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RESUME

Avec la numérisation croissante des activités humaines, une grande variété de données
relationnelles devient disponible pour 'analyse. Ces données multi-relationnelles néces-
sitent des méthodes capables de prendre en compte simultanément les objets et les rela-
tions qui les relient, afin d’extraire des structures significatives et interprétables. Parmi les
approches développées a cet effet, I’Analyse Relationnelle de Concepts (Relational Concept
Analysis — RCA) et I’Analyse Conceptuelle de Graphes (Graph-FCA) occupent une place
particuliére. Toutes deux dérivent de ’Analyse Formelle de Concepts (AFC), une méthode
mathématique de classification largement utilisée dans de nombreux domaines. Dans RCA,
les données sont représentées sous forme de tables interconnectées, analogues au mo-
deéle entité—association, tandis que Graph-FCA modélise les données sous forme d’hyper-
graphes, ou les objets sont les nceuds et les attributs sont portés par les hyperarétes. Bien
que partageant des fondements communs, RCA et Graph-FCA different dans leurs forma-
lismes et leurs mécanismes d’analyse. Certaines études antérieures ont exploré leurs liens,
notamment pour l'interprétation des résultats, mais sans offrir de comparaison globale et
approfondie. Ce travail propose une étude comparative, a la fois théorique et empirique, des
deux approches RCA et Graph-FCA, dans le but d’établir leurs similitudes et différences sur
une base solide, et de fournir a I’analyste des repéres pour choisir I'approche la plus adaptée
selon la nature des données et les objectifs d’analyse. Nous comparons les deux approches
dans leur cadre commun, a la fois du point de vue extensionnel, en analysant les groupes
d’objets extraits, et du point de vue intensionnel, en examinant les descriptions associées a
ces groupes. Nous étudions également leurs différences dans la modélisation des relations
n-aires et le traitement des cycles, afin de déterminer dans quelle mesure ces divergences
peuvent se révéler complémentaires et bénéfiques pour I'analyse. Enfin, une expérimenta-
tion sur un jeu de données réel, issu d'une ancienne pharmacopée arabe met en évidence
les forces et les limites de chacune des deux approches.

Mots clés : Analyse Formelle de Concepts, Analyse Relationnelle de Concepts, Graph-FCA,
Treillis, Fouille de données multi-relationnelles, Graphe de connaissances, Motif de graphe.






ABSTRACT

With the increasing digitalization of human activities, a wide variety of relational data
is becoming available for analysis. Such multi-relational data requires methods capable of
simultaneously considering both the objects and the relationships connecting them, in or-
der to extract meaningful and interpretable structures. Among the approaches developed
for this purpose, Relational Concept Analysis (RCA) and Graph-FCA hold a particular place.
Both derive from Formal Concept Analysis (FCA), a mathematical classification method wi-
dely used in many fields. In RCA, data is represented as interconnected tables, similar to the
entity-relationship model, while Graph-FCA models data as hypergraphs, where objects
are nodes and attributes are carried by hyperedges. Although they share common foun-
dations, RCA and Graph-FCA differ in their formalisms and analysis mechanisms. Some
previous studies have explored their connections, particularly regarding result interpreta-
tion, but without offering a comprehensive and in-depth comparison. This work presents a
comparative study, both theoretical and empirical, of the two approaches RCA and Graph-
FCA, with the aim of establishing their similarities and differences on a solid basis, and
providing analysts with guidelines for choosing the most appropriate approach according
to the nature of the data and the objectives of the analysis. We compare both approaches
within their common framework, both from an extensional perspective, by analyzing the
clusters of extracted objects, and from an intensional perspective, by examining the des-
criptions associated with these clusters. We also study their differences in modeling n-ary
relations and handling cycles, in order to determine to what extent these divergences can
be complementary and beneficial for the analysis. Finally, an experiment on a real dataset
from an ancient Arabic pharmacopoeia highlights the strengths and limitations of each of
the two approaches.

Keywords : Formal Concept Analysis, Relational Concept Analysis, Graph-FCA, Lattice,
Multi-relational data mining, Knowledge graph, Graph pattern.
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CHAPITRE G

INTRODUCTION

Avec la numérisation croissante des activités humaines, un volume considérable de don-
nées devient disponible pour I’analyse dans de nombreux domaines comme par exemple
I'hydro-écologie [DOLQUES et al., 2021 ; N1ca et al., 2016b] ou la médecine [ROUANE-HACENE
et al., 2009]. Ces données issues de la transformation numérique se caractérisent par leur
volumétrie, leur richesse sémantique, leur complexité structurelle et leur nature multi-
relationnelle, car elles décrivent une grande variété d’entités et les interactions entre elles.
Les données multi-relationnelles, qu’elles soient spatiales, temporelles, ou décrivant des
liens entre individus, peuvent étre efficacement représentées sous forme de graphes. Par
exemple, dans le domaine environnemental, les graphes sont utilisés pour modéliser les
interactions sociales entre les animaux. Avec I’essor du Web sémantique [HITZLER et al.,
2009], ces représentations se généralisent a travers les graphes de connaissances, tels que
des graphes RDF [HITZLER et al., 2009] ou des graphes conceptuels [CHEIN et MUGNIER,
2008; Sowa, 1984], qui permettent de représenter des informations complexes comme des
ensembles d’entités reliées par des relations binaires, voir n-aires. La représentation et ’ana-
lyse de ces structures relationnelles sont ainsi devenues essentielles pour la compréhension
de phénomeénes complexes impliquant de multiples entités.

Les méthodes traditionnelles d’analyse de données, telles que les statistiques descrip-
tives, s’averent insuffisantes pour mettre en évidence les connaissances cachées et com-
prendre les phénomenes sous-jacents a des données complexes. Des approches d’appren-
tissage automatique [SCARSELLI et al., 2008] ont été proposées et produisent de bons ré-
sultats, notamment pour des taches de classification. Toutefois, ces méthodes nécessitent
généralement de grands volumes de données et génerent des modéles dont I'interprétation
par des experts métier peut étre difficile. Or, dans certains domaines tels que les sciences
humaines et sociales, il est essentiel de pouvoir fournir des résultats compréhensibles et
interprétables par les spécialistes du domaine. Les approches symboliques [AGRAWAL et al.,
1993], telles que I’Analyse Formelle de Concepts (AFC) [GANTER et WILLE, 1999], s’avérent
particuliérement adaptées a ces situations, car elles permettent d’extraire des structures in-
terprétables et exploitables, méme a partir de volumes de données relativement modestes.
En effet, TAFC est centrée sur l'utilisateur et offre un support pour visualiser et interagir
avec les données et les motifs découverts, facilitant ainsi ’analyse.

L’Analyse Formelle de Concepts (AFC) [GANTER et WILLE, 1999] est une méthode ma-
thématique qui s’appuie sur la théorie des treillis [BARBUT et MONJARDET, 1970 ; BIRKHOFF,
1940] pour la découverte de connaissances, la classification et I’analyse de données en gé-
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néral. L’AFC constitue une méthode de découverte de connaissance a part entiere et est
largement utilisée pour I’analyse de données dans de nombreux domaines [FERRE et al.,
2020; POELMANS et al., 2013]. Initialement concue pour les données tabulaires, 'applica-
tion directe de 'AFC a des données plus complexes comme des données relationnelles
présente des limites, car elle nécessite des modélisations supplémentaires sur les données,
ce qui peut entrainer une perte d’informations structurelles et compliquer I'interprétation
des motifs extraits. Ces contraintes ont motivé le développement d’extensions de I’AFC
permettant d’utiliser des descriptions d’objets plus complexes que de simples ensembles
d’attributs binaires [FERRE et Ripoux, 2000 ; GANTER et KuzNETSoOvV, 2001 ; KAYTOUE et al.,
2015]. Plus particulierement, des méthodes capables d’explorer directement des données
multi-relationnelles [DZErosk1, 2010] ont été proposées, afin de capturer les structures
relationnelles pertinentes sans perdre d’informations. En conséquence, 'AFC a été éten-
due aux données multi-dimentionnelles [LEHMANN et WILLE, 1995; VOUTSADAKIS, 2002],
ainsi qu’aux données multi-relationnelles [BAZIN et al., 2024 ; FERRE, 2015 ; KOTTERS, 2013;
ROUANE-HACENE et al.,, 2013 ; WILLE, 1997].

Comme on peut le constater, plusieurs extensions de 'AFC ont été proposéés, y compris
des développements récents [BAZIN et al., 2024 ; FERRE, 2023] visant a prendre en compte
les données complexes et multi-relationnelles. De méme, I'inventaire en ligne des logi-
ciels de ’AFC! montre que de nombreux outils implémentent I’AFC et ses extensions, par
exemple Conexp-Clj [HANIKA et HIrTH, 2019], RCAExplore [DOLQUES et al., 2019], FCA4]
[GUTIERREZ et al., 2022], GFCA [FERRE, 2019] ou encore GALACTIC [DEMKO et al., 2022].
Cependant, aucun de ces outils ne constitue une plateforme consensuelle et centralisée of-
frant une bibliotheque d’algorithmes interopérables pour ’analyse de données réelles dans
des domaines complexes comme la biologie, la chimie ou la médecine. C’est dans ce contexte
qu’intervient le projet ANR SmartFCA, qui regroupe cinq équipes francaises travaillant
dans le domaine de I’AFC. L’objectif de ce projet est de contribuer au développement de
I’AFC et de ses extensions, tout en fournissant une plateforme opérationnelle et générique
rassemblant les variantes de ’AFC pour ’analyse des données provenant du monde réel.

Cette these s’inscrit dans la partie du projet SmartFCA relative a I’étude des exten-
sions relationnelles de AFC. Elle se concentre plus particuliéerement sur une analyse com-
parative de I’Analyse Relationnelle de Concepts [ROUANE-HACENE et al., 2013] (Relatio-
nal Concept Analysis (RCA), en anglais) et de I’analyse conceptuelle de graphes (Graph-
FCA/GCA) [FERRE, 2015]. Dans RCA, les données relationnelles sont représentées par un
ensemble de tables (contextes) objets-attributs et objets-objets. En revanche, GCA modé-
lise les données sous la forme d’un hypergraphe, ou les objets correspondent aux nceuds et
les attributs sont portés par des hyper-arétes. Certains liens entre RCA et les graphes ont
été étudiés pour les données temporelles [Nica et al., 2016a; Nica et al., 2020]. De méme,
quelques études se sont penchées sur le rapprochement et la comparaison entre RCA et
GCA [FERRE et CELLIER, 2018; KEIP et al,, 2020], mais elles se sont limitées a des aspects
spécifiques, tels que l'interprétation des résultats, sans proposer une comparaison appro-

1. https://upriss.github.io/fca/fcasoftware.html


https://upriss.github.io/fca/fcasoftware.html

fondie des deux approches. Il est donc essentiel d’établir une base solide de comparaison
entre les deux approches, afin de mieux caractériser, tant sur le plan théorique que pratique,
leurs similitudes et leurs différences. Un tel cadre comparatif vise a fournir a I’analyste des
repéres pour choisir 'approche la plus adaptée, en fonction de la nature des données a
traiter et des résultats attendus.

Dans cette thése, nous présentons nos contributions portant sur une comparaison em-
pirique et théorique des deux approches RCA et GCA. Bien que leurs objectifs et leurs
résultats semblent similaires, ces approches difféerent sur plusieurs aspects, notamment la
définition des concepts. Nous nous sommes intéressés a deux axes de comparaisons. Tout
d’abord, nous avons comparé leurs similitudes, a la fois du point de vue extensionnel, c’est-
a-dire en comparant les groupes d’individus qui sont extraits par les deux approches, et du
point de vue intensionnel, en examinant les descriptions associées a ces groupes. Ensuite,
nous avons comparé les deux méthodes du point de vue de leurs différences. Ainsi, nos
contributions se repartissent comme suit.

1. Comparaison extensionnelle de RCA et GCA. Nous commengons par compa-
rer RCA et GCA du point de vue des extensions de concepts. A travers plusieurs
exemples, nous montrons que '’ensemble des extensions des concepts de RCA est
inclus dans celui de GCA. Autrement dit, pour tout concept RCA défini sur un jeu
de données, il existe un concept GCA possédant la méme extension. Ce constat em-
pirique est appuyé par des démonstrations théoriques qui établissent formellement
cette inclusion.

2. Comparaison intensionnelle de RCA et GCA. Nous poursuivons par la compa-
raison des intensions des concepts et démontrons que ’ensemble des intensions des
concepts RCA est inclus dans celui des intensions des concepts GCA. Ces démons-
trations reposent sur une étape préalable de modélisation des intensions dans une
représentation commune (sous forme de graphes) car les intensions de concepts des
deux approches ne sont pas directement comparables. Combinée au résultat de la
comparaison extensionnelle, cette comparaison intensionnelle permet de conclure
que sur un méme jeu de données, I’ensemble des concepts RCA est inclus dans celui
des concepts GCA, ce qui illustre que GCA est plus expressif que RCA.

3. Comparaison de RCA et GCA a travers leurs différences. Nous avons conduit
une étude comparative centrée sur leurs différences, afin d’examiner dans quelle
mesure ces divergences peuvent étre complémentaires et bénéfiques pour I’analyse.
Nous avons notamment examiné les distinctions dans la modélisation des relations
n-aires et le traitement des cycles par chacune des approches. Une mise en ceuvre
sur un jeu de données réel, issu d’'une ancienne pharmacopée arabe [KaHL, 2009], a
permis de mettre en évidence les forces et les limites pratiques de RCA et GCA.

Ce manuscrit est organisé de la maniere suivante.

— La premiére partie présente le cadre général de ce travail. Le chapitre 2 introduit
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I’Analyse Formelle de Concepts (AFC), ainsi qu'un apercu de ses principales exten-
sions destinées aux données multi-relationnelles. Le chapitre 3 présente I’Analyse
Relationnelle de Concepts (RCA). Le chapitre 4 est consacré a ’analyse conceptuelle
des graphes (Graph-FCA/GCA). La premiére partie s’achéve par le chapitre 5, qui ré-
sume ’état de I'art des travaux abordant, de maniére directe ou indirecte, les liens
entre RCA et GCA.

La deuxiéme partie, consacrée a nos contributions, débute par la présentation de notre
approche méthodologique (chapitre 6). Le chapitre 7 traite de la comparaison exten-
sionnelle de RCA et GCA. Le chapitre 8 est consacré a la comparaison intensionnelle
de ces deux approches. Le chapitre 9 aborde la comparaison de RCA et GCA a travers
leurs différences.

Enfin, le chapitre 10 conclut et propose plusieurs perspectives d’approfondissement
pour ce travail.



Premiere partie

Cadre général
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2.1 Introduction

L’Analyse Formelle de Concepts (AFC) (en anglais Formal Concept Analysis) est un for-
malisme introduit par Wille en 1982 [WILLE, 1982], puis dans les travaux de Ganter et Wille
[GANTER et WILLE, 1999], permettant la classification conceptuelle d’'un ensemble d’objets
(appelés parfois individus) décrits par des attributs. L’AFC est basée sur la théorie des treillis
[BIRKHOFF, 1940] et des treillis de Galois [BARBUT et MONJARDET, 1970].

L’AFC a largement été appliquée dans divers domaines comme outil d’analyse et d’ex-
ploration des données. En médecine, 'AFC a été utilisée pour identifier les combinaisons
de réactions médicamenteuses et les interactions médicamenteuses [ROUANE-HACENE et
al., 2009 ; VILLERD et al., 2010]. Elle a également été utilisée pour identifier les dépendances
entre les données démographiques et le degré d’activité physique [BELOHLAVEK et al., 2011;
SKLENAR et al., 2005]. On retrouve également plusieurs applications de ’AFC dans I’explo-
ration du web (web mining) [BRUNO et al., 2005 ; EBNER et al., 2010; EKLUND et al., 2004], en
bio-informatique [ALAM et al., 2012 ; KAYTOUE et al., 2009 ; KELLER et al., 2012], en linguis-
tique [FALK et al., 2010; Priss et OLDp, 2004], en chimie [LOUNKINE et al., 2008 ; STUMPFE
et al., 2010] et plus encore. La revue de la littérature [POELMANS et al., 2013] recense un
grand nombre des applications de I’AFC dans les domaines sus-évoqués et dans d’autres
domaines.

Dans ce chapitre, nous présentons les définitions et concepts fondamentaux de I’AFC,
ainsi qu'un apercu de ses principales extensions. La section 2.2 introduit les notions ma-
thématiques relatives a la théorie des treillis, suivie, en section 2.3, par la présentation des
notions de base de ’AFC. La section 2.4 décrit deux algorithmes classiques de I’AFC, tandis
que la section 2.5 présente une synthése des extensions de 'AFC appliquées aux données
complexes et multi-relationnelles.

2.2 Quelques éléments de la théorie des treillis

Dans cette section, nous présentons certaines notions fondamentales de la théorie des
treillis en s’inspirant de [BARBUT et MONJARDET, 1970].

2.2.1 Ensemble partiellement ordonné

Soit E un ensemble, on appelle relation binaire I? sur F, toute relation de £ x E. Il s’agit
d’un ensemble de couples (z, y) € E' x E. Pour x,y € E, on écrit en notation infixe, x Ry
pour indiquer que (z,y) € R, et x R y sinon.

Définition 2.1 (Ordre ou ordre partiel). Soient £ un ensemble et R une relation bi-
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naire sur F. Un ordre partiel sur £ donné par la relation R vérifie les propriétés suivantes,
Ve,y,ze B :

— réflexivité : xRz,
— antisymétrie : si z Ry et yRx alors x =y,

— transitivité : si t Ry et yRz alors zRz.

Exemple : L’ordre d’inclusion des parties d’'un ensemble est un ordre partiel.

Définition 2.2 (Ensemble partiellement ordonné). Un ensemble partiellement ordonné
(partially ordored set (poset)) est un couple (E, R) ou E est un ensemble et R est une relation
d’ordre sur E.

Un ordre R est qualifié de total et non de partiel si deux éléments = et y de £ sont
toujours comparables i.e V(z, y) de E ouz # y on a xRy ou yRz.

Exemple : L’ordre des points de la gauche a la droite sur une droite orientée est un ordre
total.

On utilise souvent le symbole < pour les relations d’ordre et x < y se lit "x est inférieur
ouégalavy". A toute relation d’ordre <, on associe sa relation d’ordre strict notée <, définie
par z < y sixz < y et x # y. Elle se déduit de la relation < en remplagant la propriété de
réflexivité, par celle d’irréflexivité, c’est-a-dire © R x Vx € E.

2.2.2 Diagramme de Hasse d’une relation d’ordre

Définition 2.3 (Majorant, minorant). Soient (£, <) un ensemble ordonné et z,y € F, on
dit que y est un majorant de x si et seulement si x < y. Inversement, on dira que y est un
minorant de z si et seulement y < .

Définition 2.4 (Successeur, prédécesseur). Soient (F, <) un ensemble ordonnéet x,y € E.
On dit que = succéde a y (x couvre y) et on note x > y, si et seulement si x est un majorant de
y, et tel qu’il n’y ait aucun élément intermédiaire entre x et y, i.e il n’existe aucun élément
z € E/'tel que y < 2z < . De fagon duale, y précede z (y < x) et on dit que y est couvert par x.

Tout ensemble ordonné (F, <) peut étre représenté graphiquement par un diagramme
appelé "diagramme de Hasse" basé sur la relation de couverture. Dans ce diagramme, les
neeuds représentent les éléments de F, et les arcs indiquent la relation de couverture entre
ces éléments. A partir d’un tel diagramme, on peut lire la relation d’ordre comme suit : z < y
si et seulement si x se trouve en dessous de y en suivant un chemin dans le diagramme. Ce
diagramme s’élabore de la maniére suivante :
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{a,b,c}

I

{a,b} {a,c} {b,c}

FIGURE 2.1 — Diagramme de Hasse de (P(X), <) avec X = {a,b,c}.

— Tout élément de F est représenté par un point dans le plan.
— Sixz,y € E et x < y alors le point correspondant a y doit étre au-dessus de celui
correspondant a z et les deux points sont reliés par un segment.

— Par contrainte de lisibilité, les arcs réflexifs et les arcs de transitivité ne sont pas re-
présentés.

Exemple : Soit I'ensemble X = {a,b,c}, et (P(X), c) I'ensemble des parties de X ordonné
par inclusion, le diagramme de Hasse de (P(X), C) est donné a la figure 2.1. On remarque
par exemple que {a} < {a,b}, ie. {a,b} couvre {a}.

Définition 2.5 (Supremum, infimum). Soient (£, <) un ensemble ordonné et A c E une
sous-partie de E. L’ensemble des majorants de A est ’ensemble S = {y € F|Vre A,y > x}
et I'ensemble des minorants de A est 'ensemble [ = {y € E'|Vx € A,y < x}. S’il existe
un plus petit élément dans 'ensemble S des majorants de A, il est appelé supremum ou
borne supérieure de A et on le note sup(A) ou \/ A. Dualement, le plus grand élément de
I'ensemble I des minorants de A est appelé infimum ou borne inférieure de A et on le
note inf(A) ou A A.

2.2.3 Treillis

Il existe dans la littérature deux définitions pour un treillis : une définition algébrique
[BIRKHOFF, 1940] et une définition relationnelle [BARBUT et MONJARDET, 1970]. La défi-
nition relationnelle (encore dite combinatoire) fait intervenir les propriétés de la relation
d’ordre définie sur I’ensemble tandis que la définition algébrique fait intervenir les proprié-
tés d’opérations définies sur 'ensemble.

10
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Définition 2.6 (Treillis algébrique). Un treillis est un ensemble £ muni de deux opéra-
tions notées v et A et vérifiant les axiomes suivants, Vz,y,z € E :

— idempotence:xvVr=xelrAr =1

— commutativité :xVy=yvretrAy=yAzx

— associativité : (xvy)vz=xVv(yvz)et (xry)Az=xA(yAz)

— absorption:zA(xvy)=zxzetxv(zAry)==z

Définition 2.7 (Treillis relationnel). Un treillis est un ensemble ordonné F tel que chaque
couple (z,y) d’éléments posséde un supremum (z V y) et un infimum (z A y). Il est dit sup-
demi-treillis dans le cas ou seulement le supremum existe. Inversement, il est dit inf-demi-
treillis si seulement I’infimum existe.

Donc un treillis est a la fois un sup-demi-treillis et un inf-demi-treillis. Un treillis est dit
complet sile supremum V/ X et 'infimum A X existent pour toute partie X de E. Un treillis
complet posséde un plus grand élément \/ E noté top (T) et un plus petit élément A F noté
bottom (1).

Exemple : L’ensemble des parties de E ordonnées par inclusion (P(E), <) présenté a la
figure 2.1 par un diagramme de Hasse est un treillis.

2.2.4 Opérateurs de fermeture et connexion de Galois

Définition 2.8 (Opérateur de fermeture). Soit (£, <) un ensemble ordonné. On appelle
opérateur de fermeture sur 'ensemble F, toute application h : ' — FE, qui vérifie ces trois
propriétés Vr,y € I :

— h(z) > x : h est extensive

— x>y = h(z) > h(y) : h est monotone croissante

— h(h(x)) = h(x) : h est idempotente

On parle aussi de fermeture de Moore qu’on note souvent h(x) = Z.Etant donné un
opérateur de fermeture h sur un ensemble ordonné (F, <), un élément z € F est dit fermé
si h(x) = .

Définition 2.9 (Connexion de Galois). Soient a: O - A et §: A — O deux applications
entre deux ensembles ordonnés (O,<p) et (A,<,). Les applications « et § forment une
connexion de Galois entre (O, <p) et (A, <4) si elles vérifient les conditions suivantes pour
tous 0,01,00 € O eta,a;,a0€ A:

— 01 <0 02 = a(02) <4 a(07) : a est décroissante

11
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— a1 <4 a9 = [(az2) <o B(ay) : B est décroissante

— 0<0 B(a(o)) eta<qs a(fB(a)): foaetaosont extensives

Les propriétés données dans la définition précédente sont équivalente a la formule :
0<g B(a) <= a <4 a(o) (2.1)

En d’autres termes, dire que («, 3) forme une connexion de Galois revient a dire que les
applications h = foa et h’' = a0 3 obtenues par composées des applications « et 5 sont des
opérateurs de fermetures.

Définition 2.10 (Fermetures de Galois). Soit («, 5) une connexion de Galois entre deux
ensembles ordonnés (O,<p) et (A,<4). On appelle fermetures de Galois, les fermetures
h=pfoadans O et h' = ao [3 dans A associées a une connexion de Galois («, [3).

2.3 Notions fondamentales de PAFC

L’AFC vise a découvrir des descriptions conceptuelles (concepts formels) a partir d’'un
ensemble d’objets décrits par des attributs unaires (contexte formel). Cette section rappelle
les principales notions de contexte formel, concept formel et treillis de concepts.

2.3.1 Contextes et concepts formels

Définition 2.11 (Contexte formel). Un contexte formel est un triplet (O, A, I), ou O est
un ensemble non vide d’objets, A un ensemble non vide d’attributs et I une relation binaire
entre O et A (1 €O x A). Sinous avons (0,a) € I, avec 0 € O et a € A, on dit que I'objet o
possede I'attribut a.

Un contexte peut étre représenté graphiquement par un tableau de dimension |O| x |A|,
ou chaque ligne représente un objet formel et chaque colonne représente un attribut formel.
L’intersection de la ligne o avec la colonne a contient une croix si et seulement si (0, a) € I.

Exemple : Le tableau 2.1 illustre un contexte formel qui décrit des personnes (objets) par
leurs caractéristiques (attributs). Dans ce contexte, O = { Alice, Bob, Charlie, Julie} et
A = {male, female, countryside, single, married} et larelation d’incidence I est identifiée par
les croix.

Définissons « et 3, deux opérateurs image sur I’ensemble des parties de O et 'ensemble
des parties de A.
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TaBLEAU 2.1 — Contexte formel Cp,,,, des personnes et leurs caractéristiques.

’ K person ‘ male ‘ female ‘ city ‘ countryside ‘ single ‘ married
Alice X X x
Bob X X X
Charlie X X x
Julie X x x

Pour chaque ensemble d’objets G € P(O)?, les attributs partagés par ces objets peuvent
étre obtenus a I’aide de I'application o : P(O) — P(A) définie par :

a(G)={aecA|VYoe@G,(0,a)el} (2.2)

a(G) est ’ensemble des attributs communs d’un ensemble d’objets G.
De méme I'application /3 : P(A) — P(O) qui associe a un ensemble d’attributs M ¢ A tous
les objets partagés par ces attributs est définie par :

B(M)={0oeO|VaeM,(o,a)el} (2.3)

La paire de fonctions («, 3), résumant les liaisons entre les objets et les attributs dans
le contexte formel, définit une connexion de Galois entre les deux ensembles ordonnés

(P(O),c) et (P(A),<) (voir la définition 2.9 de la connexion de Galois).

Exemple : Dans le contexte Kp,,n du tableau 2.1, on trouve les images suivantes :
— «a({Alice}) = {female, city, single}
— a({Charlie}) = {male, city, single}
— a({Alice,Charlie}) = a({Alice}) n a({Charlie}) = {city, single}
— B({female}) = { Alice, Julie}

Définition 2.12 (Concept formel). Un concept formel est un couple (A, B) avec A € P(O),
BeP(A)tels que o(A) = Bet 5(B) = A; A et B représentant respectivement I’extension
(en anglais extent) et I'intension (en anglais intent) du concept (A, B).

En d’autres termes, un concept formel est un couple (A, B) ou A et B sont des en-
sembles fermés (au sens des fermetures de Galois, définition 2.10) et «( A) = B (ou de fagon
équivalente 3(B) = A).

Exemple : Dans le contexte Kp,, (tableau 2.1), ({ Alice, Charlie}, {city, single}) forme
un concept formel, alors que ({Alice}, {female}) n’en est pas un. En effet, on a :

1. P(O) représente I’ensemble des parties d’un ensemble O.
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— (1) a({Alice, Charlie}) = {city, single}, (2) { Alice, Charlie} est un ensemble fermé
car, f(a({Alice,Charlie})) = f({city, single}) = { Alice, Charlie}, (3) {city, single}
est fermé car, a(B({city, single})) = a({Alice, Charlie}) = {city, single}

— {Alice} et {female} sont des ensembles fermés mais, «({ Alice}) # {female}

Intuitivement, un concept formel peut étre visualisé comme un rectangle de croix maximal
dans une permutation des lignes et des colonnes de la table. Par exemple, dans le contexte
ICpersons le concept ({ Alice, Julie}, { female}) correspond au rectangle vertical de croix dans
la colonne female.

2.3.2 Treillis de concepts

Etant donné un contexte formel, on obtient un ensemble de concepts sur lequel est défini
un ordre. La relation de sous-concept/super-concept est une relation d’ordre sur ’ensemble
des concepts définie pour deux concepts Cy = (A1, By) et Cy = (As, By) par :

(A1, B1) < (A2, B2) <= A1 € Ay (<= By € By) (2.4)
On dit que (] est un sous-concept de Cy, et C5 un sur-concept de C. La relation "<" s’appuie
sur deux inclusions duales, entre ensembles d’objets et entre ensembles d’attributs et peut
ainsi étre interprétée comme une relation de généralisation/spécialisation entre les concepts
formels. Ainsi, on dit que (' est un sous-concept de C et C'; un sur-concept de C', c’est-a-
dire que le concept (s est plus général que le concept C) (inversement, C'; est plus spécifique

que ().

L’ensemble ordonné de tous les concepts muni de la relation d’ordre entre ces concepts
forme un treillis complet appelé le treillis de concepts.

Définition 2.13 (Treillis de concepts). L’ensemble C des concepts extraits d'un contexte
formel muni de la relation de généralisation/spécialisation < (inclusion des extensions ou
inclusion inverse des intensions) forme un treillis de concepts (C, <). La relation < est aussi
dite relation de subsomption.

La figure 2.2 présente le treillis de concepts correspondant au contexte Kp.on ( ta-
bleau 2.1). Ce treillis a été construit avec 'outil RCAExplore [DoLQUES et al., 2019]. Dans
cette représentation, chaque concept est représenté par une boite de trois compartiments
qui, de haut en bas représentent I'identifiant du concept, son intension et son extension.
Cette convention est utilisée tout au long de ce manuscrit. Par exemple, le concept Person_8
a pour extension {Alice, Charlie} et pour intension {single, city}. On peut associer une
description textuelle a ces concepts. Person_8 représente alors les personnes qui sont cé-
libataires (single) et qui vivent en ville (city). Dans ce treillis, pour illustrer la relation de
subsumption, nous avons par exemple Person_4 < Person_8.
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Person_9

Alice
Bob
Charlie
Julie

f

\

Person_6 Person_8 Person_5 Person_7
single countryside
r;a:)e city married fZTale
o - ice
; Alice Bob :
Charlie | | chariie Julie Julie
4 A W T
Person_2 Person_3 Person_4 Person_1
single countryside single countryside
city married city female
male male female married
Charlie Bob Alice Julie
Person_0 /
single
city
countryside
female
married
male

FIGURE 2.2 — Treillis de concepts du contexte Kpes,, (tableau 2.1).

Les concepts top (T) Person_9 et bottom (1) Person_0 sont respectivement le supre-
mum et U'infimum du treillis (voir définition 2.5). Ils expriment respectivement les attributs
communs a tous les objets et les objets qui possédent tous les attributs. En pratique, I'in-
tension du T concept est dans la majorité des cas vide, car un attribut partagé par tous les
objets est non discriminant de ’ensemble d’attributs. De méme, I’extension du L concept
est dans la majorité des cas vide, car un objet qui possede tous les attributs est non dis-
criminant de ’ensemble d’objets. De tels objets et attributs ne permettent pas de créer de
séparations utiles dans le treillis de concepts, c’est-a-dire que les supprimer ne change rien
a la structure du treillis.

Dans le treillis de la figure 2.2, on remarque que certains objets (personnes) ainsi que
certains attributs (caractéristiques) apparaissent plusieurs fois. Pour illustration, Alice ap-
parait dans les concepts Person_4, Person_7, Person_8 et Person_9. Ce genre d’af-
fichage est un peu redondant, car si Alice apparait dans le concept Person_4, et que
Person_4 est un sous-concept de Person_7, Person_8 et Person_9, alors Alice apparait
dans Person_7, Person_8 et Person_9.
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Person 9
Person 6 Person_8 Person_5 Person 7
city countryside
male single married female
Person 2 Person 3 Person 4 Person 1
Charlie L Bob Alice/v Julie
Person 0

FIGURE 2.3 - Treillis réduit (£%,,,,) correspondant au treillis de la figure 2.2.

L’affichage complet peut rendre le treillis moins lisible, surtout pour des treillis de
grande taille. Une représentation permettant d’éviter ce probléme consiste a supprimer les
redondances d’objets et d’attributs dans les extensions et les intensions de concepts respec-
tivement. En effet, dans un concept C' = (A, B), A est présent dans tous les sur-concepts
de C et symétriquement, B est dans tous les sous-concepts de C'. Ainsi, la suppression des
redondances consiste a retirer de 'extension d’un concept (resp. de son intension) tous les
objets (resp. attributs) qui apparaissent dans les extensions ses sous-concepts (resp. sur-
concepts). La structure obtenue est appelée treillis d’héritage ou treillis réduit (simplifié).

Dans cette représentation réduite, les extensions sont obtenues par héritage ascendant
des objets et les intensions par héritage descendant des attributs. En d’autres termes, dés
qu’un objet apparait dans un concept, il est hérité par ses sur-concepts et dés qu’un attribut
apparait dans un concept il est hérité par ses sous-concepts. A titre d’exemple, la figure 2.3
montre le treillis correspondant a la représentation réduite du treillis de la figure 2.2. No-
tons que les treillis réduits peuvent toutefois devenir moins pratiques quand le nombre de
concepts est élevé, car il faut alors naviguer dans le treillis pour connaitre tous les éléments
situés dans l'extension et I'intension d’un concept donné. Dans le reste de ce manuscrit,
sauf mention contraire, la représentation réduite du treillis sera systématiquement utilisée.
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2.3.3 Analyse des treillis de concepts

En pratique, la construction de treillis sur des jeux de données volumineux peut en-
gendrer un nombre tres élevé de concepts, ce qui complique I'extraction des informations
pertinentes.

Pour améliorer la lisibilité et réduire la complexité du treillis complet, deux structures
dérivées sont couramment utilisées : le sup-demi-treillis ou treillis Iceberg [STUMME et al.,
2001, 2002], et les sous-hiérarchies de Galois [Dicky et al., 1994; GopIN et MiL1, 1993],
encore appelées AOC-poset (Attribute-Object-Concept poset) [OsswWALD et PETERSEN, 2003 ;
PETERSEN, 2001].

Un treillis Iceberg d’un treillis est obtenu en filtrant les concepts pour ne garder que
ceux qui vérifient la condition de fréquence par rapport a un support? seuil donné. Ainsi, le
treillis iceberg inclut les concepts les plus généraux et exclut ceux qui sont plus spécifiques.

Les sous-hiérarchies de Galois ne conservent dans un treillis que les concepts introdui-
sant un objet (concepts objets) ou un attribut (concepts attributs). En d’autres termes, un
concept C' = (A, B) est conservé si et seulement si Jo € A tel qu'aucun des sous-concepts
de C ne contient o dans son extension ou Ja € B tel qu’aucun des sur-concepts de C'
ne contient a dans son intension. L’inconvénient est que la structure n’est plus nécessai-
rement un treillis et que certaines abstractions potentiellement utiles sont éliminées. Par
contre, le nombre de concepts dans une sous-hiérarchie peut-étre significativement infé-
rieur au nombre de concepts du treillis dont elle est issue. Ainsi, les sous-hiérarchies de
Galois sont une alternative au treillis complet lorsque le treillis de Galois est trop grand et
que la structure de treillis n’est pas indispensable.

Dans le méme ordre d’idées, plusieurs métriques, telles que la stabilité [KuzNETSOV,
2007] ou la similarité [SAQUER et DEOGUN, 2001] ont été proposées afin d’identifier les
concepts les plus significatifs selon certains critéres. La stabilité d’un concept formel C' me-
sure sa pertinence en mesurant la proportion des sous-ensembles de son extension dont I'in-
tension demeure identique a celle de C'. Autrement dit, plus un concept conserve son inten-
sion malgré la suppression d’objets, plus il est considéré comme stable. En ce qui concerne
la mesure de similarité entre concepts, elle permet, a partir d'un concept donné, d’identifier
et de proposer a la navigation des concepts suffisamment proches, qui ne feraient pas par-
tie des parents ou des enfants du concept. Une étude comparative des différentes mesures
d’intérét associées aux concepts formels est présentée dans [KUzZNETsSOV et MAKHALOVA,
2018].

2. Le support d’un concept est le nombre (proportion) d’objets dans son extension.
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2.4 Algorithmes

De maniére générale, la construction du treillis de concepts a partir d'un contexte formel
se complexifie lorsque le contexte devient grand; d’ou l'intérét de chercher des méthodes
permettant de découvrir d'une maniere efficace les concepts et de calculer les relations de
couverture entre ces derniers. Plusieurs algorithmes ont été proposés dans la littérature
pour le calcul des concepts d’un contexte. Etant donné un contexte formel, certains al-
gorithmes permettent uniquement de calculer 'ensemble des concepts tandis que d’autres
permettent aussi la construction du treillis associé, i.e., qu’en plus de calculer I'ensemble des
concepts, ils calculent également I’ensemble des relations de couverture entre les concepts.

Il existe deux stratégies de base pour construire un treillis de concepts. La distinction
majeure entre ces stratégies réside dans la maniere d’acquérir les données d’entrée :

— Les algorithmes batch [BOrRDAT, 1986 ; CHEIN, 1969 ; NOURINE et RAYNAUD, 1999] :
ils considérent que les données (contexte formel) sont connues a ’avance. L’évolution
des données (ajout d’objets ou d’attributs au contexte) entraine la reconstruction du
treillis dans son entiéreté.

— Les algorithmes incrémentaux [GoDIN et al., 1995 ; VALTCHEV et Missaout, 2001
VAN DER MERWE et al.,, 2004] : ils construisent progressivement le treillis. Ces algo-
rithmes sont apparus pour remédier au probléme de la reconstruction du treillis dans
le cadre des contextes dynamiques. En effet, suite a une modification du contexte, ces
algorithmes effectuent des mises a jour locales du treillis associé.

Comme décrit précédemment, les algorithmes incrémentaux ont ’avantage de s’adapter
aux contextes évolutifs et permettent des mises a jour locales du treillis. Ces algorithmes
incrémentaux peuvent procéder de deux facons : incrémentalité par objets ou incrémentalité
par attributs.

— L’incrémentalité par objet suppose que le contexte évolue en nombre d’objets (en
ligne), donc le treillis est construit par ajout de nouveaux objets qui conduit a une
mise a jour structurelle du treillis.

— L’incrémentalité par attributs suppose une évolution du contexte en nombre d’attri-
buts (en colonne), le treillis est alors construit par ajout de nouveaux attributs qui
conduit a une mise a jour structurelle du treillis.

Dans le cadre de cette thése, nous présentons I’algorithme incrémental par objet Ad-
dIntent [VAN DER MERWE et al.,, 2004] et son algorithme dual AddExtent sur lequel se base
la procédure Multi-FCA de RCA auquel est consacré le chapitre 3.

2.4.1 AddIntent

AddIntent [VAN DER MERWE et al., 2004] est un algorithme incrémental qui s’appuie sur
un treillis construit a partir des premiers objets du contexte pour intégrer un prochain objet
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dans ledit treillis. Comme défini dans d’autres algorithmes [GoDIN et al., 1995 ; VALTCHEV et
Missaout, 2001], la construction d’un treillis de concepts peut étre décrite en utilisant 4 en-
sembles de concepts : les concepts modifiés, les concepts générateurs, les nouveaux concepts
et les anciens concepts. Soient L; et Ly deux treillis de concepts avant et apres I’'insertion

du nouvel objet o, respectivement. Notons o’ I'intension de o et (A, B) un concept formel
dans L5 :

— (A, B) est un nouveau concept si B n’est I'intension d’aucun concept dans L.

— (A, B) est un concept modifié, si B € o' et B est I'intension d’un concept dans L;.

— Si (A, B) reste inchangé de L; a Lo, il s’agit d’un ancien concept.

— Ensupposant que (C, D) est un nouveau concept et que (A, B) est un ancien concept,
si Bno' =D # B, le concept (A, B) est un générateur® du concept (C, D). Sinon,
(A, B) est ancien concept.

Soit L un treillis de concepts et 0 un nouvel objet que ’on souhaite insérer dans L. Le
principe de fonctionnement de I’algorithme AddIntent peut étre résumé comme suit :

1. Déterminer I'intension de I'objet o, notée o'.
2. Identifier dans le treillis L le concept le plus général — c’est-a-dire le plus haut dans
la hiérarchie — dont I'intension contient o’. Ce concept est appelé GeneratorConcept.

3. Extraire 'ensemble des parents (successeurs directs) de GeneratorConcept, noté Ge-
neratorParents.

4. Déterminer I'’ensemble des parents du nouveau concept a insérer, noté NewConcept,
en examinant les parents de GeneratorConcept. Cet ensemble est appelé NewParents.

5. Apres traitement des parents de GeneratorConcept, le nouveau concept est créé :
NewConcept < (GeneratorConcept.Extent, o'). Celui-ci est ensuite relié aux concepts
de la liste NewParents, tout en supprimant les liens existants entre ces derniers et
GeneratorConcept. Enfin, NewConcept est défini comme un voisin supérieur de Gene-
ratorConcept.

L’algorithme AddIntent, tel que présenté par [VAN DER MERWE et al., 2004], ne met pas
a jour les extensions des concepts. Cette mise a jour est assurée par la procédure CreateLat-
ticeWithAddIntent (algorithme 1, ligne 5), qui construit le treillis de concepts d’un contexte
formel (O, A, I') en appliquant successivement AddIntent a chaque objet o0 € O.

2.4.2 AddExtent : une version duale de AddIntent

Lorsque les données sont amenées a évoluer par I'ajout de nouveaux attributs, il est
souvent préférable d’adopter une approche fondée sur les attributs plutdt que sur les objets,
afin de faciliter I'intégration de ces nouveaux éléments dans le treillis. Contrairement a
I'algorithme AddIntent, qui construit le treillis de concepts de maniére ascendante en itérant

3. Tout nouveau concept (A, B) posséde au moins un générateur. Le (seul) plus général de ces générateurs
est appelé le générateur canonique de (A, B).
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Algorithm 1 CreateLatticeWithAddIntent(O,A, I)

Input : Un contexte formel (O, A, I)

AN R W N =

: BottomConcept < (&, A)
: L < {BottomConcept}
: foroe Odo

ObjectConcept = AddIntent(o’, BottomConcept, L)
Ajouter o a I'extension de ObjectConcept et de tous les concepts au-dessus

end for

sur les objets, 'algorithme AddExtent procéde de maniére descendante, en parcourant les
attributs a partir du concept le plus général (top-concept). Ainsi, AddExtent constitue la
version duale de AddIntent.

AddExtent permet d’intégrer un nouvel attribut a dans un treillis. Soient L, et L, deux
treillis de concepts avant et aprés l'insertion du nouvel attribut a, respectivement. Les 4
ensembles de concepts définis pour AddIntent sont également définis pour AddExtent avec
(A, B) un concept formel dans L, et a’ 'extension du nouvel attribut a :

(A, B) est un nouveau concept si A n’est 'extension d’aucun concept dans L;.

(A, B) est concept modifié, si A € a’ et A est I'extension d’un concept dans L;.

Si (A, B) reste inchangé de Ly a Lo, il s’agit d’un ancien concept.

En supposant que (C, D) est un nouveau concept et que (A, B) est un ancien concept,
si Ana’ = C # A, le concept (A, B) est un générateur du concept (C, D). Sinon,
(A, B) est ancien concept.

Soit L un treillis de concepts et a un nouvel attribut que 'on souhaite insérer dans L.
L’algorithme AddExtent fonctionne de maniere duale a AddIntent et peut se résumer comme

suit :

Déterminer ’extension de I’attribut a, notée a’.

. Identifier dans le treillis L le concept le plus spécifique (c’est-a-dire le plus bas dans la

hiérarchie) dont I'’extension contient a’. Ce concept est désigné par GeneratorConcept.

. Extraire 'ensemble des enfants (prédécesseurs) de GeneratorConcept, noté Generator-

Children.

Déterminer 'ensemble des enfants du nouveau concept a insérer (NewConcept) en
examinant les enfants de GeneratorConcept. Cet ensemble est noté NewChildren.

. Créer le nouveau concept — NewConcept < (extent, GeneratorConcept.Intent) — et le

relier aux concepts de la liste NewChildren, tout en supprimant les liens existants
entre ces derniers et GeneratorConcept. Le nouveau concept est alors défini comme
voisin inférieur de GeneratorConcept.

Tout comme AddIntent, AddExtent ne met pas a jour les intensions des concepts. La
procédure CreateLatticeWithAddExtent permet de construire le treillis de concepts d’un
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contexte formel (O, A, I) en appliquant successivement AddExtent sur chaque attribut,
comme présenté a 'algorithme 2.

Algorithm 2 CreateLatticeWithAddExtent(O,A, )
Input : Un contexte formel (O, A, I)
TopConcept < (O, @)
L < {TopConcept}
forac Ado
AttributConcept = AddExtent(a’, TopConcept, L)
Ajouter a a 'intension de AttributConcept et de tous les concepts en dessous

AN U W N =

end for

2.5 Extensions relationnelles de PAFC

L’Analyse Formelle des Concepts (AFC) [GANTER et WILLE, 1999] a été appliquée a
un large éventail de taches, notamment la recherche d’informations et la découverte de
connaissances, ainsi qu'a de nombreux domaines d’application tels que les sciences so-
ciales, I'ingénierie logicielle ou encore la bio-informatique [FERRE et al., 2020 ; POELMANS
et al., 2013]. La diversité de ces contextes d’utilisation a rapidement mis en évidence la
nécessité d’étendre le cadre classique de AFC afin de pouvoir traiter des données plus
complexes, structurées ou multi-relationnelles. Cette section introduit d’abord les princi-
pales extensions de I’AFC dédiées aux données complexes, avant de présenter un apercu de
celles développées pour les données multi-relationnelles.

Sans prétendre a I'exhaustivité, plusieurs extensions de I’AFC ont été proposées pour
traiter des données complexes. Parmi elles, I’Analyse Logique de Concepts (ALC) [FERRE et
Ripoux, 2000] et les structures de motifs (pattern structures) [DEMKO et al., 2022 ; GANTER et
KuznEeTsov, 2001] permettent de manipuler des données ou les objets sont décrits par des
représentations complexes (par exemple des intervalles numériques, des attributs évalués),
plutdt que par de simples ensembles d’attributs binaires. D’autres approches s’intéressent
a la prise en compte de l'incertitude dans les descriptions d’objets [POELMANS et al., 2014],
comme c’est le cas de I’Analyse Formelle Floue de Concepts (fuzzy FCA) [BELOHLAVEK et
VycHobIL, 2005], ou la relation d’incidence entre un objet et un attribut est évaluée par
un degré de vérité compris entre 0 et 1, au lieu d’'une valeur booléenne stricte. Enfin, les
contextes multi-valués [GANTER et WILLE, 1999] constituent une extension de I’AFC per-
mettant de traiter des données non binaires ou les attributs peuvent prendre plusieurs va-
leurs, comme dans le cas des variables catégorielles.

D’autres extensions de I’AFC visent a introduire des conditions supplémentaires dans
la relation d’incidence entre objets et attributs. L’Analyse Triadique des Concepts (Triadic
Concept Analysis — TCA) proposée par [LEHMANN et WILLE, 1995] traite le cas ou les don-
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nées reposent sur trois ensembles : un ensemble d’objets, un ensemble d’attributs et un
ensemble de conditions, liés par une relation ternaire formant un contexte triadique. Au-
trement dit, elle modélise les situations du type : « un objet o posséde un attribut a sous
une condition ¢ ». Le résultat de cette analyse est un treillis de concepts triadiques (concept
trilattice), dont chaque concept est un triplet (A;, A, A3) ou A; représente un ensemble
d’objets, A; un ensemble d’attributs et A3 un ensemble de conditions. Cette approche a
ensuite été généralisée dans [VouTsAaDAKIs, 2002] sous le nom d’Analyse Polyadique des
Concepts (Polyadic Concept Analysis), autorisant un nombre illimité de dimensions pour le
contexte.

Pour terminer, plusieurs extensions de I’AFC ont été proposées afin de traiter plus spéci-
fiquement les données multi-relationnelles, pour que les concepts ne dépendent pas unique-
ment des descriptions individuelles des objets, mais également des structures relationnelles
entre des objets interconnectés [FERRE et CELLIER, 2020 ; KOTTERS, 2013 ; ROUANE-HACENE
et al,, 2013 ; WiLLE, 1997].

Les familles des puissances d’un contexte (FPC) (power context family), introduites
dans [WILLE, 1997] et détaillées, entre autres, dans [KOTTERS, 2016 ; PREDIGER et WILLE,
1999; WILLE, 2002], constituent une extension de I’AFC qui vise a exploiter les relations
d’arités quelconques dans un jeu de données relationnelles. Elles disposent d’un contexte
formel pour chaque arité de relation, c’est-a-dire un contexte d’objets, un contexte de couples
d’objets, un contexte de triplets d’objets, etc. Formellement, les FPC sont constituées d'un
ensemble de contextes K = (O™, A", ") ou :

— n =1, le contexte K'! présente tous les objets, avec tous les attributs possibles. La
relation d’incidence de ce contexte spécifie si un objet possede un attribut (comme
dans le cas classique de I’AFC, voir définition 2.11 d’un contexte formel).

— n > 1, un élément 0 € O" est un n-uplet ordonné d’objets, un attribut a € A" est
une relation d’arité n et /™ spécifie si les éléments d'un n-uplet o sont reliés par une
relation a.

Un treillis de concepts est calculé pour chaque contexte, indépendamment des autres contextes.
Les concepts obtenus sont utilisés comme un vocabulaire de types et de relations pour
construire des graphes conceptuels similaires a [CHEIN et MUGNIER, 2008 ; Sowa, 1984].

L’Analyse Relationnelle de Concepts (Relational Concept Analysis — RCA) [ROUANE-
HACENE et al.,, 2013] constitue une extension de 'AFC destinée a ’analyse de données rela-
tionnelles compatibles au modéle entité-association [CHEN, 1976], c’est-a-dire des données
représentées sous la forme de plusieurs tables interconnectées. Les tables décrivant des ob-
jets a'aide d’attributs sont appelées contextes objets-attributs *, tandis que celles représen-
tant les relations entre objets sont désignées comme contextes objets-objets. Les concepts

4. Il s’agit des contextes formels au sens de ’AFC.
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formés dans ce cadre sont qualifiés de relationnels, car ils sont liés a d’autres concepts au
moyen d’attributs relationnels, lesquels capturent explicitement les liens inter-objets.

Deux extensions de RCA ont été proposées :

— RCA floue (fuzzy RCA) [BoFFa, 2022], qui combine RCA et de fuzzy FCA [BELOHLAVEK
et VycHODIL, 2005] afin de traiter des ensembles de données multi-relationnelles com-
portant un certain degré d’imprécision, c’est-a-dire des familles de contextes relation-
nels flous;

— D’Analyse Polyadique de Concepts Relationnels (Polyadic Relational Concept Analysis)
[BaziN et al., 2024], qui associe RCA et ]’Analyse Polyadique de Concepts [VOUTSADAKIS,
2002] pour étendre RCA a des ensembles de données relationnelles comportant des
relations n-aires.

Graph-FCA (GCA) [FERrRrE, 2015; FERRE et CELLIER, 2020] a été proposée comme une
extension de I’AFC dans laquelle ’ensemble de données est représenté non plus sous forme
tabulaire, mais sous la forme d’un graphe. GCA adopte une approche orientée graphe, ou
les objets sont modélisés comme des noeuds, les relations comme des arétes orientées reliant
ces neceuds, et les attributs comme des étiquettes portées par les noeuds ou les arétes. Cette
modélisation permet de traiter des relations d’arité quelconque et de calculer des concepts
n-aires. Les résultats produits par GCA se présentent sous la forme d’un ensemble de graph
patterns capturant les structures relationnelles entre les concepts.

Une autre extension de ’AFC aux structures relationnelles est proposée dans [KOTTERsS,
2013], ou les treillis de concepts sont directement générés a partir d’une structure relation-
nelle, celle-ci jouant le rdle de contexte formel dans TAFC. Comme GCA, cette extension
permet de traiter des relations n-aires et de calculer des concepts n-aires, c’est-a-dire des
concepts dont les intensions sont équivalentes a des requétes conjonctives et dont les exten-
sions sont équivalentes aux résultats de ces requétes, c’est-a-dire des ensembles de n-uplets
d’objets.

Enfin, GCA a été fusionnée avec les structures de motifs [GANTER et KuzNETSOV, 2001]
pour donner naissance a Graph-PS [FERRE, 2023], une extension combinant les avantages
des deux paradigmes : la capacité a gérer des descriptions complexes et celle a modéliser
explicitement les relations n-aires entre objets.

2.6 Conclusion

Dans ce chapitre, nous avons présenté les notions fondamentales de ’Analyse Formelle
de Concepts (AFC), une méthode mathématique d’analyse de données et de découverte de
connaissances. L’AFC prend en entrée une table binaire (contexte formel) décrivant des ob-
jets par des attributs, et construit un treillis de concepts, ou chaque concept correspond a
un sous-ensemble d’objets partageant des attributs communs. Nous avons également pro-
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posé une synthése des principales extensions de UAFC dédiées au traitement de données
multi-relationnelles.

Dans le cadre de cette thése, nous menons une étude comparative de RCA et de GCA qui
constituent deux extensions majeures de ’AFC pour ’analyse de données multi-relationnelles.
Les chapitres 3 et 4 suivants sont consacrés a une présentation détaillée de RCA et de GCA,
respectivement.
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CHAPITRE 3 : ANALYSE RELATIONNELLE DE CONCEPTS

3.1 Introduction

Introduite en 2002 dans le cadre de la reconstruction des diagrammes UML [HUCHARD et
al., 2002],’Analyse Relationnelle de Concepts (Relational Concept Analysis - RCA) [HUCHARD
etal., 2007 ; ROUANE-HACENE et al., 2013] est une extension de I’Analyse Formelle de Concepts
(AFC) pour des données relationnelles. Les concepts ainsi construits sont qualifiés de rela-
tionnels, dans la mesure ou leurs intensions font référence a d’autres concepts.

RCA a démontré son efficacité dans un large éventail d’applications issues de domaines
diversifiés. En génie logiciel, le domaine ayant motivé sa création, RCA a été utilisée pour
plusieurs taches notamment la modélisation de la variabilité des familles de produits inter-
connectées [CARBONNEL et al., 2019], la localisation automatisée des fonctionnalités dans
les lignes de produits logiciels [HLAD et al., 2021]. On retrouve également des applications
de RCA en biologie [ALaM et al., 2013], en hydro-écologie [DOLQUEs et al., 2021 ; Nica et
al., 2016b, 2016c], en détection de communautés [GUEsSMI et al., 2016a, 2016b], en déve-
loppement d’ontologies [BENDAOUD et al., 2007 ; HACENE et al., 2008], en prise de décision
industrielle [WAJNBERG et al., 2019a, 2019b] et plus encore.

Dans la suite de ce chapitre, nous présentons RCA de maniere détaillée, en débutant
par les notions fondamentales (section 3.2). Une approche naive d’intégration des relations
dans la construction des concepts est ensuite introduite en section 3.3, suivie par la pré-
sentation du mécanisme de scaling relationnel par lequel RCA integre les relations dans la
description des concepts (section 3.4). Le déroulement global du processus RCA est exposé
en section 3.5, accompagné d’une discussion sur I'interprétation des concepts relationnels
générés.

3.2 Notions fondamentales de RCA

RCA est une extension de AFC pour le traitement des données relationnelles, c’est-
a-dire des données représentées par plusieurs tables et les associations qui les relient. Les
tables décrivant des objets au moyen d’attributs sont appelées contextes objets-attributs
(contextes formels), tandis que celles qui encodent les relations entre objets sont appelées
contextes objets-objets (contextes relationnels). Les concepts formés sont dits relationnels,
car les intensions qu’ils renferment établissent des liens avec d’autres concepts. Nous com-
mencons par définir le modele de données utilisé en RCA appelé Famille Relationnelle de
Contextes (FRC).
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3.2.1 Famille Relationnelle de Contextes (FRC)

Les données en RCA sont décrites par un ensemble de contextes formels noté K et un
ensemble de contextes relationnels! noté R représentant les relations d’incidence entre en-
sembles d’objets de K. Ainsi, une relation r € O;, x O;, donne lieu a un contexte relationnel
dont les lignes et les colonnes correspondent aux objets de O;, et O,, respectivement.

Définition 3.1 (Famille Relationnelle de Contextes (FRC)). Une FRC est une paire
(K,R) ou:
— K ={K,}i-1..n est un ensemble de contextes objets-attributs IC; = (O;, A;, I;) décri-
vant des objets par leurs attributs.
— R = {ri}r-1,.m est un ensemble de contextes objets-objets 7, encodant les relations
entre les objets ou 7, € Oy, x O;, avec 1,4z € {1,...,n}.

Pour des raisons pratiques, une relation r ¢ O;, x O;, est traitée sous la forme d’une
fonction définie par r : O;, - P(0O;,) [ROUANE-HACENE et al.,, 2013]. Pour les mémes rai-
sons, quelques fonctions auxiliaires sont introduites pour soutenir le raisonnement centré
sur les relations.

Définition 3.2 (Les fonctions dom(r) et codom(r) des relations). Soit (K, R) une FRC.
Une paire de fonctions établit une correspondance entre les relations de R et les ensembles
d’objets de 'ensemble O = {O; | K; = (O;, A;, I;) € K} des objets de la FRC.
— La fonction de domaine dom : R - O ou dom(r) = O;, si et seulement si V(x,y) € r,
xeO.
— La fonction de codomaine codom : R — O ou codom(r) = O
V(z,y)er,yeO,,.

i, Sl et seulement si

Une autre fonction permet de regrouper des relations par rapport a leur domaine, c’est
la fonction de contexte que I’'on note rel.

Définition 3.3 (La fonction rel(K) des contextes). L’ensemble des relations issues d’'un
contexte K; = (O;, A;, I;) donné est défini par la fonction rel : K - P(R) qui pour chaque
contexte associe I’ensemble de relations issu de celui-ci : rel(K;) = {r e R|dom(r) = O;}.

3.2.2 Exemple de Famille Relationnelle de Contextes

Pour illustrer la notion de Famille Relationnelle de Contextes (FRC) définie précédem-
ment, ajoutons au contexte formel Kpe,s,, du tableau 2.1, les contextes formels Kggrqge €t Koy

1. Les termes contextes objets-attributs et contextes formels sont utilisés de facon interchangeable. Il en va
de méme pour les termes contextes objets-objets et contextes relationnels.
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TaBLEAU 3.1 - FRC; (K, R) avec K = {Kperson, Kcars Kiarage} €t R = {owner, sell, maintainy}.

€ | o ’ owner ‘ Alice ‘ Bob ‘ Charlie ‘ Julie ‘
E ({\‘5\6 & 0"0]9 ED g{\eé carl X
Kperson || B | §€ 5 | % B | o
car2 X
Alice x X X
car3 X
Bob X x x
car4 X
Charlie || x x X
car5 X
Julie X X x car6 »
Ke Renault | Peugeot | Tesla | family | sport | sedan
’ ar ‘ ‘ ‘ ‘ ‘ = g ® Y e ©
carl x X sell | 1 8|8 |8 |8 ]|8
car2 X X A < <
car3 X X B X X
car4 X X C < <
carb X X D
car6 X X
’ ICGmge H manufacturer ‘ chain ‘ service ‘ ’ maintain ‘ carl ‘ car2 ‘ car3 ‘ car4 ‘ car5 ‘ car6 ‘
A x A X X
B X B X X
C X C
D X D X X

qui décrivent les garages et les voitures par leurs caractéristiques respectivement. Considé-
rons la relation owner entre les voitures et les personnes, les relations sell et maintain entre
les garages et les voitures. L’ensemble de ces tables présenté dans le tableau 3.1 forme la
FRC; (K, R) avec K = {Kperson; Kcars Kiarage} €t R = {owner, sell, maintain}.

La relation owner indique pour chaque voiture son propriétaire. A titre d’exemple, I'inci-
dence owner(carl, Bob) signifie que la voiture carl a pour propriétaire Bob. La relation sell
encode quant a elle la vente des voitures par les garages. Ainsi, sell( A, carl) indique que le
garage A vend la voiture carl. Pour terminer, la relation maintain renseigne la maintenance
des voitures par des garages. Notamment, maintain( D, car2) signifie que le garage D fait
la maintenance de la voiture car2. Il en résulte les éléments suivants :

— dom(owner) = Oc,, et codom(owner) = Operson,
— dom(sell) = dom(maintain) = Ogarage €t codom(sell) = codom(maintain) = Ocyy.
— 1el(Kgarage) = {sell, maintain}, rel(Kc,) = {owner} et rel(Kperson) = @2
Une notation des relations qui indiquent directement leurs domaines et codomaines est

nom_relation(dom, codom). Par exemple, on obtient owner(Ocar, Operson)s sell(Ogarage; Ocar)
et maintain(Ogarage, Ocar).-

A ce stade, nous savons comment construire les treillis de chacun des contextes for-

2. Ceci signifie que les entités Operso, du contexte Kperon ne constituent le domaine d’aucune relation et
ne sont par conséquent pas impactées par 'ensemble des relations.
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Car_13

Garage_4

/)

N

Car_12 Car_11 Car_10 Car_7 Car_8 Car 9
family Renault| [Peugeot| |berline sport Tesla
Garage 3 Garage_2| |Garage_l
« manufacturer chain service
} ), i
Car 6| JCar 5| |Car 1 |[Car 2[ |Car 3[ |[Car 4 = /'
Garage_0
carl car2 carb carb card car3

= FIGURE 3.2 — Treillis £ du

Garage

contexte Kgarage-

FIGURE 3.1 — Treillis Egar du contexte gy

mels Kpeyson » Kcar €t Kgarage- Les figures 3.1 et 3.2 présentent respectivement les treillis des
contextes Kcyr et Kgargge: Quant au treillis du contexte Kpeon, il a déja été présenté a la
figure 2.3.

La grande problématique tient a I'intégration des relations inter-objets dans le proces-
sus d’analyse. Comment intégrer dans les concepts de K, le fait que les voitures ont des
propriétaires ? C’est-a-dire, le fait que les voitures sont associées a des personnes a travers
la relation owner. De méme, comment intégrer dans les concepts de Kgypqge I'information
selon laquelle les garages vendent et entretiennent des voitures ? En clair, comment intégrer
le fait que les garages sont reliés a des personnes via les relations sell et maintain? En effet,
pour tout contexte donné K; = (O;, A;, I;), chaque relation r issue de IC; (V r € rel(K;)), est
utile a la description des éléments o € O;. La section suivante présente une approche naive
pour l'intégration des relations dans la description des concepts.

3.3 Approche naive de scaling des relations

Une maniére simple et quelque peu naive de représenter les liens entre objets consiste-
rait a assimiler les liens a des attributs standards a valeur unique [ROUANE-HACENE et al.,
2013]. En d’autres termes, pour chaque K; = (O;, A;, I;) € K, on étend A; avec des attributs
a,.; correspondant aux couples constitués d’une relation r € rel(K;) (voir définition 3.3), et
d’un objet o tel que (0,0) € r pour un certain o € O;.

Pour la FRC; présentée dans le tableau 3.1, rappelons que rel(Kgarage) = { sell, maintainy},
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rel(Kcs) = {owner} et rel(Kpeson) = @. Le scaling des relations de FRC; par 'approche
naive va consister d’une part en 'extension du contexte K¢, grace a la relation owner par
les attributs de la forme owner :person ol person € codom(owner) = Opgys,n. L'intersection
de la ligne car; € O¢,, avec la colonne owner :person contient une croix si et seulement
si (car;, person) € owner. Le tableau 3.2 illustre le contexte étendu K¢, obtenu a partir
de I'extension naive du contexte initial K¢, D’autre part, 'extension du contexte Kgarqge
se fait par 'ajout des attributs de la forme sell :car; et maintain :car; formés sur les rela-
tions sell(Ogarage; Ocar) €t maintain(Ogarage; Ocar) Tespectivement. Le tableau 3.3 illustre le
contexte Kggrqges» correspondant a I'extension naive du contexte initial Kggrege. Quant au
contexte Kp,on, il reste inchangé (et son treillis en conséquence), car ses entités ne consti-
tuent le domaine d’aucune relation.

TABLEAU 3.2 — Contexte K¢, correspondant a ’extension naive du contexte initial ¢,

Z
S o & W
=5 9o = 3
< A Q s
- - - -
[P] P] Q [P]
(=] (=] (=) (=]
. ) 2 2 B B
Kcar+ || Renault Peugeot Tesla family sport berline © © © ©
carl X X X
car2 X X x
car3 X X X
car4d X X X
carS X X X
car6 X X X

TABLEAU 3.3 — Contexte Kggrarer cOrrespondant a I'extension naive du contexte Kgurape-
g g

— — N o Al [Te) \O
) — — — — —
v 8 8 & ®&® & ©
= L L L L @
S - Q9 @9 ¥ L ¢ g5 g & &g £ £
+
¢l S 8 @ @ ®8 @8 8 8 8 8 8 ® ®
- - - - - )
§ | g 22222 EEEEEE
<) < ) ) % % % % ;‘U % 8 &8 &8 & &
L € chain service ¥ ¥ 8 & & ¥ € & E E E E
A X X X X X
B X X X X X
C X X x
D X X X

Le treillis dérivé du contexte K. (tableau 3.2) est représenté dans la figure 3.3. En
comparaison au treillis de la figure 3.1 obtenu sur le contexte initial Kc,,, nous obtenons
les mémes concepts (14 concepts au total) a la différence que les concepts de K. ren-
seignent également I'information sur les propriétaires des voitures. Par exemple, le concept
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Car+_13
Car+ 12| | Cart 11 Cart 10 | [Car+ 7| [Car+ 8| [Car+ 9
: Renault Peugeot :
family "owner:Bob"| |"owner:julie” berline sport Tesla
N T '
Car+_6| |Car+_5[ |[Car+_1| |Car+_2 Car+_3 Car+_4
"owner:Alice" "owner:Charlie"
carl car2 caré carb card car3

/'
o
3
+
o™l

/

FIGURE 3.3 — Treillis du contexte K., (tableau 3.2).

Car+_11 (figure 3.3) indique que les voitures {carl,car6} sont de marque Renault et ont
pour propriétaire Bob, contrairement au concept Car_11 (figure 3.1) qui donne uniquement
I'information que les voitures {carl,car6} sont de marque Renault.

De méme, la figure 3.4 présente le treillis du contexte Kggrqge. avec 7 concepts contre 5
concepts pour le treillis du contexte initial Kgyrqg. (figure 3.2). Comme nous pouvons le voir
sur ces deux figures, le treillis de la figure 3.4 apporte plus de précision a la description des
garages a savoir qu’ils vendent et maintiennent des voitures. Pour illustration, les concepts
Garage+_2 et Garage+_4 qui ne sont pas produits avec Kggrqg, indiquent que le garage A
vend et maintient les voitures {carl, car6} et le garage C' vend les voitures {car2, carb}.
Nous pouvons aussi remarquer la différence d’informations entre les intensions du concept
Garage+_1 et son équivalent Garage_1 (figure 3.2), de méme que pour le concept Garage+_3
et son concept équivalent Garage_2 (figure 3.2).

Cette approche naive de mise a échelle des relations a tendance a beaucoup augmen-
ter la taille des contextes formels en nombre d’attributs. L’ensemble d’attributs A; d’un
contexte IC; = (O, A;, I;) se voit augmenter de la taille du codomaine de chaque relation
r e rel(K;); ce qui peut déboucher sur des treillis de grande taille avec des concepts dont
les intensions sont difficiles a interpréter, car beaucoup d’éléments doivent étre pris en
compte pour la description d’un concept. De plus, cette approche ne garantit pas ’obten-
tion des concepts pertinents dans la mesure ou elle n’aide pas a capturer les relations entre
des groupes d’objets (concepts). Pour illustration, {carl,car6} représente I’extension du
concept Car+_11, une abstraction consisterait a indiquer que les garages du concept Ga-
rage+_4 (a savoir garage A) vendent et maintiennent les voitures du concept Car+_11, ce
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Garage+_3

chain
"sell:car3"
"sell:car4"
"maintain:car3"
"maintain:car4"

Garage+_6

Garage+_1

service
"maintain:car2"
"maintain:car5"

Garage+_5

manufacturer

: - /

Garage+_4

"sell-carl” Garage+_2

"sell:car6" "sell:car2"
maintain:"carl" "sell:car5"
"maintain:car6" C

A/
Garage+_0

FIGURE 3.4 — Treillis du contexte Kgarage. (tableau 3.3).

qui pourrait étre indiqué grace a deux attributs au lieu de quatre comme c’est le cas dans
I'intension de Garage+_4. 1l en est de méme pour le garage C' (Garage+_2) qui vend les voi-
tures de Car+_10 ou du garage D (Garage+_1) qui maintient les voitures de Car+_10. Ce
type d’abstraction consistant a représenter et quantifier les relations entre les concepts, fa-
ciliterait I'interprétation des intensions des concepts et permettrait d’avoir des descriptions
de haut niveau et plus pertinentes des concepts.

Dans la section suivante, nous présentons le scaling relationnel, qui est le mécanisme
par lequel RCA integre les relations inter-objets dans la construction des concepts de sorte
a pouvoir les abstraire en des relations inter-concepts.

3.4 Scaling relationnel

La question de savoir comment intégrer les relations inter-objets au cours du processus
de RCA admet une variété de réponses qui dépendent des objectifs de I’analyse conceptuelle.
Pour traiter les données relationnelles, RCA travaille en enrichissant les contextes objets-
attributs avec de nouveaux attributs, appelés attributs relationnels inspirés de la restriction
des roles en Logique de Descriptions (LD) [BAADER et al., 2003]. La force des liens capturés
dépend du quantificateur d’échelle, également appelé opérateur de scaling.
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3.4.1 Opérateurs de scaling

La mise a I’échelle d’un contexte objets-attributs se fait par ajout d’attributs relationnels
qui mettent en exergue les relations entre concepts. Ces attributs relationnels sont obte-
nus en associant des quantificateurs d’échelle (opérateurs de scaling), des relations et des
concepts.

Définition 3.4 (Attribut relationnel). Un attribut relationnel est une expression gr(C'),
ou g est un quantificateur d’échelle, r une relation (nom de la relation) et C' un concept dont
I’extension contient des objets de codom(r).

Selon les besoins de 'application, différents quantificateurs peuvent étre choisis pour
définir 'importance du lien entre les objets d’'un ensemble et ceux d’'un autre ensemble.
Nous introduisons ici les deux quantificateurs couramment utilisés : le quantificateur exis-
tentiel 3 et le quantificateur universel strict 3V. Il existe d’autres quantificateurs qui sont en
majorité des variantes de ces derniers [BRAUD et al., 2018 ; RoUANE-HACENE et al., 2013].

Dans les définitions suivantes, nous considérons deux contextes formels K = (O, A, I)
et £, = (O,, A, I,), et un contexte relationnel r avec dom(r) = O et codom(r) = O,;
C. I'ensemble des concepts produits sur &,. Pour o € O, I'image de o par la relation r est
représentée par r(0) = {0; € O, | (0,0;) € r}. Pour illustration, dans la FRC du tableau 3.1,
prenons K pour le contexte Kgargge, K, pour le contexte K¢, et r pour la relation sell avec
dom(r) = Ogarage (ensemble des garages) et codom(r) = O¢,, (ensemble des voitures).

Définition 3.5 (Scaling existentiel). Pour tout objet 0 € O et tout concept C; € C,, si
r(o)nExtent(C;) # @, alors I'attribut relationnel 3r(C;) est ajouté a 'ensemble d’attributs
de o.

Le scaling existentiel est qualifié de large, dans la mesure ou il n’'impose pas une relation
fortement contrainte entre I'image r(0) d’un objet 0 € O et 'extension du concept C; associé
a l'attribut relationnel 3r(C;). Ainsi, nous pouvons classer les garages selon qu’ils vendent
au moins une voiture d’un certain groupe (concept).

Dansla figure 3.1, Ext3(Car_12) = {carl, car2}. Donc, I'attribut relationnel 3 sell(Car_12)
est ajouté aux garages qui vendent au moins 1'une des voitures {carl, car2}. Par exemple,
sell(garage A) = {carl,car6} donc, sell(garage A) n Ext(Car_12) # @. Par conséquent,

I sell(Car_12)devient un attribut de garage A. Le treillis du contexte K, compte 14 concepts,
ce qui conduit a 14 attributs relationnels de la forme 3 sell(C'ar_i), ou C'ar_i est un concept
du treillis £2du contexte e,

Le tableau 3.4 illustre le résultat de I’échelonnage existentiel du contexte Kggrqe basé
sur la relation sell et les concepts C.,, du treillis £2 = des voitures (figure 3.1). Remar-
quons que l'attribut Jsell(Car_0) (en rouge) n’est partagé par aucun objet garage car,

3. Ext est mis pour Fxtent, la fonction d’extension.
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TABLEAU 3.4 — Scaling existentiel du contexte initial Kgarqge des garages en fonction de la
relation sell et les concepts du treillis £, des voitures (figure 3.1).

)
)
)

Js sell(Car_11)

Car_13
3 sell(Car_0)
J sell(Car_10
J sell(Car_9)
J sell(Car_6)
J sell(Car_5)
J sell(Car_12
J sell(Car_2)
J sell(Car_4)
J sell(Car_8)
J sell(Car_1)
J sell(Car_3)
J sell(Car_7)

manufacturer
3 sell(

chain
service

X
X
X
X
X
X
X

Ext(Car_0) = @. Cet attribut sera par conséquent un attribut du concept Garage 0 (concept
1 des garages, figure 3.5), dont I'extension est également vide.

La figure 3.5 rend compte du treillis de concepts résultant du scaling existentiel du
contexte Kggrqge tel que présenté dans le tableau 3.4. Ce treillis contient 10 concepts contre
5 concepts pour le treillis E%amge (figure 3.2). Soit au total 5 concepts supplémentaires qui
émergent avec le scaling existentiel : les concepts dont les identifiants sont marqués en
gras, par exemple Garage_5 (figure 3.5). En plus de ces nouveaux concepts, les intensions
de certains concepts (du contexte initial) sont enrichies par les informations relationnelles.
Pour illustration, le concept Garage_3 d’extension { A, C'} (figure 3.5), contrairement a ses
concepts équivalents Garage+_5 (figure 3.4) et Garage_3 (figure 3.2), contient dans son in-
tension 'attribut Isell(Car_12) qui signifie que chaque garage (de son extension) vend
au moins une voiture de C'ar_12. Plus précisément, Ext(Car_12) = {carl,car2} et nous

avons les correspondances sell( A, carl) et sell(C, car2).

Comme nous venons de le voir, le scaling existentiel est un encodage tres large, dans la
mesure ou il suffit de 'existence d’une relation entre un objet et les objets d’un autre concept
pour I'ajout de I'attribut relationnel formé audit objet. Ce qui, en pratique, peut entrainer
des liens relativement faibles entre les concepts. Nous poursuivons avec le scaling universel
strict, qui impose une contrainte plus forte entre les concepts.

Définition 3.6 (Scaling universel strict). Pour tout objet 0 € O et tout concept C; € C,, si
r(o) + @ etr(o) € Extent(C;), alors Iattribut relationnel 3Vr(C;) est ajouté a I’ensemble
d’attributs de o.

Le scaling universel strict est qualifié de restreint ou étroit en comparaison au scaling
existentiel, qualifié de large. En effet, la contrainte d’inclusion imposée entre I'image r(0)
d’un objet 0 € O et 'extension du concept C; associé a I'attribut relationnel 3Vr(C;) est
plus forte que celle appliquée dans le cas du scaling existentiel.
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Garage_4

AN

Garage_1 Garage 9
service 3 sell(Car_13)
D
Garage_3 Garage 7 Garage 8

manufacturer 3 sell(Car_8) 3 sell(Car_7)

3 sell(Car_12)

Garage_5 Garage_6 Gar;g.e_z
chain
d sell(Car_10)| |3 sell(Car_11)
3 sell(Car 5) | |3 sell(Car 6) | |3 Sq<ar-p)
3 sell(Car_2) 3 sell(Car_1) 3 sell(Car 3)
C A B =
Garage_ 0 /

3 sell(Car_0)

FIGURE 3.5 — Treillis du contexte Kg,rqe apres scaling existentiel (tableau 3.4).

Par exemple, le concept C'ar_11 de la figure 3.1 a pour extension {carl,car6} et on
a sell(garage A) = {carl,car6} < Ext(Car_11), par conséquent, 'attribut relationnel
3V sell(Car_11) est ajouté aux attributs de I'objet garage A.

Dans la méme logique, avec le concept C'ar_13 qui est le top (T) concept des voitures
(regroupe toutes les voitures), 'attribut 3V sell(Car_13) est ajouté comme attribut a tous les
garages ayant vendu une voiture (il s’agit des garages { A, B, C'}, qui constituent 'extension
du concept Garage_7 dans la figure 3.6), car I’ensemble des voitures vendus par chaque
garage est inclus dans Ext(Car_13).

Le tableau 3.5 est le résultat du scaling universel strict sur le contexte Kggrqq €n fonc-
tion de la relation sell et les concepts du treillis £ des voitures (figure 3.1). Dans ce ta-
bleau, nous pouvons remarquer que la relation d’incidence entre les garages et les attributs
relationnels est trés peu dense, en comparaison avec le tableau 3.4. Au total 10 attributs
relationnels sur 14 (& partir de 3Vsell(Car_0), en rouge, tableau 3.5), ne sont partagés par
aucun objet et vont par conséquent constituer I'intension du concept Garage_0 (1 concept
des garages, figure 3.6), car son extension est également vide.

La figure 3.6 met en évidence le treillis associé au contexte du tableau 3.5. Ce treillis
compte 8 concepts contre 5 concepts pour le treillis du contexte initial (figure 3.2); les 3
concepts supplémentaires sont identifiés en gras (par exemple Garage_7). En comparaison
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TABLEAU 3.5 - Scaling universel strict du contexte Kg,rq €n fonction de la relation sell et

les concepts du treillis £2 des voitures (figure 3.1).

—~~ o~

manufacturer
3V sell(Car_13)
3V sell(Car_11)
3V sell(Car_10)
3V sell(Car_9)
3V sell(Car_0
3V sell(Car_6
3V sell(Car_5)
3V sell(Car_12)
3V sell(Car_2)
3V sell(Car_4)
3V sell(Car_8)
3V sell(Car_1)
3V sell(Car_3)
3V sell(Car_7)

chain
service

X
X
X X
X
X

o wx
X
X
X

TABLEAU 3.6 — Principaux opérateurs de scaling implémentés dans les outils de RCA

Opérateur Notation Attribut relationnel Contraintes
Existentiel 3 Ir(C) r(o)n Ext(C) + @
Universel strict 3v Vr(C) r(o) # @ etr(o) € Ext(C)
, [r(0) n Ext(C)| > n|r(o)|/100
U 1- t IV Vs
niversal-percen % 207 (C) et |r(0) 0 Ext(C)] > 0
Contains strict 32 For(C) Ext(C) + @ et Ext(C) < r(0)
, [r(0) n Ext(C)| 2 n|Ext(C)|/100
C t 'P t 3 2>TL 0 3 2>7’L 0 C
ontains-Percen 1% >0 7(C) et |r(0) 0 Ext(C)] > 0

avec le treillis obtenu par le scaling existentiel (figure 3.5), on obtient 2 concepts en moins
avec le scaling universel strict ce qui illustre bien son caractére restreint par rapport au
scaling existentiel.

Outre les quantificateurs existentiel 3 et universel strict 3V de scaling, d’autres va-
riantes de quantificateurs peuvent étre utilisées pour préciser la force des liens entre les
ensemble d’objets, notamment les quantificateurs : universal-percent 3V ,,9, contains strict
3 2 et contains-percent 3 2,,%. Soient une relation r, un objet o € dom(r) et C' un concept
tel que Ext(C) € codom(r), le tableau 3.6 récapitule les principaux quantificateurs inté-
grés dans les outils qui implémentent RCA a I'instar de RCAExplore [DOLQUES et al., 2019]
et FCA4] [GUTIERREZ et al., 2022].

Un ordre de généralité peut étre défini sur les attributs relationnels et sur les quantifica-

teurs de scaling.

Définition 3.7 (Relation de généralité <, sur les attributs relationnels). Soient deux
attributs relationnels a; = ¢171(C1) et a2 = goro(Cy) tels que 71 € O3 x Oy, 13 € O3 x Oy,
Ext(Cy) € O1 et Ext(Cs) € Oy : ay est plus général que ay (noté a; <4 as) si et seulement
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Garage_ 4

f

Garage_7
3V sell(Car_13)
/ A
Gar:ge_z Garage 3 Garage_1
chain 4
v sell(Car_9) manufacturer service
B D
N $
Garage 5 Garage_6

3V sell(Car_10)| (3V sell(Car_11)

C A
Garage 0
3V sell(Car_0)
3V sell(Car_6)
3V sell(Car_5)
3V sell(Car_12)
3V sell(Car_2)
3V sell(Car_4)
3V sell(Car_8)
3V sell(Car_1)
3V sell(Car_3)
3V sell(Car_7)

FIGURE 3.6 — Treillis du contexte Kgqarqqe apres scaling universel strict (tableau 3.5).

si {az}’ € {a,}' [BRAUD et al., 2018].

Définition 3.8 (Relation de généralité <g sur les quantificateurs). Soient ¢; et ¢, deux
quantificateurs de scaling; ¢; est plus général que ¢ (q1 <5 q2) si V7, VC, ¢17(C) <4 qor(C)
[BRAUD et al., 2018].

A titre d’exemple, la relation 3 <5 3V signifie que I’extension du concept introduisant
3r(C') inclut celle du concept introduisant 3Vr(C'). La figure 3.7 illustre cette hiérarchie
de généralité entre les quantificateurs présentés dans le tableau 3.6, allant des plus spé-
cifiques vers les plus généraux, du haut vers le bas (par exemple, 3V est plus spécifique
que 3V40%). Cette propriété permet d’établir une relation entre les treillis obtenus a par-
tir de deux quantificateurs ¢; et ¢ tels que ¢; <g ¢o. En particulier, il existe une projection
des concepts construits avec gy vers ceux construits avec ¢;. Autrement dit, pour chaque
concept C'y du treillis construit avec ¢, il existe un concept C du treillis construit avec ¢, tel
que Ext(Cy) € Ext(Cy). Par exemple, le treillis de concepts de la figure 3.6 construit avec
le quantificateur 3V se projette dans celui de la figure 3.5, obtenu avec le quantificateur 3.
Des précisions supplémentaires sur ces formalismes et leurs démonstrations figurent dans
[BrRAUD et al., 2018].
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2 v3
32 2100% 3V 2100 %
32 260% v 260%

32230% 3V 230%

3
32 2 0%
W=20%

FIGURE 3.7 — Relation de généralité sur les quantificateurs — de [BrRAUD et al., 2018].

La section suivante présente le processus d’extension d’un contexte objets-attributs par
intégration des relations inter-objets via les attributs relationnels.

3.4.2 Extension relationnelle d’un contexte

L’ajout d’attributs relationnels a un contexte objets-attributs s’effectue via une opéra-
tion de mise a I’échelle, basée sur un quantificateur. Afin de fournir une définition géné-
rique de cette opération, introduisons une fonction générique x [BRAUD et al., 2018] qui fait
correspondre un quantificateur d’échelle g, une relation 7 et un sous-ensemble d’objets du
codomaine de r a un sous-ensemble d’objets du domaine de 7.

K: Q x R x Uizl,...,n 20i szl,“.,n 205 quec

— @ ={3,3V,32,...} : un ensemble de quantificateurs d’échelle
— R : un ensemble de relations (contextes objets-objets)

— O; : le codomaine d’une relation r € R

— Oj : le domaine d’une relation 7 €¢ R

r renvoie le groupe d’objets du domaine qui sont connectés pour r et g avec un certain
groupe d’objets du codomaine. Plus précisément, pour 7, ¢ et un concept C sur le codomaine
de r, k(r,q, Ext(C)) renvoie I'ensemble des objets qui possédent I'attribut relationnel
qr(C). Par exemple, Ext(Car_12) = {carl,car2} (figure 3.1) et x(3, sell, Ext(Car_12)) =
{A,C}; donc Isell(Car_12) est un attribut commun aux garages A et C' (voir tableau 3.4
ou treillis de la figure 3.5).

Définition 3.9 (Extension relationnelle partielle). Considérons les contextes objets-
attributs £, = (Ok7Ak‘7[k) et K; = (Ol,Al,[l), la relation » € O, x Oy, le treillis £; du
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contexte K; et ¢ un quantificateur d’échelle. L’opérateur de scaling S, 4) -, sur K}, donne
I'extension relationnelle partielle S, oy »,(Ky) = (O, A*, I*) avec :

— O% = Oy,
— A ={qr(C)|Ce Ly},
— I* = Ugeg, 5(q, 7, Ext(C)) x {qr(C)}.

L’extension relationnelle d’'un contexte objets-attributs K, est obtenue en le joignant
avec toutes les extensions relationnelles partielles générées a partir des relations qui ont
Oy, comme domaine et leur opérateur d’échelle assigné. Ainsi, considérons une famille re-
lationnelle de contextes qui ne contient que le contexte Ky, ci-dessus mentionné, le contexte
K, et la relation r avec dom(r) = Oy, et codom(r) = O,. L’extension relationnelle de I, lors
de l'affectation du quantificateur g a r est 'union du contexte initial avec son extension
relationnelle partielle comme formulée dans I’équation 3.1.

ICkUS(r,q),El(le) = (Ok,AkUA+,]kUI+) (3.1)

L’équation 3.1 correspond en effet a I'apposition des contextes Ky, et S, 4) £, (K ). L'opé-
rateur d’apposition sur deux contextes Ky = (Oy, Ay, 1) et Ky = (02, As, I5), tels que
O1 = Oy = O estnoté K1 |Ky = (O,A; U Ay, I} U 1) et représente le contexte sur ces
objets ou I'ensemble d’attributs et 'incidence sont obtenus par I'union des composantes
respectives de Ky et Ky [GANTER et WILLE, 1999].

A titre d’illustration, le tableau 3.7 représente S(seir,3), L (Koarage) %, 'extension partielle
de Kgarage sur v = sell(Ogarage; Ocar), ¢ = 3 et les concepts du treillis de LY, (figure 3.1). Ainsi,
I'extension relationnelle de Kggpqq est illustrée dans le tableau 3.4 et correspond a I'union
du contexte initial Xg,qg (voir FRC; du tableau 3.1) et 'extension partielle présentée dans
le tableau 3.7.

La section suivante présente I'extension relationnelle compléte d’'un contexte par rap-
port a I'ensemble des relations dont il est la source.

3.4.3 Extension relationnelle complete d’'un contexte

Dans RCA, un contexte IC;, est mis a I’échelle en utilisant toutes les relations issues de
K, c’est-a-dire les relations de 'ensemble rel (K, ). Pour exprimer formellement le contexte
obtenu en augmentant K avec tous les attributs relationnels résultants, ce que nous appe-
lons extension relationnelle compléte de Ky, il faut prendre en compte les treillis des contextes
associés aux codomaines des relations de rel ().

4. L’extension se fait sur Li,, car K, est le contexte associé au codomaine de la relation sell.
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TABLEAU 3.7 — Extension relationnelle partielle du contexte Kgarqge €n fonction de la relation

sell, du quantificateur 3 et des concepts du treillis £2_des voitures (figure 3.1) .

o
bo —~
& —~~ ! —~~ ~—~~
& o — — o — —~ —~ N —~ — —~ —~ —~ —
N T T T Tt e T T TR T A T
Qé — < = = — — — — — — — — — —
O NG < < < < < < < < < < < <
N O T O U U LU O U U O O O U o
» G I G A — g
\,'\ p— G.) p— p— p— p— p— p— p— p— p— p— p— p—
D 3) 7 3] [3) 3] 3] 3] 3] 3] 3] 3] 3] 3] [3)
\? w 1) w w w w w w w w w w w w
2) m mM mMm m M M M m Mm M M ™M m m
A X X X X X X
B X X X X X X
C X X X X X
D

Désignons par L 'ensemble des treillis correspondant aux contextes de K. Soit rel (K ) =
{ri}1=1...m,, et pour chaque 7, soit £;; € L le treillis sur O;; = codom(r;). Introduisons la
fonction p : R - () qui associe a chaque relation objets-objets r; € R un quantificateur
d’échelle ¢ € @ = {3,3V,...}. Sous ces hypotheses, extension relationnelle compléte de
ICi par rapport a p et L, notée E,1(K}), est définie comme 'apposition de KC;, avec les
résultats respectifs de sa mise a I’échelle sur chacune des relations r; € rel(K;,). Autrement
dit, extension relationnelle compléte du contexte Ky, consiste a appliquer successivement
le scaling associé a chaque 7; € rel(Ky,), selon le quantificateur défini par p.

Définition 3.10 (Extension relationnelle compléte d’un contexte). Etant donné (K, R)
une FRC, avec un ensemble de treillis L, p un constructeur de scaling et un contexte X; € K
avec rel(KCy) = {ri}i=1,.. m, 'extension relationnelle compléte du contexte K;, par rapport

apetLest:

EP,L(ICIC) = ICk | S(T17P(T1))7ﬁi1(lck) | st |S(7’mk7p("’mk))y»cimk (Kk)

Comme exemple, rappelons que rel(Kgarage) = {sell, maintain} avec Ogargge €t Ocqr pour
domaine et codomaine des deux relations respectivement. Pour la FRC; du tableau 3.1, no-
tons L = {LGarages Lcars Lrerson}- L'extension relationnelle compléte E, 1 (Kearage) de Kgarages
avec p(sell) = 3 et p(maintain) = 3, va consister en son extension relationnelle sur les rela-
tions sell (comme présentée dans le tableau 3.7) et maintain en correspondance. En d’autres

termes,on a:

I['Ep,L(}CGarage) = ICGarage | S(maintain,ﬂ),[,cw(KGarage) ‘ (32)

Le tableau 3.8 récapitule E, 1 (Kgarage ), I'extension relationnelle complete de K gypqqe €n met-
tant en évidence 'extrait de 'extension partielle correspondant a chacune des relations

maintain et sell.
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TABLEAU 3.8 — Extension relationnelle compléte du contexte K ggrqq. €n fonction des relations
{maintain, sell}, du quantificateur 3 et des concepts du treillis £2__(figure 3.1) .

v arag")
@% L (LTUCG
~ OQ‘ <ntail’l3)’
> ¢ S(mt
S‘ — —
N o N —
'S<)O \-—4| \-—4| v—«l
— — —
N = S8 S S
£ (3 |99 ¢ |18g3 4
k= B= = ooy o
Q s 8 s 8 & ® 3
&  g|E E : |88 S
2 g 2|3 3 = = 5 = =
= =] > = = E Q Q ) )
< R s ©n ©n ©n )
8 ¢ 2|m m m m m m m
A X X X X X X X X
B X X X
C X N
D x| x x

Lorsque 'extension relationnelle compléte pour chaque contexte d’'une FRC est calculée,
on parle de lextension relationnelle complete de cette FRC.

3.4.4 Extension relationnelle complete d’'une FRC

L’opérateur E, 1 (K};) d’extension relationnelle compléte d’un contexte ci-dessus peut
étre utilisé pour couvrir 'ensemble des contextes d’'une FRC. L’idée étant d’obtenir I'en-
semble des extensions completes pour chaque contexte de la FRC. Comme dans la section
précédente, 'extension se fait par rapport aux parameétres p et L telle que formulée a la
définition 3.11 suivante.

Définition 3.11 (Extension relationnelle compléte d’'une FRC). Etant donnée (K, R)
une FRC ayant pour ensemble de contextes K = {K1,...,K,} et pour ensemble de treillis L,
ainsi que le constructeur de scaling p, 'extension relationnelle compléte de K est composée
de toutes les extensions relationnelles compleétes de tous les K, € K:

E;L(K) = {Ep,L(’Cl)a ce vEp,L(’Cn)}

L’application de E* a un ensemble de contextes donne un ensemble de contextes étendus
ou chaque contexte (objets-attributs) individuel est une extension par attributs de son ho-
mologue dans I'ensemble initial des contextes. Il est clair qu’a chacun des contextes étendus
(augmentés), correspond un treillis potentiellement plus grand.
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A titre d’exemple, I'application de E* avec p(sell) = p(maintain) = p(owner) = 3 sur
la FRC; (tableau 3.1) se constitue des extensions relationnelles completes de ses contextes
K Garages Kcar €t Kperson respectivement :

— L’extension E, 1 (KCgarage) a été présentée dans le tableau 3.8.

— Quant a I'extension relationnelle de K¢, ona E, 1. (KCcar) = Kear | S(owner,3), Lousen (Kcar)

qui correspond au tableau 3.9.
— Pour ce qui est de Cpeson, 01 a tout simplement E, 1, (ICperson) = Kperson» car il n’existe
aucune relation issue de Kp,son.
TABLEAU 3.9 — Extension relationnelle compléte du contexte K¢, en fonction de la relation
owner, du quantificateur 3 et des concepts du treillis £, des voitures (figure 3.1) .

O
QO
&

carl

3 owner(Person_9)
3 owner(Person_6)
3 owner(Person_0)
3 owner(Person_7)
3 owner(Person_4)
3 owner(Person_2)
3 owner(Person_8)
3 owner(Person_1)
3 owner(Person_3)
3 owner(Person_5)

family
sport
berline

Peugeot
Tesla

Renault

X
X
X
X
X
X

X

X

X
X
X

car2 X
car3 X X
car4 X X
car5 X X
car6 X X

X X X X

Comme mentionné précédemment, ’extension relationnelle compléte d’une FRC (a par-
tir des treillis de ’ensemble initial des contextes formels) conduit a des contextes avec plus
d’attributs et par conséquent a des treillis potentiellement plus grands. Ainsi, la question de
savoir si ces nouveaux concepts devraient étre réutilisés dans une nouvelle étape de mise a
I’échelle se pose. En d’autres termes, faut-il répéter I’étape de mise a I’échelle, cette fois avec
des informations conceptuelles plus completes a utiliser comme base de mise a I’échelle ?
Dans la section suivante, nous présentons le processus RCA qui intégre de maniére itérative
les informations relationnelles dans chaque contexte.

3.5 Déroulement de RCA

Le processus de RCA suit une logique itérative. L’étape d’initialisation consiste a construire
le treillis de concepts pour chaque contexte formel de départ, puis, chaque itération com-
prend deux étapes : (1) la mise a I’échelle relationnelle des contextes formels et (2) la
construction des treillis de concepts pour chaque contexte formel étendu. L’itération sui-
vante est basée sur les résultats de I'itération précédente en appliquant 'AFC aux contextes
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formels étendus, et le processus se termine lorsque les treillis de deux étapes consécutives
sont équivalents. Ce processus est formalisé par la méthode Mult i-FCA, présentée dans
la section suivante.

3.5.1 Meéthode Multi-FCA

Le processus de RCA est décrit en détail par 'algorithme 3 qui reprend la procédure

Multi-FCA définie dans [ROUANE-HACENE et al., 2013]. Cette méthode Multi-FCA fonc-
tionne selon une logique itérative : chaque fois que les contextes formels de la FRC sont
étendus, leurs treillis correspondants s’étendent également. Cette méthode représente un
schéma de calcul plutét qu’un algorithme précis, car de nombreux choix algorithmiques
sont laissés a 'analyste. A titre d’exemple, avec la primitive BUILD-LATTICE pour la construc-
tion d’un ordre sur les concepts, différents algorithmes tels que Ares [Dicky et al.,, 1995]
(pour calculer un sous-ordre du treillis) ou Iceberg [STUMME et al., 2002] (pour calculer un
sup-demi-treillis) peuvent étre utilisés.

Algorithm 3 Processus ARC

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:

R e A A

ProcMulti-FCA
Input : (K,R) = ({K;}i-1...n, R) une FRC, p un constructeur de scaling
Output : L un tableau [1,..,n] de treillis
D> p la est fonction qui a chaque relation associe un quantificateur d’échelle
p < 0; halt < false
for i from 1 to n do
KY <« SCALE(K;) > Dans le cas ou K; est multi-valué
L[i] « BUILD - LATTICE(K?)
end for
while not halt do
p=p+1
for i from 1 to n do
K’ « EXTEND - CONTEXT(K'™, p,1P1)
L?[i] « UPDATE - LATTICE(K?,LP7'[i])
end for
halt < Ai1...n ISOMORPHIC(LP[i],LPV[i])
end while

La procédure Multi-FCA (algorithme 3) se déroule en plusieurs étapes et se décrit

comme suit.

1) Initialisation (lignes 5 a 8). Chaque contexte k¥ est obtenu a partir de K; en appliquant
une mise a I’échelle conceptuelle aux attributs multi-valués de KC; a 'aide de la primitive
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SCALE (ligne 6). Le treillis de concepts associé & K? est ensuite construit (ligne 7) en utili-
sant la primitive BUILD — LATTICE et est stocké dans L°[i]. A la fin de I'initialisation,
la variable L° contient I’ensemble de treillis de tous les contextes K.

2) Etape p > 0 (lignes 9 a 14). A I’étape p, pour chaque relation rj, € O;xO;, les concepts du
treillis L?"'[j] du codomaine (O;) de ry, sont utilisés pour étendre le contexte X7 ! de son
domaine (O;) en utilisant la primitive EXTEND — CONTEXT (ligne 12). On obtient
un contexte étendu K. Ensuite, le treillis LP[i] correspondant est obtenu en utilisant la
primitive UPDATE — LATTICE (ligne 13). Pour les deux primitives de construction et
de mise a jour du treillis, le choix des algorithmes est libre.

3) Arrét du processus (ligne 15). Le processus s’arréte lorsque pour tous les contextes
objets-attributs, les treillis correspondants sont isomorphes sur deux étapes consécutives.
Autrement dit, le processus s’arréte lorsque toutes les paires de treillis L[] et LP*![i] pour
un certain p sont équivalents.

Graphiquement, la méthode Multi-FCA du processus RCA peut se résumer par 'orga-
nigramme de la figure 3.8 ci-dessous.

INPUT: relational context family

- m
Object-Attribute | | Object-Object
Relations Relations
\a T ~J
+ ~
4 N\
AN
FORMAL \
CONTEXTS \
/
/

LATTICES

fixpoint ?

YES
OUTPUT: Concept Lattice Family

[ LATTICES ]

FIGURE 3.8 — Représentation schématique du processus RCA (@X. Dolques).
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A titre d’illustration, appliquons la méthode Multi-FCA a la FRC, (tableau 3.1) composée
des contextes K = {Kgarage, Kperson; Kcar} €t des relations R = {sell, maintain, owner}.

L’initialisation (p = 0) consiste en la construction des treillis pour chacun des contextes
de Kgargge (E%mge), Krerson (L,0n) €t Kcar (LL,) présentés dans les figures 3.2, 2.3 et 3.1,
respectivement. Utilisons le quantificateur 3 pour la mise a échelle de toutes les relations.
Pour rappel, aucune relation n’est issue du contexte KCpeys,n €est-a-dire, que Opeyson n'est le
domaine d’aucune relation, par conséquent, le contexte Kp,,n (ainsi que le treillis) reste

fixe le long du processus RCA.

A Pétape p = 1 (step 1 : premiére extension relationnelle compléte de la FRC), les treillis
construits a I’étape p = 0 sont utilisés pour étendre les contextes et mettre a jour les treillis.
Les concepts de L% sont utilisés en association avec la relation owner pour étendre Kc,,
en lCéar, dont le contexte étendu résultant a été illustré dans le tableau 3.9.

De méme, les concepts de EOCW sont utilisés en association avec les relations sell et maintain

pour étendre le contexte Kggrqge (€N K};amge) comme formulé a I’équation (3.2) et présenté

dans le tableau 3.8. A cette étape, la condition d’arrét n’est pas vérifiée et on passe a I’étape
p=2.

A Pétape p = 2, les treillis de I'étape précédente sont utilisés pour étendre les contextes.
Comme le contexte KCp,s,, reste invariable le long des itérations de scaling (ICI%erson = /C%emn =
KS,..n)> On s’attend a avoir K}, = K2 et L, = L2 en conséquence. Pour ce qui est du

. ’ . . 1 0 .
contexte Kgargge il est étendu avec le treillis £, # L2, etona:
_ k2 _
Ep,L(ICGang) = ICGarage = KGarage | S(sell,a),ﬁéar(’CGamge) ‘S(maintain,EI),Lém(K:Gamge)

A la fin de cette itération, on obtient que L{,, = L2, Lbuuee = Lourage
Ly, .. = L% ce qui marque 'arrét du processus RCA. La figure 3.9 présente le treillis
L2 ala fin du processus RCA. Ce treillis contient 3 concepts supplémentaires (Car_14,

Car_15, Car_16) par rapport au treillis initial £2_.

et bien évidement,

2 . alafin du processus RCA. Ce treillis

De méme, la figure 3.10 illustre le treillis £Garage
compte 13 concepts contre 5 concepts par rapport au treillis initial E%mge. Les 8 concepts
supplémentaires sont marqués en gras, par exemple le concept Garage_7. Par ailleurs, il
est a noter que L., = L£7,,45 Mais que les intensions de certains concepts de L, ont
été mises a jour par rapport a leurs intensions dans Eéamge. Ces mises a jour résultent de
I'intégration des attributs relationnels induits par les concepts Car_14, Car_15 et Car_16

du treillis £1Car, comme illustré en vert dans la figure 3.10.

Pour résumer, le tableau 3.10 récapitule le nombre de concepts pour chaque contexte au
fil des itérations du processus RCA.

Nous expliquons comment interpréter une intension d’un concept relationnel dans la
section suivante.
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Car_13
3 owner(Person_9)

//“\;\

Car 7 Car 9 Car 8 Car 15 Car 14 Car 16

- Tesla
berline 3 owner(Person_8) sport 3 owner(Person_6) 3 owner(Person_7) 3 owner(Person_5)

AN =L

Car_3 Car 4 sar_lllt PCar_lOt Car_12
3 owner(Person_4)| |3 owner(Person_2) 3 ownee;?F?:rson 3| |3 ownéarlzgee?son 1) family
card car3 = =

Car 1l Car_2 Kr_t}/ Car 5
car6 car5 /V' car2
Car 0

3 owner(Person_0)

FIGURE 3.9 — Treillis des voitures L2, (étape 2 de RCA).

TABLEAU 3.10 — Nombre de concepts pour chaque itération de scaling.
p=0|p=1|p=2

Koeon | 10 10 10

K2 14 17 17

Karage | 5 13 13

3.5.2 Interprétation des concepts relationnels

De nouvelles abstractions qui émergent des treillis relationnels caractérisent les liens
inter-objets (comme nous l'avons expliqué a la section 3.4.2). Pour clarifier, le concept
Car_14 du treillis £2_ (figure 3.9) introduit par I'attribut relationnel 3owner(Person_T)
n’appartient pas au treillis initial £2,_(figure 3.1). Il s’agit d’'un nouveau concept relationnel
dont les objets, a savoir {car2, car4,carb} sont décrits de maniére purement relationnelle,
indiquant que ce sont des voitures dont les propriétaires sont des femmes, car le concept
Person_T a pour extension {Julie, Alice} et pour intension {female}.

En outre, certaines intensions de concepts des contextes de départ sont complétées
par une partie relationnelle, ce qui permet d’affiner la description des objets concernés.

Ainsi, le concept Garage_3 du treillis initial E%mge (figure 3.2) représente la classe des

garages de type manufacturer. Dans le treillis final des garages EQGamge (figure 3.10), I'inten-

sion du méme concept (Garage_3), enrichie par les attributs relationnels Isell(Car_12)
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Garage_4

A

Garage_11

Garage_12

3 maintain(Car_13) d sell(Car_13)

Garage_7

Garage_9

3 maintain(Car_8)
3 maintain(Car_14)

3 maintain(Car_12)
3 maintain(Car_16)

3 sell(Car_7)
3 sell(Car_15)

S

Garage_3

Garage_10
3 maintain(Car_7) Garage_8
3 maintain(Car_15) 3 sell(Car_8)

3'sell(Car14)

manufacturer
3 sell(Car_12)
3 sell(Car_16)

N

Garage_2 Garage 6
Garage_1 chain ——
J 3 maintain(Car 9) 3 maintain(Car_11) Garage_5
service b 3 maintain(Car_6)
M 3 maintain(Car_4) e 3 sell(Car_10)
3 maintain(Car_10) iyt - 3 maintain(Car_1) =
i 3 maintain(Car_3) 3 sell(Car_5)
3 maintain(Car_5) 3 sell(Car 9) I sell(Car_11) 3 sell(Car2)
3 maintain(Car_2) 3 cell(Car ) 3 sell(Car_6) =
setfear. 3 sell(Car_1) C
D I sell(Car_3)
B A
Garage_0
3 maintain(Car_0)
3 sell(Car_0)

FIGURE 3.10 - Treillis des garages L7, (étape 2 de RCA).

et Isell(Car_16), indique qu’il s’agit des garages qui vendent des voitures de type family
(Car_12) et des voitures (C'ar_16) dont les propriétaires (concept Person_5) ont les carac-
téristiques married et contryside. Plus précisément, le concept Person_5 (figure 2.3) a pour
extension { Bob, Julie} et pour intension { married, countryside}. En résumé, les treillis re-
lationnels de la FRC; fournis par RCA relient les concepts des garages aux concepts des
voitures qui sont a leur tour reliés aux concepts des personnes, comme l'illustre extrait de
la figure 3.11.

Garage_3 Car_16 Person_5
manufacturer Jowner(Person_5) countryside
Jdsell(Car_12) married
Jsell(Car_16) > car1 >
car2
Bob
A cars Julie
C car6

FIGURE 3.11 — Extrait du résultat de RCA reliant les garages de type manufacturer aux
personnes de caractéristiques married et contryside.
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3.5.3 Itérations dans Multi-FCA

La procédure Multi-FCA présentée a la section 3.5.1 calcule les attributs relation-
nels et étend les contextes au fil des itérations. En fait, dans de nombreux cas, il n’est pas
nécessaire d’itérer : un ordre approprié des taches d’analyse pour les contextes individuels
devrait permettre de ’éviter [ROUANE-HACENE et al., 2013].

On peut s’imaginer une structuration de la FRC sous forme d’un graphe dans lequel les
sommets représentent les contextes objets-attributs, et les arétes représentent les contextes
objets-objets. Pour illustration, la figure 3.12 présente la structure graphique de la FRC,
(tableau 3.1) . A condition que ce graphe soit un graphe acyclique orienté (Directed Acyclic
Graph - DAG), un tri topologique des contextes fournirait un ordre total compatible avec
les dépendances induites par les relations entre les contextes. Ainsi, un ordre toplogique
sur le graphe de la figure 3.12 donne la succession des contextes (sommets) dans I'ordre
K Garages KCcars Koperson 0l chaque contexte KC; apparait bien avant ses successeurs, c’est-a-dire
les contextes de codomaines des relations issues de /C;.

FIGURE 3.12 — Structure graphique de la FRC; (tableau 3.1).

En conséquence, I’analyse des contextes selon l'ordre topologique inverse garantit qu un
contexte K; n’est traité que lorsque tous les treillis nécessaires a la mise a I’échelle des rela-
tions dans rel(/XC;) ont déja été construits jusqu’a leur forme de point fixe. Dans I'exemple
de la FRCy, le calcul des treillis devrait s’effectuer suivant I'ordre Xpeyson, Kcar, Kgarage c€ qui
se traduit par : (1) construction du treillis de Kpeson, (2) extension relationnelle du contexte
KCcar a 'aide des concepts de Kpeson, puis construction du treillis associé, (3) extension re-
lationnelle de Kggrqee @ 'aide des concepts de K¢, (étendu), puis construction du treillis
associé. Suivant cet ordre de traitement des contextes, nous n’avons pas besoin de plu-
sieurs itérations de scaling sur cet exemple pour calculer 'ensemble de treillis relationnels
associé.

Cependant, afin de couvrir tout le spectre des FRC possibles, y compris les FRC cy-
cliques, 'expression plus générale de la méthode Mult i-FCA est celle liée a un point fixe
comme présenté dans I’algorithme 3.

3.6 Conclusion

Nous avons présenté dans ce chapitre I’Analyse Relationnelle de Concepts (Relational
Concept Analysis - RCA) qui est une extension de I’Analyse Formelle de Concepts (AFC) aux
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données multi-relationnelles et dont I'objectif est de capturer les relations inter-objets dans
la construction des concepts. A partir d'une famille relationnelle de contextes, RCA produit
un ensemble de treillis inter-connectés par des attributs relationnels reliant des concepts
entre eux. RCA dispose de divers quantificateurs d’échelle (3, 3V, 2, etc.) permettant de
quantifier les relations entre objets et concepts, ce qui permet une analyse flexible.

RCA se limite au traitement de relations binaires (relations reliant deux catégories d’ob-
jets) et nécessite des transformations et modélisations supplémentaires pour le traitement
des relations d’arité n > 2. Dans le chapitre 4, nous présentons Graph-FCA, la deuxiéme
extension de I’AFC étudié dans cette thése. Graph-FCA étend ’AFC aux graphes et a pour
spécificité la prise en compte des relations n(> 2)-aires et le calcul des concepts n(> 1)-aires
(concepts des relations).
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CHAPITRE 4 : ANALYSE CONCEPTUELLE DE GRAPHES (GRAPH-FCA)

4.1 Introduction

Graph-FCA (GCA) [FERRE, 2015; FERRE et CELLIER, 2020] étend I’Analyse Formelle de
Concepts (AFC) aux graphes et vise a calculer des structures conceptuelles dans les graphes,
de la méme maniere que I’AFC découvre les structures conceptuelles dans les données tabu-
laires (contextes formels). En GCA, les nceuds du graphe jouent le role d’objets dans I’AFC,
les attributs de ’AFC sont les labels (attributs unaires) des noeuds et les attributs n(>1)-aires
sont les labels des arétes connectant n noeuds. Ainsi, GCA se caractérise par sa capacité a
prendre en compte des relations de toute arité, tout en permettant le calcul de concepts
n-aires. En termes d’applications, GCA a été utilisée pour Iextraction de structures lin-
guistiques, a partir d’arbres d’analyse, ainsi que I'extraction de motifs dans des recettes de
cuisine [FERRE et CELLIER, 2016, 2022]. GCA a également été utilisée pour traiter les pro-
blémes d’alignement des graphes de connaissances [FERRE, 2022], qui apparaissent lors de
la fusion de différents graphes de connaissances pour un domaine donné.

Dans ce chapitre, nous détaillons les notions et principes sur lesquels repose GCA pour
le calcul des concepts dans les graphes. Apreés quelques préliminaires techniques présentés
en section 4.2, la section 4.3 introduit les notions de contexte graphe et de graph pattern,
qui constituent des éléments fondamentaux de GCA. La section 4.4 poursuit avec la défini-
tion des concepts graphes, en s’appuyant sur les notions d’extension et d’intension au sens
de GCA. L’algorithme de calcul des k-concepts est ensuite décrit en section 4.5. Enfin, la
section 4.6 aborde la notion de concepts automorphes.

4.2 Préliminaires : tuples et projections

Dans cette section, nous présentons les notions de tuples et de projections qui sont des
concepts mathématiques importants pour Graph-FCA.

Tuples. Un tuple est une séquence ordonnée d’éléments noté 7 = (x1,...,xx), ou |[T| = k est
son arité. Par exemple, un enregistrement dans une base de données peut étre représenté
par le tuple T = (Alice, female, city, single) qui identifie une personne et ses caractéristiques.
L’ensemble de tous les k-tuples sur un domaine E est noté E* et I’ensemble de tous les
tuples, indépendamment de leur arité, est défini par E* = ;5o E*. Il n’existe qu’un unique
O-tuple, noté (). Nous utilisons 1..k pour désigner I’ensemble des entiers de 1 a k. Afin
d’éviter toute confusion avec d’autres types d’indices, la notation Z[i] peut étre utilisée
comme alternative a z;. Il est courant d’appliquer des fonctions a des tuples. Pour toute
fonction unaire ¢, la notation ¢(7) désigne le tuple (¢(Z[1]), ¢(Z[2]),. .., o(T[k])) et on
a ¢(T)[i] = ¢(x[i]); et pour toute fonction binaire, la notation (7, 7) désigne le tuple tel

que (T, y)[i] = ¢ ([i], y[i]).
Projections. La projection est une opération permettant de sélectionner ou d’extraire une
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partie spécifique d’'un ensemble ou d’une structure. La projection sur un tuple signifie
extraire certains éléments spécifiques de celui-ci. Formellement, une projection 7 € II}
est utilisée pour faire correspondre un k-tuple a un [-tuple selon la formule suivante :
7(Z)[i] = Z[w(i)], c’est-a-dire que le i-ieme élément d’un tuple projeté est 1'élément a I'in-
dice 7 (7). Elle est définie comme une fonction 7 : {1,...,1} — {1,...,k} reliant les in-
dices 1..[ du tuple cible aux indices 1..k du tuple source. Pour illustration, la projection
7w ={1~ 4,2~ 1} fait correspondre un 4-tuple (ou un tuple d’arité > 4) & un 2-tuple ou le
premier élément du tuple cible (de sortie) est le quatriéme élément du tuple source (d’en-
trée), et le deuxieme élément du tuple cible est le premier élément du tuple source. La pro-
jection 7 peut étre représentée de maniére plus concise par le tuple (4,1). Soient le tuple
source T = (Alice, female, city, single) et la projection 7 = (4, 1). Le tuple projeté y = 7(7)
a pour composantes y[1] = T[4] et y[2] = Z[1], donc § = 7(T) = (single, Alice). Ainsi,
I’élément a I'indice 7 du tuple projeté 7 est I’élément & 'indice 7(7) dans le tuple source 7.

4.3 Contexte graphe et graph pattern

Cette section fournit une définition des données d’entrée de GCA, représentées sous la
forme d’un contexte graphe (graph context), et introduit la notion de graph patterns, qui
permettent de capturer des motifs structurels présents dans ces données.

4.3.1 Contexte formel en Graph-FCA : contexte graphe

Dans GCA, les objets sont représentés par des nceuds du graphe, les relations par des
arétes orientées entre ces nceuds, et les attributs par des étiquettes associées aux nceuds et
aux arétes. Alors que AFC définit ses données d’entrée comme un contexte formel qui est
une relation d’incidence entre les objets et les attributs, GCA définit ses données d’entrée
comme un contexte graphe qui est une relation d’incidence entre les tuples d’objets et les
attributs.

Définition 4.1 (Contexte graphe). Un contexte graphe est un triplet K = (O, A, ), ou O
est un ensemble d’objets, A un ensemble d’attributs et [ € O* x A une relation d’incidence
entre les tuples d’objets 0 € O* = U, OF et les attributs a € A.

Une incidence ((0), a) décrit 'objet o par I’attribut a comme dans I’AFC. Une incidence
((01,02),a) relie I'objet ol a I'objet 0y par une relation binaire a comme dans RCA. Une
incidence ((01,...,0,), a) représente une relation n-aire. Pour plus de lisibilité, une alter-
native a la notation ((oy,...,0,),a) peut étre : a(oy,...,0,) comme en logique des pré-
dicats. Les attributs unaires sont utilisés pour étiqueter les nceuds et les attributs n-aires
sont utilisés pour étiqueter les arétes reliant n nceuds. Dans un contexte graphe, chaque
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noeud est représenté par un rectangle ayant deux compartiments ou le premier comparti-
ment identifie I'objet et le second compartiment représente la description de 1'objet. Pour
illustration, la figure 4.1 fournit un petit contexte graphe sur la famille royale britannique.
Dans ce contexte graphe, 'incidence unaire male(Georges) décrit 'entité Georges par I'at-
tribut male et I'incidence binaire has-parent(Georges, William) signifie que Georges a
pour parent (has-parent) William.

Georges Charlotte

male female

ﬁlas—parent has-parent /has-parent has-parent
William 4

male female male

has-parent has-palf%as-parent as-parent
Charles | | Diana

male female

Kate Harry

FIGURE 4.1 — Contexte graphe sur la famille royale britannique [FERRE et CELLIER, 2016].

Afin d’identifier les représentions extensionnelles et intensionnelles de GCA, nous de-
vons commencer par nous demander ce qu’est une description adéquate d’'un objet dans
GCA. Un objet (par exemple, Georges) doit au moins étre décrit par ses arétes adjacentes
c’est-a-dire, les arétes a(0), ot 0 est un tuple d’objets contenant au moins I’objet concerné
(par exemple, has-parent(Georges, William)). Ensuite, si les objets adjacents sont liés a
d’autres objets (par exemple, has-parent(William,Charles)), cela doit également appa-
raitre dans la description de I'objet. En effet, les descriptions des objets adjacents doivent
étre incluses, car elles ont un impact indirect sur la nature de ’objet a décrire. En tout, cela
implique que la description d’un objet est I'ensemble du graphe, ou au moins la composante
connexe a laquelle il appartient si le graphe est composé d’un ensemble de sous-graphes.
Ainsi, dans un contexte graphe K = (O, A, I), la description d'un objet o peut étre définie
comme le couple (0, I'). De la méme maniére, la description d’un tuple d’objets 0 peut étre
définie par le couple (0, I) que nous notons Q(0).

Nous présentons dans la section suivante les graph patterns qui constituent une géné-
ralisation de ces descriptions d’objets et permettent en GCA de définir des représentations
intensionnelles sur des ensembles de tuples d’objets, plutdt que sur des ensembles d’objets.

4.3.2 Graph patterns

Les descriptions d’objets doivent étre généralisées pour former les descriptions parta-
gées par un ensemble d’objets ou par un ensemble de tuples d’objets, d’ou la notion de
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graph patterns comme généralisation des contextes graphes. GCA définit un graph pattern
comme une relation d’incidence généralisée, et un Projected Graph Pattern (PGP) comme
une description généralisée. Dans les définitions suivantes, K = (O, A, I') est un contexte
graphe et V est un ensemble de variables tel que O C V.

Définition 4.2 (Graph pattern). Un graph pattern P C V* x A est un ensemble d’arétes n-
aires avec des variables comme noeuds et des attributs comme étiquettes. En termes simples,
un graph pattern constitue une abstraction d’un contexte graphe, ou les objets sont géné-
ralisés sous forme de variables. V' (P) désigne I’ensemble des variables de P.

[ ]

has-parent
has-parent has-parent has-parent
Y v has-parent
[ yj z
has-parent
Y

(2] p P,

FIGURE 4.2 — Représentation graphique des graph patterns P; et Ps.

Pour illustration, le graph pattern P, = { has-parent(x,y), has-parent(y, z) } décrit toute
situation ou "une entité = a pour parent (has-parent) une autre entité y, qui a un parent 2". Le
pattern P, = { has-parent(x, z), has-parent(x,w), has-parent(y, z), has-parent(y, w), male(z),
female(w) } est un graph pattern qui décrit une situation ot "deux entités x et y ont le méme
pére et la méme mere", c’est-a-dire que x et y sont freres/soeurs. La figure 4.2 présente les
patterns P; et P sous forme graphique. Notons que le pattern P, peut étre vu comme une
généralisation du contexte graphe présenté a la figure 4.3 qui est extrait du contexte de la
figure 4.1. Dans Py, le genre (male/female) des personnes n’est pas pris en compte, ce qui
explique pourquoi la variable x de P, matche avec Georges et Charlotte. 1l en est de méme
pour la variable z qui a pour instances Diana et Charles.

4.3.2.1 Pattern core (motif principal) d’'un graph pattern

En termes de redondances d’information dans un graphe, une notion importante en
théorie des graphes est celle du core (noyau) d’un graphe, qui correspond a la version mi-
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Charlotte | | Georges

female male

&has-parenﬁ/has-parent

William

male

{iqas-paren has-parent

Charles Diana

male female

FIGURE 4.3 — Un sous-graphe du contexte graphe de la figure 4.1.

nimale de ce graphe qui exprime la méme information que le graphe initial. Il est en effet
naturel de se demander lorsque I'on examine des sous-structures présentant une certaine
propriété, s’il existe une sous-structure minimale possédant cette méme propriété. Cette
notion de version minimale d’un graphe (graph pattern dans notre cas) est utile pour une
description (intension) non redondante d’'un ensemble de tuples d’objets.

Le core d’'un graphe est son plus petit retract et le retract d’'un graphe G est un sous-
graphe H de GG au sens de ’homomorphisme c’est-a-dire, qui respecte la structure de graphe
[HAHN et TARDIF, 1997].

Définition 4.3 (Retract d’'un graphe). Soient G et H deux graphes. H est appelé un
retract de G s’il existe deux homomorphismes p: G - H et y: H - G tels que poy =idy.
L’homomorphisme p est appelé une rétraction et 7 une co-rétraction [HAHN et TARDIF,
1997].

Définition 4.4 (Core d’un graphe). Un graphe G est un core si aucun sous-graphe propre!
de GG n’est un retract de G [HAHN et TARDIF, 1997].

En d’autres termes, le core d’'un graphe est sa forme la plus compacte du point de vue
de ses relations de voisinage c’est-a-dire, sans informations redondantes et qui capture la
structure essentielle du graphe. Ainsi, on dit d'un graphe qu’il est son propre core s’il n’a
aucune simplification possible par homomorphisme. Pour illustrer, la figure 4.4 reprend
I’exemple utilisé dans [FERRE et CELLIER, 2020].

Dans la figure 4.4, les graphes H et G1 sont des retracts du graphe G2 mais pas du
graphe G3. En effet, affirmer plusieurs fois que = est dans une relation a avec quelque

1. Un sous-graphe propre d’un graphe G est un sous-graphe qui n’est pas identique a G lui-méme.
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X X X X
Y AT
y y1 y2 y1 y2 y3 y1 y2 y3

H G1 G2 G3

FIGURE 4.4 — Les graphes H et G1 sont des retracts du graphe G2 mais pas du graphe G3.
Le graphe H est le core des graphes G1 et G2. Par conséquent, les graphes H, G1 et G2
sont équivalents.

chose n’ajoute rien a affirmer une seule fois. Effectivement, les variables y1, y2 et y3 de
G2 peuvent correspondre au méme objet dans le contexte graphe, car aucune information
(par exemple, une étiquette) ne les différencie. Au contraire, G3 affirme que x est a la fois
dans une relation a et une relation b, et ne peut donc pas se rétracter en H : I'aréte b(x, y3)
ne peut pas se replier sur 'aréte a(z,y2). Ainsi, le graphe H est le core des graphes G1 et
G2 mais pas de G3.

4.3.2.2 Projected Graph Pattern

Un graph pattern représente un motif de données présent dans le contexte graphe.
L’opération permettant de trouver les instances d’un tel motif consiste a projeter les va-
riables du pattern dans le contexte graphe pour trouver ses différentes instances. Autre-
ment dit, il s’agit d’identifier, dans le contexte graphe, les objets susceptibles de substituer
les variables du pattern. Le résultat obtenu est appelé un Projected Graph Pattern (PGP).

Définition 4.5 (Projected Graph Pattern-PGP). Un PGP est un couple ) = (Z, P) ou
P est un graph pattern, et * € V* appelé tuple de projection, est un tuple de variables.
Autrement dit, un PGP est un focus sur un ou plusieurs nceuds d’un graph pattern. Les
projections sur les tuples sont étendues aux PGPs : 7(Q) = (7(7), P). |Q| = |z| désigne
I’arité du PGP et on parle de k£-PGP pour représenter un PGP d’arité k.

Un tuple de projection peut étre vu comme un tuple d’objets abstraits par des variables;
il définit un focus sur les nceuds du graph pattern. A titre d’exemple, dans le figure 4.2, le
PGP Q; = ((x), P1) qui a pour tuple de projection (z) - i.e, avec un focus sur la variable x
de P, - décrit toute entité x ayant un grand-parent z, inversement, le PGP Q2 = ((2), P1)
décrit toute entité z ayant un petit-enfant z. Un autre exemple est le PGP Q) = ((z,y), P)
qui décrit quant a lui, la relation de "frére/soeur” entre x et y. On peut voir le PGP comme
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une requéte que I’on évalue sur le contexte graphe. A titre d’illustration, voici quelques pro-
jections des patterns P; et P, par rapport au contexte graphe de la figure 4.1. Ces exemples
de projections sont représentés schématiquement dans la figure 4.5.

— @1 = ((x), P1) a pour résultat les objets suivants : Georges et Charlotte (qui ont
pour grands-parents C'harles et Diana).

— Q2 =((2), P1) a pour résultat les objets (grands-parents) C'harles et Diana.

— Q= ((x,y), ) apour résultat (Georges, Charlotte) et (William, Harry) qui sont
des couples? représentant des fréres/soeurs ayant le méme pére et la méme mere. En
effet, il y a d’une part Georges et C'harlotte qui ont pour parents William et Kate,
et d’autre part William et Harry qui ont pour parents C'harles et Diana.

X x = Georges/ X (x,y) = (Georges, Charlotte)/

Charlotte (William, Harry)
has-parent has-parent
A A
) )
has-parent has-parent
z = Charles/
has-parent has-parent

Diana

Q1 = ((z), P1) Q2 = ((2), P1) Q = ((z,9), P2)

FIGURE 4.5 — Représentation graphique des PGPs (), ()2 et () par rapport au contexte
graphe de la figure 4.1.

Les arétes des patterns peuvent étre vues comme des contraintes sur les variables. Une
variable qui apparait dans le tuple de projection mais pas dans le pattern n’est pas contrainte
et peut prendre n’importe quel objet comme valeur. Une variable qui apparait dans le pat-
tern mais pas dans le tuple de projection est quantifiée de maniere existentielle par rapport
aux variables projetées. Par exemple dans @)1 = ((x), P), il doit exister une personne (z)
qui soit grand-parent de z. Dans Q = ((x,y), ), il doit exister une entité z qui soit le
pere de = et y et une entité w qui soit leur mere; mais les identités de z et w n’ont pas
d’importance. Plus précisément, un PGP décrit son tuple de projection, et par conséquent,
I'ensemble de ses instances.

Dans la section suivante, nous présentons la notion de concept graphe (graph concept)
équivalente a la notion de concept formel en AFC a travers les définitions d’'une extension

2. En effet, le tuple de projection contient 2 éléments. La nature du tuple de projection détermine la nature
des résultats de la projection.
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et d’'une intension de concept en GCA.

4.4 Extension, intension et concept graphe

Cette section introduit les représentations intensionnelles et extensionnelles qui per-
mettent de définir un concept graphe GCA.

4.4.1 Extension : des PGPs aux object relations

Dans la description des PGPs donnée précédemment, nous avons vu que le résultat
d’une projection est un ensemble de tuples d’objets (de méme arité que le tuple de projec-
tion) contraint par les caractéristiques définies par le PGP. Ceci permet de définir les repré-
sentations extensionnelles de GCA comme ensembles de tuples d’objets avec la contrainte
que tous les tuples d'un méme ensemble aient la méme arité. Ainsi, nous obtenons que les
extensions sont des object relations, c’est-a-dire des ensembles de tuples d’objets.

Définition 4.6 (Object relation). Un object relation est un ensemble de tuples d’objets
R < O, pour une certaine arité || = k. On note R I’ensemble des object relations indépen-
damment de leur arité et Ry, le sous-ensemble des relations d’arité k. Les projections sont
étendues aux relations : 7(R) = {7(0) | 0 € R}.

Par exemple, {(William, Harry), (Georges, Charlotte), (Diana, Kate)} est un object
relation d’arité 2. Un object relation d’arité 1 est tout simplement équivalent a un ensemble
d’objets comme en AFC.

L’obtention des extensions de concepts en GCA se fait par une correspondance des PGPs
aux ensembles de tuples d’objets qui détermine les instances des tuples de projection sur
un contexte graphe donné. Notamment, le fait que le focus sur le nceud = du pattern P;
(@1 = ((z), P)) fournit Georges et Charlotte comme instances de x indique qu’il y a au
moins 2 instances de P; (du point de vue de x) dans le contexte graphe.

L’opération d’inclusion sur les ensembles d’attributs en AFC s’étend aux PGPs en GCA
pour la définition des extensions.

Définition 4.7 (Inclusion de PGP). Soient ()1 = (71, P) et Q3 = (To, P») deux PGPs de
méme arité (|Q1] = |Q2]). @1 est inclus dans ()3 et on note ()1 S, (s si et seulement si, il
existe un homomorphisme? ¢ : V(P;) — V(FP,) tel que : ¢(T1) = Ty et ¢(Py) € P; ie,
V(?va) € Pl? (gzﬁ@),a) € Ps.

3. ¢ est donc un morphisme de graphes et on dit classiquement que P; se "projette" dans P» avec conser-
vation des tuples de projections.
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Définition 4.8 (Extension d’'un PGP). Soit K = (O, A, I) un contexte graphe. L’extension
d’un k-PGP @) = (T, P), notée ext(Q)), est définie par

ext(Q) = {0 0" |Q 5, Q(0)}, ot Q(0) = (5.1)

Littéralement, 'extension d’un k-PGP () est 'ensemble de k-tuples d’objets contenant ()
(qui partagent ()) dans leur description respective, sachant que chaque tuple d’objets 0 a
pour description Q(0) = (0, ). Donc, pour chaque tuple d’objets 0 € OF, () est une géné-
ralisation de sa description (Q(0) c’est-a-dire, une version obtenue en substituant certains
objets par des variables et en relachant certaines contraintes.

Pour clarifier, par rapport au contexte graphe de la figure 4.1, le PGP Q = ((z,y), )
avec Py = {has-parent(z, z), has-parent(x,w), has-parent(y, z), has-parent(y,w), male(z),
female(w)}, a pour extension ext(Q) = {(William, Harry), (Georges, Charlotte)}. De
méme, le PGP Q' = ((z,y), Py), ou Py = { has-parent(z, z), has-parent(z, Diana), male(z),
has-parent(y, z), has-parent(y, Diana), female( Diana) }, posséde pour extension ext(Q') =
{(William, Harry)}, qui est plus spécifique que celle de @), c’est-a-dire ext(Q") € ext(Q).
Ce résultat est normal car le PGP () décrit 'ensemble des paires de personnes ayant le méme
pére et la méme mere, sans préciser leur identité, tandis que ()’ contraint la description en
spécifiant que la meére est Diana.

Formellement, ext(Q) = ext(((z,y),P2)) = {0 € O? | Q <, (0,1)}. Pour illustrer
cette définition, nous montrons un couple 0 € O? | @ ¢, (0,I) et un autre couple tel que
Q ¢, (0,1). Pour 0 = (Georges, William), on a Q ¢, ((Georges, William),I) comme
illustré a la figure 4.6 car, il n’y a pas de matching/correspondance entre les 2 tuples de pro-
jections (z,y) et (Georges, William). En effet, Georges et William n’ont pas les mémes
parents comme c’est le cas pour x et y.

Pour 0 = (William, Harrry), on obtient que ((z,y), P2) <, (William, Harrry),I)
comme le montre la figure 4.7. En effet, il existe un homomorphisme ¢ qui projette chaque
nceud et aréte de P, dans I, avec correspondance entre (x,y) et (William, Harrry) qui
sont les tuples de projections. Par conséquent, (William, Harrry) est un élément de I'ex-
tension de (), car est une instance de son tuple de projection (x,y). Ce qui est également
le cas pour (Georges, Charlotte).

4.4.2 Intension : des objects relations aux PGPs

Tout comme I’AFC définit une correspondance des sous-ensembles d’objets vers les
sous-ensembles d’attributs, GCA définit une correspondance des objects relations (ensemble
de tuple d’objets) aux PGPs (intensions). Pour chaque object relation, il définit son intension
comme 'intersection des descriptions (PGPs) de tous les tuples d’objets qu’il contient.

L’intersection de PGPs n, est définie comme une forme d’alignement de graphes, ou
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Il n'existe pas de ¢ tel que ¢((z,y)) = (Georges, William)

has-parent

..... X - >l ity )
|

has-parent has-parent

has-parent

A,
Diana

Q = ((z,y), P») Zq ((Georges, William), I)

FIGURE 4.6 - Q) = ((z,v), P») ¢, ((Georges, William), I).

chaque paire de variables des deux patterns devient une variable du pattern d’intersection.
Elle correspond au produit catégorique des graphes ((HAHN et TARDIF, 1997]), également
appelé produit tensoriel ou produit direct. Le produit catégorique G x H de deux graphes
G et H est donné par :

E(G X H) = {[(u7$)v (U7y)] : [U,U] € E(G)7 [fE,y] € E(H)}

Définition 4.9 (Intersection de PGPs). Soit ¢/ une injection de VVx) dans V. L’intersection
de deux k-PGPs Q)1 = (71, P ) et Q3 = (Ta, P2), noté ()1 N, ()2 est définie par () = (7, P), ou

— T =(T1,T2),

- P:Pl XP2:{(¢(@17@2)7G)|6L€A7 (glva)epla (§2,CL)€P2, |g1|:|y2|}

A titre d’illustration, soient Q1 = ((z1), P1) avec P, = {a(x1,y1), c(x1,21),b(y1,21)} et
Qs = ((x2), Py) avec Py = {a(xa,y2),c(x2,92),b(y2,92)} deux PGPs, calculons leur inter-
section ) = Q1n, Q2 = ((z), P). La figure 4.8 explicite les représentations graphiques de );
et (5. Le calcul de ) s’obtient par produit catégorique P = P; x P, et le tuple de projection
s’obtient par conservation et par substitution de variables. La figure 4.9 présente les nceuds
et les arétes (relations) de (). Les cases vides du tableau matérialisent I’absence d’arétes
entre les sommets concernés, et les cases non vides contiennent ’attribut de ’aréte entre
les deux sommets correspondants. Sur la base de ces informations, la figure 4.10 illustre la
représentation graphique de I'intersection () = ()1 N, ()2 ayant pour expression algébrique :

Q= (), P) = ((x),{a(z,y),c(x, 2),b(y, 2) }).
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Q= ((z,y), P») C, (William, Harry), I)

has-parent
has-parent

Diana |<--

FiGure 4.7 - Q = ((x,y), P2) <, (William, Harry),I).

Cette notion d’intersection de PGPs (intersection des descriptions) permet de calculer
les intensions de concepts en GCA, tout comme le calcul d’intensions de concepts en AFC
qui se fait par intersections d’ensembles d’attributs.

Définition 4.10 (Intension). Soit X' = (O, A, ) un contexte graphe. L’intension d’un
object relation R € Ry, noté int(R) est définie par

int(R) =) Qo)

oeR

4.4.3 Concept graphe

En Graph-FCA, les intensions de concepts sont des Projected Graph Patterns (PGP) et les
extensions sont les ensembles de tuples d’objets (object relations). Une intension de concept
est un PGP qui décrit tout ce qu’un ensemble de tuples d’objets a en commun. Dans un cas
particulier, I'intension d’un objet unique est la description de cet objet.

Sur la base des définitions précédentes, la connexion de Galois suivante peut étre défi-
nie. Les correspondances définies des PGPs aux objects relations et inversement des objects
relations vers les PGPs forment la connexion de Galois qui fonde la définition d’un concept
graphe (preuve dans [FERRE et CELLIER, 2020]).

Théoréme 1 (Connexion de Galois). Soit K = (O, A, I') un contexte graphe. Pour chaque
arité k, la paire de correspondances (ext, int) forme une connexion de Galois entre (Ry, <)
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Tuple de projection Tuple de projection

Y

b

Q1 Q2

FIGURE 4.8 — Représentation graphique des PGPs (), (a gauche) et ()5 (a droite).

et (Qg, S,) avec ext(Q) := {0 € OF|Q ¢, (0,1)} et int(R) := N, {(0,])}ser. En d’autres
termes, pour chaque object relation R € Ry, et pour chaque PGP () € Oy,

Rcert(Q) < Q ¢, int(R)

L’expression ext(()) traduit le fait que 'extension d’une description (attribut au sens de
I’AFC) soit égale a '’ensemble des tuples d’objets contenant cette description () dans leur
propre description. L’expression duale int( R) quant a elle, représente le fait que la descrip-
tion d’'un ensemble de tuples d’objets soit égale, a I'intersection des descriptions de chaque
tuple d’objets; ceci pour trouver la description qui est commune (comme ’'intersection des
ensembles d’attributs en AFC). A partir de la connexion de Galois (théoréme 1), les concepts
graphes peuvent étre calculés et organisés en treillis de concepts comme en AFC classique
pour chaque arité k.

Définition 4.11 (Concept graphe). Soit X' = (O, A, I) un contexte graphe. Un concept
graphe de K est une paire (R, ()) constituée d’'un ensemble de tuples d’objets (extension)
et d’'un PGP (intension) tels que R = ext(Q) et Q =, int(R). L’arité d’un concept graphe
est 'arité de son extension et de son intension, qui doivent étre égales.

4.5 Calcul et représentation des k-concepts

Maintenant que la notion de concept graphe a été introduite, détaillons le processus
algorithmique permettant de calculer 'ensemble des k-concepts pour un contexte graphe
donné (section 4.5.1), ainsi que leur représentation graphique (section 4.5.2).
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Arétes de Q1 : Arétes de Q5 :

‘{a($1,y1),0($1,Zl),b(ylazl)} | ‘{0(902,?;2),C($2,y2),b(y2,y2)}

[Noeuds de Q@ = Q1 Ny Q2 = noeuds — Q1 X noeuds — Qz}

= {(z1, 22), (z1,92), (Y1, Z2), (Y1, ¥2), (21, %2), (21, 92)}

Calcul des arétes de Q
(z1,22) | (z1,92) | (y1,22) (y1,92) (21,22) (21,92)
(z1,2) {atn{a,c} {ctn{a,ct
(z1,92)
(y1,%2)
(y1,92) {b} n{b}
(21,22)
(21,92)

FIGURE 4.9 — Calcul des noeuds et arétes de () = Q1 N, Qa.

Tuple de projection Tuple de projection

Renommage des noeuds via
la fonction 1

FIGURE 4.10 - Représentation algébrique et graphique de @) = Q)1 Ny Q.

4.5.1 Algorithme de calcul des k-concepts

L’algorithme 4 synthétise 1’algorithme de calcul des k-concepts décrit en détail dans
[FERRE et CELLIER, 2020]. Il est important de noter que ’appellation k-concept signifie,
concept d’arité k, c’est-a-dire un concept dont 'extension est un ensemble de tuples d’ob-
jets d’arité k. Pour k£ = 1, on parle de concept unaire ou une extension de concept est un
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Algorithm 4 Génération des k-concepts pour k€ 1..7
Input : Un contexte graphe K = (O, A, )

1: PatternBasis < @& // base des motifs (patterns) regroupés par core
2. Concepts < @; Patterns < {I}

3: for P € Patterns do

4: Patterns < Patterns ~ { P}

5: NewPatterns < GenerationO fGraphPatterns(P x I)

6: for P, € NewPatterns (non encore traités modulo isomorphisme) do
7: P, < le core de P,

8: PattenBasis < PatternBasis u { P,QP,}

9: forkel..Z,TeV(P,)" do

10: Concepts < Concepts u ConceptComputation(k,T)

11: end for

12: Patterns < Patternsu{P,}

13: end for

14: end for

ensemble d’objets * (comme en ACF et en RCA). Pour k = 2, on parle de concepts binaires (ou
concept de relations binaires) ou une extension de concept est un ensemble de couples d’ob-
jets. Par généralisation, on parle de concepts n-aires lorsque k = n. Par souci de simplicité,
les illustrations de cet algorithme se limiteront au cadre des concepts unaires. L’algorithme
4 prend en entrée un contexte graphe K = (O, A, I) et calcule I’ensemble des k-concepts
suivant les étapes ci-dessous.

Génération de graph patterns (ligne 5). Le premier ensemble de patterns est calculé en
effectuant le produit catégorique / x /. Chaque composante connexe (F,) issue de ce produit
est considérée comme un pattern indépendant. Une étape d’optimisation est ensuite mise
en ceuvre pour simplifier les patterns P, en cas de nceuds dupliqués. Deux nceuds d’un
pattern sont dits dupliqués (ou équivalents) lorsqu’ils jouent exactement le méme réle dans
ce pattern, c’est-a-dire lorsqu’ils possédent les mémes liaisons/connexions. Par exemple,
dans le graphe G1 a la figure 4.4, les noeuds y1 et y2 illustrent des noeuds dupliqués.

Grouper les patterns par core (lignes 7 et 8). Cette étape consiste, pour chaque pattern
P,, a calculer son pattern core P (ligne 7), puis a le rattacher au pattern partageant le méme
core, s’il existe déja; sinon c’est un nouveau pattern qui est rajouté a la base de patterns
(ligne 8). Ce regroupement permet d’obtenir une représentation visuelle compacte.

Calcul des k-concepts pour chaque pattern P, (ligne 10). Pour chaque valeur donnée
de k£, et pour chaque tuple de projection  du pattern F,, le concept graphe correspondant

4. Ensemble de tuples d’objets de taille 1 plus exactement.
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est obtenu par des opérations de projection et de fermeture : (1) calcul du plus petit retract P,
de P, contenant le tuple de projection 7 ; (2) calcul de 'extension du concept par fermeture
sur son intension, laquelle correspond au PGP Q) = (7, P,.).

Itérer avec de nouveaux patterns. Les nouveaux patterns P, obtenus comme expliqué
ci-dessus deviennent une entrée pour I’étape suivante (ligne 12). L’algorithme s’arréte par
saturation lorsque plus aucun nouveau pattern n’est généré (au sens de I'isomophisme).

De manieére simple, on peut dire que I’algorithme de calcul des k-concepts se résume
a calculer les ensembles de graph patterns sur les données (contexte graphe) par produits
catégoriques de graphes, et de calculer ensuite les instances de ces patterns par projection
de chaque nceud/variable (du graph pattern) sur le contexte graphe.

4.5.2 Représentation des résultats en Graph-FCA

GCA présente ses résultats sous différents modes. Cette section présente les résultats
d’exécution de GCA sur le contexte graphe de la figure 4.1. Toutes les informations pratiques
sur le fonctionnement de l'outil gfca qui implémente GCA sont présentées en détail dans le
manuel [FERRE, 2019].

4.5.2.1 Représentation compacte : graph pattern

Le premier mode de présentation des résultats en GCA est la représentation compacte
sous forme de graph patterns qui met en évidence les structures relationnelles dans les
données en capturant les différentes connexions entre les concepts.

La figure 4.11 illustre ensemble des graph patterns (Q1 - Q4) produit par GCA sur le
contexte graphe de la figure 4.1. Comme on peut le constater, les instances des nceuds ou
variables n’ont pas encore été calculées. Par exemple, le pattern Q1 (en bleu) constitué d’'un
seul nceud (Q)1a), représente les personnes possédant la caractéristique male. La question
« quelles sont les personnes ayant la caractéristique male? » correspond a I'intension du
concept. Son évaluation sur le contexte graphe permet d’identifier toutes les instances qui
satisfont cette condition. L’ensemble de ces instances forme I’extension du concept.

Techniquement, dans un graph pattern, chaque noeud identifie un concept unaire (pre-
mier compartiment), comme illustré a la figure 4.12. Le deuxiéme compartiment contient
les descriptions des objets, tandis que le troisieme compartiment présente 1’extension du
concept, obtenue en projetant chaque nceud sur le contexte graphe. Notons que dans I'iden-
tifiant )2z d’un concept, ¢ indique le numéro du pattern et = est la chaine de caracteres
(généralement une seule lettre) qui identifie le concept par rapport au pattern. Par exemple,
QR1la est le premier concept du premier pattern (constitué d’un seul concept), et Q30 est
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FIGURE 4.11 — Graph patterns (hors projections) du contexte graphe de la figure 4.1.
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FIGURE 4.12 — Graph patterns (complet) du contexte graphe de la figure 4.1.

le deuxiéme concept du troisiéme pattern. En termes d’interprétation, ()1a correspond au
concept des hommes, c’est-a-dire aux individus ayant pour description male, tandis que ()3b
identifie le concept des fils, c’est-a-dire les individus décrits par I’attribut male et possédant
au moins un parent. L’intension d’un concept )iz dans un pattern P, est donnée par le PGP
((x), Pi.) ou Pi,. est le sous-pattern constitué du nceud z et du pattern core de P: il s’agit
du plus petit retract de P contenant le nceud .

Dans la représentation visuelle, chaque graph pattern est illustré avec deux nuances
de couleur (une couleur par pattern) : la nuance vive pour les nceuds du pattern core et la
nuance claire pour les noeuds non-core. Les noeuds en nuance vive (core nodes) représentent
les nceuds spécifiques, tandis que les nceuds en nuance claire généralisent les informations
des noeuds spécifiques. En d’autres termes, le pattern core représente la sous-partie du pat-
tern utile a la description de chaque nceud du pattern, car contenant ’essentiel de 'infor-
mation contenue dans le pattern. A titre d’illustration, dans le pattern Q3 (en vert citron),
le pattern core correspond au sous-graphe P, constitué des nceuds ()3a, 30, et Q3c. Par
exemple le concept de "parent" (()3d) généralise les concepts de "pére" (()3c) et de "mére"
(Q3a). Ainsi, 'intension de (Q3b est le PGP ((b), Py.), car (Q3b est inclus dans le pattern
core, tandis que 'intension du concept ()3d est le PGP ((d), P,;) ou P, est plus petit retract
de Q; qui contient ()3d, c’est-a-dire constitué du pattern core P, et du concept Q)3d.
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4.5.2.2 Représentation hiérarchique

Un ordre de généralisation sur '’ensemble des concepts des graph patterns permet d’ob-
tenir une représentation hiérarchique des concepts qui est semblable a I’ensemble des treillis
interconnectés de RCA. Cette hiérarchie de concepts n’est rien d’autre que la représenta-
tion de la relation de subsomption® sur I’ensemble de concepts. Dans cette représentation,
les relations entre concepts sont remplacées par des labels textuels dans la partie intension-
nelle des concepts (deuxiéme compartiment). On obtient ainsi les concepts ordonnés des
plus spécifiques aux plus généraux du bas vers le haut, ce qui permet d’avoir une vue d’en-
semble de l'ordre de généralisation entre les concepts. La figure 4.13 illustre la hiérarchie
des concepts des patterns de la figure 4.12. La relation de subsomption est présentée par les
fleches en pointillés pointant des sur-concepts vers les sous-concepts.

Pour exemple, la relation has-parent entre les concepts ()3b et Q3¢ du pattern Q3 (fi-
gure 4.12) est représentée par 'attribut [ has-parent _c] dans I'intension du concept Q3b de
la hiérarchie de concepts (figure 4.13), indiquant que les entités de ()3b ont leurs parents
dans (3c. Inversement, cette relation est représentée par lattribut [ has-parent b_] dans
I'intension de (3¢, signifiant que ses entités ont leurs enfants dans ()3b. Ceci est rendu
possible par le fait que GCA gére automatiquement les relations dans leurs deux sens (di-
rect et indirect); il s’agit d’une propriété intrinséque au produit catégorique de graphes.
De maniere générale, comme dans cet exemple, 'outil de GCA n’affiche pas les bottom
concepts (1) qui ont une extension vide ni les top concepts (T) ayant une intension vide.
Notons aussi que cette représentation hiérarchique affiche I'extension et I'intension com-
plete des concepts.

4.5.2.3 Représentation combinée : graph patterns + hiérarchie de concepts

Le troisiéme mode de représentation des concepts graphes est une représentation qui
combine les représentations hiérarchique et graphique (graph patterns). Cette représenta-
tion combinée est la plus riche car met en évidence les connexions entre les concepts (vue
pattern) et ordre de généralisation sur I'’ensemble des concepts. Il convient de noter que
cette représentation combinée est plus difficile a appréhender, bien qu’elle reste plus riche
et plus complete.

La figure 4.14 fournit la représentation combinée des concepts graphes calculés sur le
contexte graphe de la figure 4.1. Comme son nom l'indique, cette représentation combine
celle de la figure 4.12, ou les relations entre les concepts sont indiquées par des arrétes
orientées et étiquetées (en solide), et celle de la figure 4.13 ou la relation de subsomption
est représentée par des fleches en pointillés.

5. Un concept C est subsumé par un concept D lorsque ext(C') < ext(D).
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FIGURE 4.13 — Hiérarchie de concepts de '’ensemble de graph patterns de la figure 4.12.

4.6 Notion de concepts automorphiques

La duplication des concepts dans les résultats de GCA est parfois nécessaire pour repré-
senter correctement les graph patterns qui capturent des symétries ou certaines structures
dans le contexte graphe. Nous appelons ces concepts dupliqués concepts automorphes, qui
sont des nceuds interchangeables dans un pattern. En effet, ils ont des intensions équiva-
lentes et ont la méme extension.

Pour illustrer cette notion de concepts automorphes, utilisons le contexte graphe illustré
a la figure 4.15 qui décrit les relations entre les plats, les céréales et les pays. Ce contexte
graphe est composé de deux sous-graphes : les composantes C1 et C2 (cycle de longueur 3).
L’ensemble des patterns produits par GCA (résultant du produit / x I) sans extension des
concepts est présenté a la figure 4.16. Nous pouvons identifier que le pattern Q1 (en bleu)
capture la composante C2 du contexte graphe, et résulte du sous-produit de C2 par lui-
méme (C2 x C2). Il en est de méme pour le pattern Q3 qui résulte du sous-produit de C1
par lui-méme et qui met en évidence un motif plus complexe et plus enrichit qui révele les
interactions croisées de C1 x C1. Quant au pattern Q2 (en rouge), il capture la structure
de la composante C1 et généralise les composantes C1 et C2, car résulte du sous-produit
C1 x C2 ou (C2 x C1, inversement).
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FIGURE 4.14 — Résultats de GCA en représentation combinée (figure 4.13 + figure 4.12).

En faisant un zoom sur le pattern de nceuds Q2 (figure 4.17), nous remarquons les nceuds
QQ2a et Q2f sont étiquetés (dish), Q2c et (Q2¢ sont étiquetés {rice, cereal} et pour termi-
ner, ()2b et (Q2d ont pour étiquette country. La figure 4.18 met en évidence le pattern de
concepts Q2 dans lequel les extensions (instances des nceuds) sont calculées. Comme nous
le constatons, ce pattern comporte six nceuds, mais seulement trois concepts unaires dis-
tincts (correspondant a trois extensions différentes). Les trois autres nceuds sont en réalité
des duplications, ce qui justifie leur désignation en tant que concepts automorphes. Par
exemple, les concepts (Q2a et Q2 f sont automorphes, car ont la méme extension et une in-
tension équivalente (les plats reliés a leurs principales céréales qui sont reliées a leur pays
de production). Il ne s’agit donc que de différentes représentations d’'un méme concept théo-
rique. Aussi, les concepts (Q2¢ et ()2e sont automorphes au méme titre que le sont ()2b et

(Q2d.
Tout comme le traitement automatique des relations dans les deux sens, le phénomene

de concepts automophes est intrinsequement lié a la définition du produit catégorique de
graphes qui capture les interactions combinées entre les motifs du contexte graphe et par
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conséquent, capture indirectement les motifs du contexte graphe.

Pour une représentation hiérarchique qui respecte la structure de treillis, les concepts
automorphes sont représentés dans la vue hiérarchique par des méta-nceuds (boites en
pointillés) les regroupant. Par exemple, ()2d et ()2b dans la figure 4.19 qui fournit la re-
présentation hiérarchique de 'ensemble des concepts graphes du contexte de la figure 4.15.

Il est important de remarquer la notation parenthésée dans les noms (identifiants) de
certains concepts en l'occurrence : Q2d (e), Q2e (d) et Q2f (d e). Les éléments entre pa-
rentheses indiquent les nceuds utiles a la description du concept concerné. Nous avons
précédemment défini I'intension d’un concept QQix d’un pattern P comme étant le PGP
((x), Pi,.), ou Pi. désigne le plus petit retract de P contenant le nceud x. Avec cette notation
parenthésée, Pi, devient le plus petit retract de P qui contient x et les nceuds indiqués entre
parenthéses. Pour illustration, int(Q2d (e)) = ((d),P2,) ou P2, est constitué de tous les
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nceuds du pattern Q2 (figure 4.18) a I'exception du noeud Q2 f (d e). Par contre, 'intension
de Q2f (d e) impliquera tous les nceuds de Q2.
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4.7 Conclusion

Ce chapitre a présenté GCA qui étend I’Analyse Formelle de Concepts (AFC) aux graphes,
dont la structure permet une représentation flexible des données sous forme d’entités re-
liées par des relations d’arité quelconque. A partir d’un graphe de données appelé contexte
graphe, GCA calcule les graph patterns qui mettent en évidence les différentes connexions
entre les concepts, et par conséquent, différents schémas d’information sur I’ensemble du
contexte graphe. Ces patterns sont calculés par produit catégorique de graphes et leurs
instances sont obtenues par calcul de la projection de leurs nceuds sur le contexte graphe.

Notons que GCA a la capacité de traiter les relations n(> 2)-aires et que son opération
fondamentale a savoir le produit catégorique de graphes lui confére le traitement automa-
tique des relations dans les deux sens (direct et inverse), ainsi que la possibilité de capturer
des symétries et certaines structures du contexte graphe, par le biais des concepts dits au-
tomorphes. En termes de présentation des résultats, GCA offre différentes possibilités en
fonction de I'aspect principal visé par I’analyse : (1) la vue graph patterns pour mettre en
évidence les structures relationnelles dans les données, (2) le vue hiérarchique pour mettre
en évidence I'ordre de généralisation sur les concepts et (3) la vue combinée pour une re-
présentation compléte qui combine la vue graph patterns et la vue hiérarchique.

Le chapitre 5 suivant propose une synthése des principaux travaux ayant exploré les
liens ou rapprochements possibles entre RCA et GCA.
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5.1 Introduction

Comme présenté a la section 2.5, plusieurs extensions de I’Analyse Formelle de Concepts
(AFC) [GANTER et WILLE, 1999] ont été proposées pour le traitement de données com-
plexes [FERRE, 2023 ; FERRE et RipoUx, 2000; GANTER et KuzNETSOV, 2001] et de données
multi-relationnelles [BAzIN et al., 2024 ; BOFFA, 2022 ; KOTTERS, 2013]. Parmi ces exten-
sions, I’Analyse Relationnelle de Concepts (Relational Concept Analysis - RCA) [HUCHARD
et al., 2007; ROUANE-HACENE et al,, 2013] et ’Analyse Conceptuelle des Graphes (Graph-
FCA/GCA) [FERRE, 2015; FERRE et CELLIER, 2020], toutes deux congues pour les données
multi-relationnelles, présentent quelques similitudes notamment : le calcul des concepts
unaires, 'usage du quantificateur existentiel (3), ainsi que le traitement des relations bi-
naires.

En effet, le modéle de données de RCA, constitué d’'une Famille Relationnelle de Contextes
(FRC) représentant un ensemble de tables et leurs associations, peut étre formalisé sous
forme de graphe. Réciproquement, si 'on se limite aux relations binaires, le modele de
GCA qui est un contexte graphe, peut étre aisément représenté par un ensemble de tables
relationnelles. Ainsi, méme du point de vue de la structure des données, RCA et GCA ma-
nipulent des représentations équivalentes lorsqu’on considere exclusivement des relations
binaires.

Quelques travaux dans la littérature ont abordé, de maniére directe ou indirecte, les
relations entre les approches RCA et GCA, en se concentrant sur différents aspects, notam-
ment :

— lalecture et 'interprétation de la famille de treillis produite par RCA, tache reconnue
comme difficile;

— la question de la navigation au sein de la famille de treillis RCA, qui demeure centrale;

— le traitement des relations n-aires par ces deux approches;

— la comparaison de RCA et GCA sur des cas d’application concrets.

Ce chapitre propose une synthese de ces travaux, regroupés selon les catégories de ques-
tions qu’ils soulévent. La section 5.2 présente d’abord les aspects liés a la navigation, a I'ex-
ploration et a la visualisation des résultats produits par RCA. La section 5.3 examine ensuite
les relations entre RCA et GCA sous I’angle de l'interprétation des ensembles de treillis re-

lationnels, tandis que la section 5.4 traite des questions de modélisation et de comparaison
entre les deux approches.

5.2 Naviguer, explorer et visualiser les résultats de RCA

RCA produit une famille de treillis, un pour chaque catégorie d’objets, reliés entre eux
par des attributs relationnels qui traduisent les liens inter-objets initiaux. L’'un des enjeux
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majeurs pour une utilisation efficace de RCA réside ainsi dans 'interprétation de ces résul-
tats. En effet, 'ensemble des treillis générés peut rapidement devenir difficile a interpréter,
notamment lorsque leur taille est importante, car 'intension d’un concept peut dépendre
récursivement de celles d’autres concepts. Pour remédier a cette complexité, plusieurs ap-
proches ont été proposées, allant de I’adaptation du processus d’exploration dans RCA au
développement d’outils spécifiques dédiés a la visualisation et a la navigation dans les ré-
sultats. Cette section présente les principaux travaux menés dans ce cadre.

5.2.1 Adaptation de RCA pour une exploration progressive

Dolques et al. [DoLQUES et al., 2015] ont proposé une adaptation de RCA visant a rendre
I'exploration des données progressive et interactive. Dans cette approche, I'utilisateur choi-
sit, avant chaque itération de RCA, les contextes objets—attributs et objets—objets qu’il sou-
haite intégrer au processus d’analyse, ce qui permet de limiter le nombre de concepts gé-
nérés et de rendre ’exploration plus flexible.

Plusieurs points de variation du processus RCA peuvent étre exploités pour améliorer
son utilisation dans un cadre d’analyse exploratoire. Pour chacun de ces points de variation,
les auteurs proposent un scénario alternatif au processus classique de RCA (tel que décrit
dans l'algorithme 3), dans lequel I'utilisateur est impliqué en choisissant 1’étape suivante
du déroulement. Les scénarios alternatifs proposés sont :

— Initialisation : construction des treillis uniquement pour les contextes objets—attributs
sélectionnés, plutot que pour 'ensemble des contextes. D’autres structures peuvent
étre construites, telles que les AOC-posets [BERRY et al.,, 2012] ou les treillis Iceberg
[STUMME et al., 2002].

— Extension des contextes objets—attributs : sélection d’un sous-ensemble de la famille
de contextes relationnels et différents opérateurs de mise a I’échelle pour chaque
contexte objets-objets sélectionné, au lieu de mettre a I’échelle tous les contextes
objets-attributs a chaque étape. Il convient de noter qu’une relation objets-objets
choisie nécessite un treillis de concepts regroupant les objets de son codomaine qui
doivent avoir été calculés a une étape précédente.

— Construction (mise a jour) des treillis : construction uniquement des treillis correspon-
dant aux contextes objets—attributs sélectionnés. D’autres structures peuvent égale-
ment étre construites a cette étape, telles que des AOC-posets ou des treillis Iceberg.

— Arrét du processus : décision laissée a 'expert lorsque le point fixe n’est pas encore
atteint.

Sur la base de ces variations possibles du processus RCA, les auteurs introduisent deux
notions centrales pour formaliser I'exploration guidée des données : le chemin exploratoire
(exploratory path) et le modele de données par étapes (step data-model). Le modele de don-
nées par étapes correspond a une configuration particuliére du processus a une itération
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donnée. Etant donnée une Famille Relationnelle de Contextes (FRC) (K, R), un step data-
model D M, (défini comme un triplet) décrit ’ensemble des choix de paramétrage effectués
a une étape donnée : (1) la FRC partielle (K, R;) considérée, avec K, c K et R, € R; (2)
les quantificateurs de scaling associés a chaque contexte objets-objets de R ; (3) le choix
de lalgorithme de construction des treillis (treillis complet, AOC-poset, treillis Iceberg avec
un seuil donné, etc.) pour chaque contexte objets-attributs de K.

Un chemin exploratoire est alors défini comme une séquence de modéles de données
par étapes (DM, DMy, ..., DMy,), ot chaque DM,; constitue la configuration utilisée
a I’étape 7 du processus. Ce chemin obéit aux contraintes suivantes :

— le modele de données de la premiére étape ne contient que des contextes objets-
attributs;

— aune étape i € {1,2,...,p}, si un contexte objets-objets R; fait partie du modeéle de
données, le contexte correspondant a son domaine doit également étre inclus dans le
modele de données de cette méme étape.

— aune étape i € {1,2,...,p}, si un contexte objets-objets R; fait partie du modeéle de
données, un treillis de concepts sur son codomaine devrait avoir été construit a une
étape précédente ¢ < 1.

Cette approche d’exploration progressive a été implémentée dans 'outil RCAExplore
[DoLQUEs et al., 2019], qui permet a l'utilisateur de piloter le processus d’analyse en sélec-
tionnant dynamiquement les contextes, quantificateurs et algorithmes a chaque étape. Ces
adaptations du processus RCA classique visent a produire des résultats pertinents plus ra-
pidement, en limitant le nombre de treillis construits (idéalement a ceux présentant un réel
intérét pour 'analyse) tout en réduisant la complexité globale de 'exploration et en offrant
a I'expert la possibilité de guider la découverte selon son intuition et les motifs émergents
au fil de 'analyse.

5.2.2 Réglage du processus d’exploration RCA

Pour aider I’analyste a anticiper, controler et interpréter les résultats produits par RCA,
Ouzerdine et al. [OUZERDINE et al., 2022] proposent trois surcouches destinées a encadrer
le processus d’analyse. En effet, RCA repose sur une grande variété d’opérateurs de mise
a 'échelle, qui conférent au processus d’analyse une forte flexibilité et une expressivité
importante. Cependant, cette richesse peut également complexifier la tache de ’analyste,
en raison de la multiplicité des parametres a configurer.

Pour répondre a cette difficulté, les auteurs integrent ces sur-couches a 'outil RCAEx-
plore [DOLQUESs et al., 2019], qui permet une variété d’utilisations de RCA. Par exemple,
dans RCAExplore, I'utilisateur peut a chaque étape du processus, changer les quantifica-
teurs d’échelle, les contextes formels et les relations a considérer. Les trois sur-couches
proposées sont présentées ci-apres.
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— La premiere sur-couche consiste a exprimer des contraintes sur les quantificateurs
d’échelle, afin de garantir la cohérence de leur choix. En effet, RCAExplore offre la
possibilité de choisir parmi plusieurs quantificateurs pour les relations, mais parfois,
certaines relations sont sémantiquement liées et les quantificateurs qui leur sont as-
sociés doivent donc étre cohérents. Les relations sont alors regroupées par classes

3, . . ) A .
d’équivalence de telle sorte que les relations d’'une méme classe recoivent toutes le
méme quantificateur d’échelle a chaque étape du processus. Le quantificateur d’échelle
d’une classe reste variable d’une étape a l'autre.

— La deuxiéme sur-couche consiste a faciliter I'interprétation des expressions des attri-
buts, car I'une des difficultés rencontrées par 'utilisateur est de comprendre I'impact
du choix des quantificateurs d’échelle sur son analyse. Pour cela, un interpréteur qui
traduit automatiquement les choix réalisés sur I'interface utilisateur en une expres-
sion formatée respectant un langage fixé a été développé.

— La troisiéme sur-couche consiste a fournir des métriques quantitatives sur les treillis
de concepts a construire et sur des régles d’implication relationnelle particulieres
afin d’aider les experts a affiner I'analyse. Les métriques permettent aux experts de
disposer d’un apercu sur les treillis (nombre de concepts, nombre et support des régles
générées), et ainsi de réorienter ’analyse, en étendant ou en restreignant la recherche.

5.2.3 Navigation dans les treillis RCA

RCAviz! est un outil en ligne congu pour faciliter la navigation et I’exploration au sein
d’une famille de treillis issus de RCA [HUCHARD et al.,, 2024; MULLER et al., 2022]. 1l per-
met a l'utilisateur de définir un point de départ de la navigation en sélectionnant un sous-
ensemble d’objets et d’attributs d’intérét, servant de base a la navigation dans les treillis.
L’outil prend en entrée les résultats de RCA (ensemble de treillis interconnectés) encodés
au format JSON, lequel peut étre généré a I’aide de 'outil FCA4J [GUTIERREZ et al., 2022].

Dans la pratique, la conception d’une visualisation interactive repose sur un processus
itératif comprenant généralement trois étapes : (i) la définition des besoins et des structures
de données adaptées, (ii) la conception d’encodages visuels et de mécanismes d’interaction
répondant a ces besoins, et (iii) la validation aupres des utilisateurs, qui permet de réajuster
les objectifs et les fonctionnalités au fil des itérations [MUNZNER, 2009 ; SEDLMAIR et al.,
2012]. Dans le cas de RCAviz, les besoins fonctionnels et visuels ont été définis a I'issue
de plusieurs réunions collaboratives réunissant trois experts en visualisation chargés du
développement de la plateforme, un expert RCA, et un expert en données [HUCHARD et al.,
2024]. La liste des besoins identifiés, formalisés et implémentés dans RCAviz, se décline en
quatre points essentiels principaux.

1. Sélection d’un concept. Une navigation étape par étape nécessite un point de départ.

1. https://rcaviz.lirmm.fr/
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Dans RCAviz, il s’agit d'un concept initial, obtenu apres la sélection des attributs ou
des objets qui intéressent I'utilisateur.

2. Visualisation d’un concept et de ses voisins. L’utilisateur doit pouvoir voir le contenu
d’un concept (avec ses objets et ses attributs) ainsi que ses concepts voisins, c’est-a-
dire les concepts de niveau inférieur (sous-concepts) et niveau supérieur (sur-concepts)
dans le treillis et les concepts voisins dans les autres treillis.

3. Navigation étape par étape. L’utilisateur doit pouvoir explorer les concepts voisins du
concept affiché (qu’ils appartiennent au méme treillis ou a un autre).

4. Historique. L'utilisateur doit pouvoir conserver un historique de sa navigation, c’est-
a-dire la liste des concepts précédemment explorés. Il doit également pouvoir navi-
guer dans cet historique et 'enregistrer afin de pouvoir reprendre son exploration
ultérieurement.

Pour illustrer le fonctionnement de RCAviz, considérons de nouveau 'exemple de la
FRC; (K = {Krerson; Kcars KGarage}» R = {owner, sell, maintain}) présenté dans le tableau 3.1,
a propos des personnes, des voitures et des garages.

La premiere étape du processus consiste a charger le résultat de RCA au format JSON.
L’utilisateur peut ensuite soit conserver le contexte proposé par défaut (ici K¢,), soit en
sélectionner un autre ; dans notre exemple, le contexte choisi est K garage. La figure 5.1 illustre
I’étape de sélection de concepts, dans laquelle les garages A et B sont choisis comme objets
d’intérét, ainsi Iattribut relationnel Imaintain : 42. Le concept 38, mis en évidence en gras,
correspond au concept introduisant I’attribut relationnel sélectionné (avant la sélection de
cet attribut, plusieurs concepts candidats étaient possibles : 5, 34, 38 et 39). Le concept 38
représente ainsi le concept de garages d’extension { A, B}. Une fois ce concept sélectionné,
I'utilisateur valide la sélection via le bouton Confirm pour initier la navigation.

La figure 5.2 présente ensuite [’interface de navigation apres cinq étapes d’exploration,
débutant a partir du concept 38. Cette interface montre I’historique de navigation (pan-
neau supérieur) retracant la séquence des concepts explorés et 'explorateur (panneaux in-
férieurs). L’explorateur est divisé en trois sous-panneaux :

1. Panneau central : affiche le concept actuellement sélectionné (ici le concept 8), posi-
tionné au centre, ainsi que son voisinage, c’est-a-dire ses concepts parents et enfants
dans le treillis du contexte courant (Kgarage)-

2. Panneau gauche : présente le contexte précédemment exploré, permettant de retracer
le parcours de navigation.

3. Panneau droit : s’active lorsque I'utilisateur survole un lien dans le panneau central,

affichant alors un apercu du contexte cible de ce lien; dans cet exemple, le concept 24
de lCCar .

Pour résumer, dans RCAviz, la navigation se compose d’une vue initiale permettant de
sélectionner le concept de départ (le sélecteur de concepts) et de deux vues coordonnées :
Pexplorateur qui permet de naviguer étape par étape et [’historique qui permet de retra-
cer le parcours de navigation. L’historique de navigation met en évidence les dépendances
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- Visual Exploration of
#DigitAg’ - About

RCA-generated Conceptual Structures

What is RCA? Start by uploading a JISON or RCAV file (with the correct RCA-format): Need help?
Learn more about it: Documentation
HAL-LIRMM Choose file | Garage_Car_Person.json Examples
Get the source code: Publication

LIRMM's GitLab Select a context. Once you have selected a context, pick which attributes

and/or objects you want, and then select a concept to start your navigation.

Context:
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Select all AND Select all AND
[ Selectall| a [N a B 5.
Unselect all Selected OR Unselect all Selected. OR
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1/1 /2 [ 11

FIGURE 5.1 — Sélection du concept 38 pour exploration

relationnelles entre les concepts explorés, ce qui s’apparente dans une certaine mesure a
la vue graph pattern dans GCA qui met en évidence les structures relationnelles entre les
concepts.

5.2.4 Navigation basée sur les requétes

Naviguer dans une famille de treillis interconnectés afin de trouver des concepts d’inté-
rét n’est pas une tache triviale, en raison de la taille potentiellement importante des treillis
et de la nécessité pour 'expert de passer d’un treillis a 'autre. Azmeh et al. [AzZMEH et al.,
2011] proposent une approche de navigation dans une famille de treillis de concepts a partir
des requétes relationnelles formulées par un expert.

Une requéte relationnelle est définie comme une composition de plusieurs requétes
simples? [MEssal et al., 2005], enrichies de contraintes relationnelles. Par exemple, sur un
contexte formel décrivant les pays selon leur continent, une requéte simple pourrait étre :

2. Le terme requéte simple renvoie a une requéte formulée a partir d’'un seul contexte formel.
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hib) History =]
-

N Introduced object 8

Jsell = 24,29, 32
3 maintain = 24, 29, 32

FIGURE 5.2 — Interface d’exploration RCAviz : historique (en haut), contexte précédent (a
gauche), contexte actuel (au centre), contexte suivant (a droite).

quels sont les pays d’Europe ?

Par définition, une requéte relationnelle est étroitement liée au modéle de données sous-
jacent et doit respecter la structure de la Famille Relationnelle de Contextes (FRC) sur la-
quelle elle s’appuie. A titre d’illustration, considérons une FRC décrivant plusieurs entités
(les pays, les restaurants, les plats mexicains, les ingrédients et les sauces (salsas)) ainsi
que les relations qui les relient, comme représenté dans le schéma de la figure 5.3 (partie
gauche). Un exemple de requéte relationnelle ¢, formulée sur cette FRC pourrait étre le sui-
vant : « Je recherche un pays ayant pour attribut “fr”, qui posséde un restaurant servant des
plats contenant du poulet, du fromage et des tortillas de mais; je recherche également une
salsa “piquante” qui accompagne ce plat. » [AzMEH et al., 2011]. Le schéma correspondant a
cette requéte reprend celui de la FRC initiale, a I’exception de la relation made-in, qui n’est
pas utilisée dans la formulation de la requéte ¢,, comme illustré dans la partie droite de la
figure 5.3.

De maniére générale, a partir des données multi-relationnelles (FRC) et d’une requéte
qui contient des variables que 'on cherche a instancier, deux objectifs principaux sont pour-
Suivis :

— Trouver 'ensemble des objets satisfaisant la requéte, chaque réponse correspondant

a une instanciation possible des variables présentes dans la requéte ;
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Restaurant serves MexicanDish SO h Salsa
country ——— restaurant
S I
; :
£ g
] salsa — &+ dish
Country e = Ingredient ) Id .
ingredien

FIGURE 5.3 — Modele données (a gauche) et schéma de requéte (a droite) [AzZMEH et al.,
2011].

— Classer les objets associés a chaque variable selon leur degré de satisfaction des contraintes
exprimées dans la requéte, afin de dégager des réponses alternatives.

La requéte relationnelle peut étre modélisée sous la forme d'un graphe orienté acyclique
(Directed Acyclic Graph — DAG), dans lequel certains nceuds sont étiquetés par des variables
et d’autres par des objets. Dans cette représentation, les nceuds correspondent de maniere
approximative aux contextes formels (objets—attributs), et les arétes traduisent les contextes
relationnels (objets—objets). Un ordre total sur les arétes du DAG est défini par un expert
afin de guider la séquence de parcours. Sur cette base, I’algorithme de navigation procéde
en explorant successivement les différents treillis selon cet ordre, ce qui permet d’identifier
les objets satisfaisant la requéte ainsi que d’éventuelles réponses alternatives. La notion de
réponses alternatives est a rapprocher de celle de concepts voisins dans RCAviz.

La formulation des requétes sous forme DAG comportant des variables a instancier pré-
sente une forte analogie avec la notion de Projected Graph Pattern (PGP) utilisée dans GCA.
Dans GCA, les projections effectuées sur les nceuds des graph patterns permettent d’identi-
fier les instances répondant aux contraintes définies par le PGP. Il convient de noter qu’avec
GCA, les PGPs peuvent inclure des cycles, contrairement au cas ou les requétes sont consi-
dérées comme des DAGs. Par comparaison a RCAviz, la navigation fondée sur une requéte
formulée en DAG offre une exploration plus ciblée et un voisinage plus spécifique. En effet,
le chemin de navigation est explicitement déterminé par ’ordre total imposé sur les arétes
du DAG, ce qui guide de maniére contrdlée la navigation.

Parallelement a la question de navigation, une autre approche pour faciliter ’analyse
des résultats de RCA consiste a résumer la famille de treillis en un ensemble ordonné de
graphes. Cela permet d’obtenir une vue d’ensemble des informations contenues dans la fa-
mille de treillis, car les graphes mettent en évidence les différentes connexions entre les
concepts. Nous présentons brievement les deux stratégies principales de la littérature pour
la transformation de 'ensemble des treillis RCA en graphes. Il s’agit d’'une part de I'ex-
traction des graphes orientés acycliques [Nica et al., 2016a; N1ca et al., 2020] - également
appelés Closed Partially Ordered Patterns (CPO-patterns)[CAsAs-GARRIGA, 2005] - et d’autre
part de I'extraction des composantes fortement connexes [FERRE et CELLIER, 2018].
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5.3 Interprétation de 'ensemble des treillis relationnels

5.3.1 Analyse des données séquentielles avec RCA

Nica et al. proposent un processus complet d’exploration de données temporelles ou
séquentielles fondé sur RCA [Nica et al,, 2016a; Nica et al., 2020]. Leur approche consiste
a calculer des CPO-patterns (Closed Partially Ordered patterns) [CAsAs-GARRIGA, 2005] a
partir des résultats produits par RCA. L’objectif principal est de faciliter I'interprétation
des résultats par les experts, en exploitant la structure hiérarchique des treillis pour mettre
en évidence la relation de généralisation entre les motifs extraits. Cette organisation hié-
rarchique des CPO-patterns constitue un support d’analyse visuelle et offre une vue d’en-
semble des régularités découvertes.

Le processus d’exploration proposé se décompose en deux étapes principales :

1. Application de RCA a la Famille Relationnelle de Contextes (FRC) qui encode les don-
nées séquentielles a analyser, afin d’obtenir une famille de treillis de concepts, un par
contexte objets-attributs. Notons que les concepts dans ces treillis contiennent deux
types d’attributs relationnels : (1) les attributs relationnels qualitatifs qui encodent
les relations "simples" entre les objets/éveénements (Par exemple, I'examen médical
détecte un symptome grave.) et (2) les attributs relationnels temporels qui encode la
chronologie entre les événements (Par exemple, le test viral est_précédé_par un exa-
men médical.)

2. Parcours des concepts interconnectés issus des résultats de RCA afin d’extraire di-
rectement un CPO-pattern pour chaque concept d’un treillis principal choisi (main
lattice). Ce treillis principal est le treillis qui contient les objets d’intérét a analyser
(par exemple les tests viraux). Les CPO-patterns obtenus sont automatiquement or-
ganisés grace a 'ordre de généralisation qui existe entre les concepts associés. Cette
hiérarchie de graphes facilite également le processus de réponse aux requétes sur les
entités du treillis principal.

Une approche naive d’extraction de patterns séquentiels a partir des intensions de concepts
prend en compte tous les attributs relationnels qualitatifs et temporels. Néanmoins, cer-
taines propriétés des résultats de RCA peuvent étre utilisées pour améliorer le processus
d’extraction. Ces propriétés permettent de réduire les redondances en ne considérant que
les attributs relationnels qualitatifs pointant sur les concepts les plus spécifiques (Propriété
1) et d’élaguer les attributs relationnels temporels qui peuvent étre déduits par transitivité
(Propriété 2). Notons que ce travail se concentre uniquement sur le scaling existentiel (3)
et ne traite pas d’autres types de scaling.

Propriété 1. Soient () et (5 deux concepts tels que ('} < Cs. Si un concept C' est tel que
3r(C1) € Int(C), alors nous avons également 317 (Cy) € Int(C). Pour cette raison, 37 (C5)
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est considéré comme redondant pour la description de C.

Propriété 2. Soit ¢ un attribut relationnel temporel. Soient C, C et C; trois concepts tels
que {3t(C1),3t(Cy)} € Int(C), et It(Cy) € Int(Cy). Alors 3t(Cy) € Int(C) peut étre
déduit de 3t(C1) € Int(C') a partir de la transitivité de la relation ¢.

L’algorithme de construction de la hiérarchie de CPO-patterns prend en entrée une fa-
mille de treillis en indiquant le treillis principal et sa sortie est un treillis de structures de
CPO-patterns, c’est-a-dire un treillis dans lequel les concepts principaux (du treillis princi-
pal) sont étendus avec les CPO-patterns correspondants. Pour chaque concept principal C),,
dont I'intension comporte au moins un attribut relationnel temporel, une liste de concepts
adjacents est établie selon une approche en largeur, sur la base des Propriétés 1 et 2. Les
concepts adjacents sont ensuite explorés en s’appuyant sur les attributs relationnels tem-
porels de leurs intensions. En répétant ce processus pour chaque relation temporelle dans
I'intension de C), , on obtient un graphe que I'on peut appeler son graphe d’intension tem-
porelle (que I'on note G'¢,), car il rassemble I'ensemble des concepts qui sont reliés a C),
par un chemin de relations temporelles. Pour chaque concept exploré, un sommet est dé-
rivé et étiqueté avec un itemset (extension du concept) qui se caractérise par ses attributs
formels (au sens de I’AFC) et ses attributs relationnels qualitatifs. L’étiquetage des sommets
est décrit en détail dans [Nica et al.,, 2016a] et se base sur ’analyse des attributs relationnels
qualitatifs, en fonction de la généralité ou de la spécificité du concept auquel ils renvoient.

Plus précisément, un CPO-pattern résume un ensemble de motifs séquentiels fermés qui
coexistent dans les mémes séquences analysées [CASAS-GARRIGA, 2005]. En effet, chaque
attribut relationnel temporel d'une intension d’un concept principal permet d’extraire au
moins un pattern séquentiel. Un CPO-pattern peut s’apparenter a un PGP (Projected Graph
Pattern) de GCA dans une certaine mesure; le point commun étant une représentation
compacte de I'intension d’un concept (du treillis principal) sous forme d’un graphe. Plus
précisément, si on suppose que les relations entre les concepts de GCA sont des relations
temporelles, un CPO-pattern d’un concept C, correspondra dans GCA au PGP ((C), P,) ou
P, est le sous-graphe contenant tous les concepts utiles a la description de C'. La différence
majeure se trouve alors dans le fait que la structure du CPO-pattern (graph direct acyclique)
est ici déterminée uniquement par les relations temporelles. De plus, un CPO-pattern est
calculé pour chaque concept, contrairement aux graph patterns GCA, qui capturent les
factorisations entre PGPs, en ce sens qu'un graph pattern regroupe pour chacun de ses
concepts tous les concepts utiles a sa description.

Notons que ce travail d’extraction de CPO-patterns, initialement appliqué a des données
séquentielles classiques, a également été étendu a I'exploration de données séquentielles
hétérogenes, c’est-a-dire constituées d’éléments de nature différente [Nica et al., 2018].
Cette extension met ainsi en évidence la capacité de I’approche a analyser des données
séquentielles quelle que soit leur complexité.
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5.3.2 Hiérarchie des graphes de concepts sur les résultats de RCA

Toujours dans cette optique de faciliter la lecture des résultats de RCA, Ferré et Cellier
montrent comment les hiérarchies des graphes de concepts peuvent faciliter 'interpréta-
tion des treillis RCA [FERRE et CELLIER, 2018]. Les auteurs proposent une représentation
équivalente et non redondante d’une famille de treillis RCA sous la forme d’une hiérarchie
de graphes de concepts. Dans cette hiérarchie, chaque concept appartient a un seul graphe
de concepts et chaque graphe de concepts montre les relations entre plusieurs concepts.

L’idée sous-jacente au calcul des graphes de concepts repose sur I'identification des
structures relationnelles comme des sous-ensembles de concepts interdépendants issus de
différents treillis, puis a les utiliser comme éléments constitutifs de la représentation hié-
rarchique. Ces structures relationnelles sont définies comme les composantes fortement
connexes (Strongly Connected Components - SCC)[EVEN, 2011] du graphe de dépendance
entre les concepts. L’intuition derriére ce graphe de dépendance (Définition 5.1) est que
I'intension d’un concept dépend de ses ancétres dans le treillis (dépendances intra-treillis
induites par la relation de subsomption), mais aussi des concepts cibles de ses attributs
relationnels (dépendances inter-treillis).

Définition 5.1 (Graphe de dépendance). Soit L un ensemble de treillis de RCA. Le graphe
de dépendance de L est le graphe orienté Gy, = (V, E) ou :

— V est 'ensemble de tous les concepts de tous les treillis dans L, a 'exception des
bottom concepts,

— F estl’ensemble des dépendances entre concepts '} — Cs, lorsque C'5 est un concept
parent de C (C < (), ou C] est étiqueté par un attribut relationnel 37(C5), c’est-
a-dire 37 (Cy) € Int(Ch).

A partir de la définition du graphe de dépendance G, un SCC de Gy, est un ensemble
maximal de concepts (provenant éventuellement de plusieurs treillis) ou chaque concept a
un chemin de dépendance vers tous les autres concepts du SCC pour la définition de son in-
tension. Les SCCs sont ensuite utilisés pour définir les graphes de concepts (Définition 5.2).

Définition 5.2 (Graphe de concepts). Un graphe de concepts est le sous-graphe de la fa-
mille de treillis (enrichi des arétes relationnelles) qui est induit par un SCC de Gy.. Il mélange
donc des concepts provenant de plusieurs treillis, ainsi que les arétes de treillis (relation de
subsomption) et des arétes relationnelles (attributs relationnels).

Par ailleurs, on sait que les SCCs d’un graphe forment un graphe orienté acyclique?, ou
SCC1 - SCC?2 si un concept quelconque de SCC1 dépend d’un concept quelconque de
SCC2, c’est-a-dire un concept de SCC'1 est en relation avec un concept de SC'C?2. Ainsi,

3. Un graphe orienté acyclique dans lequel les SCCs sont "contractés” en super-nceuds.
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les graphes de concepts d’'un ensemble de treillis RCA peuvent donc étre organisés en une
hiérarchie de graphes de concepts, comme la hiérarchie de CPO-patterns.

Pour illustration, considérons ’exemple de la famille royale présenté au chapitre 4. Pour
calculer les graphes de concepts RCA dans cet exemple, les auteurs ajoutent la relation
inverse "child" aux données. Le résultat de RCA est un treillis de concepts similaire a la
hiérarchie de concepts présentée a la figure 4.13, a la différence que le top concept y est ex-
plicitement représenté. La figure 5.4 illustre la hiérarchie des graphes de concepts obtenus
pour cet exemple, telle que présentée dans [FERRE et CELLIER, 2018]. Dans cette hiérarchie,
les concepts sont regroupés en cinq graphes de concepts. Pour interpréter ces graphes, nous
nous appuyons sur les résultats de GCA obtenus pour cet exemple, a savoir 'ensemble des
graph patterns de la figure 4.12. En effet, les graph patterns de GCA sont équivalents aux
graphes de concepts RCA obtenus pour cet exemple, a quelques différences de représenta-
tion prés [FERRE et CELLIER, 2018].

— Le graphe de concepts G5 n’est pas détaillé pour des raisons de lisibilité ; il correspond
au graph pattern Q4 (figure 4.12), constitué de dix concepts. Il contient des concepts
les plus spécifiques, ce qui explique sa position au bas de la hiérarchie.

— Le graphe G4 correspond au graph pattern Q3 (figure 4.12), ou, par exemple, le nceud
p10 représente le concept des parents et correspond au concept Q)3d.

— Les graphes G3 et G2 représentent respectivement les concepts des personnes de
caractéristique female (concept (2a) et male (concept Q1a)

— Enfin, G1 représente le concept englobant toutes les personnes, c’est-a-dire le top
concept.

Les auteurs soulignent toutefois que ’équivalence observée entre RCA et GCA dans cet
exemple ne saurait étre généralisée. En effet, cette correspondance ne se vérifie pas dans
d’autres cas étudiés, notamment celui portant sur les relations entre patients et traitements
présenté dans [ROUANE-HACENE et al., 2013].

En comparaison au travail précédent sur 'extraction des CPO-patterns [Nica et al.,
2016a; N1ca et al., 2020], ce travail d’extraction des SCCs ne considere également que la
mise a I’échelle existentielle (3), bien que 'approche reste applicable a d’autres opérateurs
de mise a I’échelle. En complément de I'objectif d’interprétation visé par ces deux travaux,
voici quelques points de divergence :

— Les CPO-patterns sont définis pour les données séquentielles et sont uniquement gé-
nérés pour les concepts d’un treillis choisi (main lattice). La génération des CPO-
patterns pour chaque concept du treillis choisi peut entrainer 'omission de certaines
factorisations potentielles entre les patterns, et ainsi faire perdre des informations
intéressantes.

— Le calcul des graphes de concepts par extraction des composantes fortement connexes
ne fait aucune hypotheése sur la famille de contextes, et peut en conséquence traiter
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FIGURE 5.4 — Hiérarchie des graphes de concepts pour 'exemple de la famille royale : les
fleches indiquent les relations entre concepts, les lignes pointillées représentent la relation
de subsomption entre les concepts [FERRE et CELLIER, 2018].

toutes sortes de structures relationnelles et pas seulement des séquences. Il n’est pas
nécessaire de choisir un treillis comme point de départ comme avec les CPO-patterns.

En comparaison a GCA, un graphe de concepts est similaire a un graph pattern GCA a
la différence que la relation de subsomption entre les concepts n’est pas représentée dans
les patterns GCA. En effet, un graphe de concepts met en évidence les différentes rela-
tions entre les concepts et chaque concept a un chemin de dépendance vers tous les autres
concepts du SCC. Dans un graph pattern GCA, tous les concepts interdépendants, du point
de vue de la définition des intensions sont membre d’un seul et méme pattern. En outre,
cette représentation hiérarchique des graphes de concepts se rapproche de la représenta-
tion combinée des résultats dans GCA qui combine justement les représentations graphique
(vue graph patterns) et hiérarchique. Tandis qu’en GCA, la représentation combinée peut
complexifier la lecture, la hiérarchie des graphes de concepts privilégie un ordre de géné-
ralisation porté sur les graphes, tout en maintenant la subsomption entre concepts, ce qui
facilite la visualisation.

Comme nous pouvons le constater, I’ensemble de ces travaux ne comparent pas direc-
tement RCA et GCA, ni en termes de fonctionnement, ni en termes de résultats. Toutefois,
le point commun entre ces travaux réside dans la transformation des résultats de RCA sous
forme de graphes, ainsi que dans la navigation a travers les treillis, qui impliquent de tra-
verser le graphe de dépendance entre les concepts. Cela évoque immédiatement GCA, qui
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calcule les graph patterns, et montre qu’il est possible de passer de la structure de pattern
a une structure hiérarchique en application un ordre de généralisation sur ’ensemble des
concepts des graph patterns. A cet stade, des similitudes potentielles entre RCA et GCA
peuvent étre envisagées, d’autant plus que le passage des treillis RCA aux graphes rejoint
I'objectif des graph patterns GCA : faciliter 'interprétation tout en capturant les régularités
présentes dans les données; ce qui contribue également au traitement des requétes.

5.4 Modélisation et comparaison

Les travaux présentés jusqu’ici font un rapprochement indirect entre RCA et GCA grace
a la transformation des résultats de RCA sous forme de graphes. Keip et al. ont effectué
une comparaison pratique (sur un jeu de données réel) de TCA (Triadic Concept Analysis)
[LEHMANN et WILLE, 1995], RCA et GCA pour la modélisation des valeurs indéterminées
dans les données ternaires [KEerIp et al., 2020]. Dans ce travail, les relations ternaires sont
directement traitées par les approches TCA et GCA, tandis que RCA nécessite d’effectuer
des transformations en amont, pour encoder ces relations ternaires au format binaire.

En réalité, la représentation des données relationnelles est une question récurrente dans
de nombreux domaines, de la fouille de données [DZEROsKI, 2003], des bases de données
[JoNEs et SONG, 2000; SONG et JoNES, 1995] aux Logiques de Descriptions (LD) [BAADER
et al., 2003]. Par exemple [Hopo et al., 2023] combine FCA et LD pour calculer les clusters
sur les graphes de connaissances, de maniere similaire 8 RCA. Pour ce qui concerne RCA,
Keip et al. ont utilisé RCA pour le traitement des relations ternaires en appliquant certaines
transformations et encodages aux données sources [KE1p et al., 2019].

5.4.1 Modélisation des données ternaires en RCA

Au-dela des relations binaires, les relations d’arité élevée doivent étre transformées pour
étre traitées par RCA. L’effet de la formulation des données dans RCA pour un modéle
de données contenant plusieurs relations binaires et une relation ternaire a été étudié par
[KErP et al., 2019]. Dans ce travail, deux modeles d’encodage a savoir la réification et la
décomposition sont utilisés pour transformer la relation ternaire en relations binaires.

— Réification. La réification d’une relation ternaire r a consisté a représenter 7 en plu-
sieurs relations binaires. Cette représentation passe par I’ajout d’'un contexte objets-
attributs intermédiaire dont les entités sont les triplets d’objets, instances de r et qui
sont reliés aux entités de départ par le biais des contextes objets-objets (relations
binaires). Formellement, une relation ternaire r( A, B, C') est transformée en 3 rela-
tions binaires : r1(ABC, A), r2(ABC, B) et r3(ABC,C) ou ABC est le contexte

objets-attributs contenant les instances de r c’est-a-dire des triplets d’objets.

— Décomposition. Dans ce travail, la décomposition de la relation ternaire r a consisté
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a projeter r en trois relations binaires, une pour chaque paire d’ensembles d’objets
liés. La décomposition de la relation (A, B, C') s’encode en trois relations binaires :
r1(A, B), r2(B,C), and r3(A,C).

Les auteurs ont effectué une évaluation a la fois qualitative et quantitative de ces deux
encodages sur un exemple concret. L’évaluation quantitative a consisté a examiner la taille
des structures conceptuelles (ensemble de treillis interconnectés) produites. D un point de
vue global, 'encodage par réification a produit moins de concepts (et d’attributs relation-
nels) que la méthode par décomposition. Pour ce qui est de I’évaluation qualitative, elle a
consisté en 1'évaluation de leurs capacités respectives a répondre a un scénario de rem-
placement concernant la protection des plantes contre les ravageurs. En résumé, ces deux
modeles d’encodage ont permis de satisfaire la requéte présentée par 'expert du domaine.
Cependant, un ensemble de trois relations binaires (encodage par décomposition) n’est pas
équivalent a une relation ternaire. Ainsi, 'encodage par décomposition sera donc parfois
moins précis, car il ne dispose pas de relation ternaire.

5.4.2 Comparaison Pratique de TCA, RCA et GCA

Comme évoqué précédemment, dans le travail de [KE1p et al., 2020] qui propose une
comparaison pratique de TCA, RCA et GCA sur un mode¢le de données réel constitué d’'une
relation seule ternaire, la relation ternaire a directement été traitée par TCA et GCA. En
effet, GCA étend FCA aux relations n-aires et une relation ternaire peut étre intégrée dans
un schéma TCA, c’est-a-dire " un objet o posséde l'attribut a sous la condition b ". Pour
ce qui concerne RCA, des modélisations doivent étre faites en amont pour transformer les
relations ternaires en relations binaires compatibles au format RCA [KE1p et al., 2019].

Pour cette application, trois différents encodages ont été utilisés pour pour transformer
la relation ternaire.

— Le premier encodage a consisté en la réification d’une relation ternaire (A, B,C)
en un ensemble de trois relations r1(ABC, A), r2(ABC, B) et r3(ABC, C') comme
décrit précédemment.

— Le deuxiéme encodage a consisté en une décomposition d’une relation (A, B, C') en
une chaine de deux relations binaires r1( A, B) and 72(B, C').

— Le troisieme encodage (partitionnement) a consisté a partitionner une relation ter-
naire 7( A, B, C') suivant les entités de la catégorie B en un ensemble {b;(A,C)}y,en
de relations binaires, de sorte que chaque instance b; de B devient une relation. Avec
cet encodage, le treillis de concepts de la catégorie B est perdu.

Les auteurs comparent les trois approches (TCA, RCA et GCA) sur leurs concepts, leur
flexibilité, leur lisibilité et leur facilité d’utilisation. En ce qui concerne la lisibilité et la fa-
cilité d’utilisation, TCA et GCA présentent tous deux leurs résultats sous la forme d’un
ensemble unique. TCA énumeére les concepts triadiques, tandis que GCA relie ses concepts
dans des graph patterns. RCA relie également les concepts, mais il est nécessaire de passer

90



5.5. CONCLUSION

d’un treillis a I’autre pour accéder a la classification globale. Un encodage de la relation ter-
naire en relations binaires a été utilisé avec GCA, pour illustrer la facilité d’interprétation
des résultats de GCA, sur les relations binaires par rapport a ses résultats sur les relations
ternaires. Pour ce qui est de la visibilité des hiérarchies de concepts et des structures rela-
tionnelles, les treillis de concepts triadiques sont difficiles a visualiser et a comprendre dans
leur intégralité, méme avec le paradigme de projection utilisé par 'outil FCA Tools Bundle
[Kis et al., 2016]. RCA représente clairement les hiérarchies de concepts, une pour chaque
type d’objet, mais pas les patterns/structures relationnels comme GCA. GCA dispose de
trois modes de sortie : affichage des hiérarchies uniquement, comme RCA, affichage des
modeles relationnels uniquement, ou affichage des deux combinés. Pour cette application,
TCA est 'approche qui produit le moins de concepts, suivie de RCA avec partitionnement,
puis RCA avec décomposition en chaine, GCA et enfin RCA avec réification, qui est celle
produisant le plus grand nombre de concepts.

Pour terminer, notons que la transformation des données contenant des relations ter-
naires en une famille relationnelle de contextes (binaires) n’est pas une tache triviale et
peut souvent conduire a des pertes d’informations suivant le type d’encodage utilisé. C’est
dans cette dynamique qu’une piste d’extension de RCA [ROUANE-HACENE et al., 2013] pour
prendre en compte les relations ternaires a été explorée dans [LEUTWYLER et al., 2022]. Les
auteurs définissent une famille relationnelle de contextes ternaires comme étant une paire
(K, R) ou K est un ensemble de contextes formels et R est un ensemble de relations bi-
naires ou ternaires entre des objets, dont au moins une est ternaire entre les concepts. Un
attribut relationnel ternaire devient un attribut relationnel qui pointe sur deux concepts
cibles de sorte a former une aréte ternaire. Cette extension de RCA aux relations ternaires
reste limitée au quantificateur existentiel (3) et mérite d’étre évaluée dans différents scéna-
rios afin d’analyser sa scalabilité, sa complexité et la lisibilité des résultats dans un contexte
d’application pratique.

5.5 Conclusion

Dans ce chapitre, nous avons présenté une synthése des principaux travaux de la litté-
rature traitant, de maniére directe ou indirecte, des liens existant entre les deux approches,
RCA et GCA.

Comme nous avons pu le constater, les travaux sur ce sujet restent relativement peu
nombreux. Certains établissent un rapprochement indirect entre RCA et GCA en trans-
formant les résultats de RCA sous forme de graphes afin de faciliter leur interprétation.
L’étude de [KE1p et al., 2020] présente une comparaison pratique entre RCA et GCA sur
un jeu de données réel, limitée a 'analyse des résultats en termes de flexibilité et de lisibi-
lité. Ces travaux suggerent I’existence de similitudes potentielles entre les deux approches.
Toutefois, les comparaisons réalisées jusqu’a présent entre RCA et GCA se sont principa-
lement concentrées sur des aspects spécifiques, tels que I'interprétation des résultats, et
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aucune étude globale n’a encore analysé de maniére approfondie leurs caractéristiques ni
les résultats qu’elles produisent.

Dans la deuxieéme partie de cette these, nous présentons nos contributions, qui portent
sur une comparaison a la fois empirique et théorique des deux approches RCA et GCA. Le
chapitre 6 introduit la méthodologique adoptée pour conduire cette étude comparative.
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CHAPITRE e

APPROCHE METHODOLOGIQUE

Comme présenté dans les chapitres précédents, ’Analyse Relationnelle de Concepts
(Relational Concept Analysis - RCA) [ROUANE-HACENE et al., 2013] et ’analyse conceptuelle
des graphes (Graph-FCA/GCA) [FERRE et CELLIER, 2020] sont deux extensions de I’Analyse
Formelle de Concepts (AFC) [GANTER et WILLE, 1999] pour le traitement des données multi-
relationnelles. Bien que leurs objectifs et leurs résultats semblent similaires, la modélisation
des données et la définition des concepts sont différentes dans les deux approches.

Les rapprochements réalisés jusqu’a présent entre RCA et GCA se sont focalisés sur
certains aspects spécifiques, tels que 'interprétation et la visualisation des résultats, comme
exposé au chapitre 5. Il apparait donc pertinent d’élargir la comparaison entre RCA et GCA,
de maniére a fournir a ’analyste des éléments d’aide au choix de I’approche la plus adaptée,
selon la nature des données ou des résultats attendus. En termes de résultats, le concept
constitue 'unité de connaissance commune aux deux approches. Ainsi, la question centrale
de leur comparaison consiste a déterminer comment l’ensemble des concepts RCA se situe
par rapport a l'ensemble de concepts GCA, et réciproquement. Répondre a une telle question
suppose naturellement d’examiner le positionnement d’un concept RCA par rapport a un
concept GCA, et inversement.

Un concept est constitué de deux dimensions : I’extension qui représente les objets
(instances) du concept, et I'intension qui décrit 'ensemble des caractéristiques que par-
tagent ces objets. RCA définit les extensions de concepts comme des ensembles d’objets et
les intensions de concepts par des ensembles d’attributs formels et relationnels. GCA définit
les extensions de concepts comme des ensembles de tuples d’objets et les intensions comme
des Projected Graph Patterns (PGP). Pour comparer un concept RCA a un concept GCA, il
convient dans un premier temps d’examiner leurs extensions, puis, dans un second temps,
d’analyser leurs intensions, car ces deux dimensions sont définies différemment dans les
deux approches.

Bien que RCA et GCA visent toutes deux a calculer des concepts sur des données multi-
relationnelles tout en capturant les relations entre les objets, elles difféerent sur de nombreux
aspects. Nous avons donc structuré notre étude comparative selon deux axes principaux :
la comparaison dans leur cadre commun et celle sur leurs différences, comme 'illustre la fi-
gure 6.1. Le premier axe, relatif a leur paramétrage commun, se décline en deux dimensions :
la dimension extensionnelle et la dimension intensionnelle.

Nous débutons au chapitre 7 avec la comparaison extensionnelle des deux approches et
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RCA

Extents: sets of objects J

Intents: formal and
relational attributes

N-ary relations, cycles, 1. Extensional comparison
N-ary concepts GCA 2. Intensional comparison
Extents : sets of object T
tuples
Intents: Projected Graph
Patterns

FIGURE 6.1 — Axes de comparaison examinés entre RCA et GCA.

montrons que I'’ensemble des extensions de concepts RCA est inclus dans ’ensemble des
extensions de concepts GCA. Autrement dit, ce chapitre met en évidence que, sur un méme
jeu de données, a chaque concept RCA correspond un concept GCA possédant la méme ex-
tension. En effet, les extensions des concepts RCA et GCA se définissent toutes deux comme
des ensembles d’objets dans leur cadre commun. Apres cette comparaison extensionnelle
de RCA et GCA, nous poursuivons au chapitre 8 avec I’analyse intensionnelle, qui vise a
caractériser la nature des relations qui existent entre I'intension d’un concept RCA et celle
d’un concept GCA.

RCA et GCA définissent les intensions de concepts de maniére distincte. Par conséquent,
celles-ci ne sont pas directement comparables et nécessitent I’adoption d’une représentation
commune. Nous avons retenu les graphes comme représentation partagée, car ils consti-
tuent une structure naturelle pour modéliser des données multi-relationnelles et parce que
des travaux antérieurs vont dans ce sens pour RCA [FERRE et CELLIER, 2018; NicA et al.,
2016a]. La premiére étape a ainsi consisté a transformer la famille de treillis de concepts
RCA en un ensemble de patterns relationnels comparables aux graph patterns GCA. Nous
avons ensuite démontré que ’ensemble des intensions de concepts RCA est inclus dans ce-
lui des intensions de concepts GCA, en établissant que I’ensemble des patterns relationnels
de RCA est inclus dans I'ensemble des graph patterns GCA. Combiné au résultat de la com-
paraison extensionnelle, ce résultat de la comparaison intensionnelle permet de conclure
que 'ensemble des concepts RCA est inclus dans 'ensemble des concepts GCA.

Le deuxiéme axe de comparaison, centré sur les différences entre RCA et GCA, est ex-
ploré au chapitre 9. L’objectif est ici de comparer les deux approches sous un angle pra-
tique, afin d’examiner dans quelle mesure leurs différences peuvent étre complémentaires
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et bénéfiques pour 'analyse. Ce chapitre aborde en particulier les questions relatives a la
modélisation des relations n-aires et au traitement des cycles dans les deux approches.

En somme, la premiére contribution (chapitre 7) est consacrée a la comparaison exten-
sionnelle de RCA et GCA dans leur cadre commun. La deuxieme contribution (chapitre 8)
porte sur la comparaison intensionnelle de ces deux approches, également dans leur
cadre commun. Enfin, la troisiéme contribution (chapitre 9) propose une analyse compara-
tive de RCA et GCA du point de vue de leurs différences.
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Ce chapitre présente notre premiere contribution sur la comparaison extensionnelle de
RCA et GCA, tant de maniére empirique que théorique. On montre que les extensions de
concepts RCA sont incluses dans les extensions de concepts GCA. La section 7.1 dresse un
apercu général des différences entre RCA et GCA, et la section 7.2 aborde la modélisation
des relations dans ces deux approches. La comparaison des extensions des concepts RCA et
GCA est ensuite menée en section 7.3, a partir d’expérimentations sur des exemples. Enfin,
la section 7.4 propose une validation théorique des observations faites sur les exemples, par
le biais de démonstrations formelles.
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7.1 Apercu des différences entre de RCA et GCA

D’un point de vue général, RCA et GCA se distinguent a plusieurs niveaux, allant des
principes algorithmiques, de la présentation des résultats aux types de données et relations
pris en compte par chaque approche. Cette section fournit une bréve description de I'en-
semble des différences entre RCA et GCA.

Quantificateurs. GCA utilise (implicitement) uniquement le quantificateur existentiel 3,
tandis que RCA utilise une diversité de quantificateurs (3, 3V, 3V,,%, etc.) [BRAUD et al,,
2018], qui conférent au processus d’analyse une forte flexibilité en termes de précision
de 'information qui peut étre extraite. Pour illustration, sur un jeu de données a propos
des repas et leurs ingrédients (avec une relation "contient" entre les repas et les ingré-
dients), on pourrait étre intéressé par la recherche des repas dont au moins 50% des in-
grédients sont de méme type ou ont les mémes caractéristiques. En d’autres termes, on
cherche des repas ayant au moins 50% de leurs ingrédients dans un méme concept des in-
grédients. Par exemple, les repas dont 50% des ingrédients sont des légumes (légume ici est
un attribut des ingrédients). Il suffira pour filtrer, d’appliquer un scaling relationnel avec
l'opérateur universal-percent 3V.505 sur la relation contient. Ainsi, un attribut relation-
nel 3V 509 contient(C _ingredient) sera ajouté a un repas si et et seulement C'_ingredient
contient au moins 50% de ses ingrédients. L’impact des quantificateurs a été étudié en détail
dans [BrRAUD et al., 2018].

Présentation des résultats. Le résultat de RCA consiste en une famille de treillis inter-
connectés par des attributs relationnels. Une difficulté réside dans la navigation entre les
treillis lorsque ’ensemble de données est volumineux, c’est pourquoi des outils ont été pro-
posés pour résumer ou simplifier 'interprétation des résultats de RCA [FERRE et CELLIER,
2018 ; HUCHARD et al., 2024 ; N1ca et al,, 2016a]. Du c6té de GCA, loutil gfca [FERRE, 2019]
dispose de trois modes de présentation des résultats : des hiérarchies de concepts comme
la famille de treillis RCA, des structures relationnelles entre les concepts (graph patterns),
et enfin une représentation combinée des hiérarchies de concepts et des graph patterns.

Processus algorithmique. D’un point de vue algorithmique, les concepts RCA sont calcu-
lés par application de ’AFC sur les contextes objets-attributs au fil des itérations de scaling
jusqu’au point fixe, tandis que GCA opere par intersection de graphes jusqu’a saturation.
Cette intersection de graphes, qui correspond au produit catégorique de graphes, permet a
GCA de prendre automatiquement en compte les relations inverses. Les approches RCA et
GCA disposent chacune d’un ensemble d’options permettant de controéler les résultats. Par
exemple, RCA peut recourir a différents algorithmes, tels que Ares [Dicky et al., 1994] et
Hermes [BERRY et al., 2012] pour le calcul des sous-hiérarchies de Galois [GoDIN et MiLI,
1993], ou encore iceberg [STUMME et al., 2002], destiné au calcul du sup-demi-treillis. Par
défaut, tous les concepts sont calculés. En ce qui concerne GCA, il existe plusieurs options
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telles que : -only-cores pour limiter la génération aux pattern cores, -minsupp N pour limiter
la sortie aux concepts unaires dont la taille de I'extension est supérieure ou égale a V.

Traitement des relations n-aires. RCA se limite au traitement des relations binaires,
tandis que GCA est concu pour traiter directement les relations d’arité quelconque. Par
conséquent, le traitement des données contenant les relations d’arité supérieure a 2 néces-
site des modélisations supplémentaires, pour les mettre au format RCA [KEe1p et al., 2020,
2019]. Du c6té de GCA, la question peut se poser sur la lecture et I'interprétation des graph
patterns lorsque les relations ont une grande arité.

Concepts n-aires. RCA se limite au calcul de concepts unaires, contrairement a GCA, qui
calcule également des concepts n(> 1)-aires (appelés concepts de relations n-aires). Les
extensions des concepts n-aires sont des ensembles de n-uplets d’objets et les intensions
sont des Projected Graph Patterns -PGP dont les tuples de projection sont de longueur n
(projection sur n éléments). De la méme maniere que les concepts unaires représentent des
groupes d’éléments ayant des caractéristiques communes, les concepts n-aires représentent
des groupes de tuples d’objets ayant des caractéristiques communes, et permettent ainsi
d’exprimer des structures plus riches. Par exemple, dans un contexte graphe présentant les
membres d’une famille avec une relation "parent”, le concept binaire de "frére ou sceur” peut
étre découvert et décrit par un PGP comme "une paire de personnes ayant le méme pere
(parent masculin) et la méme mére (parent féminin)".

Définition des concepts. RCA et GCA définissent les concepts de deux manieres diffé-
rentes. RCA définit ses extensions de concepts par des ensembles d’objets et ses intensions
par des ensembles d’attributs (formels et relationnels). Du c6té de GCA, les extensions de
concepts sont définies par des ensembles de tuples d’objets, et les intensions de concepts
sont définies par des PGPs.

Cette liste de différences entre RCA et GCA révele que ces deux approches ont quelques
similitudes notamment : I'utilisation du quantificateur 3, le traitement des relations unaires
et binaires, ainsi que le calcul des concepts unaires. Il est trés important de noter que RCA
et GCA ne modélisent pas les relations de la méme facon. Bien que le sens des relations
soit indiqué dans le contexte graphe (graphe orienté) le processus de GCA traite automa-
tiquement les relations dans les deux sens (direct et inverse), tandis que RCA prend en
compte les relations telles qu’elles sont explicitement définies dans la Famille Relationnelle
de Contextes (FRC), c’est-a-dire des domaines vers les codomaines.

La section suivante illustre, a travers un exemple, la différence de modélisation des re-
lations par les deux approches RCA et GCA.
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7.2 Modélisation des relations dans RCA et GCA

Bien que les relations soient orientées dans les contextes graphes GCA les consideére
dans les deux sens. En revanche, dans RCA, pour qu’une relation soit prise en compte a la
fois dans le sens direct et dans le sens inverse, il est nécessaire de 'indiquer explicitement
dans la FRC en ajoutant la relation directe ainsi que son inverse. Pour élucider ce point, nous
reprenons I'exemple FRCy (K = {Kperson, Kcars KGarage }» R = { owner, sell, maintain}) présenté
dans le tableau 3.1 (chapitre 3), a propos des personnes, des voitures et des garages. La
démarche consiste a présenter, puis a confronter les résultats obtenus avec RCA et GCA
sur cet exemple.

La figure 7.1 illustre le contexte graphe CG;! correspondant a FRC;. Pour une visua-
lisation qui met en avant la définition d’un contexte graphe en tant qu’une relation d’in-
cidence entre des tuples d’objets et des attributs, le tableau 7.1 met en évidence la repré-
sentation tabulaire? des relations binaires de CG;. FRC; (tableau 3.1) et CG; (figure 7.1)
sont deux structures qui représentent les mémes informations : les garages qui vendent
et/ou entretiennent les voitures appartenant a des personnes. La définition des relations
sell(Ogarage, Ocar), maintain(Ogarage; Ocar) €t owner(Ocar, Operson) pour RCA précise I'orien-
tation des relations et signifie que les concepts de Kggrqqe €t de K¢, contiendront des at-
tributs relationnels dans leurs intensions en plus des attributs unaires. En revanche, les
concepts de Kp.on n’auront que des attributs unaires dans leurs intensions, car les objets
Operson de Kperson ne constituent le domaine (la source) d’aucun contexte relationnel.

TABLEAU 7.1 — Représentation tabulaire des relations binaires de CG;.

3
d\“@ A\? <
(Garage, Car) | © ¥ o
(A, carl) x x (Car, Person) | ©
(A, car6) x % (carl, Bob) x
(D, car2) X (car6, Bob) X
(D, car5) X (car2, Julie) X
(C, car2) % (car5, Julie) x
(C, car5) % (car3, Charlie) X
(B, car3) < % (car4, Alice) X
(B, car4) X %

En termes de résultats, référons-nous au tableau 3.10 qui récapitule le nombre de concepts
par contexte objets-attributs au fil des itérations de RCA sur FRC;. Il en ressort que le ré-

1. CG est mis pour Contexte Graphe
2. Ces deux tableaux, fusionnés en power Contexte family [WILLE, 1997], correspondraient a K 2. 1e

contexte des relations binaires.
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A D C B
manufacturer service manufacturer || chain
sell sell . . . . sell sell
ﬂnaintain\maintain imamtal?l\mmynsell sell zmaintain maintain
carl car6 car2 carb car3 card
Renault || Renault Peugeot || Peugeot Tesla Tesla
family sedan family sport sport sedan
\&)wnerlowner \owneyowner owner owner
Bob Julie Charlie Alice
male female male female
countryside countryside city city
married married single single

FIGURE 7.1 — Contexte graphe CG; correspondant a FRC;.

sultat RCA sur FRC;, que nous notons par RCA(FRC;) compte un total de 40 concepts : 10
concepts pour Kpeson, 17 concepts pour K¢,y et 13 concepts pour Kggrge. Dans cette étude
comparative, similairement a 'outil de GCA qui n’affiche pas les bottom (L) concepts lors-
qu’elles ont une extension vide, nous ne les considérons pas dans le nombre de concepts
(pour RCA et GCA), ce qui ramene a 37 concepts pour RCA(FRC;). Le résultat d’exécution
de GCA sur CGy, noté GCA(CG;), compte 7 patterns constitués d’un total de 45° concepts
unaires. Cet ensemble de patterns est présenté a la figure 7.2.

Comme nous ’avons déja souligné, GCA traite systématiquement les relations a la fois
dans leur sens direct et dans leur sens inverse. Pour illustrer, considérons la hiérarchie des
concepts sur les personnes, présentée a la figure 7.3. On remarque que les concepts des per-
sonnes contiennent des liens vers les concepts des voitures. A titre d’exemple, I'intension du
concept (Q3d (figure 7.3) contient les arétes [owner a _] et [owner b _]. L’aréte [owner a _]
représente la relation owner entre les noeuds a (Q3a) et d (3d) ; et aréte [owner b _] repré-
sente la relation owner entre les noeuds b (3D) et d du pattern Q3 (figure 7.2). Cela signifie
que les instances du concept (Q3d sont en réalité caractérisées par la relation owner~! avec
les noeuds a et b du pattern Q3. En effet, les instances du concept ()3d sont propriétaires
des voitures des concepts ()3a et ()3b. Plus précisément, Bob est propriétaire des voitures
car6 (Q3a) et carl (Q3b). Notons que ces arétes doivent étre lues comme faisant partie
d’un méme pattern. Par exemple, les arétes [owner a _] dans (Q3d et [owner a _] dans QQ5¢
sont distinctes. L’une renvoie a (Q3a et 'autre renvoie a (Q5a. Leur généralisation dans leur

3. Les top (T) concepts qui ne sont pas affichés par Poutil de GCA (celui des Garages dans ce cas) sont
rajoutés dans le nombre de concepts
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Q3¢

manufacturer

sell sell sell

o o I maintain
maintain | maintain \ maintain

maintain | sell maintain

Q3e Q3b Q3a

Renault family berline

Renault Renault
car6 car5

carl carl car6 car2

Peugeot

owner [ owner owner [ owner owner

Q3d

countryside
married
male

Bob

sell
maintain

Q6g (h)

sell
maintain

sell
maintain

sell
maintain

maintain maintain

maintain | maintain | maintain

Q5f(g)

Tesla

car6
car4
car3
carl

lowner lowner

card
car3

owner owner owner | owner

Q5g () Q6h (g) Q7i(g)
city

S Charlie Tulie

Charlie Bob Charlie
Alice Alice Alice

FIGURE 7.2 — Ensemble des graph patterns du contexte graphe CG;.

sur-concept ()6a apparait sous la forme de I'aréte [owner d _] renvoyant au concept (Q6d.

La hiérarchie de concepts des personnes provenant de GCA(CG,) (figure 7.3) compte 13
concepts contre 9 concepts pour le treillis des personnes (figure 7.4) issu de RCA(FRC,). Il
convient de préciser que les 9 concepts de RCA(FRC;) posseédent chacun un équivalent dans
GCA(CG), du point de vue des extensions. Les 4 concepts supplémentaires Q6a, Q6h, Q7b
et Q7i qui n'ont pas d’équivalents dans RCA(FRC) sont strictement décrits par leur re-
lation owner~! vers les concepts voitures dont ils sont respectivement propriétaires (voir
les patterns Q6 et Q7 - figure 7.2). D’ou la création de 4 concepts supplémentaires dans
la hiérarchie des voitures (décrits inversement par leur relation owner vers les concepts
Q6a,Q6h,QQ7b et )Tt respectivement) par rapport au treillis des voitures de RCA(FRC,).
Finalement, en comparant les extensions des concepts, les 37 concepts de RCA(FRC,) sont
inclus dans les 45 concepts de GCA(CG;) : RCA(FRC;) c GCA(CG,). Les 8 concepts sup-
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Person_ 9

Q6h () \‘\ Q7i (@) //‘ ‘\\

I
I
owner ! owner
Charlii; . Julieg — Person_6 Person_8 Person 5 Person_7
\ Cit; countryside
gpb ~o L C}ilarhe . male singsie manr{ed female
ice RN ice S
7z N )y
[ 1.4 A 4
e[ = x X >< T
a -
cit;
owner d _ owl:::-}_ec singﬁ? Person_2 Person_3 Person_4 Person_1
= owner f
aob Charlie : : : :
ce Bob Charlie Charlie Bob Alice Julie
AN T Alice P " /4 ”
C-. V-7 _y
Q3d Q4c \ — /
countryside countryside -
marall'ied fel'nale(i
male marrie
ownerb owner a _
owner a _ owner e _
Bob Julie

FIGURE 7.4 — Treillis de Kp,,n iSsu de

FIGURE 7.3 — Hiérarchie des concepts Person issue de RCA(FRCy).

GCA(CG).

plémentaires de GCA(CG;) sont liés a 'intégration automatique des relations inverses dans
le processus de GCA. Donc, intuitivement, I’ajout des relations inverses dans les données
de RCA devrait permettre de rapprocher les résultats de RCA de ceux de GCA.

Dans la suite, afin d’examiner plus en profondeur la différence entre les deux approches,
nous les comparerons a partir de leurs points communs, a savoir :
— le calcul des concepts unaires, car RCA se limite aux concepts unaires,
— l'usage du quantificateur 3 pour RCA, car GCA ne dispose que du quantificateur 3
implicitement,
— le traitement des données contenant uniquement des relations unaires et binaires, car

les relations n(> 2)-aires nécessitent des modélisations supplémentaires dans RCA
[KErP et al., 2019],

— lajout des relations inverses dans les données de RCA, car GCA intégre automati-
quement les relations inverses dans son processus.

La section suivante présente une comparaison empirique de RCA et GCA dans ce cadre
commun, sur différents exemples.

7.3 Comparaison empirique de RCA et GCA

Nous avons précédemment constaté que certains concepts de GCA, non produits par
RCA, sont liés a I'intégration automatique des relations inverses dans le processus de GCA.
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On s’attend a ce que I'ajout des relations inverses dans les données de RCA rapproche autant
que possible ses résultats de ceux de GCA. La question qui se pose est alors de déterminer
dans quelle mesure ce rapprochement est effectif. Nous comparons dans un premier temps
RCA(FRC) et RCA(FRC_r), ou FRC_r = FRC + relations inverses, avec FRC une Famille
Relationnelle de Contextes. Ensuite, nous présentons d’une part deux exemples pour les-
quels RCA(FRC_r) = GCA(GC) et d’autre part, nous présentons trois exemples pour lesquels
RCA(FRC_r) # GCA(GC), GC étant le contexte graphe correspondant a la FRC considérée.
Cette comparaison empirique fait partie des travaux présentés dans [Fokou et al., 2024a].

7.3.1 Ajout des relations inverses a une FRC

L’ajout de relations inverses a une FRC entraine un ajout d’informations dans les don-
nées, donc l'ajout de nouveaux attributs relationnels qui peut conduire a la modification
des intensions des concepts existants ou a la construction de nouveaux concepts. Ceci est
cohérent avec le processus de RCA, car il y a toujours au moins autant de concepts dans un
treillis a 'itération ¢ + 1 qu’a l'itération 7. Formellement, pour toute FRC, on a :

RCA(FRC) c RCA(FRC_r) (7.1)

Pour I'exemple FRCy, I'ajout des relations inverses se fait en ajoutant 3 contextes re-
lationnels : sell_r(Ocar, OGarage), 0wner_r(Operson, Ocar) €t maintain_r(Ocar, OGarage) qui sont
respectivement I'inverse des relations sell, owner et maintain. La FRC résultante est désignée
par FRC;_r, avec la chaine "_r" (pour reverse) qui matérialise les inverses tant dans les noms
des relations que dans les noms des FRCs. Pour illustration, la relation owner_r( Operson, Ocar)
définit le fait qu'une personne posséde une voiture. Ensuite, dans le processus de RCA, les
concepts construits sur le contexte K¢, par association avec 'opérateur de scaling et la
relation owner_r, seront utilisés pour former des attributs relationnels afin d’étendre le
contexte Kp,on. Dans la suite, une FRC; étendue par 'ajout des relations inverses est dési-
gnée par FRC,_r.

Le résultat RCA(FRC;) compte 37 concepts qui sont tous inclus dans RCA(FRC; _r) qui
compte 45 concepts. Pour exemple, les figures 7.4 et 7.5 présentent les treillis de Kperson
construits respectivement a partir de FRC; et FRC;_r. Il en résulte 4 concepts supplémen-
taires {Person_10, Person_11, Person_12, Person_13} dans le deuxieme treillis (figure
7.5), en raison des attributs relationnels de la forme 3 owner_r(Car_i) qui étendent le
contexte Kpeson. Ces concepts supplémentaires sont strictement diis a ’'ajout des relations
inverses, car comme nous pouvons le constater, ce sont tous des concepts introduits par
les attributs relationnels de la forme 3 owner_r(Car_i). Dans cette méme logique, ces 4
concepts supplémentaires vont générer 4 attributs relationnels qui vont a leur tour in-
duire 4 nouveaux concepts des voitures {Car_17, Car_18, Car_19, Car_20}. Ces nouveaux
concepts des voitures sont strictement décrits de maniére inverse via la relation owner poin-
tant sur les concepts {Person_10, Person_11, Person_12, Person_13} comme mis en évi-
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dence dans la figure 7.6, qui montre le treillis K¢, issu de RCA(FRC;_r) sans le bottom
concept*. Par ailleurs, remarquons la présence des attributs relationnels induits par les re-
lations inverses sell r et maintain_r qui enrichissent les intensions des concepts de K¢,
Pour ce qui est du contexte Kggrqg, Son nombre de concepts est resté inchangé, mais les
intensions de certains concepts ont été modifiées pour intégrer les attributs relationnels
induits par les nouveaux concepts de K¢,

Person_9
3 owner_r(Car_13)

_— ™

Person_13 Person_12
3 owner_r(Car_20) 3 owner_r(Car_19)
/ /
/ \ Person_5
Person 6 Person_11 Person_8 T —'d Person_10 Person_7
| _ city countryside = =
male 3 owner_r(Car_7) married 3 owner_r(Car_8) female

single

3 owner r(Car 9) 3 owner_r(Car_12)| |3 owner_r(Car_17)| |3 owner_r(Car_14)

3 owner_r(Car_16)

Pers% Person_1

3 owner _r(Car_11) Person_2 Person_4 3 owner_r(Car_10)
3 owner_r(Car_6) 3 owner_r(Car_4) 3 owner_r(Car_3) 3 owner_r(Car_5)
3 owner_r(Car_1) Charlie Alice 3 owner_r(Car_2)

Bob \ / Julie
\ Person_0 /

3 owner_r(Car_0)

3 owner_r(Car_15) 3 owner_r(Car_18)

FIGURE 7.5 — Treillis de Kpeson issu de RCA(FRC_r).

7.3.2 Equivalence entre les résultats de GCA et de RCA avec relation

inverses

Une comparaison des résultats RCA(FRC;_r) et GCA(CG;) montre une équivalence du
point de vue des extensions de concepts. A titre d’illustration, examinons les concepts de
ICperson TEprésentés dans les treillis de la figure 7.5 pour RCA et de la figure 7.3 pour GCA.
Les deux treillis ont le méme nombre de concepts et les concepts ont les mémes extensions.
Il en est de méme pour les treillis de voitures et des garages. En résumé, pour cet exemple,
on montre que, lorsque 'on applique RCA a FRC;_r contenant les relations inverses, le
résultat RCA(FRC;_r) est équivalent au résultat obtenu avec GCA sur le contexte graphe

4. Le concept bottom (1) a été supprimé. Il en sera de méme pour le reste des treillis de ce chapitre, pour
des raisons de lisibilité.
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Car_13

3 sell_r(Garage_4)
3 sell_r(Garage_12)
3 maintain_r(Garage_4)
3 maintain_r(Garage_11)
3 owner(Person_9)

K \
Car_20
Car_19 3 sell_r(Garage_11)
3 sell_r(Garage_8) 3 sell_r(Garage_10)
3 maintain_r(Garage_7) 3 maintain_r(Garage_10)
3 owner(Person_12) 3 maintain_r(Garage_12)
3 owner(Person_1I3)
Car_ 9
Car_16 Tesla
Car_17 Car_14 3 sell_r(Garage_2) Car_15 Car_18

3 sell_r(Garage_3)
3 owner(Person_10)| (3 owner(Person_7)| |3 maintain_r(Garage 9)

3 owner(Person_5)

3 sell_r(Garage_7)
3 maintain_r(Garage_2)
3 maintain_r(Garage_8)
3 owner(Person_8)

3 owner(Person_6)| |3 owner(Person_11)

g

Car_11
Car_10 Renault
Car_8 Peugeot Car_12 3 sell_r(Garage_6) Car_7
3 sell_r(Garage_5) A 3 sell_r(Garage_9) -
sport 3 maintain_r(Garage_1) family 3 maintain_r(Garage_3) berline
3 owner(Person_1) 3 maintain_r(Garage_6)
A, 3 owner(Person_3)
Car_2 Car_5 Car_4 Car_6 Car_3 Car_1
3 owner(Person_2) 3 owner(Person_4)
car5 car2 car3 carl car4 car6
FIGURE 7.6 — Treillis de K¢, issu de RCA(FRC;_r).
CG; correspondant :
RCA(FRC,_r) = GCA(CG,) (7.2)

Considérons a présent un second exemple, a savoir celui de la famille royale britannique
présenté dans le chapitre 4 (figure 4.1) et désignons-le par CG,. Le tableau 7.2 illustre la
FRC; correspondant a CG,. La FRC;, est constituée d’un contexte objets-attributs Personne
qui décrit les personnes par leur genre et un contexte objets-objets (has-parent) qui indique
qu’une personne a pour parent une autre personne. Cet exemple a la particularité d’étre
constitué d’une seule relation dont le domaine et le codomaine sont identiques, mais il
est néanmoins nécessaire d’y ajouter la relation inverse. L’analyse de ce second exemple
s’inscrit dans la méme logique que celle de 'exemple précédent.

Lafigure 7.7 montre le treillis de concepts RCA(FRC,) qui compte 8 concepts, regroupant
les personnes suivant leur genre et suivant le fait qu’ils aient des parents. La hiérarchie
de concepts issue de GCA(CGg) a déja été présentée a la figure 4.13, mais pour faciliter
la comparaison, la figure 7.8 reprend cette hiérarchie de concepts. En comparaison avec
RCA(FRC;), GCA(CGs) compte 18 concepts (le T concept y compris) contre 8 concepts pour
RCA(FRC;) : RCA(FRC;) € GCA(CG). En effet, GCA(CG:) contient aussi le regroupement
des personnes selon qu’ils aient des enfants, ce qui est rendu possible grace a I'intégration
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TABLEAU 7.2 — FRC, (K = {Personne}, R = { has-parent}) correspondant au contexte graphe
CGa.

%) _,_,"g') o
Personne H male ‘ female ‘ go § § ? Qo g ::
Georges X has-parent S |5 |52 |7 |&|8|TC
Charlotte x Georges x X
William X Charlotte X X
Harry X William x | x
Kate x Harry x x
Diana x Kate
Charles x Diana
Charles

automatique des relations inverses. A titre d’illustration, les concepts Q4i, (Q4¢g et Q3d sont
des exemples de concepts qui regroupent des personnes ayant des enfants.

Comme dans I'exemple précédent, on ajoute les relations inverses pour se mettre au
méme niveau d’information que dans GCA. La FRC,_r est construite en ajoutant la rela-
tion has-child comme inverse de la relation has-parent. Cette relation inverse a tout son
sens dans cet exemple, car si x a pour parent y alors y a naturellement pour enfant x.
Le résultat RCA(FRC,_r) est présenté a la figure 7.9 et compte 18 concepts. Comme nous
pouvons le constater, ce treillis contient bien entendu aussi des regroupements des per-
sonnes (concepts) suivant le fait qu’ils ont des enfants. Par exemple, les concepts family_9,
family_16 et family_11 mis en évidence en gras (figure 7.9), correspondent respective-
ment aux concepts Q4i, Q4g et Q3d de GCA(CG,). Notons que le T concept family 3
de RCA(FRC,_r) a une intension vide, c’est ce qui justifie pourquoi il n’est pas affiché du
coté de GCA (figure 7.8). En tout, avec I'ajout de la relation inverse has-child, RCA et GCA

produisent les mémes concepts pour cet exemple :

RCA(FRCy) € RCA(FRC,_ 1) = GOA(CGS) (7.3)

Ces deux exemples suggerent que ’ajout de relations inverses dans les données de RCA
conduit a des résultats équivalents pour les deux approches. Toutefois, comme nous le ver-
rons dans la section suivante, il existe des cas ol, malgré ’ajout de relations inverses dans
les données de RCA, les deux approches donnent des résultats distincts : certains concepts

obtenus en GCA ne sont pas générés par RCA.
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family_3
/ A
- family 6
family_1 = -
fem:I_e 3 has-parent(family 3)| [family_2
3 has-parent(family_2) male
Kate 3 has-parent(family 1)

Diana Charles
family_8 family 5

3 has-parent(family 5)
3 has-parent(family_6)| Fwiiiiam

/‘ \ / Harry

family_4 family_7

Charlotte Georges

FIGURE 7.7 — Treillis de concepts RCA(FRC,).

7.3.3 Non-équivalence entre les résultats de RCA et GCA

Les exemples que nous traitons ici sont des variantes du contexte graphe CG; (figure 7.1)
obtenus en effectuant de petites modifications sur les connexions entre les objets pour avoir
différents schémas de données. Nous présentons ci-dessous les 3 variantes considérées et
désignées respectivement par CGy,, CGy;, et CGj... Les FRCs associées, intégrant les relations
inverses sont respectivement désignées par FRCy,_r, FRCy;_r et FRCy._r.

RCA(FRC,_r) # GCA(CGy,). Le contexte graphe CGy, est obtenu en modifiant la relation
maintain dans CG; (figure 7.1) pour que la voiture car6 soit entretenue par le garage D au
lieu du garage A, comme mis en évidence dans la figure 7.10. CGy, est alors composé de
deux sous-graphes comparé a CG; qui se compose de trois graphes. En termes d’informa-
tions, on peut dire que CG; contient les garages (A et B) qui vendent et entretiennent leurs
voitures, les garages (C') qui vendent uniquement des voitures et les garages (D) qui entre-
tiennent uniquement les voitures - le garage D fait 'entretien des voitures vendus par des
garages (C') qui vendent uniquement les voitures. Suite a la modification effectuée sur la re-
lation maintain pour obtenir CGy,, on a désormais les garages qui entretiennent les voitures
vendus par des garages qui vendent et entretiennent les voitures - le garage D entretient la
voiture car6 vendue par le garage A qui vend et entretient la voiture carl.

Concernant les résultats, GCA(CGy,) compte 53 concepts contre 52 pour RCA(FRCy,_r),
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F1GURE 7.8 — Hiérarchie de concepts de CG,.

ce qui fait un concept supplémentaire du c6té de GCA par rapport a RCA. La figure 7.11
montre le PGP Q22 = ((z), P2z) décrivant le concept d’extension {car5, car2,carl} (en
vert) qui identifie ce concept supplémentaire. Le pattern P2z désigne le sous-graphe in-
cluant le nceud z, les nceuds principaux (core nodes) - en rouge - ainsi que 'ensemble des
autres noeuds nécessaires a la description de z, mentionnés entre parenthéses dans I'iden-
tifiant (nom) du concept 2z (s m k [ 0 be). 1l s’agit de la notation parenthésée décrite dans

le chapitre 4 consacré a GCA.

Nous décrivons maintenant ce qui caractérise ce concept supplémentaire. Comme le
montre la figure 7.11, les noeuds adjacents a z sont les noeuds be, [ et o introduits par les
sell(bc, z), maintain(l, z) et owner(z, o). Les autres nceuds sont introduits par
ces noeuds adjacents (les adjacents des adjacents de z) et ainsi de suite jusqu’aux nceuds
principaux (core nodes) qui portent 'information principale du pattern. Une description
simplifiée de z peut étre formulée comme suit : z est le concept des voitures vendues par
un garage bc, entretenues par un garage [ et appartenant a une personne o, qui possede
également une voiture familiale (family) s et une autre voiture m, toutes deux vendues
par le méme garage be. Cette description inclut le cycle (bc, s, o, m, be). A ce stade, nous
soupconnons que ce cycle pourrait étre la raison pour laquelle RCA ne construit pas ce

relations :

concept.
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FIGURE 7.9 — Treillis de concepts RCA(FRC,_r).

Enfin, en termes de complexité et de facilité d’interprétation, GCA(CG;) ne contient pas
de concepts automorphes, contrairement 8 GCA(CG;,) qui en posséde 17, c’est-a-dire 17
doublons du point de vue des extensions de concepts. Pour ce qui est du nombre de graph
patterns, CG; produit 7 patterns (figure 7.2) contre 3 graph patterns pour CGy,. Concréte-
ment, les graph patterns de GCA(CG;) sont plus petits (a 'image des motifs présents dans
CG;) et donc plus simples a comprendre par rapport a ceux de GCA(CGy,).

RCA(FRCy;,_r) # GCA(CGy;). La deuxiéme variante CGy,, (figure 7.12) est obtenue de CG;
suite a la méme modification effectuée sur la relation maintain pour obtenir CGy,, en plus
d’une modification de la relation owner. Dans le contexte graphe CGy; tel que le montre
la figure 7.12, la voiture car2 qui avait pour propriétaire Julie appartient dorénavant a
Charlie et inversement, car3 qui appartenait a Charlie devient une propriété de Julie.
La remarque principale en ce qui concerne la structure du contexte graphe, est qu’il est
composé d’un seul graphe plutét que de plusieurs (petits) graphes comme dans CG; ou
CGiq. Au niveau des résultats, GCA(CGy;) contient 66 concepts contre 64 concepts pour
RCA(FRCy;_r), soit deux concepts en plus du c6té de GCA, car les 64 concepts de RCA
ont leurs concepts équivalents dans les concepts de GCA. Les 66 concepts de GCA(CGyp)
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FIGURE 7.10 — Contexte graphe CGy,.

sont regroupés en un seul graph pattern, tandis que CG; produit 7 patterns et CG;, en
produit 3. Par ailleurs, GCA(CGy;) contient 230 concepts automorphes, soit plus du triple
du nombre de concepts unaires, ce qui augmente singuliérement la taille du pattern (qui a
au total 66 + 230 nceuds) et par conséquent sa difficulté d’interprétation. D’un point de vue
pratique, méme si les concepts automorphes sont mis de cté, il est difficile d’interpréter en
langage naturel ce que pourrait exprimer un graph pattern constitué de 66 concepts.

RCA(FRC;._r) # GCA(CGy,). La troisiéme variante CGy. est obtenue de CG; par sup-
pression du garage D et par ajout d’'une nouvelle personne (Jean). Les relations (owner,
sell et maintain) ont été réorganisées comme illustré a la figure 7.13. Ce nouveau contexte
graphe est composé de deux graphes comme CG;,. GCA(CG;.) contient 50 concepts contre
48 concepts pour RCA(FRC;._r), soit deux concepts en plus du c6té de GCA. GCA(CGy,)
contient 27 concepts automorphes et I’ensemble de ses concepts est regroupé en 3 graph
patterns (au méme titre que CGy,) contre 7 graph patterns pour CG;.

Une analyse des concepts de GCA(CGy;) et de GCA(CG;.) qui ne sont pas produits du
coté de RCA a été faite et le point commun entre ces concepts de GCA est la présence des
cycles dans leurs descriptions, ce qui peut expliquer le fait que RCA ne construit pas ces
concepts.

A partir de ces observations, on constate que plus le contexte graphe est connecté (c’est-
a-dire avec un nombre réduit de composantes), comme dans CGy, (figure 7.12), plus GCA
est susceptible de produire des patterns complexes®, et plus le nombre de concepts auto-
morphes tend a augmenter. Ceci s’explique par le fait que GCA dans son fonctionnement,

5. En termes de nombre de nceuds et de connexions entre ces nceuds.
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Q21 (s m k o be) Q2bc (smklo)
manufacturer

D C
A A

Sell

Maintainseu Sell / Maintain\Maintain/ Sell \ Maintain|Sell \ Sell / Maintain /Maintain\ Maintain| Maintain /Sell Sell

Q2k (srLlobc) Q2s (m k10 be) Q2m (s k10 be)
Renault family
o gl =
carl carl ]
OwnerfOwner /Owner \aner wner /6wner OwnegOwner
Q20 (s m k1bc)
countryside
married

Julie
Bob

FIGURE 7.11 — PGP ()2z avec z comme tuple de projection.

capture les structures du contexte graphe ainsi que les structures combinées qui en dé-
coulent. A contrario, pour un contexte graphe composé d’'un ensemble de graphes simples ¢
comme dans CG; (figure 7.1), GCA produit des patterns relativement simples, a I'image des
motifs présents dans le contexte graphe.

Ajout des relations inverses dans GCA. L'impact de ’ajout des relations inverses dans
les données de GCA a été examiné sur les cinq exemples CG;, CGg, CGy,, CGyy et CGy..
Comme pour RCA, les relations inverses (arétes binaires inverses) ont été intégrées dans
chacun de ces contextes graphes, afin d’analyser d’éventuelles différences dans les résul-
tats de GCA par rapport a ceux obtenus a partir des données initiales (sans arétes inverses).
Tout naturellement, les relations inverses sont percues par GCA comme des doublons en ce
sens qu’elles n’apportent pas de nouvelles informations, car logiquement, GCA integre déja
automatiquement ces informations inverses au cours de son processus. Cette observation
peut étre formulée par : GCA(CG) = GCA(CG_r). Pour illustration, la figure 7.14 montre le
graph pattern Q1 issu de GCA(CG;) et de GCA(CG,_r) respectivement. Nous pouvons re-
marquer que I'unique différence entre ces deux patterns se trouve au niveau des connexions
entre les concepts.

En résumé, 'ensemble de ces observations et analyses permettent de conjecturer que
I’ensemble des extensions de concepts de RCA est inclus dans I'ensemble des extensions de
concepts de GCA. Aussi, I’ajout des relations inverses dans les données de RCA permet de
réduire I’écart entre les résultats des deux approches. Le tableau 7.3 établit une syntheése de
I’ensemble des résultats de ces expériences en récapitulant pour chaque exemple le nombre
de concepts, le nombre de graph patterns, ainsi que le nombre de concepts automorphes
(doublons). Le bloc en vert met en évidence les exemples pour lesquels il y a équivalence de

6. En termes de taille et de structure des connexions.
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A D C B
manufacturer service manufacturer chain
sell o o o sell sell
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carl car6 car2 car5 car3 car4
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married single married single

FIGURE 7.12 — Contexte graphe CGyj.

résultats entre RCA (avec intégration des relations inverses) et GCA. Inversement, le bloc en
orange délimite les exemples pour lesquels GCA produit des concepts en plus par rapport
a RCA, c’est-a-dire le résultat de RCA est strictement inclus dans celui de GCA malgré
I’ajout des relations inverses. En comparant les nombres de concepts des colonnes RCA et
GCA, I'impact des relations inverses par rapport aux nombres de concepts de RCA_r est
clairement perceptible.

TABLEAU 7.3 — Récapitulatif du nombre de concepts, de graph patterns et de concepts auto-
morphes (doublons).

Exemple | RCA | RCA_r | GCA | Patterns | Doublons
CGy 37 45 45 7 0
CGsq 8 18 18 4 0
CGiq 40 52 53 3 17
CGyp 41 64 66 1 230
CGy. 33 48 50 3 27

La section suivante présente les démonstrations formelles qui viennent corroborer les
observations issues des exemples précédents.

7.4 Comparaison théorique

Nous poursuivons notre analyse en présentant dans cette section, une étude théorique
relative a la comparaison entre RCA et GCA au regard de leurs extensions de concepts.
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A C B
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FIGURE 7.13 — Contexte graphe CG;..

Comme nous ne considérons que les concepts unaires, cela revient a comparer des en-
sembles d’ensembles d’objets. En effet, les ensembles d’objets sont les mémes des deux cotés,
bien qu'’ils soient divisés en contextes formels dans le modele initial de données en entrée
de RCA. Etant donné Ci I'ensemble des extensions de concepts RCA, et C I'ensemble des
extensions de concepts GCA, nous démontrons que C'r € Cg, et que 'inverse n’est pas vrai.
Avant d’énoncer et de démontrer ce résultat, nous établissons d’une part, quelques obser-
vations concernant les concepts RCA par rapport a leur processus de génération itératif
et d’autre part la traduction d'une FRC en un contexte graphe équivalent afin de guider la
comparaison. Cette comparaison théorique fait partie des travaux présentés dans [Fokou
et al., 2025b].

7.4.1 Notion de rang et d’intension initiale d’'un concept RCA

Le processus de génération de concepts RCA est itératif. A chaque itération, de nou-
veaux concepts peuvent étre définis et les intensions des concepts existants peuvent étre
enrichies, grace a de nouveaux attributs relationnels dérivés des nouveaux concepts de I'ité-
ration précédente. Un concept étant identifié par son extension, on peut dire qu'un nouveau
concept est une nouvelle extension. Le processus itératif s’arréte lorsqu’aucun nouveau
concept n’est créé, ce qui se produit aprés un nombre fini d’étapes, car 'ensemble des ob-
jets est fini, et donc I'ensemble des extensions possibles est également fini.

RCA considére toujours les concepts apreés la derniére itération, c’est-a-dire les paires
(X,Y) ouY estl'intension finale. Nous introduisons deux nouvelles notions : le rang d'un
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FIGURE 7.14 — Graph pattern Q1 issu de GCA(CG;,) et son équivalent issu de GCA(CG;_r).

concept et I’intension initiale d’'un concept.

Définition 7.1 (Rang d’un concept). Le rang d’un concept C' = (X,Y’) de RCA, noté
rank(C'), est 'itération RCA i > 0 qui génére pour la premiére fois un concept avec I'ex-
tension X.

Définition 7.2 (Intension initiale). L’intension initiale d’'un concept C' = (X,Y") de RCA,
notée Int(C') ou simplement Y, est I'intension de C' a litération rank(C'), c’est-a-dire
lorsque I'extension X a été générée pour la premiere fois. Nous avons donc Y’ = X.

Par définition des itérations RCA qui ne peuvent qu’ajouter de nouveaux attributs re-
lationnels, nous avons Y ¢ Y. Nous pouvons également dire que I'intension initiale d’un
concept C' ne peut se référer qu’a des concepts C; (via des attributs relationnels) tels que
rank(C;) < rank(C'), car un concept ne peut étre utilisé avant d’avoir été créé. Ces résultats
préliminaires sont importants car les intensions initiales brisent les cycles qui peuvent exis-
ter dans les intensions finales des concepts. Cela établit donc un ordre topologique entre les
concepts via leur rang, tout en préservant la caractérisation des extensions puisque X = v,

7.4.2 Transposition des FRCs en contextes graphes
Afin d’avoir une base de comparaison solide, une Famille Relationnelle de Contextes
(FRC) du coté de RCA doit d’abord étre traduite en un contexte graphe équivalent du coté

de GCA. Cela est relativement simple lorsque I'on se limite a leur base commune, car les
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deux approches disposent des données multi-relationnelles. La principale subtilité concerne
I’ensemble des objets qui est partitionné dans RCA (via les contextes objets-attributs) et non
dans GCA. Cela conduit a I'introduction d’attributs unaires supplémentaires pour représen-
ter les différentes catégories d’objets.

Définition 7.3. Soit (K, R) une FRC. Le contexte graphe K = (O, A, ') correspondant est
défini comme suit :
— O :=U;-1., O; : lensemble des objets est 'union disjointe des ensembles d’objets de
tous les contextes objets-attributs C; € K;
— A=A, UA, :ensemble des attributs est composé d’attributs unaires (A;) et d’attri-
buts binaires (As), ou :

o Ay :=Ui-1..({ax,} U A;) : ensemble des attributs unaires est 'union disjointe
des ensembles d’attributs de tous les contextes objets-attributs, étendu avec le
nom des contextes (ax,) comme types (catégories) d’objets;

o Ay := {rg}r=1.m : lensemble des attributs binaires est 'ensemble des noms de
relations, un pour chaque contexte objets-objets;

— Larelation d’incidence entre les tuples d’objets et les attributs est définie comme suit :

I

{ax.(0) | K; eK,0€ O;}
{a(0)|0€O;,a€ A, (0,a) € I;}
{r(o1,02) | r €R, (01,09) €71}

c C

Par exemple, le contexte graphe correspondant a FRCs a propos de la famille royale,
présentée dans le tableau 7.2 est égale 8 K = (O, A, ) avec:

— 0= OPersonne
- A = Al U AQ Oﬁ Al = {aPersonne} U APersonne et A2 = {haS‘Parent}
- [ = {aPersonne(O) | 0¢€ OPersonne}

U {a’(O) | (O,CL) € [Personne}
U {has-parent(01,02) | (01,02) € has-parent}

Notons qu’aucune information n’est perdue au cours du processus de traduction , et la
traduction peut étre facilement inversée tant que les attributs ay, sont différenciés des
autres attributs unaires. Cependant, il n’existe pas de traduction générale évidente des
contextes graphes vers les FRCs en raison de ’absence de catégories d’objets et de I'exis-
tence possible de relations n-aires.

7.4.3 Comparaison des ensembles d’extensions de concepts

Nous démontrons ci-aprés que toutes les extensions de concepts RCA sont également
des extensions de concepts GCA. Cette hypothese a été émise précédemment a la section 7.3
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a partir des observations faites sur les exemples, ot il a également été observé que I'inverse
n’est pas toujours vrai. Afin d’établir cette preuve, nous construisons d’abord un Projected
Graph Pattern (PGP) qui simule I'intension initiale d'un concept RCA, puis nous démontrons
deux lemmes concernant cette construction.

Définition 7.4 (PGP simulant un concept RCA). Soit C' un concept dans une famille
de treillis de concepts RCA. Soit C = {C}} le sous-ensemble des concepts qui participent
a la description de C, c’est-a-dire les concepts référencés dans les attributs relationnels de
I'intension initiale de C, et de maniére récursive dans I'intension initiale de ces concepts. C
inclut également C' lui-méme en tant que C. Nous définissons le PGP ) = (z¢, Fy) simulant
C en introduisant un ensemble de variables X’ = {x}, contenant une variable distincte pour
chaque concept C;, € C; et en définissant un pattern P, pour chaque concept CY, tel que :

Py

{ax,(zr) | Ck appartient au treillis de concepts du contexte K; }
{a(xy) | a € Int(Cy)} N
U {{r(zg, )} u P | Ir(Cy) € Int(Cy)}

Cc C

Nous définissons @y, = (xy, Pr) comme le PGP qui simule C}, et nous notons cette relation
de simulation Q) ~ CY.

La définition récursive de P est bien définie grace a ’ordre topologique basé sur le rang
des intensions initiales. Le cas de base est constitué de concepts de rang 0, qui n’ont aucun
attribut relationnel dans leur intension initiale.

Pour illustration, définissons le PGP qui simule le concept family_8 du treillis de la
figure 7.7. Pour des raisons de lisibilité, les concepts de ce treillis sont renommés C'y; pour
chaque concept family i, par exemple C'ts pour le concept family 8. Supposons’ que
Int(Cs) = {3has-parent(Cs), Ihas-parent(Cl)} et trouvons Qs = (25, Prs), le PGP qui
simule C'tg. L’intension initiale de chacun des concepts C'y5 et C'y contient les attributs rela-
tionnels référencant les concepts {C3, C2, C1 }. Par conséquent, I'ensemble des concepts
qui participent a la description de Cg est C = {C5, Ct6, C3,Cp2,C1}. On a:

PfS = {aPersonne($8)}
U {has-parent(xs,x5)} U Prs
U {has-parent(xs,z6)} U Prg
Pf5 = {aPersonne(-TS)a male(a:5)} Pf6 = {aPersonne(xG)}

Avec: {has-parent(xs,x3)} U Pys
{has-parent(xs,2)} U Pry

{has-parent(zs, 1)} U Pp

{has-parent(ze, x3)} U Py3
{has-parent(ze, x2)} U Pps
{has-parent(z¢, 1)} U Ppy

Cc C C
Cc C C

7. Factuellement, 'intension de C/g contient aussi I'intension de C'y¢. De plus I'intension initiale de C'yg
est égale a son intension finale.
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has-parent Pyg
— QA Personne
—_—
Q Personne Pf 3
QA Personne
male 12

Q Personne

QA Personne
male

QA Personne
female

FIGURE 7.15 — Représentation graphique du pattern Pfg qui simule le concept C's.

Ou: Pfl = {a/Personne(xl);female(xl)}: Pf2 = {aPersonne(xZ)a male(@)} et Pf3 = {aPersonne(x3)}-

La figure 7.15 illustre la représentation graphique du pattern Prg dans lequel les fleches
reliant les nceuds représentent la relation has-parent. Prg fournit en réalité la description
du concept Cg identifié par la variable xg, c’est-a-dire : les personnes (zs) qui ont pour
parents des personnes (5, 7¢) ayant eux aussi des parents (x1, 2, 3). Donc xg est la variable
qui identifie (représente) les personnes ayant un grand-parent, c’est le cas de C'harlotte et
Georges, ce qui justifie le résultat Ext(Cyg) = {Charlotte, Georges}.

Lemme 1. Sous les conditions de la définition 7.4, nous avons pour tout C}, € C

Q ~ Cr = ext(Qy) = Ext(Cy).

Démonstration. Nous prouvons ce lemme par récurrence sur le rang des concepts dans C.
Dans le cas général, nous considérons un concept C;, de rang n, appartenant au contexte
IC;. Nous supposons que le lemme est vrai pour tous les concepts de rang inférieur a n, en
particulier ceux qui apparaissent dans I'intension initiale Y}, de C.

(1) Nous prouvons d’abord que Ezt(Cy) € ext(Qy). En considérant un certain o, € Ext(Cy),
nous devons prouver que oy, € ext(Qy), qui est défini par ext(Qx) = {0 | Qr S, (0,1)}.
Ainsi, o, € ext(Q)y) est vrai si et seulement @), S, (0, I), c’est-a-dire qu’il existe une appli-
cation ¢ des variables aux objets telle que ¢ () = o et ¢(Py) € I (voir définition 4.7 sur
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I'inclusion des PGPs). Nous avons o, € Fzt(Cy) = ?k’ = Nyey, @' %, Cest-a-dire que oy, € o

pour tous les éléments o de I'intension initiale. Il existe deux types d’éléments :

— Attributs formels (o = a € A;) : o, € o/ implique que oy, € a’, donc (o, a) € I;.

— Attributs relationnels (« = 3r(C))) : 0 € o' implique ici que oy € (Ir(C}))’, ce qui
implique qu’il existe un objet o; tel que (o, 0;) € r et o, € Ext(C}). En appliquant ’hy-
pothése de récurrence, nous obtenons o; € ext(Q);), et donc il existe une application
¢, telle que ¢y(x;) = oy et ¢y () ¢ 1.

Nous définissons I'application ¢ := {z}, - o} U U; ¢; comme I'union des applications
de chaque attribut relationnel plus 'application de z a o. Il reste donc a montrer que
®(Py) € I. Py, peut étre décomposé en sous-ensembles d’éléments suivants :

— ax, () : o appartient au contexte K;, donc nous avons ax, (0x ) € I selon la définition

du contexte graphe qui correspond a la FRC.

— a(xy) : par définition de Qy, nous avons a € Y, donc comme vu ci-dessus, nous avons
(or,a) € I;, donc a(oy) € 1.

— r(zp, ;) : par définition de Qy, nous avons 3r(C)) € Y, donc comme vu ci-dessus,
nous avons (0, 0;) € r, donc r(og,0;) € I.

— P, € P, : nous avons vu plus haut que ¢;(F)) < I, donc par définition de ¢ qui inclut
¢, nous avons également ¢(P;) € I.

Comme toutes les parties de P se projettent sur des parties de I via ¢, on obtient ¢(P) € I.

(2) Nous prouvons ensuite que ezt(Qr) S Ext(Cy). En considérant o € ext(Qy),
nous savons qu’il existe une application ¢ des variables aux objets telle que ¢(xy) = o
et ¢(Py) < I. Nous devons prouver que oy € Ext(Cy) = Y, =N
prouver que oy appartient a extension de chaque élément o de I'intension initiale. Nous le

— /
ey, @' Nous devons donc

faisons pour les deux types d’éléments :

— «a = a € A; (attribut formel) : par définition de Q}, nous savons que a(zy) € Py. A
partir de ¢(Py) € I, nous obtenons ¢(a(xy)) € I, puis a partir de ¢(xx) = oy, nous
obtenons a(o,) € I. Nous obtenons donc également (o, a) € I; par traduction du
contexte, et par conséquent, o €a.

— « = 3Ir(C)) (attribut relationnel) : par définition de @)y, nous savons que r(xy, z;) € Py
et P € P,. A partir des contraintes sur ¢, nous pouvons déduire que (0, 0;) € I, avec
o; = ¢(x1), et ¢(P;) € I. A partir de 13, nous pouvons conclure que o; € ezt(Q;), en
projetant simplement ¢ sur les variables de F;. En appliquant I'hypothese de récur-
rence, nous obtenons o; € Ezt(C)). A partir de (o, 0;) € I, nous obtenons également
(o, 0;) € r par traduction du contexte. Nous avons donc o, € (3r(C)))’, par définition
de 'extension d’un attribut relationnel.

8. L’opérateur ' correspond a I'opérateur de dérivation qui 4 un ensemble d’attributs associe I'ensemble
d’objets qui partagent ces attributs.

121



CHAPITRE 7 : COMPARAISON EXTENSIONNELLE DE RCA ET GCA DANS LEUR CADRE COMMUN

Le cas de base est pour rank(C}) = 0. La méme preuve que dans le cas général peut
étre utilisée, car I'hypothese de récurrence n’est utilisée que pour les attributs relationnels,
et les concepts de rang 0 n’en ont aucun. [

Théoréme 2. Soient (K, R) une FRC et K son contexte graphe correspondant. Pour chaque
concept RCA sur (K, R), il existe un concept GCA sur K ayant la méme extension.

Démonstration. Considérons un concept C' dans une famille de treillis de concepts et le PGP
Q) qui simule C, c’est-a-dire tel que () ~ C'. Comme cas particulier du lemme précédent avec
k = 0, nous avons ezxt((Q)) = Ext(C'). Dans GCA, le couple (ext, int) est une connexion de
Galois, donc (ext(Q), int(ext(Q))) forme un concept, et donc ext(Q)) est I'extension d’un
concept GCA. [

7.4.4 Comparaison en cas d’ajout des relations inverses dans les don-
nées de RCA

Les observations faites sur les exemples de la section 7.3 ont montré que 1’ajout des re-
lations inverses aux données de RCA permet de rapprocher les résultats RCA de ceux de
GCA, car GCA prend automatiquement en compte les relations inverses dans son proces-
sus. Formellement, pour chaque relation r € R dans la FRC (K, R), une nouvelle relation
r~={(0;,0:) | (0;,0;) € r} est incluse dans I'ensemble des relations. Nous notons R™ I'en-
semble des relations inverses dérivées d'un ensemble de relations R, sachant que I'inverse
d’une relation est nommé en rajoutant la chaine "_r" a la fin du nom de la relation (comme
en section 7.3.1).

La question que nous abordons dans cette section est de savoir si le résultat précédent
indiquant l'inclusion des extensions RCA dans les extensions GCA reste vrai avec 1'ajout
des relations inverses dans les données de RCA. Nous démontrons que l'inclusion reste
valide en montrant que I’ensemble des extensions GCA n’est pas affecté par I'introduction
des arétes binaires inverses dans les données de GCA.

Lemme 2. Soient K = (O, A, I') un contexte de graphe et K~ = (O, A, I~) son extension
avec les relations inverses, c’est-a-dire A~ = AU R, ou R € A est I’ensemble des attri-
buts binaires dans A, et /- = I U {r~(0;,0;) | r(0;,0;) € I}.1l existe une correspondance
biunivoque entre les concepts de K et les concepts de K~ :

(R,Q) e GCA(K) < (R,Q) e GCA(K"),
ou, étant donné ) = (Z, P), nous avons @~ = (T, P~) et P~ = Pu{r(y,z) | r(x,y) € P}.
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Démonstration. Le calcul des intensions des concepts GCA se résume a des produits caté-
goriques répétés de la relation d’incidence. En particulier, lorsque 1’aréte r(z, y) appartient
al x...x I (nfois), cela signifie que pour tout i € 1..n, il existe une paire d’objets (u;, v;)
telle que r(u;, v;) € I. Par définition de -, il s’ensuit que pour tout i € 1..n, nous avons éga-
lement 7~ (v;,u;) € I~. A partir de 13, nous concluons que le produit catégorique I~ x...x [~
contient 7~ (y, z) en plus de r(x, y). En effet, le produit catégorique définit x = (uy, ..., u,)
ety = (vq,...,v,). L'inverse est également vrai. Chaque fois que 7~ (y,z) € [~ x ... x [,
nous avons r(z,y) € I x...x I car chaque fois que 7~ (v;,u;) € I~ est vrai, r(u;,v;) e [ € I~.

Cela implique que les concepts de K~ peuvent étre dérivés des concepts de K, simple-
ment en ajoutant des arétes binaires inverses dans les patterns selon la définition ci-dessus
de P~. Les extensions de concepts sont les mémes. [

Sur la base de ce lemme, le Théoréme 2 précédent peut étre étendu a une FRC intégrant
les relations inverses.

Théoréme 3. Soient (K, R) une FRC et K son contexte graphe correspondant. Pour chaque
concept RCA de la FRC étendue (K,RUR"), il existe un concept GCA de K avec la méme
extension.

Démonstration. 11 est facile de voir que si K est le contexte graphe correspondant a la FRC
(K,R), alors K~ est le contexte graphe correspondant a la FRC étendue avec les relations
inverses. Par conséquent, d’apres le théoreme 2, toutes les extensions des concepts de la
FRC étendue sont des extensions des concepts de K . Le Lemme 2 montre que K et K~ ont
les mémes extensions de concepts. Par conséquent, toutes les extensions des concepts de la
FRC étendue sont des extensions de concepts du contexte graphe non étendu K. O

En résumé, les démonstrations confirment que ’ensemble des extensions des concepts
produit par RCA est inclus dans celui des concepts de GCA. De plus, I'intégration explicite
des relations inverses dans GCA s’avere superflue, puisqu’elle n’induit aucun changement
dans les résultats.

7.5 Conclusion

Dans ce chapitre, nous avons mené une étude comparative de RCA et de GCA du point
de vue des extensions de concepts. Cette analyse a mis en évidence que, si les deux ap-
proches présentent de nombreuses différences, elles partagent néanmoins certains points
communs, notamment I’utilisation du quantificateur 3, le calcul des concepts unaires, ainsi
que le traitement des relations binaires. Par ailleurs, la prise en compte automatique des re-
lations inverses dans le processus de GCA est compensée du c6té de RCA par I’ajout manuel
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de ces relations dans les données. Cette intégration des relations inverses en RCA permet
ainsi de rapprocher ses résultats de ceux de GCA.

Sur la base de ces points communs, ce chapitre a d’abord montré, a travers plusieurs
exemples, que I’ensemble des extensions de concepts de RCA est inclus dans celui de GCA.
Autrement dit, pour tout concept RCA, il existe un concept GCA possédant la méme exten-
sion. Ce constat empirique a ensuite été étayé par une démonstration théorique établissant
formellement que 'ensemble des extensions des concepts RCA est effectivement inclus dans
I’ensemble des extensions des concepts GCA. Par ailleurs, il a également été démontré que
I’ajout des relations inverses dans les données de GCA n’entraine aucun changement sur
I’ensemble des concepts, hormis I'introduction d’arétes redondantes.

Le chapitre suivant propose une comparaison intensionnelle de RCA et GCA, com-
plétant ainsi la deuxieme dimension nécessaire a la mise en paralléle de 'ensemble des
concepts RCA avec celui de GCA.
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Ce chapitre est consacré a la comparaison des intensions des concepts RCA et GCA dans
leur cadre commun. Nous y démontrons que les intensions des concepts RCA sont incluses
dans celles des concepts GCA. Nous commencgons par préciser la notion d’intension pour un
concept RCA et pour un concept GCA dans la section 8.1. Ensuite, la section 8.2 présente
le processus de transformation d’une famille de treillis RCA en un ensemble de patterns
relationnels comparables aux graph patterns GCA. Le rapprochement entre les patterns
relationnels RCA et les graph patterns GCA est ensuite effectué dans la section 8.3. La sec-
tion 8.4 aborde la comparaison intensionnelle proprement dite et démontre que I’ensemble
des patterns relationnels issus de RCA est inclus dans ’ensemble des graph patterns GCA.
Enfin, la section 8.5 met en évidence I’apport pratique des patterns relationnels RCA, au-
dela de leur rdle de passerelle pour cette étude comparative. Cette étude comparative de
RCA et GCA, sous I'angle de leurs intensions de concepts, s’inscrit dans le cadre des tra-
vaux publiés dans [Fokou et al., 2025b].
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8.1 Intensions des concepts RCA et GCA

Afin de bien expliciter la notion d’intension pour un concept RCA et un concept GCA,
cette section détaille successivement I'intension d’un concept RCA, puis celle du concept
GCA correspondant, c’est-a-dire le concept GCA possédant la méme extension.

Pour ce faire, nous utilisons I'’exemple de la FRC du tableau 8.1, désignée par FRC3 qui
porte sur les animaux et les aliments qu’ils consomment. Le contexte graphe CGs corres-
pondant est présenté a la figure 8.1. La figure 8.2 présente la famille de treillis obtenue sur
FRC; et la figure 8.3 illustre I’ensemble des graph patterns GCA calculé sur CGg. Notre illus-
tration de la notion d’intension de concept porte sur le concept animal d’extension {al, a4},
dont le nom (identifiant) est animals_2 du cote de RCA (figure 8.2) et Q3¢ du c6té de GCA
(figure 8.3).

TaBLEAU 8.1 — FRC3 (K = {Kanimai; Krooa}> R = {eat}) a propos des animaux et de leurs
aliments.

o) B
‘é g ’ K rood H fruit ‘ grass ‘ meat ‘
2| g f1 x |eat [ f1|f2 |3 f4]f5]f6 |
3| &
Kanimar || S| © 2 X al X | x| x | x
al X 3 X a2 x | x
a2 X 4 X a3 X | x
a3 X 5 X ad | x | x | x | x
a4 x f6 x
al ad a3 a2
herbivore herbivore carnivore carnivore
'Kte eat /eat }eat eat eat eat leat
f4 f2 f6 f5
fruit grass fruit grass meat meat

FIGURE 8.1 — Contexte graphe CG3 correspondant a FRC3 (figure 8.1).

8.1.1 Intension d’un concept RCA

L’intension d’un concept RCA se compose, d’'une part, des attributs unaires caractéri-
sant les objets du concept, et d’autre part, des attributs relationnels qui capturent les re-
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animals 3 food 4
3 eat(food 4)

1 » A Y
/ \ / | \
/ \ // | \\
animals 2 = , | .
herbivo;e animals._1 food_3 food_2 food 1
3 eat(food 3) carnivore it grass ——

J eat(food 1)

3 eat(food 2)

f1 f2 f5
al a2 fa £3 6
ad 4 » 4 4
\ / \ | /
AV ya AN 1
animals 0 food 0

3 eat(food 0)

FIGURE 8.2 — Famille de treillis RCA obtenue sur FRC;.

lations entre ces objets et d’autres objets. Par conséquent, I'interprétation complete d’une
intension de concept requiert de naviguer dans la famille de treillis au moyen des attributs
relationnels qui relient les concepts entre eux. Les chemins de navigation sont déterminés
par les attributs relationnels de 'intension du concept a analyser et, de maniere récursive,
par l'intension des concepts référencés par ces attributs relationnels.

Pour illustration, I'intension compléte du concept animals_2 (figure 8.2) est 'ensemble
{herbivore, Jeat( food_2),eat( food_3),Jeat( food_4)} qui contient trois attributs rela-
tionnels pointant sur les concepts du contexte Kr,,4. L’ensemble des concepts qui participent
a interprétation de I'intension du concept animals_2 est illustré a la figure 8.4 sous forme
d’un graphe orienté qui met en évidence les connexions entre ces concepts. Ce graphe re-
présente les différents chemins de navigation au sein de la famille de treillis, conduisant a
I'interprétation de I'intension du concept animals_2. Par exemple, le chemin menant au
concept food_3 indique que les animaux de animals_2 (les herbivores) se nourrissent de
fruits. Notons qu’il s’agit ici d’un cas simple, puisque le treillis de Kp,4 ne contient pas
d’attributs relationnels. En revanche, dans ’exemple FRC; (tableau 3.1) relatif aux garages,
voitures et personnes, les intensions des concepts de Kggrqq font référence a des concepts
de Kcur, dont les intensions renvoient a leur tour a des concepts de Kpeyson, comme 'illustre
Pextrait de la figure 3.11.

Un tel "graphe navigation" correspond en réalité a un arbre dont la racine est le concept
que 'on cherche a décrire et qui constitue le point de départ de la navigation dans la famille
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Q3c
herbivore

a4
al

eat eat \eat

)
Q3d
Q3a Q3b
f4 fruit grass
£3 f4 f3
2 f1 f2
f1

FIGURE 8.3 — Ensemble de graph patterns de CGg.

de treillis. Comme on peut le constater, cette notion de "graphe navigation" se rapproche de
celle de Projected Graph Pattern (PGP) qui simule un concept RCA (définition 7.4). Il suffit
d’abstraire les extensions des concepts a 'aide des variables et d’étiqueter les arétes par
les noms de relations des attributs relationnels (le quantificateur peut étre omis, puisque
nous ne considérons que le quantificateur 3). On obtient ainsi un graphe orienté et éti-
queté qui représente la description du nceud racine. A titre d’illustration, le graphe de la
figure 8.5, exprimant que les herbivores consomment des fruits et des herbes, constitue une
version généralisée du graphe navigation de la figure 8.4, et capture uniquement I'informa-
tion intensionnelle.

8.1.2 Intension d’un concept GCA

GCA produit en sortie un ensemble de graph patterns, chacun représentant un ensemble
maximal de concepts interdépendants pour I'interprétation de leurs intensions respectives.
Comme décrit a la section 4.5.2.1, 'intension de chaque concept d’'un graph pattern s’obtient
par projection du pattern sur le concept (nceud) concerné. Par définition, I'intension d’un
concept Qix dans un pattern P, est donnée par le PGP ((z), Pi,), ou Pi. correspond au
sous-pattern constitué du nceud x et du pattern core de P.

A titre d’illustration, considérons le concept Q3¢ du pattern Q3 en vert (figure 8.3). Le
pattern core de Q3 correspond au sous-pattern (en couleur vive) constitué des concepts
Q3c, Q3a et Q3b. Ainsi, seuls les concepts du pattern core sont impliqués dans la descrip-
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food 2
grass
2
3
animals 2 food 3
herbivore fruit
3 eat(food_2) / .
3 eat(food 3)— “
3 eat(food 4)—|

al T food 4

a4

eat T3

herbivore fruit

G’Q %

grass

FIGURE 8.5 — Graph d’intension correspondant au graphe de description de la figure 8.4.

tion de 'intension de Q3c, car ()3c fait lui-méme partie du pattern core. La figure 8.6 met en
évidence la projection du pattern Q3 sur le concept Q3¢ au sens de la définition de I'inten-
sion d'un concept GCA. Dans cette figure, le sous-pattern encadré illustre I’ensemble des
concepts qui participent a la description de ()3c tout en capturant les différentes connexions
entre ces concepts. Ce sous-pattern (encadré) peut également étre interprété comme un
arbre ayant pour racine le tuple de projection ()3c.

En comparant les illustrations des figures 8.4 et 8.6, on observe que la définition du PGP
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Projection sur Q3c

Q3c
herbivore

a4
al

/ — eat \ eat
Q3d

Q3a Q3b

(¢]
o
=t

4 fruit grass
f3 4 f3
2
fl

f1 2

FIGURE 8.6 — Projection du pattern Q3 sur le concept Q)3c.

dans GCA permet de recentrer le pattern sur le concept a analyser tout en éliminant les
redondances. Le concept ()3d généralise les concepts (Q3a et ()3b en regroupant I’ensemble
des aliments consommés par les animaux du concept ()3c. Cependant, par définition, GCA
exclut ()3d de I'intension de ()3c, le considérant comme redondant pour sa description.
En revanche, du c6té de RCA ou l'intension compléte d’un concept s’obtient par héritage
descendant des attributs, tous les attributs relationnels d’un concept sont pris en compte
pour linterprétation de son intension.

8.2 Des familles de treillis de concepts RCA aux pat-
terns relationnels

Dans cette section, nous décrivons le processus de transformation d’une famille de

treillis de concepts RCA en un ensemble de patterns relationnels semblables aux graph

patterns de GCA. Ce processus de transformation s’appuie sur les notions de graphe de dé-

pendance et de graphe de concepts d’'une famille de treillis, telles que définies dans [FERRE
et CELLIER, 2018].

8.2.1 Graphe de dépendance d’une famille de treillis de concepts

La transformation d’une famille de treillis de concepts en une hiérarchie de graphes de
concepts a été décrite dans [FERRE et CELLIER, 2018] sur la base des composantes fortement
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food 4
3 eat _r(animals_3)

»
/ /4 ) N
/
food 1
animals 3 food 5
meat
3 eat(food 4) J eat r(animals 2) J eat_r(animals 1)
f5
4 % [ f6
) \ o A
\ | \ ]
/ \ \ I
L \ ! \ [
animals 2 \. ! \ |
herbivore animals 1 food 3 food 2 !
3 eat(food 3) carnivore - I
3 eat(food 2) | |3 eat(food 1) fruit grass |
3 eat(food_5) ~ f1 2 ,
al a3 f4 f3 //
ad 4 ‘\ f /
3 // \\ ! //
\ / \ | /
\ L | ya
animals 0 food 0
3 eat(food_0) 3 eat_r(animals 0)

FIGURE 8.7 — Résultats RCA sur FRC5_r qui intégre la relation inverse eat r.

connexes (Strongly Connected Components - SCC) [EVEN, 2011] du graphe de dépendance
(définition 5.1) entre les concepts. Comme décrit dans [FERRE et CELLIER, 2018] et tel que
présenté dans le section 5.3.2, I'intuition sous-jacente au graphe de dépendance est que
I'intension d’un concept dépend de ses ancétres dans le treillis (dépendances intra-treillis,
induites par la relation de subsumption) et des concepts cibles de ses attributs relationnels
(dépendances inter-treillis, induites par les attributs relationnels).

Nous illustrons les définitions de graphe de dépendance (définition 5.1) et de graphe
de concepts (définition 5.2) a 'aide de ’exemple FRC3 du tableau 8.1. La figure 8.7 montre
la famille de treillis RCA obtenue a partir de FRC3_r, qui integre les relations inverses (ici
eat_r) a FRC;. Le graphe de dépendance est ensuite construit sur cette famille de treillis de
la figure 8.7. On dit qu’un concept C; dépend d’un concept Cs ( noté C; - (C5), lorsque Cy
est un parent de C'y (C} < (), ou lorsque C est étiqueté par un attribut relationnel 3r(C5),
c’est-a-dire 3r(Cy) € Int(C)). A titre d’illustration, dans la famille de treillis présentée a la
figure 8.7 voici deux exemples de relations de dépendance entre concepts :

— amimals_2 - animals_3, car animals_2 < animals_3
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— animals_2 — food_3, car Jeat( food_3) € Int(animals_2).

La figure 8.8 montre le graphe de dépendance de la famille de treillis présentée a la figure 8.7
avec ses 3 SCCs mis en évidence par des cercles. Pour une meilleure lisibilité, les arétes
sont représentées de deux maniéres : les arétes en pointillés représentent la relation de
subsomption entre les concepts, tandis que les arétes pleines et étiquetées matérialisent les
attributs relationnels entre les concepts. Par exemple, 'aréte entre les concepts animals_2
et food_3 étiquetée par 3 eat matérialise le fait que 3 eat(food_3) € Int(animals_2).

food_4
f1
2
3
4
5
6
[}
animals_3
al
a2
a3
ad
A » :
Jeat_r : Jeatr : 3 eat
food_5 -
food_1
f1 Jeat_r meat 3 eat
2 5
3 f6
4w (

B4

- [3eat Jeat_r

food_2 S | food_3 animals_1

carnivore

a2
a3

grass fruit

fl
f4

2 :
3 :
J eat \3 eat_r /: eat J ec

animals_2

Jeat_r 3 eat

herbivore

al
a4

FIGURE 8.8 — Graphe de dépendance de la famille de treillis de la figure 8.7.

Un graphe de concepts est défini comme un SCC du graphe de dépendance, c’est-a-dire
un ensemble maximal de concepts ou chaque concept a un chemin de dépendance vers
tous les autres concepts (du SCC). Pour capturer les structures relationnelles a partir de
ces graphes de concepts, nous ne conserverons que les arétes correspondant aux attributs
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relationnels. En effet, on sait comment reconstruire les arétes traduisant la relation de sub-
somption. Il existe deux difficultés pour obtenir des patterns relationnels semblables aux
graph patterns GCA a partir de ces graphes de concepts.

— La premiere difficulté concerne les arétes inter-SCC (par exemple, I’aréte 3 eat entre
les concepts animals_1 et food_4 dans la figure 8.8), la question est de savoir si on
perd de I'information sur les intensions des concepts en ignorant ces arétes inter-SCC.

— La deuxieme difficulté réside dans la présence de relations inverses qui ne sont pas
explicitement représentées dans les graph patterns GCA.

Il convient de noter que les arétes inter-SCC n’ont pas d’arétes réciproques, sinon elles
seraient des arétes intra-SCC. Ces deux difficultés sont résolues dans la section suivante
par la notion de redondance des attributs relationnels.

8.2.2 Attributs relationnels redondants

Une interprétation naive de 'intension d’un concept prend en compte tous ses attri-
buts relationnels, dont certains n’apportent aucune nouvelle information sur la description
du concept. Par exemple, I'intension complete du concept animals_2 (figure 8.7) contient
les attributs relationnels Jeat( food_2), Jeat( food_3), Teat( food_5) et Feat( food_4). Les
deux premiers attributs relationnels suffisent pour la description du concept animals_2,
tandis que Jeat( food_b) et Jeat( food_4) sont redondants. En effet, ces deux derniers attri-
buts n’apportent aucune information nouvelle par rapport & Jeat( food_2) et Jeat( food_3),
car le concept food_4 subsume le concept food_5 qui est lui-méme le subsumant direct des
concepts food_2 et food_3. Le lemme 3 introduit la notion de redondance des attributs
relationnels, telle qu’elle est définie dans [Nica et al,, 2016a; Nica et al., 2016c¢].

Lemme 3. Soient C'; et C'; deux concepts tels que C; < (5. Si un concept C est tel que
3r(Cy) € Int(C), alors nous avons également 37 (Cy) € Int(C'). Pour cette raison, 37(C5)
est considéré comme redondant pour la description de C.

Démonstration. Soient deux concepts C = (X1,Y7) et Cy = (X3, Y5).

Ir(Cy) € Int(C) < VYoe Ext(C), r(o) n X; # @. Puisque C; < Oy, X; € X5 et donc,
r(o)n Xy # @ <= 3Ir(Cy) € Int(C). Par conséquent, les attributs relationnels sont
ordonnés et 3r(C5) est redondant dans I'interprétation de C. N

Ce lemme définit les redondances sur la base desquelles on peut réduire la description
d’un concept a son intension la plus spécifique. Cependant, en examinant plus en détail
Iexemple du concept animals_2, nous pouvons différencier les deux attributs redondants
Jeat( food_5) et Jeat( food_4). Le premier fait référence au subsumant direct des deux
concepts food_2 et food_3, tandis que le second fait référence au concept food_4 qui
couvre également le concept food_1 et contient des objets supplémentaires (f5, f6) qui
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n’ont aucun lien avec les objets de animals_2 que 'on cherche a décrire. Ceci ajoute une
sorte de bruit a la description de animals_2. Logiquement, il n’y a pas d’attribut relationnel
inverse dans I'intension de food_4 qui pointe vers animals_2, car food_4 contient des ob-
jets n’ayant aucun lien avec ceux de animals_2. Ce type d’attribut est qualifié de fortement
redondant et est défini dans le lemme suivant.

Lemme 4. Soient C' = (X,Y) et C; = (X;,Y1) deux concepts formels. Si 37(C}) € YV
et 3r=(C) ¢ Y1, alors il existe un concept Cy = (X5,Y2) < C tel que 3r(Cy) € YV et
3r=(C) € Yy avec Xy = Xy nU{r(o) | 0 € X}. On dit alors que 3r(C}) est fortement
redondant pour la description de C.

Démonstration. Nous devons prouver que : (1) Xy € X7, ce qui est trivial par définition de
X, (2) Ir(C)eYy,et(3) Ir(Co) €Y.

Pour prouver que 3r~(C') € Y5, nous partons de ce que cela implique d’étre un élément
de Xy :Vo; € Xy:05 € u{r(o) | 0 € X}, par définition de X,
= Vo; € Xy:30; € X : (0;,05) €r, par définition de r(o;)
= Vo; € Xy:30; € X : (04,0;) € r~, par définition de la relation inverse
= 3r=(C) € Ys, par définition des attributs relationnels dans 'intension de Cj.

Pour prouver que 3r(C5) € Y, nous partons du fait que 3r(C1) € Y, ce qui implique
Vo, € X :30; € X;:(0;,05) €r
= Yo, € X :30; € Xy :(0;,05) €, donc 0; e u{r(o;) | 0; € X}
= Vo, € X :Jo; € X5: (0;,0;) €r, par définition de X,
= Jr(Cy) e Y, par définition des attributs relationnels dans I'intension de C. ]

Le lemme 4 établit qu’un attribut relationnel ne possédant pas d’attribut relationnel ré-
ciproque est fortement redondant; c’est précisément le cas des arétes inter-SCC. Par consé-
quent, ignorer les arétes inter-SCC n’entraine pas de perte d’information dans I'interpréta-
tion des intensions de concepts. Cela permet ainsi de résoudre la premiére difficulté relative
aux arétes inter-SCC, comme mentionné dans la section précédente. Une fois supprimés les
attributs relationnels qualifiés de fortement redondants, tous les attributs relationnels res-
tants possedent un attribut inverse (ou réciproque). Cela signifie que, les arétes induites
par les relations inverses peuvent étre ignorées a I'instar de ce qui est fait dans les graph
patterns GCA. Cette simplification répond a la deuxieme difficulté, liée a la présence des
attributs relationnels inverses dans les patterns relationnels.

8.2.3 Patterns relationnels RCA

Un pattern relationnel RCA est induit par chaque SCC du graphe de dépendance de la
famille de treillis de concepts. Cette section définit d’abord un tel pattern relationnel comme
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un pattern d’extensions, d’attributs et de relations (Extent-Attribute-Relation pattern (EAR-
pattern), en anglais), qui servira de représentation commune pour comparer les intensions
des concepts RCA et GCA. Ensuite, les EAR-patterns de RCA (définition 8.2) sont définis
sur la base de ce qui précede, c’est-a-dire en utilisant uniquement les arétes relationnelles
intra-SCC et en ignorant les arétes inverses en raison de leur redondance.

Définition 8.1 (EAR-pattern). Soit O un ensemble d’objets, A un ensemble d’attributs
(formels) et R un ensemble de relations binaires. Un Extent-Attribute-Relation pattern (EAR-
pattern) est un graphe orienté étiqueté P = (V, E, Ly, Lg) ou :

— lesnceuds V' ¢ 29 sont les extensions de concepts, c’est-a-dire des ensembles d’objets;
— E cV xV est un ensemble d’arétes orientées reliant les extensions;

— Ly : V — 24 est la fonction d’étiquetage des noeuds par des ensembles d’attributs
formels;

— Lg: E — 2% est la fonction d’étiquetage des arétes par des ensembles de relations.

Définition 8.2 (EAR-pattern RCA). Soit S un SCC d’un graphe de dépendances GGy. Le
EAR-pattern RCA induit par S est le EAR-pattern Ps = (V, E, Ly, Lg) ou:

— V ={FEzt(C) | C € S} : extensions des concepts de S’;
— E = {(Ext(Cy),Ext(Cy)) | C1, Cy € S, Ir(Cy) € Int(Cy)} : les arétes corres-

pondent aux attributs relationnels dans les intensions des concepts;

— Ly(Ext(C)) ={aec AlacInt(C)} :les étiquettes des extensions sont les attributs
unaires dans les intensions des concepts;

— Lg((Ext(Cy), Ext(Cy))) ={re R|3r(Cy) € C}} : les étiquettes des arétes sont les
noms de relations des attributs relationnels reliant les concepts.

Pour illustration, la figure 8.9 présente ’ensemble des EAR-patterns RCA obtenus a par-
tir de la famille de treillis illustrée a la figure 8.7. Comme on peut le constater, cet ensemble
d’EAR-patterns RCA correspond a 'ensemble de graph patterns GCA obtenu sur le méme
exemple, tel que présenté a la figure 8.3. Il est important de souligner que pour une fa-
mille de treillis de concepts donnée, 'ensemble des EAR-patterns RCA correspondant est
équivalent en termes d’informations a la famille de treillis de concepts d’origine.

En résumé, pour une famille de treillis de concepts obtenue a partir d’'une famille rela-
tionnelle de contextes (intégrant les relations inverses), I’ensemble des EAR-patterns RCA
correspondants est construit selon le processus suivant : (1) construction du graphe de dé-
pendance de la famille de treillis, (2) calcul des SCCs du graphe de dépendance, (3) sup-
pression des arétes induites par la relation de subsomption, (4) suppression des attributs
relationnels fortement redondants et (5) suppression des attributs relationnels induits par
les relations inverses. Il convient de noter que ces résultats sont obtenus grace aux relations
inverses qui jouent un rdle important dans le calcul des SCCs.
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animals 3
animals 2 animals 1
al herbivore carnivore
a2 al a2
a3 ad a3
ad
eat eat |eat \eat eat
food 4
food 5
food 3 food 2 food 1
g 1 fruit grass meat
f3 f2 f1 f2 f5
f4 f3 f4 f3 f6
f5 f4
f6

FIGURE 8.9 — EAR-patterns RCA de la famille de treillis présentée a la figure 8.7.

Gréce a cette transformation des résultats de RCA sous forme de EAR-patterns, compa-
rables aux graph patterns de GCA, il devient possible d’envisager une comparaison entre
les deux types de patterns. Cependant, les EAR-patterns RCA et les graph patterns GCA ne
sont pas toujours directement comparables, car les graph patterns GCA peuvent souvent
comporter plusieurs nceuds correspondant au méme concept, ce que 'on désigne par les
concepts automorphes. Par conséquent, nous commencons par transformer les graph pat-
terns GCA en EAR-patterns.

8.3 Des graph patterns GCA aux EAR-patterns

En GCA, la duplication des concepts est parfois nécessaire pour représenter correcte-
ment les graph patterns présentant des symétries ou capturant certaines structures, telles
que les cycles. Les concepts dupliqués, appelés concepts automorphes, représentent diffé-
rentes occurrences d’'un méme concept, comme décrit a la section 4.6 (chapitre 4). En re-
vanche, RCA ne produit pas de tels concepts automorphes. L’approche consiste donc a
fusionner les occurrences de concepts automorphes dans les graph patterns GCA. Pour un
graph pattern P, fusionner ses concepts automorphes revient a calculer son graphe quotient
par rapport a ses extensions de concepts, c’est-a-dire que deux nceuds sont regroupés dans
la méme classe s’ils partagent la méme extension.

Définition 8.3 (Graphe quotient). Soit G un graphe et soit P = V1, ..., V) une partition
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Q2f (d e) Q2a
dish dish
khaoManKai khaoManKai
gardiane gardiane
arancini arancini
asMainCerea hasMainCereathasMainCereal lhasMainCereal
Q2e (d) Q2c
rice rice
cereal cereal
thaiRice thaiRice
redRice redRice
arborioRice arborioRice
‘}sProducedIn isProducedIn
Q2d (e) Q2b
country country
Thailand Thailand
Italy Italy
France France

FIGURE 8.10 — Graph pattern Q2 avec concepts automorphes (a gauche) et une représenta-
tion de son graphe quotient correspondant a droite.

de 'ensemble des sommets de G en classes non vides. Le quotient G/P de G par P est le
graphe dont les sommets sont les ensembles Vi, ..., V) et dont les arétes sont les paires
(Vi, V;),i # j, telles qu’il existe u; € V;, u; € V; et (u;,u;) € E(G) [HAHN et TARDIF, 1997].

Pour illustration, la figure 8.10 présente le graph pattern Q2 (issu de 'exemple traité a
la section 4.6) ainsi qu’une représentation de son graphe (pattern) quotient. Dans ce pattern
quotient, chacune des deux occurrences d'un méme noeud de Q2 est fusionnée en une seule
occurrence.

Dans un pattern quotient P € V* x A d’un graph pattern, A contient des attributs unaires
qui étiquettent les nceuds (identifiés par des ensembles d’objets) et contient les attributs
n-aires (relations) qui étiquettent les arétes connectant n noeuds. Si P est limité aux relations
binaires, comme c’est le cas dans ce travail, A peut étre partitionné en deux ensembles : les
attributs unaires (A;) et les attributs binaires (A,), également appelés relations binaires. Le
pattern P peut donc étre représenté de maniere équivalente comme un EAR-pattern selon
la définition suivante.

Définition 8.4 (EAR-pattern GCA ). Soit P ¢ V* x A le graphe quotient d’'un graph
pattern GCA. Soit A = A; U A,, avec A; 'ensemble des attributs unaires et A, ’ensemble
des attributs binaires. Le EAR-pattern de P s’écrit Pg = (V, E, Ly, L) ou:
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— V={v|3aeA((..,v,...),a) € P};

— E={(v1,v2) | Jac A, ((v1,v2),a) € P};
— Ly(v)={aec A1 | ((v),a) € P};

— Lg((v1,v9)) ={re Ay | ((v1,v2),7) € P}.

Compte tenu de ces définitions, les résultats produits par RCA et GCA peuvent étre
transformés dans une représentation commune, appelée EAR-patterns, permettant ainsi la
comparaison de leurs intensions de concepts. La section suivante démontre que I’ensemble
des intensions de concepts issus de RCA est inclus dans celui de GCA.

8.4 Comparaison des EAR-Patterns RCA et GCA

Soient (K, R) une FRC, K le contexte graphe correspondant, et 7' = (K,RUR"™) la FRC
étendue avec les relations inverses. Soit S = U{S1, S, ..., Sm} = (Vs, Es, Lvg, L) I'union
disjointe! des EAR-patterns RCA de F et soit P = U{ Py, P, ..., P,} = (Vp, Ep, Ly,, Lg,)
I'union disjointe des EAR-patterns GCA de K. Dans ce qui suit, nous prouvons que .S est un
sous-graphe de P au sens de la définition 8.5, et, par conséquent, que chaque EAR-pattern
RCA est un sous-graphe d’'un EAR-pattern GCA.

Définition 8.5 (Sous-graphe). Soient G| = (Vi, F1, Ly, Lg1) et Gy = (Va, Ea, Lyo, Lgs)
deux graphes étiquetés. G5 est un sous-graphe étiqueté de GGy (G5 € (&) si et seulement si
‘/2 c ‘/1, E2 c El, You e ‘/2 : LVQ(U) = LV1(v) et V(Ul,Ug) € EQ : LE2((U1,U2)) = LEl((Ul,Ug)).

Avant d’énoncer notre théoréme, nous introduisons le lemme 5, qui servira pour sa
démonstration.

Lemme 5. Pour tout R € Ry, and 7 € I}, nous avons w(int(R)) = int(w(R)) [FERRE et
CELLIER, 2020].

Démonstration. Soit R = {01,...,0,}. m(int(R)) = 7(Nser (0,1))
=m((¢Y(01,...,0n),Ix...xI))=(w(¥(01,...,00)), I x...x1)
= (W(7(01),...,7(0)), I x ... xI) = ger (7(0),I) = Mger(r) (0, 1) = int(m(R)) O

Théoréme 4. Soit F' = (K,R UR") une FRC étendue avec des relations inverses et K le
contexte graphe correspondant a la FRC (K, R). Soit S = {J; S; 'union des EAR-patterns
RCA de I et soit P = |J; P; I'union des EAR-patterns GCA de K. Nous avons S € P, et
donc V.5;: 3P;: S; € P;.

1. Chaque concept appartient a un et un seul pattern.

138



8.4. COMPARAISON DES EAR-PATTERNS RCA ET GCA

Démonstration. Soit C'r 'ensemble des extensions de concepts RCA de F' et C; 'ensemble
des extensions de concepts GCA de K. En nous basant sur le résultat C'z € Cg; (théoréme 3),
nous voulons prouver que S € P en démontrant que :

— Y(v1,v2) € Eg: (v1,v2) € Ep, Lg,((v1,v2)) = Lp,((v1,v2)) (1)
— et Vv,; € VS t; € Vp, LVS(Ui) = LVp(Ui) (2)

(1) Soit (v1,v9) € Eg une aréte, et 7 € Ly (v1,v2) une relation dans son étiquette, ou
v et vy correspondent aux extensions des concepts C'y, C5 respectivement. Cela implique
que 3r(Cy) € Int(Cy) et Ir~(CY) € Int(Cy), par définition des EAR-patterns RCA. Alors
Voi € vy : Jog € vy : (01,09) € 7 et Yoy € vy : Jo1 € v : (09,01) € 77, donc (01,09) € 1 (*),
d’aprés la définition des attributs relationnels.

Soit Ris = {(01,02) | 01 € v1,09 € va,(01,02) € T} un object relation (définition 4.6)
d’arité 2. Nous avons 7T1(R12) = {71'1(01,02) | (01702) € ng} = et 7TQ(R12) = {71'2(01,02) |
(01,02) € R12} = 092, selon (*).

Soit Q12 = int(Ri2) = Ng{Q((01,02))}(01,00)cr1s = ((y1,92), P12), pour un certain
pattern Pjo, par définition de I'intension d’un object relation d’arité 2. Cela implique que

7(y1,Y2) € Pio, par définition de Ris.

Prouvons que ext(((y1), Pi2)) = v1 et ext(((y2), P12)) = va, c’est-a-dire que les noeuds
Y1, Y2 dans le EAR-pattern GCA correspondent aux noeuds vy, v, dans le EAR-pattern RCA.

ext(((y1), Pr2))

= ext(m(Q12)), car 11 ((y1,%2)) = 1

= ext(m (int(Ri2))), car Q12 est U'intension de Ry9

= ext(int(m (R12))), d’aprés le lemme 5

= ext(int(vy)), puisque 71 (R12) = v1

= vy, car v, € Cr € Cg, donc vy est fermé en tant qu’une extension de concept. Par ana-
logie, nous avons également ext(((y2), P12)) = vs. Ces résultats impliquent que 7(y1,y2) €
Pys, donc, d’aprés la définition des EAR-patterns GCA, (v1,v9) est une aréte dans P, et r
est 'une de ses étiquettes.

De plus, sir est une étiquette de (v1,v2) dans P, alors r(yy,y2) € P2, donconar(o1,0:)
pour tous les (01,02) € ext(Q12). Par conséquent, pour tout 0; € mi(ext(Q12)) = vy, il
existe 0y € mo(ext(Q12)) = vo tel que (01,02) € 7. Il en résulte que Ir(Cy) € Int(Cy). De
méme, nous avons 37~ (C1) € Int(Cy). Par conséquent, r est une étiquette de l'aréte (vy, v3)

dans S.

(2) Soit v € Vs un noeud et a € Ly, (v) un attribut d’étiquette, o v correspond a 'exten-

2. m et mo représentent respectivement la projection sur la premiére et la deuxiéme composante d’'un
tuple ou d’un ensemble de tuples.

139



CHAPITRE 8 : COMPARAISON INTENSIONNELLE DE RCA ET GCA DANS LEUR CADRE COMMUN

sion d’un concept C'. Cela implique que a € Int(C') par définition des EAR-patterns RCA,
donc Vo ewv:a(o).

Soit @ = int(v) = ((y), P) pour un certain pattern P. Nous avons a(y) € P car @
généralise tous les objets de v, qui ont tous l'attribut a. De plus, ext(Q) = ext(int(v)) = v
car v € Cp € Cg. Alors, d’aprés la définition des EAR-patterns GCA, v est un nceud de P,
et a est 'une de ses étiquettes.

De plus, si a est une étiquette de v, alors a(y) € P, donc on a a(o) pour tout o € v, d’ou
a € Int(C), et enfin a est une étiquette de v dans S.

]

Le théoréme 4 couvre trois configurations. Premieérement, il peut arriver que S = P,
c’est-a-dire que 'ensemble des EAR-patterns soit identique dans les résultats des deux ap-
proches. Un exemple illustratif est celui des animaux et des aliments qu’ils consomment :
les figures 8.9 et 8.3 présentent respectivement ’ensemble des EAR-patterns RCA et I'en-
semble graph patterns GCA (qui coincide ici avec ’ensemble des EAR-patterns GCA, en
I’absence de concepts automorphes).

Deuxiémement, il peut exister une correspondance biunivoque entre les EAR-patterns
des deux approches, mais au moins une paire de patterns distincts .S; et P; vérifie S; ¢ P;.
Les exemples concernant les voitures et les garages, présentés a la section 7.3.3, illustrent
bien cette configuration o GCA produit des concepts supplémentaires par rapport a RCA.
A titre d’illustration, la figure 8.11 présente le EAR-pattern GCA () incluant le concept
@2z (en vert), absent du résultat de RCA pour 'exemple CG;,/ FRCy,_r. La figure 8.12
présente le EAR-pattern RCA (S3) correspondant. Ces deux figures mettent en évidence la
relation S5 c P,.

La troisieme configuration apparait lorsqu’il existe un pattern P; qui ne peut étre associé
a aucun pattern S;. C’est notamment le cas de 'exemple portant sur les cycles, qui sera
présenté et analysé dans le chapitre 9.

En conclusion, chaque EAR-pattern de RCA est un sous-graphe d'un EAR-pattern de
GCA. Par conséquent, 'ensemble des intensions de concepts RCA est inclus dans celui des
concepts GCA.

8.5 Potentiel pratique des EAR-patterns RCA

Au-dela de leur role de passerelle pour la comparaison intensionnelle entre RCA et GCA,
les EAR-patterns RCA constituent une base solide pour faciliter 'interprétation de la famille
de treillis RCA. Ils offrent une représentation compacte et lisible des résultats de RCA, avec
suppression des redondances. Ainsi, les EAR-patterns améliorent a la fois 'exploration et
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Q21 ¢(...) Q2bc (...)
manufacturer
D Cc
A A
Masis{lainseu Sell / Maintain| Maintain/ Sell \ Maintain / Sell Maintain¥ell Sell | Maintain / Maintain|\ Maintain\ Maintain / Sell| Maintain /Sell Sell
y Q2y (...)
Q2k (...) Q2s (...) Q2m (...) Qv
Renault family s = Peugeot
car6 car2 carb car5 car5
carl carl car2 2 car2
carl car
OwnerOwner /Owner Owner Owner‘bw:%)wner OwnerlOwner /Owner
Q20 (...)
countryside
married
Julie
Bob

FIGURE 8.11 — Représentation du EAR-pattern GCA contenant le concept ()22 non produit
par RCA. La notation parenthésée des noms des concepts est abrégée par “(...)" pour plus
lisibilité. Par exemple, dans (Y2l (...), la partie "(...)" représente les éléments (s m k o bc).

Garage 3 Garage 9 Garage 6 Garage 1 Garage 5
manufacturer manufacturer service manufacturer
A
D A D C
Sell Maintain sm/ Maintain \ Maintain Sell ‘aé’e‘ff‘i“ Sell /Maintain ” Maintain \ Maintain \_ Maintain Maintain /Sell [Sell
Car_ 17 4 » Car 14 /
Car_12 = Car 11 Car 6 Car_1 Car 2 Car_10 Car 5
carl family Renault Renault Renault Peugeot Peugeot Peugeot
car2 carl car2 carl family berline sport car? family
carb car2 (C;gig car6 carl car6 carb carb car2
car6
\C‘)wner Owne%wner aner Owne%wner \O‘wner Owne%vner
v
Person_5 Person_3 Person_1
countryside countryside countryside
married married female
Bob male married
Julie Bob Julie

FIGURE 8.12 - EAR-pattern RCA associé au EAR-pattern GCA de la figure 8.11.

Iinterprétation des résultats en proposant une vue synthétique et structurée des relations
inter-concepts.

A linstar du travail sur la représentation de la famille de treillis RCA sous forme d’une
hiérarchie de graphes de concepts [FERRE et CELLIER, 2018], il est possible de structu-
rer hiérarchiquement I’ensemble des EAR-patterns RCA. Une telle hiérarchie pourrait étre
construite en se basant sur la relation de subsomption entre les concepts (du point de vue
des extensions), offrant ainsi une représentation plus lisible que celle proposée dans [FERRE
et CELLIER, 2018], dans la mesure ou les attributs relationnels strictement redondants ont
été supprimés dans les EAR-patterns RCA.
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La transformation des résultats de RCA en un ensemble de EAR-patterns, constitue éga-
lement une base solide pour un usage combiné des approches RCA et GCA. Par exemple,
alors que GCA utilise les concepts automorphes pour capturer des structures symétriques
ou la présence des cycles dans les données, les EAR-patterns RCA permettent de repré-
senter des structures plus générales, faisant abstraction des détails spécifiques capturés par
GCA via les concepts automorphes. Une analyse conjointe de ces deux types de structures
offrirait la possibilité d’extraire différents niveaux de connaissances.

De plus, les EAR-patterns RCA, tels qu’ils sont définis actuellement avec le quanti-
ficateur existentiel 3, fournissent une base qu’on peut étendre a des familles de treillis
construites avec d’autres quantificateurs de scaling (3V, 3 2, etc.) [BRAUD et al., 2018]. Cela
permettrait de dépasser la limitation actuelle de GCA, dont les patterns n’utilisent implici-
tement que le quantificateur 3, et de produire des patterns relationnels plus représentatifs
des structures présentes dans les données. L’intuition serait alors de redéfinir et d’adapter
la notion de redondance des attributs relationnels pour différents quantificateurs.

8.6 Conclusion

Dans chapitre, nous avons conduit une étude comparative de RCA et de GCA du point
de vue de leurs intensions de concepts dans leur cadre commun. Celui-ci inclut notamment
I'utilisation du quantificateur existentiel 3, le calcul des concepts unaires, le traitement des
relations binaires, ainsi que I'intégration des relations inverses dans les données de RCA.

Pour mener a bien cette comparaison, nous avons transformé la famille de treillis RCA
en un ensemble de patterns relationnels semblables aux graph patterns GCA, afin de rendre
les intensions de concepts des deux approches directement comparables. Nous avons en-
suite établi que ’ensemble des intensions de concepts RCA est inclus dans celui de GCA,
en démontrant que chaque pattern relationnel RCA constitue un sous-graphe d’un pattern
GCA pour un méme jeu de données. Ce résultat, combiné a celui de la comparaison exten-
sionnelle — qui démontre que I’ensemble des extensions de concepts RCA est inclus dans
celui de GCA - permet de conclure que les résultats de RCA sont inclus dans ceux GCA.
Par conséquent, GCA apparait comme plus expressif que RCA dans leur cadre commun.

La comparaison de RCA et GCA sur leurs dimensions extensionnelle et intensionnelle
a été menée dans une optique de rapprochement des deux approches. Le chapitre suivant
propose, une comparaison de RCA et GCA a travers leurs différences.
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Comme mentionné précédemment, RCA et GCA different sur plusieurs aspects, notam-
ment la modélisation des relations n-aires et le traitement des cycles. Dans ce chapitre, nous
proposons une analyse comparative de RCA et de GCA a travers leurs différences. Plutot
que de chercher a rapprocher les deux approches, I'objectif est d’examiner dans quelle me-
sure leurs divergences peuvent se révéler complémentaires et bénéfiques pour I’analyse.
Nous abordons ainsi les différences liées a la modélisation des relations ternaires (et n-aires
en général) ainsi qu’au traitement des cycles. La section 9.1 analyse I'influence de la modé-
lisation des relations n-aires sur les résultats des deux approches, tandis que la section 9.2
met en évidence leurs différences dans le traitement des cycles. La section 9.3 présente une
expérimentation de RCA et GCA sur un jeu de données réel, et la section 9.4 termine par
un apercu des atouts et limites de ces deux approches.
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CHAPITRE 9 : ANALYSE COMPARATIVE DE RCA ET DE GCA A TRAVERS LEURS DIFFERENCES

9.1 Impacts de la modélisation des relations n-aires sur
les résultats de RCA et de GCA

Dans de nombreux domaines réels, les données sont de nature multi-relationnelles, ce
qui permet de représenter plusieurs types d’interactions entre les entités. La représentation
et Panalyse de ces données sont nécessaires pour comprendre des phénomenes complexes
impliquant de multiples entités. A titre d’exemple, dans le domaine de la recherche, un cher-
cheur peut étre affilié a plusieurs institutions, collaborer avec différents chercheurs et orga-
niser des événements avec d’autres chercheurs. L’analyse de données multi-relationnelles
peut nécessiter des choix de modélisation, tels que la représentation des relations n-aires,
et ce choix peut avoir une incidence sur les réponses aux questions d’analyse.

En matiere de traitement de relations, RCA se limite aux relations binaires, tandis que
GCA est congue pour prendre en charge directement les relations n-aires d’arité quel-
conque. Ainsi, les relations n-aires doivent étre transformées en relations binaires afin de
s’adapter au format de données de RCA [KEIP et al., 2019]. Cette section propose une com-
paraison pratique entre RCA et GCA, centrée sur leurs différence dans le traitement des
relations n-aires, en mettant un accent sur leur capacité a répondre aux questions d’ana-
lyse. Cette comparaison des deux approches a été publiée dans [Fokou et al., 2025a].

9.1.1 Données et questions d’analyse

Pour cette étude, nous considérons le contexte graphe CGg illustré a la figure 9.1, qui
décrit un réseau de chercheurs, leurs affiliations ainsi que leurs activités, telles que 1'orga-
nisation de conférences et la publication d’articles!. Ce contexte graphe est composé de 5
catégories d’objets :

— researcher : décrit les chercheurs {R1,..., R6} par leur nombre de publications,
qui peut étre inférieur a 10 (n_pub_inf 10) ou supérieur a 10 (n_pub_sup_10), et par
leur nombre de citations, qui peut étre inférieur a 20 (n_cit_inf_20) ou supérieur a 20
(n_cit_sup_20);

— institution (inst): décrit les institutions {11, ..., [4} par leur type (university, company)
et par leur pays (F'rance, Romania);

— paper : décrit les articles { P1,..., P4} par leur type (journal, conference (cf)) et par
le fait qu’ils ont été cités (cited);

— role : représente les différents rdles {g_chair, p_chair, |_organizer} correspondant a
general chair, program chair et local organizer respectivement;

— conference (conf): représente les différentes conférences { ICC'S, ICFCA, CLA}.

1. II convient de noter que ce contexte graphe ne représente qu’un extrait de ce que pourrait étre un tel
graphe de données pour une communauté de chercheurs dans un domaine donné (par exemple, ’AFC).
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FIGURE 9.1 — Contexte graphe CGg décrivant les chercheurs et leurs activités.

Les catégories role et conference n’ont pas d’attributs. En ce qui concerne les relations,
CGg comprend :

— la relation binaire is_affiliated_to(researcher,inst), qui indique a quelle institution
un chercheur est affilié;

— la relation ternaire publish(researcher, paper, inst), qui signifie qu'un chercheur
publie un article avec une affiliation donnée;

— et larelation ternaire organize(researcher, conf, role), qui indique qu’un chercheur
organise une conférence en y occupant un réle donné.

GCA utilise des nceuds en ellipse pour représenter les relations n-aires (pour n > 2) et
utilise des chiffres pour indiquer la position des entités dans la relation. Pour les relations
ternaires, ces chiffres vont de 1 a 3, par exemple organize( R4, ICFCA, p_chair) dans la
figure 9.1.

Sur un tel jeu de données, I'utilisateur peut formuler diverses requétes; en voici deux
exemples :

— queryl:'ensemble des institutions dont les chercheurs ont organisé une conférence;
— query2 : I'ensemble des chercheurs qui ont publié des articles et sont affiliés a une

institution francaise.

Nous nous appuyons sur ces deux requétes pour examiner l'effet de la modélisation des
données sur les résultats produits par RCA et GCA, et donc sur leurs réponses aux questions
d’analyse. La section suivante présente la modélisation des relations ternaires dans les deux
approches.
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9.1.2 Modélisation des relations ternaires

RCA nécessite une modélisation initiale pour les relations n-aires, et cette modélisation
n’est pas sans conséquences, car elle peut entrainer des pertes d’informations structurelles.
La question qui se pose est de savoir comment modéliser efficacement les relations n-aires a
la maniere de RCA. En ce qui concerne GCA, la question porte sur la difficulté d’interpréter
les patterns calculés directement sur les relations n-aires. Nous explorons comment chacune
des approches RCA (suivant la modélisation des données) et GCA satisfait les questions
queryl et query?2.

9.1.2.1 Modélisation des relations ternaires avec RCA

Pour répondre aux questions query1 et query2 avec RCA, nous recourons aux encodages
par réification, décomposition et partitionnement présentés dans [KE1p et al., 2020, 2019]
pour modéliser les relations ternaires, comme décrit a la section 5.4. Parmi ces encodages,
la réification n’entraine pas de perte d’informations, la décomposition quant a elle peut
conduire a une perte d’informations structurelles, tandis que le partitionnement entraine
une perte de connectivité.

Encodage par réification. Les relations publish et organize sont réifiées par la création
de nouveaux contextes formels et relationnels. La relation organize(researcher, conf, role)
est encodée en ajoutant un contexte formel organisation (Org) — sans attributs — dont les
entités correspondent aux triplets représentant les instances de la relation ternaire organize,
ainsi que trois contextes relationnels reliant les entités de Org aux composantes initiales
de organize : is_done_by(Org, researcher), is_about(Org, conf) et with_role(Org, role).
De facon similaire, la relation publish(researcher, paper, inst) est représentée par trois
contextes relationnels : concern( Publish, paper), is_published_by( Publish, researcher)
et with_affiliation( Publish, inst), ou les entités de Publish sont des triplets représentant
les instances de la relation ternaire publish.

Avec la réification, RCA (sans intégration des relations inverses dans les données) pro-
duit 61 concepts (hors concepts bottom?) et inclut la réponse a query2 mais pas celle a
queryl. Aprés’ajout des relations inverses 3, RCA génére 99 concepts; parmi eux, le concept
Inst_12 fournit la réponse a queryl. Certaines requétes nécessitent en effet 'intégration
des relations inverses dans les données. Par exemple, pour queryl, I'inverse de la relation
is_affiliated_to a été ajouté afin de relier les entités de la catégorie institution a celles de
researcher.

La figure 9.2 présente un extrait des concepts RCA liés au concept Inst_12, c’est-a-dire
participant a la définition de son intension. Les fleches représentent les attributs relation-

2. Dans la suite, les concepts bottom ne sont pas pris en compte dans les résultats de RCA et de GCA.
3. Pour la suite de 'analyse, des relations inverses sont ajoutées aux données de RCA.
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FIGURE 9.2 — Description spécifique de I'intension du concept Inst_12 (réification).

nels entre les concepts, et les relations se terminant par "_r" correspondent aux relations
inverses. L’extension de Inst_12 est {I1, I3}, ce qui constitue la réponse a query1. Son in-
tension indique qu’il s’agit des institutions dont les chercheurs (concepts R_14, R_15) sont
reliés aux concepts de Org (concepts Org_5, Org_12, Org_13, encadrés en bleu) représen-
tant les entités réifiées sous forme de triplets. En examinant I'intension de ces concepts Org,
toutes les informations sur chaque groupe d’organisation sont accessibles : les chercheurs
impliqués, les institutions concernées et les roles des chercheurs dans 1'organisation des
conférences.

Dans le cas de query?2, le résultat est { R5, R6} qui correspond a I'extension du concept
R_13, dont I'intension indique qu’il s’agit des chercheurs affiliés a des institutions fran-
caises ({11, [4}) et participant aux publications du concept Publish_8, qui a pour extension
{(Rb, P4, 14), (R6, P4, I1)}. Comme pour les concepts Org, I'intension des concepts
Publish fournit toutes les informations relatives a une publication : les chercheurs, les ar-
ticles et les affiliations associées.

Encodage par décomposition en chaine. Les relations ternaires sont transformées en
une chaine de deux relations binaires. Ainsi, organize(researcher, conf, role) est encodée
par is_organize_by(conf, researcher) et has_role(researcher, role), indiquant qu’une confé-
rence est organisée par un chercheur et qu'un chercheur posséde un role. De méme, la re-
lation publish(researcher, paper, inst) est encodée par is_publish_by(paper, researcher)
et belong_to(researcher, inst), signifiant qu’un article est publié par un chercheur et qu’un
chercheur appartient a une institution (comme avec la relation is_affiliated_to).

Avec la décomposition en chaine, RCA produit un total de 59 concepts et inclut les
réponses a queryl et query2. La figure 9.3 illustre un extrait du concept R_13 dont l'ex-
tension répond a queryZ2. Son intension montre que les chercheurs {R5, R6} sont affi-
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FIGURE 9.3 — Description spécifique de 'intension du concept R_13 (décomposition).

liés & des institutions francaises ({11, I4}) et ont publié I'article P4 (concept Paper_1).
Contrairement a la réification, il n’y a aucune indication spécifiant qu'un article est pu-
blié par un chercheur ayant une affiliation donnée. En ce qui concerne queryl, sa réponse
est {11, I3}, 'extension du concept Inst_11 dont I'intension exprime qu’il s’agit des ins-
titutions ayant des chercheurs qui ont des rdles et ont organisé des conférences. Comme
dans le cas de la relation publish, cela n’indique pas spécifiquement qu’une conférence est
organisée par un chercheur ayant un réle donné. Nous notons également que la relation
has_role(researcher, role) a elle seule n’est pas trés significative, car un chercheur pos-
séde un role en ce qui concerne sa participation a 'organisation d’une conférence. En effet,
la décomposition en chaine entraine une perte d’informations structurelles, car elle ne per-
met pas de capturer la dépendance globale entre les entités.

Encodage par partitionnement. Les relations sont partitionnées en fonction des en-
tités d’une de leurs composantes. Ainsi, la relation organize(researcher, conf, role) est
scindée, selon les entités de role, en un ensemble de relations role; (chercheur, conf) pour
chaque role; € role. Par exemple, p_chair( R4, IC FC A) signifie que le chercheur R4 est le
program chair de la conférence IC'F'C'A. Pour la relation publish(researcher, paper, inst),
un partitionnement selon les entités de la catégorie institution produit des instances de la
forme I4(R5, P4), indiquant que le chercheur R5 a publié I'article P4 avec I'affiliation /4.
Cependant, ce partitionnement génére une forme de conflit, dans la mesure ou les entités de
la catégorie tnstitution interviennent également dans la relation is_affiliated_to : la méme
entité se retrouve ainsi partagée entre un objet et une relation. Pour des raisons similaires,
un partitionnement de publish sur les entités de researcher n’est pas envisageable, celles-ci
étant déja impliquées dans d’autres relations (is_affiliated_to et organize)*. La seule option
restante consiste donc a partitionner sur les entités paper, ce qui conduit a des relations de
la forme paper;(researcher, inst) pour chaque paper; € paper.

Avec ce partitionnement, RCA produit 37 concepts et contient la réponse a query2 mais
pas celle a queryl. En effet, les entités de la catégorie institution sont décrites par leurs
chercheurs (via la relation is_affiliated_to_r), lesquels sont caractérisés par leurs affilia-

4. Remarquons que dans [KErp et al., 2020], le partitionnement a été appliqué a un jeu de données ne
comportant qu'une seule relation ternaire, ce qui excluait toute possibilité de conflit.
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FIGURE 9.4 — Description spécifique de 'intension du concept R_13 (partitionnement).

tions et leurs articles. Cela justifie la présence d’une réponse a query2, portant sur les cher-
cheurs qui ont publié des articles et sont affiliés a une institution frangaise. En revanche,
comme les chercheurs ont occupé des roles différents dans I’organisation des conférences,
I’ensemble des chercheurs impliqués dans 'organisation ne constitue pas un concept. Par
conséquent, ’ensemble des institutions caractérisées par ces chercheurs ne forme pas non
plus un concept, ce qui explique ’absence de réponse a query1.

En ce qui concerne query2, son résultat est { R5, R6}, 'extension de R_13 représen-
tée dans la figure 9.4. Son intension indique que les chercheurs { R5, R6} sont affiliés a
des institutions francaises ({ /1, /4}) et ont publié I'article P4 avec les affiliations {I1, I4}.
Cependant, nous ne disposons d’aucune information sur les caractéristiques de P4, contrai-
rement a la réification et a la décomposition en chaine (voir figure 9.3). Le partitionnement
permet de capturer la dépendance globale entre les entités, mais entraine également une perte
des caractéristiques associées aux objets des catégories partitionnées, et donc la perte des
concepts correspondants. Dans notre cas, nous perdons les concepts des catégories role et

paper.

9.1.2.2 Modélisation des relations ternaires avec GCA

GCA appliqué directement sur les données initiales (GCA-ternaire) génére 9 graph pat-
terns comprenant au total 63 concepts. Les réponses aux requétes queryl et query2 se
trouvent respectivement dans les patterns P7 (figure 9.5) et P9 (figure 9.6). A I'instar du
contexte graphe, les relations ternaires apparaissent dans les graph patterns sous la forme
de noeuds en ellipse.

La solution & queryl, qui concerne les institutions dont les chercheurs ont organisé une
conférence est {11, I3}, correspondant a 'extension du concept Q7a dans P7 (figure 9.5).
Le pattern P7 capture I'organisation des conférences par des chercheurs, en indiquant les
roles et affiliations associés. Il met en évidence : (i) Uensemble des chercheurs impliqués
dans lorganisation d’au moins une conférence (Q)7m), (ii) leurs institutions d’affiliation
(Q7a), (iii) les conférences effectivement organisées (()72), ainsi que (iv) les réles occupés
par les chercheurs lors de ces organisations (Q7h).
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FIGURE 9.5 — Pattern P7 extrait des patterns du contexte graphe de la figure 9.1 .

La réponse a la question query2, relative aux chercheurs ayant publié des articles et affi-
liés & une institution frangaise est { R5, R6}. Elle correspond a I’extension du concept Q9%
du pattern P9, représenté a la figure 9.6. Dans ce pattern, le concept (9% constitue une
généralisation des concepts Q9f et ()9e. Plus précisément, ()9 f regroupe les chercheurs
ayant publié un article et étant affiliés a une institution francaise caractérisée par I’attribut
university, tandis que ()9e regroupe ceux ayant publié un article et étant affiliés a une ins-
titution frangaise caractérisée par 'attribut company. Les concepts Q9 f et ()9¢ permettent
ainsi de répondre a des questions plus spécifiques concernant la publication d’articles par
les chercheurs. Grace a un pattern, de nombreuses questions peuvent étre traitées, chaque
concept représentant a la fois une question et sa réponse : la question est définie par I'inten-
sion du concept et la réponse par son extension. Par exemple, la réponse a la requéte "quels
chercheurs ont organisé des conférences et publié des articles" est { R6}, correspondant a
I'extension de Q9 f (figure 9.6). Les graph patterns mettent ainsi en évidence les multiples
connexions existant entre les concepts.

Comme indiqué au chapitre 4, dans la représentation hiérarchique des patterns GCA, les
relations entre les concepts sont exprimées sous forme d’étiquettes textuelles dans les des-
criptions des concepts. Par exemple, la relation ternaire publish((QQ9k, (Q9¢c, Q97) reliant les
concepts Q9k, Q9¢, Q9 dans le pattern P9 sera représentée par 1'étiquette [publish_ c i]
dans l'intension de Q9%, ce qui signifie que : pour chaque chercheur k € ext(Q9k), il existe
un article ¢ € ext(Q9c¢) et une institution i € ext(()97) tels que la relation publish(k, c, i)
est vérifiée. Naturellement, plus I’arité d'une relation est élevée, plus il devient difficile de
lire et d’interpréter les intensions des concepts en langage naturel. Cela souléve la question
des encodages possibles des relations n-aires pour rendre les patterns de GCA plus lisibles.
Faut-il alors représenter les relations n-aires par des relations binaires (ou d’arité inférieure
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FIGURE 9.6 — Pattern P9 extrait des patterns du contexte graphe de la figure 9.1.

an) afin de faciliter 'interprétation des patterns GCA ? Dans la comparaison suivante, nous
analysons également les résultats de GCA obtenus avec les trois encodages appliqués aux
données de RCA.

9.1.3 Comparaison des résultats

Pour rappel, GCA-ternaire (c’est-a-dire appliquée aux données initiales) produit un total
de 63 concepts répartis en 9 graph patterns contenant 7 concepts automorphes (différentes
occurrences d’'un méme concept).

Tout comme RCA, GCA produit 99 concepts a partir des données encodées par réifi-
cation. Les 36 concepts supplémentaires (par rapport aux 63 concepts obtenus avec GCA-
ternaire) proviennent des entités réifiées et n’affectent pas les concepts des catégories ini-
tiales, qui restent inchangés. De plus, le nombre de graph patterns reste identique (9), mais
leur taille — c’est-a-dire le nombre de concepts par pattern — augmente avec 1’ajout de nou-
veaux concepts, entrainant une augmentation du nombre de concepts automorphes : 110
contre seulement 7 avec GCA-ternaire. Ces observations mettent en évidence les limites
de la réification : elle augmente la taille des données, ce qui entraine une croissance du
nombre de concepts et de la taille des graph patterns. GCA se montre peu adaptée a la réifi-
cation, car en plus de I'introduction de nouveaux concepts supplémentaires, ’augmentation
significative du nombre de concepts automorphes complique la lecture et 'interprétation
des patterns. En revanche, la réification présente ’avantage de préserver l'intégralité des
dimensions des relations sans perte d’information et de permettre la gestion de relations
d’arités variées en normalisant leur représentation.
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FIGURE 9.8 — Pattern P2.

FIGURE 9.7 — Equivalent du pattern P7 de la figure 9.5.

Avec la décomposition en chaine, GCA produit 59 concepts (identiquement a RCA) re-
partis en 9 patterns contenant 4 concepts automorphes. Les patterns GCA ne comportent
plus de relations ternaires (nceuds en ellipse) et apparaissent ainsi plus lisibles, donc plus
faciles a interpréter. La figure 9.7 présente ’équivalent du pattern P7 (figure 9.5) obtenu
a partir de la décomposition en chaine. Comme pour RCA, cette transformation entraine
une perte d’informations structurelles et peut introduire des ambiguités. A titre d’exemple,
lorsqu'une méme entité est partagée entre deux relations binaires, il devient difficile, voire
impossible, de reconstituer la relation d’origine.

Pour le cas du partitionnement, GCA produit 37 concepts, 11 graph patterns, sans aucun
concept automorphe. Le nombre réduit de concepts s’explique par la perte de ceux associés
aux catégories partitionnées. Il en résulte des patterns plus petits et moins riches en liens
entre les entités. La figure 9.8 illustre le pattern P2, qui contient la réponse a la question
query?2, représentée par 'extension du concept ()2b. Comme on peut le constater, les carac-
téristiques de l'article P4 ont disparu. Ce pattern P2 correspond a l'extrait RCA présenté
dans la figure 9.4.

I convient de souligner que ces différents encodages peuvent étre étendus a des rela-
tions d’arité supérieure a 3, et que le choix de I’encodage dépend des questions d’analyse.
Selon les requétes a traiter, un encodage peut se révéler plus approprié qu’'un autre. Par
exemple, le partitionnement effectué sur la relation organize n’a pas permis de répondre a
queryl. L’analyste peut également envisager des encodages combinés. A titre d’illustration,
la modélisation d’une relation (A, B, C, D, E') d’arité 5 peut commencer par sa décompo-
sition en une chaine de 2 relations ternaires r1(A, B, C) et r2(C, D, E), puis se poursuivre
par la réification de r1 et le partitionnement de r2. Enfin, la différence entre le nombre de
concepts obtenus avec GCA-ternaire (63 concepts) et ceux produits par GCA sur la décom-
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position en chaine (59 concepts) ou le partitionnement (37 concepts) illustre clairement la
perte d’informations associée a ces encodages, et donc la réduction de la capacité a répondre
a certaines requétes selon la modélisation choisie. Cependant, ces encodages peuvent étre
utilisés dans GCA (avec des conséquences similaires a celles observées pour RCA) pour
simplifier les graph patterns, qui deviennent plus difficiles a analyser pour les relations de
grande arité. Il s’agit ainsi d’'un compromis entre la lisibilité des patterns et la conservation
des informations, comme le montre la comparaison entre le pattern de la figure 9.7 et le
pattern P7 de la figure 9.5.

9.2 Traitement des cycles par RCA et GCA

L’étude des cycles et de leur longueur est essentielle dans de nombreux domaines, car
ils refletent des interactions complexes qui ne peuvent se réduire a de simples relations di-
rectes. Par exemple, dans les réseaux sociaux, les cycles révélent des communautés fermées
et des relations de réciprocité, offrant une meilleure compréhension de la structure et la
cohésion des groupes. A titre d’illustration, 1'équilibre des réseaux sociaux a été évalué a
partir de leurs cycles simples dans [GI1SCARD et al., 2017]. En biologie, les réseaux métabo-
liques présentent souvent des structures cycliques, rendant leur détection et leur analyse
cruciales. Klamt et al. calculent ainsi des chemins et des cycles dans les graphes d’inter-
actions biologiques [KLamT et von Kamp, 2009], tandis que Sridharan et al. identifient des
cycles de substrats dans des réseaux métaboliques [SRIDHARAN et al., 2015].

La comparaison des extensions de concepts RCA et GCA a montré que, méme avec
I'intégration des relations inverses qui rapprochent les résultats de RCA de ceux de GCA,
il existe des situations ou certains concepts GCA n’ont pas de correspondants dans RCA.
Les analyses indiquent que ces concepts GCA absents dans les résultats de RCA présentent
tous des cycles dans leurs intensions. Il est donc intéressant d’examiner plus en détail la
maniére dont ces deux approches traitent les cycles. Dans cette section, nous étudions, au
moyen de 2 exemples, les différences de traitement des cycles par RCA et GCA, ainsi que
leffet de ces cycles sur leurs résultats. Cette analyse fait partie des travaux présentés dans
[Fokou et al., 2024a].

Cycles de longueur 2-4. Le premier exemple, illustré par le contexte graphe CG, de
la figure 9.9, comporte un cycle de longueur 2 et un cycle longueur 4, définis par la relation
sociale love( Person, Person). Le tableau 9.1 présente la Famille Relationnelle de Contextes
(FRCy) correspondant a CGy.

En termes de résultats, la figure 9.11 présente 'ensemble des graph patterns GCA obte-
nus sur CG4 - Q1 (bleu), Q2 (rouge), Q3 (vert citron), Q4 (vert) — tandis que la figure 9.13
montre la vue hiérarchique correspondante. Comme l'illustrent ces résultats, les patterns
02, Q3 et Q4 contiennent des concepts automorphes, leurs cycles étant capturés via ces
concepts. Par exemple, les nceuds a et b dans Q2 sont deux concepts automorphes : ils pos-
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Jean Bob
male male Jean Anne
ﬁov Eove’love male female
Julie Anne 'on love\love
female female
Julie Bob
ove [love love
\ female male
Julien
male \lov
¥ ov Julien
Jeanne male
female

FIGURE 9.10 — Contexte graphe constitué
FIGURE 9.9 — Contexte graphe constitué des cycles de longueur 2-3 (CGs).
des cycles de longueur 2-4 (CGy).

TABLEAU 9.1 - FRC, (K = { Person}, R = {love}) correspondant au contexte graphe CG,

’ Person H male ‘ female ‘ ’ love ‘ Jean ‘Julie ‘ Julien ‘ Jeanne ‘ Bob ‘ Anne ‘
Jean X Jean x
Julie X Julie X
Julien X Julien X
Jeanne X Jeanne X
Bob X Bob X
Anne X Anne X

seédent la méme extension et des intensions équivalentes. Le pattern Q2 décrit ainsi deux
personnes qui s’aiment, formant un cycle de longueur 2.

Comme décrit au chapitre 4, la duplication des concepts dans GCA est souvent néces-
saire pour représenter correctement les graph patterns qui présentent des symétries. Ces
concepts automorphes sont regroupés dans la vue hiérarchique sous forme de méta-nceuds
(indiqués par des boites en pointillés), comme par exemple ()2a et ()2 dans la figure 9.13.
Le top concept ()Q3a-d dans la figure 9.13, dont I'extension inclut toutes les personnes, est
dupliqué en quatre nceuds formant un cycle de longueur 4 (voir la figure 9.11). Ce pattern
particulier mérite une explication : en examinant les données (figure 9.9), il apparait que
toutes les personnes sont impliquées dans un cycle de longueur 2 ou de longueur 4. La gé-
néralisation la plus spécifique correspond donc a un cycle de longueur 4, puisqu’un cycle
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FIGURE 9.11 - Graph patterns du contexte graphe CGy (figure 9.9).

de longueur 2 peut simuler un cycle de longueur 4 en parcourant le cycle deux fois.

La figure 9.12 présente le treillis RCA correspondant (ici, la famille de treillis ne com-
prend qu’un seul treillis). Le concept person_3 (top concept) posséde pour attribut rela-
tionnel 3 love(person_3). 1l s’agit d’un concept auto-référencé, matérialisant le fait qu'une
personne aime une autre personne. Le concept person_3 est équivalent aux concepts auto-
morphes qui composent le pattern Q3, car ils ont tous la méme extension. Néanmoins,
comme mentionné précédemment, leurs intensions sont définies différemment et véhi-
culent donc des informations distinctes : 'intension de ()3a-d integre la taille du cycle a
travers les concepts automorphes, tandis que 'intension de person_3 fournit une informa-
tion plus abstraite. Les concepts person_1 et person_2 qui se référent I'un a 'autre par le
biais d’attributs relationnels, représentent respectivement le fait qu'une personne female
aime une personne male et vice versa. Ces concepts person_1 et person_2 ont respective-
ment les mémes extensions que QQ4a-b et QQ4c-d, mais leurs intensions différent. Comme
pour Q3, Q4 forme un cycle de longueur 4, composé de deux paires de concepts auto-
morphes, comme le montre la figure 9.13.

Enfin, compte tenu du fait que les concepts automorphes sont considérés comme iden-
tiques, la hiérarchie de concepts de la figure 9.13 contient 6 concepts pour GCA (Q1a, Q1b,
Q2a-b, Q4a-b, Q4c-d, Q3a-d), contre 3 concepts pour RCA (person_1, person_2, person_3),
comme illustré dans la figure 9.12. Les concepts Q1a, Q1b, Q2a-b n’ont pas d’équivalents
dans RCA, car RCA ne tient pas compte de la longueur des cycles. Par exemple, le pattern
Q1 décrit qu'une femme et un homme s’aiment (cycle de longueur 2). Dans RCA, les ins-
tances Anne et Bob possédent respectivement les mémes attributs relationnels que Julie,
et Julien, a savoir {3 love(male), 3 love_r(male)}, et {3 love(female), 3 love_r(female)}.
Par conséquent, toutes ces instances sont regroupées dans les deux concepts person_1 et
person_2.

Les figures 9.14 et 9.15 montrent respectivement les EAR-patterns GCA et RCA obtenus
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FIGURE 9.12 — Treillis RCA obtenu sur FIGURE 9.13 — Hiérarchie de concepts GCA

FRC, (tableau 9.1). obtenue sur CGy.

pour cet exemple. Ces représentations permettent d’observer plus clairement les différences
entre les deux approches. La fusion des concepts automorphes dans les EAR-patterns GCA,
transforme certains cycles en boucles, généralisant ainsi la structure comme dans le résultat
de RCA. C’est le cas de 'EAR-pattern GCA basé sur le concept ()3a (en vert citron), qui est
équivalent a 'EAR-pattern RCA construit sur le concept person_1, contrairement au graph
pattern initial (figure 9.11) représentant un cycle de longueur 4. En résumé, GCA produit
deux EAR-patterns supplémentaires (Q1 et Q2) absents du résultat de RCA.

Cycles de longueur 2-3. Dans ce second exemple, nous modifions CG, afin d’étudier
leffet des cycles dont les longueurs n’ont pas de relation multiple/diviseur. Cette modifi-
cation consiste a supprimer le noeud Jeanne, ce qui raccourcit le cycle de longueur 4 a
une longueur de 3. Ce nouveau contexte graphe, nommé CGs, est présenté a la figure 9.10,
et la Famille Relationnelle de Contextes correspondante est désignée par FRC;. Les graph
patterns générés par GCA sur CGs sont illustrés a la figure 9.16, avec des longueurs variant
entre 2, 3 et 6. Les patterns de longueur 2 et 3 capturent et généralisent la structure des
cycles présents dans les données, tandis que ceux de longueur 6 généralisent les cycles de
longueur 2 et 3. Par exemple, Q1 et Q4 correspondent au contexte graphe CGs (figure 9.10),
Q2 généralise Q1, Q3 généralise Q4, Q5 généralise Q3 et Q4, et ainsi de suite. Cela montre
que, dans les patterns GCA, la généralisation la plus spécifique correspond a un cycle dont
la longueur est le plus petit commun multiple des longueurs des cycles dans le contexte
graphe, tout comme dans CG,4 ou la généralisation la plus spécifique était un cycle de lon-
gueur 4, soit le plus petit commun multiple de 2 et 4.
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FIGURE 9.14 — Représentation des EAR-patterns FIGURE 9.15 - EAR-patterns associés
associés aux graph patterns de la figure 9.11. au treillis RCA de la figure 9.12.

Contrairement & I’exemple CG, ou le concept d’extension {Anne} (Qla dans la fi-
gure 9.13) n’avait pas d’équivalent dans les résultats de RCA (figure 9.12), il est bien pré-
sent dans les résultats RCA obtenus sur FRC; (concept person_11 dans la figure 9.17). En
effet, lors du processus itératif, les attributs relationnels de { Anne} et { Bob} différent de
ceux des autres instances, car ils pointent vers des concepts distincts. RCA capture ainsi la
différence entre les deux cycles : une femme aime un homme qui aime une femme versus
une femme aime un homme qui aime un homme , sans tenir compte de leur longueur. GCA
produit deux concepts supplémentaires par rapport a RCA sur CGj (23 concepts contre 21) :
les concepts automorphes Q)2a-b et Q5a-c (figure 9.16) représentent respectivement les per-
sonnes impliquées dans des cycles de longueur 2 et 3, indépendamment de leur genre. Dans
RCA, ces deux patterns sont généralisés dans le top concept auto-référencé, qui peut étre
interprété comme une personne qui aime une personne et qui est aimée par une personne.

Ces analyses permettent de conclure que, lorsque les données contiennent des cycles,
certains graph patterns GCA peuvent représenter des cycles que RCA ne peut pas expri-
mer explicitement, puisque les cycles en RCA sont capturés via des attributs relationnels
renvoyant a des concepts. La ou GCA utilise des concepts automorphes pour représenter
distinctement certains cycles, RCA les généralise en des boucles simples ou les perd. C’est
le cas des patterns Q2 et Q5 (figure 9.16), qui ne sont pas explicitement représentés dans
le résultat de RCA, mais sont englobés dans le top concept. Ainsi, GCA conserve des infor-
mations sur la longueur des cycles, ce qui n’est pas le cas dans RCA.
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ovellove

love

FIGURE 9.16 — GCA patterns for CGs.

9.3 Mise en ceuvre de RCA et GCA sur un jeu de données
réel

Dans cette section, nous mettons en ceuvre RCA et GCA sur un jeu de données réel,

issu d’une ancienne pharmacopée arabe [KanL, 2009]. Ces données ont déja été explorées a

I’aide de I’Analyse Formelle de Concepts (AFC) et de RCA dans [Fokou et al., 2024b], dans le
but d’extraire les connaissances reliant les symptémes aux ingrédients des remedes qui les
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FIGURE 9.17 — Treillis RCA obtenu sur FRC; correspondant a CGs; ou les concepts 4 et 11
sont mis en évidence.

traitent. L’objectif était de répondre a des questions formulés par des biologistes, telles que :
"existe-t-il des groupes d’ingrédients pouvant étre associés a des groupes de symptémes ?".
Nous présentons ici la synthése des résultats obtenus avec RCA, ainsi que les difficultés
rencontrées lors de I’application de GCA sur ces mémes données.

Symptoms IsTreatedBy Remedies IsComposedOf | Ingredients

S— — — — — -

Category Form Taxon

FIGURE 9.18 — Mod¢le de données de FRC7 reliant les symptomes aux ingrédients.

Le modeéle de données utilisé encode les relations entre les symptomes, les remeédes
et les ingrédients comme l'illustre le diagramme de la figure 9.18. Pour cette analyse, les
données ont été limitées a un sous-ensemble de remedes traitant les symptomes de la
fiévre, leurs ingrédients et les symptomes associés. La FRC qui en découle est définie par
(K, R) = ({Ksymptoms: FCremediess Kngredienss }» { isTreatedBy, isComposedOf}) et est désignée par
FRC;. Le contexte Kgympoms (105 x 9) décrit les symptomes par leur type (catégorie) — ces
catégories sont basées sur 'expertise — le contexte Kremedies (26 x 13) décrit les remedes
par leurs formes et le contexte Kjngregients (156 x 147) décrit les ingrédients par leurs taxons
(espéce et famille). Concernant les contextes relationnels, le contexte isTreatedBy décrit la
relation selon laquelle un symptéme est traité par un remeéde, tandis que le contexte isCom-
posedOf exprime le fait qu'un remede est composé de certains ingrédients.

Les expériences ont été réalisées sur un ordinateur équipé d’un processeur Intel Core i7-
12850HX (16 Ceeurs avec Hyper-Threading, frequence 2.1-4.8GHz) et de 16Go de mémoire
RAM DDR5.
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9.3.1 Analyse avec RCA

Pour I'analyse avec RCA, deux combinaisons de quantificateurs de scaling ont été uti-
lisées afin d’extraire différents niveaux d’information : (1) le quantificateur 3 est appliqué
aux deux relations, (2) le quantificateur 3V est appliqué a la relation isTreatedBy, tandis que
le quantificateur 3 est utilisé pour isComposedOf-

Quantificateur 3. En termes de résultats, la famille de treillis de concepts obtenue
contient des séquences d’informations suivant la structure du diagramme illustré a la fi-
gure 9.18, les relations étant quantifiées de maniere existentielle. Cette configuration permet
d’extraire des connaissances de la forme : pour chaque = € Ext(Symptoms_i), il existe un
remeéde y qui traite x et il existe un ingrédient z qui compose vy, reliant ainsi les symptomes
et les ingrédients a travers les remédes. RCA produit un total de 1126 concepts, repartis
comme suit :

— 837 concepts pour le contexte Ksymproms
— 168 concepts pour le contexte Kremedies ;
— 121 concepts pour le contexte lCIngrediem.

Afin de faciliter I'analyse, un treillis Iceberg (avec un seuil de 4 %) [STUMME et al., 2002] a
été construit sur le contexte Kgymptoms. La figure 9.19 illustre un extrait de concepts connec-
tés issus des résultats de RCA. Elle met en évidence les symptomes (extension du concept
Symptoms_39) traités par au moins un remede appartenant au concept Remedies_105
(ainsi qu’a ses sur-concepts Remedies_130 et Remedies_165), lesquels sont composés
d’au moins un ingrédient provenant des familles apiaceae (Ingredients_121), zingiberaceae
(Ingredients_102) et piperaceae (Ingredients_112). Cet extrait suggere que les ingrédients
issus de ces familles de plantes sont utiles pour le traitement des symptomes regroupés dans
Symptoms_39. En effet, le poivre (peper) et la cardamome (cardamom), par exemple, sont
bien connus pour leurs effets bénéfiques sur les troubles digestifs.

Nous avons ensuite intégré les relations inverses dans FRC; afin d’analyser les résul-
tats et d’observer le comportement de RCA dans ce contexte. L’exécution de RCA a été blo-
quée apres la troisiéme itération de scaling dans I'outil RCAExplore [DOLQUES et al., 2019]
(jusqu’a interruption manuelle du processus). De méme, dans I'outil FCA4] [GUTIERREZ et
al., 2022], exécution a échoué apres la troisieéme itération de scaling avec une erreur d’al-
location mémoire. A ce stade, le nombre total de concepts générés atteint 42 445, repartis
comme suit :

— 3443 concepts contre 837 pour le treillis de Ksymproms

— 16 720 concepts contre 168 pour le treillis de Kremegies ;

— 22 282 concepts contre 121 pour le treillis de Kpgregients-

Ces statistiques montrent que le nombre de concepts est déja considérable deés la troi-
sieme itération de scaling, ce qui illustre le caracteére potentiellement explosif du calcul a

I'itération suivante, tant en termes de taille des contextes formels (en nombre d’attributs
relationnels) qu’en taille des treillis produits. On peut donc conclure, a la lumiére de ce cas
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FIGURE 9.19 — Extrait des résultats de RCA sur FRC; avec les quantificateurs 3/ 3.

applicatif, que I’ajout systématique des relations inverses n’est pas toujours pertinent dans
les applications pratiques de RCA, au risque pour I’analyste d’étre rapidement submergé
par un nombre excessif de concepts. Par ailleurs, selon les objectifs d’analyse, certaines
relations inverses peuvent ne pas étre significatives.

Quantificateurs 3V et 3. L’utilisation du quantificateur 3V sur la relation isTreatedBy
et du quantificateur 3 sur la relation isComposedOf permet d’extraire des séquences d’in-
formations sous la forme suivante : pour chaque x € Ext(Symptoms_i), tous les remédes
y qui traitent = appartiennent a Ext(Remedies_j), et il existe au moins un ingrédient
z € Ext(Ingredients_p) qui compose y. Ainsi, I'ingrédient z est utile pour le traitement
du symptéme x.

Le concept Symptoms_31 illustré a la figure 9.20, posséde une extension plus restreinte
que celle du concept Symptoms_39 présenté a la figure 9.19, bien que leurs attributs rela-
tionnels renvoient aux mémes concepts du treillis de Cremeqies- En effet, avec 'utilisation du
quantificateur 3V sur la relation isTreatedBy, tous les remeédes qui traitent les symptomes
de Symptoms_31 appartiennent a '’extension du concept Remedies_105 (ainsi qu’a celles
de ses sur-concepts Remedies_130 et Remedies_165). Cette contrainte explique ’absence
du symptéme diarrhoea dans 'extension de Symptoms_31, car celui-ci est traité a la fois
par Remedy 152 et par un autre remede n’appartenant pas au concept Remedies_105. Fi-
nalement, ce concept fournit une information plus précise que celle obtenue avec le quan-
tificateur 3. Il permet de conclure qu’il existe au plus trois remedes qui traitent ces quatre
symptomes digestifs, et que leurs ingrédients proviennent de quelques familles de plantes
bien identifiées. Ce résultat peut conduire a une étude plus approfondie de ces remedes spé-
cifiques ainsi que des ingrédients qu’ils partagent, afin de mieux comprendre leur efficacité
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Symptoms_31 Ingredients_121
disgestive | Remedies_105 aP'aceae
JVisTreatedBy(Remedies_105) _ anise, celery '
3VisTreatedBy(Remedies_130) 3 isComposedOf(Ingredients_12 1) dill, kerman cumin
3VisTreatedBy(Remedies_165) 3 1-sC0mposedOf(Ingredients_102) moon carrot, opopanax
3 isComposedOf(Ingredients_112) parsley
peel_root_fennel
poor digestion Remedy: 137 root_fennel
acid belching Remedy: 138 sagapenum
doggish craving ( for food ) Remedy: 152 seed_celery, seed_dill
bad chronic inveterate ulcers sccl(:(_ffcnncll
stalk fenne

Ingredients_112

- Ingredients_102
piperaceae
black pepper
fruit_white pepper ginger
long pepper seed_fruit_malabar cardamom
peppers seed_grain of paradis

zingiberaceae

FIGURE 9.20 — Extrait des résultats de RCA sur FRC; avec les quantificateurs 3V / 3.

potentielle dans le traitement des troubles digestifs.

9.3.2 Analyse avec GCA

Pour analyser ces données avec GCA, la FRC7 a été transformée afin d’obtenir le contexte
graphe correspondant, noté CGy. La figure 9.21 illustre un extrait partiel de ce contexte

graphe. Celui-ci se compose d’une grande composante connectée, relativement dense en
relations, ainsi que de quelques nceuds isolés.

hydrophobia renal complaints apoplexy disparate residues deafness tetter
psychiatric miscellaneous neurological miscellaneous neurological dermatological
1By isTreatedBy isTreatedBy isTreatedBy \isTreatedBy fisTreatedBy /isTreatedBy isTreatedBy 1
Remedy152
lugadiya
potion
snuff
‘omposedOf /isComposedOf (isComposedOf (isComposedOf \isComposedOf \ isComposedO: isComposedO: isC
.
greek gentian garlic germander long_birthwort scammony hypericum
gentiana_sp teucrium_scorodonia aristolochia_baetica convolvulus_scammonia hypericum_sp
gentianaceae lamiaceae aristolochiaceae convolvulaceae hypericaceae

FIGURE 9.21 — Extrait du contexte graphe CG7 correspondant a RFCy.
L’exécution de GCA sur ce contexte graphe ne produit aucun résultat, méme partiel. Le
processus est bloqué des les premiéres étapes, plus précisément lors du premier calcul du

produit catégorique I7x I7, ou I; désigne la relation d’incidence de CG;. Comme GCA vise
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a capturer les structures présentes dans le contexte graphe, le pattern résultant du produit
représenterait donc une structure de trés grande taille, correspondant a la forme globale de
CGy (voir figure 9.21). Or, CG; contient 287 sommets, ce qui implique que le produit I7x
I; génére un graphe de 2872 sommets, rendant le calcul extrémement coliteux en mémoire
et en temps de traitement. De plus, pour calculer le concept unaire correspondant a un
noeud = d’un pattern P, il est nécessaire de déterminer le plus petit retract (définition 4.3)
de P contenant z, qui sert a définir 'intension du concept. Cette opération accroit encore
la complexité, en raison de la taille du graphe et du nombre élevé de retracts a calculer.

Comme nous I'avons vu précédemment, I'intégration des relations inverses conduit
RCA a produire 42 445 concepts des la troisiéme itération de scaling, avant que son exé-
cution ne se bloque. Cela signifie que, si ’on suppose que I'ensemble des concepts produits
par RCA est équivalent a celui de GCA pour cet exemple, le résultat de GCA correspondrait
alors un a graph pattern d’au moins 42 445 noeuds (concepts). Compte tenu de la structure
du graphe, il est raisonnable de penser que le nombre de concepts automorphes y serait non
négligeable, ce qui complexifierait encore davantage la structure du graph pattern résultant,
tant en taille qu’en densité des relations.

Pour vérifier 'hypothése concernant la présence de nombreux concepts automorphes,
nous avons extrait un sous-graphe de CG7, composé de 24 nceuds et de 66 arétes (unaires
et binaires), que nous appelons CGg. Sur cet extrait, I’exécution de GCA parvient a calculer
(en quelques secondes) une partie des résultats avant de se bloquer. L’analyse de ce résultat
partiel révele que GCA a produit un graph pattern de 93 noeuds, comprenant 63 concepts
unaires et 20 concepts automorphes.

Du coté de RCA, 'analyse produit une famille de treillis comptant au total 42 concepts
lorsque les relations inverses ne sont pas prises en compte. L’intégration des relations in-
verses fait passer ce nombre a 63. Le calcul des EAR-patterns sur cette famille de treillis
aboutit a un unique EAR-pattern, qui met en évidence les connexions entre les 63 concepts.
La figure 9.22 présente un extrait de ce EAR-pattern RCA, ou les noms de relations sont
abrégés en isC pour isComposedOf et en isT pour isTreatedBy, afin d’un faciliter la lec-
ture. Dans cet extrait, on observe les informations relatives au traitement du symptome
putrid_fevers, a savoir que ce symptdme est traité entre autres par les remeédes Remedy 16
et Remedy 20, tous deux sous forme de pastille, et composés des ingrédients du concept
ingr_10. En particulier, les ingrédients de Remedy 20 proviennent de la famille apiaceae.

Ce résultat permet de constater que la difficulté de GCA ne dépend pas seulement de
la taille du contexte graphe, mais surtout de sa structure, notamment les relations de type
n-n (plusieurs-a-plusieurs). D’autres expériences menées dans le cadre de ce travail ont
montré que GCA fonctionne moins efficacement lorsque le contexte graphe se compose
d’'une grande composante connectée avec de nombreuses connexions, par rapport a des
graphes constitués d’ensemble de petites composantes. Cette observation a également été
corroborée sur les variantes de 'exemple concernant les voitures et les garages, analysées
dans la section 7.3.3.
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symp_7 symp_9 symp_4
fever
fever
wtrid fovers jaundice fever
P - - putrid_fevers putrid_fevers
ST isT \>1% NG
, g —
- T remedies_19 remedies_14 remedies_3
. remedies_18 o
remedies_7 - - pastille
astille pastille pastille
pastille P Remedy_16
Remedy_16 Remedy_16
Remedy_20 Remedy_16 Remedy 20 Remedy 20 Remedy_20
Y~ Remedy_20 Y Y~ Remedy_3
Remedy_4 Remedy_3 Remedy 4
isC isC isC isC \isC isC
ingr_25 ingr_19
ingr_28
— - 3 - - aeri
1nvg|72 mng mfgrflt) agrimony \gdr;]l]:::\y
apiaceae apiaceae apiaceae . alhagi PP
apium_graveolens P, pimpinella_anisum dgy???w anise . ‘mll;e .
: __ anise = alhagi barberry asarabacca
seed_celery seed_celery anise anise liquorice barberry
seed_celery sqaii'ron liquorice
X saffron
seed_celery seed_celery

FIGURE 9.22 - Extrait du EAR-pattern RCA obtenu sur FRCg correspondant a CGs.

Dans de tels cas "pathologiques", ou GCA peine a compléter les calculs, une solution
pourrait consister a calculer d’abord les familles de treillis RCA, puis a en déduire les EAR-
patterns associées. Ces derniers mettent en évidence les structures relationnelles entre les
concepts, de la méme maniére que les graph patterns GCA. Pour un exemple comme celui
traité ici, le EAR-pattern RCA résultant serait constitué de minimum 42 445 concepts avec
leurs relations correspondantes. En pratique, une telle structure est difficilement exploi-
table par un expert métier. Il serait donc par exemple intéressant d’envisager des solutions
permettant d’effectuer des requétes ciblées sur ces structures afin de faciliter I’analyse.

9.4 Atouts et limites de RCA et GCA d’un point de vue
pratique

D’un point de vue pratique, RCA et GCA présentent chacun des avantages et des limites.
Cette section en expose quelques-uns

Complexité de calcul. Le calcul du produit catégorique de graphes devient rapidement
couteux lorsque les graphes sont de grande taille et présentent de nombreuses connexions
entre les éléments. C’est le cas de 'exemple CG; présenté précédemment, pour lequel 'exé-
cution de GCA a été bloquée par manque de ressources. En revanche, dans de tels scénarios
ou le nombre de concepts est trés important, RCA peut pallier ces problémes de perfor-
mances et de lisibilité en permettant de filtrer les concepts, par exemple en construisant
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des treillis Iceberg [STUMME et al., 2002] ou des sous-hiérarchies de Galois [GoDIN et MILI,
1993].

Les quantificateurs de scaling. Contrairement a GCA, qui n’utilise implicitement
que le quantificateur 3, RCA bénéficie d’une diversité de quantificateurs (3, IV, IV,
etc.) [BRAUD et al., 2018; ROUANE-HACENE et al., 2013]. Cette variété confére au proces-
sus d’analyse une grande flexibilité en termes de précision de I'information qui peut étre
extraite. Ainsi, ces quantificateurs permettent a 'analyste de capturer différents niveaux
d’informations.

Lisibilité des résultats. La représentation principale des résultats de GCA sous forme
de graph patterns offre une vue compacte des concepts et permet d’obtenir une vision glo-
bale des structures présentes dans les données, ce qui constitue un avantage pour ’analyse.
En revanche, 'interprétation des résultats de RCA peut étre plus difficile lorsque ’ensemble
de données est volumineux, en raison de la nécessité de naviguer entre plusieurs treillis.
C’est pourquoi des outils tels que RCAviz [HUCHARD et al., 2024] ont été développés pour
faciliter cette navigation. Toujours dans cet objectif de rendre I'interprétation des résultats
de RCA plus accessible, Gutierrez et al. se sont intéressés a la génération de descriptions en
langage naturel des artefacts RCA a I'aide des Large Language Models (LLMs) [ GUTIERREZ
et al., 2025].

Modélisation des relations. RCA et GCA modélisent les relations de différentes ma-
nieres. La capacité de GCA a traiter les relations n-aires d’arité quelconque constitue un
avantage majeur pour I’analyse, car permet d’éviter les encodages préalables qui peuvent
entrainer une perte d’information. Cependant, 'interprétation des résultats devient plus
complexe a mesure que 'arité des relations augmente, ce qui peut nécessiter le recours a
des encodages tels que le partitionnement ou la décomposition pour réduire I’arité des re-
lations. Aussi, le fait que GCA intégre automatiquement les relations inverse peut s’avérer
problématique pour des données contenant des relations symétriques, ces dernieres étant
alors prises en compte en double. Enfin, pour I'analyse des données comportant des cycles,
RCA et GCA peuvent étre utilisés de maniere complémentaire afin de capturer différents
niveaux de longueur des cycles.

Concept n-aires. RCA se limite au calcul de concepts unaires, tandis que GCA cal-
cule également des concepts n-aires (ou concepts de relations n-aires), dont les extensions
sont constituées d’ensembles de n-uplets d’objets. La possibilité de calculer les concepts
n-aires constitue un avantage, car elle permet de représenter des structures plus riches et,
par conséquent, de répondre a des requétes d’analyse plus complexes.

9.5 Conclusion

Dans ce chapitre, nous avons réalisé une analyse comparative de RCA et de GCA en
nous focalisant sur leurs différences, notamment en ce qui concerne la modélisation des
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relations n-aires et le traitement des cycles.

Dans un premier temps, nous avons comparé RCA et GCA sur la modélisation des re-
lations ternaires, en examinant leur capacité a répondre aux questions d’analyse. En effet,
GCA permet de traiter directement les relations ternaires (et, de maniere générale, les re-
lations n-aires), tandis que RCA se limite aux relations binaires. Nous avons utilisé trois
encodages (réification, décomposition en chaine et partitionnement) pour modéliser les don-
nées de RCA, et nous avons analysé I'impact de ces encodages en termes de perte d’infor-
mations, d’augmentation de la taille des données et, par conséquent, de capacité a résoudre
les requétes. Nous avons ensuite appliqués ces mémes encodages aux données de GCA. Les
résultats montrent que les encodages par décomposition et par partitionnement produisent
des graph patterns plus lisibles et plus faciles a interpréter.

Dans un second temps, nous avons analysé les différences de traitement des cycles entre
les deux approches. Cette analyse a révélé que GCA capture certains cycles qui ne peuvent
pas étre représentés par RCA, dans la mesure ou, en RCA, les cycles sont pris en compte
par le biais d’attributs relationnels revoyant a des concepts. Elle a également montré que, la
ou GCA utilise des concepts automorphes pour représenter explicitement certains cycles,
RCA les généralise en boucles simples. Par ailleurs, nous avons évoqué I'impact positif de
la prise en charge des concepts n-aires par GCA et de I'utilisation de divers quantificateurs
dans RCA sur la qualité de I’analyse. En conclusion, les différences entre RCA et GCA ap-
paraissent comme complémentaires et peuvent étre exploitées conjointement pour enrichir
une tache d’analyse.
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CHAPITRE

CONCLUSION ET PERSPECTIVES

10.1 Conclusion

L’Analyse Relationnelle de Concepts (RCA) et ’analyse conceptuelle des graphes (GCA)
constituent deux extensions majeures de ’Analyse Formelle de Concepts (AFC), dévelop-
pées pour répondre au besoin croissant de traiter des données multi-relationnelles. Comme
discuté au chapitre 5, les travaux existants cherchant a rapprocher ou comparer RCA et
GCA se sont concentrés sur des aspects spécifiques, notamment 'interprétation des résul-
tats. Cependant, aucune étude n’avait jusqu’a présent proposé une comparaison globale
et approfondie, ni sur leurs fondements théoriques, ni sur la nature des résultats produits.
L’étude menée dans le cadre de cette theése a ainsi permis d’élargir la portée de cette compa-
raison, en offrant une vision plus complete des similarités et des différences entre ces deux
approches, aussi bien du point de vue théorique que pratique.

La premieére partie a présenté le cadre général du travail. Le chapitre 2 a introduit les
notions fondamentales de I’Analyse Formelle de Concepts (AFC), ainsi qu’un apercu de ses
principales extensions destinées aux données multi-relationnelles. Les chapitres 3 et 4 ont
ensuite présenté, respectivement, les approches RCA et GCA, qui constituent le socle de
ce travail. Enfin, le chapitre 5 a proposé une synthése de ’état de I’art sur les liens et les
rapprochements entre RCA et GCA.

La deuxiéme partie de cette these a présenté les principaux résultats obtenus. Ces contri-
butions concernent a la fois les aspects théoriques et pratiques des méthodes RCA et GCA.
Elles sont résumées ci-dessous.

Inclusion de ’ensemble des concepts RCA dans celui de GCA. Nous avons démontré
que, pour un méme jeu de données, I’ensemble des concepts produits par RCA est inclus
dans celui généré par GCA sous un paramétrage commun, ce qui met en évidence le carac-
tere expressif de GCA par rapport a RCA [Foxou et al.,, 2025b]. Ce paramétrage commun
repose notamment sur :

— lutilisation du quantificateur existentiel (3);

— le calcul des concepts unaires;

— le traitement des relations binaires;

— et l'intégration des relations inverses dans les données de RCA.
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Cette derniére condition permet de compenser la prise en compte implicite des relations
inverses dans le processus de GCA, assurant ainsi une base commune pour la comparaison
des deux approches.

Transformation de la famille de treillis RCA en graphes. Dans cette base commune,
nous avons proposé et formalisé une transformation de la famille de treillis de concepts
produite par RCA en un ensemble de patterns relationnels, appelés EAR-patterns. Ces pat-
terns offrent une représentation plus compacte et lisible des résultats de RCA, constituant
ainsi une base solide pour améliorer leur interprétation et leur visualisation.

Modélisation des relations n-aires. L’étude menée sur la modélisation des relations n-
aires dans RCA et GCA nous a permis de montrer que les encodages couramment utilisés
en RCA (la réification, la décomposition et le partitionnement) ont un impact significatif
sur la capacité a répondre aux requétes d’analyse. Nous avons également montré que les
encodages par décomposition et partitionnement, lorsqu’ils sont appliqués dans GCA, per-
mettent de produire des graph patterns plus lisibles et plus faciles a interpréter. Cela suggere
que ces stratégies d’encodage pourraient étre exploitées en GCA pour faciliter 'analyse et
la compréhension des résultats, car la complexité des graph patterns augmente avec I’arité
des relations.

Traitement des cycles. Notre étude sur le traitement des cycles a révélé que GCA est ca-
pable de capturer certains cycles que RCA ne peut pas représenter, du fait que, dans RCA,
les cycles sont modélisés a travers des attributs relationnels renvoyant a d’autres concepts.
Par ailleurs, GCA utilise des concepts automorphes pour représenter explicitement certains
cycles, tandis que RCA tend a les généraliser sous la forme de boucles simples. Ces observa-
tions indiquent que, pour des taches d’analyse visant a identifier ou caractériser la longueur
et la structure des cycles, GCA se révele plus adaptée.

Dans I'ensemble, ces résultats montrent que RCA et GCA sont complémentaires, cha-
cune présentant des avantages spécifiques selon les objectifs d’analyse. Leur utilisation
conjointe pourrait ainsi permettre d’enrichir les taches d’analyse.

10.2 Perspectives

Les résultats issus de cette étude comparative entre RCA et GCA ouvrent plusieurs pistes
de recherche prometteuses. Ils invitent notamment a approfondir les questions d’interopé-
rabilité, de complémentarité et de combinaison entre les différentes extensions de 'AFC
appliquées aux données multi-relationnelles, et plus particuliérement entre RCA et GCA.
Dans cette section, nous présentons quelques perspectives que nous jugeons intéressantes
a explorer dans la continuité de ce travail.
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Extension des EAR-patterns RCA a d’autres quantificateurs. Les EAR-patterns RCA
constituent une base solide pour faciliter I'interprétation de la famille de treillis générée
par RCA. Cependant, leur définition actuelle se limite au quantificateur existentiel (3). Une
premiére perspective intéressante consisterait a étendre les EAR-patterns aux familles de
treillis construites avec d’autres quantificateurs tels que 3V, 3 2, etc. [BRAUD et al., 2018],
afin de calculer des patterns relationnels plus représentatifs des structures présentes dans
les données. Pour cela, il faudrait redéfinir la notion de redondance des attributs relation-
nels pour chaque quantificateur. Par ailleurs, I’ajout des relations inverses dans les données
de RCA, bien qu’essentiel pour le calcul des composantes fortement connexes servant de
base pour la définition des RCA-patterns, n’est pas toujours pertinent en pratique. L’étude
menée sur les données issues d’une pharmacopée a montré que cet ajout peut, d’'une part,
accroitre de maniere excessive le nombre de concepts — rendant I’analyse plus complexe —
et, d’autre part, ne pas toujours avoir de sens selon les objectifs d’analyse. Ainsi, une al-
ternative consisterait a intégrer les arétes inverses au niveau du graphe de dépendances,
plutot que directement dans les données, sous certaines conditions de cohérence. Une telle
approche permettrait d’obtenir des EAR-patterns plus petits, fidéles aux données initiales
(sans relations inverses) et donc plus faciles a interpréter.

Modélisation. Il serait intéressant d’étendre et d’approfondir, sur des jeux de données réels,
I’étude comparative de RCA et GCA en se focalisant sur I'impact de la modélisation des rela-
tions ternaires sur leur capacité a répondre aux questions d’analyse. Cette investigation per-
mettrait d’évaluer a la fois la complexité induite par les différents encodages et la lisibilité
réelle des résultats. En parallele, il serait intéressant d’étudier 'impact d’autres différences
clés entre RCA et GCA, telles que l'utilisation des quantificateurs, le calcul des concepts
n-aires, ou encore les différents parametres proposés par les outils qui implémentent ces
deux approches. L’objectif serait de définir une catégorisation des contextes applicatifs, afin
d’identifier pour chaque type de données ou question d’analyse ’approche la plus adaptée,
RCA ou GCA. D’un point de vue pratique, le développement d’un cadre complet d’analyse
permettant de choisir, de maniére guidée, les encodages (réification, décomposition, parti-
tionnement, etc.), les méthodes (RCA, GCA, etc.), les quantificateurs de scaling et d’autres
parameétres en fonction des questions d’analyse serait trés utile pour les experts métier. Un
tel cadre devrait notamment offrir la possibilité a I’analyste de simuler différents scénarios
d’analyse afin de sélectionner celui qui répond le mieux a ses besoins.

Concepts n-aires. La capacité a calculer les concepts n-aires constitue un atout pour ’ana-
lyse, car ces concepts permettent de représenter des structures plus riches et de répondre a
des requétes d’analyse plus complexes. Actuellement, RCA se limite aux concepts unaires,
tandis que GCA définit des concepts n-aires. Une perspective intéressante serait d’étendre
cette notion a RCA afin de combiner ’avantage des concepts n-aires de GCA avec la flexi-
bilité offerte par les quantificateurs de RCA. Formellement, ces concepts n-aires pourraient
étre définis en s’appuyant sur les EAR-patterns RCA et en utilisant un calcul de projec-
tion de graphes similaire a celui employé dans GCA. D’un point de vue pratique, pour que
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I'analyste puisse exploiter pleinement ces concepts n-aires, il serait nécessaire de disposer
d’une plateforme de navigation des graphes comparable a RCAviz [HUCHARD et al., 2024].
Une telle plateforme permettrait d’explorer le voisinage d’un ou plusieurs concepts au sein
des patterns, et de calculer un concept n-aire en sélectionnant les propriétés correspondant
a son intension (nceuds et arétes). Concreétement, cela reviendrait a construire et évaluer
une requéte conjonctive ciblée, limitant ainsi le calcul aux concepts n-aires pertinents par
rapport aux objectifs d’analyse de I'utilisateur.

Version déclarative de RCA. RCA est actuellement définie de maniére itérative, et il se-
rait intéressant de proposer un modele déclaratif de RCA. Un tel modéle ouvrirait des pistes
pour combiner RCA avec d’autres extensions de AFC et ainsi étudier leur interopérabi-
lité et coopération. Concrétement, un modele déclaratif de RCA permettrait de dévelop-
per de nouvelles extensions de ’AFC qui combine RCA et d’autres extensions existantes.
Par exemple, on pourrait imaginer une extension combinant RCA et les structures de mo-
tifs (pattern structures) [GANTER et KuzNETsov, 2001], afin de tirer parti des avantages des
deux extensions, a 'instar de I'extension Graph-PS [FERRE, 2023], qui combine GCA et les
structures de motifs. Une piste pour définir un modele déclaratif de RCA pourrait passer
par la construction d’un graphe de descriptions d’'une TBox [BAADER, 2003], représentant
une abstraction du graphe de dépendances d’une famille de treillis RCA, sans inclure les
extensions des concepts ni la relation de subsomption. On pourrait également définir I'in-
tension d’un concept RCA en s’inspirant du PGP simulant un concept RCA et du travail de
[KOTTERS, 2016], qui assimile les intensions de concepts RCA aux motifs d’arbres enracinés
(rooted tree patterns).
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multi-relationnelles

Résumé : L’Analyse Relationnelle de Concepts (RCA) et Graph-FCA (GCA) sont deux
extensions majeures de I’Analyse Formelle de Concepts développées pour le traitement des
données multi-relationnelles. Ce travail propose une étude comparative a la fois théorique
et empirique, des deux approches RCA et GCA dans le but d’établir leurs similitudes et
différences sur une base solide, et de fournir a ’analyste des repéres pour choisir I'approche
la plus adaptée selon la nature des données et des objectifs d’analyse. Nous démontrons
que GCA est plus expressif que RCA en montrant que 'ensemble de concepts produits par
RCA est inclus dans 'ensemble de concepts produits par GCA. Nous proposons également
une transformation de la famille de treillis RCA en un ensemble de graphes, permettant
ainsi d’améliorer 'exploration et I'interprétation des résultats. Une mise en ceuvre sur un
jeu de données issu d’'une ancienne pharmacopée arabe a permis de mettre en avant la
complémentarité de ces deux approches.

Mots clés : Analyse Formelle de Concepts, Analyse Relationnelle de Concepts, Graph-FCA,
Treillis, Fouille de données multi-relationnelles, Graphe de connaissances, Motif de graphe.

Abstract : Relational Concept Analysis (RCA) and Graph-FCA (GCA) are two major exten-
sions of Formal Concept Analysis developed for the processing of multi-relational data. This
work proposes a comparative study, both theoretical and empirical, of the two approache,
RCA and GCA, with the aim of establishing their similarities and differences on a solid
basis, and providing analysts with guidelines for choosing the most appropriate approach
according to the nature of the data and the objectives of the analysis. We demonstrate that
GCA is more expressive than RCA by showing that the set of concepts produced by RCA is
included in the set of concepts produced by GCA. We also propose a transformation of the
RCA lattice family into a set of graphs, thus improving the exploration and interpretation
of results. An experiment on a dataset from an ancient Arabic pharmacopoeia highlighted
the complementarity of these two approaches.

Keywords : Formal Concept Analysis, Relational Concept Analysis, Graph-FCA, Lattice,
Multi-relational data mining, Knowledge graph, Graph pattern.
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