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Abstract

The human body is a complex system, and the human eye is no exception. Despite significant
advancements in medical research, many questions regarding ocular pathologies remain unan-
swered. The use of mathematical and computational models has revealed intricate mechanisms
underlying human physiology. Due to its special connection with the brain, the eye is considered
a window into the brain, providing non-invasive access to a range of biological markers that can
aid in diagnosing neurodegenerative diseases. Therefore, understanding the eye’s behavior, the
diseases that affect it, and the potential treatments is crucial.

This thesis focuses on the mathematical modeling and numerical simulation of ocular fluid
dynamics within the human eye, particularly on heat transfer and aqueous humor flow. These
methods must undergo validation with clinical data to ensure their reliability. Bio-physical
models involve numerous parameters that may be patient-specific or influenced by external
conditions. The objective of this sensitivity analysis is to understand how these parameters affect
the eye’s behavior and how they can be used for disease diagnosis, potentially assisting clinicians
in selecting the best treatment.

Such a study requires numerous simulations, which can be computationally expensive for
the complex models used in this thesis. To reduce this computational cost, we have developed
model reduction methods that decrease the number of equations to solve while maintaining result
accuracy.

In the first part of the thesis, we present the geometric and bio-physical models of the eyeball
concerning heat transfer. Next, we discuss the numerical discretization methods implemented to
simulate this model. The third chapter introduces the model reduction techniques used to lower
the computational cost of these simulations, particularly through the certified reduced basis
method. The fourth chapter addresses a specific issue related to the study of pointwise quantities
of interest within the framework of reduced bases for elliptic problems with a Dirac source term.
In the fifth chapter, we present the sensitivity analysis results obtained from our models. The
sixth chapter extends the initial thermal model by incorporating the flow of aqueous humor in
the anterior and posterior chambers of the eye. Finally, the seventh chapter provides an overview
of the implementation contributions of this thesis.
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Résumé

Le corps humain est un système complexe, l’œil humain n’y fait pas exception. Malgré
les avancées significatives de la recherche dans le domaine médical, de nombreuses questions
sur les pathologies restent sans réponse. En complément des études cliniques, l’utilisation de
modèles mathématiques et computationnels a permis de révéler des mécanismes complexes de
la physiopathologie humaine. Grâce à sa connexion spéciale avec le cerveau, l’œil est considéré
comme une fenêtre vers celui-ci, et permet un accès non invasif à un ensemble de marqueurs
biologiques qui pourraient aider au diagnostic de maladies neurodégénératives. C’est pour cela
qu’il est crucial de comprendre le comportement de l’œil, des maladies qui y sont liées et des
traitements qui peuvent être appliqués.

Dans cette thèse, nous nous concentrons sur la modélisation mathématique et la simulation
numérique de flux oculaire dans l’œil humain, particulièrement sur le transfert de chaleur et le
flux d’humeur aqueuse. Ces méthodes doivent par ailleurs passer par une phase de validation
avec des données cliniques, pour s’assurer de leur validité. Dans les modèles bio-physiques, de
nombreux paramètres interviennent, qui peuvent être spécifique à chaque patient ou venir de
conditions extérieures. Afin de comprendre comment ces paramètres influent sur le comportement
de l’œil, et comment ils peuvent être utilisés pour diagnostiquer des maladies, et éventuellement
aider les cliniciens à choisir le meilleur traitement, une analyse de sensibilité globale a été menée.

Une telle étude requiert un grand nombre de simulations, qui se révèle être très coûteux en
temps de calcul pour des modèles complexes tels que ceux utilisés dans le cadre de cette thèse.
Pour réduire ce coût, nous avons développé des méthodes de réduction de modèle certifiées, qui
permettent de réduire le nombre d’équations à résoudre, tout en conservant la précision des
résultats.

Dans une première partie, nous présentons les modèles géométriques et bio-physiques du
globe oculaire dans le cadre du transfert thermique. Ensuite, nous présentons les moyens de
discrétisations numériques mis en place pour simuler ce modèle. Dans un troisième chapitre,
nous présentons les méthodes de réduction de modèle utilisées pour réduire le coût de calcul de
ces simulations, en particulier avec la méthode des bases réduites certifiées. Dans le quatrième
chapitre, nous nous intéressons à une problématique soulevée par l’étude de quantités d’intérêt
ponctuelles dans le cadre des bases réduites à propos des problèmes elliptiques en présence d’un
terme source de type Dirac. Ensuite, dans le cinquième chapitre, nous présentons les résultats
de l’analyse de sensibilité obtenus via nos modèles. Dans un sixième chapitre, nous présentons
une extension de ce premier modèle de thermique, en prenant en compte le couplage avec le flux
d’humeur aqueuse dans les chambres antérieures et postérieures de l’œil. Enfin, dans un septième
chapitre, nous présentons un aperçu des contributions implémentées dans le cadre de cette thèse.
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Introduction en français

Avec le développement des nouvelles technologies, l’intérêt pour les modèles mathématiques
en biologie et en médecine s’est considérablement accru. En effet, l’utilisation de modèles
informatiques peut aider à comprendre des systèmes biologiques complexes et à prédire le
comportement de ces systèmes dans diverses conditions.

En raison de sa connexion spéciale avec le cerveau, l’œil est considéré comme une fenêtre
sur le cerveau, offrant un accès non invasif à un large ensemble de biomarqueurs qui pourraient
faciliter, par exemple, le diagnostic précoce des maladies neurodégénératives ou des conditions
cardiovasculaires [Che+24]. Cependant, la caractérisation des biomarqueurs oculaires comme
substituts de l’état vasculaire cérébral ou du corps humain est loin d’être triviale [Gui+20]. Les
mesures cliniques sont influencées par de nombreux facteurs qui varient d’un individu à l’autre
et ne peuvent être isolés in vivo, ce qui complique considérablement leur interprétation.

Comme reporté dans [Fly+23], la distribution actuelle des sources de preuves scientifiques
est également répartie entre les études humaines, animales et de laboratoire, avec seulement 1%
s’appuyant sur des modèles informatiques. Toutefois, les projections basées sur le programme
Computational Modeling and Simulation suggèrent une évolution future vers une plus grande
utilisation des simulations informatiques, qui devraient représenter 45% des preuves scientifiques,
comme illustré dans le graphique en Figure 1. Cette tendance reflète l’intégration croissante des
techniques informatiques avancées dans le développement des dispositifs médicaux, réduisant
ainsi la dépendance aux méthodes traditionnelles.
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Figure 1: Sources de preuves scientifiques, extrait de [Fly+23].

Les modèles computationnels jouent un rôle crucial dans la recherche scientifique, notamment
en biologie et en médecine. En effet, ils permettent de limiter le nombre d’expériences physiques
nécessaires pour développer un produit ou approfondir la compréhension d’une maladie, ce qui
réduit considérablement les coûts et diminue la dépendance vis-à-vis des données issues de tests
sur des animaux et des humains, en favorisant les données de patients virtuels.

L’étude des biofluides par des modèles mathématiques et informatiques n’est pas une approche
récente. Le système cardiovasculaire fut le premier système humain ainsi étudié, d’abord par
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Figure 2: Méthodologie pour le développement de modèles spécifiques aux patients, adaptée de
[Sal+23].

une approche purement mathématique au XVIIIe siècle [Eul75 ; Hal+33], puis sous un angle
computationnel [NVB63]. Par la suite, d’autres organes comme les poumons [Mau13], le
cerveau [Mar+22], etc. ont également été explorés.

Pour être complémentaires à la recherche traditionnelle, les modèles mathématiques et infor-
matiques doivent être basés sur des données cliniques, combinées à des connaissances biophysiques
et doivent être validés pour garantir leur fiabilité. Ce type de modèles a déjà été développé
pour des applications biomédicales spécifiques, telles que le système cardiovasculaire [Upd+17 ;
Art+21] ou l’hémodynamique cérébrale [Mar+22]. La Figure 2 illustre la méthodologie pour le
développement de modèles spécifiques au patient, en soulignant l’importance de l’intégration des
données à la fois du point de vue clinique et numérique.

L’intérêt pour l’œil est plus récent, mais a connu une croissance significative au cours des
dernières décennies. Plusieurs maladies oculaires sont encore mal comprises par la communauté
scientifique et le développement de modèles informatiques peut aider à mieux comprendre les
mécanismes sous-jacents [Gui+22]. Plusieurs modèles ont été proposés, comme étudié dans
[GHS19 ; HRE23]. En particulier, un modèle tenant compte des effets combinés du flux sanguin
oculaire et des différents tissus oculaires a été proposé dans [Sal+23]. L’Ocular Mathematical
Virtual Simulator (OMVS) [Sal19 ; Sal+23], est un cadre mathématique et informatique qui
permet de simuler des phénomènes multiphysiques impliqués dans l’œil, à partir de données
spécifiques au patient. Pour intégrer les incertitudes et la variabilité inhérentes aux modèles, une
analyse de propagation d’incertitude et de sensibilité sur le composant simulant les flux de fluides
dans l’œil a été menée dans [PSS21]. Ces méthodes de calcul et ces cadres in silico peuvent être
utilisés pour les patients virtuels et pour développer des modèles spécifiques aux patients ou des
jumeaux numériques œil-patient [Sal+21a].

Dans ce contexte, cette thèse s’inscrit dans le cadre du projet Eye2Brain [Sal16], dont l’objectif
ambitieux est de connecter les environnements cérébral et oculaire et de contribuer à long terme
à une meilleure compréhension des maladies neurodégénératives [Gui+20]. Bien que l’étude du
transfert de chaleur dans l’œil puisse ne pas sembler directement liée au cerveau, ce travail s’aligne
sur les objectifs du projet en améliorant notre compréhension des processus physiologiques au
sein de l’environnement oculaire, ce qui pourrait fournir des informations précieuses sur des
conditions systémiques et neurologiques.

Alors que des études antérieures se sont concentrées sur l’interaction entre l’hémodynamique et
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la biomécanique dans l’œil, nous nous concentrons dans ce travail sur le transfert de chaleur dans
l’œil et son couplage avec l’écoulement de l’humeur aqueuse. Plusieurs modèles mathématiques
ont été proposés pour l’étude de divers aspects de la distribution de la température dans le globe
oculaire humain et de ses variations dues au champ d’écoulement dans les chambres antérieure et
postérieure. En particulier, le transfert de chaleur dans l’œil a été étudié dans [Sco88 ; NO06 ;
NO07 ; ON08 ; Li+10], ainsi que l’écoulement de l’humeur aqueuse dans la chambre antérieure
et son couplage avec le transfert de chaleur [HB02 ; Wan+16 ; Mur+23]. Tous ces aspects
sont importants dans la perspective des connexions œil-cerveau [Gui+20], visant à prédire la
distribution des contraintes et des déformations survenant au cours de procédures diagnostiques
ou thérapeutiques, telles que le traitement par hyperthermie des tumeurs oculaires [Li+10] ou le
traitement par injection de cellules pour guérir la kératopathie bulleuse [Kin+18].

Alors que des études invasives ont été menées sur des animaux [PW05], les mesures non
invasives sur des sujets humains sont rares, complexes à réaliser et peuvent donner des résultats
inexacts [RF77]. La plupart des études se concentrent sur les mesures de température à la
surface de l’œil [Map68 ; EYB89], mais elles font état de différences significatives et identifient
plusieurs sources d’incertitude. Par ailleurs, les simulations numériques peuvent fournir des
informations complémentaires, éventuellement non disponibles pour les mesures expérimentales,
mais essentielles pour l’administration de médicaments et les évaluations pré- et post-opératoires,
telles que la contrainte de cisaillement des parois internes de l’œil.

L’analyse de sensibilité [Raz+21], en particulier par l’utilisation des indices de Sobol [Sob93],
permet d’explorer de façon systématique la façon dont les variations des paramètres du modèle
contribuent à la variabilité globale des résultats. Cela permet d’identifier les paramètres les plus
influents et de comprendre leurs interactions.

L’effort de calcul nécessaire pour résoudre des problèmes réalistes dans ce contexte est
considérable. Tout d’abord, la représentation de géométries 3D réalistes implique la manipulation
d’une quantité importante de données, ce qui accroît la complexité des simulations. Ensuite,
l’inclusion de modèles multiphysiques complexes, tels que le couplage du transfert de chaleur avec
la dynamique des fluides, ajoute des difficultés de calcul supplémentaires. En outre, l’incorporation
d’incertitudes dans les paramètres d’entrée par la quantification d’incertitudes et l’analyse de
sensibilité nécessite l’exécution de plusieurs simulations, chacune avec des paramètres variables.
Ce processus augmente considérablement la charge de calcul, ce qui rend essentielle l’utilisation
de ressources informatiques de haute performance (HPC), et le développement de méthodes
numériques efficaces pour réduire les coûts de calcul [QMN16 ; Pru+02].

Conformément à ces exigences de calcul, un autre aspect de cette thèse fait partie du projet
Exa-MA (Methods and Algorithms for Exascale) du programme PEPR NumPEx [Num24], qui se
concentre sur les défis exascale des méthodes numériques et des algorithmes.

Contributions
Dans cette thèse, nous développons un modèle mathématique et informatique en trois

dimensions de l’œil humain, en nous concentrant d’abord sur le transfert de chaleur, puis sur son
couplage avec l’écoulement de l’humeur aqueuse. Les modèles proposés intègrent divers paramètres
biomécaniques et géométriques. Nous nous concentrons ici sur les paramètres biomécaniques,
qui couvrent un large éventail de valeurs, y compris des conditions extrêmes potentielles. La
variation de ces paramètres peut avoir un impact significatif sur les résultats. Pour quantifier ces
impacts, nous mettons en place une étude de quantification d’incertitude, accompagné d’une
analyse de sensibilité approfondie.

Une validation rigoureuse est par ailleurs une étape clé pour garantir la fiabilité des résultats.
Nous confrontons nos résultats aux données disponibles dans la littérature, issues soit de mesures
réalisées sur des sujets en bonne santé [EYB89], soit de simulations numériques [NO06 ; NO07 ;
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Li+10 ; KS10], afin de confirmer la robustesse et la validité de notre approche.
Alors que les indices de Sobol mesurent efficacement les impacts et les interactions entre

paramètres, la complexité et le temps de calcul élevé requis par notre modèle posent des défis
considérables. Pour surmonter ces difficultés, nous adoptons la méthode des bases réduites
certifiées (RBM) [Pru+02 ; QMN16], une approche mathématique conçue pour accélérer les
simulations de systèmes complexes sans sacrifier la précision. Par essence, le RBM crée une version
simplifiée du modèle original en identifiant et en conservant uniquement ses caractéristiques les
plus essentielles, ce qui nous permet de construire un modèle réduit qui conserve sa nature 3D
tout en réduisant considérablement les coûts de calcul et en fournissant des résultats fiables.

La RBM se compose de deux phases : une phase dite hors ligne, au cours de laquelle la version
simplifiée (ou espace réduit) est construite, et une phase en ligne, au cours de laquelle le modèle
réduit est utilisé pour calculer efficacement les solutions. Bien que la phase hors ligne soit coûteuse
en termes de calcul, elle n’est exécutée qu’une seule fois. Par la suite, la phase en ligne permet des
simulations rapides, ce qui rend cette méthode particulièrement adaptée aux scénarios nécessitant
des évaluations répétées, telles que l’analyse de sensibilité ou la quantification de l’incertitude.
Cette méthodologie s’aligne sur le paradigme observé dans les modèles mathématiques spécifiques
aux patients appliqués aux problèmes biomédicaux, garantissant une approche globale impliquant
l’intégration des données, la dérivation du modèle, la résolution numérique, la validation et la
quantification d’incertitude. Ces paradigmes sont bien établis dans des domaines tels que les
simulations cardiovasculaires et l’hémodynamique cérébrale. En ophtalmologie, un cadre similaire
s’impose, en raison de la diversité et de l’hétérogénéité des données disponibles, et requiert des
stratégies innovantes pour optimiser le diagnostic et le suivi des patients.

Pour compléter la méthode RBM, nous mettons également en œuvre la méthode des bases
réduites non intrusives (NIRB) [CM09b ; CM09a ; Gro22], une variante de la méthode RBM
qui est particulièrement utile lorsque la complexité du modèle empêche l’application directe de
cette dernière. Contrairement au modèle RBM standard, le modèle NIRB utilise une stratégie de
discrétisation à deux niveaux, dans laquelle un modèle de substitution simplifié est construit et
résolu sans nécessiter de modifications directes du code de simulation original. Par ailleurs, le
paradigme hors ligne/en ligne reste pleinement applicable dans le cadre de la méthode NIRB.

Pour garantir une convergence quadratique rapide des résultats, la méthode RBM repose
sur une formulation duale du problème, dans laquelle chaque sortie est exprimée comme une
fonction linéaire de la solution. Cependant, dans certaines quantités d’intérêt, comme celles
qui sont étudiées dans cette thèse, la sortie peut impliquer des évaluations ponctuelles de la
solution. Cela engendre un problème dual intégrant un terme source de Dirac δx, localisé au
point x où la solution est évaluée. Dans de telles situations, la théorie classique de RBM n’est
pas directement applicable. Néanmoins, nos résultats numériques mettent en évidence des
propriétés de convergence en accord avec les prédictions théoriques dans le cas continu. Les
aspects théoriques et numériques du problème du laplacien avec un terme source de Dirac ont
été étudiés dans [KW14 ; Ber+18]. Bien que les résultats théoriques soient établis sous des
hypothèses spécifiques, nous observons des comportements similaires même lorsque ces conditions
ne sont pas strictement satisfaites. Nous proposons une analyse théorique et une exploration
numérique du problème laplacien avec un terme source de Dirac, en examinant diverses conditions
aux limites ainsi que différents ordres de discrétisation.

Nous étendons également le modèle thermique initial en intégrant l’écoulement d’humeur
aqueuse dans la chambre antérieure (AC) et postérieure (PC) de l’œil, en le couplant aux
processus thermiques affectant l’ensemble du globe oculaire. Ce couplage est crucial, car le
mouvement d’humeur aqueuse joue un rôle déterminant dans la répartition de la chaleur et la
régulation de la pression intraoculaire, deux facteurs essentiels pour la santé globale de l’œil.
Par ailleurs, la contrainte de cisaillement exercée sur les parois par l’écoulement de l’humeur
aqueuse constitue un facteur biomécanique clé. Elle influence directement la santé des tissus
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oculaires et peut affecter les voies de drainage, un aspect particulièrement pertinent dans des
pathologies comme le glaucome. Plusieurs études antérieures ont exploré divers aspects de cette
interaction complexe. Par exemple, [HB02 ; Wan+16 ; Mur+23] ont modélisé l’écoulement couplé
au transfert de chaleur dans les chambres AC et PC, tandis que [Sac+23] a analysé l’impact
de la pression sur l’écoulement et le drainage de l’humeur aqueuse. D’autres travaux [ON08 ;
BBS20 ; Abd+21 ; Dvo+22] ont étudié la dynamique thermo-fluide de l’écoulement d’humeur
aqueuse dans l’œil, en considérant des conditions aux limites spécifiques. Cependant, ces études
se concentrent souvent sur des géométries simplifiées ou négligent le couplage complet avec le
transfert de chaleur dans l’ensemble du globe oculaire. Pour résoudre efficacement le problème
numérique, nous adoptons des techniques avancées de préconditionnement multiphysique. Ces
approches combinent des préconditionneurs tels que GAMG [Bal+24] ou des préconditionneurs
par blocs efficaces pour les équations considérées [ESW14], afin de résoudre numériquement le
problème couplé de manière optimale. Enfin, dans un cadre de calcul haute performance, nous
analysons les propriétés d’extensibilité du modèle pour évaluer ses performances à grande échelle.

Au cours de ces trois années de thèse, de nombreuses contributions ont été apportées aux
codes de calculs, menant à la production de plusieurs ensembles de données. Pour garantir que
ces résultats puissent être validés et reproduits de manière indépendante, toutes ces contributions
ont été publiées en libre accès, favorisant la transparence et la réutilisation des travaux [Cam+24].

Plan du manuscrit

Chapitre 1 : Modélisation mathématique des mécanismes de transfert de chaleur dans
l’œil humain Dans ce premier chapitre, nous présentons dans un premier temps l’anatomie
et la physiologie du globe oculaire humain, ainsi que les différents défis pharmacologiques
et médicaux liés aux modèles considérés. Précisément, à partir de publications précédentes,
nous développons un modèle de transfert de chaleur dans l’œil humain, en prenant en compte
les différents mécanismes de transfert de chaleur, les conditions aux limites et les propriétés
thermophysiques des tissus oculaires :

∇ · (k∇T ) = 0 dans l’œil, (1a)

k
∂T

∂n⃗
= hamb(T − Tamb) + σε(T 4 − T 4

amb) + E sur la surface externe de l’œil, (1b)

k
∂T

∂n⃗
= hbl(T − Tbl) sur les surfaces internes. (1c)

Dans le modèle développé, de nombreux paramètres µ = [E, hbl, hamb, Tbl, Tamb, k] inter-
viennent, qui peuvent être spécifiques à chaque patient ou provenir de conditions extérieures,
et c’est précisément l’étude de l’impact de ces paramètres sur le comportement de l’œil qui est
l’objet de cette thèse. Nous nous intéresserons en particulier à des quantités d’intérêt, telles que
la température à un point donné ou la température moyenne dans une région de l’œil.

Enfin nous présentons le modèle mathématique qui découle de ces considérations, sous une
formulation variationnelle de la forme : Trouver le champ de température T (µ) ∈ V tel que pour
toute fonction test v ∈ V , l’égalité suivante soit satisfaite :

a(T (µ), v;µ) = f(v;µ). (2)

Chapitre 2 : Cadre computationnel du modèle haute fidélité : méthodes, vérifications
et validations Dans ce chapitre, nous présentons les méthodes numériques utilisées pour
résoudre le modèle mathématique développé dans le premier chapitre. Tout d’abord, nous
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(a) Géométrie réaliste de l’œil... (b) ... convertie en un maillage raffiné au
niveau des zones d’intérêt (les chambres anté-
rieures et postérieures)

Figure 3: Modèle géométrique : maillage à partir de données CAO.
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Figure 4: Distribution de la température sur l’œil, obtenue par la méthode des éléments finis.

commençons par présenter le modèle géométrique discret, c’est-à-dire la construction du maillage
à partir des données CAO (Conception Assistée par Ordinateur) de l’œil, mais aussi les techniques
de raffinement, comme illustré en Figure 3. Une étape de vérification des maillages générés est
aussi effectuée.

Ensuite, nous présentons la méthode des Éléments Finis, qui permet de calculer une solution
numérique au problème mathématique (2). Précisément, grâce à la discrétisation de la géométrie,
nous obtenons un équivalent discret au problème (2), via l’introduction d’un espace de fonction
Vh ⊂ V de dimension finie N : trouver Th(µ) ∈ Vh tel que pour toute fonction test vh ∈ Vh,
l’égalité suivante soit satisfaite :

a(Th(µ), vh;µ) = f(vh;µ). (3)

À partir de ce problème discrétisé, nous pouvons obtenir une solution numérique, comme
celle qui est donnée en Figure 4. Nous menons une étude de convergence et de stabilité de
la méthode, mais aussi une étape de vérification et de validation du modèle avec des données
simulées d’autres publications, et aussi de données cliniques mesurées sur des patients.

Chapitre 3 : Cadre computationnel du modèle réduit : méthodes et vérifications
Le modèle haute fidélité présenté dans le chapitre précédent est coûteux en temps de calcul et
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les études d’analyse de sensibilité que l’on va effectuer dans la suite nécessitent un grand nombre
de simulations. Pour cette raison, nous mettons en place des méthodes de réduction d’ordre,
permettant de réduire le temps de calcul tout en conservant la précision des résultats.

Dans un premier temps, nous présentons la méthode des bases réduites, avec bornes d’erreur
certifiées, qui permet d’explorer l’espace des paramètres du modèle, et de calculer des quantités
d’intérêt en temps réel. Précisément, une espace de fonction VN ⊂ Vh est construit, de dimension
N ≪ N , et une solution approchée TN (µ) ∈ VN est obtenue, telle que pour toute fonction test
vN ∈ VN , l’égalité suivante soit satisfaite :

a(TN (µ), vN ;µ) = f(vN ;µ). (4)

Une discussion est faite sur la manière de construire cet espace VN , qui est permis grâce à
une bornée d’erreur certifiée ∆N qui assure la précision des résultats :

∥T (µ)− TN (µ)∥V ⩽ ∆N (µ). (5)

Une seconde méthode de réduction d’ordre est présentée, la méthode des bases réduites non
intrusives, qui permet de répondre à certaines limitations de la méthode des bases réduites
classiques. Cette méthode est basée sur l’utilisation de deux niveaux de discrétisation, un fin
Vh et un grossier VH . Ainsi, les calculs haute fidélité sont effectués sur la grille grossière et la
solution est reconstruite sur la grille fine grâce à des opérations d’interpolation.

Ces deux méthodes ont un paradigme similaire : une étape coûteuse dite hors-ligne est
réalisée pour construire l’espace réduit VN . Cette première étape n’est faite qu’une seule fois.
Dans une seconde étape, dite en ligne, la solution réduite TN est obtenue en résolvant le problème
réduit (4), cette étape est beaucoup moins coûteuse en temps de calcul et permet de calculer des
quantités d’intérêt en temps réel.

Chapitre 4 : Résolution de problème elliptique en présence d’une source de type
Dirac La méthode des bases réduites introduite dans le chapitre précédent nous donne des
résultats cohérents avec la théorie usuelle, mais dans le cas où des sorties d’intérêts ponctuelles
sont considérées, nous sommes amenés à résoudre des problèmes avec un terme de type Dirac,
qui invalide l’utilisation de certains théorèmes de convergence. Dans ce chapitre, nous nous
intéressons à la résolution de problèmes elliptiques du type

∆u = δ0 dans Ω, (6)

avec différents types de conditions aux bords : Dirichlet, Neumann, Robin ainsi que des conditions
mixtes. Le logiciel Feel++ permet de résoudre ce type de problème. Nous nous intéressons
particulièrement à la convergence de la solution numérique sous différentes conditions aux bords,
mais aussi pour des positions différentes du Dirac.

Chapitre 5 : Analyse de sensibilité Dans ce chapitre, nous présentons les résultats de
l’analyse de sensibilité qui a été menée sur le modèle de transfert de chaleur dans l’œil humain,
introduit dans le Chapitre 1. L’objectif de cette étude est de comprendre comment les paramètres
du modèle influent sur les quantités d’intérêt, et comment ces quantités peuvent être utilisées
pour diagnostiquer des maladies. La Figure 5 montre la méthodologie suivie pour cette étude.

Deux études sont menées, une analyse déterministe suivant des résultats de précédentes études,
pour permettre une comparaison avec le modèle développé dans cette thèse. Une seconde étude
stochastique est menée, avec le calcul des indices de Sobol, permettant de quantifier l’impact des
paramètres sur les quantités d’intérêt.
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Modèle Sortie d’interêt s(µ)Paramètre d’entrée µ

Incertitudes Incertitudes ?

Figure 5: Propagation d’incertitudes.

Chapitre 6 : Modélisation couplée des flux d’humeur aqueuse et de transfert
de chaleur Dans ce chapitre, nous présentons un modèle couplé de transfert de chaleur
et de flux d’humeur aqueuse dans l’œil humain. Ce modèle est donné par le couplage des
équations de transfert de chaleur avec les équations de Navier-Stokes pour l’humeur aqueuse,
sous l’approximation de Boussinesq :

ρ(u⃗ · ∇u⃗)− µ∇2u⃗+∇p = −ρβ(T − Tref)g⃗ dans ΩAH, (7a)

Conservation de la masse ∇ · u⃗ = 0 dans ΩAH, (7b)

Transfert thermique ρCpu⃗ · ∇T − k∇2T = 0 dans Ω. (7c)

Approximation de BoussinesqÉquations de Navier-Stokes

La méthodologie des éléments finis est utilisée pour résoudre ce problème couplé, mais nécessite
une utilisation de préconditionneurs adaptés pour résoudre ce type d’équations. À partir de
ce modèle numérique, nous présentons des résultats de simulations, comprenant une étude de
l’impact de la position du sujet et aussi de la température extérieure sur diverses quantités
d’intérêt telles que la vitesse ou la pression du fluide, mais aussi la contrainte de cisaillement
exercée sur les parois de la chambre antérieure.

Chapitre 7 : Contributions logicielles Dans ce chapitre, nous présentons les contributions
logicielles qui ont été développées dans le cadre de cette thèse. Ces contributions s’inscrivent dans
une démarche de reproductibilité scientifique et de science ouverte, conformément aux principes
de transparence et de validation exposés dans [Cam+24]. Ces contributions ont été faites à la
librairie open-source Feel++1 [Pru+24b].

Chapitre A : Effet du refroidissement de la surface oculaire sur la sédimentation des
cellules endothéliales dans la thérapie par injection de cellules : Perspectives par la
Mécanique des fluides numérique Ce chapitre annexe reprend le travail qui a été proposé à
la conférence ARVO 2025, qui porte sur l’étude de l’effet du refroidissement de la surface oculaire
sur la sédimentation des cellules endothéliales dans la thérapie par injection de cellules, en vue
d’une application clinique à la thérapie de sédimentation des cellules endothéliales. Il s’agit
d’un extension du travail effectué dans le Chapitre 6, en collaboration avec Vincent Chabannes
(Cemosis, Université de Strasbourg), Giovanna Guidoboni (University of Maine) Christophe
Prud’homme (Université de Strasbourg) Marcela Szopos (Université Paris Cité), et and Sangly
P. Srinivas (School of Optometry, Indiana University).

Chapitre B : Simulation des interactions dans les communautés microbiennes à
l’aide de PINN Un chapitre annexe est consacré à la présentation des travaux réalisés lors
du CEMRACS 2023, qui porte sur la simulation numérique des interactions de populations
microbiennes à l’aide de réseaux de neurones. Ce travail a été réalisé en collaboration avec Javan

1� https://github.com/feelpp/feelpp

https://github.com/feelpp/feelpp
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Hossie (Université d’Orléans), Béatrice Laroche (INRAE), Thibault Malou (INRAE), Lucas
Perrin (Universität Konstanz) et Lorenzo Sala (INRAE).

Les micro-organismes forment des communautés complexes, des microbiotes, qui influencent
divers aspects de la santé de leur hôte. Le modèle de Lotka-Volterra généralisé (GLV) est
couramment utilisé pour comprendre la dynamique des populations de micro-organismes, mais
son application au microbiote se heurte à des difficultés dues au manque de données sur les
bactéries et à la complexité des interactions. Ce travail préliminaire se concentre sur l’utilisation
d’un Physics-Informed Neural Network (PINN) et de données synthétiques pour simuler l’évolution
d’espèces bactériennes décrite par un modèle GLV. Cette approche est calibrée et testée sur
plusieurs modèles qui diffèrent par leur taille et leur comportement dynamique.

L’avantage des PINN est qu’ils peuvent être entraînés à la fois sur des données, mais aussi
sur des équations différentielles, ce qui permet de capturer le comportement dynamique des
populations microbiennes.

Les réseaux de neurones permettent de mettre en place une méthodologie similaire à celle des
méthodes de réduction d’ordre du Chapitre 3, avec une première phase d’entraînement hors ligne
et une seconde phase d’inférence en ligne.

Publications et présentations durant la période de thèse

Publications

• Thomas Saigre, Christophe Prud’homme et Marcela Szopos. “Model order reduction
and sensitivity analysis for complex heat transfer simulations inside the human eyeball”.
en. In : International Journal for Numerical Methods in Biomedical Engineering 40.11
(sept. 2024), e3864. issn : 2040-7939, 2040-7947. doi : 10.1002/cnm.3864. url :
https://onlinelibrary.wiley.com/doi/10.1002/cnm.3864.

• Paguiel Javan Hossie, Béatrice Laroche, Thibault Malou, Lucas Perrin, Thomas
Saigre et Lorenzo Sala. “Surrogate modeling of interactions in microbial communities
through Physics-Informed Neural Networks.” Fév. 2024. url : https://hal.inrae.fr/h
al-04440736, à paraître dans ESAIM: Proceedings and Surveys.

• Thomas Saigre, Vincent Chabannes, Giovanna Guidoboni, Christophe Prud’homme,
Marcela Szopos et Sangly P Srinivas. Effect of Cooling of the Ocular Surface on
Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational
Fluid Dynamics. 2024, soumis.

• Thomas Saigre, Vincent Chabannes, Christophe Prud’homme et Marcela Szopos. “A
coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow
in the human eye”. In preparation.

• Silvia Bertoluzza, Christophe Prud’homme, Thomas Saigre et Marcela Szopos. “Low
to high order finite element resolution for elliptic problems in the presence of a Dirac source
term”. In preparation.

Proceedings de conférence à comité de lecture

• Thomas Saigre, Christophe Prud’homme, Marcela Szopos et Vincent Chabannes. “A
coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow
in the human eye”. In : 8th International Conference on Computational and Mathematical
Biomedical Engineering – CMBE2024 Proceedings. T. 2. Arlington (Virginia), United

https://doi.org/10.1002/cnm.3864
https://onlinelibrary.wiley.com/doi/10.1002/cnm.3864
https://hal.inrae.fr/hal-04440736
https://hal.inrae.fr/hal-04440736
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States : P. Nithiarasu et R. Löhner (Eds.), juin 2024, p. 508-512. isbn : 978-0-9562914-7-9.
url : https://hal.science/hal-04558924.

Présentations dans des conférences internationales

• 26 juin 2024. 8th International Conference on Computational and Mathematical
Biomedical Engineering, Arlington, USA : A coupled fluid-dynamics-heat transfer model
for 3D simulations of the aqueous humor flow in the human eye.

• 13 septembre 2023. CompBioMed Conference 2023, Munich, Allemagne : Model
Order Reduction and Sensitivity Analysis for complex ocular simulations inside the human
eyeball.

• 28 février 2023. SIAM Conference on Computational Science and Engineering,
Amsterdam, Pays-Bas : Model Order Reduction for Complex Ocular Simulations Inside
the Human Eyeball.

Présentations orales dans des conférences nationales, groupes de travail et
séminaires

• 13 décembre 2024. Groupe de travail Modélisation, Analyse et Simulation, Paris,
France : Mathematical modeling, simulation and reduced order modeling of ocular flows
and their interactions: Building the Eye’s Digital Twin.

• 28 mai 2024. CANUM, Île de Ré, France : Low to high order finite element resolution for
elliptic problems in the presence of a Dirac source term.

• 30 janvier 2024. Journées Numériques de Besançon, Besançon, France : Model order
reduction and sensitivity analysis for complex heat transfer simulations inside the human
eyeball.

• 16 janvier 2024. Séminaire EDP à l’IRMA, Strasbourg, France : Modèle de réduction
d’ordre et analyse de sensibilité pour les simulations de transfer de chaleur de chaleur à
l’intérieur du globe oculaire humain.

• 23 août 2023. CEMRACS 2023, Marseille, France : Estimation of interactions in
microbial communities via a neural network-based generalized smoothing algorithm.

• 1er décembre 2022. Séminaire Jeunes Chercheurs, Reims, France : Modèles de réduction
d’ordre des simulations oculaires complexes dans l’œil humain.

Présentations de posters

• 5 octobre 2022. Journée Math Bio Santé 2022, Besançon, France : Model order
reduction for complex ocular simulations inside the human eyeball.

• 13 juin 2022. CANUM, Évian-les-Bains, France : Modèles de réduction d’ordre des
simulations oculaires complexes dans l’œil humain.

Rapports techniques

• Christophe Prud’homme, Pierre Alliez, Vincent Chabannes, Rudy Chocat, Em-
manuel Franck, Vincent Fraucher, Floriant Faucher, Clément Gauchy, Christos
Georgiadis, Luc Giraud, Frédéric Hecht, Guillaume Helbecque, Pierre Jolivet,

https://hal.science/hal-04558924
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Olivier Jamond, Pierre Ledac, Nouredine Melab, Victor Michel-Dansac, Frédéric
Nataf, Lucas Palazzolo, Yannick Privat, Thomas Saigre-Tardif, El-Ghazali Talbi,
Pierre Henri Tournier, Christophe Trophime, Céline Van Landeghem et Raphael
Zanella. Benchmarking analysis report. Deliverable Report D7.1. tex.version: v1.1.0. U.
Strasbourg, INRIA, CEA, U. Lille, U. Luxembourg, CNRS, Sorbonne U., oct. 2024. url :
https://github.com/numpex/exa-ma-d7.1/.

Logiciels et jeux de données
• Christophe Prud’homme, Vincent Chabannes, Thomas Saigre, Christophe Trophime,

Luca Berti, Abdoulaye Samaké, Céline Van Landeghem, Marcela Szopos, Laetitia
Giraldi, Silvia Bertoluzza et Yvon Maday. feelpp/feelpp: Feel++ Release V111
preview.10. Juill. 2024. doi : 10.5281/ZENODO.12742155. url : https://zenodo.org/d
oi/10.5281/zenodo.12742155

• Vincent Chabannes, Christophe Prud’homme, Thomas Saigre, Sala Lorenzo, Marcela
Szopos et Christophe Trophime. A 3D geometrical model and meshing procedures for the
human eyeball. Sept. 2024. doi : 10.5281/ZENODO.13829740. url : https://zenodo.or
g/doi/10.5281/zenodo.13829740

• Thomas Saigre, Christophe Prud’homme, Marcela Szopos et Vincent Chabannes.
Mesh and configuration files to perform coupled heat+fluid simulations on a realistic human
eyeball geometry with Feel++. Oct. 2024. doi : 10.5281/ZENODO.13886143. url :
https://zenodo.org/doi/10.5281/zenodo.13886143

• Thomas Saigre, Christophe Prud’homme et Marcela Szopos. Model order reduction and
sensitivity analysis for complex heat transfer simulations inside the human eyeball. Oct.
2024. doi : 10.5281/ZENODO.13907890. url : https://zenodo.org/doi/10.5281/zeno
do.13907890

https://github.com/numpex/exa-ma-d7.1/
https://doi.org/10.5281/ZENODO.12742155
https://zenodo.org/doi/10.5281/zenodo.12742155
https://zenodo.org/doi/10.5281/zenodo.12742155
https://doi.org/10.5281/ZENODO.13829740
https://zenodo.org/doi/10.5281/zenodo.13829740
https://zenodo.org/doi/10.5281/zenodo.13829740
https://doi.org/10.5281/ZENODO.13886143
https://zenodo.org/doi/10.5281/zenodo.13886143
https://doi.org/10.5281/ZENODO.13907890
https://zenodo.org/doi/10.5281/zenodo.13907890
https://zenodo.org/doi/10.5281/zenodo.13907890
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Introduction

With the development of new technologies, the interest on mathematical models in biology and
medicine has greatly increased. Indeed, the use of computational models can help to understand
complex biological systems, and to predict the behavior of these systems under various conditions.

Because of the special connection to the brain, the eye is generally considered as a window
to the brain [Kel+24; Gui+20], that offers non-invasive access to a large set of biomarkers that
could help for instance in the early diagnosis of neurodegenerative diseases, or cardiovascular
conditions [Che+24]. However, characterizing ocular biomarkers as surrogates of cerebral or
systemic vascular status is far from trivial [Gui+20]. Clinical measurements are influenced by
many factors that vary among individuals and cannot be isolated in vivo, thereby posing serious
challenges for the interpretation of such measurements.

As pointed out in [Fly+23], the current distribution of scientific evidence sources is evenly
split between human, animal, and laboratory studies, with only 1% relying on computational
models. However, projections based on Computational Modeling and Simulation suggests a
future shift towards a heavier reliance on computer simulations, expected to account for 45%
of the evidence, as pointed out in Figure 6. This trend reflects the increasing integration of
advanced computational techniques in medical device development, reducing dependence on
traditional methods.

33%

33%

33%

1%

Human
Animal
Laboratory
Computer

15%

15%

25%

45%

Now Future

Figure 6: Sources of scientific evidence, from [Fly+23].

Indeed, computational models are crucial for scientific research, especially in biology and
medicine due to the fact they can decrease the number of physical tests necessary for product
development or disease understanding, thus reducing tremendously the economic cost and relying
less on animal and human data with a greater influence of data from virtual patients.

The study of biofluids using mathematical and computational models is not a novel approach.
The cardiovascular system was the first human system to be examined in this way, beginning
with a purely mathematical perspective in the 18th century [Eul75; Hal+33], and later from
a computational standpoint [NVB63]. Subsequently, other organs such as the lungs [Mau13],
brain [Mar+22], etc. were also investigated.
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Figure 7: Methodology for the development of patient-specific models, adapted from [Sal+23].

To be complementary to traditional research, mathematical and computational models should
stem from clinical data, combined with biophysical knowledge, and should be validated to
assure their reliability. This kind of models has already been developed for specific biomedical
applications, such as the cardiovascular system [Upd+17; Art+21] or cerebral hemodynamics
[Mar+22]. Figure 7 illustrates the methodology for the development of patient-specific models,
enlightening the importance of data integration from both clinical and numerical standpoints.

Interest in the eye, however, is more recent but has seen significant growth in the past
few decades. Several ocular diseases are still not well understood by the scientific community,
and the development of computational models can help to better understand the underlying
mechanisms [Gui+22]. Several models have been proposed, as reviewed in [GHS19; HRE23]. In
particular, a model accounting for the combined effects of ocular blood flow and different ocular
tissues was proposed in [Sal+23]. The Ocular Mathematical Virtual Simulator (OMVS) [Sal19;
Sal+23], is a mathematical and computational framework that allows to simulate multi-physic
phenomena involved in the eye, from patient-specific data. To incorporate inherent uncertainties
and variability, an uncertainty propagation and sensitivity analysis on the component simulating
the fluid flows in the eye was developed in [PSS21]. Such computational methods and in silico
frameworks can be used for virtual patients, and to develop patient-specific models, or patient
eye digital twins [Sal+21a].

In this challenging context, the present thesis is part of the Eye2Brain project [Sal16], which
has the ambitious objective of connecting the cerebral and ocular environments and contributing
in the long term to a better understanding of neurodegenerative diseases [Gui+20]. Although
the study of heat transfer in the eye may not seem directly related to the brain, this work aligns
with the project by enhancing our understanding of physiological processes within the ocular
environment, which could provide valuable insights into systemic and neurological conditions, as
well as on cardiovascular aspects [Kel+24].

While previous studies have focused on the interplay between hemodynamics and biomechanics
in the eye, in this work we concentrate on heat transfer in the eye and its coupling with the fluid
flow of the aqueous humor. Several mathematical models have been proposed for the study of
various aspects of temperature distribution in the human eyeball and its variations due to the
flow field in the anterior and posterior chambers. In particular, heat transfer in the eye has been
studied in [Sco88; NO06; NO07; ON08; Li+10], as well as the fluid flow of aqueous humor in
the anterior chamber and its coupling with heat transfer [HB02; Wan+16; Mur+23]. All these
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aspects are important in the perspective of eye-brain connections [Gui+20], aiming to predict
the distribution of stress and strains occurring during diagnostic or therapeutic procedures, such
as hyperthermia treatment of eye tumors [Li+10] or cell injection treatment to cure bullous
keratopathy [Kin+18].

While invasive studies on animals have been conducted [PW05], non-invasive measurements
on human subjects are scarce, complex to perform, and may yield inaccurate results [RF77].
Most studies focus on temperature measurements at the eye’s surface [Map68; EYB89] but
report significant differences and identify several sources of uncertainty. Alternatively, numerical
simulations can provide complementary information, eventually not available to experimental
measurements but critical for drug delivery and pre- and post-surgery assessments such as the
wall shear stress.

Sensitivity analysis [Raz+21], particularly through the use of Sobol’ indices [Sob93], allows
for the systematic exploration of how variations in the model parameters contribute to the overall
variability of the outcomes. This helps in identifying which parameters are the most influential
and understanding their interactions.

The computational effort required for solving realistic problems in this context is considerable.
First, representing realistic 3D geometries involves handling a significant amount of data, which
increases the complexity of the simulations. Second, the inclusion of complex multiphysics mod-
els, such as coupling heat transfer with fluid dynamics, adds further computational challenges.
Additionally, incorporating uncertainties in the input parameters through uncertainty quan-
tification and sensitivity analysis necessitates running multiple simulations, each with varying
parameters. This process dramatically increases the computational burden, making the use of
high-performance computing (HPC) resources essential, and to develop efficient reduced order
models to mitigate the computational cost [QMN16; Pru+02].

In line with these computational demands, another aspect of this thesis is part of the Exa-
MA (Methods and Algorithms for Exascale) project of the PEPR NumPEx program [Num24],
concentrating on the exascale challenges of numerical methods and algorithms.

Contributions

In this thesis, we develop a three-dimensional mathematical and computational model of
the human eye, focusing initially on heat transfer and subsequently on its coupling with the
fluid flow of the aqueous humor. The presented models incorporate numerous biomechanical and
geometrical parameters. Our primary focus is on biomechanical parameters, spanning a broad
range, including potential extreme conditions. The variation of these parameters can significantly
impact the results. To quantify these impacts, we establish a framework for forward uncertainty
quantification, complemented by sensitivity analysis.

A rigorous validation step is essential to ensure the reliability of these results. We compare
our findings with data available in the literature, derived either from measurements on healthy
subjects [EYB89] or from simulations [NO06; NO07; Li+10; KS10], to confirm the validity of our
approach.

While Sobol’ indices effectively measure parameter impacts and interactions, the complexity
and significant computational time required by our model pose considerable challenges. To address
this, we adopt the certified Reduced Basis Method (RBM) [Pru+02; QMN16], a mathematical
approach designed to speed up simulations of complex systems without sacrificing accuracy.
This approach is particularly well-suited for uncertainty quantification, sensitivity analysis and
real-time simulations, as it allows for the rapid evaluation of the model’s response to varying
parameters. In essence, the RBM creates a simplified version of the original model by identifying
and retaining only its most essential features, allowing us to construct a reduced model that
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maintains its 3D nature while significantly lowering computational costs and providing reliable
results.

The RBM operates in two stages: an offline phase, during which the simplified version
(or reduced space) is built, and an online phase, where the reduced model is used to compute
solutions efficiently. Although the offline phase is computationally expensive, it is performed
only once. Subsequently, the online phase enables rapid simulations, making this method
particularly suited for scenarios requiring repeated evaluations, such as sensitivity analysis or
uncertainty quantification. This methodology aligns with the workflow observed in patient-
specific mathematical models applied to biomedical problems, encompassing data integration,
model derivation, numerical solving, validation, and uncertainty quantification. Such paradigms
are well-established in fields like cardiovascular simulations and cerebral hemodynamics. In
ophthalmology, a similar approach is needed due to the richness and heterogeneity of the available
data, which call for innovative methods for diagnosis and monitoring.

To complement the RBM, we also implement the non-intrusive reduced basis method
(NIRB) [CM09b; CM09a; Gro22], a variant of the RBM that is particularly useful when model
complexity prevents direct application of the latter. Unlike the standard RBM, the NIRB
uses a two-level discretization strategy, where a simplified surrogate model is constructed and
solved without requiring direct modifications to the original simulation code. The offline/online
paradigm remains applicable in this context, ensuring computational efficiency even for highly
complex models.

To achieve fast quadratic convergence in the output, the RBM relies on a dual problem
formulation, wherein each output is expressed as a linear functional of the solution. However, in
certain cases of interest, as the one considered in this thesis, the output functional may involve
pointwise evaluations of the solution. This leads to a dual problem featuring a Dirac source
term δx at the point x where the solution is evaluated for the output of interest. In such cases,
the conventional theory of RBM does not apply, but our numerical results exhibit favorable
convergence properties, consistent with theoretical predictions in the continuous case. Theoretical
and numerical aspects of the Laplacian problem with a Dirac source term have been studied
in [KW14; Ber+18]. While theoretical results are derived under specific assumptions, we observe
similar outcomes even when these conditions are not strictly met. We provide a theoretical
review and a numerical exploration of the Laplacian model with a prescribed Dirac source term
under various boundary conditions and discretization orders.

Additionally, we extend the initial thermal model by incorporating the flow of the aqueous
humor (AH) in the anterior chamber (AC) and posterior chamber (PC) of the eye, coupling it
with the thermal processes throughout the eyeball. This coupling is critical because the motion of
AH plays a significant role in heat distribution and intraocular pressure regulation, both of which
are vital for overall ocular health. Furthermore, the wall shear stress generated by the AH flow
is an important biomechanical factor, influencing ocular tissue health and potentially impacting
the drainage pathways, which are relevant to conditions such as glaucoma. Previous studies have
investigated various aspects of this complex interaction. For example, [HB02; Wan+16; Mur+23]
modeled flow coupled with heat transfer in the AC and PC, while [Sac+23] examined the impact
of pressure on AH flow and drainage. Other works [ON08; BBS20; Abd+21; Dvo+22] explored
the thermo-fluid dynamics of AH flow in the AC under specific boundary conditions. However,
these studies often focus on simplified geometries or do not fully couple heat transfer within
the entire eyeball. To efficiently solve the numerical problem, we employ advanced multiphysics
preconditioning techniques, combining preconditioner such as GAMG [Bal+24] or efficient block
preconditioners for the fluid equations [ESW14], to efficiently solve the conjugate heat transfer
problem. Additionally, within the context of HPC, we investigate the scalability properties of
the model.

Over these three years of intensive development, substantial code contributions and datasets
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have been produced. Ensuring that these results can be independently validated and reproduced is
critical [Cam+24]. To this end, all contributions have been published in open-access repositories.

Outline of the manuscript

The manuscript is structured as follows: In Chapter 1, we introduce the anatomical structure
of the eye, alongside the medical context and challenges that motivate this study. This chapter
also presents the underlying model for heat transfer and the associated mathematical framework.
Chapter 2 focuses on the discretization of both the geometrical and biophysical models. In
particular, it details the implementation of the Finite Element Method. In Chapter 3, we explore
Model Order Reduction (MOR) techniques designed to mitigate the computational expense of
solving the full model, enabling a thorough sensitivity analysis. Specifically, we present two
methodologies: the Reduced Basis Method and the Non-Intrusive Reduced Basis Method, with
corresponding results derived for the thermal model of the eye. The latter method has been
developed in collaboration with Ali Elarif (Cemosis, Université de Strasbourg). Chapter 4
addresses a particular issue concerning the computation of pointwise quantities of interest within
the MOR framework for elliptic problems, particularly those involving a Dirac source term. The
work presented in this chapter is the result of a collaboration with Silvia Bertoluzza (CNR).
The frameworks and the results of the sensitivity analysis, applied to the models developed
throughout the manuscript, are presented in Chapter 5. In Chapter 6, we extend the initial
thermal model by incorporating the dynamics of aqueous humor flow in both the anterior and
posterior chambers of the eye, in collaboration with Vincent Chabannes (Cemosis, Université
de Strasbourg). A dedicated chapter, Chapter 7, details the software contributions developed
during this thesis work. Finally, we present the conclusions and the outlook for future work in
Chapter 8.

Moreover, we present in Appendix A a work submitted to the ARVO 2025 Meeting, which is
an extension of Chapter 6. Lastly, Appendix B documents my participation in the CEMRACS
2023 project, where we investigated microbial community interactions using a neural network-
based generalized smoothing algorithm. This project was proposed by Lorenzo Sala, Béatrice
Laroche, Thibault Malou (INRAE) and was in collaboration with Paguiel Javan Hossie (Université
d’Orléans) and Lucas Perrin (Universität Konstanz).

Feel++

All the methods presented and developed in this manuscript have been implemented in the
framework of the Feel++ library [Pru+24b], the Finite Element Embedded Library in C++. As
the models presented are described by Partial Differential Equations, the Finite Element Method
(FEM) is used to solve them.

Feel++ is an open-source library that provides a high-level interface to the FEM, and allows
solving complex problems in a simple way, by the use of a syntax close to the mathematical
formulation. It has been described in [Pru+12], the latest version being v0.111 [Pru+24b] at
the time of redaction of this manuscript. The documentation is available online2, as well as
the source code on GitHub3. Recently, the library has been ported to the Python language,
allowing to use the library in a more user-friendly way, and to benefit from the numerous libraries
available in Python.

To efficiently solve the problems, Feel++ is relying on PETSc [Bal+24], and efficient meshing
libraries such as GMSH [GR09] and SALOME [RBG17; CAS22]. One can also note that the

2� https://docs.feelpp.org/
3� https://github.com/feelpp/feelpp/

https://docs.feelpp.org/
https://github.com/feelpp/feelpp/
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parallelization process is transparent to the user, allowing to easily run the code on a personal
computer up to a EuroHPC supercomputer [Pru+24a].

During the thesis, some developments have been made in the Feel++ library. First, the
implementation of the Model Order Reduction applied to the thermal model of the eye, as
presented in Chapter 3, as well as the sensitivity analysis, presented in Section 5.3. Then the
implementation of the NIRB method, presented in Section 3.2, has been done in collaboration
with Ali Elarif. A more in-depth discussion about these contributions is presented in Chapter 7.

All the results presented in this manuscript are obtained on one of the six nodes of Gaya, the
computing resource cluster at IRMA and Cemosis. The node is equipped with two CPU AMD
EPYC 7713 64-Core, with 64 cores each, and 512 Go of RAM.

Publications and presentations during the thesis period

Publications

• Thomas Saigre, Christophe Prud’homme, and Marcela Szopos. “Model order reduction and
sensitivity analysis for complex heat transfer simulations inside the human eyeball”. en.
In: International Journal for Numerical Methods in Biomedical Engineering 40.11 (Sept.
2024), e3864. issn: 2040-7939, 2040-7947. doi: 10.1002/cnm.3864. url: https://onlin
elibrary.wiley.com/doi/10.1002/cnm.3864.

• Paguiel Javan Hossie, Béatrice Laroche, Thibault Malou, Lucas Perrin, Thomas Saigre,
and Lorenzo Sala. “Surrogate modeling of interactions in microbial communities through
Physics-Informed Neural Networks.” Feb. 2024. url: https://hal.inrae.fr/hal-04440
736, to appear in ESAIM: Proceedings and Surveys.

• Thomas Saigre, Vincent Chabannes, Giovanna Guidoboni, Christophe Prud’homme,
Marcela Szopos, and Sangly P Srinivas. Effect of Cooling of the Ocular Surface on
Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational
Fluid Dynamics. 2024, submitted.

• Thomas Saigre, Vincent Chabannes, Christophe Prud’homme, and Marcela Szopos. “A
coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow
in the human eye”. In preparation.

• Silvia Bertoluzza, Christophe Prud’homme, Thomas Saigre, and Marcela Szopos. “Low to
high order finite element resolution for elliptic problems in the presence of a Dirac source
term”. In preparation.

Peer-reviewed conference proceedings

• Thomas Saigre, Christophe Prud’homme, Marcela Szopos, and Vincent Chabannes. “A
coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow
in the human eye”. In: 8th International Conference on Computational and Mathematical
Biomedical Engineering – CMBE2024 Proceedings. Vol. 2. Arlington (Virginia), United
States: P. Nithiarasu and R. Löhner (Eds.), June 2024, pp. 508–512. isbn: 978-0-9562914-
7-9. url: https://hal.science/hal-04558924.

https://doi.org/10.1002/cnm.3864
https://onlinelibrary.wiley.com/doi/10.1002/cnm.3864
https://onlinelibrary.wiley.com/doi/10.1002/cnm.3864
https://hal.inrae.fr/hal-04440736
https://hal.inrae.fr/hal-04440736
https://hal.science/hal-04558924
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Presentations at international conferences

• 26th June 2024. 8th International Conference on Computational and Mathematical
Biomedical Engineering, Arlington, USA: A coupled fluid-dynamics-heat transfer model
for 3D simulations of the aqueous humor flow in the human eye.

• 13th September 2023. CompBioMed Conference 2023, Munich, Germany: Model
Order Reduction and Sensitivity Analysis for complex ocular simulations inside the human
eyeball.

• 28th February 2023. SIAM Conference on Computational Science and Engineering,
Amsterdam, the Netherlands: Model Order Reduction for Complex Ocular Simulations
Inside the Human Eyeball.

Oral presentations at national conferences, working groups and seminars

• 13th December 2024. Groupe de travail Modélisation, Analyse et Simulation, Paris,
France : Mathematical modeling, simulation and reduced order modeling of ocular flows
and their interactions: Building the Eye’s Digital Twin.

• 28th May 2024. CANUM, Île de Ré, France: Low to high order finite element resolution
for elliptic problems in the presence of a Dirac source term.

• 30th January 2024. Journées Numériques de Besançon, Besançon, France: Model
order reduction and sensitivity analysis for complex heat transfer simulations inside the
human eyeball.

• 16th January 2024. Séminaire EDP à l’IRMA, Strasbourg, France: Modèle de réduction
d’ordre et analyse de sensibilité pour les simulations de transfer de chaleur de chaleur à
l’intérieur du globe oculaire humain.

• 23rd August 2023. CEMRACS 2023, Marseille, France: Estimation of interactions in
microbial communities via a neural network-based generalized smoothing algorithm.

• 1st December 2022. Séminaire Jeunes Chercheurs, Reims, France: Modèles de réduction
d’ordre des simulations oculaires complexes dans l’œil humain.

Poster presentations

• 5th October 2022. Journée Math Bio Santé 2022, Besançon, France: Model order
reduction for complex ocular simulations inside the human eyeball.

• 13th June 2022. CANUM, Évian-les-Bains, France: Modèles de réduction d’ordre des
simulations oculaires complexes dans l’œil humain.

Technical reports

• Christophe Prud’homme, Pierre Alliez, Vincent Chabannes, Rudy Chocat, Emmanuel
Franck, Vincent Fraucher, Floriant Faucher, Clément Gauchy, Christos Georgiadis, Luc
Giraud, Frédéric Hecht, Guillaume Helbecque, Pierre Jolivet, Olivier Jamond, Pierre Ledac,
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Chapter 1

Mathematical modeling of heat
transfer mechanisms in the human
eye

In this chapter, we focus on the modeling of the human eyeball. In the first section, we
describe the anatomy and physiology of the eye, focusing on the parts that are relevant for the
studies that will be performed in the sequel. Next, we develop the connections with the general
pharmacological aspects, that are of interest in applications, especially in the context of heat
transfer in the human eye, and its coupling with aqueous humor flow in the anterior and posterior
chambers. Finally, we present the geometrical and physical models that were considered in the
present work, with a particular emphasis on the heat transfer phenomena in the eye, stemming
from previous works [Sco88; NO06; NO07]. Chapter 6 will be dedicated to the coupling of the
heat transfer in the eye with the aqueous humor flow. We develop a mathematical framework
that will be employed in the context of the finite element method, and we present the continuous
model and its variational formulation.

This chapter is organized as follows: in Section 1.1, we present the anatomy of the human
eyeball, focusing on the parts that are relevant for the heat transfer studies that will be
performed in the sequel, while Section 1.2 focuses on the medical challenges associated with the
work developed in this manuscript. Then, in Section 1.3 and Section 1.4 present respectively
the geometrical and biophysical models that were considered in the present work. Finally, in
Section 1.5, we present the mathematical model, showing the continuous model and its variational
formulation.
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Figure 1.1: Schematic diagram of the human eye. Courtesy of Rhcastilhos, on Wikipedia.

1.1 Anatomy and physiology of the human eye
The human eye is a complex organ that enables light perception and image formation. While

this manuscript does not focus on the visual functions of the eye, understanding its anatomy and
physiology is essential for developing accurate mathematical and computational models.

Figure 1.1 presents a schematic diagram of the human eyeball. The outermost layer of the
eye consists of the sclera and the cornea. The sclera, commonly referred to as the “white of the
eye,” maintains the shape of the eyeball and is metabolically inactive. The cornea, a transparent
front structure, interfaces with the external environment and allows non-invasive measurement
of surface temperature [PW05; EYB89].

Beneath the sclera lies the choroid, a vascular layer responsible for supplying nutrients to the
retina. At the front of the eye, the iris controls the amount of light entering the eye by regulating
the pupil’s size. The lens, located just behind the iris, is a transparent biconvex structure that,
along with the cornea, focuses light onto the retina. Its shape is adjusted by ligaments to adapt
focus.

The retina forms the innermost layer of the eye, converting light into electrical signals
transmitted to the brain via the optic nerve. It is composed of several layers of cells, including
photoreceptors, which convert light into electrical signals that are sent to the brain through
the optic nerve. In this work, we do not focus on the light perception aspect of the eye, hence
we consider the retina as a region composed of blood vessels. Between the lens and the retina
lies the vitreous humor, a gel-like substance that allows light to pass through to the retina. In
the anterior part of the eye, the aqueous humor (AH) fills the anterior and posterior chambers,
located between the cornea and the lens.

At the back of the eye, the lamina cribrosa is a porous structure through which the optic
nerve exits the eye. It connects the retina to the optic nerve and links the eyeball to the body’s
circulatory system, playing a crucial role in ocular physiology. Although it is not directly involved
in the models presented here, the lamina cribrosa has been studied in related projects, such as
Eye2brain [Sal+23; Sal19], due to its importance in the overall function of the eye.

The AH is a transparent fluid produced by the ciliary body that flows from the posterior

https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
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Figure 1.2: Production and drainage of AH in the front part of the eye, adapted from [RRK13].

chamber to the anterior chamber. It is drained via two pathways: the trabecular meshwork (TM)
and the uveoscleral pathway [Dvo+19]. This flow maintains intraocular pressure (IOP) [RRK13].
Mechanically, the AH behaves as a Newtonian fluid, with its dynamics influenced by the pressure
difference due to production and drainage, as well as convective effects driven by the temperature
gradient between the corneal surface and the inner eye, which is at body temperature. Figure 1.2
illustrates the production and drainage pathways of AH.

1.2 Medical challenges and previous studies

The human eye is a highly complex organ, where multiple physiological factors interact,
making it a challenging area for both medical research and clinical treatment. Understanding
these interactions, particularly with respect to heat transfer, intraocular pressure, and aqueous
humor flow, is crucial for addressing various ocular conditions and optimizing treatments.

The temperature of the eyeball may influence drug distribution in the eye, particularly due
to age-related changes in tissue properties [Bha21]. Aging of the eye causes various geometrical
and morphological changes, such as the reduction in the size of the anterior chamber, variations
in lens thickness, and alterations in corneal curvature. These modifications impact both the
temperature distribution and the aqueous humor (AH) flow, thereby affecting drug dispersion,
as studied numerically in [Bha21].

Hyperthermia is a common treatment for ocular tumors [Li+10; Nar17], and a thorough
understanding of heat transfer mechanisms can enhance the efficacy of ophthalmic treatments
such as retinal laser therapy [Mas04]. Heat transfer is also essential when studying the effects of
electromagnetic radiation on the eye [Hir+07; ON09]. The model initially introduced in [Sco88]
to study temperature rises caused by infrared radiation exposure has since been expanded in
various studies [NO06; NO07; ON08; Li+10].

Numerous parameters influence the heat transfer model. These parameters can be classified
into two groups: (i) geometrical parameters, which depend on factors like eye anatomy, subject
ethnicity [SLG06; Bou11], and age [BBS20], and (ii) physical parameters, which refer to the
thermal properties of ocular tissues, such as thermal conductivity, heat capacity, and tissue
density. Additionally, external factors like ambient temperature and air humidity may also affect
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the eye’s temperature distribution.

Another key factor in the eye is intraocular pressure (IOP), which is the pressure of the
fluids inside the eye, and is determined by the balance between AH production and drainage.
Parameters have also an impact on the IOP. Changes in IOP, particularly in the anterior chamber,
can lead to conditions like glaucoma [WL10], a degenerative disease that results in the loss of
retinal ganglion cells, ultimately causing blindness [RRK13].

While invasive studies on animals have provided some insights [PW05], non-invasive measure-
ments in humans are rare, complex, and often yield inconsistent results [RF77]. Most studies
focus on surface temperature measurements [Map68; EYB89], where variability is significant. IOP
can be measured using the Goldmann Applanation Tonometer [Mos58], although this method is
influenced by factors such as corneal thickness and curvature [Bha+02]. Numerical simulations,
if properly validated against experimental data, can provide a useful alternative [EYB89; NO06;
Li+10].

The present thesis aims to contribute to these developments, by means of a mathematical
and computational modeling approach, combined with a sensitivity analysis study performed
thanks to a model reduction technique. The comparison with data available in the literature,
obtained either by measurement on healthy subjects [EYB89] or by other simulations [NO06;
NO07; Li+10] will ensure the validity of the approach.

The model developed in this current chapter concerns only heat transfer in the eye, but in a
second step, we will couple this model with the AH flow in the anterior and posterior chambers
of the eye, as presented in Chapter 6. The understanding of the heat transfer in the eye is crucial
to develop a reliable model of the AH flow, as the temperature of the eye has an impact on
the flow of the AH [RRK13]. Some studies have been performed to couple the heat transfer
with the AH flow [Can+02; FG06], as reported in [Dvo+19]. IOP also fluctuates over time, at
various time scales [TTP19]: (i) at a short timescale, it is influenced by the cardiac cycle, the
postural position of the subject of its activities, (ii) at a longer timescale, it is also influenced
by aging related changes in the eye. Moreover, [SSS79; Har+23] indicate that while normal
daily fluctuations in ambient temperature have a modest impact on intraocular pressure (IOP),
larger temperature changes, such as those induced experimentally or encountered in extreme
environments, can lead to significant alterations in IOP. These effects are often mediated by
changes in aqueous humor dynamics and systemic factors such as blood pressure.

IOP is a key parameter since when abnormally elevated, it is a major risk factor for degener-
ative ocular diseases such as glaucoma [Kwo+09; WL10; RRK13]. This condition is known to be
one of the most common causes of blindness [Kla98].

Mathematical and numerical investigation of the complex dynamic of the AH flow have been
performed in previous studies [Dvo+22], also taking the coupling with heat transfer [ON08;
Wan+16; Dvo+22; Sac+23]. Such model have proved to be useful tools for understanding the
physiology of the eye, as well as the pathophysiology of ocular diseases [Dvo+19]. A better
understanding of the AH flow is crucial to develop new treatments for glaucoma, as the IOP is a
key parameter in the development of this disease [WL10; RRK13], or to model drug delivery
in the eye [Ruf+24] and cell injection treatment to cure conditions such as bullous keratopathy
[Kin+18].

A comprehensive understanding of the intricate relationships between heat transfer, aqueous
humor dynamics, and intraocular pressure is essential for improving current therapeutic strategies
and developing new treatments for various ocular diseases.
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(a) Initial CAD before modifications. (b) CAD after modifications.

Figure 1.3: CAD of the human eyeball from the STEP file, before and after modifications with
SALOME framework.

1.3 Geometrical model construction for the human eyeball

In this section, we describe the realistic three-dimensional geometry that will be used in the
sequel. The model we employ in the present work stems from [Sal+23], and was constructed
using a CAD (Computer Aided Design) module from SALOME [RBG17; CAS22]. As presented
in Section 1.1, the eye is composed of several regions, which have different physical properties.
In the present model, the optic nerve domain is assumed to be homogeneous, the contribution of
the inner vessels is not directly taken into account in heat transfer [ON08].

Several more simplified geometrical descriptions were already utilized in the literature to
study heat transport in the eye; primarily in 2D [Sco88; NO06] and in 3D [NO07; Li+10]. In
particular, the 3D model developed in [NO07] did not incorporate a detailed description of the
vascular beds, although previous studies [Sco88] and our further sensitivity analysis pointed
out the importance of the influence of the blood temperature on the heat distribution. The 3D
geometry in [NO07] was generated by revolving a 2D model around the optical axis. In contrast,
a more realistic geometry, derived from magnetic resonance imaging data, was developed in
[SLG06].

The initial CAD, presented in Figure 1.3(a), is a 3D model of the human eyeball saved in the
STEP format (Standard for the Exchange of Product Data), and is composed of several domains:
the cornea, the vitreous body, the iris, the ligament, the lens, the sclera, the choroid, the retina,
and the central retinal artery and vein.

As such, the geometry is not corresponding to the one that was described in Section 1.1.
Specifically, several modifications were performed to have a geometrical model corresponding
to the needs of our current model: the lamina cribrosa was not present in the initial geometry,
and had to be constructed. The geometry of the lamina can be parametrized, more details are
provided in the thesis of Lorenzo Sala [Sal19, Ch. III.1]. As the construction of the lamina
created a new domain, the surrounding tissues (retina, sclera, optic nerve) had to be modified to
take into account the new structure.

Moreover, we notice in Figure 1.3(a) the presence of the hyaloid canal. Since it does not seem
to significantly impact the thermal properties of the vitreous body (see Chapter 2), we do not
include it here. To create a volume corresponding to the full domain containing the vitreous
humor, a tedious work consisting in manually selecting the various faces forming the boundary
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Figure 1.4: Vertical cut of the geometrical model of the human eye, with the different regions of
the eye.

of the vitreous humor was performed. Finally, the posterior and anterior chambers were not
included in the initial geometry. If we generated the mesh in this state, the mesh would contain
a huge hole at this specific location. In the same spirit as for the vitreous humor, we manually
selected the 56 faces forming the boundary of the anterior and posterior chambers among the
face of the lens, the aqueous humor, the iris, the choroid, and the retina (373 faces in total !).
After all these modifications, we get a new CAD of the eyeball that is presented in Figure 1.3(b).

We present in Section 7.1.1 some details on the implementation and the SALOME script.
The dataset containing the CAD and the whole script has been made available in open access on
GitHub [Cha+24].

Figure 1.4 shows a cut-away view along a vertical plane of the reconstructed eye anatomy.
The geometry is now devoid of holes and includes all the parts of the eye that are relevant for
the studies that will be performed in the sequel. To set up the geometry for meshing purposes,
we need to define the interfaces between the different tissues. More details on the script are
provided in Section 7.1.1.

To reduce computational effort, we further simplified the geometric description by removing
the structures corresponding to the suspensory ligaments of the lens (hatched in Figure 1.4). The
remaining region was initially included in the PC and considered to be filled with AH. However,
on closer inspection, this anatomical description would have to be modified, as it appears that
this zone is more likely to be included in the part corresponding to the vitreous humor.

We now provide some measures of the generated geometry: (i) The eyeball has a depth of
26 mm and a diameter of 25 mm, while the nominal value ranges from 22.0 to 24.8 mm [Wik24].
(ii) The cornea is 990 µm thick. According to the literature [Wei24], it ranges from 500 to 600 µm
at the center and increases towards the periphery. (iii) The iris is 393 µm thick, and the choroid
is 498 µm thick, that lies in the range given in literature, respectively around 420 µm [You+22]
and 363 µm.

In this thesis, we focus on the corneal surface, where non-invasive temperature measurements
can be performed [PW05; EYB89]. The geometrical center of the cornea (GCC), defined as an
imaginary line horizontally bisecting the cornea, serves as the reference location for pointwise
temperature evaluations, as shown in red in Figure 1.4. Outputs of interest include temperature
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values at specific anatomical interfaces and the mean temperature over domains such as the
corneal surface. These locations are visually depicted in Figure 1.5.

1.4 Three-dimensional biophysical model for heat transfer

In this section, we introduce a biophysical approach to model the heat transfer in the human
eye, which is crucial for understanding temperature regulation and its effects on ocular health.

1.4.1 Biomechanical modeling: non-linear continuous model and its lineariza-
tion

Based on Section 1.3, the geometry of the eye can be written as a disjoint union of ten distinct
regions: Ω =

⊔10
i=1Ωi, where each subdomain Ωi corresponds to one of the following regions:

cornea, vitreous humor, aqueous humor, retina, iris, choroid, lens, sclera, lamina cribrosa, and
optic nerve.

We focus on heat transfer in this domain, for an eyeball unexposed to external thermal
sources. Hence, the temperature distribution will be constant in time [Sco88]. Following [Sco88;
NO06] the steady-state condition of the heat transfer in the human eye can be described by the
following system

∇ · (ki∇T ) = 0 in Ω =
10⊔

i=1
Ωi, (1.1a)

where:

• i is the volume index (cornea, vitreous humor...),

• T [K] is the temperature in the domain Ωi,

• ki [W m−1 K−1] is the thermal conductivity of the tissue defined in Ωi. We set the global
thermal conductivity k [W m−1 K−1] as a discontinuous piece-wise constant function: k = ki

on Ωi.
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Following [Can+02; NO06], we neglect the metabolic heat generation in the eye due to blood
perfusion as there is no literature data available on this topic. However, such a term could be
added in further analysis to enhance the model’s accuracy.

The boundary ∂Ω is decomposed as: ∂Ω = Γamb ∪ Γbody (see Figure 1.6), where Γamb
corresponds to the boundary region exposed to the ambient environment and Γbody the boundary
of the internal domain. Denote by n⃗ the outward normal vector to the domain Ω. The following
boundary conditions are adopted:

• To model the exchange between the eye and the ambient air, and incorporate radiative
heat transfer we impose the following non-linear Neumann condition:

−k∂T
∂n⃗

= hamb(T − Tamb)︸ ︷︷ ︸
(i)

+σε(T 4 − T 4
amb)︸ ︷︷ ︸

(ii)

+ E︸︷︷︸
(iii)

on Γamb. (1.1b)

Three terms are present in this condition to describe different heat loss mechanisms
occurring on the cornea:

(i) The first term in the equation represents the convective heat transfer between the
surface of the eye and the surrounding air. The parameter hamb [W m−2 K−1] is the
air convective coefficient, and Tamb [K] is the ambient temperature;

(ii) the second term represents the radiative heat transfer between the surface of the eye
and the surrounding environment, where the parameter σ is the Stefan-Boltzmann
constant (σ = 5.67× 10−8 W m−2 K−1), and ε [–] is the emissivity of the surface;

(iii) the third term represents the heat loss due to tear evaporation. Tear evaporation is a
natural process that occurs at the surface of the eye, where tears constantly evaporate
into the surrounding air. This process causes a cooling effect on the surface of the
eye, which can be significant in dry environments or cases of reduced tear production.
The parameter E [W m−2] depends on the environmental conditions and the tear film
characteristics.

• To model the thermal exchanges between the eye and the body, we impose:

−k∂T
∂n⃗

= hbl(T − Tbl) on Γbody, (1.1c)

where the parameter hbl [W m−2 K−1] is the blood convection coefficient and Tbl [K] is the
blood temperature.

Finally, to ensure a continuous transfer of heat flux without any temperature jump, we impose
the following conditions at the interface between the two adjacent regions Ωi and Ωj :{

Ti = Tj

ki(∇Ti · n⃗i) = −kj(∇Tj · n⃗j)
on ∂Ωi ∩ ∂Ωj , (1.1d)

where n⃗i (resp. n⃗j) denotes the outward normal vector to the domain Ωi (resp. Ωj).
System (1.1a) - (1.1d) defines a non-linear problem, denoted ENL in the sequel.

Remark 1.4.1. Note that the condition (1.1b) modeling radiative transfer is non-linear, because
of the term in T 4, which requires a more complex treatment, both from the mathematical
standpoint, for the reduced basis method; and from the numerical standpoint, due to extra
computational cost. As an alternative, a linearization of the condition (1.1b) was proposed in
[Sco88]:
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Figure 1.6: Description of the physical boundaries and interfaces of the domain Ω.

σε(T 4 − T 4
amb) = (T − Tamb)σε(T 2 + T 2

amb)(T + Tamb)︸ ︷︷ ︸
=:hr

, (1.2)

which leads to a linear Robin condition. The value hr stands for the radiation heat transfer
coefficient and is approximately equal to 6 W m−2 K−1 [Sco88], corresponds to a range of tissue
temperatures Tbl between 30 and 45◦C, and the usual ambient room temperature.

Condition (1.1b) can hence be rewritten as:

−k∂Ti

∂n⃗
= hamb(T − Tamb) + hr(T − Tamb) + E on Γamb. (1.3)

The linearized model described by Equations (1.1a)-(1.3)-(1.1c)-(1.1d) is further denoted EL.

1.4.2 Key parameters for the biophysical model

In the model presented in the previous section, many parameters are involved, but not all
of them are directly measurable. Moreover, inherent uncertainties due to noise and individual
variability must be taken into account in the modeling process. We therefore fixed in a first stage
a set of baseline values, corresponding to the nominal values for the human body, according to the
literature [Sco88; NO06] (see Table 1.1). In a second step, we split the total set of parameters into
two subsets: a first part kept fixed to baseline values, and a second part that varies in a certain
range (see Table 1.1). The aim is to perform a refined sensitivity analysis, that encompasses
previously published studies [Sco88; NO06; NO07], and extends the analysis to a larger parameter
space.

Specifically, we set the varying parameter space Dµ ⊂ R6 as the Cartesian product of the
intervals defined in the last column of Table 1.1. For the purpose of the sensitivity analysis,
an element µ = {Tamb, Tbl, hamb, hbl, E, klens} ∈ Dµ is called a parameter , and we denote µ̄ the
baseline parameter, extracted from the corresponding column in Table 1.1. The dependence of
the model concerning the parameter µ is emphasized by the notation EL(µ) and ENL(µ).

1.5 Mathematical framework for heat transfer modeling

This section outlines the mathematical framework, including the continuous model and its
variational formulation derivation. The discrete formulation is presented in Section 2.2.

We compute the variational formulation of the linearized model EL(µ) described in Section 1.4.
Let v ∈ H1(Ω) be an arbitrary function. As the union Ω =

⊔
iΩi is disjoint, we have:



30CHAPTER 1. MATHEMATICAL MODEL OF HEAT TRANSFER IN THE HUMAN EYE

Symbol Name Dimension Baseline value Range

Tamb Ambient temperature [K] 298 [283.15, 303.15]
Tbl Blood temperature [K] 310 [308.3, 312]
hamb Ambient air convection coefficient [W m−2 K−1] 10a [8, 100]
hbl Blood convection coefficient [W m−2 K−1] 65b [50, 110]
hr Radiation heat transfer coefficient [W m−2 K−1] 6c –
E Evaporation rate [W m−2] 40c [20, 320]
klens Lens conductivity [W m−1 K−1] 0.4b [0.21, 0.544]
kcornea Cornea conductivity [W m−1 K−1] 0.58d –

ksclera = kiris =
klamina = kopticNerve

Eye envelope
components conductivity [W m−1 K−1] 1.0042e –

kaqueousHumor Aqueous humor conductivity [W m−1 K−1] 0.28d –
kvitreousHumor Vitreous humor conductivity [W m−1 K−1] 0.603c –

kchoroid = kretina Vascular beds conductivity [W m−1 K−1] 0.52f –
ε Emissivity of the cornea [–] 0.975a –

a [Map68] b [J J82] c [Sco88] d [Eme+75] e [NO07] f [ITI24]

Table 1.1: Parameters involved in the model, baseline values and ranges used in the sensitivity
analysis.

∫
Ω
−∇ · (k∇T )v dx⃗ =

∑
i

∫
Ωi

−∇ · (ki∇T )v dx⃗. (1.4)

Recall from Section 1.4 that k = ki over Ωi. Hence, using Green’s theorem:

∑
i

∫
Ωi

−∇ · (ki∇T )v dx⃗ = 0⇔
∑

i

∫
Ωi

ki∇T · ∇v dx⃗−
∫

∂Ωi

ki
∂T

∂n⃗i
v dσ = 0, (1.5a)

with boundary and interface conditions Equations (1.1c), (1.1d) and (1.3), we obtain

∑
i

ki

∫
Ωi

∇T · ∇v dx⃗+
∫

Γamb
[hambT + hrT ] v dσ +

∫
Γbody

hblTv dσ =∫
Γamb

[hambTamb + hrTamb − E] v dσ +
∫

Γbody
hblTblv dσ, (1.5b)

where dσ denotes the surface measure on the boundary ∂Ω = Γbody ⊔ Γamb.
The previous equation is equivalent to:

aL(T, v;µ) = fL(v;µ), (1.6a)

with:

aL(T, v;µ) := klens

∫
Ωlens
∇T · ∇v dx⃗+

∑
i ̸=lens

ki

∫
Ωi

∇T · ∇v dx⃗+

∫
Γamb

[hambT + hrT ] v dσ +
∫

Γbody
hblTv dσ, (1.6b)

fL(v;µ) :=
∫

Γamb
[hambTamb + hrTamb − E] v dσ +

∫
Γbody

hblTblv dσ. (1.6c)

The problem statement is therefore: for µ ∈ Dµ given, find the output of interest s(µ) ∈ R
given by
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s(µ) = ℓ(T (µ)), (1.7a)
where T (µ) ∈ H1(Ω) is solution to problem

aL(T (µ), v;µ) = fL(v;µ) ∀v ∈ H1(Ω). (1.7b)

Definition 1.5.1 (Trial and test functions). In Equation (1.7b), T is called the trial function as
it is the unknown to be determined, and v is the test function, which is a function used to test
the solution.

The functional ℓ returns the desired output of interest, which can be the mean temperature in
a selected region, e.g. ℓ(T (µ)) = 1

|Ωcornea|
∫

Ωcornea
T (µ) dx⃗, or the temperature at a fixed point, e.g.

ℓ(T (µ)) = ⟨δO, T (µ)⟩, where δO denotes the Dirac delta function centered at point O, and ⟨·, ·⟩
represents the duality product between a functional and a function, namely ⟨δO, T (µ)⟩ = T (µ)(O).

Remark 1.5.2. Note that when the output of interest is s(µ) = ⟨δO, T (µ)⟩, a Dirac delta
function appears in the equations. In this case, the Dirac delta only affects the output of interest,
and since the temperature is assumed to be continuous, the quantity ⟨δO, T (µ)⟩ is well-defined. In
Chapter 3, we will introduce the dual problem, where the Dirac delta appears on the right-hand
side of the variational formulation, adding complexity to the problem’s analysis. This observation
will lead us to explore certain aspects of this issue in Chapter 4.

Theorem 1.5.3. Let µ ∈ Dµ fixed. The problem (1.6) is well-posed for v ∈ H1(Ω): there exists
a unique T ∈ H1(Ω) such that aL(T, v;µ) = fL(v;µ) for all v ∈ H1(Ω).

To prove this theorem we will need the following lemma.

Lemma 1.5.4. Let Γ ⊂ ∂Ω, and let v ∈ H1(Ω). Then there exists a constant CΓ such that:

∥v∥L2(Ω) ⩽ CΓ

(1
2 ∥∇v∥L2(Ω) + ∥v∥L2(Γ )

)
. (1.8)

Proof. By absurd, we suppose that for every n ∈ N \ {0}, there exists vn ∈ H1(Ω) such that

∥vn∥L2(Ω) > n

(1
2 ∥∇v∥L2(Ω) + ∥v∥L2(Γ )

)
. (1.9)

If we normalize, we can assume that ∀n ∈ N \ {0} ∥vn∥L2(Ω) = 1. The sequence (vn)n is bounded
in H1(Ω). As the injection of H1(Ω) into L2(Ω) is compact, we can find a subsequence (vnk

)n

converging to v in L2(Ω). We still denote by (vn)n the subsequence (vnk
)n.

From Equation (1.9), we deduce that ∥∇vn∥L2(Ω) → 0, so ∇vn → 0 in L2(Ω). So (vn)n is a
Cauchy sequence of H1(Ω), hence we have v ∈ H1(Ω) and ∇v = 0. So u is constant on Ω.

By continuity of the trace u|Γ = lim un|Γ = 0 because ∥un∥L2(Γ ) → 0 from (1.9). So v = 0
on Γ . As v is constant over Ω, we have v = 0 everywhere, which is a contradiction with
∥v∥L2(Ω) = 1. ■

We can now prove the Theorem 1.5.3.

Proof. We show that the weak formulation (1.6) admits a unique solution T ∈ H1(Ω). The form
aL is bilinear and for any u, v ∈ H1(Ω) and µ ∈ Dµ, we have:

|aL(u, v;µ)| ⩽
∑

i

ki

∣∣∣∣∫
Ωi

∇Ti · ∇v dx⃗
∣∣∣∣+ ∣∣∣∣∫

Γamb
(hambT + hrT ) v dσ

∣∣∣∣+
∣∣∣∣∣
∫

Γbody
hblTv dσ

∣∣∣∣∣
⩽
∑

i

ki ∥∇Ti∥L2(Ωi) ∥∇v∥L2(Ωi) + (hamb + hr) ∥T∥L2(Γamb) ∥v∥L2(Γamb)

+ hbl ∥T∥L2(Γbody) ∥v∥L2(Γbody) ,
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by the Cauchy-Schwarz inequality. As the injections of H1(Ω) into L2(ΓN ) and L2(ΓR) are
continuous, we have two constants CR, CN > 0 such that ∥u∥L2(Γamb) ⩽ CN ∥u∥H1(Ω) (idem on
Γbody), hence setting kmax = maxi{ki}

|aL(u, v;µ)| ⩽ kmax ∥∇T∥L2(Ω) ∥∇v∥L2(Ω) + CN (hamb + hr) ∥T∥L2(Γamb) ∥v∥L2(Ω)

+ CRhbl ∥T∥L2(Γbody) ∥v∥L2(Ω)

⩽ (kmax + CN (hamb + hr) + CRhbl) ∥∇T∥H1(Ω) ∥∇v∥H1(Ω) ,

so the bilinear form a is continuous.
Now, for any v ∈ H1(Ω) and µ ∈ Dµ, we have:

aL(v, v;µ) =
∑

i

ki

∫
Ωi

∥∇v∥2
L2(Ωi) dx⃗+

∫
Γamb

(hamb + hr) ∥v∥2
L2(Γamb) dσ +

∫
Γbody

hbl ∥v∥2
L2(Γbody) dσ

⩾ m
[
∥∇v∥2

L2(Ω) + ∥v∥2
L2(Γamb) + ∥v∥2

L2(Γbody)

]
,

with m = min {ki, hamb + hr, hbl}. By applying the Cauchy-Schwarz inequality to the vectors[√
m
3

2
,
√

m
3

2
,
√

m
3

2
]T

and
[
∥∇v∥2L2(Ω) , ∥v∥

2
L2(Γamb) , ∥v∥

2
L2(Γbody)

]T
, we get

aL(v, v;µ) ⩾
(√

m

2
[
∥∇v∥2L2(Ω) + ∥v∥2L2(Γamb) + ∥v∥2L2(Γbody)

])2

⩾
m

4

[(1
2 ∥∇v∥

2
L2(Ω)+∥v∥

2
L2(Γamb)

)
+
(1

2 ∥∇v∥
2
L2(Ω)+∥v∥

2
L2(Γbody)

)]
+ m

4 ∥∇v∥
2
L2(Ω)

⩾
m

4
[
CΓamb ∥v∥L2(Ω) + CΓbody ∥v∥L2(Ω)

]
+ m

4 ∥∇v∥
2
L2(Ω) ,

from Lemma 1.5.4. Setting m̄ = min
{
CN

m
4 , CR

m
4 ,

m
4
}
, we get

aL(v, v;µ) ⩾ m̄ ∥v∥2H1(Ω)

So the bilinear form aL is coercive. Moreover, the application fL is linear and continuous. So
according to the Lax-Milgram theorem [LM54; EG21], there exists a unique solution T ∈ H1(Ω)
such that aL(T, v;µ) = fL(v;µ) for all v ∈ H1(Ω) and µ ∈ Dµ. ■

From the previous theorem, have the following properties on the bilinear form aL:

Corollary 1.5.5. For all µ ∈ Dµ, the bilinear form aL(·, ·, µ) is continuous and coercive. There
exists constants α(µ) and γ(µ) such that

0 < α(µ) := inf
T ∈H1(Ω)

aL(T, T ;µ)
∥T∥2H1(Ω)

, (1.10a)

γ(µ) := sup
T ∈H1(Ω)

sup
v∈H1(Ω)

aL(T, v;µ)
∥T∥H1(Ω) ∥v∥H1(Ω)

<∞. (1.10b)

Theorem 1.5.6. Let T (µ) be the unique solution to Problem (1.6). Assume that T (µ) ∈
H1(Ω) ∩H2(Ω). Then T (µ) is solution to problem EL(µ).

Proof. We have for any v ∈ H1(Ω), aL(T, v;µ) = fL(v;µ), thus:∫
Ω

[∑
i

ki∇Ti

]
·∇v dx⃗+

∫
Γamb

[hamb(T − Tamb) + hr(T − Tamb) + E] v dσ+
∫

Γbody

hbl(T−Tamb)v dσ = 0.
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Applying Green’s theorem:

−
∫

Ω

[∑
i

∇ · (ki∇T )
]
· v dx⃗ =

∫
Γamb

[
hamb(T − Tamb) + hr(T − Tamb) + E − k∂T

∂n⃗

]
v dσ

+
∫

Γbody

[
hbl(T − Tamb)− k∂T

∂n⃗

]
v dσ.

By density of C∞
c (Ω) in H1(Ω), we deduce that
∑

i∇ · (ki∇T ) = 0 in Ω,

−k ∂Ti
∂n⃗ = hamb(T − Tamb) + hr(T − Tamb) + E on Γamb,

−k ∂T
∂n⃗ = hbl(T − Tbl) on Γbody.

■

Remark 1.5.7. The well-posedness of the fully non-linear problem ENL(µ) can also be obtained
by the mean of a variational approach, in the spirit of [Mil93].

1.6 Conclusion
In this chapter, we presented the anatomy of the human eyeball, and the medical challenges

that are associated with the heat transfer in the eye. We presented the geometrical and physical
models that were considered in the present work, highlighting some parameters involved, as well
as output of interest whose study will be performed in the sequel. As pointed out in the context
and in literature [SLG06; Bou11; BBS20], the geometry of the eye is also influenced by the age,
the ethnicity of the subject, etc. At this point these geometrical parameters are not taken into
account in the model, a perspective of the work is to include them. Two approaches can be
considered: (i) change these parameters in the CAD and generate new meshes, or (ii) use mesh
adaptation post-process to adapt some regions of the mesh to take into account the variations
of the geometrical parameters. Finally, we introduced the mathematical model, showing the
continuous model and its variational formulation.

The realistic geometrical model of the human eye takes into account parts of the eye that are
relevant for the heat transfer studies that will be performed in the sequel, and that were not
necessarily considered in previous works, such as the vascular beds in the choroid and the retina.

Thanks to these models, we are now able to develop a discretization of the problem, and to
perform numerical simulations, presented in Chapter 2.
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Chapter 2

Full order computational framework:
methods, verification and validation

The previous chapter introduced the geometrical and biophysical models of the eye. In this
chapter, we focus on the discretization of these models, with a particular emphasis on mesh
generation and the Finite Element Method (FEM), which are essential tools for transforming
continuous models into discrete, computationally tractable forms.

Mesh generation involves constructing and refining grids that accurately represent the eye’s
complex geometrical structure. This section covers the generation of initial meshes, techniques for
adapting them to preserve crucial geometric properties, and methods for verifying their accuracy.
Several methods have been proposed to develop meshes from geometrical data [FGF08], and
many library tools are available to generate and refine them, either in open-source software like
GMSH [GR09], NETGEN [Sch97], or commercial software like MeshGems. We also evaluate
the performance of the mesh generation and refinement processes. Two-dimensional meshes
stemming from realistic geometries of the human eye have been employed in [Sco88; NO06], and
three-dimensional meshes have been used in [NO07] by revolving the 2D mesh around the optical
axis.

Subsequently, we delve into the Finite Element Method [ESW14], which leverages these meshes
and a mathematical formulation of the problem to approximate the eye’s biophysical behavior.
Key topics include selecting appropriate finite element spaces, assessing their performance and
scalability, and discussing verification and validation methods to ensure the reliability of FEM-
based simulations. The FEM has successfully been applied to model heat transfer in the eye
by several authors [Sco88; NO06; NO07], both in two and three dimensions. An extension of
the FEM, the alpha finite element method, has also been used to model heat transfer in the eye
[Li+10]. In [NOR08], the authors compared theirs results between a 2D and 3D model, to assess
the impact of the dimensionality of the model on the results. Their conclusion is that a 3D model
is indeed more precise, even though the 2D model in some case can provide satisfactory results.

In this chapter, we introduce the discretization of the geometrical model in Section 2.1, then
we present the Finite Element Method in Section 2.2 used to discretize the biophysical model of
the eye.

2.1 Discrete geometrical representation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.1 Mesh construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Mesh refinement strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3 Verification of the generated meshes . . . . . . . . . . . . . . . . . . . . . 37
2.1.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

35



36 CHAPTER 2. FULL ORDER COMPUTATIONAL FRAMEWORK

2.2.1 High fidelity FEM resolution . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Verification: mesh convergence study . . . . . . . . . . . . . . . . . . . . . 43
2.2.4 Linearized model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.5 Validation and comparison with previous studies . . . . . . . . . . . . . . 45

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1 Discrete geometrical representation

2.1.1 Mesh construction

In Section 1.3, we presented the geometrical model of the eye and how to build it from the
CAD data. In this section, we focus on the meshing of this model. This step is executed using
Salome’s meshing library [RBG17], which employs the NETGEN algorithm. NETGEN [Sch97] is
an open source automatic 3D tetrahedral mesh generator that is able to create meshes of high
quality.

The first step is to create the mesh object and to define the algorithm that will be used to
create the mesh. Then we define the markers that will be used to define the different tissues.
The code (truncated) performing these step is shown in Section 7.1.2, but is also available in
full-length in the GitHub repository [Cha+24]. Finally, we compute the mesh and export it
to a MED file. Note that we did not set any particular parameters for the meshing algorithm.
The default parameters are used, but still we will handle the mesh quality by the use of a mesh
refinement strategy, that is presented in the sequel, see Section 2.1.2.

The generated mesh is shown in Figure 2.1(a). Note that at this point, the mesh is quite
coarse, except in parts where small domains are present, such as the lamina cribrosa, or when
the shape of the geometry is complex, such as the iris and the lens.

(a) Original mesh generated by Salome, with 4.64 · 105

tetrahedrons: hmin = 5.77 · 10−6, hmax = 5.76 · 10−3.
(b) Mesh refined around the anterior and posterior cham-
bers, with 9.4 · 105 elements: hmin = 5.09 · 10−5, hmax =
3.12 · 10−3.

Figure 2.1: Meshed geometry of the eye, over a vertical plane. Characteristic sizes are given in
meters.
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(a) Meshes M.

Mesh # elements hmin hmax havg

M0 2.25 · 105 8.25 · 10−5 3.64 · 10−3 8.6 · 10−4

M1 3.27 · 105 7.28 · 10−5 3.52 · 10−3 7.39 · 10−4

M2 6.32 · 105 7.48 · 10−5 1.65 · 10−3 5.11 · 10−4

M3 1.15 · 106 4.84 · 10−5 1.12 · 10−3 4.69 · 10−4

M4 5.84 · 106 5.11 · 10−5 6.01 · 10−4 2.94 · 10−4

M5 4.38 · 107 3.03 · 10−5 3.54 · 10−4 1.5 · 10−4

(b) Meshes Mr, remeshed around AH.

Mesh # elements hmin hmax havg

Mr0 1.92 · 105 1.25 · 10−4 4 · 10−3 9.23 · 10−4

Mr1 2.82 · 105 1.37 · 10−4 3.63 · 10−3 7.72 · 10−4

Mr2 7.47 · 105 6.54 · 10−5 1.6 · 10−3 4.67 · 10−4

Mr3 1.4 · 106 3.29 · 10−5 9.59 · 10−4 4.17 · 10−4

Mr4 6.04 · 106 2.55 · 10−5 5.29 · 10−4 2.88 · 10−4

Mr5 4.39 · 107 3.12 · 10−5 1.5 · 10−4 2.77 · 10−4

Table 2.1: Description of the families of meshes generated: number of elements and characteristic
sizes, in meter.

2.1.2 Mesh refinement strategy

In Section 1.3, we detailed the geometry of the eyeball, derived from CAD data. As illustrated
in Figure 2.1(a), certain regions exhibit greater complexity than others. For instance, the
lamina cribrosa is notably thinner, while the iris presents a less uniform structure. Achieving an
effective mesh requires a well-distributed arrangement of elements. This is attainable through
the application of a specialized meshing algorithm designed to tailor the mesh according to the
geometric intricacies. Utilizing the MMG library [MMG22], we have generated a family of meshes
with varying levels of refinement. These meshes are used to our subsequent simulation processes
for the heat transfer model, and are denoted M0, M1, M2, M3, M4, and M5. Their characteristics are
detailed in Table 2.1(a).

In Chapter 6, we introduce a model where heat transfer in the eyeball is coupled to the AH
flow in the anterior and posterior chambers of the eye. The geometry of the domain ΩAH is quite
complex, especially at the junction between the anterior and posterior chambers. As this is a
very small region, we need to refine the mesh in this area, which can lead to a very large number
of elements in the whole domain.

Geometrical mesh refinement can easily be implemented in the configuration files of Feel++

simulation, by (i) setting the metric used to refine the mesh, (ii) using the distance to a range of
markers, and (iii) defining the metric as a function of this distance. The corresponding code is
presented in Section 7.1.3.

The result of this mesh refinement procedure, denoted Mr in the sequel, is shown in Fig-
ure 2.1(b), and is also available in [Cha+24]. We can see in the figure that the desired domains
are indeed refined as expected. The mesh M1 has 68,993 points, for an average element size of
0.74, a maximal element size of 3.52 and a minimal element size of 7.28 · 10−2; while the refined
mesh Mr has 3.36 · 105 points, for an average element size of havg = 0.33, and a maximal element
size of hmax = 3.21 and hmin = 4.03 · 10−2.

In the next section, we will perform some tests on the meshes to ensure that the results
are stable with respect to the mesh size. To set up these tests, we perform a mesh refinement
process starting from the mesh Mr, and denote the resulting meshes as Mr1, Mr2, Mr3, Mr4 and
Mr5. Some characteristics of these meshes are gathered in Table 2.1(b). The number of elements
is increasing with the level of refinement, as expected.

The dataset of the family Mr is available in open access [Sai+24c].

2.1.3 Verification of the generated meshes

Verification of generated meshes is a critical step in ensuring their accuracy and reliability for
computational simulations. Two specific verification studies are conducted here: first, we solve
a Laplacian toy problem. This involves solving a partial differential equation and comparing
the numerical solution against an analytical one, and compare the behavior of the error against
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(b) P2 discretization.

Figure 2.2: Evolution of the error, according to the mesh size, for the Laplacian problem. The
exact solution used in simulations is u(x, y, z) = x3y + z4. The theoretical convergence rate is
indicated between parentheses.

what is expected from the theory. Second, we compute the volume of the meshed geometry to
check the geometric fidelity of the mesh, by comparing the calculated volume with the known
volume of the original geometry to ensure that the mesh accurately represents the physical space.
These verification steps are essential to confirm that the generated meshes are suitable for further
simulations and analyses.

A Poisson toy problem The first study consists of solving the following problem:{
−∆u = f on Ω,

u = g over ∂Ω,
(2.1)

where u is a manufactured solution. Given u, we can analytically compute the right-hand side f
and the boundary conditions g, and then solve the problem numerically. This can be done with
the application feelpp_qs_laplacian_3d, that solves Problem (2.1) using the finite element
method. More details about this method are presented in Section 2.2. The application computes
the norms of the error ∥u− uh∥L2(Ω) and ∥u− uh∥H1(Ω), where uh is the numerical solution
computed by the library.

The results are presented in Figure 2.2. The error is computed for the P1 and P2 discretizations,
and the theoretical convergence rate is indicated on the plot. The results show that the error
decreases as the mesh is refined, and the convergence rate is in agreement with the theoretical
rate [EG21].

Preservation of the volume First, to ensure that the mesh refinement is well constructed,
we need to verify that the geometrical properties of the domain are preserved. We focus here
on the global volume of the domain, that can be easily computed using the Feel++ library. We
then compare across all the meshes generated in Section 2.1.2. The results are presented in
Figure 2.3. The main striking result is that when the mesh is too coarse, the volume is not
accurately preserved, but for the finer mesh, it tends toward a constant value, around 8.02 mL.
The geometric model overestimates this value, but still remains in an acceptable physiological
range [Hey+16].
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Figure 2.3: Evolution of the volume of the domain, depending on the level of refinement of the
mesh.

Another check can be performed, by computing the volume of all regions of the eye described
in Section 1.4, and comparing the sum to the whole volume. If a difference is observed, it can
be an indication of a problem in the meshing process, and that there is a part of the geometry
that is not well meshed, or not meshed at all. For the meshes that we generated, we compute a
difference of the order 10−20, which is negligible and can be attributed to the numerical precision
of the computations.

From this study, we can conclude that the mesh is well constructed, and that it is suitable
for further simulations and analyses. However, for the family of meshes Mr, we need to use the
finer among them (Mr4 and Mr5), as the volume is not preserved for the coarser ones.

2.1.4 Performance evaluation

In this section, we focus on the performance of the mesh generation and refinement processes.
The generation of the mesh, described in Section 2.1, is executed with the code shown in

Listing 7.12. In the process, the time taken to compute the mesh by Salome [RBG17] is 49.01 s,
while the whole pipeline going from the initial CAD to the exportation of the mesh takes 60.38 s,
showing that the mesh generation is the most time-consuming part of the process.

Now, we look at the time taken to perform the mesh refinement, with the MMG li-
brary [MMG22], as described in Section 2.1.2. The results are presented in Table 2.2. The time
is measured for the different mesh of the family M, and for different number of parallel processes:
in sequential mode (np1), with 12 processes (np12), and with 24 processes (np24). The time to
load the mesh M is also included in the table.

The first striking result is that when the number of parallel processes is increased, the time
taken to load the mesh is also increased. This can be explained by the fact that the mesh is
saved as a sequential mesh, and the application need to load the mesh and distribute it to the
different processes, which takes more time. Moreover, we see that the time taken to refine the
mesh is slightly identical when the number of parallel processes is increased, hence motivating
the need to pre-partition the mesh for subsequent simulations. The Python script performing
the mesh refinement, shown in Listing 7.14, export the refined mesh at the format hdf5, which
is a binary format more efficient than the msh format used by Salome.

The step of mesh partitioning is actually quite fast: the time to read the initial hdf5 mesh,
partition it over 1, 2, 4 8, 12 and 24 parallel processes and export the results mesh goes from
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Mesh size Computational time [s]
(see Table 2.1) np1 np12 np24

Mesh loading 4.64 · 105 6.14 10.94 11.28

M0 2.25 · 105 113.28 129.52 125.95
M1 3.27 · 105 120.22 120.16 117.06
M2 6.32 · 105 135.3 134.6 132.48
M3 1.15 · 106 158.05 156.84 154
M4 5.84 · 106 384.33 384.12 367.24
M5 4.38 · 107 2,088.45 2,061.73 2,045.92

Table 2.2: Performance evaluation of the mesh refinement process with MMG library, for various
number of parallel processes, in sequential mode (np1), or in parallel (np12 and np24).

2.79 s for the mesh M0, to 3.01 s for the mesh M5. For instance, pre-partitioned over 12 parallel
processes, the mesh M4 takes 0.13 s to be loaded, against 8.31 s for the msh format.

In conclusion, the performance evaluation highlights that the mesh generation process is the
most time-consuming, accounting for the majority of the computational overhead. Although
parallel processing speeds up mesh refinement, it introduces additional delays in mesh loading
due to the need to distribute the mesh across multiple processes. The choice of file format, such
as using hdf5 over msh, also plays a crucial role in optimizing loading times.

2.2 Finite element method

In this section, we present the Finite Element Method (FEM) used to solve the heat transfer
problem in the eye, and present results of simulation of the model, in order to verify and validate
it. The FEM is particularly useful for solving problems with complex geometries, such as the
one previously described, because it allows for the discretization of irregular shapes and domains
into smaller, manageable elements. Additionally, FEM provides a framework for obtaining
approximate solutions with controlled error bounds, enabling accurate predictions of physical
phenomena while maintaining computational efficiency.

2.2.1 High fidelity FEM resolution

We briefly describe the Galerkin FEM. More details can be found in literature, such as [EG21;
ESW14]. The main idea is to numerically approximate the solution T (µ) to Problem (1.7b), by
taking a finite dimension subspace Vh ⊂ V := H1(Ω). Such space is constructed thanks to the
mesh discretization, as introduced in Section 2.1. Let {φj}Nj=1 be a basis of Vh, and we denote
by N its dimension. The finite element approximation Th(µ) ∈ Vh is then associated to a vector
T fem ∈ RN such that

Th(µ) =
N∑

i=1
T fem

i (µ)φi. (2.2)

The results of the Galerkin approximation is a finite-dimensional equivalent of the variational
formulation Equation (1.7b): find Th ∈ Vh such that

aL(Th, vh;µ) = fL(vh;µ) ∀vh ∈ Vh. (2.3)
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Consequently, as φj is a basis function of Vh for 1 ⩽ j ⩽ N , we have:

aL

( N∑
i=1

T fem
i φi, φj ;µ

)
= fL(φj ;µ),

N∑
i=1

T fem
i aL(φi, φj ;µ) = fl(φj ;µ).

This latter system can be rewritten under the algebraic form:

A
L

(µ) T fem(µ) = f
L

(µ), (2.4a)

where

A
L

(µ) = [ai,j ]i,j ∈ R
N ×N ai,j = aL(φi, φj ;µ), (2.4b)

f
L

(µ) = [fi]i ∈ R
N fi = fL(φi;µ). (2.4c)

As presented in Section 1.1, we focus on various outputs of interest, sk(µ), for k ∈ J1, noutputK
given by the formula sk(µ) = ℓk(T (µ);µ), where ℓ is a bounded linear form and T (µ) is the
solution to Problem (1.7b). The previous problem is equivalent to:

A
L

(µ)T fem(µ) = f
L

(µ), (2.5a)
sk(µ) = Lk(µ)T T fem(µ). (2.5b)

The vector Lk(µ) ∈ RN is defined in the same manner as f
L

.
The steps run during resolution are recapitulated in Algorithm 1.

Algorithm 1: High fidelity resolution.
Input: µ ∈ Dµ.
Assemble A

L
(µ), f

L
(µ), Lk(µ);

Solve A
L

(µ)T fem(µ) = f
L

(µ);
Compute outputs sk(µ) = Lk(µ)T T fem(µ);
Output: Numerical solution T fem(µ) and outputs sk(µ).

Before presenting the first results of simulation, we need to discuss the choice of the basis if
the finite element space Vh, with the standard Galerkin continuous method.

In the context of finite element methods, the P1 and P2 finite element spaces are commonly
used [EG21]. The P1 finite element space, also known as the linear finite element space, consists
of piece-wise linear functions. Each basis function in the P1 space is associated with a vertex of
the mesh and is defined to be 1 at its associated vertex and 0 at all other vertices. This creates
a continuous, piece-wise linear approximation over the entire mesh. An example of P1 basis
function over one triangular element is shown in Figure 2.4(a). The P2 finite element space, on
the other hand, consists of piece-wise quadratic functions. The basis functions in the P2 space
are associated not only with the vertices but also with the midpoints of the edges of the mesh
elements. Each basis function is defined to be 1 at its associated node (vertex or midpoint) and 0
at all other nodes. This results in a continuous, piece-wise quadratic approximation. An example
is provided in Figure 2.4(b).

The choice of basis functions with support defined on a few number of elements is motivated
by the desire to achieve sparsity in the matrix A, as a sparse system is easier to invert than a
dense one. This sparsity leads to reduced computational complexity and memory requirements,
facilitating more efficient numerical solutions and enabling the handling of larger systems.
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(a) P1 basis function. (b) P2 basis function (taken
from [EG21]).

Figure 2.4: Examples of finite element basis functions. This is presented for 2D elements, but
the concept extends to 3D elements.

Resolution strategy We implement Algorithm 1 in the framework of the open-source library
Feel++ [Pru+24b], and specifically the heat toolbox1 where both models ENL(µ) and EL(µ) can be
simulated. In the context of ENL, non-linear iterations are required to achieve convergence by the
mean of the Newton method, namely the resolution step of Algorithm 1 is performed iteratively
until convergence is reached. More details about this methodology are provided in Section 6.2.1.

To numerically solve the system Equation (2.5), we use multigrid preconditioning, GAMG
[Bra86; ADL00]. GAMG (for Geometric Algebraic Multigrid) efficiently handles large sparse
matrices by recursively coarsening and solving the problem on multiple levels, significantly
accelerating the convergence. The core idea behind GAMG is to generate a quick solution on
a coarse grid and then interpolate it back to the finer grid, using it as an initial guess for the
solution on the finer grid.

The implementation in Feel++ involves several key components that contribute to its effec-
tiveness. These include a highly expressive embedded language, which allows for detailed and
flexible problem description. Additionally, straightforward interpolation techniques are employed
to handle the data between different levels of the multigrid method. Mesh adaptation techniques
are used to refine or coarsen the computational grid as needed, improving the accuracy and
efficiency of the solution process. Finally, parallelization capabilities are integrated into the
framework, enabling the handling of large-scale problems by distributing the computational
workload across multiple processors.

These features collectively enable Feel++ to manage the complexity of the models and
effectively resolve the system, making it a powerful tool for solving large-scale, non-linear finite
element problems.

2.2.2 Scalability

In this section, we explore the scalability properties of the developed computational framework.
This involves measuring the time required to solve the model in relation to the number of MPI
parallel processes utilized. The time measured pertains to the duration necessary for assembling
the algebraic system and solving the problem, as per Algorithm 1. Our experiments utilized
mesh M3, with both P1 and P2 discretizations.

1See documentation: � https://docs.feelpp.org/toolboxes/latest/heat/toolbox.html

https://docs.feelpp.org/toolboxes/latest/heat/toolbox.html
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Figure 2.5: Time of execution to run EN
L (µ̄) and corresponding speed-up, for an increasing

number of parallel processes. Simulations are performed on the mesh M3.

Definition 2.2.1. The speed-up is defined as the ratio of the time taken to solve the problem
with a single process to the time taken with np processes:

speed-up(np) = time(1)
time(np) . (2.6)

The results, presented in Figure 2.5, demonstrate satisfactory scalability: the execution time
decreases as the number of parallel processes increases. However, we observed that beyond 12
processes, the reduction in execution time becomes less significant. Consequently, for optimal
efficiency, we have selected 12 processes for our subsequent analyses. This study sets the stage
for a subsequent comparison with a reduced-order model, which employs a reduced basis with
reliable, certified output bounds derived from the high-fidelity solutions, see Chapter 3. This
comparison aims to highlight that, while parallel computing can accelerate the high-fidelity
computation, the reduced-order approach offers even more substantial computational gains.

2.2.3 Verification: mesh convergence study

In this section, we detail the outcomes of our mesh convergence analysis. This study involves
solving the given problem on various mesh configurations and subsequently comparing the
resultant data. To conduct this analysis, we first solve the model denoted ENL(µ̄). Following this,
we compute the output T fem

NL,O representing the temperature at the cornea’s center as determined
by the high-fidelity model.

Table 2.3 displays the characteristics of the meshes, including characteristic size h and the
number of degrees of freedom (nDof) of the associated problem, for both P1 and P2 finite element
discretizations. Since a 3D model is considered, the number of degrees of freedom is notably
large, particularly with the P2 discretization, emphasizing the necessity of developing an efficient
computational framework.

The primary objective of this analysis is to ascertain whether the obtained temperature
values demonstrate convergence towards a consistent value. Figure 2.6 illustrates the results of
our mesh convergence study, clearly indicating a pattern of satisfactory convergence. We select
for further comparisons the values obtained for M3 and for P2.
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Mesh havg nDof P1 nDof P2

M0 8.6 · 10−4 47,284 3.27 · 105

M1 7.39 · 10−4 68,993 4.73 · 105

M2 5.11 · 10−4 1.21 · 105 8.83 · 105

M3 4.69 · 10−4 2.08 · 105 1.58 · 106

M4 2.94 · 10−4 9.96 · 105 7.87 · 106

M5 1.5 · 10−4 7.36 · 106 5.87 · 107

Table 2.3: Number of degree of freedom of the FE function space constructed from the meshes of
the family M, for both P1 and P2 discretizations.
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Figure 2.6: Temperature at the center of the cornea computed with the high-fidelity model
ENL(µ̄), depending on the level of mesh refinement.
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Figure 2.7: Difference of the temperature between the full model and the linearized model,
computed on the mesh M3 with P2 elements, and the baseline values µ̄ for the parameters.

2.2.4 Linearized model

We now compare the results obtained after solving ENL(µ̄) against EL(µ̄). We denote the
solution of the nonlinear model ENL(µ̄) by TNL(µ̄), and by TL(µ̄) the solution of the linearized
model EL(µ̄), and compute the relative error:

elin(µ) =
∥TNL(µ)− TL(µ)∥L2(Ω)
∥TNL(µ)∥L2(Ω)

. (2.7)

For µ = µ̄, we get elin(µ) = 4.176 · 10−7. In Figure 2.7, we plot the difference between the two
solutions |TNL(x⃗)− TL(x⃗)| for x⃗ ∈ Ω. We notice that the difference is the largest on the front of
the eye, where the boundary condition has been changed, whereas at the back of the eye, the
solutions are superposed. We also compute the maximal difference: 2.1667 · 10−3 K. Therefore,
we consider in the sequel that the linearized model does not induce a significant error in the
results.

Figure 2.8 displays the results of the simulation of the linear model EL(µ), for three parameters
µ: µ̄ the baseline value parameters, µmin (resp. µmax) where each component is the lowest (resp.
highest) bound of its range of values, as defined in Table 1.1. This figure enlights the important
impact of the parameters on the temperature distribution in the eye. This impact will be further
analyzed in the sequel, in Chapter 5.

2.2.5 Validation and comparison with previous studies

We present in this section a thorough comparison between the results of this work and
previously published data on the temperature of the eye, obtained either by experimental
procedures or via computational modeling. Note that only scarce data are available for the entire
human eyeball, since most of the measurement techniques estimated only the surface temperature
of the cornea. In particular, [EYB89] gathers the outputs of 19 studies conducted with various
instruments (mercury bulbs, liquid crystal thermometers or infrared thermometers), and the
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µ̄ µmin µmax
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Figure 2.8: Distribution of the temperature in the eyeball from the linear model EL(µ) for three
different values of the parameters: the baseline values µ̄, the “minimal” parameter µmin and the
“maximal” parameter µmax.

mean value reported, according to [NO06], is T exp
O = 307.15 K. The temperature at the center of

the cornea computed with baseline value from our model is T fem
O (µ̄) = 306.02 K, which lies in

the interval of results from the literature (see [EYB89, Table 1] and [NO06, Table 9]).
Additionally, in [EYB89], the temperature is measured along an imaginary horizontal line, the

Geometrical Center of the Cornea (GCC), as described in Figure 1.4, on a panel of 21 subjects.
The experimental data are displayed in Figure 2.9, together with the findings of the present work.
On the horizontal axis, the distance to the center of the eye is represented, and on the vertical
axis is the temperature difference to the central one (mean value and standard deviation). Note
that as the geometry of the simulated eye is not the same as the one used in the experiment,
we scaled the results over the x-axis. The result shows that the high fidelity model is able to
closely replicate the same behavior as the one experimentally measured, and the model EL(µ̄)
provides very close values (see Section 2.2.4). Moreover, thanks to the error bound introduced in
Section 3.1.2 for the RBM, the approach is considered to be valid for the sensitivity analysis
procedure hereafter.

In Figure 2.10, we present a comparative analysis between the results of our current study and
various numerical findings reported in existing literature. This comparison features temperatures
calculated along a line traversing the eye’s center, the specific location of which is depicted in
Figure 1.5. This comparative approach is crucial as it verifies the accuracy of our computed
values, encompassing not just the corneal surface but also the eye’s internal tissue structures. It
is noteworthy that our analysis includes a mix of both 2D and 3D results, derived from both
non-linear and linearized models. The results computed for the present model are shown for
the linearized model EL(µ̄) and is superposed to the results of the non-linear one ENL(µ̄), as the
difference between the two is negligible (see Section 2.2.4).

The results show a very good agreement between the findings of the present study and
previously reported temperature results, along the different locations in the eyeball.

2.3 Conclusion

In this chapter, we have discussed the discretization of the geometrical model, permitting to
generate meshes that accurately represent the eye’s complex structure. Two families of mesh
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have been generated, of various refinement: A first one directly generated from the CAD data,
for the heat transfer model presented in Chapter 1, and a second one, refined around the anterior
and posterior chambers, that will be used for a coupled model of heat transfer and aqueous
humor flow, presented in Chapter 6. The work committed to the mesh generation and refinement
was published as an open-source dataset [Cha+24].

Then, we have presented the Finite Element Method, which is used to solve the partial
differential equations governing the heat transfer in the eye. We also justified the choice of the
FEM for this problem, and presented results of verification and validation of the method. The
FEM has been successfully applied to models of heat transfer in the eye.

Thanks to this framework, we are now able to set up the Reduced Basis framework, presented
in Chapter 3, to reduce the computational cost of the simulations, and to perform a sensitivity
analysis, presented in Chapter 5.



Chapter 3

Reduced order computational
framework: methods and verification

The framework of the finite element method presented in Section 2.2 is a powerful tool to
solve complex problems, as it stems from a strong mathematical background. However, any
change in the model parameters requires a new solve pf the problem from scratch and induces a
high computational cost. This challenge becomes particularly pronounced in scenarios such as
optimization, uncertainty quantification, and sensitivity analysis—areas we intend to explore in
the context of the heat transfer eye model introduced in Chapter 1.

To mitigate these computational challenges, we can develop Model Order Reduction (MOR)
strategies. MOR techniques have evolved significantly, offering powerful tools to reduce the
computational complexity of high-dimensional models across various fields. These methods
aim to approximate the solution of complex systems by reducing the dimensionality of the
problem, while maintaining an acceptable level of accuracy. This reduction is often achieved by
constructing surrogate models that capture the most significant features of the full-order model,
enabling faster simulations without a complete loss of fidelity. On one hand, the physical model
itself can be simplified, as we did in the process of linearization in Remark 1.4.1. Even though we
verified that such linearization does not result in significant loss of accuracy (see Section 2.2.4),
this valid simplification is not always feasible. On the other hand, methods can be applied
where the model equations are projected onto a lower-dimensional space. For instance, we can
utilize Proper Generalized Decomposition [CLC11], Proper Orthogonal Decomposition (POD)
[Ker+05], the Reduced Basis Method (RBM), or the Non-Intrusive Reduced Basis (NIRB) method.
Recently, data-driven approaches, such as those incorporating dynamical models and snapshot-
based techniques [DDS23], have emerged to further enhance prediction accuracy and efficiency.
Alongside these, machine learning techniques, especially Physics-Informed Neural Networks
(PINNs) [RPK19], are becoming a promising alternative for complex systems by integrating
physical laws with data-driven models. This hybrid approach allows for real-time simulation and
accurate estimations in fields like biomedical engineering and beyond. In Appendix B, we explore
the application of PINNs to microbial community interactions, demonstrating how machine
learning can be harnessed for dynamic system modeling and parameter estimation.

In this chapter, we focus on the Reduced Basis Method (Section 3.1) and the Non-Intrusive
Reduced Basis method (Section 3.2), as the model developed for thermal transfer in the eye
model is well-suited for these methods. The Reduced Basis method has been applied to the
heat transfer problem in the eye model, and we have shown that the method is efficient to
significantly reduce the computational cost of solving the parametric problem, and that the
results are accurate, thanks to the error bound provided by the method.

49
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3.1 Reduced order modeling with the reduced basis method
The Reduced Basis Method (RBM) is a computational technique for solving parametrized

partial differential equations efficiently. It reduces the problem’s complexity by constructing a
low-dimensional approximation space from precomputed “snapshot” solutions, obtained during an
offline phase. These snapshots capture the essential features of the solution space. In the online
phase, the RBM uses this reduced basis to approximate solutions rapidly, making it ideal for
applications requiring repeated simulations, such as optimization and uncertainty quantification,
while maintaining high accuracy.

The RBM has been introduced in the 1970s for nonlinear structural analysis [ASB78; NP80],
and has been extended later to multiparameter problems [FR83; Bal96; Rhe93], or to problems
from other fields such as incompressible flows [Pet89]. In the 2000s, the method has been improved
by the development of efficient error estimator, such as the Certified Reduced Basis (CRB)
[Pru+02; VPP03; RHP08; QMN16], ensuring the reliability of the reduced basis approximation.
The error certified by the CRB allow setting up an offline/online strategy that will be detailed
in this section. Such strategy allows to explore the parametric domain to efficiently build the
reduced basis.

3.1.1 The Reduced Basis Method

We introduce in this section the reduced basis approach [Pru+02; VPP03; RHP08; QMN16].
The goal of the reduced basis method (RBM) is to approximate the solution of the parametrized-
PDE described by a system of equations. For complex geometries and biomechanical problems,
such as the one described in Section 1.3, numerical solving has a prohibitive cost, especially for
studies of uncertainty quantification, requiring the resolution of the system for many parameters.
We present the implemented strategy, following [Pru+02]. In this section, we describe the
methodology in a general layout, the results presented will be computed using the thermal
transfer model EL described in Section 1.4. The general framework of this method was already
implemented in the Feel++ library [Vey14], we adapted this framework to the specific problem of
heat transfer in the eye. More details about the implementation within the Feel++ library are
provided in Section 7.2.

We are looking to the solution to a variational problem stemming from a parametrized PDE
written as: find u(µ) ∈ V such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (3.1)
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and evaluate the output of interest s(µ) defined by

s(µ) = ℓ(u(µ);µ). (3.2)

The solution of the PDE u(µ), also called the exact solution, belongs to the solution manifold
M defined as

M = {u(µ)|µ ∈ Dµ} . (3.3)

We aim at approximating this solution manifold by a low-dimensional subspace VN of small
dimension, as shown in Figure 3.1.

As presented in Section 2.2, we employ the FEM to numerically solve this problem, so we
have a finite dimensional space Vh ⊂ V , and we are computing the solution ufem(µ) ∈ Vh to the
weak formulation

a(ufem(µ), v;µ) = f(v;µ) ∀v ∈ Vh. (3.4)

Remark 3.1.1. In particular, we can choose the output such as s(µ) = f(u(µ);µ). In this
context, the output is said to be compliant.

We denote by N the dimension of Vh, and we set (φn
h)n∈J1,N K a basis of Vh provided by the

FEM. We call the solution ufem to be the high fidelity (HF) solution. Under their algebraic
representation, Equations (3.2) and (3.4) read:

A(µ)ufem(µ) = f(µ), (3.5a)
s(µ) = L(µ)T ufem(µ). (3.5b)

As the dimension N can be very large, it could be challenging to efficiently compute the
solution, especially in the context of sensitivity analysis where numerous evaluation are required,
for various parameters of the PDE. The main idea of RBM is to construct a low-dimension
subspace VN ⊂ Vh, of dimension N with N ≪ N , such that the approximation error is small:
∥ufem(µ) − urbm(µ)∥V ⩽ εtol, while the procedure to compute urbm(µ) is efficient and stable.
The reduced solution urbm(µ) ∈ VN is computed by solving the reduced weak formulation: find
urbm(µ) ∈ VN such that given µ ∈ Dµ:

a(urbm,N (µ), v;µ) = f(u;µ) ∀v ∈ VN . (3.6)

The space VN is constructed to efficiently approximate the manifold M. Precisely, it is
constructed from snapshots, which are high fidelity solutions. The RBM consists of two main
phases:

(i) the offline stage, where the reduced space is constructed, and

(ii) the online stage, where the reduced space is used to compute the solution of the system.

The first step is performed only once and can be costly, whereas the second step is performed for
each parameter µ and is efficient.

We present in Figure 3.1 a schematic representation of the methodology, for a finite number
of snapshots u(µ1), · · · , u(µN ).

During the offline stage, snapshots are computed for a set of parameters {µi}Ni=1 ⊂ Dµ.
This provides a family of vectors, the snapshots,

(
ufem(µi)

)
1⩽i⩽N

⊂ Vh. The reduced space is
defined by VN := span

(
ξ
)
, where (ξ

i
)1⩽i⩽N is an orthonormal family of vectors, obtained by

the Gram-Schmidt process applied to the snapshots {ufem(µi)}1⩽i⩽N . We define the snapshots
matrix Z

N
=
[
ξ1, · · · , ξN

]
∈ RN ×N .
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M = {u(µ)|µ ∈ Dµ}

FE Space Vh

VNξ1
ξN

ufem(µN )
ufem(µ1)

MN = {uN (µ)|µ ∈ Dµ}

Figure 3.1: Schematic representation of the reduced basis method, with the construction of the
reduced space VN from the snapshots ufem(µi).

The snapshots can be selected in different ways. The first approach is to select the snapshots
randomly in the parameter space, but this could lead to a poor approximation of the solution
[Buf+12]. Another approach is to select the snapshots greedily, by selecting the parameter that
maximizes the error between the reduced solution and the high fidelity solution:

µN+1 = arg max
µ∈Dµ

∥∥∥ufem(µ)− urbm,N (µ)
∥∥∥

V
. (3.7)

More details about this greedy procedure are provided in Section 3.1.3, as this second strategy is
the one implemented in our model.

Let vN ∈ VN . It can be expressed in the basis (ξ
i
)i∈J1,NK

vN =
N∑

i=1
vN,iξi

= Z
N

vN , (3.8)

where vN is the algebraic representation of vN ∈ VN . Inserting this expression in the algebraic
equation Equation (3.5b), we obtain

A(µ)Z
N

vN = f(µ),
ZT

N
A(µ)Z

N
vN = ZT

N
f(µ). (3.9)

Setting A
N

(µ) := ZT
N

A
L

(µ)Z
N
∈ RN×N and f

N
(µ) := ZT

N
f

L
(µ) ∈ RN , we obtain the reduced

algebraic system of size N :

A
N

(µ)urbm,N (µ) = f
N

(µ), (3.10a)
sN (µ) = LN (µ)T T rbm,N (µ), (3.10b)

the same process applying for the outputs L.
We have constructed an algebraic system of size N to solve the problem, but still an issue

remains: the cost to compute the reduced matrices A
N

(µ) and f
N

(µ) is still high, because it
still depends on the high fidelity dimension N , involved in the matrix multiplications. The idea
to overcome this issue is to exploit the affine decomposition of the problem, whenever possible.
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Assume that we can decompose the forms a(·, ·;µ), f(·;µ), and ℓ(·;µ) in an affine way:

a(u, v;µ) =
Qa∑
q=1

βq
A(µ)aq(u, v), (3.11a)

f(v;µ) =
Qf∑
p=1

βp
F (µ)fp(v), (3.11b)

ℓ(u;µ) =
Qℓ∑

k=1
βk

ℓ (µ)ℓk(u), (3.11c)

where Qa, Qf , and Qℓ are the number of terms in the decomposition.
We furthermore define the algebraic matrices Aq

L
∈ RN ×N and vectors fp

L
∈ RN , so the

following equality holds:

A
L

(µ) =
Qa∑
q=1

βq
A(µ)Aq

L
, f

L
(µ) =

Qf∑
p=1

βp
F (µ)fp

L
. (3.12)

Moreover, the affine decomposition of the bilinear form a is parametrically coercive, meaning
that:

βq
A(µ) > 0 ∀q ∈ J1, QaK, (3.13a)

aq(u, u;µ) ⩾ 0 ∀q ∈ J1, QaK, ∀u ∈ Vh, ∀µ ∈ Dµ. (3.13b)

From this decomposition and Equation (3.10a), we obtain the following algebraic system:

A
N

(µ) =
Qa∑
q=1

βq
A(µ) ZT

N
Aq

L
Z

N︸ ︷︷ ︸
Aq

N

. (3.14)

We set Aq
N

:= ZT
N

Aq
L

Z
N
∈ RN×N . The matrices Aq

N
∈ RN×N are independent of µ and can

be computed only once and stored. The same process applies to f
N

(µ) and Lk,N (µ):

f
N

(µ) =
Qf∑
q=1

βq
F (µ)f q

N
, LN (µ) =

Qℓ∑
q=1

βq
ℓ (µ)Lq

N . (3.15)

This decomposition allows implementing an offline/online procedure. During the offline phase,
the basis of VN is constructed from the snapshots, as well as the matrices Aq

N
, f q

N
, and Lq

N that
are computed and stored. More details about this construction are given in Section 3.1.3. This
procedure can be computationally costly, but it is performed only once for the problem. During
the online phase, the reduced system Equation (3.10) is solved for any parameter µ. The entire
procedure is synthesized in Algorithms 2 and 3.

During the offline stage, two approaches can be used to select the size of the reduced basis N :

(i) an approach where we set the size of the reduced basis N to a fixed value, and

(ii) an approach where we set a tolerance εtol on the error committed on the output.

The second approach is more interesting since it allows having a reduced basis of size N that is
adapted to the desired tolerance, and it is the one implemented in our model.
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Algorithm 2: Offline stage of the RBM.
Input: Parameters µ1, · · · , µN ∈ Dµ.
Compute snapshots ufem(µ1), · · · ,ufem(µN );
Construct Z

N
←
[
ξ1, · · · , ξN

]
(orthonormal);

Construct the reduced matrices (Aq
N

)1⩽q⩽Qa , (F p
N )1⩽p⩽Qf

, LN ;
Output: Reduced basis and reduced matrices, stored.

Algorithm 3: Online stage of the RBM.
Input: µ ∈ Dµ.
Assemble A

N
(µ), F N (µ), LN (µ) using the saved matrices and the affine decomposition;

Solve A
N

(µ)uN (µ) = F N (µ);
Compute the output sN (µ) = LN (µ)T uN (µ);
Output: uN (µ), sN (µ).

Remark 3.1.2. Note that in the context of heat transfer problem described in Section 1.4, such
a decomposition is possible for the model EL: for T, v ∈ V ,

aL(T, v;µ) =
Qa∑
q=1

βq
A(µ)aq

L(T, v), (3.16a)

with

β1
A(µ) = klens a1

L(T, v) =
∫

Ωlens
∇T · ∇v dx⃗, (3.16b)

β2
A(µ) = hamb a2

L(T, v) =
∫

Γamb
Tv dσ, (3.16c)

β3
A(µ) = hbl a3

L(T, v) =
∫

Γbody
Tv dσ, (3.16d)

β4
A(µ) = 1 a4

L(T, v) =
∫

Γamb
hrTv dσ +

∑
i ̸=lens

ki

∫
Ωi

∇T · ∇v dx⃗, (3.16e)

and

fL(v;µ) =
Qf∑
p=1

βp
F (µ)fp

L(v), (3.17a)

with

β1
F (µ) = hambTamb + hrTamb − E f1(v) =

∫
Γamb

v dσ, (3.17b)

β2
F (µ) = hblTbl f2(v) =

∫
Γbody

v dσ, (3.17c)

where Qa = 4 and Qf = 2. The various outputs of interest are already in a decomposed form,
with only one term in the decomposition.

3.1.2 Error estimates

A priori convergence theory

Definition 3.1.3. We introduce the inner scalar product and the induced energy norm: for
u, v ∈ V and µ ∈ Dµ, ⟨u, v⟩µ := a(u, v;µ) and ∥v∥µ :=

√
⟨v, v⟩µ.
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Proposition 3.1.4 ([EG21]). Let µ ∈ Dµ. Assume that the bilinear form a(·, ·;µ) satisfies the
hypothesis From the hypothesis of the bilinear form a(·, ·;µ), then the solution of Equation (3.6)
uN (µ) ∈ VN satisfies the following property:

uN (µ) = arg min
v∈VN

∥u(µ)− v∥µ . (3.18)

Proof. Recall that the solution uN minimizes the functional J : V → R, w 7→ 1
2a(w,w;µ)−ℓ(w;µ),

as a consequence of the Lax-Milgram theorem. For clarity, the parameter dependence is omitted.
Let vN ∈ VN . Using the optimality of uN , we have J(uN ) ⩽ J(vN ). Hence:

∥u− uN∥µ = a(u− uN , u− uN ) = a(u, u)− 2a(uN , u) + a(uN , uN )
= a(u, u)− 2ℓ(uN ) + a(uN , uN ) = a(u, u) + J(uN )
⩽ a(u, u) + J(v) = ∥u− v∥µ .

■

We focus on the convergence rate of the field uN (µ) to u(µ), and of the compliant output
sN (µ) to s(µ), as N →∞.

Proposition 3.1.5 ([Pru+02]). The following optimality property of the reduced basis approxi-
mation uN (µ) stands:

∥u(µ)− uN (µ)∥V =
√
γ(µ)
α(µ) inf

vN ∈VN

∥u(µ)− vN∥V . (3.19)

where α(µ) and γ(µ) are the coercivity and continuity constants of a(·, ·;µ), respectively.
Moreover, for a compliant output, sN (µ) is a lower bound of s(µ), and the error s(µ)− sN (µ)

converges as the square of the error in the best approximation:

s(µ)− sN (µ) ⩽ γ(µ) ∥u(µ)− uN (µ)∥2V . (3.20)

Proof. From Proposition 3.1.4, we have a(u(µ)− uN (µ), u(µ)− uN (µ);µ) ⩽ a(u(µ)− vN , u(µ)−
vN ;µ) for all vN ∈ VN . Using coercivity and continuity of a(·, ·;µ), we obtain:

α(µ) ∥u(µ)− uN (µ)∥2V ⩽ γ(µ) ∥u(µ)− vN∥2V . (3.21)

That proves the first result.
Moreover, for compliant output, we have

s(µ)− sN (µ) = f(u(µ);µ)− f(u(µ);µ) = a(u(µ), u(µ);µ)− a(uN (µ), uN (µ);µ)
= a(u− uN , a− uN ;µ), (3.22)

from symmetry of a(·, ·;µ), and Galerkin orthogonality. The second result follows from this
equation and from the coercivity of a(·, ·;µ). ■

Error bound

Given the reduced basis approximation urbm,N (µ) of the HF solution ufem(µ) for µ ∈ Dµ, we
define the field error as

e(µ) := ufem(µ)− urbm,N (µ). (3.23)

We aim to construct quantities ∆N (µ) and ∆s
N (µ) such that

∥e(µ)∥V ⩽ ∆N (µ) and s(µ)− sN (µ) ⩽ ∆s
N (µ). (3.24)
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These quantities are called a posteriori error bounds [Pru+02; RHP07]. To quantify the
sharpness and rigor properties of the error bound, we introduce the effectivity:

ηN (µ) := ∆N (µ)
∥e(µ)∥V

, ηs
N (µ) := ∆s

N (µ)
s(µ)− sN (µ) . (3.25)

It has been proven in [Pru+02] that the error bound is rigorous, namely that it is always
greater than the error; and sharp, namely that it is as close as possible to the actual error.

These properties can be summarized as:

1 ⩽ ηN (µ) ⩽ ηub(µ) ∀µ ∈ Dµ, (3.26)

where ηub(µ) is the sharpness of the bound and is proven to be bounded when N increases
[Pru+02].

Finally, to construct the reduced space, we require the error bound to be efficient, that is, its
evaluation is independent of the size of the high fidelity space N . This is critical when heuristic
algorithms are used to construct the reduced space, such as the Greedy algorithm discussed in
Section 3.1.3.

Such an error bound can be constructed efficiently from the residual r of the problem (1.6), a
lower bound αlb(µ) of the coercivity constant α(µ) of aL(·, ·;µ), and the affine decomposition of
aL and fL, as follows:

α(µ) = inf
v∈V

a(v, v;µ)
∥v∥2V

, r(v, µ) := ℓ(v;µ)− a(uN (µ), v;µ) ∀v ∈ V and ∆N := ∥r(·, µ)∥V ′

αlb(µ) .

(3.27)
For more details, we refer to [Pru+02]. The Certified Reduced Basis (CRB) method is characterized
by the inclusion of this error bound. This guarantees not only the efficiency of the reduced basis
approximation but also its reliability.

A posteriori error estimation

Thanks to the bilinearity of a(·, ·;µ), the error e(µ) satisfies the following variational problem:

a(e(µ), v;µ) = ℓ(v;µ)− a(uN (µ), v;µ) ∀v ∈ V. (3.28)

We set the residual r(µ) as

r(v, µ) := ℓ(v;µ)− a(uN (µ), v;µ) ∀v ∈ V. (3.29)

We set αlb(µ) as a lower bound of α(µ) over Dµ and γub(µ) as an upper bound of γ(µ) over
Dµ. Such quantities are well-defined since a(·, ·;µ) is coercive and γ(µ) is bounded.

Proposition 3.1.6 ([Pru+02]). A more precise lower bound for α(µ) can be given by:

αlb(µ) = α(µ̄) min
q

βq
a(µ)
βq

a(µ̄) . (3.30)

Proof. We have ∀µ ∈ Dµ:

α(µ) = min
v∈V

a(v, v : µ)
a(v, v; µ̄) = min

v∈V

∑
q β

q
a(µ)aq(v, v)
a(v, v; µ̄) × βq

a(µ̄)
βq

a(µ̄)

⩾ min
q

βq
a(µ)
βq

a(µ̄) min
v∈V

∑
q β

q
a(µ̄)aq(v, v)
a(v, v; µ̄) = min

q

βq
a(µ)
βq

a(µ̄)α(µ̄).

■



3.1. REDUCED ORDER MODELING WITH THE REDUCED BASIS METHOD 57

This provides a lower bound of α(µ), but it may not be the greatest lower bound. To find
a better lower bound, we can use the following procedure: We take µi for i ∈ J1, NK a set of
parameters in Dµ, with N ∈ N \ {0}, and compute during the off-line stage the values of α(µi).

During the online stage for µ ∈ Dµ, we set αlb(µ) = max
i∈J1,NK

α(µi) min
q

βq
a(µ)
βq

a(µ̄) . This quantity can

be computed efficiently.
Then, we set the following error estimate

∥r(µ)∥V ′

αlb(µ) := ∆N (µ). (3.31)

Theorem 3.1.7 ([Pru+02]). The error bound ∆N (µ) defined in Equation (3.31) is sharp,
rigorous, and efficient.

Proof. Using the continuity of a(·, ·;µ), we have ∀v ∈ V

|r(v, µ)| ⩽ γ(µ) ∥e(µ)∥V ∥v∥V . (3.32a)

Hence, using the dual norm
∥r(µ)∥V ′ ⩽ γ(µ) ∥e(µ)∥V . (3.32b)

So by definition of ∆N (µ) and of the effectivity, we have ηen
N (µ) ⩽

γ(µ)
α(µ) ⩽

γ(µ)
αlb

. Hence, the
rigorous property.

Moreover, using the coercivity of a(·, ·;µ), we have

α(µ) ∥e(µ)∥V ⩽ ∥r(µ)∥V ′ , (3.32c)

and so ηen
N (µ) ⩾ 1, hence the sharpness property.

Finally, r(µ) is only dependent of the reduced space VN , and αlb is independent of µ and N ,
so the evaluation of ∆N (µ) is efficient.

■

We need to highlight the fact that the reduced problem as well as the computation of the
error bound ∆N (µ) are independent of the size of the high fidelity space N . They only depend
on the size of the reduced basis N . This is a key property for the efficiency of the reduced basis
method, as it allows to construct the reduced basis space using heuristic algorithms such as the
Greedy algorithm, as discussed in Section 3.1.3.

Dual problem

The theory presented in the previous section is based on the fact that the output selected is
compliant, meaning that ℓ(·;µ) = f(·;µ). This is not the case for the thermal model EL(µ), as ℓ
is a general a bounded linear form on V . We have the following a priori error estimate:

|s(µ)− sN (µ)| = |ℓ(u(µ))− ℓ(uN (µ))| ⩽ ∥ℓ∥V ′ ∥u(µ)− uN (µ)∥V .

We notice that we lost the square convergence of the error obtained in the complaint case.
To overcome this, we introduce the dual problem [Pru+02] associated to ℓ: find ψ(µ) ∈ V

such that:

a(v, ψ(µ);µ) = −ℓ(v;µ) ∀v ∈ V, (3.33)

ψ(µ) is called the adjoint or dual field.
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We introduce the primal residual rpr(v;µ) := f(v;µ) − a(uN (µ), v;µ) for all v ∈ V . The
problem to solve is therefore: given µ ∈ Dµ, find uN (µ) ∈ V such that

a(uN (µ), v;µ) = f(v;µ) ∀v ∈ V, (3.34)

and evaluate the output sN (µ) = ℓ(uN (µ))− rpr(ψ(µ)), where ψ(µ) is the solution of the dual
problem.

In Section 3.1.2, we saw that for a compliant output, the reduced output sN is a lower bound
for s(µ). From that, we can introduce the following prediction for µ ∈ Dµ: spred

N = sN (µ)+ ∆s
N (µ)
2 ,

with the following bounds: spred
N ∈ [sN (µ), sN (µ) +∆].

We now have:

|s(µ)− sN (µ)| = |ℓ(u(µ))− ℓ(uN (µ))|
= |a(u(µ)− uN (µ), ψ(µ);µ)
= |a(u(µ)− uN (µ), ψ(µ)− ψN (µ);µ)|
⩽ γ(µ) ∥u(µ)− uN (µ)∥V ∥ψ(µ)− ψN (µ)∥V , (3.35)

from Galerkin orthogonality, and from the continuity of a(·, ·;µ).
From Equation (3.35) we understand why we solve the dual problem: in order to obtain

a precise approximation of the output s(µ), we utilize the approximation solution of the dual
problem ψN (µ) to recover the square convergence of the error in the output.

The error bound is then:

∆s
N (µ) :=

∥∥∥rpr(·;µ)
∥∥∥

V ′√
α(µ)

∥∥∥rdu(·;µ)
∥∥∥

V ′√
α(µ)

, (3.36)

where rdu(v;µ) := −ℓ(v;µ) + a(v, ψ(µ);µ) is the dual residual.
The theory of certified reduced basis requires the linear form f to be L2. As presented in

Section 1.5, the outputs considered in the context of thermal model EL(µ) deviate from this
standard case, attributed to the utilization of the Dirac functional in output computation used
for pointwise evaluation. Nevertheless, we will see in the result section that the results are still
in good agreement with the theory in the regular case. Additional insights into this issue are
provided in Chapter 4.

3.1.3 Greedy generation of the reduced basis

The a posteriori error estimator introduced earlier provides an efficient criterion to select the
desired dimension of the reduced space N , in the offline phase. Given a fixed tolerance εtol, we
can greedily select the greatest N such that the error bound is smaller than the tolerance. In
this section, we describe an algorithm to generate the reduced basis.

For this algorithm, a large set of parameters Ξtrain ⊂ Dµ is required. This set is called the
training set, and is generated log-randomly. A first snapshot is computed for a given parameter
µ0 ∈ Dµ. To get the N + 1-th snapshot to be inserted in the basis, we select the parameter µ⋆

that maximizes the error bound ∆N (µ), for µ ∈ Ξtrain. This step is performed until a selected
tolerance for the maximal error bound is reached. This procedure is denoted as greedy because at
each step, the parameter that maximizes the error bound is selected. The steps of the procedure
are presented in Algorithm 4.

As pointed out in [Coh+20], the quality of the reduced space VN is highly dependent on the
solution manifold M, and its Kolmorogov n-width [MPT02; Ngu20]. In the spirit of [Pru+02],
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Algorithm 4: Greedy algorithm to construct the reduced basis.
Input: µ0 ∈ Dµ, Ξtrain ⊂ Dµ and εtol > 0.
S ← [µ0];
while ∆max

N > εtol do
µ⋆ ← arg max

µ∈Ξtrain
∆N (µ) (and ∆max

N ← max
µ∈Ξtrain

∆N (µ));

VN+1 ←
{
ξ = ufem(µ⋆)

}
∪ VN ;

Append µ⋆ to S;
N ← N + 1;

end
Output: Sample S, reduced basis VN .

we choose a train set containing parameters that are log-uniformly distributed in the parameter
space.

In the sequel of this section, we present the results of the reduced basis method applied to
the thermal transfer model EL described in Section 1.4.

3.1.4 Accuracy, performance and verifications of the reduced basis model

Convergence analysis We first compare the results of the reduced basis method with the
output of the high fidelity FEM model. We generate a sample Ξtest of 100 parameters in
Dµ. For µ ∈ Ξtest, we compute on the one hand T fem

O (µ), the value of the temperature at
point O from the model EL(µ), and on the other hand T rbm,N

O (µ), the value of the temperature
for the reduced basis model, with a basis of size N . In Figure 3.2(a), the value of the error
|T fem

O (µ)− T rbm,N
O (µ)| is plotted for each µ ∈ Ξtest, for various reduced basis sizes N . Statistics

on the error committed over the sample Ξtest are displayed in Figure 3.2(b), as well as the
effectivity ηN (µ) in Figure 3.2(c).

We observe that even for small values of N , the error on the output is tiny: an error of 10−4

is reached for N = 6. On the other hand, we find that the convergence rate on the output is
approximately twice as fast as the convergence on the field, as predicted by the theoretical error
estimate [Pru+02, Eq. (36)].

Note that the anticipated error behavior aligns with theory when the output functional
maintains continuity. In this work, we deviate from the standard case, attributed to the utilization
of the Dirac functional in output computation used for pointwise evaluation. Nevertheless, a
similar behavior is observed, and additional insights into this phenomenon are provided in
Chapter 4.

To infer the greatest possible error on the output, we compute the error bound ∆N (µ) for
each µ ∈ Ξ̃test, where Ξ̃test is a very large sample of parameters in Dµ. Here we take a set whose
size is 105. With N = 10, we find that the maximal error on the output is ∆max

N = 1.45 · 10−4.
Figure 3.3 shows the box plot of the error bound ∆N (µ) for µ ∈ Ξ̃test, showing that as the size
of the reduced basis increases, the error bound generally decreases.

Execution time Table 3.1 displays a comparative analysis of execution times for solving
the heat transfer problem. We first discuss the execution times for the high-fidelity solution,
encompassing both P1 and P2 finite-element discretizations. The measured time, denoted as texec,
includes assembling and solving the problem. In addition, we also evaluate the execution time of
the online phase of our certified reliable reduced basis model. It corresponds to the time spent by
the application to compute the solution of both primal and dual problems, as well as the error
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Figure 3.2: Comparison of the temperature between the full order model and the reduced basis
model, tested over a sample Ξtest ⊂ Dµ of 100 parameters.
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Figure 3.3: Box plot of the error bound ∆N (µ) for µ ∈ Ξ̃test, and various reduced basis sizes N .

Finite element resolution Reduced model
T fem(µ) T rbm,N (µ), ∆N (µ)

P1 P2 (np=1) P2 (np=12)

Problem size N = 207 845 N = 1 580 932 N = 10
texec 5.534 s 62.432 s 10.76 s 2.88× 10−4 s

speed-up 11.69 1 5.80 2.17 × 105

Table 3.1: Times of execution of the finite element model for both P1 and P2 discretization
against the computation time of the reduced solution and error bound. The mesh M3 is used for
high fidelity simulations.

bound. This comparison highlights a significant reduction in the time required to assemble and
solve the problem using our advanced reduced basis approach. Importantly, this efficiency does
not compromise accuracy; the results from the reduced basis model are effectively sharp with
respect to the high fidelity model. As anticipated in our earlier scalability analysis, we achieve
remarkable computational gains with our model, reinforcing the benefits of our approach in both
precision and performance.

The reduced bases constructed for the various outputs of interest are generated with the
greedy algorithm (Algorithm 4), using a maximal tolerance εtol = 1 · 10−6 and a maximal size for
the basis N = 20. In practice, the tolerance is reached for N = 10 to 12.

We presented the time required by the online stage to compute the solution of the reduced
basis model, which we aim to minimize. In contrast, the offline stage, which is performed only
once, can be computationally expensive. For a training set of size Ntrain = 1000 using the
greedy algorithm, the offline stage takes approximately 3.5 hours to select the snapshots and
construct the reduced basis. During the snapshot selection, the online solution was computed
for each parameter in the training set, resulting in a total of over 11 000 computations, with
an average time of 5.38× 10−5 s per computation. The total time for these computations was
6.26 × 10−1 s. This highlights the importance of ensuring that the computation of the error
bound is independent of the dimension of the HF problem.
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3.2 Non-Intrusive Reduced Basis method

The Non-Intrusive Reduced Basis (NIRB) method is a variant of the Reduced Basis Method
that achieves computational efficiency without requiring modifications to the underlying high-
fidelity model. It constructs a low-dimensional approximation space using precomputed solutions
(“snapshots”) from the original model. The reduced basis is then combined with interpolation
or regression techniques to approximate new solutions for different parameter values. This
non-intrusive approach is particularly useful when the high-fidelity model is a black box or
difficult to alter, enabling reduced-order modeling without compromising the integrity of the
original solver.

While the RBM method introduced in the previous section proved highly efficient for the
bioheat transfer problem, its applicability can be limited in certain contexts. For instance, RBM
may face challenges with complex geometries, non-linear problems, or cases where access to the
full-order model’s internal structures is restricted, a common constraint in industrial applications.
These limitations arise because RBM is an intrusive method, requiring direct interaction with
the underlying model.

The Non-Intrusive Reduced Basis (NIRB) method addresses these constraints by decoupling
the reduced-order model from the full-order model’s internal details. This approach, introduced
in [CM09b; CM09a] and extended to problems like CFD [CMP19] and parabolic systems [Gro22],
uses a two-grid strategy to set up the MOR. Several error estimation techniques have also been
proposed [GM23b; GM23b] to enhance its reliability. This approach still allows setting up an
offline/online strategy, and is detailed in this second section. The implementation of the NIRB
method within the Feel++ library is a novel contribution of this work. Developed in collaboration
with Ali Elarif from Cemosis, this integration adapts the NIRB methodology to the modeling
capabilities offered by Feel++, enabling its application to a broader class of problems, including
those studied in this manuscript. Details of this contribution are discussed in this section and
further elaborated in Section 7.3.

In this section, we first introduce the NIRB method and then present results obtained from
various test cases. Lastly, we will explore the initial application of this method to a thermal
model of the eye and discuss the outcomes.

We place ourselves in the same context as in Section 3.1, where we have a physical problem
modeled by a system of PDE, with parameters involved. Starting from the PDE formulation, we
can compute the associated variational formulation: for µ ∈ Dµ given, find u(µ) ∈ V such that

F(u(µ), v;µ) = 0, ∀v ∈ V, (3.37)

where V is a well-chosen functional space, and F : V × V ×Dµ → R is a functional with good
properties so that the problem is well-posed; and focus on an output of interest:

s(µ) = ℓ(u(µ);µ). (3.38)

We approximate the functional space by a finite element (FE) space Vh of dimension Nh.
The discretization of Equation (3.37) is then: for µ ∈ Dµ given, find uh(µ) ∈ Vh such that

F(uh, v;µ) = 0, ∀v ∈ Vh. (3.39)

Similar to what was presented in the previous chapters, the algebraic equivalent to Equa-
tion (3.37) is: find uh(µ) ∈ Vh ≃ RNh solution to the system

A
h
(µ)uh(µ) = F h(µ). (3.40)
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External
solver

Snapshots
uh(µ1), · · · , uh(µN )

computed on a fine mesh Th

Reduced basis
ξ1, · · · , ξN

Coarse solution uH(µ)
computed on a coarse mesh TH

NIRB approximation uN
Hh(µ)

Offline Online

L2–projection

Figure 3.4: Two-grids strategy for the Non-Intrusive Reduced Basis method, adapted from
[Gro22].

where A(µ) ∈ RNh×Nh is the algebraic representation of a(·, ·;µ) in Vh, and F (µ) ∈ RNh of
f(·;µ).

As presented in Section 3.1, the aim of RBM is to construct a problem of size N with N ≪ Nh

whose solution uN (µ) ∈ VN is a suitable approximation to the FE solution u(µ):

A
N

(µ)uN (µ) = F N (µ), (3.41)

with A
N

(µ) ∈ RN×N and F N (µ) ∈ RN .
This method requires a linear decomposition such as A

h
(µ) =

∑QA
q=1 β

q
A(µ)Aq

h
[Pru+02] to

enable fast online computation. For complex models, such a decomposition can be difficult to
obtain, if not impossible. Moreover, in the context of industrial applications, the solver code
may not be available, and therefore the intrusive method is not applicable.

In the following, we focus on a non-intrusive strategy, involving a multi-grid method, in which
the functional space V is approximated by two different spaces of various refinement, VH and
Vh, where H ≫ h is the characteristic sizes used for the discretization. The two meshes used
to discretize the problem are named TH and Th respectively. We denote by NH (resp. Nh) the
dimension of VH , (resp. Vh). We display in Figure 3.4 a schematic of the two-grids strategy for
the Non-Intrusive Reduced Basis method.

Notations Before delving into the details of the method, we introduce some notations that
will be used in the following. A notation in normal font (e.g. u) corresponds to a function in a
functional space, while a notation in bold font (e.g. u) corresponds to the algebraic equivalent.
A quantity noted with a superscript N means that such element is associated to the FE space,
while a subscript N means that the element is associated to the reduced space.

Table 3.2 gathers all the notations that are used in the present section. Note that to avoid
overloading the notation, the FE solution in the coarse mesh is written uN

H instead of uNH
H .

The scalar product ⟨·, ·⟩L2 is the L2-scalar product over the functional space V . In practice,
we will use the L2-scalar product over the FE space Vh, or VH . We also define the H1-scalar
product over functional space, ⟨·, ·⟩H1 . Using the notation of Table 3.2, we have for u, v ∈ Vh:

⟨u, v⟩L2 = uT ·ML2 · v and ⟨u, v⟩H1 = uT ·MH1 · v. (3.42)
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Notation Description

Vh FE functional space on the fine mesh Th

VH FE functional space on the coarse mesh TH

V N
h reduced functional space of the fine functional space Vh

V N
H reduced functional space of the coarse functional space VH

NH Dimension of the coarse FE space Vh

Nh Dimension of the fine FE space VH

uN
h FE solution on the fine mesh
uN

h Projection of uN
h on the reduced function space V N

h

uN
H FE solution on the coarse mesh

uN
H→h FE solution on the coarse mesh, interpolated on the fine mesh
uN

Hh NIRB solution
Z

N
reduced basis, stored in columns: Z

N
∈ RNh×N

(ξi
h)i=1...N basis functions, ξi

h ∈ RNh , and Z
N

[:, i] = ξi

(ξi
H)i=1...N coarse basis functions, ξi

H ∈ RNH

M
L2 matrix of mass (L2 scalar product): ML2 ∈ RNh×Nh

M
H1 matrix of stiffness (H1 scalar product): MH1 ∈ RNh×Nh

M
Hh

interpolation matrix from coarse mesh to fine one: MHh ∈ RNh×NH

Table 3.2: Notations for the NIRB framework.

3.2.1 Theoretical framework

The RBM has been presented in Section 3.1. We simply recall here the notation used in this
part.

The reduced basis is composed of N basis functions (ξi
h)i=1...N , which are L2-orthonormalized.

We set the matrix Z
N
∈ RNh×N such that Z

N
[:,i] = ξi

h.

Projection step

In the RBM, during the online stage, we solve a low-dimensionnal system to get uN (µ) ∈ RN ,
and then construct the solution on the space Vh by means of the following formula:

uN
h (µ) =

N∑
i=1

uN i(µ)ξi
h. (3.43)

On the other hand, the NIRB method proposes constructing the coefficient (uN
i )i=1...N by

using a direct projection of the finite element approximation uN
h in the space V N

h . This projection
ensures that the reduced coefficients (uN

i )i=1...N accurately capture the essential features of the
finite element approximation uN

h within the reduced space V N
h , preserving the fidelity of the

reduced model. Denote by ΠuN
h the L2-projection of FE approximation of uN

h in the space VN .

Proposition 3.2.1. The following relation holds:

uN
h (µ) = ΠuN

h (µ) =
N∑

i=1
αN,h

i (µ)ξi
h, (3.44)

with αN,h
i (µ) defined by:

αN,h
i (µ) =

〈
uN

h (µ), ξi
h

〉
L2
. (3.45)



3.2. NON-INTRUSIVE REDUCED BASIS METHOD 65

Proof. In this proof, µ ∈ Dµ is fixed. The quantities uN
h (µ), Πu(µ) are introduced in the following

depending on µ, but to simplify the notation, this dependence will not appear explicitly.
We look for the L2-projection of uN

h , Πu ∈ V N
h , such that

⟨Πu, v⟩L2 =
〈
uN

h , v
〉

L2
∀v ∈ VN . (3.46a)

This is true for all v ∈ V N
h , in particular for the basis functions ξi

h, for i ∈ J1..NK:

∀i ∈ J1..NK,
〈
Πu, ξi

h

〉
L2

=
〈
uN

h , ξ
i
h

〉
L2
. (3.46b)

On the one hand, we have:

Πu =
N∑

j=1
Πujξ

h
j , (3.46c)

and on the other hand, as the basis, (ξi
h)i is L2-orthonormalized, ⟨ξi, ξj⟩L2 = δij , hence

〈
Πu, ξi

h

〉
L2

= Πui =
〈
uN

h , ξ
i
h

〉
L2
. (3.46d)

Finally, using Equations (3.46c) and (3.46d), we get:

Πu =
N∑

i=1

〈
uN

h , ξ
i
h

〉
L2
ξh

j . (3.46e)

■

The main idea of the NIRB [CM09b; CM09a] method relies on a second triangulation {TH}H ,
whose mesh size H is much larger than the mesh size h of the fine grid {Th}h: H ≫ h. This
second triangulation is called coarse mesh and the corresponding finite element space is denoted
by VH , of finite dimension NH ≪ Nh. For µ ∈ Dµ, we denote by uN

H (µ) ∈ VH the solution of
the finite element approximation of Equation (3.37) on the coarse mesh TH . As the time of
computation on the coarse mesh is much smaller than on the fine mesh, instead of using uN

h (µ)
to construct the interpolation coefficients in Equation (3.44), we use the following approximate
solution:

uN
Hh(µ) =

N∑
i=1

αN,H
i (µ)ξi

h, (3.47)

with αN,H
i (µ) defined by:

αN,H
i (µ) =

〈
uN

H→h(µ), ξi
h

〉
L2
, (3.48)

where uN
H→h(µ) is the finite element approximation of uN

H (µ), interpolated on the fine mesh Th.
In the following, we describe how the NIRB basis functions are constructed, and how to

ensure their orthonormalization. Recall that the NIRB method consists in building the basis
functions by using preselected finite element solutions from the fine mesh, the snapshots. In this
work, we use two kinds of preselection: a random selection and a Greedy algorithm, that will be
implemented in the following sections.
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3.2.2 Construction of the basis functions

Random selection This kind of selection is widely used in the reduced order method [Gro22;
CMP19] due to the simplicity of implementation. It consists in taking a random sample of
parameters µi ∈ Dµ, and compute the snapshots associated to these parameters. The basis
functions are built using a Proper Orthogonal Decomposition (POD) method, which is a statistical
technique used to reduce the dimensionality of a system by identifying patterns in the data. The
steps involved in constructing the basis functions using POD are as follows:

1. A random choice of a sampling of Ntrain parameters {µ1, · · · , µNtrain} ⊂ Dµ,

2. Solving the equation (3.40) on the fine grid for each chosen parameters to get the Ntrain
initial snapshots, ui

h := uN
h (µi), 1 ⩽ i ⩽ Ntrain,

3. Computation of the correlation matrix C ∈ RNtrain×Ntrain by:

C
i,j

=
〈
ui

h, u
j
h

〉
L2

1 ⩽ i, j ⩽ Ntrain. (3.49)

4. Solving the eigenvalue problem:
C v = λv. (3.50)

5. The POD basis functions are given by:

ξh
i = 1√

λi

Ntrain∑
j=1

vi[j] · uj
h, 1 ⩽ i ⩽ Ntrain, (3.51)

where (λi,v
i) ∈ R×RNtrain is the i-th pair of eigenvalue and eigenvector. As C is symmetric,

the eigenvectors are orthogonal, and the eigenvalues are real, and we set λ1 ⩽ · · · ⩽ λNtrain .

The reduced space V N
h is spanned by the POD basis functions {ξi

h}
Ntrain
i=1 , and has the

dimension Ntrain.

Proposition 3.2.2. The POD basis functions {ξi
h}

Ntrain
i=1 are orthonormal in L2. Namely:〈

ξi
h, ξ

j
h

〉
L2

= δi,j , (3.52)

where δi,j is the Kronecker symbol.

Proof. Using Equation (3.51), we obtain:

〈
ξi

h, ξ
j
h

〉
L2

= 1√
λiλj

〈∑
l

vi[l]ul
h,
∑

l′

vj [l′]ul′
h

〉
L2

= 1√
λiλj

∑
l

vi[l]
∑

l′

C
l,l′

vj [l′]︸ ︷︷ ︸
λjvj [l]

. (3.53)

As the matrix C is positive definite, the eigenvectors are orthogonal: ∀i, j ∈ J1, NK,
〈
vi,vj

〉
L2

=

δi,j . Thus:
〈
ξi

h, ξ
j
h

〉
L2

= λj√
λiλj

∑
l vi[l]vj [l] = λj√

λiλj

〈
vi,vj

〉
L2

= δi,j . ■

In Item 5, all the eigenvectors are used to construct the POD basis functions. From a heuristic
viewpoint, the eigenvectors with the fewer energy may be discarded to reduce the size of the
basis because of their weak impact on the space generated. To this purpose we introduce the
Relative Information Content.
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Definition 3.2.3. Let {λ1, · · · , λNtrain} be the eigenvalues of the correlation matrix C. The
Relative Information Content (RIC) is defined as the ratio between the N first eigenvalues and
their total sum:

RIC(N) :=
∑N

j=1 λj∑Ntrain
j=1 λj

. (3.54)

Instead of computing the POD modes for all the eigenvalues, we stop when the RIC reach a
threshold 1− ε, for a given tolerance ε > 0. This will result in a reduced basis of size N ⩽ Ntrain.

This method is implemented in Algorithms 5 and 6.

Algorithm 5: Offline POD computation of basis function from snapshots.
Data: {u1

h, · · · , u
Ntrain
h } ∈ Vh fine snapshots.

Compute correlation matrix C ∈ RNtrain×Ntrain :
forall 1 ⩽ i, j ⩽ Ntrain do

C
i,j

=
〈
ui

h, u
j
h

〉
L2

where ui
h = uN

h (µi);
end

Solve eigenvalue problem: C v = λv, to get eigenvalues λ1 ⩽ · · · ⩽ λNtrain and
eigenvectors v1, · · · ,vNtrain ∈ R

Ntrain ;

Compute basis functions:
N ← 0;
forall 1 ⩽ i ⩽ Ntrain do

ξi
h = 1√

λi

Ntrain∑
j=1

vi[j]× uj
h;

N ← N + 1;
Stop if RIC(N) is close enough to 1, for a given tolerance;
V N

h = V N−1
h ∪ {ξi

h};
end
Result: ξi

h to save on Disk, 1 ⩽ i ⩽ N .

Algorithm 6: Offline computation: random selection.
Data: Choose Sµ = {µk}, 1 ⩽ k ⩽ Ntrain with µk ∈ Dµ.
for k ∈ J1, NtrainK do

uk
h := uN

h (µk);
end
V N

h := POD
({
u1

h, . . . , u
N
h

})
(see Algorithm 5);

Result: Reduced basis {ξi
h}1⩽i⩽N of V N

h .

Greedy selection The arbitrary choice of sampling may result in a basis that is not well
adapted. To compensate for this, we introduce a greedy procedure to select those parameters in
a given space Ξtrain. In the method introduced in the previous section, the sample Ξtrain has the
size of the expected reduced basis. In the greedy method, we start with a bigger sample, and we
select the parameters that maximize a criterion.

The idea of this procedure is to select the parameters on this bigger sample, while minimizing
the call to the fine solver. In each iteration, we select one parameter as the one maximizing
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an estimator, that can be computed efficiently, without calling the solver on the fine grid. If
N describes the size of the reduced space already constructed, we take M < N (for instance,
M = N − p or M = N/2). For a given parameter, the estimator is obtained as∣∣∣s (uN

H(µ)
)
− s

(
uM

H (µ)
)∣∣∣ or

∥∥∥uN
Hh(µ)− uM

Hh(µ)
∥∥∥

L2
, (3.55)

where s is an output function. Recall that uN
Hh(µ) is the online NIRB approximation computed

in the offline stage.
In the implementation, we use the field error as the estimator of error. This choice is motivated

by the fact that this quantity can capture the general behavior of the solution, while the output
function would result in a basis more specific to the output-of-interest considered.

The quantity uN
H(µ) is a reduced solution computed on the coarse mesh, so its computation

is inexpensive compared to a fine FE resolution:

uN
H[i] =

〈
ξi

h, u
N
H

〉
L2

for i ∈ J1, NK, (3.56)

where ξi
h is the i-th coarse snapshot introduced in the basis. We have ZH

N
=
[
ξH

1 , . . . , ξ
H
N

]
. In

order to correctly project uN
H into the reduced spaces, the matrix Z

N
must be L2-orthonormalized

(according to the scalar product of the coarse function space VH).
Another estimator for the algorithm is the difference between the NIRB approximation for

two different sizes of reduced spaces:

∥uN
Hh(µ)− uM

Hh(µ)∥L2 . (3.57)

Then we construct the basis functions by following steps 3, 4, and 5 of the previous section,
using the POD described earlier, in Algorithm 5. The whole process is summarized in Algorithm 7.

Algorithm 7: Offline computation: Greedy selection of the snapshots. OnlyN snapshots
are computed on the fine grid.

Data: Ξtrain ⊂ Dµ, Ninit.
S := {µ1, · · ·µNinit} ⊂ Ξtrain, randomly
Construct V Ninit

h = POD({uN
h (µ1), · · · , uN

h (µNinit)});
N ← Ninit;
while ∆ > ε do

µ⋆ = arg max
µ∈Ξtrain

∥∥∥uN
Hh(µ)− uM

Hh(µ)
∥∥∥

L2
;

S ← S ∪ {µ⋆};
XN+1 := POD

(
VN ∪

{
uN

h (µ⋆)
})

;
end

3.2.3 Rectification post-process

The rectification post-process is a step that can be added to recover the accuracy of the
approximation given by the optimal coefficients αN,H

i (µ), without losing computational time.
Such a process has been introduced in [CM09b; CM09a], and can be easily added in addition
to the classical NIRB method. It was observed from [CMP19] that this process increases the
precision of the NIRB approximate solution.

The rectification post-process allows ensuring that for a given set of parameters Sµ = {µk}, 1 ⩽
k ⩽ N used in the construction of basis function, the NIRB method returns exactly uN

h (µk)
which is already pre-computed to construct the reduced basis.
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We introduce the matrices Ch,CH ∈ RN×N :

∀i = 1 . . . N ∀µk ∈ Dµ, CH
k,i

= αN,H
i (µk) and Ch

k,i
= αN,h

i (µk), (3.58)

where αN,H
i and αN,h

i are defined respectively in Equation (3.48) and Equation (3.45) as the
coefficients of uN

Hh(µ) and uN
h (µ) in the basis {ξi

h}1⩽i⩽N .
The rectification post-process aims to find the matrix R ∈ RN×N which minimizes:∥∥∥∥∥∥

N∑
i=1

αN,h
i (µk)ξi

h −
N∑

i=1

 N∑
j=1

R
i,j
αN,H

j (µk)

 ξi
h

∥∥∥∥∥∥
L2

∀k = 1 . . . N. (3.59)

Using the L2 orthonormalization property of the reduced basis, this is equivalent to minimizing
the quantity [CMP19; Gro22]:∥∥∥∥∥∥

N∑
i=1

αN,h
i (µk)−

N∑
j=1

R
i,j
αN,H

j (µk)

∥∥∥∥∥∥
2

2

∀k = 1 . . . N.

Namely, ∥∥∥CHR−Ch
∥∥∥2

2
.

Adding a Tikhonov regularization in order to have a more regular problem to solve, we
minimize the following quantity: ∥∥∥CHR−Ch

∥∥∥
L2

+ λ
∥∥∥R∥∥∥

L2
,

which gives an explicit expression of R [Gro22]:

R =
[
(CH)T CH + λI

N

]−1
(CH)T Ch. (3.60)

So that to compute the approximate NIRB solution for a given parameter value µ, we replace
the coefficient αN,h

i by:

αN,h,rec
i (µ) =

N∑
j=1

R
i,j

(µ)αN,H
j (µ),

and then

uN
h (µ) =

N∑
i=1

αN,h,rec
i (µ)ξi

h. (3.61)

Remark 3.2.4. Numerically, we have αN,h,rec(µ) = RαN,H(µ). As the rectification matrix does
not depend on the parameter µ, it can be computed once and for all, which is an advantage from
the perspective of the computational cost.

If the rectification post-process is used, the offline procedure described in Algorithm 5 is
completed by the computation and the storage of the matrices Ch and CH , as presented in
Algorithm 8.

3.2.4 Online reconstruction

Once the basis functions have been generated, and possibly the rectification matrix, the
online stage consists in computing the NIRB solution obtained using Equation (3.47). The steps
are described in Algorithm 9.
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Algorithm 8: Offline POD computation of basis function from snapshots, with the
rectification post-process.

Data: {u1
h, · · · , u

Ntrain
h } ∈ Vh fine snapshots,

{u1
H , · · · , u

Ntrain
H } ∈ VH corresponding coarse snapshots.

Compute the POD reduced basis functions as per Algorithm 5.
Get V N

H in coarse mesh with Greedy or POD random;
forall 1 ⩽ i, j ⩽ N do

Ch
i,j

=
〈
ui

h, u
j
h

〉
L2(V N

h
)

uk
h ∈ V N

h ;

CH
i,j

=
〈
ui

H , u
j
H

〉
L2(V N

H )
uk

H ∈ V N
H ;

end
Result: Matrix Ch and CH to save on Disk.

3.2.5 Test cases

In this section, we present the various tests that have been used to test the NIRB method.

2D case We consider a simple case of heat transfer, with regions of various thermal conductivi-
ties, that is adapted from [HRS16]. We study an adimensionalized heat transfer problem. The
geometry is described in Figure 3.5, and is composed of four regions Ωi with different thermal
conductivities ki. The boundary ∂Ω is split into two parts: ΓN and ΓR, where the Neumann
and Robin boundary conditions are applied, respectively.

The square domain is subdivided into n× n parts, each one with a different thermal property.
The temperature u is governed by the elliptic equation:

−ki∆u = 0 in Ωi, (3.62a)

with the boundary conditions:

−ki
∂ui

∂n
= −1 on ΓN , (3.62b)

−ki
∂u

∂n
= Biu on ΓR. (3.62c)

The domain described can also contain a different number of subdomains. A Python script
can generate the configuration files for Feel++, see the script case_generator_cube1.

Thermal fin model We first present a simple case of an adimensionalized heat problem of a
thermal fin, adapted from [Pru+02; Kho+03]. We consider the geometry given in Figure 3.6,
composed of 5 subdomains Ωi, with various thermal conductivities ki. The boundary ∂Ω is split
into various parts: Γroot at the bottom of the domain and Γ i

ext for the external boundaries of the
domain Ωi. We also consider the internal boundaries Γ i

int between the domains Ωi and Ω0.
The adimensionalized temperature u is governed by the elliptic PDE:

−ki∆u = 0 in Ωi. (3.63a)

Furthermore, we add the following boundary conditions:
1� https://github.com/feelpp/feelpp/blob/c560758/toolboxes/generator/cases/heat_nirb/case_gen

erator_cube.adoc

https://github.com/feelpp/feelpp/blob/c560758/toolboxes/generator/cases/heat_nirb/case_generator_cube.adoc
https://github.com/feelpp/feelpp/blob/c560758/toolboxes/generator/cases/heat_nirb/case_generator_cube.adoc
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Algorithm 9: Online computations.
Data: µ ∈ Dµ and N number of basis function required.
Load N basis functions from Disk,
if With rectification post-process then

Load matrix Ch and CH from Disk;
Ch

N
:= Ch[:N,:N];

CH
N

:= CH[:N,:N];

R :=
[
(CH

N
)T CH

N
+ λI

N

]−1
(CH

N
)T Ch

N
;

end
Compute the coarse FE solution uN

H (µ) ∈ V N
H ;

Interpolate coarse solution into the fine mesh: uN
H→h(µ) ∈ V N

h ;
forall 1 ⩽ i ⩽ N do

αN,H
i (µ) =

〈
uN

H→h(µ), ξi
h

〉
L2

;
end
if With rectification post-process then

αN,H(µ)←R× αN,H(µ);
end

Result: NIRB solution uN
Hh(µ) =

N∑
i=1

αN,H
i (µ)ξi

h, and the output s
(
uN

Hh(µ)
)
.

− (∇u0 · ni) = −1 on Γroot, (3.63b)
−ki (∇ui · ni) = Biui on Γ ext

i for i ∈ {0, 1, 2, 3, 4}, (3.63c)
u0 = ui on Γ int

i for i ∈ {1, 2, 3, 4}, (3.63d)
− (∇u0 · ni) = −ki(∇ui · ni) on Γ int

i . (3.63e)

The parameters involved in this problem are the conductivities ki ∈ [0.1, 10] and the Biot
number Bi ∈ [0.01, 1]. Geometrical parameters can also be involved, such as the length of the
fin, the number of regions, or the number of dimensions of the model, even though they are
not considered in this study. A Python script can generate configuration files for Feel++, see
case_generator_thermal_fin.py2.

The present model has been present with a 2D geometry, but can be extended to a 3D
geometry, with a central parallelepiped post and parallelepiped fins around it. The 3D geometry
is presented in Figure 3.13(a), among results.

Thermal bridge benchmark ISO 10211:2007 [Sta07] sets out the specifications for a three-
dimensional and a two-dimensional geometrical model of a thermal bridge for the numerical
calculation of: (i) Heat flows, in order to assess the overall heat loss from a building or part of it;
(ii) minimum surface temperatures, in order to assess the risk of surface condensation.

These specifications include the geometrical boundaries and subdivisions of the model,
the thermal boundary conditions, and the thermal values and relationships to be used. ISO
10211:2007 is based upon the following assumptions: (i) all physical properties are independent
of temperature, (ii) there are no heat sources within the building element.

2� https://github.com/feelpp/feelpp/blob/9b42914/toolboxes/generator/cases/thermal_fin/case_g
enerator_thermal_fin.adoc

https://github.com/feelpp/feelpp/blob/9b42914/toolboxes/generator/cases/thermal_fin/case_generator_thermal_fin.adoc
https://github.com/feelpp/feelpp/blob/9b42914/toolboxes/generator/cases/thermal_fin/case_generator_thermal_fin.adoc
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Figure 3.5: Square domain of the heat transfer
problem.
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Figure 3.6: Geometry of the thermal fin, with
a central post Ω0 and 4 fins Ωi.
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kconcrete = 1.15 W m−1 K−1

kinsulation = 0.029 W m−1 K−1
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Figure 3.7: Thermal bridge geometry from [Sta07], not on scale.

The geometry is presented in Figure 3.7, as well as the points where the temperature is
tabulated. The boundary ∂Ω is split into two parts: Γtop and Γbottom.

The temperature T is governed by the elliptic PDE:

−∇ · (k∇T ) = 0 in Ωi, (3.64a)

coupled with the following boundary conditions:

−k∇T · n = htop(T − T top
0 ) on Γtop, (3.64b)

−k∇T · n = hbottom(T − T bottom
0 ) on Γbottom, (3.64c)

with htop = 16.67 W m−2 K−1, hbottom = 9.09 W m−2 K−1, T top
0 = 0 ◦C, T bottom

0 = 20 ◦C, and k
depending on the material, as presented in Figure 3.7.

No variability on the parameters is accounted for in [Sta07], we therefore consider the following
range for the parameters:

• the thermal conductivities k of the materials are in the range of ±10% of the nominal
values,

• the bottom temperature T bottom
0 lies in the interval [10, 30], and

• the top temperature T top
0 lies in the interval [−5, 5].
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Norm
∥∥∥uh − uN,NoRect

Hh

∥∥∥ ∥∥∥uh − uN,Rect
Hh

∥∥∥
L2 2.07 · 10−3 9.01 · 10−4

L∞ 8.01 · 10−2 1.85 · 10−2

Table 3.3: Statistics on the error committed by the NIRB method in 2D thermal fin problem
with a reduced basis of size 64, for µ = {Bi : 0.1, k1 : 0.1, k2 : 0.5, k3 : 0.1}.

3.2.6 Numerical results

In this section, we present some numerical results of the NIRB method. To highlight the
efficiency of the method, we will present convergence results by studying the models described
above. As the analytical solution cannot be computed for these problems, we use the FE solution
computed on the fine mesh as a reference. To compute the error, we employ the following
strategy: we select a random sample of Ns = 50 parameters in Dµ, and we compute the average
error over this sample. The norm of the error is then defined by:

eNIRB :=
∥∥∥uN

h − uN
Hh

∥∥∥
Hk(Ω)

= 1
Ns

Ns∑
j=1

∥∥∥uN
h (µj)− uN

Hh(µj)
∥∥∥

Hk(Ω)
, (3.65)

where uN
h is the FE solution on the fine mesh, and uN

Hh is the NIRB approximation. The reference
error is defined as the difference between the FE solution and its projection in the reduced space:

eref :=
∥∥∥uN

h − uN
h

∥∥∥
Hk(Ω)

= 1
Ns

Ns∑
j=1

∥∥∥∥∥uN
h (µj)−

N∑
i=1

〈
uN

h (µj), ξi
h

〉
Hk

ξi

∥∥∥∥∥
Hk(Ω)

. (3.66)

Note that for k = 0, H0(Ω) = L2(Ω).

2D case

We perform an error convergence study of the NIRB method for the 2D thermal fin problem
described above. For now, the procedure use to generate the basis is the random selection,
without the greedy algorithm introduced in Algorithm 7. A comparison between both algorithms
will be discussed in Section 3.2.6.

The geometrical parameter used on GMSH to generate those meshes are h = hfin = 0.0025 and
H = hcoarse = 0.05. We present the fine and coarse meshes used in Figure 3.8. A reduced basis
of size N = 64 is generated. We set µ = {Bi : 0.1, k1 : 0.1, k2 : 0.5, k3 : 0.1} ∈ Dµ. We compute
on the one hand the FE solution on the fine mesh uN

h (µ), that is displayed in Figure 3.9(a). On
the other hand, we compute the NIRB solution uN

Hh(µ) with and without rectification, obtained
with a basis of size 64. Figures 3.9(b) and 3.9(c) show the difference |uN

h (µ) − uN
Hh(µ)| with

and without the rectification post-process. Statistics on the error committed are computed and
provided in Table 3.3. We also present in Table 3.4 the computational time of the NIRB method,
with and without rectification, in sequential and parallel. The associated speedup, namely the
ratio of the computational time with respect to the sequential fine FE computational time, is also
given. We remark a speedup of around 3.7 in sequential and 1.4 in parallel. Moreover, we remark
that the computational time added by the rectification post-process is negligible compared to
the time saved by the method.

A first analysis of the results shows that the NIRB approximation without rectification
seems better on Figure 3.9(b) compared to the solution with it, but we notice that the error
is not uniformly distributed on the domain, but localized on small domains, while the error
with rectification is more uniformly distributed, and is 10 times smaller. The norms computed



74 CHAPTER 3. REDUCED ORDER COMPUTATIONAL FRAMEWORK

Element computed Computational time Speedup
Sequential Parallel (np=4) Sequential Parallel (np=4)

Fine snapshots uN
h 1.49 s 0.610 s – 2.44

Coarse snapshots uN
H 0.0297 s 0.0255 s 50.1 58.4

NIRB w/ rectification uN,Rect
Hh 0.396 s 0.179 s 3.76 8.32

NIRB w/o rectification uN,NoRect
Hh 0.380 s 0.158 s 3.92 9.43

Table 3.4: Time of execution and associated speedup to run the NIRB method for the 2D thermal
fin problem with P1 discretization, mean over 64 parameters, in sequential and parallel.

in Table 3.3 confirm this observation: the rectification post process leads to an error 10 times
smaller.

(a) Fine mesh Nh = 185 893. (b) Coarse mesh, NH = 533.

Figure 3.8: Coarse and fine mesh used in the NIRB simulation in 2D square domain.

In Figure 3.10 we present the convergence errors with respect to the number of basis functions.
We notice that without rectification, the NIRB method does not improve that much the error
compared to the interpolated solution. For the H1 norm, we even notice a degradation of the
error when the number of basis functions increases. On the other hand, with rectification, the
error is 10 times smaller than the interpolated solution. In both cases, for high values of N , the
error tend to stagnate on a plateau.

Thermal bridge: ISO 10211:2007 We focus in this part on the benchmark test case provided
by the ISO 10211:2007 norm [Sta07], that was described in Section 3.2.5. The discretization
parameters taken are: H = 0.02 and h = 0.0004. This leads to a number of degrees of freedom of
NH = 158 and Nh = 175 621. We show in Figure 3.11 the FE solution for the nominal parameter
µ = {T bottom

0 : 20, T top
0 : 0, kaluminium : 230, kconcrete : 1.15, kinsulation : 0.029, kwood : 0.12}.

In Table 3.5, we represent a comparison between reference values and those obtained with
NIRB method. The first row provides the expected values at different points (A to I) from the
benchmark [Sta07]. According to the norm, the error should not exceed 0.1 ◦C, that is not the
case for all points concerning the NIRB approximation without rectification: the reported values
lie outside the range of tolerable error at points D, F , and G. When the rectification is enabled,
values reported exhibit slight improvements, especially noticeable at the three points D, F , and
H, where the rectified results are closer to the expected values compared to the non-rectified
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Figure 3.9: Comparison between FE solution and NIRB solution, with and without rectification
for the 2D test case, with a reduced basis of size 64.

NIRB results. We also provided the results obtained with the FE solution. The results indicate
that the rectification process enhances the accuracy of the NIRB method, bringing it closer to
the high-fidelity solution while maintaining computational efficiency.

Point A B C D E F G H I

Expected value 7.1 0.8 7.9 6.3 0.8 16.4 16.3 16.8 18.3
uN,NoRect

Hh 7.089 0.741 7.91 7.026 0.822 16.225 17.939 16.746 18.33
uN,Rect

Hh 7.065 0.761 7.898 6.274 0.827 16.408 16.334 16.767 18.334
uN

h 7.065 0.761 7.898 6.274 0.827 16.408 16.334 16.767 18.334

Table 3.5: Results of benchmark ISO 10211:2007 for NIRB method, Nh = 128 and NH = 175 621,
with a basis of size N = 30. The quantities are presented in ◦C. The expected values are taken
from [Sta07]. The quantities displayed in red boldface indicates the values that are outside the
range of tolerable error of 0.1 ◦C.

We also present in Figure 3.12 the results of the convergence study performed with this test-
case. They are in good agreement with what was previously observed in the thermal fin case: the
error decreases as the number of basis functions increases and finally reaches a plateau. Moreover,
the rectification post-process significantly improves the accuracy of the NIRB method, as the
error is divided by a factor of 100 compared to the NIRB approximation without rectification.

We display in Table 3.6 the computational time of the NIRB method for the ISO 10211:2007
benchmark test case. We observe similar behavior as the previous test cases: the NIRB
approximation is computed faster than the FE solution, with a speedup of 4.7 in sequential mode
and 10.9 in parallel mode. Moreover, the computational cost of the rectification post process is
negligible, as the time of execution is almost the same with or without rectification.

3D case Now we focus on a 3D case, the thermal fin, as described in Problem (3.63). The
following discretization parameters are taken: H = 0.25 and h = 0.0625, leading to a number of
degrees of freedom of NH = 6785 and Nh = 171 493. A basis of size N = 64 is generated using
the POD algorithm.
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Figure 3.10: Convergence error in respect to basis size for the 2D thermal case, with Nh = 185894
and NH = 532
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Figure 3.11: Solution uN
h for the ISO 10211:2007 benchmark test case.

In Figure 3.13(a) we display the FE solution, among the error committed by the NIRB
approximation with and without rectification in Figures 3.13(b) and 3.13(c). As for the results of
the other test cases presented in the previous sections, the rectification post-process significantly
improves the accuracy of the NIRB method, even though the error seems to be less uniformly
distributed in the 3D case.

We also present in Figure 3.14 the convergence error in L2 and H1 norm in respect to basis
function. The results are still in good agreement with what was observed in the 2D cases, as well
as results from the literature for CFD problems [CMP19].

A comparison of the computational time is also provided in Table 3.7, showing that the NIRB
method is faster than the FE solution, as we observe a speedup of 6.5 in sequential mode and
17 in parallel mode. We can also note that the rectification post-process does not significantly
impact the computational time, as the speedup remains almost the same.

Element computed Computational time Speedup
Sequential Parallel (np=12) Sequential Parallel (np=12)

Fine snapshots uN
h 2.03 s 0.679 s – 2.990

Coarse snapshots uN
H 0.0508 s 0.0418 s 39.96 48.56

NIRB w/ rectification uN,Rect
Hh 0.4277 s 0.1861 s 4.746 10.91

NIRB w/o rectification uN,NoRect
Hh 0.4276 s 0.1859 s 4.747 10.92

Table 3.6: Time of execution and associated speedup to run the NIRB method benchmark ISO
10211 case, mean over 64 parameters, in sequential and parallel.
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Figure 3.12: Convergence error with respect to the basis size N for the 2D ISO 10211:2007 case,
with Nh = 773 810 and NH = 564.
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Figure 3.13: High fidelity solution, and NIRB approximation for the 3D thermal fin case, with
NH = 6785 and Nh = 171 493, and N = 30.
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Figure 3.14: Convergence error in respect to basis size for the 3D thermal fin case.
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Element computed Computational time Speedup
Sequential Parallel (np=12) Sequential Parallel (np=12)

Fine snapshots uN
h 3.50 s 0.523 s – 6.692

Coarse snapshots uN
H 0.221 s 0.145 s 15.8 24.14

NIRB w/ rectification uN,Rect
Hh 0.5417 s 0.205 39 s 6.46 17.04

NIRB w/o rectification uN,NoRect
Hh 0.5424 s 0.205 40 s 6.45 17.03

Table 3.7: Time of execution and associated speedup to run the NIRB method for the 3D thermal
fin problem with P1 discretization, mean over 64 parameters, in sequential and parallel.
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Figure 3.15: Convergence of the maximal error ∆max during greedy procedure.

Greedy vs. random selections In Algorithm 7, we introduced a procedure to greedily select
the functions that are added to the reduced basis. We are now comparing this approach to a
random selection of the basis functions.

We perform the comparison on the ISO 10211:2007 benchmark test case, with a sample
of training Ξtrain of size Ntrain = 500. Before the convergence criterion is reached, 57 basis
functions have been selected. We present in Figure 3.15 the convergence of the maximal error
∆max = maxµ∈Ξtrain ∆(µ) during the greedy procedure. Note that as the criterion is performed on
the online prediction, it is quite fast to compute the value of ∆(µ) for each parameter µ ∈ Ξtrain:
on a run parallelized on 12 processors, about 10 seconds are necessary to compute the error for
the 500 parameters.

In Figure 3.16 we present the convergence of the error in L2 and H1 norm for the two
algorithms. When no rectification post-process is applied, we observe no difference between the
two approaches, both converging to the same error are the interpolation error. On the other
hand, when the rectification is enabled, the greedy algorithm allows to reach a slightly better
result with a smaller number of basis functions: the limit error is divided by a factor of 2 when
the greedy algorithm is used to select the snapshots.

3.2.7 NIRB method applied to the bioheat transfer model of the human
eyeball

In this section, we present the results of the NIRB model applied to the model EL of heat
transfer in the human eyeball, introduced in Section 1.4. As this model is well-suited to the
RBM, we do not expect NIRB to provide a significant improvement, but still, we can compare
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Figure 3.16: Comparison of convergence error for both greedy and random selection of basis
functions, the triangle plots are obtained thought the greedy procedure, while dot plots come
from a random sampling.

Element computed Computational time Speedup
np = 12 np = 64 np = 128 np = 12 np = 64 np = 128

Fine snapshots uN
h 13.6 s 4.79 s 2.38 s – 2.84 5.71

Coarse snapshots uN
H 2.77 s 1.10 s 0.859 s 4.90 12.36 15.83

NIRB w/o rectification uN,NoRect
Hh 3.190 s 1.309 s 1.0687 s 4.26 10.39 12.73

NIRB w/ rectification uN,Rect
Hh 3.203 s 1.311 s 1.0691 s 4.25 10.37 12.72

Table 3.8: Time of execution and associated speedup to run the NIRB method for the 3D thermal
fin problem with P1 discretization, mean over 64 parameters, in sequential and parallel.

the results of both methods.
The first point of comparison is the computational time of the online phases of both method.

Previously, we have seen that the online phase of the RBM is very fast, as it only requires the
evaluation of the reduced basis functions, see Table 3.1. On the other hand, the online phase of
NIRB takes 3.34 s to compute the solution for the same problem, which is still an improvement
compared to the high-fidelity resolution (10.76 s) when the online execution is performed on 12
parallel processes.

The second point of comparison is the convergence of the L2 error, that is displayed in
Figure 3.17. The field error is presented. For the RBM method, we only computed the error for
basis of size to N = 10, while the convergence study of NIRB has been performed for greater
values of N . Still we figure that the error of the NIRB method is greater than the error of the
RBM method, especially when the rectification post process is not applied.

Compared to the previous convergence of the NIRB method, we notice another difference: the
error of the NIRB approximation without rectification ∥uN

h − u
N,NoRect
Hh ∥ used to be superposed

to the interpolation error ∥uN
h − uN

Hh∥ for big values of N , which is not observed for this case:
the NIRB error is 10 times smaller than the interpolation error.

In Figure 3.18, we display both the coarse and fine snapshots of the solution. The coarse
mesh, denoted as M0, consists of 47,284 elements, while the fine mesh, M3, contains 207,845
elements. Additionally, Figure 3.19 shows the solution obtained using the NIRB method for the
same problem, employing a reduced basis of size N = 30. Without the rectification post-process,
we observe that the solution is highly inaccurate — the “norm of the eye” clearly illustrates this.
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Figure 3.17: Convergence of the L2 error for the NIRB model and the RBM model, applied to
the 3D heat transfer model in the human eyeball.

However, after applying rectification, the solution aligns very closely with the high-fidelity result.
The computed errors are as follows:

∥uN
h − u

N,NoRect
Hh ∥L2 = 8.28 · 10−3, ∥uN

h − u
N,Rect
Hh ∥L2 = 4.7 · 10−7. (3.67)

(a) Coarse solution uN
H (µ) (b) High-fidelity solution uN

h (µ)
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T [K]

Figure 3.18: Comparison of the coarse and high-fidelity solutions of the NIRB model applied to
the 3D heat transfer model in the human eyeball.

3.3 Conclusion and outlook

In this chapter, we have presented two methods to reduce the computational cost of solving
parametric problems.
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Figure 3.19: NIRB approximation, with and without the rectification post process for the bio-heat
transfer model in the eyeball. For this test-case, we have NH = 47 284 and Nh = 207 845, and
N = 30.

The Certified Reduced Basis Method has been applied to the heat transfer problem in the eye
model, and we have shown that the method is efficient to significantly reduce the computational
cost of solving the parametric problem, and that the results are accurate, thanks to the error
bound provided by the method. This significant computational gain allows us to explore the
parametric domain of the problem and perform the sensitivity analysis, that requires to solve
the problem for several parameters, and a high number of evaluations. The sensitivity analysis is
presented in Chapter 5.

We also presented the Non-Intrusive Reduced Basis method, another model order reduction
technique that allows to reduce the computational cost of solving parametric problems. We
have presented the mathematical framework of the method, and the results obtained on the
test cases, and shown that the method is efficient to reduce the computational cost of solving
the parametric problem, and that the results are accurate. This method has only been applied
to the heat transfer eye model in the context of this thesis, but it is a promising method to
reduce the computational cost of solving the eye model for various parameters, especially in the
context of non-linear problems, such as the coupled heat-fluid transfer problem that is described
in Chapter 6, because of the non-intrusive nature of the method. Moreover, the NIRB method
has been extended in [GM23a] by the use of domain truncation, allowing to further reduce the
computational time of the online time. The domain truncation, also called zoom, consists in
solving the problem on a smaller domain ω ⊂ Ω, and to reconstruct the solution on the full
domain Ω. As a perspective, this strategy would be well suited in the context of point-wise
outputs-of-interest or to capture the behavior of the solution in a specific region of the domain.
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Chapter 4

Low to high order finite element
resolution for elliptic problems in the
presence of a Dirac source term

In the previous chapter, we applied a reduced order modeling to analyze heat transfer within
the human eyeball, employing the reduced basis method (RBM) strategy [Pru+02]. To obtain
fast quadratic convergence in the output, we relied on a dual problem formulation associated with
each output expressed as a linear functional of the solution. However, in some cases of interest,
the output functional ℓ can be a pointwise evaluation of the solution u, e.g. ℓx(u) = u(x) = δx(u),
for x ∈ Ω. Thus, the formulation leads to a dual problem with Dirac source term δx with
x ∈ Ω, the point where we evaluate the solution of the primal problem. This approach was
initially tailored for the heat transfer analysis problem described in Chapter 1, but more generally
addresses similar challenges in other fields, such as acoustics and elasticity, where pointwise
evaluations are frequently encountered.

We consider the context of a parametric problem, where we study a quantity of interest that
depends on a set of parameters. Precisely, the problem reads: for a given parameter µ, find
s(µ) = ℓ(u(µ)), where u(µ) ∈ H1(Ω) is the solution to the following PDE:{

−∇ · (k∇u) = f in Ω,

∂n⃗u = k(u− u0) on ∂Ω.
(4.1)

with ℓ(u) = ⟨δO, u⟩ is discontinuous functional (non-compliant case). The boundary condition
∂n⃗u = k(u−u0) on ∂Ω represents a Robin boundary condition, where k is the thermal conductivity
and u0 is the ambient temperature. The notation µ enlightens the parametrical dependence
of the initial problem, which represents in our context the thermal conductivities of biological
regions of the eyeball, as well as external factors such as the ambient temperature, convection
coefficient... The variational form of Problem (4.1) reads as: find u(µ) ∈ H1(Ω) such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ H1(Ω).

where a(·, ·;µ) and f(v;µ) are obtained through the usual weak formulations of the underlying
PDE.

In the context of the certified RBM presented in Section 3.1, to recover good properties
of the reduced solution, we need to compute the solution of the dual problem [Pru+02]: find
ψ(µ) ∈ H1(Ω) such that

a(u, ψ(µ);µ) = −ℓ(u) ∀u ∈ H1(Ω).
The issue raised is that the functional u 7→ ⟨δO, u⟩ is not well-defined in H1, so the usual theory
— Lax-Milgram, minimization results — does not apply. Nevertheless, we achieve quadratic
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convergence in numerical resolution, consistent with theoretical predictions in the continuous
case, as discussed in Section 3.1.4.

Theoretical and numerical aspects of the Laplacian problem with a Dirac source term and
homogeneous Dirichlet boundary condition have been studied in [KW14; Ber+18]. While
theoretical results are derived under specific hypotheses, we observe similar outcomes even when
these conditions are not strictly met. In the present chapter, we provide a theoretical review and
numerical exploration of these models under various boundary conditions and extend the analysis
to generalized elliptic problems with discontinuous coefficients. Additionally, we examine the
effect of the Dirac source term’s position relative to the boundary domain ∂Ω. Our simulations,
spanning from low to high-order discretizations, are conducted using the finite element method
within the open-source software Feel++ [Pru+24b], and the results are discussed in detail.

The work of this chapter is a collaboration with Silvia Bertoluzza (CNR), and is organized
as follows: in Section 4.1, we present the benchmark model used to perform our numerical
investigations, as well as the computational framework. Then, in Section 4.2, we review the
theoretical results and numerical methods used to solve the problem. In Section 4.3, we present
the numerical results obtained for the Laplacian problem with a Dirac source term, focusing
on the influence of the distance between the Dirac source term and the boundary. Finally, we
conclude in Section 4.5 and provide outlooks for future research directions.
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4.1 Problem statement

We first introduce the benchmark problem stemming from the elliptic problem stated in
Equation (4.1), and from available tests in the literature [Ber+18]. Let Ω ⊂ R2 be a bounded
domain. To begin with, we consider a circular domain described in Figure 4.1, even though
in a subsequent part, we will study the behavior under geometrical singularities as well. Let
X⃗0 = (x0, y0) ∈ Ω.

4.1.1 Benchmark problem

We focus on the problem defined by the Laplace equation with a Dirac delta distribution
located at X⃗0 in the right-hand side. We consider this problem under the three commonly
encountered boundary conditions: Dirichlet, Neumann, and Robin. The problem reads: find u
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Ω

+
X⃗0

Γleft Γright

Ω0

Figure 4.1: Description of the domain Ω, the dashed lines represent the names of the domains
where mixed boundary conditions stand, and the green domain is the domain Ω0 = Ω \B(X⃗0, r)
(for r > 0) where the error is computed.

such that {
−∆u = δX⃗0

in Ω,

+ boundary conditions on ∂Ω.
(4.2)

The boundary conditions considered on ∂Ω can be of various types: (i) homogeneous Dirichlet
(u = 0 on ∂Ω), (ii) homogeneous Neumann (∂n⃗u = 0), (iii) Robin (∂n⃗u+µu = g), and (iv) mixed
boundary conditions. Regarding the last case, we partition the boundary ∂Ω into two parts:
Γleft and Γright, where one of the three boundary conditions is applied.

Definition 4.1.1. Let G : Ω → R be the Green’s function defined by

G(x, y) = − 1
2π log

(√
(x− x0)2 + (y − y0)2

)
. (4.3)

Proposition 4.1.2. The Green function G satisfies

−∆G = δX⃗0
in Ω. (4.4)

Moreover, the gradient of G reads:

∇G(x, y) =


x−x0

2π
(

(x−x0)2+(y−y0)2
)

y−y0

2π
(

(x−x0)2+(y−y0)2
)
 . (4.5)

Proof. Without any loss of generality, we can assume that X⃗0 = (0, 0). We denote by δ0 the
Dirac distribution δ(0,0). The solution G(x, y) must be radially symmetric because the source
δ0 is located at a single point and is isotropic, meaning the heat (or other physical quantity) is
distributed equally in all directions from the source. Consequently, the solution depends only on
the distance from the origin and not on the specific direction. Thus, we have

G(x, y) = G(r) with r =
√
x2 + y2.

Expressing the Laplacian in polar coordinates, we have ∆G(r) = G′′(r) + 1
rG

′(r). The function
G being solution of Equation (4.4), we have: G′′(r) + 1

rG
′(r) = 0. So G(r) = c1 log(r) + c2, for

some constants c1, c2 ∈ R. Without any loss of generality, we can assume that c2 = 0. Let R > 0,
and define the disk B(0, R) := {(x, y) ∈ R2 | x2 + y2 ⩽ R2}. We also note X⃗ = (x, y). We have:

1 =
∫

Ω
δ0(X⃗) dX⃗ = −

∫
Ω
∆G(X⃗) dX⃗ = −

∫
B(0,R)

∆G(X⃗) dX⃗ = −
∫

∂B(0,R)
∂n⃗G(X⃗) dS,
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from the divergence theorem. As the normal derivative of G along the boundary of the disk is
equal to the derivative of G in the radial direction evaluated at R, we get ∂n⃗G(X⃗) = G′(R), for
∥X⃗∥ = R. Moreover, G′(R) is constant over the boundary of the disk, therefore:

−
∫

∂B(0,R)
∂n⃗G(X⃗) dS = G′(R)

∫
∂B(0,R)

dS = 2πRG′(R).

Finally, we have 1 = −2πRG′(R), so G′(R) = − 1
2πR , and therefore G(R) = − 1

2π log(R). We
deduce the value c1 = − 1

2π .
In conclusion the function G(x, y) = − 1

2π log(r) = log
(√

x2 + y2
)

is a solution of Equa-
tion (4.4). A straightforward computation shows that the gradient of G is as stated. ■

Note that is Ω is a circle centered in X⃗0 and with radius R > 0, then G is precisely the
solution to the Problem (4.2) endorsed with Dirichlet boundary conditions.

4.1.2 Computational Framework

We solve Problem (4.2) using the finite element method (FEM). Denote by V = H1(Ω) the
Sobolev space where the solution of Equation (4.2) belongs.

The domain Ω is discretized with a mesh size h, as illustrated in Figure 4.2(a). Note that
the Dirac delta location in Ω is not associated with a mesh node. We introduce the Lagrange
finite element space V k

h ⊂ V , constructed using C0 polynomials of degree k. The finite element
solution uh ∈ V k

h is obtained by solving the following weak formulation:∫
Ω
∇uh · ∇vh =

〈
δX⃗0

, vh

〉
for all vh ∈ V k

h . (4.6)

Here, Equation (4.6) corresponds to the case where Dirichlet boundary conditions are considered.
For other boundary conditions, additional terms are added to the weak formulation.

The numerical solution uh is computed by solving the weak formulation (4.6) and the library
Feel++ [Pru+24b] is used for the implementation. The details of the implementation are provided
in Section 7.4.

To accurately capture the behavior near the singularity, we refine the mesh around X⃗0. We
apply a mesh refinement strategy based on the distance to the Dirac delta location, defined by
the metric:

hdisc(x, y) = (x− x0)2 + (y − y0)2 for (x, y) ∈ Ω. (4.7)

The final metric is given by:

h(x, y) = hdisc(x, y) + h

10 , (4.8)

where h is the mesh size of the initial mesh. The factor 10 ensures adequate refinement near the
singularity, and the additive constant h

10 avoids excessively small elements.
The mesh refinement is performed using the MMG library [MMG22]. Example of mesh

refinement are shown in Figure 4.2(b).

4.2 State of the Art
In this section, we review the current state of the art regarding the Laplacian problem with

a Dirac distribution as the source term. We focus on both theoretical results and numerical
methods related to this problem. We start by examining the theoretical results concerning the
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(a) Initial mesh with a uniform dis-
cretization.

(b) Mesh adaptation around the Dirac (X⃗0 = (0, 0) in the left panel
and X⃗0 = (0, 1) on the right).

Figure 4.2: Example of mesh refinement near the singularity and around the boundary of the
domain, with havg = 0.1 and X⃗0 = (0, 0), (0, 1) respectively.

Laplace equation with a Dirac delta distribution δX⃗0
located at X⃗0 in Ω. The primary challenge

here is dealing with the singularity introduced by the Dirac distribution.
To circumvent the difficulties posed by the singularity, one approach is to use a regularized

Dirac distribution [Oje24]. For instance, a Gaussian approximation is defined as:

φ(X⃗) = exp
(
−∥X⃗ − X⃗0∥2

2r2

)
, (4.9)

where r is a given radius. While this method introduces an additional parameter to the problem, it
simplifies the treatment of the singularity. However, in this work, we focus on the non-regularized
Dirac distribution to study the behavior of the solution directly in the presence of the singularity.

4.2.1 Error Estimates

We briefly recall in this section two theoretical results available in the literature concerning
convergence of the finite element method (FEM) for problems involving a Dirac distribution.

Theorem 4.2.1 ([NS74]). Let Ω0 ⊊ Ω1 ⊊ Ω, where Ω1 and Ω0 do not contain the singularity.
If the solution uh is sufficiently regular in Ω1, then the error in the H1(Ω0) norm converges at
order k as follows:

∥u− uh∥H1(Ω0) ⩽ C(Ω0, Ω1, Ω)
(
hk∥u∥Hk−1(Ω1) + ∥u− uh∥H−p(Ω1)

)
, (4.10)

where C(Ω0, Ω1, Ω) is a constant that depends on the domains.

This theorem indicates that the error behaves well in domains away from the singularity.
Extending this result, [Ber+18] demonstrates quasi-optimal convergence in the H1 norm for
finite element methods:

Theorem 4.2.2 ([Ber+18]). For a Pk-finite element method on a domain Ω0 ⊊ Ω that does not
contain the singularity, the convergence rate is given by:

∥u− uh∥H1(Ω0) ⩽ C(Ω0, Ω1, Ω)hk
√
| log(h)|. (4.11)

These results, are demonstrated for Dirichlet boundary conditions, and require further
investigation for other boundary conditions. The theoretical framework generally assumes that
the solution is regular away from the singularity, and the Galerkin orthogonality remains valid.
However, variations in boundary conditions might affect the error estimates.
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4.2.2 Handling Singularity Near the Boundary

The earlier error estimates assume that the singularity is sufficiently far from the boundary.
When the singularity approaches the boundary, the assumptions underlying the theorems may
no longer hold.

We recall that [Ber+18] provides an error estimate for the situation where the distance from
the singularity to the boundary is of the order of h2:

∥u− uh∥H1(Ω0) ⩽ C, (4.12)

where C is a constant independent of h. In particular, note that this estimate does not allow
concluding with a convergence result when the singularity is too close to the boundary.

4.2.3 Open questions under investigation

The current state-of-the-art raises several questions and areas for investigation in the next
sections:

• Sharpness of the Theoretical Results: How sharp are the theoretical bounds? Does
the choice of domain Ω0 where the error is computed affect the accuracy of the results?

• Singularity Position Relative to the Boundary: How does the position of the
singularity relative to the boundary impact the convergence rates and error estimates?

• Interplay Between Multiple Singularities: What are the effects of having multiple
singularities on the solution and its approximation?

Addressing these questions will help refine our understanding of the problem and improve
numerical methods for handling singularities in various boundary conditions.

4.3 Sharpness of the theoretical results
The Laplace problem (4.2) is solved over the domain Ω defined as the unit disk

Ω = {X⃗ ∈ R2 : ∥X⃗∥2 < 1}. (4.13)

We present in Figure 4.3(a) the numerical solution uh computed for the Dirichlet problem, with
X⃗0 = (0, 0). Figure 4.3(b) shows the numerical error field |uh −G|. This plot shows that the
error is mainly concentrated near the singularity. Following [Ber+18] we compute the error on a
domain “far” from the singularity, over the domain

Ω0 = {X⃗ ∈ Ω : ∥X⃗ − X⃗0∥2 > r}, (4.14)

where r is a given radius: the error is computed over the domain Ω where a small disk around
the discontinuity is removed. The domain Ω0 is drawn in green on Figure 4.1. A more in-depth
discussion about the choice of r is given in Section 4.3.2.

4.3.1 Convergence for various mesh sizes

It has been established in previous studies that, away from the singularity, the convergence
rate of the finite element method matches that of the standard case: specifically, the method
converges at an order of k + 1 for the L2 error [KW14] and at an order of k for the H1 error
[Ber+18], when Pk finite elements are utilized.



4.3. SHARPNESS OF THE THEORETICAL RESULTS 89

0

0.5

1

1.26

u
h

(a) Numerical solution uh.

0

2

4

5.58

|u
h
−
G
|

(b) Pointwise error on the numerical solu-
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Figure 4.3: Numerical solution (left) and pointwise error (right) compared to the exact solution
G. In both figures, the solution is warped on the z-axis to represent the value of the plotted field.

We compare our results with those obtained in [Lac16; Ber+18]. The results from the
literature are plotted alongside our results in Figure 4.4, and we observe a strong agreement: the
convergence rates for both L2 and H1 errors are consistent, and our simulations demonstrate a
more accurate approximation.

It is important to note that the same domain, Ω0, with r = 0.2, is used for the computation,
although the meshes differ. For high orders of discretization, machine precision limits are reached,
which accounts for the observed plateau in the error for high mesh refinement. These limitations
are not factored into the computation of the convergence rate.

4.3.2 Error computational domain influence

We note from Figure 4.3(b) that the error on the solution computed is concentrated in a
small region around the singularity. We introduced the domain Ω0 to compute the error, which
is defined as Ω0 = {X⃗ ∈ Ω : ∥X⃗ − X⃗0∥2 > r}. To the best of our knowledge, no theoretical
result that provides insights into the choice of the radius r has been established. Nevertheless, in
[KW14], the authors performed a convergence study with various values of r. The theoretical
results they presented hold only if r > h. More precisely, in theoretical result of [Ber+18]
presented in Theorem 4.2.2, the value of r intervenes in the constant C(Ω0, Ω1, Ω), and this
constant increases when r gets close to 0.

We consider the Dirichlet problem, with the discontinuity located at X⃗0 = (0, 0). We measure
the error for various values of r, going from the mesh size h to 0.1. The results are presented in
Figure 4.5, where the study has been performed for two mesh discretization sizes: h = 0.0125 and
h = 0.00625. Vertical lines are drawn to show the value of h and 2h for both meshes considered.
The plot is presented for the L2 error, but a similar behavior is observed for the H1 error.

The first observation is that for a higher discretization order, the error computed is smaller
than for a lower one for the same value of r, meaning that the error, is concentrated on the
singularity. Moreover, we observe that when r gets higher, as the number of elements where the
error is computed, the error decreases faster for a higher order of discretization, reaching the
machine precision for r ≈ 0.1 with the P6 discretization. Finally, we notice that for r ∈ [h, 2h],
the error stagnates on a plateau, and then decreases, independently of the discretization order.
This bound of 2h numerically found give a first insight on the choice of r, while theorems are not
available for this choice.
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Figure 4.4: Convergence of the error for the Dirichlet problem, for various orders of discretization.
Comparison of the results from [Lac16; Ber+18] (plain lines) with the present word (dashed).
The number in parentheses is the slope of the linear regression from the plot data. Remark that
for high-order discretization, the points reaching a plateau at machine precision are not taken
into account in the regression. The error is computed over the domain Ω0 with r = 0.2.

These results motivate our choice of taking r = 0.1 for the computation of the error: the
error is satisfactory enough for all the discretization considered, and the error is computed over
a large enough domain to capture the behavior of the solution.

Remark 4.3.1. When choosing r = 0 (i.e., Ω0 = Ω), the computed H1 error remains constant
across different mesh sizes, regardless of the discretization order. For the L2 error, we observe a
convergence rate of 1 for all discretization orders, as illustrated in Figure 4.6. These findings
support the theoretical results presented in [KW14; Ber+18], which state that the error must be
evaluated over a domain excluding the singularity.

4.4 Numerical experiments

4.4.1 Influence of Boundary located Dirac Delta

Convergence for various positions of the Dirac source The primary result of [Ber+18]
regarding the convergence of the finite element method assumes that the discontinuity is sufficiently
far from the boundary of the domain. Specifically, the hypothesis requires that there exists a
small ball Bε ⊂ T0, where T0 is the triangle of the mesh containing the point X⃗0. However, in
specific applications, the point of interest may be located close or on the boundary of the domain:
for example, as the measures of temperature of the eyeball are mostly located at the level of
the cornea (see Section 1.1), the points located on the boundary play an important role in the
sensitivity analysis presented in Chapter 5.

In this section, we therefore analyze the behavior of the error as the Dirac source is moved
within the domain Ω, using a fixed mesh size. We specifically consider positions along the
segment [(0, 0), (0, 1)]. The results are illustrated in Figure 4.7, where the Robin problem is
examined. While [Ber+18] focuses solely on the Dirichlet problem, we observe similar behavior
in our results for the Robin problem.
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Figure 4.7: Evolution of the error over the domain Ω0, dependence on the distance of the
discontinuity to the border of the domain, for the Robin problem.

Figure 4.7(a) shows how the error evolves as the point X⃗0 approaches the boundary ∂Ω.
When the point is sufficiently far from the boundary, the error remains constant across all
discretization orders considered. However, as the point nears the boundary, for higher orders of
discretization, we observe a plateau around 10−7. When the distance becomes smaller than the
mesh size h, the error increases sharply to approximately 10−3. Despite this, higher discretization
orders still yield smaller errors.

Figure 4.7(b) presents the error for various discretization orders when the Dirac source is
fixed, considering both L2 and H1 errors. The error is 25 times smaller for P6 discretization
compared to P1. The figure also includes an analysis of different positions of the Dirac on the
segment. When y = 0, the higher-order discretization achieves an improvement of 6 orders of
magnitude. However, if the Dirac is positioned close to the boundary (y = 0.98), there is a slight
degradation in convergence for higher orders.

From the previous results, we can draw the following conclusions: (i) Even when the Dirac
source is positioned exactly on the boundary of the domain, higher-order discretization improves
precision, as shown in Figure 4.8. (ii) As the Dirac source approaches the boundary, the benefit
of higher-order discretization diminishes, though it still provides some improvement. (iii) When
the Dirac source is very close to the boundary, the error reaches a plateau, indicating limited
further reduction in precision.

Convergence for various mesh sizes In the preceding part, we analyzed the behavior of
the error for a fixed mesh size while varying the position of the Dirac source within the domain.
We now extend this analysis to examine how the error evolves with different mesh sizes. The
results, depicted in Figure 4.8 (panels (a) and (b)) for the Robin problem, reveal that the error
exhibits oscillations as the Dirac source moves closer to the domain boundary. At this point, we
cannot explain the origin of these oscillations, and further investigations are required.

Results presented in Figure 4.8 show that with a low order of discretization, the error plateaus
until the discontinuity is positioned on the boundary. In contrast, with high-order discretization,
the error exhibits oscillations, and further mesh refinement becomes less effective, although the
error remains substantially smaller compared to lower-order discretization.

For mixed boundary conditions, similar trends are observed (Dirichlet-Neumann in panel (c)
and Robin-Neumann in panel (d)). However, when Dirichlet is one of the boundary conditions,
an unusual feature is noted: the error tends to be higher with a finer mesh at high order of
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Figure 4.8: Comparison of the error for various mesh sizes, for the Robin problem, Dirichlet-
Neumann and Robin-Neumann problem.
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Figure 4.9: Circular domain with entering corner. The Dirac source is located on the red dashed
line.
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Figure 4.10: Convergence curve with P6 discretization for Dirac position going from the internal
corner (y = 0) to the border of the domain (y = 1). The number displayed in parentheses is the
slope of the linear regression from the plot data.

discretization. At this stage, we are not able to identify the source of this behavior, and further
investigation are in progress.

4.4.2 Interplay between Dirac sources and geometric singularities

In Section 4.3.1, we noted that the convergence rate of the finite element method for the
Dirac problem remains consistent with that of the standard case. This section examines how
the position of the discontinuity influences the convergence rate. Specifically, we analyze the
Dirichlet problem by varying the location of the Dirac source within the domain Ω, considering
two distinct cases: (i) the circular domain illustrated in Figure 4.1, and (ii) the circular domain
with a reentrant corner, as depicted in Figure 4.9.

The results presented in Figure 4.10 reveal several key insights into the impact of the
discontinuity’s location on the convergence rates. When the discontinuity is placed on the border
of the domain, the observed convergence rates are notably poorer. This issue is most pronounced
when the discontinuity is positioned at the corner of the domain, where both the slope and the
error are at their worst.

A similar pattern is observed across other problem setups. For example, in the case of a full
disk domain, the optimal results are achieved when the discontinuity is located at the center
of the disk. This observation aligns with theoretical expectations, which suggest that for each
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Figure 4.11: Evolution of the error for various boundary conditions considered, for various
discretization orders.

discretization degree, there must be at least one layer of elements between the discontinuity and
the domain boundary.

The theoretical framework [NS74; Ber+18] supports this by indicating that error control can
be achieved if there exists a domain Ω1 such that Ω0 ⊆ Ω1 ⊆ Ω (where Ω0 is the domain over
which the error is computed). The error estimate is given by:

∥e∥H1(Ω0) ⩽ hk ∥u∥Hk+1(Ω1) + ∥e∥H−p(Ω1) .

If Ω is sufficiently regular, we have:

∥e∥H−p(Ω1) ⩽ hp+1 ∥e∥H1(Ω) .

When the Dirac source is positioned on the border, theoretical predictions suggest a conver-
gence rate of 4/3. In practice, the observed rates are somewhat lower, with values of 1.47 for the
corner and 1.08 for the border, indicating a deviation from the theoretical expectations.

4.4.3 Impact of the boundary conditions type

In the previous section, we presented results for a single type of boundary condition at each
time. However, it is important to note that similar behavior has been observed across all the
problems considered. We present in Figure 4.11 the evolution of the L2 error for various boundary
conditions, for different discretization orders. We note that at small orders of discretization, a
similar error is observed for all types of boundary conditions, except for the coupled one where
a Dirichlet Boundary conditions is considered. This can be explained by the fact that on the
interface between the two boundary conditions (Γ1 ∩ Γ2), the solution is not smooth, and the
error is not well controlled. But still, we observe a convergence of the error when the mesh is
refined.

A similar behavior is observed at high orders of discretization, even though the difference is
larger in this case.
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4.5 Conclusion and outlook
In this chapter, we investigated the performance of finite element methods (FEM) for solving

the Laplacian problem with a singularity at the origin in a unit disk domain. Our numerical
results reveal important insights into the behavior of FEM near singularities and the associated
convergence properties.

The theoretical analysis suggests that the FEM might face challenges due to the nature of
the singularity, especially as the polynomial degree increases. This pessimistic outlook stems
from the type of proof used, which predicts a more significant degradation in accuracy close to
the singularity, necessitating the computation of the error farther away as the polynomial order
increases. However, our numerical experiments present a more optimistic picture. Specifically,
we observed that the solution’s accuracy remains high in a region around the singularity with a
radius greater than 2h, provided we stay sufficiently away from the domain boundary.

Close to the boundary, we do encounter very slow convergence for all polynomial orders.
Nonetheless, the constants associated with the convergence rates improve with higher polynomial
orders, indicating that while convergence is slow near the boundary, higher-order elements can
still provide better approximation quality. These findings align with the practical observations
made in similar studies, such as those by [Ber+18] and [Lac16], but highlight the nuances that
theoretical predictions alone may not fully capture.

Several avenues for future research emerge from this study:

(i) Refinement of theoretical analysis: Revisiting the theoretical framework to account for
the observed discrepancy between theory and practice could offer more accurate predictions
of FEM performance near singularities. Developing new proofs or refining existing ones to
better match numerical findings would be valuable.

(ii) Adaptive mesh refinement: Implementing adaptive mesh refinement strategies to focus
on regions near the singularity and boundary could enhance accuracy and efficiency. Such
techniques are critical to dynamically adjust the mesh to better capture the solution’s
behavior where the error is most significant.

(iii) Analysis of the effect of the boundary conditions: Detailed examination of the
boundary effects on convergence could lead to more effective strategies for mitigating slow
convergence. Understanding how boundary proximity influences solution accuracy can
inform better mesh design and solution strategies.

Another interesting direction for future research is to explore the case where several singularities
are present in the domain, as presented in [KW14].

In conclusion, while theoretical predictions may suggest a more challenging scenario for FEM
in the presence of singularities, our numerical results demonstrate that practical performance
can be significantly better than expected. Continued research in refining theoretical models and
exploring advanced numerical techniques will further enhance the efficacy of FEM for solving
complex problems involving singularities.



Chapter 5

Sensitivity Analysis

In the models introduced in Chapter 1, numerous parameters, both biomechanical and
geometrical, are involved. We concentrate here on biomechanical parameters, in a large range
that potentially include extreme conditions. The variation of these parameters might have a
significant influence on the results. Therefore, in order to quantify their impact, we set up a
framework to perform a forward uncertainty quantification study, complemented by a sensitivity
analysis. Deterministic sensitivity analysis has already been documented in [Sco88; NO06; NO07;
Li+10], using various numerical methods. In this work, we reproduce and extend these results,
to incorporate the effect of blood flow, as suggested for instance in [Sco88]. We also run a global
sensitivity analysis, that accounts for stochastic effects, and discriminate among different factors
by means of Sobol’ indices [Sob93].

The present chapter is organized as follows: Section 5.1 provides an introduction to sensitivity
analysis and uncertainty quantification, while Section 5.2 and Section 5.3 detail the deterministic
and stochastic sensitivity analyses, respectively.

5.1 Introduction to sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.1 Uncertainty propagation framework . . . . . . . . . . . . . . . . . . . . . 98
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5.3.3 Results of the Stochastic Sensitivity Analysis . . . . . . . . . . . . . . . . 104

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Introduction to sensitivity analysis

To understand the model and the impact of uncertainties on the output, two main tools are
commonly employed: Sensitivity Analysis and Uncertainty Analysis.

Sensitivity Analysis (SA) [Sal02; Sal+21b] is the study of how the uncertainty in the output of
a model can be apportioned to different sources of uncertainty in the model input. It is used for
various purposes, including quantifying the contributions of model inputs (or groups of them) to
the output and identifying the input factors that contribute the most to model uncertainty. On
the other hand, Uncertainty Analysis (UA), characterizes the uncertainty in model predictions
without necessarily identifying which assumptions are primarily responsible. These assumptions
may include the choice of model structure, statistical distributions of inputs, independence of

97
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parameters, simplifications of boundary conditions, and numerical approximations, all of which
can significantly influence the reliability of the analysis [Sal+21b]. The process of UA typically
involves running the model multiple times and extracting relevant statistical data such as the
mean, standard deviation, and other related metrics. Uncertainty analysis can be further divided
into forward and backward types, where forward UQ assesses how input uncertainties propagate
to outputs, and backward UQ determines the input uncertainties required to achieve a specific
level of output uncertainty.

According to [Sal+19], UA should ideally be conducted before Sensitivity Analysis. This
sequential approach ensures that the uncertainties are well characterized before their sources are
investigated.

However, some problems are commonly observed in the practical application of SA and UA.
One such issue is the misuse of the terms UA and SA, leading to confusion and misinterpretation
of results. Additionally, SA methods that rely on local techniques can be invalid for non-linear
models, which require more robust methods to ensure accurate and meaningful analysis. These
challenges are explored in greater detail in [Sal+19].

In [Raz+21], the authors emphasize that SA is on the path to becoming an essential component
of mathematical modeling, outlining areas of research that need further attention, and among
them, they address the computational cost of SA.

The uncertainty quantification (UQ) allows quantifying the uncertainty of the model param-
eters on various outputs. In the present work, we focus on forward UQ, that is, we want to
quantify the uncertainty and the sensitivity of the output of the model, given the uncertainty of
the input parameters. More precisely, two studies are performed:

(i) an uncertainty propagation, to understand how the uncertainties of the inputs of the model
are propagated to the output via the computational model, and

(ii) a sensitivity analysis (SA) to assess the impact of varying selected parameters on several
outputs of interest, namely temperature at specific locations in the eye, that are detailed in
Figure 1.5.

5.1.1 Uncertainty propagation framework

Given a computational model, the uncertainties on the inputs are propagated to the output,
as depicted in Figure 5.1. However, we do not have any information on this propagation, and we
need to quantify the level of confidence on the output.

Model Output s(µ)Input µ

Uncertainties Uncertainties ?

Reduced model

Figure 5.1: Uncertainties propagation framework.

We consider an output quantity Y depending on a set of input parameters µ ∈ Dµ, and
we estimate the sensitivity of Y to each parameter µi for i ∈ J1, dK, where d is the dimension
of the parametric space. To this end, we compute the Sobol’ sensitivity indices introduced in
[Sob93; Sob01] as follows. We assume that each component µi of µ follows a random variable Xi,
independent of the others. The first-order indices are defined as:
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Si := var (E [Y |Xi])
var(Y ) , (5.1)

where var(Y ) corresponds to the variance of Y including the eventual non-linearity effect of the
coefficient on the output, and var (E [Y |Xi]) is the variance of the conditional expectation of
Y given Xi, corresponding to the first order effect of the parameter µi on the output: if the
parameter modeled by the distribution Xj has a great impact on the output Y , then E [Y |Xj ]
will vary has well, and so its variance.

We also define the total Sobol’ index:

Stot
i :=

var
(
E
[
Y
∣∣∣X(−i)

])
var(Y ) = 1− S−i, (5.2)

where X(−i) = (X1, · · · , Xi−1, Xi+1, · · · , Xd) is the set of parameters without the parameter Xi,
and S−i is the sum of the indices where Xi is not present.

The study of such indices is very useful to understand the impact of the parameters on the
output, and to identify the most influential parameters. However, some drawbacks are observed,
such as the high computational cost of the method. Indeed, the computation of the Sobol’ indices
requires numerous model evaluations, which can be prohibitive for complex models such as the
HF model described in Chapter 1. To overcome this issue, we have implemented in Section 3.1 a
reduced model thanks to the Reduced Basis Method, which allows a significant gain in terms of
computational cost, while maintaining certified and accurate results. This process is highlighted
in green in Figure 5.1.

5.1.2 Deterministic versus stochastic sensitivity analysis

In the present manuscript, the SA is conducted in two different approaches. First, to
recapitulate findings from the literature, we performed a deterministic sensitivity analysis (DSA),
where for each simulation, only one parameter is allowed to vary in a given range, whereas the
others are fixed to their baseline value. In a second stage, we extended the SA to a stochastic
framework, where each selected parameter follows a given random distribution and the impact
on the quantity of interest is assessed via sensitivity indices. We denote as Stochastic Sensitivity
Analysis (SSA) this second approach. The advantages of the latter are the global perspective
provided by this method and its ability to capture high-order interactions among several input
parameters.

The integration of deterministic and stochastic methods has emerged as a highly effective
approach in the field of uncertainty quantification. This combined methodology has been
successfully applied in various recent studies. For example, [Dod+14] investigates the impact of
uncertainties on the distribution of the electromagnetic field in ocular tissue. Similarly, broader
applications include uncertainty analysis in the human head [Šuš+22; Šuš+21], as well as in the
cardiovascular domain [CQR13; BDL17]. A SA on the component simulating the fluid flows in
the eye was also developed in [PSS21].

While Sobol’ indices are effective in measuring parameter impact and interactions, the
complexity and the significant computational time of our model are very challenging. To overcome
this, we adopt the certified reduced basis method [Pru+02; QMN16] to obtain a reduced model,
maintaining its 3D nature while significantly reducing computational demands, as detailed in
Section 3.1. This method aligns with the paradigm observed in patient-specific mathematical
models applied to biomedical problems, ensuring a comprehensive approach involving data
integration, model derivation, numerical solving, validation, and uncertainty quantification, as
seen in mature research fields like cardiovascular simulations or cerebral hemodynamics. In
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ophthalmology, a similar paradigm is imperative due to the richness and heterogeneity of available
data, requiring innovative approaches for diagnosis and monitoring.

5.2 Deterministic sensitivity analysis
Our initial investigation of the impact of varying selected parameters is conducted through

a deterministic sensitivity analysis (DSA). Specifically, we choose a parameter among the ones
defined in Table 1.1, and we set the other to their baseline value. Next, we vary the selected
parameter among pre-defined values and compute the outputs of the high fidelity model. Similar
studies were performed in [Sco88; NO06; Li+10]. We gather in the present study information
about several parameters of interest for the heat transfer model from these studies, namely
baseline values and ranges. These variations correspond not only to physiological conditions
but also include some extreme situations. We postpone a more in-depth discussion on this
topic to Section 5.3, where the random distributions characterizing these parameters are set up.
Note that in this case, we do not need to use the reduced model, since only a relatively small
number of simulations is required. The Python code that performs this study using the toolbox
heat of Feel++ is presented in Section 7.5.1. The full-length code is available in the GitHub
repository [SPS24a].

In Figure 5.2, we present the DSA results for the parameters µ = {E, hamb, hbl, klens, Tamb, Tbl},
focusing on the temperature at point O, located at the surface of the cornea. The plain-line
curves correspond to the results reported in the literature, which we compare with the results of
our simulations; the vertical dashed line corresponds to the baseline value for each parameter.
The results are in very good agreement with previous findings and show that temperature at the
level of the cornea is strongly influenced by hamb, Tamb, E, and Tbl, whereas the influence of hbl
and klens is less significant. For instance, high air conductivity can result in a temperature 7 K
lower than the baseline value, while the difference obtained for hbl and klens in the computed
temperature is at most of 1 K.

5.3 Stochastic sensitivity analysis
Following the DSA, a stochastic sensitivity analysis (SSA) is conducted to account for the

uncertainty and variability in the input parameters, using Sobol’ indices. By incorporating
probability distributions, this approach provides a more comprehensive understanding of how
random fluctuations can impact the outcomes of the model.

To compute the Sobol’ indices introduced in Equations (5.1) and (5.2), we use an algorithm
of functional chaos, implemented in the library OpenTURNS [Bau+16] provided by the class
FunctionalChaosAlgorithm [Ope], using a bootstrap method for the confidence intervals. More
details about the method can be found in [MS18] as well as in the documentation of the library.
Note that this method require a huge number of evaluations of the model, that is why the
reduced model is crucial in this context. The code implemented to compute the Sobol’ indices is
presented in Section 7.5.2, and strongly relies on the framework of the Reduced Basis Method
previously implemented.

5.3.1 Choice of the distributions

We discuss in this section the prior distributions for each parameter. This choice is crucial
[Rod+19] and needs to be done carefully, in light of the quantitative and qualitative information
available data. The sources of uncertainties are diverse, but initially, based on the deterministic
analysis present in the literature, we proposed this first step of global sensitivity analysis, which
incorporates stochastic effects and identifies interactions.
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Figure 5.2: Results of the DSA for the 6 parameters studied, among previous studies from
the literature (markers x ENL(µ), □ [NO06], + [Sco88], ∗ [Li+10]). The vertical dashed line
corresponds to the baseline value of the parameter.



102 CHAPTER 5. SENSITIVITY ANALYSIS

Each parameter does not depend on the others, resulting in a family of 6 random independent
variables. Figure 5.3 shows the probability density function (PDF) of distributions of the
parameters, associated with the baseline values (see Table 1.1), where the parameters used in
the literature for the deterministic sensitivity analysis are represented with a vertical line. We
present hereafter some details on how the random distributions were constructed.

Definition 5.3.1 (Log-Normal distribution). Let µ ∈ R, and σ > 0. We say that a distribution
X has Log-Normal distribution with parameters µ and σ2 if the random variable Y := log(X)
follows a normal distribution N (µ, σ2). We denote X ∼ log -N (µ, σ2). The support of this
law is [0,+∞[. Let γ ∈ R. We define the log-Normal distribution of parameters (µ, σ2, γ) the
translation of a log -N (µ, σ2), over [γ,+∞[.

The probability density function of X ∼ log -N (µ, σ, γ) is defined, for x ∈ [γ,+∞[, as

fX(x) = 1√
2πσ(x− γ)

exp
(
−1

2

( log(x− γ)− µ
σ

)2)
. (5.3)

In particular, we have E[X] = exp
(
µ+ σ2

2 + γ
)
, and var[X] = exp

(
2µ+ σ2) (exp

(
σ2 − 1

)
).

A class in OpenTURNS, OT::LogNormal, implements this distribution.

• Evaporation rate E: According to [Sco88], the evaporation rate’s range is from 40 to
100 W m−2, using data from literature [Adl53]. The value E = 40 W m−2 is chosen as the
baseline value. Some high values are also considered, to study the impact of important
evaporation rates. The values used in the literature run from 20 to 320 W m−2. As
this parameter varies by several orders of magnitude, we decided to use a log-normal
distribution to represent it. More precisely we set E ∼ log -N (µE , σE , γE), with σE = 0.7,
µE = log(40)− 0.152

2 and γE = 20, restricted to [20, 130]. The distribution is presented in
Figure 5.3(a). This choice of the distribution leads to a mean value of E = 55.8 W m−2.

• Ambient air convection coefficient hamb: In [Sco88], the sole value given for the ambient
air convection coefficient is 10 W m−2 K−1, and similar values are used to run the DSA, from
8 to 15 W m−2 K−1. Other results in the literature corroborate this value: [Kos+13, Table
12.2] reports a range of 2.5 to 25 W m−2 K−1 for a free convection, and 10 to 500 W m−2 K−1

for a forced convection. [EL] proposes a range of 10 to 100 W m−2 K−1 for the air. In their
DSA, [NO06] and [Li+10] use higher values of hamb, up to 100 W m−2 K−1 to simulate a
forced convection condition. As high values are not a common case, such a coefficient should
not have a high frequency in the distribution. We chose to use a log-normal distribution:
hamb ∼ log -N

(
log(10)− 1

2 , 1, 8
)
. In Remark 1.4.1, we discussed the linearization process

of the model, inducing the usage of a fixed parameter hr chosen to fit temperature in usual
ambient room conditions, which leads to a restriction of the distribution to the interval
[8, 100] W m−2 K−1. The distribution is presented in Figure 5.3(b). The mean value of the
distribution is hamb = 17.6 W m−2 K−1.

• Blood convection coefficient hbl: A control value of 65 W m−2 K−1, derived from
experimental data [J J82] is provided in [Sco88]. For the DSA, the values used run from 50
to 120 W m−2 K−1. This leads us to the following assumption for the distribution of the
parameter: hbl ∼ log -N

(
log(65)− 0.152

2 , 0.15, 0
)
, restricted over [50, 120], see Figure 5.3(c).

The mean of this distribution is hbl = 65.8 W m−2 K−1.

• Lens conductivity klens: This parameter is chosen among all the conductivities since
the water content of the lens varies with aging [Sco88]. [Sco88] and [NO06] run the DSA
with this parameter, using values from 0.21 to 0.544 Wm−1K−1. As the range of values
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Figure 5.3: Distributions of the parameters. The vertical lines represent the values chosen in
literature for the DSA.

is not very large, it seems reasonable to use a uniform distribution for this parameter:
klens ∼ U(0.21, 0.544), see Figure 5.3(d).

• Ambient temperature Tamb: The baseline value of this parameter is taken to a usual
room temperature of 294.15 K (20 ◦C). The values used for the DSA vary from extreme
conditions of 273.15 K (0 ◦C) to 308 K (35 ◦C). As these extreme values are not very
common, we choose to restrict the values taken by Tamb from 283.15 K (10 ◦C) to 303.15 K
(30 ◦C): Tamb ∼ U(283.15, 303.15). The distribution is presented in Figure 5.3(e).

• Blood temperature Tbl: The temperature of human blood is commonly accepted to be
310 K (37 ◦C). For the DSA, cases of hypothermia and hyperthermia are considered, with
a range from 308 K to 312.15 K (35 ◦C to 39 ◦C). We therefore take Tbl ∼ U(308, 312.15),
see Figure 5.3(f).

5.3.2 Uncertainty propagation

We analyze the distribution of outputs of interest from a random sample of the input
parameters obtained from the distributions presented. We use 10,000 points, leading to 10,000
simulations. The computational cost of the high fidelity simulations becomes prohibitive in this
case; therefore, we employ the reduced basis metamodel developed in Section 3.1. Figure 5.4
presents the distribution of three outputs, namely the mean of the temperature over the cornea
Tcornea, and the temperature at points O and G respectively, which are located at the front and
the back of the eyeball, respectively. Note that TO and Tcornea display a Gaussian distribution,
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Tcornea TO TG

Mean 305.590082 303.185187 310.028526
Standard deviation 1.788358 2.457063 1.055978

Skewness -0.483163 -0.536222 -0.087999
Kurtosis 0.563015 0.598157 -1.222492

Table 5.1: Statistics of the outputs.
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Figure 5.4: Distribution of the output, from the composed input distribution.

whereas TG is more difficult to interpret, but might correspond to a uniform or bi-modal
distribution.

In addition, we extracted the Skewness and kurtosis, statistical measures that provide insights
into the shape and distribution of a dataset. They are useful in understanding the shape of data
and can provide insights into the underlying characteristics of a dataset. However, it’s important
to note that these measures should be interpreted along with other descriptive statistics and
visualizations to get a comprehensive understanding of the data.

We provide in Table 5.1 results about mean values and standard deviation for the same
quantities. We note that the mean values of TO and Tcornea are of the same order of magnitude
as the experimental data in the validation section (Section 2.2.5): the difference of temperature
is about 2 K, and standard deviations are in the same ranges. The mean value of TG is very close
to results reported in Figure 2.10 from the literature with a small standard deviation.

5.3.3 Results of the Stochastic Sensitivity Analysis

Before going through the interpretation of the SA results via Sobol’ indices, we present a
convergence analysis we performed by varying the sampling size Nparam. We report in Table 5.2
the maximal deviation of these indices, the time taken by the application to compute the 6 sets
of Sobol’ indices, and the predictivity factor Q2.

The predictivity factor Q2 for the polynomial chaos metamodel is defined as:

Q2 := 1−
∑N

l=1
(
Yl − f̂(Xl)

)2
var(Y ) , (5.4)
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Figure 5.5: Convergence of the Sobol’ indices.

Nparam Max deviation texec Q2

60 0.18102 0.756 09 s 0.999153
100 0.03698 1.996 51 s 0.992648
150 0.02969 2.837 43 s 0.99986
200 0.02923 4.160 46 s 0.998926
400 0.00739 8.367 01 s 0.999931
600 0.00496 15.7947 s 0.9998
1000 0.00248 22.364 s 0.999904

Table 5.2: Convergence of the Sobol’ indices.

measuring how accurate the metamodel f̂ is at predicting the output Y from the input X. The
closer Q2 is to 1, the better the metamodel is. In the context of the Sobol’ indices experiment,
the metamodel f̂ is the polynomial chaos expansion of the output Y . The test of convergence is
performed using the temperature on point O as the output. The convergence of Sobol’ indices is
reached for Nparam = 200 with a 10−2 accuracy, which is a threshold used in the sequel.

Figure 5.6 displays the results of the Sobol analysis for different outputs of interest. Recall
that Figure 1.5 shows where the points are in the eye.

In the deterministic sensitivity analysis conducted in Section 5.2, the impact of the variation
of a sole parameter on the temperature at point O was studied. Using Sobol’ indices, we are now
able to measure the impact when all of them are varying. The results of Sobol analysis at point
O presented in Figure 5.6(a) are in very good agreement with the deterministic findings: the
temperature at the level of the cornea is strongly influenced by external factors such as hamb, as
well subject-specific parameters such as Tamb, E, and Tbl, Moreover, it is minimally influenced
by the lens conductivity klens and the blood convection coefficient hbl.

Sobol’ indices for several other locations are gathered in Figure 5.6(b–f). From these results,
we can infer the following ranking of the influential parameters: Tamb, hamb, E, and Tbl. In
particular, the dependence of the ambient temperature Tamb decreases when we go deeper
inside the eye. Precisely, the impact of Tamb is still significant for the mean temperature of the
cornea, but the other parameters are equally influential. These behaviors are coherent with
physiological conditions. Moreover, regardless of the output studied, the parameters klens and
hbl are minimally influencing the output. Consequently, in future simulations, their value can
be set at baseline. Surprisingly, the temperature at B1, on the lens, is minimally influenced by
klens, but this parameter has a minimal role in the modeling process. On the other hand, Tbl
is very influential at D1 and G, close to vascular beds, again in a coherent manner with the
physiological situation. Finally, we can notice a slight difference between the first-order and
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total-order indices, mostly for hamb and Tamb, implying that there are high-order interactions
among these selected parameters. To measure the impact of coupled parameters, second-order
Sobol’ indices computation is required, but the polynomial chaos expansion does not directly
provide these values. Alternatively, a Monte-Carlo based method could be implemented, but this
strategy would be very costly from the computational viewpoint.

5.4 Conclusion
In this chapter, we have presented a sensitivity analysis framework to investigate the impact

of biomechanical parameters on the output of model of heat transfer in the human eye introduced
in Chapter 1. On the one hand, we performed a deterministic sensitivity analysis to assess
the influence of individual parameters on the output, and compared our result to previous
studies, hence validating our model. Then, we extended the analysis to a stochastic framework,
performed an uncertainty propagation, and computed Sobol’ indices to quantify the impact of
each parameter and their interactions. The SSA nor only confirmed the findings of the DSA, but
also identified high-order interactions among selected parameters that should be further explored.

These studies provide valuable insights into the behavior of the model and the sensitivity of
the output to the input parameters, and could be extended to explore more complex models or
other applications.
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Figure 5.6: SSA results: Sobol’ indices for different outputs.
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Chapter 6

Modeling heat transfer coupled with
aqueous humor flow

The model presented in this chapter is an extension of the thermal described in Chapter 1,
which focused on heat transfer within the ocular tissues without considering fluid dynamics. In
the present work, we integrate the flow of the aqueous humor (AH) in the anterior chamber (AC)
and posterior chamber (PC) of the eye, coupling it with the thermal processes inside the eyeball.
This coupling is crucial, as the movement of AH plays a significant role in heat distribution and
intraocular pressure regulation, affecting overall ocular health. Moreover, the wall shear stress
generated by the AH flow is an important biomechanical factor, influencing the health of ocular
tissues and potentially impacting the drainage pathways, which are relevant to conditions such
as glaucoma.

Previous studies have investigated aspects of this complex interaction, as reviewed in [Dvo+19].
For instance, [HB02; Wan+16; Mur+23] modeled flow coupled with heat transfer in the AC and
PC, while [Sac+23] explored the impact of pressure on AH flow and drainage. Other works, like
[ON08; BBS20; Abd+21; Dvo+22] examined the thermo-fluid dynamics of AH flow in the AC
with specified boundary conditions. However, these studies often focused on simplified geometries
or did not fully couple the heat transfer within the entire eyeball.

To address these gaps, our work develops a three-dimensional computational model that
simulates heat transfer throughout the whole human eyeball, accounting for the dynamic flow
of AH in both the AC and PC. The model aims to provide deeper insights into the ocular
thermal environment and its interaction with fluid dynamics, which is essential for understanding
physiopathological condition such as glaucoma and for improving drug delivery methods.

Solving the coupled three-dimensional thermo-fluid dynamics model of the eye numerically
poses significant computational challenges due to the complexity and nonlinearity of the governing
equations. The interaction between heat transfer and fluid flow requires solving large, sparse
linear systems that can be computationally expensive and time-consuming. To address these
challenges, it is essential to employ adapted preconditioners that can enhance the convergence
rate of iterative solvers. Preconditioners transform the original system into a form that is easier
to solve, reducing the number of iterations needed and improving overall computational efficiency.
By using tailored preconditioning techniques such as GAMG or the Schur complement [ESW14],
we achieve faster and more stable solutions, enabling the simulation of more detailed and realistic
models of ocular physiology.

The work of this chapter is a collaboration with Vincent Chabannes (Cemosis, Université de
Strasbourg). It is organized as follows: in Section 6.1, we present the biophysical model of the
human eye, focusing on the detailed geometrical representation and the mechanisms governing
AH flow. Section 6.2 describes the discretization techniques and computational framework
employed, including the numerical methods and preconditioning strategies used to solve the

109
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coupled equations efficiently. In Section 6.3, we present and discuss the results obtained from our
simulations, highlighting the model’s capabilities and potential applications. Finally, Section 6.5
summarizes our findings and outlines future research directions in the field of mathematical and
computational ophthalmology.

6.1 Biophysical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Mathematical and computational framework . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Finite element setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Solution strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Verification and validation of the proposed model . . . . . . . . . . . . . . . . . . 117
6.3.1 Mesh convergence analysis: ensuring accuracy and reliability . . . . . . . 118
6.3.2 Speed-up and scalability study . . . . . . . . . . . . . . . . . . . . . . . . 118
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6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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6.4.2 Wall shear stress and its implications in ocular physiology . . . . . . . . . 124

6.5 Conclusion and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Biophysical model

In this section, we present the biophysical model of the human eye that we aim to simulate.
We describe the biomechanical behavior involved in heat transfer and fluid dynamics.

We briefly recall the geometrical model of the human eye presented in Section 1.3. The
computational domain, denoted by Ω, represents the entire human eye as shown in Figure 1.4.
This domain is subdivided into ten subdomains, each representing different anatomical parts of
the eye such as the cornea, lens, vitreous body, retina, etc., each with its own physical properties.
Specifically, we denote by ΩAH the domain corresponding to the anterior and posterior chambers
of the eye (highlighted in brown in Figure 1.4), which are filled with the aqueous humor (AH).
The dynamics of the AH were previously described in Figure 1.2. We furthermore decompose
the boundary of ΩAH into five parts, as shown in Figure 6.1: (i) Denote by ΓC the interface of
ΩAH with the cornea, (ii) ΓI with the iris, (iii) ΓL with the lens, (iv) ΓVH with the vitreous
humor, and (v) ΓSc with the sclera. As discussed in Section 1.3, the region corresponding to the
suspensory ligaments of the lens was excluded from the geometrical model and incorporated into
the PC, resulting in a domain that is slightly larger than in reality.

Bio-heat and fluid dynamics model Following the approach of Abdelhafid et al. [Abd+21]
and Wang et al. [Wan+16], we make the following assumptions:

• Incompressible fluid: The aqueous humor is considered an incompressible Newtonian
fluid due to its low compressibility and viscosity.

• Boussinesq approximation: Density variations in the fluid are small and can be neglected
except in the buoyancy term. This approximation allows us to model the buoyancy effects
due to temperature differences without accounting for full density variations.

Under these assumptions, the steady flow of AH is governed by the incompressible Navier-
Stokes equations coupled with heat transfer:
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Figure 6.1: Vertical cut of the anterior and posterior chambers of the eye.

ρ(u⃗ · ∇)u⃗−∇ · σ = −ρβ(T − Tref)g⃗ in ΩAH, (6.1a)
∇ · u⃗ = 0 in ΩAH, (6.1b)

ρCpu⃗ · ∇T − k∇2T = 0 in Ω, (6.1c)

where µ [N s/m2] is the dynamic viscosity of the fluid, ρ [kg/m3] its density (both at reference
temperature Tref [K]), Cp [J kg−1 K−1] its specific heat, k [W m−1 K−1] its thermal conductivity.
The quantity T [K] is the temperature of the eye, while p [Pa] is the pressure of the aqueous
humor fluid (also expressed in mmHg in a biologic context), and u⃗ [m s−1] is its velocity. As
discussed in Section 6.1, we neglect the metabolic heat generation in the eye due to blood
perfusion.

The behavior of the fluid is characterized by the Cauchy stress tensor σ defined as

σ(u⃗, p) = −pI + 2µD(u⃗), (6.2)

where I is the identity tensor, and D(u⃗) = 1
2

(
∇u⃗+∇u⃗T

)
is the strain rate tensor .

The right-hand side term in Equation (6.1a) represents the gravitational force per unit volume,
along with the Boussinesq approximation [DR04], utilized to account for the buoyancy effects
due to temperature variations. This approximation states that the fluid’s density varies with
temperature but remains virtually unaffected by pressure, as discussed above. The coefficient
β [K−1] is the fluid volume expansion coefficient, and g⃗ [m s−2] the gravitational acceleration
vector. As the variation of temperature is small, we can consider that the density is constant in
the fluid domain, and the Boussinesq approximation is valid. Depending on the position of the
patient (standing, laying supine or prone respectively), g⃗ can be either vertical (g⃗ = [0,−g, 0]T ) or
horizontal (g⃗ = [g, 0, 0]T , g⃗ = [−g, 0, 0]T respectively), where g is the gravitational acceleration.

We impose no-slip boundary conditions for the fluid velocity on the boundaries of ΩAH:

u⃗ = 0⃗ on ΓC ∪ ΓI ∪ ΓL ∪ ΓVH ∪ ΓSc. (6.3)
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These boundary conditions, together with Equation (6.1), model the AH flow driven by thermal
and gravitational effects. The hydraulic pressure difference due to the production and drainage
of AH is not explicitly accounted for, as previous studies have indicated that buoyancy is the
dominant mechanism driving convective motion in the AH regardless of postural orientation [ON08;
Kum+06].

Note that alternative boundary conditions, such as non-homogeneous Dirichlet condi-
tions [HB02; Abd+21] or specified flow rates and pressures [Wan+16], could also be considered
but are beyond the scope of the present study.

As presented in Section 1.4, the heat transfer within the eye is governed by Equation (6.1c),
endowed with the following boundary conditions:

−k ∂T
∂n⃗ = hbl(T − Tbl) on Γbody, (6.4a)

−k ∂T
∂n⃗ = hamb(T − Tamb)︸ ︷︷ ︸

(i)

+σε(T 4 − T 4
amb)︸ ︷︷ ︸

(ii)

+ E︸︷︷︸
(iii)

on Γamb. (6.4b)

Precisely, Equation (6.4a) models the convective heat transfer between the eye and the
surrounding body, where hbl [W m−2 K−1] is the heat transfer coefficient between the eye and
the surrounding body, and Tbl [K] is the blood temperature. On the other hand, Equation (6.4b)
models three types of exchanges that are involved between the eyeball and the ambient air:
(i) Convective heat transfer, where hamb [W m−2 K−1] is the heat transfer coefficient between
the eye and the ambient air, and Tamb [K] is the ambient temperature; (ii) radiative heat
transfer, where σ = 5.67× 10−8 W/m2/K4 represents the Stefan-Boltzmann constant, and ε [–]
is the emissivity of the cornea; and (iii) evaporative heat loss, due to tear evaporation at the
surface of the eye, where E [W m−2] is the evaporation rate of the tear film.

Remark 6.1.1. One might consider simplifying the momentum equations by using the Stokes
equations, omitting the non-linear convective term ρ(u⃗ · ∇)u⃗, especially since the Reynolds
number in ocular flow is low [Wan+16]. However, due to the coupling with the heat equation
through buoyancy effects, non-linearities remain in the system, necessitating an iterative solution
strategy regardless.

We performed a comparative study of different modeling approaches, comparing computational
times for assembly and solution phases, as summarized in Table 6.1. While the use of linearized
boundary conditions in the sense of Equation (1.3) and the Stokes equations slightly reduced
the computational time, the differences were not substantial. Thus, we opted to use the fully
non-linear Navier-Stokes equations to maintain the accuracy of the model.

The computational times indicate that while linear boundary conditions and the Stokes
model reduce solution time, the fully non-linear Navier-Stokes model provides a more accurate
representation of the AH dynamics with only a modest increase in computational effort.

Table 6.1: Comparison of computational times for different models, using mesh Mr4 parallelized
on 256 cores.

(a) Time to assembly the algebraic objects.

Model Boundary condition Time [s]

Navier-Stokes Non-linear 0.24
Navier-Stokes Linear 0.25

Stokes Non-linear 0.24
Stokes Linear 0.26

(b) Time to solve the problem.

Model Boundary condition Time [s]

Navier-Stokes Non-linear 68.89
Navier-Stokes Linear 43.7

Stokes Non-linear 69.14
Stokes Linear 46.2
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6.2 Mathematical and computational framework
In this section, we present the mathematical and computational framework used to solve

the coupled fluid dynamics and heat transfer model described in (6.1–6.3–6.4). We detail the
variational formulation, finite element discretization, and the solution strategy employed.

We begin by deriving the variational formulation of the model. Let us introduce the following
functional spaces:

(i) The velocity space V := [H1
0 (ΩAH)]3, consisting of vector fields u⃗ with square-integrable

derivatives that vanish on the boundary;

(ii) the pressure space Q := L2
0(ΩAH) =

{
p ∈ L2(ΩAH)

∣∣∣∫ΩAH
p dx = 0

}
, consisting of square-

integrable scalar fields with zero mean; and

(iii) the temperature space W := H1(Ω).

Let v⃗ ∈ V , q ∈ Q, and φ ∈W be test functions. Multiplying Equations (6.1a), (6.1b), and
(6.1c) by v⃗, q, and φ, respectively, and integrating over the appropriate domains yield:

ρ

∫
ΩAH

(u⃗ · ∇)u⃗ · v⃗ dx⃗+ µ

∫
ΩAH

D(u⃗) : ∇v⃗ dx⃗−
∫

ΩAH
p · ∇v⃗ dx⃗

+
∫

ΩAH
ρ0βT g⃗ · v⃗ dx⃗ =

∫
ΩAH

ρ0βTrefg⃗ · v⃗ dx⃗, (6.5a)∫
ΩAH
∇ · u⃗q dx⃗ = 0, (6.5b)

ρCp

∫
Ω
u⃗ · ∇Tφdx⃗+ k

∫
Ω
∇T · ∇φ dx⃗+

∫
Γamb

(
hambT dσ + σεT 4

)
φdσ +

∫
Γbody

hblTφdσ

=
∫

Γamb

(
hambTamb + σεT 4

amb

)
φdσ +

∫
Γbody

hblTblφdσ. (6.5c)

We define the following bilinear and trilinear forms:

a1(z⃗, u⃗, v⃗) = ρ

∫
ΩAH

(z⃗ · ∇)u⃗ · v⃗ dx⃗, (6.6a)

a2(u⃗, v⃗) = µ

∫
ΩAH

D(u) : ∇v⃗ dx⃗, (6.6b)

b(p, v⃗) = −
∫

ΩAH
p · ∇v⃗ dx⃗, (6.6c)

d(T, v⃗) = −
∫

ΩAH
ρ0βT g⃗ · v⃗ dx⃗, (6.6d)

e(u⃗, T, φ) = ρCp

∫
Ω
u⃗ · ∇Tφdx⃗, (6.6e)

f(T, φ) = k

∫
Ω
∇T · ∇φ dx⃗+

∫
Γamb

(
hambT + σεT 4

)
φ dσ +

∫
Γbody

hblTφdσ, (6.6f)

ℓ1(v⃗) =
∫

ΩAH
ρ0βTrefg⃗ · v⃗ dx⃗, (6.6g)

ℓ2(φ) =
∫

Γamb

(
hambTamb + σεT 4

amb

)
φ dσ +

∫
Γbody

hblTblφdσ. (6.6h)

The variational formulation of the problem is then: Find (u⃗, p, T ) ∈ V ×Q×W such that
for all (v⃗, q, φ) ∈ V ×Q×W :
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a1(u⃗, u⃗, v⃗) + a2(u⃗, v⃗) + b(p, v⃗) +d(T, v⃗) = ℓ1(v⃗),
b(q, u⃗) = 0, (6.7)

e(u⃗, T, φ) +f(T, φ) = ℓ2(φ).

Theorem 6.2.1 (Existence and Uniqueness). The variational problem (6.7) has a unique solution
under appropriate assumptions on the data.

Proof. A detailed proof is beyond the scope of this section. However, the existence and uniqueness
can be established using fixed-point arguments and standard results for the Navier-Stokes
equations coupled with heat transfer, as discussed in [Tsu15]. ■

6.2.1 Finite element setting

We discretize the variational problem using the finite element method (FEM). The computa-
tional domain is discretized as described in Section 2.1.2, with mesh refinement in the anterior
and posterior chambers to accurately capture the flow and thermal dynamics.

We define the finite element spaces for velocity, pressure, and temperature as follows:

• V h :=
{
v⃗ ∈ [P2(ΩAH)]3

∣∣ v⃗ = 0 on ∂Ω
}
, the space of vector-valued piece-wise quadratic

polynomials that vanish on the boundary for velocity.

• Qh := P1(ΩAH), the space of piece-wise linear polynomials for pressure.

• Wh := P1(Ω), the space of piece-wise linear polynomials for temperature.

This choice corresponds to the P1–P2P1 Taylor-Hood element for the velocity-pressure pair,
which satisfies the LBB (Ladyzhenskaya-Babuška-Brezzi) stability condition. Other discretization
strategies could be employed, such as P1–P1P1 or P2–P2P1. The former requires a stabilization
term to ensure stability, while the latter is more computationally expensive and may not provide
significant improvements in accuracy.

The discrete problem reads: Find (u⃗h, ph, Th) ∈ V h×Qh×Wh such that for all (v⃗h, qh, φh) ∈
V h ×Qh ×Wh:

a1(u⃗h, u⃗h, v⃗h) + a2(u⃗h, v⃗h) + b(ph, v⃗h) +d(Th, v⃗h) = ℓ1(v⃗h),
b(qh, u⃗h) = 0, (6.8)

e(u⃗h, Th, φh) +f(Th, φh) = ℓ2(φh).

The system (6.8) is non-linear because of the terms a1 and e. We employ Newton’s method
to solve it iteratively. Precisely, it consists of starting from an initial guess (u⃗0, p0, T 0), and
iteratively compute (u⃗k+1, pk+1, T k+1) as the solution of the non-linear system at each iteration.
We set the correction terms δu⃗k := u⃗k+1 − u⃗k, δpk := pk+1 − pk, and δT k := T k+1 − T k. Given
(u⃗k, pk, T k), we define the nonlinear residual associated with the variational formulation (6.8) as:

rk
u⃗(v⃗) := ℓ1(v⃗)− a1(u⃗k, u⃗k, v⃗)− a2(u⃗k, v⃗)− b(pk, v⃗)− d(T k, v⃗), (6.9a)
rk

p(q) := −b(q, u⃗k), (6.9b)
rk

T (φ) := ℓ2(φ)− e(u⃗k, T k, φ)− f(T k, φ). (6.9c)
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In the spirit of [ESW14, Ch. 8], by dropping the quadratics terms, the correction terms verify
the following weak linear problem: ∀(v⃗, q, φ) ∈ V ×Q× T :

a1(δu⃗k, u⃗k, v⃗) + a1(u⃗k, δu⃗k, v⃗) + a2(δu⃗k, v⃗) + b(δpk, v⃗) + d(δT k, v⃗) = rk
u⃗(v⃗), (6.10a)

b(δpk, u⃗k) = rk
p(q), (6.10b)

e(δu⃗k, T k, φ) + e(u⃗k, δT k, φ) + f(δT k, φ) = rk
T (φ). (6.10c)

In the discretized spaces V h×Qh× Th, the same variational problem is solved. To define the
corresponding linear algebra problem, we set the basis of the discrete spaces: {λ⃗i}Nu

i=1 is a basis
of V h, {µj}

Np

j=1 is a basis of Qh, and {ξl}NT
l=1 is a basis of Th. Setting u, ∆u, p, ∆p, T , and ∆T

the vectors of the coefficients of the basis functions in the corresponding basis of u⃗, δu⃗, p, δp, T ,
and δT respectively, the algebraic problem reads:V k + W k + N BT D

B 0 0
Ek

1 0 Ek
2 + F


∆u

∆p
∆T

 =

rk
u⃗

rk
p

rk
T

 , (6.11)

where all elements of this system are defined on the basis of the discrete spaces:

V k =
[
a1(u⃗k, λ⃗i, λ⃗j)

]
∈ RNu×Nu , W k =

[
a1(λ⃗i, u⃗

k, λ⃗j)
]
∈ RNu×Nu , N =

[
a2(λ⃗i, λ⃗j)

]
∈ RNu×Nu ,

B =
[
b(µl, λ⃗j)

]
∈ RNp×Nu , D =

[
d(λ⃗i, ξl)

]
∈ RNu×NT ,

Ek
1 =

[
e(λ⃗i, T

k, ξl)
]
∈ RNu×NT , Ek

2 =
[
e(u⃗k, ξl, ξm)

]
∈ RNT ×NT , F =

[
f(ξl, ξm)

]
∈ RNT ×NT ,

rk
u⃗ =

[
rk

u⃗(λ⃗i)
]
∈ RNu , rk

p =
[
rk

p(µj)
]
∈ RNp , rk

T =
[
rk

T (ξl)
]
∈ RNT .

(6.12)
From the initial guess, we iteratively solve the linear algebra problem (6.11) at each Newton

iteration, until the relative increment Critk := max{∥δu⃗k∥/∥δu⃗0∥, ∥δpk∥/∥δp0∥, ∥δT k∥/∥δT 0∥} ⩽
εtol is reached for a given tolerance εtol > 0. Algorithm 10 summarizes the Newton iteration
loop.

Algorithm 10: Newton iteration loop.
Input: {u0,p0,T 0, εtol}.
(u0,p0,T 0)← initial guess;
Assemble N , B, D, F ;
while Critk > εtol do

Assemble V k, W k, Ek
1, Ek

2, rk
u⃗, rk

p, rk
T ;

(∆u,∆p,∆T )← solution of System (6.11);
uk+1 ← uk + α∆u, pk+1 ← pk + α∆p, T k+1 ← T k + α∆T ;

end
Output: (uk+1,pk+1,T k+1).

The parameter α ∈ [0, 1] is a relaxation factor that can be adjusted, using the line search
method of PETSc [Bal+24], to improve the convergence of the Newton iteration.

6.2.2 Solution strategy

We implement the computational framework using the heatfluid toolbox of Feel++1 [Pru+24b]
to solve Algorithm 10. Efficiently solving the resulting linear systems at each Newton iteration is

1See documentation: � https://docs.feelpp.org/toolboxes/latest/heatfluid/

https://docs.feelpp.org/toolboxes/latest/heatfluid/
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crucial.
Direct solvers become impractical for large-scale problems due to computational and memory

constraints. Therefore, we employ iterative solvers with appropriate preconditioners to enhance
convergence. The preconditioner is a key component in the iterative solver, as it actually enables
the solver to converge. We utilize a field-split preconditioning strategy, where the global system
is partitioned into smaller blocks corresponding to different physical fields (e.g., fluid and thermal
fields). This allows us to apply specialized solvers and preconditioners to each block.

By transforming the original linear system A x = b into an equivalent one P −1A x = P −1b
with more favorable properties for numerical solution, such as a better condition number,
preconditioners play a critical role in enhancing the performance and robustness of the solver.
Here, P −1 approximates A−1, making P −1 A easier to invert than A and having a spectrum
close to that of A.

For clarity, we rewrite the system (6.11) with block notation, omitting the superscript k:

 Ã BT D
B 0 0
E 0 F̃


 ∆u

∆p

∆T

 =

 ru⃗

rp

rT

 ⇐⇒:
[

K0,0 K0,1
K1,0 K1,1

]
︸ ︷︷ ︸

=:K

[
∆fluid
∆heat

]
=
[
rfluid
rheat

]
. (6.13)

The main idea of additive fieldsplit preconditioner is to approximate the inverse of the matrix K
by the matrix [

K−1
0,0 0

0 K−1
1,1

]
, (6.14)

where the inverses of the diagonal blocks are applied separately, with appropriate solvers and
associated preconditioners.

The heat block K1,1 inverse is approximated using a few iterations of GAMG — Geometric
Algebraic Multigrid — from PETSc [Bal+24]. This preconditioner efficiently handles large
sparse matrices by recursively coarsening and solving the problem on multiple levels, significantly
accelerating the convergence.

On the other hand, concerning the fluid block K0,0, the inverse is approximated using the
Schur complement, as proposed in [ESW14, Ch. 9], where another field split preconditioner is
implemented: the degrees of freedom are now divided into velocity and pressure blocks. Then,
the LDU decomposition of the matrix K0,0 is computed as follows:

K0,0 =
[

Ã BT

B 0

]
=
[

I 0
B Ã

−1
I

]
︸ ︷︷ ︸

L

[
Ã 0
0 S

]
︸ ︷︷ ︸

D

[
I Ã

−1
BT

0 I

]
︸ ︷︷ ︸

U

, (6.15)

where S = −B Ã
−1

BT is the Schur complement operator . We employ an upper strategy, namely
we approximate the inverse of K0,0 by the matrix (D U)−1:

K−1
0,0 ≈

[
I −Ã

−1
BT

0 I

] [
Ã

−1 0
0 S−1

]
. (6.16)

Note that these two matrices are not computed explicitly, as we are computing the action of
the inverse on a vector. Finally, another fieldsplit is applied to the velocity block Ã, where the
velocity components are solved separately using a block Jacobi preconditionner, decoupling the
velocity components.
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Block Description Preconditioner Krylov solver

K Overall coupled problem fieldsplit additive gmres
K1,1 Heat split subproblem gamg gmres
K0,0 Fluid split subproblem fieldsplit schur fgmres

Ã Velocity block (split) jacobi preonly
S Schur complement gamg preonly

Table 6.2: Description of the solvers and preconditioners used for the different blocks of the
system (6.11). In monospaced font, we indicate the actual PETSc component used for the solver
and preconditioner used.

Parameter Value Dimension

µ 0.001 [kg m−1 s−1]
ρ 1000 [kg m−3]
Cp 4178 [J kg−1 K−1]
β 3 · 10−4 [K−1]
kAH 0.576 [W m−1 K−1]
g 9.81 [m s−2]
Tref 298 [K]
hbl 65 [W m−2 K−1]
hamb 10 [W m−2 K−1]
E 40 [W m−3]
Tbl 310 [K]
Tamb 294 [K]

Table 6.3: Parameters used for the simulations, representing nominal physiological values. Sources
can be found in [ON08; Wan+16].

We summarize in Table 6.2 the preconditioners used for the different blocks of the system
(6.11), as well as the Krylov Subspace Method (KSP) employed to solve the linear system. These
methods can be either the Generalized Minimal Residual (GMRES) or the Flexible GMRES
(FGMRES) methods, depending on the block being solved. In some cases, the preonly solver
is used, which indicates that no Krylov subspace solver is executed, rather only the associated
preconditioner is applied once. More details on the setting of these preconditioners can be found
in the configuration file presented in Section 7.6, or in [Sai+24c].

6.3 Verification and validation of the proposed model

In this section, we present the verification and validation of our proposed model through
numerical simulations conducted using the computational framework detailed in Section 6.2. The
simulations aim to verify the accuracy and reliability of our model in replicating the physiological
conditions of the human eye. The set of parameters used in the simulations is listed in Table 6.3,
representing nominal physiological values corresponding to a healthy subject.

To ensure the accuracy and reliability of our numerical solutions, we first perform a mesh
convergence analysis, followed by a scalability study to assess the computational performance of
our framework. We also compare our results with those from prior research to further validate
our model.
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M hmin hmax hmean # elements # Degree of freedom
T u⃗ p

Mr0 1.25 · 10−4 4 · 10−3 9.23 · 10−4 1.92 · 105 37,470 84,966 4,615
Mr1 1.37 · 10−4 3.63 · 10−3 7.72 · 10−4 2.82 · 105 51,753 1.17 · 105 6,155
Mr2 6.54 · 10−5 1.6 · 10−3 4.67 · 10−4 7.47 · 105 1.31 · 105 5.9 · 105 28,548
Mr3 3.29 · 10−5 9.59 · 10−4 4.17 · 10−4 1.4 · 106 2.42 · 105 7.08 · 105 34,304
Mr4 2.55 · 10−5 5.29 · 10−4 2.88 · 10−4 6.04 · 106 1.03 · 106 1.02 · 106 48,534
Mr5 3.12 · 10−5 1.5 · 10−4 2.77 · 10−4 4.39 · 107 7.37 · 106 4.62 · 106 2.05 · 105

Mr6 2.82 · 10−5 9.94 · 10−7 1.84 · 10−4 1.51 · 108 2.52 · 107 1.47 · 107 6.37 · 105

Table 6.4: Characteristics of meshes used for the convergence study and number of degrees of
freedom for temperature T , velocity u⃗, and pressure p respectively, using P1–P2P1 elements.

6.3.1 Mesh convergence analysis: ensuring accuracy and reliability

To verify the accuracy of our numerical solution, we conduct a mesh convergence study. We
generate a series of meshes, denoted Mr0 to Mr5, with progressively increasing levels of refinement,
following the procedure described in Section 2.1.2. The characteristics of these meshes, including
the minimum, maximum, and mean element sizes, the number of elements, and the degrees of
freedom for temperature, velocity, and pressure fields, are summarized in Table 6.4.

Using these meshes, we solve the model equations with consistent parameters and boundary
conditions. We extract quantities of interest from the solutions, namely the maximum temperature
of the cornea and the mean velocity of the aqueous humor in the anterior chamber. The evolution
of these quantities with respect to the number of degrees of freedom is presented in Figure 6.2.

As shown in Figure 6.2, both the maximum corneal temperature and the mean aqueous
humor velocity converge toward asymptotic values as the mesh is refined. This convergence
indicates that our numerical solution becomes independent of the mesh size, confirming the
accuracy and reliability of the simulation results. We observe that beyond a certain mesh density,
further refinement results in negligible changes in the computed quantities, suggesting that an
optimal mesh size can be selected to balance accuracy and computational cost.

Based on these results, we select mesh Mr4 for subsequent simulations, using the P1–P2P1
discretization, as it provides a good compromise between accuracy and computational efficiency.

6.3.2 Speed-up and scalability study

We assess the scalability of our computational framework by measuring the execution time
required to solve the model as a function of the number of MPI parallel processes utilized. This
analysis provides insights into the efficiency and performance of our implementation on parallel
computing architectures.

Impact of the postural orientation We first examine the scalability in the context of
different postural orientations of the eye—standing, prone, and supine. The execution times
required to assemble and solve the non-linear problem (as outlined in Algorithm 10) for each
posture are presented in Figure 6.3(a). As anticipated, the execution time decreases with an
increasing number of parallel processes, demonstrating the benefits of parallelization.

Notably, the simulation for the standing position requires more time compared to the prone
and supine positions. This difference is attributed to the higher fluid velocities observed in the
standing position, which necessitate more non-linear iterations for convergence (five iterations
compared to four for the other positions).
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Figure 6.2: Results of the mesh convergence study. For each curve, the point on the left
corresponds to mesh Mr1, and the point on the right to mesh Mr5. The reference quantity use to
compute the relative error as been obtained with the mesh Mr5 and the discretization P2–P2P1,
and a higher order of accuracy required to the solver.

We compute the speed-up s = t1/tnp, where t1 is the execution time with a single process,
and tnp is the time with np parallel processes. The results, depicted in Figure 6.3(b), show that
while the speed-up improves with additional processes, it deviates from the ideal linear speed-up,
particularly at higher process counts.

An in-depth analysis of the speed-up, using various numbers of processes as reference points,
is provided in Figure 6.3(c). The plots reveal that although the speed-up is not perfectly optimal,
it tends to improve relatively as the number of processes increases.

An interactive version of this plot is available online2. For each case, we compute the slope
of the linear regression of the speed-up, and we scale it so that the optimal speed-up is 1. The
values are presented on the right of the plot, for each postural orientation.

Overall, our computational framework demonstrates effective scalability across different
simulation scenarios, with parallelization yielding significant reductions in execution time.

Scalability analysis of simulation components Beyond the assembly and solution phases,
we investigate the scalability of other key components of the simulation. Focusing on the three
largest meshes (Mr4, Mr5, and Mr6), we measure the execution times for the following steps:

(i) Load and initialize the mesh that is already partitioned on the disk: this step involves
reading the pre-partitioned mesh data from the disk and initializing the mesh structure in
memory.

(ii) Initialize the data structures: this step sets up the necessary data structures required for
the simulation, including matrices, vectors, and other computational entities.

(iii) Assembly the algebraic objects of the linear system: this step involves assembling the linear
system of equations that arise from the discretization of the governing equations.

(iv) Solve the non-linear algebraic system: this step involves solving the non-linear equations
that arise from the discretization of the governing equations using iterative solvers.

2� https://irma.math.unistra.fr/~saigre/ressources/speedup.html

https://irma.math.unistra.fr/~saigre/ressources/speedup.html
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Figure 6.3: Scalability results: time of execution to simulate coupled model, and corresponding
speed-up, for an increasing number of parallel processes, and for the three subject positions.
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Figure 6.4: Absolute and relative computational time for the coupled heat-fluid test case in the
standing position, performed on Gaya with the meshes Mr4 (left), Mr5 (middle), and Mr6 (right).

(v) Export the results: this step writes the computed results, such as temperature, velocity,
and pressure fields, to disk in the specified output format.

The execution times and their relative contributions are summarized in Figure 6.4. We
selected for this analysis the standing position, which is the most challenging case. The resolution
of the non-linear system is the most time-consuming step, followed by the assembly phase. As
the number of processes increases, we observe a decrease in execution times for most components,
except for the result export phase, where I/O operations become a bottleneck due to the larger
data volumes and potential disk access contention.

These findings highlight the importance of optimizing not only the computational algorithms
but also the data management strategies, particularly for large-scale simulations.

6.3.3 Validation in comparison with previous studies

To validate our model, we compare our results with those from previous studies that have
investigated temperature distributions and AH flow in the human eye. Notably, [Sco88] developed
a 2D heat transfer model, [ON08] extended this to a 2D model coupling heat transfer with AH
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Figure 6.5: Distribution of the computed temperature over the eyeball in the standing position,
on a vertical cut. Mesh discretization is also presented.

flow, and [KS10; Wan+16] presented a 3D coupled model, providing corneal temperatures for
various ambient temperatures (Tamb). Note that the first two studies only consider the standing
position of the subject.

Figure 6.5 illustrates the computed temperature distribution over the eyeball in the standing
position, depicted on a vertical cross-sectional plane. As expected, the temperature is higher
in the posterior part of the eye, which is insulated within the body, and lower in the anterior
region, where heat exchange with the ambient air occurs through the cornea. This temperature
gradient aligns with observations reported in previous studies [ON08; Wan+16], reinforcing the
validity of our model.

Table 6.5 presents the corneal surface temperatures from these studies alongside our findings
for the three postural configurations. Consistent with previous research, we observe that coupling
the AH flow leads to an increase in the corneal surface temperature in the standing position.
While [KS10] reported a temperature difference of approximately 0.2 K due to the flow, our model
predicts a smaller difference of about 0.05 K. This discrepancy may be attributed to differences
in model assumptions, boundary conditions, or computational methods.

Moreover, our results indicate that the lying positions (prone and supine) have minimal
impact on the corneal temperature, with differences less than 0.01 K. Interestingly, we observe a
slight decrease in corneal temperature in the prone position compared to the supine position,
which can be explained by the flow patterns influenced by gravity, see Section 6.3.

Additionally, experimental studies compiled by [EYB89] and [NO06] report an average corneal
surface temperature of approximately 307.15 K, which falls within the range of our simulation
results, further supporting the validity of our model. Note that the value of Tamb was not specified
in the publications, but still, our findings lie within the interval of results reported.

We present in Figure 6.6 the velocity field and pressure distribution in the AC and PC for
the three postural orientations. Note that as the pressure is defined up to a constant, we adjust
it to a nominal value of 15.5 mmHg for comparison purposes, as this is a typical value for the
intraocular pressure in healthy eyes. In [Wan+16], the authors reported the pressure and velocity
distributions for two postural orientations (standing and supine), we present in Table 6.6 a
comparison of our results with theirs. Even though the values are different, we observe similar
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Author Tamb No AH flow AH flow coupled
Prone Supine Standing

Scott [Sco88] (2D) 293.15 306.4 – – –

Ooi and Ng [ON08] (2D) 298 306.45 – – 306.9

Karampatzakis and Samaras
[KS10] (3D)

293 306.81 – – 307.06
296 307.33 – – 307.51
298 307.69 – – 307.83

Current model (3D)
293 306.5647 306.56915 306.55899 306.63672
296 307.09845 307.10175 307.09436 307.14651
298 307.45746 307.46008 307.45432 307.49222

Table 6.5: Corneal surface temperature for various configurations. Temperatures are given in K.
A red value represents the highest temperature, and a blue value the lowest.

Position Reference Maximum velocity Average velocity Pressure
[m s−1] [m s−1] [mmHg]

Supine

[Wan+16] 9.44 · 10−4 4.1 · 10−5 13.50 – 13.58
[Mur+23] 6 · 10−5 n/a n/a
[BBS20] n/a 9.88 · 10−6 n/a

Current model 2.59 · 10−5 3.21 · 10−6 15.42 – 15.59

Standing
[Wan+16] 9.6 · 10−4 2.5 · 10−4 13.50 – 13.59
[BBS20] n/a 5.88 · 10−5 n/a

Current model 2.76 · 10−4 5.23 · 10−5 15.28 – 15.72

Table 6.6: Comparison of the results of the current model with the literature.

orders of magnitude and trends in the pressure and velocity distributions, which further validate
our model.

6.4 Numerical results

In this section, we present the results of our numerical simulations conducted using the
heatfluid toolbox of Feel++ [Pru+24b]. The simulations aim to investigate the impact of the
subject’s position on the aqueous humor flow and temperature distribution within the eye, as
well as to analyze the wall shear stress (WSS) distributions and their implications for ocular
physiology.

For further details on the configuration files used to set the preconditioner and solver, we
refer to Section 7.6. The configuration files and the mesh family Mr utilized in the simulations
are available as open-access resources [Sai+24c].

6.4.1 Impact of the position of the subject

We examine how different postural orientations—standing, prone, and supine—affect the flow
of the AH in the AC. Figure 6.6 presents the simulation results for each position, illustrating the
flow patterns and pressure distributions.

In the standing position (Figure 6.6(a)), gravity significantly influences the flow, resulting in
higher velocities and a pronounced downward movement of the aqueous humor. This enhanced
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Figure 6.6: Results of simulation for various postural orientations of the eye. Streamlines are
colored according to the pressure, and the arrows show the fluid velocity magnitude.

flow contributes to the formation of characteristic patterns such as Krukenberg’s spindle and
recirculation zones within the AC, consistent with observations in the literature [Abd+21;
Wan+16; Mur+23].

In the prone and supine positions (Figures 6.6(b) and 6.6(c)), the flow patterns are altered
due to the change in the direction of gravity relative to the eye. In the prone position, the flow
moves from the back of the AC towards the cornea, slightly warming the cornea. Conversely, in
the supine position, the flow moves from the cornea towards the back of the AC, leading to a
slight cooling effect on the cornea.

These variations in flow patterns and velocities directly impact the temperature distribution
within the eye, as discussed in Section 6.3.3, and have potential implications for ocular health
and treatment strategies.

6.4.2 Wall shear stress and its implications in ocular physiology

The wall shear stress (WSS) is a critical parameter representing the tangential force per unit
area exerted by the fluid on the wall due to viscous effects. The insights gained from WSS analysis
can inform clinical practices, contributing to personalized medicine, surgical optimization, and
improved device design [Yan+22; Fer+18]. Understanding the WSS distribution has significant
implications in ocular physiology, including:

• Drug delivery: High WSS regions may enhance the mixing and transport of drug
particles within the AH, potentially increasing drug absorption rates through ocular tissues,
see [Xu+13; Kou16; SZM13]. By identifying these regions, drug delivery systems can be
designed to target specific areas within the eye, improving therapeutic outcomes.

• Surgical procedures: WSS analysis provides valuable insights for optimizing surgical
interventions, [Kud+20; Bas+24]: (i) Design optimization: Knowledge of WSS distri-
butions helps in planning procedures that minimize mechanical stresses on ocular tissues,
reducing the risk of tissue damage; (ii) Implantable devices: Designing intraocular
lenses and drainage devices that account for WSS can help prevent endothelial cell loss
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and maintain corneal health [Rep+15; Bas+24]; (iii) Postoperative outcomes: Mon-
itoring changes in WSS after surgery can help predict healing responses and the risk of
complications.

Definition of wall shear stress

The wall shear stress τ⃗w at a point on the wall is defined as the magnitude of the tangential
component of the stress tensor acting on the wall:

τ⃗w(u⃗, p) = σ(u⃗, p)n⃗
∣∣∣
wall
−
(
σ(u⃗, p)n⃗

∣∣∣
wall
· n⃗
)
n⃗, (6.17)

where:

• σ is the Cauchy stress tensor,

• n⃗ is the unit outward normal vector.

The stress tensor σ(u⃗, p) has been defined in Equation (6.2). Substituting the expression for σ
into Equation (6.17), the wall shear stress becomes:

τ⃗w(u⃗, p) = 2µ D(u⃗)n⃗
∣∣∣
wall
− 2µ

(
D(u⃗)n⃗

∣∣∣
wall
· n⃗
)
n⃗. (6.18)

Under the no-slip boundary condition at the wall, the fluid velocity relative to the wall is zero,
but the velocity gradient (shear rate) perpendicular to the wall is generally non-zero. Therefore,
the wall shear stress computation simplifies to:

τ⃗w(u⃗, p) = µ
∂u⃗τ

∂n⃗

∣∣∣∣
wall

, (6.19)

where: (i) u⃗τ is the tangential component of the velocity vector at the wall, and (ii) ∂/∂n denotes
the derivative normal to the wall surface.

Computational considerations

It is difficult to measure WSS experimentally, and numerical simulations are a valuable tool
for investigating the complex interactions between the different physical phenomena in the eye,
and in particular the WSS distribution, [Kum+06; Yam+10; Qin+21].

From a computational standpoint, accurately determining the WSS necessitates (i) a suf-
ficiently fine mesh resolution near the walls to capture the sharp velocity gradients present in
these regions, and (ii) a consistent discretization strategy to ensure the accuracy of the computed
WSS.

To achieve the former, we apply the mesh discretization strategy outlined in Section 2.1.2,
ensuring the mesh is adequately refined near the boundaries of ΩAH, as depicted in Figure 6.7.
The mesh used in the following simulation is the mesh Mr5, described in Table 6.4.

Regarding the latter, the mesh elements at the interfaces between the domain ΩAH and the
surrounding tissues exhibit varying normal vectors, whose direction is not defined uniformly across
all elements. Since the velocity field is approximated using a P2 finite element space, its gradient
is naturally of order 1, but discontinuous. Accordingly, we employ a P1,disc approximation space
to compute the WSS, ensuring consistency and accuracy. In addition, we compute a continuous
piece-wise linear approximation ([L2]3-projection of the discontinuous approximation) of the
WSS to avoid numerical oscillations and improve the visualization of the results.
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Figure 6.7: Refinement of mesh Mr5 near the wall boundary of ΩAH.

Simulation results

We compute the WSS on the surfaces of the anterior chamber to analyze the shear stresses
resulting from the aqueous humor flow under different postural orientations. Figure 6.8 presents
the WSS magnitude over the corneal endothelium for the standing, prone, and supine positions.
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Figure 6.8: Wall shear stress distribution on the corneal endothelium for the three postural
orientations.

We first compare its magnitude with results from the literature. Note that the authors did
not employ the same model as the one presented in this work: (i) in [Fer+18; Qin+21], an inlet
and outlet flow boundary condition was used, (ii) in [Kud+20], the authors imposed an inlet
flow and outlet pressure boundary condition, and (iii) in [Rep+15], a no-slip velocity boundary
condition on the wall of the anterior chamber was applied. Recall that the model presented
in this work uses a no-slip boundary condition, as in [Rep+15]. The results are presented in
Table 6.7.

Despite these differences in boundary conditions, our results show a similar order of magnitude
for WSS compared to the literature. The slightly lower values in our model may be attributed to
the no-slip condition applied at the walls, which tends to reduce shear stress near the boundaries.
Moreover, when comparing the distribution of the WSS, shown in Figures 6.8(a) and 6.8(c), with
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results presented in [Qin+21, Figure 5], we observe a similar pattern, with higher values near the
corneal endothelium and lower values near the iris and lens surfaces.

Author Boundary conditions Orientation Range of WSS

Fernández-Vigo et al. [Fer+18] Inlet/outlet flow n/a [10−5, 1.7 · 10−3]

Kudsieh et al. [Kud+20] Inlet flow/outlet pressure n/a [0, 1.36 · 10−3]

Repetto et al. [Rep+15] No-slip velocity Standing [0, 1.63 · 10−3]

Qin et al. [Qin+21] Inlet/outlet flow Standing [5 · 10−4, 3.5 · 10−3]
Supine [10−4, 10−3]

Current model No-slip velocity
Standing [0, 7.7 · 10−4]
Supine [0, 9.5 · 10−5]
Prone [0, 7.2 · 10−5]

Table 6.7: Comparison of the magnitude of the WSS results with results from the litera-
ture [Fer+18; Kud+20; Rep+15; Qin+21], all in 3D. In [Fer+18; Kud+20], the authors did not
specify the orientation of the eye (n/a). The values are given in Pa.

Building on the sensitivity analysis (SA) presented in Chapter 5, we examine the effect
of ambient temperature on the WSS magnitude. Specifically, we calculate the average WSS
magnitude across three surfaces within the anterior chamber as a function of ambient temperature
for each of the three postural orientations: (i) on the corneal endothelium, denoted by Γcornea,
(ii) on the iris surface, denoted by Γiris, and (iii) on the entire boundary of the anterior chamber,
denoted by ∂ΩAH.

The results are presented in Figure 6.9. The first striking result is that the WSS magnitude
is significantly influenced by the postural orientation or the subject: in horizontal positions
(prone and supine), the WSS magnitude is ten times lower than in the standing position. This
observation is coherent with the fact that for corneal surgery, after the injection of endothelial
cells inside the aqueous humor or the patient, the patient is placed in prone position for three
hours to enhance the adhesion of the cells to the cornea [Kin+18].

In addition, the results indicate a linear dependency of the WSS magnitude on ambient
temperature, although the model is non-linear. In the three positions, the WSS magnitude reaches
a minimum around Tamb = 310 K, corresponding to the body temperature. This insight suggests
that, in clinical contexts, adjusting the ambient temperature might influence cell adhesion by
modulating the WSS. This minimum is reached because as there is no inflow or outflow, the
temperature difference is the sole responsible for fluid flow. It raises a limitation of our model,
to assess the effect of the temperature on the WSS, we should consider the effect of the inflow
and outflow of the aqueous humor.

A conclusion from this study is that the WSS magnitude is significantly influenced by both
postural orientation and ambient temperature. These factors should be considered in the design
of ocular devices and drug delivery systems to optimize therapeutic outcomes.

6.5 Conclusion and future works

In this chapter, we have presented a comprehensive modeling and computational framework
for simulating heat transfer within the human eyeball, coupled with the flow of AH in both the
anterior and posterior chambers of a healthy eye. Our complex model has undergone rigorous
verification and validation against numerical results from existing literature, demonstrating its
accuracy and reliability.
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Figure 6.9: Average of the wall shear stress magnitude as a function of the ambient temperature
for the three postural orientations. The vertical line at Tamb = 294 K represents the baseline
value as per Table 6.3.

An important novelty of our work lies in the integration of high-performance computing
(HPC) techniques to solve the coupled heat transfer and fluid flow equations on the entire eye
geometry, including both the anterior and posterior chambers. This holistic approach allows for a
more accurate representation of intraocular phenomena compared to models that focus solely on
the anterior chamber or neglect the posterior chamber. By leveraging HPC resources efficiently,
we can handle the computational demands of such detailed simulations, enabling high-resolution
analyses that were previously impractical.

Additionally, we have computed the wall shear stress (WSS) distributions within the eye,
providing a foundational layer for future applications in drug delivery and surgical planning. The
WSS analysis is crucial for understanding the mechanical forces acting on ocular tissues, which
can influence drug absorption rates, endothelial cell health, and surgical outcomes. Our ability
to accurately model WSS opens new avenues for optimizing therapeutic strategies that minimize
adverse mechanical effects. We could even envision including the design of intraocular devices.

The simulation results show flow patterns and temperature distributions that align closely
with previous numerical studies, reinforcing the validity of our approach. Notably, the model
accurately captures the impact of postural orientation on flow recirculations within the eye,
providing valuable insights into ocular physiology and the effects of gravity on intraocular fluid
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dynamics.
Despite these successes, a primary drawback of the present model is its computational cost,

which remains relatively high—requiring several minutes on the specified hardware to perform a
single simulation. This computational intensity limits the feasibility of real-time simulations,
which are desirable for clinical applications and interactive studies.

Future Work

To address the computational challenges, we are working on improving the preconditioner
for the conjugate heat transfer problem, in particular the Schur complement preconditioner for
the fluid block. The challenge is to significantly reduce the computational cost while enable
many parameter or real-time evaluations. We are currently developing model order reduction
techniques tailored to our problem, extending our previous work [SPS24b]. These methods,
such as the (certified) reduced basis method, aim to enable real-time simulations of coupled
flow and heat transfer inside the human eyeball by reducing the computational complexity
while preserving essential dynamics. Implementing such techniques will significantly enhance
the model’s applicability in clinical settings, allowing for rapid simulations that can assist in
diagnosis and treatment planning.

Another extension of this work involves incorporating AH inflow and outflow mechanisms,
which were neglected in the current model under the assumption of minimal influence on overall
flow dynamics. Including AH production and drainage would provide a better understanding of
intraocular fluid dynamics, especially under pathological conditions such as glaucoma, where
these processes are disrupted. This requires modeling AH production in the ciliary body and
the trabecular meshwork’s drainage function using appropriate boundary conditions and source
terms.

From a clinical perspective, our framework holds significant potential for assessing the effects of
topical administration of ophthalmic drugs, such as eye drops, which are the standard therapeutic
approach for ocular diseases like glaucoma. Additionally, it could be instrumental in evaluating
cell injection treatments for internal pathologies, such as bullous keratopathy [Kin+18]. Future
research will focus on integrating drug transport models and cell injection into our simulations,
enabling the study of diffusion, absorption, and interaction with ocular tissues. This integration
will facilitate the development of personalized medicine approaches and improve therapeutic
strategies by predicting drug efficacy and optimizing dosing regimens.

In summary, this work lays the foundation for advanced computational modeling of ocular
fluid dynamics and heat transfer, with promising applications in both research and clinical
practice. The ongoing developments aim to enhance the model’s capabilities and usability,
bringing us closer to real-time, patient-specific simulations that can inform diagnosis, treatment
planning, and potentially device design in ophthalmology.
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Chapter 7

Computation framework:
contributions

In this chapter, we present the code contributions developed in the context of this thesis,
emphasizing their alignment with principles of reproducibility and open science, as outlined
in [Cam+24]. These principles are crucial for ensuring that our results can be independently
validated and built upon by others. By adhering to these practices, we aim to support transparency
and foster collaboration within the research community. Given the extensive nature of the full
codebase, we focus on specific components that are essential for reproducing the results presented.
Links to the complete, open-access code repositories are provided throughout the chapter.

The chapter is organized as follows: We present in Section 7.1 the script used to generate the
geometry introduced in Section 1.3 and the mesh families as per Section 2.1. Then, Section 7.2
introduces the implementation of the Reduced Basis Method for the heat transfer model in the
eye, as presented in Section 3.1. Section 7.3 presents the implementation of the Non-Intrusive
Reduced Basis method, as introduced in Section 3.2. In Section 7.4, we present the code used to
solve the elliptic problem in the presence of a Dirac source term, as discussed in Chapter 4. Next,
Section 7.5.2 introduces the code used to perform the sensitivity analysis of the heat transfer
model in the eye, as presented in Chapter 5. Finally, Section 7.6 presents the code used to solve
the coupled heat transfer and aqueous humor flow model, as introduced in Chapter 6.
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7.1 Geometrical model and discretization of the eye

In this section, we present the scripts implemented to generate the families of meshes that
are used in simulations. The whole process is schematized in Figure 7.1. Some parts have been
cropped here, but the full code, as well as the pipeline to generate the meshes from the CAD file,
are available in [Cha+24]. The dataset containing the mesh families has also been published in
open-access [Sai+24c].

CAD Mesh M
Family

M0, ..., M5

Mesh Mr
Family

Mr0, ..., Mr6

M
esh

refinem
ent

Salome

Mesh adaptation

Figure 7.1: Pipeline to generate the geometry and mesh families.

7.1.1 Geometrical construction of the human eyeball

To begin with, we present the Salome script used to generate the geometry of the human
eyeball, as introduced in Section 1.3.

The initial CAD model of the human eyeball, presented in Figure 1.3(a), is saved in the
STEP format. First, we initialize the Salome environment, as shown in Listing 7.1. Note that a
check on the version of Salome is performed to ensure compatibility with the code, as with new
algorithm implemented in the software, the code may not work as expected1.

Listing 7.1: Initialisation of Salome.
1 import salome, salome_version
2 from eye_utils import *
3 salome.salome_init()
4 print("This code is supposed to run with salome version 9.12.0")
5 print("Current Salome Version is :", salome_version.getVersion(), '\n')

Then, we import the CAD file and extract the different solids that compose the eye. As
pointed out in Section 1.3, some volumes need to be modified to fit our needs, and some of them
do not, such as the cornea, the lens, the choroid, and the iris. Listing 7.2 shows how to import
the CAD file and extract the different solids.

Listing 7.2: Import the CAD.
1 Human_Eye = geompy.ImportSTEP(path_to_step_file, True)
2 [Cornea_h, Iris___Ciliary_Body_h, Suspensory_Ligament_h, Lens_Body_h, Vitreous_humor_h, Sclera_h,

Choroid_h, Retina_h, Vein_h, Artery_h] = geompy.ExtractShapes(Human_Eye, geompy.ShapeType["SOLID"],
True)

↪→
↪→

3
4 # Solids that do not need to be modified
5 Cornea = Cornea_h
6 Iris = Iris___Ciliary_Body_h
7 Lens = Lens_Body_h
8 Choroid = Choroid_h

1We actually had this issue, thanks to Christophe Bourcier and Christophe Trophime for their help!
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The next step is to build the other volumes. Some auxiliary functions have been implemented,
such as build_vitreous_humor, that builds the vitreous humor volume from the different solids
extracted from the CAD file. For instance, we consider the vitreous humor, the same process
applying to the other volumes. To create a volume corresponding to the full domain containing
the vitreous humor, a tedious work consisting in manually selecting the various faces forming the
boundary of the vitreous humor was performed. The Salome script used to build the vitreous
humor domain is presented in Listing 7.3.

Listing 7.3: Script to build the vitreous humor domain.
1 def build_vitreous_humor(geompy, lens, aqueousHumor, retina, iris, choroid):
2 Faces_lens = geompy.ExtractShapes(lens, geompy.ShapeType["FACE"], True)
3 Faces_aqueousHumor = geompy.ExtractShapes(aqueousHumor, geompy.ShapeType["FACE"], True)
4 Faces_iris = geompy.ExtractShapes(iris, geompy.ShapeType["FACE"], True)
5 Faces_choroid = geompy.ExtractShapes(choroid, geompy.ShapeType["FACE"], True)
6 Faces_retina = geompy.ExtractShapes(retina, geompy.ShapeType["FACE"], True)
7
8 ShellNewVitreousHumor = geompy.MakeShell( [Faces_lens[26], Faces_lens[27], Faces_lens[28],
9 Faces_lens[29], ..., Faces_iris[114], Faces_iris[122], Faces_choroid[1], Faces_choroid[2],

10 Faces_choroid[3], Faces_choroid[5], Faces_retina[2], Faces_retina[3], Faces_retina[6],
11 Faces_retina[7]] )
12 VitreousHumor = geompy.MakeSolid([ShellNewVitreousHumor])
13
14 return VitreousHumor

All the volumes are built one after another. The functions implemented to construct them
are present in the file eye_utils.py2. Note that at some points, a first partition needs to be
constructed to glue the different faces together. We present in Listing 7.4 the list of instruction
necessary to build all the volumes.

Listing 7.4: Build the different volumes.
1 # Build the lamina cribrosa
2 Lamina0 = build_lamina(geompy, Retina_h, Sclera_h, distance_from_sclera, depth, shift, hole)
3 # Build the sclera, and the retina
4 Sclera0, _ = build_sclera(geompy, Sclera_h)
5 Retina0, Pia0, InterFaceRetina = build_retina(geompy, Retina_h, Choroid_h)
6
7 Lamina1 = translate_lamina(geompy, Lamina0, InterFaceRetina) # translate the lamina
8 Retina = fill_retina(geompy, Retina0) # fill the retina
9 Sclera1 = fill_sclera(geompy, Sclera0) # fill the sclera

10 wholeOpticNerve, OpticNerve = build_optic_nerve(geompy, Pia0, Lamina1) # build the optic nerve
11
12 # fit the volumes
13 Sclera2 = modify_sclera(geompy, Sclera1, wholeOpticNerve)
14 Lamina = fit_lamina_to_optic_nerve(geompy, Retina, OpticNerve, wholeOpticNerve)
15 Sclera = fit_sclera_to_lamina(geompy, Sclera2, Lamina)
16
17 # Gather the built volumes in a partition
18 eye_partition0 = build_first_partition(geompy, Sclera, Retina, OpticNerve, Cornea, Iris,

Suspensory_Ligament_h, Lens, Vitreous_humor_h, Choroid, Lamina, scale_factor)↪→
19 [Cornea, Iris, Ligament, Lens, Vitreous_humor0, Sclera, Choroid, Retina, Lamina, OpticNerve] =

geompy.ExtractShapes(eye_partition0, geompy.ShapeType["SOLID"], True)↪→
20 # build the Aqueous and Vitreous Humor from the partition
21 Aqueous_humor = build_aqueous_humor(geompy, Cornea, Sclera, Iris, Lens, Ligament, Vitreous_humor0)
22 Vitreous_humor = build_vitreous_humor(geompy, Lens, Aqueous_humor, Retina, Iris, Choroid)

Finally, the partition with all the constructed volumes can be assembled to create the full
geometry, as shown in Listing 7.5. At this point we export it to another STEP file, that will be
used in a second Salome script to generate the mesh.

Listing 7.5: Build the full geometry.

2� https://github.com/feelpp/mesh.eye/blob/main/eye_utils.py

https://github.com/feelpp/mesh.eye/blob/main/eye_utils.py
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1 eye0 = geompy.MakePartition( [Cornea, Aqueous_humor, Iris, Lens, Vitreous_humor, Sclera, Choroid, Retina,
Lamina, OpticNerve], [], [], [], geompy.ShapeType["SOLID"], 0, [], 0)↪→

2 geompy.ExportSTEP(eye0, "Eye.step", GEOM.LU_METER )

To generate the new STP file, the script can be run with the following command. The
optional argument -t is used to run the script in the terminal mode, without the graphical
interface of Salome. The geometrical arguments can be passed as optional arguments to the
script. In the work of this thesis, we did not incorporate them, but more details about them can
be found in [Sal+23].
$ salome [-t] construct-eye.py [--GEOMETRICAL_ARGUMENTS]

After the execution of this first script, the new geometry, depicted in Figure 1.3(b), is saved
in the file Eye.step. This new CAD file is used in the next step to generate the mesh.

7.1.2 Discrete representation: mesh construction

Now, we delve into the mesh generation described in Section 2.1.1. Another Salome script,
eye.py is used to generate the mesh. The whole script is also available in the repository [Cha+24].
After having initialized the Salome environment like in Listing 7.1, we import the geometry from
the newly generated STP file, and extract the different solids that compose the eye, as shown in
Listing 7.6.

Listing 7.6: Import the geometry.
1 Eye = geompy.ImportSTEP("Eye.step", True)
2 [Cornea, AqueousHumor, Iris, Lens, VitreousHumor, Sclera, Choroid, Retina, Lamina, OpticNerve] =

geompy.ExtractShapes(Eye, geompy.ShapeType["SOLID"], True)↪→
3 Solids = [Cornea, AqueousHumor, Iris, Lens, VitreousHumor, Sclera, Choroid, Retina, Lamina, OpticNerve]
4 Solids = sorted(Solids, key=lambda solid: solid.GetName() )

To set up the geometry for meshing purposes, we need to define the interfaces between the
different tissues. The Salome script used to build the interfaces is presented in Listing 7.7. The
main idea of this script is to loop over all the tissues and to find the faces that are shared
between two of them. To ensure that the interfaces are defined once, we use the lexical order of
the names of the tissues to define the name of the interface. Finally, we create groups of faces
for the external faces of the tissues, that will be used to define the boundary conditions in the
simulations. The following convention of naming the interfaces is used: tissue1_tissue2, where
tissue1 and tissue2 are the names of the tissues in the lexical order.

Listing 7.7: Script to build the interfaces between the different tissues.
1 Solids = [Cornea, AqueousHumor, Iris, Lens, VitreousHumor, Sclera, Choroid, Retina, Lamina, OpticNerve]
2 Solids = sorted(Solids, key=lambda solid: solid.GetName() )
3 Interfaces = []
4 Others = []
5 Interface_ = {}
6
7 for i, solid1 in enumerate(Solids):
8 Interfaces_solid1 = []
9 Name1 = solid1.GetName()

10 for j in range(0, len(Solids)):
11 if i != j:
12 solid2 = Solids[j]
13 Name2 = solid2.GetName()
14 faces = geompy.GetSharedShapesMulti([solid1, solid2], geompy.ShapeType["FACE"], False)
15 if len(faces) > 0:
16 objName = Name2 + "_" + Name1 if Name1 > Name2 else Name1 + "_" + Name2
17 Interface_[(Name1, Name2)] = geompy.CreateGroup(solid1, geompy.ShapeType["FACE"], objName)
18 geompy.UnionList(Interface_[(Name1, Name2)], faces)
19 Interfaces_solid1.append(Interface_[(Name1, Name2)])
20 Interfaces.append(Interfaces_solid1)
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After creating the interfaces, we gather all the other faces that are not shared between two
tissues, the free groups. The script used to build the free groups is presented in Listing 7.8.

Listing 7.8: Script to build the free groups.
1 for i, solid1 in enumerate(Solids):
2 Name1 = solid1.GetName()
3 if "Cornea" in Name1:
4 FCor = geompy.ExtractShapes(solid1, geompy.ShapeType["FACE"], True)
5 optic_faces = geompy.CreateGroup(solid1, geompy.ShapeType["FACE"], "BC_%s"%(Name1))
6 geompy.UnionList(optic_faces, [FCor[0], FCor[1]])
7 Others.append(optic_faces)
8 elif "OpticNerve" in Name1:
9 FOpt = geompy.ExtractShapes(solid1, geompy.ShapeType["FACE"], True)

10 optic_faces = geompy.CreateGroup(solid1, geompy.ShapeType["FACE"], "BC_%s"%(Name1))
11 geompy.UnionList(optic_faces, [FOpt[5], FOpt[6], FOpt[7]])
12 Others.append(optic_faces)
13 elif "Sclera" in Name1:
14 FScl = geompy.ExtractShapes(solid1, geompy.ShapeType["FACE"], True)
15 optic_faces = geompy.CreateGroup(solid1, geompy.ShapeType["FACE"], "BC_%s"%(Name1))
16 geompy.UnionList(optic_faces, [FScl[6], FScl[7], FScl[12], FScl[13], FScl[19]])
17 Others.append(optic_faces)
18 elif "Lamina" in Name1:
19 [Hole, In, Lateral1, Lateral0, Out] = geompy.ExtractShapes(solid1, geompy.ShapeType["FACE"],

True)↪→
20 Lateral = geompy.CreateGroup(Lamina, geompy.ShapeType["FACE"], "Lateral")
21 geompy.UnionList(Lateral, [Lateral0, Lateral1])
22 In_ = geompy.CreateGroup(Lamina, geompy.ShapeType["FACE"], "In")
23 geompy.UnionList(In_, [In])
24 Hole_ = geompy.CreateGroup(Lamina, geompy.ShapeType["FACE"], "Hole")
25 geompy.UnionList(Hole_, [Hole])
26 Out_ = geompy.CreateGroup(Lamina, geompy.ShapeType["FACE"], "Out")
27 geompy.UnionList(Out_, [Out])

The final step is to create the mesh. First, we create the mesh object, and set up the meshing
algorithm, namely NETGEN. Then, we create the groups of faces that will be used to define
the boundary conditions in the simulations. The script used to set up the mesh is presented in
Listing 7.9.

Listing 7.9: Mesh generation.
1 import SMESH, SALOMEDS
2 from salome.smesh import smeshBuilder
3 smesh = smeshBuilder.New()
4 EyeMesh = smesh.Mesh(Eye)
5 EyeMesh.SetName("Eye_Mesh")
6 NETGEN_1D_2D_3D = EyeMesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)

Then, we set the markers for the different tissues and interfaces, for the volumes elements
(Listing 7.10) and for the interfaces and free groups (Listing 7.11).

Listing 7.10: Set markers for the different tissues and interfaces.
1 Retina_mesh = EyeMesh.GroupOnGeom(Retina, 'Retina', SMESH.VOLUME)
2 Choroid_mesh = EyeMesh.GroupOnGeom(Choroid, 'Choroid', SMESH.VOLUME)
3 Vitreous_humor_mesh = EyeMesh.GroupOnGeom(VitreousHumor, 'VitreousHumor', SMESH.VOLUME)
4 Lens_mesh = EyeMesh.GroupOnGeom(Lens, 'Lens', SMESH.VOLUME)
5 Iris_mesh = EyeMesh.GroupOnGeom(Iris, 'Iris', SMESH.VOLUME)
6 AqueousHumor_mesh = EyeMesh.GroupOnGeom(AqueousHumor, 'AqueousHumor', SMESH.VOLUME)
7 Lamina_mesh = EyeMesh.GroupOnGeom(Lamina, 'Lamina', SMESH.VOLUME)
8 OpticNerve_mesh = EyeMesh.GroupOnGeom(OpticNerve, 'OpticNerve', SMESH.VOLUME)
9 Cornea_mesh = EyeMesh.GroupOnGeom(Cornea, 'Cornea', SMESH.VOLUME)

10 Sclera_mesh = EyeMesh.GroupOnGeom(Sclera, 'Sclera', SMESH.VOLUME)

Listing 7.11: Set markers for the interfaces and free groups.
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1 Out_1 = EyeMesh.GroupOnGeom(Out,'Out',SMESH.FACE)
2 Out_1.SetName( 'Lamina_Out' )
3 Hole_1 = EyeMesh.GroupOnGeom(Hole,'Hole',SMESH.FACE)
4 Hole_1.SetName( 'Lamina_Hole' )
5 In_1 = EyeMesh.GroupOnGeom(In,'In',SMESH.FACE)
6 In_1.SetName( 'Lamina_In' )
7 Lateral_1 = EyeMesh.GroupOnGeom(Lateral,'Lateral',SMESH.FACE)
8 Lateral_1.SetName( 'Lamina_Lateral' )
9

10 Done = []
11 for item in Others:
12 Name = item.GetName()
13 if Name not in Done:
14 Done.append(Name)
15 BC_Group_Mesh = EyeMesh.GroupOnGeom(item,item.GetName(),SMESH.FACE)
16 Done = ["Lamina"]
17 for interface in Interfaces:
18 for item in interface:
19 Name = item.GetName()
20 if not Name in Done and "Lamina" not in Name:
21 Done.append(Name)
22 BC_Group_Mesh = EyeMesh.GroupOnGeom(item,Name,SMESH.FACE)

Finally, we actually generate the mesh in Listing 7.12.

Listing 7.12: Mesh generation.
1 try:
2 isDone = EyeMesh.Compute()
3 EyeMesh.ExportMED( "mesh/Eye_Mesh3D.med", 0, SMESH.MED_V2_2, 1, None, 1 )
4 print(EyeMesh.Dump())
5 print('Mesh built successfully')
6 except Exception as e:
7 print(f"Failed to create Mesh : {e}")
8 sys.exit(1)

The command to run the script is the following:
$ salome [-t] eye.py

It results in a mesh in the MED format. As is, this mesh cannot be used in the framework of
Feel++, so we convert it to the msh format, with GMSH [GR09]:
$ gmsh Eye_Mesh3D.med -0 -o Eye_Mesh3D.msh

The mesh generated is shown in Figure 2.1(a). We present in Listing 7.13 the characteristics
of the mesh, such as the number of nodes, edges, faces, and volumes.

Listing 7.13: Dump content of the mesh.
========================== Dump contents of mesh ==========================
1) Total number of nodes: 81634
2) Total number of edges: 8388
3) Total number of faces: 86622
4) Total number of polygons: 0
5) Total number of volumes: 464417
6) Total number of polyhedrons: 0

7) Total number of linear edges: 8388
8) Total number of linear faces: 86622
8.1) Number of linear triangles: 86622
8.2) Number of linear quadrangles: 0
9) Total number of linear volumes: 464417
9.1) Number of linear hexahedrons: 0
9.2) Number of linear tetrahedrons: 464417
9.3) Number of linear prisms: 0
9.4) Number of linear pyramids: 0

10) Total number of quadratic edges: 0
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11) Total number of quadratic faces: 0
12) Total number of quadratic volumes: 0

7.1.3 Mesh refinement strategy

In Section 2.1.2, we introduced the mesh refinement strategy, consisting in (i) refining the
mesh around the PC and AC, and (ii) generating two families of meshes with different refinement
levels. The Python script provided in Listing 7.14 allows to generate a family of meshes, of
various mesh refinement levels. It consists in loading the initial mesh, and refining it with a
metric that is defined by the refinement level. The metric is only set by a characteristic length.

Listing 7.14: Generation of the mesh family M.
1 import sys, os
2 import feelpp.core as fppc
3 cwd = os.getcwd()
4 e = fppc.Environment(sys.argv, config=fppc.localRepository("remesh"))
5 m = fppc.mesh(dim=3, realdim=3)
6 old_mesh = fppc.load(m, "Eye_Mesh3D.msh")
7 for idx, refinement in enumerate(["10", "5", "1", "0.5", "0.25", "0.125"]):
8 mesh, cpt = fppc.remesh(old_mesh, metric=refinement)
9 export_dir = os.path.join(cwd, "M", f"M{idx}")

10 mesh_r.saveHDF5(os.path.join(export_dir, "Eye_Mesh3D.json"))

For the coupled model presented in Chapter 6, a second family of meshes is generated, with a
specific refinement around the PC and AC. This kind of refinement can be achieved with options
set in the Feel++ toolboxes. The refinement presented in Listing 7.15 is defined as follows:

• hfar is the size of the elements far from the PC and AC,

• hclose is the size of the elements close to the PC and AC,

• d2r_wall is the distance to the range of the wall,

• mymetric_wall is the metric used for the mesh adaptation.

Listing 7.15: Mesh refinement around the PC and AC.
1 {
2 "Parameters": {
3 "hfar": "h:h",
4 "hclose": "hfar/3:hfar",
5 "d2r_wall": "min(meshes_heatfluid_distanceToRange_wall_normalized_min_max, 0.2) /

0.2:meshes_heatfluid_distanceToRange_wall_normalized_min_max",↪→
6 "mymetric_wall": "hclose+(hfar-hclose)*d2r_wall:hclose:hfar:d2r_wall"
7 },
8 "Meshes":
9 {

10 "heatfluid": {
11 "DistanceToRange": {
12 "wall": {
13 "markers": ["AqueousHumor_Lens", "AqueousHumor_Cornea", "AqueousHumor_Iris"],
14 "normalization": "min_max"
15 }
16 },
17 "MeshAdaptation": [{
18 "metric":"mymetric_wall:mymetric_wall",
19 "events":{ "after_import": {} }
20 }]
21 }
22 }
23 }
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The command to run the script is the following:
$ mpirun -np 12 feelpp_toolbox_heat --config-file refinement_aqueous_humor.cfg

Note that this code runs a whole simulation of heat transfer, but the only purpose is to generate
the adapted mesh. At this point, the tool to adapt the mesh is only included in the simulation
toolboxes, and not as a standalone tool.

Table 2.2 presents the performance of the mesh refinement strategy, and the characteristics
of the families of meshes are reported in Table 2.1. The resulting mesh, denoted Mr, is shown in
Figure 2.1(b).

The families of meshes generated are available in open-access [Sai+24c].

7.2 Reduced order modeling with the reduced basis method
In this section, we present the code developed to build the reduced basis model of the eye

model, as described in Section 3.1. The complete code can be found in the Feel++ repository3.
To begin with, we need to define the configuration structure Eye2BrainConfig, and introduce

some type definitions that are useful in the following, namely:

• value_type is the type of the values of the model,

• mesh_type is the type of the mesh,

• basis_type is the type of the basis functions. In the present, we use Lagrange basis
functions of order Order,

see Listing 7.16. Note that this class is constructed as a template class, with two template
parameters Order and Dim, which are the order of the Lagrange basis functions and the dimension
of the mesh, respectively. For the results presented in this manuscript, we used Order = 2 and
Dim = 3, but the model can be run for any values of Order and Dim (by providing a mesh of the
right dimension).

Listing 7.16: Configuration structure Eye2BrainConfig for the reduced basis model of the eye
model.

1 template<int Order, int Dim> struct FEELPP_EXPORT Eye2BrainConfig
2 {
3 using value_type = double;
4 using mesh_type = Mesh<Simplex<Dim>>;
5 using basis_type = bases< Lagrange<Order, Scalar> >;
6 using space_type = FunctionSpace<mesh_type, basis_type, value_type>;
7 };

Then, the main class that builds the reduced basis model is defined as a template class
Eye2Brain, see Listing 7.17. This class inherits from the Feel++ class ModelCrbBase already
implemented to build reduced basis models.

Listing 7.17: Template class Eye2Brain to build the reduced basis model of the eye model.
1 template<int Order, int Dim>
2 class FEELPP_EXPORT Eye2Brain: public ModelCrbBase<ParameterSpace<>, typename Eye2BrainConfig<Order,

Dim>::space_type>↪→
3 {
4 using super_type = ModelCrbBase<ParameterSpace<>, typename Eye2BrainConfig<Order, Dim>::space_type>;
5 public:
6 Eye2Brain();
7 void initBetaQ();

3� https://github.com/feelpp/feelpp/tree/develop/mor/examples/eye2brain

https://github.com/feelpp/feelpp/tree/develop/mor/examples/eye2brain
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8 typename super_type::betaq_type computeBetaQ( parameter_type const& mu );
9 void updateSpecificityModelPropertyTree(boost::property_tree::ptree& ptree) const;

10 void initModel();
11 double output(int output_index, parameter_type const& mu, element_type& u, bool need_to_solve=false);
12 private:
13 const std::vector<std::vector<double>> m_coordinates = {{-0.013597, 0, 0}, ...};
14 const std::vector<std::string> m_outputNames = {"O", "A", "B", "B1", "C", "D", "D1", "F", "G"};
15 };

In the following, we present the implementation of the method initializing the RBM model
void Eye2Brain<Order, Dim>::initModel(). For clarity, the code has been split in a few
parts.

In the affine decomposition, presented in Equations (3.16) and (3.17), the parameters βq
A

and βp
F can be expressed as a function of the component of the parameter µ. In Feel++, the

class ModelCrbBase is implemented to work with the parameters βq
A and βp

F , hence in the
class Eye2Brain, we need to convert the parameters µ to the parameters βq

A and βp
F . This

implementation is presented in Listing 7.18.
Listing 7.18: Initialization of the model parameters: conversion of the parameters µ to the
parameters βq

A and βp
F .

1 double E_min = 20 , E_max = 320,
2 h_amb_min = 8 , h_amb_max = 100,
3 h_bl_min = 50 , h_bl_max = 110,
4 h_r_min = 6 , h_r_max = 6,
5 T_amb_min = 283.15, T_amb_max = 303.15,
6 T_bl_min = 308.3 , T_bl_max = 312,
7 k_lens_min = 0.21 , k_lens_max = 0.544;
8 double k_lens_ref = 0.4, h_amb_ref = 10, h_bl_ref = 65, h_r_ref = 6;
9

10 this->Dmu->setDimension( 7 );
11 auto mu_min = this->Dmu->element();
12 mu_min << k_lens_min, h_amb_min, h_bl_min, h_r_min, 1, h_amb_min*T_amb_min + h_r_min*T_amb_min - E_max,

h_bl_min*T_bl_min;↪→
13 this->Dmu->setMin( mu_min );
14 auto mu_max = this->Dmu->element();
15 mu_max << k_lens_max, h_amb_max, h_bl_max, h_r_max, 1, h_amb_max*T_amb_max + h_r_max*T_amb_max - E_min,

h_bl_max*T_bl_max;↪→
16 this->Dmu->setMax( mu_max );

Then, we set up the function spaces, and the energy matrix that will be used to compute
norm of elements, see Listing 7.19.

Listing 7.19: Initialization of the function spaces and the energy matrix.
1 auto mesh = loadMesh( _mesh = new typename Eye2BrainConfig<Order, Dim>::mesh_type,
2 _update = MESH_UPDATE_FACES | MESH_UPDATE_EDGES | MESH_NO_UPDATE_MEASURES );
3 this->setFunctionSpaces(Eye2BrainConfig<Order, Dim>::space_type::New( mesh ));
4 auto u = this->Xh->element(); // Test function
5 auto v = this->Xh->element(); // Trial function
6 std::vector<double> muRef = {k_lens_ref, h_amb_ref, h_bl_ref, h_r_ref, 1};
7 auto energy = backend()->newMatrix( _test = this->Xh, _trial = this->Xh );

Finally, we define the affine decomposition computed in Equations (3.16) and (3.17) by
implementing each term of it, see Listing 7.20. We present here the implementation for the sole
bilinear form a0, and the linear form f0, as the process is similar for the other terms. We also
present the specific case of a4, as it is a sum over different regions. The functions addLhs and
addRhs are used to add the bilinear and linear forms to the left-hand side and right-hand side of
the equation, respectively.

Listing 7.20: Implementation of the affine decomposition for the bilinear form aL and the linear
form fL.
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1 auto a0 = form2( _trial = this->Xh, _test = this->Xh );
2 a0 = integrate( _range=markedelements(mesh, "Lens"), _expr=gradt(u)*trans(grad(v)) );
3 a0.matrixPtr()->close();
4 this->addLhs( { a0 , "mu0" } );
5 energy->addMatrix(muRef[0], a0.matrixPtr() );
6 [...]
7 auto a4 = form2( _trial = this->Xh, _test = this->Xh );
8 std::map<std::string, double> regions = { {"Cornea", 0.58}, {"Sclera", 1.0042}, ... };
9 for (auto const& [key, val] : regions)

10 a4 += integrate(_range=markedelements(mesh,key), _expr=val*gradt(u)*trans(grad(v)));
11 a4.matrixPtr()->close();
12 this->addLhs( { a4 , "mu4" } );
13 energy->addMatrix( muRef[4], a4.matrixPtr() );
14
15 auto f0 = form1( _test = this->Xh );
16 f0 = integrate( _range = markedfaces( mesh, "BC_Cornea" ), _expr = id( v ) );
17 f0.vectorPtr()->close();
18 this->addRhs( { f0, "mu5" } );
19 [...]
20
21 energy->close();
22 this->addEnergyMatrix( energy );

A similar treatment is done for the outputs of the model. In the current implementation of
the class CrModelBase, only one output can be defined, the output of interest is hence defined
once and provided to the application as an option "measure-index". Depending on the value
of this option, we select to output of interest. The code is given in Listing 7.21. Note that in
the complete code, other outputs are also implemented, namely the outputs using regularized
Gaussian sensors.

Listing 7.21: Implementation of the output of the model.
1 using form1_type = vf::detail::LinearForm<typename Eye2BrainConfig<Order, Dim>::space_type, typename

backend_type::vector_type, typename backend_type::vector_type>;↪→
2 form1_type out1;
3 int measure_index = ioption(_name = "measure-index");
4 Feel::cout << "Measure index = " << measure_index << std::endl;
5 if (measure_index >= 1) // sensor pointwise output
6 {
7 std::string name = m_outputNames[measure_index-1];
8 std::vector<double> coord = m_coordinates[measure_index-1];
9 Feel::cout << "[Eye2brain] Output " << name << " at coord " << coord << std::endl;

10 node_type n(Eye2BrainConfig<Order, Dim>::space_type::nDim);
11 for( int i = 0; i < Eye2BrainConfig<Order,Dim>::space_type::nDim; ++i ) n(i) = coord[i];
12 auto s = std::make_shared<SensorPointwise<space_type>>(this->Xh, n, name);
13 out1 = form1(_test = this->Xh, _vector = s->containerPtr());
14 out1.vectorPtr()->close();
15 }
16 else if ( measure_index == 0 ) // mean over cornea
17 {
18 Feel::cout << "[Eye2brain] Output mean over cornea" << std::endl;
19 out1 = form1( _test = this->Xh );
20 double meas = integrate( _range = markedelements(mesh, "Cornea"), _expr = cst(1.) ).evaluate()(0,0);
21 out1 = integrate( _range=markedelements(mesh, "Cornea"), _expr=id(u)/cst(meas) );
22 }
23 else
24 throw std::logic_error("[Eye2Brain] error with output_index: between 0 and 9");
25
26 this->addOutput( { out1, "1" } );

To build the reduced basis model, after having compiled the directory in the Feel++ repository,
the following command can be used:
$ ./feelpp_mor_eye2brain_3dP2app --config-file eye2brain/eye2brain-3d.cfg

Once the reduced basis is constructed, other library of Feel++ can be used to run the online
model. More details are provided about it in Section 7.5.2.
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Feel++ toolboxes interface

ToolboxModel
- tbFine: Fine toolbox
- tbCoarse: Coarse toolbox
- Xh, XH: Functional spaces

+ Run high fidelity model

nirbOffline
- fineSnapshots
- coarseSnapshots
- reducedBasis

+ Perform offline phase
+ Greedy algorithm
+ Save reduced basis

nirbOnline
- reducedBasis
- RectificationMatrix

+ Load reduced basis
+ Compute NIRB solution
+ Enable or disable rectifica-

tion

Figure 7.2: UML diagram of the NIRB module.

The offline step of the reduced basis model is quite time-consuming, for instance it took
about 3.5 hours to build the reduced basis model for the eye model presented in Section 1.4. The
results of the reduced basis model are presented in Section 3.1.4.

7.3 Non-Intrusive Reduced Basis method

In this section, we present the contribution to the Feel++ library for the NIRB method,
introduced in Section 3.2. Note that this code was co-developed in collaboration with Ali Elarif.
The whole code is available in the Feel++ repository4.

The NIRB module consists in a Python library, included in the component feelpp-mor or
Feel++. All the examples treated during in its development used the model of heat transfer, but
the library is designed to be easily adaptable to other kind of models provided by the toolboxes
of Feel++. Precisely, we define a first class ToolboxModel that deals with the model and run the
simulation. Specifically, this class contains two attributes tbFine and tbCoarse that are object
implementing the Toolbox interface of Feel++. The, two classes are defined: nirbOffline and
nirbOnline, both inheriting from the class ToolboxModel. Each of this class is dedicated to the
offline and online phases of the NIRB method, respectively. The UML diagram of the NIRB
module is presented in Figure 7.2.

7.3.1 Implementation of the offline stage

Depending on the method chosen by the user to generate the reduced basis (random or greedy,
refer to Section 3.2), the offline phase is performed differently. First, we present the method
initProblem that initializes the problem using the random sampling method. This function,
presented in Listing 7.22, takes as argument:

• numberOfInitSnapshots the number of initial snapshots to generate,

• Xi_train the training set of parameters, if None is given, the function will generate the
parameter randomly,

• computeCoarse a boolean to indicate if the coarse snapshots should be computed. This
step is crucial especially when the rectification is performed.

4� https://github.com/feelpp/feelpp/tree/develop/python/pyfeelpp-mor/feelpp/mor/nirb

https://github.com/feelpp/feelpp/tree/develop/python/pyfeelpp-mor/feelpp/mor/nirb
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Note that the implementation takes into account the possibility to run the code in parallel.

Listing 7.22: Definition of the nirbOffline class.
1 def initProblem(self, numberOfInitSnapshots, Xi_train=None, computeCoarse=False):
2 if self.doRectification: computeCoarse=True
3 self.fineSnapShotList = []
4 self.coarseSnapShotList = []
5
6 if Xi_train is None:
7 s = self.Dmu.sampling()
8 s.sample(numberOfInitSnapshots)
9 vector_mu = s.getVector()

10 else: # Take randomly the right number of parameter in Xi_train
11 if self.worldcomm.isMasterRank():
12 indice_mu = random.sample(range(len(Xi_train)), k=numberOfInitSnapshots)
13 indice_mu = np.array(indice_mu, dtype='i')
14 else :
15 indice_mu = np.empty(numberOfInitSnapshots, dtype='i')
16 self.worldcomm.globalComm().Bcast(indice_mu, root=0)
17 vector_mu = [Xi_train[i] for i in list(indice_mu)]
18
19 if computeCoarse:
20 for mu in vector_mu:
21 fineSnapshot = self.getToolboxSolution(self.tbFine, mu)
22 self.fineSnapShotList.append(fineSnapshot)
23 coarseSnapshot = self.getToolboxSolution(self.tbCoarse, mu)
24 self.coarseSnapShotList.append(coarseSnapshot)
25 else: [...] # Compute only fine snapshots
26
27 return vector_mu

On the other hand, for the greedy procedure, we first define a function getReducedSolution
that computes the online approximation used for the estimator onlineSol(µ)=

∑N
i=1 ⟨ξi, uH(µ)⟩L2.

This function is defined in Listing 7.23.

Listing 7.23: Definition of the getReducedSolution function.
1 def getReducedSolution(self, uH, mu, N):
2 onlineSol = self.XH.element()
3 onlineSol.setZero()
4 for i in range(N):
5 uHN_i = self.l2ScalarProductMatrixCoarse.energy(self.coarseSnapShotList[i], uH)
6 onlineSol.add(uHN_i, self.coarseSnapShotList[i])
7 return onlineSol

Then the main function initProblemGreedy is defined as follows, see Listing 7.24. Note that
in the implementation, we compute a first time the coarse snapshots uH(µ) for all µ ∈ Ξtrain
only once.

Listing 7.24: Definition of the initProblemGreedy function.
1 def initProblemGreedy(self, Ntrain, eps, Xi_train=None, Nmax=50):
2 if self.tbCoarse is None: raise Exception("Coarse toolbox needed for computing coarse Snapshot. set

initCoarse->True in initialization")↪→
3 if Xi_train is None:
4 s = self.Dmu.sampling()
5 s.sample(Ntrain)
6 Xi_train = s.getVector()
7 Xi_train_copy = Xi_train.copy()
8
9 Delta_star = eps+1

10 Deltas_conv = []
11 S = []
12 self.fineSnapShotList = []
13 self.coarseSnapShotList = []
14 N = 0
15 coarseSolutions = {}
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16 for mu in Xi_train_copy: # Computation of coarse solutions
17 coarseSolutions[mu] = self.getToolboxSolution(self.tbCoarse, mu)
18 for i in range(2): # First two snapshots included in the basis
19 mu0 = self.Dmu.element()
20 S.append(mu0)
21 self.fineSnapShotList.append(self.getToolboxSolution(self.tbFine, mu0))
22 uH = self.getToolboxSolution(self.tbCoarse, mu0)
23 self.coarseSnapShotList.append(uH)
24 N += 1
25
26 while Delta_star > eps and N < Nmax:
27 M = N - 1
28 Delta_star = -float('inf')
29 for i, mu in enumerate(Xi_train_copy,):
30 uHN = self.getReducedSolution(coarseSolutions[mu], N)
31 uHM = self.getReducedSolution(coarseSolutions[mu], M)
32 diff = uHN - uHM
33 Delta = self.l2ScalarProductMatrixCoarse.energy( diff, diff )
34 if Delta > Delta_star:
35 Delta_star = Delta
36 mu_star = mu
37 idx = i
38 S.append(mu_star)
39 del Xi_train_copy[idx]
40 fineSnapshot = self.getToolboxSolution(self.tbFine, mu_star)
41 self.fineSnapShotList.append(fineSnapshot)
42 coarseSnapshot = self.getToolboxSolution(self.tbCoarse, mu_star)
43 self.coarseSnapShotList.append(coarseSnapshot)
44 N += 1
45 Deltas_conv.append(Delta_star)
46 return S, Xi_train, Deltas_conv

Once the step of choosing the snapshots is done, the function generateReducedBasis
(Listing 7.25) is called to compute the reduced basis, precisely implementing Algorithm 5.

Listing 7.25: Definition of the generateReducedBasis function.
1 def generateReducedBasis(self, tolerance=1.e-12):
2 self.reducedBasis, RIC = self.PODReducedBasis(tolerance=tolerance)
3 self.N = len(self.reducedBasis)
4 self.orthonormalizeL2() # Gram-Schmidt orthonormalization
5 if self.doRectification:
6 self.coeffCoarse, self.coeffFine = self.coeffRectification()
7 return RIC

The function PODReducedBasis is defined as in Listing 7.26. Note that a check is performed to
avoid recomputing all the matrix if the function is called several times. This check is particularly
useful when the greedy algorithm is used, as snapshots are added iteratively.

Listing 7.26: PODReducedBasis function: correlation matrix.
1 if self.correlationMatrix == None :
2 self.correlationMatrix = np.zeros((Nsnap, Nsnap))
3 for i, snap1 in enumerate(self.fineSnapShotList):
4 for j, snap2 in enumerate(self.fineSnapShotList):
5 if i > j:
6 corr = self.l2ScalarProductMatrix.energy(snap1, snap2)
7 self.correlationMatrix[i, j] = corr
8 self.correlationMatrix[j, i] = corr
9 self.correlationMatrix[i, i] = self.l2ScalarProductMatrix.energy(snap1, snap1)

10 self.correlationMatrix /= Nsnap
11 else:
12 lastSnap = self.fineSnapShotList[-1]
13 lastCol = np.zeros(Nsnap)
14 for i, snap in enumerate(self.fineSnapShotList[:-1]):
15 lastCol[i] = self.l2ScalarProductMatrix.energy(snap, lastSnap)
16 lastCol /= Nsnap
17 self.correlationMatrix = np.vstack((self.correlationMatrix, lastCol[:-1]))
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18 self.correlationMatrix = np.column_stack((self.correlationMatrix, lastCol))

Then we compute in Listing 7.27 the eigenvalues and eigenvectors of the correlation matrix,
to finally compute the vectors of the reduced basis.

Listing 7.27: PODReducedBasis function: compute the basis vectors.
1 eigenValues, eigenVectors = eigh(self.correlationMatrix)
2 idx = eigenValues.argsort()[::-1]
3 eigenValues = eigenValues[idx]
4 eigenVectors = eigenVectors[:, idx]
5 Nmode = len(eigenValues)
6 for i in range(Nmode):
7 eigenVectors[:,i] /= math.sqrt(abs(eigenValues[i]))
8
9 reducedBasis = []

10 sum_eigenValues = eigenValues.sum()
11 RIC = []
12 for i in range(Nmode):
13 vec = self.Xh.element()
14 vec.setZero()
15 for j in range(Nsnap):
16 vec.add(eigenVectors[j,i], self.fineSnapShotList[j])
17 reducedBasis.append(vec)
18 RIC.append(eigenValues[:i].sum() / sum_eigenValues)
19 if abs(1. - RIC[i])<= tolerance: break

Moreover, if the user wants to perform the rectification post-process introduced in Sec-
tion 3.2.3, the matrices Ch and CH are computed though the function coeffRectification,
as in Listing 7.28:

Listing 7.28: Definition of the coeffRectification function.
1 def coeffRectification(self):
2 assert len(self.reducedBasis) !=0, f"need computation of reduced basis"
3 interpolateOperator = self.createInterpolator(self.tbCoarse, self.tbFine)
4 InterpCoarseSnaps = []
5 for snap in self.coarseSnapShotList:
6 InterpCoarseSnaps.append(interpolateOperator.interpolate(snap))
7 coeffCoarse = np.zeros((self.N, self.N))
8 coeffFine = np.zeros((self.N, self.N))
9 for i in range(self.N):

10 for j in range(self.N):
11 coeffCoarse[i,j] = self.l2ScalarProductMatrix.energy(InterpCoarseSnaps[i],

self.reducedBasis[j])↪→
12 coeffFine[i,j] = self.l2ScalarProductMatrix.energy(self.fineSnapShotList[i],

self.reducedBasis[j])↪→
13 return coeffCoarse, coeffFine

Finally, all the data computed in the offline phase are stored in a directory, to be loaded
afterwards for the online phase. The function saveData is defined in Listing 7.29. A safeguard is
implemented to avoid overwriting the data, unless the user specifies the force parameter.

Listing 7.29: Definition of the saveData function.
1 def saveData(self, path="./", force=False):
2 reducedPath = os.path.join(path, 'reducedBasis')
3 reducedFilename = 'reducedBasis'
4 l2productPath = os.path.join(path, 'l2productBasis')
5 l2productFilename = 'l2productBasis'
6
7 if self.worldcomm.isMasterRank():
8 if os.path.isdir(path) and not force:
9 print(f"[NIRB] Directory {path} already exists. Run with force = True to force saving")

10 return
11 if not os.path.isdir(path): os.makedirs(path)
12 if not os.path.isdir(reducedPath): os.makedirs(reducedPath)
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13 if not os.path.isdir(l2productPath): os.makedirs(l2productPath)
14 self.worldcomm.globalComm().Barrier()
15
16 for i in range(len(self.reducedBasis)):
17 self.reducedBasis[i].save(reducedPath, reducedFilename, suffix=str(i))
18 for i in range(len(self.l2ProductBasis)):
19 vec = self.Xh.element(self.l2ProductBasis[i])
20 vec.save(l2productPath, l2productFilename, suffix=str(i))
21
22 coeffCoarseFile = os.path.join(path, "coeffcoarse")
23 coeffFineFile = os.path.join(path, "coefffine")
24 if self.doRectification and self.worldcomm.isMasterRank():
25 np.save(coeffCoarseFile, self.coeffCoarse)
26 np.save(coeffFineFile, self.coeffFine)
27
28 self.outdir = os.path.abspath(path)
29 if self.worldcomm.isMasterRank(): print(f"[NIRB] Data saved in {self.outdir}")

The global pipeline of the offline phase is implemented this way:

Listing 7.30: Global pipeline of the offline phase.
1 config_nirb = fppc.readJson(nirb_file)['nirb']
2 nirb_off = nirbOffline(initCoarse=True, **config_nirb)
3 nirb_off.initModel()
4 Xi_train = generatedAndSaveSampling(nirb_off.Dmu, 200, path=Xi_train_path, samplingMode="log-random")
5 nirb_off.generateOperators(coarse=True)
6
7 if doGreedy: _, Xi_train, _ = nirb_off.initProblemGreedy(500, 1e-5, Nmax=config_nirb['nbSnapshots'],

Xi_train=Xi_train, computeCoarse=True, samplingMode="random")↪→
8 else: Xi_train = nirb_off.initProblem(nbSnap, Xi_train=Xi_train)
9 RIC = nirb_off.generateReducedBasis(tolerance=1.e-12)

10 nirb_off.saveData(RESPATH, force=True)

The user can then run the offline phase with the following command:
$ mpirun -np 12 python3 nirbOffline.py --config-file data/eye/heat/eye.cfg --N 30

Other parameters can be provided to the script and are set a JSON file, as in Listing 7.31.

Listing 7.31: Example of JSON configuration file for the offline phase.
1 "nirb":
2 {
3 "H": 0.25,
4 "h": "H**2:H",
5 "dim": 3,
6 "order": 1,
7 "toolboxType": "heat",
8 "finemesh_path": "$cfgdir/fin.geo",
9 "coarsemesh_path": "$cfgdir/fin.geo",

10 "model_path": "$cfgdir/thermal-fin.json",
11 "doRectification": true,
12 "nbSnapshots": 10,
13 "greedy-generation": false,
14 }

7.3.2 Implementation of the online stage

The online phase presented in Section 3.2.4 is implemented in the nirbOnline class, also
inheriting from the ToolboxModel class. The main function to compute the NIRB approximation
uN

Hh(µ) described in Equation (3.47) is the getOnlineSol function, defined in Listing 7.32. Some
optional parameters can be provided to the function, such as the number of basis vectors to use,
or if the rectification post-process should be performed (c.f. Section 3.2.3). If no such parameters
are provided, the application will use the default values defined in the class. Moreover, when this
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function is called for many times, some elements such as the rectification matrix R are stored in
the class to avoid recomputing them.

Listing 7.32: Definition of the getOnlineSol function.
1 def getOnlineSol(self, mu, doRectification=None, Nb=None):
2 if Nb is None: Nb = self.N
3 onlineSol = self.Xh.element() # Set a zero vector from the fine functional space
4 onlineSol.setZero()
5 compressedSol = self.getCompressedSol(mu=mu, Nb=Nb) # coefficients |αN,H(µ)|
6 if doRectification is None: doRectification = self.doRectification
7 if doRectification:
8 if Nb not in self.RectificationMat:
9 self.RectificationMat[Nb] = self.getRectification(self.coeffCoarse, self.coeffFine, Nb=Nb)

10 coef = self.RectificationMat[Nb] @ compressedSol
11 for i in range(Nb): onlineSol.add(float(coef[i]), self.reducedBasis[i])
12 else:
13 for i in range(Nb): onlineSol.add(float(compressedSol[i]), self.reducedBasis[i])
14 return onlineSol

The method getCompressedSol presented in Listing 7.33 computes the coefficients αN,H(µ),
as per Equation (3.48). The user can provide either the parameter µ or the solution interpolated
solution uN

H→h(µ).

Listing 7.33: Definition of the getCompressedSol function.
1 def getCompressedSol(self, mu=None, solution=None, Nb=None):
2 assert (mu != None) or (solution != None), f"One of the arguments must be given: solution or mu"
3 if Nb is None: Nb = self.N
4 coarseSol = self.getToolboxSolution(self.tbCoarse, mu)
5 interpolatedSol = self.interpolationOperator.interpolate(coarseSol)
6 compressedSol = np.zeros(Nb)
7 for i in range(Nb):
8 compressedSol[i] = self.l2ProductBasis[i].to_petsc().dot(interpolatedSol.to_petsc())
9 return compressedSol

Note that there is still room to improving this code, especially by getting rid of the for loop.
This could be achieved with the method maxpy and mdot of the PETSc library. A crucial point
in this code is the interpolation of the coarse solution to the fine space, that is performed by the
interpolationOperator object, initialized in Listing 7.34:

Listing 7.34: Initialization of the interpolation operator.
1 Vh_image = image_tb.spaceTemperature()
2 Vh_domain = domain_tb.spaceTemperature()
3 self.interpolationOperator=fpp.interpolator(domain = Vh_domain, image = Vh_image, range =

image_tb.rangeMeshElements())↪→

The object self.interpolationOperator, implemented in the Python library of Feel++,
allows to interpolate the solution both in sequential and parallel, transparently for the user.
Finally, the pipeline of the online phase is implemented as in Listing 7.35.

Listing 7.35: Global pipeline of the online phase.
1 config_nirb = fppc.readJson(nirb_file)['nirb']
2 nirb_on = nirbOnline(**config_nirb)
3 nirb_on.initModel()
4
5 mu = nirb_on.Dmu.element()
6 mu.setParameters([0.01, 0.1, 0.1, 0.1, 0.1])
7 err = nirb_on.loadData(path=RESPATH, nbSnap=nbSnap)
8 assert err == 0, "Error while loading data"
9

10 uHh_r = nirb_on.getOnlineSol(mu, doRectification=True)
11 uHh = nirb_on.getOnlineSol(mu, doRectification=False)
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If wanted, we can also compute the high-fidelity solution, and export all the results for
visualization with Parawiew:

Listing 7.36: Export the results for visualization.
1 uh = nirb_on.getToolboxSolution(nirb_on.tbFine, mu)
2 error_r = nirb_on.normMat(uHh_r - uh)
3 error = nirb_on.normMat(uHh - uh)
4 if nirb_on.worldcomm.isMasterRank():
5 print(f"[NIRB] L2 norm between nirb online rectified and toolbox sol = {error_r}")
6 print(f"[NIRB] L2 norm between nirb online and toolbox sol = {error}")
7
8 if exporter:
9 dirname = "nirbSol"

10 nirb_on.initExporter(dirname, toolbox="fine")
11 nirb_on.exportField(uh, "uh")
12 nirb_on.exportField(uHh_r, "uNirb_r")
13 nirb_on.exportField(uHh, "uNirb")
14 nirb_on.saveExporter()

The user can then run the online phase with the following command:
$ mpirun -np 12 python3 nirbOnline.py --config-file data/eye/heat/eye.cfg --N 30

--exporter 1↪→

Results of the methods, as well as the convergence of the method, are presented in Sections 3.2.6
and 3.2.7.

7.4 Elliptic problems with a Dirac sources term
In the spirit of the application feelpp_qs_laplacian5, we developed a new application,

feelpp_laplacian_dirac, that solves the Laplacian problem with a Dirac in the right hand-side,
as described in Chapter 4. At the time of redaction of this manuscript, the preprint and the code
is not yet available, but it will be as soon as the preprint is published, on the GitHub repository6.
The implementation stems directly from the computation of the variational form of the problem.

The main part of the code, computing the numerical solution is shown in Listing 7.37.

Listing 7.37: Elliptic problem with a Dirac source.
1 /**
2 * @param Vh The space of trial and test functions.
3 * @param u The solution element.
4 * @param v The test element.
5 * @param s The sensor.
6 * @param mesh The mesh.
7 * @param boundary_condition The type of boundary condition.
8 * @param G_expr The expression for the boundary condition.
9 * @param f The expression for the right-hand side.

10 * @param un The expression for the Neumann boundary condition.
11 * @param mu The expression for the Robin boundary condition.
12 * @param r_2 The expression for the Robin boundary condition.
13 */
14 void computeSolution(_space_ptr_type Vh, _element_type &u, _element_type &v, _container_ptr_type s,

_mesh_ptr_type mesh, int boundary_condition, _expr_scal_type &G_expr, _expr_scal_type &f,
_expr_scal_type &un, _expr_scal_type &mu, _expr_scal_type &r_2)

↪→
↪→

15 {
16 auto a = form2( _trial = Vh, _test = Vh);
17 auto l = form1( _test = Vh, _vector = s );
18 a = integrate(_range = elements(mesh), _expr = gradt(u) * trans(grad(v)) );
19 switch (boundary_condition)
20 {

5See source code: � https://github.com/feelpp/feelpp/blob/develop/feelpp/quickstart/laplacian/qs
_laplacian.cpp

6� https://github.com/feelpp/article.dirac

https://github.com/feelpp/feelpp/blob/develop/feelpp/quickstart/laplacian/qs_laplacian.cpp
https://github.com/feelpp/feelpp/blob/develop/feelpp/quickstart/laplacian/qs_laplacian.cpp
https://github.com/feelpp/article.dirac
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21 case 0: // Dirichlet boundary condition
22 a += on(_range = boundaryfaces(mesh), _rhs = l, _element = u, _expr = G_expr);
23 break;
24 case 1: // Neumann boundary condition
25 l += integrate(_range = boundaryfaces(mesh), _expr = un * id(v));
26 break;
27 case 2: // Robin boundary condition
28 a += integrate(_range = boundaryfaces(mesh), _expr = mu * idt(u) * id(v));
29 l += integrate(_range = boundaryfaces(mesh), _expr = r_2 * id(v));
30 break;
31 case 3: // Mixed boundary condition
32 [...] // Handle mixed boundary conditions
33 break;
34 default:
35 if (Environment::isMasterRank()) std::cout << "No valid BC" << std::endl;
36 }
37 a.solve(_rhs = l, _solution = u);
38 }

Note that because of geometrical discretization of the domain Ω, we impose on the boundary
∂Ω a homogeneous Dirichlet boundary condition (e.g. Gexpr for Dirichlet boundary conditions)
that is computed from the expected solution using symbolic computation. This happens in the
context where we plan to compute the numerical error of the solution. If not, then the selected
boundary condition is applied to the boundary of the domain.

The Dirac source term s is implemented using the SensorPointwise class, which is a pointwise
sensor that is able to compute the value of the solution at a given point, as shown in Listing 7.38.

Listing 7.38: Dirac source term.
1 using _sensor_type = SensorPointwise<_space_type>;
2 using _container_ptr_type = std::shared_ptr<Vector<double, unsigned int>>;
3 _container_ptr_type s = std::make_shared<_sensor_type>(Vh, n, "O")->containerPtr();

The application can be run using the following command line. The argument bc sets up the
type of boundary condition used, Dirichlet in this example.
$ mpirun -np 16 feelpp_phd.thomas_laplacian_dirac_2DP6 \

--bc 0 --coord.y 0.5 --do-remesh 0 \
--config-file laplacian_dirac.cfg --gmsh.hsize 0.00625\
--export-solution "fine-dirac"

Results of convergence of this program are presented in Sections 4.3 and 4.4.1 to 4.4.3.

7.5 Sensitivity Analysis

We provide in this section the implementation of the sensitivity analysis carried out in
Chapter 5, on the one hand with the deterministic sensitivity analysis (DSA) and on the other
hand with the stochastic sensitivity analysis (SSA). The whole implementation is available in
the dataset published among the preprint: (i) the DSA, implemented in Python, is available in
[SPS24a], (ii) the SSA, implemented thought the Feel++ and OpenTURNS framework is available
in the main repository [Pru+24b]7.

7.5.1 Deterministic Sensitivity Analysis

We first present the code developed to perform the DSA described in Section 5.2. This code is
written in Python and uses the Feel++ library to solve the high-fidelity model, for each selected

7� https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.
cpp

https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.cpp
https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.cpp
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combination of input parameters. First, we set the environment up, load the model, and define
the parameters to be varied, as shown in Listing 7.39.

Listing 7.39: Setup the DSA.
1 heatBox = heat.heat(dim=3, order=2)
2 heatBox.init()
3
4 crb_model_properties = mor.CRBModelProperties(worldComm=fppc.Environment.worldCommPtr())
5 crb_model_properties.setup(PWD + '/../crb_param.json')
6 crb_model_parameters = crb_model_properties.parameters()
7 D = mor._mor.ParameterSpace.New(crb_model_parameters, fppc.Environment.worldCommPtr())
8
9 baseline = {"k_lens":0.40, "E":40, "h_bl":65, "h_amb":10, "T_amb":293.15, "T_bl":310.15}

10 mu = D.element()
11 mu.setParameters(baseline)
12
13 params = D.parameterNames()
14 values = {
15 "E": [20, 40, 70, 100, 320],
16 "T_amb": [273.15, 278, 293.15, 298.15, 303.15, 308],
17 "T_bl": [308.15, 310.15, 310.85, 311.15, 311.65, 312.15],
18 "h_amb": [8, 10, 12, 15, 100],
19 "h_bl": [65, 90, 110],
20 "k_lens": [0.21, 0.30, 0.40, 0.544]
21 }
22 df_points = pd.read_csv(os.path.join(PWD, "points_coord.csv")) # Cooridnates of the output of interest

We implemented a function updateParameters that updates the parameters of the toolbox
object. With this function, we run the deterministic sensitivity analysis using the high-fidelity
model, presented in Listing 7.40.

Listing 7.40: Run the DSA.
1 for param in params:
2 mu.setParameters(baseline) # Reset the parameters to the baseline
3 df_res = pd.DataFrame(columns=points_name, dtype=float)
4 for value in values[param]:
5 mu.setParameterNamed(param, value)
6 updateParameters(heatBox, mu)
7 heatBox.solve()
8 heatBox.exportResults()
9 measures = heatBox.postProcessMeasures().values() # Get all the outputs computed

10 df_res.loc[value] = res_of_meas(meas, points_name) # Post-process the outputs
11 df_res.to_csv(os.path.join(PWD, "results", f"{param}_feel.csv"), index_label=param)

The DSA is performed by running the whole script:
$ mpirun -np 12 python3 run-SA.py

The results of this analysis are presented in Section 5.2.

7.5.2 Stochastic Sensitivity Analysis with OpenTURNS

In this section, we present the code developed to perform the Stochastic Sensitivity Analysis
described in Section 5.3. This code is written in C++ and uses the OpenTURNS library [Bau+16].
Precisely, it uses the methods implemented provided by the class FunctionalChaosAlgorithm
[Ope], using a bootstrap method for the confidence intervals.

We present here only some selected parts of the code, the full code can be found in the
Feel++ repository8. Before introducing the function, we define some macro types and constants
in Listing 7.41, useful in the following.

8� https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.
cpp

https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.cpp
https://github.com/feelpp/feelpp/blob/develop/mor/examples/eye2brain/sensitivity_analysis.cpp
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Listing 7.41: Definition of the macro types and constants.
1 using element_t = Feel::ParameterSpaceX::element_type;
2 using plugin_ptr_t = std::shared_ptr<Feel::CRBPluginAPI>;
3 using parameter_space_ptr_t = std::shared_ptr<Feel::ParameterSpaceX>;
4
5 const std::vector<std::string> NAME = {"h_bl", "h_amb", "T_bl", "T_amb", "E", "k_lens"};
6 const std::vector<double> MINS = {50, 8, 308.3, 283.15, 20, 0.21};
7 const std::vector<double> MAXS = {110, 100, 312, 303.15, 320, 0.544};
8 const size_t SIZE = 6;

In Listing 7.42, we show the construction of the random distribution for the input parameters,
stemming from the model introduced in Section 5.3.1. Then Listing 7.43 presents how to compute
the output sample from a given input sample.

Listing 7.42: Construction of the random distribution for the input parameters.
1 OT::ComposedDistribution composedFromModel()
2 {
3 OT::Collection<OT::Distribution> marginals( SIZE );
4 for (size_t d = 0; d < SIZE; ++d)
5 {
6 OT::Distribution dist;
7 std::string name = NAME[d];
8 if (name == "h_bl")
9 {

10 double s = 0.15; double mu = log(65) - 0.5*s*s;
11 dist = OT::TruncatedDistribution(OT::LogNormal(mu, s, 0), OT::Interval(50, 110));
12 }
13 else if (name == "h_amb")
14 {
15 double s = 1; double mu = log(10) - 0.5*s*s;
16 dist = OT::TruncatedDistribution(OT::LogNormal(mu, s, 8), OT::Interval(8, 100));
17 }
18 else if (name == "E")
19 {
20 double Emin = 20, Emax = 320;
21 dist = OT::Uniform( MINS[d], MAXS[d] );
22 }
23 else
24 {
25 dist = OT::Uniform( MINS[d], MAXS[d] );
26 }
27 dist.setDescription( {name} );
28 marginals[d] = dist;
29 }
30 return OT::ComposedDistribution( marginals );
31 }

Listing 7.43: Computation of the output sample.
1 /**
2 * @brief Generate the output sample from a given input sample
3 *
4 * @param input Sample of input parameters
5 * @param plugin loaded plugin
6 * @param time_crb collection of timers
7 * @param online_tol online tolerance
8 * @param rbDim size of the reduced basis
9 * @return OT::Sample

10 */
11 OT::Sample output(OT::Sample const& input, plugin_ptr_t const& plugin, Eigen::VectorXd &time_crb, double

online_tol, int rbDim)↪→
12 {
13 size_t n = input.getSize();
14 double s_output, s_errorBound;
15 OT::Sample output(n, 1);
16 parameter_space_ptr_t Dmu = plugin->parameterSpace();
17 element_t muMin = Dmu->min(), muMax = Dmu->max();
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18 double k_lens, h_amb, h_bl, h_r=6, T_amb, T_bl, E;
19 for (size_t i: tqdm::range(n))
20 {
21 element_t mu = Dmu->element();
22 OT::Point X = input[i]; // X = [ h_bl, h_amb, T_bl, T_amb, E, k_lens ]
23 k_lens = X[5]; h_amb = X[1]; h_bl = X[0]; T_amb = X[3]; T_bl = X[2]; E = X[4];
24 mu.setParameter(0, k_lens); // mu0 = klens
25 mu.setParameter(1, h_amb); // mu1 = hamb
26 mu.setParameter(2, h_bl); // mu2 = hbl
27 mu.setParameter(3, h_r); // mu3 = hr
28 // mu.setParameter(4, 1); // mu4 = 1
29 mu.setParameter(5, h_amb*T_amb + h_r*T_amb - E); // mu5 = hambTamb + hrTamb − E
30 mu.setParameter(6, h_bl*T_bl); // mu6 = hblTbl
31 Feel::CRBResults crbRes = plugin->run(mu, time_crb, online_tol, rbDim, false);
32 s_output = crbRes.output();
33 s_errorBound = crbRes.errorbound();
34 OT::Point P(1); P[0] = s_output;
35 output[i] = P;
36 }
37 return output;
38 }

Before presenting the main function responsible for running the sensitivity analysis, we
explain how the reduced output and error bounds are computed. As shown in Listing 7.43, we
use a specific plugin of type CRBPluginAPI, to execute the online stage for a given parameter µ.
This plugin, a shared library, is created during the offline stage and is loaded when the program
starts. In scenarios where multiple outputs of interest are considered, as is the case in this work,
a distinct plugin is generated for each output.

Listing 7.44 presents the main function running the sensitivity analysis:

Listing 7.44: Main function running the sensitivity analysis.
1 /**
2 * @param plugin the plugin from load_plugin
3 * @param sampling_size size of the input sample used for computation of sobol indices
4 * @param rbDim size of the reduced basis
5 * @param computeSecondOrder boolean to compute second order sobol indices
6 * @param online_tol tolerance for online computation of reduced basis, default to 1e-2
7 * @param print_rb_matrix boolean to print the reduced basis matrix, default to false
8 */
9 void runSensitivityAnalysis( plugin_ptr_t plugin, size_t sampling_size, int rbDim, bool

computeSecondOrder=true, double online_tol=1e-2, bool print_rb_matrix=false )↪→
10 {
11 Eigen::VectorXd/*typename crb_type::vectorN_type*/ time_crb;
12 parameter_space_ptr_t muspace = plugin->parameterSpace();
13
14 OT::ComposedDistribution composed_distribution = composedFromModel();
15 OT::Sample input_sample = composed_distribution.getSample(sampling_size);
16 OT::Sample output_sample = output(input_sample, plugin, time_crb, online_tol, rbDim);
17 computeSobolIndicesBootstrap(plugin, composed_distribution, sampling_size, input_sample,

output_sample, NAMES, time_crb, online_tol, rbDim);↪→
18 }

We introduce in Listing 7.45 the function computeSobolIndicesBootstrap, that actually
computes the Sobol indices from an input and an output samples.

Listing 7.45: Compute the Sobol indices with bootstrap.
1 /**
2 * @brief Compute the Sobol indices using bootstrap
3 *
4 * @param plugin plugin loaded
5 * @param composed_distribution compused distribution of the input parameters
6 * @param sampling_size size of the sampling
7 * @param input_sample input sample of parameters
8 * @param output_sample output sample computed from the input sample
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9 * @param tableRowHeader names of the input parameters
10 * @param time_crb time collection
11 * @param online_tol online tolerance
12 * @param rbDim dimension of the reduced basis
13 */
14 void computeSobolIndicesBootstrap(plugin_ptr_t plugin, OT::ComposedDistribution composed_distribution,

size_t sampling_size,↪→
15 OT::Sample input_sample, OT::Sample output_sample, std::vector<std::string> tableRowHeader,

Eigen::VectorXd &time_crb, double online_tol, int rbDim)↪→
16 {
17 using namespace Feel;
18 size_t dim = composed_distribution.getDimension();
19 size_t bootstrap_size = ioption(_name="algo.bootstrap-size");
20
21 OT::Collection<OT::Distribution> marginals(dim);
22 for ( size_t d = 0; d < dim; ++d )
23 marginals[d] = composed_distribution.getMarginal(d);
24 auto basis = OT::OrthogonalProductPolynomialFactory( marginals );
25 OT::UnsignedInteger total_degree = 3;
26
27 Results res( dim, tableRowHeader, "polynomial-chaos-bootstrap", sampling_size );
28
29 size_t N = input_sample.getSize();
30 auto [fo_sample, to_sample] = computeBootstrapChaosSobolIndices(X, Y, basis, total_degree,

distribution, bootstrap_size);↪→
31 auto [fo_interval, to_interval] = computeSobolIndicesConfidenceInterval(fo_sample, to_sample, alpha);
32 res.setIndices( fo_sample.computeMean(), 1 );
33 res.setIndices( to_sample.computeMean(), 2 );
34 res.setInterval( fo_interval, 1 );
35 res.setInterval( to_interval, 2 );
36 res.exportValues( soption( _name="save.path" ) + "-bootstrap.json" );
37 }

The class Results is a simple self-implemented class that deals with the Sobol’ indices and in-
terval of confidence computed in the process, and exports them to a JSON file. Regarding the func-
tions computeBootstrapChaosSobolIndices and computeSobolIndicesConfidenceInterval,
they are not shown here, as they are a translation in C++ of the Python code provided by the
developers of OpenTURNS [Ope].

The sensitivity analysis is performed by running the following command:
$ ./feelpp_mor_sensitivity_analysis --crbmodel.name <model-name> --plugin.dir

${build_directory}/install/bin/↪→

The argument <model-name> is the name of the model used for the computation of the reduced
basis, and corresponds to the choice of the output of interest (e.g. eye2brain_3d_O_dirac).
The results of this SSA are presented in Section 5.3.3.

7.6 Model of heat transfer coupled with aqueous humor flow
We present in this section some configuration files used to run the simulations of the model of

heat transfer coupled with aqueous humor flow presented in Chapter 6. All the files are available
online [SPS24a]

We present in Listings 7.46 and 7.47 the configuration file used to set up the fieldsplit
preconditioning.

Listing 7.46: Set-up fieldsplit preconditioning.
1 [heat-fluid]
2 ksp-type=gmres
3 pc-type=fieldsplit
4 fieldsplit-fields=0->(0,1),1->(2) # We split the system into two blocks: (u⃗, p) and T
5 fieldsplit-type=additive
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Then we present how each block is preconditioned, the block temperature on the one hand,
and the block velocity-pressure on the other hand.

Listing 7.47: Set-up preconditioning for each block.
1 # block temperature
2 [heat-fluid.fieldsplit-1]
3 ksp-type=gmres
4 pc-type=gamg
5 ksp-maxit=100
6
7 # block velocity - pressure
8 [heat-fluid.fieldsplit-0]
9 ksp-type=fgmres

10 fgmres-restart=100
11 ksp-maxit=100
12 ksp-rtol=1e-8
13 pc-type=fieldsplit
14 #ksp-monitor=1
15 fieldsplit-fields=0->(0),1->(1) # We split the system into two blocks: (u⃗, p)
16 fieldsplit-type=schur
17 fieldsplit-schur-fact-type=upper#full
18 fieldsplit-schur-precondition=user#selfp
19
20 # block velocity
21 [heat-fluid.fieldsplit-0.fieldsplit-0]
22 ksp-type=gmres#preonly#gmres
23 ksp-maxit=1
24 ksp-rtol=1e-8
25 pc-type=fieldsplit
26 fieldsplit-use-components=1
27 fieldsplit-fields=0->(0),1->(1),2->(2) # We split each component of the velocity
28 fieldsplit-type=additive
29
30 # block velocity 0
31 [heat-fluid.fieldsplit-0.fieldsplit-0.fieldsplit-0] # Idem for blocks 1 and 2
32 ksp-type=preonly
33 pc-type=jacobi
34
35 # block pressure
36 [heat-fluid.fieldsplit-0.fieldsplit-1]
37 ksp-type=fgmres
38 ksp-maxit=1
39 ksp-rtol=1e-3
40 pc-type=gamg

The Slurm script that can be run to launch the simulation on a cluster is presented in
Listing 7.48. Note that the subject position can be set with the variable POSITION, and the mesh
with the variable MESH_INDEX (see Section 2.1.2 for more details).

Listing 7.48: Run the job.
1 #!/bin/bash
2 #SBATCH -J eye_heatfluid # name of the job
3 #SBATCH -N 3 # number of nodes
4 #SBATCH --ntasks-per-node=128 # number of MPI tasks per node
5 #SBATCH --threads-per-core=1 # no hyperthreading
6 #SBATCH -o log/%j-eye_heatfluid-o.log # standard output
7 #SBATCH -e log/%j-eye_heatfluid-e.log # standard error
8
9 export OMP_NUM_THREADS=1

10 module load hpcx
11
12 MESH_INDEX=M4 # M1 M2 M3 M4 M5
13 SOLVER_TYPE=simple # simple lsc
14 POSITION=prone # prone supine standing
15
16 mpiexec -bind-to core feelpp_toolbox_heatfluid \
17 --config-files eye-${POSITION}.cfg pc_${SOLVER_TYPE}.cfg \
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18 --heat-fluid.json.patch='{ "op": "replace", "path": "/Meshes/heatfluid/Import/filename", "value":
"$cfgdir/mesh/Mr/'${MESH_INDEX}'/Eye_Mesh3D_p$np.json" }'↪→

The results of the simulation are presented in Sections 6.3 and 6.4.



Chapter 8

Conclusion and perspectives

In this thesis, we have developed a comprehensive mathematical and computational framework
for simulating complex biomedical processes in the context of the human eye.

Ocular conditions present numerous biological challenges, making it crucial for clinicians
to gain a deeper understanding of the underlying mechanisms. Driven by this motivation, we
formulated a mathematical and computational model of the human eye, which incorporates its
intricate geometry and various tissues, each with distinct physiological properties. In Section 1.4,
we established a model for heat transfer within the eye, which we subsequently extended in
Chapter 6 to account for the flow of aqueous humor in both the anterior and posterior chambers.
These models have undergone rigorous validation, including comparisons with experimental data
and previously published numerical studies.

The numerical solution of these models was achieved through the Finite Element Method, as
described in Chapter 2. To mitigate the computational expense of these simulations without
sacrificing accuracy, we developed a model order reduction framework, which is detailed in
Chapter 3. Two approaches were employed for this purpose: the Certified Reduced Basis Method
(Section 3.1) and the Non-Intrusive Reduced Basis Method (Section 3.2). The methods employed,
grounded in strong mathematical theory, demonstrated efficiency and accuracy, as discussed
in Sections 2.2 and 3.1. However, due to the complexity of the problem and the large-scale
simulations required for realistic eye models, significant computational effort was necessary.
High-performance computing resources were crucial to handle the complexity, enabling efficient
exploration of parameter spaces and handling large-scale multiphysics simulations, as discussed
in the scalability of the coupled model in Chapter 6.

Even though the RBM is not directly applicable to problems involving Dirac source terms
due to the singularity at the evaluation point, our approach demonstrates that it can still yield
accurate and efficient approximations, with numerical results showing favorable convergence
properties consistent with theoretical predictions in the continuous case. Still, we investigated in
Chapter 4 both theoretical and numerical aspects of the problem, providing insights into the
behavior of the FEM in the presence of singularities, under various boundary conditions, and for
various orders of discretization.

Within the RBM framework, we conducted a global sensitivity analysis on the eye model,
which is described in Chapter 5. This allowed us to quantify the impact of key parameters
on quantities of interest, such as the temperature distribution and aqueous humor flow in the
anterior chamber. Our sensitivity analysis pinpointed four main physiological parameters as
most influential in affecting the results: blood temperature, ambient temperature, the ambient
air convection coefficient, and the evaporation rate. These findings build upon and enrich
prior studies, such as those highlighted in [Sco88; NO06; Li+10], underscoring the vital role of
blood flow characteristics and environmental conditions, particularly in the inner ocular tissues.
Additionally, through Sobol’ indices analysis, we identified the significant impact of parameter
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interactions, particularly those related to ambient temperature. From a clinical standpoint, our
insights into heat transport in the human eye could inform studies on the effects of electromagnetic
wave radiation, as explored in [Hir+07; NO07; ON09] and related references.

Perspectives
Several aspects of the developed framework could be enhanced to improve its capabilities:

• The geometrical model developed in Section 1.3 is currently based on a CAD model of a
general subject. A more precise analysis could be achieved by considering variations in
geometrical parameters due to factors such as aging [BBS20] or ethnicity [SLG06; Bou11].

• Further computational improvements to the NIRB method (Section 3.2) could use the
zoom functionalities [GM23a] that would considerably accelerate the online prediction and,
code-wise, optimize computation time by removing the use of loops in the Python code.

• About the resolution of elliptic problem in presence of a Dirac source term (Chapter 4),
our findings call for refinement of the currently available theoretical results and conduct
more extensive numerical explorations of the phenomena.

• The coupled model introduced in Chapter 6, could be further developed by incorporating
inflow (production) and outflow (drainage) boundary conditions and assessing their impact
on the outcome of the model. Moreover, further developing reduced order modeling
techniques would be beneficial in the spirit of the strategy developed in Chapter 3.

The work presented in this thesis opens several avenues of future research, including clinical
aspects such as:

• Applying the developed framework in conjunction with a Kalman filter to evaluate optical
properties during thermal laser-tissue interactions [AF22],

• Investigating cell displacement in the aqueous humor flow to improve our understanding of
corneal cell sedimentation [Kin+18].

These advancements, combined with the ongoing efforts to refine both the geometrical
and computational models, as well as the exploration of more efficient numerical techniques,
contribute to the ultimate goal of creating a highly accurate digital twin of the eye. Such a
digital twin would not only incorporate patient-specific anatomical variations but also simulate
physiological behaviors with greater precision, paving the way for enhanced predictive modeling
and personalized medical applications.



Appendix A

Effect of Cooling of the Ocular
Surface on Endothelial Cell
Sedimentation in Cell Injection
Therapy: Insights from
Computational Fluid Dynamics

The Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting is a
leading conference in vision research. Its prominence is shared with other major conferences like
the European Society of Cataract and Refractive Surgeons Congress, the American Academy of
Ophthalmology Annual Meeting, and the World Ophthalmology Congress. ARVO emphasizes
basic and clinical research, making it particularly valuable for scientists and clinicians involved in
investigative ophthalmology. ARVO encourages collaboration across various scientific disciplines,
promoting a holistic understanding of vision science. Finally, ARVO draws a diverse international
audience, facilitating the exchange of innovative ideas and research findings.

The work presented here is an extension of Chapter 6 and has been submitted to the ARVO
2025 Meeting. This work has been conducted by Thomas Saigre, Vincent Chabannes (Cemosis,
Université de Strasbourg), Giovanna Guidoboni (University of Maine) Christophe Prud’homme
(Université de Strasbourg) Marcela Szopos (Université Paris Cité), and Sangly P. Srinivas (School
of Optometry, Indiana University).

Purpose

Cell injection therapy is a promising treatment for Fuchs endothelial corneal dystrophy
by delivering cultured human corneal endothelial cells into the anterior chamber (AC). After
injection, patients are rotated from a supine to a prone position for over three hours to promote
sedimentation. This study aims to develop a computational framework to understand how
convection currents influence the wall shear stress (WSS), thereby informing strategies to
optimize sedimentation and improve therapeutic outcomes.

Method

A computational fluid dynamics framework investigated aqueous humor (AH) flow, focusing
on velocity and WSS distributions. The model governed by the Navier-Stokes equations with
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Zone Orientation
Mean of magnitude of WSS

Tamb = 25◦C Tamb = 15◦C Tamb = 33◦C

Whole domain
Prone 6.4 · 10−7 Pa +72.96 % −44.82 %
Supine 6.77 · 10−7 Pa +81.20 % −46.23 %

Cornea
Prone 2.3 · 10−7 Pa +71.63 % −44.55 %
Supine 2.5 · 10−7 Pa +83.40 % −46.89 %

Iris
Prone 3.17 · 10−7 Pa +73.67 % −44.96 %
Supine 3.31 · 10−7 Pa +79.76 % −46.01 %

Table A.1: Evolution of the magnitude of the WSS for different zones of the eye on different
regions, for various ambient temperature.

the Boussinesq approximation and gravitational effect account for heat exchange between the
eye, surrounding tissues, and ambient environment. Posture (supine and prone) and ambient
temperature (15 ◦C, 25 ◦C, and 33 ◦C) were varied to assess their impact. Elevated WSS may
impede cell adhesion, while efficient mixing can enhance sedimentation and redistribution of
injected cells. AH secretion and outflow were neglected, as previous work [ON08] indicated
buoyancy-driven flows dominate regardless of posture. Simulations were performed using the
Feel++ framework [Pru+24b], employing no-slip boundary conditions and solving for AH velocity
and WSS distributions.

Results
The simulations revealed that orientation and ambient temperature influence AH flows and

WSS (Figure A.1). Changes from supine to prone altered gravitational alignment, reducing AH
velocities and affecting sedimentation. At cooler ocular surface temperatures (15 ◦C), enhanced
AH circulation increased WSS by up to 83.4 %, promoting more uniform cell dispersion. Warmer
conditions (33 ◦C) reduced WSS by 46 %, resulting in less uniform sedimentation patterns
potentially hindering optimal cell adhesion (Table A.1).

Conclusion
Our findings highlight the crucial interplay of thermal and postural factors in shaping AH

dynamics and mechanical stresses within the AC. Cooler ocular surface conditions foster higher
WSS and uniform cell dispersion, suggesting thermal modulation can improve endothelial cell
therapy outcomes. By adjusting body orientation and ocular surface temperature, clinicians
may guide cell sedimentation and adhesion, enhancing postoperative results in anterior segment
procedures.
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Figure A.1: AH flow in AC for various orientations and ambient temperatures.
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Appendix B

Surrogate modeling of interactions in
microbial communities through
Physics-Informed Neural Networks

The content of this chapter is not directly linked to the work of the thesis. It is a work that was
conducted during the CEMRACS1 during summer 2023, whose thematic was Scientific Machine
Learning. It was done in collaboration with Javan Hossie (Université d’Orléans), Béatrice Laroche
(INRAE), Thibault Malou (INRAE), Lucas Perrin (Universität Konstanz) and Lorenzo Sala
(INRAE). The content of this chapter has been submitted to the proceedings of the CEMRACS
[Hos+24].

Microorganisms play an essential role as abundant and diverse entities within ecosystems,
exerting a significant influence on biological functioning. They often come together in complex
communities called microbiota, establishing symbiotic relationships with their environment to
maintain a state of equilibrium. However, the spatial distribution of microorganisms in the
human body is not homogeneous, varying according to habitat or anatomical site [San11]. In the
digestive tract, for example, the concentration of microorganisms increases from the stomach,
where the acidity and the presence of digestive enzymes are unfavorable for the development
of bacteria, towards the colon where conditions are optimal for their growth, the temperature
is constant (37 °C), the environment is not very acidic and is rich in water, transit is slow
and food is abundant [Gau+16]. The gut microbiota found mainly in the human colon is a
dynamic ecosystem whose development is influenced by several factors: genetics, age, geographical
location, stress, diet, exposure to infectious agents or pollutants, and antibiotic intake [MD17;
TJ17]. Numerous studies continue to reveal that the gut microbiota plays a crucial role in
various aspects of our well-being [Arr+14], such as digestion, regulation of the immune system
[HLM12], protection against infection, vitamin synthesis, and even influences on cerebral and
metabolic functions [But+19]. Imbalances or alterations in this ecosystem can be associated
with a wide range of health problems, from digestive disorders and autoimmune diseases to
obesity and neurological disorders [CD12]. Certain disturbances in the composition and functions
of the microbiota resulting in dysbiosis can lead to certain syndromes such as irritable bowel
syndrome [Gau+16]. The microbiota can also be used as a medicine (using fecal transplants)
to treat certain illnesses such as antibiotic-resistant diarrhea caused by Clostridium difficile
[Gau+16]. In natural ecosystems, the soil microbiota actively participates in the decomposition of
organic matter, releasing essential nutrients for plants, and some bacteria can establish symbiotic
relationships with plant roots, promoting their growth by providing additional nutrients [Fie17;

1� http://smai.emath.fr/cemracs/cemracs23/
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MS15]. A better understanding of the microbiota could have a major impact on environmental
sustainability, improving human health and managing ecosystems but despite advances in studies
of bacterial ecological dynamics, the question of the nature of bacterial interactions in the
intestinal microbiota remains open.

The Generalized Lotka-Volterra (GLV) model is commonly used to model and anticipate
variations in microorganism populations within an ecosystem [VB31; Vol27; Lot56]. In the case of
the microbiota, it could provide information on how changes in the composition and abundance
of a microorganism population could influence the ecosystem [Ger14; BX14]. Furthermore, by
analyzing the model parameters, we can identify the microbial species that have a significant
influence on the dynamics of the microbiota as a whole [Seg+11; Fai+10], predict interspecies
interactions [Ste+13], species coexistence [FHG17], and even community structure and dynamics
[Buc+16].

However, when modeling large ecosystems with multiple species, simulating the GLV model
may lead to computational challenges. This is particularly true in the context of parameter
estimation, where many approaches (for instance Maximum Likelihood or MCMC estimation)
explore the parameter space and simulate the model accordingly, potentially generating extensive
simulation times and numerically unstable behaviors along the exploration process. Alternative
approaches have been proposed in the literature, based on the so-called “metamodelisation” of
the system trajectories, for instance through splines [Ram+07; Lar+18] or Gaussian processes
[Don+13; Wen+19], embedded in a parameter estimation procedure. The main advantages of
these approaches are to avoid numerical issues related to dynamical system simulation, and
also to allow an easy integration of prior information in the trajectory reconstruction process,
such as experimental data. The objective of the present work, in a first step towards parameter
estimation, is to investigate the ability of Physics-Informed Neural Networks (PINNs) in providing
such metamodels in the specific context of GLV ODEs, based on some typical issues they may
raise.

PINNs is a recent and appealing approach that allows the fast and accurate simulation of
large and complex dynamical systems [RPK19]. A PINN is a machine learning framework that
combines neural networks with physics-based principles to efficiently solve complex physical
problems. PINNs are designed to handle supervised learning tasks while respecting prescribed
physical laws expressed through partial differential equations (PDEs) or ordinary differential
equations (ODEs). They provide a powerful approach to solving problems based on PDEs and
ODEs, but training PINN for certain ODE models with either sensitivity to initial conditions,
or complex behavior, such as the ones presented above, requires an adequate architecture as
well as a significant amount of synthetic training data and computational effort or an accurate
emulation [Ant+22].

In the present preliminary work, we will design a PINN method, and apply it to the GLV
model to simulate the evolution of bacterial species in presence of experimental data, potentially
noisy. The paper is organized as follows: in Section B.1, we present the governing equations
of the GLV model and provide some examples applied to the context of bacterial populations.
Section B.2 introduces the PINN framework, and presents some preliminary results about the
architecture employed in this study. The Section 6.3 shows the results obtained using the PINN
to solve the GLV model, applied to synthetic cases of bacterial populations with and without
added noise to the generated observations. Finally, in Section B.4 we present the GSA algorithm
and its adaptation using PINN, and report our findings on the estimation of the parameters of
the GLV model.

B.1 Generalized Lotka-Volterra model . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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B.1 Generalized Lotka-Volterra model

In this section, we introduce the Generalized Lotka-Volterra model [Vol27]. This model has
been developed to mathematically model the coexistence of various numbers of species in a closed
system in a competitive or predator environment. Section B.1.1 is devoted to the introduction of
the notation and the description of such model, while Section B.1.2 presents two examples that
will be used in the sequel for numerical applications.

B.1.1 Description of the model

Assuming large and well-mixed bacteria population, with only bidirectional interactions
between bacteria populations, and also assuming that their composition, diversity, and dynamics
are not influenced by external factors or environmental conditions (e.g. physical and chemical
parameters such as temperature, pH, humidity, light intensity, nutrient availability, and oxygen
levels, host interactions, ...), then the evolution of Ns different species of bacteria population over
a horizon of time tmax can be described by a Generalized Lotka-Volterra (GLV) model [VB31]:

dxi

dt (t) = µixi(t) +
Ns∑
j=1

aijxi(t)xj(t), ∀t ∈ [0, tmax], 1 ⩽ i ⩽ Ns, (B.1)

with the initial condition xi(t = 0) = xi0. The scalar xi(t) represents the abundance of the
bacterial population of species i at time t, µi represents the intrinsic growth rate of the bacterial
population i, and aij describes the interaction coefficient representing the direct effect of one unit
of biomass of the bacterial population of species j on the growth rate of the bacterial population
of species i.

Bidirectional interactions among these bacterial populations can be categorized into competi-
tion, cooperation, antagonism, and mutualism, but they often lack symmetry due to differences
in species characteristics, environmental conditions, and ecological roles. For instance, a negative
coefficient aij means that the population j has a negative impact on the growth of the population
i, e.g. competition or predation by population j on population i. On the other hand, a positive
coefficient aij means that the presence of the population j enables the population i to thrive, e.g.
cooperation between the populations i and j or predation by population i on population j.
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These asymmetric interactions are crucial for maintaining ecosystem balance; beneficial
bacteria can inhibit pathogens through competition and antagonism, while cooperative relation-
ships enhance resilience against infections. However, since aij and µi can take any signs and
values, several behaviors can be observed [Har20; KG88; FS95; Jia98] such as oscillations, stable
equilibrium with coexisting species, extinction of some species or even demographic explosion or
chaos.

The simulation of GLV models can raise numerical issues, to prevent them and avoid unrealistic
negative solutions, we assume positive initial conditions and use the logarithmic formulation of
the model. For t ∈ [0, tmax], dividing by xi(t) in Equation (B.1) leads to the following formulation:

d log(xi(t))
dt = µi +

Ns∑
j=1

aijxj(t). (B.2)

Setting µ = [µ1, · · · , µNs ]T , A = (aij)1⩽i,j⩽Ns and u = [u1, · · · , uNs ]T with ui = log(xi),
Equation (B.2) can be written under the matrix form:

du(t)
dt = µ + A exp (u(t)) , (B.3)

with the initial condition u(0) = u0.
In the following, the matrix θ denotes the matrix of the GLV parameters, which contains the

intrinsic growth rate and the interaction coefficients:

θ =

 µ1 a11 . . . a1,Ns

...
... . . . ...

µNs aNs1 . . . aNsNs

 .
In this study, the classical solver of the GLV model employed as reference is implemented

in Python using the odeint function from the scipy.integrate library. The default solver of
the library is used, namely LSODA. In the following, we denote by exact solution, or true solution
utruth the trajectories computed with such solver knowing a priori the values of the parameters
θ.

B.1.2 Illustrative cases for numerical simulation of the GLV model

As mentioned above, the solution of the GLV model can exhibit very different behavior.
While GLV models with three species or fewer have been extensively studied [Jia98], there are
few theoretical results on GLV models in higher dimensions, except for models with specific
structures such as bounded competitive GLV (negative off-diagonal terms in the interaction
matrix), cooperative systems (positive off-diagonal terms). We refer the reader to [Bai16] for a
complete survey of available theoretical results.

If the parameters (µ,A) are taken randomly, the probability to reach a situation where only
one species outlives while all the others go extinct increases with the system dimension. Species
co-existence through stable oscillations or steady state is indeed non-generic.

A possible approach to obtain an oscillating model consists of generating a matrix A that
possesses specific properties:

(i) its diagonal elements and the vector µ are set to zero, effectively nullifying any self-impact
of species;

(ii) the matrix A is antisymmetric, guaranteeing that the interaction between species i and
species j is equal in magnitude but opposite in impact to the interaction from species j to
species i (predation interaction);
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(iii) the sum of each row in A is precisely zero, thereby guaranteeing a compensatory effect for
the impact of one species on another.

Assumptions (i) and (ii) ensure the total population to be constant over time (see [Bai16, Chap.
3]), whereas (iii) ensures that vectors with equal, strictly positive coordinates are fixed points of
the system. In the case of systems with even dimensions, after [Bai16, Chap. 3], such systems
are Hamiltonian, and a strictly convex Hamiltonian can be constructed, which guarantees (see
e.g. [Mos76]) that the corresponding GLV model exhibits oscillatory dynamics. For systems
exhibiting Hamiltonian behavior in even dimensions, exploring the use of symplectic numerical
methods [Jin+20] provide a structured approach to preserve system properties such as energy
conservation.

For the general GLV model, [Bai16, Theorem 5] provides a sufficient condition for the
asymptotic convergence towards a stable, coexistence equilibrium, which refers to a situation
where the interactions between the different species reach an equilibrium point where they coexist
sustainably. Indeed, if the model parameters ensure that the growth rates and interactions among
different species balance each other, resulting in a strictly positive equilibrium denoted as −A−1µ,
and if there exists a non-negative diagonal matrix D satisfying AD + DA⊤ being negative-
definite, then the positive equilibrium is both stable and globally attractive in the positive region
of the space. This characterization suggests a heuristic to generate such parameters:

1. Randomly generate a pair (µ,A) ∈ RNs × RNs×Ns , with µ ≥ 0 and the diagonal of A < 0,
and imposing 20 to 40 % of the extra-diagonal terms of A to be zero.

2. Solve the equation µ + AX = 0. If any element of X is negative, then go back to step (1),
else continue to step (3).

3. Set D := diag(X), if AD + DA⊤ is negative-definite, then keep the generated parameters,
else eliminate it and go back to step (1).

Note that in the limit case where all the extra-diagonal terms of A are zero, the GLV model
becomes a set of uncoupled logistic growth equation, with a trivial positive stable steady state
satisfying the proposed heuristic. Hence, by playing on the percentage of zeros in the extra-
diagonal part of A or on their magnitude, the heuristic should provide adequate parameters,
even for high dimensional models.

To illustrate the capability of the PINN to accurately capture the expected outcomes, two
illustrative test cases with distinct behaviors will be considered. In this section, the test cases
and the related numerical simulations are presented.

Example B.1.1. We introduce a first example with Ns = 3 bacterial species. The interaction
matrix, the intrinsic growth rate, and the initial population are chosen as follows:

A3 =

 −2 −5 −0.5
−0.5 −1 −1.2
−1 −0.5 −1

 , µ3 = [7.5, 2.6, 2.5]T and u0 = [5, 3, 1]T . (B.4)

The growth of one species triggers a reduction in another, fostering a reciprocal cycle until a
state of stationary equilibrium is achieved. Figure B.1(a) illustrates the evolution of these three
populations over the time window of interest for this illustrative example, while Figure B.1(b)
highlights that stationary equilibrium is achieved in the long term. The evolution over time of
these three populations for this illustrative example is presented in Figure B.1.

Example B.1.2. We consider a bacterial population with Ns = 20 species. Using the algorithm
described previously, we generate a parameter matrix θ20 = (µ20,A20) such that the system
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Figure B.1: Results of the simulation of the GLV model with three populations of microbes for
an initial population u0 = [5, 3, 1]T .

possess at stationary state −A−1
20 µ20. The obtained matrix is available at https://gist.githu

b.com/thomas-saigre/4f92bbb02221a335c4cbafd74b2441fb. An example of the simulation
of the system, using random initial states is presented in Figure B.2. The theoretical limits for
the populations are also shown. For this case, we select a final simulation time tmax = 20 s.
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Figure B.2: Solution of the GLV model with a convergent state, where 20 species are considered,
over the time interval [0, 20] s. A random initial condition is considered. The dashed lines
represent the theoretical values of the stationary stage −A−1

20 µ20.

https://gist.github.com/thomas-saigre/4f92bbb02221a335c4cbafd74b2441fb
https://gist.github.com/thomas-saigre/4f92bbb02221a335c4cbafd74b2441fb
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B.2 Physics-Informed Neural Network
This section introduces the neural network framework that is used to simulate the GLV

model: Physics-Informed Neural Networks and the discussion about its architecture.

B.2.1 PINN framework

Physics-Informed Neural Networks or PINNs have been introduced in [RPK19] as neural
networks designed to address supervised learning tasks while adhering to specified laws of physics
outlined by nonlinear partial differential equations. It combines both supervised and unsupervised
learning. In traditional supervised learning, the network learns from a labeled training dataset,
where inputs and outputs are matched: the network aims at minimizing a loss function that
measures the difference between its predictions and the data labels. In unsupervised learning,
the network is exposed to unlabeled data, and its objective is to identify patterns or relationships
within the data without explicit guidance from labeled examples. The PINNs are trained to
simultaneously minimize the gap between the predictions and the training dataset and satisfy
the governing physics equations, thereby incorporating both types of learning to achieve a
comprehensive and physics-informed model.

The goal of the PINN is to construct a neural network approximation ûθ(t) of the solution
u(t) of Equation (B.3) based on the knowledge of this equation, where ûθ : [0, tmax] → RNs

denotes the function predicted by the network for a given parameter θ. For t ∈ [0, tmax], we
introduce the residual L of the GLV model (B.3) with respect to the prediction ûθ at time t
defined as

L(ûθ; t) :=
dûθ(t)

dt −
(
µ + A exp(ûθ(t))

)
. (B.5)

In the present work, we have in view a specific situation where, unlike in the usual framework of
PINNs, the initial condition of the GLV model is not exactly known, and it is assumed to be
observed together with other observations at other time points. For this reason, we add second
information based on a sample of data U (e). The data, in this specific contribution, are generated
numerically, but eventually experimental data should be provided. By averaging measurement
errors, introducing these data should reduce the sensitivity to errors on the initial condition and
improve the accuracy of our predictions given a fixed grid time points. Thus, the loss function
should both satisfy the model (B.3) and fit the data U (e).

The neural network approach proceeds by using an optimizer to update the weights and
bias by minimizing a loss function. In our implementation, we employ the optimizer Adam,
implemented in the PyTorch library. This loss function is defined as a linear combination of
quantities that measures the quality of our prediction. Specifically in the context of GLV model,
we introduce two types of errors for the development of our PINN:

• MSEdata: the mean squared misfit by the data, also called the data loss, which is used to
assess the extent to which the model can faithfully reproduce the data presented

MSEdata(t(e)) = 1
NsN e

obs

Ns∑
i=1

Ne
obs∑

k=1

(
ûi(t(e)

k )− U (e)
i,k

)2
, (B.6)

for an experiment e, t(e) =
(
t
(e)
i

)Ne
obs

i=1 and N e
obs are respectively the time of observations and

the number of observations, U (e)
i,k represent the quantity of bacterial population of species i

observed at time t(e)
k and ûi

θ is the neural network prediction of the bacterial population of
species i: û =

(
ûi
)Ns

i=1
;
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Figure B.3: Evolution of the data loss MSEdata (B.8), physical loss MSEL (B.7) and loss function
Loss (B.8), over the epochs during the training of the PINN for the Example B.1.2

• MSEL: the mean squared residual, also called the physical loss, which enforces the structure
imposed by (B.5) at a finite set of collocation points tr = {tj}

Nf

j=1 ⊂ [0, tmax]

MSEL(tr) = 1
NsNf

Ns∑
i=1

Nf∑
j=1
Li(û; tj)2, (B.7)

where L(û; t) = (Li(û; t))Ns
i=1.

Note that the influence of the initial conditions is included in the model, by the loss MSEdata, but,
as mentioned above, due to potential measurement errors, there is no reason to distinguish it from
other available data. We introduce the loss function to be minimized, involving a hyperparameter
λPINN > 0:

Loss = MSEdata(t(e)) + λPINNMSEL(tr). (B.8)

For all our numerical experiments, unless otherwise specified, we take Nf = 100 collocations
points and Nobs = 10 observational data points. We present in Figure B.3 an example of the
evolution of the MSEs of the loss, over the iteration during the learning process of the PINN.
The loss employing a value of λPINN = 0.1 is also presented. The results presented are obtained
from the case with 20 bacterial species, introduced in Example B.1.2. We remark that after a
certain number of epochs, the global loss decreases steadily, demonstrating the learning process
of the PINN, while the data loss stabilizes at a lower value, and the physical loss remains higher,
likely due to the complexity of the governing equations.

B.2.2 PINN architecture

In this section, we discuss the chosen architecture for the neural network trained within the
PINN framework exposed above. A single neural network will correspond to a single experiment
e, and will therefore be trained to predict, for a time t as input, the population of the Ns species
in the given experiment. By adopting a single neural network, the model is tasked with predicting
the population dynamics of all Ns species at a given time t within the specific experiment. The
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Figure B.4: Proposed architecture for the PINN framework: an input layer t, a second layer of
size Ns, Nlayers of size Slayers, and an output layer of size Ns to predict the population of the
different species evaluated at time t. We use a hyperbolic tangent activation function for all our
layers.

rationale behind this decision is to streamline the training process and enhance efficiency instead
of considering a different neural network for each species. This consolidated architecture simplifies
the complexity of the overall framework and promotes a more unified and manageable training
procedure. This strategic choice aimed at achieving a balance between computational efficiency
and predictive accuracy, providing a pragmatic solution for the modeling objectives within the
PINN framework. Thus, the proposed architecture, outlined in Figure B.4, is composed of
successive neural layers of various sizes and utilizes the hyperbolic tangent as activation function.
The hyperparameters governing the number and size of intermediate layers, denoted as Nlayers
and Slayers respectively, are subject to tuning, which is detailed in Section B.2.3.

This chosen architecture aims to strike a balance between model complexity and predictive
accuracy, leveraging the interconnectedness of species dynamics while maintaining computational
feasibility. The choice of layer sizes being proportional to the number of species Ns allows
the network to effectively handle the complexity of interspecies interactions, maintaining a
sufficiently rich feature space. Additionally, it is possible to improve the network’s ability
to capture oscillatory dynamics by incorporating Fourier features [Tan+20], which could be
particularly beneficial for cases like Example B.1.1, where periodic behaviors are prominent. This
enhancement will be explored in future work.

In the following, we present two different aspects that have been investigated to increase the ef-
fectiveness of the PINN framework, notably the strategy to tune the architecture hyperparameters
and the application of time normalization to the classical GLV model.

B.2.3 Selection of hyperparameters

Setting up the PINN described in Section B.2.1 requires choosing λPINN as well as the
architecture of the multilayer perceptron (the number of layers Nlayers, and the size of these
layers Slayers) and the number of epochs used in training, Nepochs, which corresponds to how
many times the entire dataset is passed through the neural network during the training process.
We decided to use Optuna [Aki+19], an open-source hyperparameter optimization framework, to
search the hyperparameter space to find the best value for these hyperparameters with respect
to a chosen metric. This metric, EPINN, will be the relative error of our prediction concerning
the true solution at each collocation point:

EPINN = 1
Ns

Ns∑
j=1

∥∥∥ûj − uj
truth

∥∥∥2

L2([0,tmax])∥∥∥uj
truth

∥∥∥2

L2([0,tmax])

. (B.9)

We explore the tuning of the hyperparameters Nepochs, Nlayers and Slayers. The objective value
optimized by Optuna, presented in the following results, is the logarithm of the error EPINN.
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When selecting the architecture of the PINN, we also need to keep in mind the computational
cost that would be required by a more complex architecture: the more parameters are involved,
which are directly influenced by Ns, Nlayers and Slayers, the more time will be needed to perform
the training of the neural network. Unlike the other hyperparameters, we did not perform specific
tuning for λPINN, as its value depends on the confidence in the model versus the data. In this
study, λPINN was chosen deterministically based on prior knowledge, and a thorough exploration
of its optimization is beyond the scope of this work.

We present in Figure B.5 various findings of our investigation performed on the oscillatory
test case with Ns = 3. Precisely, Figure B.5(a) shows the impact of the hyperparameters on
the prediction error EPINN, while Figure B.5(b) illustrates the error distribution map observed
as the size Slayers and number of layers Nlayers vary. As expected, the results indicate that the
error is smaller when these two parameters are higher. The interesting finding is that the Slayers
affects more the relative error than Nlayers, see Figure B.5(a). Moreover, when Nlayers ≥ 2 we
do not see such an improvement in the results, this behavior is also notable for Slayers > 20. In
Figure B.5(c) we display the evolution of the prediction error EPINN according to the value of
the most influential hyperparameter Slayers. We recover the fact that the wider the layers are,
the more precise the prediction is and the threshold Slayers > 20 where no appreciable increase
of accuracy is highlighted. In order to understand the operations carried out by Optuna, we
additionally use different colors to illustrate each stage within the trial process. Finally, we
performed the same study, focusing on the computational time to find a balance in terms of
efficiency for the architecture of the PINN, as presented in Figure B.5(d). The impact is measured
on two metrics: the prediction error EPINN and the computational time needed to train the
neural network, at a fixed number of epochs. We recover that the size of the layers impacts the
relative error, but less affects the time of simulation: the training of a deeper neural network will
take more time than the training of a wide one.

In light of all these results, we hereafter select the hyperparameters Nepochs = 2000,
Nlayer = 2 and Slayer = 7 × Ns, giving the following architecture to the neural network:
[1, Ns, 7×Ns, 7×Ns, Ns].

The final number of trainable parameters of the network is then dependent on the number
of species. For the two examples presented in this work, with Ns = 3 and Ns = 20, we have
respectively 571 and 25,221 trainable parameters in the neural network.

While we utilized Optuna for hyperparameter optimization, our experiments emphasized the
more challenging oscillatory dynamics with Ns = 3, as this presents a greater challenge for neural
networks compared to stationary dynamics. The architecture’s proportional scaling with Ns

ensures that the increase in the number of species does not impede the network’s effectiveness
across different system sizes.

To enhance the stability of numerical computations during the training of PINN, expedite the
convergence of PINN learning by mitigating potential issues like vanishing gradients and gradient
explosions as discussed in [Kur20; Yas21], and facilitate the optimization process by improving
the handling of diverse scales in model parameters, we propose a modification to the GLV model
introduced in Section B.1.1. Originally defined over a finite time interval [0, tmax], the model is
reformulated by normalizing the time, leading to a formulation defined over a normalized time
interval [0, 1]. Normalization is a widely adopted approach in machine learning for enhancing
neural network performance. In this context, specifically, data contain significant variations from
one timescale to another, time normalization would help the model to focus on the underlying
patterns (dynamics of competition, predation, cooperation, or other interactions between species
that persist over significant time scales despite noise or short-term variations in the data) rather
than on variations in amplitude. With this rationale, to obtain the normalized version of the
GLV model, we perform the following change of variable T := t/tmax. Hence, the GLV model



B.2. PHYSICS-INFORMED NEURAL NETWORK 171

0 0.2 0.4 0.6 0.8

nb layers

nb epochs

size layers

0.05

0.12

0.83

Importance for Objective Value

(a) Hyperparameters importance: impact of the ar-
chitecture of the neural network (numbers Nlayers
and size Slayers of the layers), and number of epochs
for the training set.

2 4 6 8 10

0

10

20

30

40

Nlayers

S
la
y
e
rs

−3

−2.5

−2

−1.5

−1

−0.5

lo
g
(E

P
IN

N
)

(b) Contour plot showing the distribution of the relative error
of the PINN according to its architecture.

0 10 20 30 40

−3

−2.5

−2

−1.5

−1

−0.5

size layers

O
bj

ec
tiv

e
Va

lu
e

0

10

20

30

40

50

Tr
ia

l

(c) PINN relative error against size of layers Slayers. The
color bar represents the trial stage of Optuna execution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nlayers

Slayers

0.31

0.69

0.69

0.31

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

EPINN
comp. time

(d) Effectiveness of the hyperparameters: impact of
neural network dimensions on the prediction error
EPINN and the computational time.

Figure B.5: Results obtained with Optuna on the PINN architecture: tuning of hyperparameters:
number of layers Nlayers, layer size Slayers, and number of epochs Nepochs.
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Figure B.6: Comparison of the PINN predictions with and without time normalization. The full
blue line is the true solution of the model, and the dashed lines are the predictions of the two
PINNs, with time normalization (green) or without it (red). The appropriate scaling for λPINN

2 is
applied.

(B.3) is rewritten as:

du(T )
dT = tmax

(
µ + A · exp(u(T ))

)
for T ∈ [0, 1]. (B.10)

This change of variable leads to a change also in the loss function (B.8), specifically in the
physical loss MSEL (B.7) leading to change of the hyperparameter λPINN:

λPINN
normalized = λPINN(tmax)2. (B.11)

On Figure B.6, the PINN predictions û obtained with the original GLV model (B.3) and
with the normalized GLV model (B.10) using the appropriate scaling of λPINN are compared for
both cases introduced in Section B.1.2.

These results suggest that the prediction is better when time normalization is used, confirming
our hypotheses. Specifically, for the oscillatory test-case presented, see Figure B.6(a), the mean
relative error on the predicted trajectories (B.9) is Ew/o norm

PINN = 0.14 without the normalization
and E

w/ norm
PINN = 2.04 · 10−2 with the normalization. For the second test case with Ns = 20

species, see Figure B.6(b), even though it is less striking than in the oscillatory case, the time
normalization enables to improve the prediction accuracy. The mean relative error on the
predicted trajectories is Ew/o norm

PINN = 0.11 without the normalization and E
w/ norm
PINN = 7 · 10−2

with the normalization.
We figure that with the time normalization, the error gains one order of magnitude. Hence,

we will consider the normalized version of the PINN for further simulations. Our tests indicate
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that logarithmic normalization of concentrations does not significantly increase training duration
while improving the accuracy of the results, making it a suitable choice for our analysis. Hereafter,
by abuse of notation, t will refer to the normalized time variable and λPINN to the normalized
hyperparameter λPINN

normalized.

B.3 Numerical results over the influence of data
This section presents some numerical results obtained with the PINN described in the previous

section. The cases introduced in Examples B.1.1 and B.1.2 will be both used in the following to
compare û the approximation computed by the PINN with the reference solution utruth computed
by solving the GLV model introduced in Section B.1 for the two specific sets of given parameters
θ. In the present study, using the reference solution of the GLV model, we generate synthetic
data to train the PINN. Still, the impact of different behavior of the dataset on û is highlighted
in this study in order to test the robustness of the proposed approach to potential issues that may
arise when working with real data. To do so, the following situations are considered hereafter:

1. generating data on a fixed equidistant grid over the time interval [0, tmax] or selecting those
times randomly from a uniform distribution;

2. intentionally reducing the number of available data, to simulate missing or few data in
actual experiments;

3. adding noise to the data, to simulate the noise in actual experiments.

In the following we analyze the accuracy and the efficiency of the PINN with respect to these
three situations for the two illustrative examples presented in Section B.1.2.

B.3.1 Impact of data sampling strategy

In this section, we focus on the impact of the data sampling on the accuracy of the prediction
of the PINN. To begin with, we look at the distribution of the data over the time interval [0, tmax].
Two data sets of size Nobs = 5 are generated. In the first data set, the data are generated over a
uniform grid of the time interval. In the second dataset, the data are generated at times randomly
sampled following a uniform distribution in the time interval. The predictions of the PINNs
trained with these two datasets and for the two test cases are shown in Figure B.7. During
the training process, all the collocation points are taken identical and equidistributed over the
interval [0, tmax]. For the case with 3 species, see Figure B.7(a), the errors are EPINN = 0.17 for
random times and EPINN = 0.13 for equidistant time ones. On the other hand, the case with 20
species results in EPINN = 3.56 · 10−3 for random times and EPINN = 3.37 · 10−3 with equidistant
time ones, see Figure B.7(b).

For both cases, the impact of the distribution of the data on the PINN’s accuracy is not
remarkable: the resulting PINN approximations û are similar using different strategies. This
outcome is interesting from an experimental point of view, where the sampling strategy can be
constrained.

B.3.2 Influence of the number of data used in the training on the network’s
prediction

First, we focus on the oscillatory example with Ns = 3 species, described in Example B.1.1.
From the model parameters θ3, two sets of data with various sizes are generated: one with
Nobs = 2 and Nobs = 12. It should be noted that the case Nobs = 1 (usually the initial condition)
corresponds to the standard framework of PINNs for ODEs, thoroughly investigated in the
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Figure B.7: PINNs predictions trained with data generated on a fixed equidistant time grid
(orange dashed line) and on times randomly selected from a uniform distribution (blue dashed
line) over the time interval [0, tmax].



B.3. NUMERICAL RESULTS OVER THE INFLUENCE OF DATA 175

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

N1

0 2 4 6 8 10

1

2

3

N2

u(t) True solution
û(t) PINN prediction
Data points

0 2 4 6 8 10

0.5

1

1.5

N3

(a) With 2 data points in the training set.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

N1

u(t) solution
Data points
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Figure B.8: Prediction of the PINN with various numbers of points used for the training set. The
population is composed of three species (Example B.1.1). The full blue line is the true solution
of the model, the dashed red line is the model’s prediction. The square points are the data used
for the training of the PINN.

existing literature [BB23]. The results of the prediction of the PINN for both sets of data
are presented in Figure B.8. For a small number of data, the PINN is not able to properly
approximate the reference solution and the predicted trajectories are not able to capture the
behavior of the true solution. However, as the number of data increases, the prediction becomes
more accurate. It is also highlighted by the mean relative errors (B.9) that is E(2)

PINN = 0.25
for the PINN trained with 2 observation data and E

(12)
PINN = 7 · 10−2 when 12 observations are

provided.
Secondly, we analyze the test case where 20 species are considered, with the convergence

toward a stationary state (Example B.1.2). The results are presented in Figure B.9 for two
different training sets: one with Nobs = 3 (Figure B.9(a)) and one with Nobs = 11 (Figure B.9(b)).
Note that only 4 species are presented. We remark that, with a small number of observations,
unlike the oscillatory case, the PINN tends to approximate fairly well the trajectories and fits
perfectly the theoretical limit. Precisely, the error is E(3)

PINN = 5.16 · 10−3. Doing the same with
more data (Nobs = 11), see Figure B.9(b), we remark that predictions of the PINN are similar to
the previous case with E

(11)
PINN = 5.55 · 10−3. One can conclude that in this case, the number of

observations does not influence the PINN approximation and especially the estimation of the
stationary state.

In analyzing the results, it is noteworthy that the oscillatory test case exhibits poorer
accuracy compared to the stationary counterpart. This disparity can be attributed to the
chosen activation function, which inherently struggles to replicate periodic behaviors without



176 APPENDIX B. INTERACTIONS IN MICROBIAL COMMUNITIES THROUGH PINNS

0 5 10 15 20

3

4

5

6

7

t [s]

Po
pu

la
tio

n
Species 1

True solution
Data points
PINN prediction

0 5 10 15 20

2

2.5

3

3.5

t [s]

Species 2

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 3

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 4

True solution
Data points
PINN prediction

(a) Nobs = 3.

0 5 10 15 20

3

4

5

6

7

t [s]

Po
pu

la
tio

n

Species 1

True solution
Data points
PINN prediction

0 5 10 15 20

2

2.5

3

3.5

t [s]

Species 2

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 3

True solution
Data points
PINN prediction

0 5 10 15 20

1.5

2

2.5

3

t [s]

Species 4

True solution
Data points
PINN prediction

(b) Nobs = 11.

Figure B.9: Prediction of the PINN with various numbers of points used for the training set
Nobs, for the test case with Ns = 20 (only 4 species are presented). The full blue line is the true
solution of the model, predictions of the PINN with and without time-normalization are drawn
in dashed lines, green and red respectively.

additional constraints from more data to guide the predicted trajectories of PINNs. It is worth
mentioning that alternative activation functions (e.g., cosine) could successfully capture periodic
patterns but might fall short in reproducing stationary behaviors [RML23]. Given the need to
make this activation function choice “offline” before knowing the specific parameters and the
system behavior, we have consciously adhered to the hyperbolic tangent choice, prioritizing the
reproduction of stationary behavior. This decision aligns with our focus on biological applications
that often involve steady-state scenarios. In specific circumstances, however, alternative activation
functions can be employed in the proposed approach to better simulate oscillating behaviors.

In the oscillatory test case, the inclusion of data points, such as through data loss, is crucial
to avoid local minima and prevent constant incorrect predictions, even when no noise is present
in the data. Conversely, in the stationary case, while the model can function without such
data, adding data points enhances accuracy and reduces computational time, as shown in our
preliminary tests. These findings are consistent with previous results reported in [BB23].

B.3.3 Adding noise

In order to evaluate the proposed methodology on more realistic data, we conducted some
tests with noisy synthetic data.

From deterministic generated data y, we define the following multiplicative noise ynoisy as:

ynoisy = Log-N
(
µ = ln(y)− 1

2σ
2, σ = ln(1 + ν2)

)
,

where ν is the desired ratio between the standard deviation and the value (ν = std
y ). In the

context of noisy data for the GLV model, we select a value for ν between 0.1 and 0.3.
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Figure B.10: Prediction of the PINN with noisy data, for the oscillatory case with Ns = 3 species.

To begin with, we present the results for the oscillatory case with 3 bacterial species, introduced
in Example B.1.1, see Figure B.10. In the figure, the exact solution is still plotted, even if the
data are noisy, as we do not expect the predicted trajectory to be equal to the exact solution.
The error resulting from the PINN approximation is E(3)

PINN = 3.18 · 10−2.
Now we focus on the second example introduced in Example B.1.2 with 20 species, see

Figure B.11. The error resulting from the PINN approximation is E(20)
PINN = 4.89 · 10−2.

For both test cases, the predicted trajectories are quite close to the reference solutions and
the errors between the PINN approximations and reference solutions are fairly low. This tells
that the developed PINN model is robust to noisy data, which is a positive outcome of the
method. Note that such results are obtained to a fine-tuning of the hyperparameter λPINN.

B.4 Generalized smoothing approach
The Generalized smoothing approach (GSA) was introduced by Ramsay and co-authors in

[Ram+07; RS05] as a method to estimate parameters in a model involved in a parameter-
dependant nonlinear differential equation of the form

u̇(t) = f(u, t; θ). (B.12)

The method described permits estimating the parameters θ of the model using noisy data. The
work from [Ram+07] has been adapted in [Lar+18] for the GLV model presented in Section
B.1.1, in the context of microbial population estimation.

B.4.1 GSA Least squares algorithm

In this section, we describe the GSA algorithm, as adapted in [Lar+18] for the GLV model.
As a step of minimization is performed using the least squares (LS) method, we will denote by
GSA-LS this algorithm.

It uses splines in order to represent the abundances of bacterial species across time, which
should be a solution of the GLV model Equation (B.3), as well as being close to the experimental
data provided. Consequently, the proposed method employs a joint estimation strategy for the
spline coefficients and model parameters. This is achieved through alternate minimization of
a goal function that considers three key components: (i) the proximity of splines to the data,
(ii) a penalty associated with the deviation of the splines as a solution to a GLV model with
respect to the estimated parameters, and (iii) a sparsity penalty applied to these parameters.
This approach is adopted to effectively represent bacterial species abundances across time using
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Figure B.11: Prediction of the PINN with noisy data for the stationary test case with Ns = 20
species.



B.4. GENERALIZED SMOOTHING APPROACH 179

splines, ensuring their alignment with the GLV model Equation (B.3) while closely adhering to
the provided experimental data.

In particular, the algorithm is defined by the following steps :

Step 0 In this step, a basis Φ of spline functions is constructed. These splines act as flexible
building blocks that capture the underlying trends in the data while minimizing undesirable
oscillations and artifacts. The construction of these spline functions forms the foundation
for subsequent parameter estimation and coefficient optimization. The coefficients of the
spline function fitting the data are stored in a matrix C.

Step 1 In this step, an estimate of the model parameters θ is performed using the proximal
gradient descent technique. Proximal gradient descent combines the iterative nature of
gradient descent with a proximity operator that enforces a specific constraint on the
estimated parameters. This constraint can be chosen to promote sparsity or other forms of
regularization, thereby preventing overfitting and enhancing the model’s ability to capture
essential data features.

Step 2 In this phase, new coefficients of the spline basis are computed using the least squares
minimization approach. The primary objective is to minimize the discrepancy between the
model’s predictions and the actual data points. By iteratively adjusting the coefficients, the
algorithm ensures that the spline functions adeptly capture the underlying data distribution
while minimizing the squared residuals. This optimization process contributes to refining
the model’s representation of the data. In [Lar+18], this step of optimization is performed
using the least square minimization.

Precisely, at each step, a linear combination of functions is minimized. To lighten the notation,
we consider here that data from only one experiment is used. To quantify the proximity between
the fitted trajectories and the data, we introduce the function J1, which assesses this closeness
while incorporating a term to account for the smoothing applied.

J1(C) =
Nexp∑
e=1

N
(e)
obs∑

k=1

Ns∑
i=1

∣∣∣ũ(e)
i (t(e)

k )−U
(e)
i,k

∣∣∣2 , (B.13a)

where ũ(e)
i (t) = C(e)Φ(t) is the spline reconstructed solution for the species i, and the experiment

e.
Moreover, to ensure the fitted trajectories fit the model Equation (B.3), we introduce the

function J2:

J2(C,θ) =
Nexp∑
e=1

1
Nf

Nf∑
j=1

∥∥∥∥ ˙̃u(e)(tj)− f
(
ũ(e)(tj), tj ,θ

)∥∥∥∥2

2
, (B.13b)

where (tj)Nf

j=1 is a family of collocation points, equidistributed over [0, 1].
Finally, to avoid θ taking abnormally huge values, we add a penalty term on it, which is

simply the following :
J3(θ) = Pen(θ), (B.13c)

where Pen is any convex penalty.
Steps 1 and 2 are alternated one after another while a stop criterion is reached [Poy+06].

Such criterion is further discussed in Section B.4.3. The algorithm developed in the context of
GSA is summarized in Algorithm 11. Some hyperparameters λ1, λ

LS
2 > 0 are also introduced to

weigh a functional against another during the corresponding step.
Alternate minimization is a preferred approach when dealing with large-sized optimization

problems, particularly in scenarios where model equations exhibit linearity in the parameters.
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In the first step, which involves a convex quadratic optimization problem, the highly efficient
Nesterov accelerated proximal gradient method proves effective for obtaining solutions. This
method is especially suitable for linear dynamical systems that are linear both in the state
and the parameters. In cases like bi-convex optimization problems, this approach ensures
guaranteed convergence towards a stationary point, further enhancing its appeal in tackling
complex optimization challenges.

Algorithm 11: Generalized Smoothing Algorithm GSA-LS.
Input: (ti,u(ti))i.
C [0] ← spline smoothing of data Step 0 ;
while error criterion do

θ[n+1] ← arg min
θ

(
J2(C [n],θ) + λ1J3(θ)

)
; Step 1

C [n+1] ← arg min
C

(
J1(C) + λLS

2 J2(C,θ[n+1])
)
; Step 2

end
Output: Parameters of the ODE θ[N ].

B.4.2 GSA with PINN

In the present work, we replace the usage of the least square minimization performed on
the spline coefficients with a PINN, as introduced in Section B.2. The splines are now used to
generate the trajectories of each species for each experiment, those trajectories are used in the
proximal gradient to estimate the parameters θ. Then during Step 2, the PINN is fine-tuned
from the parameters newly estimated, to predict new trajectories of the bacterial populations.

Precisely, the PINN is trained again to minimize the loss function, but using the weight
previously estimated at the precedent steps. During Step 1, the parameters updated may not
differ that much from the previous ones, so we do not need to train again with as many epochs
as the first time. The strategy we adopted is the following : during the first iteration, we train
the PINN with 5000 initial epochs. Then in the following, we dynamically determine the number
of epochs by considering Errn the relative error committed on the parameters between the two
iterations:

epochn = min
{

1 +
⌊
103 exp

(1
2 log(err [n]

θ )
)⌋

, nb_epochs
}

(B.14)

where nb_epochs is a constant parameter, setting a maximal number of epochs at each iteration,
which has a default value of 100.

On top of that, we add a final step consisting in using another PINN to predict the value of
the parameters θ from the trajectories. This step ensures that the parameters returned fit well
the trajectories, which are constructed to fit both model and data provided.

B.4.3 Stop criterion

In Algorithms 11 and 12, we iterate steps 1 and 2 while an error criterion is reached. The
purpose of this section is to describe this criterion. From one iteration n to the next one n+ 1,
we compute the relative error made on the trajectory predicted and the parameter estimated :

err [n] =
∥u[n] − u[n+1]∥L2[0,tmax]

∥u[n]∥L2[0,tmax]
+
∥θ[n] − θ[n+1]∥F
∥θ[n]∥F

, (B.15)
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Algorithm 12: Generalized Smoothing Algorithm GSA-PINN.
Input: (ti,u(ti))i.
u[0] ← spline smoothing of data;
while error criterion do

θ[n+1] ← arg min
θ

(
J2(u[n],θ) + λ1J3(θ)

)
; Step 1, same as Algorithm 11

Fine tune the PINNθ[n] with θ[n+1];
u[n+1] ← PINNθ[n+1] prediction;

end
Output: Parameters of the ODE θ[N ].
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Figure B.12: Evolution of the error in the GSA-PINN algorithm, with test case described in
Example B.1.1.

and we stop when err [n] reaches a given tolerance errMax.
During the execution of the GSA algorithm, we figure that error tends to stagnate, depending

on the test case considered. We present in Figure B.12 the evolution of the error over the
iterations, for the test case with 3 populations introduced in Example B.1.1. We figure that
a plateau around 10−3 is present. The consequence of that is that we will reach the maximal
iteration number, without getting any improvement in the relative error. To counter this, we
introduce the following procedure : every 20 iterations, we look at the last 20 iterations. If
during this lap of time, we have improved the global minimal error reached, then we continue 20
more iterations. Else we multiply the tolerance errMax by 10 and go on. In Figure B.12, the
iterations where the tolerance has been updated are represented by a red cross. We notice that
in this specific case, the algorithm stops after 200 iterations, over the 500 specified as a maximal
number of iterations.

On the other hand, with this specific criterion, the algorithm GSA-LS runs until the maximal
number is reached because it keeps improving the relative error over the iterations.

In the same spirit, we compute and plot the error committed by the two algorithm compared
to the true solution of the benchmark model of example Example B.1.1. The results are shown in
Figure B.13. During this run, we disabled the adaptive evolution of errMax to see the evolution
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Figure B.13: Evolution of the relative error on the solution computed by the algorithms GSA-LS
(plain) and GSA-PINN (dashed), for the example with 3 species of batteries. Each curve is the
error on the corresponding species, averaged over the two experiments.

of the error until the maximal number of iterations is reached. The solutions compared are, on
the one hand, the PINN-predicted trajectories of the three species, and on the other hand, the
solution given by the splines. We figure that the error is decreasing quite slowly, and seem to
reach a plateau. Moreover, the results returned by GSA-LS are closer to the exact solution, but
the order of magnitude of the errors from both algorithms is the same. This similarity in error
magnitudes allows us to effectively assess their respective efficiency in approximating the true
solution.

B.4.4 Results and comparisons

In this section, we present the results obtained with the GSA-LS and GSA-PINN algorithms,
for test case introduced in Example B.1.2. We use data manually generated from a known set
of parameters, and perform the comparison for data with and without noise. The results are
presented in Figure B.14.

To assess the performance of the two algorithms, we introduce the following error metrics,
measuring either the error committed on the estimated parameters or on the predicted trajectories.

• Errθ,1 :=
∥θ̂ − θtruth∥F
∥θtruth∥F

.

• Errθ,2 defined as the number of coefficients where θ̂ and θtruth have the same sign, divided
by the number of coefficients of the matrices. This definition is motivated by the fact that
in biologic context, we are more interested qualitatively in the impact of population on
each other, rather than quantitatively.

• Erru,1 := 1
NsNexp

Ns∑
i=1

Nexp∑
e=1

∥û(e)
j − u

(e)
j (θtruth)∥22

∥u(e)
j (θtruth)∥22

.

• Erru,2 := 1
NsNexp

Ns∑
i=1

Nexp∑
e=1

∥u(e)
j (θ̂)− u

(e)
j (θtruth)∥22

∥u(e)
j (θtruth)∥22

.

In the sequel, we also perform a comparison on the time taken by the two algorithms to run.
Especially, the code used in the tests is for the GSA-LS algorithm is a Matlab code provided by
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Figure B.14: Comparison of the results obtained with the GSA-LS and GSA-PINN algorithms,
for the test case with 20 species of bacteria. Only 3 species are presented.
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(a) Uniformly distributed data (non-random), 10 data, 10 species, 1 experiment, no noise.

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 1.02 0.69 4.73 · 10−2 4.94 · 10−2 5.54 sec
GSA-PINN 1.06 0.6 1.62 · 10−2 2.2 · 10−2 4.46 s

(b) Uniformly distributed data (non-random), 10 data, 20 species, 1 experiment, no noise.

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 1.09 0.8 3.4 · 10−2 3.53 · 10−2 8.75 s
GSA-PINN 0.98 0.74 1.35 · 10−2 1.92 · 10−2 10.48 sec

(c) Uniformly distributed data (non-random), 10 data, 10 species, 10 experiments, no noise.

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 0.19 0.21 0.32 0.26 16.81 s
GSA-PINN 0.22 0.18 1.5 · 10−2 2.18 · 10−2 35.53 sec

(d) Uniformly distributed data (non-random), 10 data, 10 species, 20 experiments, with some noise.

Algo. Mean Errθ,1 Mean Errθ,2 Mean Erru,1 Mean Erru,2 Elapsed time

GSA-LS 0.16 0.13 0.44 0.28 98.65 sec
GSA-PINN 0.18 0.15 1.49 · 10−2 2.08 · 10−2 70 s

Table B.1: Comparison of the results obtained with the GSA-LS and GSA-PINN algorithms, for
various test cases.

the authors of [Lar+18], while our code for the GSA-PINN algorithm is written in Python, using
the library PyTorch.

The results are gathered in Table B.1, for various configurations of the test case. The first
striking results is that both algorithm perform similarly in the estimation of the parameters, as
they have the same order on the errors Errθ,1 and Errθ,2. On the other hand, the GSA-PINN
algorithm performs better on the prediction of the trajectories, with a lower error Erru,1 and
Erru,2. Finally, regarding the time of execution, we find out similar times for both algorithms, but
time elapsed by both algorithms depending on the configuration of the data provided: number of
training data, species, experiments, and noise.

B.5 Conclusions and perspectives

In conclusion, our utilization of the GLV model within this study has provided valuable
insights into the dynamics of microorganism populations. Despite its widespread use, conventional
methods may encounter challenges in solving the GLV model due to the intricate behaviors
associated with specific parameter sets. By employing PINNs in our research, we successfully
simulated the evolution of bacterial species governed by the GLV model. Our proposed approach
relies on a loss function that effectively combines the constraints of the physical model with data.

We experimented with various architectures and numerical strategies to enhance the efficiency
and accuracy of this methodology. Subsequently, to illustrate the capability of the developed
PINN in capturing expected outcomes, we considered two test cases with distinct behaviors.
Finally, considering potential experimental applications, we discuss the influence of data, including
different sampling, missing data, and noise, on the robustness of this method.
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This study on the application of a PINN to the GLV model is a preliminary study to assess the
capability of such approach to simulate the evolution of bacterial species. Looking forward, our
perspective involves extending this approach into a more complex framework, particularly for the
estimation of GLV parameters. Traditionally, algorithms designed for parameter estimation tasks
require repeated solving of the model, making computational efficiency a crucial consideration.
In this context, the adoption of a fast yet robust method, such as the proposed PINN, holds the
potential to be pioneering in the field of parameter estimation for the GLV model. With such
methodological developments, we expect to improve the optimization of parameter estimation
processes, thus gaining a deeper understanding of microorganism dynamics. However, further
investigations, that are out of the scope of this preliminary study, are required to adapt the
proposed approach for various parameter values.
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