between the solid and liquid silicone, this values
have a larger uncertainty ±50µm. If the two values are the same to this precision they
are both called hc.
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Number Type Fig. hmin in mm va in µm/s vw in µm/s
1 contact 5.3 2.30 -8 8
2 contact 5.4 2.20 -20 20
3 contact 5.5 1.77 -80 18
4 sliding 5.6 1.95 -80 18
5 contact 5.7 1.85 -80 -

Table 5.1: The chronological order of the experiments carried out with the double-droploons. The
table list the type of experiment, figure showing the corresponding results, the minimal distance
between the needles hmin, the approaching velocity va and the withdrawing velocity vw.

5.3.1 First experiment: "contact"

The first experiment (Fig. 5.3) is a quasi static contact experiment. Very small
approach and withdrawal velocities (va/w in Table 5.1) were selected and the relaxation
time is almost zero. hmin (Table 5.1) is rather large to ensure only elastic deformations.
In Fig. 5.3a the pressure difference between the inside and outside of bottom droploon at
the height of needle opening is plotted against the distance h between the two needles.
Different symbols are chosen for the approaching (◀) and withdrawing (▷) process. ∆p
stays constant during the approach before the two capsules touch each other. From the
distance hc, when the droploons enter in contact, ∆p increases continuously up to the
distance hmin. Increasing h again, ∆p takes almost the same path back and reaches a
fixed value a little below the initial ∆p after the droploons detach at h = hc. This change
is probably caused by plastic deformation during the contact. This could be continued by
a shape analysis in future work.

Figure 5.3: First experiment (contact, Table 5.1) with the two silicone droploons. a) The measured
pressure difference ∆p of the bottom droploon at z = h/2 (opening of the needle). b) xz and yz
projections at different times. hc is the height, where the two droploons touch each other for the
first time. The inset in a) shows how the velocity in z direction changes, with va/w = ∓8µm/s.
For this experiment, the relaxation time is tr = 0 s.
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5.3.2 Second Experiment: "contact"

The second experiment (Fig. 5.4) is a contact experiment in which the two droploons
are in contact with a needle distance hmin = 2.20 mm for a relaxation time tr = 46 s. Fig.
5.4 has the same organisation as Fig. 5.3. The differences are the measurements during
the relaxation time symbolised with a cross (×) in Fig. 5.4a and b. Fig. 5.4b, plots the
change in ∆p during tr. We observe:

• The initial ∆p in Fig. 5.4a is equal to the final ∆p in Fig. 5.3a. Meaning the
reaction has progressed little.

• During the relaxation (Fig. 5.4b) ∆p has a decreasing trend.

• The initial ∆p is clearly larger than the final ∆p in Fig. 5.4a. The difference is
approximately the change in pressure during the relaxation time tr in Fig. 5.4b.

• By comparing the photographs in Fig.s 5.3b and 5.4c at the start and end of the
experiments, one observes progressively small changes in the shape of the droploons,
probably due to plastic deformations of the droploons.

5.3.3 Third experiment: "contact"

For the third experiment (Fig. 5.5), we increase va and decrease hmin (Table 5.1), to
observe larger plastic deformations during the relaxation time and validate the previously
observed trend. The effect is strong enough to be seen also for the top droploon (red in
Fig. 5.5), despite the less accurate pressure measurements. The general behavior in Fig.
5.5a is the same as for the first (Fig. 5.3a) and the second experiment (Fig. 5.4a). ∆p
of the bottom and top droploon behave similarly in Fig. 5.5a and b. This is plausible,
because both droploons have a similar volume and the two pressure differences ∆p are
coupled by the contact. The differences in shape between the top and bottom droploon
appear to be of minor importance.

Let us take a closer look at the relaxation process at h = hmin in Fig. 5.5b and c. Fig.
5.5c shows the shapes before and after the relaxation. A clear difference in shape can
be observed. At the end of the relaxation, the droploons resemble more a tilted bubble
(TB) configuration from the Chapter 3. To reach this new shape, the two droploons
have slipped along each other. Since the interfaces are no longer purely fluid as for the
Chapter 3, there are other frictional forces that influence the slipping. This could explain
the fluctuations in ∆p in Fig. 5.5b during the relaxation. This is also supported by
the fact that the fluctuations for the top and bottom droploon appear at the same time
(Fig. 5.5b). The shape of the droploons in the forth photograph from the left in Fig.
5.5c shows a deformation, which is only explainable by attractive forces between the
droploons. It is therefore the first time that we observe them in our experiments. The
attractive forces could explain why ∆p in Fig. 5.5a increases at specific h again for the
withdrawing process and that h for the first contact hc;start is smaller then for the last
contact hc;end (Fig. 5.5). The function ∆p(h) during the withdrawing resembles that of
two drops in contact with a contact angle θc > 0◦ (Chapter 3). Since this behaviour could
not be observed for the first two experiments from Fig.s 5.3 and 5.4, we conclude that the
attractive forces are history-dependent.
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Figure 5.4: Second experiment (contact, Table 5.1) with the two silicone droploons. a) The
measured pressure difference ∆p at the bottom droploon at z = h/2 (opening of the needle)
plotted against the distance between the two needles h. The inset shows how the velocity in z
direction changes, with va/w = ∓20µm/s and the relaxation time tr = 45 s. b) ∆p plotted against
t in the time span tr at h = hmin. c) xz and yz projections at different times.

The sliding of the two droploons over each other due to the droploon tilting instability
(CB→TB in Chapter 3) or the high ∆p due to the small hmin in the third experiment
(Table 5.1 and Fig. 5.5) could have caused the attractive forces, which were not observed
for the first and second experiment (Table 5.1). The contact time could also have an
influence due to the ongoing chemical reaction, but plays probably a minor rule since the
contact times of the three different experiments are not significant different.

5.3.4 Forth experiment: "sliding"

The forth experiment (Fig. 5.6 and Table 5.1) is a sliding experiment, in which we
moved the top droploon horizontals to the left with the velocity vs at the distance hmin
over the time span ts. Fig. 5.6c shows how ∆p changes during ts. The inset shows how vs
changes during ts. Fig.s 5.6b and d show for different times the xz and yz projections
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Figure 5.5: Third experiment (contact, Table 5.1) with the two silicone droploons. a) The
measured pressure difference ∆p at the top (red) and bottom (blue) droploons at z = ±h/2
respectively (opening of the needles) plotted against the distance between the two needles h. The
inset shows how the velocity in z direction changes, with va = −80µm/s, vw = 18µm/s and the
relaxation time tr = 39 s. b) ∆p plotted against t in the time span tr. c) xz and yz projections at
different times.

of the droploon shapes. ∆p decreases by moving the droploons away from each other
and increases by moving them towards each other (Fig. 5.6c). An exception is the
top droploon for the first horizontal back and forth movement. We do not yet have an
explanation for this.

The attractive forces during the withdrawing are stronger than in the third experiment
(Fig. 5.5), clearly shown by the strong deformations of the droploons, a measurable
contact angle θc in Fig. 5.6b and a pronounced minimum in ∆p in Fig. 5.6a for both
pressure measurements. Again the sliding, strong contact pressure or the long contact
time could have been the cause for the contact forces.
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Figure 5.6: Forth experiment (sliding experiment) with the two silicone droploons. a) The
measured pressure difference ∆p at the top (red) and bottom (blue) droploons at z = ±h/2
respectively (opening of the needles) plotted against the distance between the two needles h. The
inset shows how the velocity in z direction changes, with va = −80µm/s, vw = 18µm/s and the
sliding time ts = 105 s. b) xz and yz projections at the approaching and withdrawing process. c)
∆p plotted against t in the time span ts. The inset shows how the velocity in y direction changes,
with vs = ±55µm/s. d) xz and yz projections at the sliding process at four times also indicated
in the scheme in c).

5.3.5 Fifth experiment: "contact"

The fifth experiment (Fig. 5.7 and Table 5.1) is a contact experiment, in which
the bottom droploon broke. va is with -80 µm/s high. The minimal distance is with
hmin = 1.85 mm small but not the smallest (third experiment in Table 5.1). Fig. 5.7b
shows how ∆p changes after the two needles have stopped approaching each other. ∆p
for the top and bottom droploon behave similarly. In the beginning both ∆p increase,
reaching a maximum, decrease afterwards, and reaching a fixed value at the end. The
skin of the bottom droploon breaks when the pressure reaches the maximum (Fig. 5.7c).
Afterwards the bottom droploon releases liquid and both droploons start to relax, ∆p
decreases. The fixed pressure value at the end belongs to a new equilibrium state. The
initial increase in pressure during relaxation (Fig. 5.7b) might be caused by effects of
inertia. The needle stops moving and the droploon moves a little further due to inertia.
In this case, however, one would also expect to see a reverse effect at the top droploon
at the beginning of the measurement. This could not be measured significantly in the
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fifth experiment. But in the third and forth experiments we could measure a decreasing
pressure at the beginning of the measurement for at the top droploon, even though the
droploons were not yet in contact (Fig.s 5.5a and 5.6a). This can only be explained by
inertia effects. In the third and forth experiments we also worked with va = −80 µm
(Table 5.1).

Figure 5.7: Fifth experiment (contact experiment) with the two silicone droploons. a) The
measured pressure difference ∆p at the top (red) and bottom (blue) droploons at z = ±h/2
respectively (opening of the needles) plotted against the distance between the two needles h. The
inset shows how the velocity in z direction changes, with va = −80µm/s and tr = 14 s. b) ∆p
plotted against t in the time span tr. d) xz and yz projections for different times.

5.4 Conclusion

In the presented preliminary experiments, we were able to show that our developed
device has the necessary accuracy in pressure measurements, needle movements and image
resolution to measure interactions between two droploons. Phenomena such as adhesion,
friction and viscou-elastic or elastic-plastic deformations could already be analysed with
very simple experimental procedures (contact and sliding experiment Fig. 5.2). The
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results are not only qualitative due to the two cameras, but also quantitative due to the
pressure measurements. Further measurements are necessary to obtain certainty about
the different interpretations of the observed phenomena.

The axisymmetric structure of the setup (only contact experiments) allows compara-
tively simple to compare the complex physical system with theoretical models. However,
it is of crucial importance that the droploons also remain axisymmetric to make general
assumption about the interactions between the two skins of the droploons. Therefore,
for the results shown in this chapter, only a statement about the behaviour of these two
droploons for these particular deformations can be made. But Chapter 4 shows that we
are able to fabricate axisymmetric droploons, from which we even know their effective
interfacial properties. The comparison with theoretical models will therefore be part of
future studies.

In the experiments from Section 5.3, it is noticeable, that there are many similarities
with Chapter 3 (similar instabilities and pressure curves), in which interactions between
drops with liquid interfaces and constant interfacial tension were investigated. The
following questions arise: whether or how long droploons can be modelled with constant
interfacial tension.
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6.1 Conclusion
In this thesis interfaces with different properties, geometries and boundary conditions

were investigated to develop methods and systems to systematically analyse the influence
of complex interfaces on the properties of foams or emulsions. Complex here means the
additional influence of adhesive, elastic or frictional forces between bubbles and drops.
Forces, moments and pressures transmitted by the interfaces, the interface shape and
stability were analysed with help of experiments, simulations and theory for different
systems in the Chapters 2, 3, 4 and 5.

Chapter 2 deals with soap films between open, non-axisymmetric frames. The obtained
shapes of the interfaces are minimal surfaces. We showed how the frame shape, their
orientation and distance to each other affect the existence (Section 2.4.1) and shape
(Section 2.4.2) of the connecting interface and the forces and moments exerted on the
frames by the interfaces (Section 2.4.3). We compared the results to a new perturbation
theory (Section 2.3), which has a very good qualitative and a good quantitative agreement
to the experiments and simulations. All general trends in the force or moment to distance
or angular orientation curves are in agreement. In contrast to previous studies, our
approach is very general and simple and can be applied to arbitrary frame geometries.
This makes it possible to predict forces and moments that do not exist for minimal
surfaces between two identical frames. The quantitative agreement can be improved by
normalising distances by characteristic lengths.

Chapter 3 deals with two drops/bubbles/soap bubbles in contact and also with one
capillary bridge pinned on two closed circular frames for small Bond numbers Bo. The
closed frames result in an additional volume constrain for the drops, bubbles and capillary
bridges, which turns minimal surfaces into constant mean curvature surfaces. Therefore,
we use for the axisymmetirc shapes the theory of Delaunay 3.3.3. We showed how adhesive
forces between the drops or bubbles affect forces, pressures (Section 3.4.2) and shapes
(Section 3.4.3) of the drops and bubbles. The strength of the adhesive forces is reflected in
the size of the contact angle θc. We investigated three contact angles experimentally and
all in the range of 0◦ ≤ θc ≤ 90◦ theoretically and numerically. Therefore, the complete
R̂ − ĥ − θc shape space is obtained and drawn for three slices with θc = 0◦, 60◦ and
90◦ in Fig. 3.20. In total, five different types of shapes were distinguished with five
different shape transitions (Section 3.4.3). One is trivial (SB→CB), two were known from
the literature (CB↔TB and CB→SB), but analysed experimentally and theoretically
for different θc the first time in this depth and two were discovered and analysed by us
(CB↔ShB and CB→DB). Although we carried out preliminary theoretical studies for
the two non-axisymmetric instabilities (CB↔TB and CB↔ShB), a correct theoretical
prediction has still to be made for the two instabilities.

Chapter 4 deals with the growth and characterisation of a silicone skin between a
cayalyst-in-PEG emulsion and a silicone oil. The polymerization, which creates the
skin at the interface, was analyzed at both a flat and spherical interface. It starts as
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soon as the catalyst from the emulsion begins to diffuse into the silicone phase. The
two-dimensional skin properties were measured as a function of time during growth by a
pendant drop interfacial dilational rheology method. The effective tension-deformation
signal was treated and analysed with a General Stress Decomposition (GSD), which was
only very recently proposed for the analysis of interfaces [116]. We carried out the first
investigation, known to us, with the GSD on a liquid-liquid interface. The mechanical
properties of the skin were linked to wrinkling and buckling, both shape transitions,
which we observed for the flat and spherical interface shape. We demonstrated that this
characterisation can be performed simultaneously on two drops (one hanging and one
sitting), on the same setup used for the drop-drop interaction investigations in Chapter 3.

With Chapter 4 we showed a possible model system, that has many of the desired
properties:

• The two dimensional elasticity modulus K ′
2D has a similar order of magnitude as

the interfacial tension γ over a long reaction time period and is controlled by skin
thickness δ and the chosen silicone blend S. The obtained elasto-capillary numbers
are between 0 ≤ α ≤ 10.

• Good reproducible of the mechanical properties of the skin depending on the silicone
blend.

• The skin growth can be stopped at a desired moment with help of an inhibitor
with the drawback, that it must be dispersed homogeneously as fast as possible to
achieve a homogeneous reaction stop.

Disadvantages of this system are:

• The skin is expanding tangentially to the interface, which makes it impossible to
make investigations in an elastic stress-free state. But this is important, if one wants
to compare the measurements to existing non-linear elastic models for capsules.

• The fabrication is complex, since the dynamic skin growth depends on the catalyst-
in-PEG emulsion, which in itself is already a complex system. In addition, there is
the reaction at the interface with large catalyst concentration gradients (Fig. 4.12b).

• The skin thickness is difficult to measure, because it has almost the same optical
properties as the silicone oil.

Chapter 5 demonstrated with some preliminary experiments the potential of droploon-
droploon experiments. We showed that the double drop device from Fig. 3.6a, for
which the development was part of this thesis with the help of the engineer J. Dijoux,
is capable to measure quantitative and qualitative small changes in the interface/skin
due to droploon-droploon interactions. We gave a physical interpretation for different
droploon-droploon interaction phenomena as elasticity, viscous and plastic deformations,
adhesion and friction. For quantitative results a pre-analysis of every individual droploon,
for example with a GSD analysis, is necessary. We demonstrated that this is possible
with the same device. Due to the lack of time full exploitation of this experiments has to
be done in future work.
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6.2 Outlook
If the catalyst-in-PEG emulsion with reactive silicone is to be used to investigate

droploon-droploon or capsule-capsule interactions in more depth, it would be important to
understand the origin of the silicone skin expansion at the interface between the catalyst-
in-PEG emulsion and silicone blend. The next step would be to increase progressively
the elasto-capillary number α and compare pressure distance curves, shapes and shape
instabilities with the fluid interface with α = 0. The geometric parameters, such as the
distance between the needles h, the volume of the drops V , the needle radius R can be
used to manoeuvre into the interesting regimes. New parameters to investigate could be
the contact time and history of the two objects in combination with the contact pressure
or the skin thickness and the skin formulation. Measured quantities could be the hysteresis
size for an approaching withdrawing experiment or the contact angle θc, which is in this
case not constant, rather a function of all parameters and especially α and the adhesive
forces between the two objects. Due to the axisymmetry a comparison with theory is
practicable.

The next step could be the development of standardized characterisation methods for
droploons, bubloons and capsules interactions. This would require the identification of
sensitive, system-independent and easily measured and interpreted phenomena of this
interactions. The standardised analysis would help to better compare materials and
facilitate the choice of systems for potential new metamaterials with foams and emulsions.
Existing applications of droploons, bubloons or capsules, for example in pharmaceuticals
or agriculture, could also be optimised in this way. To achieve this, studies must be carried
out that link the interactions between two individual droploons with the mechanical
behaviour of a droploon accumulation.
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7.1 Motivation et contexte

Au fur et à mesure que la technologie progresse, le besoin en nouveaux matériaux
combinant des propriétés complexes et multiples se fait de plus en plus sentir. Les
matériaux dont les propriétés dépassent celles des matériaux traditionnels sont appelés
méta-matériaux. Ils sont souvent constitués de différents composants/matières/structures
qui sont asscociés selon des schémas répétitifs. La propriété globale du matériau combine
alors les propriétés des différents éléments. Les mousses et les émulsions sont également
composées de nombreux petits éléments, bulles ou gouttes, arrangés de manière plus ou
moins périodique. Les propriétés macroscopiques du matériau sont alors déterminées par
les propriétés et la disposition des bulles ou des gouttes. Toutes ces propriétés associées
au fait que les bulles ou les gouttes s’agencent d’elles-mêmes, rendent les mousses et les
émulsions intéressantes pour les méta-matériaux.
Les mousses et les émulsions sont des structures composées d’une phase continue et
d’une phase dispersée. La mousse comporte une phase continue liquide et une phase
dispersée gazeuse (les bulles). Une émulsion est constituée de deux liquides non miscibles,
l’un étant la phase continue et l’autre la phase dispersée (les gouttes). Les mousses et
les émulsions sont largement utilisées dans les applications et les processus industriels,
par exemple dans les industries alimentaires (café spécialités ou pâtisserie), les produits
de soins personnels et cosmétiques (crème solaire, crème pour la peau), les produits
agrochimiques, les produits pharmaceutiques, les peintures, les industries pétrolières, les
industries minières et les processus de recyclage, pour n’en citer que quelques-uns. On
peut également observer fréquemment des mousses ou des émulsions dans la nature, par
exemple sur les côtes après une tempête en présence de plancton, sur un volcan en activité
ou dans des produits d’origine animale comme le lait. Il est donc crucial de comprendre
leurs propriétés [4, 5, 6].
Les mousses et les émulsions présentent de nombreuses propriétés intéressantes. On peut
citer le comportement macroscopique de fluide à seuil, les bonnes capacités d’isolation
thermique, une absorption acoustique élevée, une faible fraction de volume continu par
rapport au volume total, l’auto-assemblage des bulles ou des gouttes dans une mousse
ou une émulsion, etc. Grâce aux méthodes de solidification, certaines de ces propriétés
sont conservées dans les mousses solides. Cela élargit la gamme des applications, par
exemple pour les matériaux de construction. D’autres propriétés jouent un rôle plus
important, comme le module d’Young ou la rigidité. Toutefois, cela met en lumière
un inconvénient majeur : le faible module de compression et la faible rigidité à la
déformation des mousses. Cela est lié à la structure typique de la phase continue qui est
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principalement définie par les lois de Plateau et de Young-Laplace. Cela réduit l’intérêt
des mousses solides pour de nombreuses applications. On peut espérer, en modifiant les
interactions bulle/bulle ou goutte/goutte dans une mousse ou une émulsion, accéder à
des structures différentes avec des propriétés originales, et qui permettraient d’utiliser
les avantages des mousses/émulsions en minimisant leurs inconvénients [137]. Le projet
de recherche METAFOAM (ERC Consolidator Grant, agreement 819511 METAFOAM)
vise à comprendre, à l’aide de différents systèmes modèles, l’influence de l’élasticité, de
l’adhésion et de la friction en interaction avec la tension interfaciale sur les structures
finales. Par la suite, les connaissances acquises seront utilisées pour produire des méta-
matériaux avec les propriétés souhaitées. L’effet de l’auto-assemblage sera utilisé afin de
travailler de manière reproductible et rentable.
Pour atteindre ces objectifs, il faut répondre à différentes questions :

• Quels sont les bons systèmes modèles ? Les critères utilisés sont la reproductibilité
et le contrôle de l’espace des paramètres. Dans le cas idéal, les différents facteurs
d’influence (tension de surface, élasticité, viscosité, adhésion et interaction des
différents éléments) peuvent être étudiés séparément.

• Quelles sont les bonnes méthodes expérimentales et théoriques pour caractériser les
différents facteurs pertinents ? Ici aussi, l’idéal est de pouvoir étudier ces facteurs
d’influence séparément.

La première motivation de ma thèse est l’intérêt majeur pour la société de disposer
de matériaux originaux aux applications novatrice. La seconde motivation, tout aussi
importante, est de nature plus fondamentale et s’explique par la volonté de comprendre
et d’expliquer l’inconnu. Les deux se conditionnent mutuellement. Mais les questions et
donc les approches sont différentes.

• Qu’est-ce qui explique la structure et le changement de structure dans une mousse
ou une émulsion ?

• Quelles formes peut-on générer avec des films de savon et lesquelles ne peut-on pas
? Quelle est l’influence des conditions limites ou d’autres contraintes ? Quelles sont
les forces qui jouent un rôle ?

• Quelle est la relation entre la tension de surface, l’élasticité, l’adhésion et la friction
? Sont-elles interdépendantes ?

• et plus.

Nous commençons nos recherches avec le plus petit composant d’une mousse, des films,
ici entre deux cadres, avec une distance h (Fig. 7.1 en haut à gauche). Nous analysons
d’abord l’influence de la structure du cadre ; les cadres étant ouverts et donc le volume libre
de s’ajuster. Ensuite, nous travaillons avec des cadres fermés, donc avec une contrainte
de volume.
Afin d’analyser les interactions entre les bulles ou les gouttes, nous ajoutons un film de
contact qui divise le volume en deux bulles ou gouttes (Fig. 7.1 en haut au milieu). Cela
nous donne une base sur laquelle nous pouvons travailler pour étudier des systèmes plus
complexes avec la viscoélasticité ou l’adhésion. Afin de nous concentrer entièrement sur
les interactions entre des gouttes ou des bulles visco-élastiques et/ou adhésives, nous
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Figure 7.1: Vue d’ensemble des différentes étapes, de l’étude des surfaces minimales avec des films
de savon (partie supérieure gauche), en passant par les interactions bulle-bulle et goutte-goutte
(partie supérieure centrale), la caractérisation de la peau de silicone (partie inférieure gauche) et
jusqu’aux interactions de la double capsule (partie droite).

étudions d’abord une interface unique (les interfaces qui n’interagissent pas avec d’autres
interfaces). Nous avons combiné plusieurs méthodes pour obtenir les informations les
plus pertinentes (Fig. 7.1, en bas à gauche). Finalement, nous observons les interactions
entre deux interfaces présentant des propriétés mécaniques complexes (tension de surface,
viscoélasticité et/ou l’adhésion) (Fig. 7.1, à droite).

7.2 Surfaces minimales non-axisymétriques

Les surfaces minimales apparaissent naturellement dans de nombreux systèmes de
matière molle dont l’énergie libre est dominée par les énergies de surface ou d’interface. La
forme, la stabilité et les contraintes mécaniques des surfaces minimales s’appuyant sur des
contours géométriques spécifiques sont d’un intérêt particulier (problème de Plateau). La
"caténoïde" est l’exemple le plus connu pour lequel on dispose d’une solution analytique
décrivant la forme et la stabilité d’une surface minimale maintenue entre deux cadres
circulaires concentriques parallèles. Nous étendons ici ce problème à des cadres parallèles
non axisymétriques de différentes orientations, en développant une approche théorique
de perturbation autour de la solution connue de la caténoïde. Nous démontrons que les
prédictions de la théorie des perturbations concordent bien avec les expériences sur les
films de savon et les simulations par éléments finis (Surface Evolver [64]). En combinant
théorie, expérience et simulation, nous analysons en profondeur comment les formes, la
stabilité et les propriétés mécaniques des surfaces minimales dépendent du type et de
l’orientation des cadres elliptiques ou en forme de trèfle à trois feuilles [42]. Dans la
limite de cadres non axisymétriques parfaitement alignés, nos prédictions montrent un
excellent accord avec une théorie récente établie par Alimov et al. [1]. En outre, nous
avons mis en évidence l’intrigante capacité des surfaces minimales non-axisymétriques à
transmettre un couple mécanique, bien qu’elles soient complètement liquides. Ces forces
pourraient être intéressantes à exploiter pour l’auto-assemblage mécanique de systèmes
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de matière molle ou comme capteurs de force très sensibles. Des phénomènes également
observés dans les mousses ou les émulsions peuvent être étudiés, en particulier à l’échelle
des films (surface et épaisseur). Cependant, de nombreux autres phénomènes ne peuvent
être étudiés parce que le modèle manque de complexité et que des conditions limites
et des contraintes importantes sont omises, telles que le contact entre les bulles (ou les
gouttes) ou la conservation du volume des bulles (ou des gouttes).

7.3 Interactions bulle-bulle ou goutte-goutte
Les interactions entre bulles ou gouttes jouent un rôle important dans de nombreux

phénomènes physiques. Que l’on considère l’interaction entre deux bulles (gouttes)
ou entre plusieurs bulles (mousses ou émulsions), ces interactions sont complexes et
encore mal comprises. Un cas intéressant se présente lorsque deux bulles (gouttes) de
volume égal et constant interagissent entre elles tout en étant maintenues par deux
capillaires de section circulaire positionnés de manière axisymétrique – une configuration
qui est fréquemment utilisée dans les dispositifs de caractérisation. Des études similaires,
numériques et expérimentales, en 2D et 3D et entre parois parallèles, ont été menées
par différents groupes de recherche [41, 81, 82, 79]. Par rapport au problème précédent,
il prend également en compte les volumes et les interactions entre les gouttes ou les
bulles. La minimisation de l’énergie de surface de cette configuration "double bulle" ou
"double goutte", contrainte par le volume fixe et les limites des capillaires, crée un paysage
complexe d’espaces de forme (Fig. 7.2 à gauche) où les formes stables sont séparées par
différents types d’instabilités. En combinant l’expé-rience, la simulation par éléments
finis [64] et la théorie [20] (Fig. 7.2 à droite), nous fournissons ici pour la première fois
une analyse complète de ces espaces de forme, en considérant l’énergie adhésive entre les
bulles ou les gouttes (exprimée par l’angle de contact) comme un paramètre de contrôle
supplémentaire. Nous fournissons les diagrammes de forme complets pour différents
angles de contact (0◦, 60◦ et 90◦), avec notamment une description détaillée de quatre
types d’instabilités. Deux d’entre elles rompent l’axisymétrie tandis que les deux autres
rompent la connectivité de l’ensemble. À notre connaissance, deux de ces instabilités
n’ont jamais été signalées auparavant. Nous accompagnons l’analyse de la forme et de
la stabilité avec une caractérisation mécanique détaillée à l’aide de mesures de force et
de pression. Les expériences, les simulations et la théorie montrant un excellent accord.
Ce travail sera utile pour guider l’exploitation des expériences de double bulle (double
goutte) sur les capillaires. Il ouvre également la possibilité d’exploiter ces configurations
pour la caractérisation d’interactions de bulles ou de gouttes de plus en plus complexes.
L’angle de contact de 90◦ correspondant à un film "imaginaire" séparant les deux bulles,
notre analyse inclut naturellement les formes et la stabilité d’un pont capillaire entre deux
cadres circulaires (Fig. 7.2 à gauche der-nière colonne dans le tableau).
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Figure 7.2: (Gauche) toutes les formes stables pour deux bulles ou deux gouttes en contact pour
les trois angles de contact 0◦, 60◦ et 90◦ sont représentées avec un nom, un pictogramme et une
abréviation. (Droite) exemples de configurations obtenues numériquement, expérimentalement ou
théoriquement.

7.4 Caractérisation des peaux elastiques

Pour produire une peau de silicone à la surface d’une goutte, nous utilisons deux types
de siloxanes avec deux groupes réactifs différents, le triméthylsiloxane-méthylhydrosiloxane-
terminé diméthylsi-loxane (MHDS) et le polydimethylsiloxane (PDMS) à terminaison
vinyle. Les groupes réactifs réagissent entre eux en présence d’un catalyseur de platine.
Pour que la réaction ne se produise qu’à une interface, nous préparons une PEG catalyseur
de platine émulsion. Ensuite, nous mettons l’émulsion en contact avec un mélange des
deux huiles de silicone reactif. Les gouttes de catalyseur de platine arrivent par diffusion
à l’interface entre l’émulsion et l’huile de silicone et démarrent la réaction chimique. La
peau croît alors à l’interface dans la phase silicone et crée une nouvelle phase solide (Fig.
7.3) [3, 2]. Nous sommes particulièrement intéressés par le régime dans lequel la peau
peut encore être décrite comme une membrane ou une coquille, c’est-à-dire dans lequel
elle peut être considérée comme un objet bidimensionnel. Différentes formes d’interfaces
ont été utilisées, l’interface d’une goutte d’émulsion dans de l’huile de silicone et deux
couches superposées d’émulsion et d’huile de silicone pour créer une interface plane. Les
peaux de silicone sont des systèmes modèles prometteurs pour étudier la combinaison de
l’élasti-cité et de la tension de surface. Leurs propriétés élastiques sont modifiables par le
choix des polymères de silicone. Les paramètres importants avec lesquels nous contrôlons
les propriétés élastiques sont la longueur des polymères et la proportion des différents
groupes réactifs. D’autres facteurs influents sont étudiés, comme la vitesse de réaction ou
la structure des polymères (nombre, espacement et répartition des groupes réactifs). Un
autre paramètre important est l’épaisseur de la peau qui influence fortement les propriétés
mécaniques. L’épaisseur de la peau augmente avec le temps de réaction. En effectuant
nos mesures en fonction du temps de réaction, nous obtenons une évolution des propriétés
mécaniques de la peau en fonction de son épaisseur. Il est souvent problématique de
distinguer l’influence de l’épaisseur de la peau de celle des propriétés tridimensionnelles
du matériau, car il n’est souvent pas possible d’effectuer des mesures en parallèle. La
peau a été analysée selon deux méthodes (Fig. 7.1, en bas à gauche). Dans la boîte de
Pétri, l’inter-face entre les deux liquides se trouve d’abord dans un plan et est exposée
par le bas à une lumière perpendiculaire à l’interface. Au fur et à mesure que le temps de
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Figure 7.3: (Gauche) Goutte de PEG avec catalyseur de platine sous forme d’une émulsion entourée
d’huile de silicone réactive. (A droite) La diffusion du catalyseur de platine et la modification de
l’interface qui en résulte avec la formation de peaux.

réaction avance, la peau se déve-loppe et commence à former des rides. Le changement
d’angle d’incidence de la lumière sur l’interface conduit à une figure de diffraction qui
peut être mis en relation avec la longueur d’onde des rides. Cette méthode est également
connue sous le nom de méthode de Schlieren et elle a été utilisée pour des études similaires
[129, 130]. Ensuite, la longueur d’onde des rides peut être mise en relation avec l’épaisseur
de la peau et les propriétés mécaniques du matériau. Dans la deuxième méthode, la
peau se développe autour de l’interface d’une goutte. Pour caractériser la peau de la
goutte, le volume de la goutte est modifié de manière sinusoïdale, le saut de pression
sur l’interface et la peau est mesuré et mis en relation avec la déformation de la goutte,
qui est détectée optiquement. Le signal obtenu est analysé à l’aide de la méthode de
General Stress Decomposition (GSD). Cette technique d’analyse est connue en rhéologie
volumique [116] et est également utilisée depuis peu en rhéologie d’interface [37, 36]. En
utilisant différentes symétries, le signal peut être divisé en termes purement élastiques,
purement visqueux et en termes de couplage. Ces termes peuvent ensuite être étudiés et
analysés indépendamment les uns des autres (Fig.s A.8, 4.20, and ??).

7.5 Interaction droploon-droploon

Pour comprendre les interactions entre deux interfaces avec des peaux, nous utilisons
la configuration de la partie "Interactions Bulle-bulle ou goutte-goutte " et remplaçons le
liquide des gouttes par une émulsion de PEG et du catalyseur de platine. Une peau de
silicone se développe comme cela est décrit dans la partie "Caractérisation de la peau de
silicone". En ajoutant un inhibiteur à la phase silicone, la réaction peut être arrêtée à
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Figure 7.4: Procédure générale des expériences de double capsule. (Gauche) croissance de la
peau avec caractérisation simultanée avec GSD, (A droite) Interactions entre deux capsules en les
mettant en contact.

n’importe quel moment. Les deux interfaces sont mises en contact et on procède à une
analyse qualitative et quantitative par analyse d’image et en mesurant le changement de
la position relative des deux aiguilles et le saut de pression sur les deux interfaces (Fig.
7.4). Les formes à symétrie axiale, sans rides ni buckling sont privilégiées. Le choix des
proportions des trois différents réactifs (MHDS, PDMS vinyl terminés et catalyseur de
platine) se fait sur la base de la partie "Caractérisation de la peau de silicone".

7.6 Conclusion

En combinant des études expérimentales, numériques et théoriques nous avons
développé différentes méthodologies pour étudier les surfaces minimales, les interactions
entre les bulles, les gouttes ou les capsules et les interfaces avec ou sans visco-élasticité.
Un système modèle pour l’étude des émulsions ou des mousses élastocapillaires a été
développé avec des méthodes expérimentales combinant analyse de forme et mesures
mécaniques. La question de l’influence des conditions limites sur les surfaces minimales ou
les surfaces à courbure moyenne constante a également pu être résolue pour les conditions
aux limites choisies. La question de l’influence de l’adhesion a également été adressée par
l’observation des différents angles de contact entre les gouttes ou les bulles. Certaines
questions sont encore sans réponse, d’autres ont reçu une réponse partielle. De nouvelles
questions sont également apparues. Par exemple, il n’a pas été possible d’expliquer
de ma-nière satisfaisante dans quelle mesure la tension de surface est indépendante de
l’élasticité. Avec la décomposition générale des contraintes, il a été possible de séparer les
différentes composantes (élastique, visqueuse et visco-élastique) de la réponse mécanique.
Dans la plupart des cas, il est ainsi pos-sible de distinguer clairement les effets élastiques
des effets visqueux. La méthodologie pour étudier les interactions entre les capsules
est maintenant disponible. Mais il manque encore la compréhension théorique et la
reproductibilité. Ces deux éléments sont en cours de développement et ne sont plus qu’une
question de temps avant qu’ils ne soient complètement prêts à être utilisés. De nouvelles
questions ont été soulevées par l’étude intensive des différentes instabilités de forme et
de leur comportement. La position de certains points triples et la description théorique
des formes non symétriques par rapport à l’axe ne sont que partiellement résolues. La
question se pose également de savoir dans quelle mesure l’élasticité et la viscosité ont
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une influence sur les formes et si de nouveaux types de formes peuvent être créés par
l’association avec la tension de surface. Il serait intéressant de voir comment l’espace
des formes se modifie avec une élasticité croissante par rapport à la tension de surface.
Finalement, l’étude des interactions bulle-bulle ou goutte-goutte combinée à des mesures
de balance de pression en couche mince pourrait donner lieu à une nouvelle méthode
permettant d’étudier l’adhésion des interfaces de manière quantitative pour de nouveaux
espaces de paramètres.
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A.1 Verticality and coaxiality of the two needles
The theoretical description of a problem is considerably simplified if axisymmetric

boundary conditions are present. This is why we try to have boundary conditions that
are as axisymmetric as possible in our experiments. In the following, we describe how
this was achieved in the setup shown in Fig. 3.6a.
Therefore, we define the normal vector on the opening of the two needles with n⃗+ and
n⃗−; with the indices "+" for upper and "−" for lower needle (Fig. A.1a). The normal
vectors are obtained with our home-made lab-view code. To do this, we define the red
boxes around the needles in the images, obtained with the two cameras (one for the
xz-plane and one for the yz-plane. An example of one of this images is shown in A.1a.
With the help of the strong intensity gradient at the edge of the needles we obtain the
coordinates of the edges of the needles. The average of the two edges gives us the normal
vector of the needle in the center for one needle and one plane. The needle opening is
already axisymmetric due to their circular opening. However, it is also important that
the acceleration due to gravity acts perpendicular to the needle opening. In order to fulfil
this as best as possible, the angle between n⃗± and g⃗

ζ± = arccos
(
n⃗± · g⃗
|n⃗±||⃗g|

)
, (A.1)

must be as small as possible for both needles and both planes. The home-made lab-view
program calculates ζ± in real time with help of the cameras and the two vectors n⃗±. By
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Figure A.1: a) Two needles in the xz-plane with the normal vectors on the needle openings n⃗+

and n⃗− with the indices "+" for the upper needle and "−" for the lower needle. Obtained with
the left and right edges of the needle, detected inside of the red squares for the upper and lower
needle. The vector n⃗+/− connects the two beginnings of the two vectors n⃗+ and n⃗−. g⃗ is the
direction of the earth acceleration. b) A picture of the upper tilting machine in the xy-plane with:
1) the needle, 2) the forks for the needle displacement, 3) a rubber fix point, 4) control buttons
and 5) the framing of the tilting machine.

turning the control button ((4) in Fig. A.1b), the inclination of the needle changes in one
of the two planes (xz- or yz-plane), as the needle is fixed by the rubber fix point ((3) in
Fig. A.1b) and the point in contact with the fork ((4) in Fig. A.1b) moves. With this the
angle ζ± is minimized manually for both planes.
The two needles must then be aligned coaxially. To do this, the vector product

|n⃗− × n⃗+/−| (A.2)

is calculated with the home-made lab-view program and minimised by moving the upper
needle with the micro-controller (Fig. 3.6a). The vector n⃗+/− starts the beginning of n⃗−

and ends at the beginning of n⃗+. The vector product is minimised separately for both
planes.

A.2 Synchrotron absorption phase contrast silicon skin charac-
terisations

We started our first investigations with the system of Gael Ginot [3], since we had
access to the ANATOMIX beam line at the synchrotron Soleil for some hours. The
ANATOMIX beam line uses absorption phase contrast of X-ray beams to measure very
small density fluctuations with a pixel size between 0,13-20 µm [117].
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Figure A.2: The rotating cylindrical container with the silicon oil, a small amount of air and
the PEG-catalyst emulsion drops in the top. In the bottom the washing procedure to stop the
reaction with the conic container as the final sample container.

A.2.1 Sample preparation

To create closed capsules in the absence of capillaries or other supports, we dripped
the PEG-Catalysator emulsion into a cyclindrical container filled with the silicon oil
solution, Fig. A.2. After two to three drops, we closed the container and rotated it
continuously with a small frequency so that the drops always fell downwards and never
touched the wall of the container, Fig. A.2. After different times the reaction was stopped
by taking the capsules out of the cylindrical container with a micro pipette and placed
them in a solution with 100% non-reactive PDMS, Fig. A.2. This was repeated three
times to be sure that the capsules are surrounded only by non-reactive PDMS, Fig. A.2.
The last time the capsules where placed in a conic container with a suitable size for the
measurements at ANATOMIX, Fig.s A.2 and A.3. Fig. A.3 shows all samples for different
Φr and reaction times. With increasing reaction time and Φr the capsules start to buckle
and loose there spherical shape. Only for short reaction times the capsules stay spherical.

A.2.2 Results of ANATOMIX

Due to the height resolution in space we where able to detect the interface between
the drop and skin phase on a few µm precise, Fig. A.4. Fig. A.4a shows the 3D detected
interface with help of a intensity threshold in the top and in the bottom the cross section
through the interface with the normal vector n⃗ on the interface. The normal vector n⃗ is
defined by the best fitting plane with the voxels with an intensity equal of the threshold
in a small volume around the interface. Fig. A.4b plots the intensity of the voxels in
direction of n⃗. The origin is on the detected interface. The red curve is the average of all
detected profiles. The error bar is the standard derivation of the average.
The small drops on the interface are probably platin catalyst PDMS vinyl-terminated
drops of the emulsion, which reached the interface after the skin was formed. They are
not every where at the interface and We cannot say for sure whether they are solid or
liquid. It is interesting that they form a contact angle. This could have to do with the
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Figure A.3: Washed silicon capsules with different Φr and reaction times in there final conic
container.

fact that they are solidified very quickly or that there is surface tension between the skin
and the drops, even though they are both made of silicone. Another observation is the
minimum and maximum of the intensity profile around the interface, A.4b. The distance
to the interface and the intensity of the minimum and maximum is not changing a lot.
The same characteristic occurred in all capsules analysed, regardless of Φr and whether
the small droplets are located on the boundary surface as in Fig. A.4a.
To conclude, the intensity at the PEG-silicon interface shows a characteristic profile
independent of Φr and the reaction time. In addition, small droplets could be identified on
the interface. The exact origin of both phenomena could not be clarified. It remains open
why the droplets form a contact angle, when they appear at the interface and whether
they are solid or liquid. The exact relation between the density and the intensity at the
interface is open as well.
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Figure A.4: a) Shows the 3D detected interface with help of a intensity threshold in the top and
in the bottom the cross section through the interface with the normal vector n⃗ on the interface.
b) plots the intensity of the voxels in direction of n⃗. The red curve is the average of all detected
profiles. The error bar is the standard derivation of the average.

A.3 Petri dish experiments
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Figure A.5: Refraction pattern for the interface between the PEG-catalyst emulsion and the
reactive silicon oil with increasing time in the columns form top to bottom and increasing S from
left to right. The initial droplet concentration of the emulsion is for all Φd(t0) = 0.003. The
catalyst concentration in the droplets is Φcat = 1.
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Figure A.6: Refraction pattern for the interface between the PEG-catalyst emulsion and the
reactive silicon oil with increasing time in the column form top to bottom and increasing S in a
row from left to right. The initial droplet concentration of the emulsion is for all Φd(t0) = 0.0003.
The catalyst concentration in the droplets is Φcat = 1.
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Figure A.7: Refraction pattern for the interface between the PEG-catalyst emulsion and the
reactive silicon oil with increasing time in the column form top to bottom and increasing S in a
row from left to right. The initial droplet concentration of the emulsion is for all Φd(t0) = 0.003.
The catalyst concentration in the droplets is Φcat = 0.1.
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A.4 GSD Results

Figure A.8: Results for dilational interfacial shear rheology (Section 4.3.6.2) for S = 0.24,
Φd = 0.003 and Φcat = 0.1 of a sessile drop: a) γeff from Equ. (4.15), b) Time legend with a series
of images of the corresponding drops/droploons/capsules, c) τ1 from Equ. (4.32), d) τ2 from Equ.
(4.33), e) τ3 from Equ. (4.34) and f) τ4 from Equ. (4.35).
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Figure A.9: Results for dilational interfacial shear rheology (Section 4.3.6.2) for S = 0.24,
Φd = 0.003 and Φcat = 0.1 of a pendant drop: a) γeff from Equ. (4.15), b) Time legend with a
series of images of the corresponding drops/droploons/capsules, c) τ1 from Equ. (4.32), d) τ2 from
Equ. (4.33), e) τ3 from Equ. (4.34) and f) τ4 from Equ. (4.35).
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Nomenclature

Generalities

g Gravitational acceleration

t Time

(˙) Derivation with respect to time

E Free energy

W Work per surface area

Π Disjoining pressure

Bo Bondnumber

Material properties

Φ Liquid fraction of the continuous phase

Φcat Volume platinum catalyst fraction

Φd Volume drop fraction of the catalyst-in-PEG emulsion

γ Interfacial tension

γeff Effective interfacial tension

ρ Volumic density

µ Liquid viscosity

α Elastocapillary number

D Diffusion coefficient

S Ratio between -H and vinyl groups

K ′
2D Dilational elastic interfacial shear modulus

K ′′
2D Dilational viscous interfacial shear modulus
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194 NOMENCLATURE

E Young’s modulus

Geometrical variables

θ Angle between r(z) profile and the horizontal plane

θc Contact Angle between two bubbles or drops

r Radius in cylindrical coordinates

z Vertical coordinate in cylindrical and Cartesian coordinates

φ Angle of cylindrical coordinates

R Capillary, frame, needle radius

Rmean Average frame radius

u, v Parametrisation of a surface

A Surface area

r⃗ Position vector from a surface

n⃗ Normal vector of a surface

φ0 Rotation angle between frames

φΓ Angle between z-axe and Γr

φF Angle between z-axe and Fr

a Neck radius

H Mean curvature

V Bubble/drop volume

h Distance between frames/needles

δ Film/skin thickness

ω Rolling angle of cone sections

e Eccentricity

λlong Long wrinkle wave length

λshort Short wrinkle wave length

Loads

∆p Laplace pressure and more general pressure jump above an interface or
skin
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γ Interfacial tension

F⃗ Force vector

Fr Force in radial direction on the frame

Fz Force in z direction on the frame

σ Real stress tensor

Γ⃗ Moment vector

Γz Moment in z direction on the frame

Γr Tilt moment in radial direction on the frame

Normalisation

(̃ ) Normalised with the mean curvature with equations...

(̂ ) Normalised with the third rood of the bubble Volume with equations...

Mathematical objects

H Hessian matrix

λ Eigenvalue

L Lagrangian

( ),ji Derivation with respect to j and i

( ),j Derivation with respect to j

w Complex number

w Conjugate complex of w
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Des interaction entre bulles et gouttes aux capsules élastiques:
analyse de la forme, des propriétés mécanique et de la stabilité

Résumé : La thèse traite des interactions entre les films de savon, les bulles, les gouttes et
les capsules. Le lien entre les propriétés mécaniques de l’interface et la réponse mécanique
des assemblages de bulles est étudié. La stabilité des différentes formes et les transitions
entre ces formes sont analysées en détail. Le premier chapitre utilise la théorie des surfaces
minimales pour décrire les films de savon avec des conditions aux limites non axisymétriques
proches de la solution axisymétrique de la caténoïde. Le deuxième chapitre considère deux
bulles/gouttes ou un pont capillaire maintenu par deux capillaires circulaires coaxiaux. En
faisant varier la distance entre les deux capillaires ou le volume des bulles/gouttes/capillaires,
on observe une variété de formes et de transitions de forme. Les observations sont étayées
par des méthodes théoriques et numériques. Le troisième chapitre traite de la formation et
de la caractérisation mécanique d’une peau de polymère à l’interface entre une émulsion de
polyéthylène glycol – catalyseur de platine et une huile de silicone réactive. La caractérisation
a lieu directement pendant la réaction chimique qui peut donc être suivie dans le temps.
Le dernier chapitre étudie les interactions de deux peaux de ce type à l’interface entre deux
gouttes d’émulsion.

Mots clés : Surfaces minimales, Catenoide, Surfaces de Delauney, Bulles, Gouttes, Interac-
tions, Elastocapillarite, Polymerisation interfaciale
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From interacting bubbles and drops to soft capsules: shape,
mechanics and stability analysis

Abstract : The thesis deals with the interactions of soap films, bubbles, drops and capsules.
The mechanical properties of the interface are related to the mechanical response of the
shapes. Therefore, the stability of the different shapes and there shape transitions are
analysed. The first chapter uses the theory of minimal surfaces to describe soap films with
non-axisymmetric boundary conditions close to the axisymmetric solution of the catenoid.
The second chapter considers two bubbles/drops or a capillary bridge held by two coaxial
circular capillaries. By varying the distance between the two capillaries and the dimensions
of the bubbles/drops/capillaries, a variety of tensions, shapes and shape transitions are
observed. The observations are supported by theoretical and numerical methods. The third
chapter deals with the formation and mechanical characterisation of a polymer skin at the
interface between a polyethylene glycol - platin catalyst emulsion and a reactive silicone oil.
The characterisation takes place directly during the chemical reaction and can therefore
be followed over time. The last chapter considers the interactions of two such skins at the
interface between two emulsion droplets.

Keywords : Minimal surfaces, Catenoid, Delauney surfaces, Bubbles, Drops, Interactions,
Elastocapillarity, Interfacial polymerisation
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