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Résumé

Cette thèse aborde les défis clés de la téléopération bilatérale pour des applications cri-

tiques telles que la chirurgie. Nous nous concentrons sur l’amélioration de la sécurité,

de la transparence et de la robustesse en combinant la Commande Prédictive Basée sur

Modèle (MPC), l’apprentissage et la préservation de la passivité. Nous introduisons

d’abord un cadre MPC avec une méthode d’auto-réglage par Optimisation Bayésienne

pour optimiser la transparence tout en respectant les contraintes de sécurité. En-

suite, nous développons un contrôleur adaptatif robuste de type Tube-MPC qui utilise

l’apprentissage en ligne pour gérer l’incertitude du modèle et garantir le respect ro-

buste des contraintes. Enfin, nous proposons une Commande à Impédance Variable

(VIC) passive qui assure la stabilité via une optimisation en ligne. Les validations

expérimentales et par simulation démontrent l’efficacité de nos approches pour une

interaction homme-robot plus sûre. 1

Mots-clefs : Téléopération Bilatérale, Chirurgie Robotique, Sécurité en Téléopération,

Commande Prédictive Basée sur Modèle (MPC), Auto-réglage du MPC, MPC Adap-

tatif Robuste, Filtres de Passivité, Commande à Impédance Variable (VIC).

1N.B. : Un résumé détaillé en français est inclu dans l’annexe C de ce document.
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Abstract

This thesis addresses key challenges in bilateral teleoperation for safety-critical ap-

plications like surgery. We focus on enhancing safety, transparency, and robustness

by combining Model Predictive Control (MPC), learning-based adaptation, and pas-

sivity enforcement techniques. We first introduce an MPC framework with a Bayesian

Optimization-based auto-tuning method to optimize transparency while enforcing safety

constraints. Second, we develop an adaptive robust Tube-MPC controller that uses on-

line learning to handle model uncertainty, guaranteeing robust constraint satisfaction.

Third, we propose a passive Variable Impedance Control (VIC) scheme that ensures

stability by integrating passivity filters with online optimization. Experimental and

simulation-based validations demonstrate the robustness and effectiveness of the pro-

posed approaches, contributing to safer and more efficient human-robot interaction.

Keywords: Bilateral Teleoperation, Robotic Surgery, Safety in Teleoperation, Model

Predictive Control (MPC), MPC Auto-Tuning, Adaptive Robust MPC, Passivity Fil-

ters, Variable Impedance Control (VIC).
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Nomenclature

Acronyms

SMC: sliding mode control

TDPA: Time Domain Passivity Approach

PSPM: Passive-Set-Position-Modulation

MIS: Minimally Invasive Surgery

RMIS: Robotic Minimally Invasive Surgery

RAS: Robotic Assisted Surgery

VIC: Variable Impedance Control

LFN: Leader-Follower Network

P-P architecture: Position-Position architecture

F-P architecture: Force-Position architecture

MPC: Model Predictive Control

LTI: Linear Time-Invariant

DoF: Degree of Freedom

LMIs: Linear-Matrix-Inequalities

pHRI: physical Human-Robot Interaction

SP: Smith Predictor
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MBP: Model-Based Predictors

GPC: Generalized Predictive Controller

SVD: Singular Value Decomposition

BO: Bayesian Optimization

GP: Gaussian Process

UCB: Upper Confidence Bound

HTMPC: Homothetic Tube-MPC

SML: Set Membership Learning

LMS: Least Mean Squares

sEMG: surface Electromyography

VMS: Virtual Mass-Spring

PFs: Passivity Filters

C-BO: Contextual Bayesian Optimization

Notations and Symbols

The following lists include the used mathematical notations and the main symbols

used throughout the thesis. The symbols are grouped by chapters where they were

first defined. In case of ambiguity, the symbol is defined clearly where it appears in

the thesis. Some symbols might not be mentioned here if they were only used in one

subsubsection.

Mathematical Notation

[A]i: the i-th row of matrix A. If A is a vector, then [A]i is the i-th element of the

vector.

[A]i,j: the (i, j)-th element of matrix A.
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1n: a vector of ones of size n.

diag(a1, a2, ..., an): a diagonal matrix with a1, a2, ..., an on the diagonal.

I: identity matrix of appropriate size.

Symbols defined in Chapter 1

xl, ẋl, ẍl: the leader robot’s position, velocity, and acceleration, respectively.

xf , ẋf , ẍf : the follower robot’s position, velocity, and acceleration, respectively.

fh, fe: the human operator and the environment forces, respectively.

fl, ff : the leader and follower forces, respectively.

Vl, Vf : the leader and follower robot velocities in the Laplace domain, respectively.

Fh, Fe: the human operator and the environment forces in the Laplace domain, re-

spectively.

Zt, Ze: the transmitted impedance to the human operator and the impedance of the

environment, respectively.

Zt,min: the minimal impedance that the teleoperation system can display to the human

operator.

Zt,width: the dynamic range of the transmitted impedance to the human operator that

can be displayed by the teleoperation system.

Symbols defined in Chapter 2

t: continuous time.

τ : discrete time step.

k: discrete time step. Note that when τ and k are used together, τ means the time

step of the actual system, while k is the time step of the predicted system. In other

words, xk := x(τ + k). Unless stated otherwise, both k and τ are used as subscripts

to denote the discretization of the continuous-time variables.

Ts: sampling time
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x, u, y: the continuous state, control input, and output of the system, respectively.

U,U∗: the sequence of inputs and the optimal sequence of inputs over the horizon of

the MPC controller, respectively.

f(·): system discrete dynamics function, i.e., xk+1 = f(xk, uk)

X ,U : polytopic sets that define the MPC state and control input constraints, respec-

tively.

Xf : the terminal set, i.e., a set that defines the terminal state constraints in the MPC

controller.

N : MPC horizon.

Js,Jf ,J : the stage cost function, the terminal cost function, and the cost function of

the MPC controller, respectively.

q, q̇, q̈: robot joint angle, velocity, and acceleration, respectively.

H(q), C(q, q̇), g(q): robot joint-space inertia matrix, Coriolis and centrifugal matrix,

and gravity vector, respectively.

J : analytical Jacobian matrix.

τc: control torque of the robot.

fext: external force acting on the robot.

ml, bl: mass and damping coefficient of the leader robot, respectively.

mf , bf : mass and damping coefficient of the follower robot, respectively.

ke, be: stiffness and damping coefficient of the environment, respectively.

Ac, Bc, Cc, Dc: continuous-time system matrices.

A,B,C,D,E, F : discrete-time system matrices.

zideal: performance vector used to evaluate the teleoperation system performance.

It contains the matching error in position, velocity, and forces between the human

operator and environment sides.
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z: an alternative performance vector that approximates the human force using the

leader robot torque.

nx, nu, ny, nz: the sizes of the state, control input, output, and performance vector,

respectively.

Q,R, P : the matrices of the cost function of the MPC controller.

HX , HU , HXf
: matrices that define the polytopic constraints of the state, control input,

and terminal set, respectively.

nc, ncf : number of constraints and terminal constraints, respectively.

1n: a vector of ones of size n.

diag(a1, a2, . . . ): diagonal matrix with a1, a2, . . . on the diagonal.

M: performance metric that is used to evaluate the controller performance for certain

tuning parameters.

Mi: the performance metric value for the i-th measurement.

M̂: a surrogate function of the performance metric, which is a model that approxi-

mates its value.

α(·), αUCB(·): a general acquisition function of the Bayesian optimization algorithm,

and the upper confidence bound acquisition function, respectively.

Dn: a data set that contains n measurements of the performance metric.

ϕ: a vector of tuning parameters.

Φ, a compact set where the BO searches for tuning parameters.

ϕi: the tuning parameters for the i-th experiment.

ϕ∗: the optimal tuning parameters that minimize the performance metric.

ϵ: noise in the performance metric evaluation.

N (µ, σ2): Gaussian distribution with mean µ and variance σ2

GP : Gaussian process
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µ(·): the mean function of the Gaussian process.

µn(·): the mean value of the Gaussian process at (·) after n measurements.

σ2
n(·): the variance of the Gaussian process at (·) after n measurements.

κ(·, ·): the kernel function of the Gaussian Process.

kGP,n: the kernel vector of the Gaussian process after n measurements.

KGP,n: the kernel matrix of the Gaussian process after n measurements.

Yn: a vector of evaluations of the performance metric after n measurements.

β: exploration parameter in αUCB. It balances the exploration and exploitation of the

acquisition function.

WM: weight matrix for the performance metric (M).

Texp: number of time steps in the window of the performance metric evaluation.

nexp: number of experiments to auto-tune the controller.

Symbols defined in Chapter 3

k0
e , k

∗
e : the initial guess and the true value of the environment stiffness, respectively.

b0e, b
∗
e: the initial guess and the true value of the environment damping coefficient,

respectively.

θ = [∆ke,∆be]: the uncertain parameters of the environment, which are the offset of

the current estimated values from the nominal values of the environment stiffness and

damping coefficient.

θ∗: the true value of the uncertain parameters θ.

d: the additive disturbance of the system.

D: the additive uncertainty polytope, which is a set of all possible values of the additive

disturbance d.

HD, hD: a matrix and a vector that define the additive uncertainty polytope D.
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Aθ, Cθ: the uncertain system matrices of the system, which are functions of the un-

certain parameters θ.

A0, C0: nominal system matrices of the system, which are the system matrices for

θ = 0.

A1, A2, C1, C2: Constant matrices defining the affine dependence of Aθ and Cθ on θ.

Dx(xk): a function that quantifies the error in the model which comes from θ.

Θ: a polytope that bounds the environment uncertain parameter θ.

Θ0,Θτ ,Θ
HC
τ : in the context of SML, Θ0 is the initial uncertainty bounding set, Θτ

is the learned uncertainty bounding set at time step τ , and ΘHC
τ is the hypercubic

approximation of Θτ , respectively.

ητ : the length of the side of ΘHC
τ .

θ̄: the nominal value of θ, i.e., the center of Θ.

θ̂: the point estimate of θ based on the LMS.

nθ: size of parameters θ.

x̄k, x̂k: the predicted state based on the nominal model (using θ̄) and the estimated

model (using θ̂), respectively.

P0: the initial cross-section of the tube, which is a polytope in the state space.

Pk: a polytope in the state space that represents the tube section at time step k.

nP0 : the number of inequalities that define the initial cross-section of the tube P0.

sk: the tube scaling factor at time step k.

K: a pre-stabilizing controller.

Acl,θ: the dynamic matrix of the closed-loop system with the controller K and the

uncertainty θ.

ρ(Θ): the maximum tube contraction rate for a system with uncertainty bounded by

Θ.
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ρθ: the contraction rate of the tube for a system with uncertainty θ.

wk(Θ,D): a parameter that captures growth of tube scaling factor sk in the context

of Tube-MPC.

fw(·): a function that describes the dynamics of wk.

W,W ∗: the trajectory of wk and its optimal solution over the prediction horizon.

Bn : the unit hypercube in n-dimensional space.

vk: an additional control input at time step k calculated by the MPC on top of the

pre-stabilizing controller K.

V, V ∗: the sequence of the additional control inputs and the optimal sequence of

additional control inputs over the horizon of the MPC controller, respectively.

cj: offline constants used for tightening the constraints, with j ∈ {1, . . . , nc}.

∆τ : the set of all possible values of θ that can explain the system state transition from

xτ−1 to xτ .

HP0 , hP0 : matrix and vector that define the H-representation of polytope P0.

HD, hD: matrix and vector that define the H-representation of polytope D.

H∆τ , h∆τ : matrix and vector that define the H-representation of polytope ∆τ .

HΘ: matrix that defines the H-representation of polytope Θ.

πf : terminal controller in the MPC controller.

Symbols defined in Chapter 4

Hl, Cl, gl: the leader robot’s task-space inertia matrix, Coriolis and centrifugal matrix,

and gravity vector, respectively.

Hf , Cf , gf : the follower robot’s task-space inertia matrix, Coriolis and centrifugal

matrix, and gravity vector, respectively.

n,m: the sizes of the robot joint space and task space, respectively.
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Ml, Dl, Kl: the imposed matrices of impedance by the VIC controller, which are the

imposed inertia, damping, and stiffness matrices of the leader robot, respectively.

Mf , Df , Kf : the imposed inertia, damping, and stiffness matrices of the follower robot

by the VIC controller.

Md
l , D

d
l , K

d
l : the desired leader impedance matrices by the user.

Md
f , D

d
f , K

d
f : the desired follower impedance matrices by the user.

xr
l , x

r
f : reference positions for the leader VIC and follower VIC, respectively.

V : the storage function of the system.

Vl,Vf : the storage functions of the leader and follower VIC controllers, respectively.

ω(t): the dissipated power in the system at time t.

ωl(t): the dissipated power in the leader VIC controller at time t.

ωf (t): the dissipated power in the follower VIC controller at time t.

el, ef : the position errors of the leader and follower VIC controllers from their corre-

sponding references, respectively.

βi: the parameters of the passivity optimization problem, which control the technique

of the energy dissipation (i = 1, . . . , 5).

βmax,j: the maximum value of βj for j = 1, 2, 3, 4, 5.

pj: cost function weights for the passivity optimization problem.

ε: slack variable in the passivity optimization problem.

x̃r
l : the error between the follower position and the leader reference position, i.e.,

x̃r
l = xf − xr

l .

x̃r
f : the error between the leader position and the follower reference position, i.e.,

x̃r
f = xl − xr

f .

K̃d
l : the error between the desired leader stiffness and the imposed leader stiffness,

i.e., K̃d
l = Kd

l −Kl.
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K̃d
f : the error between the desired follower stiffness and the imposed follower stiffness,

i.e., K̃d
f = Kd

f −Kf .

λi: the coefficients of βi in ω(t).
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Chap. 1

Introduction

1.1 Bilateral Teleoperation

1.1.1 The Concept of Teleoperation and Haptic Feedback

Since the early days of robotics, researchers have aspired to create fully autonomous

machines capable of independent decision-making and complex tasks. However, the

numerous challenges associated with achieving full autonomy have restricted the prac-

tical use of robots in many real-world applications. In response to these challenges, a

hybrid approach emerged called teleoperation, which combines the computational and

mechanical advantages of robots with the perceptual and cognitive skills of humans.

In a teleoperation system, a human remotely controls a robot via a local interface,

typically supplemented by real-time video feedback from the remote environment. As

shown in Figure 1.1, a typical teleoperation setup consists of five components: a human

operator, a local control device manipulated directly by the operator, a communication

channel that transmits commands and sensory data, a remote robot that executes the

desired task, and the environment [1]. This approach extends the human’s ability to

perform a wide range of tasks, such as interacting with far, inaccessible, or dangerous

environments, or simply augmenting the human capacity with the precision, dexterity,

force, and adaptability of robots. Teleoperation has been used for many applications

such as space and ocean exploration, handling dangerous and radioactive materials,

and minimally invasive surgery.

While video feedback is necessary for the human operator to be able to interact with

the environment, it does not always transfer the full information needed to perform the

23
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Figure 1.1: An illustration of a bilateral teleoperation system in surgery.

task safely and accurately. The absence of the touch and force feeling means that the

human operator lacks a critical sensory channel used in natural interactions. This kind

of information is usually referred to as haptic feedback. When touching an object, the

human receives several types of haptic feedback. Specifically, the tips of the fingers are

equipped with mechanoreceptors located on the skin, which are able to distinguish the

texture, temperature, and pressure distribution on the touched object. This is called

cutaneous or tactile haptic feedback [2]. Even when the tips of the fingers are not in

direct contact with the environment, another important component of haptic feedback

is still transferred to the human through the receptors in the muscles and tendons which

sense the forces applied to the hand. This is called kinesthetic haptic feedback [3].

Teleoperation systems can render kinesthetic feedback to the human operator using

an active local device, which can be a robot that reflects the interaction forces and

position of the remote robot, in addition to capturing the operator commands. Such

teleoperation systems are called bilateral teleoperation systems, since the commands

are sent in both directions through the communication channel, compared to unilateral

teleoperation systems that only transmit motion and/or force commands from the hu-

man to the teleoperated robot. In this thesis, we focus on kinesthetic (force) feedback,

and we refer to it as the force feedback.

It is important to note that the nomenclature for teleoperation systems has evolved

over time. In the literature, the robots used to be called master/slave robots [1],

referring to the robots on the human/environment sides, respectively. This naming

convention is being abandoned [4]. Other names include local and remote robots,

operator and remote robots [5], and leader and follower robots [6]. We use the latter

naming convention throughout the thesis. In addition, many other terms are used nearly
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synonymously with teleoperation, in particular telerobotics and telemanipulation. It

should also be noted that the distance between the robots could vary considerably,

ranging from several meters in surgical teleoperation, to thousands of kilometers in

deep ocean teleoperation, and potentially millions of kilometers in space teleoperation.

Most of the work presented in this thesis can be applied to improving the safety and

performance of a general bilateral teleoperation system. Although the contributions

apply generally, the thesis places special focus on surgical teleoperation, motivated by

its context within the Labex-CAMI (Computer Assisted Medical Interventions) project.

In the following subsection, we present a historical overview of teleoperation systems.

1.1.2 Historical Overview

The development of teleoperated robots can be broadly divided into several eras, each

marked by significant technical and conceptual breakthroughs. Telerobotics is one of the

first applied fields in robotics. By the late 1940s and early 1950s, the first examples of

telerobotics were developed in order to handle hazardous and radioactive material while

protecting the human operator [7]. The first systems were electrical, controlled by an

array of on-off switches to activate various motors and move various axes [8], which was

not intuitive for the human to control. Later, a mechanically coupled leader-follower

system was developed [9], which transmitted force and motion directly through physical

linkages, ensuring that the operator could feel the interaction forces even though the

system was relatively rigid and limited in operational distance (see Figure 1.2). In

1954, the first electrically-coupled teleoperation system was developed by Goertz and

Thompson [10,11], which laid the foundations for modern telerobotics and showed the

significance of force feedback.

In the 1960s, the time-delay effect started being addressed by researchers [13], and

supervisory control was introduced as a way to enhance system stability, where the

operator gives relatively high-level commands, such as intermediate trajectory points,

to be refined and executed by the local control loop of the follower robot [13, 14].

A major transformation occurred in the late 1980s and early 1990s when advances

in control theory led to systematic approaches for ensuring stability in teleoperation

systems. Pioneering works by Raju et al. (1989) [15], Anderson and Spong (1989) [16],

and Niemeyer and Slotine (1991) [17] introduced methods based on Lyapunov stability,

passivity, scattering theory, and wave variables. These techniques were specifically

developed to counteract the destabilizing effects of uncertainties and time delays and

25



CHAP. 1. INTRODUCTION 26

Figure 1.2: Raymond C. Goertz used mechanical (left) and electrical (right) telerobots
in the early 1950s to handle radioactive material. The left photo is from [7], and
the right photo is from [12].

have since become central to the design of robust bilateral teleoperation controllers.

Parallel to theoretical advances, significant hardware innovations pushed the field

forward. In 1982, the Central Research Laboratory model M2 [7] became one of the

first systems to separate leader and follower electronics while providing force feedback,

thereby expanding the practical application of teleoperation in domains such as nuclear

and industrial environments. Concurrently, research groups in France (e.g., Vertut

and Coiffet, 1985) [18] and at the Jet Propulsion Laboratory [19] developed bilateral

servo-manipulators tailored for specific applications, including space exploration. The

1990s witnessed teleoperation branching into new application areas. In 1993, the first

telerobotic system was deployed in space during the Spacelab Mission D2 (ROTEX

experiment), demonstrating remote manipulation under significant communication de-

lays. Later, a breakthrough in telesurgery was demonstrated by what was called the

Lindberg Operation in 2001 [20], where the surgeon was in New York (US), and the

patient was in Strasbourg (France). Despite not having haptic force feedback, this op-

eration underscored teleoperation’s potential in performing delicate medical procedures

even at a distance.

Over the last two decades, numerous variants of the previous control methods were

developed to address the stability issues, improve the operator’s perceived fidelity of

interaction, and balance the tradeoff between them. For instance, new variations of

the passivity-based methods were proposed such as Time Domain Passivity Approach

(TDPA) [21], Passive-Set-Position-Modulation (PSPM) [22], and Energy Tanks [23,24],

in addition to other methods that deal with non-passive environments [25–27]. Novel
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control paradigms, such as model-mediated control [28] and shared control strate-

gies [29], have emerged to optimize the operator’s experience by dynamically adapting

system behavior to the task at hand. These approaches, combined with robust con-

trol techniques and enhanced computational capabilities, have broadened the range of

teleoperation applications to include undersea exploration, agriculture, and assistive

robotics. Nowadays, one of the main active research areas pushing the teleoperation

field to its limit is surgical teleoperation, where the system should be able to perform

very precise tasks with accurate haptic feedback while ensuring the safety of the pa-

tient. In the following subsection, we will provide an overview of the developments that

happened in the surgical teleoperation field specifically.

1.1.3 Teleoperation in Surgical Robots

The evolution of teleoperated surgical systems began with pioneering platforms designed

to enhance surgeon capability and patient safety. In the early 1990s, AESOP emerged as

the first teleoperated robot for surgery, which was an endoscope holder operated by voice

commands. Approved by the FDA in 1994, AESOP achieved significant commercial

success by enabling hands-free control of the endoscope in minimally invasive procedures

[30]. Building on AESOP’s concept, Computer Motion developed the Zeus system. Zeus

integrated three AESOP-like arms, with two teleoperated via a leader console and a

third controlled by voice. The Zeus system was used in the Lindberg operation in 2001

to demonstrate the feasibility of long-distance teleoperation. Despite its innovative

architecture, Zeus did not attain the same market penetration as AESOP until the

company was acquired by Intuitive Surgical [30].

In 2000, Intuitive Surgical received FDA clearance for the Da Vinci system, which

quickly became the benchmark for Robotic Minimally Invasive Surgery (RMIS) (see

Figure 1.3). The Da Vinci system offered key advantages, including high-definition

three-dimensional visualization, increased dexterity, operator tremor filtering, and vari-

able motion scaling between the leader and the follower robots. However, a widely

noted limitation of the initial versions of the Da Vinci robot was the absence of hap-

tic force feedback, which was mentioned as a shortfall in a survey conducted by the

FDA [31]. The Da Vinci system dominated the RMIS market for over two decades,

with more than 6500 units installed by 2020, and more than 10 million operations per-

formed worldwide [32]. A review paper published in November 2015 stated that the Da

Vinci system was the only general RMIS system available in the market back then [33].
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Figure 1.3: The Da Vinci surgical system (© 2011 Intuitive Surgical)

However, since then a large number of teleoperated surgical systems have been emerg-

ing, with some of them being specialized for certain operations, such as the NeuroArm

system for neurosurgery [34], and others trying to compete, for example, by reducing

the cost, reducing the size, or by offering haptic feedback [35].

While haptic force feedback has been tested in many research-oriented telesurgi-

cal robots, its integration into commercial surgical robots has been a long and slow

process. Notably, the Senhance Surgical System, developed by Asensus Surgical (for-

merly TransEnterix), integrates haptic feedback along with a custom master device

and eye-tracking for independent control of slave instruments. Launched in 2016 and

FDA-cleared in 2017, Senhance has been applied in laparoscopic gynecological and col-

orectal procedures [36]. Meanwhile, systems like Versius from CMR Surgical have been

designed to provide some form of haptic feedback. However, the initial clinical trials

used the non-haptic version of the system [6]. A Hong Kong-based startup, NISI, in-

troduced the Novel Surgical Robotic System, a miniature robot designed for natural

orifice surgery that incorporates haptic feedback for precision control [37]. The men-

tioned systems are just a few examples of the many systems that have been emerging

since the last decade. Other examples can be found in [6, 35, 37–39].

More recently in 2023, the Saroa robot was reported to be the first surgical robot

used clinically to integrate a dedicated haptic feedback mechanism [40]. Saroa, being

pneumatically driven, measures the pressure applied to the entire forceps at the robotic

arm side, specifically providing force feedback for gripping actions. In parallel, Intuitive

Surgical has continued to evolve its flagship platform. The Da Vinci 5, released in 2024,

integrates instruments with built-in force sensors, enabling the surgeon to directly sense

the forces applied at the instrument tips [41]. This advancement marks a significant
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Figure 1.4: (left) A manual minimally invasive surgery (stock image); (right) a robotic
minimally invasive surgery (© 2011 Intuitive Surgical). The figure shows the difference
in the ergonomics of the surgeon’s hands.

step forward in the field considering the scale and popularity of the Da Vinci robots.

After presenting a brief overview of the existing telesurgical robots, we will discuss the

advantages of these robots in the next subsection, with a special focus on the importance

of haptic feedback.

1.1.4 The Advantage of Telesurgery and Force Feedback

One of the main fields that are being revolutionized by telesurgery is Minimally In-

vasive Surgery (MIS). MIS is performed through small incisions using long, slender

instruments and an endoscopic camera. Compared to traditional open surgery, MIS

has many advantages, such as less tissue trauma, less blood loss, less postoperative in-

fection, and faster recovery, in addition to better aesthetics [42]. However, MIS comes

with its challenges as well, where the surgeon has to operate using a long tool that is

constrained by the fixed incision point, which results in a non-intuitive mirroring effect,

and the motion required is non-ergonomic for the surgeon, in addition to very limited

or distorted feeling of the forces applied on the tissues. Teleoperated robots are very

promising for solving these challenges, such that they can remove the mirroring effect,

and render the required motion back to an ergonomic one (see Figure 1.4). However,

unilateral teleoperated robots result in a loss of haptic feedback.

The lack of haptic feedback in a teleoperated system forces the surgeon to rely

primarily on visual cues, such as the deformation of tissue, to estimate the forces.
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The likely outcome of misreading these cues is torn tissue or suture breakage [43, 44].

Moreover, the value of haptic feedback in robotic surgery becomes even more important

when visual cues are compromised. For instance, when the camera’s view is obstructed

by fluids or smoke generated by electrosurgical tools. Although experienced surgeons

get better at controlling the amount of force on the tissues by depending on the visual

feedback alone, they may still unintentionally damage sutures or delicate tissues [45].

The works in [46] and [47] reported that unintentional injuries were reduced in

RMIS when appropriate force feedback was available. They reported however that the

operating time increased significantly in RMIS compared to manual intervention, and

hypothesized that this is due to slow tracking in the position control loop. A telerobotic

needle insertion study [48] showed that the error in the detection of transition between

tissue layers was reduced by 55% with the force feedback. Another possible use case for

the haptic feedback is to give the surgeon clues about collisions that happen between

the tool and the tissues outside the camera view, allowing the surgeon to adjust the

positions of the tool [30]. Review of studies that discuss the effect of haptic feedback

on surgical robots can be found in [6, 33], and a meta-analysis of these studies can be

found in [49].

Regarding the recent commercial surgical robots that integrated haptics force feed-

back, initial studies have been recently published. Ueda et al. [40] did several exper-

iments to evaluate the effect of force feedback with the Saroa robot. In one of the

experiments, 6 physicians were asked to move 20 grains of puffed rice from one tray to

another as quickly as possible (Figure 1.5), while the haptic feedback was turned on

and off blindly. Overall, the authors reported that the grasping force was significantly

lower with the haptics on (mean value: 0.63 N), while without haptics (mean value:

2.14 N). In addition, the completion time was also reduced, where the mean time with

the haptics was (mean value: 127.8 s), and without haptics was (mean value: 153 s).

The rice grains were then scanned by electron microscopy for comparison, and the re-

sults showed that the surface of the rice had almost no damage when force feedback was

on, while noticeable damage happened when it was off. Figure 1.5 shows the results of

these scans. Clinical case studies on the Saroa robot were reported by Ueda et al. [50]

and by Iwatani et al. [51], both of which showed similar results concerning the decreased

grasping force when the haptic feedback was on.

A pre-clinical study with the Da Vinci 5 robot was presented in [52], where twenty-

nine novice surgeons were randomized into two groups. Both groups used the Da Vinci

5 robot, but one with force feedback while the other without. Participants performed
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Figure 1.5: The puffed rice experiment with the Saroa robot. (left) The rice grains
were moved from one tray to another. (right) The electron microscope scans of
the rice grains after the experiment, where (A) is the rice that was moved with
haptic feedback on, and (B) is the rice moved with haptic feedback off. (Figure
is taken from [40]).

several types of stitches on ex-vivo porcine bladder and porcine aorta. Force feedback

significantly lowered the mean force applied, the average number of errors, and the

completion time. The force feedback group caused less tissue trauma with a higher

skill score. Other initial studies about the Da Vinci 5 robot can be found in [41,53]. It

is worth mentioning that the above-cited studies on the new commercial robots are still

preliminary, and further research has to be carried out to evaluate the effect of force

feedback on the surgical outcome in the long term.

1.2 Core Concepts in Bilateral Teleoperation

In this section, we introduce several core concepts of bilateral teleoperation, which in-

clude system modeling, performance, stability, and communication delay. These topics

are essential for understanding the control design of the system in this thesis. In Chap-

ters 2 and 3, we assume working with simple robots that have one Degree of Freedom

(DoF) each. This assumption is justified by the robotics background provided in Ap-

pendix A, which demonstrates how a complex multi-DoF robot can be approximated by

a set of decoupled 1-DoF models, for which a separate controller can be designed. This

assumption simplifies the analysis while preserving the essential characteristics needed

for teleoperation control.
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1.2.1 System Modeling

A bilateral teleoperation system consists of five components: a human operator, a leader

robot, a communication channel, a follower robot, and an environment (Figure 1.6).

It is common to represent such a system as three interacting subsystems which are

illustrated in Figure 1.7. Each one of the operator and environment subsystems is

represented by a one-port network, while the leader, the communication channel, and

the follower are lumped into a two-port network called the Leader-Follower Network

(LFN). In this context, a port refers to an interface where energy is exchanged between

two networks. Specifically, each one-port network is characterized by a single pair

of conjugate variables (for example, force and velocity). In Figures 1.6 and 1.7, the

signals transmitted through the system are shown, where the symbols V and F denote

the velocities and forces in Laplace domain, respectively. The subscripts h, l, f , and

e correspond to the human operator, the leader robot, the follower robot, and the

environment, respectively.

Human
Operator Environment

Leader
Robot

Follower
Robot

Communication

Channel

Figure 1.6: General schematic of a bilateral teleoperation system. The dashed arrows
mean a physical interaction, while the solid arrows mean a signal transmission.

Human
Operator Environment

Leader +

+ Follower
Comm. Chan.

Two-Port Network
(LFN)

+

-

+

-

Figure 1.7: Network model of a teleoperation system.

Several bilateral control architectures exist in the literature. These architectures can
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be categorized based on the number and the type of signals transmitted from one side

of the teleoperation system to the other. In the general case, both force and velocity

signals are exchanged in both directions. This is known as a four-channel control

architecture [54]. However, other architectures are possible, such as three-channel or

two-channel configurations [1]. The configuration type also depends on the type and

direction of exchanged signals. For example, if only position signals are exchanged, the

configuration is called a two-channel Position-Position (P-P) configuration. Another

very common example is the Force-Position (F-P) configuration, where the position

of the leader robot is sent to the follower robot, while the force of the follower robot

is sent back to the leader robot and displayed to the operator. The choice of the

configuration depends on the application and the requirements of the task, in addition

to the availability of the sensors. Regardless of the control architecture used, the

operator closes the perception-action loop primarily through visual feedback (although

it is not depicted in Figure 1.6).

1.2.2 Stability

The stability of a teleoperation system is the primary objective of the controller design.

It is defined as the boundedness of the system response to a bounded excitation or to

non-zero initial conditions [15]. One of the reasons that make the stability analysis

complicated is that the teleoperation systems have to deal with the nonlinear, unpre-

dictable, and time-varying human operator model. Moreover, the follower robot often

interacts with various (possibly unknown and time-varying) environments. Commu-

nication channel issues such as time delay and loss of packets are other factors that

worsen the stability of the system. These challenges have motivated extensive research

over the past decades to come up with various methods to guarantee stability while

minimizing the effect on performance.

If the model of the system including the human and the environment is Linear

Time-Invariant (LTI), one can use linear methods such as Nyquist [1,54,55], root locus

method [56], or absolute stability for linear controllers [1]. Robust controllers have

also been applied to guarantee the stability while accounting for the uncertainty in the

system. For example, µ-synthesis approach was applied in [57,58] to take into account

the environment uncertainty and time delay, and a method based on Linear-Matrix-

Inequalities (LMIs) was proposed in [59] to design a robust controller to bounded but

arbitrarily fast time-varying parametric uncertainties.
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For a general linear or nonlinear teleoperation system, Lyapunov methods and

passivity-based methods are commonly used in the literature. Specifically, passivity

has been extensively considered to ensure stability for teleoperation systems [60]. Pas-

sivity is a sufficient condition for stability [1]. Passive systems can be intuitively defined

as systems that do not generate energy, but rather store or dissipate it. A desirable

feature in passivity-related methods is that they generally focus only on the energy

exchanged by the system through its ports with other external systems, which often

simplifies the implementation of these controllers.

Two very important rules make passivity particularly suitable for bilateral teleop-

eration: “First, two passive systems can be combined to form a new passive system.

Second, the feedback connection of two passive systems is stable” [7]. Therefore, if the

passivity of the LFN is guaranteed, then the interaction with any passive operator and

passive environment is stable. This condition covers a very wide range of environments

that do not generate energy or include active elements such as actuators or motors.

In addition, in most scenarios, the human operator is considered a stabilizing element

rather than a destabilizing one, especially in the frequency range of interest for haptics,

where the behavior of the human operator can be assumed to be passive [61].

While passivity is very convenient for stabilizing bilateral teleoperation systems, it is

a conservative method [1]. Also, in some cases, the environment cannot be considered a

passive element, such as in beating-heart surgery, or if the follower robot is interacting

with a human as in telerehabilitation robots. To reduce this conservatism, several

methods were proposed. For example, a measure called the excess of passivity was

estimated by measuring the human grasping force. It is then used to absorb some

of the energy generated by the non-passive environment which relaxes the passivity

condition [25,26]. Also, small-gain theorem approaches were proposed for dealing with

non-passive environments [27,62,63].

In this thesis, we will only consider a passive operator and environment. In Chapter

4, we will design a passivity-based method for a special class of controllers for bilateral

teleoperation, specifically, Variable Impedance Control (VIC).

1.2.3 Performance

Quantitatively assessing the performance of a teleoperation system is challenging but

essential, particularly for surgical applications, where submillimeter accuracy, real-time

force feedback, and strict safety standards must all be met. In the case of surgical
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teleoperated robots, performance metrics can be divided into objective and subjec-

tive measures. Objective metrics include statistical outcomes such as error rates (e.g.,

incidences of tissue damage or suture breakage), operating time, and postoperative

complications [51, 52, 64]. Subjective metrics often involve evaluations of the opera-

tor’s mental workload and ergonomic comfort using established instruments (e.g., the

NASA-TLX) [65]. However, these high-level measures can be difficult to interpret and

may not directly translate into actionable design changes, which is why more detailed

performance metrics are needed.

An alternative perspective that is directly related to teleoperation focuses on achiev-

ing telepresence, which refers to the operator’s sense of being fully immersed and di-

rectly interacting with the remote environment. This concept is closely related to

transparency, which, in bilateral teleoperation, means that the technical medium be-

tween the operator and environment is not felt. In other words, the dynamics of the

leader and follower robots and the communication channel are effectively canceled out.

A transparent system is one in which the following conditions are maintained in the

time domain

fh = fe and ẋl = ẋf (1.1)

where fh and ẋl represent the force and velocity at the human (operator) side, and fe

and ẋf represent those at the environment (follower) side [54].

In the case of LTI systems, transparency can be analyzed in the frequency domain

using impedance matching. The transmitted impedance to the human operator is

defined as

Zt(s) =
Fh(s)

Vl(s)

while the environment impedance is given by

Ze(s) =
Fe(s)

Vf (s)

with s representing the Laplace variable, and Fh, Vl, Fe, and Vf being the Laplace

transforms of the operator force and velocity, and environment force and velocity, re-

spectively. The transparency condition is met when [54]

Zt(s) = Ze(s) and Vl(s) = Vf (s) (1.2)

A common performance metric includes calculating the two following values, first Zt,min,
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defined as

Zt,min(s) = Zt(s)
∣∣
Ze=0

which corresponds to the minimal impedance perceived by the operator when the fol-

lower is not in contact with any environment, and second, Zt,width, defined as

Zt,width(s) = Zt(s)
∣∣
Ze→∞ − Zt,min(s)

which represents the dynamic range of the transmitted impedance that can be achieved

by the teleoperation system. An ideal bilateral teleoperation system would satisfy

|Zt,min(s)| → 0 and
1

|Zt,width(s)|
→ 0 (1.3)

Alternative frequency-domain measures include the sensitivity of transmitted impedance

to changes in environment impedance [66] and the maneuverability index defined in [67],

which evaluates how closely the actual system responses match the defined ideal re-

sponses by integrating the error in the frequency domain.

For nonlinear systems or for online optimization of transparency based on a time-

varying model, time-domain measures can be used. For instance, the weighted integral

of matching errors in positions, velocities, and forces can be used [5, 68], where it is

usually evaluated on a finite-time window. This measure is derived directly from the

definition of transparency in (1.1). In this thesis, we primarily adopt this type of

time-domain measure of transparency, which is discussed in detail in Chapters 2 and 3.

It is worth noting that there exists a tradeoff between stability and transparency

as has been shown by many works [1, 54,69]. This means that achieving perfect trans-

parency may lead to instability in practice. This tradeoff motivates the design of con-

trollers that can guarantee stability while optimizing for transparency, which is one of

the reasons why we will use optimization-based methods in the controller design in this

thesis. Finally, in some applications, scaled transparency is desired. For instance, in

construction tasks, scaling down the transmitted environmental forces and velocities

can reduce operator fatigue [54], whereas in microsurgery, scaling up these signals can

enhance the operator’s perception.
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1.2.4 Communication Time Delay

Communication time delay is one of the most studied issues in the literature on bilateral

teleoperation due to its severe impact on the stability and transparency of the system

[14, 70, 71]. Depending on the specific teleoperation system, the time delay can range

from a few microseconds or milliseconds to several minutes for outer-space teleoperation

(e.g., on Mars).

As we mentioned before, the main focus of this thesis is teleoperated robots in the

context of surgery. The majority of currently available teleoperated surgical robots are

designed for operations where the surgeon is present in the same room as the patient,

leveraging the benefits of teleoperation aside from long-distance telesurgery. Despite

the absence of significant communication delay in current surgical systems, ensuring

safety and high performance remains a critical research challenge due to interactions

with delicate tissues and the need for precise haptic feedback. This highlights that

improving the safety and performance of non-delayed teleoperated robots remains an

active research area. Therefore, throughout this thesis, we focus on non-delayed bilat-

eral teleoperation, assuming that the communication channel is sufficiently fast such

that the delay is negligible.

1.3 Safety in Bilateral Teleoperation

Safety is a very wide concept that encompasses many factors, such as mechanical, elec-

trical, high-level awareness, and control aspects. In this thesis, we focus on developing

robust and safe controllers for bilateral teleoperation systems. Safety in teleoperation

is closely related to safety in physical Human-Robot Interaction (pHRI), which is a

very active area of research with more established safety standards. This is why, in the

following, we draw inspiration from pHRI to define some of the safety directions for our

work.

1.3.1 Safety Concept for Physical Human-Robot Interaction

The safety in pHRI can be regarded from many points of view. For example, it could be

either an added component to the controller design such as emergency backup plans, or

it could be an intrinsic aspect of the controller design itself, for instance, stability. An-

other classification is presented in a recent survey on safe and ergonomic human-robot
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interaction control [72]. In this survey, the papers related to safety were categorized

as: collision avoidance, collision detection, motion planning, and safety-oriented control

system design.

By comparison to this classification, in teleoperation, the first three aspects are

mainly handled by the human operator, assuming the operator is well aware of the

environment to detect the collision, and is able to control the follower robot accurately to

avoid the collision and plan the motion. This makes high transparency — which enables

the operator to better perceive the remote environment and enhances the tracking of

their commands — a key aspect for safety. In this regard, we consider transparency

as one of the main goals of safe controller design, and in Chapter 2, we propose a

systematic and efficient method for auto-tuning a special class of controllers for bilateral

teleoperation, specifically for achieving high transparency.

The fourth mentioned aspect of safe pHRI is safety-oriented control system design.

The aim here is to build controllers that are inherently safe by design. Again, this

concept covers a broad range of strategies. In the following subsections, we introduce

several features that are directly related to this context, which will form the main focus

of the thesis. First, we discuss imposing explicit safety constraints on the system. These

constraints are closely aligned with safety standards, as will be shown later. Second,

we discuss the robustness of the system in the face of uncertainties, which is critical

for maintaining safety in many applications. Finally, variable compliance control is

discussed as an advanced safety feature. Such a controller allows the system to adapt

dynamically to varying interaction forces, which further contributes to safety by ensur-

ing that unexpected impacts or excessive forces do not lead to hazardous conditions,

while still being able to reach high forces when needed.

1.3.2 Safety Constraints

pHRI safety standards impose limits on robot behavior to ensure safe interaction with

humans. For example, ISO-10218 (2006), which is related to industrial robots, included

limits on flange speed (≤ 0.25 m/s), dynamic power (≤ 80 W), and static force (≤ 150

N) [73]. In his thesis in 2014, Haddadin established new grounds for more thorough

safety standards and suggested that the characteristics of the tool should be taken

into account (e.g., sharp or blunt), or body parts (soft tissues, head, hand) and other

factors [73]. Later, and to enhance safety, the ISO/TS-15066 (2016) specified new

power and force thresholds that have been established on the basis of pain sensitivity
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thresholds. The guideline also reports the maximum contact pressure and force for each

body area [74].

While teleoperated surgical robots are not identical to collaborative robots, they do

share many similarities due to their close interaction with the patient. In some cases,

nurses and assistants can be working close to the teleoperated robot, which makes it

even more similar to collaborative robots. Other standard guidelines were published

in IEC 80601-2-77 (2019) [75], which concern Robotic Assisted Surgery (RAS). These

guidelines require the manufacturer to consider the device’s speed of movement in the

context of all other RAS-related movements, both inside and outside the patient. A

common feature between these standards is that they establish safety limits on the

signals of the robotic system such as velocity and force.

Another important safety measure in teleoperated surgical robots is a concept called

forbidden virtual fixtures. These fixtures define virtual boundaries within the robot’s

workspace that the system must not cross, effectively preventing the robot from entering

dangerous zones, such as areas near critical tissues or anatomical structures, regardless

of the operator’s commands [76]. Forbidden virtual fixtures could be regarded as a

constraint on the robot position. All the mentioned safety aspects can be summarized

by one idea: a safe controller must be able to respect specified constraints on the robot.

To implement these constraints effectively, we will later use a control method called

Model Predictive Control (MPC). MPC is an optimization-based control method that

allows incorporating constraints on the system. The method uses a model of the system

to predict the system state trajectory over a short time-horizon in the future, allowing

it to plan and adjust the robot’s trajectory in real time. This ensures that the robot’s

movements and forces remain within safe limits as defined by relevant safety standards.

MPC will be discussed more in detail in Chapter 2.

1.3.3 Robustness to Uncertainty

The explicit enforcement of safety constraints, as discussed above, is a cornerstone of

safe system design. However, a critical distinction must be made between safety under

nominal conditions and safety in practice. A controller designed using a perfect, nomi-

nal model of the robot and its environment might satisfy constraints in simulation, but

it offers no guarantees in the real world where uncertainties are inevitable. Modeling

errors, unmodeled dynamics (like friction), sensor noise, and unexpected environmen-

tal interactions can cause the system’s actual behavior to deviate from its predicted
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trajectory, leading to constraint violations and compromising safety. Therefore, safety

and robustness are fundamentally intertwined. A truly safe system must be robustly

safe, meaning it is designed to explicitly handle uncertainty and guarantee that con-

straints will be satisfied across all expected variations and disturbances. Robustness

is the property that translates theoretical safety into practical, reliable safety. This

thesis addresses this challenge by developing control strategies that are not only aware

of constraints but are also robust to the uncertainties that threaten to violate them.

Moreover, in the particular case of MPC which solves an optimization problem on-

line, it is important to ensure that the problem stays feasible throughout the operation

and that it does not fail to be solved suddenly, which might compromise the safety.

For all the mentioned reasons, in Chapter 3, we design a control strategy to account

for these uncertainties using robust MPC techniques, and we augment it with learning

methods to obtain a better estimation of the system model and uncertainties.

1.3.4 Variable Compliance Control

Another aspect that contributes to safety in teleoperation is variable compliance control.

This approach shifts the focus from enforcing rigid, predetermined limits to enabling

the robot to adapt its behavior dynamically in response to the environment. In this

work, we adopt a widely used method within this category, called Variable Impedance

Control (VIC) [77]. VIC allows the robot to track a desired reference trajectory while

modulating its stiffness and damping characteristics in real time. By doing so, the

system can react differently to external disturbances. For example, it may become

more compliant when encountering unexpected obstacles or forces, or around fragile

objects, thereby reducing the risk of injury or damage [78]. Conversely, when accurate

tracking is needed to implement a certain task such as cutting, the system increases

its rigidity and applies the required forces to achieve the desired trajectory [79]. This

adaptive behavior not only enhances safety by providing a more human-like interaction

but also improves task performance in certain teleoperation contexts.

Nevertheless, varying the impedance can introduce stability challenges, specifically

by injecting energy into the system and compromising the passivity condition [80]. To

address this issue, we develop a method that guarantees the passivity and stability of

the system. Specifically, we build an optimization-based method that combines different

energy dissipation mechanisms. This method is presented in Chapter 4.
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1.4 Content of the Thesis

1.4.1 Contributions

This thesis contributes to the research field of bilateral teleoperation by addressing key

challenges in safety, transparency, and robustness. Motivated by the need to handle

safety constraints, we first design an MPC controller for a bilateral teleoperation system

with the goal of optimizing transparency while respecting safety constraints. Our main

contributions related to this topic are presented in the following.

Due to modeling errors and other factors, the applied MPC does not result in a

transparent system automatically, and accurate tuning is necessary, which is a process

that is often difficult and time-consuming. Our first contribution is the design of a

framework to auto-tune the MPC controller for enhancing transparency. The method

was directly tested on hardware, effectively improving the system’s transparency within

a relatively short time. The framework and the results are discussed in Chapter 2.

In critical applications such as surgical robots, it is necessary to satisfy the safety

constraints, which are dealt with by the MPC controller. However, in the presence of

environment model uncertainties, the constraints are prone to violation by the MPC.

Our second contribution deals with this issue by employing a learning-based robust

MPC. The method guarantees robust constraint satisfaction under bounded environ-

ment uncertainty while enhancing the model at the same time. A learning method is

used to obtain a better estimation of the uncertainty bounds, reducing the conservatism

of the robust controller. The details are presented in Chapter 3.

The third issue addressed in this thesis is the safety in VIC-based teleoperation.

While VIC renders the robots more flexible and provides them with natural and com-

pliant interaction characteristics, time-varying impedance (particularly increasing stiff-

ness) can inject energy into the system, potentially violating the passivity condition and

compromising stability. Our third contribution is the design of a passive VIC controller

for bilateral teleoperation. We extend a method called passivity filters to the bilateral

teleoperation case, and we combine it with other passivity-based methods using online

optimization. The method is presented in Chapter 4.

In addition to the theoretical developments, this thesis also contributes practically

by simulation-based and experimental validation of the methods. Particularly, the pro-

posed auto-tuning framework and the passive VIC were implemented on two different

bilateral teleoperation setups. These experimental results demonstrate the feasibility
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and effectiveness of the proposed approaches. The experimental validations are pre-

sented in the corresponding chapters for each contribution.

1.4.2 Scientific Publications

The contributions of this thesis have been published in the following proceedings:

[81] F. A. Almasalmah, H. Omran, C. Liu, T. Poignonec, and B. Bayle, “Auto-Tuning

of Model Predictive Control for Bilateral Teleoperation with Bayesian Optimization*,”

IFAC-PapersOnLine, vol. 58, pp. 85–90, Jan. 2024.

[82] F. A. Almasalmah, H. Omran, C. Liu, and B. Bayle, “Adaptive Robust Model

Predictive Control for Bilateral Teleoperation,” in 2023 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 7069–7074, Oct. 2023.

[83] F. A. Almasalmah, T. Poignonec, H. Omran, C. Liu, and B. Bayle, “Passivity

Filters for Bilateral Teleoperation with Variable Impedance Control,” in 2025 IEEE

International Conference on Robotics and Automation (ICRA) — (Accepted).

1.4.3 Thesis Outline

After introducing the history, context, and main concepts of bilateral teleoperation in

Chapter 1, the remainder of this thesis is organized as follows. Each chapter includes

a focused literature review that provides the necessary background and positions our

contributions with respect to the current state of research.

In Chapter 2, we design an MPC controller for the bilateral teleoperation system,

and we present the proposed MPC auto-tuning framework. Chapter 3 details our ap-

proach to design an adaptive and robust MPC controller, which deals with the uncer-

tainties of the environment to guarantee the constraints satisfaction, and learns a better

model and tighter uncertainty bounds. In Chapter 4, we introduce a VIC strategy for

bilateral teleoperation, and we augment it with an optimization-based passivity filter.

This enables the leader and the follower robots to adapt their compliance dynamically

while preserving the system’s passivity and stability. Finally, Chapter 5 concludes the

thesis by summarizing the main contributions and discussing future research directions.
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Building upon the discussion in Chapter 1 regarding the importance of safety and

transparency in bilateral teleoperation, this chapter focuses on developing a control

strategy that explicitly addresses these requirements. We identified transparency as es-

sential for effective interaction and safety, while noting that constraints are fundamental

to safe operation, especially in delicate tasks. MPC provides a suitable framework for

integrating these aspects. Therefore, this chapter presents the design and formula-

tion of an MPC controller tailored for bilateral systems, aimed at maximizing trans-

parency subject to safety constraints. Furthermore, recognizing the practical difficulties

in achieving optimal performance through manual parameter tuning, we introduce an

auto-tuning method for the MPC controller.

This chapter is structured as follows: Section 2.1 provides an overview of MPC and

designs an MPC controller for bilateral teleoperation. Section 2.2 details the auto-

tuning method approach. Section 2.3 validates the method on a 1-DoF teleoperation

system experimentally. Section 2.4 concludes the chapter.

2.1 MPC for Bilateral Teleoperation

2.1.1 Introduction and Literature Review

We begin by summarizing the MPC concept and its broad industrial success. Next, we

review its application in interaction control, in which a robot physically interacts with

an environment, since this topic is directly related to our problem. We then discuss the

idea and history of predictive approaches in teleoperation, including MPC and other

related predictive controllers, and we conclude by focusing on state-of-the-art MPC in

teleoperation.

2.1.1.1 Model Predictive Control

MPC is an advanced control method that uses a dynamic model of the system to pre-

dict future states over a horizon and to optimize the control input in order to achieve

a certain goal. Its ability to handle constraints on the states, inputs, and outputs

makes it especially suitable for applications that require safety and high performance.

MPC has seen major developments throughout the decades, driven mainly by the

hardware upgrades that allow for real-time computations, the advances of optimiza-

tion algorithms such as interior-point and active-set methods, and the development of
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specialized numerical solvers and libraries (e.g., CVX, OSQP, qpOASES, Acados, and

GPU-accelerated MPC).

MPC utilizes a mathematical model of the system dynamics to predict future be-

havior over a finite time horizon N . This prediction is used to solve an optimization

problem at every time step, aiming to minimize a defined cost function while respect-

ing system constraints. Although the optimization problem results in a sequence of N

optimal control inputs, only the first control input of the computed sequence is applied

to the system before the process repeats at the next time step. This is known as the

receding horizon principle, which makes it a closed-loop controller with more robust-

ness against disturbances and uncertainties. In classical MPC, a general form of the

optimization problem at a discrete time step τ is given by

U∗ = argmin
U

(
Jf (xN) +

N−1∑
k=0

Js(xk, uk)

)
s.t. x0 = x(τ) (measured)

xk+1 = f(xk, uk)

(xk, uk) ∈ X × U

xN ∈ Xf

(2.1)

where x(τ) ∈ Rnx is the measured system state at the discrete time step τ , xk ∈ Rnx

and uk ∈ Rnu are respectively the discrete system state and input at the future instant

k (relative to time step τ). N is the prediction horizon, x0 ∈ Rnx and xN ∈ Rnx

are the initial and final states, respectively. nx and nu are the sizes of the state and

input vectors, respectively. f(.) represents the system dynamics, Js and Jf are stage

and terminal cost functions, respectively. X ⊆ Rnx and U ⊆ Rnu are sets that define

constraints on the states and inputs, and Xf ⊆ Rnx is the terminal constraint set. U is

the control input trajectory over the prediction horizon defined as

U =


u0

u1

...

uN−1


Finally, U∗ is the optimal solution that contains the optimal control input trajectory

over the prediction horizon. It is well known that an unconstrained MPC with a linear
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system and quadratic cost function yields an optimal solution that is equivalent to a

state-feedback controller which can be computed offline. However, when the problem

is constrained, it has to be solved online using suitable solvers to guarantee constraint

satisfaction [84]. Figure 2.1 shows the operating principle of MPC.

...

Past Future

k k+1 k+N

Prediction Horizon

Predicted Control Input

Reference Trajectory

Predicted Trajectory

Figure 2.1: The basic concept of MPC. The controller predicts the future behavior
of the system (blue line) over a finite horizon and optimizes the control input
(green line) to achieve a desired reference behavior (red line).

Thanks to the progress of MPC, it is competing with many classical controllers in

many applications. For example, in automotive industry, a multivariable constrained

MPC system was designed for torque tracking in turbocharged gasoline engines for

mass production by General Motors [85]. In the field of aeronautics, a robust MPC was

developed and evaluated for an uncertain nonlinear F-16/MATV aircraft model [86].

The work in [87] designed a stochastic MPC controller for the management of water

distribution networks, aiming to optimize energy consumption. In a recent survey of

2020 [88], Samad et al. considered MPC more impactful to the industry than most

classical control-theory techniques such as robust control, adaptive control, and non-

linear control. The authors also predicted that the impact of MPC will keep growing

in the future. Many other applications can be found in an early survey of MPC in

industry [89], or a more recent one in [90]. Following its success, MPC has been widely

used in robotics, including in interaction control.
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2.1.1.2 MPC in Interaction Control

Over the past decade, MPC has been increasingly applied in robot interaction control,

where robots are supposed to interact physically with an environment or humans. By

leveraging its inherent versatility and flexibility, MPC was used in various ways and was

combined with different components to enhance the interaction while ensuring safety

and performance.

Several studies employed MPC as a high or mid-level controller to set commands for

a lower-level controller. In [91], MPC was used as a high-level controller for joint path

set-point generation. This enabled a robot to rapidly reach a target position in dense

clutter while regulating whole-body contact forces to be below a given threshold. In [92],

Haninger et al. used MPC with a Gaussian process to model human force in various

task modes. Based on inferred human intent, MPC optimizes the robot trajectories and

generates the desired force trajectory for a lower-level admittance controller, allowing

for flexible and efficient collaboration. Gold et al. [93] generalized the idea and proposed

a general framework of model predictive interaction control for robotic manipulation

tasks. The proposed controller acts as a mid-level trajectory planner and calculates the

desired joint positions and velocities for the subordinate controller to realize a desired

interaction force, compliance behavior, or motion.

Other studies used MPC as a lower-level controller to directly manage the interaction

forces. Bednarczyk et al. [94] developed a method based on MPC to replicate an

impedance controller behavior when interacting with an environment, while respecting

practical robotic constraints. In [95], Matschek et al. proposed a learning-based MPC

scheme that optimizes the robot torques and provides stochastic safety guarantees by

limiting the forces when interacting with an uncertain environment. They demonstrated

the method with a robot writing on a board with a certain reference force.

Building on these diverse implementations, it is evident that MPC’s adaptability

makes it an excellent candidate to safely manage physical interactions, from high-level

trajectory generation to low-level force regulation. Next, we present early works that

employed predictive approaches in teleoperation, which laid the groundwork for using

MPC in this field.

2.1.1.3 Prediction-Based Control in Teleoperation

Many types of predictive controllers were used in teleoperation, including Smith Pre-

dictor (SP) [96, 97], Model-Based Predictors (MBP) [98, 99], Generalized Predictive
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Control (GPC) [100, 101], and MPC [5, 68]. The concept of prediction-based control

was applied for many reasons, such as enhancing stability and performance in general,

or more specific goals such as reducing the effect of time delay [102], or dealing with

specific types of predictable disturbances [103]. An extensive survey on predictive con-

trol approaches in teleoperation is provided in [104]. In the following, we will focus

mostly on GPC, which is a close relative to MPC. GPC solves an optimization problem

with no constraints. In the linear case, it could be solved offline and formulated as a

state-feedback controller. The method has been widely applied in teleoperation, both

unilateral and bilateral.

An example of disturbance compensation was done by Ginhoux et al. [103] designed a

unilateral teleoperation scheme that compensates for the repetitive respiratory motions

or cardiac motions in a surgical robot. The method uses the predictive feature of

GPC to predict and compensate for such repetitive motions. Later, Joinie-Maurin et

al. [105] developed the method to include force feedback while removing the part that

results from the respiratory motion, such that the surgeon feels as if the environment

is motionless. This allows for a more intuitive operation on moving organs.

The work of Slama et al. [102] included a GPC on the operator side that generates

a reference velocity for the follower robot’s PI controller. The GPC model explicitly

takes into account the effect of the haptic force feedback which modifies the intended

trajectory of the operator. This enhances the robustness against environment uncer-

tainty and time delay. The method was tested on a scaled teleoperation through the

internet in [106]. Chen et al. [101] used an event-based GPC strategy for teleoperation

via internet, which used a path governor on the leader side that generates online param-

eterization of the desired motion reference, and a GPC on the follower side to generate

the redundant control information to diminish the influence of the packet loss and the

large time delay. Other papers that employed GPC in teleoperation include [107–111].

2.1.1.4 MPC in Teleoperation

MPC has gained attention in teleoperation applications due to its success in solving

practical problems such as safety constraints and improving performance using learn-

ing techniques. In addition, MPC is an online optimization-based method, which has

the potential to manage online the compromise between safety and transparency in a

better way than the controllers that separate those two goals [112]. An early attempt

was made by Bemporad in 1998 [113], where the author used an MPC at the leader
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side to handle time delays in a unilateral teleoperation scenario. The first value of the

optimal control sequence, computed at each step, is applied as usual, but in case of

delayed signals, the remaining sequence from the last computed trajectory is used as a

fallback input on the follower robot, while still satisfying the constraints. In [68], Sheng

and Spong proposed a modified MPC method to deal with the time delay and input or

output constraints in bilateral teleoperation systems. The controller adds a correction

signal based on the previous prediction error compared to the new measured signals.

The authors formulated separate controllers for free motion and contact motion. Ghazi

et al. [114] designed an MPC for bilateral teleoperation and focused on the optimization

algorithm that minimizes the cost function by comparing several optimization meth-

ods in simulation. The authors found that the interior-point method, Singular Value

Decomposition (SVD), and recurrent neural networks were the most efficient methods

for this application. In [115], Hatori et al. proposed a compensation method for sys-

tems with time-varying delays using MPC on the follower side. The method improves

responsiveness and compensates for disturbances and modeling errors by incorporating

a model error compensator.

Due to the flexibility of MPC, there exist many other interesting examples illustrat-

ing the use of MPC constraints and cost function for a variety of goals in the literature.

In a more recent work by Piccinelli and Muradore [112], the authors designed a nonlinear

MPC with energy tanks for both the leader and follower robots. In order to guarantee

passivity, constraints on the energy level in the tanks were added to the MPC problem.

The authors showed how MPC reduced the chattering issue that happens when the

tank has low energy, and the method was tested on a 1-DoF teleoperation system in

a hardware experiment. Later in [5], the authors used the same framework and added

a force constraint on the follower robot to prevent it from damaging the unknown en-

vironment. The method used recursive least squares to learn the environment model,

starting from an overestimation of the model parameters. The method was tested on a

6-DoF teleoperation system in simulation. In [116], the authors proposed using a hybrid

linear MPC, where they defined an integer variable that counts the number of switches

between free motion and contact state. By including the variable in the cost function,

they reduced the tool bouncing at the moment of contact. To keep the passivity, the

authors used a linearized version of the energy tanks.

In several works, MPC was used on a relatively complex follower robot to provide

it with additional abilities and a degree of autonomy. For example, in [117], Hu et

al. implemented a nonlinear MPC to provide real-time motion planning and collision
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avoidance capabilities to the follower robot, since it has redundant parts that cannot

be directly controlled by the operator or by the haptic device. Risiglione et al. [118]

used a nonlinear MPC on the follower side for controlling a teleoperated robotic arm on

top of a legged robot. The MPC was used as a high-level controller that gives reference

commands to a lower-level whole-body controller. Both sides have energy tanks to guar-

antee passivity and stability. A similar application was studied by Cheng et al. in [119],

where a feedback MPC was implemented to give reference commands to the lower-level

whole-body controller which runs at a much faster rate while guaranteeing collision-free

teleoperation by defining suitable MPC constraints. On the operator side, the haptic

force feedback is reflected from a force/torque sensor on the follower robot with addi-

tional damping for better stability. While the majority of works on predictive control in

teleoperation consider time delay, other problems such as tuning for performance and

robust constraints in the presence of uncertainties are still not deeply explored. In this

chapter, we will design a linear MPC for bilateral teleoperation, and then we will focus

on the tuning of the MPC controller for bilateral teleoperation applications.

2.1.2 MPC Formulation for Bilateral Teleoperation

2.1.2.1 Prediction Model for Bilateral Teleoperation

An ideal MPC controller requires accurate models of all system components, including

the human operator, the robots, and the environment. However, this is almost impos-

sible in practice, especially for the human operator. A simplified model could still be

useful considering the closed-loop nature and the fact that the optimization problem is

solved at each time step, which reduces the effect of model mismatch. Therefore, the

following assumptions are made to simplify the model throughout Chapters 2 and 3:

1. accurate models of the leader and follower robots are available, which allows for

linearizing and decoupling the axes as will be shown later.

2. the human force is measurable and slowly varying, i.e., ḟh ≈ 0. As a result, fh is

measured at each time step and assumed constant over the prediction horizon in

the optimization problem. While this is a simplification, it is commonly adopted

in the literature and is justified by the short duration of the prediction window

relative to typical variations in human input.

3. the robot is always in contact with the environment, which is represented suffi-
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ciently accurately by an LTI model with decoupled axes, i.e., pushing the envi-

ronment in one axis does not generate a force in the other axes.

4. the leader robot has low impedance, meaning that the human operator feels

mainly the actuator force, rather than the dynamics of the robot.

To model a general robotic manipulator with n-DoF, moving in m-dimensional task

space and interacting with an external system with force fext, the dynamics are ex-

pressed in the joint space as follows

H(q)q̈ + C(q, q̇)q̇ + g(q) = τc + J⊤fext (2.2)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration, respectively. H(q) ∈
Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis matrix, g(q) ∈ Rn is the gravity

vector, τc ∈ Rn is the control torque, J ∈ Rm×n is the Jacobian matrix, and fext ∈ Rm

is the external force.

A common practice is to build a low-level controller to linearize and decouple the

robot axes in the task space, which can be done by implementing the steps in Ap-

pendix A. Building on this, in Chapters 2 and 3, we will assume that both the leader

and follower robots are linearized and decoupled using a low-level controller while be-

ing in contact with an environment with LTI model and decoupled axes. Therefore, we

design our MPC for a single axis, which deals with a 1-DoF LTI teleoperation system

that involves one axis on the human side and the corresponding axis on the follower

side. The resulting dynamics of this system can be described as

mlẍl + blẋl = fl + fh (2.3)

mf ẍf + bf ẋf = ff + fe (2.4)

where ml, bl,mf , bf ∈ R are the mass and damping coefficients of 1-DoF axis of the

leader and follower robots, respectively. fl ∈ R and ff ∈ R are the control forces

applied by the motors of the leader and follower robots, respectively. fh ∈ R and

fe ∈ R are the human force and environment force, respectively.

In the literature, the environment is often assumed to be modeled sufficiently ac-

curately by an LTI spring-damper system [5, 120]. Assuming such a model for the

environment and that it is always in contact with the follower robot, its force can be
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written as

fe = −kexf − beẋf (2.5)

where ke is the stiffness of the environment, and be is its damping coefficient. The

linearized dynamics of the follower robot (2.4) when in contact with the environment

can be rewritten as

mf ẍf + (bf + be)ẋf + kexf = ff (2.6)

From (2.3) and (2.6), the continuous-time state space representation can be written as
ẋl

ẍl

ẋf

ẍf

ḟh


︸ ︷︷ ︸

ẋ

=


0 1 0 0 0

0 −bl/ml 0 0 1/ml

0 0 0 1 0

0 0 −ke/mf −(bf + be)/mf 0

0 0 0 0 0


︸ ︷︷ ︸

Ac


xl

ẋl

xf

ẋf

fh


︸ ︷︷ ︸

x

+


0 0

1/ml 0

0 0

0 1/mf

0 0


︸ ︷︷ ︸

Bc

[
fl

ff

]
︸ ︷︷ ︸

u

(2.7)

We also define the output of the system as

y =



xl

ẋl

xf

ẋf

fh

fe


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 −ke −be 0


︸ ︷︷ ︸

Cc


xl

ẋl

xf

ẋf

fh


︸ ︷︷ ︸

x

(2.8)

To be used in the traditional MPC, the continuous-time system can be discretized with

sampling time Ts and rewritten as

xk+1 = Axk +Buk (2.9)

yk = Cxk

where the subscript k ∈ N refers to the discrete moment k. A, B, and C are the

discretized versions of Ac, Bc, and Cc from (2.7) and (2.8).

In the following, we formulate the problem as a linear MPC problem, where the cost

function can be quadratic (hence convex), and the constraints are written as combined

52



CHAP. 2. MPC AUTO-TUNING FOR BILATERAL TELEOPERATION 53

linear constraints on the states and inputs. Note that this also allows adding constraints

to outputs or a certain performance vector that is linear in the states and inputs. This

formulation allows for efficient solving of the optimization problem using specialized

solvers.

2.1.2.2 MPC cost function for bilateral teleoperation

To quantify transparency, we define the ideal performance vector zideal as follows

zideal =

xl − xf

ẋl − ẋf

fh + fe

 =

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0 1 1

 y (2.10)

The transparency is achieved if zideal = 0. Hence, the goal of the MPC could be to

minimize the magnitude of the zideal.

Note, however, that naively minimizing (fh + fe) using the prediction model (2.9)

limits the capacity to reflect the environment force to the operator, since fh is not

controllable by the input u. At the same time, the MPC can control fe indirectly

by modifying xf , ẋf . This means that from the point of view of the controller, only

fe can be controlled to match fh, and not the opposite. Therefore, this formulation

cannot implement any teleoperation architecture that displays environment force on the

operator side such as F-P architecture. In order to provide the MPC with the ability

to manipulate the future values of fh, we can either incorporate the human model in

the MPC which is not trivial, or we can use the value of the leader robot force fl as

an approximation of −fh as done in [68]. This takes advantage of the fact that the

human feels mainly the force applied by the leader robot motor (see assumption 4), i.e.,

fh ≈ −fl. Such assumption is valid for most commercial haptic devices thanks to their

light weight [121]. For that reason, we modify the definition of the performance vector

to include −fl + fe instead of fh + fe

z =

 xl − xf

ẋl − ẋf

−fl + fe

 =

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0 0 1


︸ ︷︷ ︸

E

y +

 0 0

0 0

−1 0


︸ ︷︷ ︸

F

u (2.11)
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and the discrete version of the performance vector is defined as

zk = Eyk + Fuk (2.12)

The MPC cost function is defined in order to minimize the matching errors between

both robots and maximize transparency along the prediction horizon as follows

J (x0...N , u0...N−1) =
N−1∑
k=0

(
z⊤k Qzk + u⊤

k Ruk

)
+ z⊤NPzN (2.13)

where Q ∈ Rnz×nz is a semi-positive definite matrix that penalizes the matching errors

between the leader and follower robots, and nz is the size of the vecotr z. R ∈ Rnu×nu is

a positive definite matrix that penalizes the control effort. P ∈ Rnz×nz is a semi-positive

definite matrix that penalizes the matching errors at the end of the prediction horizon.

2.1.2.3 MPC Constraints for Bilateral Teleoperation

The main advantage of MPC is the ability to handle constraints on inputs and states.

In general, it makes sense to add hard constraints on control inputs to account for

motor saturation. In bilateral teleoperation, additional constraints could be defined to

enhance safety. For example, the velocity and the kinetic energy can be limited based

on safety standards [74, 75]. Constraints on the follower robot position can be defined

to prevent it from exiting the safe operating area, which can be seen as a forbidden

region virtual fixture [122]. In addition, the force applied to the environment can be

limited to prevent its damage [5]. Other works constrained the energy level in the tanks

to be higher than a threshold to guarantee passivity [112]. In the following, we consider

a general form of convex mixed-input-state linear constraints that can be expressed by

the row-wise inequality

HXxk +HUuk ≤ 1nc (2.14)

where HX ∈ Rnc×nx and HU ∈ Rnc×nu are the constraint matrices and vector, respec-

tively, and nc is the number of constraints. 1nc is a vector of ones of size nc. Note that

in the case of a good model, constraints on y or z can be reformulated to the form of

(2.14) using the model (2.9) and (2.12). The mentioned form of constraints represents

a polytopic region in the space of states and inputs. Constraints on the terminal state
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can also be added as

HXf
xN ≤ 1ncN

(2.15)

where HXf
∈ RncN

×nx is the constraint matrix for the final state, and ncN is the number

of constraints on the final state, and 1ncN
is a vector of ones of size ncN .

2.1.2.4 MPC Optimization Problem for Bilateral Teleoperation

Since we consider a teleoperation at close distance with negligible delays, we design the

MPC as a centralized controller that takes the states of both robots and the human force

as inputs at the same time. Figure 2.2 shows a block diagram of the centralized MPC

for bilateral teleoperation. Decentralized MPC is usually used when the robots are

far from each other such as in [116], where the two MPC controllers are implemented

separately, and each controller takes the latest solution of the other controller as an

input. However, in our case, a centralized MPC gives more flexibility to the optimizer

to adjust both control inputs at the same time.

We can now formulate the full MPC optimization problem using the prediction

model (2.9) and (2.12), the cost function (2.13), and the constraints (2.14) and (2.15).

At every discrete time step τ , the MPC takes x0 = x(τ) as input and solves the following

problem

U∗ = argmin
U

N−1∑
k=0

(
z⊤k Qzk + u⊤

k Ruk

)
+ z⊤NPzN (2.16)

s.t. x0 = x(τ) (2.17)

xk+1 = Axk +Buk (2.18)

yk = Cxk (2.19)

zk = Eyk + Fuk (2.20)

HXxk +HUuk ≤ 1nc (2.21)

HXf
xN ≤ 1ncN

(2.22)

At each time step, the state x(τ) is measured and updated, including the positions and

velocities of the robots, and the human force. Then, the optimization problem (2.16) is

solved to get the optimal control sequence U∗. After that, only the first control input

u0 is applied to both robots, and the process is repeated at the next time step.

Note that in traditional bilateral teleoperation architectures, signals are directly sent
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and used by the controllers on each side, and thus creating a clear architecture such

as F-P teleoperation. On the other hand, MPC-based bilateral teleoperation uses the

optimization problem (2.16) to connect the robot models and to minimize the matching

errors in z from (2.12). Therefore, the architecture is not as clear as in traditional

teleoperation, and it depends on the weights of the cost function and the model, as well

as the signals sent from each robot. In any case, choosing the cost function weights

(Q,R, P ) reflects directly on the behavior of the teleoperation system. However, it is

not straightforward to select these weights to achieve the desired behavior, especially

when the system parameters are not known accurately. In the next section, we will

present a method for auto-tuning the MPC controller for bilateral teleoperation.

MPC
Human
Operator Environment

Leader
Robot

Follower
Robot

Figure 2.2: Block diagram of the centralized MPC for bilateral teleoperation. Note
that the MPC plays the role of the controller and the communication channel
in this diagram since it takes the signals from both sides and directly computes
the control inputs for each robot.

2.2 Auto-Tuning MPC for Bilateral Teleoperation

2.2.1 Introduction and Literature Review

Despite its importance, the choice of the MPC parameters is rarely an intuitive task,

and it generally requires experience and iterative tuning through trial and error. The

MPC cost function in teleoperation is often designed to reduce the predicted matching

errors between the leader and follower robots in terms of position, velocity, and force.

In addition, the cost function usually contains a term related to the control inputs,

as defined in (2.13). However, it should be noted that accurately matching forces

and matching positions are two competing objectives, which requires the controller

to compromise between the two [1]. Furthermore, the control input penalty weight

R governs the level of control effort exerted by the controller, but determining its

appropriate value relative to Q is not straightforward. Moreover, assigning the weights
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in the MPC cost function based on intuition may not always yield the intended results

in the closed-loop behavior due to several reasons, such as model errors, short prediction

horizon, and the choice of control input weights. Thus, an efficient method for auto-

tuning is still needed.

To tune the cost function weights, two perspectives can be adopted. The first

approach, known as the inverse optimality problem, involves deriving a cost func-

tion that would yield a controller with desirable behavior, often by mimicking a pre-

existing, well-performing controller. Examples include learning from human demonstra-

tions [79], solving the inverse LQR problem using LMIs [123], or controller matching

techniques [124]. However, these methods require that a good controller already exists

as a benchmark. In this work, we focus on a different approach, which involves directly

optimizing a known performance metric, which will be discussed next.

2.2.1.1 Tuning as an Optimization Problem

The controller tuning process can be seen as an optimization problem whose goal is to

minimize a certain metric that assesses the controller performance. This metric depends

implicitly on the controller parameters, such as the MPC cost function weights, since

they do in fact affect the performance. Unfortunately, such a metric may not have a

simple analytical form, and it can only be evaluated point-wise by performing experi-

ments (or simulations) using the candidate weights that are being evaluated. Hence, in

the literature of teleoperation controller tuning, black-box optimization methods were

often used. For example, early work in [125] used the Hooke and Jeeves search method

to search for optimal PID gains for a simulated 2-DoF robot. Other authors used

particle swarm optimization [57, 126], genetic algorithms [127], or artificial bee colony

algorithm [128]. Evolutionary learning neural networks were used in [129] to learn the

optimal gains for a PID controller based on the current environment. In [130], the

authors used a method called relay auto-tuning to tune the PID controller of the leader

robot in a medical needle insertion scenario. Most of the aforementioned methods

require a large number of experiments to find the optimal tuning, which limits their

applicability to simulations. Optimal tuning obtained in simulations can be applied

to the real system, but this might make it suboptimal due to model-plant mismatch.

Therefore, a method that is sample-efficient and can be applied directly to the real

system is needed. A promising approach is to use Bayesian optimization (BO), which

is a black-box optimization method that has gained popularity in recent years due to
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its sample efficiency and ability to deal with noise-corrupted objective functions.

2.2.1.2 Bayesian Optimization

Among the black-box methods, BO stands out for its ability to find optimal parameters

with minimal evaluations. BO achieves this by explicitly modeling the objective func-

tion using a model, which guides the search process. This model is referred to as the

surrogate model in the literature. To look for the minimizer, the algorithm iteratively

balances the exploration of promising regions in the search space and the exploitation

of known high-performing areas. More details about the algorithm will be provided

in Section 2.2.2. A review on the method can be found in [131]. Recently, BO has

been applied to tune controllers in many contexts. For instance, the work in [132]

auto-tuned an LQR controller for balancing an inverted pendulum held by a robotic

arm in hardware experiments. The authors of [133] used BO to find energy-efficient

trajectories for a robotic manipulator by tuning the MPC weights. In [134], the au-

thors auto-tuned a robot controller to interact with unknown objects robustly without

causing any damage. In [135], a user-adaptive variable damping controller was designed

for human-robot interaction tasks. The method used BO to find the optimal controller

parameters for each user efficiently.

In the following, we use the BO algorithm to auto-tune the MPC controller for bilat-

eral teleoperation tasks. Therefore, safety guarantees can be enforced by the MPC con-

troller, while ensuring an accurate teleoperation by finding the optimal MPC weights.

The method balances the trade-off between position tracking and force tracking for the

leader and follower robots. Moreover, the sample efficiency of the method makes it

applicable for tuning in experimental hardware directly with a relatively low number

of experiments as will be demonstrated through our simulations and experiments. The

auto-tuning method focuses on finding the best weights for the MPC cost function to

achieve good teleoperation performance by minimizing the closed-loop matching errors

of position, velocity, and force between both robots.

2.2.2 Bayesian Optimization for MPC Tuning

In the following, we provide a brief background about the BO algorithm that we use to

find the optimal weights Q,R of the MPC cost function. Interested readers are referred

to [136] for more details about the algorithm.
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2.2.2.1 Problem Formulation

We consider Q,R as diagonal matrices, and P = 0 as was done in [137] to reduce the

search space dimension and we write

Q = diag(ϕ1, ϕ2, ϕ3) , R = diag(ϕ4, ϕ5) (2.23)

where diag(.) is a diagonal matrix with the arguments on its main diagonal. Finally, we

search for the optimal ϕ = [ϕ1, ϕ2, ϕ3, ϕ4, ϕ5] ∈ R5 in a bounded set we call the search

space Φ ⊂ R5.

We define a scalar performance metric M(ϕ) that measures the performance of a

certain MPC controller parameterized by ϕ. The tuning process is equivalent to finding

the solution to

ϕ∗ = argmin
ϕ∈Φ

M(ϕ) (2.24)

where M : R5 → R is the performance metric. This metric does not have a known

analytical form, and the evaluation of its value at a certain point ϕ could be done

experimentally by running the MPC performance with the candidate set of weights ϕ

plugged into the cost function matrices as in (2.23). This is a time-consuming process

even for evaluating a single ϕ. Moreover, evaluating the performance metric M(ϕ)

is often corrupted by noise due to the stochastic nature of the environment and the

human operator. That is, repeating the same experiment with the same ϕ will yield

different values ofM(ϕ), which makes it difficult to find the optimal ϕ∗ using traditional

optimization methods. BO helps find ϕ∗ efficiently with a low number of experiments.

2.2.2.2 Bayesian Optimization Algorithm

The BO algorithm constructs a surrogate model M̂(ϕ) that approximates M(ϕ) in

important regions, and then iteratively seeks to find the minimizer of the surrogate

model instead of the actual function M(ϕ). When the surrogate model becomes accu-

rate enough, the minimizer of the surrogate model will be close to the minimizer of the

function. Using this idea, the optimization problem (2.24) (the tuning) turns into the

following iterative process

1. choose a point ϕi at which to evaluate M(ϕ).

2. evaluate the performance metric M(ϕi).

59



CHAP. 2. MPC AUTO-TUNING FOR BILATERAL TELEOPERATION 60

3. update and fit the surrogate model M̂(ϕ).

4. minimize the surrogate model M̂(ϕ) using more efficient methods such as gradient-

based methods.

To choose which points to sample M(ϕ) at, the algorithm uses an acquisition func-

tion α(ϕ) that balances the exploration-exploitation trade-off. In other words, α(ϕ)

encourages exploring new regions in the space where the surrogate function has high

uncertainty and is likely not to be close to the actual function in order to enhance the

fitting (exploration). Conversely, α(ϕ) promotes exploitation by selecting points that

minimize the surrogate function, which are likely to approximate the minimizer of the

true function M(ϕ).

Gaussian Processes (GPs) are a popular choice for constructing a surrogate model

due to their sample efficiency and robustness in handling noisy objective functions. The

GP is a probabilistic model that approximates the performance metric and provides

the estimated mean and variance of the value at each point. Given a set of n noisy

evaluations

Dn = {(ϕi,Mi = M(ϕi) + ϵi)}ni=1

where (·)i denotes the i-th evaluation, ϵi is Gaussian noise with ϵi ∼ N (0, σ2
ϵ ), and

Mi represents the i-th evaluation of the performance metric. The GP is completely

specified by its mean function µ(·) and covariance function (or kernel function) κ(·, ·).
The surrogate model of the performance metric is a GP which can be expressed as

M̂(ϕ) ∼ GP
(
µ(ϕ), κ(ϕi, ϕj)

)
where ϕi, ϕj represent two points in the search space. Assuming a zero prior mean, the

predicted mean and variance at a new point ϕ are given by

µn(ϕ) = k⊤
GP,nK

−1
GP,n Yn

σ2
n(ϕ) = κ(ϕ, ϕ)− k⊤

GP,nK
−1
GP,nkGP,n

(2.25)

with κ(ϕ, ϕ) ∈ R is the kernel function evaluated at (ϕ, ϕ), kGP,n ∈ Rn is the vector

whose i-th entry is κ(ϕ, ϕi), and KGP,n ∈ Rn×n the kernel matrix with entries

[KGP,n]ij = κ(ϕi, ϕj) + δijσ
2
ϵ

where δij is the Kronecker delta, and Yn = [M1, . . . ,Mn]⊤ is the vector of observed
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performance metrics. Equation (2.25) defines an analytical form of the probabilistic

GP model M̂(ϕ), which tries to capture the actual performance metric M(ϕ). Note

that calculating the predicted mean and variance at a new point depends directly on

all previously measured points in Dn. Given the predictive distribution (2.25), the

algorithm proposes the next point to be evaluated ϕn+1 by minimizing the acquisition

function. We use the standard Upper Confidence Bound (UCB) function given by

αUCB(ϕ|Dn) = µn(ϕ)− βσn(ϕ) (2.26)

with the exploration hyperparameter β, where higher values of β encourage the explo-

ration of unknown regions with high uncertainty in the GP, and lower values encourage

finding the minimum using the current learned surrogate model. For the GP kernel, we

employ the standard Matérn kernel 3/2, and infer its hyperparameters and noise level

by evidence maximization [138]. In order to search for the optimal weights of the MPC,

we need to define a bounded search space and a performance metric. The algorithm

builds a surrogate GP model that captures the relationship between the MPC weights

and the value of the performance metric and encodes it in the form of a probabilistic

distribution (2.25). This is then used iteratively to find the optimal weights.

2.2.3 Proposed Approach of Auto-Tuning

In the following, we present the proposed approach to automatically tune the MPC

weights using the BO algorithm in bilateral teleoperation.

2.2.3.1 Performance Metric Design

To compare different weights of the MPC, we need to design a function that measures

the performance based on an experiment (or simulation). One of the advantages of BO

is its ability to handle complex non-convex performance metrics [131]. Many examples

of such functions were used in the literature in different applications. For example, in

autonomous racing cars, the authors of [137] used lap time and the deviation from the

center line as a performance metric. The work in [139] used human preference as a

measure of performance to tune a haptic rendering system. In [135], the authors used

BO to adapt the damping in a pHRI scenario. The authors used a combination of agility

measures, user effort, and stability-related measures such as overshoot and settling time.

The authors of [134] used compliance and force smoothness at the moment of contact
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to tune a robot that interacts with an uncertain environment.

In teleoperation, as we mentioned in Subsection 1.3.1, our main goal is to enhance

system transparency in order to contribute to the awareness and control accuracy of

the human operator, thus contributing to safety. Therefore, we use the matching errors

of positions, velocities, and forces to measure the performance after each experiment

(i) as

Mi =
1

Texp

Texp∑
j=1

z⊤j WMzj (2.27)

where WM is a scaling matrix that takes into account measurement units and the

relative importance between the signals as defined by the user, Texp is the duration of

the experiments measured in time steps, and z is the performance vector which contains

the matching errors as defined in (2.12). In practice, we set an upper bound on the

performance metric value to prevent large values since a point with an excessively high

value can deteriorate the accuracy of the GP fitting for neighboring low points. It is

important to point out the difference between the MPC cost function (2.13) and the

performance metric (2.27). Although both depend on the matching errors, the former

minimizes the predicted errors based on the system model on a short horizon, while the

latter evaluates the closed-loop measured errors on a much longer window in a model-

independent manner. Importantly, the closed-loop errors differ from the predicted ones

due to the limited prediction horizon and the potential model-plant mismatch. The

MPC cost function also includes a cost for control inputs while the performance metric

does not.

2.2.3.2 Auto-Tuning the MPC for Bilateral Teleoperation

To tune the MPC, we perform nexp experiments of interaction with an environment

with parameters ke, be. Each experiment is run for Texp time steps. The human operator

applies a force profile on the leader robot, while the follower robot interacts with the

environment. Before each experiment (i), the BO algorithm proposes a certain ϕi

that contains the diagonal values of Q and R. After Texp time steps of interaction,

we calculate the performance metric as in (2.27), and we update the surrogate model

with the new noisy measurement of the performance metric (ϕi,M(ϕi) + ϵi) where ϵi

is the unknown noise value included in the measurement. Using the updated mean

and kernel functions, the next promising point is found by minimizing the acquisition

function from (2.26). After testing nexp different points, we can either take the best one
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as the optimal tuning, or we can find the minimizer of the learned surrogate (GP) model

using gradient-based techniques with multiple restarts. The latter choice is preferred

due to its robustness against noisy measurements and human input variability.

In this work, we assume that we know a range of parameters that can stabilize the

system, which is used as the search space for the algorithm. In practice, theoretical

stability guarantees can be achieved through other means, for instance, using energy

tanks [112]. Figure 2.3 shows the architecture of the teleoperation system with the

proposed auto-tuning algorithm.

MPC
Human

Operator Environment
Leader
Robot

Follower
Robot

Auto-Tuning Stage

Surrogate 
Model

Acquisition
Function

Next Weights 

Performance 
Metric EvaluationOptimizer

Bayesian OptimizationAfter each 
experiment (i),
wich lasts for 

exptime steps

Figure 2.3: Block diagram of the proposed auto-tuning approach with the teleoperation
system.

2.3 Validation

To evaluate the effectiveness of the proposed auto-tuning algorithm, we validate it

through both simulation and hardware experiments. The simulation provides a con-

trolled environment to test the algorithm under ideal conditions with accurate models

and no noise, while the hardware experiments demonstrate its performance under real-

istic conditions, including model inaccuracies and sensor noise. We apply the proposed

algorithm in both simulation and hardware experiments using the same setup to com-

pare the results.
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2.3.1 Experiment and Simulation Description

To evaluate the performance metric at a certain point (ϕi), we perform what we refer to

as a trial, which can be either a short simulation or a hardware experiment. Each trial

involves 3 seconds of interaction with a low-frequency sinusoidal-like human force as

input to the system (1 ∼ 2 Hz). At the end of each interaction, we calculate the noisy

performance metric value (M(ϕi) + ϵi), and we assign it to the corresponding MPC

weights. The (unmeasurable) noise ϵi can be caused, for instance, by human behavior

variability. The BO algorithm updates the surrogate model with the measured value,

and the minimization of the acquisition function (2.26) proposes new weights to test,

which are then used in the next trial. The process is repeated for nexp trials until

acceptable tuning is found. The goal of the tuning is to minimize the performance

metric in (2.27). We set WM from (2.27) as WM = diag(1500, 5, 500), and we impose

an upper bound of 10 on the performance metric value. In the BO algorithm, we set the

exploration parameter in (2.26) to β = 3 initially, and decrease it linearly until 0.5 at

the last point to encourage the exploitation. The BO algorithm also requires defining

the bounds of the parameters, which are set as the element-wise inequalities
0

0

0

1

1

 ≤


ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

 ≤


104

10

104

103

103

 (2.28)

where the search space of stabilizing parameters results from empirical tests and scaling

of measuring units.

The code is implemented in the ROS2 framework under Linux. Acados library [140]

is used to formulate and implement the MPC solver in C++. The BO code is based on

the software in [141]. The implemented code automates the tuning process such that

the human operator is only asked to apply a repeatable force profile on the leader robot

continuously. Meanwhile, the code runs the MPC controller on both robots, measures

the performance metric, performs the BO computations, proposes new weights, and

switches the controller weights automatically for the next trial. The code automatically

finishes the tuning after a predefined number of trials nexp and finds the optimal weights.

The experimental setup includes two identical 1-DoF robots which are shown in

Figure 2.4. Each robot is composed of a Maxon motor, which is controlled by EPOS3
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driver board, and connected to a high-precision encoder with 4000 readings per rotation.

The motor shaft is connected to the robot joint by a cable-driven capstan mechanism

with a reduction ratio of 10. Finally, a load cell force sensor is embedded in each robot

handle to measure the external forces. The follower robot is in contact with a linear

spring, which could be approximated by a rotational spring in the range of motion

with stiffness ke = 0.7 Nm.rad−1. The communication is implemented under EtherCat

protocol.

Figure 2.4: The hardware setup. The leader robot is on the left, and the follower robot
is on the right. The follower robot is attached to a spring (the environment).

The robot models were identified usingMATLAB Identification Toolbox. The model

parameters for the leader and follower robots in (2.3) and (2.6) are reported in Table 2.1.

The identified values of the model parameters are used in the simulation for comparison.

Table 2.1: Identified parameters of the robots

robot moment of inertia ml = mf = 0.00092 kg.m2

robot damping coefficient bl = bf = 0.0032 Nm.s.rad−1

environment stiffness ke = 0.7 Nm.rad−1

environment damping coefficient be = 0.0 Nm.s.rad−1

All forces and torques are projected on the joint axis and measured as torques (Nm)

for comparison and plotting. The sampling time is set to Ts = 0.002 s, and the MPC

prediction horizon is set to N = 15 time steps. We set a constraint on both control

inputs as follows: −0.33 Nm ≤ fl, ff ≤ 0.33 Nm.
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2.3.2 Simulation Results

The simulation was done in ROS2 with the exact same code that will be tested on the

hardware later. The BO performs the auto-tuning using 9 simulated interactions, and

the results are reported in Figure 2.5. Figure 2.5(a) illustrates the performance metric

computed at the end of each trial, plotted with time, which corresponds to the actual

time the simulation and optimization took. The first 3 points are chosen around the

middle of the search space to initialize the surrogate model with no optimization yet.

Afterward, a general downward trend can be noticed, indicating that the algorithm is

finding better weights, with occasional rises due to exploration. In the bottom part of

Figure 2.5, we compare the results that correspond to different tested weights. In each

subfigure, we show the positions and forces of the leader robot (blue), and the follower

robot (red). In Figure 2.5(b), we show the performance of an example of the explored
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Figure 2.5: Auto-tuning experiment in simulation. (a) Performance metric value com-
puted at the end of each trial and plotted with time. (b) The performance of the
worst tested weights which shows the position and force signals on both sides.
(c) The performance of the best tested weights which shows the position and
force signals on both sides.

weights, which correspond to a high value of the performance metric (≈ 2, worst tested
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performance). Some errors in position and force tracking can be seen between both

robots. In Figure 2.5(c), we present the performance of the last explored weights in

the trials, which correspond to the lowest found value of the performance metric. Both

position and force tracking are almost perfect with performance metric value close to

zero (≈ 0.07, best tested performance).

We test the performance of the found optimal tuning which minimizes the learned

surrogate model. The testing is done using the same type of input from the human

operator. Figure 2.6 displays the performance of the optimal weights after the auto-

tuning, where we plot the positions of both robots in Figure 2.6(a), and the velocities in

Figure 2.6(b). In Figure 2.6(c), the environment torque and the leader robot’s torque

are shown, both projected on the robots’ joint axis. In Figure 2.6(d), the moving

average of the performance metric is depicted with a window of 3 seconds, which holds

a low, near-constant value. Overall, almost perfect tracking in position, velocity, and

force can be observed for the optimal auto-tuned weights.
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Figure 2.6: Performance of the found optimal weights in simulation with near-perfect
tracking. (a) Positions of the leader and follower robots. (b) Velocities of the
leader and follower robots. (c) Forces of the leader robot and the environment.
(d) Moving-window average of the performance metric.

67



CHAP. 2. MPC AUTO-TUNING FOR BILATERAL TELEOPERATION 68

2.3.3 Hardware Experiments Results

The same protocol as the simulation part is repeated on hardware for comparison. The

MPC auto-tuning is performed through 14 trials of 3 seconds each. The following figures

present results analogous to those in the simulation subsection for direct comparison.

Figure 2.7 illustrates the results of the hardware auto-tuning experiment. Figure 2.7(a)

shows the performance metric, computed at the end of each trial, plotted with time. The

model is initialized with 3 trials using 3 different weights chosen randomly to explore

the search space. After that, the optimization starts and the performance metric starts

decreasing. We show a comparison between different tested weights during the search for

the optimal value. The comparison displays the improvement in the matching between

the robots positions (xl, xf ) and forces (fl, fe). In the bottom part of Figure 2.7, we

compare the results that correspond to different tested weights. In each subfigure, we

show the positions and forces of the leader robot (blue), and the follower robot (red).
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Figure 2.7: Auto-tuning experiment with hardware. (a) Performance metric value
computed at the end of each trial and plotted with time. (b) The performance
of bad tested weights which shows the position and force signals on both sides.
(c) The performance of the best tested weights which shows the position and
force signals on both sides.

68



CHAP. 2. MPC AUTO-TUNING FOR BILATERAL TELEOPERATION 69

In Figure 2.7(b), we show the performance of one example of the explored weights,

which corresponds to a high value of the performance metric (≈ 6, bad performance).

Large errors in position and force tracking can be seen between both robots. In Fig-

ure 2.7(c), we present the performance of the best found weights, which corresponds to

the lowest value of the performance metric (≈ 0.24).

We present the performance of the found optimal controller in Figure 2.8, where the

positions, velocities, and forces of both robots are plotted. A 3-second moving average

of the performance metric is shown in Figure 2.8(d), which holds a low, near-constant

value (≈ 0.25) due to the good controller performance.
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Figure 2.8: Performance of the found optimal weights in hardware experiment. (a)
Positions of the leader and follower robots. (b) Velocities of the leader and
follower robots. (c) Forces of the leader robot and the environment. (d) Moving-
window average of the performance metric.

2.3.4 Discussion

Overall, the hardware experiment results are consistent with the simulation results. In

both cases, the auto-tuning shows an improvement in performance compared to the

initial tuning, without prior knowledge about the role of each parameter on the closed-
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loop performance. The auto-tuning achieved nearly perfect tracking in simulation. In

the hardware experiment, however, we observe that while force and position tracking

improves after tuning, it remains imperfect. This performance gap can be explained

partially by unmodeled nonlinearities such as static friction, which are present in the

physical hardware but not in our linear MPC model. Addressing such nonlinearities

requires more than tuning the MPC cost weights. Since the goal of this work is to

show the feasibility of auto-tuning, handling unmodeled nonlinearities is beyond the

work scope. We observe in Figure 2.5 that even the initial performance was not very

poor in simulation, which means that under a perfect model, most weights in the

chosen area give acceptable results. This is unlike the initial weights in the hardware

experiment in Figure 2.7, which gave poor tracking results. This shows the importance

of tuning directly on hardware compared to using the optimal weights found in simple

simulations. Even under a non-perfect model, the auto-tuning greatly enhanced the

performance in the hardware experiment. Finally, the auto-tuning took around 80

seconds in hardware, which corresponds to 3 seconds for each trial, plus 1.5 seconds of

transient time between the trials that we added in order to remove the effect of weight

switching on the performance measure. The rest of the time is for the BO computations

after each trial.

By the end of the exploration phase (i.e., after nexp trials), we assume that a good

surrogate model of the performance metric is built. Then we look for the weights

that minimize the surrogate model assuming they are close enough to the minimizers

of the real performance metric. As we mentioned before, we could have taken the

best weights that were tested during the exploration phase, however, since we assume

that those are noisy evaluations —particularly due to the challenge of ensuring perfect

human force repeatability between trials— a better strategy is to minimize the learned

GP surrogate model which has good noise rejection features due to its probabilistic

nature. To understand the idea of noise rejection, we could think of the following

example: if the behavior of the human who is performing the auto-tuning was very

inconsistent, such that they did not excite the system well enough when they were

testing certain weights, while they excited it too much for other weights. This could

generate less tracking errors for the first case, which results in a (potentially misleading)

best measured point. However, if enough points are tested, the probabilistic nature of

the GP model can recognize this as an outlier and likely not identify it as an actual

minimizer in the learned GP model. This is why we choose to minimize the learned GP

model instead of taking the best point of the measurements. Note that the repeatability
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of the human force is important to obtain a fair comparison between different weights.

On the other hand, some amount of human error can also be beneficial to the tuning,

since it adds a range of useful frequencies to the input force instead of tuning for only

one frequency, which can better approximate real-life scenarios.

Regarding the choice of the prediction horizon, we set N = 15 time steps, which we

tuned empirically. Note that the value of N could also be added to the auto-tuning

parameters in future work. Finally, in the performed hardware experiment, the stopping

criterion was a maximum number of trials. Other stopping criteria could be used, such

as a maximum time limit or to reach a threshold value of the performance metric.

2.4 Chapter Conclusion

In this chapter, we presented an MPC formulation for bilateral teleoperation which

optimizes for transparency. After that, and motivated by the effort required for tun-

ing the MPC weights, we presented an approach for auto-tuning the MPC which can

be applied directly to hardware. We formulated the tuning problem as a black-box

optimization and used the Bayesian Optimization algorithm to efficiently search for

the optimal MPC weights, which gave good results in a few minutes in simulation and

hardware experiments. One limitation of the method is that it requires a range of sta-

ble parameters to search from. Another limitation is that the method was tested on

a single environment. More discussion about the limitations and future work will be

presented in Chapter 5.
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While the MPC framework in Chapter 2 addressed constraints and transparency

regardless of modeling errors, real-world environmental uncertainties can compromise

safety by leading to constraint violations. This chapter tackles this challenge by de-

veloping an adaptive robust MPC controller for bilateral teleoperation. This approach

guarantees robust constraint satisfaction under uncertainty while using online learning

to enhance performance.

This chapter begins in Section 3.1 by motivating the need for robust constraints in

teleoperation and reviewing relevant literature. Section 3.2 then details the proposed

adaptive robust MPC methodology. Simulation results validating the approach are

presented in Section 3.3, followed by the chapter conclusion in Section 3.4.

3.1 Introduction and Literature Review

3.1.1 Motivation for Robust Constraints in Teleoperation

Bilateral teleoperation systems that use MPC are sensitive to uncertainties in the envi-

ronment, such as unknown stiffness, damping, or dynamic changes in contact conditions.

These uncertainties pose a challenge in ensuring constraint satisfaction, which is critical

for safe and effective teleoperation. For instance, in surgical robotics, exceeding force

constraints can lead to tissue damage or violate position or velocity limits.

Existing MPC approaches in teleoperation struggle with two primary limitations:

(1) the lack of robustness to uncertainties in the environment model, and (2) the absence

of recursive feasibility guarantees. Without robustness, the controller may produce

solutions that fail to account for worst-case scenarios, leading to constraint violations.

Similarly, without recursive feasibility, the optimization problem may become infeasible

during operation, causing failure in system control.

Addressing these issues is crucial for advancing the deployment of MPC in teleop-

eration for risky scenarios. A long-term vision is to enable MPC to handle uncertain

and dynamic environments, where the model parameters and uncertainty bounds are

estimated using traditional or advanced techniques such as computer vision or artificial

intelligence. With these estimations, the controller would be able to deal robustly with

the uncertainty. By incorporating such guarantees, teleoperation systems can achieve a

new level of safety and reliability, paving the way for broader adoption in critical appli-

cations such as risky industrial manipulation, remote exploration, or robotic surgery.

This chapter aims to design an MPC control approach for robust constraint satis-
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faction in a bilateral teleoperation scenario. The focus will be on studying feasibility

and conservatism, and re-evaluating the difficulties that can arise from such a control

design. This represents a step towards incorporating such methods for more reliable

real-life applications.

3.1.2 Literature Review

In the following, we will review the main related topics in the literature to illustrate

our position in the field and to justify our choices. We begin by discussing the different

types of robustness in bilateral teleoperation. We then present works addressing robust

constraints, and we finally introduce the robust MPC techniques and choose the one

that fits our goals.

3.1.2.1 Robustness in Bilateral Teleoperation

Robustness in bilateral teleoperation is a critical aspect that has been extensively stud-

ied in the literature. Generally speaking, related works could be classified based on

several criteria, such as the type of disturbance being handled, or the goal of the ro-

bustness. The robustness could be against different disturbances, such as constant time

delay [142], time-varying delay [143], packet loss [106], model parameter uncertainty or

a mix of these factors [144]. As for the goal of robustness, numerous works aimed

to achieve robust stability and performance using a variety of control methods. For

example, classical robust control techniques such as H∞ design a feedback controller

that minimizes the worst-case gain from disturbances to the system output. The con-

troller is synthesized by solving an optimization problem with a set of LMIs [145].

The work in [58] used µ-synthesis, considering a mix of uncertainties and constant

time delay, which achieved robust stability and performance. Other works that also

used µ-synthesis include [57, 146, 147]. Passivity-based methods achieve robust stabil-

ity by ensuring that the system never generates energy but only stores or dissipates

it [21, 24, 60]. Passivity-based control could be considered a robust control method

that focuses on robust stability, as such controllers usually guarantee stability for a

wide range of situations, specifically for any passive environment and passive human

operator [1].

While the literature on robustness often focuses on robust stability, some works gave

special attention to achieving robust performance in order to enhance transparency

under different teleoperation conditions. For instance, [148] developed several con-
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trollers for different environment parameters and proposed a robust switching method

to switch between them smoothly based on the environment to achieve better perfor-

mance. In [59], the authors exploited the bounds on the uncertainty in the environment

model and used LMIs to construct a robust controller with predefined performance.

Other papers that focus on the robust performance include [58,146,149,150].

Sliding Mode Control (SMC) has also been used in bilateral teleoperation scenarios

to enhance performance in the presence of uncertainties. SMC defines a sliding surface,

which is a manifold in the state-error space along which the closed-loop dynamics

exhibit the desired convergence properties. A discontinuous, high-gain control law

is then synthesized to drive the trajectory onto this surface in finite time and keep

it there, thereby maintaining “sliding” motion that is robust to matched disturbances

and model uncertainties. The authors in [144] presented a robust adaptive-sliding-mode

control scheme for bilateral teleoperation systems operating in the presence of bounded

but unknown uncertainties and time-varying delays. The results showed significant

improvement compared to a traditional (proportional + damping) controller. Other

works that used SMC in bilateral teleoperation include [151–153].

3.1.2.2 Robust Constraints in Bilateral Teleoperation

Beyond maintaining stability, another important aspect of robust control is ensuring the

satisfaction of state and input constraints despite uncertainties. We refer to this as the

problem of robust constraint satisfaction, which means that for all possible realizations

of uncertainty, the system’s trajectories will not violate predefined operational limits.

Many papers have addressed such constraints, for example, those on inputs, states,

or tracking errors. Robust constraint satisfaction has been explored in the literature

through various methods. For instance, in [154] a predictive strategy for teleoperation

systems operating over communication channels with unknown and possibly unbounded

time delays is presented. The method ensures stability and prevents constraint viola-

tions on input- and state-related variables regardless of the time delays. The approach

is demonstrated on a leader-follower teleoperation system over the internet, where a

cart/rod inverted pendulum is stabilized under constraints on the cart motor voltage

and the rod angle. In [155], the authors used a terminal SMC and employed barrier

Lyapunov functions to prove stability and ensure that synchronization error constraints

are not violated. In [156], the authors used an MPC with mixed H2/H∞ approach for

space bilateral teleoperation. The method addresses large time-varying delays and takes
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input constraints into account. However, it does not consider state constraints or model

parameter uncertainty.

The work in [157] designed a data-driven H∞ control method for discrete-LTI sys-

tems subject to norm-bounded disturbances. This method handles state and input

constraints, ensuring robust performance and constraint satisfaction in bilateral teleop-

eration systems. The above-mentioned works assume fixed uncertainty bounds, which

result in an overly conservative controller in case of large estimated bounds. In addi-

tion, robust methods generally optimize for the performance of the worst-case scenario.

However, when the system is operating far from the constraints, better performance

can be achieved by optimizing for typical or expected scenarios instead of the worst

case.

In the context of MPC in bilateral teleoperation, the design usually includes con-

straints on position, velocities, and environmental force [5, 68, 112]. However, to the

best of our knowledge, no work has specifically addressed handling input and state con-

straints in MPC-based bilateral teleoperation under model uncertainty. The work in

this chapter aims to fill that gap by designing a robust MPC controller for bilateral tele-

operation that ensures constraint satisfaction under both parametric uncertainty and

additive disturbance in the system model. We focus on the computational efficiency

of the controller, reducing conservatism, and enhancing performance. These goals will

guide the choice of the robust MPC and learning methods in the following subsection.

3.1.2.3 Robust MPC Methods

The literature on robust MPC presents a wide range of methods to handle constraints

robustly, as reviewed in [158–160]. Our goal is to implement a robust MPC for bi-

lateral teleoperation while addressing the real-time constraints without being overly

conservative with respect to the performance of the teleoperation system.

One of the most common methods for robust MPC is Tube-MPC [161]. Unlike

traditional MPC, which predicts only the state trajectory based on a nominal model,

Tube-MPC also predicts a whole tube around it that encompasses all the trajectories

under all possible uncertainties. In discrete-time systems, the method finds a sequence

of sets Pk that represent the tube cross-section at each time step. Figure 3.1 visually

illustrates the polytopic tube concept, where the red sets are the tube cross-sections

at different future time steps, which are constructed around the nominal predicted

trajectory (black line). By controlling these polytopes to stay within the constraints
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(shown as a cyan vertical plane), we ensure that the true system trajectory remains

within the safe region as well.

The variations of tube controllers mainly differ by the type and shape of the cross-

section. Common implementations include: 1) ellipsoid cross-section which offers less

control over the shape but has fewer parameters to handle (ellipsoid semi-axes, one

length per dimension); 2) polytopic cross-section which provides more control over the

shape but requires handling more parameters (vertices or inequalities) and does not

scale well with high-dimensional state spaces. Some basics of polytopes are presented
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Figure 3.1: An illustration of the Tube-MPC concept. Axes x and y represent the state
space. Axis k represents the future discrete time steps. The blue vertical plane
represents a constraint in the state space (x ≤ x0). The red cross is the current
state. The red polygons (polytopes) are the tube sections at each predicted time
step (i.e., Pk), and the black line is the nominal predicted trajectory. Note that
the tube sections are translated and scaled versions of the same polytope, and
they do not intersect with the constraint, meaning that all the trajectories in
the tube respect the constraint.

in a short section in Appendix B.1 to help the reader understand the following sections.

Since its inception, many variations of Tube-MPC have been developed. These

variations mainly differ in the type and flexibility of the cross-section. For instance, the
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following types of Tube-MPC have been proposed in the literature:

� Rigid Tube-MPC: allows only translations of the initial set P0 which makes the

cross-section fixed [162].

� Homothetic Tube-MPC (HTMPC): allows both translations and scaling of the

initial set P0 [163], as shown in Figure 3.1.

� Elastic Tube-MPC: permits scaling the vertices of P0 separately, potentially chang-

ing the shape while maintaining convexity [164].

� Configuration-Constrained Tube-MPC: optimizes the shape of the polytopic tube

subject to conic vertex configuration constraints and associated vertex control

laws by solving convex optimization problems online [165].

� Fully-Parametrized Tube-MPC: enables the optimization of all parameters defin-

ing the tube, offering maximum flexibility in adapting its shape [166].

The choice of the type of the Tube-MPC depends mainly on the computational com-

plexity and the level of controller conservatism. HTMPC offers a balance between

conservatism and computational complexity [164, 167]. For that reason, we choose to

design an HTMPC for our application as a starting point to test the feasibility of the

method. In the following sections, we will detail our implementation of an HTMPC

controller and describe how data-driven learning methods are integrated to refine the

uncertainty bounds, thereby reducing conservatism while maintaining robustness.

3.1.3 Teleoperation System Modeling with Uncertainties

As in the previous chapter, we consider that the follower robot is always in contact with

an environment that can be modelled by an LTI system with stiffness k∗
e and damping

coefficient b∗e.

Starting from an initial estimate of these parameters k0
e and b0e, we bound the pos-

sible parameter offsets by a known compact polytope

Θ =
{
θ ∈ R2 | HΘ θ ≤ hΘ

}
(3.1)

where HΘ and hΘ are the matrices that define the bounding polytope in the H-

representation (see Appendix B.1) and they are assumed to be known. θ is the un-
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certainty parameter defined as

θ =

θ1
θ2

 =

∆ke

∆be

 =

ke − k0
e

be − b0e

 ∈ Θ (3.2)

so that the true offset

θ∗ =

k∗
e − k0

e

b∗e − b0e

 (3.3)

also satisfies θ∗ ∈ Θ. Figure 3.2 illustrates the initial guess and the true value of

the environment parameters and the uncertainty. We assume that the system state is

Initial Value

True Value

Figure 3.2: An illustration of the initial guess and the true value of the environment
model parameters, with the polytopic bounding set Θ, represented in the (ke, be)
coordinates (left), and the uncertainty (θ1, θ2) coordinates (right)

also affected by an additive uncertainty d(t) ∈ D where D ∈ Rnx is a known compact

polytopic set. The system dynamics from (2.7) can be rewritten to include uncertainties

θ and d as follows
ẋ = Ac,θx+Bcu+ d

y = Cc,θx
(3.4)

where Ac,θ and Cc,θ are the system’s continuous-time matrices with the parametric

uncertainty. Note that the matrix Bc defined in (2.7) is not impacted by θ since it does

not depend on the environment model. Using Euler discretization with a sampling time
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Ts, the discrete dynamics can be written as

xτ+1 = Aθxτ +Buτ + dτ

yτ = Cθxτ

(3.5)

where τ is the discrete time step, dτ = d(τ) is the discrete additive uncertainty at time

step τ , and the matrices are defined as

Aθ = I + Ac,θTs

B = BcTs

Cθ = Cc,θ

(3.6)

where I is the identity matrix with the appropriate size. The resulting matrices Aθ and

Cθ are affine in the parameter θ such that

Aθ = A0 + A1θ1 + A2θ2

Cθ = C0 + C1θ1 + C2θ2
(3.7)

where A0, A1, A2, C0, C1, and C2 are constant known matrices. A0 and C0 are the

initial system matrices with the initial parameters k0
e and b0e. The explicit formulas

of the uncertain matrices mentioned here are given in Appendix B.2. We also define

the following matrix to quantify the effect of the parametric uncertainty on the system

dynamics

Dx(xτ ) = [A1xτ , A2xτ ] (3.8)

where Dx(xτ ) ∈ Rnx×nθ , and the comma separates between the two columns A1xτ and

A2xτ . With this new matrix, the dynamics from (3.5) can be rewritten as

xτ+1 = A0xτ +Dx(xτ )θ +Buτ + dτ (3.9)

As can be seen from this equation, the matrixDx(xτ ) defines the effect of the parametric

uncertainty on the system dynamics.

After reviewing the related works and presenting the necessary mathematic formu-

lations, in this chapter, we design a robust Tube-MPC controller for bilateral teleoper-

ation, and we use learning methods to enhance the performance of the controller and

reduce the conservatism. The main tasks required to achieve a robust and adaptive con-

troller are threefold: first, to robustly guarantee the satisfaction of the MPC constraints
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on the states and inputs despite the parametric and additive uncertainties; second, to

reduce the conservatism of the controller by refining the uncertainty bounds through

learning from data, that is by finding a tighter set Θnew ⊂ Θ which robustly contains

the true parameter θ∗; and third, to find a point estimate of the parameter θ∗, meaning

to find a point θ̂ that is close to θ∗.

3.2 Adaptive Robust MPC for Bilateral Teleopera-

tion

In this section, we present the designed adaptive robust MPC controller for bilateral

teleoperation. The method is based on the work by Kohler et al. [168] and adapted

to the context of bilateral teleoperation. Due to the complexity of the method, we

will present it in a modular and simplified way, and we will refer to the Appendix and

the literature for some details. We first present the ideas related to robust Tube-based

MPC. We then explain the concepts related to learning the uncertainty bounds and

the model parameters. Finally, we present the full controller formulation that combines

both aspects of learning and robustness.

3.2.1 Robust Tube-MPC Controller

3.2.1.1 Tube-MPC Controller Concept

The core objective of Tube-based MPC is to ensure robust stability and constraint

satisfaction despite model uncertainties. Rather than predicting a single nominal tra-

jectory, this approach computes a tube, which is a sequence of sets {Pk}Nk=1 around the

nominal trajectory x̄k (as was illustrated before in Figure 3.1). This tube encloses all

possible state trajectories under the uncertainties.

The general robust MPC optimization problem can be written as a modified version
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of the nominal MPC problem (2.1) as follows

U∗ = argmin
U

(
Jf (x̄N) +

N−1∑
k=0

Js(x̄k, uk)

)
(3.10)

s.t. x0 = x̄0 = x(τ) (measured state) (3.11)

x̄k+1 = A0x̄k +Buk (nominal model) (3.12)

xk+1 = Aθxk +Buk + dk (actual system) (3.13)

xk ∈ X , xN ∈ Xf (3.14)

uk ∈ U (3.15)

∀dk ∈ D,∀θ ∈ Θ, k ∈ {0 . . . N − 1} (3.16)

where xk is the true system state at the future time step k. x̄k is the nominal state at

time step k predicted using the nominal model. Note that the constraints (3.14) are

defined on the true state trajectory xk which is unknown and depends on the uncertain

parameters θ and dk.

Solving problem (3.10) for all values of dk and θ is not tractable in the general case

since it has an infinite number of constraints. To make the problem computationally

feasible, HTMPC turns the constraints into a finite number of constraints. The tech-

nique consists of two main steps that will be explained more in the next subsections.

The first step is to design a sequence of polytopic sets {Pk}Nk=1 such that they contain

all possible uncertain trajectories by construction, which will be a useful feature. The

second step is to reexpress the constraints on the infinite number of trajectories xk

as a finite number of tightened constraints on the nominal trajectory x̄k by using the

mentioned feature of Pk. This means that x̄k should satisfy the original constraints

with an additional appropriate margin to account for the uncertainty.

3.2.1.2 Constructing the Sets Pk to Contain the Uncertain Trajectories

The tube sections Pk are constructed such that they contain all uncertain trajectories,

i.e., the following condition should be guaranteed

xk ∈ x̄k ⊕ Pk

∀dk ∈ D,∀θ ∈ Θ, k ∈ {1 . . . N}
(3.17)

where ⊕ is the Minkowski sum (Appendix B.1.2), which can be seen as translating the
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set Pk by the vector x̄k in the state space. In HTMPC, to have a fixed computational

complexity, the sets Pk are designed as scaled and translated versions of a fixed polytopic

set P0 as follows

Pk = skP0

P0 = {x ∈ Rnx : HP0x ≤ 1nP0
}

(3.18)

where P0 is a polytopic set fixed offline and represented in the H-representation by nP0

inequalities defined by the matrix HP0 ∈ R(nP0
×nx) and the vector of ones 1nP0

∈ RnP0 .

Online, P0 is translated by x̄k and scaled by the scalar sk to form the cross-sections of

the tube. This makes the task of constructing the sets {Pk}Nk=1 equivalent to finding the

scaling parameters {sk}Nk=1 such that (3.17) holds. The set Pk+1 is computed based on

Pk such that it accounts for the propagation of all the states xk ∈ Pk while considering

all uncertainties. Therefore, the scaling parameters {sk}Nk=0 from (3.18) are calculated

recursively to capture both the parametric and additive uncertainties [168]. Specifically,

sk is propagated via the following dynamics

sk+1 = ρ(Θ)sk + wk(Θ,D) (3.19)

where ρ(Θ) is the maximum tube contraction rate over the uncertainty bounding set Θ,

which describes the contraction of the tube assuming a stable system, and it depends

on the system dynamics without the MPC. wk(Θ,D) captures the growth of the tube

due to uncertainties. The work in [168] finds ρ(Θ) by solving a separate optimization

problem, and it is resolved only if Θ is changed. For wk, the authors add it as an

additional decision variable in the MPC optimization problem such that it is found

by the MPC solver. These dynamics will be used and discussed later in the adaptive

robust MPC formulation in subsection 3.2.3 and then detailed in Appendix B.3.

3.2.1.3 Reformulating the Constraints into Tightened Constraints

After building Pk such that it satisfies (3.17) by construction, the constraints on the

true state xk defined in (3.14) and (3.16) can be reformulated as a finite number of

tightened constraints on the nominal state x̄k. That is, for the following conditions to

hold

xk ∈ X , xN ∈ Xf

∀dk ∈ D,∀θ ∈ Θ, k ∈ {0 . . . N − 1}
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it is sufficient to satisfy the following condition

x̄k ⊕ Pk ⊆ X (3.20)

and the same for the final state xN

x̄N ⊕ PN ⊆ Xf (3.21)

This means that the whole tube section should be within the constrained set X , which

is a sufficient condition for the true state xk to be within the constraints as well. Using

this, the constraints on xk can be replaced using (3.18), (3.19), (3.20), and (3.21) to

rewrite the optimization problem (3.10) as follows

(U∗,W ∗) = argmin
U,W

(
Jf (x̄N) +

N−1∑
k=0

Js(x̄k, uk)

)
(3.22)

(3.23)

s.t. x0 = x̄0 = x(τ) , s0 = 0 (3.24)

x̄k+1 = A0x̄k +Buk (3.25)

x̄k ⊕ skP0 ⊆ X , x̄N ⊕ sNP0 ⊆ Xf (tightened constraints) (3.26)

sk+1 = ρ(Θ)sk + wk(Θ,D) (3.27)

wk ≥ fw(x̄k, sk,Θ,D) (3.28)

uk ∈ U (3.29)

∀k ∈ {0 . . . N − 1} (3.30)

where fw is a function that describes the dynamics of the tube growth due to uncer-

tainties at the point (x̄k, sk). W is the vector of decision variables that contains the

tube growth wk for all time steps, and W ∗ is the optimal value of W that is to be found

by the MPC solver. Note that this formulation no longer has the infinite number of

constraints as (3.16). However, the condition (3.28) on fw and the set inclusion con-

dition (3.26) have to be reformulated into a standard form that can be solved by the

MPC solver. To simplify the presentation, the steps to reformulate these conditions

into a set of linear inequalities are presented in Appendix B.3 and B.4. However, a

short summary of simplifying (3.26) is provided in subsubsection 3.2.1.5 below, after

presenting a necessary step to reduce the tube growth.
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3.2.1.4 Reducing the Tube Growth

One problem with the uncertainty tube is that it can grow significantly over time if the

uncertainty is not negligible. This can lead to overly conservative control actions and

reduced performance. To mitigate this issue, two strategies are commonly employed in

the design of Tube-MPC controllers. First, a pre-stabilizing lower-level controller K is

designed offline and applied to the system to reject the uncertainties and keep all the

trajectories close to the nominal trajectory. The MPC is applied on top of K such that

the control input to the system is decomposed as follows

uτ = Kxτ + vτ (3.31)

where vτ is an additional control input calculated by the MPC to achieve the desired

goals, that is to minimize the cost function and respect the constraints. In this case,

the MPC controls the new pre-stabilized system that has the modified dynamics from

(3.5) as follows

xτ+1 = Acl,θxτ +Bvτ + dτ (3.32)

where Acl,θ = Aθ +BK.

Second, P0 is often designed to be the so-called maximal contractive polytopic set

[169] or the minimal robust positively invariant set [170] for the pre-stabilized system.

This means that the trajectories stay in a bounded or even shrinking set under the

effect of K when the MPC is turned off.

Note that when the controller K is applied as in (3.31), the MPC constraints on the

input (3.29) should be also tightened due to the fact that K applies a control input that

depends on the uncertain system. The tightened input constraints can be expressed as

follows

K(x̄k ⊕ skP0) + vk ⊆ U (3.33)

3.2.1.5 Writing the Tightened Constraints in a Standard Form

To implement the HTMPC (3.22) with a real-time solver, the tightened constraints

are reformulated from the set-inclusion form (3.26) and (3.33) to linear inequalities.

In particular, Kohler et al. proposed an efficient formulation that precomputes some

constant parameters offline based on the shape of P0 and rewrites the online constraints

in a linear form [168]. As explained in Appendix B.4, this can be done using the offline-

precomputed constant scalars for each constraint row j in the original constraints (2.14)
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as follows

cj = max
x∈P0

([HX ]j + [HU ]jK)x, j ∈ {1, . . . , nc} (3.34)

where HX and HU are the matrices that describe the constraints defined in (2.14).

These constants are then used to project the tightened constraints from (3.26) into

linear inequalities

skcj + ([HX ]j + [HU ]jK)x̄k + [HU ]jv ≤ 1 (3.35)

Note that this is equivalent to adding a margin to the original constraints, where the

margin is equal to cj scaled by sk for each constraint row j. The detailed derivation of

these constants is provided in Appendix B.4. The robust Tube-MPC formulation will

be used later after the introduction of the data-driven learning methods in the following

sections.

3.2.2 Learning the Model

A notable drawback of robustness in control design is the inherent conservatism of the

controller. To ensure robust constraint satisfaction for all θ ∈ Θ, the MPCmight select a

suboptimal solution, sacrificing performance for robustness. This conservatism becomes

more pronounced if the model uncertainty is large, leading to less optimal solutions for

the true system. To mitigate this, data-driven techniques such as Set Membership

Learning (SML) can be employed to refine the estimation of the uncertainty bounds

Θ [171,172].

3.2.2.1 Set-Membership Learning

Unlike traditional learning methods that estimate the value of the true parameter θ∗,

SML focuses on identifying a set of parameters that robustly encapsulates θ∗. This

approach aligns well with the requirements of robust Tube-based controllers. Starting

from a parametric uncertainty bounding set Θ0, each observation of the state transition

from time step τ − 1 to τ could be used to reduce the uncertainty bound. The new

bounding set Θτ is found by eliminating from Θτ−1 the regions that are inconsistent

with the observed state transition. This update leverages the fact that there exists a

specific set of parameters ∆τ ⊆ Rnθ capable of explaining the state transition under a

bounded additive disturbance dτ ∈ D. If θ∗ remains constant, it will lie within each
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∆τ , and thus within the following intersection

θ∗ ∈
⋂

τ=0,1,...

∆τ (3.36)

Figure 3.3 illustrates the concept of SML, where it shows the initial uncertainty set Θ0

and the feasible sets ∆τ at different time steps. In dark purple is the resulting feasible

set Θτ after the intersection of all ∆τ with Θ0.

0

Figure 3.3: An illustration of the Set-Membership Learning concept. The initial bound-
ing set Θ0 is shown in light red, and the feasible sets ∆τ are shown as strips in
the space. The intersection of all ∆τ with Θ0 gives a tighter bound Θτ (purple),
which contains the true parameter θ∗ (green cross).

To explain the exact steps of SML, we start by defining the initial uncertainty

bounding set Θ0 and the additive uncertainty set D as the polytopes

Θ0 = {θ : HΘ0θ ≤ hΘ0} (3.37)

D = {d : HDd ≤ hD} (3.38)

where HΘ0 , HD and hΘ0 , hD are the matrices and vectors with appropriate sizes that

define the polytopes. We assume that these matrices are known since we have an

estimated upper bound on the uncertainties. After the transition from τ to (τ + 1),

the additive uncertainty bound is written from the uncertain system dynamics (3.9) as

follows

dτ = xτ+1 − (A0xτ +Dx(xτ )θ +Buτ ) ∈ D (3.39)
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Rewriting this using the definition of D from (3.38) gives

HD(xτ+1 − (A0xτ +Dx(xτ )θ +Buτ )) ≤ hD (3.40)

From this inequality, new information about the true value of θ can be derived

HD(xτ+1 − A0xτ −Dx(xτ )θ −Buτ ) ≤ hD

⇒ −HDDx(xτ )︸ ︷︷ ︸
H∆τ

θ ≤ hD −HD(xτ+1 − A0xτ −Buτ )︸ ︷︷ ︸
h∆τ

⇒ H∆τ θ ≤ h∆τ

(3.41)

Here, H∆τ θ ≤ h∆τ defines the region ∆τ , containing parameter values that can explain

the transition (τ → τ + 1) under the bounded additive uncertainty assumption. Since

θ∗ is constant, the feasible parameter set evolves as

∀τ ≥ 0, Θτ = {θ : θ ∈ Θ0 ∩∆0 ∩ · · · ∩∆τ} (3.42)

At each time step, the uncertainty bounding set is refined by intersecting it with the

latest ∆τ .

One potential problem is the increasing computational complexity of the intersection

with time, since the polytope Θτ can have a large number of sides. This issue can be

mitigated by several methods, for example by limiting the number of sides. The work

in [168] used a hypercube that overapproximates the feasible set alongside with keeping

the last M ∈ N sets ∆τ in a moving window fashion to compute a tighter feasible set

ΘHC
τ . The hypercubic set is finally defined by its center θ̄τ and size ητ as

ΘHC
τ = θ̄τ ⊕ ητBnθ

(3.43)

where Bnθ
= {θ ∈ Rnθ |∥θ∥∞ ≤ 0.5} is the unit hypercube in the parametric space.

This restriction to a hypercube reduces the computational complexity of the in-

tersection and the tube controller, but at the cost of less efficient learning or slower

convergence. However, in applications such as teleoperation, real-time responsiveness

take priority over controller conservatism. An illustration of the overapproximation

idea is shown in Figure 3.4, where the bounding set Θτ is shown in dark purple, and its

hypercubic overapproximation ΘHC
τ is shown in blue. The center of the hypercube θ̄τ

is shown as a blue cross, and the size of the hypercube is defined by the side length ητ .
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Figure 3.4: An illustration of the parameters learning with SML and LMS. The true
value of the environment parameter θ∗ is shown as a green cross. The initial
bounding set Θ0 is shown in light red. The learned bounding set Θτ is shown
in purple, and its hypercubic overapproximation ΘHC

τ is shown in blue, with its
center θ̄τ and side length ητ . The point estimate θ̂ learned by LMS is shown as
a black cross.

3.2.2.2 Learning for Performance

The Tube-MPC guarantees robust constraint satisfaction by ensuring that there always

exists at least one feasible trajectory respecting constraints for all possible uncertainty

realizations. Nevertheless, the MPC still has some freedom to choose among multiple

feasible solutions, particularly when the states and control inputs are far from constraint

boundaries. This choice is guided by the MPC cost function. To optimize performance,

the cost function should ideally be designed using the most accurate model available.

This corresponds to a model based on a point estimate θ̂ of the parameters, ideally very

close to the true (unknown) value θ∗. A straightforward approach for such point esti-

mation is choosing the center of the uncertainty set, i.e., θ̂τ = θ̄τ , which represents the

center of the hypercube ΘHC
τ . More sophisticated approaches for parameter estimation

include the Least Mean Squares (LMS) or Kalman filtering, which iteratively refine the

parameter estimate as new data becomes available.

An improvement on these estimation methods could be done by using the robust
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information of θ∗ ∈ ΘHC
τ . In particular, θ̂τ can be projected on Θτ to avoid bad scenarios

of overshooting or diverging estimation.

Figure 3.4 illustrates the two types of parameter learning, particularly SML and

LMS. The figure shows the true value θ∗ as a green cross. For the SML, it shows the

initial bounding set Θ0, and the results of the learning after τ time steps are a tighter

learned bounding set Θτ , and its hypercubic overapproximation ΘHC
τ . The figure also

shows the point estimate θ̂ learned by LMS as a black cross. In the illustrated case,

θ̂ is closer to the true value θ∗ than the center of the bounding set θ̄, which means

that by optimizing the cost function for this value, the performance of the controller is

improved when applied to the true system.

3.2.3 Adaptive Robust MPC Formulation For Bilateral Tele-

operation

After presenting the general concepts of the Tube-MPC and the model learning in the

previous sections, this section presents the full adaptive robust MPC formulation for

the bilateral teleoperation case.

3.2.3.1 Adaptive Robust Tube-MPC Controller Formulation

The implemented adaptive robust Tube-MPC takes advantage of two model learning

methods at the same time, where SML learning reduces the controller conservatism by

enlarging the feasible region while keeping the robust guarantees against uncertainties.

On the other hand, LMS learning directly enhances the performance. To show how the

MPC can simultaneously incorporate both learning methods, we present the following

simple optimization example. For certain values â, ā ∈ R

u∗ = argmin
u∈R

(||u− â||2)

s.t. u+ ā ≥ 0
(3.44)

In this optimization problem, the value of ā defines the feasible region of u, while the

value of â affects the optimal solution. If â lies within the feasible region, then the

constraints are not active, and the problem becomes a non-constrained optimization,

meaning that only the cost function is used. However, if the optimal solution is outside

the feasible region, a suboptimal solution is chosen such that u∗ stays within the feasible

region.
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Similar to this example, the MPC optimization problem could depend on two pre-

dicted trajectories, {x̄k}Nk=0 which is used to define the robust feasible region, and

{x̂k}Nk=0 which is used in the cost function for performance. x̄k is propagated using the

model with θ̄τ , the uncertainty set center learned by the SML. While x̂k is propagated

using the point estimate θ̂τ learned by the LMS, which represents the most likely value

of θ∗. Therefore, optimizing for θ̂τ is likely to improve the performance as long as the

optimal solution lies within the feasible region. Using this idea, the optimization prob-

lem of the adaptive robust MPC at time step τ can be formulated by combining the

previously explained robust Tube-MPC equations (3.22), (3.31), (3.35), with the SML

learning method that computes a set ΘHC
τ from (3.43), and the LMS learning method

that computes a point estimate θ̂τ . The optimization problem is written as follows

(V ∗,W ∗) = argmin
V,W

N−1∑
k=0

(
ẑ⊤k Qẑk + û⊤

k Rûk

)
+ ẑ⊤NP ẑN (3.45)

s.t. x̄0 = x̂0 = xτ , s0 = 0, (3.46)

x̂k+1 = Acl,θ̂τ
x̂k +Bvk, (3.47)

x̄k+1 = Acl,θ̄τ x̄k +Bvk, (3.48)

sk+1 = ρθ̄τ sk + wk, (3.49)

wk ≥ fw(x̄k, sk,Θ
HC
τ ,D) (3.50)

ŷk = Cθ̂x̂k +Dûk, (3.51)

ẑk = Eŷk + Fûk, (3.52)

[HX ]jx̄k + [HU ]jūk + cjsk ≤ 1, (3.53)

ūk = vk +Kx̄k, ûk = vk +Kx̂k, (3.54)

(x̄N , sN) ∈ Xf , (3.55)

j = 1, . . . , nc, k = 1, . . . , N − 1, (3.56)

where V is a vector that contains the MPC control inputs vk, and V ∗ is the optimal value

of V . ρθ̄τ is the contraction rate of the tube assuming the uncertainty θ̄τ . The solution to

(3.45) is decided by the optimal decision variables v∗· and w∗
· . Based on these solutions,

the optimal trajectories of the following variables are found: x̂∗
· , x̄

∗
· , û

∗
· , ū

∗
· , s

∗
· , ŷ

∗
· , ẑ

∗
· .

The optimization problem (3.45) has 3 types of propagated state trajectories:

� (3.47) describes x̂k, the state trajectory propagated based on the point estimate

θ̂τ , and it is used in the cost function;
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� (3.48) describes x̄k, the nominal state trajectory based on SML-learned θ̄τ , which

is used for robustness guarantees;

� (3.49) describes sk, the tube scaling parameter, propagated based on the contrac-

tion rate of the tube ρθ̄τ and wk, which over-approximates the effect of parametric

and additive uncertainty.

Equations (3.51) and (3.52) describe the expected output and the performance vec-

tors trajectories, respectively, which are defined based on the point estimate θ̂τ . The

inequality (3.50) describes the dynamics of variable wk, which overapproximates the

additional effect of the uncertainty on the tube scaling parameter. This is done using

the function fw which controls the dynamics of wk. The details of the function fw are

explained in Appendix B.3, where it is turned into a set of inequalities linear in x̄k and

sk. The inequality (3.53) describes the tightened version of the constraints to ensure

that the whole predicted tube Pk satisfies the constraints. The equality (3.54) describes

the control inputs, which consist of the precalculated state-feedback part (Kxk) and

the additional optimal input vk. (3.55) describes the terminal condition using the set

Xf . This condition is used to guarantee the recursive feasibility of the MPC as will be

explained in subsubsection 3.2.3.2

This optimization formulation corresponds directly to the bilateral teleoperation

system with uncertain environment discussed in Section 3.1.3. In this practical context,

the state trajectories x̂k and x̄k represent the predicted future states of the teleoperation

system, including the positions and velocities of the leader and follower robots. The

vector ẑk contains the matching errors between the leader and follower robots in terms

of position, velocity, and force. Note that ẑk is used in the cost function to optimize

the transparency, which takes into account the environment model with the parameters

estimated by the LMS (θ̂τ ). Minimizing this performance vector ensures accurate and

transparent bilateral teleoperation. The equations that are related to x̄k, ūk, sk and θ̄

represent the nominal model of the teleoperation system, which is used to ensure robust

constraint satisfaction. However, ûk is the control command applied to the leader and

follower robots, which is directly related to the estimated model with (θ̂τ ).

The optimization problem (3.45) has a quadratic cost with linear constraints. Some

solvers require writing the constraints in a standard form. This could be done by writing

a system with an augmented state xg,k = [x̂⊤
k , x̄

⊤
k , sk]

⊤, and an augmented control input
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defined as ug,k = [v⊤k , wk]
⊤ such that

xg,k+1 = Acl,g(θ̂τ , θ̄τ , ρθ̄τ )xg,k +Bgvg,k

HX ,gxg +HU ,gvg ≤ 1nc,g

(3.57)

where the subscript g denotes the augmented variables. The matrices Acl,g, Bg, HX ,g,

and HU ,g are constructed by stacking the corresponding matrices for each state and

control input from (3.50), (3.53), and (B.18).

Figure (3.5) shows the general architecture of the teleoperation system with the

controller and the learning mechanisms. At each time step τ , the signals on each side

are measured and sent to the centralized controller and learning components. The SML

uses these measurements to learn the uncertainty bounds ΘHC
τ . If ΘHC

τ is updated, a

new contraction rate ρθ̄τ should be recomputed as in (B.10), and the corresponding

parameters should be updated in the optimization problem (3.45). The LMS-learning

finds a point estimate θ̂τ and projects it on ΘHC
τ , which is used in the cost function for

performance, especially when the constraints are not active. The solver solves (3.45)

and computes the optimal control input v∗· . Finally, û∗
· is calculated accordingly from

(3.54), and only the first value û0 is applied by the robots. At the next time step (τ+1),

the whole process is repeated again.

Human
Operator Environment

Leader
Robot

Follower
Robot

Learning

Positions and Forces

Optimizer

Robust-MPC

Constraints

Performance
Model

Uncertainty
Bounds

Optimal Control
 InputTube

Predicted
Trajectory

Measurements
Set-Membership

Learning

Least Mean Square
Learning

Figure 3.5: The general architecture of the teleoperation system with the robust Tube-
MPC controller and the learning mechanisms.
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3.2.3.2 Recursive Feasibility Outline

Recursive feasibility means that if the system starts from a state where the MPC

problem is feasible, then it will keep being feasible in the future. This feature of

robust MPC is very important to prevent the online optimization failure during the

teleoperation and to keep the safety of the system. Below, we present the general

outline of the proof that is often used in Tube-MPC. The idea of the proof is to define

a terminal set Xf that has the following features:

� there exists a stabilizing controller πf (x) that makes the set robustly forward

invariant set under all the possible uncertainty. i.e., if xk ∈ Xf and πf (xk) is

applied, then the next state xk+1 ∈ Xf , for all possible values of θ and dk.

� all the points of the set satisfy the safety constraints. i.e.,

HXxk +HUπf (xk) ≤ 1ncN
, ∀xk ∈ Xf

For recursive feasibility in the uncertainty-free system, it is sufficient to guarantee that

the optimal trajectory will end up in the defined terminal set at the end of the prediction

horizon, and it is assumed that the controller πf (x) will handle the guarantees after

that (although this does not happen in practice, but only for theoretical guarantees).

The following example illustrates this idea.

Assuming the feasibility of the MPC optimization problem at time step τ and that

the MPC gave the following optimal control input and state trajectory

U∗
0 = {u∗

0, u
∗
1, . . . , u

∗
N−1}

X∗
0 = {xτ , x

∗
1, . . . , x

∗
N}

At the next time step (τ + 1), and assuming an ideal model, the system state will

be equivalent to the predicted one, that is xτ+1 = x∗
1. In that case, we can find the

following new feasible solution to the MPC optimization problem

U∗
1 = {u∗

1, u
∗
2, . . . , u

∗
N−1, πf (x

∗
N)}

X∗
1 = {x∗

1, x
∗
2, . . . , x

∗
N , x

∗
N+1}
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where the new terminal state is given by

x∗
N+1 = Ax∗

N +Bπf (x
∗
N) ∈ Xf

which is guaranteed by the terminal set and the controller πf (x) definitions. This

solution shows how the problem is feasible at time step (τ +1) only from the feasibility

at time step τ , and thus recursively feasible under the assumption of an ideal model.

Figure (3.6) illustrates the concept of recursive feasibility without uncertainty.

Constraint
on the state

at time step at time step +1

Figure 3.6: An illustration of the recursive feasibility concept without uncertainty for a
horizon N = 5. (Left) at time step τ , the predicted feasible trajectory is shown
as a blue line which ends up in the terminal set Xf . (Right) at time step (τ +1),
a feasible trajectory is found by reusing the previous one (red line), and the last
state x∗

N+1 is computed using the terminal controller πf (x), which guarantees
that it stays in the terminal set.

For the system with uncertainty, the same idea can be used to prove recursive

feasibility, except that all the trajectories inside the tube should end up in the terminal

set. It is also required to show that the tube predicted at time step (τ + 1) is included

in the tube predicted at time step τ . Figure (3.7) illustrates the recursive feasibility

concept with uncertainty.

The controller K and terminal cost matrix P are designed offline using standard

robust control methods based on LMIs to guarantee the stability of the closed-loop

system. The terminal set Xf is designed to be a robustly invariant set for the closed-

loop system with the terminal control πf (xk) = Kxk, in addition to other conditions

that guarantee the recursive feasibility of the MPC. Details of the design of K, P , and
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Constraint
on the state

at time step +1at time step

Figure 3.7: An illustration of the recursive feasibility concept with uncertainty, where
the predicted trajectories are bounded within a tube. (left) At time step τ , the
predicted nominal trajectory is shown as a blue line; the tube sections are shown
as green polygons that contain the states under all possible uncertainties. The
last set of the tube lies within the terminal set Xf . (right) At time step (τ + 1),
the previous predicted trajectory and tube are kept (transparent dashed blue
line and green polygons); the first state is not equal to the nominal predicted
one, but it is still inside the tube. The new predicted trajectory is shown as a
red line, and the new tube sections are shown as red polygons. The new tube is
contained by the previous one, and the last set of the new tube lies within the
terminal set Xf , which is guaranteed by the terminal controller πf (x).

Xf can be found in [168].

3.3 Validation

The proposed controller is validated through simulation studies. Two different simu-

lations were performed. The first one focuses on showing the controller’s effectiveness

in robust constraint satisfaction, and on the SML learning of the uncertainty bounds.

It shows the effect of SML on the conservatism of the robot. The second simulation

highlights the controller’s performance improvement with LMS learning.

3.3.1 Simulation Setup

The proposed method was validated through simulation with MATLAB 2022a, using

mpt3 Toolbox for polytopes [173], yalmip for formulating the optimization problem [174],

and mosek as a solver for the MPC [175]. We assume to have prior knowledge about
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the possible range of the environment model parameters, so the controller is initialized

with the following values

k0
e = 1000 N.m−1, b0e = 10 N.s.m−1

∆ke ∈ [−200,+200] N.m−1, ∆be ∈ [−3,+3] N.s.m−1
(3.58)

The values of leader and follower robots models are the same as in [59] (converted from

rotational to translational values), as reported in Table 3.1. The sampling period is

Ts = 0.005 s. The prediction horizon is N = 20, and the MPC weight matrices Q,R

were chosen experimentally as

Q =

5× 104 1 1

1 1011 1

1 1 105

 R =

(
2 1

1 10

)
× 10−5 (3.59)

Table 3.1: Numerical parameters of simulated robots

robot mass ml = 0.24 mf = 0.23 kg
robot damping coefficient bl = 1.34 bf = 0.8 N.s.m−1

We designed the pre-stabilizing feedback controller K, the terminal cost matrix P ,

the tube-section P0, and the terminal set Xf using the method defined in Appendix A

of [168]. P0 is designed as a ρ−contractive set using the method proposed in [169]

with ρ = 0.6. The result is a 4-D polytope represented by nP0 = 14 inequalities. The

additive noise bounds are set to

|[d]1| < 0.0001× Ts, |[d]2| < 0.4× Ts

|[d]3| < 0.0001× Ts, |[d]4| < 0.01× Ts

(3.60)

where [d]i is the i-th component of d. Larger noise is considered on the velocity com-

pared to position since position measurements have very high quality in most haptic

devices. It is worth pointing out that having tight bounds on the additive noise accel-

erates the SML. However, the learning might fail if the noise exceeds the pre-specified

bounds, which is why we initialized the SML with 4 times the expected bounds as a

safety margin. Particularly, we defined the polytope D from (3.38) using 4 times the

expected bounds (3.60).
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3.3.2 Simulation 1: The Effectiveness of SML-Learning

The goal of this simulation is to demonstrate the controller’s ability to robustly satisfy

the constraints and to show the role of SML in reducing controller conservatism. We

simulate a 3-second interaction with the previously defined environment. The true

values of the environment parameters that is simulated here are as follows

k∗
e = 810 N.m−1, b∗e = 7.3 N.s.m−1

which makes the true value of uncertainty θ∗ as follows

θ∗1 = −190 N.m−1, θ∗2 = −2.7 N.s.m−1

We set a position constraint on the follower robot as: xf ≤ 5 × 10−3 m. This type

of constraint is usually used in medical robots as a virtual fixture for the safety of the

patient. The simulation is done in two stages, where the first stage is done without SML,

and the second stage is done with SML in order to see the effect of the learning. The

SML starts only at t = 1.5 s, while the LMS-learning starts from t = 0 s. Figures 3.8

and 3.9 illustrate the results of the first simulation.

3.3.2.1 First Stage (before SML)

At t = 0 s, the follower robot is in contact with the environment (i.e., xf > 0). The

human operator applies a filtered step force, as shown in Figure (3.8b) (blue line). This

force moves the leader robot, and the follower robot follows closely (red line) until the

follower robot gets close to the constraint limit, that is when the controller prevents

it from continuing the motion, and the leader robot starts resisting the human hand

to keep its position matched with the follower robot. The green line represents the

virtual target position that the human is trying to reach (based on fh and k̂e). In

Figure (3.8a), we show the boundaries of the tube projected on xf (red-dashed lines)

at t ∈ {0.4s, 1s, 2s}. The tube is predicted over a horizon of 100 ms. All possible state

trajectories under the uncertainty are bounded between the two red dashed lines of the

tube. During this stage, the position matching error is small, but the reflected force to

the human operator does not match the environment force as shown in Figure (3.8b)

because the follower robot is not allowed to go deeper into the environment.
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3.3.2.2 Second Stage (with SML)

At t = 1.5 s, the SML starts, and quickly, the bounds on the parametric uncertainty

begin to shrink as seen in Figure (3.9) (black dashed lines). At t = 1.6 s, the human

operator increases the force to the same previous level, but this time, both robots move

very closely to the constraints, since the uncertainty became much smaller. The tube

shown at t = 2 s is much smaller than the one of t = 0.4 s, which means that the

controller is now able to find a smaller tube that lies inside the constrained set. At

t = 2.6 s, the human tries to violate the constraint with a bigger force, but the follower

target

Figure 3.8: Simulation 1, soft contact with a position constraint on the follower robot.
The SML starts at t = 1.5. (a) The position of the leader (blue) and follower
(red); the virtual target position based on fh and ke (green); the constraint on
xf (violet); the predicted tube around xf at t ∈ {0.4, 1, 2} s (dashed-red). (b)
The human force (blue); the environment force (red).
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Figure 3.9: Simulation 1, LMS and SML learning of the environment parametric un-
certainty. The figure shows the projection of ΘHC

τ on each of the parameters (a)
environment stiffness ke; (b) environment damping coefficient be. On each figure,
the estimated parameter by LMS is in blue; the boundaries of the uncertainty
are in black-dashed lines, learned by SML; the true value of the parameter is in
cyan. The SML starts at t = 1.5 s.

robot stays inside the safe region, and the leader robot resists the motion and keeps the

positions matched. Figure (3.9) shows how the LMS-learning converges quickly to the

true values of the parameters.

3.3.3 Simulation 2: The Effectiveness of LMS-Learning

In case the bounds on the additive noise are not tight enough, SML might be slow. For

this case, the parameters learned using the LMS method are used in the cost function

to enhance the performance. In this simulation, we remove the position constraints and

the SML. The controller is initialized with the same values from (3.58). The true values
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of the simulated environment parameters are

k∗
e = 1190 N.m−1, b∗e = 12.7 N.s.m−1 (3.61)

which makes the true value of uncertainty θ∗ as follows

θ∗1 = 190 N.m−1, θ∗2 = 2.7 N.s.m−1

Figure (3.10) shows that before learning, the position matching errors between both

robots were relatively large. At t = 0.5 s, the LMS-learning starts, and the parameters

start converging to their true values as shown in Figure (3.11). By t = 0.8 s, the

matching errors become much smaller since the controller is using a good estimate of

the parameters in the cost function. This simulation shows how LMS-learning can

enhance performance even if the bounds on parametric uncertainty are still wide, as

long as the system is far from the constraints. In practice, we found that the damping

coefficient be is more difficult to learn than the stiffness ke, and it is learned only during

the dynamic motions. This can be observed in Figure (3.11). This could be due to

the fact that the damping coefficient is not directly observable when the system is

stationary, and the effect of the damping is only visible when the system is in motion.

3.4 Chapter Conclusion

In this chapter, we have presented an adaptive robust MPC framework for bilateral

teleoperation systems, which combines tube controllers with two online learning mech-

anisms to learn the environment model. The SML-learning method learns the bounds

of parametric uncertainty to reduce the conservatism of the robust tube controller, and

the LMS method improves the prediction model. The framework ensures constraint sat-

isfaction robustly and recursively, which means that if the optimization problem starts

from a feasible point, it will be feasible in the future even under the worst-case uncer-

tainty. Our simulation studies have shown that the proposed approach is effective in

maintaining constraints, enhancing performance, and reducing controller conservatism

for bilateral teleoperation tasks.

Several limitations, however, should be acknowledged. The current framework as-

sumes a constant, albeit unknown, environment parameter θ∗. Furthermore, the SML

algorithm is sensitive to measurement outliers that fall outside the defined noise bounds,
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Figure 3.10: Simulation 2, soft contact with LMS-learning and no constraints. (a)
Position of the leader robot (blue) and the follower robot (red). (b) Human
force (blue); environment force (red).

which could corrupt the learned uncertainty set. Finally, the design of the underlying

Tube-MPC components, such as the pre-stabilizing controller K and the terminal set,

still involves complex offline computations and a degree of conservatism. These limita-

tions offer clear avenues for future work, as discussed in Chapter 5, and highlight the

inherent trade-offs between performance, safety guarantees, and controller complexity.
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Figure 3.11: Simulation 2, LMS parameter learning without SML. (a) Learning of envi-
ronment stiffness uncertainty. (b) Learning of environment damping coefficient
uncertainty.
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Chapters 2 and 3 focused on ensuring safe and high-performance bilateral teleop-

eration under constraints and uncertainty, primarily through MPC techniques. This

chapter shifts focus to adaptive interaction by exploring Variable Impedance Control

(VIC) in bilateral teleoperation. We address the critical stability challenge posed by po-

tential passivity violations in VIC and develop an optimization-based method to ensure

safe, stable, and adaptive impedance modulation.

The chapter is organized as follows: Section 4.1 provides an introduction to VIC

in teleoperation and discusses the associated passivity challenges, reviewing relevant

literature. Section 4.2 presents the proposed passive VIC controller, detailing the

impedance formulation and the optimization-based passivity filter mechanism. Sec-

tion 4.3 describes the experimental setup and validation results on a 3-DoF bilateral

system. Finally, Section 4.4 concludes the chapter.

4.1 Introduction and Literature Review

4.1.1 Variable Impedance Control in Teleoperation

Humans deal with various tasks instinctively by adjusting the impedance of their hands

and arms [176]. Similarly, in robotics, VIC strategies have been developed to dynam-

ically adjust a robot’s interaction with its environment, improving both performance

and safety in complex environments [77]. A challenge in teleoperation systems is en-

abling the robot to handle a wide range of tasks in diverse contexts such as space

exploration or minimally invasive surgery, where human intervention might be impos-

sible, unsafe, or impractical. The advantages of VIC motivate its use in such a context

to control both the leader and follower robots. In the literature, VIC implementations

vary widely in how the impedance profile is generated and in the specific performance

or safety benefits they deliver.

One example of VIC in teleoperation is the concept of teleimpedance control, which

has emerged in the last decade to describe controllers that vary the impedance of

the follower robot based on criteria defined by the leader side, and it was applied in

both unilateral and bilateral teleoperation [4]. In this method, the impedance of the

human arm is often imitated on the follower robot. The human arm impedance could

be estimated, for example, using surface Electromyography (sEMG) on the human

arm [177]. In [178], the authors designed a teleimpedance scheme where the follower

impedance is adapted based on the operator grip force, which is generally correlated
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with the operator impedance. On the operator side, the leader impedance is adapted to

enhance the situational awareness of the operator, such that the haptic device feels light

if the follower has low impedance, making it feel safer to move freely. When the follower

has high impedance, and it is more dangerous to the environment, the haptic device feels

heavier to the user. In [79], Michel et al. designed an adaptive controller for a cutting

task, for which the follower’s impedance profile is learned from human demonstrations,

while the leader robot reflects the measured environment force. A similar framework

was developed in [179], where the leader and follower sensor information was used

to modify the follower impedance based on a force-stiffness map learned from human

demonstrations. Other methods for transferring the operator’s arm impedance to the

follower robot include using biomechanical models of the arm to estimate its impedance

[180], or inducing a perturbation on the master side and measuring the displacement

[181]. External devices, such as buttons can be used as well [182]. We refer the reader

to [4] for a comprehensive survey of such teleimpedance approaches.

Beyond teleimpedance schemes that rely on directly transferring the operator’s

impedance, other works have used VIC in teleoperation to adapt impedance profiles

based on environmental interaction, task dynamics, or learned strategies. In [78], VIC

was used for compliant assembly, where the follower impedance profile is changed on-

line based on velocity and torque measurements to reduce impact forces resulting from

collisions with the environment. In [121], Motaharifar et al. developed a collaborative

haptic training system with two VIC-controlled haptic interfaces, one for the trainer

and the other for the trainee. The impedance of each interface is adapted to operate

either in force-reflection or position-reflection mode so as to allow different levels of

authority or guidance to the trainee, based on the estimated impedance of the trainer.

Varying the impedance on the leader side was also used for different purposes.

In [183], Corredor et al. introduced an adaptive impedance control strategy for teleop-

eration that dynamically adjusts the admittance on the leader side based on a decision-

making model to provide a haptic guidance force. This artificially generated force

prevents human movements in certain areas of the task space and/or guides them to-

ward a desired area for better task execution. The decision-making model continuously

evaluates tracking errors against interaction conflicts, choosing between increasing the

assistance or favoring task performance. This dynamic adjustment ensures that the

leader’s impedance is adapted in real time to balance effective guidance with natu-

ral human control. In [184], the environment’s impedance was estimated online and

used as a local reference for the leader VIC, which improved transparency in a delayed
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teleoperation system.

As we can see from the mentioned literature, VIC has many applications in teleop-

eration, since it provides advantages on both the leader and follower sides. However,

one issue that faces VIC is that it can inject energy into the system, thereby risking

the violation of passivity, which is a widely used condition to guarantee stability. In

the following, we will discuss the passivity and its associated issues in VIC.

4.1.2 Passivity Issues in Variable Impedance Control

Although VIC is an interesting solution to perform flexible and complex interaction

tasks, it also poses potential stability issues [80], which are even more significant in the

context of teleoperation where stability is a major concern [79]. Most of the methods

that guarantee stability in bilateral teleoperation are based on passivity, which is a

sufficient condition for stability, provided that the operator and environment are passive

[70]. A famous example of such versatile methods is TDPA proposed by Ryu et al.

[21]. TDPA monitors the energy exchanged at the system’s interaction ports in real

time through passivity observers. When these observers detect non-passive energy flow

(i.e., the system generates energy), passivity controllers are activated to inject adaptive

damping, thereby dissipating the excess energy. This process prevents the system from

generating net energy that could destabilize the interaction. Many variations of the

method were developed afterward. For example, a Virtual Mass-Spring (VMS) filter

was added to TDPA in [185] to filter out the high-frequency force modification or

chattering. Another chattering-free TDPA was also designed in [186] which defines a

low velocity threshold, under which the dissipation is reduced to prevent the chattering

issue at low velocities. A less-conservative version of TDPA, called TDPA-Energy

Reflection was also proposed in [187]. This method was used by Wang et al. in [179]

to passivate a bilateral teleoperation system with VIC.

Another versatile approach to ensure passivity is Energy Tanks [23, 24]. In this

method, a virtual tank is used to store (a virtual equivalent to) the energy dissipated

by the physical system. This virtual energy can be used later to perform non-passive

interactions without generating net energy. When the energy in the tank is not enough

to compensate for the non-passive behavior, the control input is modified, for exam-

ple by damping injection, to preserve the passivity. Energy tanks were used in [79]

and [188] to ensure passivity of bilateral teleoperation systems that include VIC. An-

other passivity framework was proposed for bilateral teleoperation called Passive-Set-
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Position-Modulation or PSPM [22]. The PSPM modulates the set-position signal sent

to each robot to guarantee the passivity. An optimization problem is solved to find the

closest point to the original reference point that still satisfies the passivity condition.

Panzirsch et al. [189] presented a novel gradient-based passivity control concept

for variable stiffness. The approach is based on a potential energy storage reference

and prevents phases of zero stiffness. An observer and gradient-based method adjusts

the desired stiffness in real time while ensuring that the observed energy remains non-

negative, thus guaranteeing passivity without resorting to complete force attenuation,

which is a common drawback in traditional methods such as TDPA or energy tanks.

A method specific to passivity of VIC in pHRI was designed in [80] by Kronandar

and Billard. The authors proposed a state-independent stability condition which can

verify the passivity of preplanned impedance profiles offline. Thus, this concept is not

applicable to scenarios in which the profile needs to be adaptive in real time. Bednar-

czyk et al. developed this condition and introduced Passivity Filters (PFs) [190]. In

VIC implementation, these filters adjust the desired impedance profile online to ensure

that the energy generated by varying the impedance is lower than the energy dissipated

by the system. The work in [188] implemented a similar idea, where an energy tank was

used to monitor the passivity condition, and the non-passive stiffness changes are set

to zero if the tank is below a minimum threshold. Compared to previous methods, PFs

ensure a continuous and smooth impedance variation due to their low-pass filtering na-

ture. PFs were initially proposed for collaborative manipulation, and the method does

not apply directly to bilateral teleoperation. Hence, further developments are required

to dissipate the additional energy generated by the architecture of the teleoperation

system itself. In this chapter, we propose an optimization-based framework for passive

VIC in bilateral teleoperation, inspired by the PFs, PSPM, and TDPA methods.

4.2 Variable Impedance Control for Bilateral Tele-

operation

4.2.1 Variable Impedance Controller Formulation

Consider a general bilateral teleoperation system with leader and follower robots, both

with n-DoF, in m-dimensional task space. In the following, we consider the superscript

with i ∈ {l, f} to denote the leader and the follower. The dynamic model of each robot
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can be written as

Hl(xl)ẍl + Cl(xl, ẋl)ẋl + gl(xl) = fl + fh (4.1)

Hf (xf )ẍf + Cf (xf , ẋf )ẋf + gf (xf ) = ff + fe (4.2)

where xi, ẋi, ẍi ∈ Rm denote the task space positions, velocities, and accelerations for

the leader and the follower, respectively, and i ∈ {l, f}. fi ∈ Rm denotes the actuators

force. Hi(x) ∈ Rm×m, Ci(xi, ẋi) ∈ Rm×m and gi(xi) ∈ Rm are the inertia matrix, the

Coriolis and centrifugal matrix, and the gravity effects vectors, respectively. The time

dependency has been omitted for readability, and the matrices’ dependency on xi, ẋi

will be omitted in the following for simplicity. fh, fe ∈ Rm, are the interaction forces

with the human and environment, respectively.

Several VIC techniques have been proposed in the literature, depending on the

desired architecture for the teleoperation control system [79,121,181,191]. In our work,

the control inputs (actuators forces) are calculated such that the imposed impedance

behavior of the leader robot is

Mlẍl + (Dl + Cl)ẋl +Kl(xl − xr
l ) = fh + fe (4.3)

and for the follower robot it is

Mf (ẍf − ẍr
f ) +Df (ẋf − ẋr

f ) +Kf (xf − xr
f ) = fe (4.4)

where Mi, Di, Ki ∈ Rm×m, for i ∈ {l, f}, are time-dependent matrices that describe the

imposed inertia, damping, and stiffness, respectively. The inertia matrix is designed

to be positive definite, while the damping and stiffness matrices are chosen as positive

semi-definite matrices. xr
l is the reference position that the leader robot should track.

xr
f , ẋ

r
f , ẍ

r
f are the follower’s reference position, velocity, and acceleration, respectively.

Ideally, the reference signals for one robot should reflect the measurements made on

the other one, leading to xr
l = xf , xr

f = xl, ẋr
f = ẋl and ẍr

f = ẍl. However, it will be

shown later that doing so could lead to a lack of passivity. As a result, the following

developments will propose a method to track the ideal trajectory without compromising

passivity.

A few remarks should be noted here:

� for the leader, smaller values of Kl allow prioritizing the reflection of the envi-
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ronment force. In contrast, higher values of Kl create a higher coordinating force

that pushes the leader’s position to match the follower’s position as can be seen

in (4.3);

� we consider a teleoperation control architecture with no force sensor on the leader

side, and therefore we do not reflect the operator’s force on the environment. Also,

imposing the inertia matrix would require such a force sensor [7]. However, since

most haptic interfaces have low inertia, it is reasonable to set Ml = Hl [121],

though it makes Ml time-varying as Hl is a function of xl(t);

� on the follower side, where a force sensor is attached, Mf is designed to be con-

stant;

� the Coriolis matrix Cl is left in the imposed impedance to use the passivity feature

that lies in the skew symmetry of Ṁl − 2Cl.

To implement the behavior described by (4.3) and (4.4), the control inputs fl, ff from

(4.1) and (4.2) are chosen as follows

fl = gl +Hlu
imp
l (4.5)

uimp
l = H−1

l (fe −Dlẋl −K(xl − xr
l )) (4.6)

and on the follower side

ff = Cf ẋf + gf − fe +Hfu
imp
f (4.7)

uimp
f = ẍr

f −M−1
f

(
Df (ẋf − ẋr

f ) +Kf (xf − xr
f )− fe

)
(4.8)

4.2.2 Passivity Filters for VIC in Bilateral Teleoperation

4.2.2.1 Passivity Condition

A dynamic system of state x(t), input u(t), and output y(t) is said to be passive with

respect to an interaction port (u, y) if there exists a non-negative storage function

V(t) = V(x(t)) such that

V(x(t))− V(x(0)) ≤
∫ t

0

u⊤(ξ)y(ξ) dξ (4.9)

where the storage function represents the internal stored energy of the system.
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Passivity has been extensively considered to ensure stability for teleoperation sys-

tems [60]. The idea is to make the system passive with respect to the ports (ẋl, fh) and

(ẋf , fe). Thus, a sufficient condition for the passivity is ensured if we can find a storage

function such that

V̇ ≤ ẋ⊤
l fh + ẋ⊤

f fe (4.10)

Let us consider the following storage function

V =
1

2

(
ẋ⊤
l Mlẋl + e⊤l Klel

)︸ ︷︷ ︸
Vl

+
1

2

(
ė⊤f Mf ėf + e⊤f Kfef

)︸ ︷︷ ︸
Vf

(4.11)

where el = xl − xr
l , ef = xf − xr

f . To get to an equation similar to (4.10), we can treat

Vl and Vf separately. The first part of the storage function is

Vl =
1

2

(
ẋ⊤
l Mlẋl + e⊤l Klel

)
Thus, its time derivative is

V̇l = ẋ⊤
l Mlẍl +

1

2
ẋ⊤
l Ṁlẋl + e⊤l Klėl +

1

2
e⊤l K̇lel

We substitute Mlẍl from (4.3) as

Mlẍl = −(Dl + Cl)ẋl −Kl(xl − xr
l ) + fh + fe

⇒ V̇l = ẋ⊤
l (−(Dl + Cl)ẋl −Kl(xl − xr

l ) + fh + fe)

+
1

2
ẋ⊤
l Ṁlẋl + (xl − xr

l )
⊤Kl(ẋl − ẋr

l ) +
1

2
(xl − xr

l )
⊤K̇l(xl − xr

l )

= −ẋ⊤
l (Dl + Cl)ẋl −((((((((

ẋ⊤
l Kl(xl − xr

l ) + ẋ⊤
l fh + ẋ⊤

l fe

+
1

2
ẋ⊤
l Ṁlẋl + (xl − xr

l )
⊤Kl(��̇xl − ẋr

l ) +
1

2
(xl − xr

l )
⊤K̇l(xl − xr

l )

= ẋ⊤
l fh + ẋ⊤

l (
1

2
Ṁl − (Dl + Cl))ẋl + ẋ⊤

l fe

− (xl − xr
l )

⊤Klẋ
r
l +

1

2
(xl − xr

l )
⊤K̇l(xl − xr

l )

= ẋ⊤
l fh − ẋ⊤

l Dlẋl + ẋ⊤
l (

1

2
Ṁl − Cl)ẋl + ẋ⊤

l fe − e⊤l Klẋ
r
l

Note that the term ẋ⊤
l (

1
2
Ṁl − Cl)ẋl = 0 due to the skew symmetry of (Cl − 1

2
Ṁl).
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Therefore, we can write

ẋ⊤
l fh = V̇l + ωl (4.12)

where we define the term ωl as

ωl = ẋ⊤
l Dlẋl − ẋ⊤

l fe + e⊤l Klẋ
r
l −

1

2
e⊤l K̇lel (4.13)

The second part of the storage function from (4.11) is

Vf =
1

2

(
ė⊤f Mf ėf + e⊤f Kfef

)
and its time derivative is

V̇f = ė⊤f Mf ëf +
1

2
ė⊤f Ṁf ėf + e⊤f Kf ėf +

1

2
e⊤f K̇fef

By substituting Mf ëf from (4.4) as

Mf ëf = (−Df ėf −Kfef + fe)

⇒ V̇f = ė⊤f (−Df ėf −���Kfef + fe) +
1

2
ė⊤f Ṁf ėf

+�����e⊤f Kf ėf +
1

2
e⊤f K̇fef

= ė⊤f fe + ė⊤f (−Df +
1

2
Ṁf )ėf +

1

2
e⊤f K̇fef

= ẋ⊤
f fe − (ẋr

f )
⊤fe − ė⊤f (Df −

1

2
Ṁf )ėf +

1

2
e⊤f K̇fef

We set the desired inertia Mf to be a constant matrix, and we get the following

ẋ⊤
f fe = V̇f + ωf (4.14)

where we define the term ωf as

ωf = ė⊤f Df ėf −
1

2
e⊤f K̇fef + (ẋr

f )
⊤fe (4.15)

From (4.12) and (4.14), we obtain the following power balance

ẋ⊤
l fh + ẋ⊤

f fe = (V̇l + V̇f ) + (ωl + ωf ) (4.16)

⇒ ẋ⊤
l fh + ẋ⊤

f fe = V̇ + ω (4.17)
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where ω = ωl+ωf . Equation (4.17) describes the energy exchange with the human and

the environment, where the left side is the energy that passes through the system ports

(ẋl, fh) and (ẋf , fe), and the right side shows the change in the stored energy V̇ and an

additional term ω. In order to guarantee the passivity of the system such as in (4.10), it

is sufficient to ensure that ω ≥ 0. In this case, ω is the power dissipated by the system.

Note that some terms in ω are not guaranteed to be positive by default, such as the

ones related to K̇l and K̇f , which can inject energy into the system and potentially

violate the passivity condition. A similar problem has been addressed in [190] for pHRI

control using PFs. The solution was based on the idea of filtering the variations of the

impedance parameters to make the term ω always positive. The filtered values track the

desired ones as fast as possible while limiting their change rate in a way to guarantee

passivity.

4.2.2.2 The Proposed Method

Inspired by the PFs, we modify the terms in ω in real time to satisfy the passivity

condition. ω is written from (4.13) and (4.15) as

ω = ẋ⊤
l Dlẋl − ẋ⊤

l fe + e⊤l Klẋ
r
l −

1

2
e⊤l K̇lel︸ ︷︷ ︸

ωl

+ ė⊤f Df ėf −
1

2
e⊤f K̇fef + (ẋr

f )
⊤fe︸ ︷︷ ︸

ωf

(4.18)

We consider the impedance behavior defined (4.3) and (4.4), and we assume that

the impedance matrices desired by the users are the following

for the leader: Dd
l , K

d
l ( assumed Md

l = Hl) (4.19)

for the follower: Dd
f , K

d
f ( assumed Md

f = constant) (4.20)

while the reference signals in (4.3) and (4.4) are set in a way to achieve the teleoperation

task, i.e.,

for the leader: xr
l = xf (4.21)

for the follower: xr
f = xl, ẋr

f = ẋl, ẍr
f = ẍl (4.22)

Ideally, the desired impedance and references should be applied directly to get the

desired teleoperation behavior. However, to guarantee passivity, we follow the PFs

method, and we use a filtered version of the user-desired values. First, for the stiffness
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matrices, we define the following first-order filter

K̇l = β1(t)(K
d
l −Kl) = β1(t)K̃l (4.23)

K̇f = β2(t)(K
d
f −Kf ) = β2(t)K̃f (4.24)

where β1(t) ≥ 0, β2(t) ≥ 0 are time-varying stiffness filter gains. By choosing the values

of β1(t) and β2(t) appropriately, we can modify the terms (1
2
e⊤l K̇lel) and (1

2
e⊤f K̇fef ) in

(4.18) if needed. Particularly, if the desired stiffness is larger than the current one, i.e.,

Kd
f > Kf (or Kd

l > Kl), then K̇f > 0 (K̇l > 0), and the corresponding term in ω is

negative and injects energy into the system. In the worst-case scenario, by selecting

β2(t) = 0 (β1 = 0) means that the imposed stiffness is fixed, and no energy is introduced

by the corresponding term.

Varying the other impedance matrices do not need filtering. Notably, the damping

terms (ẋ⊤
l Dlẋl) and (ė⊤f Df ėf ) are always positive, and only dissipate energy. Therefore,

they do not need to be filtered. Inertia matrices Ml and Mf do not appear in ω, and

they are not filtered either.

Filtering the impedance variations was sufficient to guarantee passivity in pHRI

in [190]. However, in teleoperation, the energy generation does not come only from

varying the impedance, but other terms have to be taken into account. In particular, the

terms (e⊤l Klẋ
r
l ), (ẋ

r⊤
f fe), and (ẋ⊤

l fe). Since the signs of these terms are not guaranteed,

any one of them could inject energy into the system. Concerning the first two terms,

and inspired by the PSPM method [22], the position reference for each side can be

filtered such as

ẋr
l = β3(t)(xf − xr

l ) = β3(t)x̃
r
l (4.25)

ẋr
f = β4(t)(xl − xr

f ) = β4(t)x̃
r
f (4.26)

where β3(t) ≥ 0, β4(t) ≥ 0 are time-varying position reference filter gains.

In order to guarantee the ability to dissipate the energy related to the term ẋ⊤
l fe,

and inspired by the traditional TDPA method [21], we use additional damping injection.

Therefore, we set the imposed leader damping matrix to be

Dl = Dd
l + Iβ5(t) (4.27)

where β5(t) ≥ 0 is a time-varying additional damping parameter on the leader side.
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The rest of the imposed impedance matrices is set as the desired value, i.e.,

Df = Dd
f (4.28)

Mf = Md
f constant (4.29)

Ml = Md
l = Hl (4.30)

Note that the filtering and the damping injection would lead to a deterioration of

the performance as the desired impedance behavior and position trajectory will not be

tracked perfectly. This is done of course in favor of guaranteeing the passivity. In order

to minimize the conservative effect of passivation on the performance, the time-varying

values of βj(t) are chosen by solving the following optimization problem

β∗ = arg min
β1...β5

(
5∑

j=1

pjβj) (4.31)

s.t. 0 ≤ ω(t)

0 ≤ βj ≤ βmax,j : j ∈ {1, . . . , 5}

where

ω = ωl + ωf

= ẋ⊤
l (D

d
l + β5I)ẋl − ẋ⊤

l fe + e⊤l Klx̃
r
l β3 −

1

2
e⊤l K̃lelβ1

+ ė⊤f D
d
f ėf −

1

2
e⊤f K̃fefβ2 + x̃r⊤

f feβ4 (4.32)

=
5∑

j=1

λjβj + ζ (4.33)

β∗ = [β∗
1 , ..., β

∗
5 ] is the optimal solution of the optimization problem, pj are cost func-

tion weights that tune the importance of each variable, βmax,j, j ∈ {1, · · · , 4} are chosen

based on practical aspects of the filters, such as the bandwidth of the maximum per-

missible variations of the impedance profile. βmax,5 is selected based on the maximum

expected energy coming from the uncontrolled term (ẋ⊤
l fe). λj are the coefficients of βj

in (4.32) and ζ = ẋ⊤
l D

d
l ẋl+ ė⊤f D

d
f ėf − ẋ⊤

l fe contains the terms that are not controllable

by the decision variables βi.

It is worth mentioning that the optimization problem (4.31) has a linear cost with
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linear constraints, and that we aim to maximize β1 . . . β4 while minimizing β5, that is

why it is necessary to choose (p1, . . . , p4 ≤ 0) and (p5 ≥ 0).

One important feature of the optimization problem (4.31) is that it is always feasible

under a reasonable upper bound βmax,5. For example, one naive solution that is always

feasible is the following

β∗ = [0, 0, 0, 0, β̄5]

The zeros in the solution cancel the energy generated by all the terms in ω from (4.32),

except for the energy generated by the term (−ẋ⊤
l fe). If the energy generated by this

term is larger than the energy dissipated by the damping terms, then β5 is chosen

to dissipate the excess of energy. This feature of the proposed method is important to

guarantee passivity under all conditions of teleoperation. Although feasible, in practice,

a slack variable ε ∈ R+ can be added to the optimization problem to reduce numerical

issues. The optimization problem becomes

β∗ = arg min
β1...β5,ε

(
5∑

j=1

pjβj + p6ε) (4.34)

s.t. 0 ≤ ω(t) + ε

0 ≤ βj ≤ βmax,j : j ∈ {1, . . . , 5}

where p6 is chosen to be positive and much larger in magnitude than other weights. ε

relaxes the passivity condition when needed, while keeping the violation negligible since

the penalty decided by p6 is very large.

The choice of each one of the weights p1, . . . , p5 decides the balance between the

dissipation mechanisms. The effect of each mechanism on the performance can be very

different in nature. For example, the parameter related to stiffness filtering on the

leader side (β1) governs the change of stiffness Kl. A similar effect happens on the

follower side by using (β2) to dissipate the energy. Particularly, this happens when

the desired controller stiffness Kd
f increases, meaning that the follower robot might

be slower to get into the precise-tracking mode, without losing control over it by the

operator. β3 and β4 which are related to reference position filtering on the leader and

follower robots, modify the reference position on each side. In the worst case when

β4 = 0 and lasts for a period of time, the reference position of the follower robot stops

updating. This results in disconnecting the follower from the leader robot, and the

follower keeps tracking a fixed reference position until β4 becomes non-zero, and the
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reference position goes back to updating and following the leader’s position. On the

leader side, if β3 = 0 and lasts for a period of time, the same effect happens to the

position reference. However, the leader robot still renders the force feedback fe. β5

is a damping injection parameter on the leader side, which means that it introduces

additional resistance to the human operator when it is not zero, and the leader robot

feels more difficult to move. In some cases, this might lead to spikes in leader’s force.

Arguably, filtering the stiffness offers advantages over other mechanisms since it does

not introduce spikes in force and it does not disconnect the follower robot from the

operator. The above-mentioned factors influence the selection of a role in deciding the

weights p1, . . . , p5 and βmax,1, . . . , βmax,5. However, this task requires some tuning by the

user. Choosing these parameters automatically could be possible using, for example,

learning-based methods, but it is beyond the scope of this thesis.

Figure 4.1 shows the schematic diagram of the proposed VIC with the passivity

filter in bilateral teleoperation, and algorithm 1 summarizes the steps to implement the

proposed method in practice.

Algorithm 1 Passivity Filter Algorithm

Input:
1: pj, βmax,j : j ∈ {1 . . . 5}

Online:
2: for each time step do
3: get states and sensors values (xl, ẋl, ẍl), (fe, xf , ẋf , ẍf )
4: get the user-desired impedance values Md

l , K
d
l , D

d
l ,M

d
f , K

d
f , D

d
f ▷ (4.19), (4.20)

5: calculate ω coefficients (λj, ζ) ▷ (4.33)
6: get optimal βj : j ∈ {1 . . . 5} ▷ by solving (4.34)
7: update Ml,Mf , Kl, Kf , Dl, Df , x

r
l , x

r
f , ẋ

r
f , ẍ

r
f ▷ (4.23),. . . ,(4.30)

8: calculate fl, ff in order to obtain the VIC behavior ▷ (4.5), (4.7)
9: end for
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Figure 4.1: Schematic of the proposed VIC with passivity filter in bilateral teleopera-
tion. Note that Md

f is assumed constant, and Md
l is assumed equal to the natural

inertia matrix Hl. Other desired impedance matrices are set by the impedance
profile generator, which is a user-defined map that is a function of the robots’
positions (or could be any other function).
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4.3 Experimental Validation

In this section, we present the experimental validation of the proposed VIC with pas-

sivity guarantees in bilateral teleoperation. First, we present the experiment setup, and

an experimental task is designed to evaluate the performance of the proposed method.

Finally, the results are presented and analyzed.

4.3.1 Experiment Setup And Task Description

Figure 4.2 illustrates the experimental setup. On the left, the leader is implemented

using the Omega7 haptic interface (Force Dimension, Switzerland), while on the right

the follower is implemented with the Omega3 haptic interface. A force sensor (ATI

Nano17, ATI Industrial Automation, USA) was mounted on the follower using a cus-

tom 3D-printed adapter. The remote environment consists of a foam block featuring a

roughly carved maze-like pattern with a depth of 10 mm (see Figure 4.2, right). The

control software is implemented under the ROS2 framework with a 500 Hz operating

frequency. The optimization problem is solved using the ProxSuite optimization frame-

work [192], an open-source, efficient, and robust solver for quadratic programs, designed

for real-time robotics applications. Both robots are connected to the same computer,

ensuring negligible communication delays.

To validate the proposed method, we design a pedagogical example that demon-

strates its behavior under varying task requirements. In this example, the advantages

of VIC are highlighted by varying the task requirements, including high precision and

high forces in certain regions, low forces and safe motion in others, and fast efficient

motion along certain directions. We consider a repetitive task where the follower robot

is supposed to interact with the Target regions (T1) and (T2) (see Figure 4.3), and

to navigate through the tunnel between these two targets as fast as possible without

damaging the tunnel walls. This experiment can emulate a scenario where, for example,

several parts have to be unmounted from the region T1, and then to be moved through

the tunnel to be mounted again in the region T2. To reduce the cognitive effort of the

user during the motion through the tunnel, the controller is designed to automatically

reduce the forces applied on the tunnel walls, while still following the leader’s fast mo-

tion along the tunnel axis. This is done by appropriately varying the impedance profile

as will be explained next.

We assume that a map is available to determine the desired impedance profile as a
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Y
X

Z

Figure 4.2: (Left) The leader robot with real-time video feedback of the environment.
(Right) The follower robot interacting with the environment and the different
colored zones

function of the follower robots’ position. In practice, such a map could be preplanned

by the user or learned from demonstration as in [79,179]. The environment is segmented

into different zones, each one is indicated by a distinct color in Figure 4.3. A reference

frame is attached to the environment with axes parallel to the different sections of the

tunnel to facilitate the analysis of the results.

At this stage, it is worth recalling that setting high desired stiffness for the follower’s

controller along a specific direction leads to better tracking of the motion reference xr
f

coming from the leader robot along that direction. Hence, in the tunnel, a high desired

stiffness is set along the main direction of the tunnel. Conversely, a low desired stiffness

is set perpendicularly to reduce the contact forces applied to the tunnel walls. As

a result, to control the teleoperation system and perform the two distinct behaviors

mentioned previously, the impedance profile of the follower controller is defined based

on the follower robot tip position, where it is set based on the colored zone as shown
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in Figure 4.3. The values are chosen as follows

� in all the experiments, the desired stiffness is 100 N.m−1 along the X-axis, or-

thogonal to the surface of the environment, which allows an average tracking and

forces along this direction;

� working zones: high desired stiffness (500 N.m−1) along the Y- and Z-axes in

regions (A) and (D), allowing to apply high force with limited motions on the

dark red targets visible in Figure 4.3;

� vertical motion zones (green and blue): high desired stiffness (400 N.m−1) along

the Z-axis, and low desired stiffness (50 N.m−1) along the Y-axis;

� horizontal motion zone (yellow): high desired stiffness (400 N.m−1) along the

Y-axis and low desired stiffness (50 N.m−1) along the Z-axis;

� corner zones: relatively high desired stiffness (300 N.m−1) along Y- and Z-axes

close to the corner points (C) and (B), to facilitate guiding during changes in

directions.

The desired damping matrix is set such that the damping ratio is 0.9 for the fol-

lower, and the desired inertia is Md
f = 0.3 kg.m2 along all three axes. To simplify the

discussion, the leader robot controller is chosen to work in force reflection mode, which

means that Kd
l = Dd

l = 0 and that the desired inertia is the same as the natural iner-

tia, meaning Md
l (t) = Hl(xl). However, additional damping can be introduced by the

optimization if the passivity condition requires so. For the optimization problem (4.31)

the maximum values of βj are chosen as βmax,1 = βmax,2 = 316, βmax,3 = βmax,4 = 75,

βmax,5 = 100. After scaling each optimization variable to have a value in [0, 1], we set

the cost function weights as

[p1, . . . , p5] = [−10,−10,−10,−10, 100]

where negative values maximize the corresponding optimization parameter, and positive

values minimize it. We mention that we also added a slack variable for the optimization

constraint with a weight equal to 106.
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4.3.2 Experimental Results

In the following figures, the background colors correspond to the ones defining the

various environment zones in Figure 4.3. The study is limited to Y- and Z-axes since the

motions and forces of interest are along these directions. We illustrate only a part of the

repetitive motion for clarity, where it starts by an interaction with the target (T1), goes

through the tunnel, and ends by an interaction with the target (T2). We demonstrate

the performance of the designed teleoperation system in Figure 4.4. In this figure, the

blue lines correspond to the leader signals, and the red lines correspond to the follower

signals. The position tracking results along the Y-axis and along the Z-axis are shown

in Figure 4.4(a) and Figure 4.4(b), respectively. The velocity tracking results along the

Y-axis and Z-axis are shown in Figure 4.4(c) and Figure 4.4(d), respectively. Similarly,

the force tracking performance along the Y-axis and Z-axis are shown in Figure 4.4(e)

and Figure 4.4(f), respectively.

Figure 4.5 describes the curves related to the variable stiffness of the follower robot

through time and in different environment zones. Specifically, Figure 4.5(a) depicts the

A

BC

D

Target regions

Tunnel

Y

Z

X

9 cm

12
 c

m

Figure 4.3: The different zones in the environment. The dark red parts, (T1) and (T2),
are the target regions where the robot has to apply high forces. The other colored
zones are carved in the foam material to around 10 mm depth.
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Figure 4.4: The signals of both robots: along Y-axis, (a) positions, (c) velocities, (e)
forces. Along Z-axis, (b) positions, (d) velocities, (f) forces. The blue lines
correspond to the leader, and the red lines correspond to the follower. The
background colors correspond to the different zones in the environment.
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Figure 4.5: Follower’s stiffness filtering results. It shows the desired and imposed
stiffness along Y-axis (a), and along Z-axis (b). (c) shows the follower’s stiffness
filtering gain.
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desired stiffness profile along the Y-axis Kd
f (Y) (black dashed lines) and the filtered

profile Kf (Y) (blue line) which results from filtering the desired one with gain β2 and

will be actually applied on the robot. Figure 4.5(b) depicts similar information along

the Z-axis. Figure 4.5(c) shows the gain β2 that is used to filter the follower’s stiffness,

which results from solving the optimization problem (4.31). Figure 4.6 illustrates the

dissipated power ω(t) by the system throughout the experiment.

W
at
t

Figure 4.6: ω(t), the dissipated power by the system defined in (4.32).

The experiment begins in the red working region (A), where the user applies a

relatively high force along the Y-axis to interact with the red target (T1) as can be

noticed from Figure 4.4(e) at time t = 0.2 s. This phase mimics the task that should

be performed on the target.

Once the robot enters the tunnel (green region), the desired stiffness drops along the

Y-axis to 50 N.m−1 to prevent high contact forces against the wall (see Figure 4.5(a)).

Since decreasing the stiffness is generally a dissipative act (because the term involving

K̇f in ω becomes positive (4.18)), the passivity condition was not violated, and the

filtering gain β2 was set to its maximum value (316) by the solver (see Figure 4.5(c)).

Therefore, the filtered impedance tracks the desired one very fast, and they are almost

identical (Figure 4.5(a)). Notice the spike in the dissipated power ω at the beginning

of the green region (Figure 4.6), which is due to the energy dissipated by decreasing

the stiffness.

When the robot comes closer to the corner (first uncolored region, t ≈ 2.5 s),

the impedance is set to 300 N.m−1 along Y- and Z-axes to regain better control of

the follower robot and to change the direction as wanted. In this case, varying the

impedance did not violate the passivity which is why it was not filtered.
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When the robot enters the horizontal part of the tunnel (yellow region), the desired

stiffness is increased along the Y-axis and lowered along the Z-axis. To guarantee

passivity, the optimization problem (4.31) generates a solution (β1, . . . , β5) that keeps

the passivity. Specifically, the filter gain β2 is reduced to a low value (Figure 4.5(c)),

which filters the stiffness change and slows it down until the dissipated energy allows

reaching the desired stiffness around t ≈ 3.6 s (Figure 4.5(a, b)). During this phase of

filtering the stiffness change, ω could be seen to be equal to zero for a period of time

(Figure 4.6). A similar case of stiffness lowpass filtering can be noticed in the blue

region for the same reason.

At the end of the task, the robot reaches the red region (D), where the stiffness is

increased along both Y- and Z-axes, and the β2 gain slows down this change again to

satisfy the passivity condition. In that region, the follower robot applies a relatively

high force to the second dark red target (T2), as required in the task specifications

(Figure 4.4(e), at t ≈ 5.6 s).

Figure 4.7 describes the signals related to the follower’s reference position signals

along the Y-axis. Figure 4.7(a) depicts the leader’s position along the Y-axis xl(Y) (blue

line) and the follower’s reference position signal xr
f (Y) (red dashed line). Figure 4.7(b)

illustrates the leader’s velocity ẋl(Y) (blue line), and the follower’s reference velocity

signal ẋr
f (Y) (red dashed line). Figure 4.7(c) shows the gain β4 which modifies the

follower’s reference position signal. Ideally, the reference position and velocity signals of

the follower robot should come directly from the leader’s position and velocity signals.

However, in our method, these references are computed from (4.26) by filtering the

position xl with gain β4. In the presented results, although β4 sometimes drops from its

maximal value because of the necessary filtering (Figure 4.7(c)), no visible effect can be

observed in the signals ẋr
f and xr

f in Figure 4.7(a, b), except in the yellow region where

the velocity reference drops to zero for a very short period around t ≈ 3.5 s. Similar

results were found along the Z-axis as illustrated in Figure 4.8, where again, no visible

effect on the tracking can be seen.

The damping injection parameter β5 is displayed in Figure 4.9. Increases in its

value can be noticed at t ≈ 0.4 s and t ≈ 5.8 s. However, it remained equal to zero

most of the time. Parameters β1 and β3, related to the leader’s stiffness and position

filtering, did not participate in the energy dissipation since leader’s stiffness was set to

zero. Both parameters did not drop from their max values throughout the experiment,

which is logical since dropping them does not dissipate energy in this particular case,

and thus they were not displayed here.
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Figure 4.7: Follower’s position reference filtering along the Y-axis. (a) leader’s position
and follower’s position reference, (b) leader’s velocity and follower’s velocity
reference, (c) follower’s position filtering gain.
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Figure 4.8: Follower’s position reference filtering along the Z-axis. (a) leader’s position
and follower’s position reference, (b) leader’s velocity and follower’s velocity
reference, (c) follower’s position filtering gain.
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Figure 4.9: β5: damping injection parameter

4.3.3 Discussion

In this experiment, the main contribution of the optimization comes from parameter β2,

which adapts the impedance parameters of the follower robot. However, the other pa-

rameters are also important for guaranteeing the feasibility of the optimization problem

and thus the system passivity. It is worth mentioning that the parameter β1 which fil-

ters the leader’s impedance has a similar importance. However, it did not contribute to

energy dissipation during the study due to the fact that the leader’s stiffness Kd
l = 0. It

should be noted that other conditions of teleoperation and optimization settings (such

as the cost weights in (4.31)) could change the effects of these parameters as well.

While it is well known that passivity greatly influences system performance [1],

an advantage of our method is that it integrates different ways of dissipating energy,

which include filtering the impedance profile, filtering position references, and damping

injection. Therefore, by choosing the weights in the optimization problem, the user can

prioritize one method over the others depending on the specific control task.

Figure 4.5 shows that in the yellow region, decreasing the stiffness along Z-axis

was delayed, although it dissipates energy. The reason behind that is that β2 filtered

the stiffness variation to stop the stiffness increase along the Y-axis at the same time.

Therefore, introducing an optimization parameter per each direction separately could

reduce the conservatism of the filters and allow for only modifying the stiffness in the

needed direction.

One problem with the damping injection is that it can introduce high pulses of
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force (Figure 4.9), which may cause high-frequency vibrations or chattering. Several

methods have been proposed in the literature to deal with this issue, e.g., Virtual-

Mass-Spring method [185]. Since this problem usually happens at low velocities, a

simple-to-implement method was proposed in [186] where a certain velocity threshold

was set, below which there is no need to inject all the calculated damping, especially

since the system is safe at low velocities. We also note that although damping injection

only on the leader side is theoretically enough for passivity, adding an optimization

parameter for damping injection on the follower side can also help in reducing the

damping spikes of the leader.

It can be noticed that the dissipated power ω displayed in Figure 4.6 is generally

positive, except for very small negative values that come from the slack variable (e.g.,

at t = 0.4 s). Although the optimization problem is theoretically always feasible, these

negative values are caused by numerical issues, and a slack variable is often necessary

in practice to guarantee the efficient convergence of the solver. Spikes in the dissipated

power can be noticed at the beginning and end of the green zone, and in the yellow

zone (Figure 4.6). These spikes are likely due to the sudden dropping of the stiffness

along one of the axes (Figure 4.5(a, b)), which is a dissipative act. Note that these

spikes do not violate the passivity condition since they increase ω.

4.4 Chapter Conclusion

In this chapter, we proposed a variable impedance control formulation for bilateral tele-

operation with passivity guarantees. This method addresses the system passivity chal-

lenge when the impedance of the follower or leader robots depends on the task and hence

is time-varying. To tackle this problem, the method extends the concept of passivity

filter to the context of bilateral teleoperation and combines it with different energy dis-

sipation methods (namely, time-domain passivity and passive-set-position-modulation

methods). The proposed method uses linear optimization to find the optimal parame-

ters for the energy dissipation. An experimental study based on two 3-DoF robots was

carried out to evaluate the effectiveness of this method and the overall performance of

the teleoperation scheme.

The main advantage of the method is that it allows for task-specific customization of

the energy dissipation strategy. By appropriately tuning the weights in the optimization

formulation, the user can choose the preferred dissipation mechanisms based on the
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control objectives. The method mainly uses reference filtering of the impedance profile

and Cartesian position reference. Therefore, these references are altered in a transparent

and smooth manner to guarantee passivity.

Future works involve reducing the conservatism of the current method by exploring

the possibility of separating the optimization parameters along each axis to allow for

different filtering for different axes. Another improvement can be made by storing

the dissipated energy for later use, similar to energy tanks, which could reduce the

conservatism of the method. However, this requires a careful study of the maximum

amount of energy that can be stored safely. Other future works include studying the

effect of the cost weights on the performance of the method. Finally, the incorporation

of time domain passivity approach can result in some chattering problems due to the

damping injection. So the method can be improved by implementing a chattering-free

mechanism such as the VMS method [185] or using a velocity threshold under which

the damping will not be injected [186].
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Chap. 5

Conclusion and Perspectives

5.1 Conclusion

This thesis addresses critical challenges in enhancing the safety, transparency, and ro-

bustness of bilateral teleoperation systems. The core objective is to develop and validate

advanced control strategies that enable more intuitive, safer, and effective bilateral tele-

manipulation, especially when dealing with constraints, uncertainties, and the need for

adaptable interaction behaviors.

The presented research resulted in three primary contributions. First, acknowl-

edging the importance of constraint handling in safety-critical applications, we devel-

oped a Model Predictive Control (MPC) framework tailored for bilateral teleoperation

(Chapter 2). Subsequently, and motivated by the practical difficulty of manually tun-

ing MPC parameters for optimal performance, particularly concerning transparency,

we introduced an auto-tuning framework based on Bayesian Optimization (BO). This

data-driven approach efficiently optimizes the MPC cost function weights by directly

minimizing a performance metric evaluated on the system. The effectiveness of this

auto-tuning method was demonstrated through both simulation and hardware experi-

ments on a 1-DoF system, significantly improving the transparency with minimal tuning

time.

Second, we tackled the crucial issue of robustness against uncertainties, which is

paramount for ensuring safety and reliability in real-world scenarios like robotic surgery

(Chapter 3). Standard MPC struggles with constraint satisfaction under model un-

certainty. To overcome this, we designed an adaptive robust Tube-MPC controller.

This controller guarantees robust constraint satisfaction and recursive feasibility despite
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parametric uncertainties in the environment model (stiffness and damping) and addi-

tive disturbances. The framework integrates two learning mechanisms: Set-Membership

Learning (SML) refines the uncertainty bounds online, reducing controller conservatism,

while Least Mean Squares (LMS) provides a point estimate of the environment param-

eters to enhance performance when constraints are not active. The efficacy of this

approach in satisfying constraints robustly and adapting to the uncertain environment

properties was validated through simulation.

Third, addressing the need for robots to dynamically adapt their interaction behav-

ior, we investigated Variable Impedance Control (VIC) within the context of bilateral

teleoperation (Chapter 4). While VIC offers significant advantages in flexibility and

human-like interaction, it poses challenges to system stability due to potential passiv-

ity violations. We propose a novel optimization-based control framework that ensures

passivity, and hence stability, for VIC-based bilateral teleoperation. This framework

extends the concept of passivity filters and integrates multiple energy dissipation strate-

gies, including impedance profile filtering, reference position modulation, and adaptive

damping injection. The controller uses online linear optimization to dynamically adjust

these mechanisms, preserving passivity while minimally impacting performance. The

feasibility and effectiveness of this passive VIC scheme were validated experimentally

using two 3-DoF haptic devices in a task requiring varying interaction dynamics.

In summary, this thesis proposes practical and theoretically grounded methods for

advancing bilateral teleoperation control. By developing techniques for efficient MPC

tuning, robust constraint handling under uncertainty, and passivity-preserving vari-

able impedance control, this work paves the way for more capable, reliable, and safer

teleoperation systems, particularly in demanding fields such as surgical teleoperation.

5.2 Perspectives

The research presented in this thesis lays a foundation for safer and high-performance bi-

lateral teleoperation systems. At the same time, it also opens several avenues for future

investigation aimed at enhancing robustness, adaptivity, performance, and practical

applicability. We outline these directions hereafter, grouping them into key research

themes.
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5.2.1 Adaptive-Tuning for Multi Environments

The auto-tuning framework presented in Chapter 2 successfully demonstrated the use of

Bayesian Optimization to optimize MPC parameters for transparency in a specific envi-

ronment. As highlighted by the system model (2.7), variations in environment stiffness

and damping coefficient significantly alter the dynamics, implying that a tuning opti-

mized for one environment may be suboptimal for another. This necessitates re-tuning

for each new environment condition. One direction to address this limitation is to ex-

tend the auto-tuning methodology to explicitly account for the environment variations,

enabling the controller tuning to adapt automatically. A reasonable assumption is that

finding an optimal tuning for one environment could provide valuable information for

similar environments. This idea motivates the use of Contextual Bayesian Optimization

(C-BO) [193]. C-BO extends standard BO by modeling the objective function (in our

case, the teleoperation performance metric M(ϕ)) as dependent on both the decision

variables (the MPC weights ϕ that we optimize) and context variables (environment

parameters c that are observed but not directly controlled) i.e., M(ϕ, c). The core idea

is that the C-BO surrogate model learns the relationship between the context and the

optimal decision variables, allowing it to generalize and predict good tuning parame-

ters even for environment contexts not explicitly encountered during the initial learning

phase.

C-BO has shown significant potential in robotics for enabling efficient generalization

of learned behaviors across different conditions. For instance, the work in [137] employed

C-BO for auto-tuning an MPC for autonomous racing, using environment factors like

tire friction as context variables to adapt the controller online. Similarly, C-BO was

used for adapting robot-learned skills based on object properties or target locations as

context parameters [194,195].

Implementing such a method would likely involve a two-stage process:

1. Offline Learning Stage: Conduct a systematic series of experiments (simulation

or hardware) where the teleoperation system interacts with a range of environ-

ments characterized by different known stiffness and damping values (c). For each

context c, C-BO would be used to explore the MPC weight space ϕ and evaluate

the performance M(ϕ, c). This builds the surrogate GP model that captures the

mapping c → ϕ∗, where ϕ∗ represents the optimal weights for context c.

2. Online Implementation Stage: During actual teleoperation, an online mechanism
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would be needed to estimate the current environment context ĉ (e.g., using LMS).

Given ĉ, the learned C-BO surrogate model would then be queried to predict the

optimal MPC weights ϕ∗(ĉ). These weights would be applied to the MPC con-

troller, allowing it to dynamically adapt its behavior to the perceived environment.

While C-BO offers significant potential for adaptive tuning, some challenges must be

addressed. For example, the adaptation should ensure seamless transitions, preventing

any discontinuities that could disrupt the user experience, or even induce stability

issues.

5.2.2 Enhancing the Uncertainty Learning

The adaptive robust Tube-MPC framework developed in Chapter 3 represents an im-

portant step towards safe and efficient teleoperation under uncertainty by guarantee-

ing robust constraint satisfaction and recursive feasibility while reducing conservatism

through online learning. However, certain assumptions and characteristics of the cur-

rent framework require further investigation to broaden its applicability and enhance

its robustness in complex real-world scenarios. Two key topics for future work are ex-

tending the framework to handle time-varying environment parameters and improving

the robustness of the SML component against measurement outliers.

5.2.2.1 Handling Time-Varying Environment Parameters

The current formulation assumes that the true environment parameters θ∗ = [k∗
e , b

∗
e]

⊤

are unknown but constant. However, certain applications might involve environments

whose properties drift over time. If θ∗ drifts significantly, the SML process, which relies

on intersecting the sets (∆τ ), might eventually lead to an empty feasible parameter set

(Θτ ), thereby invalidating the robustness guarantees of the Tube-MPC.

To extend the work to such cases and prevent the feasible set Θτ from becoming

empty due to parameter drift, a mechanism of set inflation could be used. At each time

step, the updated feasible set Θτ can be inflated by an appropriate amount. This allows

the set to expand and re-capture the true parameter if it has drifted slightly outside

the previous intersection. The rate of inflation should be based on the expected rate of

parameter variation. This makes the uncertainty set alternate between growing with

time and shrinking due to learning.
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5.2.2.2 Improving SML Robustness to Outliers

An issue of standard SML is its sensitivity to outliers. The method fundamentally

assumes that every measurement (xτ , uτ , xτ+1) is consistent with the uncertain system

model (3.9) for the true parameter θ∗ ∈ Θ0 and disturbance dτ ∈ D. If a single

measurement violates these assumptions (e.g., due to unmodeled dynamics, sensor noise

spikes, external disturbances exceeding D, or even numerical errors), the resulting set

∆τ might not contain θ∗. Intersecting the current feasible set Θτ−1 with such ∆τ can

irreversibly corrupt the learning process, leading to Θτ becoming empty or excluding

the true parameter value, thereby compromising the safety guarantees of the robust

controller. Future work can focus on enhancing the robustness of SML against outliers

by detecting and rejecting them as done in [196,197], which is crucial for the practical

deployment of the proposed controller in noisy scenarios.

5.2.3 Reducing Conservatism and Design Complexity in Ro-

bust MPC

While providing safety guarantees, the robust Tube-MPC approach from Chapter 3

introduces conservatism and significant design complexity, particularly in the offline

phase. A key source of conservatism lies in the design of the pre-stabilizing controller

K and the resulting tube cross-section P0, defined in subsubsection 3.2.1.4. Since the

MPC is applied on top of the low-level controller K, a high-gain K minimizes the

tube size (reducing state deviation from the nominal state) but consumes significant

control authority. This leaves less room for the MPC to choose the additional control

input vk from (3.45) and potentially forces conservative actions to satisfy the tightened

constraints (3.35). Conversely, a low-gain K leads to larger tubes, requiring more con-

straint tightening and potentially limiting achievable performance even if more control

authority is available for vk. This trade-off is difficult to balance manually.

Determining the controller K, the terminal cost P , the terminal set Xf , and the

initial tube shape P0 typically involves solving complex offline optimization problems

(e.g., LMIs). This process can be time-consuming, sensitive to tuning parameters within

the design algorithms, and may sometimes fail to find a feasible solution (e.g., a suit-

able positively invariant set for P0). Furthermore, the complexity of the resulting P0

(number of facets) can vary, impacting the online computational load of the MPC,

particularly the constraint (3.50) which translates into a set of conditions (B.18), the
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number of which depends on the complexity of P0.

The challenges above suggest an opportunity to apply the auto-tuning philosophy

from Chapter 2 to the design of the robust MPC itself. Instead of only tuning the

MPC cost weights (Q and R) for transparency, future research could explore using BO

or similar methods to tune these weights in a way that takes into account their effect

on the resulting controller parameters K,P,Xf , and P0. The auto-tuning in this case

should consider the balance between tube size, aggressiveness of K, the conservatism

of Xf , and the computational complexity, in addition to the transparency.

5.2.4 Refining Passive Variable Impedance Control

As was mentioned throughout Chapter 4, there are several improvements that could

be made in the future to enhance the proposed passivity framework. Specifically, the

following points could be addressed.

5.2.4.1 Direction-specific passivity control

The current optimization uses scalar filter gains (β1 and β2 from (4.23), and (4.24)) to

filter the stiffness matrices of the leader and follower robots, respectively. The effect

of this was clear in the experiment in Figure 4.5 at the beginning of the yellow region,

where the stiffness was filtered along all directions. The filtering included the stiffness

along the Z-axis even though it was decreasing and dissipating energy. Extending the

framework to allow independent filtering parameters for different Cartesian axes could

reduce conservatism by applying passivity interventions only along directions where

they are strictly necessary.

5.2.4.2 Integral passivity and energy management

It should be noted that in this work, we restrict the instantaneous dissipated energy

to always be positive, that is ω(t) ≥ 0. However, many works use a less conservative

condition, only requiring the integral of the dissipated power to be positive which is the

passivity condition defined in (4.9). This allows for storing the dissipated energy by the

system and using it later for potentially non-passive behaviors, as in energy tanks [198].

Although extending this idea for our method is relatively straightforward, determining

the maximum amount of energy that can be safely stored is highly task-dependent and

a challenging issue, which is why we left it for future work.
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5.2.4.3 Chattering mitigation

A specific challenge associated with the proposed passive VIC framework relates to the

damping injection mechanism, controlled by the parameter β5(t) from (4.27). While

theoretically sufficient for ensuring passivity by dissipating excess energy associated

with the term −ẋ⊤
l fe, the practical implementation can lead to undesirable interaction

artifacts. The optimization problem (4.34) determines the minimal required β5 at each

time step to satisfy the passivity constraint ω(t)+ε ≥ 0. If the system generates energy

rapidly, the optimizer might command a large, sudden increase in β5 from zero. This

abrupt injection of significant damping, especially when the leader robot’s velocity ẋl is

low, can be perceived by the human operator as a sharp, unnatural braking force or a

high-frequency vibration, commonly referred to as chattering. Future work should focus

on integrating established chattering reduction techniques into the optimization frame-

work. Two promising directions, inspired by the literature reviewed in Section 4.1.2,

are the following. First, inspired by chattering-free TDPA [186], damping injection via

β5 could be significantly reduced or eliminated when the leader velocity |ẋl| falls below
a predefined threshold. This would avoid the issue at low speeds, where chattering is

most probable, potentially at the cost of minor, temporary passivity violations that are

often acceptable if the velocity is low. The second possible method would be to use

virtual dynamics filtering, drawing from the VMS concept used with TDPA in [185].

The damping force commanded by β5 could be applied through a virtual dynamic fil-

ter. This acts as a low-pass filter, smoothing the force experienced by the user and

mitigating high-frequency components caused by rapid changes in β5.

5.2.4.4 Auto-tuning of passivity weights

The cost weights (pj) manage the balance between different energy dissipation tech-

niques in the passivity optimization problem (4.34). These weights currently require

manual tuning. Developing methods (e.g., learning-based, Bayesian Optimization) to

automatically tune these weights based on high-level task requirements or user prefer-

ences would enhance usability.
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Appendix A

Robotics Background

A.1 Robot Dynamics Linearization

The dynamics of n-DoF serial robot in the joint space can be described by the following

equation

H(q)q̈ + C(q, q̇)q̇ + g(q) = τc + τext (A.1)

where q, q̇, q̈ are the position, velocity, and acceleration of the robot joints, respectively.

H(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal

matrix, g(q) ∈ Rn is the gravity vector, τc ∈ Rn is the control torque, and τext ∈ Rn is

the external torque projected into the joint space. A classical approach to control the

robot is called computed torque method, where the equation (A.1) is first linearized by

canceling the nonlinear terms. After that, a more advanced controller is designed for

the linearized decoupled system. Such a method requires the knowledge of the robot

model. In the following, we present two linearization cases in the task space, with and

without the force sensor.

A.1.1 Model Linearization with Force/Torque Sensor

If a measurement of τext is available (e.g., using a force/torque sensor), the following

control law can be applied [7]

τc = τ ′ + τaux (A.2)

where τ ′ is the desired torque, and τaux is the auxiliary torque which is calculated as

follows

τaux = H(q)ν + C(q, q̇) + g(q)− τext
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where ν is the new input which represents the desired acceleration, resulting in a double

integrator model in the joint space

q̈ = ν (A.3)

The dynamics of the robot in the m-dimension task space can be then found by

derivating the forward differential kinematic model of the robot as follows

ẍ = J(q)q̈ + J̇(q, q̇)q̇ (A.4)

where ẍ ∈ Rm is the task space acceleration, J(q) ∈ Rm×n is the Jacobian matrix, and

J̇(q) ∈ Rm×n is the time derivative of the Jacobian matrix. By setting the desired joint

acceleration ν as

ν = J(q)+u− J(q)+J̇(q, q̇)q̇

where J(q)+ ∈ Rn×m is the pseudo-inverse of the analytic Jacobian matrix, the result

is a double integrator model in the task space

ẍ = u (A.5)

where u ∈ Rm is the desired acceleration in the task space. The input u can be easily

chosen such that the robot behaves in a desired manner. For example, a common

practice is to render the robot as a mass-damper system in the task space under the

influence of the external force fext and an additional control force fc. To achieve that,

the following control law can be applied

u = M−1(−Dẋ+ fc + fext) (A.6)

where fc = J(q)−⊤τext and fc = J(q)−⊤τ ′, which results in the following dynamics in

the task space

Mẍ+Dẋ = fc + fext (A.7)

where M ∈ Rm×m is the desired inertia matrix, and D ∈ Rm×m is the desired damping

matrix. Note that if M and D are chosen as diagonal matrices, the robot behaves as a

set of decoupled mass-damper systems, one for each task space dimension.
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A.1.2 Model Linearization without Force/Torque Sensor

In case the force/torque sensor is not available, the same behavior of (A.7) can be

achieved in the task space using the joints and task space accelerations [199]

τaux = H(q)q̈ + C(q, q̇)q̇ + g(q)− J⊤(q)Mẍ− J⊤(q)Dẋ (A.8)

this results in the following dynamic equation

Mẍ+Dẋ = J−⊤(q)τ ′ + J−⊤(q)τext (A.9)

which can be rewritten as

Mẍ+Dẋ = fc + fext (A.10)

In practice, a low-pass filter is usually applied to the acceleration to reduce the deriva-

tion noise. However, since the low-pass filter introduces a delay, the controller can not

provide large corrections of the robot inertia, which is why the inertia matrix M is

usually chosen to be close to the real inertia of the robot [199].
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Appendix B

Calculations for Adaptive Robust

MPC Implementation

B.1 Polytopes

In this section, we provide an overview of polytopes and key related concepts to the

robust MPC formulation in Chapter 3. An understanding of this concept is essential

for understanding the Tube-based MPC.

B.1.1 Definition

An n-dimensional polytope is a bounded convex set in Rn defined by a finite number

of linear inequalities. It can either be represented as the intersection of half-spaces,

or as the convex hull of its vertices. In this thesis, we primarily use the half-space

representation, or H-representation. In n-dimensional space, a polytope is defined by

the H-representation with nP linear inequalities as follows

P = {x ∈ Rn | HPx ≤ hP},

where HP ∈ RnP×n and hP ∈ RnP . In Chapter 3, the same naming convention is used

for different polytopes by replacing the name of the polytope. Intuitively, a polytope is

a geometric object that generalizes polygons in two dimensions and polyhedra in three

dimensions.

Figure B.1 shows a simple example of a polytope in R2 defined by its vertices (on

the left) and by the intersection of half-spaces (on the right). Although visualization
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Figure B.1: Example of a polytope in R2. The left side shows the polytope defined by
its vertices (V1, V2, V3), while the right side shows the same polytope defined by
its half-spaces with normal vectors (P1, P2, P3).

becomes challenging in higher dimensions, the same principles apply.

To write the H-representation of the shown polytope in the figure, we write the

inequalities that define these half-spaces as follows

P⊤
1 x ≥ b1

P⊤
2 x ≥ b2

P⊤
3 x ≥ b3

where x ∈ R2. Pi ∈ R2 are the normal vectors of the half-spaces, and bi ∈ R are

corresponding offset scalars. In this case, the H-representation of the polytope is given

by matrices HP and hP as follows

HP =

−P⊤
1

−P⊤
2

−P⊤
3

 , hP =

−b1

−b2

−b3


In this case, the polytope is represented by 3 inequalities and HP ∈ R3×2 and hP ∈ R3.
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B.1.2 Minkowski Sum and Tube Construction

A crucial operation in robust MPC is the Minkowski sum. For two sets A and B in Rn,

the Minkowski sum is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B}.

In case A is a point in space, the Minkowski sum is equivalent to a translation of the

set B by the point A.

B.2 Uncertain Model Matrices

The matrices of the uncertain system from (3.5) and (3.7) are given by

A0 =



1 Ts 0 0 0

0 1− blTs
ml

0 0 Ts
ml

0 0 1 Ts 0

0 0 −k0eTs
mf

1− (bf+b0e)Ts

mf
0

0 0 0 0 1


(B.1)

A1 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 − Ts
mf

0 0

0 0 0 0 0

 , A2 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 − Ts
mf

0

0 0 0 0 0

 (B.2)

Cθ = C0 + C1θ1 + C2θ2 (B.3)

C0 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 −k0
e −b0e 0


, C1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 −1 0 0


, C2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0


(B.4)
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B.3 Dynamics of Uncertainty Propagation

In this section, we will present more details about uncertainty propagation with linear

inequalities in the HTMPC. Specifically, the dynamics of wk and sk from equations

(3.49) and (3.50). Due to the complexity of the problem, we show the main ideas

and the needed equations for reimplementing the work. However, we do not go into the

proof or detailed derivations. Interested readers are referred to [168] for a more detailed

explanation.

As discussed in Chapter 3, the tube cross-section Pk should be scaled to ensure

that it contains all possible values of xk under all uncertainties. To achieve that, the

scaling factor sk should take into account the effect of both parametric and additive

uncertainties. For that, the following condition should be satisfied

xk ∈ x̄k ⊕ Pk ⇒ xk+1 ∈ x̄k+1 ⊕ Pk+1 (B.5)

∀dk ∈ D,∀θ ∈ Θ, k ∈ {0 . . . N} (B.6)

here, Pk = skP0, where P0 is the initial cross-section defined as

P0 = {x ∈ Rnx : HP0x ≤ 1nP0
} (B.7)

The dynamics of the tube scaling factor can be expressed as

sk+1 = ρ(Θ)sk + wk(Θ,D) (B.8)

which can be seen as a projection of the uncertainty from the state space into scalar

dynamics. This could be used to achieve robustness with significantly less number of

constraints.

To reduce online computational complexity, Kohler et al. [168] proposed transform-

ing some components of (B.8) into inequalities based on constants computed offline.

This approach introduces conservatism but allows for better real-time implementation.

The contraction rate ρ(Θ) is computed as the worst case over θ ∈ Θ. When Θ is a

hypercube, ρ(Θ) can be upper-bounded using the center and the size of the set Θ and

a constant LB computed offline as

ρ(Θ) ≤ ρθ̄ + ηLB (B.9)
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where ρθ̄ is the contraction rate at θ̄, the center of Θ, given by

ρθ̄ = max
i

max
x∈P0

[HP0 ]iAcl,θ̄x (B.10)

i = 1, . . . , nP0 (B.11)

and LB is a constant computed offline, defined as

LB = max
i,r

max
x∈P

[HP0 ]iDx(x)νr (B.12)

r = 1, . . . , 2nθ , i = 1, . . . , nP0 (B.13)

where Dx was introduced in (3.8), νr are the vertices of the unit hypercube Bnθ
= {θ ∈

Rnθ : ∥θ∥∞ ≤ 0.5}, and r is the index of the vertices. The term wk(Θ,D) in the scaling

dynamics can be separated as

wk(Θ,D) = wk(Θ) + wk(D) (B.14)

where the effect of the additive uncertainty D is bounded by a constant

wk(D) ≤ d̄ := max
i

max
d∈D

[HP0 ]id (B.15)

i = 1, . . . , nP0 (B.16)

and the effect of θ on wk at the nominal point (x̄k, ūk) is bounded by

wk(Θ) ≤ max
i,r

η[HP0 ]iDx(x̄k)νr

r = 1, . . . , 2nθ , i = 1, . . . , nP0

(B.17)

Finally, by substituting (B.9), (B.14), (B.15), and (B.17) into (B.8), we can rewrite the

dynamics of the scaling factor as

sk+1 = (ρθ̄τ + ητLBsk)sk + wk

wk ≥ d̄+ ητ [HP0 ]iD(x̄k)νr

r = 1, . . . , 2nθ , i = 1, . . . , nP0

(B.18)

Note that this set of inequalities replace the dynamics of sk and wk in the MPC

optimization constraints (3.49) and (3.50), which introduces (2nθ · nP0) constraints for
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each k.

B.4 Detailed Derivations for Constraint Tightening

As was shown in Chapter 3, the tightened constraints from (3.20) considering the un-

certainty is given by

x̄k ⊕ skP0 ⊆ X (B.19)

To be able to solve the problem using traditional linear solvers, this condition should

be reformulated from a set inclusion form into a linear form. Once again, the tightened

constraints can be simplified by separating the parts that can be computed offline. The

original polytopic MPC constraints with no uncertainty were written in (2.14) as

HXxk +HUuk ≤ 1nc (B.20)

which includes a mixed constraint on states and control inputs. However, the tight-

ening idea applies only to states since it is the part that has uncertainty, while the

control input is decided by the MPC itself. Therefore, the tightened constraints for all

uncertainties, and after applying the pre-stabilizing controller K from (3.31), can be

written as
HXxk +HU(Kxk + v) ≤ 1nc

∀xk ∈ x̄k ⊕ Pk

(B.21)

Next, each row of the constraint can be analyzed separately. For a given row (j), the

previous condition is equivalent to the following

max
xk∈x̄k⊕Pk

([HX ]j + [HU ]jK)︸ ︷︷ ︸
Hcl,j

xk + [HU ]jv ≤ 1 (B.22)

where [·]j denotes the (j)-th row of the matrix. This can be rewritten as

max
z∈Pk

Hcl,j(x̄k + z) + [HU ]jv ≤ 1 (B.23)

Using the fact that Pk contains the origin, we know that

max
z∈Pk

Hcl,jz ≥ 0 (B.24)
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From that, a sufficient condition for the constraint (B.23) to hold is 1

Hcl,jx̄k +max
z∈Pk

(Hcl,jz) + [HU ]jv ≤ 1. (B.25)

Note that the maximization does not depend on xk anymore, and knowing that (Pk =

skP0), this maximization could be computed offline. Thus, we define the constant cj

for each constraint (j) as follows

cj := max
z∈P0

(Hcl,jz) . (B.26)

Finally, online, the tightened constraint (j) from (B.25) can be simplified using the

computed constants cj as

skcj +Hcl,jx̄k + [HU ]jv ≤ 1 (B.27)

which resembles the original constraint form, but with the addition of the tightening

scalar term skcj. This is the tightened constraint that is used in the HTMPC optimiza-

tion problem (3.45).

1This transition from (B.23) to (B.25) uses the following inequality for a constant a
max
b∈P

(a+ b) ≤ max
b∈P

a+ |max
b∈P

b| = a+max
b∈P

b where a ∈ R and P ⊂ R+.
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Appendix C

Extended Abstract (French)

Introduction Générale

La téléopération bilatérale, qui permet à un opérateur humain de commander à dis-

tance des manipulateurs robotiques tout en recevant un retour d’effort kinesthésique,

revêt une importance capitale dans de nombreuses applications. Celles-ci s’étendent

de la chirurgie minimalement invasive, où la précision et la sensation tactile sont pri-

mordiales, à l’intervention en environnements hostiles (nucléaire, sous-marin) où la

présence humaine directe est impossible ou dangereuse, jusqu’à l’exploration spatiale

qui repousse les frontières de l’interaction à distance. Le retour d’effort est un élément

crucial de ces systèmes, car il vise à procurer à l’opérateur une sensation d’interaction

directe avec l’environnement distant, améliorant ainsi l’efficacité de la manipulation et

la sécurité des opérations.

Malgré les progrès significatifs réalisés, la conception de systèmes de téléopération

bilatérale performants et sûrs demeure un défi scientifique et technologique majeur.

Plusieurs problématiques fondamentales doivent être adressées. Premièrement, il est

impératif de garantir la stabilité du système couplé, qui inclut l’opérateur humain, le

robot mâıtre (manipulé par l’opérateur), le robot esclave (interagissant avec l’environnement

distant) et l’environnement lui-même. Les retards de communication, les non-linéarités

et les incertitudes peuvent facilement déstabiliser un tel système. Deuxièmement, une

haute transparence est recherchée, c’est-à-dire la capacité du système à transmettre

fidèlement les informations de position et de force entre l’opérateur et l’environnement,

donnant à l’opérateur l’illusion d’une manipulation directe. Troisièmement, la sécurité

de l’opération est une préoccupation centrale, impliquant le respect strict de contraintes
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sur les mouvements et les forces, tant pour protéger l’opérateur que l’environnement

manipulé, qui peut être fragile (par exemple, des tissus biologiques en chirurgie). En-

fin, les systèmes doivent faire preuve d’adaptabilité face aux incertitudes inhérentes aux

modèles de l’environnement (rigidité, amortissement variables et souvent inconnus) et

aux perturbations externes.

Cette thèse se propose d’apporter des contributions significatives pour relever ces

défis, en se concentrant sur le développement et la validation de nouvelles stratégies de

commande. Les travaux présentés s’articulent autour de trois axes principaux visant à

améliorer la sécurité, la transparence et la robustesse des robots téléopérés avec retour

d’effort.

Video
Feedbcak

Feedback
Commands

Commands

Follower
Robot

Environment
Leader 
Robot

Human
Operator

Communication
Channel

Figure C.1: Schéma de principe d’un système de téléopération bilatérale mâıtre-esclave
avec retour d’effort, illustrant les flux d’information.

Pour aborder les problématiques énoncées, cette thèse s’appuie sur et développe

plusieurs concepts clés de la théorie de la commande et de la robotique. La passivité

est un concept fondamental utilisé pour garantir la stabilité des systèmes téléopérés,

en s’assurant que le système ne génère pas d’énergie nette. La transparence, quantifiée

par diverses métriques, mesure la fidélité avec laquelle l’opérateur perçoit l’environnement

distant. La sécurité est abordée comme une combinaison de plusieurs aspects, no-

tamment la transparence, les contraintes de sécurité, la robustesse et l’adaptabilité.

La commande à impédance variable (VIC) est explorée pour permettre une

adaptation dynamique du comportement interactif du robot. Enfin, la Commande

Prédictive Basée sur Modèle (MPC) est un outil central utilisé pour sa capacité

à optimiser la performance tout en respectant des contraintes complexes sur les états

et les commandes du système.

Les contributions principales de cette thèse se structurent comme suit :
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1. Auto-réglage de la Commande Prédictive (MPC) pour la Transparence

en Téléopération Bilatérale : Face à la difficulté du réglage manuel des

nombreux paramètres du MPC, un cadre d’auto-réglage basé sur l’Optimisation

Bayésienne (BO) a été développé. Cette méthode permet d’optimiser systématiquement

les poids de la fonction de coût du MPC afin de maximiser la transparence de

l’interaction, évaluée par une métrique de performance quantitative.

2. Téléopération Bilatérale avec Contraintes Robustes : MPC Robuste

Adaptatif : Pour garantir la sécurité des opérations en présence d’incertitudes

sur le modèle de l’environnement, un contrôleur MPC robuste adaptatif, basé sur

l’approche ”Tube-MPC”, a été conçu. Ce contrôleur assure la satisfaction robuste

des contraintes et la faisabilité récursive du problème d’optimisation, tout en

intégrant des mécanismes d’apprentissage en ligne pour réduire le conservatisme

et améliorer la performance.

3. Commande à Impédance Variable (VIC) Passive pour la Téléopération

Bilatérale : La VIC offre une grande flexibilité d’interaction mais peut compro-

mettre la passivité du système. Un nouveau cadre de commande a été proposé

pour garantir la passivité des systèmes de téléopération bilatérale utilisant la VIC.

Cette approche étend le concept des filtres de passivité et intègre, via une opti-

misation en ligne, plusieurs mécanismes de dissipation d’énergie pour maintenir

la stabilité tout en minimisant l’impact sur la performance.

Le reste de ce résumé détaillera successivement chacune de ces contributions, en présentant

la problématique spécifique abordée, l’approche méthodologique développée et les prin-

cipaux résultats de validation obtenus.

Contribution 1 : Auto-réglage du MPC pour la Téléopération

Bilatérale

La Commande Prédictive Basée sur Modèle (MPC) est une stratégie de commande

avancée particulièrement adaptée à la téléopération bilatérale en raison de sa capacité

à gérer explicitement les contraintes sur les états (positions, vitesses) et les commandes

(forces/couples des actionneurs), tout en optimisant un critère de performance. En

téléopération, ce critère est souvent lié à la transparence, c’est-à-dire la capacité à
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minimiser les erreurs de suivi entre le robot mâıtre et le robot esclave en termes de

position, de vitesse et de force. Cependant, la performance d’un contrôleur MPC dépend

fortement du choix des poids dans sa fonction de coût. Le réglage manuel de ces poids

est une tâche ardue, empirique et chronophage, surtout lorsque la dimension de l’espace

des paramètres est élevée et que leur influence sur le comportement en boucle fermée

n’est pas intuitive.

Pour pallier cette difficulté, cette première contribution propose un cadre d’auto-

réglage des paramètres du MPC spécifiquement conçu pour optimiser la transparence

en téléopération bilatérale. L’approche a été initialement formulée et validée pour un

système de téléopération mâıtre-esclave à un degré de liberté (1-DoF).

La démarche comprend d’abord la formulation du contrôleur MPC. Le modèle dy-

namique du système 1-DoF est établi, incluant le robot mâıtre, le robot esclave et

une représentation simplifiée de l’environnement avec lequel le robot esclave interagit.

La fonction de coût du MPC est définie pour minimiser une somme pondérée des er-

reurs quadratiques prédites entre les positions, les vitesses et les forces du mâıtre et

de l’esclave sur un horizon de prédiction fini. Des contraintes sont imposées sur les

commandes des actionneurs pour refléter leurs limites physiques.

Ensuite, le cadre d’auto-réglage basé sur l’Optimisation Bayésienne (BO) est in-

troduit. Le BO est une technique d’optimisation globale efficace pour les fonctions

”bôıte noire” coûteuses à évaluer, ce qui est le cas de la performance d’un système de

téléopération avec un jeu de paramètres MPC donné. Une métrique de performance

quantitative, basée sur l’intégration des erreurs de suivi mesurées en boucle fermée (po-

sition, vitesse, force) sur une durée d’interaction typique, est définie. L’algorithme de

BO est alors utilisé pour explorer l’espace des poids de la fonction de coût du MPC,

en cherchant itérativement à minimiser cette métrique de performance. Le BO con-

struit un modèle statistique (processus Gaussien) de la fonction objectif et utilise une

fonction d’acquisition pour décider intelligemment du prochain jeu de poids à évaluer,

équilibrant l’exploration de nouvelles régions et l’exploitation des régions prometteuses.

La validation du cadre d’auto-réglage du MPC a été réalisée à la fois par des sim-

ulations et par des expérimentations sur le banc d’essai 1-DoF mâıtre-esclave décrit

précédemment (voir Figure 2). Le protocole expérimental impliquait des interactions

répétées où un opérateur (ou un profil de force simulé) appliquait des efforts sur le robot

mâıtre, tandis que le robot esclave interagissait avec un environnement de type ressort.

Les résultats ont démontré l’efficacité de l’approche d’auto-réglage. En simulation,

l’algorithme d’Optimisation Bayésienne a convergé en un nombre réduit d’itérations
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Figure C.2: Banc d’essai 1-DoF pour l’auto-réglage du MPC.

(typiquement moins de 15 essais de 3 secondes chacun) vers un jeu de poids pour le MPC

qui améliorait de manière significative la transparence du système. Cette amélioration

se traduisait par une réduction notable des erreurs de suivi en position, vitesse et force

entre le robot mâıtre et le robot esclave, se rapprochant d’un comportement idéalement

transparent.

Les expérimentations sur le banc d’essai matériel ont confirmé ces observations.

Malgré les imperfections inhérentes à un système réel (frictions non modélisées, bruit

de mesure), l’auto-réglage a permis d’obtenir une amélioration substantielle de la trans-

parence par rapport à un réglage initial empirique. Le temps total requis pour l’auto-

réglage sur le matériel est resté de l’ordre de quelques minutes, ce qui est considérablement

plus rapide qu’un processus de réglage manuel itératif. La Figure 3 illustre typique-

ment l’évolution de la métrique de performance durant le processus d’optimisation et

une comparaison qualitative des signaux avant et après l’application des poids opti-

misés.

En discussion, les principaux avantages de cette méthode résident dans son efficacité

en termes de nombre d’évaluations requises et dans la réduction significative de l’effort

et du temps de réglage pour l’ingénieur. Une limite de cette étude initiale est que

l’auto-réglage a été validé pour un seul type d’environnement. L’adaptation à des

environnements variés constitue une perspective intéressante. Néanmoins, ce travail

établit la faisabilité et l’intérêt de l’Optimisation Bayésienne pour l’auto-réglage des

contrôleurs MPC en téléopération bilatérale.
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Figure C.3: Graphique illustrant l’amélioration de la transparence avec l’auto-réglage
du MPC. (a) Évolution de la métrique de performance durant l’optimisation
Bayésienne. (b) Comparaison des signaux de position (haut) et de force (bas) du
robot mâıtre (bleu) et du robot esclave (rouge) avant (gauche) et après (droite)
auto-réglage.

Contribution 2 : Téléopération Bilatérale avec Con-

traintes Robustes (MPC Robuste Adaptatif)

Si le MPC standard permet de gérer les contraintes, sa performance et sa capacité

à garantir la satisfaction de ces contraintes peuvent être compromises en présence

d’incertitudes significatives sur le modèle du système, en particulier sur les paramètres

de l’environnement avec lequel le robot esclave interagit (par exemple, la rigidité et

l’amortissement de tissus biologiques en chirurgie robotique). Une violation des con-

traintes de sécurité (par exemple, dépassement de limites de l’espace de travail) peut

avoir des conséquences graves.

Cette deuxième contribution vise à relever ce défi en proposant un cadre de Com-

mande Prédictive Robuste et Adaptative pour la téléopération bilatérale, basé sur

l’approche ”Tube-MPC”. L’objectif est de garantir la satisfaction robuste des con-

traintes (c’est-à-dire pour toutes les réalisations possibles des incertitudes bornées) et

la faisabilité récursive du problème d’optimisation MPC, tout en s’adaptant en ligne aux
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propriétés de l’environnement pour améliorer la performance et réduire le conservatisme

inhérent aux approches robustes.

Le principe du Tube-MPC consiste à calculer à chaque instant une trajectoire nomi-

nale pour le robot esclave et un ”tube” d’incertitude autour de cette trajectoire. Ce tube

est construit de manière à contenir toutes les trajectoires réelles possibles du système

compte tenu des incertitudes. Les contraintes sont alors resserrées sur la trajectoire

nominale de telle sorte que si la trajectoire nominale respecte ces contraintes resserrées,

alors toutes les trajectoires réelles à l’intérieur du tube respecteront les contraintes

originales.

Le modèle du système de téléopération est formulé pour inclure des incertitudes

paramétriques bornées sur la rigidité (ke) et l’amortissement (be) de l’environnement,

ainsi que des perturbations additives bornées. Deux mécanismes d’apprentissage en

ligne sont intégrés au contrôleur Tube-MPC :

1. Apprentissage par Appartenance à un Ensemble (Set-Membership Learn-

ing - SML) : Cette technique affine en ligne l’ensemble des valeurs possibles pour

les paramètres incertains de l’environnement (le ”set” d’incertitude Θ). À chaque

nouvelle mesure de l’interaction, les régions de l’ensemble Θ qui sont incohérentes

avec les observations sont éliminées. Cela permet de réduire la taille du tube

d’incertitude et donc le conservatisme du contrôleur, car les marges de resserre-

ment des contraintes deviennent moins importantes.

2. Moindres Carrés Moyens (Least Mean Squares - LMS) : Parallèlement, un

algorithme LMS est utilisé pour estimer une valeur ponctuelle (θ̂) des paramètres

de l’environnement. Cette estimation est utilisée dans la fonction de coût du MPC

pour prédire le comportement le plus probable du système et ainsi optimiser la

performance (par exemple, la transparence) lorsque le système opère loin des

contraintes.

La formulation du contrôleur MPC robuste adaptatif combine les éléments du Tube-

MPC avec les informations issues des modules d’apprentissage SML et LMS. Plus

précisément, la propagation du tube d’incertitude (sa taille et son évolution) dépend

de l’ensemble d’incertitude Θτ fourni par le SML à l’instant τ . La trajectoire nomi-

nale, sur laquelle les contraintes sont resserrées, est calculée en utilisant le centre de cet

ensemble Θτ . La fonction de coût du MPC, quant à elle, est optimisée en utilisant la

trajectoire prédite avec l’estimation ponctuelle θ̂τ des paramètres fournie par le LMS.
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Figure C.4: Illustration schématique du concept de Tube-MPC. La figure montre une
trajectoire nominale, le tube d’incertitude qui l’entoure, et une contrainte sur
l’état. Le tube est contenu à l’intérieur de la région admissible.

Cela permet d’obtenir une meilleure performance lorsque l’estimation θ̂τ est précise,

tout en garantissant la robustesse grâce au tube basé sur Θτ . La faisabilité récursive

est assurée par l’utilisation d’un ensemble terminal robuste positivement invariant.

La validation de cette approche a été réalisée par des simulations d’un système de

téléopération bilatérale 1-DoF interagissant avec un environnement dont les paramètres

(rigidité et amortissement) étaient incertains mais bornés. Une contrainte de position

a été imposée au robot esclave pour simuler une fixture virtuelle de sécurité.

Les résultats de simulation ont démontré la capacité du contrôleur MPC robuste

adaptatif à satisfaire la contrainte de position de manière robuste, c’est-à-dire que le

robot esclave n’a jamais violé la limite imposée, malgré l’incertitude initiale sur les

paramètres de l’environnement. Simultanément, l’apprentissage SML a montré son ef-

ficacité : au fur et à mesure des interactions, l’ensemble d’incertitude Θτ s’est resserré

autour de la vraie valeur des paramètres, permettant au contrôleur d’être moins conser-

vateur (par exemple, le robot esclave pouvait s’approcher plus près de la contrainte sans

la violer, car le tube d’incertitude était plus petit). L’apprentissage LMS a également

convergé vers la vraie valeur des paramètres, ce qui a permis d’améliorer la transparence

du système lorsque celui-ci n’était pas limité par la contrainte. La Figure 5 illustre typ-
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iquement le respect de la contrainte et l’évolution des bornes d’incertitude apprises par

SML.

Ces travaux montrent qu’il est possible de concevoir des contrôleurs MPC pour la

téléopération qui sont à la fois robustes aux incertitudes, garantissant la sécurité, et

adaptatifs, améliorant la performance et réduisant le conservatisme au fil du temps

grâce à l’apprentissage en ligne.

target

(c)

(d)

Figure C.5: Graphique de simulation illustrant : (a-b) Les signaux et Le respect
d’une contrainte de position par le robot esclave. (c-d) L’évolution des bornes
d’incertitude sur un paramètre de l’environnement apprises par SML.

Contribution 3 : Commande à Impédance Variable

(VIC) Passive pour la Téléopération Bilatérale

La Commande à Impédance Variable (VIC) est une stratégie de contrôle attrayante

car elle permet d’adapter dynamiquement le comportement interactif d’un robot, no-

tamment sa rigidité et son amortissement apparents, en fonction de la tâche ou de

l’environnement. En téléopération bilatérale, la VIC peut être utilisée pour que le robot

esclave se comporte de manière souple lors de contacts inattendus ou pour protéger

des environnements fragiles, et de manière plus rigide lorsqu’une grande précision ou

l’application de forces importantes est requise. De même, l’impédance du robot mâıtre

peut être ajustée pour améliorer la perception de l’opérateur.
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Cependant, une variation temporelle de l’impédance (en particulier une augmenta-

tion de la rigidité) peut injecter de l’énergie dans le système. Si cette injection d’énergie

n’est pas correctement gérée, elle peut conduire à une violation de la condition de pas-

sivité du système de téléopération. La passivité est une propriété largement utilisée

pour garantir la stabilité des systèmes téléopérés, surtout en présence d’un opérateur

humain et d’un environnement dont les modèles sont incertains. La perte de passivité

peut entrâıner des oscillations instables et un comportement dangereux.

Cette troisième contribution propose un nouveau cadre de commande pour la téléopération

bilatérale qui permet d’utiliser la VIC tout en garantissant rigoureusement la passivité

du système, et donc sa stabilité. L’approche s’inspire et étend le concept des filtres de

passivité, initialement proposés pour la robotique collaborative, au contexte spécifique

de la téléopération bilatérale mâıtre-esclave.

Le principe fondamental est de surveiller en continu le flux de puissance interne

du système de téléopération. Ce flux peut être caractérisé par un terme de puissance

dissipée, noté ω(t). Pour que le système soit passif, il est suffisant que ω(t) reste

non négatif à tout instant. Lorsque les commandes VIC souhaitées par l’utilisateur

(c’est-à-dire les profils d’impédance désirés pour le mâıtre et l’esclave, et les consignes

de position) risqueraient de rendre ω(t) négatif, le cadre de commande intervient de

manière minimale.

Pour ce faire, plusieurs mécanismes de dissipation d’énergie sont intégrés :

1. Filtrage du profil d’impédance désiré : Les variations des matrices de rigidité

(Kl, Kf ) des robots mâıtre et esclave sont filtrées (ralenties) si elles risquent

d’injecter trop d’énergie.

2. Filtrage des signaux de position de référence : Les consignes de position

pour le suivi entre le mâıtre et l’esclave (xr
l , x

r
f ) sont également filtrées.

3. Injection adaptative d’amortissement : Un terme d’amortissement supplémentaire

peut être injecté, principalement sur le robot mâıtre.

Un problème d’optimisation linéaire est résolu en ligne à chaque pas de temps. Cet

optimiseur détermine l’activation minimale de ces différents filtres et de l’injection

d’amortissement nécessaire pour s’assurer que la condition ω(t) ≥ 0 est respectée, tout

en essayant de suivre au mieux les commandes VIC désirées par l’utilisateur.

La Figure 6 illustre l’architecture de commande à impédance variable (VIC) pas-

sive proposée. Elle met en évidence les robots mâıtre et esclave, leurs contrôleurs
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d’impédance respectifs, le générateur de profil d’impédance souhaité par l’utilisateur,

et le module central d’optimisation de la passivité qui ajuste les filtres d’impédance et

de référence de position pour garantir la stabilité du système.

Figure C.6: Architecture de commande VIC passive. Le schéma de l’architecture pro-
posée, montrant les robots, le générateur de profil d’impédance, les filtres et
l’optimiseur.

La validation du cadre de commande à impédance variable (VIC) passive a été

réalisée expérimentalement sur un banc d’essai de téléopération bilatérale composé de

deux dispositifs haptiques Omega 3-DoF de Force Dimension (voire Figure 7). Le

robot mâıtre était un Omega7 et le robot esclave un Omega3, ce dernier étant équipé

d’un capteur de force ATI Nano17 pour mesurer l’interaction avec l’environnement.

L’environnement distant était constitué d’un bloc de mousse dans lequel un parcours

(tunnel) avait été sculpté.

La tâche expérimentale consistait pour l’opérateur à guider le robot esclave pour in-

teragir avec des zones cibles spécifiques (T1 et T2) situées aux extrémités du tunnel, puis

à naviguer à travers le tunnel pour passer d’une cible à l’autre, et ce de manière répétée.

Cette tâche a été conçue pour nécessiter des variations significatives de l’impédance du

robot esclave : une rigidité élevée était souhaitée dans les zones cibles pour permettre

l’application de forces précises, tandis qu’une faible rigidité était préférable dans le tun-

nel pour protéger ses parois contre des forces de contact excessives et pour faciliter un

mouvement souple. L’impédance du robot mâıtre était principalement configurée pour

réfléchir les forces de l’environnement.

Les résultats expérimentaux ont confirmé la capacité du système à modifier dy-

namiquement les profils d’impédance du robot esclave en fonction de sa position dans
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l’environnement, conformément à la carte d’impédance prédéfinie. Plus important en-

core, l’optimiseur en ligne a réussi à maintenir la passivité du système tout au long de

la tâche, comme en témoigne la puissance dissipée ω(t) qui est restée globalement non

négative (aux erreurs numériques près). Lorsque les variations d’impédance souhaitées

(par exemple, une augmentation rapide de la rigidité en entrant dans une zone cible)

auraient pu violer la passivité, les filtres se sont activés (par exemple, le gain β2 du

filtre de rigidité de l’esclave a diminué), modérant temporairement les changements

d’impédance pour préserver la stabilité. La Figure 7 ci-dessous illustre le banc d’essai

et un exemple typique de l’évolution de la rigidité appliquée et de la puissance dissipée.

Ces expériences valident l’approche proposée comme une solution viable pour intégrer

les avantages de la VIC en téléopération bilatérale tout en garantissant la stabilité grâce

au maintien rigoureux de la passivité.

Y
X

Z

Figure C.7: Validation expérimentale de la VIC passive.
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Conclusion Générale

Cette thèse a abordé plusieurs défis critiques liés à l’amélioration de la sécurité, de la

transparence et de la robustesse des systèmes de téléopération bilatérale avec retour

d’effort. L’objectif principal était de développer et de valider des stratégies de com-

mande avancées permettant une manipulation à distance plus intuitive, plus sûre et

plus efficace, en particulier face aux contraintes opérationnelles, aux incertitudes des

modèles et à la nécessité d’un comportement d’interaction adaptable.

Trois contributions principales ont été présentées. Premièrement, un cadre d’auto-

réglage basé sur l’Optimisation Bayésienne a été développé pour les contrôleurs

MPC. Cette approche optimise de manière efficace les poids de la fonction de coût du

MPC en minimisant directement une métrique de performance évaluée sur le système,

améliorant significativement la transparence avec un effort de réglage minimal. Cette

méthode a été validée en simulation et sur un banc d’essai 1-DoF.

Deuxièmement, pour répondre au problème crucial de la robustesse face aux incer-

titudes, un contrôleur MPC robuste adaptatif (Tube-MPC) a été conçu. Ce

contrôleur garantit la satisfaction robuste des contraintes et la faisabilité récursive

en présence d’incertitudes paramétriques bornées sur le modèle de l’environnement

et de perturbations additives. Il intègre des mécanismes d’apprentissage en ligne

(SML et LMS) qui affinent les bornes d’incertitude et estiment les paramètres de

l’environnement, réduisant ainsi le conservatisme du contrôleur et améliorant ses per-

formances au fil du temps. L’efficacité de cette approche a été validée par simulation.

Troisièmement, face au besoin d’adaptation dynamique du comportement d’interaction,

un nouveau cadre de commande à impédance variable (VIC) garantissant la

passivité a été proposé. La VIC offre des avantages significatifs en termes de flexibilité,

mais peut compromettre la stabilité en violant la passivité. L’approche développée

étend le concept des filtres de passivité et intègre, via une optimisation linéaire en

ligne, de multiples stratégies de dissipation d’énergie (filtrage de profil d’impédance,

filtrage de référence de position, injection d’amortissement). Cela permet de préserver

la passivité, et donc la stabilité, tout en minimisant l’impact sur la performance. La

faisabilité et l’efficacité de ce schéma VIC passif ont été validées expérimentalement sur

un système 3-DoF.

En résumé, cette thèse propose des méthodes pratiques et théoriquement fondées

pour faire progresser la commande en téléopération bilatérale. En développant des
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techniques pour le réglage efficace du MPC, la gestion robuste des contraintes sous

incertitude, et la commande à impédance variable préservant la passivité, ces travaux

ouvrent la voie à des systèmes de téléopération plus performants, fiables et sûrs, parti-

culièrement pertinents pour des domaines exigeants tels que la chirurgie robotique.

Perspectives

Les recherches présentées dans cette thèse jettent les bases de systèmes de téléopération

bilatérale plus sûrs et plus performants. Elles ouvrent également plusieurs pistes

prometteuses pour des investigations futures visant à améliorer davantage la robustesse,

l’adaptabilité, la performance et l’applicabilité pratique de ces systèmes.

1. Auto-réglage adaptatif pour des environnements multiples

Le cadre d’auto-réglage du MPC (Contribution 1) a été validé pour un environnement

spécifique. Une extension naturelle serait de le rendre adaptatif aux variations de

l’environnement. L’Optimisation Bayésienne Contextuelle (C-BO) pourrait être ex-

plorée pour modéliser la fonction de performance en fonction à la fois des poids du

MPC et des paramètres contextuels de l’environnement (estimés en ligne). Cela per-

mettrait au système de prédire et d’appliquer des réglages optimaux même pour des

environnements non rencontrés lors de la phase d’apprentissage initiale.

2. Amélioration de l’apprentissage de l’incertitude (Contribu-

tion 2)

� Gestion des paramètres d’environnement variant dans le temps : La for-

mulation actuelle suppose des paramètres d’environnement constants. Pour gérer

des dérives lentes, un mécanisme d’inflation contrôlée de l’ensemble d’incertitude

appris par SML pourrait être introduit, permettant de ”rattraper” le vrai paramètre

s’il sort de l’ensemble précédemment estimé.

� Robustesse du SML aux mesures aberrantes (outliers) : Le SML stan-

dard est sensible aux outliers. Des travaux futurs pourraient se concentrer sur

l’amélioration de sa robustesse, par exemple en détectant et en rejetant les mesures

qui contredisent fortement le modèle actuel d’incertitude.
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3. Réduction du conservatisme et de la complexité de concep-

tion du MPC Robuste (Contribution 2)

La conception hors ligne du contrôleur de pré-stabilisation K, du coût terminal P, de

l’ensemble terminal Xf et de la forme initiale du tube P0 est complexe. L’application de

la philosophie d’auto-réglage à ces éléments de conception eux-mêmes, en considérant

l’équilibre entre la taille du tube, l’agressivité de K, et la complexité calculatoire, pour-

rait réduire le conservatisme et simplifier le déploiement.

4. Affinements de la Commande à Impédance Variable Passive

(Contribution 3)

� Contrôle de passivité spécifique à chaque direction cartésienne : Actuelle-

ment, les gains des filtres de rigidité sont scalaires. Permettre des paramètres de

filtrage indépendants pour chaque axe cartésien pourrait réduire le conservatisme

en n’appliquant les interventions de passivité que le long des directions nécessaires.

� Gestion de l’énergie et passivité intégrale : Au lieu d’imposer ω(t) ≥ 0

(passivité instantanée), on pourrait n’exiger que l’intégrale de ω(t) soit posi-

tive, permettant de stocker temporairement l’énergie dissipée (comme dans les

réservoirs d’énergie) pour des comportements non passifs ultérieurs, sous réserve

d’une analyse de sécurité rigoureuse.

� Atténuation du ”chattering” : L’injection d’amortissement (β5) peut causer

du ”chattering”. Des techniques comme le filtrage dynamique virtuel de la force

d’amortissement ou un seuil de vitesse en deçà duquel l’amortissement est réduit

pourraient être intégrées.

� Auto-réglage des poids de l’optimisation de la passivité : Les poids (pj)

qui gèrent l’équilibre entre les différents mécanismes de dissipation d’énergie sont

actuellement réglés manuellement. Des méthodes d’apprentissage pourraient per-

mettre de les ajuster automatiquement en fonction d’exigences de haut niveau ou

des préférences de l’utilisateur.

Ces pistes de recherche visent à rendre les systèmes de téléopération encore plus in-

telligents, adaptatifs et transparents, élargissant ainsi leur champ d’application et leur

acceptation dans des tâches complexes et critiques.
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