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Abstract

Polyanionic glasses and glass-ceramics are a rapidly growing family of innovative mate-
rials with broad potential applications in next-generation solid-state batteries, offering
enhanced safety, environmental sustainability, and simplified design. Within this family,
sodium-vanadium-phosphate (NVP) systems are particularly promising due to their high
structural stability and facilitated by strong covalent bonding. The abundance, widespread
distribution, and low cost of sodium resources further enhance the appeal of NVP materi-
als for technological implementation, especially for applications not limited by volumetric
energy density. However, practical applications have been restricted by a limited under-
standing of both their complex structures and the underlying ion dynamics.

This thesis focuses on the design of NVP glasses for cathode materials through atomic-scale
modeling methodologies. By combining classical and first-principles molecular dynamics
(MD) simulations, we provide unprecedented insights into the structural, magnetic, elec-
tronic, and dynamical properties of this intricate class of materials. Initially, we evaluated
the performance of available empirical force fields (FF) by comparing their predictions
to experimental data. We then proposed a hybrid approach that involves performing
full classical MD (CMD) simulations with the most accurate FF, followed by a short
equilibration using Born-Oppenheimer MD (BOMD). This hybrid scheme demonstrates
unparalleled agreement with experimental measurements for the binary VP50 [1, 2] and
ternary NVP25 and NVP43 glasses [3] (numbers 50, 25 and 43 indicate vanadium oxide
concentrations), surpassing the accuracy of any single FF tested. To further validate this
approach, we conducted full ab initio modeling of two NVP glass compositions and com-
pared the resulting structures with those obtained using the hybrid method. Our findings
indicate that full BOMD yields superior accuracy compared to experimental data, but
the hybrid scheme captures all the essential structural details observed in pure BOMD
simulations.

To extend our investigation and address the computational demands of pure BOMD
modeling to assess statistical errors across multiple uncorrelated replicas with FPMD
accuracy, we developed, tested, and validated a machine learning interatomic potentials
(MLIP) based on first-principles MD data. This novel approach was initially tested and
validated on other oxide and chalcogenide [4, 5] systems. Using the newly developed po-
tentials, we investigated the structural and dynamical properties of VP50 and four NVP
glass compositions. The MLIPs consistently demonstrate accuracy comparable to full
first-principles MD simulations and, in some cases, such as VP50, even outperform the
hybrid approach [6].

Keywords : Polyanionic, glass, glass-ceramic, NVP, chalcogenides, MD, first-principles,
CMD, BOMD, MLIP, FF
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Résumé

Les verres et vitrocéramiques polyanioniques constituent une famille en pleine expan-
sion de matériaux innovants aux vastes applications dans les batteries solides de nouvelle
génération. Ils offrent une sécurité accrue, une durabilité environnementale et une concep-
tion simplifiée. Au sein de cette famille, les systèmes sodium-vanadium-phosphate (NVP)
sont particulièrement prometteurs en raison de leur grande stabilité structurale et facilitée
par de fortes liaisons covalentes. L’abondance, la large distribution et le faible coût des
ressources en sodium renforcent encore l’attrait des matériaux NVP pour la mise en œu-
vre technologique en particulier pour les applications qui ne sont pas restreintes par la
densité d’énergie volumétrique. Cependant, les applications pratiques restent limitées par
une compréhension restreinte de leurs structures complexes et de la dynamique ionique
sous-jacente.

Cette thèse se concentre sur la conception des verres NVP pour les matériaux cathodiques
par la modélisation à l’échelle atomique. En combinant des simulations de dynamique
moléculaire (MD) classique et ab initio (FPMD), nous fournissons des informations sans
précédent sur les propriétés structurelles, magnétiques, électroniques et dynamiques de
cette classe complexe de matériaux. Dans un premier temps, nous avons évalué les perfor-
mances des champs de force (FF) empiriques disponibles en comparant leurs prédictions
aux données expérimentales. Nous avons ensuite proposé une approche hybride qui con-
siste à effectuer des simulations MD classique (CMD) avec le FF le plus précis, suivies
d’une courte équilibration en utilisant la MD de Born-Oppenheimer (BOMD). Ce schéma
hybride démontre un accord sans précédent avec les mesures expérimentales pour les verres
binaires VP50 [1, 2] et ternaires NVP25 et NVP43 [3] (les nombres 50, 25 et 43 indiquent la
teneur en oxyde de vanadium), surpassant la précision de tous les FF testés. Pour valider
davantage cette approche, nous avons mené des simulations complète BOMD sur deux
compositions de verre NVP et comparé les structures résultantes à celles obtenues avec
l’approche hybride. Nos résultats indiquent que la BOMD complète donne une précision
supérieure par rapport aux données expérimentales, néamoins le schéma hybride capture
tous les détails structurels essentiels observés dans les simulations pures BOMD.

Pour étendre notre investigation et contourner le coût de calcul élevé de la BOMD afin
d’évaluer les erreurs statistiques sur plusieurs répliques non corrélées avec une précision
FPMD, nous avons développé, testé et validé un potentiel interatomique d’apprentissage
automatique (MLIP) basé sur des données BOMD. Cette nouvelle approche a d’abord
été testée et validée sur d’autres systèmes d’oxydes et de chalcogénures [4, 5]. En util-
isant le potentiel nouvellement développé, nous avons étudié les propriétés structurelles
et dynamiques de quatre systèmes des verres NVP ainsi que le binaire VP50. Le MLIP
démontrent systématiquement une précision comparable à celle de la BOMD et, dans cer-
tains cas, comme pour le VP50, surpassent même l’approche hybride [6].

Mots clés : Polyanionique, verres, vitroceramique, NVP, chalcogenures, MD, FPMD,
BOMD, MLIP
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available. The same analysis was performed for BO2 and BO3 sets, results
are reported in Table 4 of main text of the manuscript. . . . . . . . . . . . . 69

4.8 Running averaged coordination number of the three models obtained by CMD (solid line)
and BOMD (dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Left: Qn distribution (with n the number of bridging oxygen per polyhedra unit) of
PO4 units in VP50 glass for CMD and BOMD calculations. Right: Distribution of
Qn

[NB] (where n represents the number of non-bridging oxygen per polyhedra unit) of
VOx units, illustrating network connectivity in glassy VP50. The figure showcases V5+,
V4+, and V3+ oxidation states obtained from CMD and BOMD. . . . . . . . . . . . . 76

4.10 a) Partial pair correlation function gO−WFC(r). b,c) Atomistic view of two tetrahedral
PO4 units found in VP50 glass by BOMD at 300 K. We show P and O atoms in orange
and red respectively. P-O bonds are colored as orange-red. Their bond distances as
well as the PO4 order parameter values q are reported. The transparent red/blue bonds
correspond to neighbouring V-O bonds. P1 atom is surrounded by four V-O-P bridging
oxygen atoms (Q4) whereas P2 atom is surrounded by three V-O-P bridging oxygen atoms
and one non-bridging oxygen (Q3). We also show the Wannier centers (yellow) involved in
the local environment of each PO4 unit, as in single bonds (wb; P1–O1,2,3 and P2–O5,6,7),
lone pairs (wlp) and as centers involved in double P=O bonds (wdb; such as P1–O4 and
P2–O8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Snapshot of various V5+On polyhedra units within the VP50 glass network. The local
atomic environment of V5+ sites is described by V5+-O bond lengths and associated
Wannier centers (highlighted in yellow). The polyhedra include: a) a tetrahedral unit
standing for a VO4 polyhedron with order parameter q = 0.98, b) a square pyramidal
unit (q = 0.74), c) a defective trigonal bi-pyramidal unit (q = 0.82), and d) a distorted
octahedral unit (q = 0.76). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 Snapshot of V4+On polyhedra units within the VP50 glass network. The local atomic
environment of V4+ sites is described by the V4+-O bond lengths and associated Wannier
centers (highlighted in yellow). The polyhedra include: a) a defective square pyramidal
unit with the local order parameter q = 0.80, b) a defective trigonal bi-pyramidal unit (q
= 0.80), and c) a distorted octahedral unit (q = 0.56). . . . . . . . . . . . . . . . . . 81

4.13 V3+On polyhedra unit the VP50 glass network. The local atomic environment of V3+

sites is described by the V3+-O bond lengths and associated Wannier centers (highlighted
in yellow). The polyhedra shows a distorted octahedral unit with local order parameter
value of q = 0.65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 X-ray (left) and neutron (right) total structure factors for NVP25 and NVP43 glasses,
comparing CMD and BOMD data. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



5.2 (Left) total pair distribution function for NVP25 and NVP43 glasses, illustrating the
comparison between the calculated data (CMD and BOMD) and the experimental data
obtained by our collaborators in Limoges. (Right) zoom in on the 1–4 Årange. . . . . . 91
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chaque modèle s-BOMD simulé. À l’échelle PBE0, on observe une ouverture de la bande
interdite (2.3–2.8 eV) ainsi qu’une organisation de la densité de spin autour des valeurs 0,
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et VOn sont représentées par des polyèdres transparents. Centre: trajectoire d’un ion
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for MLIP-GAP, respectively. A total cutoff of 2.85 Å was defined from the total pair
correlation function. Only fractions greater than 0.1% are reported. . . . . . . . . . . 53

3.5 Comparative diffusion coefficients for l-GeSe2 at 1050 K: FPMD, MLIP-GAP and exper-
iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Energy bandgaps (eV) for spin-up and spin-down states, along with average spin values
calculated within specified spin ranges in e unit, computed at the PBE and PBE0 levels.
The percentage content is also indicated. The data is reported for the three BO models
and averaged over four individual run per model. . . . . . . . . . . . . . . . . . . . 63

4.2 Neutron scattering lengths b and X-ray atomic form factors f of V, P and O calculated
at k=0 and for incident photon energy of 121.9 keV. . . . . . . . . . . . . . . . . . . 65

xiv



4.3 Goodness-of-fit Rχ parameters obtained from CMD and BOMD data (218 atoms mod-
els) indicating the level of agreement with the experimental data for neutron and X-ray
structure factors (RSX (k)

χ and RN
χ (S(k)), respectively) and total pair correlation functions

(RX
T (r) and RN

T (r), respectively). All calculated values presented here are averaged over
four parallel runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Goodness-of-fit Rχ parameters obtained from CMD (5040 atom models) data indicating
the level of agreement with the experimental data for X-ray and neutron structure factors
(RX

S(k) and RN
S(k), respectively) and total correlation functions (RX

T (r) and RN
T (r), respec-

tively). All calculated values presented here are averaged over the four individual run per
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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Chapter 1

General Introduction

Summary

The opening chapter of this thesis is devoted to the role that materials play in energy
applications, with a special focus on polyanionic materials along with glasses (G) and glass-
ceramic (GC) systems. The idea is to underscore the significance of atomic-scale simulation
methods within computational materials science to gain an in-depth understanding of the
properties and behaviors of G and GC materials. This chapter features an overview of the
latest advancements in the modeling of these materials, spotlighting both the achievements
and the existing challenges. It wraps up by clearly stating the primary motivation behind
this research, which is fostered by the recognition of knowledge gaps, and outlines the
thesis in an organized manner.
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1.1 Materials for energy storage systems

The global demand for energy has experienced a rapid increase over the years, driven by
its pivotal role in human activities. Fossil fuels, the primary source of energy, contribute
significantly to environmental degradation and global warming due to their high CO2
emissions. These issues underscore the urgency of addressing energy concerns and make
a transition towards alternative, renewable, and environmentally-friendly energy sources
such as solar, wind, and hydroelectric power. Nevertheless, the widespread adoption of
these renewable sources faces limitations due to their intermittent nature, characterized
by significant variability over time and location. In this context, energy storage sys-
tems (ESSs) are a highly appropriate green energy source, meeting various demands from
portable electronics to large-scale grid storage. Diverse sectors take advantage of it, such
as electric vehicles, industrial and commercial activities, as well as applications in aviation,
shipping, and medicine [1].

Various technologies exist for large-scale ESSs, and while mechanical energy storage are
currently the most prevalent [2], batteries, classified as electrochemical ESSs, have gar-
nered growing attention. Notably, the significant progress in this field was acknowledged
by the 2019 Nobel Prize in Chemistry, awarded to J.B. Goodenough, M.S. Whittingham,
and A. Yoshino for their pioneering contributions to lithium-ion batteries [3].
In the context of battery technology, alkali-ion batteries (AIBs) and, particularly, lithium-
ion batteries (LIBs), have gained significant prominence due to their high-energy density,
conversion efficiency, and long life-time. However, the growing demand for Li and its non-
uniform global distribution, along with soaring market prices, necessitates exploration of
alternatives like Na-ion batteries (NIBs), among the others.
This is because sodium is an abundant and uniformly distributed resource (Fig. 1.1). NIBs
share similar components and operational mechanisms with LIBs. However, notable dif-
ferences exist between the two materials. The ionic radius of Na+ ions is 102 pm with
a mass of 22.99 g mol−1, substantially larger than Li+’s radius of 76 pm and mass of
6.94 g mol−1. This variance can significantly influence transport properties, interface for-
mation, and stability. Additionally, sodium exhibits a higher standard electrode potential
(-2.71 V vs. -3.02 V for Li), theoretically resulting in NIBs having a lower specific energy
density than LIBs [4]. Nevertheless, studies have revealed that the energy barriers for Na+

Figure 1.1. Abundance (atom fraction) of the chemical elements in Earth’s upper continental crust as
a function of atomic number. Many of the elements are classified into (partially overlapping) categories:
rock-forming elements, rare earth elements, major industrial metals, precious metals, and the nine rarest
”metals” [5].

migration can potentially be lower than those for Li+ migration in open structures, which
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better accommodate the larger Na+ ion [6]. This means that Na-ion systems have the po-
tential to be competitive with Li-ion ones, especially for large-scale grid storage systems
[7, 8]. Recent advances in materials science have stimulated the emergence of increasingly
promising materials with enhanced electrochemical performance and longevity. Despite
these significant advances, it is essential to emphasize that NIBs still face considerable
challenges, requiring further improvements in electrochemical and structural properties
before large-scale commercialization of NIBs can be successfully achieved.
This thesis will mainly study disordered materials for their potential use in NIBs,
with a special focus as cathode materials. For clarity and to ensure the comprehension
of certain definitions, we will briefly outline the principal components and key definitions
related to battery technology in the subsequent section. Fig. 1.2 elucidates the primary
components and the operational process of a NIBs battery during both charging and
discharging phases, with sodium ions migrating in the electrolyte between the positive
electrode (cathode) and negative electrode (anode).

Figure 1.2. Working principle of NIBs illustrating the movement of Na+ ions within the electrolyte
between the negative and positive electrodes during both discharge and charge cycles. The voltage across
the electrodes determines the battery’s voltage [2].

The choice of materials for the three main components (electrolyte and the two electrodes)
plays a crucial role in determining the performance, safety, cost and environmental impact
of batteries. For example, in optimal scenarios, the theoretical voltage of a battery is
dictated by the chemical potential disparity between the positive and negative electrodes.
Below, we provide a concise overview of the key components and definitions pertinent to
battery technology.

The electrolyte component plays an important role in battery technology, facilitating
the ions diffusion between the electrodes during charge and discharge cycles. Generally,
electrolytes in batteries can be liquid, solid, or gel types ionic conducting medium. Liq-
uid state electrolytes (LSEs) represent the most common type of electrolytes found in
rechargeable batteries, often, consisting of lithium/sodium salts dissolved in organic sol-
vents. LSEs offers high ionic conductivity, allowing for efficient ion transport between the
electrodes. However, they can be flammable and prone to leakage, which poses safety con-
cerns. Gel electrolytes combine the properties of liquid and solid electrolytes and consist
of a polymer matrix that immobilizes a LSEs solution, forming a gel-like substance.
Gel electrolytes offer improved safety compared to liquid electrolytes due to their reduced
risk of leakage. They also exhibit some degree of flexibility, which can be advantageous
in certain battery designs. However, they may have lower ionic conductivity compared to
liquid electrolytes.
Solid state electrolytes (SSEs) are gaining attention as potential alternatives to LSEs,
particularly in next-generation all solid-state batteries technologies. SSEs are the core
component of SSBs, typically they are composed of solid-state materials such as ceramics,
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glasses, sulfide and polymers facilitating Li+/Na+ ion transport between electrodes with-
out the volatility and combustibility risks associated with liquid electrolytes [9, 10]. By
replacing LSEs with SSEs, energy density, durability and battery safety can be consider-
ably improved [11]. As illustrated in the Fig. 1.3, the properties of SSEs, such as ionic
conductivity, mechanical durability, interface compatibility, and chemical/electrochemical
behavior, are significantly shaped by the constituent materials [9].

Figure 1.3. Solid-state batteries made with polymer (a), oxide (b) and sulfide (c) [9].

The anode component is the electrode where oxidation takes place. The choice of anode
electrode material depends on the type of electrolyte and is crucial for achieving optimal
performance and stability. For LSEs, metals like zinc (Zn), lead (Pb), or iron (Fe) are
commonly used as anodes. These type of materials are stable in aqueous environments
and can undergo reversible redox reactions. In SSBs, the anode materials need to pos-
sess several key characteristics. Firstly, they should have a high theoretical capacity to
allow for greater energy storage per unit mass. Additionally, they should exhibit a low
electrochemical potential compared to Li/Na to maintain a high cell voltage. For these
materials it is crucial to demonstrate excellent electronic conductivity to facilitate effi-
cient electron transfer within the battery, thus enhancing throughput capacity. Moreover,
structural stability is of paramount importance as the anode material has to endure vol-
ume changes resulting from the intercalation/extracalation processes of Li/Na without
experiencing significant degradation [10]. To address these criteria, significant resources
are being invested in the study of materials such as graphitic carbons, silicon, selenides,
sulfides, low potential transition metal oxides and alloys (bismuth, tin, antimony, phos-
phorus), which exhibit favorable characteristics such as high capacity and compatibility
with solid electrolytes [2, 12]. Nevertheless, challenges such as volume expansion and the
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creation of an unstable solid electrolyte interphase (SEI) persist, calling for advancements
in materials science and engineering. The establishment of a durable SEI holds particular
significance in SSB technology as it can mitigate dendrite formation, thereby enhancing
safety. Careful material selection and optimization are imperative to ensure compatibility
with the solid electrolyte and establish a stable interface [10].

Over the past decade, a large family of materials have been considered as cathode (posi-
tive) electrode for AIBs as shown in Fig 1.4. The first AIBs with Lithium was commercial-
ized in the late 1970s by Exxon with an energy density of 130 Wh.kg−1. The cathode of
this battery was made of metal dichalcogenides (TiS2) designed by M.S. Whittingham [13].
Despite TiS2’s high Li+ ion intercalation capacity about 240 mAh.g−1 and high durabil-
ity [14], handling under ambient conditions was difficult due to the spontaneous release of
toxic H2S gas on contact with moisture [15]. A decade after the TiS2 battery came onto
the market, a step forward has been made towards the use of a high-voltage layered crys-
talline structures as metal oxide cathodes like LixMn2O4, LixV2O5, LixV3O8, AxTmO2
(with A being alkali ion (Li, Na) and Tm transition metal such as Co, Ni, Fe, Mn, V) for
rechargeable AIBs [16]. These oxides are reasonably good ionic and electronic conductors,
and have the advantage of good stability at ambient conditions [15]. Among these ox-
ides, LiCoO2, first designed by J.B Goodenough et al. [17] remains the most widely used
cathode employed in Li-ion batteries [16]. Selecting an optimal battery cathode material
is far from straightforward. Facilitating the mass production of energy storage systems
and avoiding deterioration throughout charge/discharge cycles requires meeting multiple
prerequisites. These include high energy density, robust moisture resistance, reasonable
cost, high voltage and theoretical capacity, electrochemical reversibility, environmental
sustainability, compatibility with other cell components (anode, electrolyte), structural
robustness, presence of reducing and oxidizing ions, proficient ionic insertion/extraction
rate, and effective electronic conductivity [1, 18].

Figure 1.4. Varieties of cathode materials for NIBs with sub-branches of polyanionic compounds [1].

Extensive research into promising cathode materials for the next generation of NIBs has
revealed that layered transition metal oxides, Prussian blue analogues (PBAs) and polyan-
ionic materials are the main candidates for cathode materials among the various explored
cathode materials. PBAs are gaining interest because of their high theoretical capacity
and open 3D crystal structure. However, the synthesis process of PBA cathodes typically
results in the formation of significant coordination water and lattice vacancies, leading
to the deterioration of electrochemical performance. Additionally, the ultrafine grains
produced contribute to a low volumetric energy density, thereby limiting their practical
utility [19]. Regarding layered transition metal oxides, they exhibit a high discharge ca-
pacity but are plagued by a sloping voltage profile across a broad potential range, yielding
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a relatively low average voltage, typically not exceeding 3.4 V [20]. Complex phase tran-
sitions further exacerbate structural instability. Additionally, the dense lattice structures
hinder the rapid migration kinetics of Na+ ions. Moreover, the possible release of oxygen
from the cathode poses a significant safety concern.

To enhance the electrochemical performance of current NIBs, research has proved the
benefits of cathode materials with high specific capacitance, operating voltage, cyclic sta-
bility, and optimal flow capacity. Among the various investigated cathode materials,
polyanionic compounds emerge as one of the most promising class of candidates for
NIBs’ cathodes offering numerous advantages including favorable ion diffusion pathways,
high safety standards, and exceptional structural stability [15, 16, 21, 22].
The next section is devoted to recent developments in polyanionic materials used as cath-
odes in NIBs and current challenges.

1.2 Brief review on polyanionic compounds as electrode ma-
terials for NIBs

In contrast to pure transition metal oxides, crystalline polyanionic compounds with gen-
eral formula AxTmyMOz (A=Li or Na; Tm=transition metal (V, Fe); M= P, S, B or
Si) offer many potential advantages. The strong M-O covalent bonding in tetrahedral
polyanion MOn−

4 due to the high electronegativity of M specie gives rise to open channels
for Li+/Na+ ion diffusion, high thermal stability, superior safety properties, as well as
higher voltages (inductive effects). In addition, multi-electronic redox reactions between
Tm sites with different oxidation states enable very high capacities to be achieved [1].
A plethora class of polyanionic compounds have been investigated as positive electrode
for NIBs among which sodium super ionic conductor (NASICON); ortho-, pyro-, or fluro-
phosphates; sulfates, silicates, and mixed polyanionic compounds.

Based on the crystalline arrangement of the materials, polyanionics can be categorized

Figure 1.5. Comparison of calculated voltage for sodium and lithium over various cathode material
structures. Colored dashed lines represent the fitted average voltage difference (VNa+ - VLi+ ). From [6].
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into olivine, maricite, alluaudite, tavorite, or NASICON type structure. Fig. 1.5 presents
a comparison of calculated voltages for Na and Li in various cathode material structures,
highlighting the substantial impact of structural characteristics on battery performance.
S.P. Ong et al. have demonstrated that open NASICON-type structures offer a stable
pathway for Na+ migration, in contrast to oviline structures which are more suitable for
Li+ [6]. NASICON type polyanionic compounds take the general formula AnM2(XO4)3
(where A represents alkali ions, M represents transition metals, and X can be S, P, Si,
or As) and were first identified in 1976 by J.B. Goodenough et al. [23]. They are the
most widely developed class of potential cathodes for NIBs [12]. The first polyanionic
compounds identified as cathode materials with suitable hosting potential for second-
generation batteries included LiFePO4 in oviline and NASICON structure [24].

1.2.1 Phosphate based polyanionics

Phosphates are at the top of the most representative polyanionic compounds for NIBs. The
P–O bond in polyanionic phosphates provides good structural stability essential for long-
term cycling and improved safety. Also, the thermal properties of phosphate materials are
directly related to the stability of the phosphate-metal bonds, which limits the possibility
of oxygen release from the structure. In addition, the high presence of interstitial sites
in the structure limits volumetric expansion during Na+ ion intercalation/extracalation,
thus promoting stability while the inductive effect of the PO3−

4 group allows for higher
redox potential values compared to Na+/Na [24]. Among others, two main phosphates
polyanionic compounds are more attractive for NIBs due to their good electrochemical
properties, the oviline structure NaTmPO4 with TM=Fe or Mn and NASICON structure
NaxTm2(PO4)3 with Tm = V or Ti.
NASICON-type Vanadium-based phosphates Na3V2(PO4)3 are widely investigated as
cathode materials for NIBs [6, 16, 19, 25, 26]. The stability provided by this structure
favors the migration of Na+. However, its low electronic conductivity leads to lower ca-
pacity rates and cycling stability. Recently, it has been reported that carbon coating
processes have achieved a theoretical reversible capacity of 118 mAh g−1 and increased
the Na3V2(PO4)3 cathode performance so as to challenge the LiCoO2 and LiFePO4 cath-
odes of LIBs [27].

1.2.2 Other polyanionic materials

• Sulfate based polyanionic NaxTmy(SO4)z (Tm =Fe, Mn, Co, Ni) are another valu-
able alternative since transition metal sulfates have strong electronegativity allowing
high redox potential. Among all Fe-based NIBs cathode materials, Na2Fe2(SO4)3
have shown a higher operating potential of 3.8 V based on the Fe3+/Fe2+ redox cou-
ple with a theoretical capacity of 120 mAh g−1 based on one electron transfer. The
NaFe2(SO4)2 layered cathode has a reversible reaction with Fe3+/Fe2+ redox couple
at a voltage of 3.2 V vs Na+/Na with reported theoretical capacity of 99 mAh/g [24].
Another research on NASICON Fe2(SO4)3 was reported as Na+ ions intercalation
host but, in contrary to Lithium, only one mole of Na+ ion per unit mol of Fe2(SO4)3
can be stored compared to 2 mole [24]. Unfortunately, the obtained practical elec-
trochemical performance of NaFe2(SO4)2 and Fe2(SO4)3 were not higher compared
to other cathodes materials. For this class of transition metal sulfates cathodes, pre-
cise understanding of electrochemical processes is essential to further improve the
performances.

• Fluorine based polyanionic NaTmMO4F (Tm=V, Fe, Co, Mn; M= P, S) have an

7



heightened electronegativity of the F− anion, coupled with the inductive effect of the
MO3−

4 group, significantly contributing to enhance the operational potential and en-
ergy density of NIBs. Fluorophosphates and fluororsulfates persist as top contenders
for high-potential cathode materials [24]. Among various fluorosulfate compounds,
NaFeSO4F has emerged as electrochemically active, exhibiting a Fe3+/Fe2+ redox
couple voltage of 3.6 V vs Li+/Li. Investigations into Na+ ion migration within this
material have also been conducted through atomic scale modeling [28].

Polyanionic cathodes for NIBs continually face numerous limitations, including low elec-
tronic conductivity and low operating voltage (2.6–3.5 V). The electrochemical perfor-
mance of crystalline host materials depends on factors that hamper their performance,
such as crystal orientation, grain boundaries, structural stability, phase transition, spatial
dimension of ion migration, defects in the crystal and stochiometric limitation of ion in-
sertion [29].
To conclude this section, one can observe that, in contrast to crystalline materials, glassy
materials feature several advantages: the lack of grain boundaries facilitates sodium ion
transport, while the specific capacitance can be controlled by adjusting the glass composi-
tion. Additionally, the softening point enhances interfacial contact between the electrode
material and the solid electrolyte, thereby improving the efficiency of sodium ion trans-
port [29, 30].

1.2.3 Glassy (G) and glass-ceramic (GC) materials as AIBs’ electrodes

Glass-based systems are at the forefront of developing solid-state devices, with the inte-
gration of transition metal oxides (TMOs) as dopants or primary constituents playing a
pivotal role in tailoring specific functionalities. Fig. 1.6 shows general trade-offs between
voltage, capacity, and various practical considerations for different sodium-ion battery
cathode materials, highlighting the potential advantages of glass and glass-ceramic com-
positions. Transition metals like V, Fe, and Cu have been incorporated into various glass
matrices to enhance their semi-conductive capabilities and functional properties. Partic-

Figure 1.6. Comparison of SIB cathode materials. a) Voltage vs specific capacity for various glass, glass-
ceramic, and ceramic cathode materials. The materials are color-coded and labeled with their composi-
tions. b) Performance metrics for different classes of cathode materials, including polyanionic compounds,
Prussian blue analogues, P2-type layered transition metal oxides (TMOs), O3-type layered TMOs, and
glass/glass-ceramics. The metrics cover stability, cost, cycling life, compatibility, energy density, and in-
dustrial feasibility. Each material class is represented by a different color, allowing for easy comparison
across multiple performance criteria. Figure adapted from [31].

ularly, glasses and glass-ceramics enriched with V2O5 are under investigation for their
potential as cathode materials in secondary batteries [32, 33]. The incorporation of Vana-
dium ions, which exist in multiple oxidation states (such as +3, +4, and +5), makes
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easier electronic conductivity through small polaron hopping mechanisms carrying our
transitions between vanadium’s low and high valence states [34, 35]. This characteristic
makes them highly valuable for applications in solid-state physics and chemistry.

The multiplicity of V oxidation states not only contributes to electronic conductivity
but also leads to a diversity of geometric configurations and local structural environments
within the glass matrices. This significantly impedes the understanding and characteriza-
tion of these materials. In vanado-based glasses, the prevalent oxidation states of vanadium
(+4 and +5) result in a wide range of vanadium-oxygen coordination geometries, includ-
ing tetrahedral, trigonal pyramidal, square pyramidal, and distorted octahedral structures.
This variability in coordination and structure is heavily dependent on the glass composition
and contributes to the material’s complexity. Despite extensive experimental investiga-
tion into vanado-based glasses, the detailed mechanisms and structures underpinning their
properties remain elusive, highlighting the need for further research in this domain.
The growing interest in using G and GC as solid electrolytes and electrodes contain-
ing TMOs such as V for LIBs and NIBs is driven by advances in optimizing their crys-
talline structure to ease rapid Li+ and Na+ ion diffusion, improve cycling performance,
guarantee superior thermal stability and promote high electronic and ionic conductiv-
ity [31]. The increasing study of Na-based G [36–38] and GC [38–45] cathodes under-
lines the plethora of advantages inherent in this class of materials. By increasing the
operating voltage of cathode materials while maintaining specific capacity, battery per-
formance and energy density can be significantly improved. This is illustrated by the use
of high-voltage redox couples such as Mn4+/Mn3+, Co4+/Co3+, Ni4+/Ni2+, Fe3+/Fe3+,
and V5+/V4+/V3+. Various classes of G and GC have been studied as cathode ma-
terials for LIBs and NIBs, including Li(Na) iron phosphate G, Li(Na) iron pyrophos-
phate GC, Li(Na) manganese pyrophosphate G and GC (Na2MnP2O7), Li(Na) iron-
manganese pyrophosphate GC (Na2FexMn1−xP2O7), Li(Na) iron-nickel pyrophosphate
GC (Na2FexNi1−xP2O7), and mixed polyanion G and GC (Li/NaM1−x(VO)xPO4 with M
= Fe, Mn and Co). Table 1.1 summarizes G and GC systems developed in recent years
as cathodes in LIBs and NIBs, detailing crystalline phases, electrochemical properties,
and thermal stability (often expressed as ∆T = Tc - Tg, with Tc being the crystalline
temperature and Tg the glass transition temperature).

The intricate structure of polyanionic Li- and Na-VPG, also referred to as vanadophos-
phate in the literature, has been somewhat overlooked, particularly the sodium-based
variants, which have garnered minimal focus. The inclusion of V2O5 introduces a variety
of structural configurations, depending on whether it acts as a glass former or modifier,
particularly evident when PO4 tetrahedra are fully polymerized, or as a glass modifier,
especially when present at low concentrations [36]. Vanado-phosphate glasses (VPGs)
are renowned for their semi-conductive properties, attributed to polaron hopping mech-
anisms made possible by the presence of vanadium ions in mixed valence states (V4+

and 5+) [35, 46]. The electronic transport in VPGs hinges on the mobility of small
polarons[34, 35], with the degree of conductivity closely linked to the V4+/Vtot ratio.
This is due to the distinct electronic configurations of V4+ and V5+ ions, which form in-
terconnected polyhedral pathways conducive to polaron movement [46, 47]. The stability
of VPGs and their electronic properties are significantly influenced by the vanadium con-
centration within the glass matrix. An increase in vanadium content stabilizes the glass
structure, decreasing the likelihood of vanadium reduction and altering the V4+/Vtot ratio.
This ratio is also sensitive to processing conditions, such as the cooling rate post-melt,
where a loss of oxygen can result in the reduction of V5+ to V4+ ions [47].
Key structural determinants of VPGs’ electronic behavior include the prevalence of V4+–
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O –V5+ linkages, the coordination number of vanadium, and the inter-vanadium dis-
tances. Despite extensive research, a definitive structural model for VPGs is not available
yet, with various studies proposing different configurations that impact polaron hopping
efficiency [48]. Alkaline ion doping introduces additional complexity to the conductivity
mechanisms within VPGs. The incorporation of ions like Li+, Na+, or K+ contributes
to the total conductivity by providing an ionic mechanism alongside electronic polaron
hopping. This duality of conduction pathways enables the use of alkali-doped VPGs as
cathode materials in solid-state batteries. The precise balance between electronic and
ionic conductivity, however, is highly dependent on the glass composition, specifically the
alkali content and type, which can influence the network structure and, consequently, the
dominant conductivity mechanism [48, 49]. In essence, the semi-conductive behavior of
VPGs arises from a complex interplay of structural features and compositional variables,
making them a subject of ongoing technical inquiry for their potential in advanced elec-
tronic and energy storage applications.

Lithium-vanadophosphates (LVP) glasses have been studied as parental glass for the
synthesis of GC such a β-LiVOPO4 [50] and Li3V2(PO4)3 [51, 52]. These studies have
demonstrated the feasibility of producing relatively high-performing LVP glass-ceramics
cathode materials starting from parent LVP glasses via a comparatively straightforward
synthetic process (see Section 1.8) [51]. The wide range of applications of Li/Na VPG
qnd VPGC has motivated numerous experimental studies, employing techniques such
as X-rays and Neutrons diffraction [53–55], Raman Spectroscopy [56], Nuclear Magnetic
Resonance (NMR) [57, 58], X-ray Photoelectron Spectroscopy (XPS) [59], Infrared Spec-
troscopy (IR) [60], Extended X-ray Absorption Fine Structure (EXAFS) [61, 62], and
X-ray Absorption Near-Edge Structure (XANES) [59, 62, 63]. Nevertheless, the determi-
nation of the local coordination environment of V sites remains a major challenge. One of
the key issues is related to the identity of the coordination state of V ions, in relationship
with V sites other than V5+ (V4+ and V3+) conferring a (para)magnetic character to the
system and preventing the use of some experimental techniques [58].
An additional source of debate stems from the existence of V4+ in four-fold coordination in
silicate and phosphate glasses [59, 64, 65]. For instance, XPS and XANES measurements
provided evidence for the presence of V4+ in four-fold coordination in aluminoborosilicate
glasses containing high vanadium content [59]. Similarly, in VP glasses, 1D/2D 31P/31V
magic angle spinning NMR techniques and advanced pulsed electron paramagnetic reso-
nance (EPR) [57] pointed toward V4+ ions in four-fold coordination. However, in amor-
phous Na2O-VxOy-P2O5 [66] and crystalline vanadium oxides and VP systems [63, 67–69],
V4+ four-fold coordination is not found, and only V5+ is widely reported to be able to
accommodate the tetrahedral coordination. Therefore, it appears that the lack of agree-
ment between experiments and theory calls for further work improving our knowledge of
the coordination state of V in vanadophosphate glasses.
Prior to stepping into the current state-of-the-art challenges in Li/Na VPG and VPGC, the
subsequent section will outline essential definitions, fundamental concepts, and principal
preparation methods for glass and glass-ceramic materials, as detailed in Section 1.3.
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1.3 The glassy state of matter and glass-ceramic materials

1.3.1 The glass state of matter

Glasses, also referred to as vitreous materials, have a non-crystalline structure similar to
that of amorphous materials (materials lacking long-range periodic order). However, un-
like glass, amorphous materials do not undergo a glass transition under thermal conditions.
One of the most detailed definitions of the nature of glasses can be found in the work by
E. D. Zanotto et al. in 2017: Glass is a nonequilibrium, non-crystalline condensed state of
matter that exhibits a glass transition. The structure of glasses is similar to that of their
parent supercooled liquids (SCL), and they spontaneously relax toward the SCL state. Their
ultimate fate, in the limit of infinite time, is to crystallize [71]. The conventional enthalpy
versus temperature diagram (see Fig. 1.7, left) delineates the key phases involved in the
process of glass formation. It encompasses four primary stages: firstly, the thermodynam-
ically stable liquid phase existing above the melting point (at temperature Tm), which is
incapable of undergoing crystallization; secondly, the metastable supercooled liquid (SCL)
phase existing between Tm and the glass transition temperature (Tg), wherein crystal-
lization becomes feasible over time upon surpassing a thermodynamic barrier; thirdly, the
unstable glass phase below Tg, which exhibits spontaneous relaxation to the SCL phase at
non-zero temperatures (gray arrow in Fig. 1.7 left). The glass transition occurs precisely
at Tg, a temperature where the experimental time aligns with the average structural re-
laxation time of SCL [71].

Figure 1.7. Left: Enthalpy as function of temperature graph illustrating the thermal behavior of a glass-
forming material in four discernible states (liquid, supercooled liquid, glass, and crystal). Right: Structural
evolution of a crystalline solid, an amorphous solid, and a glass over both human and infinite time scales.
Adapted from [71].

Conversely, glass experiences a temperature-dependent transition back to SCL at Tg.
Similar to SCL, glass can ultimately crystallize (red arrow in Fig. 1.7, left) following an
extended period, specifically, an observation time considerably longer than the relaxation
time. Ultimately, below Tm temperatures, the crystalline phase emerges with a well-
ordered atomic structure at both short- and long-range, signifying stability.
Fig. 1.7 (right) presents the morphology of a crystal, amorphous solid (a-solid), and glass
at a human scale, along with their transformations over an infinite duration. While crys-
talline solids typically maintain their structure and form under environmental pressures
indefinitely, a-solid and glass possess the potential to crystallize. a-solids may undergo
recrystallization through atomic diffusion given a sufficiently extended time. In the case
of glass, they exhibit spontaneous relaxation, flow, and deformation in response to gravi-
tational forces, eventually culminating in crystallization upon continuous heating or over
an infinitely protracted period at any positive temperature. By combining the properties
of crystalline and glass materials, a new family of materials called glass-ceramic materials
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can be produced.

1.3.2 Glass-ceramic materials

First introduced in 1957 by Stanley Donald Stookey, the term GC was used to describe
a new family of materials made from special glasses containing nucleating agents, which
then undergo controlled crystallization of the glass particles [72]. The definition of GC
has since evolved significantly over the last few decades with the development of new and
more advanced glass and ceramic processing techniques (co-firing, additive manufacturing,
laser patterning), as well as new compositions of nano and micro structures, amplifying
the applications and performance of GCs. J. Deubener et al. proposed the following
updated and comprehensive definition of GC in 2018, Glass-ceramics are inorganic, non-
metallic materials prepared by controlled crystallization of glasses via different processing
methods. They contain at least one type of functional crystalline phase and a residual
glass. The volume fraction crystallized may vary from part per million (ppm) to almost
100 % [73]. In the field of GC production, it is crucial to acknowledge that not all glasses
are amenable to crystallization. Certain glasses exhibit a level of ”stability” that impedes
crystallization, making them challenging to transform into GC. Conversely, some glasses
crystallize with excessive ease, often resulting in an uncontrolled crystallization process and
the development of an undesirable microstructure [74]. Thus, the composition of the base
glass emerges as a pivotal factor in the creation of a GC material of acceptable quality. The
GC manufacturing procedure can be summarized in two main phases described in Fig. 1.8:
preparation of optically homogeneous glass by different techniques (sol-gel, deposition,
melt-quenching) followed by internal crystallization through controlled heat treatments to
achieve a pore-free and good shape product with the desired functionality.

Figure 1.8. Left: Schematic illustration of glass-ceramic (GC) production from glass. Glass formation
through melt quenching is observed for q ≥ qc, while spontaneous ”uncontrolled” crystallization initiates
for q < qc. qc represents the critical cooling rate, TL, TN and Tg are liquidus temperature also called
melting temperature (Tm), nose temperature and glass transition temperature respectively, X is the crystal
fraction and δt the minimum time required to achieve X=10−6 crystal fraction. Glass-ceramics A are
achieved through cooling, while glass-ceramics B and C are transformed via heat treatment in one or
two stages, respectively [73]. Right: Schematic illustration of the microcrystalline glass–ceramic synthesis
process of Li3V2(PO4)3 starting from the parental glass 37.5Li2O-25V2O5-37.5P2O5 [51, 75].

1.4 Brief state of the art and open challenges in modeling
G and GC materials

The field of materials science is evolving due to the contribution of atomic-scale model-
ing, which is improving our understanding of complex materials. Atomic-scale modelling
emerges as a powerful tool, providing unprecedented insights into microscopic behaviors.
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The pursuit of accuracy in this kind of simulations has been crucial, enabling us to explore
a wide range of materials, revealing properties, structures, and phenomena often beyond
experimental reach. Different computational modeling schemes, depicted in Fig. 1.9, cater
to diverse time and size scales, offering varying scales of observation and levels of accuracy.
Density Functional Theory (DFT) and First-Principles Molecular Dynamics (FPMD) play
fundamental roles in the meticulous modeling of materials behavior, albeit with inherent
constraints. Machine learning (ML) has surged across scientific disciplines, accelerating
computational schemes for understanding material phenomena. One growing field where
ML schemes have been important is the so-called class of Machine Learning Interatomic
Potentials (MLIP). MLIP are a promising approach to solve challenging (and often, unaf-
fordable) problems in materials sciences that were previously neither accessible to classical
force fields nor to costly DFT and FPMD methods (Fig. 1.9).

Figure 1.9. Overview of computational methods in materials science, showcasing the trade-off between
system size/time scales and accuracy/applicability in dynamical approaches. The plot on the right depicts
a simulation illustrating the dynamics of an excited state transition from S1 to S0, necessitating the use
of ab initio methods to determine the properties of the excited state [76].

Recently, it has become evident that research efforts take advantage of atomistic simu-
lations exploiting MLIP as a class of CMD tools. The accuracy and performance of any
MLIP hinge on the quality of databases from DFT and FPMD calculations. Recent MLIP
advancements have bridged the accuracy gap between classical MD and FPMD, opening
new frontiers in materials research. This breakthrough allows classical MD simulations to
approach the precision of FPMD, allowing to bypass limits to size and time scales.
In the context of polyanionic compounds, first-principles simulations have played a crucial
role in elucidating structural, dynamical, and electronic properties of such materials. Meng
and Domablo have highlighted how first-principles calculations can accelerate the search
for energy storage electrode materials for LIBs by predicting relevant properties such as
crystal structure, electronic structure, conductivity, hopping rate, thermal stability and
ionic diffusion, and elucidating their link to the material’s structural components [77].
Nevertheless, despite these abilities, the authors acknowledge that several challenges can-
not be met when predicting new mechanisms beyond intercalation and, more generally,
nanoscale material properties as those pertaining to surfaces and interphases, currently
beyond the reach of first-principles calculations.
As an example worth quoting, Zhang and colleagues conducted an investigation into
the mechanism of Na+ ion migration within the Na2MnSiO4 structure, as well as in
NaxLi2−xMnSiO4 (with x values of 2, 1, and 0) using first-principles calculations. Their
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computational findings revealed that the diffusion pathways observed in Na2MnSiO4 closely
resembled those found in Li2MnSiO4. Additionally, it was observed that the diffusion of
Na+ ions within the Na2MnSiO4 structure occurred even more rapidly than the diffusion
of Li+ ions within the lithium analogue [78]. Recently, H. M. You et al. conducted a study
on electron transport between the anode surface and the electrolyte in LIBs by modeling
the anode/SEI/electrolyte interface using various methods such as CMD and FPMD [79].
The authors highlighted the difficulty of fully capturing the complex interactions between
the multiple components of the anode/electrolyte system due to the high computational
cost and limited time and length scale of AIMD simulation. In addition, they highlighted
the limited accuracy of classical results correlated to the quality of the force field. To
overcome these limitations in time and length scales while preserving accuracy, the au-
thors proposed the use of techniques parameterized by ab initio-based computations such
as deep neural networks (NN) with is a subset in the domain of artificial intelligence.
In the emerging field of artificial intelligence for materials science, machine learning-driven
interatomic potentials are increasingly recognized as highly promising tools for the study
of atomistic and nanoscale materials such as batteries components. This advance offers
quantum-mechanical level accuracy at a remarkable speed, outperforming current mod-
elling techniques by several orders of magnitude. In the second chapter of this thesis
further information on this powerful tool can be found.

Experimental studies dominate the literature concerning polyanionic glasses and glass-
ceramics based on sodium phosphate and vanadium materials. However, the complex
compositions and resulting structures pose challenges for the experimental elucidation of
the properties of these materials. FPMD realizations are currently lacking in this respect.
Existing research relies mainly on the empirical methods of classical molecular dynamics,
where the accuracy of the results depends on the efficiency of the force field used. Classical
molecular dynamics (CMD) [32, 59, 80–84], non-constant force field MD (ncMD) [60] and
reverse Monte Carlo (RMC) simulations [53–55, 85] have been predominantly employed on
alkali-ion-containing VP glasses. Also, CMD has been increasingly used for modeling VP
glasses, by complementing the experimental findings and offering qualitative insights into
their structural properties. However, a quantitative assessment of the structural proper-
ties and the underlying electronic structure is still missing.

Previous CMD works by Ori[80], Broglia[48, 81], and Deng[86] et al. investigated the
structure and diffusion behavior of Li/Na ions in Li/Na vanado-phosphate glasses using
CMD simulations. For instance, Broglia et al. and Montorsi et al. reported that Li/Na ion
self-diffusion coefficients are highly influenced by alkali ion content, while activation energy
appears to be independent of Li/Na concentration and the number of V4+–O–V5+ link-
ages promoting electron conductivity was linearly related to the V2O5/P2O5 ratio [81].
In 2021, L. Deng et al. conducted a study using CMD to examine the structure and
bonding characteristics of sodium vanadate phosphate glass with a composition of 20Na2–
51.66V2O5–8.34VO2–20P2O5. Their findings revealed that the concentration of vanadium
significantly impacts its local environment within the glass matrix. At lower vanadium
concentrations, vanadium tends to exhibit weak coordination (4 or 5), while higher con-
centrations can result in a shift to a higher coordination environment, such as trigonal
or octahedral bipyramidal units [86]. In Table 1.2, we present the glass compositions for
LVPG and NVPG that have been simulated using classical molecular dynamics (CMD).
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Table 1.2. Summary of different NVP and LVP glass compositions simulated by classical MD from the
literature.

Composition FF Ref.

20.0Na2O–51.67V2O5-8.33V2O4-20P2O5 [80, 86, 87] [80, 86, 87]
44.9Na2O–7.2V2O5-2.9V2O4-44.9P2O5 [80, 87] [48]
40Na2O–14.9V2O5-5.2V2O4-40P2O5 [80, 87] [48]
33Na2O–29.6V2O5-5.2V2O4-33P2O5 [80, 87] [48]
20Na2O–55.5V2O5-4.5V2O4-20P2O5 [80, 87] [48]
10Na2O–75.1V2O5-4.9V2O4-10P2O5 [80, 87] [48]
23.3Na2O–26.4CaO-5.3V2O5-42.9SiO4-2.1P2O5 [84] [88]
xNa2O–(90-x)VxOy–10P2O5 [89] [90]
45Li2O–7.5V2O5-2.5V2O4-45P2O5 [80, 87] [81]
10Li2O–18V2O5-12V2O4-60P2O5 [80, 87] [81]
10Li2O–34.5V2O5-15.5V2O4-40P2O5 [80, 87] [81]
33.3Li2O–24.7V2O5-8.7V2O4-33.3P2O5 [80, 87] [48]
33.3Li2O–17.4V2O5-16.0V2O4-33.3P2O5 [80, 87] [48]

1.5 Overall motivation, project’s positioning and objectives,
and organization of this thesis

As we have briefly seen in this chapter, the search for innovative solutions for cleaner and
sustainable energy is a current priority in energy research. In light of this, glasses and
glass-ceramic materials are promising prospects for the advancement of next-generation
solid-state batteries. Particularly as electrode materials, they stand out for enhancing
safety and performance, higher environmental sustainability, and simplifying synthesis
and design processes. However, there are still a number of limitations to be surmounted
for G and GC electrodes in order to achieve controlled ionic and electronic conductivity,
structural and electrochemical stability, long cycle times and suitable properties at the
electrolyte-electrode interface. This is mainly due to a lack of fundamental understand-
ing of their atomic-scale structure, chemical bonding and the mechanisms underlying ion
dynamics prevents their full potential from being exploited, thus limiting practical appli-
cations.

In this Ph.D. thesis, atomic-scale modeling is employed to enrich our understanding of
a particularly promising category of potential electrode materials: polyanionic sodium
vanado-phosphate glasses within the αNa2O-βVxOy-γP2O5 (NVP) system. This is moti-
vated by the current performance of similar Li-based systems as cathode materials, while
Na-based systems have only been minimally explored. Interest in Na-based materials stems
from the abundance and cost-effectiveness of Na resources compared to Li. However, the
lack of information on NVP glass-based systems hinders the design of high-performance
cathode materials for this compound class. NVPs are abundant, cost-effective, and en-
vironmentally friendly materials. Some glass systems, such as V2O5-P2O5, B2O3-V2O5,
or MoO3-P2O5, have shown promise as cathode electrode materials [91]. The addition
of Li2O or Na2O enhances ionic conductivity alongside electronic conductivity through
transition metal oxidation states [92]. Research on Li2O- or Na2O-based glasses has been
extended to glass ceramics, benefiting from nanocrystals like V2O5 or metastable phases
for enhanced conductivity. Despite limited studies, NVP G and GC hold potential, with
only a few compositions explored [36, 57, 86, 93].

The main objective of this research project is the modeling of disordered NVP materi-
als of interest as electrode materials for energy storage systems. More specifically, this
means applying atomic-scale modeling techniques, such as DFT-FPMD, in conjunction
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with machine learning techniques to study and design NVP materials with superior struc-
tural, chemical and electrochemical characteristics, suitable for energy storage systems.
The idea is to establish solid benchmarks for NVP materials and disseminate these results
to the wider scientific community. In addition, the project also aims at exploiting the
trajectory data obtained from accurate DFT-FPMD calculations to build a comprehen-
sive database. This database will serve as an input for machine learning algorithms to
develop a machine learning interatomic potential, making possible the rapid and efficient
exploration of large, realistic models of NVP G and GC materials.
The structure of this thesis is as follows: beginning with an introductory chapter 1, which
elucidates the fundamental concepts relating to energy storage systems and outlines the
scope and objectives of this study, the subsequent chapters follow systematically by de-
scribing the main objectives and results obtained in this thesis:

• Chapter 2 is devoted to the various computational methodologies employed in this
research work.

• In Chapter 3, we focus on a case study (liquid GeSe2) intended to guide, as a specific,
benchmark example, the development of a machine learning potential using FPMD
data. The availability of in-house FPMD data on this particular system and related
chalcogenide disordered network has allowed capturing the subtleties inherent in the
conjugate use of artificial intelligence and atomic-scale modelling,

• Chapter 4 takes a close look at the local atomic attributes as well as the structural
and electronic characteristics of binary 50VxOy-50P2O5 (VP50) glass.

• Chapter 5 features an in-depth analysis of various ternary systems within the frame-
work of NVP glass models, encompassing discussions of their structural, electronic
and dynamic properties;

• Chapter 6 describes the genesis and the realization of interatomic potential machine
learning techniques suitable for NVP glasses exploiting information gleaned from
previous FPMD data;

Finally, Chapter 7 contains concluding remarks, offering a unique perspective that inte-
grates preliminary findings with a forward-looking discussion on the electronic conductivity
properties of NVP glasses and the potential of NVP glass-ceramic materials. This chapter
considers the implications of atomistic modeling for future research in this field.
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Chapter 2

Computational Methods

Summary

This chapter offers an insight into the computational methodologies employed in this
thesis. It briefly presents atomic-scale modeling techniques based on classical molecular
dynamics, first-principles molecular dynamics and machine learning interatomic potentials
employed within classical molecular dynamics to extent the temporal and spatial scales of
atomic-scale modelling.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Classical molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Potential energy functions/Interatomic potentials/ Force Fields: dif-
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2.4.2 Gaussian Approximation Potential (GAP) . . . . . . . . . . . . . . . 37

2.5 Global comparison of the computational techniques employed . . . . . . . . 38
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2.1 Introduction

The primary aim of this chapter is to elucidate the underlying physical principles of each
computational method employed and examine their strengths and current limitations.
First, classical molecular dynamics (CMD) is introduced together with some generic con-
cepts of statistical mechanics and thermodynamics. The main issue about CMD is its in-
herent limited power in describing quantitatively the subtleties of chemical bonding. This
requires the account of quantum mechanics in the calculation of energies and forces and,
as a consequence, the introduction of its first-principles counterpart, i.e. first-principles
molecular dynamics (FPMD). Two approaches of FPMD are recalled: Bohr Oppenheimer
Molecular Dynamics (BOMD) and Car-Parrinello Molecular Dynamics (CPMD). At this
point it is important to underline a very special and important feature of FPMD cal-
culations, quite often overlooked when presenting the technique at the beginner and/or
introductory level. FPMD is based on the classical equations of motion (Newtonian dy-
namics) as much as CMD and, in this respect, one cannot invoke any quantum mechanics
concepts to underscore the differences between the two approaches. The quantum charac-
ter of FPMD lies entirely in the account of quantum mechanics in the calculation of the
energy and forces through the explicit account of the electronic structure described via
density functional theory. Needless to day, this means a much higher computational cost,
since, in principle, one needs a full electronic structure calculation for each atomic (ionic)
configuration.

Having established the main differences between CMD and FPMD and referring to the
content of this chapter for further details, it remains true that FPMD is characterized
by a very high computational demand, somewhat limiting the size of the systems under
investigation and the length of the temporal trajectories needed to take statistical aver-
ages. In this context, the integration of artificial intelligence into atomic modeling has
made possible the development of self-learning interatomic potentials. The final section
of this chapter looks at applications of these powerful machine learning tools in materials
science, with a particular focus on glass and glass-ceramic modeling. Some final consider-
ations on the comparative performances of FPMD, CMD and CMD based on MLIP end
this chapter.

2.2 Classical molecular dynamics

Molecular dynamics is a powerful computational technique to study the properties (struc-
ture, dynamics, transport) of condensed matter systems at atomic level by solving the
Newton equation of motion [94]. The idea is to connect statistical mechanics to thermo-
dynamics by taking time averages on extended intervals of time at the equilibrium. Also,
processes and mechanisms can be followed in real time, by granting to molecular dynamics
the well known definition of ”thought experiments”. This method was first introduce by
Alder and Wainwright in 1957 to study the phase diagram of hard-sphere system [95]. The
first simulation employing a realistic potential (specifically, a truncated Lennard-Jones po-
tential) was carried out in 1964 by A. Rahman to investigate the correlations in the motion
of atoms in liquid argon [96]. Ten years later, F. Stillinger and A. Rahman studied liquid
water using MD simulations [97]. This method was subsequently extended to a variety
of other systems, in part due to the development of computational resources allowing for
significant averages being taken on equilibrium trajectories. Nowadays, MD simulations
has become a widely adopted tool in the field of materials science, medicine, chemistry and
biophysics to elucidate any sort of macroscopic properties that can be expressed in terms
of a microscopic variable acting as an atomic-scale counterpart. Typically, on very general
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terms, and for a system of N atoms, the Hamiltonian employed for a classical molecular
dynamics run is given by:

H(RN ,PN ) =
N∑
i

p2
i

2mi
+ V (RN ), (2.1)

where RN = (r1, r2, ... , rN ) and PN = (p1, p2, ... , pN ) are the position and momentum
vectors of the N atoms, mi is the mass of the ith particle and V(RN ) is the potential energy
function of the system. Since we are considering here CMD, the potential energy function
depends on the coordinates only, with strictly no explicit dependence on the electronic
structure of the system (no explicit dependence on whatsoever orbitals or eigenfunctions
or any functional form referring to the electronic density).
The same is true for the force acting on each particle that can be calculated from the
gradient of the potential energy function (Eq. (2.2))

Fi(RN ) = −∂V (RN )
∂ri

, (2.2)

and the motion of a single particle is describe by the Newton’s equation of motion (second
law):

mi
∂2ri
∂t2

= Fi(RN ) (2.3)

The general procedure for classical MD simulations follows the flowchart illustrated in
Fig. 2.1 in which the MD technique can be understood as an iterative numerical scheme
for solving Newton’s equation of motion (EOM). In step 4 of Fig. 2.1, the atomic position
and velocity are updated by integrating the EOM using algorithms such as Euler [98] or
Verlet algorithms [99–101]. The Verlet Leap-frog [102, 103] and velocity Verlet [104–106]
are the most commonly used variants of Verlet’s algorithm.
Care should be exercised when applying the Verlet algorithm in its original version since

Initial structure

Energy minimization  

Force evaluation on each atom 

Solution of the equation of motion with optimal  

timestep for atomic positions and velocities  

Calculation of physical quantities of interest  

Save and analyze the results

Reach preset 

number of steps 

(tmax ≤ t) ?

Yes

No

Figure 2.1. Step-by-step procedure for conducting MD simulations.

the velocities of the atoms are not directly integrated into the equations of motion. At
first sight, this cannot be taken as a serious problem, since the kinetic energy leading to

20



the temperature of the system is not sensitive to changes occurring on the time scale of a
single time step. In other words, ordinary Newton equations of motions do not depend on
velocities. However, the situation changes, for instance, when some form of temperature
control is introduced, as explained in one of the next sections devoted to thermostat. In
that case, one needs to have positions and velocities at the same time to ensure proper
integration of the equations of motion. This difficulty requiring additional effort for their
determination. This difficulty has been circumvented by the velocity Verlet algorithm,
used in all molecular dynamics simulations in this study, which updates atomic positions
and velocities based on second- and first-order Taylor expansions of position (ri(t+∆t))
and velocity (vi(t+∆t)) at time t+∆t, respectively. More details on the implementation of
the velocity Verlet algorithm are available in the literature and do not need to be recalled
here since they are routinely used in any current version of available molecular dynamics
codes, both classical or first-principles.

2.2.1 Potential energy functions/Interatomic potentials/ Force Fields:
different terminologies for the same notion

There are various terminologies to define the interatomic potentials acting between the
atoms in the framework of a classical molecular dynamics calculation. A consistent num-
ber of practitioners prefer to name these potentials Force Fields (FF). Throughout this
manuscript we shall use either the notion of ”interatomic potentials” or the one of ”force
fields” equivalently. These tools typically consist of terms representing bonded interac-
tions (such as bonds and various kinds of angles) and non-bonded interactions (such as
van der Waals and electrostatic interactions). They are used to calculate forces acting on
atoms, which are then employed to update atomic positions and velocities according to
Newton’s equations of motion. In this thesis, we have selected and tested distinct empirical
FF schemes for our CMD simulations combining short-range and long-range interactions,
detailed as follows:

• The Morse [107] type interatomic potential named BMP-shrm in ref. [108] which
combines the long-range Coulumb interaction, the short-range Morse function and
a repulsive term (from the original PMMCS potential [87], Eq. (2.4)) with the har-
monic three-body raster functional (Eq. (2.5)). The two-body potential parameters
for V5+–O and V4+–O are taken from ref. [80]. The three-body potential parameter
for the triad P–O–P, P–O–V5+, and V5+–O–V5+, taken from ref. [84, 88, 108].

Uij = ZiZje
2

rij
+Dij

({
1 − exp

[
−aij(rij − r0

ij)
]}2

− 1
)

+ Bij
r12
ij

, (2.4)

U ′
ijk = Kijk

2
(
θijk − θ0

ijk

)2
exp

[
−
(
rij
ρ

+ rjk
ρ

)]
(2.5)

Here, Dij , aij and r0
ij are the Morse function parameters for the atomic pair i − j,

Bij is the parameter of a repulsive term acting to prevent atoms collapse at short
distances, Zi is the partial charges of ion i, rij is the interatomic distance of atoms
i and j, Kijk is the force constant parameter and θ0

ijk the reference angle connected
to the i− j − k triplet.

• The Buckingham [109] type pair potential (Eq. (2.6)) from ref. [32, 59] which is
a combination of the long-range Coulomb interaction, the short-range Buckingham
function and a correction term (Eq. (2.7)) necessary at high temperature when the
atoms can move close at unphysically short distances.

Uij = ZiZje
2

rij
+Aij exp

(
− rij
ρij

)
− Cij
r6
ij

, (2.6)
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U ′
ij = Bij

r
nij

ij

+Dijr
2
ij (2.7)

In these equations ((2.6) and (2.7)), in addition to the others parameters defined
previously, Aij , ρij and Cij are empirical Buckingham parameters associated to i− j
pair. U ′

ij is the repulsive term used when rij ≤ rsij (splice distance), parameters Bij ,
nij and Dij are determined at the point where the second derivative of the potential
approaches 0 [59].

2.2.2 Periodic boundaries conditions

The use of periodic boundary conditions (PBCs) in MD consists in mimicking the behav-
ior of an infinite system (bulk materials) by reproducing the simulation box in all three
dimensions. This approach ensures that only a relatively small number of particles are
treated in order to obtain reasonable results that can accurately account for the corre-
sponding experimental data. PBCs assume that the simulated system is surrounded by
identical copies of itself in all directions. When a particle exits from one side of the simu-
lation box (unit cell), it re-enters from the opposite side, thus maintaining the continuity
of the system. However, in practice, the atomic coordinates are not modified to account
for this virtual exit from the central box, since this operation is ensured by an appropriate
programmable instructions that automatically search for the shortest distance between
pairs of atoms. The same holds true for any part of the first-principles Hamiltonian (see
below) that are intrinsically periodic due to the use of a basis set (plane waves) made to
have the periodicity of the cell and its replicas.

2.2.3 Thermodynamic ensembles

In MD simulations, different thermodynamic ensembles are used to describe the statistical
behavior of a system. These ensembles are a framework to understand the properties of
the system under various conditions such as fixed energy (E), temperature (T), pressure
(P) or chemical potential (µ). Considering a system of N particles in a unit cell of volume
V, we provide in the following a short review of the conceptual framework to capture the
differences between the ensembles. However, it should be kept in mind that molecular
dynamics produces temporal trajectories in the microcanonical (NVE) and canonical
(NVT) ensembles (the isothermal-isobar ensemble being an extension of the NVT one
in which the volume is allowed to fluctuate to achieve the required average pressure).
Therefore, the expressions employed in what follows are given with a purely informative
scope and do not correspond to any actual implementation carried out in this
thesis. In fact, they are based on ”probabilities”, while within molecular dynamics
one follows the evolution of the system along temporal trajectories instead
of sampling the phase space according to a specific probability law. This is
exactly the essence of Boltzmann ergodic hypothesis stating that ”the temporal averages
and ensemble averages must coincide in the limit of very long time”.

i) Microcanonical Ensemble (NVE): This ensemble describes an isolated system
with a fixed number of particles, volume, and energy. It corresponds to the idea
that an isolated system in equilibrium has equal probability (Eq. (2.8)) of being
found in all accessible microstates. Ω is the total number of microstates accessible
to the system at energy E. It is interesting to note that for the total energy, due to its
strict conservation in time in the absence of dissipation, the notions of instantaneous
and average quantities are equivalent, making this thermodynamic variable easily
accessible within molecular dynamics.

pi = 1
Ω (2.8)
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ii) Canonical Ensemble (NVT): In this ensemble, the system is in thermal equi-
librium with a heat bath at constant temperature, fixed number of particles, and
volume. The probability to find the system in a given microstate i is related to its en-
ergy by the following Eq. (2.9) in which kB is the Boltzmann constant. The practical
realization of the canonical ensemble for molecular dynamics is not straightforward
and has required a conceptual breakthrough that will be considered in the next sec-
tion. On a purely intuitive basis, talking of a ”constant temperature” makes little
sense for a finite system, since the temperature, as any average quantity (in this case
of the kinetic energy) is bound to fluctuate in time. This apparent paradox can be
circumvented by noting that the temperature is strictly constant in the thermody-
namic limit only (infinite number of particles and infinitely extended trajectory).

pi(Ei) =
exp(− Ei

kBT
)∑

i exp(− Ei
kBT

)
(2.9)

iii) Isothermal-Isobaric Ensemble (NPT): It describes a system in thermal and me-
chanical equilibrium with a thermostat at temperature T and a barostat at pressure
P. The system not only exchanges heat with the thermostat, but also work/volume
with the barostat. The total number of particles remains fixed while the total en-
ergy and volume fluctuate. The probability (Eq. (2.10)) of finding the system in a
microstate i depends on its internal energy Ei and its volume Vi.

pi(Ei, Vi) =
exp

(
−Ei+PVi

kBT

)
∑
i exp

(
−Ei+PVi

kBT

) (2.10)

iv) Grand Canonical Ensemble (µVT): This ensemble describes a system in equilib-
rium with a reservoir of particles, allowing for exchange of both particles and energy
with the reservoir, while keeping the chemical potential µ, temperature, and vol-
ume constant. Eq. (2.11) provides the probability of finding the system in a specific
microstate i, which depends on both its energy Ei and the number of particles Ni.
The practical realization of this ensemble is quite hard to implement within molec-
ular dynamics and, in any case, goes well beyond all schemes and methodologies
employed in this thesis.

pi(Ei, Ni) =
exp

(
−Ei−µNi

kBT

)
∑
i exp

(
−Ei−µNi

kBT

) (2.11)

2.2.4 Temperature control: Nosé-Hoover thermostat

One of the most challenging issues faced in the early days of molecular dynamics was the
control of temperature (and its instantaneous counterpart, the kinetic energy) to create
temporal trajectories compatible with the notion of canonical ensemble. Looking back
at the various attempts put forth since the eighties we can mention the approaches by
Berendsen [110], Andersen [111] as the most valuable realisations. They were both aimed
at introducing of a temperature control rooted into the monitoring of the kinetic energy
and its average. However, the most rigorous scheme for a thermostat, fully compatible
with statistical mechanics, is due to Nosé, together with a later derivation due to W. G.
Hoover. Overall, this technique has been labelled as the Nosé-Hoover [112, 113] thermo-
stat. In what follows, attention will focus mainly on the Nosé-Hoover thermostat, which
is the one used in the all the NVT simulations of this thesis.
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The Nosé-Hoover thermostat is a rigorous method widely used to control the tempera-
ture of a system based on extended Hamiltonian dynamics (see [112, 114] and [113]). In
the original idea, Nosé demonstrated that a trajectory compatible with the canonical en-
semble (NVT) can be obtained via an additional degree of freedom s coupled with the
kinetic energy of a system. This new variable is given a fictitious mass η and velocity ṡ.
Accordingly, the Nosé Hamiltonian is given by:

HNosé =
N∑
i=1

p2
i

2s2mi
+

N∑
i=1

Ui(ri) + p2
s

2η + (Nind + 1)kbTTG ln s (2.12)

where pi and ps are the momentum of atom i and the artificial variable s respectively,
TTG is the target temperature of the system. The virtual time tv governing the Eq. (2.12)
is link to the real time tr by the following relation: tv = str.
The Nosé equations of motion that can be obtained from Eq. (2.12) due to their Hamilto-
nian (Lagrangian) were derived by W. G. Hoover in 1985 by taking advantage of the same
formalism but expressed in real time tr [115]:

ṙi = ∂ri
∂tr

= s
∂ri
∂tv

(2.13)

ṙi = pi
sm

; ṗi = sFi; ṡ = sps
η

; ṗs =
N∑
i=1

p2
i

s2m
− (Nind + 1)kbTTG (2.14)

with Fi the force acting on atom i.
It is worth noting that the real-time equation of motion (2.14) cannot be obtained directly
from the virtual-time Hamiltonian of the Eq. (2.12) but the notion of quantity conserved
in time remain true. Hoover introduced a parameter (friction force ζ) fully compatible
with the Nosé dynamics:

ζ = ṡ

s
= ps

η
(2.15)

With this new parameter, the Nosé-Hoover conserved quantity can be finally written as:

HNosé-Hoover =
N∑
i=1

p2
i

2mi
+

N∑
i=1

Ui(ri) +NindkbT
TG
∫
dt ζ + η

2ζ
2 (2.16)

The above conserved quantity is compatible with the following equations of motion (again,
it must be kept in mind that these equations cannot be derived directly from Eq. 2.16):

ṙi = pi
m

; ṗi = Fi − ζpi; ζ̇ = η−1
(

N∑
i=1

p2
i

m
−NindkbT

TG
)

(2.17)

The selection of the thermostat’s fictitious mass parameter η in the implementation of
the Nosé-Hoover algorithm plays a crucial role in ensuring stable and efficient dynamics
during simulation. Choosing too low value leads to high temperature fluctuations, causing
the ζ variable to oscillate with high frequency, decoupling it from the atomic motion in
the system. Conversely, a very high value results in slower response times to changes in
system temperature, deferring to exceedingly long times the thermodynamic equilibrium
of the system to the desired target temperature. This drawback is, in practice, equivalent
to the absence of thermostat itself (this statement being strictly true for an infinite mass).
In a recent paper to which I contributed [116] it was shown that Hoover’s refinement of the
Nosé-Hoover thermostat can be directly traced back in the original theoretical framework
implemented by Nosé. Therefore, it appears that the idea by Nosé incorporates the nec-
essary frictional force through a skillful rearrangement of Nosé’s initial proposals without
any need to go through the Hoover extension.
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2.3 First-principles molecular dynamics

Recent advances in materials science, in particular the emergence of new classes of mate-
rials, have posed significant challenges for MD simulations. The main obstacle lies in the
lack of appropriate analytic potential energy function capable of accurately describing the
properties of these complex systems specially when chemical bonds are formed, broken or
modified. To achieve a precise understanding of these materials, it is necessary to develop
accurate force fields, a task exacerbated by the lack of effective methodologies. One ap-
proach consists in performing ab initio (i.e. first-principles) calculations on the system
of interest in order to derive the potential energy function from which the forces can be
derived. Therefore, there are two reasons underlying the choice of investing substantial
resources in performing calculations accounting for the electronic structure of a system.
The first is the access to properties depending on the nature of chemical bonding, lead-
ing to a realistic description of structure and dynamics. The second has to do with the
need of extending as much as possible the time and space scale of atomic scale modelling.
Instead of facing the unaffordable task of producing results based on the exclusive use
of first-principles techniques, one can set the goal of exploiting them to end up with a
reasonably manageable interatomic potential. This idea is the essence of machine-learning
approaches that will be detailed later in this work. In what follows, we would like to
provide a essential guide of comprehension and use of first-principle molecular dynamics
(FPMD) that, in short, can be defined as a molecular dynamics implementation in which
the force are derived on the basis of quantum mechanics via density functional theory
(DFT).
Density functional theory allows electrons in orbitals to be represented as quantum enti-
ties. In this revised perspective, the potential energy function in Eq. (2.2) is replaced by
the total energy derived from electronic structure calculations. However, this approach
can appear as tedious and extremely demanding, due to its considerable computational
cost, as it requires ground-state electronic structure calculations for every atomic position
at every time step (see Sec. 2.3.4). We shall see later on in this chapter how the ideas
exposed in Sec. 2.3.5 can be taken as an alternative, at certain conditions, to bypass these
requirements.

2.3.1 Density functional theory in a nutshell

DFT is a computational quantum mechanical modeling method based on the Hohenberg-
Kohn theorem [117]. The ground-state electron density n(r) uniquely determines the
wave function and ground-state energy of a many-body system. The many-body density
function n(r) is expressed as linear combination of the square modulus of the wavefunction
ψi(r) of a giving particle i (Eq. (2.18))

n(r) =
Nocc∑
i=1

= fi|ψi(r)|2 (2.18)

Nocc is the total number of occupied orbitals and fi is the occupation number equal to 2 or
1 in spin-restricted or spin-unrestricted consideration respectively. In quantum mechanics,
the wavefunctions have to satisfy the orthogonality constraint of Eq. (2.19)∫

d3rψ∗
i (r)ψj(r) = δij (2.19)

The Kohn-Sham total energy (EKS) of many-body quantum system is defined as a func-
tional of density containing all the electron-electron, electrons-nucleus and nucleus-nucleus
interactions:

EKS[{ψi}] = ET[{ψi}] + EH[n] + EXC[n] + EeI [n] + EIJ (2.20)
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In this Eq. (2.20), ET represent the kinetic energy of electrons explicitly defined in
Eq. (2.21) and only depends on the electronic wavefunctions.

ET[{ψi}] =
Nocc∑
i=1

fi

∫
d3r ψ∗

i (r)
(

−1
2∇2

)
ψi(r) (2.21)

The second term EH is the Hartree energy and it represents the classical electrostatic
interaction energy arising from the Coulombic repulsion between electrons.

EH[n] =
∫ ∫

d3r d3r′ n(r) n(r’)
|r − r’| (2.22)

The third term of Eq. (2.20) (EXC[n]) is the exchange and correlation energy (XC), whose
explicit form is unknown and which incorporates all quantum (many-body) effects. This
contribution aims at calculating the precise density and energy of the ground state of a
many-body system. However, due to the unknown form of the XC energy, approximations
are required. Considerable effort has been produced over the years to propose efficient
approximations for the XC energy. Section 2.3.2 discusses some of these approximations.
The fourth term EeI [n] accounts for the electrostatic interaction between nuclei and elec-
trons. This interaction is explicitly defined in Eq. (2.23), where ZI represents the charge
of the nucleus I and RI its coordinates. The computational cost of this interaction comes
from the spatial dispersion of the electrons surrounding the nucleus. More specifically,
core electrons, located close to the nucleus, exhibit highly fluctuating wave functions,
while valence electrons, located further away, contribute to the chemical bond with more
predictable wave function variations [118]. To mitigate the computational demands aris-
ing from the erratic wave functions of core electrons, these are treated as inert entities,
which do not actively participate in chemical bonding processes. This approach is achieved
through the use of pseudopotentials [119–122], that will be treated in more detail later in
this chapter.

EeI [n] = −
∫
d3r

M∑
I=1

ZI n(r)
|r − RJ |

(2.23)

The last term EIJ in Eq. (2.20) is the classical Coulomb interaction between nuclei I and
J with charges ZI and ZJ respectively as showing in Eq. (2.24) below.

EIJ =
M∑
I<J

ZI ZJ
|RI − RJ |

(2.24)

2.3.2 Exchange and correlation approximations

As previously stated in Eq. (2.20), the exchange and correlation approximation plays a
crucial role in providing an expression for the total energy within DFT, given the stakes
inherent to the access of the unknown exact total energy. The exchange-correlation (XC)
energy functional can be decomposed into an exchange component, which accounts for
the Pauli’s exclusion principle and a correlation component, which deals with many-body
effects due to electron-electron interactions.

The XC energy is commonly estimated using a variety of functional forms. Fig. 2.2 shows
the Jacob’s ladder proposed by J. P. Perdew [123], illustrating the different generations of
approximation of XC energy functionals. These approximations can be empirical, result-
ing from the fitting of existing results, semi-empirical or non-empirical, based on physical
laws. They aim at capturing both exchange and correlation effects accurately while main-
taining computational feasibility. Among the most valuable XC functionals are several
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notable examples, including the Local Density Approximation (LDA), Generalized Gra-
dient Approximation (GGA), and Hybrid Functionals, which are further discussed below.
In this thesis, GGA and the hybrid functionals were used.

Figure 2.2. Jacob’s Ladder DFT approximation for XC energy [124] with the different functional approx-
imations, from the Hartree world at the bottom to the chemical accuracy at the top.

Local Density Approximation (LDA)

LDA is the oldest and most fundamental electron density functional, designed to deal with
exchange and correlation energy. It was originally proposed in 1965 by W. Kohn and L. J.
Sham [125] and works on the assumption of a uniform electron gas, with minimal density
fluctuations. In the context of a spin-unpolarized system, the XC energy expression in the
LDA is formulated as follows (Eq. (2.25)):

ELDA
XC [n(r)] =

∫
d3r n(r) εunif

XC [n(r)] (2.25)

where εunif
XC [n(r)] is the XC energy per particle of an electron gas with uniform density

n(r). The exchange component EX was formulated analytically [126] as follows

ELDA
X = −3

4

( 3
π

) 1
3
∫
d3r [n(r)]

4
3 (2.26)

while the correlation part EC was approximated and parametrized through Quantum
Monte Carlo calculations [127, 128]. LDA remains widely employed in condensed matter
physics due to its notable accuracy for solids [123]. It offers a reliable approximation for
predicting properties such as molecular geometries, surface diffusion barriers and vibra-
tional properties of many systems [129, 130]. However, its effectiveness diminishes in the
realm of atoms and molecules, where electron distribution is less similar to a homogeneous
gas and is better described by functionals higher up the Jacob’s ladder. Despite its success
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in solid-state physics, LDA’s relatively low atomization energies have led to its underes-
timation in chemistry. LDA presents systematic errors, which are hard to minimize. In
particular, LDA tends to underestimate exchange energy by up to 15 % and overestimate
correlation energy by up to 200 % [130].

Generalized Gradient Approximation (GGA)

GGA is an advanced method within DFT, providing a refined approach to describe the XC
energy of a system extensively used in computational chemistry, condensed matter physics
and materials science due an improved accuracy and versatility compared to LDA. Unlike
the simpler LDA previously mentioned, GGA incorporates information about the spatial
variation (gradient) of the electron density, offering a more accurate representation of the
electronic structure [128, 131].

EGGA
XC [n(r),∇n(r)] =

∫
d3r n(r) εGGA

XC [n(r),∇n(r)] (2.27)

By considering not only the electron density at a point but also its spatial variation, GGA
improves upon the limitations of LDA, particularly in describing properties such as bond
lengths, reaction energies, and noncovalent interactions.
There are various formulations of GGA, each with its own set of parameters and functional
forms. These functionals are typically developed through a combination of theoretical in-
sights, empirical fitting to experimental data, and computational validation. Popular GGA
functionals include the Perdew-Burke-Ernzerhof (PBE) [131] and the Becke-Lee-Yang-Parr
(BLYP) [132, 133] used this thesis.
Typically, the contributions to the exchange and correlation terms are formulated inde-
pendently,

EGGA
XC = EGGA

X + EGGA
C (2.28)

In the BLYP, the exchange functional was proposed by Becke [132] and the correlation
part derived by Lee, Yang and Parr (LYP functional) [133].

Hybrid functional

Hybrid functional combine both local and non-local XC functionals. These functionals
seek to improve upon the accuracy of GGA approaches by incorporating a fraction of
exact Hartree-Fock exchange in addition to the XC functional. Hybrid functionals are
computationally more demanding than pure DFT methods (LDA, GGA) due to the in-
clusion of non-local exchange terms.
Several hybrid functions have been developed, each with its own form and parameteriza-
tion. Notable examples include B3LYP [134], PBE0 [135] and the Heyd-Scuseria-Ernzerhof
(HSE) screened hybrid functional [136–140]. In the case of the PBE0 used for the spin
topology of some of the systems studied in this thesis, the XC energy mixes the PBE
exchange energy (EPBE

X ) and Hartree-Fock exact exchange functional (EHF
X ), as well as the

full PBE correlation energy EPBE
C , as expressed in the following Eq. (2.29):

EPBE0
XC = 1

4 EHF
X + 3

4 EPBE
X + EPBE

C (2.29)

2.3.3 Basis sets and pseudopotentials

Basis sets are sets of analytical functions with well-know properties used to represent the
electronic wavefunctions of a system. The idea is to represent an unknown function via a
combination of known analytical forms by controlling the convergence via the calculation of
accessible physical properties. In DFT, the most common types of basis sets are Gaussian-
type orbitals (GTO) and plane waves (PW).
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• Gaussian basis set: The orbital ψi is represented as linear combination of a basis
functions fα (Eq. (2.30))

ψi(r) =
∑
α

Cα,i fα(r, {RI}) (2.30)

with fα expressed as follow:

fm(r) = Nmr
mx
x rmy

y rmz
z exp

[
−νmr2

]
(2.31)

where Nm and νm are constants fixed while calculating the electronic structure, so
that only the orbital expansion coefficients Cα,i in Eq. (2.30) need to be optimized.
The Gaussian basis function, centered on the position of the nucleus, is implemented
using a linear combination of atomic orbitals (LCAO).
GTO are popularly deployed in computational materials science due to their com-
putational efficiency and compact support (finite extension), but they also present
several limitations such as non-orthogonality, basis set suppression error and linear
dependencies for larger basis sets. Also, it is not trivial to implement force calcula-
tions and make sure that they are not affected by lack of completeness of the basis
set itself.

• Plane wave basis sets: PW basis sets are well-suited for periodic systems because
they are independent on atomic position and satisfy periodic boundary conditions.
Using the Bloch Theorem [141, 142] and considering the periodicity of the system,
the orbital can be written as Fourier series

ψi,k(r) =
Gmax∑
G=0

Ci,k(G) exp [i(G + k).r] , (2.32)

where G and k are both vectors of reciprocal space, Ci,k are the Fourier coefficient.
Since this is an infinite sum, the number of reciprocal space vectors G must be
truncated to allow implementation. The choice of the PW energy cutoff Ecut is then
crucial to achieve convergence of the various properties with an acceptable precision.
The number of PW (NPW) is directly linked to the energy threshold by the following
equation.

NPW = 1
2π2 VcellE

3
2
cut (2.33)

with Vcell the volume of the cell and Ecut the cutoff energy defined as follows:

Ecut = 1
2 [k + Gmax]2 (2.34)

The PW basis set is widely used in the materials science community due to several advan-
tages. They are orthogonal, independent of atomic positions and can be easily distributed
in parallel processing. In addition, accuracy can be consistently improved by increasing
their number at will by paying attention not to increase the computational cost unneces-
sarily [118].

To approximate the contribution of electron-nucleus interactions (Eq. (2.23)) to the DFT-
KS total energy, researchers adopt a simplified model known as pseudopotential (PP)
first introduced in 1934 by H. Hellmann [143]. However, it wasn’t until 1959 that J.C.
Phillips and L. Kleinman [144] established a solid basis for the theory of pseudopotentials
applicable to systems with a single valence electron. They achieved this by replacing the
orthogonalization terms between nucleus and valence with an effective repulsive potential,
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a simple procedure that was extended in 1968 by J.D. Weeks and R.A. Rice to encompass
systems with several valence electrons [145]. Practically, the PP model replaces complex
all electrons-nuclei interactions (full potential) with an effective potential. This potential
encompasses the fundamental physics involved, while reducing computational costs. The
construction of PPs has to respect a number of criteria [142]. Firstly, the PP is bound to
facilitate the expansion of valence wave pseudo wavefunctions with a minimum of plane
waves. Secondly, it has to prioritize transferability to enhance the accuracy of results
in different applications. In addition, the charge density derived from the pseudo wave-
functions have to be an excellent representation of the real valence charge density. As
represented in Fig. 2.3, core electrons are located close to the nucleus and are not involved
in chemical bonding. They have minimal influence on material properties exhibit highly
fluctuating wave functions, while valence electrons, located further away, contribute to the
chemical bond with more predictable wave function variations.

Depending on the construction approaches of PP, we distinguish projector-augmented

Figure 2.3. Comparison plots of the pseudopotential (solid lines) and full-potential ( dashed blue lines)
models, and their respective wave functions [130]. Beyond the cut-off radius rc, the two models overlap
perfectly.

wave (PAW) [146, 147], ultrasoft pseudopotentials [148, 149] and norm-conserving pseu-
dopotentials [119, 120, 150]. In what follow the focus will be on the norm-conserving PPs
used in this thesis.
The norm-conserving pseudopotential (NC-PP) was introduced by D.R. Hamann et al. [119]
on the basis of the orthogonalized plane-wave approximation [151, 152]. This approach
guarantees that the pseudo-wave functions and potential are the same as the true valence
wavefunctions and potential beyond a cutoff radius rc (see Fig 2.3). Within this radius,
they differ, but the norm remains preserved as expressed in Eq. (2.35).∫ rc

0
dr r2|ψfull(r)|2 =

∫ rc

0
dr r2|ψpseudo(r)|2 (2.35)

The wavefunction ψ(r, θ, φ) can be expressed in term of radial R(r) part and spherical
harmonics Y (θ, φ)

ψn,l,m(r, θ, φ) = Rn,l(r)Yl,m(θ, φ) (2.36)

where (n, l,m) are quantum numbers and (r, θ, φ) spherical coordinates.
Among the various types of NC-PPs present in the literature, those chosen for this thesis
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are those developed by Troullier and Martins (TM) [121] and those by Goedecker, Teter
and Hutter (GTH) [153]. The general form of a PP can be written as a sum of the local
and non-local parts.

VPP(r, r’) = V loc
PP (r) +

∑
l

∑
m

Y ∗
l,m(θ, φ) ∆Vl(r) δ(r − r’) Yl,m(θ, φ) (2.37)

In Eq. (2.37), the local part V loc
PP (r) account for core and short-range contribution.

2.3.4 Born-Oppenheimer molecular dynamics (BOMD)

BOMD is a first principle computational method based on the Born-Oppenheimer ap-
proximation [154], which assumes that the motion of atomic nuclei and electrons can be
decoupled due to their large difference in mass. In BOMD simulations, nuclear degrees of
freedom are treated classically, while electron degrees of freedom are treated quantum me-
chanically. This means that the positions of the atomic nuclei evolve according to classical
mechanics, while the electronic wavefunction is determined self-consistently at each step of
the dynamics at fixed nuclear positions in order to minimize the total energy of the system.
The forces acting on the nuclei are calculated directly from the gradient of the total energy
with respect to the ionic position {RI}. Practically speaking, the electronic structure of
the ground state is first obtained by solving the time-independent stationary Schrödinger
equation, then propagating the nuclei classically in the effective potential [118, 155], as
summarized in the following equations, which govern the dynamics at each step.MIR̈I = −∇I min

{ψi}
EKS [{ψi}, {RI}]

Heψi = EKSψi
(2.38)

Here, MI is the mass of nucleus I, ψi the ground state single particle orbital (wavefunction)
and He the effective KS one particle Hamiltonian. The iterative procedure of Eqs. (2.38)
requires electronic structure optimization and complete diagonalisation of the Hamiltonian
at each step along the trajectory. The Born-Oppenheimer approach to perform first-
principles molecular dynamics was available, in principle, ever since computer were made
available to run calculations on condensed matter or molecular systems. However, it should
kept in mind that their tremendous computational cost discouraged any application of
this recipe and, as such, the approach became rapidly only a potentially available tool not
suitable for practical applications. Curiously enough, it was only after the advent of the
Car-Parrinello scheme (see next section, Sec. 2.3.5 that some pratictioners realized that
the BO approach could be pursued, provided efficient minimization techniques were put
to good use.

2.3.5 Car-Parrinello molecular dynamics (CPMD)

Introduced by Roberto Car and Michele Parrinello (CP) in 1985 [156], CPMD1 is a
methodology that incorporates the electronic wavefunctions as active degrees of freedom,
with the aim of updating them as ions undergo dynamic displacement. This avoids the
calculation of the electronic structure at each step of the dynamics [157] as request by
BOMD approach. In the CPMD scheme, the Lagrangian expressed in classical form as a
function of the atomic positions RI and mass MI is extended by including the fictitious

1It should be made clear that, in what follows, CPMD stands for both the methodology invented by
R. Car and M. Parrinello in 1985 and the for the code employed in this thesis, historically conceived as
the practical realization of the ideas proposed in the Car-Parrinello methodology. Over the year this code
has been extended to account also for alternative approaches to first-principles molecular dynamics. For
instance, it is possible to run a Born-Oppenheimer trajectory by using the CPMD code.
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dynamics of the ground state electronic wavefunctions ψi(r) (electronic degrees of free-
dom). In the general case when an additional dynamical variable αl (such as thermostat
or barostat), the CP Lagrangian is then given by the following Eq. (2.39)

LCP = µ
∑
i

∫
d3r |ψ̇i(r)|2 + 1

2
∑
I

MIṘ
2
I + 1

2
∑
l

ηlα̇
2
l

− EKS [{ψi}, {R}, αl] −
∑
ij

λij

(∫
d3r ψ∗

i (r)ψj(r) − δij

) (2.39)

The initial three terms denote the kinetic energy of the fictitious electronic degrees of
freedom, nuclei, and supplementary dynamic variables respectively, followed by the total
energy functional. The final term serves as the orthogonality constraint for the wave-
functions/orbitals. µ is the fictitious mass associated to the wavefunctions and λij is the
Lagrangian multipliers.
The equation of motion ensuring the time conservation of Eq. (2.39) are

µψ̈i(r) = −δEKS [{ψi}, {R}, αl]
δψ∗

i (r) +
∑
j

λijψj(r) (2.40)

MIR̈I = −∇RI EKS [{ψi}, {R}, αl] (2.41)

ηlα̈l = −∂EKS [{ψi}, {R}, αl]
∂αl

(2.42)

The dynamical nature of the orbital ψi(r) of a given state i, allow a departure from the
Born-Oppenheimer (BO) surface. Selection of the appropriate fictitious electron mass µ,
ensures effective control of deviations from the BO surface (see Fig 2.4) [115]. Evidence has
shown that the CPMD trajectory {RCP}, remains in proximity to the BOMD trajectory
{RBO} (Fig 2.4), with the upper limit being proportional to the square root of the fictitious
electron mass [157].

∥ RCP − RBO ∥< C
√
µ (2.43)

with C is a positive constant.

Figure 2.4. An illustration of CPMD (red) and BOMD (blue) trajectories on a DFT-derived potential
energy surface. Adapted from [157].

Adiabaticity control in CPMD is a crucial to ensure the separation of electronic and nuclear
degrees of freedom. The appropriate µ value needs to be selected as a balance between
minor deviations from the BO surface and time steps of adequate length, which are feasible
for affordable time trajectory lengths.
The intrinsic dynamics of orbitals can be depicted as a combination of oscillatory motions
between unoccupied and occupied levels [158], characterized by a frequency of:

ωij =
√
fj(εi − εj)

µ
(2.44)
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with εi and εj indicate the eigenvalue of ith unoccupied and the jth occupied level respec-
tively of the KS Hamiltonian and fj the occupation number as introduce in Eq. (2.18). The
minimum (ωemin) and maximum (ωemax) attainable electronic frequencies can subsequently
be estimated as:

ωemin ∼
√
Egap
µ

(2.45)

where Egap is the electronic energy gap between the LUMO and HOMO orbital and

ωemax ∼
√
Ecut
µ

(2.46)

with Ecut the plane wave kinetic energy cutoff as defined in Eq. (2.34)
In practice, the value of µ must be determined depending on the system. Adiabatic
separation of the two subsystems is guaranteed when the minimum orbital frequency
significantly exceeds the maximum ionic frequency. This means that the electronic and
ionic subsystems must not exchange energy, as illustrated in Fig. 2.5 for GeSe2 at 1100 K.
Consequently, the CP method should be effective for systems with a well-defined energy
bandgap. For gap-closing systems, a physical condition that can be encountered also in
semiconductors at thigh temperature, it is recommended to use the free-energy molecular
dynamics method [159]. For optimum selection of µ, the maximum integration time step
for the equation of motion is obtained by Eq. (2.47):

∆tmax ∼
√

µ

Ecut
(2.47)
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Figure 2.5. Kinetic energies of the ionic subsystem (red curve) and the fictitious electronic subsystem
(blue curve) for the GeSe2 liquid at 1100 K and comprising 480 atoms, showing a clear energetic separation
of the two subsystems.

2.3.6 Maximally Localized Wannier Function (MLWF)

Analysis of the electronic structure and bonding properties in MD trajectory can be per-
formed in terms of electronic density of states or the MLWF [160, 161]. In this study, the
utilization of MLWF centers enables us to achieve a visualization of the valence electronic
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configuration by allowing the analysis of chemical bonds. In the standard procedure, the
nth MLWF wn(r) and the corresponding center rWFC

n = (xn, yn, zn) are obtained as unitary
transformation (iterative) of the Kohn-Sham orbitals ψi(r)

wn(r) =
Nocc∑
i=1

{∏
p

e−Ap
i,nψi(r)

}
(2.48)

where Nocc is the total number of occupied states (i.e. electrons, in a spin-unrestricted
approach), Api,n is a matrix generalization of the Berry phase connector, and p is the order
of the iteration [162]. Among all the possible (equivalent) unitary transformations, in the
case of MLWF we chose the one that minimized the spread of the orbitals. This is obtained
by minimizing the spread functional Ω. This quantity represents the spatial extension of
the Wannier orbital:

Ω =
Nocc∑
i=1

{
⟨i|r2|i⟩ − ⟨i|r|i⟩2

}
(2.49)

The Wannier function centers (WFC) of each Wannier orbital n are given by:

xn = −Lx
2π Im ln ⟨wn|e

−
i2π x
Lx |wn⟩ (2.50)

where Lx corresponds to the length of the simulation cell along x. Similar equations are
used for the coordinates along y and z.

2.4 Machine-learning interatomic potentials

2.4.1 Introduction to machine learning interatomic potentials

Machine learning (ML) methods is a sub-field of artificial intelligence that has emerged as
powerful computational tools across diverse fields. In recent years, ML methods have been
widely applied and are still gaining significant impact in various domains, including com-
puter vision [163, 164], natural language processing [165], finance [166], healthcare [167],
physics, chemistry and materials science [168–179]. Unlike conventional algorithms, ML
algorithms acquire knowledge from a portion of the data (training set), by learning un-
derlying patterns and rules. They then build a model, evaluated using another part of
the data (testing set), to predict the desired properties. In what follows, and in the con-
text of this thesis, our focus will be on machine learning interatomic potentials (MLIP),
which is one of the many applications of ML in materials science, helping to understand
the structures, reactivity and properties of materials at the atomistic level. MLIP can be
defined as a mathematical representation of the high dimensional potential energy sur-
face (PES) of a given set of atomic positions [170]. In atomistic modeling, the efficiency
of MD simulations depends fundamentally on the accuracy of the underlying PES. The
PES represents the energy landscape that governs the behavior of the system providing
crucial insights into its stability, reactivity, and dynamics. An accurate representation of
the potential energy surface can be obtained by first-principles electronic structure calcu-
lations such as DFT, albeit at considerable computational cost. This motivates the use
of empirical potentials, offering a faster way to access energy and forces. However, these
empirical potentials quickly show their limits specially for complex systems and often lead
to erroneous results. On the other hand, MLIP enables the mapping of a smooth, con-
tinuous, simple expression, accurate and low-cost high-dimensional PES based on DFT
calculations. MLIP provides predictive force fields that are computationally cheap and
allow simulations at large time and length scales with high computational efficiency at the

34



level of quantum mechanical accuracy [170, 180–182].

The first attempt to model the surface properties of potential energy using MLIP was
made in 1995, by T. B. Blank et al.[183]. In this pioneering effort, using neural networks
(NN) with limited degrees of freedom, the authors demonstrated the effectiveness and
promising future of this innovative approach. A few years later, additional explorations
still based on the NN and incorporating a greater fixed degree of freedom were carried
out [184, 185]. In 2007, J. Behler and M. Parrinello introduced a generalized NN approach
for constructing the PES, which addresses the limitations previously hindering the use
of NN in higher-dimensional PES [186]. The authors demonstrated the high accuracy
of the method for bulk silicon with respect to the empirical potentials and DFT. Their
contribution marks a decisive turning point in this field and continues to be one of the
most impacting. Using an approach based on high dimensional neural network potential
(HDNNP) [181, 187–189], the potential energy of the system is decomposed into atomic
contributions, allowing good flexibility in terms of the number of atoms involved. Three
years later, A. P. Bartok and coworkers introduced the Gaussian Approximation Poten-
tial (GAP) framework [190], which is a Gaussian Process Regression (GPR) based on the
smooth overlap of atomic positions (SOAP) kernel [191, 192]. Since then, MLIP devel-
opment has made considerable progress in modeling systems characterized by short-range
interactions. The past decade has witnessed a rapid proliferation of MLIP methodologies
across diverse systems, primarily employing artificial neural networks (NNs) and Gaussian
approximation potentials (GAPs). Notable advancements include DeepMD [193], equiv-
ariant neural networks [194], and graph-based neural networks [195]. These approaches
have significantly expanded the capabilities and applicability of MLIPs in materials sci-
ence and molecular dynamics simulations (Fig. 2.6, (a)).

Figure 2.6. (a) Growth in MLIP-related publications across different fields in the last two decades across
different fields. (b) Schematic overview of the MLIP development pipeline, including data collection,
descriptor generation, machine learning models, and applications. Adapted from [196].

These studies have covered a variety of systems in both solid and liquid state, including
the examination of defects in silicon [197], the graphite-diamond phase transition [198] and
the exploration of ionic diffusion in amorphous solids such as Li3PO4 [199] and TaO5 [200],
bulk TiO2 [201] as well as alloying systems such as Li-Si [202], thermal properties in phase-
change materials [203–205] and surfaces phenomena [206–208].
Figs. 2.6 (b) and 2.7 illustrate the main steps in the MILP development process. The
three request ingredients for generate a MLIP are: a database of reference structures with
corresponding quantum-mechanical data; a mathematical representation of the atomic
structure suitable for input into the ML algorithm with the so called descriptors, and
finally the learning task.
Reference database building : Establishing a reference database of atomic configu-
rations is a crucial initial step for MLIP, as it is for any machine learning model. The
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choice of atomic structures and the accuracy of the labeled data are of great importance.
Exploiting the system’s scientific knowledge can contribute to this selection process. Iter-
ative and active learning methodologies [173, 209, 210] can also help to supervise database
construction in order to identify and exclude highly correlated configurations. Once se-
lected, atomic configurations need to be transformed into a machine-readable format to
encode the local atomic environment.

Figure 2.7. Schematic overview of the general methodology for developing MLIP, highlighting the three key
stages: (1) Compilation of a labeled database featuring representative structural models, with energy, force
and virial stress calculated via reference quantum mechanical method such as DFT; (2) Representation of
atomic environment through comprehensive mathematical descriptors; (3) The learning process (regression
task) of the potential energy surface to create the model. Adapted from [211].

Representation of atomic environments : The atomic structures information in the
database are directly related to their coordinates, providing an unambiguous description
of the systems. However, comparing structures based solely on cartesian positions poses
challenges, as the arbitrary arrangement of coordinates makes establishing meaningful
comparisons difficult. Additionally, structures that seem different may be equivalent un-
der rotation, reflection, or translation transformations. Hence, converting these positions
into a different mathematical invariant representation proves useful. This transformation
is done using suitable tools called descriptors (features in ML jargon) with a set of re-
quested properties: invariant with respect to translations, rotations, and permutations of
atoms, computational efficient, and complete as possible [170, 211, 212]. The choice of
descriptors is related to the system and the properties of interest starting from two body
(pair-wise interaction) to many body descriptors such as Many-body Tensor Represen-
tation (MBTR), smooth overlap of atomic positions (SOAP), Atom-Centered Symmetry
Function (ACSF) descriptors among others. A suitable selection of descriptors and corre-
sponding hyperparameters strongly affects not only the construction of the PES but also
structure and properties relationship for property prediction (symmetries and permutation
invariance to the resulting potential) [213].

Over the years, many different approaches have been proposed by which translations,
rotations, inversion, and atom permutation symmetries can be enforced. This is reflected
in the variety of alternative frameworks to achieve an effective representation to be used as
the input of an atomistic machine-learning scheme [214]. In fact, symmetry is such a cen-
tral principle underpinning these efforts that it can be used to construct a “phylogenetic
tree” of representations, organized according to the strategy that is used to incorporate
symmetry in their construction, as shown in Fig. 2.8 [214].

Learning process : Several other strategies have been employed for quality data rep-
resentation, selection, and enhancement. Active learning has witnessed notable success,
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Figure 2.8. Phylogenetic tree mapping structural representations of materials and molecules. Arrows
indicate relationships between feature groups, while names in gray indicate the most common implemen-
tations in each class. Fully symmetrical classes are represented by ”leaves” on the tree. From [214].

contributing significantly to predicting interatomic potentials by optimizing the selection
of structures and hyperparameters during the training setup. This third stage is devoted
to the fitting of the PES into a highly parameterized flexible function.
Different methodologies and software for MLIP have been developed, depending on the
approach used to approximate the PES based on both artificial NN [186, 195, 215] or ker-
nel [190]. In this thesis, the focus will be on the most robust ones for modeling condensed
matter systems: the Gaussian Approximation Potential (GAP) [190].

2.4.2 Gaussian Approximation Potential (GAP)

In the GAP framework, the PES is fitted by calculating and storing all the descriptors (and
their partial derivative with respect to descriptor components) base on the key assumption
that the total energy can be decomposed in atomic contribution εα accounting for all the
descriptors.

Etot =
N∑
α

Nd∑
j

εα(qj), (2.51)

where Nd is the total number of descriptors (q) and N is the total number of atoms.
The GAP total energy as represented in Eq. (2.51), can alternatively be decomposed into
the sum of a two-body contribution and a many-body contribution (refer to Eq. (2.52)).
For the two-body descriptor, GAP employs a polynomial transformation that derives
descriptors from pair distances. The parameterization of intricate many-body energy
terms is facilitated through nonlinear regression, enabled by machine learning methods.
This entails utilizing descriptors for many-body terms based on SOAP kernel K(qi,qj)
(similarity function between two atomic environments).

Etot = 1
2

N∑
i ̸=j

U2b
ij (rij) +

∑
i

∑
j

cjKj(qi,qj), (2.52)
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where U2b
i,j denotes the pair potential arising from the interaction between atoms i and j,

rij the distance between atoms i and j.
The SOAP descriptor for the atomic neighborhood of α is formulated by initially construct-
ing a function based on the neighbor densities (refer to Eq. (2.53)). This function can be
expanded in a basis set of orthonormal radial functions Rn(r) and spherical harmonics
Yl,m(θ, ϕ) to facilitate the numerical computation [173, 216].

ρα(r) =
Nn∑
i

δαzi exp
[

−|r − ri|2

2σ2

]
fcut(|ri|) =

∑
n,l,m

Cαn,l,mRn(r)Yl,m(θ, ϕ), (2.53)

where n, l, and m are radial and angular index, Cαn,l,m are the expansion coefficients
corresponding to atom α, Nn the total number of neighbour within the cutoff distance, σ
the length scale hyper-parameter that determines the regularity of the representation, ri
is the position of atom i with atomic number zi, and fcut the cutoff function defined by
the following Eq. (2.54).

fcut =


0 if r ≥ rcut

1 if r < rcut − d
1
2

[
cos

(
r − rcut + d

d
π

)
+ 1

]
otherwise

, (2.54)

with rcut the cutoff distance and d the transition width evaluated for each pairwise distance.
The rotationally and permutationally invariant dot product SOAP kernel of two atomic
environments is obtained by computing the overlap densities and the power spectrum
elements.

K(ρ, ρ′) =
∫
dθdϕ

∣∣∣∣∣∑
α

∫
drρα(r)ρ′α(rθϕ)

∣∣∣∣∣
2

(2.55)

Pαβn,n′,l =
∑
m

(Cαn,l,m)∗ Cβn′,l,m (2.56)

K(ρ, ρ′) =
∑
αβ

∑
n,n′,l

Pαβn,n′,l P
′αβ
n,n′,l = P.P′ (2.57)

The normalize SOAP kernel is then obtained as

K̄(ρ, ρ′) = δ2
∣∣∣∣∣ P.P′

|P| |P′|

∣∣∣∣∣
ζ

, (2.58)

where δ is the energy scale of the many-body term hyperparameter and ζ is the power
kernel.
Typically, fine-tuning the hyperparameters is crucial to achieving a stable and accurate
interatomic potential. For instance, increasing parameters such as nmax and lmax im-
proves the resolution of the basis set expansion, thus serving as convergence indicators
for the SOAP kernel. Optimal values depend on factors such as the average number
of neighbors, which in turn depends on the cutoff distance and the Gaussian expansion
parameter σ [216]. Nevertheless, these adjustments have a significant impact on compu-
tational efficiency and can impose substantial memory requirements.

2.5 Global comparison of the computational techniques em-
ployed

Table 2.1 provides a comprehensive summary of the various computational methods em-
ployed in this research, categorized based on the complexity of the studied systems. It
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includes information about the sizes of the systems investigated in this study, along with
the corresponding limits reported in the existing literature.

Table 2.1. Overview of the computational methodologies employed in this thesis, highlighting their
respective advantages and limitations.

Classical MD CPMD BOMD MLIP-MD
System size (in atoms) 218–5ka; 1M 480a; 1k 400a; 1k 218–1.2Ma

Integration time step (fs) 1-2 0.1-0.2 0.5-2 1-2
Computational cost cheap expensive expensive cheap
Structural properties yes yes yes yes
Dynamical properties yes yes yes yes
Electronic properties no yes yes no
Accuracy FF dependentb DFT level DFT level ∼DFT level

aModels sizes simulated in this thesis.
bDegree of accuracy force-field dependent. For the chalcogenide- and oxide-based systems targeted in this
work this degree can be defined from qualitatively to semi-quantitative in certain cases, but not truly
quantitative.
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Chapter 3

From FPMD to MLIP, a case
study: liquid GeSe2

Summary
In this chapter, the MLIP methodology is tested on a disordered binary chalcogenide
system as case study, liquid GeSe2; for which previous CPMD trajectories were available
in our team as a result of extensive investigations well documented in the literature. The
key motivation was the attempt to solve a longstanding disagreement between FPMD
calculations and experiments (particularly on the partial structure factors) by invoking the
occurrence of size effects on the structural properties of liquid GeSe2. Liquid GeSe2 can
be considered as a prototype of chalcogen-based binary disordered materials. Originally,
it was selected to understand the atomic-scale origins of intermediate range order. While
achieving an overall agreement with experiments for a large set of structural features, some
of them remained quite different from the experimental counterpart, by calling for further
investigations oriented in two directions. First, the sensitivity of the results to the choice of
the exchange-correlation functionals. This issue has been treated extensively by obtaining
some improvements but it will not be the object of further calculations in this thesis (a
short summary of previous achievements obtained in this direction will be provided to set
the scene and ensure full clarity on the whole topic). Second, the impact of size effects, not
to be excluded a priori when considering structural properties depending on distances well
above the nearest neighbor interactions. It occurs that a thorough study of size effects is
not achievable within FPMD since models and time trajectories have intrinsic well known
limitations (100-500 ps of trajectory at the most for systems made of 500-1000 atoms is
already a quite demanding and expensive estimate). For these reasons, the use of machine
learning potentials becomes a viable solution, combining the precision of DFT calculations
(over which they are fitted) and the reduced computational cost (due to the non explicit
account of the electronic structure). Given the above context, we present here MLIP results
enabling an evaluation of size effects on the structural and dynamical properties of the
liquid GeSe2 with DFT-level accuracy. In addition, this study serves as an introduction to
the MLIP methodology that will be also exploited in the following Chapters for our target
NVPs systems. First, we employ the CPMD scheme supported by available experimental
data, to generate additional accurate structural models of liquid GeSe2 to enlarge the
database. Subsequently, we employ a Gaussian Approximation Potential (GAP) scheme
framed within Gaussian Process Regression (GPR) kernel-based methodology to develop
GAP-type MLIP. We were able to model systems up to one million atoms using the
developed GAP-MLIP, providing comprehensive insights into the behavior of liquid GeSe2
at large scale.

3.1 Forewords on the motivations behind the study of liquid GeSe2 . . . . . . . 41
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3.1 Forewords on the motivations behind the study of liquid
GeSe2

Liquid GeSe2 (l-GeSe2 from now on) is a disordered network forming-system character-
ized by intermediate range order, as exemplified by the presence of a first sharp diffraction
peak (FSDP) in the total neutron structure factor [115]. Chemical bonding in disordered
GeSe2 systems is thought to result from a delicate balance between covalent and ionic
characters, due to the close values of electronegativities of Ge and Se atoms. Previous
research [217, 218] has illustrated the great sensitivity of intermediate order to electronic
bonding properties. More specifically, by comparing the structural properties derived from
LDA and GGA functionals, it was found that change in the description of the electronic
structure impact on intermediate order. In the GGA framework employing the function-
als proposed by Perdew and Wang (PW), the total neutron scattering structure factor
agrees very well with experimental measurements for the entire range of k-values. The
position and intensity of the FSDP were well reproduced with high accuracy, a feature
totally absent from LDA calculations (see Fig. 3.1). This first tentative with PW-GGA
also highlights the significant reduction in the number of homopolar connections within
the network obtained using the GGA scheme compared with the LDA scheme.

Figure 3.1. Neutron structure factor SN (k) as a function of reciprocal spatial wave vector k (noted here
q) for l-GeSe2, obtained by GGA (solid line) and LDA (dots), compared with experiment (circles). For
clarity, the LDA curve is shifted down by 0.4 and shows the absence of FSDP. From [218].

Structural features of l-GeSe2 were significantly improved under PW-GGA compared with
LDA, particularly with regard to the appearance of the FSDP in the total neutron struc-
ture factors. This was ascribed to the better account of the ionic character of bonding [115].
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Nevertheless, PW-GGA was not completely satisfactory in terms of the partial correlations
both in real and reciprocal space. When examining the calculated partial pair correlation
functions, the Ge–Ge was less structured and the first-neighbor distances exceeded the ex-
perimental values by about 15% (see Fig. 3.2 left). Also, the concentration-concentration
structure factor [219] did not exhibit a FSPD of the same height as in experiment, being
distinctly lower. Given the PW-GGA’s inability to describe in a fully reliable manner the
structural properties of l-GeSe2 in the short and medium range (the Ge–Ge pair corre-
lation, the FSDP in the concentration-concentration structure factor) alternative GGA
functionals such as BLYP-GGA were selected. In particular BLYP optimizes the distri-
bution of valence charge-density along bonds especially for pairs of components with low
electronegativity difference such as Ge and Se.
In the following part of this section, we shall trace back the main results obtained when
using BLYP-GGA, a framework that is intended to mitigate electron delocalization ef-
fects, which are not appropriate in binding scenarios characterized by competing ionic
and covalent contributions [130]. We shall describe first what changes when using BLYP
by focusing on the improvements. However, it should be kept in mind that BLYP is not
able to cure some of the shortcomings observed when using PW, thereby legitimating the
quest of other reasons for the observed differences.

In the context of l-GeSe2, it has been demonstrated that BLYP-GGA performs better
than PW-GGA and LDA methods in real and reciprocal space properties and for dy-
namical properties. For instance, the proportion of homopolar bonds and the average
coordination number, more closely aligned with experimental data [219]. Regarding the
intermediate range properties, the effects of the BLYP scheme was particularly striking.
Minor improvements were observed in the intensity and position of peaks located at low
k-values in the partial structure factor.
Therefore, the use of BLYP-GGA has considerably reduced the disparity between FPMD
calculations and experimental observations in l-GeSe2. As shown in Fig. 3.2 (left), the real-
space partial pair correlations obtained with GGA-BLYP showed a clear improvement in
terms of peak positions and intensities compared to those obtained with PW-GGA, bring-
ing the calculated results into better agreement with experiments. The BLYP scheme has
also enhanced the tetrahedral order, with the Se–Ge–Se bond angle becoming symmet-
ric around 109◦, whereas the PW scheme exhibits a broader and more symmetric spread
around 100◦ [219]. The BLYP-GGA XC functionals additionally positively impact the
dynamic property of l-GeSe2. Specifically, the diffusion coefficient at 1050 K using BLYP-
GGA (0.2×10−5 cm2/s) better aligns with the experimental value (0.045×10−5 cm2/s,
value extracted from viscosity measurements), in contrast to the result obtained with
PW (2.2×10−5 cm2/s) [115, 219]. Concerning reciprocal space properties, PW and BLYP
XC lead to quite similar results for the Bhatia-Thornton partial structure factors [220]
(which results from the linear combination of Faber-Ziman partial structure factors, as
shown later), number-number SNN(k) and number-concentration SNC(k). Nevertheless,
the underestimation of FSDP in the Ge–Ge Faber-Ziman [221] partial structure factor,
also appearing in the Bhatia-Thornton concentration-concentration SCC(k) structure fac-
tor, persists with BLYP.
Further efforts have been undertaken to improve the intermediate range order and the
complex description of the Germanium environment in l-GeSe2 by focusing on the impact
of van der Waals dispersion forces on the structural properties [222]. As illustrated in
Fig. 3.2 (right), by including the van der Waals dispersion forces in the expression of the
total energy, the results structural properties (partial structure factors and pair correlation
functions) are not significantly affected.
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Figure 3.2. Left: Influence of the exchange and correlation functionals on the partial pair correlation
functions (Ge–Ge, Ge–Se and Se–Se panels from top to bottom). The BLYP (solid black line) and PW
(solide red line) results are compared with the experimental data (open circles) [223]. From [219]. Right:
Faber-Ziman partial structure factors obtained with the BLYP XC functionals, displaying Ge–Ge, Ge–
Se and Se–Se panels from top to bottom. The influence of dispersion forces (vdW1 and vdW2 curves)
is negligible. Particularly, no improvement is found on the intensity of the FSDP in the Ge–Ge partial
structure factors. Simulation results are including (lower curve) and excluding (upper curve) experimental
data [223]. From [222].

Based on the above review of what has been done to improve as much as possible the
atomic-scale description of this system, there are still open questions on the characteriza-
tion of medium-range order in l-GeSe2, preventing the exact reproduction of experimental
partial structure factors in the entire range of k-values. This is the main motivation for
seeking better performances in the direction of size effects that, in principle, could also
affect the description of intermediate range order and, to a minor extent, some of the
short range properties. For this purpose, MLIP employed in the frame of classical MD
simulations as presented in Sec. 2.4 opens the way to tackle large systems with DFT level
accuracy, highlighting the role played by size effects on the structure of l-GeSe2.
From a broader perspective in atomistic modeling, it should be understood that the ex-
tensive use of FPMD schemes for simulating disordered chalcogenides stems from the
limitations of methodologies that do not explicitly consider electronic structure in their
bonding descriptions. This limitation is especially evident in cases where the models rely
heavily on analytical expressions primarily grounded in empirical parameters (often) de-
rived from a necessarily limited set of experimental data. In this respect, one can consider
the pioneering interatomic potentials introduced by P. Vashista et al. [224–226] or the one
by B.K. Sharma and M. Wilson [227, 228]). While these models have played a crucial role
in providing qualitative insights into disordered Ge-Se systems in general, they fell short
in quantitatively reproducing experimentally observed deviations from perfectly ordered
structures. These deviations manifest themselves in the form of Ge-Ge and Se-Se ho-
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mopolar bonds, which clearly stand out in experiments through the appearance of peaks
at distances very close to those of Ge-Se bonds in both Ge-Ge and Se-Se pair correla-
tion functions. These features have been obtained experimentally through the analysis of
partial structure factors using neutron diffraction with isotopic substitution [223]. The
interatomic potentials quoted above do not lead to any of these peaks, unless one heats up
the structure at unphyiscally high temperature. For these reasons, as mentioned above,
these description can be taken, at the very best, as qualitative while the quantitative
character is totally missing. Recently, an attempt was made to employ neural network
(NN) first-principles molecular dynamics (termed “quantum”, NNQMD), based on ma-
chine learning, to investigate the melting behavior at 1100 K and the glass formation at
10 K [229]. The authors managed to analyze systems of substantial size, reaching up ∼
37000 atoms, by obtaining valuable results in real and reciprocal space. However, when
examining peak intensities, their model overestimate all peaks in both the total neutron
and partial structure factors in comparison to experimental data. More specifically, their
Ge–Ge and Se–Se pair correlation functions missed the first peak centered around 2.5 Å,
accounting for homopolar bonds, a feature commonly observed in many published FPMD
studies of l-GeSe2 [219, 222, 230, 231] and validated by experimental data [223]. Ad-
ditionally, the authors did not compare their results with available experimental partial
correlations.

In view of these interesting and yet incomplete results, there is a need to implement
alternative machine learning techniques. Specifically, the MLIP-GAP method, as intro-
duced earlier in Sec. 2.4 of Chapter 2, emerges as a promising tool for the development of
MLIP potentials. These potentials rely on a database derived from accurate DFT-FPMD
calculations and are increasingly gaining popularity in various applications. Our starting
point was the production of two additional FPMD models of GeSe2 trajectories in order
to build a consolidated database for the development of MLIP-GAP. The following section
describes the computational details and the different models simulated in this context.

3.2 Computational procedures and FPMD models

FPMD simulations were carried out by using the CPMD scheme implemented in the cpmd
code [232] on two l-GeSe2 systems, referred to as model 1 and model 2, each comprising
480 atoms in periodic cubic cells. The use of the CPMD method for these systems is vali-
dated by a clear decoupling of the kinetic energies of the electronic and ionic subsystems,
as illustrated in Fig. 2.5 of chapter 2. The well-established melt-quenching procedure, pre-
viously used in similar works [217–219, 230, 231], was employed for both systems. Periodic
boundary conditions were applied on the systems with initial configuration adapted from
previously published work [230]. The preliminary step in each CPMD simulation involves
wavefunctions optimization, aimed at finding the electronic ground state the electronic
system for the initial ionic configuration. The systems are then annealed to near T = 0 K
and heated to T = 1100 K via increments of 300 K. For model 1, the box size was ad-
justed to match the experimental density of GeSe2 glass [233, 234], while for model 2, the
box size was modified in a stepwise fashion at different temperatures. These procedures
are illustrated in Fig. 3.3 in terms of temperature versus simulation time. The electronic
structure was described within DFT and evolved self-consistently in time by CPMD ap-
proach as implemented in the cpmd code [232]. The BLYP-GGA was used, based on the
exchange energy obtained by Becke [132], and the correlation energy according to Lee,
Yang, and Parr [133] as previously described in Sec. 2.3.2. Valence electrons have been
treated explicitly, in conjunction with norm conserving pseudopotentials of the Trouiller-
Martins [121] type to account for core-valence interactions. The wave functions have been
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expanded at the Γ point of the supercell on a plane wave basis set with an energy cutoff
Ecut = 30 Ry. In our FPMD approach, a fictitious electron mass µ = 1000 a.u., and a time
step of ∆t = 0.12 fs have been used (based on previous work) to integrate the equations
of motion. The control of the temperature has been implemented for both the ionic and
electronic degrees of freedom by using Nosè-Hoover thermostats [112, 113, 235]. In the
following section, we present the details of our analysis based on structural and dynamical
properties.
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Figure 3.3. Full thermal cycle for the two GeSe2 models: heating up to 1100 K and then cooled down
from 1100 K to 300 K.

3.3 Calculation strategy and properties obtained

In general terms, having an equilibrium MD trajectory, the structure factors (total struc-
ture factor, S(k), or partial structure factors, Sαβ(k)) can be directly calculated in recip-
rocal space [236] or as Fourier transform of the real space corresponding pair correlation
functions g(r) and gαβ(r). In both cases, one needs to keep track of the atomic coordinates,
not necessarily at each time step (typically with a storage periodicity in between 10−14-
10−15 s to describe accurately all vibration frequencies inherent in the system). The total
and partial pair correlation function can be computed directly from atomic coordinates
using the standard equation:

g(r) = 1
4πr2Nρ

〈
N∑
α

N∑
β ̸=α

δ(r − rαβ)
〉

= 1
N2

∑
αβ

NαNβgαβ(r),
(3.1)

where N refer to the total number of atoms, rαβ the relative distance between chemical
species α and β, ρ the atomic number density, r a distance in real space and gαβ(r) are
the partial pair-correlation functions.
Having the partial pair correlation function gαβ(r), one can derive the mean partial coor-
dination number n̄αβ of atoms of type β, contained in a volume defined by two concentric
spheres of radii r1 and r2 centered on an atom of type α by integrating gαβ(r) over the
first shell of neighboring atoms:

n̄αβ = 4πρcβ
∫ r2

r1
dr r2gαβ(r), (3.2)

with cβ the atomic concentration of species β.
From the real space properties, the so-called Faber-Ziman partial structure factors [221]
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can be easily derived by Fourier transform as function of modulus of the wave vector k
following this relationship:

Sαβ(k) = 1 + 4πρ
∫ ∞

0
r2 [gαβ(r) − 1] sin(kr)

kr
dr. (3.3)

With the Faber-Ziman partial structure factors Sαβ(k) in hand, a linear combination can
be performed to derive the Bhatia-Thornton partial structure factors [220] number-number
SNN(k), number-concentration SNC(k) and concentration-concentration SCC(k) as follows:

SNN(k) = cαcαSαα(k) + cβcβSββ(k) + 2cαcβSαβ(k), (3.4)
SNC(k) = cαcβ [cα (Sαα(k) − Sαβ(k)) − cβ (Sββ(k) − Sαβ(k))] , (3.5)
SCC(k) = cαcβ {1 + cαcβ [(Sαα(k) − Sαβ(k)) + cβ (Sββ(k) − Sαβ(k))]} , (3.6)

where, cα and cβ are respectively the atomic concentration of species α and β.
Having established that one can have access to the partial structure factors from an equi-
librium trajectory (and in the absence of experimental information on these quantities),
the total structure factors (neutron or X-ray) are readily obtainable. The total neutron
structure factor SN (k) is defined by:

SN (k) = 1 + 1
⟨b⟩2

∑
αβ

cαcβbαbβ [Sαβ(k) − 1] (3.7)

where bα and bβ are respectively the coherent scattering length of species α and β and
ρ = N/V is the atomic number density (N is the total number of atoms and V the volume
of the system), ⟨b⟩ = ∑

α cαbα is the mean coherent scattering length.
This total neutron structure factor (Eq. (3.7)) can be expressed in terms of the Bhatia-
Thornton partial structure factors as follow:

SN (k) = SNN(k) + cαcβ
(bα − bβ)2

⟨b⟩2

[
SCC(k)
cαcβ

− 1
]

+ 2(bα − bβ)
⟨b⟩

SNC(k) (3.8)

In this specific scenario involving the GeSe2 system, where the coherent scattering lengths
of the Ge and Se chemical species are very similar, with values of bGe = 8.185 fm and
bSe = 7.970 fm [237], and considering the limited range of variation of SNC(k) and SCC(k),
it can be demonstrated that SNN(k) serves as a highly accurate approximation for the total
structure factor. Consequently, the analyses presented here regarding SNN(k) are equally
applicable to the total neutron structure factor SN (k). In this thesis, the reciprocal space
properties (structure factors) are obtained by Fourier transform of the pair correlation
function, since direct calculation in reciprocal space yields a highly noisy structure factor
that can be somewhat hard to interpret.
By considering an entire MD trajectory at the melting temperature, the mean square
displacement (MSD) of a given chemical specie α can computed as follow:

MSDα(t) = 1
Nα

〈
Nα∑
i

∣∣∣r(i)
α (t) − r(i)

α (t0)
∣∣∣2〉 , (3.9)

where Nα is the total number of chemical specie α, r(i)
α (t) is the coordinate of the ith

atom of chemical specie α at time t. In the diffusive regime, one can extract the diffusion
coefficient Diffα of specie α from its MSD as:

Diffα = MSDα(t)
2 n t , (3.10)
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with n the dimension of the simulation cell (in our case with cubic cell, n = 3).
The level of agreement between theory (FPMD and MLIP-GAP) and experiments is as-
sessed by determining the Rχ parameter, as defined by the following equation proposed
by Wright [238].

Rχ = 100 ×


∑
i

[
Exp(i) − Sim(i)

]2
∑
i

[
exp(i)]2


1/2

, (3.11)

where Exp(i) and Sim(i) represent the ith experimental and calculated value respectively,
of a given property. The lower the Rχ parameter, the more accurate the calculated model
is with respect to experience.
As highlighted in the previous section, two 480-atom models were melted at 1100 K in
order to explore a wide phase space so as to extract an accurate and stable MLIP. In
addition, model 1 has undergone full thermal cycle at the glass GeSe2 density at room
temperature. It is worth noting that in this study, FPMD trajectories for 480 atoms were
not expected to produce significant size-related effects or structural improvements (see
Fig. 3.4 for a revealing illustration), in agreement with what has been already established
in the literature [219, 222, 230]. In fact, previous studies of FPMD size effects, such as
the comparison of l-GeSe2 models with 120 and 480 atoms [230], have reported negligible
size-related impacts. Given the computational requirements of FPMD simulations and
current cluster capabilities, studying models with a few thousand atoms using FPMD was
not feasible. The generation of these two new trajectories is mainly motivated by the need
to construct a comprehensive database of accurate DFT-FPMD results. This initiative
aims at facilitating the development of MLIP accurately representing the different phases
of the GeSe2 system, involving both amorphous and liquid states, thereby enabling the
simulation of these phases. Knowing that there are no relevant differences between the
480 models obtained in the context of this thesis and previously published results, the rest
of this chapter will exploit the FPMD reference result obtained from a 240-atom model
of ref. [222] to infer the reliability and robustness of our different MLIP-GAP structural
models.
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Figure 3.4. Comparison of the Bhatia-Thornton partial structure factor SCC(k) for our 480-atom model
with the reference structure of a 240-atom model [222] and experimental data.
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3.4 MLIP modeling of liquid GeSe2

3.4.1 Development of a MLIP: training, testing and fitting performance

The MLIP developed for l-GeSe2 followed the general procedure presented in Sec. 2.4 in
the framework of Gaussian Approximation Potential. The database was build based on
the two news trajectories of 480 atoms produced along this work, in addition to mod-
els made of 120 [234] and 240 [222] atoms already available from previous works. This
database comprises reference configurations sampled from specific regions of phase space,
along with associated observable such as energies, forces, and virial stresses. These con-
figurations were extracted from FPMD trajectories at various temperatures (1100, 1050,
900, 600, and 300 K) for a total of 215 representative instances. To ensure high accuracy,
we recalculated DFT energies, forces, and virials for all configurations using an energy
cutoff of 100 Ry. Subsequently, the constructed database was partitioned into training
(80%) and testing (20%) sets.
The effectiveness of our MLIP model’s predictions can be assessed through the calculation
of the mean absolute error (MAE). This metric reflects the average disparity between the
predicted values and the actual FPMD values within the dataset comprising N observa-
tions (see Eq. (3.12)).

MAE = 1
N

N∑
i

∣∣∣FPMD(i) − MLIP(i)
∣∣∣ (3.12)

We evaluate the accuracy of our GAP model by comparing it with DFT-FPMD reference
data. The training and testing datasets consist of 174 and 43 configurations respectively,
encompassing energy, force, and virial components. As depicted in Fig. 3.5, our model’s
predictions for formation energy per atom and atomic forces quantities are in good cor-
relation with those obtained from DFT-FPMD. The same level of accuracy was obtained
with the virial stress components. Notably, our GAP model achieves excellent agreement
with the reference data, exhibiting a low mean absolute error (MAE) of 1.34 meV/atom for
the testing datasets. This performance is significantly better than the commonly quoted
threshold of 5 meV/atom, indicative of a high-performing MLIP [197, 239]. Furthermore,
the forces in the datasets are predicted with a MAE of 0.13 eV/Å.
These results underscore the high accuracy of our developed GAP-MLIP, highlighting its
robust fit to the first-principles potential energy surface for l-GeSe2. The second level
of validation for our MLIP potential lies in modeling l-GeSe2 using classical MD and
comparing the resulting properties with those obtained from FPMD.

Figure 3.5. Scatter plots illustrating the correlations between the computed DFT and MLIP-GAP pre-
dicted energies (left) and force components (right) for both training and testing sets, with insets highlighting
the testing data. Mean Absolute Error (MAE) values for both datasets are displayed.
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3.4.2 CPMD vs MLIP models: same sizes

The newly developed MLIP-GAP has been employed in classical MD simulations to gener-
ate new models of l-GeSe2 from random initial configurations within the NVT ensemble.
Four replicas of varying system sizes (240, 1920, 15360, 51840, and one million atoms)
were randomly placed in a cubic box, with the box size chosen to match the experimental
density [240] of l-GeSe2 at 1050 K. These simulations were performed using the QUIP
package [241] integrated into the LAMMPS code [242]. A timestep of 1 fs was selected
for integrating the equation of motion, and temperature control was achieved using the
Nosé-Hoover thermostat as implemented in LAMMPS. Following energy minimization and
an equilibration period at 300 K for 5 ps, the systems were gradually heated from 300 K
to 1100 K. After 20 ps at 1100 K to loose any memory of the initial configuration, the
systems were brought to 1050 K followed by 100–200 ps at the same temperature to reach
stable diffusive regime. The final run for equilibrated trajectories of 10 ps (for the one
million atoms models) and 100 ps (for smaller models) at 1050 K stored every 10 fs were
employed for analysis. In what follows the structural analysis based on the equilibrated
trajectories will be presented. The 240-atom models were used to validate the MLIP with
respect to reference FPMD results of same sizes, exhibiting quantitative agreement. The
MLIP-GAP potential was then applied to models of larger sizes (up to about one million
atoms).

Faber-Ziman and Bhatia-Thornton partial structure factors

The Faber-Ziman partial structure factors SGeSe(k), SSeSe(k), and SGeGe(k) for l-GeSe2
at 1050 K are calculated through Eq. (3.3) and shown in Fig. 3.6 (left) in three panels,
highlighting comparisons concerning systems of the same size (240-atom). MLIP-GAP re-
sults reproduce with high accuracy the FPMD reference data, both showing quantitative
agreement with the experimental results for k ≥ 1.5 Å−1. However, slight intensity dis-
crepancies are observed at the FSDP level around k = 1 Å−1, particularly in SGeSe(k) and
SSeSe(k), while the FSDP of SGeGe(k) shows a non-negligible underestimate of intensity in
both MLIP-GAP and FPMD data with respect to experiments.
In Fig. 3.6 (center), the Bhatia-Thornton partial structure factors SNN(k), SNC(k) and
SCC(k) (from the top to the bottom) calculated according to Eqs. (3.4), (3.5), and (3.6)
are presented, showing an excellent agreement among MLIP-GAP, FPMD, and experi-
mental data across the entire range of k-values for SNN(k) (which can be treated as the
total neutron structure factor, as described in the previous section) and SNC(k). The
only noticeable deviation between the calculated (FPMD and MLIP-GAP) and experi-
mental data lies in the intensity of the FSDP of SCC(k), reflecting the situation observed
in SGeGe(k). Understanding and circumventing the differences recorded between theory
and experiments in the intensities of FSDP in both SGeGe(k) and SCC(k) is the main mo-
tivation for the present study, which aims at assessing whether or not size effects can be
at the origin of this behavior. In this context, the availability of a MLIP potential allows
considering systems of unprecedented size. However, in the next section, we shall continue
to describe the comparison between FPMD and MLIP for the system made of 240 atoms,
before extending our rationale to larger systems.
To quantify the agreement between our MLIP-GAP and FPMD models with experimen-
tal results, the goodness of fit, as defined in Eqt. (3.11), which measures the percentage
deviation between two sets of results, was calculated for the Faber-Ziman and Bhatia-
Thornton partial structure factors and summarized in Tab. 3.1. The values obtained for
FPMD and MLIP-GAP (average over the four replicas with standard error) are found
very close (with less than 5% difference), confirming a very good quantitative agreement
between these two sets of results. It is important to note that some values are quite large,
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especially for SGeGe (38.0% for MLIP-GAP and 33.7% for FPMD) and SNC (22.5% and
18.3% for MLIP-GAP and FPMD respectively), despite very good visual agreement with
the plots. This is primarily due to a slight shift of approximately 0.1 Å−1 between the
calculated results and the experimental data observed around the first peaks.
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Figure 3.6. Partial structure factors as a function of wave vector in the Faber-Ziman (left panels) and
Bhatia-Thornton (middle panels). Partial pair correlation function as a function of distance (right panels).
The structure obtained with MLIP-GAP is compared with a reference FPMD data of same sizes (240
atoms) from ref. [222] together with the experimental data from [223]. A zoom on the first peaks is
included for clarity.

Table 3.1. Goodness-of-fit Rχ parameters obtained from FPMD and MLIP-GAP data (240-atom models),
indicating the level of agreement with experimental data. From left to right, the results include Faber-
Ziman partial structure factors (SGeGe, SGeSe, and SSeSe) and Bhathia-Thornton partial structure factors
(SNN, SNC, and SCC). All MLIP-GAP calculated values presented here are averaged over four parallel runs
with standard error.

Rχ SGeGe SGeSe SSeSe SNN SNC SCC

FPMD 33.7 14.9 11.4 3.9 18.3 15.9
GAP 38.0±1.9 15.7±1.5 11.5±1.0 5.2±0.2 22.5±1.1 16.5±1.5

Partial pair-correlation functions

Fig. 3.6 (right) features a comparative analysis (again, for the 240 atoms system) of the
pair correlation functions gGeSe(r), gSeSe(r), and gGeGe(r) derived from MLIP-GAP, FPMD
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(from ref. [222]) and experimental data. The validation of the MLIP-GAP result in real
space is quantified by calculating the Wright parameter ((3.11)) between the calculated
partial pair correlation functions and the experimental ones, as done previously for the
structure factors. The results are summarized in Tab. 3.2, where we observe very good
agreement between FPMD and MLIP-GAP, with a difference of less than 4%, which falls
within the statistical error bar quantified by averaging MLIP-GAP data over the four
replicas. However, it is important to note that the slight shift of 0.06 Å between the
calculated results (both FPMD and MLIP) and the experimental data for the first peaks
of gGeSe and gGeSe is responsible for the relatively high Wright numbers (for example,
33.5% vs 36.7% for the Ge—Se correlation in FPMD and MLIP, respectively).

Table 3.2. Goodness-of-fit Rχ parameters obtained from FPMD and MLIP-GAP data (240-atom models)
indicating the level of agreement with experimental data of partial pair correlation (gGeGe, gGeSe, and gSeSe).
All MLIP-GAP calculated values presented here are averaged over four parallel runs with standard error.

Rχ gGeGe gGeSe gSeSe

FPMD 18.5 33.5 12.1
GAP 16.0±2.3 36.7±0.8 11.0 ±0.7

The only noticeable discrepancy here concerns the Ge—Ge pair correlation function, where
a significant variation in the intensity of the first peak is observed, as indicated by the
statistical error that we present as a band to highlight the variation among the available
data used to obtain an average (see Fig. 3.6 bottom right). Interestingly, the first peak
position from the MLIP-GAP model (located at 2.29±0.03 Å) aligns better with the
experimental one (at 2.33±0.03 Å) compared to the FPMD model (2.42 Å) as indicated
in Tab. 3.3. Additionally, the second peak of Ge–Ge pair correlation function centred at
3.10±0.01 Å is well-defined and shows better agreement with the experiment in terms
of intensity compared to FPMD. This is further confirmed by the lower goodness-of-fit
parameter of 16.0% compared to 18.5% for FPMD.

Coordination numbers and network topology

The total coordination numbers nα and partial coordination numbers n̄αβ, calculated by
integrating the pair correlation function over the first shell of neighboring atoms, are pre-
sented in Tab. 3.3. Additionally, the nearest-neighbor interatomic distances rαβ in Å are
summarized. They are identified by the position of the first maximum of the pair corre-
lation functions gαβ(r). The total coordination numbers for Ge and Se are obtained by
summing the partial coordination as follows nGe = n̄GeSe + n̄GeGe and nSe = 1

2 n̄GeSe +
n̄SeSe. Concerning the bond length, a slight discrepancy is found for the Ge–Ge bond,
2.42 Å for the FPMD against 2.29 ± 0.03 Å (MLIP) closer to the experimental value
(2.33 ± 0.03 Å). Overall, these results in real space confirm that our MLIP-GAP potential
provide a quantitatively description of l-GeSe2 with an accuracy comparable to the one of
DFT-FPMD accuracy.
As shown in Tab. 3.4, we have also calculated the distribution of structural coordination
units nα(l) characterizing the environment of the Ge and Se atoms. It is important to
recall the difference between nα(l) and nα while nα provides an average behavior derived
from all neighbors without detailing the chemical nature of the bond, the structural coor-
dination units nα(l) focus on how each atomic specie organizes itself when connecting to
atoms of the same or a different type. Therefore, for a given number of neighbors l and
a given atomic species, the chemical nature of the neighbors can be extracted from each
configuration.

Tab. 3.4 shows a general agreement between the total percentages for each l-fold coor-
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Table 3.3. Upper part: partial n̄αβ coordination numbers obtained by integrating the first peak of partial
pair correlation function gαβ and average total coordination numbers nα obtained as sum of the partial
coordination number (with n̄GeSe = 2n̄SeGe according to the chemical composition of l-GeSe2). Lower
part: bond lengths rαβ (in Å) (taken as the position of the first maximum of the pair correlation functions
gαβ(r)).

Exp. ref. [223, 243] FPMD ref. [222] MLIP-GAP
n̄GeSe 3.50 ± 0.20 3.68 3.75 ± 0.11
n̄SeSe 0.23 ± 0.05 0.20 0.20 ± 0.05
n̄GeGe 0.25 ± 0.10 0.18 0.14 ± 0.06
nGe 3.75 ± 0.30 3.86 3.89 ± 0.17
nSe 1.98 ± 0.15 2.04 2.07 ± 0.11
rGeSe 2.42 ± 0.02 2.36 2.36 ± 0.01
rSeSe 2.30 ± 0.02 2.36 2.37 ± 0.01
rGeGe 2.33 ± 0.03 2.42 2.29 ± 0.03

dination in the FPMD and MLIP models, particularly when accounting for the computed
statistical error. However, a non-negligible difference between the FPMD and MLIP mod-
els emerges upon closer analysis of the data. The FPMD model displays a slightly nar-
rower distribution of structural units, predominantly featuring four-fold coordinated Ge
and two-fold coordinated Se. On one side, this suggests a higher degree of local ordering
in the FPMD model, with a clear preference for these coordination environments. How-
ever, the MLIP model, while showing a broader distribution of structural environments,
deviating from the predominant four-fold Ge and two-fold Se coordination (with slightly
lower total percentage of four-fold coordinated Ge and two-fold coordinated Se), shows a
considerably higher content of well-ordered fingerprints typical of crystalline GeSe2, with
Ge coordinated to four Se. It also shows a lower content of Ge-Ge homopolar bonding
(16.8% in FPMD compared to 11.4% in MLIP), while maintaining a similar content of
Se-Se homopolar bonding. Despite these differences, both models demonstrate an excel-
lent level of agreement overall in terms of total l-fold coordination, validating the use of
MLIP as a reliable and simplified representation of the first-principles potential energy
surface. However, the varying degrees of chemical order indicate different levels of atomic
arrangement and structural diversity.

Considerations on the comparative cost of FPMD and MLIP approaches

The developed MLIP-GAP achieved a computational speed up of approximately 337 times
compared to FPMD for running a 1 ps MD simulation of l-GeSe2 with 240 atoms. While
FPMD requires about 27 hours, MLIP-GAP only takes 0.08 hours (see the table in the
appendix A.1.1 for a comparison of the computational costs of typical FPMD and MLIP).
This results in a speed up of about 62 times in generating a statistically reliable trajec-
tory of l-GeSe2 using MLIP-GAP compared to FPMD. This assessment is based on the
analysis of structural and dynamical properties over 55 ps and 300 ps, respectively. It’s
important to note that the initial FPMD work and associated computational costs are
essential for constructing the MLIP. However, once the MLIP is developed, it can reduce
computational costs by approximately 337 times for individual simulations and 62 times
for generating complete trajectories, compared to FPMD. This computational speed up
should be considered as reference point, especially for the production of new structural
models and trajectories.
Having confirmed that our newly developed MLIP-GAP shows FPMD accuracy (we can
take the above results as a second step of validation), we can now investigate the occurrence
of size effects by modeling significantly larger systems.

52



Table 3.4. Distribution of individual nα(l) structural units, where an atom of species α (Ge or Se) is l-fold
coordinated, computed for 240-atom models using both FPMD and MLIP-GAP. Total percentages for each
l-fold coordination are highlighted in bold. These quantities were calculated including neighbors separated
by a cutoff corresponding to the first minimum in gαβ(r). For Ge–Ge, Ge–Se, and Se–Se interactions, pair
cutoff values of 2.73 Å, 3.00 Å, and 2.73 Å were used for FPMD, and 2.60 Å, 3.06 Å, and 2.74 Å were used
for MLIP-GAP, respectively. A total cutoff of 2.85 Å was defined from the total pair correlation function.
Only fractions greater than 0.1% are reported.

FPMD MLIP FPMD MLIP FPMD MLIP
Ge l = 1 0.3±0.1 0.5±0.3 l = 2 5.0±1.4 6.1±3.4

Ge - 0.3±0.2 Ge2 - 3.0±2.6
Se 0.3±0.1 0.2±0.1 GeSe - 0.2±0.1

Se2 5.0±1.4 2.9±0.7

l = 3 8.9±0.9 12.2±2.7 l = 4 84.6±2.9 80.4±2.1 l = 5 1.2±0.3 0.9±0.2
Ge3 - 0.3±0.2 GeSe3 16.8±1.8 0.8±0.2 Se5 0.3±0.1 0.7±0.1
Ge2Se - 1.2±0.9 Se4 67.8±1.1 79.5±1.9 GeSe4 0.7±0.1 0.2±0.1
GeSe2 0.7±0.3 0.2±0.1 Ge2Se2 - 0.1±0.0 Ge2Se3 0.2±0.1 -
Se3 8.2±0.6 10.5±1.5 Ge4 - - Ge3Se2 - -

Se l = 1 2.9±0.6 4.7±0.7 l = 2 93.0±1.6 88.8±6.8
Ge 2.6±0.5 4.0±0.4 Ge2 76.0±1.0 75.2±3.6
Se 0.3±0.1 0.7±0.3 GeSe 15.8±0.4 12.1±2.2

Se2 1.2±0.2 1.5±1.0

l = 3 4.0±0.7 6.5±1.2 l = 4 - - l = 5 - -
Ge3 2.9±0.3 3.6±0.6 GeSe3 - - Se5 - -
Ge2Se 0.9±0.3 2.0±0.2 Se4 - - GeSe4 - -
GeSe2 0.2±0.1 0.8±0.3 Ge2Se2 - - Ge2Se3 - -
Se3 - 0.1±0.1 Ge4 - - Ge3Se2 - -

3.4.3 Size effects assessed by MLIP

The size effect of l-GeSe2 was investigated using developed MLIP-GAP. Fig. 3.7 shows the
snapshots of models with the details of simulated systems for FPMD and MLIP-GAP.

2.49 nm 35.59 nm32.36 nm

FPMD MLIP-GAP

480 atoms

1 054 560 atoms
1 179 120 atoms

MLIP
1.98 nm

240 atoms

3.95 nm 7.90 nm 11.85 nm

1 920 atoms
15 360 atoms

51 840 atoms

1.98 nm

240 atoms
Ge
Se

Figure 3.7. Comparison between l-GeSe2 cubic supercells simulated by FPMD and those simulated by
MLIP-GAP, the latter being able to access sizes of up to a million atoms. Cell parameters are given in
nanometers, as well as the total number of atoms in each model.
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A similar analysis to that conducted for the FPMD and MLIP-GAP models with 240
atoms in the previous section is carried out here for the different sizes investigated. The
structural results (structure factors and partial pair correlation functions) are shown in
Fig. 3.8. A general overview highlights that for all simulated sizes, the Ge—Se and Se—Se
correlations are in perfect agreement with the FPMD results and the experimental data,
both in reciprocal and real space. The same observation is made for the SNN and SNC
partial structure factors. However, when focusing on the three most challenging cases
involving the Ge—Ge correlation, an improvement in the intensity of the first peak of the
SGeGe structure factor for the all larger systems is observed, although it is less visible in the
FSDP of the SCC. Fig. 3.9 provides a zoomed-in view of these three partial correlations,
comparing the results of the first peaks of the systems of one million atoms with FPMD and
the experimental data. In real space, a better alignment with respect to the experiment of
the position of the first peak of the Ge–Ge correlation representing the homopolar bond
population is observed with the MLIP-GAP. Nevertheless, significant fluctuation in the
intensity of this peak is noteworthy, as indicated by the statistical error band around
the averaged plot (over four replicas). Importantly, the MLIP-GAP results more clearly
highlight the second peak (position and intensity) of gGeGe pair correlation function located
at 3.10 ±0.01 Å, representing the fraction of Ge atoms involved in edge-sharing connection.

3.4.4 Dynamical properties of liquid GeSe2 by MLIP-GAP

In this section, we compute and present the mean square displacement (MSD) and diffu-
sion coefficients of l-GeSe2 systems using MLIP-GAP according to Eqs. (3.9) and (3.10).
Accurately describing dynamical properties with MLIP often requires refining the training
database beyond the inherent complexity of diffusional variable statistics computed at the
FPMD level, as forces alone may be insufficient for this purpose. This refinement can be
achieved by incorporating configurations obtained through enhanced sampling methods,
such as metadynamics or the Bluemoon scheme, which enable a more precise assessment
of energy barriers in diffusion processes [244–246].
The diffusion coefficients of Ge and Se chemical species for different simulated MLIP sys-
tems together with the FPMD results and the experimental one are given in Tab. 3.5. The
experimental value presented here is extracted from viscosity measurements, and to date,
we do not have any other experimental results for this system to confirm the reliability of
the experimental diffusion presented here. The large discrepancy with the FPMD result
(over 4 times larger) thus seems to question the process of obtaining this experimental
value. In the present study, the diffusion coefficient derived from MLIP simulations us-
ing the Nosé-Hoover thermostat further overestimated that obtained from FPMD. This
overestimation suggests the need for refining the MLIP training database to more accu-
rately capture the diffusion mechanism [244–246]. Our findings align with recent studies
on supercooled liquid Ge2Sb2Te5 using GAP-type MLIPs, which reported similar overesti-
mations. To address this discrepancy, Zhou et al. [247] suggested the use of the Langevin
thermostat with a carefully tuned damping coefficient, which allows for precise control
of the system’s fictitious friction. The Langevin thermostat [248] is an alternative to the
Nosé-Hoover thermostat for controlling the temperature of a system. It operates under
the assumption that the system consists of large particles moving through a continuum
of smaller particles. The Langevin thermostat simulates the effect of a heat bath by
incorporating a stochastic term into the Langevin equations of motion (Eq. (3.13)) [249].

m
d2r
dt2

= −∂V (r)
∂r

− γ
dr

dt
+ (2mkBT )1/2ξ(t), (3.13)
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Figure 3.8. Partial structure factors as function of wave vector in the Faber-Ziman (left panels) and
Bhatia-Thornton (middle panels). Partial pair correlation function as function of distance (right panels).
The structure obtained with a reference FPMD data (240 atoms) from ref. [222] is compared to different
sizes of MLIP-GAP models (240, 1920, 15360, 51840, and 1 million-atom) together with the experimental
data from [223]. The impact of the systems sizes on the three correlations showing the effects of the
complexity of the Ge environment are displayed below the three main panels, with a zoom on the first
peaks where the differences between the calculated results and the experimental data are more manifested.
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Figure 3.9. First peak of the Faber-Ziman Ge–Ge (left panel) and SCC (center panel) partial structure
factors as function of wave vector with the right panel showing the Ge–Ge partial pair correlation function
up to 4.5 Å. The reference FPMD data (240-atom) from [222] is juxtaposed with the MLIP-GAP model
average across four replicas of one million atoms, with the filled curve indicating the standard deviation.
Experimental data from [223] is included for comparison.

where V (r) represents the potential energy, r the position of the particle of mass m,
(2mkBT )1/2ξ(t) represents the random force term, which mimics the random collisions
the particle would undergo with the surrounding smaller particles in the heat bath at
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temperature T with ξ(t) the Gaussian white noise, and −γdr/dt term represents the
damping force created by smaller particles as they are pushed back by larger ones. This
stochastic term, represented as a random force, induces fluctuations in the system’s veloc-
ities, enabling it to reach and maintain a desired temperature.
Fig. 3.10 and Fig. 3.11 show a comparison of NVT simulations of liquid GeSe2 at 1050 K
using the Nosé-Hoover and Langevin thermostats, depicting MSD and force distributions
respectively. A significant impact on diffusion coefficients over time is observed. By ad-
justing the friction coefficient γ = 1/τ , notable effects on force distribution and diffusion
coefficients are evident (Fig. 3.11). Specifically, for Ge and Se, the diffusion coefficients are
found with MLIP-GAP (Tab. 3.5) to be 0.53×10−5 cm2/s and 0.66×10−5 cm2/s with the
Nosé-Hoover thermostat, and 0.55×10−5 cm2/s and 0.63×10−5 cm2/s with the Langevin
thermostat using γ = 0.1 ps−1. With γ = 11.11 ps−1 (corresponding to a damping time
of τ = 0.09 ps), we observe 0.18×10−5 cm2/s and 0.22×10−5 cm2/s for Ge and Se, re-
spectively. These latter values closely align with those obtained by FPMD at 1050 K
(0.2×10−5 cm2/s for both Ge and Se). As shown in Fig. 3.11, damping times τ ≤ 0.1 ps
exhibit minimal effect on the force distribution compared to that computed with the Nosé-
Hoover thermostat using MLIP-GAP and CPMD. It is important to note that changing
the thermostat should not fundamentally alter the overall output. Our investigation of
this approach aimed to assess its impact on force distributions in comparison to GAP-NH
and CPMD forces. Notably, GAP-NH forces closely match CPMD forces, consistent with
our previous analyses during the MLIP fitting section. Additionally, GAP-Langevin forces
with damping time parameters τ = 0.09 ps and 0.01 ps align well, while higher values sig-
nificantly affect the force distribution.

 0.1

 1

 10

 100

 0.1  1  10  100

Lo
gs

ca
le

 M
S

D
(A

2 ) 
at

 1
05

0 
K

, 2
40

−a
to

m

Time (ps)

NH−Ge

NH−Se

Lg−Ge

Lg−Se

 0

 0.5

 1

 1.5

 0  100  200  300

D
iff

. c
oe

ff.
 (

x 
10

−5
 c

m
2 /s

)

Time (ps)

Figure 3.10. Mean square displacement (MSD) for Ge and Se atoms in liquid GeSe2 at 1050 K, derived
from the MLIP-GAP trajectory of 240 atoms obtained with the Nosé-Hoover (solid lines) and the Langevin
(dashed lines) thermostat. The main plot shows the MSD on a logarithmic scale, while the inserts show
the diffusion coefficient.
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Figure 3.11. Forces distributions computed on atoms employing different thermostat Nosé-Hoover and
Langevin thermostats with different friction parameters. For comparison we also report the CPMD forces.

Table 3.5. Comparative diffusion coefficients for l-GeSe2 at 1050 K: FPMD, MLIP-GAP and experiment.

Systems with size (number of atoms) Diffusion Coefficients (×10−5cm2/s)
Ge Se

Experiment∗ 0.045 0.045
FPMD (120) [219] 0.20 0.20
FPMD (240) [222] 0.17 0.22
FPMD (480) [230] 0.20 0.19
Average FPMD 0.19 ± 0.02 0.20 ± 0.02
MLIP (240) 0.53 0.66
MLIP (1920) 0.56 0.84
MLIP (15360) 0.56 0.82
MLIP (51840) 0.52 0.71
MLIP (1054560) 0.62 0.73
MLIP (1179120) 0.51 0.72
Average MLIP 0.55 ± 0.04 0.73 ± 0.07
MLIP (240)∗∗, γ=0.1 ps−1 0.55 ± 0.03 0.63 ± 0.02
MLIP (240)∗∗, γ=11.11 ps−1 0.18 ± 0.03 0.22 ± 0.02

∗Exp. value extracted from viscosity measurements [250]. ∗∗MLIP with Langevin thermostat.

3.5 Conclusive remarks

Our detailed study of l-GeSe2 using FPMD simulations and especially MLIP-GAP, has
clearly demonstrated the MLIP’s capability to model disordered systems with covalent
and ionic bonds, achieving FPMD level accuracy and thus improving our understanding
of their atomic structure. Our results have confirmed the complexity of Ge’s atomic en-
vironment description as revealed by FPMD. Consequently, we were able to investigate
the potential size effect on the structure of l-GeSe2, revealing an improvement of SGeGe
first peak intensity and insignificant effects on SCC partial structure factor. Specifically,
by modeling up to four replicas of systems with over a million atoms, we observed an
enhancement in the FSDP intensity of the Ge—Ge structure factor. However, this en-
hancement did not seem to affect the intensity of the FSDP of the SCC structure factor in
the Bhatia-Thornton formalism. Our investigation suggests that there is a negligible size
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effect on the structural properties of l-GeSe2 across different model sizes.
The MLIP-GAP model, in particular, exhibits remarkable fidelity in capturing the struc-
tural characteristics of this material, as confirmed by FPMD simulations and experimental
measurements. Nevertheless, we observed significant variability in the intensity of the first
peak of the partial pair correlation Ge—Ge, which persists even in systems with over a
million atoms. However, the proportion of Ge—Ge homopolar bonds decreased as the
system size increased from 240 atoms to a million.
This study significantly advances our understanding of the structural characteristics of
l-GeSe2 and contributes to elucidating the potential size effect on the description of the
local environment of Ge atoms in this material. These findings provide a foundation for
future studies on the properties of liquid and amorphous materials, particularly in their
potential technological applications, such as energy storage batteries.
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Chapter 4

Structure, bonding and electronic
properties of binary
50VxOy-50P2O5 (VP50) glass

Summary

This chapter investigate in detail the structure, bonding and electronic properties of
VxOy–P2O5 (VP50) glass by both CMD and FPMD. All results presented here have
been summarized and published in ref. [251]. The BOMD data for VP50 (at PBE0
level) are available at the European Center of Excellence Novel Materials Discovery (CoE-
NOMAD) [252].
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4.1 Context and motivation

As detailed in Sec. 1.2.3, vanadophosphate (VP) glasses have emerged as promising cath-
ode materials for ion batteries, owing to their multivalent redox behavior and exceptional
cycling stability [16, 70, 83, 253–256]. Their diverse applications have motivated extensive
experimental investigations employing advanced techniques such as X-ray and neutron
diffraction [53–55], Raman Spectroscopy [56], Nuclear Magnetic Resonance (NMR) [57,
58], X-ray Photoelectron Spectroscopy (XPS) [59], Infrared Spectroscopy (IR) [60], Ex-
tended X-ray Absorption Fine Structure (EXAFS) [61, 62], and X-ray Absorption Near-
Edge Structure (XANES) [59, 62, 63]. The coexistence of various vanadium oxidation
states (V5+, V4+ and V3+) with varying coordination numbers leads to a complex glass
network structure composed of a wide array of structural units [53, 60].
This structural complexity has posed challenges for precise atomic-scale characterization,
leading to the use of quantitative modeling tools to gain a deeper understanding of the
topology of these amorphous systems.

4.2 computational details

4.2.1 Classical molecular dynamics

Following the CMD methodology presented in Sec. 2.2 of Chapter 2, three CMD inter-
atomic force field (FF) schemes are used for our study. The first one, known as PMMCS,
was developed by Pedone et al. [87] and is based on a Morse-type potential. We employed
its recent upgraded version, BMP-shrm, as introduced by Bertani et al. [108]. The ini-
tial pairwise interatomic potential PMMCS was chosen because of its reliability and the
availability of parameters for many cation-oxygen pairs [257]. Also, its ability to predict
the mechanical properties has been well assessed for oxide glasses and oxide nanoparti-
cles [258, 259]. The revised BMP-shrm version allows reproducing better the Si–O–Si and
P–O–P bond angle distributions (BADs) and the oxygen-oxygen distances of the network
former. In this work for BMP-shrm FF, we employed the two-body potential parameters
developed for V5+ and V4+ by Ori et al. [80] together with the P–O–P three-body pa-
rameters proposed by Bertani et al. [108], this FF scheme refers hereafter as CMD1. The
second FF we tested includes the potential parameters of CMD1 in conjunction with the
V–O–V and V–O–P three-body parameters recently reported by Malavasi et al. [88]. This
second FF is denoted as CMD2. The third FF tested is developed by Lu et al. [59], and
it is based on a two-body Buckingham-type potential. This FF scheme refers hereafter as
CMD3. A full detailed account of the FF parameters employed in this work is reported
in appendix, in Tab. A.3, A.4, and A.5.

To ensure statistical significance, for each CMD scheme (CMD1, CMD2 and CMD3) four
VP50 replicas were generated, each consisting of 218 and 5450 atoms (with a V4+/Vtot

ratio of 0.375), placed in a cubic box with dimensions adjusted to match the experimental
density value of 2.8 g/cm3 [53]. The large models (5450 atoms) were selected to assess
potential size effects throughout the study and to determine whether the 218-atom model
can be considered representative of the structure for such glass system. Subsequently,
the 218-atom models were employed for the BOMD study. In our CMD simulations, the
short-range interactions were truncated at a distance of 6.0 Å and 10.0 Å for the 218
and 5450 atoms model respectively, whereas the long-range interactions were calculated
using the Ewald summation method with a precision of 10−5 eV, up to a cutoff distance
of 7.03 Å and 13.03 Å for the 218- and 5450-atom models respectively. For CMD1 and
CMD2 simulations were performed using the DL-POLY code version 4.10.0 [260] whereas
for CMD3 we employed LAMMPS code [242]. The Velocity Verlet algorithm was em-
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ployed with a time step of 1 fs to integrate the equation of motion. The VP50 glass
models were obtained by melt-quenching thermal cycles following a well established com-
putational strategy [80, 81, 87, 108]. The temperature control was implemented via the
Nosé-Hoover thermostat [112–114, 116]. First, the initial structures were randomly gener-
ated and relaxed at 300 K in the canonical (NVT) ensemble. Each system was heated to
5000 K and kept for 100 ps at this temperature. Then, cooling took place from 5000 K to
300 K with a cooling rate of 2.5 K/ps, close to typical rates used within CMD for this type
of glasses [59, 80–82, 87, 108]. Averages of relevant properties are taken on a structure
obtained from the last 150 ps of a trajectory lasting for 300 ps at T= 300 K.

4.2.2 First-principles molecular dynamics

The first attempt to study this system was based on the CPMD approach as detailed in
Chapter 2. This preliminary investigation serves to highlight the reasoning behind our
choice of BOMD over the CPMD method. Our exploratory CPMD simulation provides
valuable insights into the challenges and limitations of this approach when applied to
complex systems like VP glass. By critically analyzing the results of this test, we aimed
to illustrate the key factors that influenced our decision to adopt BOMD as the primary
method for our subsequent, more comprehensive investigations.
This approach allows us to justify our methodological decisions transparently, ensuring
that the subsequent detailed analyses of VP50 using BOMD are grounded in a well-
reasoned selection process.
The FPMD study of the VP50 system was initially tested using the CPMD scheme, which,
involves a single optimization of the electronic structure at the beginning of the simulation,
followed by maintaining the trajectory in the vicinity of the minimum of the potential en-
ergy surface during dynamics. This results in a decoupling between the kinetic energies of
the ionic and electronic subsystems, as illustrated in Fig. 2.5. Our first attempt to simu-
late the VP50 system using CPMD failed to meet this requirement for the applicability of
the CPMD approach. Fig. 4.1 shows the ionic and electronic kinetic energies. The decou-
pling, which is quite weak at 300 K, gradually narrows, and at 600 K, there is an energy
exchange between the two subsystems, which must evolve at complementary decoupled
frequencies. This failure of the CPMD approach for VP50 systems led us to the use of
BOMD approach. In the remainder of this work, our FPMD calculation will be based on
BOMD, as the following chapter is devoted to NVP glasses. The first-principles molecu-
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energy transfer at 600 K.

lar dynamics simulations were carried out employing the Born-Oppenheimer approach as
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implemented in the CP2K package [261]. In such scheme, atom-centered Gaussian-type
basis functions are used to describe the orbitals and an auxiliary plane-wave basis set is
employed to re-expand the electron density. We employed double-ζ polarized MOLOPT
basis sets [262] for V, P, and O, and used a cutoff energy of 800 Ry for the plane waves at
the Γ point only. Goedecker–Teter–Hutter pseudopotentials were used to describe core-
valence interactions [263] together with the semilocal Perdew-Burke-Ernzerhof (PBE) ex-
change–correlation functional within a spin unrestricted density functional theory (DFT)
formalism. The ionic temperature was controlled by a Nosé-Hoover thermostat [112–
114, 116]. Initially, four BOMD simulations equilibrated at T = 300 K during 5 ps were
performed starting from an equal number of initially uncorrelated configurations sampled
from the trajectories produced employing the three different CMD schemes. The resulting
BOMD models are denoted as BO1, BO2, and BO3 hereafter, representing the averages of
the four individual configurations for each model. Then, we performed a final optimization
at 300 K (∼0.5 ps) of the electronic structure employing the hybrid functional PBE0 [135],
in which 25 % of PBE exchange is replaced by nonlocal Hartree-Fock exchange, with a
cutoff energy of 600 Ry [264, 265]. This final step allows a more accurate description of the
electronic structure and spin topology [266]. The final 3 ps of the trajectory of each replica
computed at the PBE level combined with 0.5 ps at the PBE0 level at T = 300 K were
used to describe the structural properties of the VP50 model. The final BOMD run at
the PBE0 level proved essential to achieve convergence in the spin localization of V sites,
as detailed in Sec. 4.3. Its impact on the structural properties was found to be negligible.
Analysis of the electronic structure and bonding properties was performed in terms of elec-
tronic density of states and the maximally localized Wannier functions (MLWF) [160, 161].

4.3 Sites speciation in VP50 glass: the case of Vanadium

Vanadium, as a transition element, exhibits varying speciation (oxidation and coordi-
nation) in glasses [62, 267, 268], with oxidation states of V sites impacted by factors
such as synthesis conditions, bulk chemistry, and total V amount. This results in the
stabilization of V5+, V4+, and V3+ oxidation states, each with a unique local bonding
environment [62, 63, 66, 267]. V5+ and V4+ states are the most commonly observed, as
the highly reducing environment required for stabilizing V3+ is often difficult to achieve.
From atomic-scale calculations standpoint, classical MD use predefined indexing to repre-
sent V sites in glasses, with V atoms in different oxidation states being labelled according
to corresponding force field parameters. In contrast, BOMD simulations like all DFT ap-
proaches do not require a priori indexing of V sites, as the final V speciation is determined
solely by the number of total oxygen atoms, corresponding to a defined 50VxOy[sV2O5-
zV2O4-wV2O3]-50P2O5 composition.
Various electronic charge determination methods, including Mulliken [269], Bader [270],

and Qeq [271], have been tested to obtain information on vanadium speciation as post-
processing of the configurations sampled from the BOMD trajectories. However, none of
them was able to distinguish between different vanadium sites. To address this limita-
tion and ensure accurate identification of V speciation, we employed local spin density
projections of V sites while calculating energy bandgaps, as depicted in Fig. 4.2. All
the detailed values found for the three models are reported in Tab. 4.1. Both the PBE
and hybrid PBE0 functionals were utilized for this analysis. Notably, when employing
the PBE functional, only values of bandgaps ≤ 0.1 eV were obtained, while at the PBE0
level, as anticipated, greater accuracy was achieved, yielding well-defined energy bandgaps
falling within the range of 2.3 to 2.8 eV. Particularly noteworthy is the observation that
three models exhibited slight variations, with BO1 at 2.4 eV, BO2 at 2.6 eV, and BO3 at
2.8 eV. The difference in energy between spin-up and spin-down states (i.e. spin splitting)
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Figure 4.2. Averaged values of energy bandgap (top, in eV) and spin densities σspin (bottom, in e units)
computed for each V site at the PBE (left) and PBE0 (right) levels for the three BOMD models. Note that
the bandgap values for both spin-up and spin-down states are reported as average of the four configurations
simulated for each BOMD model. Spin densities are reported as violin plots showing the distribution of
individual data points of the four individual configurations for each BOMD model simulated.

accounts for the non-negligible magnetic character of the VP50 glass, which can be associ-
ated to the possible presence of V4+ and V3+ sites. Although the three BO models display
distinct degrees of spin splitting (0.02 eV (BO1), 0.005 eV (BO2), and 0.12 eV (BO3)),
implying differing levels of magnetic character, it is noteworthy that these values remain
within the range of the computed statistical error. At the PBE level, the spin analysis

Table 4.1. Energy bandgaps (eV) for spin-up and spin-down states, along with average spin values
calculated within specified spin ranges in e unit, computed at the PBE and PBE0 levels. The percentage
content is also indicated. The data is reported for the three BO models and averaged over four individual
run per model

PBE PBE0
BO1 BO2 BO3 BO1 BO2 BO3

Bandgap (eV)
spin-up 0.04±0.02 0.14±0.09 0.09±0.07 2.4±0.2 2.6±0.1 2.8±0.2
spin-down 0.04±0.02 0.06±0.04 0.07±0.05 2.3±0.2 2.6±0.1 2.7±0.2
|σspin|
0 - 0.2 0.05±0.01 0.05±0.01 0.04±0.01 0.02±0.01 0.02±0.01 0.02±0.01

(50.0%) (49.2%) (50.0%) (64.6%) (63.3%) (63.3%)
0.2 - 0.8 0.50±0.06 0.43±0.06 0.49±0.07 – – –

(21.9%) (25.0%) (25.0%)
0.8 - 1.2 0.97±0.03 0.98±0.02 0.95±0.03 1.07±0.01 1.02±0.01 1.03±0.01

(24.2%) (24.2%) (24.2%) (34.6%) (35.9%) (35.9%)
1.2 - 1.8 1.34±0.05 1.1±0.3 1.3±0.3 – – –

(3.9%) (1.6%) (0.8%)
1.8 - 2.2 – – – 1.95±0.04 1.94±0.04 1.88±0.04

(0.8%) (0.8%) (0.8%)

of the three BO models indicates two predominant spin values, with approximately 50%
of V sites exhibiting σspin = 0.05, and around 24% displaying σspin = 0.97. Notably, up
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to 23–29% of V sites exhibit more widely dispersed spin values in the 0.2–0.8 and 1.2–
1.8 ranges. In contrast, when employing the PBE0 level, our spin analysis unveils three
well-defined σspin sets for V sites, with values hovering around 1.95, 1.07, and 0.02 for
BO1, 1.94, 1.02, and 0.02 for BO2, and 1.88, 1.03, and 0.02 for BO3 whereas all P and O
atoms demonstrate values below 0.05. The values for V sites are indicative of the oxida-
tion states of V3+, V4+, and V5+, respectively, which correspond to the valence electronic
configurations [Ar]3d2, [Ar]3d1 and [Ar]3d0. This finding is consistent with the magnetic
character of V3+, V4+, and non-magnetic character of V5+ sites. V sites can be assigned in
percentage to V3+ (0.8 %), V4+ (35.9 %), and V5+ (63.3 %) sites for the three BO models,
in excellent agreement with the experimental determination by Hoppe et al. [53] (35.2 %
for V4+ and 64.8 % for V5+ with a negligible content of V3+). Based on these values, our
calculations point toward a chemical composition corresponding to 50VxOy[31.6V2O5-
18.0V2O4-0.4V2O3]-50P2O5 (clearly denoting a negligible content of V2O3). This is in
contrast with the commonly referred composition 50V2O5-50P2O5, typically reported in
the literature [53, 272].

4.4 Structural properties: structure factors and pair corre-
lation functions

4.4.1 Total X-rays and neutron structure factors

Fig. 4.3 shows the total structure factors, SX(k) and SN (k), obtained by CMD and BOMD
simulations of the VP50 system for the 218 atoms models. We also show the data obtained
for 5450 atoms models with CMD. Our data are compared to the experimental results by
Hoppe et al. [53]. We used the neutron scattering lengths and X-ray form factors reported
in Tab. 4.2.

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

X−rays

(1)

(2)

(3)

X
−r

ay
 s

tr
uc

tu
re

 fa
ct

or
 S

X
(k

)

k (Å−1)

Exp.

CMD−218

CMD−5k

BOMD

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

Neutrons

(1)

(2)

(3)

N
eu

tr
on

 s
tr

uc
tu

re
 fa

ct
or

 S
N

(k
)

k (Å−1)

Figure 4.3. Total X-ray (left) and neutron (right) structure factors for VP50 glass simulated by CMD and
BOMD obtained through Fourier transform (FT) of the pair correlation functions, for the three models
indicated as (1), (2), and (3). We report the analysis for the 218 atoms model (CMD (purple) and BOMD
(green)), the 5450 atoms model (CMD, dashed blue line), and also report the experimental data (black
circles) [53].

Concerning SN (k), we obtain a good agreement with the experimental results when con-
sidering peak positions and intensities for k values ≥ 3 Å−1. However, both calculated
neutron and X-ray structure factors overestimate the intensity of the first peak, located
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Table 4.2. Neutron scattering lengths b and X-ray atomic form factors f of V, P and O calculated at
k=0 and for incident photon energy of 121.9 keV [273, 274].

Element b (fm) f (e/atom)
V -0.382 23.022
P 5.131 15.005
O 5.803 8.000

at ∼2 Å−1. Furthermore, SX(k) is less performing at high k. This can be attributed
to the fact that X-ray are more sensitive to the vanadium atomic environment due to
the comparatively smaller vanadium neutron scattering length (-0.382 fm). The variety
of local V coordination featuring multiple oxidation states leads to less structured SX(k)
peaks compared to SN (k).

The agreement between theory and experiments is quantified by calculating the Rχ fac-
tor [238] defined by the Eq. (3.11) Negligible variations are noted in the comparison
between the 5450 and 218-atom models simulated by CMD, with only a slightly more
pronounced first peak observed for the larger models. This implies that the 218-atom size
is indicative of VP50 glass, without significant size effects being found. Considering the
0.5-10 Å−1 range of k, the Rχ values obtained for the three BOMD models fall within
the range of 8.4-9.8 for X-ray and 8.4-12.0 for neutron. In comparison, the corresponding
values for CMD span 11.3-12.8 for X-ray, as presented in Tab. 4.3 (see Tab. 4.4 for CMD
5450 atom models). This indicates a substantial enhancement of BOMD over CMD when
evaluating the total X-ray structure factor. Nevertheless, the overall performance of the
two methodologies lead to more comparable results in the case of neutrons. Furthermore,
it is worth emphasizing that CMD2 shows the lowest X-ray and neutron Rχ values in
comparison to CMD1 and CMD3. This indicates the closest alignment with BOMD and
experimental results, particularly evident in terms of the intensity of the first peak in the
SN (k) at about ∼1.8 Å−1. The significant Rχ reduction obtained when adopting BOMD
instead of CMD in the X-rays case is indicative of a drastic improvement in describing
the local environment of V sites in VP50. Similarly, the reduced disparity between CMD
and BOMD neutron Rχ values underscores the overall effectiveness of the three force field
schemes in accurately describing both O and P environments, despite undergoing further
improvements.

Table 4.3. Goodness-of-fit Rχ parameters obtained from CMD and BOMD data (218 atoms models)
indicating the level of agreement with the experimental data for neutron and X-ray structure factors
(RSX (k)

χ and RN
χ (S(k)), respectively) and total pair correlation functions (RX

T (r) and RN
T (r), respectively).

All calculated values presented here are averaged over four parallel runs.

CMD1 CMD2 CMD3 BO1 BO2 BO3
Neutrons
RN

S(k) 11.5 ± 0.1 9.8 ± 0.1 10.9 ± 0.1 12.0 ± 0.1 8.4 ± 0.2 8.9 ± 0.1
RN

T (r) 37.9 ± 0.4 26.7 ± 0.1 45.8±0.3 31.0 ± 0.4 28.6 ± 0.5 27.7± 0.4
X-Rays
RX

S(k) 12.8 ± 0.1 11.3 ± 0.1 11.8 ± 0.1 9.8 ± 0.1 8.4 ± 0.2 8.4 ± 0.1
RX

T (r) 45.0 ± 0.2 36.6 ± 0.3 52.0± 0.1 32.0 ± 0.2 28.7 ± 0.3 28.4 ± 0.4

4.4.2 Total pair correlation functions

Here we introduce the notion of total pair correlation function T (r) and its relationship
with the total pair correlation function gtot(r) commonly employed to identify short-range
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Table 4.4. Goodness-of-fit Rχ parameters obtained from CMD (5040 atom models) data indicating the
level of agreement with the experimental data for X-ray and neutron structure factors ((RX

S(k) and RN
S(k),

respectively) and total correlation functions (RX
T (r) and RN

T (r), respectively). All calculated values presented
here are averaged over the four individual run per model.

CMD1-5k CMD2-5k CMD3-5k
X-Ray
RXS(k) 13.62 ± 0.02 10.79 ± 0.05 12.27 ± 0.01
RXT (r) 43.86± 0.01 35.64 ± 0.01 50.56± 0.07
Neutron
RNS(k) 11.64 ± 0.01 9.12 ± 0.02 10.46 ± 0.01
RNT (r) 35.43±0.06 23.53 ± 0.03 43.80 ±0.03

structural features in a disordered solid as it was not mentioned in Chapter 2. By referring
to the case of neutron diffraction measurements, these two quantities are related by the
following equation :

T (r) = 4πρr + 4πρr
|⟨b⟩|2

∑
αβ

cαcβbαbβ [gαβ(r) − 1]

= 4πρrgtot(r),
(4.1)

A similar expression holds for the X-ray case provided the form factors take the place of
the coherent scattering lengths. T (r) can be also obtained by Fourier transform of the total
structure factor through the following equation, in which S(k) is a generic total structure
factor obtained, as in the case of the experiments considered in this work, by X-ray or
neutron measurements [53, 236].

T (r) = 4πρr + 2
π

∫ kmax

0
dk k (S(k) − 1) M(k) sin(kr), (4.2)

where M(k) is a modification function used to truncate S(k) with M(k) = 1 for k ≤ kmax
and M(k) = 0 for k > kmax.

 0

 5

 10

 15

 20

 25

 30

 1  2  3  4

X−rays

(3)

(2)

(1)

T
ot

al
 c

or
re

la
tio

n 
fu

nc
tio

n 
T

(r
) 

(Å
−2

)

r (Å)

Exp.
CMD−218
CMD−5k
BOMD

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3

(3)

(2)

(1)

Neutrons

T
ot

al
 c

or
re

la
tio

n 
fu

nc
tio

n 
T

(r
) 

(Å
−2

)

r (Å)

Figure 4.4. Calculated X-ray (top) and neutron (bottom) total pair correlation functions for VP50 glass
obtained by CMD and BOMD simulations at 300 K for the three models indicated as (1), (2), and (3). We
report the analysis for the 218 atoms model (CMD (purple) and BOMD (green)), the 5450 atoms model
(CMD, dashed blue line), and also report the experimental data (black circles) [53].

66



The total pair correlation functions obtained for CMD and BOMD models (Eq. (4.1)) are
shown in Fig. 4.4, together with the experimental data [53] (Eq. (4.2)). Collectively, we
discern very marginal distinctions between CMD 218 and 5450-atom models, fully aligning
with previous observations derived from the total structural factors. This reinforces the
representative description of VP50 glass with the 218 atoms models, and dismissing any
potential size effects. Each of the three CMD models shows a noticeable overestimation of
the first peak in both X-ray and neutron total pair correlation functions when compared
to BOMD data. CMD3, in particular, shows the least agreement with BOMD and ex-
perimental data, notably in relation to the second and third peaks in X-rays (attributed
to O–O and V–P correlations, [53]) and the second peak in neutrons total correlation
functions (attributed to O–O correlations [53]). In contrast, CMD2 shows the most favor-
able overall performance when compared to CMD1 and CMD3. It notably improves in
reproducing the intensity of the first peak in both X-ray and neutron total pair correlation
functions. Nevertheless, all three BOMD models unequivocally exhibit improvements over
the three CMD models in the intensity of the first peak for both X-ray and neutron total
pair correlation functions. Remarkably, the results remain very similar across all BOMD
models, irrespective of the initial CMD scheme employed. This improvement is substan-
tiated by the Rχ parameter values in Tab. 4.3 within the 1-3.2 Å range, unequivocally
highlighting the superior quantitative description of the BOMD approach compared to
CMD.

4.4.3 Partial pair correlation functions

CMD and BOMD partial pair correlation functions gαβ(r) are shown in Fig. 4.5 and Fig. 4.6
(left). In what follows, gαβ(r) calculated via the CMD or the BOMD approach will be also
referred to as gαβ(r) (CMD) and gαβ(r) (BOMD), respectively. Bond distances are taken
to correspond to the position of the first maximum of gαβ(r), allowing a comparison with
experimental values, as reported in Tab. 4.5.
Fig. 4.7 illustrates the deconvolution fitting analysis conducted on BO1 gαβ(r) data, as an
example of the procedure used; the same approach was applied to BO2 and BO3 gαβ(r)
data. Tab. 4.7 reports the bonds distances calculated for the 5450 atom models simulated
by CMD.
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Figure 4.5. Partial pair correlation functions for the simulated VP50 glass at T = 300 K for the three
models (1), (2), and (3). Shown from left to the right are gPO(r) (left), gOO(r) (middle), and gOO(r) (right).
BOMD results are represented by green lines, while CMD results are illustrated by purple lines.

P–O pair

The first peak of gPO(r) is due to the four P–O bond distances of PO4 tetrahedral units.
These units are composed of longer P–O bonds that connect P with three bridging oxygen
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Figure 4.6. (Left) : Comparison of V–O partial pair correlation functions for various oxidation states of
V sites. The upper part shows CMD data, while the lower part depicts BOMD data. The inset provides
a close-up view of the V3+–O partial pair correlation functions obtained for the three BOMD models.
All these plots represent the decomposition of the V–O partial pair correlation function for the total V,
wherein the sum of these individual g(r) functions yields the gV totO(r) reported in Fig. 4.5 (right). (Right)
: O–V5+–O (top), O–V4+–O (center), and V4+–O–V5+ (bottom) bond angle distributions obtained via
CMD and BOMD at T = 300 K.

(BO, two-folded O) atoms and one shorter P–O bond. This bond connects P to one
nonbridging oxygen (NBO, one-folded O) atom. NBO bonds are associated with double
P=O bonds, characterized by shorter bond lengths. Looking at Fig. 4.5 (left part), it
appears that CMD and BOMD results have in common a sharp first peak centered at
1.50 Å and 1.55 Å, respectively. However, the first peak in gPO(r) for the three CMD
models is sharper and much more intense, accounting for a significant overstructuring of
bond distances between P and O atoms. On the contrary, gPO(r) for the three BOMD
models provides a more broadened description of the bond distances of PO4 units. P−NBO
and P−BO bond distances obtained by CMD are found very close, being both about
1.50 Å. This can be interpreted as a shortcoming of the three classical force fields since
measurements have revealed a well-defined difference in bond lengths between the short
double P=O bond and the longer single P–O bond, with values of 1.52 Å and 1.60 Å
respectively [53]. It is worth noting that this was not the case for glasses containing alkali
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Figure 4.7. Deconvolution fitting of the P-O, O-O, V5+-O, V4+-O, and V3+-O partial pair corre-
lation functions computed for BO1 model. We report the calculated data (gαβ(r), black circle),
the cumulative fit (gcf(r), dashed gray line), the deconvolution fits of the peaks corresponding to
the single and double bonds (gf1,2(r), blue and green data) and the residual data. We give also the
final χ2 as an indicator of the quality of the fit. For the V4+-O partial pair correlation function,
a zoom-in in the 1.5-1.7 Å interval is made available. The same analysis was performed for BO2
and BO3 sets, results are reported in Table 4 of main text of the manuscript.

or earth ions, such as Na and Ca since the PMMCS/BMP force fields (CMD1 and CMD2)
were able to accurately capture the difference in bond lengths between P–NBO and P–BO
bonds, with values equal to 1.47 Å and 1.58 Å, respectively, closer in agreement with
experimental data [108]. In the present case, our deconvolution fitting of gPO(r) (BOMD)
leads to bond lengths equal to 1.51 Å and 1.56 Å for the P=O and P–O bonds, respectively
for the three BOMD models (see Fig. 4.7), in much better agreement with experiments.
Of particular note is that the three BOMD models exhibit very similar gPO(r) profiles,
both in terms of peak intensities and positions. Therefore, to attain a more quantitative
description of alkali ions-free vanadophosphate glasses, particularly regarding the bonding
within PO4 units, opting for BOMD over classical MD and force fields is advisable due to
its superior quantitative approach.
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Table 4.5. Bond lengths rij (in Å) (taken as the position of the first maximum of the pair
correlation functions gαβ(r)) and average coordination numbers ni, computed for the 218 atoms
models. For BOMD data, we report the distances obtained from the first maximum of gαβ(r).
We also report the experimental values for VP50 glass [53, 276] and those found in crystalline
vanadophosphate phases [67, 68, 275]. The average statistical error, computed across the replicas,
for the simulated data (CMD and BOMD), is 0.02 Å.

Exp. CMD1 CMD2 CMD3 BO1 BO2 BO3
[53, 67, 68, 275, 276]

rPO 1.52 1.50 1.51 1.49 1.50 1.51 1.51
1.60 - - - 1.56 1.56 1.56

rVO 1.58 - - - 1.62 1.59 1.65
1.90 1.79 1.81 1.78 1.84 1.83 1.83

rV5+O 1.59–1.78a - - - 1.62 1.59 1.65
1.80–2.35a 1.88 1.76 1.79 1.81 1.79 1.82

rV4+O 1.59–1.74a - - - 1.61 1.60 1.59
1.80–2.12a 1.76 1.83 1.74 1.87 1.90 1.87

rV3+O - - - - 1.68 - -
1.88–2.18a - - - 1.95 1.99 1.95

rOO 2.52 2.47 2.48 2.46 2.54 2.56 2.56
2.74 2.70 2.81 2.63 2.72 2.71 2.70

rVV 3.50 3.54 3.51 3.50 3.50 3.52 3.52
rPV 3.24 3.35 3.30 3.28 3.35 3.32 3.30
nP 3.9 4.00 4.00 4.00 4.00 4.00 4.00
nVtot 5.1-5.4 5.09 4.73 5.01 5.06 4.97 5.02
nV5+ 4.0-6.0a 5.38 4.48 5.28 4.81 4.73 4.78
nV4+ 5.0-6.0a 4.61 5.15 4.55 5.53 5.36 5.44
nV3+ 6.0a - - - 5.99 5.99 6.00
nO 2.0–4.0b 1.89 1.83 1.91 1.88 1.86 1.88

a Characteristic bond lengths intervals analysed from about 520 vanadophosphate crystalline
phases [67, 68, 275].
b Mean coordination number interval of O atoms vanadium oxides and VP crystalline compounds
reported by [53].

O–O pair

The first peak of gOO(r) of the three CMD models is located at about ∼2.47 Å and
it is found very sharp, followed by a less intense feature centered at different position
depending on the force field, at 2.70 Å (CMD1), 2.81 Å (CMD2), and 2.63 Å (CMD3).
Previous studies have indicated that the ratio of these two peaks depends on the glass
composition [81]. In contrast, gOO(r) of the three BOMD models show similar behaviour
with a positively-skewed peak with a maximum at about 2.54-2.56 Å. Further analysis
through deconvolution peak fitting (see Fig. 4.7) reveals that the BOMD data can be
fitted, minimizing the goodness-of-fit Rχ parameter, with two peaks centered at 2.54-
2.56 Å and 2.70-2.72 Å. The first peak is commonly associated with oxygen atoms in
PO4 tetrahedra units, which is a characteristic feature of other phosphate glasses [276].
The second peak at longer distances is attributed to oxygen atoms in corner-sharing VOn

structural units [53, 276, 277]. The distances obtained by both CMD and BOMD agree
fairly well with experimental data reported by Hoppe et al. [53] for VP50 glass (2.52 Å
and 2.74 Å).
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V–O pair

The first peak of gVO(r) is due to the bond distances between O and V atoms in distinct
VOn structural units, which result from the different oxidation states of V. The picture
of V−O bonding arising from gVO(r) differs when comparing CMD and BOMD models.
Specifically, gVO(r) in CMD1 displays an asymmetrical peak centered at 1.79 Å, while
gVO(r) in CMD2 and CMD3 exhibit symmetrical peaks centered at 1.81 Å and 1.78 Å,
respectively. Notably, CMD3 shows a much more intense and sharp peak compared to
CMD1 and CMD2. On the contrary, gVO(r) of the three BOMD models feature a similar
behaviour with a peak with a maximum at about 1.83-1.84 Å that is preceded by a clear
shoulder. To better understand the scenario of bond distances in VOn polyhedra, we show
the breakdown of gVO(r) for the V sites with different oxidation states for both CMD and
BOMD data in Fig. 4.6, Left. The asymmetrical profile of gVO(r) in CMD1 primarily arises
from the distinct peak positions and intensities of V–O bonds promoted by V5+ and V4+,
centered at 1.88 Å and 1.76 Å, respectively. In contrast, gVO(r) in CMD2 exhibits V–O
bonds promoted by V5+ and V4+ centered at 1.76 Å and 1.83 Å, respectively. Meanwhile,
gVO(r) in CMD3 shows V–O bonds promoted by V5+ and V4+ with distinct sharpness and
peak maxima positions, at 1.79 Å and 1.74 Å, respectively. These results clearly indicate
a significant divergence in the description of V–O bond interactions among the different
force fields.

A different situation is observed in gVO(r) BOMD models, the three showing very similar
behaviour, with gV5+O(r) exhibiting a peak with maximal intensity at 1.79-1.82 Å that is
preceded by a shoulder centered at 1.59-1.61 Å. In contrast, gV4+O(r) has a small peak
at 1.59-1.61 Å, followed by a more intense one centered at 1.87-1.90 Å. We also included
gV3+O(r) for completeness, although BOMD calculations revealed only a minor content
of V3+. BOMD results are highly consistent with experimental data, since they capture
the short vanadyl (double) bond V=O and longer single V–O bonds. These bonds lie
in the range 1.55–1.78 Å and 1.80–2.35 Å, respectively. A notable feature reported in
the literature for vanadophosphate crystalline phases is the increase of the length of V–O
single bonds with decreasing V oxidation state [67–69]. Also, V5+ and V4+ exhibit at
least one vanadyl bond, while V3+ does not show any. For the VP50 glass, Hoppe et al.
[53] reported multiple bonding distances for Vtot–O, including 1.58 Å, 1.90 Å, 2.10 Å, and
2.48 Å. Overall, BOMD calculations accurately describe the untrivial bonding pattern of
VOn polyhedra in good agreement with the reported experimental trends. In fact, one
obtains short vanadyl and long single bonds of VOn as well as an ordering of distances of
single bonds with respect to the V oxidation state that goes as follows: V5+–O < V4+–
O < V3+–O (the respective values being 1.79-1.82 Å, 1.87-1.90 Å, and 1.95-1.99 Å). CMD
results obtained with the three force fields tested in the present work fall short when com-
pared to the BOMD outcomes in faithfully reproducing the intricate bonding patterns of
VOn polyhedra. However, a few critical remarks can be delineated. The selection of force
field parameters in CMD1 introduces a notable disparity in describing V5+–O and V4+–O
bonds, contrary to experimental findings that highlight longer V4+–O distances compared
to V5+–O bonds. CMD3 force field exhibits very negligible differences in V5+–O and
V4+–O bond distances, again reflecting V4+–O bonds as shorter than V5+–O bonds, both
portrayed by extremely structured gV5+/4+O(r) first peaks. The CMD2 force field choice
emerges as the most effective among CMD1 and CMD3, manifesting a notable difference
in V4+–O and V5+–O bonds and aligning with the trend observed in experiments.The
sole noteworthy limitation of CMD2, shared across all three force fields, is its inability to
precisely characterize both short V=O and long V–O bonds inherent in VOn polyhedra,
aspects that can only be accurately described at the BOMD level. The first peaks in
gV5+/4+O(r) (CMD) are centered at distances between the vanadyl and individual V–O
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bonds. However, it is important to highlight that for a relatively low V oxide content, the
CMD1 force field has demonstrated the ability to accurately capture both short and long
V–O bonds [80].

4.5 Structural properties: atomic scale tools to describe the
network

4.5.1 Coordination numbers and structural units identification

To gain further insights into the VP50 glass network, we can examine the averaged coor-
dination numbers (ni with i=P, O, V) by integrating the first peak of gαβ(r) up to a cutoff
distance corresponding to the position of the first minimum. This allows us to extract the
coordination numbers ni. Fig. 4.8 displays the running integrals of the individual partial
correlation functions gαβ(r) for CMD1/BO1, CMD2/BO2 and CMD3/BO3. The calcu-
lated coordination numbers ni are listed in Tab. 4.5, along with available experimental
data. For V, we also report the contribution of individual oxidation states (V4+ and V5+

for CMD and V3+, V4+, and V5+ for BOMD).
As depicted in Fig. 4.8 and summarized in Tab. 4.5, both CMD and BOMD yield compa-
rable values for the average coordination of P and O atoms, aligning reasonably well with
reported experimental data, obtaining values of ∼4 and ∼1.9, respectively. Regarding
the total V coordination, CMD1 and CMD2 exhibit close values (5.0 - 5.1), while CMD2
displays a slightly lower value (4.73). All three BOMD models demonstrate very similar
coordination values for total V, at about 5.0 - 5.1.
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Figure 4.8. Running averaged coordination number of the three models obtained by CMD (solid line) and
BOMD (dashed line).

However, when analysing the breakdown of V coordination into distinct oxidation states,
more pronounced and contrasting trends become evident between the three CMD force
fields and between CMD and BOMD data. The average nV decreases with the increase
of the V oxidation state for CMD1 and CMD3 (from 5.4 – 5.3 to 4.6 for V5+ and V4+,
respectively). Conversely, CMD2 exhibits an opposite trend, aligning with experimental
findings (from 4.5 to 5.2 for V5+ and V4+, respectively). Notably, all three BOMD models
follow a consistent trend, aligning with CMD2 data and fully concurring with experimen-
tal observations (4.7 – 4.8, 5.4 – 5.5, and 6.0 for for V5+, V4+, V3+ respectively).

We also computed the distribution of the structural coordination units nα(l) character-
izing the environment of each atom. In this way, for a given number of neighbors l and
a given atomic species, one can extract from each configuration the chemical nature of
the neighbors. It is important to underline the difference between ni and nα(l). The
quantities ni give an average behavior stemming from all neighbors with no insight into
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the detailed chemical nature of bonding, while the coordination structural units nα(l) fo-
cuses on how each atomic species organizes itself when connecting to atoms of the same or
of a different kind. The distributions of nα(l) structural units for P, O, and V (Vtot and
V3−5+) are reported in Tab. 4.6, together with the breakdown of the chemical composition
of each structural unit for a given l. The findings reveal that the initial coordination shell
of P comprises exclusively fourfold connections, resembling PO4 units, fully consistent
with experimental data [53]. Concerning the first coordination shell of O atoms, CMD
and BOMD results exhibit similar results, considering the computed error uncertainty.
Remarkably, the large models (5k atoms) simulated by CMD consistently align with the
values obtained for the smaller model (see Tab. 4.7).

Table 4.6. Distribution of the individual nα(l) structural units where an atom of species α (P, V or O) is
l-fold coordinated, computed for the 218 atoms models. In bold are reported the total percentages deter-
mined for each l-fold coordination. These quantities have been calculated including neighbours separated
by a cutoff corresponding to the first minimum in the gαβ(r). For the present work, the cutoffs of 2.0 and
2.4 Å was used for the P-O and V-O bonds respectively. The values with a star (*) correspond to the
appearance of certain vanadium environment configurations in low concentrations. Only fraction greater
than 0.5 % are reported.

CMD1 CMD2 CMD3 BOMD1 BOMD2 BOMD3
Vtot

l = 4 O4 22.2 ± 1.4 41.8 ± 0.4 25.3 ± 0.6 26.9 ± 0.5 26.4± 0.6 30.2± 0.8
l = 5 O5 46.3 ± 1.2 40.6 ± 0.5 48.8 ± 0.9 40.4 ± 0.6 51.4 ± 1.1 38.2± 1.8
l = 6 O6 31.5 ± 0.7 16.6 ± 0.2 25.9±0.6 32.0 ± 0.3 21.4 ± 0.7 30.5± 1.2
V5+

l = 4 O4 4.8 ± 0.6 36.5 ± 0.5 4.5 ±0.5 25.7 ± 0.5 24.1 ± 0.6 26.0 ± 1.2
l = 5 O5 28.9 ± 0.7 19.2 ± 0.7 36.1 ± 1.1 24.7 ± 0.4 32.0± 0.6 24.2±0.8
l = 6 O6 28.8 ± 0.7 5.9 ± 0.4 21.9 ± 0.7 12.3 ± 0.5 5.8± 0.5 12.3± 0.9
V4+

l = 4 O4 17.4 ± 1.1 5.3 ± 0.2 20.8 ± 0.6 1.2 ± 0.2 2.1 ± 0.5 3.9 ± 0.7
l = 5 O5 17.4 ± 0.9 21.5 ± 0.5 12.7±0.7 14.7 ± 0.6 19.7 ± 0.8 14.1± 1.1
l = 6 O6 2.8 ± 0.3 10.8 ± 0.3 4.0 ±0.3 20.1 ± 0.5 15.3 ± 0.5 18.0± 1.6
V3+

l = 6 O6 - - - 0.8* ± 0.0 0.8* ± 0.0 0.8* ± 0.0
P
l = 4 O4 100.0 ± 0.0 100.0± 0.0 100.0± 0.0 99.3 ± 0.1 98.8 ± 0.3 99.2 ± 0.2
O
l = 1 11.0 ± 0.5 18.2±0.3 12.7±0.3 12.1 ± 0.2 14.0 ±0.3 12.8 ± 0.5

P 10.0 ± 0.4 16.5 ± 0.1 11.8 ± 0.2 9.1 ± 0.1 8.1 ± 0.1 7.8± 0.3
V 1.0 ± 0.1 1.7 ± 0.2 0.9 ± 0.1 2.9 ± 0.1 5.9 ± 0.2 5.0 ±0.2

l = 2 87.8 ± 0.5 80.7 ±0.6 85.4±1.3 87.6 ± 0.2 85.4± 0.6 86.9± 1.4
VP 71.6 ± 0.5 49.6 ± 0.3 55.3± 0.8 73.6 ± 0.1 58.7 ± 0.3 60.2 ± 0.8
V2 16.2 ± 0.1 23.2 ± 0.1 23.2±0.2 13.9 ± 0.1 18.8 ± 0.1 19.3 ± 0.3
P2 0.4 ± 0.0 7.9 ±0.2 6.9 ± 0.3 0 7.9± 0.2 7.4± 0.3

Our findings reveal that the three CMD models show that 79% to 88% of oxygen atoms
exhibit two-fold coordination, with 11% to 18% characterized by one-fold coordination.
Similarly, in the three BOMD models, a comparable trend is observed. However, there is
a narrower variability among the three BOMD models, with 86% to 88% of oxygen atoms
exhibiting two-fold coordination, and 12% to 24% characterized by one-fold coordination.
The decomposition in terms of chemical species reveals that two-folded O atoms are mainly
coordinated with one P and one V (VP), however the three different CMD models show
different values with ∼72% (CMD1), ∼50% (CMD2), and ∼55% (CMD3). Similar trend
is found with BOMD, with ∼74% (BO1), and ∼60% (BO2 and BO3). Additionally, O
coordinated by two V atoms (V2) accounts for 16 – 23% (CMD) and 14 – 19% (BOMD)
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Table 4.7. Distribution of the individual nα(l) structural units where an atom of species α (P, V or
O) is l-fold coordinated, computed for the CMD 5040 atoms models. In bold are reported the total
percentages determined for each l-fold coordination. These quantities have been calculated including
neighbours separated by a cutoff corresponding to the first minimum in the gαβ(r). For the present work,
the cutoffs of 2.0 and 2.4 Å were used for the P-O and V-O bonds respectively. Only fraction greater than
0.5 % are reported.

CMD1-5k CMD2-5k CMD3-5k
Vtot

l = 4 O4 22.2 ± 1.1 42.5 ± 1.3 28.9±1.6
l = 5 O5 44.7 ± 2.4 40.8 ± 1.4 43.4±2.0
l = 6 O6 33.1 ±1.5 16.1 ± 0.2 27.7±0.8
V5+

l = 4 O4 8.0 ±0.8 36.5 ± 0.8 7.1±0.4
l = 5 O5 25.6 ±1.5 20.6 ± 0.4 30.0±0.8
l = 6 O6 28.9 ±1.2 4.8 ± 0.5 25.4±0.8
V4+

l = 4 O4 14.2 ±0.7 6.02 ± 0.54 21.8±1.9
l = 5 O5 19.1±1.0 20.2 ± 1.0 13.4±1.4
l = 6 O6 4.3 ±0.3 11.3± 0.5 2.3±0.6
V3+

l = 6 O6 - - -
P
l = 4 O4 100.0± 0.0 99.95 ± 0.1 99.8±0.2
O
l = 1 10.7 ± 0.4 18.5 ± 0.3 13.0 ±0.4

P 9.9 ±0.3 17.0 ± 0.1 12.1±0.3
V 0.8 ± 0.1 1.5 ± 0.2 0.9±0.1

l = 2 88.8 ± 0.4 80.8 ± 0.9 84.7±1.0
VP 72.0± 0.3 48.1 ± 0.5 54.1±0.6
V2 16.4±0.1 24.09± 0.10 23.6±0.3
P2 0.4 ± 0.0 8.6 ± 0.2 7.0±0.1

of the coordination units.
Regarding the total V, the three CMD models exhibit both similarities and differences.
Notably, CMD1 and CMD3 reveal a predominant five-fold coordination in the majority
of V atoms, accounting for 46% to 49%, respectively. CMD1 shows 32% and 22% of six-
and four-folded V, respectively, while CMD3 exhibits 26% and 25% of six- and four-folded
V. In contrast, CMD2 demonstrates an almost equipartition of total V between four- and
five-coordination (42% and 41%) and a minority of six-folded V (17%). All these values
closely align with the trend obtained with the larger CMD models (Table S7). Conversely,
all three BOMD models display a highly similar trend. The majority of total V is five-
folded (38% to 47%), with a nearly equal distribution of the remaining V between four-
and six-folded (27% to 30% and 23% to 32%, respectively).
An analysis of the breakdown of V units in different oxidation states reveals significant
differences among the three CMD models, whereas the three BOMD models align with
a similar trend. CMD1 exhibits an almost equal distribution of V5+ between five-folded
(VO5) and six-folded (VO6) coordination, each constituting ∼29%. In contrast, CMD3
displays a slightly higher proportion of five-folded units (36%) compared to six-folded
units (22%). Both CMD1 and CMD3 show a minority (5%) of four-folded units (VO4).
Conversely, CMD2 presents a different profile with a majority (37%) of V5+ as four-folded
units, followed by 19% five-folded and a minority of six-folded (6%) units. Shifting to
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V4+, the three CMD models yield distinct outcomes. CMD1 exhibits a similar content of
four- and five-folded units (17%) and a minority of six-folded VO6 units. CMD2 shows
a preference for five-folded VO5 units (22%) with minor contents of six-folded and four-
folded units. Meanwhile, CMD3 shows a preference for four-folded VO4 units (21%) with
minor contents of five-folded and six-folded units. These results underscore the divergent
behavior of the three force-field schemes when the V coordination units analysis is broken
down according to different oxidation states of V. All the results are substantiated by the
findings obtained for the larger CMD models (Table S8).
On the other hands, the three BOMD allign on very similar trends for the three different
oxidation states of V. For V5+, VO4 and VO5 are present in very close percentages (24%
– 28%), while for VO6 one has ∼12% for BO1 and BO3 and ∼6% for BO2. Notably,
for V4+, BOMD leads to the majority of V4+ found in VO6 and VO5 coordination units,
accounting for ∼17–20% and ∼14–19%, respectively and a negligible content of VO4 units
(≤5%). The content of V3+ is negligible in the BOMD case, this motifs being found in
VO6 units, in accordance with experimental evidence. Overall, the BOMD results exhibit
robust alignment with experimental data [53, 67, 68, 275]. Moreover, the CMD2 scheme
aligns with BOMD data for V5+ and V4+, in contrast, CMD1 and CMD3 exhibit complete
deviation.

4.5.2 Bond angle distributions, local order parameter and network con-
nectivity

The bond angle distributions (BAD) of triads O-V-O, centered around V5+ and V4+ atoms
are shown in Fig. 4.6 (right). For O–V5+–O triads, the three CMD models exhibit both
similarities and discrepancies.

Notably, CMD1 and CMD3 display a distinct right-skewed peak around 90◦, accompa-
nied by a secondary peak at 170◦. These angles are interpreted as representing (defective)
octahedral and pyramidal units for the first peak and defective square and trigonal pyra-
mids for the second. In contrast, CMD2 reveals a peak around 90◦ at a significantly lower
intensity, accompanied by a more pronounced shoulder centered at approximately 109◦.
Additionally, CMD2 shows a less intense peak at 170◦ compared to CMD1 and CMD3.
The greater contribution around 109◦ in CMD2 is attributed to the increased presence of
VO4 of V5+ and is linked to the implementaion of a three-body V–O–V potential in the
CMD2 scheme.
The O–V4+–O CMD1 and CMD3 results display a wide distribution spanning from 85◦

to 120◦, accompanied by a minor peak at 170◦. In contrast, CMD2 reveals a prominent
peak centered at 90◦ with a minimal contribution observed at 109◦. This latter feature is
attributed to the vey minor presence of VO4 in V4+, as obtained with CMD2. Regarding
the V4+–O–V5+ triad, which pertains to the connection of VOn polyhedra, all three CMD
models exhibit contributions centered around ∼148◦ and ∼165◦, albeit with notable vari-
ations in their respective magnitudes.
In contrast, BOMD O–V5+–O data are characterized by a double peak with maxima at
around 90◦ and 106◦, which corresponds to octahedral and pyramidal units (the former)
and to the tetrahedral structure of V5+O4 units (the latter). There is also a less intense
third peak centered at approximately 170◦ due to contributions from defective square and
trigonal pyramids. For O–V4+–O, BOMD features a prominent peak at 90◦, which is
typical of octahedral, pyramidal, and square pyramidal structures, and no contribution at
around 109◦, in agreement with the negligible quantity of V4+O4 connections found exper-
imentally. Finally, a second minor peak is found at 170◦ due contributions from defective
square and trigonal pyramids. Concerning the V4+–O–V5+ triad, BOMD results reveal a
wide distribution spanning from approximately 130◦ to 180◦, displaying less structure com-
pared to CMD datasets. However, CMD2 shows the closest alignment among the CMD
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glassy VP50. The figure showcases V5+, V4+, and V3+ oxidation states obtained from CMD and BOMD.

models. Overall, the CMD1 and CMD3 datasets for O-V-O triads, focusing on V5+ and
V4+, exhibit notable disparities when compared to BOMD data. In contrast, the CMD2
scheme demonstrates the highest level of agreement, closely aligning with both BOMD
results and, consequently, providing the closest match to experimental observations.
To further gain insights into the structural properties of VP50, we calculated the q pa-
rameter indicative of structural order,

q = 1 − 3
8
∑
j

∑
k ̸=j

(
cos θjik + 1

3

)2
, (4.3)

where θjik is the bond angle constructed from the central atom i and its neighbours j and
k (j, k ≤ 6). q varies is equal to 0 for perfect six-fold octahedral and to 1 for four-fold
tetrahedral structure [278]. This parameter is a useful tool for identifying the individual
contributions of different structural units to the overall structural order as proven for a va-
riety of amorphous systems, including glassy chalcogenides [279], chalcohalides [280], and
phase-change materials [281, 282]. The calculation of q for P sites in VP50 glass yielded
a value near 1 for both CMD and BOMD simulations, which is indicative of the presence
of P uniquely in tetrahedral PO4 units, in a way consistent with experimental observations.

As shown by the analysis of the V sites, VO5 is the dominant vanadium structural units,
comprising 38–47% of the vanadium content, with and VO4 and VO6 showing lower con-
tents (27–30%, and 23–33%, respectively) in the BOMD models. Their corresponding
q-parameter ranges in between 0.65 to 0.85, indicating the prevalence of defective square
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pyramids (VO5) and distorted octahedra (VO6), with a few trigonal bi-pyramidal units
observed in VO5. Notably, V5+ units form mostly tetrahedral connections similar to
PO4 with a q-value close to 1, in addition to a similar content of defective square pyra-
mids. Apart from tetrahedral polyhedra, the parameter q has limitations in quantitatively
assessing the various VOn polyhedra in the VP50 glass structure. This is due to the dis-
torted nature of these polyhedra, resulting in varying q values even for polyhedra with
the same geometric shape. These values deviate significantly from the reference ones [115].

Additional calculations were performed to obtain the Qn species distribution, providing
information on the degree of polymerization of the polyhedra into the three-dimensional
network [48, 283]. Qn is defined as a unit in which n bridging-oxygen (BO) atoms are
directly linked to a network former ion, such as Si and P in silicate and phosphate glasses.
Fig. 4.9 shows the breakout of the Qn distribution for P sites in PO4 tetrahedral units,
with the three BOMD models featuring a majority of Q4 (55–60%) and a non-negligible
content of Q3 (37–42%). The amount of Q2 is negligible (≤3%). These findings are in ex-
cellent agreement with the experimental data of Hoppe et al. [53] pointing to a coexistence
of Q4 and Q3 units. CMD1 and CMD2 results show overall similar results to BOMD cal-
culations, albeit with CMD2 showing a lower content of Q4 (∼50%) and a non-negligible
content Q2 (∼10%). Whereas CMD3 shows a equal content of Q3 and Q4 (∼47%) and
minority of Q2 (∼5%).

We further explored the Q distribution for the V sites in VP50 glass, and the analysis
was organized into contributions from V5+, V4+, and V3+, as illustrated for both CMD
and BOMD in Fig. 4.9. In alignment with the methodology employed by Hoppe et al. [53],
our analysis involves the Qn

NB notation for V sites, where n denotes the number of non-
bridging oxygen atoms. This approach, differing from the Qn notation used for P sites,
proves to be more informative for characterizing V sites in the VP50 glass. The three
CMD models indicate that the predominant local connectivity for V5+ and V4+ consists
of Q0 species, constituting 57-60% and 35-37%, respectively. Notably, there is minimal
content of Q1 (≤5%) observed for V5+. In contrast, the BOMD models exhibit a similar
dominance of Q0 for V4+ (30-34%), while for V5+, the majority of Q0 is somewhat re-
duced (44-50%) with a non-negligible content of Q1 (10-20%). The few V3+ sites found
with BOMD have been identified as Q0. Overall, this analysis demonstrates that the VP50
glass is a highly polymerized disordered network.

4.6 Electronic and bonding properties

As a first piece of information, the electronic properties of glassy VP50 are investigated
via the electronic density of states (EDOS) shown in Fig. 4.2. To mitigate the inher-
ent underestimation of the band gap in DFT, we employed the PBE0 hybrid functional,
designed to yield more realistic values by incorporating a Hartree-Fock contribution to
the exchange part of the functional. The resulting band gap values for the three BOMD
models ranged approximately from ∼2.4 to 2.8 eV. Notably, small yet finite differences
between spin-up and spin-down states band gaps are obtained, indicating a discernible
magnetic character. This means that VP50 glass is a wide-bandgap semiconductor with a
small and yet sizeable magnetic character as several crystalline phases of VOPO4 vanadyl
phosphates, for which reported bandgap values are in between 2.5–2.9 eV [284].

To gain a deeper understanding of chemical bonding we resorted to the maximally lo-
calized Wannier function centers (WFC) by focusing mostly on the WFC proximal to O
atoms, as O is the most electronegative element in VP50 and neither P or V contribute

77



with any lone pair electrons. We considered the pair correlation function gO−WFC(r) ob-
tained at the PBE0 level, shown in Fig. 4.10(a). The partial pair correlation function
gO−W(r) exhibits a distinct band ranging from 0.2–0.5 Å, characterized by three maxima
and a very minor contribution at about 0.23 Å. About the three maxima, the more intense
one is located at 0.29 Å, while the other two are centered at 0.40 Å and 0.47 Å. The three
BOMD models show very similar gO−W(r) profiles, with negligible differences, mostly in
terms of peak intensity. In what follows, we focus on the contributions of PO4 and VOn

polyhedra to the peaks of gO−W(r).

Figure 4.10. a) Partial pair correlation function gO−WFC(r). b,c) Atomistic view of two tetrahedral PO4
units found in VP50 glass by BOMD at 300 K. We show P and O atoms in orange and red respectively.
P-O bonds are colored as orange-red. Their bond distances as well as the PO4 order parameter values q are
reported. The transparent red/blue bonds correspond to neighbouring V-O bonds. P1 atom is surrounded
by four V-O-P bridging oxygen atoms (Q4) whereas P2 atom is surrounded by three V-O-P bridging oxygen
atoms and one non-bridging oxygen (Q3). We also show the Wannier centers (yellow) involved in the local
environment of each PO4 unit, as in single bonds (wb; P1–O1,2,3 and P2–O5,6,7), lone pairs (wlp) and as
centers involved in double P=O bonds (wdb; such as P1–O4 and P2–O8).

4.6.1 P–O chemical bonding

Fig. 4.10 (b) and (c) provides an atomistic view of two tetrahedral PO4 units (with ∼109◦

OP̂O angles), observed via BOMD calculations at 300 K. The first is a tetrahedral Q4

PO4 unit (q= 0.99), composed of one P (P1) bonded to four bridging oxygen atoms via
P–O–V linkages. The second unit also comprises a tetrahedral Q3 PO4 unit (q= 0.99),
consisting of one P (P2) bonded to three bridging O atoms through P-O-V linkages and one
non bridging O atom. The arrangement of WFC centers in the local atomic environment
surrounding these units is representative of three different WFC types, to be correlated to
distances identified by the three maxima of gO−WFC(r). Specifically, we are referring to:

i) WFC due to lone pair electrons (wlp) having very short O-WFC distances (0.29 Å).
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ii) individual WFC (wb) involved in single σP–O bonds (∼1.60 Å; e.g. P1–O1−3 and
P2–O5−7 in Fig. 4.10 b)-c) and displaying a long O-WFC distance (0.48 Å).

iii) double or triple WFC (wdb; P1–O4 and P2–O8 in Fig. 4.10 (b), (c) respectively)
involved in short bonds (∼1.49–1.54 Å) and featuring an intermediate O-WFC dis-
tance (0.40 Å).

All bonding WFC are found closer to O atoms than to P atoms, denoting highly polarized
iono-covalent P–O bonds with localized distribution of valence electron density closer to
O sites [285]. The presence of two WFCs in the short bonds is consistent with the simple
Lewis picture of double P=O bonding, while the presence of three WFC identifies mixed
σ–π orbitals that give rise to so-called ”banana bond” τ orbitals [286, 287]. We have
observed that P=O and O-WFC distances remain the same regardless of the nature of
the Wannier centers and the bridging or non-bridging character of oxygen atoms allowing
us to identify these bonds as double P=O bonds. The WFC approach promoted a more
precise scrutiny of P–O interatomic distances, thus substantiating the values previously
determined through the analysis of gP−O(r). Overall, all values obtained (P–O:∼1.60 Å
and P=O: ∼1.50 Å, respectively) are found in excellent agreement with the experimental
data [53].

4.6.2 V–O chemical bonding

The kind of V5+On units found in the VP50 glass are shown in Fig. 4.11. These units
are: a four-folded V5+ tetrahedral Q1

NB, a five-folded V5+ in square pyramidal or trigonal
bi-pyramidal Q0

NB configuration, and a six-folded V5+ in a distorted octahedral Q1
NB unit

[67, 68]. The arrangement of WFC centers in the local atomic environment of these units
correspond to three different WFC types. These are characterized by different O-WFC
distances identified by the three maxima of gO−WFC(r). One has:

i) WFC representing lone pair electrons (wlp) at short O-WFC distances (0.29 Å);

ii) individual WFC (wb) involved in single σV5+–O bonds with O-WFC distance of
0.40 Å;

iii) double or triple WFC (such as V1–O3,4, V2–O9, V3–O13,14, and V4–O20) involved in
short bonds (∼1.60–1.72 Å) with longer O-WFC distance (0.48 Å).

The analysis of chemical bonds and related distances based on the WFC approach enables
us to classify any V–O interaction longer than ∼2.4 Å as a non-chemical bond. This is
because the next closest O atom is associated to a WFC with wlp characteristics.
All the bonding WFC found in the local atomic environment of V are in closer proximity
of O atoms than V, prompting a description in terms of highly polarized iono-covalent
bonds [285]. Furthermore, in the case of VOn polyhedra, the finding of double or triple
WFC in short bonds is consistent with the picture of double or τ bonds and are denoted as
vanadyl bonds [67, 68, 275]. These WFC are referred to as wv in Fig. 4.11, allowing us to
describe the coordination of VOn within the formalism used in [53, 67, 68]. This consists
in replacing the subscript n with two indexes, the first one being the number of vanadyl
bonds and the second one the number of single bonds, the sum of the two being the total
coordination of the V atom (i.e. V5+O[1+4] identifies a V5+O5 unit with one vanadyl bond
and four single bonds). The single and vanadyl bond distances obtained from the WFC
analysis are found better agreement with the range of values reported in the experiments
than those previously extracted from gV−O(r). For instance, averaged V5+–O single and
vanadyl bonds are ∼1.93 Å and ∼1.65 Å, respectively. These distances increase when the
V5+ coordination increases such as ∼1.86 Å (VO4) < ∼1.92 Å (VO5) < ∼2.00 Å (VO6), in
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Figure 4.11. Snapshot of various V5+On polyhedra units within the VP50 glass network. The local
atomic environment of V5+ sites is described by V5+-O bond lengths and associated Wannier centers
(highlighted in yellow). The polyhedra include: a) a tetrahedral unit standing for a VO4 polyhedron with
order parameter q = 0.98, b) a square pyramidal unit (q = 0.74), c) a defective trigonal bi-pyramidal unit
(q = 0.82), and d) a distorted octahedral unit (q = 0.76).

line with the trend reported in experimental findings [53, 67, 68, 275]. Note that the very
small contribution in the gO−W(r) at about 0.23 Å, correspond to the lone pair electrons
of non-bridging oxygen atoms involved in vanadyl bonds.

Fig. 4.12 exemplifies the typical V4+On units present in the VP50 glass, consisting of
V4+ in a five-fold coordination, either in a square pyramidal arrangement (V4+O[1+4])
or a by-pyramidal arrangement (V4+O[2+3]), and in a six-fold coordination as a distorted
octahedral unit (V4+O[1+5]) as well. V4+On polyhedra display the three types of distorted
WFC centers, with average vanadyl and single bond distances of ∼1.74 Å and ∼1.98 Å,
respectively. Once again, these results are in better agreement with the experimental data
than the values obtained from gV4+O(r). The contribution to gV4+O(r) due to vanadyl
bonds, which was quantified previously by deconvolution fitting of gV4+O(r), was underes-
timated because of the presence of the whole gV4+O(r) peak corresponding to single V–O
bond distances. Furthermore, the average value of single bonds increases slightly from
V4+O5 to V4+O6 (∼1.96 Å and ∼1.99 Å). Although the content of V3+ in the VP50 glass
is found minimal, some details related to this unit are worth mentioning.

Fig. 4.13 illustrates the typical coordinating unit found in this case, namely a six-coordinated
Q0 V3+O[1+5] unit in a distorted octahedral polyhedra. There is a relatively long single
V–O bond distance of ∼1.99 Å, which is consistent with the range of values reported in
literature. One double WFC localization along one of the V–O bonds becomes visible
along a particularly elongated V–O bond (∼1.85 Å). This distance lies at the boundary
between vanadyl and single bond values. However, vanadyl bonds have not been reported
for V3+-containing polyhedra in vanado-phosphate crystalline phases. Therefore, we can
legitimately label this bond as a weak vanadyl bond or a relatively short single V–O bond.
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Figure 4.12. Snapshot of V4+On polyhedra units within the VP50 glass network. The local atomic envi-
ronment of V4+ sites is described by the V4+-O bond lengths and associated Wannier centers (highlighted
in yellow). The polyhedra include: a) a defective square pyramidal unit with the local order parameter q
= 0.80, b) a defective trigonal bi-pyramidal unit (q = 0.80), and c) a distorted octahedral unit (q = 0.56).

Figure 4.13. V3+On polyhedra unit the VP50 glass network. The local atomic environment of V3+

sites is described by the V3+-O bond lengths and associated Wannier centers (highlighted in yellow). The
polyhedra shows a distorted octahedral unit with local order parameter value of q = 0.65.
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4.7 General remark on the atomic structure

Classical molecular dynamics has been increasingly used for modeling VP glasses, by com-
plementing the experimental findings and offering qualitative insights into their structural
properties. However, a quantitative assessment of the structural properties as well as a
precise understanding of electronic structure and bonding is still missing. In this section,
we delineate the limitations of CMD in modeling VP glasses while underscoring the dif-
ferent performance of the three distinct CMD force field schemes tested. Additionally,
we emphasize the significance of integrating electronic structure considerations through
FPMD, specifically within the BOMD framework, as demonstrated in the present work.
One of the most significant advantages of using BOMD is its ability to determine the chem-
ical speciation of V sites in VP50 glass. BOMD allows defining the final composition of V
oxidation states, which is found in excellent agreement with experimental data (BOMD:
0.8 % V3+, 35.9 % V4+ and 63.3 % V5+ versus exp.: 35.2 % V4+ and 64.8 % V5+ [53])
without any a priori information but the total O content. This stands in stark contrast to
classical force fields used in CMD, which require the indexing of the number of different
V sites with distinct oxidation states and the development of parameters for each pair at
the start. The accurate determination of V speciation by BOMD is shown to be critically
reliant on the correct description of the electronic properties of the glass, requiring the
use of hybrid exchange-correlation functional such as PBE0 to correct energy bandgap
underestimation effects. The calculated bandgap (2.4–2.8 eV) allows us to define VP50
glass as a wide-bandgap semiconductor with a small but sizeable magnetic character.

4.7.1 Short-range and intermediate-range order

The short-range order of glassy VP50 was analyzed using X-rays and neutron total struc-
ture factors in reciprocal space as well as the total pair correlation functions in real space
through the use of CMD and BOMD approaches, which were compared to experimental
data. BOMD captured the majority of the structural details observed in experiments,
with a notable improvement over the performance of CMD. Notably, contributions from
both the local atomic environment of the phosphate and vanadate polyhedra in the pair
correlation functions were identified within the 1.5–2.4 Å interval of distances. The im-
provements observed in the BOMD description stem from the correct description of double
bonds P(V)=O and single bonds P(V)–O. CMD fails to describe the short-range order of
VP50 glass as shown by the very close values recorded for double P=O and single bond
P–O bond distances, leading to over-structuring in the total pair correlation function at
short distances. In terms of V–O bond distances, the failure of CMD is more pronounced,
the splitting between the vanadyl double and single bonds being absent. Also, two out of
the three CMD schemes tested (CMD1 and CMD3) cannot recover the correct single bond
distance dependence on the V oxidation state. In this context, the analysis of bonding
properties based on the Wannier functions centers has proved to be crucial to assess the
variety and diversity of double and single V–O bonds.
As shown by experiments [53, 66–68], V5+ features three types of coordination in VP
glasses and crystalline phases, including VO4 (tetrahedral (Th)), VO5 (trigonal bi-pyramid
(Tb) and square pyramid (Sp)), and VO6 (distorted octahedra (Od)). For V4+ one has VO5
(Sp and Tb) and VO6 (Od) coordination, while V3+ can be found coordinated in regular
octahedra (Oh) VO6. Our BOMD calculations substantiated these experimental findings.
For our VP50 system, the following summary of structural units can be compiled:

• V5+ is preferentially coordinated as four- and five-folded (∼26–28 % and ∼24–8 %,
respectively), as Th and Sp/Tb (with Sp as mostly present), and with a non-negligible
content of six-folded V5+ (∼6–12 % as Od);
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• V4+ is preferentially coordinated as six- and five-folded (∼17–20 % and ∼14–19 %,
respectively), as Od and Sp/Tb (with Sp as mostly present), and with negligible
content of four-folded V4+ (≤5 %);

• V3+ is preferentially coordinated as six-folded (Od), although it has been found in
negligible amount in VP50 glass (<1 %).

The absence of any peak at wave vectors smaller than the main peak in the structure
factors reveal that the intermediate range order (intended as a structural organization
manifesting itself via a discernible feature at short wavelength in reciprocal space) is
very limited or even absent in VP50 glass. In terms of hypothetical topological features
extending on intermediate range distances, we observe that the analysis of the distribution
of structural units in the VP50 glass is indicative of minimal segregation of the phosphate
(PO4) units, which are well distributed throughout the glass matrix. This is shown by
the very minimal signature indicating connections between the PO4 units, with a minor
percentage of two-fold coordinated O atoms bound to two P atoms (≤7 %). There is also
a limited segregation within the vanadate (VOn) network, with approximately ∼14–19 %
of two-fold coordinated O atoms bound to two V atoms.

4.7.2 Performance of CMD force fields versus BOMD

Several summarizing comments can be made regarding the performance of the three CMD
force field schemes tested in this work. While all three CMD schemes fall short of pro-
viding a quantitative description of the local environment around V sites in VP50 glass,
they exhibit varying degrees of agreement with BOMD and experimental findings. CMD1
(PMMCS/BMP-shrm Morse-type two-body potential with P–O–P three-body potential
parameters) and CMD3 (Buckingham-type two-body potential) schemes, although display-
ing a coordination of total V in reasonable agreement with BOMD, struggle to accurately
reproduce the individual coordination of V with different oxidation states. Notably, CMD3
exhibits the poorest description, evident in discrepancies in total neutron and X-rays total
pair correlation functions, overly structured V-O partial pair correlation functions, and
negligible differences between V4+–O and V5+–O bond distances. Both CMD1 and CMD3
schemes fail to capture the local environment of V4+ and V5+ sites, notably overestimating
the content of four-folded V4+ (VO4).
On the other hand, the CMD2 scheme, incorporating a PMMCS/BMP-shrm Morse-type
two-body potential with an explicit inclusion of V5+–O–V5+ and P–O–V5+ three-body po-
tential parameters, significantly enhances agreement with BOMD and experimental data.
This improvement is particularly noteworthy in total structure factors (first peak intensity
at low k), total pair correlation functions, V coordination environment, and extends to a
more precise depiction of V site coordinations concerning V oxidation states. Addition-
ally, it captures the variations in averaged V–O bond distances based on the V oxidation
state with greater accuracy. Nevertheless, the shortcomings of all three CMD schemes
become evident in their inability to sufficiently capture the local bonding characteristics
of both single and double/vanadyl bonds between V atoms and O atoms. It is evident that
an accurate description of these bonding features necessitates consideration of electronic
structure and the localization of electronic charge and spin. This limitation is inherently
linked to the relatively simplicity of the two-body potential form used in these force fields.
In this context, the application of reactive force fields (i.e. ReaxFF [288]) and machine
learning interatomic potentials [289, 290] for CMD simulations could provide an alterna-
tive way to address these limitations, although currently unavailable for systems like VP50
glass.
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4.8 Conclusive remarks

This chapter underscores the limited ability of the empirical FF schemes tested in this work
in precisely delineating the distinct oxidation states of vanadium in VP50 glass. Instead,
it showcases the superior accuracy of BOMD in providing a quantitative depiction of the
chemical speciation, bonding and structure of this system. It is noteworthy, however, that
the agreement between CMD and BOMD significantly improves upon the incorporation
of appropriate V–O–V and V–O–P three-body potential parameters.
By performing a detailed comparison with experimental data, we found that BOMD ac-
curately determines the final composition of V oxidation states without relying on any
a priori information, except for the total O content. BOMD also provides an accurate
description of the local electronic and bonding environment around both P and V sites,
allowing for a clearer signature of single V–O and double V=O bonds, and an overall im-
proved description of the distribution of VOn coordinating polyhedra. Furthermore, our
investigation includes a thorough analysis of bond angle distributions, order and connec-
tivity parameters, and local bonding features based on Wannier functions formalism.
Overall, our findings provide a deeper understanding of VP50 glass paving the way to
the development of future (reactive or machine learning) interatomic potentials stemming
from first-principles data and expect to bring quantitative comprehension and design of
VP-based amorphous materials.
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Chapter 5

Structure, bonding and electronic
properties of ternary
Na2O-VxOy-P2O5 (NVP) glasses

Summary

This chapter focuses on ternary NVP systems. We briefly present the motivation for the
chosen compositions, detail the experimental and computational methodologies, and de-
scribe the properties of the resulting glasses. In the first part, we present two NVP systems
where the thermal cycle is driven by a classical force field, followed by a short VP50-type
dynamics using BOMD on the glass produced by CMD. In the second part, we produce
two other NVP glass compositions using a complete thermal cycle with BOMD. Struc-
tural and electronic results are presented and discussed, with comparisons to experimental
measurements of the total X-ray structure factor S(k) and pair distribution function G(r).
Some of the results presented in this chapter have been summarized and published in
ref. [291].
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5.1 Motivations behind the study of NVP glasses

Vanadium phosphate glasses (VP, also referred as vanadophosphate in literature and
hereafter), as explored in the previous chapter, have been study in the past as promis-
ing materials for solid-state batteries and electrochemical storage devices. Their appeal
stems from a unique combination of physical and chemical properties, including high glass-
forming ability, wide vitrification range, low glass transition and melting temperatures,
and high thermal expansion coefficients [275, 292]. These glasses have also demonstrated
enhanced energy density performance due to their capacity to promote multi-electron re-
actions [50, 275, 292].

The incorporation of alkali ions into the matrix of vanadium phosphate (VP) glasses
significantly enhances their functional properties, broadening their potential applications
across various fields. Sodium ions introduce mobile charge carriers within the glass ma-
trix, boosting ionic conductivity, a critical feature for efficient energy storage in solid-state
batteries. The initial focus on lithium oxide addition in VP glasses was driven by the
rapid development and widespread adoption of lithium-ion batteries (LIB). However, the
research interest has gradually partially shifted also towards sodium-based systems (SIB),
including sodium vanadium phosphate (NVP) glasses, for several compelling reasons as
detailed in Chapter 1, these include:

i. Abundance and cost: Sodium is far more abundant in the Earth’s crust than
lithium, making it a better cost-effective choice for certain large-scale energy storage
applications.

ii. Sustainability: The increasing demand for lithium has raised concerns about its
long-term availability and the environmental impact of its extraction with respect
to sodium-based systems.

iii. Similar chemical properties: Sharing, in part, similar chemical properties, allows
to apply much of the knowledge gained from lithium-based systems to sodium-based
ones.

iv. Larger ion size: While the larger size of sodium ions initially posed challenges
for intercalation materials, it has proven advantageous in some glass systems. The
larger ion size can lead to more open structures in glasses [293, 294].

v. Unique redox behavior: In NVP glasses, the interaction between sodium ions and
vanadium’s variable oxidation states can lead to interesting and potentially beneficial
redox behaviors that differ from those observed in lithium-based systems.

vi. Complementary technology: Rather than fully replacing lithium-based systems,
sodium-based materials like NVP glasses are seen as complementary technologies.
They may be particularly suited for stationary energy storage applications where
the higher energy density of lithium-based systems is less critical [295].

Overall, the partial shift in focus reflects the scientific community’s ongoing efforts to de-
velop more sustainable, cost-effective, and diverse energy storage solutions. The research
on NVP glasses contributes to this broader goal while also expanding our fundamental
understanding of glass structure and ion dynamics in these complex systems.
As presented in Chapter 1, over the past 15 years, various atomistic studies have been
dedicated to the investigation of NVP glasses. Most of these studies have employed CMD
simulations driven by empirical potentials. Building upon the methodology established
and the findings presented in the previous chapter, this chapter focus into the investigation
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of NVP glasses, employing a procedure analogous to that employed for VP50. Addition-
ally, this investigation will be furthered through a purely ab-initio approach.
In the first part, we compare the performance of the most effective empirical force field
identified earlier with a final BOMD equilibration at 300 K. This BOMD equilibration is
performed using both PBE and PBE0 functionals, as done previously for VP50 glass.
The second part extends this approach by employing full BOMD to conduct a complete
thermal cycle for a third NVP glass composition. This comprehensive study aims to eval-
uate the improvements offered by the BOMD approach compared to classical potentials.
Additionally, it assesses the benefits of conducting a full BOMD thermal cycle versus
merely performing a final equilibration at the BOMD level.

Throughout this two-part study, all computational results will be thoroughly compared
with available experimental data provided by collaborating experimental groups at the
IRCER Lab within the framework of this project and the ANR project AMSES [296]. This
rigorous comparison between computational predictions and experimental measurements
will validate our modeling approaches and provide deeper insights into the structure-
property relationships of NVP glasses.
By combining advanced computational methods and experimental validation, this com-
prehensive approach seeks to enhance our understanding of modeling techniques for NVP
glasses and their impact on predicting glass structure and properties.

5.2 X-ray diffraction experiments

For completeness, we have summarized the main details of NVP glasses sample synthesis
(conducted by R. Piotrowski and G. Dealizir at IRCER) and X-ray scattering characteriza-
tion (conducted by O. Masson at IRCER). For more detailed information, please refer to R.
Piotrowski’s Ph.D. project [297]. The experimental total X-ray structure factor S(k) and
total pair distribution functions G(r) of our NVPs systems were determined through X-ray
total scattering (XRD) by our collaborators at the European Ceramics Centre (IRCER)
in Limoges, following procedures similar to those employed in [298]. X-ray scattering mea-
surements were conducted at room temperature using a specialized laboratory setup based
on a Bruker D8 Advance diffractometer. This instrument was equipped with a silver sealed
tube (λ = 0.559422 Å) and a rapid LynxEye XE-T detector. Modifications were made to
this setup to maximize the collected intensities, minimize spurious signals from the empty
environment, and achieve good counting statistics up to a large scattering vector length
of 21.8 Å−1 Approximately twenty milligrams of each sample’s powder were placed in a
thin-walled (0.01 mm) borosilicate glass capillary with a diameter of about 0.7 mm to limit
absorption effects. The µR values (where R is the capillary radius and µ is the sample’s
linear attenuation coefficient) were estimated based on precise measurements of the mass
and dimensions of the samples, yielding values of 0.17, 0.21, 0.18, and 0.22 for NVP25,
NVP33, NVP40, and NVP43 glasses, respectively.

After sealing, the capillary was mounted on a goniometric head and aligned so that its axis
coincided with the diffractometer’s goniometer axis. Data acquisition involved multiple
scans over the 0–152◦, 50–152◦, and 100–152◦ 2θ ranges with a step size of 0.01◦. These
scans were then merged, resulting in a total equivalent acquisition time of approximately
50 hours per sample. The raw data were corrected, normalized, and Fourier transformed
using custom software [299] to obtain the reduced atomic pair distribution functions G(r).
Corrections accounted for capillary contributions, empty environment, Compton and mul-
tiple scatterings, absorption, and polarization effects. The necessary X-ray mass atten-
uation coefficients, atomic scattering factors, and Compton scattering functions for data
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correction and normalization were calculated from tabulated data provided by the DABAX
database [300]. Absorption corrections were evaluated using a numerical midpoint integra-
tion method, where the sample cross-section was divided into small subdomains, following
a method similar to that proposed by A. K. Soper and P. A. Egelstaf [301]. The normaliza-
tion constant was determined using the high-angle method, ensuring that the coherently
scattered intensity oscillated weakly around the sample’s average atomic scattering factor
at high scattering vector lengths (from kmax/2 to kmax).

5.3 Structure, bonding and electronic properties of NVP25
and NVP43 glasses

The selection of the first two NVP case study glass compositions, referred to as NVP25
and NVP43, indicates their total vanadium oxide content (see Tab. 5.1), was primar-
ily motivated by their promising potential in various applications and their relevance
to ongoing research collaborations. The lithium-based equivalent of NVP25 has demon-
strated significant value as a starting point for synthesizing lithium oxide-based precursor
glasses [50]. This precursor glass has been successfully used to obtain glass-ceramics com-
posed of Li3V2(PO4)3, which have shown interesting electrochemical performance with
valuable cathode capacity [51]. Furthermore, our experimental collaborators have pro-
posed NVP25 as a potential glass precursor for obtaining Na2VOP2O7 glass-ceramics,
which are expected to exhibit high performance in various applications [297].
NVP43, on the other hand, is a glass composition proposed by our experimental collabora-
tors and has been tested as a precursor glass for producing high-performance glass-ceramics
composed of other NVP crystalline phases, particularly Na2V3P2O13, another promising
NVP phase as cathode component for energy storage applications [302, 303].
The two glass compositions, NVP25 and NVP43, provide a valuable opportunity to extend
the computational procedures previously validated on VP50 to more complex NVP sys-
tems. This extension is particularly significant given the greater potential of these NVP
glasses for practical applications.

5.4 Methodology details

5.4.1 Computational details

The computational procedure employed in Chapter 4 was adopted, consisting of a full
CMD thermal cycle followed by a final equilibration by means of BOMD at 300 K for
5 ps [251]. We employed BMP-shrm (denoted CMD2) introduce in the previous chapter
and developed by Bertani et al. [108] as it was found to be the best force field among the
three tested previously. Three replicas of NVP25 and NVP43 were generated randomly
and placed in a cubic cell with dimensions adjusted to match the reference densities values
(see Tab. 5.1). The nominal composition and details of each model are summarised in
Tab. 5.1 and Tab. 5.2 respectively. In our CMD simulations, the short-range interactions

Table 5.1. Nominal composition and experimental densities of the two NVP systems simulated using CMD
and BOMD.

Systems Na2O(%) VxOy [V2O4 + V2O5] (%) P2O5(%) density (g/cm3)
NVP25 37.50 25.00 [2.75 + 22.25] 37.50 2.8074
NVP43 28.50 43.00 [6.45 + 36.55] 28.50 2.9390

were truncated at a distance of 7.00 Å and the long-range interactions were calculated
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Table 5.2. Details of the two NVP systems simulated by by full CMD and short BOMD equilibration with
the nominal V4+ ratio of each composition.

Systems V4+ ratio (%) number of atoms box size (Å)
NVP25 11.0 394 [54Na + 36V + 54P + 250O] 17.2960898
NVP43 15.0 405 [40Na + 60V + 40P + 265O] 17.4811087

using the Ewald summation method with a precision of 10−5 eV, up to a cutoff distance
of 8.50 Å. The DL-POLY code version 4.10.0 [260] was employed. The Velocity Verlet
algorithm was employed with a time step of 1 fs to integrate the equation of motion.
The NVP glasses models were obtained by the same melt-quenching thermal cycles as the
VP50 glass. The Nosé-Hoover thermostat was used to control the temperature. First, the
initial structures were relaxed at 300 K in the NVT ensemble. Each system was heated
to 4000 K and kept for 150 ps at this temperature followed by the cooling from 4000 K
to 300 K with a constant rate of 2.5 K/ps. The relevant properties are averaged over the
structures obtained from the final 150 ps of a 300 ps trajectory at 300 K across different
replicas. FPMD calculations for these two glasses were performed at 300 K after the
CMD dynamics. Using the CMD-derived structures as a starting point, we performed a
BOMD simulation at 300 K for approximately 5 ps using PBE functional followed by a
final optimization of the electronic structure with PBE0 hybrid functional (similar to the
BOMD procedure performed in Chapter 4 for VP50 system). The BOMD simulations
were conducted using the CP2K package, as with VP50 system. For the BOMD analysis,
the last 3 ps of the trajectories were used and the results averaged over the three replicas.

5.4.2 Structural properties

This section presents and discusses the structural analysis of the NVP25 and NVP43
models obtained at 300 K from equilibrated trajectories averaged over three replicas for
both CMD and CMD+BOMD simulations in both reciprocal and real space properties
(following the same Faber-Ziman strategy/equations presented in Sec. 3.3, Chapter 3).
In subsequent discussions, the CMD+BOMD results will be referred to as BOMD for
simplification as for the Chapter 4.

5.4.2.1 Reciprocal space properties

Fig. 5.1 presents an analysis of the reciprocal space X-ray and neutron structure factors
for NVP25 and NVP43 glasses. For X-ray structure factors, calculated data (CMD and
BOMD) are compared with experimental measurements. Neutron structure factors, on the
other hand, are derived solely from simulations. The discrepancies observed between the
CMD and BOMD results show significant limitations inherent in the CMD methodology.
These findings underscore the critical importance of incorporating electronic structure
considerations to achieve a more accurate description of these complex glass systems, con-
sistent with R

S(k)
χ parameter (as defined in Eq. (3.11)) presented in Tab. 5.3 first row.

R
S(k)
χ quantifies the level of agreement with the experimental data, reminding that a lower

R
S(k)
χ values indicate better agreement between the model and experimental data. For the

X-ray structure factors, the most notable difference is observed in the first peak, centered
around 2 Å−1. In both NVP25 and NVP43, CMD overestimates the intensity of this
peak compared to BOMD and experiment. In both systems, the BOMD results demon-
strate good agreement with experimental data in terms of peak position and intensities.
This is reflected in the RS(k)

χ values of (10.1±0.9)% and (9.8±1.2)% for the NVP25 and
NVP43 systems, respectively, compared to the significantly higher values of (14.4±0.2)%

89



 0

 1

 2

 3

 4

 0  2  4  6  8  10

NVP25

NVP43

X
−r

ay
 s

tr
uc

tu
re

 fa
ct

or
s 

S
X
(k

)

k (Å−1)

Exp.
CMD
BOMD

 0

 1

 2

 3

 4

 0  2  4  6  8  10

NVP25

NVP43

N
eu

tr
on

 s
tr

uc
tu

re
 fa

ct
or

s 
S

N
(k

)

k (Å−1)

CMD
BOMD

Figure 5.1. X-ray (left) and neutron (right) total structure factors for NVP25 and NVP43 glasses, com-
paring CMD and BOMD data.

and (17.1±1.0)% obtained using the CMD method.

These differences in the first peak of the X-ray structure factors are particularly significant
because they reflect discrepancies mainly around the short-range order (e.g. corresponding
to the environment spanning over the first- and second-coordination shells) and the im-
portant role of accounting of the electronic structure. The neutron structure factors show
better agreement between CMD and BOMD for both glass compositions, with differences
in peak intensities generally less than 5%. However, minor discrepancies remain evident,
especially in the precise peak positions and shapes. For instance, in NVP25, the first peak
in the neutron structure factor (around 1.9 Å−1) shows a slight shift to lower k values in
the BOMD results compared to CMD, indicating small but non-negligible differences in
the average interatomic distances predicted by the two methods.

The more pronounced differences observed in the X-ray structure factors, compared to the
neutron structure factors, provide crucial insight into the limitations of CMD in modeling
NVP glasses. X-ray scattering is particularly sensitive to the local environment of V sites
due to its relatively low neutron scattering length. The inability of CMD to accurately
capture the local V environments underscores the necessity of more accurate modeling
approaches that explicitly account for electronic structure effects. In contrast, the higher
agreement in neutron structure factors between CMD and BOMD results suggests that
both methods describe the P and O local environments more consistently, yet still showing
minor discrepancies. This differential performance of CMD more accurate for P and O
but less so for V - emphasizes the complexity of modeling these multi-component systems
and reinforces the value of computational scheme grounded on an electronic structure
description. These insights highlight the importance of employing BOMD simulations in
accurately capturing the local structure around V sites, which is particularly relevant for
predicting and understanding the functional properties of NVP glasses that are heavily
influenced by the V environment.

The substantial improvement in structure factors with respect to experiment, particu-
larly for X-ray scattering, achieved through even a brief final BOMD equilibration aligns
with previous findings for the VP50 glass. This consistency across diverse compositions
(VP50, NVP25, and NVP43) underscores the critical importance of incorporating elec-
tronic structure effects in the modeling of complex oxide glasses. The differences between
CMD and BOMD results become less pronounced at higher k values (beyond about 4 Å−1)
for both X-ray and neutron structure factors. Moving forward, this comparison suggests
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that while CMD remains a valuable tool for initial structural modeling and long timescale
simulations, integrating BOMD approaches is crucial for obtaining more accurate and
reliable structural descriptions of complex oxide glasses like NVP25 and NVP43.

5.4.2.2 Real space properties

Total pair distribution function

Fig. 5.2 presents a comparative analysis of reduced total X-ray pair distribution function
G(r) for NVP25 and NVP43 glasses, comparing experimental data with CMD and BOMD
simulation results. The experimental G(r) obtained via Fourier transform of the total
structure factors is linked to the total pair correlation function through Eq. (5.1). This
data allows for direct comparison with our calculated results for the NVP25 and NVP43
glasses.

G(r) = 4πrρ [gtot(r) − 1] , (5.1)
where ρ is the number density and gtot(r) the X-ray total pair correlation function.
The analysis reveals significant discrepancies between CMD predictions and experimental
measurements, while BOMD results demonstrate markedly improved agreement across the
examined r range. In the short-range order region (1–3 Å), BOMD simulations capture the
experimental features with notable accuracy for both glass compositions. The first peak,
centered at approximately 1.5-1.6 Å and primarily attributed to P–O and V=O bonds, is
well-reproduced by BOMD in terms of position, intensity, and shape. In contrast, CMD
simulations consistently overestimate the intensity of this peak by about 20-30%, indi-
cating an overstructuring degree of short-range correlations. This overestimation is more
pronounced for NVP43, suggesting that CMD’s limitations become more severe with in-
creasing V content. The peak found experimentally at about 1.96 Å is shifted at lower
value for both CMD and BOMD (at about 1.8 Å). The intermediate-range order (3–5 Å)

 0

 5

 10

 15

 1  2  3  4  5  6  7

NVP25

NVP43

X
−r

ay
s 

to
ta

l p
ai

r 
di

st
rib

ut
io

n 
fu

nc
tio

n 
G

r(
r)

r (Å)

Exp.

CMD

BOMD

 1  2  3  4

r (Å)

Figure 5.2. (Left) total pair distribution function for NVP25 and NVP43 glasses, illustrating the com-
parison between the calculated data (CMD and BOMD) and the experimental data obtained by our
collaborators in Limoges. (Right) zoom in on the 1–4 Årange.

reveals further limitations of the CMD approach. A consistent shift of approximately
0.5 Å towards larger r values is observed in CMD results compared to experimental data
for both NVP25 and NVP43. This shift indicates systematic errors in predicting second-
neighbor distances and overall network connectivity. BOMD results, however, align closely
with experimental peak positions in this range, with deviations typically less than 0.1 Å.
Peak shapes and relative intensities in the 2–4 Å range are more accurately reproduced
by BOMD. CMD tends to predict sharper, more intense peaks, while BOMD captures the
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Table 5.3. Comparison of the agreement between CMD, and BOMD simulations and experimental data
using goodness-of-fit Rχ parameters for X-ray total structure factor S(k) and pair distribution function
G(r) of NVP25 and NVP43 glasses at 300 K.

NVP25 NVP43
X-rays CMD BOMD CMD BOMD
R
S(k)
χ 14.4 ± 0.2 10.1 ± 0.9 17.1 ± 1.0 9.8 ± 1.2

R
G(r)
χ 87.3 ± 2.3 62.9 ± 2.0 96.2 ± 3.1 65.0 ± 4.8

broader, more realistic features observed experimentally. This difference is particularly
evident in the region around 2.25–3.50 Å, where CMD overestimates the intensity of sec-
ondary peaks by up to 30% for NVP43. Beyond r values of 4 Å, the limitations of CMD
potentials in describing these complex glass structures extend to medium and possibly
long-range order.

The superior performance of BOMD in reproducing the experimental G(r) underscores
the critical role of explicitly accounting for electronic structure effects in modeling sodium
vanadium phosphate glasses. The significant improvements offered by BOMD, particu-
larly in capturing the subtleties of short and medium-range order, highlight the limitations
of the CMD2 potential for accurate structural predictions in these multicomponent oxide
glass systems. The positions of the peak maxima in the 1–4 Å interval are summarized
in Tab. 5.4, where the values obtained from CMD and BOMD simulations are compared
with experimental data. The inadequacy of the CMD method in describing these complex
systems is further highlighted by the Goodness of Fit (RG(r)

χ ) parameter values calculated
within the 1–4 Å range (Tab. 5.3, second row). The CMD consistently yields substan-
tially higher RG(r)

χ values compared to the BOMD method, indicating poorer agreement
with experimental data. For instance, the NVP43 system exhibits a RG(r)

χ of (96.2±3.1)%
for CMD versus (65±4.8)% for BOMD. This discrepancy is partially attributed to the
observed shift between experimental and calculated second and fourth peaks’ positions.
This comparative analysis demonstrates that BOMD simulations provide a substantially
more accurate structural description of NVP25 and NVP43 glasses compared to CMD,
especially in the critical short and medium-range order regions that significantly influence
the glasses’ physical and chemical properties. Once again, these results underline the need
to use advanced computational methods that incorporate the effects of electronic struc-
ture to achieve reliable modeling of the complex atomic arrangements in sodium vanadium
phosphate glasses.

Table 5.4. Positions of the first four peaks of the total pair distribution function: A comparison of the
calculated values (CMD and BOMD) with experimental measurements for NVP25 and NVP43 systems.

NVP25 NVP43
Peak positions Exp. CMD BO Exp. CMD BO
1st peak 1.56 1.50 1.50 1.59 1.51 1.59
2nd peak 1.96 1.80 1.84 1.96 1.79 1.78
3rd peak 2.51 2.48 2.56 2.57 2.46 2.58
4th peak 3.26 3.52 3.39 3.23 3.53 3.37
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Partial pair correlation function

The gVO(r) partial pair correlation functions (see Fig. 5.3) for NVP25 and NVP43 glasses
reveal significant discrepancies between CMD and BOMD predictions, particularly in the
short-range order region. For both compositions, as seen in the previous chapter for the
case of VP50, BOMD shows a splitting of the first peak of the gVO(r) in two peaks with
well-defined maxima at about 1.6 Å and 1.8–1.9 Å, respectively, while CMD shows an
averaged peak at about 1.7–1.8 Å with only showing a small shoulder at 1.6 Å for NVP25.
BOMD’s sharper, more well-defined peaks indicate a better description of V–O chemical
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Figure 5.3. (Left) Partial pair correlation function gVO(r) showing results from CMD and BOMD. (Right)
Zoom in on the first peak between 1 and 3 Å.

interactions, due to more accurate representation of single V–O and double V=O bonding
and electronic valence charge localization around V sites. Beyond 3 Å, both methods
show similar trends, but CMD consistently predicts features at slightly larger r values.
The more pronounced differences in NVP43 suggest that CMD’s accuracy diminish with
increasing vanadium content, likely due to challenges in modeling complex Na-V-P-O in-
teractions using the empirical potential (CMD2). These results highlight the crucial role of
electronic structure effects in determining vanadium’s local environment in NVP glasses.
Overall, these results further support the limitations of classical force fields in capturing
V’s coordination chemistry in these complex oxide glasses.

Fig. 5.4 presents a comparison of the partial pair correlation functions gOO(r), gNaO(r),
and gPO(r) for NVP25 and NVP43 glasses, as predicted by CMD and BOMD simula-
tions. While Na–O and P–O pairs’ correlations show broadly similar behavior between
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Figure 5.4. Partial pair correlation functions for NVP25 and NVP43 glasses, displaying CMD and BOMD
results for gOO(r), gNaO(r), and gPO(r), respectively, from left to right.

the two methods, with CMD exhibiting slightly less intense peaks for O–O and overstruc-
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turing for P–O, the O–O correlations reveal more significant discrepancies. For the O–O
pair, BOMD demonstrates a marked improvement in structural description, consistent
with findings for the VP50 glass. BOMD predicts a single, broad peak centered at ap-
proximately 2.56–2.58 Å for both NVP25 and NVP43. In contrast, CMD produces an
overly structured profile characterized by a main peak at 2.48–2.49 Å, followed by a less
intense secondary peak at 2.78–2.88 Å. This split-peak feature in CMD results suggests
an artificial bimodal distribution of O–O distances, which is not supported by the BOMD
calculations.

Coordination number and structural units

Tab. 5.5 presents the average coordination for species Na, V, P, and O, as well as the chem-
ical bond lengths calculated obtained as the position of the maximum of the first peak
of the partial pair correlation function gαβ(r), in comparison with experimental values.
Overall, phosphorus is well defined with an average coordination of 4.00 for both systems,
both with CMD and BOMD, in full agreement with the experiment. For vanadium, the
coordination predicted by CMD (4.37 and 4.44 Å respectively) is slightly lower than the
BOMD values (4.76 and 4.75 Å), but these CMD and BOMD values remain consistent
with the experimental range of 4.20–5.40 Å. The calculated average coordination of Na is
slightly higher than the experimental reference for the two systems.

Next, we analyzed the average distribution of VOn and Na+On structural units, with

Table 5.5. Average coordination numbers ni bond lengths rij (in Å) (taken as the position of the
first maximum of the pair correlation functions gαβ(r)), computed for the NVP25 and NVP43 models
and averaged over the three replicas. For BOMD data, we report the distances obtained from the first
maximum of gαβ(r). The average statistical error, computed across the replicas is 0.02 Å.

NVP25 NVP43
Exp.a CMD BOMD CMD BOMD

nNa 5.90 6.15 6.58 6.41 6.81
nP 4.00 4.00 4.00 4.00 4.00
nV 4.20-5.40 4.37 4.76 4.44 4.75
nO 2.00-4.00 1.66 1.71 1.73 1.79
rNaO 2.3-2.6 2.33 2.33 2.33 2.34
rPO 1.52-1.60 1.50 1.50 1.50 1.53
rVO 1.58 1.59 1.62 - 1.62

1.90 1.80 1.84 1.79 1.78
rOO 2.52-2.79 2.48/2.88 2.56/2.78 2.49 2.58
rVV 3.50 3.53 3.50 3.53 3.47
rPV 3.24 3.32 3.20 3.33 3.29

aEstimated from X-ray and neutron diffraction measurements on VxO-P2O5[39] and Na2O-VxOy[55]
glasses

sodium in the latter case having an ionic interaction with neighboring non-bridging oxy-
gen. Tab. 5.6 presents the values obtained at the CMD and BOMD levels for both systems.
As previously noted with the average coordination, it is observed that vanadium in the
glasses produced by CMD prefers low coordination with a dominance of VO4 units (60.7
and 56.4% respectively for the NVP25 and 43 systems) followed by VO5 units (25.2 and
31.0%) and a small proportion of VO3 and VO6 polyhedra. In contrast, BOMD in both
systems shows an opposite evolution. The VOn units are mainly VO5, about 50%, fol-
lowed by VO4 units (around 35% for both systems), then a non-negligible proportion
(12.9 and 10.6% respectively) of VO6 units. Unlike the CMD result, BOMD does not
present VO3 units. These results are consistent with those obtained for the VP50 system
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in the previous chapter. This analysis reveals a less ordered CMD structure (presence of
VO3 polyhedra) compared to the BOMD structure, thus reinforcing the importance of
electronic contribution in the description of these complex systems. Regarding Na+On

polyhedra, coordination numbers for Na fluctuate between 4 and 9 for both systems, with
a predominance of Na+O6 for CMD and Na+O7 for BOMD.

Table 5.6. Distribution of the individual nα(l) structural units where an atom α ( V or Na) is l-fold
coordinated to oxygen atom, computed for the both NVP25 and NVP43 using CMD and BOMD. These
values have been calculated including neighbours separated by a cutoff corresponding to the first minimum
in the gαβ(r) and average over the three replicas with standard error indicated. The cutoffs of 2.4 and
3.2 Å were used for the Na–O and V–O bonds respectively. Only fraction greater than 0.1 % are reported.

NVP25 NVP43
CMD BOMD CMD BOMD

V
l = 3 O3 5.5 ± 0.4 - 4.22 ± 0.45 -
l = 4 O4 60.7 ± 3.4 36.5 ± 7.5 56.4 ± 0.3 35.3 ± 1.9
l = 5 O5 25.2 ± 3.9 50.6 ± 8.4 31.0 ± 1.5 54.1 ± 5.6
l = 6 O6 8.7± 0.9 12.9 ± 0.9 8.4 ± 0.92 10.6 ± 3.7

Na+

l = 4 O4 3.2 ± 0.4 0.8 ± 0.5 2.2 ± 1.0 0.7 ± 0.4
l = 5 O5 21.7 ± 3.0 12.7 ± 3.7 18.7 ± 5.6 8.5 ± 0.2
l = 6 O6 40.1 ± 2.2 33.2 ± 1.9 32.5 ± 3.7 31.7 ± 2.7
l = 7 O7 27.0 ± 2.5 36.6 ± 5.3 30.6 ± 2.5 34.8 ± 2.2
l = 8 O8 7.1 ± 1.7 14.7 ± 0.1 13.7 ± 5.1 17.2 ± 4.8
l = 9 O9 0.7 ± 0.3 1.9 ± 0.2 1.8 ± 0.3 5.6 ± 1.7

5.4.3 Electronic and bonding properties

The comparative analysis of PBE and PBE0 results for NVP25 and NVP43 glass models
reveals significant differences in their predictions of electronic and magnetic properties,
as shown in Fig. 5.5. While the PBE functional severely underestimates the bandgap,
yielding an averaged (0.02±0.02) eV for both models, the PBE0 hybrid functional pro-
vides more accurate values ranging from (1.53±0.39) to (1.94±0.33) eV. This substantial
improvement in bandgap prediction by PBE0 is inline with what found previously for
VP50, albeit with slightly smaller gaps compared to VP50 glass (2.4–2.8 eV). Both func-
tionals predict a discernible magnetic character in the glasses, evidenced by small but
finite differences between spin-up and spin-down state bandgaps. However, PBE0 results
demonstrate more pronounced spin polarization, suggesting a superior capture of magnetic
effects compared to PBE.

The analysis of V speciation, based on V sites’ local spin, further highlights the dis-
parities between the two functionals. PBE results show a varied distribution of local spin
on V sites, with a majority having spins σspin close to zero (associated with non-magnetic
V5+), but also a significant number of sites with ill-defined spins between 0.2 and 1.2. In
contrast, PBE0 provides a much more defined spin distribution, offering a more distinct
separation between V5+ (σspin ∼0) and V4+ (σspin ∼1) sites as clearly illustrated by the
distribution plot in Fig. 5.5, bottom. This clearer delineation allows for a more featured
comparison between NVP25 and NVP43, revealing that NVP25 has a slightly higher con-
tent of V5+ sites, while NVP43 exhibits a marginally higher content of V4+ sites. Based
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on these σspin values, our calculations point toward a chemical composition corresponding
to 37.5Na2O-25.0VxOy[22.2V2O5-2.8V2O4]-37.5P2O5 and 28.5Na2O-43.0VxOy[35.8V2O5-
7.2V2O4]-28.5P2O5 for NVP25 and NVP43, fairly inline with the experimental composi-
tions (Tab. 5.1).
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Figure 5.5. Averaged values of the energy bandgap (in eV) are shown at the top, and spin densities (in e
units) are shown at the bottom. The results are computed for all Vanadium sites at the PBE (left) and
PBE0 (right) levels for both NVP25 and NVP43 glasses using BOMD. Bandgap values for both spin-up
and spin-down states are averaged over three configurations simulated for each system. Spin densities
display the distribution of individual data points across the three configurations for each glass.

5.5 NVP glasses produced employing a full BOMD thermal
cycle

The NVP40 glass model, with its nominal composition of 10Na2O–40VxOy–50P2O5, served
as a focal point in our study of sodium vanadium phosphate (NVP) glasses. This study
aimed to unravel the structural features of these complex materials by employing different
computational strategies, each offering unique insights into the glass’s properties. Building
upon our previous investigations of VP50, NVP25, and NVP43 glasses, we now extend
our analysis to NVP40, a composition that promises to bridge the gap between theoreti-
cal predictions and experimental observations. Our approach encompasses three distinct
computational schemes:

• A full thermal cycle using CMD with an empirical potential (CMD2/FF2 as defined
in Sec. 4.2.1 of Chapter 4), tested on VP50, NVP25, and NVP43 glasses. This will
be referred to as CMD in the following sections.

• A hybrid approach combining CMD with BOMD, tested on VP50, NVP25, and
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NVP43 glasses. This will be referred to as BOMD, as it has been used in Chapter 4
and in the previous section dedicated to NVP25 and NVP43.

• A full thermal cycle employing BOMD. This will be indicated as f BOMD to avoid
confusion with the hybrid approach.

This multi-pronged strategy allows us to consistently evaluate the impact of electronic
structure accounting on the accuracy of the NVP40 glass model, offering a detailed un-
derstanding of the trade-offs between computational efficiency and precision in modeling
complex glass systems. The selection of NVP40 is not merely an academic exercise but
is driven by its potential practical applications. Our collaborators at the IRCER labora-
tory have initially identified this composition, among others, as a promising candidate for
glassy cathodes in sodium-ion batteries. By assessing its structural properties, we aimed
to pave the way for significant advancements in modeling NVP disordered systems for en-
ergy storage technology. Furthermore, NVP40’s role as a precursor for glass-ceramics with
enhanced electrochemical properties underscores the broader implications of this research
for material design and optimization. In the context of the AMSES-ANR project [296],
our study of NVP40 will serve as additional significance as with the comparison with a
telluride-substituted analog, the 10Na2O-40VxOy-50TeO2 (NVT) system [304]. This par-
allel investigation seeks as follow-up of this PhD project to show how the substitution
of phosphate with telluride influences the structural and electronic properties of these
glasses, potentially uncovering materials with superior characteristics for targeted appli-
cations [305].
By thoroughly comparing our computational predictions with experimental data, we aim
to refine our modeling techniques and contribute valuable insights to the ongoing quest for
next-generation energy storage materials. This research not only advances our knowledge
of glass structure and properties but also exemplifies the synergy between computational
modeling and experimental research in driving materials science forward.

5.5.1 Computational details

The inability of the CPMD scheme to effectively decouple the electronic and ionic subsys-
tems in the preliminary VP50 glass tests (Sec. 4.2.2, Chapter 4) led us to adopt the BOMD
approach for our FPMD simulations of the NVP40 glass models. This approach was imple-
mented using the CP2K software package [261]. In CP2K, atom-centered Gaussian-type
basis functions are used to describe the orbitals and an auxiliary plane-wave basis set is
employed to re-expand the electron density. We employed double-ζ polarized MOLOPT
basis sets [262] for Na, V, P, and O, and used a cutoff energy of 500 Ry for the plane
waves at the Γ point only. GTH pseudopotentials were used to describe core-valence in-
teractions [263] together with the semilocal PBE XC functional within a spin unrestricted
DFT formalism. The ionic temperature was controlled by a Nosé-Hoover thermostat [112–
114, 116]. Initially, two NVP40 systems, referred to as NVP40A and NVP40B (see Tab. 5.8
and Tab. 5.7 for details), were prepared and equilibrated using CMD. These systems dif-
fer in total oxygen content, with NVP40A corresponding nominally to 100% V5+ and
NVP40B to a 67.7%/33.3% mixture of V5+/V4+, respectively. These two NVP40 models,
differing in oxygen and V4+ content, were chosen to evaluate potential structural effects
dependent on vanadium speciation. Initially, on the experimental side, both glass density
and vanadium speciation were unknown. The initial densities of the NVP40 glasses models
to be modelled were estimated using Priven’s empirical method [306], as implemented in
SciGlass [307] and following the same procedure used in [80]. These estimated densities
were then used to equilibrate the systems at zero pressure in the NPT ensemble at 300 K
using a classical force field (CMD2/FF2).
Comparing the simulated models in terms of density, NVP40A exhibits a much closer
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(∼2% difference) density to the later obtained experimental value (see Tab. 5.7), suggest-
ing it is likely closer to the actual synthesized glass composition, predominantly rich in
V5+ with minimal V4+ content.The BOMD simulation started with annealing at 0.5 K.
The systems were then gradually heated in the NVT ensemble from 300 K up to 3500 K.
Melting occurred at 3500 K over 7.9 ps to reach the diffusive regime, as indicated by the
MSD profile reported in Fig. 5.6. Subsequently, the systems were gradually cooled to
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Figure 5.6. MSD in logarithmic scale at 3500 K for the two NVP40 models: Model A (left) and Model B
(right). The insets show the diffusion coefficient in cm2s−1 and the MSD in normal scale in Å.

300 K with temperature plateaus at 2000 K for 9.3 ps, 1200 K for 7.3 ps, 900 K for 7.0 ps,
600 K for 6.0 ps, and finally 300 K for 7.1 ps. This corresponds to an exceptionally high
cooling rate of 1014 K/s.

Table 5.7. Nominal composition and densities of the two NVP40 systems simulated by full
BOMD.

Systems Na2O(%) V2O4(%) V2O5 (%) P2O5(%) density (g/cm3)
NVP40A 10.00 0.00 40.00 50.00 2.7190a / 2.7771b

NVP40B 10.00 13.20 26.80 50.00 2.5461a / –
aEstimated value; bExperimental measurement

Table 5.8. Details of the two NVP40 systems simulated by full CMD and short BOMD equilibration with
the nominal V4+ ratio of each composition.

Systems V4+ ratio (%) number of atoms box size (Å)
NVP40A 0.0 396 [12Na + 48V + 60P + 276O] 17.6448450
NVP40B 33.3 388 [12Na + 48V + 60P + 268O] 17.9496717

The necessity for such a high cooling rate arises from the substantial computational cost
of BOMD for these NVP systems. Specifically, the NVP40A system requires, on average,
(1.31±0.88)×104 CPU hours per ps, while the NVP40B system demands (1.94±1.00)×104

CPU hours per ps. The relatively higher computational cost for NVP40B is attributed to
the increased effort required to converge the electronic structure of this model. Figs. 5.7
and 5.8 illustrate the thermal cycle (left) and the temporal evolution of the total system
energy (right) of the NVP40A and NVP40B systems respectively. A slight drift of up to
0.02 % (equivalent to 12.34 meV/ps/atom) at high temperature (3500 K) for the both sys-
tem is observed, which is attributed to the systematic error inherent in BOMD approach.
This occurs because the convergence criterion cannot be set infinitely to perfectly satisfy
the condition of the potential energy surface minimum. The last 5 ps of the final equi-
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libration at 300 K were used to describe the structural properties of the NVP40 models.
The final DFT calculation at the PBE0 level allow the description of the spin localization
of V sites as well the electronic density of states.
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Figure 5.7. Left: Full BOMD thermal cycle performed for the NVP40A glass systems. Right: Time
evolution of the total energy (in atomic units) during the simulation showing a slight drift of 0.02 % is
observed at high temperature (3500 K), which decreases to nearly 0 % as the temperature decreases.
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Figure 5.8. Left: Full BOMD thermal cycle performed for the NVP40B glass systems. Right: Time
evolution of the total energy (in atomic units) during the simulation showing a slight drift of 0.02 % is
observed at high temperature (3500 K), which decreases to nearly 0 % as the temperature decreases.

5.5.2 Structural properties

The structural analysis of the NVP40 glasses obtained through complete CMD and BOMD
and thermal cycling is detailed in this section. Unlike the NVP25 and NVP43 glasses,
where BOMD studies were conducted only at 300 K, a full BOMD dynamic reveals more
pronounced structural differences in both reciprocal and real space.

5.5.2.1 Reciprocal space analysis

The structural factors from X-ray and neutron analysis, shown in Fig. 5.9 (left and right
respectively), compare the results of full thermal cycle by CMD, full thermal cycle by
CMD and final relatively short equilibration at 300 K by BOMD, and full thermal cycle
by BOMD (denoted as CMD, BOMD, and f BOMD hereafter, respectively), revealing
significant structural discrepancies, particularly in the first peaks. Our collaborators suc-
cessfully conducted X-ray diffraction measurements for the NVP40 system.

For the NVP40A system at low k-values (less than 2.50 Å−1), the f BOMD results ex-
hibit two distinct peaks at 1.49 Å−1 and 2.00 Å−1, whereas CMD presents a single broader
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Figure 5.9. X-ray (left) and neutron (right) total structure factors for NVP40A and NVP40B glasses,
comparing CMD, BOMD and f BOMD data.

peak centered at 1.82 Å−1. This indicates that f BOMD captures more detailed structural
features that CMD tends to average out, highlighting the finer features in the atomic
arrangement. In the NVP40B system, the primary peak occurs at 1.61 Å−1 for f BOMD
and at 1.72 Å−1 for CMD, with the latter also displaying a higher intensity. This differ-
ence suggests variations in the local structure and density between the two computational
schemes, where CMD might predict a more compact structure than f BOMD. The analysis
of the BOMD approach provides an intermediate perspective, showing features that are
more refined than those in CMD but not as distinct as those in f BOMD as confirmed
by the $Rchi parameter presented in Tab. 5.9, first row. This suggests that even a short
BOMD equilibration after CMD can significantly enhance the structural details captured
in the model. Additionally, the neutron structure factors reveal slight differences in peak
intensity and position for both systems. These variations are crucial as they reflect the
sensitivity of neutron scattering to different atomic species and their spatial distribution
within the glass network.
Overall, the reciprocal space analysis via X-ray and neutron structure factors underscores
the detailed and structural distinctions captured by a full thermal cycle by f BOMD com-
pared to a full thermal cycle by CMD and the intermediate nature of the BOMD approach.

Table 5.9. Assessment of the accuracy of CMD, BOMD, and f BOMD simulations using goodness-of-fit
(Rχ) parameters for X-ray total structure factor and pair distribution function G(r) of NVP40 glasses at
300 K. The results for CMD and BOMD are presented as averages over three replicas, with standard error
indicated. The f BOMD results are averaged over two separate trajectory segments to assess the standard
error.

NVP40A NVP40B
X-rays CMD BOMD f BOMD CMD BOMD f BOMD
RS(k)
χ 20.9 ± 0.3 14.2 ± 0.1 11.4 ± 0.1 17.2 ± 0.1 14.4 ± 1.2 12.8 ± 0.1

RG(r)
χ 90.6 ± 1.5 74.1 ± 0.4 58.9 ± 0.5 86.1 ± 2.0 70.7 ± 2.1 62.0 ± 0.2

5.5.2.2 Real space analysis

Total and partial pair correlation functions

In this section, we present the total pair distribution function for the two NVP40 systems,
calculated using three distinct methods: full CMD, CMD completed with BOMD equi-
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libration, and full BOMD thermal procedures. The calculated structures are compared
with experimental measurements. Furthermore, we present the partial pair correlation
functions for V–O, O–O, P–O, and Na–O pairs, derived from each of the aforementioned
computational methods and finally the
The total pair distribution functions, shown in Fig. 5.10, reveal distinct differences be-
tween the CMD, BOMD, and f BOMD results when compared to the experimental data.
Tab. 5.10 summarizes the positions of the first four peaks within the 1–4 Å range for both
NVP40 systems, comparing calculated and experimental data. For the NVP40A system,
f BOMD results exhibit a closer alignment with the experimental measurements, particu-
larly in accurately capturing the heights and positions of the peaks. For the NVP40A
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Figure 5.10. (Left) Total pair distribution function for NVP40A (top plot) and NVP40B (bottom plot)
glasses, illustrating the comparison between the calculated data (CMD, BOMD and f BOMD) and the
experimental data (Right).

Table 5.10. Positions of the First Four Peaks of the Total Pair Distribution Function: A Comparison
of Calculated Values (CMD, BOMD and f BOMD) with Experimental Measurements for NVP40A and
NVP40B Systems.

NVP40A NVP40B
Peak positions Exp. CMD f BOMD CMD f BOMD
1st peak 1.56 1.48 1.58 1.51 1.57
2nd peak 1.96 1.77 1.88 1.78 1.86
3rd peak 2.51 2.48 2.58 2.50 2.59
4th peak 3.23 3.57 3.26 3.55 3.25

system, the first peak around 1.6 Å, previously found to be corresponding to both P–O
bonding and the short V=O double bonds, is more accurately captured by f BOMD, closely
matching the experimental data. The CMD method shows a broader and slightly shifted
peak, while the BOMD method presents intermediate characteristics. This indicates that
f BOMD provides a more precise depiction of the atomic arrangement, whereas BOMD
improves upon CMD by incorporating elements of f BOMD’s accuracy. The second peak,
around 1.9 Å, which primarily corresponds to single V–O bonds, is particularly better
resolved in f BOMD compared to CMD and BOMD. This highlights how the full thermal
cycle in f BOMD allows for the optimal arrangement of V–O interactions, achieving a more
accurate representation of the local structure. In contrast, the BOMD approach, while an
improvement over CMD alone, does not fully capture the detailed organization of these
bonds.
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For the NVP40B system, similar trends are observed. f BOMD captures sharper and more
accurately positioned peaks compared to CMD, which tends to produce broader features.
The BOMD approach shows a balanced representation, demonstrating improvements over
CMD but not reaching the full accuracy of f BOMD. This again highlights the superior
capability of BOMD in modeling the structural features of these glassy systems.
The improvement in the total pair correlation function predictions from CMD to BOMD
and f BOMD is further supported by the goodness-of-fit parameter Rχ, as shown in
Tab. 5.9, second row. This parameter assesses the degree of agreement with experimental
data, where a lower value indicates better agreement. For both NVP40A and NVP40B
systems, f BOMD shows the lowest parameters, underscores the enhanced accuracy of
f BOMD over CMD in modeling the NVP40 glass systems. The short BOMD approach
is found to be perform as partial improvement, offering improvements over CMD while
being less computationally intensive than full f BOMD. This comprehensive comparison
helps validate the computational models and provides deeper insight into the atomic ar-
rangements within these materials. This analysis, also further suggest that NVP40A is
found matching closer the experimental data, showing the lowest Rχ, indicating that the
experimentally obtained NVP40 glass much show a high majority of V5+.

In the following, we analyze the partial pair correlation functions for V–O pairs in the
NVP40A and NVP40B systems, calculated using CMD, BOMD, and f BOMD methods.
The results are presented in Fig. 5.11, highlighting the performance of each computational
scheme. For the NVP40A system, the first peak around 1.6 Å, corresponding to the V=O
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Figure 5.11. (Left) Partial pair correlation function gVO(r) showing results from CMD, BOMD and
f BOMD. (Right) Zoom in on the first peak between 1 and 3 Å.

double bond, is more accurately captured by f BOMD, closely matching the expected bond
length. The second peak, centered around 1.8–2.0 Å, which corresponds to the V–O single
bond, is also better resolved in f BOMD. CMD, however, shows a single broader peak that
averages these two distinct V-O interactions, reflecting the limitations of a simple two- and
three-body empirical potential in describing the complex variety of V–O bonding in these
systems. The short BOMD approach exhibits an intermediate behavior, with a sharper
peak than CMD but not as well-defined as f BOMD. This suggests that while BOMD im-
proves upon CMD by incorporating quantum mechanical effects, it does not yet achieve
the level of detailed precision provided by a f BOMD cycle.
In the NVP40B system, similar trends are observed. The first peak, indicative of V=O
double bond lengths, and the second peak, corresponding to V–O single bond lengths, are
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most accurately represented by f BOMD. CMD results display a broader and less defined
peak, while BOMD shows improved accuracy over CMD but does not achieve the precision
of f BOMD. This underscores the enhanced capability of a full thermal cycle by f BOMD
in capturing the fine details of atomic interactions, even in more complex systems with
mixed valence states.

The comparative analysis reveals that f BOMD consistently shows sharper and more accu-
rately positioned peaks, indicating a better representation of V–O bond distances. CMD
displays broader peaks, suggesting less precise modeling of V–O interactions due to its in-
ability to distinguish between the different types of V–O bonds. BOMD provides a middle
ground with improved peak sharpness and positioning over CMD, but not as precise as
f BOMD. The full thermal cycle in f BOMD allows for the optimal arrangement of V–O
interactions, achieving a more accurate representation of the local V sites environment.
Fig. 5.12 presents the partial pair correlation functions for O–O, Na–O, and P–O pairs in
the NVP40A and NVP40B systems. These functions were calculated using CMD, BOMD,
and f BOMD methods, showcasing the performance of each computational approach.
For the O–O pairs, the partial pair correlation function reveals significant discrepancies be-
tween the methods. CMD results show an overly structured correlation function, indicating
an unrealistic representation of O–O interactions. This excessive structuring suggests that
the empirical potentials used in CMD may not adequately capture the true behavior of
oxygen correlation in the glass network. In contrast, f BOMD produces a smoother and
more realistic correlation function, closely aligning with the expected behavior. BOMD
shows very similar results, partially mitigating the over-structuring seen in CMD. This
highlights the limitations of empirical potentials in CMD and the improvements gained
by incorporating quantum mechanical effects for the O–O correlations. In addition, for
NVP40A, a very low-intensity peak at about 1.2 Å is observed, which might be associ-
ated with the formation of a small amount of molecular O2 during the f BOMD thermal
process. If this is the case, the oxygen forming these molecules should be considered as
removed from the overall glass network composition. This reduction in available oxygen
could affect the total oxygen content for the glass components, potentially altering the
final speciation of vanadium sites.
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Figure 5.12. Partial pair correlation functions for NVP40A and NVP40B glasses, displaying CMD, BOMD
and f BOMD results for gOO(r), gNaO(r), and gPO(r), respectively, from left to right.

The Na–O pair correlation functions indicate a different trend. The first peak, correspond-
ing to Na–O interactions, is relatively well-resolved across all methods, reflecting the fairly
good empirical potential parameters for these pairs. However, f BOMD shows a slight less
broadening of the first peak compared to CMD, suggesting a slightly more structured rep-
resentation of the Na–O bond environment. BOMD results are similar to those of CMD,
indicating that the Na–O interactions are less sensitive to the incorporation of quantum
mechanical effects than other pairs. This reflects the adequacy of the empirical potentials
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for modeling Na–O interactions in these systems.
For P–O pairs, the first peak is also well-resolved across all methods, with f BOMD show-
ing only a relatively small broadening compared to CMD. This suggests that the empirical
potentials for P–O interactions are reasonably accurate, providing a good representation of
the local bonding environment. BOMD results are again intermediate, with the first peak
slightly broader than CMD but not as broad as f BOMD. This indicates that while the
empirical potentials for P–O pairs are adequate, incorporating quantum mechanical effects
through f BOMD provides a more refined and accurate depiction of the bond environment.

Overall, the comparative analysis of partial pair correlation functions for O–O, Na–O,
and P–O pairs reveals significant differences in the performance of CMD, BOMD, and
f BOMD methods. For O–O pairs, f BOMD provides a much smoother and realistic corre-
lation function, whereas CMD shows overly structured results. Na–O and P–O interactions
are reasonably well-represented by empirical potentials, with f BOMD showing minor dif-
ferences of the first peak compared to O–O interaction. Further insights into the NVP40
glasses networks structures are gained by analyzing coordination numbers and structural
units.

Coordination number and structural units

The average coordination number for each atom is calculated by summing the partial
coordination numbers (as described in Sec. 3.4.2 of Chapter 3). This is achieved by in-
tegrating the first peak of the corresponding partial pair correlation function up to the
cutoff distance defined by the first minimum. Tab. 5.11 presents the calculated total co-
ordination numbers for Na, V, P, and O atoms, compared with experimental data as well
as the nearest-neighbour interatomic distances rαβ in Å identified by the position of the
first peak maximum. of the pair correlation functions gαβ(r).

Table 5.11. Bond lengths rij (in Å) (taken as the position of the first maximum of the pair correlation
functions gαβ(r)) and average coordination numbers ni, computed for the two NVP40 models with CMD,
BOMD and f BOMD thermal cycle in comparison with experiment. The average statistical error, computed
across the replicas is 0.02 Å.

NVP40A NVP40B
Exp.a CMD BOMD f BOMD CMD BOMD f BOMD

nNa 5.90 5.62 6.16 6.44 5.09 5.58 5.57
nP 4.00 4.00 4.00 4.00 4.00 4.00 4.00
nV 4.20-5.40 4.18 4.79 4.85 4.33 4.73 4.60
nO 2.00-4.00 1.63 1.73 1.74 1.70 1.76 1.74
rNaO 2.3-2.6 2.32 2.33 2.38 2.32 2.35 2.30
rPO 1.52-1.60 1.50 1.56 1.54 1.51 1.56 1.54
rVO 1.58 - 1.61 1.59 - 1.59 1.57

1.90 1.77 1.83 1.88 1.78 1.82 1.86
rOO 2.52-2.79 2.50/2.86 2.58 2.56/2.81 2.50 2.58 2.55
rVV 3.50 3.57 3.52 3.38 3.57 3.52 3.54
rPV 3.24 3.36 3.24 3.20 3.31 3.31 3.25

aEstimated from X-ray and neutron diffraction measurements on VxO-P2O5[39] and Na2O-VxOy[55]
glasses

We analyzed the individual cation-anion structural units for V and Na to gain further
insight into the NVP40 glasses networks structures. Tab. 5.12 presents the nα(l) distribu-
tion, which specifies the fraction of cations of type α (V or Na) coordinated to l oxygen
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atoms. These values are computed for NVP40 glasses using the three different computa-
tional approaches and include neighboring atoms within a cutoff distance corresponding
to the first minimum in the gαO(r)) pair correlation functions (2.4 Å and 3.2 Å for V and
Na, respectively).

For both NVP40A and B glasses, the CMD proposes a structure with vanadium favoring
low coordination dominated by VO4 polyhedra (approximately 62.8% and 60.6% respec-
tively) with 11.1% and 4.2% of 3-fold coordination (VO3) respectively and a small percent-
age of VO6 (2.7% and 4.2% respectively). In contrast, BOMD and f BOMD favor larger
coordinations dominated by VO5-type units with approximatly 50% for both systems with
BOMD versus 76.0% and 50.3% with f BOMD for NVP40A and B systems respectively.
On the other hand, BOMD shows a higher rate of VO6 units for both systems compared
to f BOMD and CMD. Overall, while the network of NVP40A and B glasses produced by
CMD is dominated by VO4 and PO4 polyhedra, BOMD and f BOMD show a majority
VO5 and PO4 units.

Table 5.12. Distribution of individual nα(l) structural units of atoms α ( V or Na) l-fold coordinated,
computed for the both NVP40A and NVP40B using CMD, BOMD and f BOMD. These values have been
calculated including neighbours separated by a cutoff corresponding to the first minimum in the gαβ(r).
The cutoffs of 2.4 and 3.2 Å were used for the Na–O and V–O bonds respectively. Only fraction greater
than 0.5 % are reported.

NVP40A NVP40B
CMD BOMD f BOMD CMD BOMD f BOMD

V
l = 3 O3 11.1 ± 4.4 - - 5.1± 1.5 - -
l = 4 O4 62.8 ± 2.6 35.6 ± 0.5 19.6 ± 0.6 60.6 ± 2.1 38.4 ± 1.9 44.7 ± 0.1
l = 5 O5 23.5 ± 2.3 49.4 ±3.8 76.0 ± 0.4 30.1 ± 2.3 50.2 ± 2.9 50.3 ± 0.2
l = 6 O6 2.7 ± 0.5 15.0 ± 4.3 4.4 ± 0.2 4.2 ± 1.3 11.4 ± 4.7 5.0 ± 0.1
Na+

l = 4 O4 12.3 ± 9.8 1.5 ± 1.0 2.8 ± 1.3 25.3 ± 8.8 15.7 ± 6.9 6.0 ± 3.3
l = 5 O5 32.8 ± 3.3 17.4± 2.2 10.6 ± 1.7 30.7 ± 3.1 29.7 ± 4.3 41.7 ± 3.7
l = 6 O6 36.1 ± 10.0 50.8 ± 1.3 36.5 ± 3.6 25.3 ± 9.0 34.9 ± 10.7 42.7 ± 0.6
l = 7 O7 15.5 ± 2.6 24.9 ± 1.9 41.1 ± 0.7 9.3 ± 0.5 13.4 ± 4.2 9.0 ± 0.5
l = 8 O8 2.7 ± 0.9 5.1 ± 0.1 8.0 ± 0.8 1.9 ± 1.3 4.0 ± 1.6 0.7 ± 0.2

5.5.3 Electronic and bonding properties

The comparison between PBE and PBE0 functionals for NVP40A and NVP40B (Fig. 5.13)
reveals striking differences in their predictions of electronic and magnetic properties, fol-
lowing trends similar to those observed for NVP25, NVP43, and VP50. PBE dramatically
underestimates the bandgap, showing values near zero for both NVP40A and NVP40B,
consistent with its performance for the previously studied glass models. In contrast, PBE0
predicts much wider bandgaps, ranging from about (1.1±0.4) to (1.6±0.3) eV. This sig-
nificant improvement in bandgap prediction by PBE0 aligns with the findings for NVP25,
NVP43, and VP50, though the gaps for NVP40A and NVP40B appear slightly smaller
than those reported for VP50 (2.4–2.8 eV). Both functionals hint at the magnetic nature
of these glasses, evident from the slight differences in spin-up and spin-down bandgaps.
However, PBE0 appears to capture these magnetic effects more prominently, a trend con-
sistent across all the glass models studied. The distribution of local spins on V sites further
highlights the disparities between the two methods, mirroring the observations made for
NVP25 and NVP43. PBE results show a somewhat ambiguous picture, with a significant
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Figure 5.13. Averaged values of the energy bandgap (in eV) are shown at the top, and spin densities (in
e units) are shown at the bottom. The results are computed for all Vanadium sites at the PBE (left) and
PBE0 (right) levels for the two NVP40 (NVP40A and NVP40B) glasses using BOMD. Bandgap values for
both spin-up and spin-down states are averaged over three configurations simulated for each system. Spin
densities display the distribution of individual data points across the three configurations for each glass.

spread of V sites with intermediate spin values. This makes it challenging to clearly differ-
entiate between V4+ and V5+ states, a limitation also noted in the previous glass models.
PBE0, on the other hand, shows a clearer picture, as it did for NVP25 and NVP43. It
shows a more distinct separation between V5+ sites (with spins near zero) and V4+ sites
(with spins around 1 e unit). This sharper delineation allows for a more meaningful com-
parison between NVP40A and NVP40B, much like it did for the previous models. The
PBE0 results suggest that NVP40A has a slightly higher proportion of V5+ sites, while
NVP40B shows a marginally higher content of V4+ sites. These subtle differences in V
speciation between the two glass models hint at slight variations in their chemical com-
positions. Both likely have structures based on a Na2O–VxOy–P2O5 system, but with
NVP40A leaning towards a higher V2O5 content and NVP40B towards a bit more V2O4.
This detailed view of composition aligns well with the insights gained from the analysis
of NVP25 and NVP43. Based on the this analysis, the exact composition of these two
glasses are: 10Na2O–40VxOy[35.8V2O5–4.2V2O4]–50P2O5 and 10Na2O–40VxOy[30V2O5-
10V2O4]–50P2O5 for NVP40A and NVP40B respectively. Overall, this analysis under-
scores the necessity of the accuracy of the PBE0 functional in capturing the electronic
and magnetic subtleties of these complex glass systems, providing insights that are more
aligned with experimental expectations and offering a clearer picture of the V oxidation
states within these materials. The consistency of these trends across NVP40A, NVP40B,
and the previously studied NVP25, NVP43, and VP50 glass models reinforces the reliabil-
ity of the PBE0 approach for analyzing these complex vanadate-phosphate glass systems.

The analysis of electronic structure through WFC has offered us a deeper analysis into
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the chemical intricacies of NVP40 glasses, building upon our previous insights from VP50.
This approach has cleared the complex bonding landscape within VOn polyhedra, reveal-
ing a featured picture of vanadium-oxygen interactions. We have observed a spectrum
of V–O bonds, ranging from single bonds stretching between 1.8 and 2.0 Å to shorter,
stronger double or vanadyl bonds at about 1.6 Å. The distinction between these bond
types is captured by the WFC-single bonds show shared WFC along the V–O interac-
tion (overlapping pairs of WFC in LSD calculation), while the stronger double bonds
is characterized by multiple shared WFCs, showing a complex picture of electron den-
sity distribution. The WFC analysis also further revealed and supported the formation
of molecular oxygen (O2) entity within the NVP40A model. This feature, depicted in
Fig. 5.14 (a), shows an O–O bond measuring 1.2 Å a fingerprint sign of molecular oxygen.
The bond is further characterized by two shared WFCs, confirming its double bond nature.

Figure 5.14. Snapshot of the NVP40A simulation cell at 300 K showing a formation of an O2 molecule
(a). A PO4 polyhedron (b). A Na+ ion intercalated between VO6 and PO4 polyhedra (c). Wannier centers
characterizing a chemical bonds are shown in yellow.

The WFC analysis has also provided a further comprehensive chemical bonding picture
of the NVP40A and B glasses. Fully inline with our previous results on VP50 glass, at
the core of NVP40 glasses lies a rigid network made of VOn and POn polyhedra. These
structural units are bound together through a mix of single and double bonds with oxygen
atoms, creating a three-dimensional lattice that forms the skeleton of the material. The
WFC analysis allowed to further analyse their bonding features, showcasing the varying
electron density distributions that characterize these different bond types within the poly-
hedra (see Fig. 5.14 (b) and (c)). Interestingly, the role of Na in this glass network has
been further elucidated by our WFC analysis. Rather than being merely interspersed
throughout the structure, Na atoms play a crucial role as network modifiers. They inter-
act with the glass framework through ionic bonds, primarily engaging with non-bridging
oxygen (NBO) atoms (see Fig. 5.14, (c)). These interactions are characterized by lone
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pair WFCs on the oxygen atoms, which are directionally oriented towards neighboring Na
atoms at distances of 2.2–2.4 Å. This precise spatial relationship, captured by the WFC
analysis, provides strong evidence for the nature of the Na–O interactions and their role
in modifying the glass network.

The presence of these directional lone pairs not only confirms the ionic nature of the
Na–O interactions but also suggests how Na influences the overall glass structure. By
interacting with NBO oxygens, Na atoms likely contribute to the network’s flexibility and
may play a role in ion transport properties of the glass. This detailed structural insight,
combining the rigid polyhedra network with the modifying influence of sodium, paints a
more complete picture of the NVP40A and B glasses. It showcases how different elements
come together to create a material with complex bonding arrangements, from the strong
covalent bonds within the polyhedra to the ionic interactions with sodium. These findings
not only deepen our understanding of NVP40A and B but also provide a solid founda-
tion for future investigations into structure-property relationships in vanadate-phosphate
glasses. They invite us to explore how subtle variations in composition and processing
might influence this intricate structural arrangement and, consequently, the macroscopic
properties of these complex disordered materials.

5.6 Conclusive remarks

In this chapter, we explored the structural, bonding, and electronic properties of ternary
Na2O-VxOy-P2O5 (NVP) glasses using different computational schemes. The study aimed
to evaluate the limitations of empirical force fields and highlight the improvements brought
by f BOMD, along the same lines of previous Chapter on VP50 glass. Our findings reveal
that classical FF are limited in accurately modeling the local environment of vanadium in
NVP glasses, often approximating their short-range order. f BOMD, on the other hand,
significantly enhances the accuracy of these models, particularly in delineating the V–O
interactions and oxidation states. A major advancement in this study is the demonstra-
tion that a f BOMD thermal cycle offers superior structural details compared to CMD and
even CMD followed by short BOMD equilibration. The BOMD method provides interme-
diate results, better than CMD alone but not as accurate as a complete f BOMD cycle.
f BOMD simulations capture the fine details of the local bonding environment, accurately
representing single V–O and double V=O bonds. This leads to a well-defined short-range
V–O polyhedra environment, crucial for understanding the functional properties of NVP
glasses. The comparison with experimental data confirms that f BOMD accurately deter-
mines the V oxidation states and provides a reliable depiction of the local electronic and
bonding environments and local structure around phosphorus and vanadium sites. This
comprehensive analysis underscores the necessity of advanced computational methods for
accurately modeling the complex structures of NVP glasses.
In summary, the study showcases the limitations of current available empirical force fields
and the significant improvements offered by f BOMD. The detailed insights provided by
f BOMD pave the way for future research and the development of improved interatomic
potentials, contributing to the design of better NVP-based materials for technological
energy storage applications.
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Chapter 6

Development of a MLIP for NVP
glasses

Summary

In this chapter, we present the development of a GAP-type machine learning interatomic
potential for NVP glasses. The newly developed MLIP demonstrates superior performance
compared to classical empirical potentials in terms of prediction of structural properties,
achieving quasi-accuracy comparable to FPMD for NVP40 glass. Moreover, the chapter
includes tests of the MLIP’s transferability to other VP and NVP glass compositions be-
yond the original training dataset. The results indicate that the MLIP maintains high
accuracy and reliability across these compositions. We also make a preliminary study and
related considerations on the dynamical properties of NVP, focusing on ionic conductiv-
ity of sodium ions as well as V–V features as important for electronic conductivity. The
MLIP’s accuracy in predicting these properties highlights its potential for speeding-up
these calculations and advancing our understanding and design of materials with desir-
able ionic transport characteristics. A summary of these findings has been published in
ref. [308].
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6.1 Motivations behind the need of Machine learning inter-
atomic potential (MLIP) for NVP systems

The development of a MLIP for the NVP glass system represents a significant advancement
and challenge in computational materials science. This Chapter focuses on leveraging the
Gaussian Approximation Potential (GAP) scheme to produce an MLIP for NVP glasses,
a complex four-elements system that includes a transition metal vanadium, which exhibits
multiple oxidation states. The primary motivation is to assess the feasibility to create a
potential that can model these complex disordered systems with first-principles accuracy,
yet perform simulations much faster than the computationally expensive FPMD method.
As previously presented in Chapters 3, 4, and 5, the FPMD simulations, while providing
high accuracy, are prohibitively expensive for large systems or long simulation times due
to their computational cost. This limitation has been highlighted in studies of disordered
systems, such as liquid GeSe2, where the high computational cost of CPMD-scheme re-
stricted the ability to explore extensive configuration spaces (over milion-atom systems)
and long timescales (see Chapter 3). For NVP glasses, these constraints are even more
pronounced, making it challenging to obtain accurate structural models necessary for un-
derstanding their properties.

In this chapter, we aim to address these challenges by developing a MLIP using the
GAP scheme, which is potentially tailored for complex multi-component systems like NVP
glasses, following the procedure previously presented for GeSe2 and already validated for
amorphous solid-state electrolyte Na3OCl [309, 310]. This approach allows for efficient
simulations that maintain high fidelity to the underlying potential energy surface, thus
enabling more extensive and detailed investigations of NVP glass structures. We begin
by focusing on NVP40 glass, which is the NVP composition of choice due to the avail-
ability of experimental and f BOMD data (with a full thermal cycle, see Chapter 5). This
comprehensive dataset provides an optimal starting ground for training the MLIP-GAP
model, ensuring that it captures the essential interactions and behaviors within NVP glass
systems.
The MLIP-GAP developed here is designed to potentially handle the additional complex-
ity introduced by the transition metal (V), which can exist in different oxidation states
(V5+, V4+, V3+). This feature is rarely explored in the literature for four-element glass
systems by MLIP, making this study particularly novel. By incorporating extensive train-
ing data from high-fidelity f BOMD simulations, the MLIP-GAP can accurately represent
the diverse bonding environments and oxidation states of V, leading to more accurate and
realistic models.
Moreover, the MLIP-GAP model not only aims to match the accuracy of BOMD simula-
tions but also has the potential to surpass it. By enabling longer thermal cycles and more
realistic cooling rates, which were previously limited by computational costs, the MLIP-
GAP can provide deeper insights into the structural properties and behaviors of NVP
glasses. Once validated on NVP40, the model are tested on other NVP compositions to
further demonstrate its transferability and robustness.

In summary, the development of an MLIP using the GAP scheme for NVP glass sys-
tems is motivated by the need to perform accurate, large-scale simulations efficiently. By
overcoming the computational limitations of nowadays-available classical empirical poten-
tials and the computational cost of BOMD, the MLIP-GAP developed here represents a
significant step forward for modeling complex multi-component NVP glass systems.
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6.2 MLIP development for NVP systems

6.2.1 DFT-FPMD database building

The database, which includes a wide range of atomic configurations and corresponding en-
ergies and forces, provides the data required for the fitting procedure. By systematically
comparing model predictions with database values, we can iteratively optimize potential
parameters to achieve the best possible agreement with reference data. In this work, the
database is constructed from two previously generated NVP40 trajectories (NVP40A and
NVP40B), which were produced by full fBOMD thermal cycle simulations using the PBE
functional, as detailed in Sec. 5.5 of Chapter 5. Single-point DFT calculations (energy,
forces and virial) were performed at the PBE0 level with a 100 Ry energy cutoff on selected
configurations at temperatures of 300, 600, 900, 1500, 2000, 2500, and 3500 K. The initial
database version (GAP-v1) consists of 360 representative configurations, divided into a
training set (287 configurations) and a testing set (73 configurations, representing 20% of
the total). A second version (GAP-v2) incorporates an additional 15 uncorrelated config-
urations from the NVP40B glass at 300 K, which were unavailable during the construction
of GAP-v1. This results in a total of 375 representative configurations, comprising 300
for training and 75 for testing. Having constructed a comprehensive dataset capturing
the relevant atomic configurations, we can now proceed to the fitting process, using this
information to refine the potential’s parameters.

6.2.2 Model fitting and energy/forces performance assessment

The MLIP-GAP developed for NVPs systems followed the same kernel-based methodol-
ogy as the scheme introduced in Chapter 2, Sec. 2.4 , and previously tested on a simpler
binary system in Chapter 3. Details of the optimized hyperparameters used for construct-
ing the descriptors in both versions of the GAP potential are summarized in Tab. A.6 of
Appendix A.3.
Fig. 6.1 showcases a comparative analysis between two MLIP, GAP-v1 and GAP-v2, il-
lustrating their efficiency in predicting formation energy and forces when benchmarked
against BOMD/DFT results. In terms of formation energy, GAP-v1 shows mean absolute
errors (MAEs) of 8.40 meV/atom for the training set and 8.73 meV/atom for the testing
set. Although the predictions align reasonably well with the BOMD values, there’s a
noticeable scatter, indicating some deviations. On the other hand, GAP-v2 significantly
reduces these errors, with MAEs dropping to 5.64 meV/atom for the training set and
5.83 meV/atom for the testing set, reflecting a more accurate and consistent prediction
capability for formation energy compared to GAP-v1. Typically, MAE error of about ∼
5 meV/atom or lower supports the argument that GAP-based atomistic models predict the
local properties of the systems with good accuracy for liquid and amorphous states [311].
In terms of force predictions, the improvement from GAP-v1 to GAP-v2 is minimal but
present. GAP-v1 has shows a MAE of 0.39 eV/Å for the training set and 0.42 eV/Å for
the testing set, whereas GAP-v2 shows a reduction in training and testing set errors to
0.37 eV/Å and 0.41 eV/Å. This significant decrease in the training set error indicates a
significant improved model, leading to highly accurate force predictions.

The cumulative error distributions for energy and forces (Fig. 6.1, (c) and (d) respectively)
in GAP-v1 and GAP-v2 exhibit similar profiles. Furthermore, the overlap observed be-
tween the training and testing sets for both models suggests that neither is underfitting
(not capturing the underlying patterns) nor overfitting (memorizing the training data).
Essentially, GAP-v2 demonstrates a significant improvement in performance compared to
GAP-v1. The reduced mean absolute errors (MAEs) observed in both formation energy
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Figure 6.1. Scatter plots and cumulative error distributions demonstrating the accuracy and generalization
of MLIP-GAP predictions. (a, b) Correlations between DFT-computed and MLIP-GAP-predicted energies
(a) and force components (b) for both training and testing sets. Insets magnify the testing data. Mean
Absolute Errors (MAE) are provided for each dataset. (c, d) Cumulative error distributions for energy (c)
and forces (d) across training and testing sets, confirming the absence of over-fitting during model training.
The results on the top panel is derived from version v1 of the potential and the bottom panel from version
v2, for which the database has been enriched with 16 configurations at 300 K from the NVP40B glass.

and force predictions indicate that GAP-v2 generates more accurate and precise results,
aligning closely with the BOMD reference data. This highlights a successful refinement of
the MLIP. In the following, we will utilize our MLIP to model glasses of the same size as
the BOMD reference system, before extending to larger systems.
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6.3 MLIP vs BOMD simulations of NVP40A/B glasses

6.3.1 Structural properties

Structure factors

To further assess the performance of GAP-v2 compared to GAP-v1, we analyze the X-ray
total structure factors of the NVP40A and NVP40B models (as illustrated in Fig. 6.3). We
also refer to the Rχ values of both MLIP-GAP potentials, quantified against experimental
and BOMD data (see Tab. 6.1). This dual comparison allows us to evaluate the agreement
for NVP40A, which is intended to closely correspond to the experimentally synthesized
NVP40 glass composition. For NVP40A, both GAP-v1 and GAP-v2 show similar Rχ
values, close to the BOMD data (10.72 and 11.63 versus 11.37%).
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Figure 6.2. Comparison of total X-ray structure factors for NVP40A and NVP40B glasses at 300 K. Results
obtained from MLIP-GAP versions GAP-v1 (red) and GAP-v2 (blue) are shown alongside reference BOMD
simulation data for each glass composition and experimental measurements.

Table 6.1. Goodness-of-fit (Rχ) parameters for BOMD, GAP-v1 and GAP-v2 data, showing the level of
agreement with experimental total X-ray structure factor for NVP40 systems (first row). In the second
row, Rχ for the two version of GAP is quantify with respect to the BOMD reference data

NVP40A NVP40B
X-ray BOMD GAP-v1 GAP-v2 BOMD GAP-v1 GAP-v2
RS(k)
χ vs Exp. 11.37 10.72 11.63 12.73 11.23 11.98

RS(k)
χ vs BOMD - 4.19 6.50 - 6.70 6.73

For NVP40B, comparison with BOMD data demonstrates comparable performance
(11.23% and 11.98%). Notably, GAP-v2 reproduces the f BOMD profile of the first peak
of the total structure factor at around 2 Å−1 more accurately than GAP-v1, despite show-
ing a slight spurious shoulder at about 1 Å−1. Given the similar performance of the two
versions and the superior shape reproduction by GAP-v2, coupled with lower errors in en-
ergy and forces prediction, the subsequent section will focus exclusively on GAP-v2 data
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when referencing MLIP-GAP.
We present here a comparative analysis of BOMD, f BOMD, and MLIP-GAP (GAP-
v2) schemes, revealing significant insights into how each schemes models the structure of
NVP40 glasses. By analysing the X-ray and neutron total structure factors, as well as
the total pair distribution functions, we can evaluate the accuracy and reliability of these
methods in capturing the atomic arrangements within these glasses.
The X-ray structure factors SX(k) for NVP40A and NVP40B highlight clear differences
among the methods. CMD data shows noticeable discrepancies compared to f BOMD
and MLIP-GAP, particularly at low k-values. f BOMD and MLIP-GAP exhibit very sim-
ilar degrees of accuracy, indicating that MLIP-GAP performs at a level comparable to
f BOMD. MLIP-GAP, in particular, aligns closely with f BOMD, demonstrating its ca-
pability to achieve ab-initio accuracy efficiently. Similarly, the neutron structure factors
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Figure 6.3. Total structure factors for NVP40 glasses obtained from X-ray diffraction (left) and neutron
scattering (right). X-ray data includes experimental measurements and simulation results (CMD, BOMD,
f BOMD, and MLIP-GAP), while neutron data shows only simulation results.

SN(k) reveal that CMD slightly deviates in both peak positions and intensities compared
to f BOMD and MLIP-GAP. Both f BOMD and MLIP-GAP shows fair agreement with
each other, capturing detailed atomic interactions and effectively modeling both short-
and intermediate-range orders. The close alignment between f BOMD and MLIP-GAP
suggests that MLIP-GAP can replicate the high fidelity of f BOMD while being computa-
tionally more efficient. Tab. 6.2 (first row of data for each system) provides a quantitative
assessment of the agreement between simulation results and experimental data using Rχ
parameter.

Table 6.2. Assessment of the accuracy of MLIP-GAP versus CMD, BOMD, and f BOMD using goodness-
of-fit (Rχ) parameters for X-ray total structure factor and pair distribution function of NVP40 glasses at
300 K.

NVP40A
X-rays CMD BOMD f BOMD MLIP-GAP
RS(k)
χ 21.5 ± 0.3 14.2 ± 0.1 11.4 ± 0.1 11.0 ± 0.8

RG(r)
χ 90.6 ± 1.5 74.1 ± 0.3 58.9 ± 0.5 72.5 ± 1.9

NVP40B
X-rays CMD BOMD f BOMD MLIP-GAP
RS(k)
χ 17.5 ± 0.1 14.4 ± 1.2 12.8 ± 0.1 12.0 ± 0.1

RG(r)
χ 86.1 ± 2.0 70.7 ± 1.5 62.0 ± 0.1 69.9 ± 0.7
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Total pair distribution function

The X-ray total distribution function (G(r)) for NVP40A and NVP40B further shows
the performance of each method: CMD shows significant discrepancies in peak positions
and intensities, with less sharp and misaligned peaks. This indicates CMD’s limitations
in accurately modeling short-range order within these NVP glasses as discussed in the
previous chapter. In contrast, BOMD, f BOMD and MLIP-GAP show a high degree of
agreement, with MLIP-GAP found more similar to f BOMD than BOMD data.

 0

 4

 8

 12

 16

 1  2  3  4

NVP40A

NVP40B

X
−r

ay
s 

to
ta

l c
or

re
la

tio
n 

fu
nc

tio
n 

G
r(

r)

r (Å)

Exp.
CMD
BOMD
f BOMD
MLIP−GAP

Figure 6.4. Total pair distribution function G(r) of NVP40 glasses at 300 K: Assessment of MLIP-GAP
results against CMD, f BOMD, and experimental data.

Focusing on the region from 1 to 4 Å highlights the finer details of atomic interactions.
The peak positions and intensities in f BOMD and MLIP-GAP results are sharper, with
the second, third, and fourth peaks better aligned with experimental data than CMD,
and BOMD. They only show an overstructuring degree for the first peak, reflecting the
P–O overstructured peak as illustrated by the partial pair correlation function gPO(r) in
Fig. 6.6. Overall f BOMD and MLIP-GAP show greater capability to effectively capture
both short- and intermediate-range interactions of these NVP glasses as confirmed by the
Rχ parameter in Tab. 6.2 (second row of data for each system). CMD fails to capture
these details accurately, as seen in the misaligned and broadened peaks. In contrast,
f BOMD and MLIP-GAP reproduce these features with high precision. MLIP-GAP, in
particular, aligns closely with f BOMD, demonstrating its effectiveness in replicating the
complex bonding environments within NVP glasses. Deeper insights can be gleaned from
an examination of the partial correlation functions.

Partial pair correlation function

In Fig. 6.5 and Fig. 6.6, we provide a comprehensive comparison of CMD, BOMD, and
MLIP-GAP schemes of the partial pair correlation functions of NVP40A and NVP40B
glasses. Tab. 6.4 shows the bond distance values corresponding the first maximim of the
partial pair correlation functions. By examining these functions, we can assess how well
each method captures the atomic interactions and structural properties of these glasses.
Across all partial pair correlation functions, CMD consistently shows deviations compared
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to BOMD and MLIP-GAP. CMD’s peaks are generally less sharp and sometimes shifted,
indicating its limitations in accurately capturing atomic arrangements, due to relatively
”simple” empirical two-body and three-body potentials forms. In contrast, BOMD and
MLIP-GAP exhibit a high degree of similarity, suggesting that MLIP-GAP can replicate
BOMD’s accuracy efficiently.
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Figure 6.6. Partial pair correlation function gOO(r) (left), gOO(r) (middle), and gPO(r) (right) for NVP40
glasses: Comparison of CMD, f BOMD, and MLIP simulations.

For both NVP40A and NVP40B compositions, the first peak in gVO(r) around 1.6 Å repre-
sents the relatively short andd strong V=O double bonds. BOMD and MLIP-GAP results
align closely, capturing this peak with high accuracy, both in position and intensity. CMD,
however, shows a broader and less defined peak, indicating a less accurate representation
of the V-O bonding environment. The second peak, around 1.8–1.9 Å, which represents
the longer V–O single bond, is also more accurately captured by BOMD and MLIP-GAP
compared to CMD. The alignment of BOMD and MLIP-GAP in these peaks underscores
the ability of MLIP-GAP to model the complex interactions involving vanadium accu-
rately. The other partial pair correlation functions, such as gNaO(r), gOO(r), and gPO(r),
follow similar trends. For the gNaO(r), the first peak around 2.2-2.4 Å, representing the
nearest neighbor Na–O bonds, shows that CMD deviates from BOMD and MLIP-GAP,
with the latter two providing a slightly much sharper and well-defined peak. The gOO(r)
and gPO(r) functions are crucial for understanding the oxygen and phosphorus environ-
ments in these glasses. For gOO(r), the first peak around 2.7 Å is accurately captured
by BOMD and MLIP-GAP, while CMD shows discrepancies in peak shape and intensity,
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showing overly structured functions. Similarly, the gPO(r) functions display a significant
peak around 1.5–1.6 Å, corresponding to the P–O bonds. Again, BOMD and MLIP-GAP
align closely, indicating accurate modeling, whereas CMD results are less precise.
The comparative analysis of partial pair correlation functions demonstrates that MLIP-
GAP significantly outperforms CMD and matches the accuracy of BOMD in capturing
the local atomic structures of NVP glasses. This is particularly evident in the VO par-
tial pair correlation functions, where the complex interactions involving V are modeled
with high precision by MLIP-GAP, reflecting its robustness and efficiency in describing
the complex short (i.e. double) and long (i.e. single) VO bonds. The close alignment
between MLIP-GAP and BOMD across all partial pair correlation functions underscores
the potential of MLIP-GAP as a powerful and computationally efficient tool for studying
complex glass systems like NVP. This capability allows for more extensive simulations
and deeper insights into the structural properties of these materials, advancing the field
of NVP glass science.

Average coordination number and structural units

Similar as in the previous chapter, Tab. 6.4 presents the average coordination for chemical
species Na, V, P, and O, as well as the chemical bond lengths calculated obtained as the
position of the maximum of the first peak of the partial pair correlation function gαβ(r),
in comparison with experimental values. Our MLIP-GAP well defined the average co-

Table 6.3. Distribution of individual nα(l) structural units of atoms α ( V or Na) l-fold coordinated,
computed for the both NVP40A using MLIP in comparison with the previous obtained results from CMD,
BOMD, and f BOMD. These values have been calculated including neighbours separated by a cutoff cor-
responding to the first minimum in the gαβ(r) and averaged over the different replicas. The cutoffs of
2.4 and 3.2 Å were used for the Na–O and V–O bonds respectively. Only fraction greater than 0.5 % are
reported.

NVP40A
CMD BOMD f BOMD MLIP-GAP

V
l = 3 O3 11.1 ± 4.4 - - -
l = 4 O4 62.8 ± 2.6 35.6± 0.5 19.6 ± 0.6 11.0 ± 0.3
l = 5 O5 23.5 ± 2.3 49.4 ±3.8 76.0 ± 0.4 74.2 ± 2.8
l = 6 O6 2.7 ± 0.5 15.0 ± 4.3 4.4 ± 0.2 14.8 ± 2.5
Na+

l = 4 O4 12.3 ± 9.8 1.5 ± 1.0 2.8 ± 1.3 22.5 ± 3.6
l = 5 O5 32.8 ± 3.3 17.4± 2.2 10.6 ± 1.7 23.3 ± 3.3
l = 6 O6 36.1 ± 10.0 50.8 ± 1.3 36.5 ± 3.6 27.2 ± 2.4
l = 7 O7 15.5 ± 2.6 24.9 ± 1.9 41.1 ± 0.7 14.2 ± 1.3
l = 8 O8 2.7 ± 0.9 5.1 ± 0.1 8.0 ± 0.8 9.0 ± 3.5

ordination of phosphorus for both systems, in full agreement with the experiment and
other calculated results (CMD, BOMD and fBOMD). For vanadium, the coordination
predicted by MLIP-GAP (5.06 and 4.87 Å respectively) are found slightly greater than
the fBOMD values (4.85 and 4.60 Å), but showing same trend (average V coordination
found lower in NVP40B than NVP40A) and remaining consistent with the experimental
range of 4.20–5.40 Å.

Next, we analyzed the average distribution of VOn and Na+On structural units in NVP40A
(being the one found closer to experimental composition), with sodium in the latter case
having an ionic interaction with neighboring non-bridging oxygen. Tab. 6.3 presents the
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Table 6.4. Average coordination numbers ni and bond lengths rij (in Å) (taken as the position of the first
maximum of the pair correlation functions gαβ(r)) and , computed for the two NVP40 models with CMD,
BOMD, f BOMD, and MLIP thermal cycle. The average statistical error, computed across the replicas is
0.02 Å.

NVP40A
Exp.a CMD BOMD f BOMD MLIP

nNa 5.90 5.62 6.16 6.44 5.34
nP 4.00 4.00 4.00 4.00 4.00
nV 4.20-5.40 4.18 4.79 4.85 5.06
nO 2.00-4.00 1.63 1.73 1.74 1.79
rNaO 2.3-2.6 2.32 2.33 2.38 2.28
rPO 1.52-1.60 1.50 1.56 1.54 1.54
rVO 1.58 - 1.61 1.59 1.56

1.90 1.77 1.83 1.88 1.83
rOO 2.52-2.91 2.50/2.86 2.58 2.56 2.53
rVV 3.50 3.57 3.52 3.38 3.36
rPV 3.24 3.36 3.24 3.20 3.18

NVP40B
Exp.a CMD BOMD f BOMD MLIP

nNa 5.90 5.09 5.58 5.57 5.40
nP 4.00 4.00 4.00 3.97 4.00
nV 4.20-5.40 4.33 4.73 4.60 4.87
nO 2.00-4.00 1.70 1.76 1.74 1.80
rNaO 2.3-2.6 2.32 2.35 2.30 2.30
rPO 1.52-1.60 1.51 1.56 1.54 1.54
rVO 1.58 - 1.59 1.57 1.56

1.90 1.78 1.82 1.86 1.84
rOO 2.52-2.91 2.50/2.81 2.58 2.55 2.55
rVV 3.50 3.57 3.52 3.54 3.36
rPV 3.24 3.31 3.31 3.25 3.24

aEstimated from X-ray and neutron diffraction measurements on VxO-P2O5[39] and Na2O-VxOy[55]
glasses

values obtained with MLIP-GAP scheme and compared with the other levels of descrip-
tion. As previously noted with the average coordination, it is observed that vanadium in
the glasses produced by CMD prefers low coordination with a dominance of VO4 units
(62.8%) followed by VO5 units (23.5%) and a small proportion of VO3 and VO6 polyhedra.

In contrast, MLIP shows an opposite evolution, fully inline with fBOMD data. The
VOn units are mainly VO5, about 74.2% (76% by fBOMD), followed by a slight different
ratio between VO4 and VO6 units with respect to fBOMD. Unlike the CMD result, MLIP
as well as BOMD and fBOMD does not present VO3 units. These results are consistent
with those obtained for the VP50, NVP25 and NVP43 system in the previous Chap-
ters. In terms of Na+On units, MLIP shows, a bit higher value for low coordination but
within the computed statistical uncertainty, very close agreement with respect to fBOMD
data. Overall, this analysis reveals a very close match of description of NVP40A in terms
of structural units between MLIP and fBOMD, further corroborating its first-principles
accuracy.
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6.3.2 Effect of the cooling rate on the glass structure

Given that the reference f BOMD structure was generated under rapid thermal cycling
conditions, it is interesting to assess the influence of cooling rate on the glass structure
with the MLIP-GAP. Leveraging the computational efficiency of MLIP-GAP, we con-
ducted supplementary simulations to investigate this effect.
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Table 6.5. Goodness-of-fit (Rχ) parameters for f BOMD and different MLIP-GAP cooling rate with respect
to the experimental total pair distribution function for NVP40A system.

X-ray f BOMD MLIP-GAP rate
BO-rate 20 K/ps 12 K/ps 8 K/ps 6 K/ps 3 K/ps

RG(r)
χ 72.77 71.51 67.89 73.32 73.28 73.95 70.67

Fig. 6.7 illustrates the effect of varying cooling rates on the total X-ray pair distribu-
tion function G(r) of NVP40A glass, in comparison with f BOMD and experimental data.
Specifically, cooling rates of 200 K/ps (approximating f BOMD rate), 20, 12, 8, 6, and
3 K/ps were examined by MLIP.
The corresponding values of the Rχ parameter, quantifying the agreement with experimen-
tal data, are presented in Tab. 6.5. These results reveal a minimal influence of cooling rate
(according to the range of values tested) on the glass structure within the range tested,
with all values approximating those obtained with f BOMD, considering the estimated
error margins. Are currently in progress further tests with lower cooling rate of the order
of 0.1-0.01 K/ps, still feasible with MLIP and in order to assess any possible effect.
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6.3.3 Electronic and magnetic properties

The electronic properties presented here are computed as post process by single-point DFT
calculations on various configurations extracted from the glass structure produced with
the MLIP-GAP potential. Since electronic properties are not directly accessible
through classical simulations, even with MLIP, this approach is necessary. The
accuracy of these single-point DFT calculations, when compared to the reference FPMD
data, is attributed to the indirect inclusion of electronic contributions within the MLIP-
GAP training data.
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Figure 6.8. Average energy bandgap (eV, top) and spin densities (e units, bottom) for all vanadium sites
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and spin-down states and the values are displayed with error bar in red. Spin density plots show the
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The comparison between PBE and PBE0 functionals for NVP40A and NVP40B (see
Fig. 6.8) computed at the DFT level for glass models obtained by CMD using the newly
developed MLIP-GAP reveals striking differences in their predictions of electronic and
magnetic properties, following trends similar to those observed in previous Chapter. PBE
dramatically underestimates the bandgap, showing values near zero (from (0.008±0.001)
to (0.03±0.02) eV) for both NVP40A and NVP40B, consistent with its performance for
the previously studied glass models. In contrast, PBE0 predicts much wider bandgaps,
ranging from about (0.5±0.1) to (1.1±0.4) eV. The significant improvement in bandgap
prediction by PBE0 is consistent with previous findings, despite the bandgap values be-
ing lower than those obtained from BOMD and . This discrepancy may be attributed to
the slightly different composition of NVP40 with respect to f BOMD, for instance, due to
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avoided formation of molecular O2 with MLIP and the lack of equilibration at the BOMD
and f BOMD level before computing the electronic properties.
In terms of local V sites spin, NVP40A and B models obtained by MLIP-GAP and post-
optimized in terms of electronic structure at PBE0 level, whose a very well-defined V
sites speciation fully inline with the the original data obtained from BOMD structure
and extremely well matching the experimental glass composition. PBE results show a
somewhat ambiguous picture for NVP40B, with a significant spread of V sites with in-
termediate spin values with values even up to 3, whereas NVP40A shows all the V sites
with a close to 0 value (similar with PBE0), indicating a slight better performance with
respect to data computed from f BOMD structure. PBE0 shows a more distinct separa-
tion between V5+ sites (with spins near zero) and V4+ sites (with spins around 1 e unit)
for NVP40B (see Fig. 6.8). This clearer delimitation allows for a more meaningful com-
parison between NVP40A and NVP40B, much like it did for the previous models. The
PBE0 results suggest that NVP40A has a totality of V sites as V5+ sites, while NVP40B
shows a partial content of V4+ sites (29.17%), fully in agreement with the experimental
data. Overall, this analysis underscores the ability of MLIP potential NVP models, once
post-optimized at the PBE0 level to capture the electronic and magnetic subtleties of
these complex glass systems, providing insights that are more aligned with experimental
expectations and offering a clearer picture of the V oxidation states within these materials.

6.4 Evaluating MLIP transferability power in VP and NVP
glasses beyond the training set

To further assess the robustness and transferability of our developed MLIP, we analyze its
performance in reproducing the glass models of VP50, NVP25, and NVP43, which were
not part of the training set used for MLIP-GAP development.
Fig. 6.9 shows the comparison of the X-ray and neutron structure factors (S(k)) for exper-
imental data, CMD, BOMD, and MLIP-GAP for the VP50 glass. In the X-ray structure
factor analysis, CMD shows significant deviations from the experimental data, particularly
in the lower k-range, where it fails to accurately capture the peak positions and intensities.
BOMD, on the other hand, exhibits a close match with the experimental data, accurately
reflecting both peak positions and intensities, thereby validating its capability in modeling
both short- and intermediate-range structures. MLIP-GAP performs similarly to BOMD,
closely aligning with the experimental data and effectively reproducing the key structural
features. This demonstrates MLIP-GAP’s accuracy in modeling the structural character-
istics of VP50 glass with high fidelity.

The neutron structure factor results further illustrate the discrepancies in CMD’s per-
formance. CMD displays significant mismatches in peak intensities and positions when
compared to the experimental data, indicating its limitations in capturing the neutron
structure factor accurately. BOMD once again shows strong agreement with the experi-
mental data, capturing the key features and peaks with precision, highlighting its robust-
ness. MLIP-GAP closely follows BOMD’s performance, aligning well with the experimen-
tal data and accurately reproducing the neutron structure factor peaks. This alignment
underscores MLIP-GAP’s reliability and effectiveness in modeling the complex structural
environments. Overall, MLIP-GAP significantly outperforms CMD in both X-ray and
neutron structure factors, capturing peak positions and intensities with much higher ac-
curacy. Its performance is comparable to BOMD, closely matching the experimental data
and demonstrating its robustness. Notably, MLIP-GAP appears to reproduce the experi-
mental peak intensities even better than BOMD. This improvement is likely because the
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Figure 6.9. X-ray (left) and neutron (right) structure factors for VP50 glass comparing the CMD (dashed
purple line), MLIP (solid red line) and BOMD (solid green line) data with the experiment (black dot).

BOMD data corresponds to the CMD+BO scheme, where only a final equilibration at
300 K was performed, rather than a full thermal cycle by f BOMD, which was included in
the training set NVP models used for building MLIP.
For neutron structure factors, MLIP-GAP achieves the lowest Rχ value (7.1%), indicating
the best agreement, followed by BOMD (8.4%) and CMD (9.8%). This superior per-
formance highlights MLIP-GAP’s robustness in capturing the subtle details of atomic
interactions. For X-ray structure factors, MLIP-GAP also shows the best fit with a Rχ
value of 6.3%, compared to BOMD (8.4%) and CMD (11.3%). This consistency under-
scores the accuracy and reliability of MLIP-GAP, even overcoming the performance of the
CMD+BO scheme.
The superior performance of MLIP-GAP compared to CMD and CMD+BO can be at-
tributed to its better description of the second and fourth peaks in the X-ray total correla-
tion functions, which are more closely aligned with the experimental data (see Fig. 6.10).
In the total neutron pair correlation functions (T(r)), MLIP-GAP excels again with an
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Figure 6.10. Total correlation function T(r) for VP50 glass, obtained from X-ray (left) and neutron (right)
scattering. MLIP-GAP results are compared with CMD, BOMD, and experimental data.

Rχ value of 25.1%, outperforming both BOMD (28.6%) and CMD (26.7%) as indicated in
Tab. 6.6. In the total X-ray pair correlation functions, MLIP-GAP achieves the lowest Rχ
value of 24.4%, indicating a better match than BOMD (28.7%) and CMD (36.6%). Simul-
taneously, the drastic improvement in describing the local environment of VOn polyhedra
by MLIP-GAP is evident. This is demonstrated by the well-defined gVO(r) fingerprint
peaks at approximately 1.6 Å and 1.8–1.9 Å corresponding to short double V=O and the
single V–O bonds, which are completely missed by CMD and only marginally reproduced
by the CMD+BO scheme (see Fig. 6.11).
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Table 6.6. Goodness-of-fit Rχ parameters obtained from CMD, MLIP and BOMD results of VP50 glass
indicating the level of agreement with the experimental data for neutron and X-ray structure factors (RX

S(k)

and RN
S(k), respectively) and total pair correlation functions (RX

T (r) and RN
T (r), respectively).

CMD2 BOMD MLIP
Neutrons
RN

S(k) 9.8 ± 0.1 8.4 ± 0.2 7.1 ± 0.1
RN

T (r) 26.7 ± 0.1 28.6 ± 0.5 25.1 ± 0.1
X-Rays
RX

S(k) 11.3 ± 0.1 8.4 ± 0.2 6.3 ± 0.1
RX

T (r) 36.6 ± 0.3 28.7 ± 0.3 24.4 ± 0.2
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Figure 6.11. Partial pair correlation function gV-O for VP50 glass at 300 K. The MLIP-GAP, CMD, and
BOMD results are compared. With on the right a view of 1–3 Å region highlighting key differences.

To further evaluate the transferability and robustness of our MLIP-GAP model, we ap-
plied it to generate glass models for additional NVP compositions, specifically NVP25 and
NVP43.
Fig. 6.12 presents the total X-ray and neutron structure factors of NVP25 and NVP43,
comparing the CMD, BOMD (as CMD+BO), and MLIP-GAP schemes with experimental
data. For the neutron structure factors, we observe good agreement with the BOMD across
the entire k-value range. In the X-ray structure factors, the MLIP-generated structure
exhibits a slight overestimation of the first peak located at 2 Å for both systems. How-
ever, the quantitative agreement with the experiment, as shown in Tab. 6.7 (first row),
demonstrates that the MLIP-GAP performance (11.9% and 10.4% for the two systems,
respectively) is more consistent with the BOMD (10.1% and 9.8%) within the indicated
statistical error margin and the experiment, compared to the CMD (14.4% and 17.1%).

This structural improvement of the MLIP-GAP compared to the CMD is also observed in
real space. Fig. 6.13 displays the total X-ray pair distribution function in the 1–4 Åinterval
for both systems. The MLIP reproduces the first peak minimum better than the BOMD,
emphasizing the importance of a thermal cycle that directly or at least indirectly incor-
porates electronic contributions in the description of complex glasses. The level of quan-
titative agreement between the MLIP-GAP and the experiment is similar to the BOMD
(see Tab. 6.7, second row).

An important detail to highlight is the V–O pair distribution function (grVO) presented
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Figure 6.12. Total structure factors for NVP25 and NVP43 glasses obtained from X-ray diffraction (left)
and neutron scattering (right). X-ray data includes experimental measurements and simulation results
(CMD, BOMD, and MLIP-GAP), while neutron data shows only simulation results.
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Figure 6.13. Total pair distribution function G(r) of NVP25 and NVP43 glasses at 300 K: Assessment of
MLIP-GAP results against CMD, BOMD, and experimental data.

Table 6.7. Comparison of the agreement between CMD, BOMD, and MLIP-GAP simulations and experi-
mental data using goodness-of-fit Rχ parameters for X-ray total structure factor S(k) and pair distribution
function G(r) of NVP25 and NVP43 glasses at 300 K.

NVP25 NVP43
X-rays CMD BOMD MLIP CMD BOMD MLIP
R
S(k)
χ 14.4 ± 0.2 10.1 ± 0.9 11.9 ± 0.6 17.1 ± 1.0 9.8 ± 1.2 10.4 ± 0.7

R
G(r)
χ 87.3 ± 2.3 62.9 ± 2.0 62.08 ± 0.3 96.2 ± 3.1 65.0 ± 4.8 70.9 ± 0.9

in Fig. 6.14. The MLIP-GAP result shows a clear split of the first peak, indicating a sharp
population at 1.6 Å, completely absent in the CMD and less pronounced in the BOMD,
and a broader second peak at approximately 1.8 Å.

Overall, our MLIP-GAP model has demonstrated excellent performance across various
VP and NVP systems, including those not involved in the model training (demonstrating
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Figure 6.14. Partial pair correlation function gV-O for NVP25 and NVP43 systems at 300 K, obtained
from MLIP-GAP (red line), CMD (dashed line), and BOMD (green line) simulations. The right side
magnified a view of 1–3 Å region highlighting key differences.

transferability and reliability). Details previously accessible only through FPMD sim-
ulations have been accurately reproduced in both reciprocal and real space, with near
quantum mechanical accuracy. The relatively low computational cost of the MLIP al-
lowed us to average our results over three parallel trajectories, enabling a more realistic
estimation of statistical error, whereas with full FPMD, the trajectory had to be divided
into multiple segments for error estimation. Leveraging this strong performance, further
exploration will involve an analysis of dynamical properties, particularly the conductivity
of NVP glasses.

6.5 Preliminary results and considerations on ionic conduc-
tivity and electronic transport of NVP glasses

Glasses containing transition metal (TM) oxides such as VxOy and FexOy typically exhibit
semiconducting behavior, owing to electron/hole hopping among the TM sites having two
different oxidation states valences [34, 312–315]. However, when these glasses incorpo-
rate alkali oxides like Li2O and Na2O, their electrical conductivity undergoes a significant
change [316, 317]. As the alkali oxide content increases, the conduction mechanism shifts
from purely electronic to mixed ionic-electronic, and eventually to primarily ionic.
The overall electrical conductivity in these systems arises from two main mechanisms as
we describe in the introductory Chapter 1, Sec. 1.2.3. The electronic component is due to
electron/hole hopping between TM sites with different oxidation states [312, 318], while
the ionic conductivity is promoted by the mobility of alkali ions [314–316, 318]. This inter-
play between electronic and ionic charge carriers has long been a subject of interest in glass
science. However, it has experienced a renewed attention in recent years, driven by the
potential application of mixed ionic-electronic conductors as cathodes in Li+- and Na+-ion
batteries, particularly in the context of all-solid-state batteries[319–321]. The transition
in charge carrier dominance from electrons/holes to ions is linked to the relative concen-
trations of TM and alkali ions. Moreover, it is significantly influenced by the interactions
between negatively charged electrons and positively charged ions, a phenomenon known
as ion-polaron interactions[322, 323]. Understanding and controlling these interactions is
crucial for optimizing the electrical properties of these glasses for specific applications.
This complex interplay between composition, structure, and charge transport mechanisms
offers a rich field for scientific investigation and technological innovation. By tuning the
glass composition and structure, it becomes possible to tailor the electrical properties to
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meet the specific requirements of various energy storage and conversion devices[324].
Building upon the degree of quantitative agreement with respect to experimental data
achieved with BOMD and MLIP-GAP in previous sections, we can now turn the focus
to assessing other properties that are crucial for the practical implementation of NVP
glasses in energy storage applications. While properties such as charge/discharge capacity
and voltage stability are ultimately critical for device performance, our preliminary efforts
focus on two fundamental aspects that provide valuable insights into the material’s be-
havior: the dynamical properties of Na+ ions as primary promoter of ionic conductivity
and the electronic contribution to overall electrical conductivity.

6.5.1 Na+ ions self-diffusion and ionic conductivity

The mobility of Na+ ions is a key factor in determining the rate capability and power
density of NVP-based electrodes[325]. By accurately modeling the dynamics of Na+ ions
within the glass structure, we can predict and potentially optimize the material’s ability to
facilitate rapid ion transport during charge and discharge cycles. Given the demonstrated
efficacy of our BOMD and MLIP-GAP-based computational approach in predicting struc-
tural properties, we now aim to evaluate its effectiveness in determining the dynamical
properties of Na+ ions, comparing the results with available experimental data and the
CMD approach. The ionic conductivity σ(T ) of NVP glasses is calculated directly from
the mean square displacements and tracer diffusivity of Na+ ions D∗

Na+(T ) according to
the Einstein and Nernst–Einstein relations for systems that reach the diffusive regime at
a given temperature, by Eq. (6.1) and Eq. (6.2), respectively.

D∗
Na+(T ) = lim

t→∞

1
N2d

∂
〈
r2 (t)

〉
∂t

≃
∑
i

〈
∆R2

i

〉
N2dt (6.1)

where d is the dimensionality factor (d = 3 for three dimensional systems) and we have
dropped the explicit dependence on time in Eq. (6.1) as a result of the infinite t limit. When
the diffusive regime is reached, the Arrhenius equation [326] can be used to calculate the
activation energy barrier Ea for diffusion (conductivity) by fitting the data of logD∗ (logσ∗)
vs. 1/T as:

D∗
Na+(T ) = D0exp

(
−∆Ea
kT

)
(6.2)

From the tracer diffusivity D∗, the idealized ionic conductivity can be calculated based
on the Nernst-Einstein relation:

σ∗ = D∗ Nq2

V kT
= q2

2dV kT
∑
i

〈
∆R2

i

〉
(6.3)

where V is the total volume of the model system, q is the charge of mobile-ion species, T
is temperature, k is the Boltzmann constant.
Fig. 6.15 presents the Arrhenius plots of the logarithmic conductivity of Na+ as a function
of inverse temperature for NVP25/43 systems. As commonly performed in CMD simula-
tions, the diffusion and conductivity values of Na+ ions are calculated at a temperature
of practical interest (300 K – 600 K) by extrapolation from a linear fit of values explicitly
computed at higher temperatures [327]. This approach makes it feasible to determine
these quantities within a reasonable trajectory time for MD simulations. In our study, we
simulated Na+ diffusion across different temperatures (from 900 K to 1500 K). From these
simulations, we calculated the Na+ ions’ mean square displacements and tracer diffusion
coefficients, and subsequently the ionic conductivity using Eq. (6.3).
Specifically, we performed these simulations starting from the final glass configuration
at 300 K and heated the systems to temperatures ranging from 900 K to 1500 K using
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Figure 6.15. Arrhenius plot of logarithmic Na+ ionic conductivity versus inverse temperature for NVP25
and NVP43 systems simulated by CMD (purple square) and MLIP-GAP (red circle). Extrapolated con-
ductivity values at 473.15 K (as indicated by the black dotted vertical line) are shown for both simulations
and compared to experimental data (black triangle) [316, 317] from closer compositions.

the CMD2 potential and our developed MLIP-GAP potential. The systems were main-
tained at these temperatures under the NVT ensemble until the diffusion regime of Na+

was reached, for about 1 ns. The calculated ionic conductivities for NVP25 and NVP43
glasses, obtained by extrapolating the Arrhenius plots (Fig.6.15) to 473.15 K, are re-
ported in Tab. 6.8. The data is compared with experimental electrical conductivity values

Table 6.8. Calculated ionic conductivity values of NVP25 and NVP43 glasses at 473.15 K, simulated
using CMD and MLIP-GAP. These simulated values are compared with experimental conductivity values
reported in the literature. [316–318]

Ionic conductivity
σ (×10−2 mS/cm)

Model (% of Na2O) Exp. data CMD MLIP-GAP
NVP25 (40%) 0.058 [317] 11.35 0.65
NVP43 (28.5%) 0.26–0.49a [316, 318] 4.69 0.89

aExperimental NVP glass composition: 30Na2O-20VxOy-50P2O5 [10V2O5 + 10VO2] [316, 318].

obtained for NVP glass compositions with overall similar components for NVP25 and
NVP43, with the exact content of Na2O oxide but different VxOy and P2O5 contents. For
the both systems NVP25 and NVP43, the experimental electrical conductivity is primarily
attributed to the ionic conduction from Na+ ion mobility. Tab. 6.9 displays the activation
energies for NVP25 and NVP43, derived from the slopes of the Arrhenius plots of conduc-
tivity (Fig. 6.15). The calculated values are lower than their experimental counterparts,
explaining the overestimation of electrical conductivity observed in both CMD and MLIP
simulations. Notably, the MLIP results exhibit closer agreement with experimental data.

As reported, CMD data significantly overestimates the ionic conductivity of NVP25
and NVP43 by several orders of magnitude. This aligns with the general understand-
ing that CMD simulations, particularly those using two/three-body (CMD2-type) force
fields, tend to overestimate Na+ ion diffusion and conductivity in glass systems [327]. This
overestimation can be attributed to several factors, mostly related to a simplified represen-
tation of many-body interactions also connected to an overall approximated description
of the complex glass network structure and possibly the lack of polarization effects.
On the other hand, the MLIP-GAP potential, while still overestimating ionic conductiv-
ity compared to experimental values, provides results much closer to reality. Accordingly
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Table 6.9. Calculated activation energy as the slope of Arrhenius plot of the conductivity for NVP25 and
NVP43 glasses at 473.15 K, simulated using CMD and MLIP-GAP. These simulated values are compared
with experimental conductivity values reported in the literature. [316–318]

Activation energy
Ea (eV)

Model (% of Na2O) Exp. data CMD MLIP-GAP
NVP25 (40%) 0.80 [317] 0.18 0.21
NVP43 (28.5%) 0.56a [316, 318] 0.17 0.19

aExperimental NVP glass composition: 30Na2O-20VxOy-50P2O5 [10V2O5 + 10VO2] [316, 318].

with previous findings [327, 328], the Na+ ions dynamical mechanism involves the corre-
lated jump of neighbouring cations inside percolation channels created by non-bridging
oxygen (NBO) atoms which are linked to network former ions and waggle to accompany
the alkaline jump. Fig. 6.16 depict this scenario from a snapshots of the NVP25 model
simulated by MLIP-GAP at 1200 K. This improved performance not only supports the
MLIP-GAP’s superior ability to describe the structure of NVP glasses but also extends
to a more accurate representation of their dynamical properties. The enhanced accuracy
of the MLIP-GAP potential can be attributed to its ability to capture more complex in-
teratomic interactions and its data-driven approach, which allows it to implicitly account
for many factors that simple CMD potentials struggle to represent. Despite this analysis
being preliminary, our findings indicate that the newly developed MLIP-GAP already sur-
passes the performance of available CMD potentials in describing the dynamical properties
of Na+ ions in NVP glasses. Future work is needed to fully understand the dynamical
properties of NVP glasses, including potential collective effects that extend beyond the
analysis of conductivity based solely on the tracer diffusivity of Na+ ions. Nevertheless,
this improved description of both structural and dynamical properties underscores the
potential of MLIP-GAP in advancing our understanding and prediction of complex glass
systems.

Figure 6.16. Snapshot of a percolation channel created in NVP25 glass by Na+ ions mostly interacting
with neighbouring NBOs, as simulated by MLIP-GAP at 1200 K.

6.5.2 Hopping conductivity

The study of electronic conduction phenomena in transition metal oxide systems has been
a relatively active field, witnessing significant advancements in recent years [329–331]. In
particular, the small-polaron hopping mechanisms in these systems are now being assessed
using techniques such as constrained-DFT (CDFT) methods, where charge/hole hopping
between sites is analyzed [332–334]. Among the systems studied in the literature, Ti-, Hf-,
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and V-containing crystalline phases have been extensively investigated. However, there is
a notable gap in research concerning amorphous systems. Experimental data interpreta-
tion often involves approximations to apply theoretical models of small-polaron hopping
mechanisms, typically based on the estimated distances between V–V sites through which
charge/hole hopping occurs. Often, approximated molecular dynamics or reverse Monte
Carlo simulations are employed to estimate these V–V distances [89, 313, 335]. Alter-
natively, these distances have been otherwise assumed to be homogeneously distributed
within the glass network. Typically, within the frame of theoretical interpretation of ex-
perimental DC conductivity data, the Mott’s model [34, 312] of polaron-conducting glasses
is employed to analyse the conductive behaviour of TMO glasses. Such model is typically
employed to interpret the Arrhenius-like behaviour of the temperature dependence of DC
conductivity of TMO glasses following the relation:

σDC = vphe
2C(1 − C)
kBTR

exp(−2αR) exp
(−EDC
kBT

)
(6.4)

at temperatures higher than θD/2, where θD is Debye temperature, where the conduction
occurs by phonon-assisted hopping of small polarons between nearest localized states [34,
312]. νph is the phonon frequency ( 1013 Hz), e the charge of an electron, C the fraction
of metal ions in a lower oxidation state, kB the Boltzmann constant, T the temperature,
α the tunneling factor, and EDC the activation energy for DC conduction. In such model,
R is the average spacing between TM ions and it is often calculated as homogenously
distribution (R = N−1/3) or by approximated MD or reverse Monte Carlo simulations.
As shown in Fig. 6.17, the first prominent peak of the V–V partial pair correlation func-
tions obtained in the present work for NVP40A glass occurs at different positions (R) when
comparing NVP models obtained by CMD2, f BOMD, and MLIP-GAP (see Tab. 6.10).
The MLIP-GAP results align more closely with f BOMD, while CMD data show a clear
over-structuring of the pair correlation function. This overestimation is indicative of an
over-structuring of the glass network, as thoroughly analyzed in previous sections.
This emphasizes the need for accurate modeling of the structural, bonding, and electronic
properties of NVP glasses. Structural information, such as V–V correlations, is often used
to theoretically interpret experimental conductivity data. Accurate structural models are
essential before explicitly studying the polaron behavior of NVP glasses using advanced
techniques like CDFT previously mentioned. Our preliminary results set the groundwork
for future research by demonstrating that the developed MLIP-GAP can deliver struc-
tural NVP glass models that are nearly as accurate as BOMD and surpass widely used
empirical potentials in CMD simulations. This provides a more realistic representation of
the structural properties in amorphous transition metal oxide systems, thereby improving
our understanding and interpretation of their electronic conduction phenomena.

Table 6.10. Calculated V–V (R) interatomic distance in NVP40A and VP50 glasses models by CMD,
BOMD, and MLIP-GAP.

Model R (Å) Exp. data CMD BOMD fBOMD MLIP-GAP
NVP40 Rpeak – 3.56 3.51 3.37 3.37

Rmin/Rmax 3.25/4.03 2.99/4.00 2.94/(3.65)4.13 2.67(2.95)/3.70
VP50 Rpeak 3.56 3.53 3.51 – 3.43

Rmin/Rmax 3.10/3.90 3.20/3.91 3.14/3.84 –/– 3.08/3.73
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Figure 6.17. Partial pair correlation function gVV(r) computed at CMD, BOMD, and MLIP level for
NVP40A (left) and VP50 (right) glasses.

6.6 Conclusive remarks

In this final Chapter, dedicated to the study of (N)VP glasses using a machine learning
interatomic potential (MLIP), we first developed a GAP-type MLIP from the two FPMD
trajectories of NVP40 glasses produced in Chapter 5. This MLIP-GAP was tested and
validated on NVP40 glasses through a detailed comparative study similar to the one
conducted in Chapter 5. We thus demonstrated the superiority of MLIP compared to the
current empirical interatomic potentials tested.
A study of the transferability of this potential was conducted on ternary NVP glasses not
included in the training database and then on the VP50 glass studied in Chapter 4. The
results obtained show a good agreement in both reciprocal and real space.
We also performed an electronic analysis of the NVP structures produced by MLIP through
post-procedure DFT calculations. The results obtained reveal a structure quite similar to
that of BOMD with an accurate speciation of the oxidation levels of the vanadium sites.
For example, our MLIP predicted an NVP40A structure with all vanadium in the V5+

state, in agreement with expectations.
Furthermore, we conducted a preliminary study of the dynamic properties of NVP glasses
with our MLIP. The ionic conductivity of Na+ ions was studied for NVP25 and 43 systems,
and a better agreement was obtained with experimental data compared to the CMD
results.
Although this MLIP-GAP potential could be further improved to make it more robust, it
shows a prediction very close to quantum mechanics while allowing a significant reduction
in calculation time, approximately 1045 times cheaper than BOMD for the example of the
NVP40 system with 396 atoms (See Appendix A.1.2, for a comparison of computational
cost BOMD vs MLIP.)
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Chapter 7

General conclusions and
perspectives
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7.2.1 Assessing electronic transport of application-relevant NVP glasses
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7.2.2 Advancing MLIP development: Implementing active learning and
automated strategies for minimal training set generation and opti-
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7.2.3 From NVP glasses to engineered glass-ceramics: designing next-
generation energy storage materials . . . . . . . . . . . . . . . . . . . 135

7.1 General conclusions

In this thesis, we focused on the study of glassy materials for their potential application
in energy storage devices, particularly sodium-ion batteries. Glassy and glass-ceramic
systems, a family of polyanionic compounds, are emerging as an innovative solution for
second-generation solid-state batteries due to their simplicity of design, relatively low
production cost, low environmental impact, and safety. This work focused on sodium-
vanadium-phosphorus (NVP) oxides systems, for which we conducted a detailed study
to shed more light on their structure, bonding, and electronic and magnetic properties.
To conduct this study, we relied on atomic-scale modeling tools detailed in Chapter 2 of
this thesis. Our approach consisted of first employing classical MD based on empirical
force fields which does not take into account the electronic description, then a hybrid
method combining long CMD complemented by short first-principles molecular dynamics
to incorporate the electronic contribution in the description of these systems. We also em-
ployed a more computationally expensive approach based entirely on FPMD, and finally,
an approach integrating artificial intelligence. This last approach consisted of perform-
ing classical dynamics with a machine learning interatomic potential developed on DFT
observable calculated on trajectories produced by FPMD. These four approaches were
thoroughly applied to the study of different NVP systems, and the results obtained and
presented in Chapters 3-6 are summarized below.
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In Chapter 3, we validated the MLIP methodology on a binary system as study case:
l-GeSe2, a disordered chalcogenide with available CPMD trajectories from the team and
in literature. Our primary aim was to address a persistent discrepancy between FPMD
calculations and experimental partial structure factors by examining potential size effects
on the structural properties of liquid GeSe2. Our comprehensive study of l-GeSe2 with
MLIP-GAP confirmed its capability to accurately model disordered systems with covalent
and ionocovalent bonds, achieving FPMD-level accuracy and improving our understand-
ing of their structural properties. Our results corroborated the complexity of Ge’s atomic
environment as revealed by FPMD. Consequently, we investigated potential size effects
on l-GeSe2’s structure, observing an enhancement of the SGeGe first peak intensity but
negligible effects on the SCC partial structure factor. By modeling up to four replicas of
systems exceeding a million atoms, we found an FSDP intensity enhancement in the Ge–
Ge structure factor, which did not affect much the FSDP intensity of the SCC structure
factor. This suggests a negligible size effect on the structural properties of l-GeSe2 across
various model sizes. Our MLIP-GAP model significantly advanced our understanding of
l-GeSe2’s structural characteristics and the potential size effect on describing this system
with a complex Ge environment. This initial MLIP study provides a foundation for inves-
tigating more complex systems, such as NVP materials.

In Chapter 4, we initiated our investigation of oxide systems by focusing on a vanadophos-
phate (VP) glass system made of 50%-50% of vanadium oxide and phosphorus oxide, re-
spectively. We conducted a detailed exploration of its structural, bonding, and electronic
properties, starting by evaluating the performance of three different empirical CMD force
fields. Through in-depth comparison with BOMD simulations and experimental data,
we demonstrated BOMD’s effectiveness in addressing CMD’s shortcomings, achieving a
significantly improved quantitative description of VP50 glass structures. BOMD enabled
unprecedented agreement with experimental data in both reciprocal space (neutron and X-
ray structure factors) and real space (total pair correlation functions) properties. The key
improvement stems from a superior description of the local electronic and bonding envi-
ronment around P and, especially, V sites, unattainable with empirical force fields. BOMD
revealed clear signatures of single V–O and double V=O bonds, along with a more accurate
description of the VOn coordinating polyhedra distribution that forms the glass network.
We enriched our study with a comprehensive analysis of bond angle distributions around
VOn units, order parameter, network connectivity, and local bonding features based on
Wannier functions formalism. Additionally, we assessed which CMD scheme aligns more
closely with BOMD and experimental data, finding that including three-body potential
parameters associated with the local environment of V sites significantly improves CMD
performance. However, even with this enhancement, CMD still falls short of BOMD’s
accuracy in describing VxOy–P2O5 glass. Based on the V sites speciation, our calculation
indicate a chemical composition corresponding to 50VxOy[31.6V2O5–18.0V2O4–0.4V2O3]–
50P2O5 in contrast with the commonly referred composition 50V2O5–50P2O5, typically
reported in the literature [53, 272]. Collectively, our results establish the computational
foundation for a deep understanding of VP amorphous glasses, outlining the requirements
for developing interatomic potentials that enable quantitative comprehension and design
of VP-based amorphous materials.

In Chapter 5 focusing on ternary systems, we explored the structural, bonding, and elec-
tronic properties of Na2O-VxOy-P2O5 (NVP) glasses using three different computational
approaches. The limitations of empirical force fields, assessed as the most suitable in
Chapter 4, were highlighted, and we showcased the improvements brought by FPMD, ini-
tially through a short post-equilibration at 300 K with BOMD of the structure simulated
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by CMD, and more thoroughly through a complete thermal cycle study with full BOMD.
The results obtained reveal that classical force fields are limited in accurately modeling
the local environment of vanadium in NVP glasses, often approximating their short-range
order. In contrast, FPMD significantly enhances the accuracy of these models, particu-
larly in distinguishing V–O interactions and oxidation states. A significant advancement
emerging from our study is the demonstration that an FPMD thermal cycle offers su-
perior structural details compared to CMD and even CMD followed by a short BOMD
equilibration. The short BOMD method provides intermediate results, better than CMD
alone, but not as accurate as a complete FPMD cycle. FPMD simulations enable accu-
rate distinction between single V–O bonds and double V=O bonds through a detailed
description of the local vanadium environment. This leads to a well-defined short-range
V–O polyhedral environment, crucial for understanding the functional properties of NVP
glasses. Comparison with experimental data in both reciprocal and real space confirms
the superiority of FPMD in accurately determining V oxidation states and provides a reli-
able representation of local electronic environments, as well as the local structure around
phosphorus and vanadium sites. This comprehensive analysis underscores the necessity of
advanced computational methods for accurately modeling the complex structures of NVP
glasses.
With this superiority of the BOMD method in determining the properties of complex
glasses such as NVP systems, the path is paved for future research, particularly the devel-
opment of machine learning-enhanced interatomic potentials, shedding more light on the
design of more realistic models of NVP-based materials for technological energy storage
applications.

In Chapter 6, we developed a machine learning interatomic potential (MLIP) within the
GAP framework to investigate (N)VP systems. This MLIP demonstrated accuracy com-
parable to FPMD in predicting structural properties of these materials. The electronic
properties, obtained as post-processing to the charge density with the MLIP-GAP, align
well with FPMD results and enable speciation of V oxidation states, leading to accurate
chemical compositions. This advancement in MLIP development for NVP glasses pro-
vides a valuable tool for exploring complex material behaviors with greater efficiency and
accuracy.

7.2 Future perspectives and directions

7.2.1 Assessing electronic transport of application-relevant NVP glasses
using FPMD and CDFT

This thesis has made a significant advancement in the quantitative description of NVP
glass structures and local environments, advancing beyond previous models. While a
comprehensive structural analysis based on the varying oxidation states of V sites in
NVP glasses remains to be fully explored (as was done for VP50 glass in this work), the
groundwork has been laid for future investigations. The combination of improved struc-
tural models and access to electronic structure data through FPMD/BOMD schemes now
paves the way for a deeper understanding of electronic transport in NVP glass systems.
This advancement is particularly crucial given the pivotal role of electronic transport in
determining the performance of these materials in energy applications. Moving forward,
the integration of structural insights with electronic properties promises to unlock new
avenues for optimizing NVP glasses for specific energy-related uses. While current under-
standing has been largely based on macroscopic conductivity data interpreted through the
lens of Mott’s small polaron hopping model [34, 312], this approach has shown limitations
in accurately predicting and explaining observed phenomena.
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A promising avenue for advancement lies in revisiting this theoretical framework with
more realistic structural information. By leveraging BOMD and MLIP, we can obtain
more accurate representations of polaron site distances and local environments. This
refined structural data, when incorporated into the traditional Mott model, has the po-
tential to improve theoretical predictions with experimental observations, particularly in
terms of temperature-dependent conductivity behavior. However, the true leap forward
in understanding these systems comes from the application of Constrained Density Func-
tional Theory (CDFT) to explicitly characterize polaron features and transport mecha-
nisms [333, 334, 336]. CDFT allows for a detailed examination of polaron properties,
including their spatial extent, formation energies, and coupling to local lattice distortions,
nowadays largely applied to crystalline system but not yet to amorphous systems. By
using structural models derived from BOMD and MLIP simulations, we can map out the
VxOy polyhedra local environment landscape and its influence on polaron formation and
transport.
This approach enables the identification of preferential sites for polaron localization and
provides insights into the dynamics of polaron transport [330]. The detailed analysis
of polaron mobility and its dependence on local structure promises to unveil the intri-
cate relationships between atomic-scale structure and macroscopic transport properties in
NVP glasses for energy storage applications. This perspective outlines a path towards
a more comprehensive and accurate theoretical treatment of electronic conductivity in
NVP glass systems. By combining this knowledge with the assessment of ionic conductiv-
ity performance of NVP glasses derived from MD (BOMD and MLIP), we stand to gain
unprecedented insights into the fundamental mechanisms of charge transport in these im-
portant materials. This enhanced understanding has the potential to significantly impact
the development of next-generation energy storage materials.

7.2.2 Advancing MLIP development: Implementing active learning and
automated strategies for minimal training set generation and op-
timization

The development of MLIP for amorphous systems has, in general, improved our ability to
model complex amorphous materials as presented in this thesis for GeSe2 and VP/NVP
systems, bridging the gap between the accuracy of first-principles methods and the effi-
ciency required for large-scale and longer-scale simulations. However, the process of gener-
ating and optimizing these potentials often relies heavily on human intuition and manual
intervention, potentially introducing biases and requiring computational overly-workloads.
This perspective explores the promising direction of implementing active learning (AL)
and automated strategies to enhance MLIP development, with a particular focus on min-
imizing the training set size while maximizing potential accuracy and transferability. AL
approaches offer a paradigm shift in how we construct MLIPs. By intelligently select-
ing the most informative configurations for training from a given DB, these methods can
dramatically reduce the amount of high-quality reference data needed. This is partic-
ularly crucial for complex systems like NVP glasses, where generating ab initio data is
computationally expensive. Our preliminary efforts int his direction follows a two-fold
strategies. On one side, we are testing the AL algorithm based on the strategies proposed
by Deringer et al. [337] and Milardovich et al. [338, 339]. This AL approach improved
the training dataset by adding configurations from MD simulations, each driven by newly
developed GAP. With each iteration, a new GAP potential was created. We then selected
and recalculated the energies, forces, and virials at DFT level of new configurations from
novel classical MD trajectory, incorporating this data into the training datasets. This
approach is showing great promise in reducing possible unphysical atomic clustering at
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high temperatures. On the other side, we are also testing the innovative AL scheme based
integrating Bayesian Optimization (BO) to dynamically optimize the MLIP-GAP hyper-
parameters proposed by Sivaraman et al. [311]. This AL strategy allows minimizing the
MAE of GAP-predicted energies using an initially defined testing dataset and allows to
minimized the effect of DB building by human bias.
Looking forwards, prioritize developing robust metrics to evaluate the performance, robust-
ness [170, 340], and transferability of MLIPs will be crucial. Incorporating prior physical
knowledge into automated MLIP processes will also be a key point. These advancements
in MLIP development to have broad implications. For NVP glasses and similar complex
materials, improved MLIP potentials will facilitate more extensive simulations, yielding
deeper insights into structure-property relationships. Furthermore, the methodologies
presented here have the potential to be generalized, accelerating materials discovery and
optimization across diverse applications.

7.2.3 From NVP glasses to engineered glass-ceramics: designing next-
generation energy storage materials

The frontier of energy storage materials is continually advancing, and a promising direc-
tion lies in the development of engineered glass-ceramics derived from NVP glass systems.
This perspective explores the potential of bridging the gap between glassy and crystalline
materials, combining the structural flexibility and ease of synthesis characteristic of glasses
with the superior conductivity and mechanical robustness of crystalline materials. Such
an approach holds immense promise for designing next-generation cathode materials for
energy storage applications [341, 342]. Our preliminary work has been focused first on
extending our MLIP modeling to larger NVP glass systems, pushing the boundaries to
systems of up to 3168 atoms. This scaling-up is crucial for tentatively assess and capture
the full complexity of these materials and improving the quantitative agreement between
our MLIP, BOMD, and experimental data. The refinement of MLIPs for these larger sys-
tems will provide a solid foundation for exploring more complex structures and interfaces
(see Fig.7.1).

The primary direction of our future work lies in the exploration of glass-crystal inter-
faces, which form the core of glass-ceramic materials. Our preliminary investigations
have focused on the interface between NVP33 glass and NaVOPO4 crystalline materials.
This choice is motivated by the observation in lithium oxide containing similar parent
glasses [50, 51] serves as an ideal precursor for the crystalline glass-ceramic, exhibiting
promising conductivity and charge/discharge performance for energy storage applications.
Our initial studies have centered on an interface model comprising about 700 atoms,
combining NVP33 glass and NaVOPO4 crystal structures (Fig. 7.2)1. We’ve tested the
capabilities of CMD2, MLIP, and BOMD in describing this complex interface. A key
aspect of this work has been the evaluation and improvement of our CMD2 and MLIP po-
tential to accurately represent both the crystalline and glassy phases. Additionally, we’ve
made strides in refining our MLIP-GAP model by incorporating a small set of defected
NaVOPO4 crystal models into the training set. While the results are promising, further
refinement is needed to fully capture the complexities of these interfaces.
Looking ahead, our research will drive deeper into the structural, bonding, and Na+ con-
ductivity properties of these glass-crystal interfaces. We plan to expand our investigations
to other crystalline phases that have shown promise in experimental collaborations, such
as Na2V3P2O13 and Na3V2(PO4)3 systems. This broader exploration will provide a more

1Interface model under study within the present PhD thesis and the M2 internship project (2024) of
A. Familiari, an Erasmus+ M2 candidate from the University of Modena and Reggio Emilia (Italy), with
whom I closely collaborated during the final months of this PhD thesis.
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comprehensive understanding of the potential glass-ceramic compositions and their proper-
ties. The ultimate goal of this research direction is to engineer glass-ceramic materials that
optimize the beneficial properties of both glassy and crystalline phases. By fine-tuning the
interface between these phases, we aim to enhance ionic conductivity, improve mechanical
stability, and optimize charge/discharge characteristics. This approach could lead to the
development of cathode materials with superior performance for next-generation energy
storage devices.
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Figure 7.1. X-ray structure factor comparing two MLIP NVP40A models (396 atoms and 3168 atoms)
alongside BOMD data and experimental results.

Figure 7.2. Snapshot of the NVP33/NaVOPO4 glass-ceramic interface current under study by atomistic
modeling as perspective work of the present PhD thesis (Colors legend: Na, green; P, orange; O, red; V5+,
blue; and V4+, light blue).
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Appendix

A.1 Computational workload and cost

A.1.1 CPMD simulation (cpmd code v4.3)

System size = 240 atoms
Simulation cell = (19.76)3 Å3.
Integration time step = 0.012 fs (5 a.u.)
Number of cores = 168 (24 MPI*7OMP) on a Linux HPC Intel
Time for one iteration = 1.28 s
Cost for one step = 1*168*1.28 = 0.0597 h/mpc (hours/mono-processor)
Time for to produce 100 ps trajectory = 497777.78 h/mpc
HPC center = Pole HPC ÉquipeMeso of the University of Strasbourg.

A.1.2 CMD simulations, MLIP-GAP with LAMMPS

Table A.1. Computational cost for CMD with MLIP-GAP potential on LAMMPS for GeSe2 and NVP
systems.

GeSe2 NVP40
System size (atoms) 240 1179120 396 3168
Cubic box length (Å) 19.76 355.92 17.64 35.29
Integration time step (fs) 1 1 1 1
Number of cores (CPU) 168 504 168 336
Time for one iteration (s) 0.0682 35.5001 0.5376 1.302
Cost for 100 step (h/mpc) 0.32 497.00 2.51 12.15
Cost for 100 ps (h/mpc) 318.3 497001.0 2510.0 12520.0
Linux HPC cluster Intel Cascade Lake with Mellanox Infiniband 100 Gbp

Pole HPC ÉquipeMeso of the University of Strasbourg
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A.1.3 BOMD simulations (CP2K)

Table A.2. Computational cost for BOMD simulations of NVP40 systems with CP2K package.

NVP40A NVP40B
System size (atoms) 396 388
Cubic box length (Å) 17.64 17.95
Integration time step (fs) 1 1
Number of cores (CPU) 320 320
Time for one iteration (s) 295.445 437.393
Cost for one step (h/mpc) 26.262 38.879
Cost for 60 ps (h/mpc) 1575706.67 2332762.67

Cluster: HPE SGI 8600 14PF Jean Zay platform
HPC center: Jean Zay, IDRIS – GENCI, Paris

A.2 Two and three body parameters for CMD

Table A.3. Atomic charge of different atoms used in classical MD simulations of VP50 glass.

Elements Na+ V4+ V5+ P O
Charges 0.6 2.4 3.0 3.0 -1.2

Table A.4. Parameters used for BMP-shrm potential (FF1 and FF2), from ref. [80, 87, 88, 108].

Morse parameters
Pairs Dij(eV) r0(Å) aij(Å−2) Bij(eV Å12)
Na–O 0.023363 3.006315 1.763867 1.0
O–O 0.042395 3.618701 1.379316 100.0
P–O 0.831326 1.790790 2.585833 1.0
V4+–O 0.032832 2.663618 2.109308 1.0
V5+–O 0.021911 3.398507 1.495955 1.0

Buckingham parameters
Aij(eV) ρij(Å−2)

P–P 5.093669 0.905598
Three-body screened harmonic parameters

Triplets Kijk(eV rad−2) θ0(deg) ρ (Å)
P–O–P 65.0 109.47 1.0
P–O–V 120.0 109.00 1.0
V–O–V 30.0 109.00 1.0

Table A.5. Parameters used for FF3, from ref. [32, 59].

Pairs Aij(eV) ρij (Å) Cij(eVÅ6) rsij(Å) Bij(eVÅn) Dij(eV Å−2) nij
O–O 2029.2204 0.3436 192.580 1.906 46.339 -0.328 3.424
P–O 26655.4720 0.1820 86.856 1.169 28.566 -3.406 4.636
V4+–O 6199.7311 0.2152 25.516 1.093 39.879 -5.599 3.065
V5+–O 23300.0000 0.1799 8.649 0.684 255.295 -229.2793 2.314
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A.3 Hyper parameters for MLIP-GAP fitting for NVP and
GeSe2 systems

Table A.6. Summary of MLIP-GAP potential fitting hyperparameters: Descriptions and optimized values.

Hyper-
parameters

Descriptions Values

Two-body descriptor GeSe2 NVP-v1 NVP-v2
cutoff Cutoff distance in kernel in Å 2.5 5.0 6.0
n sparse Number of representative points 20 50 80
delta Scaling of kernel per atom pair

(in eV)
0.1 1.0 0.4

theta uniform Length scale in Gaussian kernel
(in Å)

1.0 1.0 1.0

covariance type Form of kernel ard se
sparse method Choice of representative points uniform grid

Many-body SOAP descriptor GeSe2 NVP-v1 NVP-v2
cutoff Cutoff distance in the kernel (in

Å)
4.5 5.0 5.0

n max & l max Number of radial and angular ba-
sis functions

6 & 8 5 & 8 5 & 8

atom sigma Gaussian smearing width of atom
density (in Å)

0.7 0.5 0.5

cutoff transition
width

Distance over which the kernel is
smoothly reduced to 0

1.0 1.0 1.0

n sparse Number of representative points 2500 2676 3600
delta Scaling of kernel, per descriptor

(in eV)
1.0 0.2 0.2

zeta Power of the kernel 4 4 4

default sigma Default regularisation for: en-
ergy, force, virial

{0.001
0.05
0.05}

{0.01
0.02
0.02}

{0.01
0.05
0.02}

sparse jitter Extra diagonal regulariser 10−12 10−10 10−10

sparse method Choice of representative points cur points
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[112] S. Nosé. A unified formulation of the constant temperature molecular dynamics
methods. J. Chem. Phys, 81(1):511–519, 1984.

[113] W.G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys.
Rev. A, 31(3):1695, 1985.
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purpose interatomic potential for silicon. Phys. Rev. X, 8(4):041048, 2018.

[198] R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, and M. Parrinello. Graphite-
diamond phase coexistence study employing a neural-network mapping of the ab
initio potential energy surface. Phys. Rev. B, 81(10):100103, 2010.

[199] W. Li, Y. Ando, E. Minamitani, and S. Watanabe. Study of Li atom diffusion in
amorphous Li3PO4 with neural network potential. J. Chem. Phys., 147(21), 2017.

[200] W. Li, Y. Ando, and S. Watanabe. Cu diffusion in amorphous Ta2O5 studied with
a simplified neural network potential. J. Phys. Soc. Jpn., 86(10):104004, 2017.

[201] N. Artrith and A. Urban. An implementation of artificial neural-network potentials
for atomistic materials simulations: Performance for TiO2. Comput. Mater. Sci.,
114:135–150, 2016.

[202] N. Artrith, A. Urban, and G. Ceder. Constructing first-principles phase diagrams
of amorphous LixSi using machine-learning-assisted sampling with an evolutionary
algorithm. J. Chem. Phys., 148(24), 2018.

[203] G.C. Sosso, D. Donadio, S. Caravati, J. Behler, and M. Bernasconi. Thermal
transport in phase-change materials from atomistic simulations. Phys. Rev. B,
86(10):104301, 2012.

[204] D.K. Bhamare, P. Saikia, M.K. Rathod, D. Rakshit, and J. Banerjee. A machine
learning and deep learning based approach to predict the thermal performance of
phase change material integrated building envelope. Building and Environment,
199:107927, 2021.

[205] F.C. Mocanu, K. Konstantinou, T.H. Lee, N. Bernstein, V.L. Deringer, G. Csányi,
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[289] S. Zhang, M. Makoś, R. Jadrich, E. Kraka, K. Barros, B. Nebgen, S. Tre-
tiak, O. Isayev, N. Lubbers, R. Messerly, and J. Smith. Exploring the fron-
tiers of chemistry with a general reactive machine learning potential. chemrxiv,
10.26434/chemrxiv-2022-15ct6-v3, 2023.

[290] Y. Manyi, L. Bonati, D. Polino, and M. Parrinello. Using metadynamics to build
neural network potentials for reactive events: the case of urea decomposition in
water. Catalysis Today, 387:143–149, 2022.

[291] S. D. Wansi Wendji, R. Piotrowski, C. Massobrio, M. Boero, C. Tugène, F. Shuaib,
D. Hamani, P. M. Geffroy, P. Thomas, A. Bouzid, O. Masson, G. Delaizir, and
G. Ori. Enhanced structural description of sodium vanadium phosphate glasses:
A combined experimental and molecular dynamics study. J. Non-Cryst. Solids,
655:123420, 2025.

[292] F. Kong, X. Liang, L. Yi, X. Fang, Z. Yin, Y. Wang, R. Zhang, L. Liu, Q. Chen,
M. Li, et al. Multi-electron reactions for the synthesis of a vanadium-based amor-
phous material as lithium-ion battery cathode with high specific capacity. Energy,
219:119513, 2021.

[293] M. Neyret, M. Lenoir, A. Grandjean, N. Massoni, B. Penelon, and M. Malki. Ionic
transport of alkali in borosilicate glass. role of alkali nature on glass structure and
on ionic conductivity at the glassy state. J. Non-Cryst. Solids, 410:74–81, 2015.
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[316] M.-C. Ungureanu, M. Lévy, and J.-L. Souquet. Electrical properties of glasses of the
Na2O-V2O2-P2O5 system. Ceramics Silikáty, 44:81–85, 2000.
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Résumé détaillé de la thèse en
français

Introduction

La demande mondiale en énergie connâıt une forte croissance, portée par son rôle central
dans les activités humaines. Les combustibles fossiles, encore dominants, sont responsables
de fortes émissions de CO2, contribuant significativement au réchauffement climatique et
à la dégradation environnementale. Ce constat impose une transition urgente vers des
sources d’énergie renouvelables (solaire, éolienne, hydraulique), plus durables. Toutefois,
leur intermittence, à la fois temporelle et géographique, limite leur intégration massive.
Dans ce contexte, les systèmes de stockage d’énergie apparaissent comme des solutions
clés, allant des dispositifs portables aux infrastructures de grande envergure.
Parmi les technologies de stockage, les batteries lithium-ion (LIB) se distinguent par
leur densité énergétique, leur efficacité et leur durabilité (Whittingham, Chem. Rev.,
104, 10, (2004)). Cependant, la rareté du lithium, sa répartition géographique inégale et
l’augmentation de son coût appellent à explorer des voies complémentaires. Les batteries
sodium-ion (NIB), partageant des similarités structurales et fonctionnelles avec les LIB,
suscitent un intérêt croissant (Ong et al. Energy Environ. Sci., 4, 9, (2011)). Bien que
les ions Na+ soient plus lourds et volumineux que les Li+, leur diffusion peut être facilitée
dans des structures cristallines ouvertes, suggérant un fort potentiel pour les applications
à grande échelle (Usiskin et al. Nat. Rev. Mater., 6, 11, (2021)).
Les avancées récentes en science des matériaux ont permis de développer des composés aux
performances électrochimiques améliorées. Néanmoins, les NIB doivent encore surmon-
ter plusieurs verrous technologiques avant une commercialisation viable. Les matériaux
polyanioniques vitreux et vitrocéramiques, notamment en tant qu’électrodes, offrent des
perspectives prometteuses: sécurité accrue, meilleure durabilité, procédés de fabrication
simplifiés (Ni et al. Adv. Sci., 4, 3, (2017)). Toutefois, leur adoption reste freinée par un
manque de compréhension fondamentale à l’échelle atomique, concernant leur structure,
la nature des liaisons chimiques et les mécanismes de transport ionique.
Ce travail de recherche s’inscrit dans cette problématique et se concentre sur l’étude atom-
istique de verres et vitrocéramiques polyanioniques sodium-vanadium-phosphate (NVP),
inspirée des performances observées pour leurs équivalents au lithium (Sapra et al. Wiley
Interdiscip. Rev.: Energy Environ., 10, 5, (2021)). Le manque de données sur les systèmes
vitreux NVP entrave le développement de cathodes performantes adaptées aux NIB.
L’objectif principal est d’étudier des matériaux NVP désordonnés potentiellement effi-
caces comme électrodes pour le stockage d’énergie. Pour ce faire, des approches de
modélisation à l’échelle atomique (DFT-FPMD) et d’apprentissage automatique sont mo-
bilisées pour concevoir et étudier des verres NVP aux propriétés structurales, chimiques
et électrochimiques optimisées. En parallèle, une base de données issue des calculs DFT-
FPMD (énergies, forces, ...) est construite afin de développer un potentiel interatomique
basé sur l’intelligence artificielle (MLIP), permettant l’exploration efficace de modèles
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réalistes de verres tout en conservant une précision de niveau quantique. Les résultats
sont structurés en trois volets principaux:
(i) Evaluation des performances des champs de force empiriques pour la modélisation atom-
ique du système binaire 50VxOy–50P2O5 (VP50) et proposition d’une approche combinant
la dynamique moléculaire classique (CMD) et ab-initio (BOMD).
(ii) Modélisation des systèmes ternaire αNa2O – βVxOy – γP2O5 (NVP) par CMD
et BOMD avec une analyse approfondie de leurs propriétés structurales, magnétiques,
électroniques et dynamiques.
(iii) Développement d’un potentiel MLIP pour les verres NVP, basé sur les données DFT-
FPMD obtenues, afin de modéliser et caractériser efficacement ces matériaux et identifier
les perspectives de leur application dans les batteries à l’état solide.

Système binaire 50VxOy–50P2O5 (VP50)

Ce premier volet de cette thèse, s’intéresse aux propriétés du système binaire vanadophos-
phate (La publication [1] présente de manière synthétique l’ensemble des résultats obtenus
pour ce système). La coexistence de plusieurs états d’oxydation du vanadium (V5+, V4+ et
V3+), associés à des nombres de coordination variables, engendre une structure de réseau
vitreux particulièrement complexe, constituée d’un large éventail d’unités structurales.
Cette complexité structurale rend la caractérisation atomique précise difficile, ce qui justi-
fie le recours à des outils de modélisation quantitative afin d’appréhender plus finement la
topologie de ces systèmes amorphes (voir également notre contribution sur les matériaux
à changement de phase dans la publication [2]).
Trois champs de force classiques sélectionnés dans la littérature ont été utilisés pour réaliser
des simulations de dynamique moléculaire classique (CMD) (Ori et al., J. Non-Cryst.
Solids, 357, 14 (2011); Bertani et al., Phys. Rev. Mater., 5, 4 (2021); Lu et al., J.
Phys. Chem. B, 125, 44 (2021); Malavasi et al., Acta Mater., 229, 117801 (2022)). Les
simulations ont été effectuées à l’aide des codes DL-POLY et LAMMPS avec un pas
d’intégration de 1 fs.
Pour chaque champ de force, quatre configurations initiales aléatoires contenant respec-
tivement 218 et 5450 atomes ont été générées. Les tailles des cellules de simulation ont été
définies de manière à reproduire la densité expérimentale du verre VP50. Les simulations
ont suivi un protocole thermique impliquant des cycles de fusion et de trempe. Le contrôle
de la température a été assuré par l’application du thermostat de Nosè–Hoover (voir notre
contribution sur le développement des équations de Nosè dans la publication [3]).
À l’issue de chaque simulation, les 150 ps finaux d’une trajectoire de 300 ps à 300 K ont
été retenus pour l’analyse. La structure finale est obtenue par la moyenne des quatre
répliques associées à chaque champ de force.
La simulation ab-initio est réalisée à 300 K à l’aide du code CP2K à partir des con-
figurations issues des simulations CMD. Cette approche (CMD + courte BOMD), est
notée s-BOMD. Plus précisément, la simulation BOMD est réalisée à partir des struc-
tures extraites des configurations CMD à 300 K, pour 5 ps en utilisant la fonctionnelle
d’échange-corrélation PBE, suivie de 500 fs avec la fonctionnelle hybride PBE0 (Adamo et
al. J. Chem. Phys., 110, 13, (1999)). Les 3 ps finaux de la trajectoire de chaque réplique,
obtenus au niveau PBE, combinés à 500 fs supplémentaires au niveau PBE0 à T = 300 K,
ont été utilisés pour caractériser les propriétés structurales. La dernière étape de s-BOMD
avec la fonctionnelle hybride PBE0 s’est révélée essentielle pour assurer la convergence de
la localisation du spin sur les sites V. Son influence sur les propriétés structurales a cepen-
dant été négligeable. L’analyse de la structure électronique et des propriétés de liaison a
été réalisée à partir de la densité d’états électronique (DOS) et des fonctions de Wannier
localisées (MLWF) (Marzari et al. Phys. Rev. B, 56, 20, (1997)).
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Propriétés électroniques et spéciation des sites vanadium dans le verre

Le vanadium étant un métal de transition, la stabilité du verre dépends du ratio des
différents états d’oxydation dans sa matrice. Du point de vue de la modélisation à l’échelle
atomique, les simulations CMD utilisent un étiquetage prédéfini pour représenter les sites
de vanadium (V) dans les verres, chaque état d’oxydation du V étant attribué en fonction
des paramètres du champ de force considéré. En revanche, les simulations BOMD, comme
toutes les approches fondées sur la DFT, ne nécessitent aucun étiquetage a priori des sites
de V. La spéciation finale du vanadium est déterminée uniquement par le nombre total
d’atomes d’oxygène, conformément à la composition chimique 50VxOy[sV2O5–zV2O4–
wV2O3]–50P2O5.
Les méthodes d’analyse de la charge électronique, telles que celles de Mulliken et Bader,
n’ont pas permis de distinguer les différents sites V. Pour surmonter cette limitation et
quantifier avec précision les espèces de V présentes, nous avons utilisé des projections lo-
cales de densité de spin sur les sites de vanadium, notamment lors du calcul des bandes
interdites (voir Figure 1). Cette analyse a été menée à l’aide des fonctionnelles PBE et
hybride PBE0. Il est important de noter qu’avec la fonctionnelle PBE, les valeurs de
bandes interdites obtenues sont toutes inférieures à 0.2 eV, tandis qu’avec PBE0, une
meilleure précision est atteinte avec des valeurs bien définies comprises entre 2.3 et 2.8 eV.
Ces résultats indiquent que le verre VP50 se comporte comme un semi-conducteur à large
bande interdite, doté d’un magnétisme faible mais mesurable, à l’instar de certaines phases
cristallines de phosphates vanadyles VOPO4, dont les gaps rapportés se situent entre 2.5
et 2.9 eV (Zheng et al., Phys. Scripta, 97, 10 (2022)). La différence d’énergie entre les
états de spin ’up’ et ’down’ rend compte du caractère magnétique non négligeable du verre
VP50, attribuable à la présence potentielle de sites V4+ et V3+.

Figure 1. Valeurs moyennes de la largeur de bande interdite (en haut, en eV) et des densités de spin σspin
(en bas, en unités e) calculées pour chaque site vanadium avec la fonctionnelle PBE (à gauche) et PBE0 (à
droite) pour les trois modèles s-BOMD (BO1, BO2, BO3). Il convient de noter que les valeurs de la bande
interdite pour les états de spin up et down sont indiquées en tant que moyenne des quatre configurations
simulées pour chaque modèle s-BOMD. Les densités de spin sont indiquées sous forme de diagrammes de
violon montrant la distribution des points de données individuels des quatre configurations pour chaque
modèle s-BOMD simulé. À l’échelle PBE0, on observe une ouverture de la bande interdite (2.3–2.8 eV)
ainsi qu’une organisation de la densité de spin autour des valeurs 0, 1 et 2, correspondant respectivement
aux configurations des états d’oxydation V5+, V4+ et V3+.

Contrairement à la fonctionnelle PBE, où les densités de spin sont réparties aléatoirement,
l’utilisation de la fonctionnelle PBE0 permet de mettre en évidence trois groupes bien
définis de densités de spin σspin pour les sites de vanadium (voir Figure 1). En comparai-
son, tous les atomes de P et O présentent des valeurs inférieures à 0.05. Ces valeurs pour

166



les sites de V (∼2, ∼1, ∼0) correspondent respectivement aux états d’oxydation V3+,
V4+ et V5+, en lien avec leurs configurations électroniques de valence [Ar]3d2, [Ar]3d1

et [Ar]3d0. Cette observation est cohérente avec le caractère magnétique des ions V3+ et
V4+, et le caractère non magnétique des ions V5+.
Les pourcentages assignés aux différents états d’oxydation du vanadium dans les trois
modèles s-BOMD sont de 0.8 % pour V3+, 35.9 % pour V4+ et 63.3 % pour V5+, en ex-
cellent accord avec les données expérimentales rapportées par Hoppe et al. J. Non-Cryst.
Solids, 358, (2012): 35.2 % pour V4+, 64.8 % pour V5+, et une fraction négligeable de
V3+.
Sur la base de ces résultats, la composition chimique du système peut être réécrite:
50VxOy[31.6V2O5–18.0V2O4–0.4V2O3]–50P2O5, indiquant clairement une teneur négligeable
en V2O3. Cette composition contraste avec la formulation classique 50V2O5–50P2O5
fréquemment citée dans la littérature.

Propriétés structurales du verre VP50

La Figure 2 présente la fonction de corrélation totale T (r) (dans l’espace réel) ainsi que
le facteur de structure SX(k) (dans l’espace réciproque), obtenu par transformation de
Fourier de T (r). Ces grandeurs ont été calculées à partir des simulations CMD et s-
BOMD. Les résultats sont comparés aux données expérimentales de Hoppe et al.. Seules
les données issues de la diffraction des rayons X sont présentées dans ce résumé, car les
rayons X, contrairement aux neutrons, sont plus sensibles à l’environnement atomique
complexe du vanadium. Cette sensibilité accrue s’explique par la très faible longueur de
diffusion des neutrons pour le vanadium (−0.382 fm). Les résultats structuraux obtenus
par diffraction des neutrons sont quant à eux détaillés dans le corps de la thèse (en Anglais).
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Figure 2. Facteurs de structure (à gauche) et fonctions de corrélation totale (à droite) et issus de la
diffraction des rayons X pour le système VP50 simulé par CMD et s-BOMD, pour les trois modèles
numérotés (1), (2) et (3). L’analyse est présentée pour le modèle à 218 atomes (CMD en violet et BOMD
en vert), le modèle à 5450 atomes (uniquement CMD, ligne bleue en pointillés), ainsi que les données
expérimentales (cercles noirs) (Hoppe et al. J. Non-Cryst. Solids, 358, (2012)).

L’accord entre les résultats théoriques et expérimentaux est quantifié par le facteur de
qualité Rχ, qui mesure le degré de désaccord entre la simulation et l’expérience (voir
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Eq.(1)).

Rχ = 100 ×


∑
i

[
Exp(i) − Sim(i)

]2
∑
i

[
Exp(i)

]2


1/2

, (1)

Pour les trois modèles s-BOMD, les valeurs de Rχ associées aux données SX(k) se situent
dans l’intervalle 8.4–9.8 contre 11.3–12.8 pour les modèles CMD. Ce qui met en évidence
une amélioration significative des résultats obtenus par s-BOMD par rapport à ceux is-
sus de CMD pour l’évaluation du facteur de structure total en rayons X indiquant une
amélioration importante de la description de l’environnement local des sites V dans VP50.
Concernant la fonction T (r), chacun des trois modèles CMD présente une surestimation
notable de l’intensité du premier pic, en comparaison avec les données issues des sim-
ulations BOMD. Néanmoins, les trois modèles s-BOMD montrent sans équivoque une
amélioration par rapport aux modèles CMD en ce qui concerne l’intensité de ce premier
pic. Il est remarquable que les résultats obtenus restent très similaires pour l’ensemble des
modèles BOMD, indépendamment du schéma CMD initial utilisé. Il convient également
de souligner que le modèle CMD(2) présente les plus faibles valeurs de Rχ, en comparaison
avec CMD(1) et CMD(3). On note des variations négligeables entre les modèles CMD à
5450 et 218 atomes.
Cette analyse structurale est complétée et détaillée dans la thèse par: les fonctions de
corrélation partielle, les nombres de coordination, l’identification des unités structurales,
la distribution des angles de liaison, les paramètres d’ordre local ainsi que la connectivité
du réseau. Il convient néanmoins de souligner que, concernant la fonction de corrélation
partielle V−O, qui reflète les interactions chimiques entre le vanadium et l’oxygène, une
différence marquée est observée entre les modèles CMD et s-BOMD. L’image des li-
aisons V−O issue de gVO(r) diffère significativement selon la méthode de simulation. Plus
précisément, les modèles CMD présentent un premier pic de gVO(r) centré autour de 1.79–
1.81 Å, tandis que les modèles s-BOMD montrent un comportement distinct, caractérisé
par un pic principal à environ 1.83–1.84 Å, précédé d’un petit pic bien défini (voir Fig-
ure 3(Gauche)). Ce dernier témoigne de la présence de courtes liaisons de type vanadyle
(V=O), caractéristiques des unités VOn. Une analyse DFT, basée sur les fonctions lo-
calisées de Wannier, est également réalisée afin d’élucider plus en détail les interactions
chimiques dans le verre VP50.

Liaisons chimiques dans le verre VP50

Afin d’approfondir la compréhension des liaisons chimiques, nous avons analysé les centres
des fonctions de Wannier localisées (WFC), en mettant l’accent sur ceux situés à prox-
imité des atomes d’oxygène. Ce choix s’explique par la forte électronégativité de l’oxygène
dans le verre VP50, tandis que ni le phosphore ni le vanadium ne contribuent via des
doublets non liants. Nous avons ainsi examiné la fonction de corrélation radiale gO−W(r)
calculée au niveau PBE0 et illustrée en Figure 3(Droite). La fonction de corrélation par-
tielle gO−W(r) révèle une bande distincte s’étendant de 0.2 à 0.5 Å, structurée autour
de trois maxima principaux, accompagnés d’une contribution mineure autour de 0.23 Å.
Parmi ces maxima, le plus intense se situe à 0.29 Å, tandis que les deux autres sont centrés
respectivement à 0.40 Å et 0.47 Å. Les profils de gO−W(r) issus des trois modèles s-BOMD
sont remarquablement similaires, ne différant que par de faibles variations d’intensité des
pics.
L’arrangement des WFC dans l’environnement atomique local entourant les unités PO4
tétraédrique et V0n (tétraédrique, pyramidale à base carrée, trigonale bi-pyramidale ou
octaédrale) reflète la présence de trois types distincts de WFC, que l’on peut corréler aux
distances identifiées par les trois maxima de gO−WFC(r): (i) WFC associés aux doublets
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Figure 3. Gauche: Fonction de corrélation partielle gVO(r) pour les modèles (1), (2) et (3), comparant
les résultats obtenus par CMD et s-BOMD. Les positions caractéristiques des liaisons V−O et V=O sont
indiquées. Droite: Fonction de corrélation partielle gO−W(r) décrivant les distances entre les atomes
d’oxygène et les centres de Wannier.

non liants, caractérisés par des distances O–WFC très courtes (0.29 Å); (ii) WFC indi-
viduels impliqués dans des liaisons simples de type P−O (∼1.60 Å) ou V−O (<2.4 Å)
présentant une distance O–WFC intermédiaire (0.40 Å); (iii) WFC doubles ou triples, im-
pliqués dans des liaisons plus courtes (P=O: ∼1.49–1.54 Å; V=O: ∼1.60–1.72 Å), et se situ-
ant à O–WFC plus longue (0.48 Å). L’ensemble des WFC se trouvent systématiquement
plus proches des atomes d’oxygène que des atomes de phosphore ou de vanadium, ce
qui témoigne du caractère iono-covalent fortement polarisé des liaisons P−O et V−O. La
densité électronique de valence y est localisée préférentiellement au voisinage des sites
oxygène.
Les longueurs de liaison simples et de type vanadyle obtenues par l’analyse des WFC
présentent une meilleure concordance avec les valeurs expérimentales rapportées que celles
extraites de la fonction de corrélation gV−O(r). Ces distances augmentent avec le degré de
coordination du vanadium, par exemple pour le V5+: ∼1.86 Å (VO4)< ∼1.92 Å (VO5)<
∼2.00 Å (VO6), en accord avec les observations expérimentales (Hoppe et al.; Boivin et
al., Molecules, 26, 5 (2021)).
Ce premier volet de la thèse met en évidence les limites des champs de force empiriques
testés, qui s’avèrent insuffisamment précis pour différencier les états d’oxydation du vana-
dium dans le verre VP50. En revanche, les simulations s-BOMD offrent une descrip-
tion nettement plus fiable et quantitative de la spéciation chimique, des liaisons et de
l’organisation structurale de ce système.

Systèmes ternaires αNa2O – βVxOy – γP2O5 (NVP)

Dans ce deuxième volet de la thèse, différentes concentrations du modificateur Na2O ont
été introduites dans des matrices VP afin de produire quatre compositions de verres NVP.
Ces systèmes ont été sélectionnés en concertation avec nos collaborateurs expérimentaux
dans le cadre du projet ANR AMSES (entre l’IPCMS et l’IRCER), qui ont assuré leur
synthèse. Les configurations atomistiques correspondantes ont été simulées par CMD,
suivie d’une courte BOMD (s-BOMD). De plus, deux de ces compositions (NVP40) ont
également été étudiées via un cycle thermique complet en BOMD (f -BOMD). Le Tableau 1
présente un récapitulatif des systèmes modélisés ainsi que leurs compositions chimiques.
Le facteur de structure total expérimental S(k) ainsi que les fonctions de distribution
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Table 1. Composition chimique nominale (en pourcentage molaire) des verres VP50, NVP40, NVP25
et NVP43 simulés. La teneur en V2O4 indiquée ici est estimée à partir du nombre d’atomes d’oxygène
présents dans la cellule de simulation. Le nombre d’atomes est indiqué pour les cellules de petite taille
(CMD, BOMD et MLIP) ainsi que pour les cellules de grande taille (CMD et MLIP).

Systèmes Na2O VxOy(V2O4 + V2O5) P2O5 Taille
(%) (%) (%) (atomes)

VP50 – 50.0 (31.3 + 18.7) 50 218/ 5450
NVP40A 10.0 40.0 (0.0 + 40.0) 50.0 396 / 3168
NVP40B 10.0 40.0 (13.3 + 26.7) 50.0 388/ 3104
NVP25 37.5 25.0 (2.7 + 22.3) 37.5 394 / 3152
NVP43 28.5 43.0 (6.5 + 36.5) 28.5 405 / 3240

radiale réduites G(r) de nos systèmes NVP ont été déterminés par diffusion totale des
rayons X. Les mesures de diffusion ont été réalisées à température ambiante. Les données
brutes ont ensuite été corrigées, normalisées, puis transformées de Fourier afin d’obtenir
les fonctions de distribution atomique réduites G(r).
La procédure de simulation utilisée précédemment pour le système VP50 a été reprise pour
les simulations CMD et s-BOMD. Une analyse des propriétés électroniques et structurales
des verres NVP, similaire à celle menée pour le verre VP50, a été effectuée.
Ayant établi la supériorité des simulations s-BOMD pour la description de l’environnement
local V−O, l’analyse de l’ensemble des fonctions de corrélation partielle s’appuie unique-
ment sur les données issues de s-BOMD, au détriment de celles obtenues par CMD.
La figure 4(Gauche) présente La décomposition de la corrélation gVO(r) en contributions
spécifiques gV4+O(r), gV5+O(r) ainsi que les fonctions gOO(r), gNaO(r), et gPO(r) dans les
verres NVP25 et NVP43 (voir la publication [4]).
Dans le cas du système NVP25, la corrélation P−O présente un pic principal à 1.50 Å,
accompagné d’une ”épaule” à 1,62 Å. Les corrélations V5+–O révèlent deux pics situés à
1.62 Å et 1.84 Å, correspondant respectivement aux liaisons vanadyles (V=O) et aux li-
aisons simples V−O. La corrélation V4+−O montre quant à elle un pic principal à 1.89 Å,
avec une faible épaule autour de 1.62 Å. Pour le système NVP43, la corrélation P−O
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présente un pic unique à 1.53 Å. La corrélation V5+−O affiche un premier pic moins défini
à 1.62 Å (V=O), suivi d’un second pic à 1.75 Å, plus court que celui observé dans NVP25
(1.84 Å).
Aucune différence notable n’est observée entre les deux systèmes en ce qui concerne les
corrélations O−O et Na+−O (avec un pic centré autour de 2.4 Å justifiant ainsi l’absence
de liaison chimique et le rôle de modificateur dans le verre). Le fait que les distances
V5+−O soient plus courtes que celles des liaisons V4+−O est en accord avec une tendance
bien documentée dans les phases cristallines de vanadophosphates, où la longueur de la
liaison V−O augmente à mesure que l’état d’oxydation du vanadium diminue (Schindler
et al. Chem. Mater., 12, (2000)).
Les simulations s-BOMD reproduisent fidèlement ce schéma de liaison non trivial au sein
des polyèdres VOn, en accord avec les tendances expérimentales: elles capturent simul-
tanément les courtes liaisons vanadyles et les liaisons simples V−O, avec des longueurs
de liaison caractéristiques selon l’état d’oxydation du vanadium, soit: V5+−O < V4+−O.
Les distances correspondantes sont de 1.75–1.84 Å pour V5+–O, et de 1.89–1.90 Å pour
V4+−O dans les systèmes NVP25 et NVP43.
Ces résultats représentent une amélioration significative par rapport aux travaux antérieurs
basés uniquement sur des simulations CMD avec champs de force empiriques, tels que ceux
rapportés pour les systèmes LiVP (Broglia et al. J. Non-Cryst. Solids, 403, (2014)), et
soulignent l’importance des approches ab initio pour décrire avec précision les propriétés
des systèmes complexe.
Bien que la teneur en vanadium soit plus élevée dans NVP43, les environnements locaux
autour du vanadium et du sodium restent globalement similaires dans les deux verres.
La Figure 4(Droite) illustre la complexité du modèle atomistique des systèmes NVP (cas
du NVP43), représenté dans la cellule de simulation. Cette visualisation met en évidence
l’interconnexion entre les différentes unités structurales, ainsi que la structure ouverte fa-
cilitée par l’incorporation des ions Na+. On observe également que le V5+ se distingue
comme un formateur de réseau particulièrement actif, susceptible de générer des liaisons
supplémentaires au sein de la matrice vitreuse. Cette analyse s-BOMD révèle par ailleurs
une plus grande diversité des environnements locaux, en particulier autour des espèces
vanadium. Cette hétérogénéité structurale joue un rôle essentiel dans la compréhension
du comportement du verre dans divers contextes, notamment en ce qui concerne son in-
teraction avec les ions lors des processus d’insertion et d’extraction dans les applications
liées aux batteries.
Il convient néanmoins de souligner que certains aspects restent à approfondir, tels que le
prolongement de la relaxation thermique à l’échelle BOMD. Les simulations f -BOMD ef-
fectuées sur deux compositions NVP40 (en parallèle à la s-BOMD) permettent d’apporter
une description plus réaliste de ces systèmes. Les simulations f -BOMD permettent une re-
laxation complète des constituants du verre au cours des processus de fusion et de trempe,
ce qui conduit à une description plus fidèle de la structure à moyenne portée. À l’inverse,
les simulations s-BOMD ne permettent qu’une relaxation locale, conservant en grande
partie l’ordre à moyenne portée hérité des modèles CMD. Il convient de souligner que
les simulations f -BOMD ont été effectuées à l’aide du code CP2K, dans le cadre de la
DFT-BOMD sans restriction de spin.
La Figure 5(Gauche) présente une lecture atomistique des caractéristiques de liaison pro-
pres aux polyèdres VOn, fondée sur l’analyse des centres de fonctions de Wannier permet-
tant d’identifier différentes natures de liaisons. Elle présente aussi (Figure 5(Droite)) une
analyse de la topologie de spin du modèle NVP40 obtenu par simulation f -BOMD. Celle-
ci met en évidence une localisation du spin sur certains sites de vanadium correspondant
aux espèces paramagnétiques V4+, permettant ainsi une spéciation précise entre les états
d’oxydation V5+ et V4+.
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Figure 5. Modèles atomistiques obtenus par f -BOMD (Na: jaune, V: bleu, P: orange et O: rouge).
Gauche: centres de Wannier (vert) dans l’environnement local d’un atome de Vanadium, au sein
d’un polyèdre VOn. Droite: isosurfaces de densité de spin locale (0.05 a.u., en violet).

Une évaluation rigoureuse de l’environnement local du vanadium permet ainsi une dis-
tinction plus fine entre ”bridging oxygen” (BO) et ”non-bridging oxygen” (NBO) dans
le réseau vitreux, un paramètre clé influençant la dynamique des ions sodium qui fera
l’objet de la section suivante, en s’appuyant sur les simulations CMD réalisées à l’aide du
potentiel de type machine learning développé dans le cadre de cette thèse.

Développement d’un modèle de potentiel de Machine Learn-
ing pour l’étude des systèmes NVP

Compte tenu du coût computationnel très élevé des simulations f -BOMD, et afin d’étendre
significativement les échelles de temps et d’espace accessibles, nous avons pleinement ex-
ploité les trajectoires issues d’un potentiel interatomique basé sur l’apprentissage automa-
tique (MLIP), reposant sur la méthode GAP (Gaussian Approximation Potential) (Bartók
et al. Phys. Rev. Lett., 104, (2010)). Ce potentiel a été entrâıné à partir des données
issues des simulations f -BOMD. Cette méthodologie a également été testée sur d’autres
systèmes, notamment l’oxyde Na3OCl (voir publication [5]) et le chalcogénure GeSe2. Le
MLIP permet ainsi d’optimiser l’efficacité des simulations sans compromettre la précision
atteinte avec les simulations f -BOMD. Ce MLIP développé pour les systèmes NVP présente
d’excellentes performances globales en termes d’énergie et de forces et de viriels, avec des
erreurs moyennes d’entrâınement par rapport aux valeurs de référence DFT respective-
ment de 5.8 meV/atome, 0.4 eV/Å et 16.9 meV/atome. Des valeurs très similaires sont
observés sur les données de test/validation, attestant de la robustesse du modèle.
La Figure 6 met en évidence les améliorations significatives apportées par la méthode f -
BOMD par rapport aux simulations CMD et s-BOMD pour le système NVP40, tant au
niveau des facteurs de structure S(k) obtenus par diffusion aux rayons X que des fonc-
tions de distribution radiale réduites G(r). Ces améliorations se traduisent, pour S(k) et
G(r) par une réduction notable du paramètre Rχ, qui quantifie l’accord entre les données
calculées et expérimentales. Dans l’espace réciproque, f -BOMD permet une meilleure de-
scription de S(k) en élargissant le premier pic et en révélant une contribution secondaire
autour de 1 Å−1, capturant ainsi plus fidèlement l’ordre à moyenne distance.
Dans l’espace direct, et en se référant à G(r), la méthode f -BOMD reproduit bien les
données expérimentales pour le premier et le second pic, révélant clairement la présence
des liaisons doubles/vanadyles et simples, respectivement. Cette amélioration se maintient
également pour le quatrième pic, lié aux connexions polyédriques impliquant les distances
V−V et V−P.
Les performances du nouveau potentiel MLIP pour le système NVP40 sont également
illustrées à la Figure 6. Ce modèle MLIP reproduit fidèlement les résultats obtenus par f -
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Figure 6. Facteur de structure S(k) (à gauche) et fonction de corrélation total G(r) (à droite)
obtenues par diffraction des rayons X pour le verre NVP40. Les résultats de la modélisation
atomique (CMD, s-BOMD, f -BOMD, et MLIP de différentes tailles) sont comparés aux données
expérimentales.

BOMD, tant pour le facteur de structure S(k) que pour la fonction de distribution radiale
G(r). Cette fidélité est confirmée par les valeurs similaires du paramètre Rχ obtenues avec
le MLIP et le f -BOMD sur des modèles de 388 atomes. Des améliorations supplémentaires
sont observées lorsqu’un système beaucoup plus grand (3104 atomes, une échelle inacces-
sible aux simulations BOMD pour des durées significatives) est considéré.
La Figure 7 présente de manière comparative la fonction de corrélation partielle gV O(r)
pour les paires V–O obtenues à partir des différentes méthodes de calcul pour les systèmes
VP50 (gauche) et NVP40 (droite). Le modèle s-BOMD affiche des pics bien séparés corre-
spondant aux liaisons simples et doubles, localisés vers ∼1.6 Å (V=O) et ∼1.83 Å (V−O),
et améliore ainsi la description par rapport au pic unique élargi obtenu avec CMD. Cette
séparation est encore mieux marquée avec f -BOMD pour le système NVP40, qui montre
un minimum bien défini entre les pics, ainsi qu’une distance de liaison V−O (∼1.88 Å)
plus proche des valeurs expérimentales (∼1.92 Å).
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Figure 7. Fonction de corrélation partielle gVO(r) pour les verres VP50 (gauche) et NVP40B
(droite), obtenue à l’aide des méthodes CMD, s-BOMD, f -BOMD (pour NVP40B), et MLIP
(avec des tailles de systèmes petites et grandes).

Le MLIP permet de reproduire avec une grande précision les pics des liaisons V=O et
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V−O pour les deux systèmes comme l’illustre la Figure 7. La même précision est observée
les coordinations en accord avec les données issues du f -BOMD. L’approche MLIP permet
de réduire drastiquement le coût de calcul, passant d’environ 220 jours pour le f -BOMD
à seulement 4 jours avec le MLIP tout en préservant la précision ab initio.
La description structurale précise des verres NVP obtenue grâce à notre potentiel MLIP
permet une évaluation fiable de la conductivité ionique (σion), à partir des coefficients
de diffusion du sodium extraits de l’analyse des MSD. La Figure 8 présente le MSD du
système NVP43 révélant une dynamique hétérogène des ions Na+, marquée par une frac-
tion d’ions à mobilité quasi nulle (ions piégés), tandis que d’autres présentent une mobilité
significativement plus élevée (ions très mobiles) comme l’illustre la Figure 9.

Figure 8. Gauche: déplacement quadratique moyen (MSD) des ions Na+ dans le modèle NVP43 (3240
atomes) à 1200 K, calculé avec le potentiel MLIP, mettant en évidence les ions très mobiles en violet et
piégés en orange. Droite: graphique d’Arrhenius de log(σ) en fonction de 1000/T , comparant les résultats
de ce travail (en vert, simulation et expérience) à ceux d’autres verres NVP (gris: (Sharma et al., J. Phys.
Chem. C, 128, (2024)) et orange: (Wasiucionek et al. Solid State Ion.,70-71, 1994)).

À 473 K, le verre NVP43 présente une conductivité expérimentale totale de 3.3×10−5 S/cm
(voir Figure 8 et la publication [6]), mesurée par spectroscopie d’impédance électrochimique
(EIS). Le diagramme de Nyquist présente un demi-cercle presque idéal, légèrement déprimé
ce qui indique une conduction mixte, dominée par une conduction électronique (due au
mécanisme de small polaron hopping entre les sites V4+ et V5+), avec une contribution
mineure de la conduction ionique via Na+. Cette dernière, estimée à environ 5% à l’aide
des simulations MLIP (Figure 8), reste faible. Des données pour deux autres verres NVP
présentant des teneurs similaires en Na2O, mais différant par leur rapport V/P et la
spéciation du vanadium sont également indiquées. Pour ces systèmes, une conduction
mixte ionique/électronique a été observée, avec une contribution ionique pouvant attein-
dre jusqu’à 50% (Sharma et al., J. Phys. Chem. C, 128, (2024); Wasiucionek et al. Solid
State Ion.,70-71, 1994))
Cette étude propose ainsi une compréhension approfondie des propriétés structurales
et dynamiques des verres NVP, en s’appuyant sur une approche innovante combinant
données expérimentales, simulations ab initio et dynamique moléculaire par MLIP. Elle of-
fre des perspectives inédites sur l’ordre à moyenne distance, la spéciation du vanadium, les
mécanismes de transport ionique du sodium et la modélisation des interfaces verre/cristal,
posant ainsi les bases de la conception de matériaux vitreux et vitrocéramiques perfor-
mants pour le stockage d’énergie. La précision démontrée et la montée en échelle permise
par l’approche MLIP ouvrent également la voie à son application à d’autres systèmes
amorphes complexes, accélérant ainsi l’innovation dans les domaines de la science des ver-
res et des technologies énergétiques.
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Figure 9. Gauche: Aperçu de la structure dans la cellule de simulation (3240 atomes) du système NVP43
à 1200 K, avec les ions Na+ colorés selon la valeur de leur MSD; les unités POn et VOn sont représentées
par des polyèdres transparents. Centre: trajectoire d’un ion Na+ piégé et colorée selon sa MSD avec une
valeur finale de ∼2 Å2. Droite: trajectoire d’un ion Na+ très mobile, colorée selon la MSD atteignant une
valeur finale de ∼85 Å2.

Il convient de souligner que cette thèse s’inscrit dans le cadre du projet collaboratif ANR
AMSES (Conception de verres et de matériaux vitrocéramiques pour des applications dans
le stockage d’énergie par modélisation à haute performance). Ce projet associe l’équipe
expérimentale dirigée par O. Masson à l’Institut de Recherche sur les Céramiques (IRCER)
et l’équipe de modélisation atomique de l’Institut de Physique et Chimie des Matériaux de
Strasbourg (IPCMS). Les informations ayant guidé le choix des systèmes modélisés dans
cette étude, les conditions expérimentales appliquées lors de leur élaboration, ainsi que les
résultats issus de leur synthèse et de leur caractérisation, notamment pour les systèmes
de type NVP, sont le fruit de cette collaboration étroite entre les deux équipes.

L’ensemble des simulations réalisées dans le cadre de cette thèse a été effectué sur plusieurs
infrastructures de calcul haute performance. D’une part, la plateforme régionale CAIUS
(Cluster de Calcul Intensif de l’Université de Strasbourg), du mésocentre de l’Université
de Strasbourg, a été largement sollicitée. D’autre part, des ressources nationales ont été
mobilisées via le Grand Équipement National de Calcul Intensif (GENCI), en particulier
les centres IDRIS (Institut du Développement et des Ressources en Informatique Scien-
tifique), CINES (Centre Informatique National de l’Enseignement Supérieur) et TGCC
(Très Grand Centre de Calcul).
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Résumé 

Cette thèse porte sur la modélisation atomique des verres et vitrocéramiques polyanioniques 

sodium-vanadium-phosphate (NVP), matériaux prometteurs en tant que cathodes pour les batteries 

rechargeables de seconde génération. Les propriétés structurelles, magnétiques, électroniques et 

dynamiques de cette famille complexe de matériaux sont explorées à l’aide de simulations de 

dynamique moléculaire classique (CMD) et de dynamique moléculaire ab initio (FPMD). Dans un 

premier temps, la performance des champs de force empiriques est évaluée par comparaison avec 

les données expérimentales. Une approche hybride, peu coûteuse en ressources de calcul, est 

ensuite proposée. Elle combine la CMD suivie d’un raffinement par FPMD, permettant une 

description structurelle et électronique plus précise pour différentes compositions de verres binaires 

VP et ternaires NVP. Pour valider cette méthodologie, des simulations FPMD sont réalisées sur 

plusieurs compositions de verres NVP, et les résultats sont comparés à ceux obtenus via l’approche 

hybride. Afin de réduire davantage le coût computationnel sans compromettre la précision des 

simulations ab initio, un potentiel interatomique basé sur l’apprentissage automatique (MLIP) est 

développé à partir de données issues de calculs DFT/FPMD. Cette approche par apprentissage 

automatique est d’abord testée puis validée sur d’autres systèmes modèles, notamment l’oxyde 

Na3OCl et le chalcogénure GeSe2. En fin le ML est appliqué aux verres VP et NVP, permettant la 

prédiction fiable de leurs propriétés structurales et dynamiques, ainsi que la modélisation de 

l’interface verre/cristal. 

Mots clés: Verres, vitrocéramiques, NVP, chalcogénures, CMD, FPMD, MLIP 

 

Résumé en anglais 

This thesis focuses on the atomic-scale modeling of polyanionic sodium-vanadium-phosphate (NVP) 

glasses and glass-ceramics, which are promising cathode materials for next-generation 

rechargeable batteries. The structural, magnetic, electronic, and dynamic properties of this complex 

family of materials are investigated using both classical molecular dynamics (CMD) and ab initio 

molecular dynamics (FPMD) simulations. First, the accuracy of empirical force fields is assessed by 

comparison with experimental data. Based on this evaluation, a low-cost hybrid approach is 

proposed, combining CMD with subsequent refinement via FPMD. This method offers improved 

structural and electronic descriptions across a range of binary VP and ternary NVP glass 

compositions. To validate this approach, FPMD simulations are conducted on various NVP glass 

compositions, and the results are benchmarked against those obtained with the hybrid method. In 

order to further reduce computational costs while maintaining the accuracy of FPMD simulations, a 

machine-learning interatomic potential (MLIP) is developed using data derived from DFT/FPMD 

calculations. This ML-based approach is first tested and validated on other oxide (Na₃OCl) and 

chalcogenide (GeSe₂) systems and then applied to VP and NVP glasses, enabling accurate 

prediction of their complex properties and facilitating the modeling of the glass/crystal interface. 

Keywords: Glass, glass-ceramic, NVP, chalcogenides, CMD, BOMD, MLIP 
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