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Résumé

Avec la numérisation croissante des activités humaines, une grande variété de données

relationnelles devient disponible pour l’analyse. Ces données multi-relationnelles néces-

sitent des méthodes capables de prendre en compte simultanément les objets et les rela-

tions qui les relient, afin d’extraire des structures significatives et interprétables. Parmi les

approches développées à cet effet, l’Analyse Relationnelle de Concepts (Relational Concept
Analysis – RCA) et l’Analyse Conceptuelle de Graphes (Graph-FCA) occupent une place

particulière. Toutes deux dérivent de l’Analyse Formelle de Concepts (AFC), une méthode

mathématique de classification largement utilisée dans de nombreux domaines. Dans RCA,

les données sont représentées sous forme de tables interconnectées, analogues au mo-

dèle entité–association, tandis que Graph-FCA modélise les données sous forme d’hyper-

graphes, où les objets sont les nœuds et les attributs sont portés par les hyperarêtes. Bien

que partageant des fondements communs, RCA et Graph-FCA diffèrent dans leurs forma-

lismes et leurs mécanismes d’analyse. Certaines études antérieures ont exploré leurs liens,

notamment pour l’interprétation des résultats, mais sans offrir de comparaison globale et

approfondie. Ce travail propose une étude comparative, à la fois théorique et empirique, des

deux approches RCA et Graph-FCA, dans le but d’établir leurs similitudes et différences sur

une base solide, et de fournir à l’analyste des repères pour choisir l’approche la plus adaptée

selon la nature des données et les objectifs d’analyse. Nous comparons les deux approches

dans leur cadre commun, à la fois du point de vue extensionnel, en analysant les groupes

d’objets extraits, et du point de vue intensionnel, en examinant les descriptions associées à

ces groupes. Nous étudions également leurs différences dans la modélisation des relations

n-aires et le traitement des cycles, afin de déterminer dans quelle mesure ces divergences

peuvent se révéler complémentaires et bénéfiques pour l’analyse. Enfin, une expérimenta-

tion sur un jeu de données réel, issu d’une ancienne pharmacopée arabe met en évidence

les forces et les limites de chacune des deux approches.

Mots clés : Analyse Formelle de Concepts, Analyse Relationnelle de Concepts, Graph-FCA,

Treillis, Fouille de données multi-relationnelles, Graphe de connaissances, Motif de graphe.
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Abstract

With the increasing digitalization of human activities, a wide variety of relational data

is becoming available for analysis. Such multi-relational data requires methods capable of

simultaneously considering both the objects and the relationships connecting them, in or-

der to extract meaningful and interpretable structures. Among the approaches developed

for this purpose, Relational Concept Analysis (RCA) and Graph-FCA hold a particular place.

Both derive from Formal Concept Analysis (FCA), a mathematical classification method wi-

dely used in many fields. In RCA, data is represented as interconnected tables, similar to the

entity–relationship model, while Graph-FCA models data as hypergraphs, where objects

are nodes and attributes are carried by hyperedges. Although they share common foun-

dations, RCA and Graph-FCA differ in their formalisms and analysis mechanisms. Some

previous studies have explored their connections, particularly regarding result interpreta-

tion, but without offering a comprehensive and in-depth comparison. This work presents a

comparative study, both theoretical and empirical, of the two approaches RCA and Graph-

FCA, with the aim of establishing their similarities and differences on a solid basis, and

providing analysts with guidelines for choosing the most appropriate approach according

to the nature of the data and the objectives of the analysis. We compare both approaches

within their common framework, both from an extensional perspective, by analyzing the

clusters of extracted objects, and from an intensional perspective, by examining the des-

criptions associated with these clusters. We also study their differences in modeling n-ary

relations and handling cycles, in order to determine to what extent these divergences can

be complementary and beneficial for the analysis. Finally, an experiment on a real dataset

from an ancient Arabic pharmacopoeia highlights the strengths and limitations of each of

the two approaches.

Keywords : Formal Concept Analysis, Relational Concept Analysis, Graph-FCA, Lattice,

Multi-relational data mining, Knowledge graph, Graph pattern.
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Chapitre 1

Introduction

Avec la numérisation croissante des activités humaines, un volume considérable de don-

nées devient disponible pour l’analyse dans de nombreux domaines comme par exemple

l’hydro-écologie [Dolqes et al., 2021 ; Nica et al., 2016b] ou la médecine [Rouane-Hacene

et al., 2009]. Ces données issues de la transformation numérique se caractérisent par leur

volumétrie, leur richesse sémantique, leur complexité structurelle et leur nature multi-

relationnelle, car elles décrivent une grande variété d’entités et les interactions entre elles.

Les données multi-relationnelles, qu’elles soient spatiales, temporelles, ou décrivant des

liens entre individus, peuvent être efficacement représentées sous forme de graphes. Par

exemple, dans le domaine environnemental, les graphes sont utilisés pour modéliser les

interactions sociales entre les animaux. Avec l’essor du Web sémantique [Hitzler et al.,

2009], ces représentations se généralisent à travers les graphes de connaissances, tels que

des graphes RDF [Hitzler et al., 2009] ou des graphes conceptuels [Chein et Mugnier,

2008 ; Sowa, 1984], qui permettent de représenter des informations complexes comme des

ensembles d’entités reliées par des relations binaires, voir n-aires. La représentation et l’ana-

lyse de ces structures relationnelles sont ainsi devenues essentielles pour la compréhension

de phénomènes complexes impliquant de multiples entités.

Les méthodes traditionnelles d’analyse de données, telles que les statistiques descrip-

tives, s’avèrent insuffisantes pour mettre en évidence les connaissances cachées et com-

prendre les phénomènes sous-jacents à des données complexes. Des approches d’appren-

tissage automatique [Scarselli et al., 2008] ont été proposées et produisent de bons ré-

sultats, notamment pour des tâches de classification. Toutefois, ces méthodes nécessitent

généralement de grands volumes de données et génèrent des modèles dont l’interprétation

par des experts métier peut être difficile. Or, dans certains domaines tels que les sciences

humaines et sociales, il est essentiel de pouvoir fournir des résultats compréhensibles et

interprétables par les spécialistes du domaine. Les approches symboliques [Agrawal et al.,

1993], telles que l’Analyse Formelle de Concepts (AFC) [Ganter et Wille, 1999], s’avèrent

particulièrement adaptées à ces situations, car elles permettent d’extraire des structures in-

terprétables et exploitables, même à partir de volumes de données relativement modestes.

En effet, l’AFC est centrée sur l’utilisateur et offre un support pour visualiser et interagir

avec les données et les motifs découverts, facilitant ainsi l’analyse.

L’Analyse Formelle de Concepts (AFC) [Ganter et Wille, 1999] est une méthode ma-

thématique qui s’appuie sur la théorie des treillis [Barbut et Monjardet, 1970 ; Birkhoff,

1940] pour la découverte de connaissances, la classification et l’analyse de données en gé-
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néral. L’AFC constitue une méthode de découverte de connaissance à part entière et est

largement utilisée pour l’analyse de données dans de nombreux domaines [Ferré et al.,

2020 ; Poelmans et al., 2013]. Initialement conçue pour les données tabulaires, l’applica-

tion directe de l’AFC à des données plus complexes comme des données relationnelles

présente des limites, car elle nécessite des modélisations supplémentaires sur les données,

ce qui peut entraîner une perte d’informations structurelles et compliquer l’interprétation

des motifs extraits. Ces contraintes ont motivé le développement d’extensions de l’AFC

permettant d’utiliser des descriptions d’objets plus complexes que de simples ensembles

d’attributs binaires [Ferré et Ridoux, 2000 ; Ganter et Kuznetsov, 2001 ; Kaytoue et al.,

2015]. Plus particulièrement, des méthodes capables d’explorer directement des données

multi-relationnelles [Džeroski, 2010] ont été proposées, afin de capturer les structures

relationnelles pertinentes sans perdre d’informations. En conséquence, l’AFC a été éten-

due aux données multi-dimentionnelles [Lehmann et Wille, 1995 ; Voutsadakis, 2002],

ainsi qu’aux données multi-relationnelles [Bazin et al., 2024 ; Ferré, 2015 ; Kötters, 2013 ;

Rouane-Hacene et al., 2013 ; Wille, 1997].

Comme on peut le constater, plusieurs extensions de l’AFC ont été proposéés, y compris

des développements récents [Bazin et al., 2024 ; Ferré, 2023] visant à prendre en compte

les données complexes et multi-relationnelles. De même, l’inventaire en ligne des logi-

ciels de l’AFC
1
montre que de nombreux outils implémentent l’AFC et ses extensions, par

exemple Conexp-Clj [Hanika et Hirth, 2019], RCAExplore [Dolqes et al., 2019], FCA4J

[Gutierrez et al., 2022], GFCA [Ferré, 2019] ou encore GALACTIC [Demko et al., 2022].

Cependant, aucun de ces outils ne constitue une plateforme consensuelle et centralisée of-

frant une bibliothèque d’algorithmes interopérables pour l’analyse de données réelles dans

des domaines complexes comme la biologie, la chimie ou lamédecine. C’est dans ce contexte

qu’intervient le projet ANR SmartFCA, qui regroupe cinq équipes françaises travaillant

dans le domaine de l’AFC. L’objectif de ce projet est de contribuer au développement de

l’AFC et de ses extensions, tout en fournissant une plateforme opérationnelle et générique

rassemblant les variantes de l’AFC pour l’analyse des données provenant du monde réel.

Cette thèse s’inscrit dans la partie du projet SmartFCA relative à l’étude des exten-

sions relationnelles de l’AFC. Elle se concentre plus particulièrement sur une analyse com-

parative de l’Analyse Relationnelle de Concepts [Rouane-Hacene et al., 2013] (Relatio-
nal Concept Analysis (RCA), en anglais) et de l’analyse conceptuelle de graphes (Graph-

FCA/GCA) [Ferré, 2015]. Dans RCA, les données relationnelles sont représentées par un

ensemble de tables (contextes) objets-attributs et objets-objets. En revanche, GCA modé-

lise les données sous la forme d’un hypergraphe, où les objets correspondent aux nœuds et

les attributs sont portés par des hyper-arêtes. Certains liens entre RCA et les graphes ont

été étudiés pour les données temporelles [Nica et al., 2016a ; Nica et al., 2020]. De même,

quelques études se sont penchées sur le rapprochement et la comparaison entre RCA et

GCA [Ferré et Cellier, 2018 ; Keip et al., 2020], mais elles se sont limitées à des aspects

spécifiques, tels que l’interprétation des résultats, sans proposer une comparaison appro-

1. https://upriss.github.io/fca/fcasoftware.html
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fondie des deux approches. Il est donc essentiel d’établir une base solide de comparaison

entre les deux approches, afin de mieux caractériser, tant sur le plan théorique que pratique,

leurs similitudes et leurs différences. Un tel cadre comparatif vise à fournir à l’analyste des

repères pour choisir l’approche la plus adaptée, en fonction de la nature des données à

traiter et des résultats attendus.

Dans cette thèse, nous présentons nos contributions portant sur une comparaison em-

pirique et théorique des deux approches RCA et GCA. Bien que leurs objectifs et leurs

résultats semblent similaires, ces approches diffèrent sur plusieurs aspects, notamment la

définition des concepts. Nous nous sommes intéressés à deux axes de comparaisons. Tout

d’abord, nous avons comparé leurs similitudes, à la fois du point de vue extensionnel, c’est-

à-dire en comparant les groupes d’individus qui sont extraits par les deux approches, et du

point de vue intensionnel, en examinant les descriptions associées à ces groupes. Ensuite,

nous avons comparé les deux méthodes du point de vue de leurs différences. Ainsi, nos

contributions se repartissent comme suit.

1. Comparaison extensionnelle de RCA et GCA. Nous commençons par compa-

rer RCA et GCA du point de vue des extensions de concepts. À travers plusieurs

exemples, nous montrons que l’ensemble des extensions des concepts de RCA est

inclus dans celui de GCA. Autrement dit, pour tout concept RCA défini sur un jeu

de données, il existe un concept GCA possédant la même extension. Ce constat em-

pirique est appuyé par des démonstrations théoriques qui établissent formellement

cette inclusion.

2. Comparaison intensionnelle de RCA et GCA. Nous poursuivons par la compa-

raison des intensions des concepts et démontrons que l’ensemble des intensions des

concepts RCA est inclus dans celui des intensions des concepts GCA. Ces démons-

trations reposent sur une étape préalable de modélisation des intensions dans une

représentation commune (sous forme de graphes) car les intensions de concepts des

deux approches ne sont pas directement comparables. Combinée au résultat de la

comparaison extensionnelle, cette comparaison intensionnelle permet de conclure

que sur un même jeu de données, l’ensemble des concepts RCA est inclus dans celui

des concepts GCA, ce qui illustre que GCA est plus expressif que RCA.

3. Comparaison de RCA et GCA à travers leurs différences. Nous avons conduit
une étude comparative centrée sur leurs différences, afin d’examiner dans quelle

mesure ces divergences peuvent être complémentaires et bénéfiques pour l’analyse.

Nous avons notamment examiné les distinctions dans la modélisation des relations

n-aires et le traitement des cycles par chacune des approches. Une mise en œuvre

sur un jeu de données réel, issu d’une ancienne pharmacopée arabe [Kahl, 2009], a

permis de mettre en évidence les forces et les limites pratiques de RCA et GCA.

Ce manuscrit est organisé de la manière suivante.

— La première partie présente le cadre général de ce travail. Le chapitre 2 introduit
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l’Analyse Formelle de Concepts (AFC), ainsi qu’un aperçu de ses principales exten-

sions destinées aux données multi-relationnelles. Le chapitre 3 présente l’Analyse

Relationnelle de Concepts (RCA). Le chapitre 4 est consacré à l’analyse conceptuelle

des graphes (Graph-FCA/GCA). La première partie s’achève par le chapitre 5, qui ré-

sume l’état de l’art des travaux abordant, de manière directe ou indirecte, les liens

entre RCA et GCA.

— La deuxième partie, consacrée à nos contributions, débute par la présentation de notre

approche méthodologique (chapitre 6). Le chapitre 7 traite de la comparaison exten-

sionnelle de RCA et GCA. Le chapitre 8 est consacré à la comparaison intensionnelle

de ces deux approches. Le chapitre 9 aborde la comparaison de RCA et GCA à travers

leurs différences.

— Enfin, le chapitre 10 conclut et propose plusieurs perspectives d’approfondissement

pour ce travail.
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2.1 Introduction

L’Analyse Formelle de Concepts (AFC) (en anglais Formal Concept Analysis) est un for-

malisme introduit par Wille en 1982 [Wille, 1982], puis dans les travaux de Ganter et Wille

[Ganter et Wille, 1999], permettant la classification conceptuelle d’un ensemble d’objets
(appelés parfois individus) décrits par des attributs. L’AFC est basée sur la théorie des treillis

[Birkhoff, 1940] et des treillis de Galois [Barbut et Monjardet, 1970].

L’AFC a largement été appliquée dans divers domaines comme outil d’analyse et d’ex-

ploration des données. En médecine, l’AFC a été utilisée pour identifier les combinaisons

de réactions médicamenteuses et les interactions médicamenteuses [Rouane-Hacene et

al., 2009 ; Villerd et al., 2010]. Elle a également été utilisée pour identifier les dépendances

entre les données démographiques et le degré d’activité physique [Belohlavek et al., 2011 ;

Sklenar et al., 2005]. On retrouve également plusieurs applications de l’AFC dans l’explo-

ration du web (web mining) [Bruno et al., 2005 ; Ebner et al., 2010 ; Eklund et al., 2004], en

bio-informatique [Alam et al., 2012 ; Kaytoue et al., 2009 ; Keller et al., 2012], en linguis-

tique [Falk et al., 2010 ; Priss et Old, 2004], en chimie [Lounkine et al., 2008 ; Stumpfe

et al., 2010] et plus encore. La revue de la littérature [Poelmans et al., 2013] recense un

grand nombre des applications de l’AFC dans les domaines sus-évoqués et dans d’autres

domaines.

Dans ce chapitre, nous présentons les définitions et concepts fondamentaux de l’AFC,

ainsi qu’un aperçu de ses principales extensions. La section 2.2 introduit les notions ma-

thématiques relatives à la théorie des treillis, suivie, en section 2.3, par la présentation des

notions de base de l’AFC. La section 2.4 décrit deux algorithmes classiques de l’AFC, tandis

que la section 2.5 présente une synthèse des extensions de l’AFC appliquées aux données

complexes et multi-relationnelles.

2.2 Quelques éléments de la théorie des treillis

Dans cette section, nous présentons certaines notions fondamentales de la théorie des

treillis en s’inspirant de [Barbut et Monjardet, 1970].

2.2.1 Ensemble partiellement ordonné

Soit E un ensemble, on appelle relation binaireR surE, toute relation deE×E. Il s’agit
d’un ensemble de couples (x, y) ∈ E × E. Pour x, y ∈ E, on écrit en notation infixe, xRy
pour indiquer que (x, y) ∈ R, et x /R y sinon.

Définition 2.1 (Ordre ou ordre partiel). Soient E un ensemble et R une relation bi-
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naire sur E. Un ordre partiel sur E donné par la relation R vérifie les propriétés suivantes,

∀x, y, z ∈ E :

— réflexivité : xRx,

— antisymétrie : si xRy et yRx alors x = y,

— transitivité : si xRy et yRz alors xRz.

Exemple : L’ordre d’inclusion des parties d’un ensemble est un ordre partiel.

Définition 2.2 (Ensemble partiellement ordonné). Un ensemble partiellement ordonné

(partially ordored set (poset)) est un couple (E,R) oùE est un ensemble etR est une relation

d’ordre sur E.

Un ordre R est qualifié de total et non de partiel si deux éléments x et y de E sont

toujours comparables i.e ∀(x, y) de E où x ≠ y on a xRy ou yRx.

Exemple : L’ordre des points de la gauche à la droite sur une droite orientée est un ordre

total.

On utilise souvent le symbole ≤ pour les relations d’ordre et x ≤ y se lit "x est inférieur
ou égal à y". À toute relation d’ordre ≤, on associe sa relation d’ordre strict notée <, définie

par x < y si x ≤ y et x /= y. Elle se déduit de la relation ≤ en remplaçant la propriété de

réflexivité, par celle d’irréflexivité, c’est-à-dire x /R x∀x ∈ E.

2.2.2 Diagramme de Hasse d’une relation d’ordre

Définition 2.3 (Majorant, minorant). Soient (E,≤) un ensemble ordonné et x, y ∈ E, on

dit que y est un majorant de x si et seulement si x ≤ y. Inversement, on dira que y est un

minorant de x si et seulement y ≤ x.

Définition 2.4 (Successeur, prédécesseur). Soient (E,≤) un ensemble ordonné etx, y ∈ E.

On dit que x succède à y (x couvre y) et on note x ≻ y, si et seulement si x est unmajorant de

y, et tel qu’il n’y ait aucun élément intermédiaire entre x et y, i.e il n’existe aucun élément

z ∈ E tel que y < z < x. De façon duale, y précède x (y ≺ x) et on dit que y est couvert par x.

Tout ensemble ordonné (E,≤) peut être représenté graphiquement par un diagramme

appelé "diagramme de Hasse" basé sur la relation de couverture. Dans ce diagramme, les

nœuds représentent les éléments de E, et les arcs indiquent la relation de couverture entre

ces éléments. À partir d’un tel diagramme, on peut lire la relation d’ordre comme suit : x < y
si et seulement si x se trouve en dessous de y en suivant un chemin dans le diagramme. Ce

diagramme s’élabore de la manière suivante :
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{a, b} {a, c} {b, c}

{a} {b} {c}

∅

{a, b, c}

Figure 2.1 – Diagramme de Hasse de (P(X),⊆) avec X = {a, b, c}.

— Tout élément de E est représenté par un point dans le plan.

— Si x, y ∈ E et x ≺ y alors le point correspondant à y doit être au-dessus de celui

correspondant à x et les deux points sont reliés par un segment.

— Par contrainte de lisibilité, les arcs réflexifs et les arcs de transitivité ne sont pas re-

présentés.

Exemple : Soit l’ensembleX = {a, b, c}, et (P(X),⊆) l’ensemble des parties deX ordonné

par inclusion, le diagramme de Hasse de (P(X),⊆) est donné à la figure 2.1. On remarque

par exemple que {a} ≺ {a, b}, i.e. {a, b} couvre {a}.

Définition 2.5 (Supremum, infimum). Soient (E,≤) un ensemble ordonné etA ⊂ E une

sous-partie de E. L’ensemble des majorants de A est l’ensemble S = {y ∈ E ∣ ∀x ∈ A,y ≥ x}

et l’ensemble des minorants de A est l’ensemble I = {y ∈ E ∣ ∀x ∈ A,y ≤ x}. S’il existe

un plus petit élément dans l’ensemble S des majorants de A, il est appelé supremum ou

borne supérieure de A et on le note sup(A) ou ⋁A. Dualement, le plus grand élément de

l’ensemble I des minorants de A est appelé infimum ou borne inférieure de A et on le

note inf(A) ou ⋀A.

2.2.3 Treillis

Il existe dans la littérature deux définitions pour un treillis : une définition algébrique
[Birkhoff, 1940] et une définition relationnelle [Barbut et Monjardet, 1970]. La défi-

nition relationnelle (encore dite combinatoire) fait intervenir les propriétés de la relation

d’ordre définie sur l’ensemble tandis que la définition algébrique fait intervenir les proprié-

tés d’opérations définies sur l’ensemble.
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Définition 2.6 (Treillis algébrique). Un treillis est un ensemble E muni de deux opéra-

tions notées ∨ et ∧ et vérifiant les axiomes suivants, ∀x, y, z ∈ E :

— idempotence : x ∨ x = x et x ∧ x = x
— commutativité : x ∨ y = y ∨ x et x ∧ y = y ∧ x
— associativité : (x ∨ y) ∨ z = x ∨ (y ∨ z) et (x ∧ y) ∧ z = x ∧ (y ∧ z)
— absorption : x ∧ (x ∨ y) = x et x ∨ (x ∧ y) = x

Définition 2.7 (Treillis relationnel). Un treillis est un ensemble ordonnéE tel que chaque

couple (x, y) d’éléments possède un supremum (x∨ y) et un infimum (x∧ y). Il est dit sup-
demi-treillis dans le cas où seulement le supremum existe. Inversement, il est dit inf-demi-
treillis si seulement l’infimum existe.

Donc un treillis est à la fois un sup-demi-treillis et un inf-demi-treillis. Un treillis est dit

complet si le supremum⋁X et l’infimum⋀X existent pour toute partieX deE. Un treillis
complet possède un plus grand élément⋁E noté top (⊺) et un plus petit élément⋀E noté

bottom (�).

Exemple : L’ensemble des parties de E ordonnées par inclusion (P(E),⊆) présenté à la

figure 2.1 par un diagramme de Hasse est un treillis.

2.2.4 Opérateurs de fermeture et connexion de Galois

Définition 2.8 (Opérateur de fermeture). Soit (E,≤) un ensemble ordonné. On appelle

opérateur de fermeture sur l’ensemble E, toute application h ∶ E → E, qui vérifie ces trois

propriétés ∀x, y ∈ E :

— h(x) ≥ x : h est extensive
— x ≥ y⇒ h(x) ≥ h(y) : h est monotone croissante
— h(h(x)) = h(x) : h est idempotente

On parle aussi de fermeture deMoore qu’on note souvent h(x) = x̄. Étant donné un
opérateur de fermeture h sur un ensemble ordonné (E,≤), un élément x ∈ E est dit fermé
si h(x) = x.

Définition 2.9 (Connexion de Galois). Soient α ∶ O → A et β ∶ A→ O deux applications

entre deux ensembles ordonnés (O,≤O) et (A,≤A). Les applications α et β forment une

connexion de Galois entre (O,≤O) et (A,≤A) si elles vérifient les conditions suivantes pour

tous o, o1, o2 ∈ O et a, a1, a2 ∈ A :

— o1 ≤O o2⇒ α(o2) ≤A α(o1) : α est décroissante
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— a1 ≤A a2⇒ β(a2) ≤O β(a1) : β est décroissante

— o ≤O β(α(o)) et a ≤A α(β(a)) : β ○ α et α ○ β sont extensives

Les propriétés données dans la définition précédente sont équivalente à la formule :

o ≤G β(a) ⇐⇒ a ≤A α(o) (2.1)

En d’autres termes, dire que (α,β) forme une connexion de Galois revient à dire que les

applications h = β ○α et h′ = α○β obtenues par composées des applications α et β sont des

opérateurs de fermetures.

Définition 2.10 (Fermetures de Galois). Soit (α,β) une connexion de Galois entre deux

ensembles ordonnés (O,≤O) et (A,≤A). On appelle fermetures de Galois, les fermetures

h = β ○ α dans O et h′ = α ○ β dans A associées à une connexion de Galois (α,β).

2.3 Notions fondamentales de l’AFC

L’AFC vise à découvrir des descriptions conceptuelles (concepts formels) à partir d’un

ensemble d’objets décrits par des attributs unaires (contexte formel). Cette section rappelle

les principales notions de contexte formel, concept formel et treillis de concepts.

2.3.1 Contextes et concepts formels

Définition 2.11 (Contexte formel). Un contexte formel est un triplet (O,A, I), où O est

un ensemble non vide d’objets,A un ensemble non vide d’attributs et I une relation binaire

entre O et A (I ⊆ O ×A). Si nous avons (o, a) ∈ I , avec o ∈ O et a ∈ A, on dit que l’objet o

possède l’attribut a.

Un contexte peut être représenté graphiquement par un tableau de dimension ∣O∣ × ∣A∣,
où chaque ligne représente un objet formel et chaque colonne représente un attribut formel.

L’intersection de la ligne o avec la colonne a contient une croix si et seulement si (o, a) ∈ I .

Exemple : Le tableau 2.1 illustre un contexte formel qui décrit des personnes (objets) par

leurs caractéristiques (attributs). Dans ce contexte, O = {Alice,Bob,Charlie, Julie} et
A = {male, female, countryside, single, married} et la relation d’incidence I est identifiée par
les croix.

Définissons α et β, deux opérateurs image sur l’ensemble des parties deO et l’ensemble

des parties de A.
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Tableau 2.1 – Contexte formel KPerson des personnes et leurs caractéristiques.

KPerson male female city countryside single married

Alice × × ×

Bob × × ×

Charlie × × ×

Julie × × ×

Pour chaque ensemble d’objets G ∈ P(O) 1, les attributs partagés par ces objets peuvent
être obtenus à l’aide de l’application α ∶ P(O) → P(A) définie par :

α(G) = {a ∈ A ∣ ∀o ∈ G, (o, a) ∈ I} (2.2)

α(G) est l’ensemble des attributs communs d’un ensemble d’objets G.
De même l’application β ∶ P(A) → P(O) qui associe à un ensemble d’attributsM ⊆ A tous

les objets partagés par ces attributs est définie par :

β(M) = {o ∈ O ∣ ∀a ∈M, (o, a) ∈ I} (2.3)

La paire de fonctions (α,β), résumant les liaisons entre les objets et les attributs dans

le contexte formel, définit une connexion de Galois entre les deux ensembles ordonnés

(P(O),⊆) et (P(A),⊆) (voir la définition 2.9 de la connexion de Galois).

Exemple : Dans le contexte KPerson du tableau 2.1, on trouve les images suivantes :

— α({Alice}) = {female, city, single}
— α({Charlie}) = {male, city, single}
— α({Alice,Charlie}) = α({Alice}) ∩ α({Charlie}) = {city, single}
— β({female}) = {Alice, Julie}

Définition 2.12 (Concept formel). Un concept formel est un couple (A,B) avecA ∈ P(O),

B ∈ P(A) tels que α(A) = B et β(B) = A ; A et B représentant respectivement l’extension

(en anglais extent) et l’intension (en anglais intent) du concept (A,B).

En d’autres termes, un concept formel est un couple (A,B) où A et B sont des en-

sembles fermés (au sens des fermetures de Galois, définition 2.10) et α(A) = B (ou de façon

équivalente β(B) = A).

Exemple : Dans le contexte KPerson (tableau 2.1), ({Alice,Charlie}, {city, single}) forme

un concept formel, alors que ({Alice}, {female}) n’en est pas un. En effet, on a :

1. P(O) représente l’ensemble des parties d’un ensemble O.
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— (1) α({Alice,Charlie}) = {city, single}, (2) {Alice,Charlie} est un ensemble fermé

car, β(α({Alice,Charlie})) = β({city, single}) = {Alice,Charlie}, (3) {city, single}
est fermé car, α(β({city, single})) = α({Alice,Charlie}) = {city, single}

— {Alice} et {female} sont des ensembles fermés mais, α({Alice}) /= {female}

Intuitivement, un concept formel peut être visualisé comme un rectangle de croix maximal

dans une permutation des lignes et des colonnes de la table. Par exemple, dans le contexte

KPerson, le concept ({Alice, Julie},{female}) correspond au rectangle vertical de croix dans
la colonne female.

2.3.2 Treillis de concepts

Étant donné un contexte formel, on obtient un ensemble de concepts sur lequel est défini

un ordre. La relation de sous-concept/super-concept est une relation d’ordre sur l’ensemble

des concepts définie pour deux concepts C1 = (A1,B1) et C2 = (A2,B2) par :

(A1,B1) ⪯ (A2,B2) ⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1) (2.4)

On dit queC1 est un sous-concept deC2, etC2 un sur-concept deC1. La relation "⪯" s’appuie

sur deux inclusions duales, entre ensembles d’objets et entre ensembles d’attributs et peut

ainsi être interprétée comme une relation de généralisation/spécialisation entre les concepts
formels. Ainsi, on dit que C1 est un sous-concept de C2 et C2 un sur-concept de C1, c’est-à-

dire que le conceptC2 est plus général que le conceptC1 (inversement,C1 est plus spécifique

que C2).

L’ensemble ordonné de tous les concepts muni de la relation d’ordre entre ces concepts

forme un treillis complet appelé le treillis de concepts.

Définition 2.13 (Treillis de concepts). L’ensemble C des concepts extraits d’un contexte

formel muni de la relation de généralisation/spécialisation ⪯ (inclusion des extensions ou

inclusion inverse des intensions) forme un treillis de concepts (C,⪯). La relation ⪯ est aussi

dite relation de subsomption.

La figure 2.2 présente le treillis de concepts correspondant au contexte KPerson ( ta-

bleau 2.1). Ce treillis a été construit avec l’outil RCAExplore [Dolqes et al., 2019]. Dans

cette représentation, chaque concept est représenté par une boîte de trois compartiments

qui, de haut en bas représentent l’identifiant du concept, son intension et son extension.

Cette convention est utilisée tout au long de cemanuscrit. Par exemple, le conceptPerson_8
a pour extension {Alice, Charlie} et pour intension {single, city}. On peut associer une

description textuelle à ces concepts. Person_8 représente alors les personnes qui sont cé-

libataires (single) et qui vivent en ville (city). Dans ce treillis, pour illustrer la relation de

subsumption, nous avons par exemple Person_4 ⪯ Person_8.
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Person_9

Alice
Bob

Charlie
Julie

Person_6

male

Bob
Charlie

Person_0

single
city

countryside
female
married
male

Person_4

single
city

female

Alice

Person_2

single
city
male

Charlie

Person_1

countryside
female
married

Julie

Person_3

countryside
married
male

Bob

Person_7

female

Alice
Julie

Person_8

single
city

Alice
Charlie

Person_5

countryside
married

Bob
Julie

Figure 2.2 – Treillis de concepts du contexte KPerson (tableau 2.1).

Les concepts top (⊺) Person_9 et bottom (�) Person_0 sont respectivement le supre-

mum et l’infimum du treillis (voir définition 2.5). Ils expriment respectivement les attributs

communs à tous les objets et les objets qui possèdent tous les attributs. En pratique, l’in-

tension du ⊺ concept est dans la majorité des cas vide, car un attribut partagé par tous les

objets est non discriminant de l’ensemble d’attributs. De même, l’extension du � concept

est dans la majorité des cas vide, car un objet qui possède tous les attributs est non dis-

criminant de l’ensemble d’objets. De tels objets et attributs ne permettent pas de créer de

séparations utiles dans le treillis de concepts, c’est-à-dire que les supprimer ne change rien

à la structure du treillis.

Dans le treillis de la figure 2.2, on remarque que certains objets (personnes) ainsi que

certains attributs (caractéristiques) apparaissent plusieurs fois. Pour illustration, Alice ap-
paraît dans les concepts Person_4, Person_7, Person_8 et Person_9. Ce genre d’af-

fichage est un peu redondant, car si Alice apparaît dans le concept Person_4, et que
Person_4 est un sous-concept de Person_7, Person_8 et Person_9, alors Alice apparaît
dans Person_7, Person_8 et Person_9.
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Person_9

Person_6

male

Person_0

Person_4

Alice

Person_2

Charlie

Person_1

Julie

Person_3

Bob

Person_7

female

Person_8

city
single

Person_5

countryside
married

Figure 2.3 – Treillis réduit (L0Person) correspondant au treillis de la figure 2.2.

L’affichage complet peut rendre le treillis moins lisible, surtout pour des treillis de

grande taille. Une représentation permettant d’éviter ce problème consiste à supprimer les

redondances d’objets et d’attributs dans les extensions et les intensions de concepts respec-

tivement. En effet, dans un concept C = (A,B), A est présent dans tous les sur-concepts

de C et symétriquement, B est dans tous les sous-concepts de C . Ainsi, la suppression des

redondances consiste à retirer de l’extension d’un concept (resp. de son intension) tous les

objets (resp. attributs) qui apparaissent dans les extensions ses sous-concepts (resp. sur-

concepts). La structure obtenue est appelée treillis d’héritage ou treillis réduit (simplifié).

Dans cette représentation réduite, les extensions sont obtenues par héritage ascendant

des objets et les intensions par héritage descendant des attributs. En d’autres termes, dès

qu’un objet apparaît dans un concept, il est hérité par ses sur-concepts et dès qu’un attribut

apparaît dans un concept il est hérité par ses sous-concepts. À titre d’exemple, la figure 2.3

montre le treillis correspondant à la représentation réduite du treillis de la figure 2.2. No-

tons que les treillis réduits peuvent toutefois devenir moins pratiques quand le nombre de

concepts est élevé, car il faut alors naviguer dans le treillis pour connaître tous les éléments

situés dans l’extension et l’intension d’un concept donné. Dans le reste de ce manuscrit,

sauf mention contraire, la représentation réduite du treillis sera systématiquement utilisée.

16



2.3. NOTIONS FONDAMENTALES DE L’AFC

2.3.3 Analyse des treillis de concepts

En pratique, la construction de treillis sur des jeux de données volumineux peut en-

gendrer un nombre très élevé de concepts, ce qui complique l’extraction des informations

pertinentes.

Pour améliorer la lisibilité et réduire la complexité du treillis complet, deux structures

dérivées sont couramment utilisées : le sup-demi-treillis ou treillis Iceberg [Stumme et al.,

2001, 2002], et les sous-hiérarchies de Galois [Dicky et al., 1994 ; Godin et Mili, 1993],

encore appelées AOC-poset (Attribute-Object-Concept poset) [Osswald et Petersen, 2003 ;

Petersen, 2001].

Un treillis Iceberg d’un treillis est obtenu en filtrant les concepts pour ne garder que

ceux qui vérifient la condition de fréquence par rapport à un support
2
seuil donné. Ainsi, le

treillis iceberg inclut les concepts les plus généraux et exclut ceux qui sont plus spécifiques.

Les sous-hiérarchies de Galois ne conservent dans un treillis que les concepts introdui-

sant un objet (concepts objets) ou un attribut (concepts attributs). En d’autres termes, un

concept C = (A,B) est conservé si et seulement si ∃o ∈ A tel qu’aucun des sous-concepts

de C ne contient o dans son extension ou ∃a ∈ B tel qu’aucun des sur-concepts de C
ne contient a dans son intension. L’inconvénient est que la structure n’est plus nécessai-

rement un treillis et que certaines abstractions potentiellement utiles sont éliminées. Par

contre, le nombre de concepts dans une sous-hiérarchie peut-être significativement infé-

rieur au nombre de concepts du treillis dont elle est issue. Ainsi, les sous-hiérarchies de

Galois sont une alternative au treillis complet lorsque le treillis de Galois est trop grand et

que la structure de treillis n’est pas indispensable.

Dans le même ordre d’idées, plusieurs métriques, telles que la stabilité [Kuznetsov,

2007] ou la similarité [Saqer et Deogun, 2001] ont été proposées afin d’identifier les

concepts les plus significatifs selon certains critères. La stabilité d’un concept formel C me-

sure sa pertinence enmesurant la proportion des sous-ensembles de son extension dont l’in-

tension demeure identique à celle deC . Autrement dit, plus un concept conserve son inten-

sion malgré la suppression d’objets, plus il est considéré comme stable. En ce qui concerne

la mesure de similarité entre concepts, elle permet, à partir d’un concept donné, d’identifier

et de proposer à la navigation des concepts suffisamment proches, qui ne feraient pas par-

tie des parents ou des enfants du concept. Une étude comparative des différentes mesures

d’intérêt associées aux concepts formels est présentée dans [Kuznetsov et Makhalova,

2018].

2. Le support d’un concept est le nombre (proportion) d’objets dans son extension.
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2.4 Algorithmes

Demanière générale, la construction du treillis de concepts à partir d’un contexte formel

se complexifie lorsque le contexte devient grand ; d’où l’intérêt de chercher des méthodes

permettant de découvrir d’une manière efficace les concepts et de calculer les relations de

couverture entre ces derniers. Plusieurs algorithmes ont été proposés dans la littérature

pour le calcul des concepts d’un contexte. Étant donné un contexte formel, certains al-

gorithmes permettent uniquement de calculer l’ensemble des concepts tandis que d’autres

permettent aussi la construction du treillis associé, i.e., qu’en plus de calculer l’ensemble des

concepts, ils calculent également l’ensemble des relations de couverture entre les concepts.

Il existe deux stratégies de base pour construire un treillis de concepts. La distinction

majeure entre ces stratégies réside dans la manière d’acquérir les données d’entrée :

— Les algorithmes batch [Bordat, 1986 ; Chein, 1969 ; Nourine et Raynaud, 1999] :

ils considèrent que les données (contexte formel) sont connues à l’avance. L’évolution

des données (ajout d’objets ou d’attributs au contexte) entraîne la reconstruction du

treillis dans son entièreté.

— Les algorithmes incrémentaux [Godin et al., 1995 ; Valtchev et Missaoui, 2001 ;

Van Der Merwe et al., 2004] : ils construisent progressivement le treillis. Ces algo-

rithmes sont apparus pour remédier au problème de la reconstruction du treillis dans

le cadre des contextes dynamiques. En effet, suite à une modification du contexte, ces

algorithmes effectuent des mises à jour locales du treillis associé.

Comme décrit précédemment, les algorithmes incrémentaux ont l’avantage de s’adapter

aux contextes évolutifs et permettent des mises à jour locales du treillis. Ces algorithmes

incrémentaux peuvent procéder de deux façons : incrémentalité par objets ou incrémentalité
par attributs.

— L’incrémentalité par objet suppose que le contexte évolue en nombre d’objets (en

ligne), donc le treillis est construit par ajout de nouveaux objets qui conduit à une

mise à jour structurelle du treillis.

— L’incrémentalité par attributs suppose une évolution du contexte en nombre d’attri-

buts (en colonne), le treillis est alors construit par ajout de nouveaux attributs qui

conduit à une mise à jour structurelle du treillis.

Dans le cadre de cette thèse, nous présentons l’algorithme incrémental par objet Ad-
dIntent [Van Der Merwe et al., 2004] et son algorithme dual AddExtent sur lequel se base
la procédure Multi-FCA de RCA auquel est consacré le chapitre 3.

2.4.1 AddIntent

AddIntent [Van DerMerwe et al., 2004] est un algorithme incrémental qui s’appuie sur

un treillis construit à partir des premiers objets du contexte pour intégrer un prochain objet
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dans ledit treillis. Comme défini dans d’autres algorithmes [Godin et al., 1995 ; Valtchev et

Missaoui, 2001], la construction d’un treillis de concepts peut être décrite en utilisant 4 en-

sembles de concepts : les conceptsmodifiés, les concepts générateurs, les nouveaux concepts
et les anciens concepts. Soient L1 et L2 deux treillis de concepts avant et après l’insertion

du nouvel objet o, respectivement. Notons o′ l’intension de o et (A,B) un concept formel

dans L2 :

— (A,B) est un nouveau concept si B n’est l’intension d’aucun concept dans L1.

— (A,B) est un concept modifié, si B ⊆ o′ et B est l’intension d’un concept dans L1.

— Si (A,B) reste inchangé de L1 à L2, il s’agit d’un ancien concept.
— En supposant que (C,D) est un nouveau concept et que (A,B) est un ancien concept,

si B ∩ o′ = D /= B, le concept (A,B) est un générateur
3
du concept (C,D). Sinon,

(A,B) est ancien concept.

Soit L un treillis de concepts et o un nouvel objet que l’on souhaite insérer dans L. Le
principe de fonctionnement de l’algorithme AddIntent peut être résumé comme suit :

1. Déterminer l’intension de l’objet o, notée o′.

2. Identifier dans le treillis L le concept le plus général — c’est-à-dire le plus haut dans

la hiérarchie — dont l’intension contient o′. Ce concept est appelé GeneratorConcept.
3. Extraire l’ensemble des parents (successeurs directs) de GeneratorConcept, noté Ge-

neratorParents.
4. Déterminer l’ensemble des parents du nouveau concept à insérer, noté NewConcept,

en examinant les parents de GeneratorConcept. Cet ensemble est appelé NewParents.
5. Après traitement des parents de GeneratorConcept, le nouveau concept est créé :

NewConcept ← (GeneratorConcept.Extent, o′). Celui-ci est ensuite relié aux concepts

de la liste NewParents, tout en supprimant les liens existants entre ces derniers et

GeneratorConcept. Enfin, NewConcept est défini comme un voisin supérieur de Gene-
ratorConcept.

L’algorithme AddIntent, tel que présenté par [Van Der Merwe et al., 2004], ne met pas

à jour les extensions des concepts. Cette mise à jour est assurée par la procédure CreateLat-
ticeWithAddIntent (algorithme 1, ligne 5), qui construit le treillis de concepts d’un contexte

formel (O,A, I) en appliquant successivement AddIntent à chaque objet o ∈ O.

2.4.2 AddExtent : une version duale de AddIntent

Lorsque les données sont amenées à évoluer par l’ajout de nouveaux attributs, il est

souvent préférable d’adopter une approche fondée sur les attributs plutôt que sur les objets,

afin de faciliter l’intégration de ces nouveaux éléments dans le treillis. Contrairement à

l’algorithmeAddIntent, qui construit le treillis de concepts de manière ascendante en itérant

3. Tout nouveau concept (A,B) possède aumoins un générateur. Le (seul) plus général de ces générateurs

est appelé le générateur canonique de (A,B).
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Algorithm 1 CreateLatticeWithAddIntent(O,A, I)

Input : Un contexte formel (O,A, I)

1: BottomConcept ← (∅, A)

2: L ← {BottomConcept}
3: for o ∈ O do
4: ObjectConcept = AddIntent(o’, BottomConcept, L)
5: Ajouter o à l’extension de ObjectConcept et de tous les concepts au-dessus
6: end for

sur les objets, l’algorithme AddExtent procède de manière descendante, en parcourant les

attributs à partir du concept le plus général (top-concept). Ainsi, AddExtent constitue la

version duale de AddIntent.

AddExtent permet d’intégrer un nouvel attribut a dans un treillis. Soient L1 et L2 deux

treillis de concepts avant et après l’insertion du nouvel attribut a, respectivement. Les 4

ensembles de concepts définis pour AddIntent sont également définis pour AddExtent avec
(A,B) un concept formel dans L2 et a′ l’extension du nouvel attribut a :

— (A,B) est un nouveau concept si A n’est l’extension d’aucun concept dans L1.

— (A,B) est concept modifié, si A ⊆ a′ et A est l’extension d’un concept dans L1.

— Si (A,B) reste inchangé de L1 à L2, il s’agit d’un ancien concept.
— En supposant que (C,D) est un nouveau concept et que (A,B) est un ancien concept,

si A ∩ a′ = C /= A, le concept (A,B) est un générateur du concept (C,D). Sinon,
(A,B) est ancien concept.

Soit L un treillis de concepts et a un nouvel attribut que l’on souhaite insérer dans L.
L’algorithmeAddExtent fonctionne demanière duale àAddIntent et peut se résumer comme

suit :

1. Déterminer l’extension de l’attribut a, notée a′.

2. Identifier dans le treillis L le concept le plus spécifique (c’est-à-dire le plus bas dans la

hiérarchie) dont l’extension contient a′. Ce concept est désigné parGeneratorConcept.
3. Extraire l’ensemble des enfants (prédécesseurs) de GeneratorConcept, noté Generator-

Children.
4. Déterminer l’ensemble des enfants du nouveau concept à insérer (NewConcept) en

examinant les enfants de GeneratorConcept. Cet ensemble est noté NewChildren.
5. Créer le nouveau concept – NewConcept ← (extent,GeneratorConcept.Intent) – et le

relier aux concepts de la liste NewChildren, tout en supprimant les liens existants

entre ces derniers et GeneratorConcept. Le nouveau concept est alors défini comme

voisin inférieur de GeneratorConcept.

Tout comme AddIntent, AddExtent ne met pas à jour les intensions des concepts. La

procédure CreateLatticeWithAddExtent permet de construire le treillis de concepts d’un
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contexte formel (O,A, I) en appliquant successivement AddExtent sur chaque attribut,

comme présenté à l’algorithme 2.

Algorithm 2 CreateLatticeWithAddExtent(O,A, I)

Input : Un contexte formel (O,A, I)

1: TopConcept ← (O, ∅)

2: L ← {TopConcept}
3: for a ∈ A do
4: AttributConcept = AddExtent(a’, TopConcept, L)
5: Ajouter a à l’intension de AttributConcept et de tous les concepts en dessous

6: end for

2.5 Extensions relationnelles de l’AFC

L’Analyse Formelle des Concepts (AFC) [Ganter et Wille, 1999] a été appliquée à

un large éventail de tâches, notamment la recherche d’informations et la découverte de

connaissances, ainsi qu’à de nombreux domaines d’application tels que les sciences so-

ciales, l’ingénierie logicielle ou encore la bio-informatique [Ferré et al., 2020 ; Poelmans

et al., 2013]. La diversité de ces contextes d’utilisation a rapidement mis en évidence la

nécessité d’étendre le cadre classique de l’AFC afin de pouvoir traiter des données plus

complexes, structurées ou multi-relationnelles. Cette section introduit d’abord les princi-

pales extensions de l’AFC dédiées aux données complexes, avant de présenter un aperçu de

celles développées pour les données multi-relationnelles.

Sans prétendre à l’exhaustivité, plusieurs extensions de l’AFC ont été proposées pour

traiter des données complexes. Parmi elles, l’Analyse Logique de Concepts (ALC) [Ferré et

Ridoux, 2000] et les structures de motifs (pattern structures) [Demko et al., 2022 ; Ganter et

Kuznetsov, 2001] permettent de manipuler des données où les objets sont décrits par des

représentations complexes (par exemple des intervalles numériques, des attributs évalués),

plutôt que par de simples ensembles d’attributs binaires. D’autres approches s’intéressent

à la prise en compte de l’incertitude dans les descriptions d’objets [Poelmans et al., 2014],

comme c’est le cas de l’Analyse Formelle Floue de Concepts (fuzzy FCA) [Belohlávek et

Vychodil, 2005], où la relation d’incidence entre un objet et un attribut est évaluée par

un degré de vérité compris entre 0 et 1, au lieu d’une valeur booléenne stricte. Enfin, les

contextes multi-valués [Ganter et Wille, 1999] constituent une extension de l’AFC per-

mettant de traiter des données non binaires où les attributs peuvent prendre plusieurs va-

leurs, comme dans le cas des variables catégorielles.

D’autres extensions de l’AFC visent à introduire des conditions supplémentaires dans

la relation d’incidence entre objets et attributs. L’Analyse Triadique des Concepts (Triadic
Concept Analysis – TCA) proposée par [Lehmann et Wille, 1995] traite le cas où les don-
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nées reposent sur trois ensembles : un ensemble d’objets, un ensemble d’attributs et un

ensemble de conditions, liés par une relation ternaire formant un contexte triadique. Au-

trement dit, elle modélise les situations du type : « un objet o possède un attribut a sous

une condition c ». Le résultat de cette analyse est un treillis de concepts triadiques (concept
trilattice), dont chaque concept est un triplet (A1,A2,A3) où A1 représente un ensemble

d’objets, A2 un ensemble d’attributs et A3 un ensemble de conditions. Cette approche a

ensuite été généralisée dans [Voutsadakis, 2002] sous le nom d’Analyse Polyadique des

Concepts (Polyadic Concept Analysis), autorisant un nombre illimité de dimensions pour le

contexte.

Pour terminer, plusieurs extensions de l’AFC ont été proposées afin de traiter plus spéci-

fiquement les donnéesmulti-relationnelles, pour que les concepts ne dépendent pas unique-

ment des descriptions individuelles des objets, mais également des structures relationnelles

entre des objets interconnectés [Ferré et Cellier, 2020 ; Kötters, 2013 ; Rouane-Hacene

et al., 2013 ; Wille, 1997].

Les familles des puissances d’un contexte (FPC) (power context family), introduites
dans [Wille, 1997] et détaillées, entre autres, dans [Kötters, 2016 ; Prediger et Wille,

1999 ; Wille, 2002], constituent une extension de l’AFC qui vise à exploiter les relations

d’arités quelconques dans un jeu de données relationnelles. Elles disposent d’un contexte

formel pour chaque arité de relation, c’est-à-dire un contexte d’objets, un contexte de couples

d’objets, un contexte de triplets d’objets, etc. Formellement, les FPC sont constituées d’un

ensemble de contextes Kn = (On,An, In) où :

— n = 1, le contexte K1
présente tous les objets, avec tous les attributs possibles. La

relation d’incidence de ce contexte spécifie si un objet possède un attribut (comme

dans le cas classique de l’AFC, voir définition 2.11 d’un contexte formel).

— n > 1, un élément o ∈ On
est un n-uplet ordonné d’objets, un attribut a ∈ An

est

une relation d’arité n et In spécifie si les éléments d’un n-uplet o sont reliés par une
relation a.

Un treillis de concepts est calculé pour chaque contexte, indépendamment des autres contextes.

Les concepts obtenus sont utilisés comme un vocabulaire de types et de relations pour

construire des graphes conceptuels similaires à [Chein et Mugnier, 2008 ; Sowa, 1984].

L’Analyse Relationnelle de Concepts (Relational Concept Analysis – RCA) [Rouane-

Hacene et al., 2013] constitue une extension de l’AFC destinée à l’analyse de données rela-

tionnelles compatibles au modèle entité-association [Chen, 1976], c’est-à-dire des données

représentées sous la forme de plusieurs tables interconnectées. Les tables décrivant des ob-

jets à l’aide d’attributs sont appelées contextes objets-attributs
4
, tandis que celles représen-

tant les relations entre objets sont désignées comme contextes objets-objets. Les concepts

4. Il s’agit des contextes formels au sens de l’AFC.
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formés dans ce cadre sont qualifiés de relationnels, car ils sont liés à d’autres concepts au

moyen d’attributs relationnels, lesquels capturent explicitement les liens inter-objets.

Deux extensions de RCA ont été proposées :

— RCAfloue (fuzzy RCA) [Boffa, 2022], qui combine RCA et de fuzzy FCA [Belohlávek

et Vychodil, 2005] afin de traiter des ensembles de donnéesmulti-relationnelles com-

portant un certain degré d’imprécision, c’est-à-dire des familles de contextes relation-

nels flous ;

— l’Analyse Polyadique de Concepts Relationnels (Polyadic Relational Concept Analysis)
[Bazin et al., 2024], qui associe RCA et l’Analyse Polyadique de Concepts [Voutsadakis,

2002] pour étendre RCA à des ensembles de données relationnelles comportant des

relations n-aires.

Graph-FCA (GCA) [Ferré, 2015 ; Ferré et Cellier, 2020] a été proposée comme une

extension de l’AFC dans laquelle l’ensemble de données est représenté non plus sous forme

tabulaire, mais sous la forme d’un graphe. GCA adopte une approche orientée graphe, où

les objets sont modélisés comme des nœuds, les relations comme des arêtes orientées reliant

ces nœuds, et les attributs comme des étiquettes portées par les nœuds ou les arêtes. Cette

modélisation permet de traiter des relations d’arité quelconque et de calculer des concepts

n-aires. Les résultats produits par GCA se présentent sous la forme d’un ensemble de graph
patterns capturant les structures relationnelles entre les concepts.

Une autre extension de l’AFC aux structures relationnelles est proposée dans [Kötters,

2013], où les treillis de concepts sont directement générés à partir d’une structure relation-

nelle, celle-ci jouant le rôle de contexte formel dans l’AFC. Comme GCA, cette extension

permet de traiter des relations n-aires et de calculer des concepts n-aires, c’est-à-dire des

concepts dont les intensions sont équivalentes à des requêtes conjonctives et dont les exten-

sions sont équivalentes aux résultats de ces requêtes, c’est-à-dire des ensembles de n-uplets

d’objets.

Enfin, GCA a été fusionnée avec les structures de motifs [Ganter et Kuznetsov, 2001]

pour donner naissance à Graph-PS [Ferré, 2023], une extension combinant les avantages

des deux paradigmes : la capacité à gérer des descriptions complexes et celle à modéliser

explicitement les relations n-aires entre objets.

2.6 Conclusion

Dans ce chapitre, nous avons présenté les notions fondamentales de l’Analyse Formelle

de Concepts (AFC), une méthode mathématique d’analyse de données et de découverte de

connaissances. L’AFC prend en entrée une table binaire (contexte formel) décrivant des ob-

jets par des attributs, et construit un treillis de concepts, où chaque concept correspond à

un sous-ensemble d’objets partageant des attributs communs. Nous avons également pro-
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posé une synthèse des principales extensions de l’AFC dédiées au traitement de données

multi-relationnelles.

Dans le cadre de cette thèse, nous menons une étude comparative de RCA et de GCA qui

constituent deux extensionsmajeures de l’AFC pour l’analyse de donnéesmulti-relationnelles.

Les chapitres 3 et 4 suivants sont consacrés à une présentation détaillée de RCA et de GCA,

respectivement.
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Analyse Relationnelle de Concepts
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3.1 Introduction

Introduite en 2002 dans le cadre de la reconstruction des diagrammes UML [Huchard et

al., 2002], l’Analyse Relationnelle de Concepts (Relational Concept Analysis - RCA) [Huchard
et al., 2007 ; Rouane-Hacene et al., 2013] est une extension de l’Analyse Formelle de Concepts

(AFC) pour des données relationnelles. Les concepts ainsi construits sont qualifiés de rela-
tionnels, dans la mesure où leurs intensions font référence à d’autres concepts.

RCA a démontré son efficacité dans un large éventail d’applications issues de domaines

diversifiés. En génie logiciel, le domaine ayant motivé sa création, RCA a été utilisée pour

plusieurs tâches notamment la modélisation de la variabilité des familles de produits inter-

connectées [Carbonnel et al., 2019], la localisation automatisée des fonctionnalités dans

les lignes de produits logiciels [Hlad et al., 2021]. On retrouve également des applications

de RCA en biologie [Alam et al., 2013], en hydro-écologie [Dolqes et al., 2021 ; Nica et

al., 2016b, 2016c], en détection de communautés [Guesmi et al., 2016a, 2016b], en déve-

loppement d’ontologies [Bendaoud et al., 2007 ; Hacene et al., 2008], en prise de décision

industrielle [Wajnberg et al., 2019a, 2019b] et plus encore.

Dans la suite de ce chapitre, nous présentons RCA de manière détaillée, en débutant

par les notions fondamentales (section 3.2). Une approche naïve d’intégration des relations

dans la construction des concepts est ensuite introduite en section 3.3, suivie par la pré-

sentation du mécanisme de scaling relationnel par lequel RCA intègre les relations dans la

description des concepts (section 3.4). Le déroulement global du processus RCA est exposé

en section 3.5, accompagné d’une discussion sur l’interprétation des concepts relationnels

générés.

3.2 Notions fondamentales de RCA

RCA est une extension de l’AFC pour le traitement des données relationnelles, c’est-

à-dire des données représentées par plusieurs tables et les associations qui les relient. Les

tables décrivant des objets au moyen d’attributs sont appelées contextes objets-attributs
(contextes formels), tandis que celles qui encodent les relations entre objets sont appelées

contextes objets-objets (contextes relationnels). Les concepts formés sont dits relationnels,
car les intensions qu’ils renferment établissent des liens avec d’autres concepts. Nous com-

mençons par définir le modèle de données utilisé en RCA appelé Famille Relationnelle de
Contextes (FRC).
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3.2.1 Famille Relationnelle de Contextes (FRC)

Les données en RCA sont décrites par un ensemble de contextes formels noté K et un

ensemble de contextes relationnels
1
noté R représentant les relations d’incidence entre en-

sembles d’objets deK. Ainsi, une relation r ⊆ Oi1 ×Oi2 donne lieu à un contexte relationnel

dont les lignes et les colonnes correspondent aux objets de Oi1 et Oi2 respectivement.

Définition 3.1 (Famille Relationnelle de Contextes (FRC)). Une FRC est une paire

(K,R) où :

— K = {Ki}i=1,...,n est un ensemble de contextes objets-attributs Ki = (Oi,Ai, Ii) décri-

vant des objets par leurs attributs.

— R = {rk}k=1,...,m est un ensemble de contextes objets-objets rk encodant les relations

entre les objets où rk ⊆ Oi1 ×Oi2 avec i1, i2 ∈ {1, . . . , n}.

Pour des raisons pratiques, une relation r ⊆ Oi1 × Oi2 est traitée sous la forme d’une

fonction définie par r ∶ Oi1 → P(Oi2) [Rouane-Hacene et al., 2013]. Pour les mêmes rai-

sons, quelques fonctions auxiliaires sont introduites pour soutenir le raisonnement centré

sur les relations.

Définition 3.2 (Les fonctions dom(r) et codom(r) des relations). Soit (K, R) une FRC.
Une paire de fonctions établit une correspondance entre les relations de R et les ensembles

d’objets de l’ensemble O = {Oi ∣ Ki = (Oi,Ai, Ii) ∈ K} des objets de la FRC.

— La fonction de domaine dom ∶ R→ O où dom(r) = Oi1 si et seulement si ∀(x, y) ∈ r,

x ∈ Oi1 .

— La fonction de codomaine codom ∶ R → O où codom(r) = Oi2 si et seulement si

∀(x, y) ∈ r, y ∈ Oi2 .

Une autre fonction permet de regrouper des relations par rapport à leur domaine, c’est

la fonction de contexte que l’on note rel.

Définition 3.3 (La fonction rel(K) des contextes). L’ensemble des relations issues d’un

contexte Ki = (Oi,Ai, Ii) donné est défini par la fonction rel ∶ K → P(R) qui pour chaque
contexte associe l’ensemble de relations issu de celui-ci : rel(Ki) = {r ∈ R ∣dom(r) = Oi}.

3.2.2 Exemple de Famille Relationnelle de Contextes

Pour illustrer la notion de Famille Relationnelle de Contextes (FRC) définie précédem-

ment, ajoutons au contexte formelKPerson du tableau 2.1, les contextes formelsKGarage etKCar

1. Les termes contextes objets-attributs et contextes formels sont utilisés de façon interchangeable. Il en va

de même pour les termes contextes objets-objets et contextes relationnels.
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Tableau 3.1 – FRC1 (K, R) avec K = {KPerson,KCar,KGarage} et R = {owner, sell, maintain}.

KPerson m
a
l
e

fe
m
a
le

c
i
t
y

co
un
tr
ys
id
e

s
i
n
g
l
e

m
ar
ri
ed

Alice × × ×

Bob × × ×

Charlie × × ×

Julie × × ×

owner Alice Bob Charlie Julie

car1 ×

car2 ×

car3 ×

car4 ×

car5 ×

car6 ×

KCar Renault Peugeot Tesla family sport sedan

car1 × ×

car2 × ×

car3 × ×

car4 × ×

car5 × ×

car6 × ×

sell c
a
r
1

c
a
r
2

c
a
r
3

c
a
r
4

c
a
r
5

c
a
r
6

A × ×

B × ×

C × ×

D

KGarage manufacturer chain service

A ×

B ×

C ×

D ×

maintain car1 car2 car3 car4 car5 car6

A × ×

B × ×

C

D × ×

qui décrivent les garages et les voitures par leurs caractéristiques respectivement. Considé-

rons la relation owner entre les voitures et les personnes, les relations sell etmaintain entre
les garages et les voitures. L’ensemble de ces tables présenté dans le tableau 3.1 forme la

FRC1 (K, R) avec K = {KPerson,KCar,KGarage} et R = {owner, sell, maintain}.

La relation owner indique pour chaque voiture son propriétaire. À titre d’exemple, l’inci-

dence owner(car1,Bob) signifie que la voiture car1 a pour propriétaireBob. La relation sell
encode quant à elle la vente des voitures par les garages. Ainsi, sell(A, car1) indique que le
garageA vend la voiture car1. Pour terminer, la relationmaintain renseigne lamaintenance

des voitures par des garages. Notamment, maintain(D, car2) signifie que le garageD fait

la maintenance de la voiture car2. Il en résulte les éléments suivants :

— dom(owner) = OCar et codom(owner) = OPerson,

— dom(sell) = dom(maintain) = OGarage et codom(sell) = codom(maintain) = OCar.

— rel(KGarage) = {sell, maintain}, rel(KCar) = {owner} et rel(KPerson) = ∅
2

Une notation des relations qui indiquent directement leurs domaines et codomaines est

nom_relation(dom, codom). Par exemple, on obtient owner(OCar,OPerson), sell(OGarage,OCar)

et maintain(OGarage,OCar).

À ce stade, nous savons comment construire les treillis de chacun des contextes for-

2. Ceci signifie que les entités OPerson du contexte KPerson ne constituent le domaine d’aucune relation et

ne sont par conséquent pas impactées par l’ensemble des relations.
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Car_13

Car_11

Renault

Car_0

Car_6

car1

Car_5
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car3
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car6

Car_3

car4

Car_10

Peugeot

Car_9

Tesla

Car_12

family

Car_8

sport

Car_7

berline

Figure 3.1 – Treillis L0Car du contexte KCar.

Garage_4

Garage_3

manufacturer

A
C

Garage_0

Garage_2

chain

B

Garage_1

service

D

Figure 3.2 – Treillis L0Garage du

contexte KGarage.

mels KPerson , KCar et KGarage. Les figures 3.1 et 3.2 présentent respectivement les treillis des

contextes KCar et KGarage. Quant au treillis du contexte KPerson, il a déjà été présenté à la

figure 2.3.

La grande problématique tient à l’intégration des relations inter-objets dans le proces-

sus d’analyse. Comment intégrer dans les concepts de KCar le fait que les voitures ont des

propriétaires ? C’est-à-dire, le fait que les voitures sont associées à des personnes à travers

la relation owner. De même, comment intégrer dans les concepts de KGarage l’information

selon laquelle les garages vendent et entretiennent des voitures? En clair, comment intégrer

le fait que les garages sont reliés à des personnes via les relations sell etmaintain? En effet,

pour tout contexte donné Ki = (Oi,Ai, Ii), chaque relation r issue de Ki (∀ r ∈ rel(Ki)), est
utile à la description des éléments o ∈ Oi. La section suivante présente une approche naïve

pour l’intégration des relations dans la description des concepts.

3.3 Approche naïve de scaling des relations

Une manière simple et quelque peu naïve de représenter les liens entre objets consiste-

rait à assimiler les liens à des attributs standards à valeur unique [Rouane-Hacene et al.,

2013]. En d’autres termes, pour chaque Ki = (Oi,Ai, Ii) ∈ K, on étend Ai avec des attributs

ar∶ ō correspondant aux couples constitués d’une relation r ∈ rel(Ki) (voir définition 3.3), et

d’un objet ō tel que (o, ō) ∈ r pour un certain o ∈ Oi.

Pour la FRC1 présentée dans le tableau 3.1, rappelons que rel(KGarage) = {sell, maintain},
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rel(KCar) = {owner} et rel(KPerson) = ∅. Le scaling des relations de FRC1 par l’approche

naïve va consister d’une part en l’extension du contexte KCar grâce à la relation owner par
les attributs de la forme owner :person où person ∈ codom(owner) = OPerson. L’intersection

de la ligne cari ∈ OCar avec la colonne owner :person contient une croix si et seulement

si (cari, person) ∈ owner. Le tableau 3.2 illustre le contexte étendu KCar+, obtenu à partir

de l’extension naïve du contexte initial KCar. D’autre part, l’extension du contexte KGarage

se fait par l’ajout des attributs de la forme sell :cari et maintain :cari formés sur les rela-

tions sell(OGarage,OCar) et maintain(OGarage,OCar) respectivement. Le tableau 3.3 illustre le

contexte KGarage+, correspondant à l’extension naïve du contexte initial KGarage. Quant au

contexte KPerson, il reste inchangé (et son treillis en conséquence), car ses entités ne consti-

tuent le domaine d’aucune relation.

Tableau 3.2 – Contexte KCar+ correspondant à l’extension naïve du contexte initial KCar.

KCar+ Renault Peugeot Tesla family sport berline o
w
n
e
r
:
A
l
i
c
e

o
w
n
e
r
:
B
o
b

o
w
n
e
r
:
C
h
a
r
l
i
e

o
w
n
e
r
:
J
u
l
i
e

car1 × × ×

car2 × × ×

car3 × × ×

car4 × × ×

car5 × × ×

car6 × × ×

Tableau 3.3 – Contexte KGarage+ correspondant à l’extension naïve du contexte KGarage.

K
G
ar
ag
e+

m
a
n
u
f
a
c
t
u
r
e
r

chain service s
e
l
l
:
c
a
r
1

s
e
l
l
:
c
a
r
2

s
e
l
l
:
c
a
r
3

s
e
l
l
:
c
a
r
4

s
e
l
l
:
c
a
r
5

s
e
l
l
:
c
a
r
6

m
a
i
n
t
a
i
n
:
c
a
r
1

m
a
i
n
t
a
i
n
:
c
a
r
2

m
a
i
n
t
a
i
n
:
c
a
r
3

m
a
i
n
t
a
i
n
:
c
a
r
4

m
a
i
n
t
a
i
n
:
c
a
r
5

m
a
i
n
t
a
i
n
:
c
a
r
6

A × × × × ×

B × × × × ×

C × × ×

D × × ×

Le treillis dérivé du contexte KCar+ (tableau 3.2) est représenté dans la figure 3.3. En

comparaison au treillis de la figure 3.1 obtenu sur le contexte initial KCar, nous obtenons

les mêmes concepts (14 concepts au total) à la différence que les concepts de KCar+ ren-

seignent également l’information sur les propriétaires des voitures. Par exemple, le concept
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"owner:Alice"

car4

Car+_10

Peugeot
"owner:Julie"

Car+_9
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Car+_8
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Car+_7

berline

Figure 3.3 – Treillis du contexte KCar+ (tableau 3.2).

Car+_11 (figure 3.3) indique que les voitures {car1, car6} sont de marque Renault et ont
pour propriétaire Bob, contrairement au concept Car_11 (figure 3.1) qui donne uniquement

l’information que les voitures {car1, car6} sont de marque Renault.

De même, la figure 3.4 présente le treillis du contexte KGarage+ avec 7 concepts contre 5
concepts pour le treillis du contexte initialKGarage (figure 3.2). Comme nous pouvons le voir

sur ces deux figures, le treillis de la figure 3.4 apporte plus de précision à la description des

garages à savoir qu’ils vendent et maintiennent des voitures. Pour illustration, les concepts
Garage+_2 et Garage+_4 qui ne sont pas produits avec KGarage, indiquent que le garageA
vend et maintient les voitures {car1, car6} et le garageC vend les voitures {car2, car5}.
Nous pouvons aussi remarquer la différence d’informations entre les intensions du concept

Garage+_1 et son équivalent Garage_1 (figure 3.2), de même que pour le concept Garage+_3
et son concept équivalent Garage_2 (figure 3.2).

Cette approche naïve de mise à échelle des relations a tendance à beaucoup augmen-

ter la taille des contextes formels en nombre d’attributs. L’ensemble d’attributs Ai d’un

contexte Ki = (Oi,Ai, Ii) se voit augmenter de la taille du codomaine de chaque relation

r ∈ rel(Ki) ; ce qui peut déboucher sur des treillis de grande taille avec des concepts dont

les intensions sont difficiles à interpréter, car beaucoup d’éléments doivent être pris en

compte pour la description d’un concept. De plus, cette approche ne garantit pas l’obten-

tion des concepts pertinents dans la mesure où elle n’aide pas à capturer les relations entre

des groupes d’objets (concepts). Pour illustration, {car1, car6} représente l’extension du

concept Car+_11, une abstraction consisterait à indiquer que les garages du concept Ga-
rage+_4 (à savoir garageA) vendent et maintiennent les voitures du concept Car+_11, ce
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Garage+_6

Garage+_5

manufacturer

Garage+_0

Garage+_3

chain
"sell:car3"
"sell:car4"

"maintain:car3"
"maintain:car4"

B

Garage+_1

service
"maintain:car2"
"maintain:car5"

D

Garage+_4

"sell:car1"
"sell:car6"

maintain:"car1"
"maintain:car6"

A

Garage+_2

"sell:car2"
"sell:car5"

C

Figure 3.4 – Treillis du contexte KGarage+ (tableau 3.3).

qui pourrait être indiqué grâce à deux attributs au lieu de quatre comme c’est le cas dans

l’intension de Garage+_4. Il en est de même pour le garageC (Garage+_2) qui vend les voi-
tures de Car+_10 ou du garageD (Garage+_1) qui maintient les voitures de Car+_10. Ce
type d’abstraction consistant à représenter et quantifier les relations entre les concepts, fa-

ciliterait l’interprétation des intensions des concepts et permettrait d’avoir des descriptions

de haut niveau et plus pertinentes des concepts.

Dans la section suivante, nous présentons le scaling relationnel, qui est le mécanisme

par lequel RCA intègre les relations inter-objets dans la construction des concepts de sorte

à pouvoir les abstraire en des relations inter-concepts.

3.4 Scaling relationnel

La question de savoir comment intégrer les relations inter-objets au cours du processus

de RCA admet une variété de réponses qui dépendent des objectifs de l’analyse conceptuelle.

Pour traiter les données relationnelles, RCA travaille en enrichissant les contextes objets-

attributs avec de nouveaux attributs, appelés attributs relationnels inspirés de la restriction
des rôles en Logique de Descriptions (LD) [Baader et al., 2003]. La force des liens capturés

dépend du quantificateur d’échelle, également appelé opérateur de scaling.
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3.4.1 Opérateurs de scaling

La mise à l’échelle d’un contexte objets-attributs se fait par ajout d’attributs relationnels
qui mettent en exergue les relations entre concepts. Ces attributs relationnels sont obte-

nus en associant des quantificateurs d’échelle (opérateurs de scaling), des relations et des

concepts.

Définition 3.4 (Attribut relationnel). Un attribut relationnel est une expression qr(C),

où q est un quantificateur d’échelle, r une relation (nom de la relation) etC un concept dont

l’extension contient des objets de codom(r).

Selon les besoins de l’application, différents quantificateurs peuvent être choisis pour

définir l’importance du lien entre les objets d’un ensemble et ceux d’un autre ensemble.

Nous introduisons ici les deux quantificateurs couramment utilisés : le quantificateur exis-
tentiel ∃ et le quantificateur universel strict ∃∀. Il existe d’autres quantificateurs qui sont en
majorité des variantes de ces derniers [Braud et al., 2018 ; Rouane-Hacene et al., 2013].

Dans les définitions suivantes, nous considérons deux contextes formels K = (O,A, I)
et Kr = (Or,Ar, Ir), et un contexte relationnel r avec dom(r) = O et codom(r) = Or ;

Cr l’ensemble des concepts produits sur Kr. Pour o ∈ O, l’image de o par la relation r est
représentée par r(o) = {oi ∈ Or ∣ (o, oi) ∈ r}. Pour illustration, dans la FRC du tableau 3.1,

prenons K pour le contexte KGarage, Kr pour le contexte KCar et r pour la relation sell avec
dom(r) = OGarage (ensemble des garages) et codom(r) = OCar (ensemble des voitures).

Définition 3.5 (Scaling existentiel). Pour tout objet o ∈ O et tout concept Ci ∈ Cr, si

r(o)∩Extent(Ci) /= ∅, alors l’attribut relationnel ∃r(Ci) est ajouté à l’ensemble d’attributs

de o.

Le scaling existentiel est qualifié de large, dans la mesure où il n’impose pas une relation

fortement contrainte entre l’image r(o) d’un objet o ∈ O et l’extension du conceptCi associé

à l’attribut relationnel ∃r(Ci). Ainsi, nous pouvons classer les garages selon qu’ils vendent

au moins une voiture d’un certain groupe (concept).

Dans la figure 3.1,Ext 3(Car_12) = {car1, car2}. Donc, l’attribut relationnel ∃ sell(Car_12)
est ajouté aux garages qui vendent au moins l’une des voitures {car1, car2}. Par exemple,

sell(garageA) = {car1, car6} donc, sell(garageA) ∩ Ext(Car_12) /= ∅. Par conséquent,
∃ sell(Car_12) devient un attribut de garageA. Le treillis du contexteKCar compte 14 concepts,

ce qui conduit à 14 attributs relationnels de la forme ∃ sell(Car_i), oùCar_i est un concept
du treillis L0Car du contexte KCar.

Le tableau 3.4 illustre le résultat de l’échelonnage existentiel du contexte KGarage basé

sur la relation sell et les concepts Ccar du treillis L0Car des voitures (figure 3.1). Remar-

quons que l’attribut ∃sell(Car_0) (en rouge) n’est partagé par aucun objet garage car,

3. Ext est mis pour Extent, la fonction d’extension.
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Tableau 3.4 – Scaling existentiel du contexte initial KGarage des garages en fonction de la

relation sell et les concepts du treillis L0Car des voitures (figure 3.1).

K
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∃
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∃
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∃
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∃
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∃
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∃
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∃
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∃
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3
)

∃
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l
l
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C
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r
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7
)

A × × × × × × ×

B × × × × × × ×

C × × × × × × ×

D ×

Ext(Car_0) = ∅. Cet attribut sera par conséquent un attribut du conceptGarage_0 (concept
� des garages, figure 3.5), dont l’extension est également vide.

La figure 3.5 rend compte du treillis de concepts résultant du scaling existentiel du

contexte KGarage tel que présenté dans le tableau 3.4. Ce treillis contient 10 concepts contre

5 concepts pour le treillis L0Garage (figure 3.2). Soit au total 5 concepts supplémentaires qui

émergent avec le scaling existentiel : les concepts dont les identifiants sont marqués en

gras, par exemple Garage_5 (figure 3.5). En plus de ces nouveaux concepts, les intensions

de certains concepts (du contexte initial) sont enrichies par les informations relationnelles.

Pour illustration, le concept Garage_3 d’extension {A,C} (figure 3.5), contrairement à ses

concepts équivalents Garage+_5 (figure 3.4) et Garage_3 (figure 3.2), contient dans son in-

tension l’attribut ∃sell(Car_12) qui signifie que chaque garage (de son extension) vend

au moins une voiture de Car_12. Plus précisément, Ext(Car_12) = {car1, car2} et nous
avons les correspondances sell(A, car1) et sell(C, car2).

Comme nous venons de le voir, le scaling existentiel est un encodage très large, dans la

mesure où il suffit de l’existence d’une relation entre un objet et les objets d’un autre concept

pour l’ajout de l’attribut relationnel formé audit objet. Ce qui, en pratique, peut entraîner

des liens relativement faibles entre les concepts. Nous poursuivons avec le scaling universel
strict, qui impose une contrainte plus forte entre les concepts.

Définition 3.6 (Scaling universel strict). Pour tout objet o ∈ O et tout concept Ci ∈ Cr, si

r(o) /= ∅ et r(o) ⊆ Extent(Ci), alors l’attribut relationnel ∃∀r(Ci) est ajouté à l’ensemble

d’attributs de o.

Le scaling universel strict est qualifié de restreint ou étroit en comparaison au scaling

existentiel, qualifié de large. En effet, la contrainte d’inclusion imposée entre l’image r(o)
d’un objet o ∈ O et l’extension du concept Ci associé à l’attribut relationnel ∃∀r(Ci) est

plus forte que celle appliquée dans le cas du scaling existentiel.
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Garage_4

Garage_3
manufacturer
∃ sell(Car_12)

Garage_9

∃ sell(Car_13)

Garage_0

∃ sell(Car_0)

Garage_2

chain
∃ sell(Car_9)
∃ sell(Car_4)
∃ sell(Car_3)

B

Garage_1

service

D

Garage_6

∃ sell(Car_11)
∃ sell(Car_6)
∃ sell(Car_1)

A

Garage_5

∃ sell(Car_10)
∃ sell(Car_5)
∃ sell(Car_2)

C

Garage_7

∃ sell(Car_8)

Garage_8
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Figure 3.5 – Treillis du contexte KGarage après scaling existentiel (tableau 3.4).

Par exemple, le concept Car_11 de la figure 3.1 a pour extension {car1, car6} et on
a sell(garageA) = {car1, car6} ⊆ Ext(Car_11), par conséquent, l’attribut relationnel
∃∀ sell(Car_11) est ajouté aux attributs de l’objet garageA.

Dans la même logique, avec le concept Car_13 qui est le top (⊺) concept des voitures

(regroupe toutes les voitures), l’attribut ∃∀sell(Car_13) est ajouté comme attribut à tous les

garages ayant vendu une voiture (il s’agit des garages {A,B,C}, qui constituent l’extension
du concept Garage_7 dans la figure 3.6), car l’ensemble des voitures vendus par chaque

garage est inclus dans Ext(Car_13).

Le tableau 3.5 est le résultat du scaling universel strict sur le contexte KGarage en fonc-

tion de la relation sell et les concepts du treillis L0Car des voitures (figure 3.1). Dans ce ta-

bleau, nous pouvons remarquer que la relation d’incidence entre les garages et les attributs

relationnels est très peu dense, en comparaison avec le tableau 3.4. Au total 10 attributs

relationnels sur 14 (à partir de ∃∀sell(Car_0), en rouge, tableau 3.5), ne sont partagés par

aucun objet et vont par conséquent constituer l’intension du conceptGarage_0 (� concept
des garages, figure 3.6), car son extension est également vide.

La figure 3.6 met en évidence le treillis associé au contexte du tableau 3.5. Ce treillis

compte 8 concepts contre 5 concepts pour le treillis du contexte initial (figure 3.2) ; les 3

concepts supplémentaires sont identifiés en gras (par exemple Garage_7). En comparaison
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Tableau 3.5 – Scaling universel strict du contexte KGarage en fonction de la relation sell et
les concepts du treillis L0Car des voitures (figure 3.1).
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A × × ×

B × × ×

C × × ×

D ×

Tableau 3.6 – Principaux opérateurs de scaling implémentés dans les outils de RCA

Opérateur Notation Attribut relationnel Contraintes

Existentiel ∃ ∃r(C) r(o) ∩Ext(C) /= ∅

Universel strict ∃∀ ∀r(C) r(o) /= ∅ et r(o) ⊆ Ext(C)

Universal-percent ∃∀≥n% ∃∀≥n%r(C)
∣r(o) ∩Ext(C)∣ ≥ n∣r(o)∣/100

et ∣r(o) ∩Ext(C)∣ > 0

Contains strict ∃ ⊇ ∃ ⊇ r(C) Ext(C) /= ∅ et Ext(C) ⊆ r(o)

Contains-Percent ∃ ⊇≥n% ∃ ⊇≥n% r(C)
∣r(o) ∩Ext(C)∣ ≥ n∣Ext(C)∣/100

et ∣r(o) ∩Ext(C)∣ > 0

avec le treillis obtenu par le scaling existentiel (figure 3.5), on obtient 2 concepts en moins

avec le scaling universel strict ce qui illustre bien son caractère restreint par rapport au

scaling existentiel.

Outre les quantificateurs existentiel ∃ et universel strict ∃∀ de scaling, d’autres va-

riantes de quantificateurs peuvent être utilisées pour préciser la force des liens entre les

ensemble d’objets, notamment les quantificateurs : universal-percent ∃∀≥n%, contains strict
∃ ⊇ et contains-percent ∃ ⊇≥n%. Soient une relation r, un objet o ∈ dom(r) et C un concept

tel que Ext(C) ⊆ codom(r), le tableau 3.6 récapitule les principaux quantificateurs inté-

grés dans les outils qui implémentent RCA à l’instar de RCAExplore [Dolqes et al., 2019]

et FCA4J [Gutierrez et al., 2022].

Un ordre de généralité peut être défini sur les attributs relationnels et sur les quantifica-
teurs de scaling.

Définition 3.7 (Relation de généralité ⪯A sur les attributs relationnels). Soient deux
attributs relationnels a1 = q1r1(C1) et a2 = q2r2(C2) tels que r1 ⊆ O3 × O1, r2 ⊆ O3 × O2,

Ext(C1) ⊆ O1 et Ext(C2) ⊆ O2 : a1 est plus général que a2 (noté a1 ⪯A a2) si et seulement
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Garage_4

Garage_3

manufacturer

Garage_7

∃∀ sell(Car_13)

Garage_0

∃∀ sell(Car_0)
∃∀ sell(Car_6)
∃∀ sell(Car_5)
∃∀ sell(Car_12)
∃∀ sell(Car_2)
∃∀ sell(Car_4)
∃∀ sell(Car_8)
∃∀ sell(Car_1)
∃∀ sell(Car_3)
∃∀ sell(Car_7)

Garage_2

chain
∃∀ sell(Car_9)

B

Garage_1

service

D

Garage_6

∃∀ sell(Car_11)

A

Garage_5

∃∀ sell(Car_10)

C

Figure 3.6 – Treillis du contexte KGarage après scaling universel strict (tableau 3.5).

si {a2}′ ⊆ {a1}′ [Braud et al., 2018].

Définition 3.8 (Relation de généralité ⪯S sur les quantificateurs). Soient q1 et q2 deux
quantificateurs de scaling ; q1 est plus général que q2 (q1 ⪯S q2) si∀r, ∀C, q1r(C) ⪯A q2r(C)

[Braud et al., 2018].

À titre d’exemple, la relation ∃ ⪯S ∃∀ signifie que l’extension du concept introduisant

∃r(C) inclut celle du concept introduisant ∃∀r(C). La figure 3.7 illustre cette hiérarchie

de généralité entre les quantificateurs présentés dans le tableau 3.6, allant des plus spé-

cifiques vers les plus généraux, du haut vers le bas (par exemple, ∃∀ est plus spécifique

que ∃∀≥60%). Cette propriété permet d’établir une relation entre les treillis obtenus à par-

tir de deux quantificateurs q1 et q2 tels que q1 ⪯S q2. En particulier, il existe une projection

des concepts construits avec q2 vers ceux construits avec q1. Autrement dit, pour chaque

conceptC1 du treillis construit avec q2, il existe un conceptC2 du treillis construit avec q1 tel
que Ext(C1) ⊆ Ext(C2). Par exemple, le treillis de concepts de la figure 3.6 construit avec

le quantificateur ∃∀ se projette dans celui de la figure 3.5, obtenu avec le quantificateur ∃.

Des précisions supplémentaires sur ces formalismes et leurs démonstrations figurent dans

[Braud et al., 2018].
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Figure 3.7 – Relation de généralité sur les quantificateurs – de [Braud et al., 2018].

La section suivante présente le processus d’extension d’un contexte objets-attributs par

intégration des relations inter-objets via les attributs relationnels.

3.4.2 Extension relationnelle d’un contexte

L’ajout d’attributs relationnels à un contexte objets-attributs s’effectue via une opéra-

tion de mise à l’échelle, basée sur un quantificateur. Afin de fournir une définition géné-

rique de cette opération, introduisons une fonction générique κ [Braud et al., 2018] qui fait

correspondre un quantificateur d’échelle q, une relation r et un sous-ensemble d’objets du

codomaine de r à un sous-ensemble d’objets du domaine de r.

κ ∶ Q ×R ×⋃i=1,...,n 2Oi → ⋃j=1,...,n 2Oj avec

— Q = {∃,∃∀,∃ ⊇, . . .} : un ensemble de quantificateurs d’échelle

— R : un ensemble de relations (contextes objets-objets)

— Oi : le codomaine d’une relation r ∈ R
— Oj : le domaine d’une relation r ∈ R

κ renvoie le groupe d’objets du domaine qui sont connectés pour r et q avec un certain

groupe d’objets du codomaine. Plus précisément, pour r, q et un conceptC sur le codomaine

de r, κ(r, q,Ext(C)) renvoie l’ensemble des objets qui possèdent l’attribut relationnel

qr(C). Par exemple,Ext(Car_12) = {car1, car2} (figure 3.1) et κ(∃, sell,Ext(Car_12)) =
{A,C} ; donc ∃sell(Car_12) est un attribut commun aux garages A et C (voir tableau 3.4

ou treillis de la figure 3.5).

Définition 3.9 (Extension relationnelle partielle). Considérons les contextes objets-
attributs Kk = (Ok,Ak, Ik) et Kl = (Ol,Al, Il), la relation r ⊆ Ok × Ol, le treillis Ll du
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contexte Kl et q un quantificateur d’échelle. L’opérateur de scaling S(r,q),Ll
sur Kk donne

l’extension relationnelle partielle S(r,q),Ll
(Kk) = (O+,A+, I+) avec :

— O+ = Ok,

— A+ = {qr(C) ∣C ∈ Ll},

— I+ = ⋃C∈Ll
κ(q, r,Ext(C)) × {qr(C)}.

L’extension relationnelle d’un contexte objets-attributs Kk est obtenue en le joignant

avec toutes les extensions relationnelles partielles générées à partir des relations qui ont

Ok comme domaine et leur opérateur d’échelle assigné. Ainsi, considérons une famille re-

lationnelle de contextes qui ne contient que le contexteKk ci-dessus mentionné, le contexte

Kl et la relation r avec dom(r) = Ok et codom(r) = Ol. L’extension relationnelle de Kk lors

de l’affectation du quantificateur q à r est l’union du contexte initial avec son extension

relationnelle partielle comme formulée dans l’équation 3.1.

Kk ∪ S(r,q),Ll
(Kk) = (Ok,Ak ∪A

+, Ik ∪ I
+) (3.1)

L’équation 3.1 correspond en effet à l’apposition des contextesKk et S(r,q),Ll
(Kk). L’opé-

rateur d’apposition sur deux contextes K1 = (O1,A1, I1) et K2 = (O2,A2, I2), tels que

O1 = O2 = O est noté K1 ∣ K2 = (O,A1 ∪ A2, I1 ∪ I2) et représente le contexte sur ces

objets où l’ensemble d’attributs et l’incidence sont obtenus par l’union des composantes

respectives de K1 et K2 [Ganter et Wille, 1999].

À titre d’illustration, le tableau 3.7 représente S(sell,∃),LKCar(KGarage)
4
, l’extension partielle

deKGarage sur r = sell(OGarage,OCar), q = ∃ et les concepts du treillis deL0Car (figure 3.1). Ainsi,
l’extension relationnelle de KGarage est illustrée dans le tableau 3.4 et correspond à l’union

du contexte initial KGarage (voir FRC1 du tableau 3.1) et l’extension partielle présentée dans

le tableau 3.7.

La section suivante présente l’extension relationnelle complète d’un contexte par rap-

port à l’ensemble des relations dont il est la source.

3.4.3 Extension relationnelle complète d’un contexte

Dans RCA, un contexte Kk est mis à l’échelle en utilisant toutes les relations issues de

Kk, c’est-à-dire les relations de l’ensemble rel(Kk). Pour exprimer formellement le contexte

obtenu en augmentant Kk avec tous les attributs relationnels résultants, ce que nous appe-

lons extension relationnelle complète deKk, il faut prendre en compte les treillis des contextes

associés aux codomaines des relations de rel(Kk).

4. L’extension se fait sur LKCar , car KCar est le contexte associé au codomaine de la relation sell.
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Tableau 3.7 – Extension relationnelle partielle du contexteKGarage en fonction de la relation

sell, du quantificateur ∃ et des concepts du treillis L0Car des voitures (figure 3.1) .
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A × × × × × ×

B × × × × × ×

C × × × × × ×

D

Désignons parL l’ensemble des treillis correspondant aux contextes deK. Soit rel(Kk) =

{rl}l=1,...,mk
, et pour chaque rl, soit Lil ∈ L le treillis sur Oil = codom(rl). Introduisons la

fonction ρ ∶ R → Q qui associe à chaque relation objets-objets rl ∈ R un quantificateur

d’échelle q ∈ Q = {∃,∃∀, . . .}. Sous ces hypothèses, l’extension relationnelle complète de

Kk par rapport à ρ et L, notée Eρ,L(Kk), est définie comme l’apposition de Kk avec les

résultats respectifs de sa mise à l’échelle sur chacune des relations rl ∈ rel(Kk). Autrement

dit, l’extension relationnelle complète du contexte Kk consiste à appliquer successivement

le scaling associé à chaque rl ∈ rel(Kk), selon le quantificateur défini par ρ.

Définition 3.10 (Extension relationnelle complète d’un contexte). Étant donné (K,R)
une FRC, avec un ensemble de treillis L, ρ un constructeur de scaling et un contexte Kk ∈ K
avec rel(Kk) = {rl}l=1,...,mk

l’extension relationnelle complète du contexte Kk par rapport

à ρ et L est :

Eρ,L(Kk) = Kk ∣S(r1,ρ(r1)),Li1
(Kk) ∣ . . . ∣S(rmk

,ρ(rmk
)),Limk

(Kk)

Comme exemple, rappelons que rel(KGarage) = {sell, maintain} avecOGarage etOCar pour

domaine et codomaine des deux relations respectivement. Pour la FRC1 du tableau 3.1, no-

tons L = {LGarage,LCar,LPerson}. L’extension relationnelle complète Eρ,L(KGarage) de KGarage,

avec ρ(sell) = ∃ et ρ(maintain) = ∃, va consister en son extension relationnelle sur les rela-

tions sell (comme présentée dans le tableau 3.7) etmaintain en correspondance. En d’autres

termes, on a :

Eρ,L(KGarage) = KGarage ∣ S(maintain,∃),LCar(KGarage) ∣ S(sell,∃),LCar(KGarage) (3.2)

Le tableau 3.8 récapitule Eρ,L(KGarage), l’extension relationnelle complète deKGarage en met-

tant en évidence l’extrait de l’extension partielle correspondant à chacune des relations

maintain et sell.
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Tableau 3.8 – Extension relationnelle complète du contexteKGarage en fonction des relations

{maintain, sell}, du quantificateur ∃ et des concepts du treillis L0Car (figure 3.1) .
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A × × × . . . × × × × . . . ×

B × × . . . × . . .

C × . . . × × . . .

D × × × . . . . . .

Lorsque l’extension relationnelle complète pour chaque contexte d’une FRC est calculée,

on parle de l’extension relationnelle complète de cette FRC.

3.4.4 Extension relationnelle complète d’une FRC

L’opérateur Eρ,L(Kk) d’extension relationnelle complète d’un contexte ci-dessus peut

être utilisé pour couvrir l’ensemble des contextes d’une FRC. L’idée étant d’obtenir l’en-

semble des extensions complètes pour chaque contexte de la FRC. Comme dans la section

précédente, l’extension se fait par rapport aux paramètres ρ et L telle que formulée à la

définition 3.11 suivante.

Définition 3.11 (Extension relationnelle complète d’une FRC). Étant donnée (K,R)
une FRC ayant pour ensemble de contextesK = {K1, . . . ,Kn} et pour ensemble de treillis L,
ainsi que le constructeur de scaling ρ, l’extension relationnelle complète deK est composée

de toutes les extensions relationnelles complètes de tous les Kk ∈ K :

E∗ρ,L(K) = {Eρ,L(K1), . . . ,Eρ,L(Kn)}

L’application deE∗ à un ensemble de contextes donne un ensemble de contextes étendus

où chaque contexte (objets-attributs) individuel est une extension par attributs de son ho-

mologue dans l’ensemble initial des contextes. Il est clair qu’à chacun des contextes étendus

(augmentés), correspond un treillis potentiellement plus grand.
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À titre d’exemple, l’application de E∗ avec ρ(sell) = ρ(maintain) = ρ(owner) = ∃ sur
la FRC1 (tableau 3.1) se constitue des extensions relationnelles complètes de ses contextes

KGarage, KCar et KPerson respectivement :

— L’extension Eρ,L(KGarage) a été présentée dans le tableau 3.8.

— Quant à l’extension relationnelle deKCar, on aEρ,L(KCar) =KCar ∣ S(owner,∃),LPerson(KCar)

qui correspond au tableau 3.9.

— Pour ce qui est de KPerson, on a tout simplement Eρ,L(KPerson) = KPerson, car il n’existe

aucune relation issue de KPerson.

Tableau 3.9 – Extension relationnelle complète du contexte KCar en fonction de la relation

owner, du quantificateur ∃ et des concepts du treillis L0Car des voitures (figure 3.1) .
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car1 × × × × × ×

car2 × × × × × ×

car3 × × × × × ×

car4 × × × × × ×

car5 × × × × × ×

car6 × × × × × ×

Commementionné précédemment, l’extension relationnelle complète d’une FRC (à par-

tir des treillis de l’ensemble initial des contextes formels) conduit à des contextes avec plus

d’attributs et par conséquent à des treillis potentiellement plus grands. Ainsi, la question de

savoir si ces nouveaux concepts devraient être réutilisés dans une nouvelle étape de mise à

l’échelle se pose. En d’autres termes, faut-il répéter l’étape demise à l’échelle, cette fois avec

des informations conceptuelles plus complètes à utiliser comme base de mise à l’échelle ?

Dans la section suivante, nous présentons le processus RCA qui intègre de manière itérative

les informations relationnelles dans chaque contexte.

3.5 Déroulement de RCA

Le processus de RCA suit une logique itérative. L’étape d’initialisation consiste à construire

le treillis de concepts pour chaque contexte formel de départ, puis, chaque itération com-

prend deux étapes : (1) la mise à l’échelle relationnelle des contextes formels et (2) la

construction des treillis de concepts pour chaque contexte formel étendu. L’itération sui-

vante est basée sur les résultats de l’itération précédente en appliquant l’AFC aux contextes
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formels étendus, et le processus se termine lorsque les treillis de deux étapes consécutives

sont équivalents. Ce processus est formalisé par la méthode Multi-FCA, présentée dans
la section suivante.

3.5.1 Méthode Multi-FCA

Le processus de RCA est décrit en détail par l’algorithme 3 qui reprend la procédure

Multi-FCA définie dans [Rouane-Hacene et al., 2013]. Cette méthode Multi-FCA fonc-

tionne selon une logique itérative : chaque fois que les contextes formels de la FRC sont

étendus, leurs treillis correspondants s’étendent également. Cette méthode représente un

schéma de calcul plutôt qu’un algorithme précis, car de nombreux choix algorithmiques

sont laissés à l’analyste. À titre d’exemple, avec la primitiveBUILD-LATTICE pour la construc-
tion d’un ordre sur les concepts, différents algorithmes tels que Ares [Dicky et al., 1995]

(pour calculer un sous-ordre du treillis) ou Iceberg [Stumme et al., 2002] (pour calculer un

sup-demi-treillis) peuvent être utilisés.

Algorithm 3 Processus ARC

1: Proc Multi-FCA
2: Input ∶ (K,R) = ({Ki}i=1,...,n,R) une FRC, ρ un constructeur de scaling

3: Output ∶ L un tableau [1,..,n] de treillis

▷ ρ la est fonction qui à chaque relation associe un quantificateur d’échelle

4: p← 0 ; halt← false
5: for i from 1 to n do
6: K0

i ← SCALE(Ki) ▷ Dans le cas où Ki est multi-valué

7: L0[i] ← BUILD −LATTICE(K0
i )

8: end for
9: while not halt do
10: p = p + 1

11: for i from 1 to n do
12: K

p
i ← EXTEND −CONTEXT (Kp−1

i , ρ,Lp−1)

13: Lp[i] ← UPDATE −LATTICE(Kp
i ,L

p−1[i])

14: end for
15: halt← ⋀i=1,...,n ISOMORPHIC(Lp[i],Lp−1)[i])

16: end while

La procédure Multi-FCA (algorithme 3) se déroule en plusieurs étapes et se décrit

comme suit.

1) Initialisation (lignes 5 à 8). Chaque contexteK0
i est obtenu à partir deKi en appliquant

une mise à l’échelle conceptuelle aux attributs multi-valués de Ki à l’aide de la primitive
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SCALE (ligne 6). Le treillis de concepts associé àK0
i est ensuite construit (ligne 7) en utili-

sant la primitive BUILD −LATTICE et est stocké dans L0[i]. À la fin de l’initialisation,

la variable L0
contient l’ensemble de treillis de tous les contextes K0

i .

2) Étape p > 0 (lignes 9 à 14). À l’étape p, pour chaque relation rk ⊆ Oi×Oj , les concepts du

treillis Lp−1[j] du codomaine (Oj) de rk sont utilisés pour étendre le contexte K
p−1
i de son

domaine (Oi) en utilisant la primitive EXTEND − CONTEXT (ligne 12). On obtient

un contexte étendu K
p
i . Ensuite, le treillis Lp[i] correspondant est obtenu en utilisant la

primitive UPDATE − LATTICE (ligne 13). Pour les deux primitives de construction et

de mise à jour du treillis, le choix des algorithmes est libre.

3) Arrêt du processus (ligne 15). Le processus s’arrête lorsque pour tous les contextes

objets-attributs, les treillis correspondants sont isomorphes sur deux étapes consécutives.

Autrement dit, le processus s’arrête lorsque toutes les paires de treillis Lp[i] et Lp+1[i] pour
un certain p sont équivalents.

Graphiquement, la méthode Multi-FCA du processus RCA peut se résumer par l’orga-

nigramme de la figure 3.8 ci-dessous.

FORMAL
CONTEXTS

FCA SCALING

LATTICES

fixpoint ?

YES

NO

Object-Attribute
Relations

Object-Object
Relations

INPUT: relational context family

LATTICES

OUTPUT: Concept Lattice Family

Figure 3.8 – Représentation schématique du processus RCA (@X. Dolques).
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À titre d’illustration, appliquons la méthodeMulti-FCA à la FRC1 (tableau 3.1) composée

des contextes K = {KGarage,KPerson,KCar} et des relations R = {sell, maintain, owner}.

L’initialisation (p = 0) consiste en la construction des treillis pour chacun des contextes

de KGarage (L
0
Garage), KPerson (L0Person) et KCar (L

0
Car) présentés dans les figures 3.2, 2.3 et 3.1,

respectivement. Utilisons le quantificateur ∃ pour la mise à échelle de toutes les relations.

Pour rappel, aucune relation n’est issue du contexte KPerson c’est-à-dire, que OPerson n’est le

domaine d’aucune relation, par conséquent, le contexte KPerson (ainsi que le treillis) reste

fixe le long du processus RCA.

À l’étape p = 1 (step 1 : première extension relationnelle complète de la FRC), les treillis

construits à l’étape p = 0 sont utilisés pour étendre les contextes et mettre à jour les treillis.

Les concepts de L0Person sont utilisés en association avec la relation owner pour étendre KCar

en K1
Car, dont le contexte étendu résultant a été illustré dans le tableau 3.9.

De même, les concepts de L0Car sont utilisés en association avec les relations sell etmaintain
pour étendre le contexte KGarage (en K

1
Garage) comme formulé à l’équation (3.2) et présenté

dans le tableau 3.8. À cette étape, la condition d’arrêt n’est pas vérifiée et on passe à l’étape

p = 2.

À l’étape p = 2, les treillis de l’étape précédente sont utilisés pour étendre les contextes.

Comme le contexteKPerson reste invariable le long des itérations de scaling (K
2
Person = K

1
Person =

K0
Person), on s’attend à avoir K1

Car = K
2
Car et L

1
Car = L

2
Car en conséquence. Pour ce qui est du

contexte KGarage, il est étendu avec le treillis L1Car /= L
0
Car et on a :

Eρ,L(KGarage) = K
2
Garage = KGarage ∣S(sell,∃),L1

Car
(KGarage) ∣S(maintain,∃),L1

Car
(KGarage)

À la fin de cette itération, on obtient que L1Car = L
2
Car, L

1
Garage = L

2
Garage et bien évidement,

L1Person = L
2
Person ce qui marque l’arrêt du processus RCA. La figure 3.9 présente le treillis

L2Car à la fin du processus RCA. Ce treillis contient 3 concepts supplémentaires (Car_14,
Car_15, Car_16) par rapport au treillis initial L0Car.

De même, la figure 3.10 illustre le treillis L2Garage à la fin du processus RCA. Ce treillis

compte 13 concepts contre 5 concepts par rapport au treillis initial L0Garage. Les 8 concepts

supplémentaires sont marqués en gras, par exemple le concept Garage_7. Par ailleurs, il
est à noter que L1Garage = L

2
Garage, mais que les intensions de certains concepts de L2Garage ont

été mises à jour par rapport à leurs intensions dans L1Garage. Ces mises à jour résultent de

l’intégration des attributs relationnels induits par les concepts Car_14, Car_15 et Car_16
du treillis L1Car, comme illustré en vert dans la figure 3.10.

Pour résumer, le tableau 3.10 récapitule le nombre de concepts pour chaque contexte au

fil des itérations du processus RCA.

Nous expliquons comment interpréter une intension d’un concept relationnel dans la

section suivante.
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Car_13

∃ owner(Person_9)

Car_11

Renault
∃ owner(Person_3)

Car_15

∃ owner(Person_6)

Car_16

∃ owner(Person_5)

Car_0

∃ owner(Person_0)

Car_6

car1

Car_5

car2

Car_2

car5

Car_4

∃ owner(Person_2)

car3

Car_1

car6

Car_3

∃ owner(Person_4)

car4

Car_10

Peugeot
∃ owner(Person_1)

Car_14

∃ owner(Person_7)

Car_9

Tesla
∃ owner(Person_8)

Car_12

family

Car_8

sport

Car_7

berline

Figure 3.9 – Treillis des voitures L2Car (étape 2 de RCA).

Tableau 3.10 – Nombre de concepts pour chaque itération de scaling.

p = 0 p = 1 p = 2

K
p
Person 10 10 10

K
p
Car 14 17 17

K
p
Garage 5 13 13

3.5.2 Interprétation des concepts relationnels

De nouvelles abstractions qui émergent des treillis relationnels caractérisent les liens

inter-objets (comme nous l’avons expliqué à la section 3.4.2). Pour clarifier, le concept

Car_14 du treillis L2Car (figure 3.9) introduit par l’attribut relationnel ∃owner(Person_7)
n’appartient pas au treillis initial L0Car (figure 3.1). Il s’agit d’un nouveau concept relationnel

dont les objets, à savoir {car2, car4, car5} sont décrits de manière purement relationnelle,

indiquant que ce sont des voitures dont les propriétaires sont des femmes, car le concept

Person_7 a pour extension {Julie,Alice} et pour intension {female}.

En outre, certaines intensions de concepts des contextes de départ sont complétées

par une partie relationnelle, ce qui permet d’affiner la description des objets concernés.

Ainsi, le concept Garage_3 du treillis initial L0Garage (figure 3.2) représente la classe des

garages de type manufacturer. Dans le treillis final des garages L2Garage (figure 3.10), l’inten-
sion du même concept (Garage_3), enrichie par les attributs relationnels ∃sell(Car_12)
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Garage_4

Garage_3
manufacturer
∃ sell(Car_12)
∃ sell(Car_16)

Garage_12

∃ sell(Car_13)

Garage_0

∃ maintain(Car_0)
∃ sell(Car_0)

Garage_2

chain
∃ maintain(Car_9)
∃ maintain(Car_4)
∃ maintain(Car_3)

∃ sell(Car_9)
∃ sell(Car_4)
∃ sell(Car_3)

B

Garage_1

service
∃ maintain(Car_10)
∃ maintain(Car_5)
∃ maintain(Car_2)

D

Garage_6

∃ maintain(Car_11)
∃ maintain(Car_6)
∃ maintain(Car_1)
∃ sell(Car_11)
∃ sell(Car_6)
∃ sell(Car_1)

A

Garage_5

∃ sell(Car_10)
∃ sell(Car_5)
∃ sell(Car_2)

C

Garage_7

∃ maintain(Car_8)
∃ maintain(Car_14)

Garage_10

∃ maintain(Car_7)
∃ maintain(Car_15)

∃ sell(Car_7)
∃ sell(Car_15)

Garage_8

∃ sell(Car_8)
∃ sell(Car_14)

Garage_9

∃ maintain(Car_12)
∃ maintain(Car_16)

Garage_11

∃ maintain(Car_13)

Figure 3.10 – Treillis des garages L2Garage (étape 2 de RCA).

et ∃sell(Car_16), indique qu’il s’agit des garages qui vendent des voitures de type family
(Car_12) et des voitures (Car_16) dont les propriétaires (concept Person_5) ont les carac-
téristiquesmarried et contryside. Plus précisément, le concept Person_5 (figure 2.3) a pour
extension {Bob, Julie} et pour intension {married, countryside}. En résumé, les treillis re-

lationnels de la FRC1 fournis par RCA relient les concepts des garages aux concepts des

voitures qui sont à leur tour reliés aux concepts des personnes, comme l’illustre l’extrait de

la figure 3.11.

Person_5

countryside
married

Bob
Julie

Garage_3

manufacturer
(Car_12)
(Car_16)

A
C

Car_16

(Person_5)

car1
car2
car5
car6

Figure 3.11 – Extrait du résultat de RCA reliant les garages de type manufacturer aux

personnes de caractéristiques married et contryside.
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3.5.3 Itérations dans Multi-FCA

La procédure Multi-FCA présentée à la section 3.5.1 calcule les attributs relation-

nels et étend les contextes au fil des itérations. En fait, dans de nombreux cas, il n’est pas
nécessaire d’itérer : un ordre approprié des tâches d’analyse pour les contextes individuels

devrait permettre de l’éviter [Rouane-Hacene et al., 2013].

On peut s’imaginer une structuration de la FRC sous forme d’un graphe dans lequel les

sommets représentent les contextes objets-attributs, et les arêtes représentent les contextes

objets-objets. Pour illustration, la figure 3.12 présente la structure graphique de la FRC1

(tableau 3.1) . À condition que ce graphe soit un graphe acyclique orienté (Directed Acyclic
Graph - DAG), un tri topologique des contextes fournirait un ordre total compatible avec

les dépendances induites par les relations entre les contextes. Ainsi, un ordre toplogique

sur le graphe de la figure 3.12 donne la succession des contextes (sommets) dans l’ordre

KGarage, KCar, KPerson où chaque contexte Ki apparaît bien avant ses successeurs, c’est-à-dire

les contextes de codomaines des relations issues de Ki.

Figure 3.12 – Structure graphique de la FRC1 (tableau 3.1).

En conséquence, l’analyse des contextes selon l’ordre topologique inverse garantit qu’un
contexte Ki n’est traité que lorsque tous les treillis nécessaires à la mise à l’échelle des rela-

tions dans rel(Ki) ont déjà été construits jusqu’à leur forme de point fixe. Dans l’exemple

de la FRC1, le calcul des treillis devrait s’effectuer suivant l’ordre KPerson,KCar,KGarage ce qui

se traduit par : (1) construction du treillis de KPerson, (2) extension relationnelle du contexte

KCar à l’aide des concepts de KPerson, puis construction du treillis associé, (3) extension re-

lationnelle de KGarage à l’aide des concepts de KCar (étendu), puis construction du treillis

associé. Suivant cet ordre de traitement des contextes, nous n’avons pas besoin de plu-

sieurs itérations de scaling sur cet exemple pour calculer l’ensemble de treillis relationnels

associé.

Cependant, afin de couvrir tout le spectre des FRC possibles, y compris les FRC cy-

cliques, l’expression plus générale de la méthode Multi-FCA est celle liée à un point fixe

comme présenté dans l’algorithme 3.

3.6 Conclusion

Nous avons présenté dans ce chapitre l’Analyse Relationnelle de Concepts (Relational
Concept Analysis - RCA) qui est une extension de l’Analyse Formelle de Concepts (AFC) aux
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données multi-relationnelles et dont l’objectif est de capturer les relations inter-objets dans

la construction des concepts. À partir d’une famille relationnelle de contextes, RCA produit

un ensemble de treillis inter-connectés par des attributs relationnels reliant des concepts

entre eux. RCA dispose de divers quantificateurs d’échelle (∃,∃∀, ⊇, etc.) permettant de

quantifier les relations entre objets et concepts, ce qui permet une analyse flexible.

RCA se limite au traitement de relations binaires (relations reliant deux catégories d’ob-

jets) et nécessite des transformations et modélisations supplémentaires pour le traitement

des relations d’arité n > 2. Dans le chapitre 4, nous présentons Graph-FCA, la deuxième

extension de l’AFC étudié dans cette thèse. Graph-FCA étend l’AFC aux graphes et a pour

spécificité la prise en compte des relations n(≥ 2)-aires et le calcul des concepts n(≥ 1)-aires
(concepts des relations).
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Chapitre 4 : Analyse Conceptuelle de Graphes (Graph-FCA)

4.1 Introduction

Graph-FCA (GCA) [Ferré, 2015 ; Ferré et Cellier, 2020] étend l’Analyse Formelle de

Concepts (AFC) aux graphes et vise à calculer des structures conceptuelles dans les graphes,

de la mêmemanière que l’AFC découvre les structures conceptuelles dans les données tabu-

laires (contextes formels). En GCA, les nœuds du graphe jouent le rôle d’objets dans l’AFC,

les attributs de l’AFC sont les labels (attributs unaires) des nœuds et les attributs n(>1)-aires

sont les labels des arêtes connectant n nœuds. Ainsi, GCA se caractérise par sa capacité à

prendre en compte des relations de toute arité, tout en permettant le calcul de concepts

n-aires. En termes d’applications, GCA a été utilisée pour l’extraction de structures lin-

guistiques, à partir d’arbres d’analyse, ainsi que l’extraction de motifs dans des recettes de

cuisine [Ferré et Cellier, 2016, 2022]. GCA a également été utilisée pour traiter les pro-

blèmes d’alignement des graphes de connaissances [Ferré, 2022], qui apparaissent lors de

la fusion de différents graphes de connaissances pour un domaine donné.

Dans ce chapitre, nous détaillons les notions et principes sur lesquels repose GCA pour

le calcul des concepts dans les graphes. Après quelques préliminaires techniques présentés

en section 4.2, la section 4.3 introduit les notions de contexte graphe et de graph pattern,
qui constituent des éléments fondamentaux de GCA. La section 4.4 poursuit avec la défini-

tion des concepts graphes, en s’appuyant sur les notions d’extension et d’intension au sens

de GCA. L’algorithme de calcul des k-concepts est ensuite décrit en section 4.5. Enfin, la

section 4.6 aborde la notion de concepts automorphes.

4.2 Préliminaires : tuples et projections

Dans cette section, nous présentons les notions de tuples et de projections qui sont des
concepts mathématiques importants pour Graph-FCA.

Tuples. Un tuple est une séquence ordonnée d’éléments noté x = (x1, . . . , xk), où ∣x∣ = k est
son arité. Par exemple, un enregistrement dans une base de données peut être représenté

par le tuple x = (Alice, female, city, single) qui identifie une personne et ses caractéristiques.
L’ensemble de tous les k-tuples sur un domaine E est noté Ek

et l’ensemble de tous les

tuples, indépendamment de leur arité, est défini par E∗ = ⋃k≥0Ek
. Il n’existe qu’un unique

0-tuple, noté (). Nous utilisons 1..k pour désigner l’ensemble des entiers de 1 à k. Afin

d’éviter toute confusion avec d’autres types d’indices, la notation x[i] peut être utilisée

comme alternative à xi. Il est courant d’appliquer des fonctions à des tuples. Pour toute

fonction unaire ϕ, la notation ϕ(x) désigne le tuple (ϕ(x[1]), ϕ(x[2]), . . . , ϕ(x[k])) et on
a ϕ(x)[i] = ϕ(x[i]) ; et pour toute fonction binaire, la notation ψ(x, y) désigne le tuple tel
que ψ(x, y)[i] = ψ(x[i], y[i]).

Projections. La projection est une opération permettant de sélectionner ou d’extraire une
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partie spécifique d’un ensemble ou d’une structure. La projection sur un tuple signifie

extraire certains éléments spécifiques de celui-ci. Formellement, une projection π ∈ Πl
k

est utilisée pour faire correspondre un k-tuple à un l-tuple selon la formule suivante :

π(x)[i] = x[π(i)], c’est-à-dire que le i-ième élément d’un tuple projeté est l’élément à l’in-

dice π(i). Elle est définie comme une fonction π ∶ {1, . . . , l} → {1, . . . , k} reliant les in-
dices 1..l du tuple cible aux indices 1..k du tuple source. Pour illustration, la projection

π = {1↦ 4,2↦ 1} fait correspondre un 4-tuple (ou un tuple d’arité ≥ 4) à un 2-tuple où le

premier élément du tuple cible (de sortie) est le quatrième élément du tuple source (d’en-

trée), et le deuxième élément du tuple cible est le premier élément du tuple source. La pro-

jection π peut être représentée de manière plus concise par le tuple (4,1). Soient le tuple
source x = (Alice, female, city, single) et la projection π = (4,1). Le tuple projeté y = π(x)
a pour composantes y[1] = x[4] et y[2] = x[1], donc y = π(x) = (single, Alice). Ainsi,
l’élément à l’indice i du tuple projeté y est l’élément à l’indice π(i) dans le tuple source x.

4.3 Contexte graphe et graph pattern

Cette section fournit une définition des données d’entrée de GCA, représentées sous la

forme d’un contexte graphe (graph context), et introduit la notion de graph patterns, qui
permettent de capturer des motifs structurels présents dans ces données.

4.3.1 Contexte formel en Graph-FCA : contexte graphe

Dans GCA, les objets sont représentés par des nœuds du graphe, les relations par des

arêtes orientées entre ces nœuds, et les attributs par des étiquettes associées aux nœuds et

aux arêtes. Alors que l’AFC définit ses données d’entrée comme un contexte formel qui est

une relation d’incidence entre les objets et les attributs, GCA définit ses données d’entrée

comme un contexte graphe qui est une relation d’incidence entre les tuples d’objets et les
attributs.

Définition 4.1 (Contexte graphe). Un contexte graphe est un tripletK = (O,A, I), oùO

est un ensemble d’objets, A un ensemble d’attributs et I ⊆ O∗ ×A une relation d’incidence

entre les tuples d’objets o ∈ O∗ = ⋃k≥1Ok
et les attributs a ∈ A.

Une incidence ((o), a) décrit l’objet o par l’attribut a comme dans l’AFC. Une incidence

((o1, o2), a) relie l’objet o1 à l’objet o2 par une relation binaire a comme dans RCA. Une

incidence ((o1, . . . , on), a) représente une relation n-aire. Pour plus de lisibilité, une alter-

native à la notation ((o1, . . . , on), a) peut être : a(o1, . . . , on) comme en logique des pré-

dicats. Les attributs unaires sont utilisés pour étiqueter les nœuds et les attributs n-aires

sont utilisés pour étiqueter les arêtes reliant n nœuds. Dans un contexte graphe, chaque
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nœud est représenté par un rectangle ayant deux compartiments où le premier comparti-

ment identifie l’objet et le second compartiment représente la description de l’objet. Pour

illustration, la figure 4.1 fournit un petit contexte graphe sur la famille royale britannique.

Dans ce contexte graphe, l’incidence unairemale(Georges) décrit l’entitéGeorges par l’at-
tribut male et l’incidence binaire has-parent(Georges,William) signifie que Georges a
pour parent (has-parent)William.

Charles

male

Georges

male

William

male

has-parent

Kate

female

has-parent

Diana

female

Harry

male

has-parent has-parent

Charlotte

female

has-parent has-parent

has-parent has-parent

Figure 4.1 – Contexte graphe sur la famille royale britannique [Ferré et Cellier, 2016].

Afin d’identifier les représentions extensionnelles et intensionnelles de GCA, nous de-

vons commencer par nous demander ce qu’est une description adéquate d’un objet dans

GCA. Un objet (par exemple, Georges) doit au moins être décrit par ses arêtes adjacentes

c’est-à-dire, les arêtes a(o), où o est un tuple d’objets contenant au moins l’objet concerné

(par exemple, has-parent(Georges,William)). Ensuite, si les objets adjacents sont liés à
d’autres objets (par exemple, has-parent(William,Charles)), cela doit également appa-

raître dans la description de l’objet. En effet, les descriptions des objets adjacents doivent

être incluses, car elles ont un impact indirect sur la nature de l’objet à décrire. En tout, cela

implique que la description d’un objet est l’ensemble du graphe, ou au moins la composante

connexe à laquelle il appartient si le graphe est composé d’un ensemble de sous-graphes.

Ainsi, dans un contexte graphe K = (O,A, I), la description d’un objet o peut être définie
comme le couple (o, I). De la même manière, la description d’un tuple d’objets o peut être
définie par le couple (o, I) que nous notons Q(o).

Nous présentons dans la section suivante les graph patterns qui constituent une géné-
ralisation de ces descriptions d’objets et permettent en GCA de définir des représentations

intensionnelles sur des ensembles de tuples d’objets, plutôt que sur des ensembles d’objets.

4.3.2 Graph patterns

Les descriptions d’objets doivent être généralisées pour former les descriptions parta-

gées par un ensemble d’objets ou par un ensemble de tuples d’objets, d’où la notion de
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graph patterns comme généralisation des contextes graphes. GCA définit un graph pattern
comme une relation d’incidence généralisée, et un Projected Graph Pattern (PGP) comme

une description généralisée. Dans les définitions suivantes, K = (O,A, I) est un contexte

graphe et V est un ensemble de variables tel que O ⊆ V .

Définition 4.2 (Graph pattern). Un graph pattern P ⊆ V∗×A est un ensemble d’arêtes n-

aires avec des variables comme nœuds et des attributs comme étiquettes. En termes simples,

un graph pattern constitue une abstraction d’un contexte graphe, où les objets sont géné-

ralisés sous forme de variables. V (P ) désigne l’ensemble des variables de P .

x

y

z

has-parent

has-parent

x

z

y

w

has-parent has-parent

has-parent

has-parent

male female

Figure 4.2 – Représentation graphique des graph patterns P1 et P2.

Pour illustration, le graph pattern P1 = {has-parent(x, y),has-parent(y, z)} décrit toute
situation où "une entité x a pour parent (has-parent) une autre entité y, qui a un parent z". Le
patternP2 = {has-parent(x, z),has-parent(x,w),has-parent(y, z),has-parent(y,w),male(z),
female(w)} est un graph pattern qui décrit une situation où "deux entités x et y ont le même

père et la même mère", c’est-à-dire que x et y sont frères/soeurs. La figure 4.2 présente les
patterns P1 et P2 sous forme graphique. Notons que le pattern P1 peut être vu comme une

généralisation du contexte graphe présenté à la figure 4.3 qui est extrait du contexte de la

figure 4.1. Dans P1, le genre (male/female) des personnes n’est pas pris en compte, ce qui

explique pourquoi la variable x de P1 matche avecGeorges etCharlotte. Il en est de même

pour la variable z qui a pour instances Diana et Charles.

4.3.2.1 Pattern core (motif principal) d’un graph pattern

En termes de redondances d’information dans un graphe, une notion importante en

théorie des graphes est celle du core (noyau) d’un graphe, qui correspond à la version mi-
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Charles

male

Diana

female

Charlotte

female

William

male

has-parent

Georges

male

has-parent

has-parent has-parent

Figure 4.3 – Un sous-graphe du contexte graphe de la figure 4.1.

nimale de ce graphe qui exprime la même information que le graphe initial. Il est en effet

naturel de se demander lorsque l’on examine des sous-structures présentant une certaine

propriété, s’il existe une sous-structure minimale possédant cette même propriété. Cette

notion de version minimale d’un graphe (graph pattern dans notre cas) est utile pour une

description (intension) non redondante d’un ensemble de tuples d’objets.

Le core d’un graphe est son plus petit retract et le retract d’un graphe G est un sous-

grapheH deG au sens de l’homomorphisme c’est-à-dire, qui respecte la structure de graphe

[Hahn et Tardif, 1997].

Définition 4.3 (Retract d’un graphe). Soient G et H deux graphes. H est appelé un

retract de G s’il existe deux homomorphismes ρ ∶ G→H et γ ∶H → G tels que ρoγ = idH .

L’homomorphisme ρ est appelé une rétraction et γ une co-rétraction [Hahn et Tardif,

1997].

Définition 4.4 (Core d’un graphe). Un grapheG est un core si aucun sous-graphe propre
1

de G n’est un retract de G [Hahn et Tardif, 1997].

En d’autres termes, le core d’un graphe est sa forme la plus compacte du point de vue

de ses relations de voisinage c’est-à-dire, sans informations redondantes et qui capture la

structure essentielle du graphe. Ainsi, on dit d’un graphe qu’il est son propre core s’il n’a
aucune simplification possible par homomorphisme. Pour illustrer, la figure 4.4 reprend

l’exemple utilisé dans [Ferré et Cellier, 2020].

Dans la figure 4.4, les graphes H et G1 sont des retracts du graphe G2 mais pas du

graphe G3. En effet, affirmer plusieurs fois que x est dans une relation a avec quelque

1. Un sous-graphe propre d’un graphe G est un sous-graphe qui n’est pas identique à G lui-même.
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x

y

x

y1 y3

a

y2

a a

x

y1 y2

a a a

y3

x

y1 y2

a a b

H G1 G2 G3

Figure 4.4 – Les graphes H et G1 sont des retracts du graphe G2 mais pas du graphe G3.
Le graphe H est le core des graphes G1 et G2. Par conséquent, les graphes H, G1 et G2
sont équivalents.

chose n’ajoute rien à l’affirmer une seule fois. Effectivement, les variables y1, y2 et y3 de

G2 peuvent correspondre au même objet dans le contexte graphe, car aucune information

(par exemple, une étiquette) ne les différencie. Au contraire, G3 affirme que x est à la fois

dans une relation a et une relation b, et ne peut donc pas se rétracter enH : l’arête b(x, y3)
ne peut pas se replier sur l’arête a(x, y2). Ainsi, le graphe H est le core des graphes G1 et

G2 mais pas de G3.

4.3.2.2 Projected Graph Pattern

Un graph pattern représente un motif de données présent dans le contexte graphe.

L’opération permettant de trouver les instances d’un tel motif consiste à projeter les va-

riables du pattern dans le contexte graphe pour trouver ses différentes instances. Autre-

ment dit, il s’agit d’identifier, dans le contexte graphe, les objets susceptibles de substituer

les variables du pattern. Le résultat obtenu est appelé un Projected Graph Pattern (PGP).

Définition 4.5 (Projected Graph Pattern-PGP). Un PGP est un couple Q = (x,P ) où

P est un graph pattern, et x ∈ V∗ appelé tuple de projection, est un tuple de variables.

Autrement dit, un PGP est un focus sur un ou plusieurs nœuds d’un graph pattern. Les

projections sur les tuples sont étendues aux PGPs : π(Q) = (π(x), P ). ∣Q∣ = ∣x∣ désigne

l’arité du PGP et on parle de k-PGP pour représenter un PGP d’arité k.

Un tuple de projection peut être vu comme un tuple d’objets abstraits par des variables ;

il définit un focus sur les nœuds du graph pattern. À titre d’exemple, dans le figure 4.2, le

PGP Q1 = ((x), P1) qui a pour tuple de projection (x) - i.e, avec un focus sur la variable x
de P1 - décrit toute entité x ayant un grand-parent z, inversement, le PGP Q2 = ((z), P1)

décrit toute entité z ayant un petit-enfant x. Un autre exemple est le PGP Q = ((x, y), P2)

qui décrit quant à lui, la relation de "frère/soeur" entre x et y. On peut voir le PGP comme
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une requête que l’on évalue sur le contexte graphe. À titre d’illustration, voici quelques pro-

jections des patterns P1 et P2 par rapport au contexte graphe de la figure 4.1. Ces exemples

de projections sont représentés schématiquement dans la figure 4.5.

— Q1 = ((x), P1) a pour résultat les objets suivants : Georges et Charlotte (qui ont
pour grands-parents Charles et Diana).

— Q2 = ((z), P1) a pour résultat les objets (grands-parents) Charles et Diana.

— Q = ((x, y), P2) a pour résultat (Georges,Charlotte) et (William,Harry) qui sont
des couples

2
représentant des frères/soeurs ayant le même père et la même mère. En

effet, il y a d’une part Georges et Charlotte qui ont pour parentsWilliam etKate,
et d’autre partWilliam et Harry qui ont pour parents Charles et Diana.

x

y

z

has-parent

has-parent

x

z

y

w

has-parent has-parent

has-parent

has-parent

male female

x

y

z

has-parent

has-parent

x = Georges/ 
    Charlotte

z = Charles/ 
    Diana

(x,y) = (Georges, Charlotte)/ 
   (William, Harry)

Figure 4.5 – Représentation graphique des PGPs Q1, Q2 et Q par rapport au contexte

graphe de la figure 4.1.

Les arêtes des patterns peuvent être vues comme des contraintes sur les variables. Une

variable qui apparaît dans le tuple de projectionmais pas dans le pattern n’est pas contrainte

et peut prendre n’importe quel objet comme valeur. Une variable qui apparaît dans le pat-

tern mais pas dans le tuple de projection est quantifiée de manière existentielle par rapport

aux variables projetées. Par exemple dans Q1 = ((x), P1), il doit exister une personne (z)
qui soit grand-parent de x. Dans Q = ((x, y), P2), il doit exister une entité z qui soit le

père de x et y et une entité w qui soit leur mère ; mais les identités de z et w n’ont pas

d’importance. Plus précisément, un PGP décrit son tuple de projection, et par conséquent,

l’ensemble de ses instances.

Dans la section suivante, nous présentons la notion de concept graphe (graph concept)
équivalente à la notion de concept formel en AFC à travers les définitions d’une extension

2. En effet, le tuple de projection contient 2 éléments. La nature du tuple de projection détermine la nature

des résultats de la projection.
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et d’une intension de concept en GCA.

4.4 Extension, intension et concept graphe

Cette section introduit les représentations intensionnelles et extensionnelles qui per-

mettent de définir un concept graphe GCA.

4.4.1 Extension : des PGPs aux object relations

Dans la description des PGPs donnée précédemment, nous avons vu que le résultat

d’une projection est un ensemble de tuples d’objets (de même arité que le tuple de projec-

tion) contraint par les caractéristiques définies par le PGP. Ceci permet de définir les repré-

sentations extensionnelles de GCA comme ensembles de tuples d’objets avec la contrainte

que tous les tuples d’un même ensemble aient la même arité. Ainsi, nous obtenons que les

extensions sont des object relations, c’est-à-dire des ensembles de tuples d’objets.

Définition 4.6 (Object relation). Un object relation est un ensemble de tuples d’objets

R ⊆ Ok
, pour une certaine arité ∣R∣ = k. On noteR l’ensemble des object relations indépen-

damment de leur arité et Rk le sous-ensemble des relations d’arité k. Les projections sont

étendues aux relations : π(R) = {π(o) ∣ o ∈ R}.

Par exemple, {(William,Harry), (Georges,Charlotte), (Diana,Kate)} est un object

relation d’arité 2. Un object relation d’arité 1 est tout simplement équivalent à un ensemble

d’objets comme en AFC.

L’obtention des extensions de concepts en GCA se fait par une correspondance des PGPs

aux ensembles de tuples d’objets qui détermine les instances des tuples de projection sur

un contexte graphe donné. Notamment, le fait que le focus sur le nœud x du pattern P1

(Q1 = ((x), P1)) fournit Georges et Charlotte comme instances de x indique qu’il y a au

moins 2 instances de P1 (du point de vue de x) dans le contexte graphe.

L’opération d’inclusion sur les ensembles d’attributs en AFC s’étend aux PGPs en GCA

pour la définition des extensions.

Définition 4.7 (Inclusion de PGP). Soient Q1 = (x1, P1) et Q2 = (x2, P2) deux PGPs de

même arité (∣Q1∣ = ∣Q2∣). Q1 est inclus dans Q2 et on note Q1 ⊆q Q2 si et seulement si, il

existe un homomorphisme
3 ϕ ∶ V (P1) → V (P2) tel que : ϕ(x1) = x2 et ϕ(P1) ⊆ P2 i.e.,

∀(y, a) ∈ P1, (ϕ(y), a) ∈ P2.

3. ϕ est donc un morphisme de graphes et on dit classiquement que P1 se "projette" dans P2 avec conser-

vation des tuples de projections.
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Définition 4.8 (Extension d’unPGP). SoitK = (O,A, I) un contexte graphe. L’extension
d’un k-PGP Q = (x,P ), notée ext(Q), est définie par

ext(Q) ∶= {o ∈ Ok ∣ Q ⊆q Q(o)}, où Q(o) = (o, I)

Littéralement, l’extension d’un k-PGP Q est l’ensemble de k-tuples d’objets contenant Q
(qui partagent Q) dans leur description respective, sachant que chaque tuple d’objets o a
pour description Q(o) = (o, I). Donc, pour chaque tuple d’objets o ∈ Ok

, Q est une géné-

ralisation de sa description Q(o) c’est-à-dire, une version obtenue en substituant certains

objets par des variables et en relâchant certaines contraintes.

Pour clarifier, par rapport au contexte graphe de la figure 4.1, le PGP Q = ((x, y), P2)

avec P2 = {has-parent(x, z),has-parent(x,w),has-parent(y, z),has-parent(y,w),male(z),
female(w)}, a pour extension ext(Q) = {(William,Harry), (Georges,Charlotte)}. De
même, le PGP Q′ = ((x, y), P ′2), où P

′
2 = {has-parent(x, z),has-parent(x,Diana),male(z),

has-parent(y, z),has-parent(y,Diana), female(Diana)}, possède pour extension ext(Q′) =
{(William,Harry)}, qui est plus spécifique que celle deQ, c’est-à-dire ext(Q′) ⊆ ext(Q).
Ce résultat est normal car le PGPQ décrit l’ensemble des paires de personnes ayant le même

père et la même mère, sans préciser leur identité, tandis que Q′ contraint la description en

spécifiant que la mère est Diana.

Formellement, ext(Q) = ext(((x, y), P2)) = {o ∈ O2 ∣ Q ⊆q (o, I)}. Pour illustrer
cette définition, nous montrons un couple o ∈ O2 ∣ Q ⊆q (o, I) et un autre couple tel que

Q /⊆q (o, I). Pour o = (Georges,William), on a Q /⊆q ((Georges,William), I) comme

illustré à la figure 4.6 car, il n’y a pas de matching/correspondance entre les 2 tuples de pro-

jections (x, y) et (Georges,William). En effet, Georges etWilliam n’ont pas les mêmes

parents comme c’est le cas pour x et y.

Pour o = (William,Harrry), on obtient que ((x, y), P2) ⊆q ((William,Harrry), I)
comme le montre la figure 4.7. En effet, il existe un homomorphisme ϕ qui projette chaque

nœud et arête de P2 dans I , avec correspondance entre (x, y) et (William,Harrry) qui
sont les tuples de projections. Par conséquent, (William,Harrry) est un élément de l’ex-

tension de Q, car est une instance de son tuple de projection (x, y). Ce qui est également

le cas pour (Georges,Charlotte).

4.4.2 Intension : des objects relations aux PGPs

Tout comme l’AFC définit une correspondance des sous-ensembles d’objets vers les

sous-ensembles d’attributs, GCA définit une correspondance des objects relations (ensemble

de tuple d’objets) aux PGPs (intensions). Pour chaque object relation, il définit son intension

comme l’intersection des descriptions (PGPs) de tous les tuples d’objets qu’il contient.

L’intersection de PGPs ∩q est définie comme une forme d’alignement de graphes, où
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has-parent

has-parent

has-parent
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Georges Charlotte

male
Harry

male
Charles

female
Diana

has-parent has-parenthas-parent

has-parent

Il n'existe pas de  tel que 

has-parent

X

Figure 4.6 – Q = ((x, y), P2) /⊆q ((Georges,William), I).

chaque paire de variables des deux patterns devient une variable du pattern d’intersection.

Elle correspond au produit catégorique des graphes ([Hahn et Tardif, 1997]), également

appelé produit tensoriel ou produit direct. Le produit catégorique G ×H de deux graphes

G et H est donné par :

E(G ×H) = {[(u,x), (v, y)] ∶ [u, v] ∈ E(G), [x, y] ∈ E(H)}.

Définition 4.9 (Intersection de PGPs). Soitψ une injection deV×V dansV . L’intersection

de deux k-PGPsQ1 = (x1, P1) etQ2 = (x2, P2), notéQ1∩qQ2 est définie parQ = (x,P ), où

— x = ψ(x1, x2),

— P = P1 × P2 = {(ψ(y1, y2), a) ∣a ∈ A, (y1, a) ∈ P1, (y2, a) ∈ P2, ∣y1∣ = ∣y2∣}.

À titre d’illustration, soientQ1 = ((x1), P1) avec P1 = {a(x1, y1), c(x1, z1), b(y1, z1)} et
Q2 = ((x2), P2) avec P2 = {a(x2, y2), c(x2, y2), b(y2, y2)} deux PGPs, calculons leur inter-

sectionQ = Q1∩qQ2 = ((x), P ). La figure 4.8 explicite les représentations graphiques deQ1

etQ2. Le calcul deQ s’obtient par produit catégorique P = P1 ×P2 et le tuple de projection

s’obtient par conservation et par substitution de variables. La figure 4.9 présente les nœuds

et les arêtes (relations) de Q. Les cases vides du tableau matérialisent l’absence d’arêtes

entre les sommets concernés, et les cases non vides contiennent l’attribut de l’arête entre

les deux sommets correspondants. Sur la base de ces informations, la figure 4.10 illustre la

représentation graphique de l’intersectionQ = Q1∩qQ2 ayant pour expression algébrique :

Q = ((x), P ) = ((x),{a(x, y), c(x, z), b(y, z)}).
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has-parent

has-parent

has-parent

Figure 4.7 – Q = ((x, y), P2) ⊆q ((William,Harry), I).

Cette notion d’intersection de PGPs (intersection des descriptions) permet de calculer

les intensions de concepts en GCA, tout comme le calcul d’intensions de concepts en AFC

qui se fait par intersections d’ensembles d’attributs.

Définition 4.10 (Intension). Soit K = (O,A, I) un contexte graphe. L’intension d’un

object relation R ∈ Rk, noté int(R) est définie par

int(R) = ⋂
o∈R

Q(o)

4.4.3 Concept graphe

EnGraph-FCA, les intensions de concepts sont des Projected Graph Patterns (PGP) et les

extensions sont les ensembles de tuples d’objets (object relations). Une intension de concept

est un PGP qui décrit tout ce qu’un ensemble de tuples d’objets a en commun. Dans un cas

particulier, l’intension d’un objet unique est la description de cet objet.

Sur la base des définitions précédentes, la connexion de Galois suivante peut être défi-

nie. Les correspondances définies des PGPs aux objects relations et inversement des objects
relations vers les PGPs forment la connexion de Galois qui fonde la définition d’un concept

graphe (preuve dans [Ferré et Cellier, 2020]).

Théorème 1 (Connexion deGalois). SoitK = (O,A, I) un contexte graphe. Pour chaque
arité k, la paire de correspondances (ext, int) forme une connexion de Galois entre (Rk,⊆)
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a, ca
c

b
b

Tuple de projection Tuple de projection

Figure 4.8 – Représentation graphique des PGPs Q1 (à gauche) et Q2 (à droite).

et (Qk,⊆q) avec ext(Q) ∶= {o ∈ Ok ∣Q ⊆q (o, I)} et int(R) ∶= ∩q{(o, I)}o∈R. En d’autres

termes, pour chaque object relation R ∈ Rk et pour chaque PGP Q ∈ Qk,

R ⊆ ext(Q) ⇐⇒ Q ⊆q int(R)

L’expression ext(Q) traduit le fait que l’extension d’une description (attribut au sens de
l’AFC) soit égale à l’ensemble des tuples d’objets contenant cette description (Q) dans leur
propre description. L’expression duale int(R) quant à elle, représente le fait que la descrip-
tion d’un ensemble de tuples d’objets soit égale, à l’intersection des descriptions de chaque

tuple d’objets ; ceci pour trouver la description qui est commune (comme l’intersection des

ensembles d’attributs en AFC). À partir de la connexion de Galois (théorème 1), les concepts

graphes peuvent être calculés et organisés en treillis de concepts comme en AFC classique

pour chaque arité k.

Définition 4.11 (Concept graphe). Soit K = (O,A, I) un contexte graphe. Un concept

graphe de K est une paire (R,Q) constituée d’un ensemble de tuples d’objets (extension)

et d’un PGP (intension) tels que R = ext(Q) et Q ≡q int(R). L’arité d’un concept graphe

est l’arité de son extension et de son intension, qui doivent être égales.

4.5 Calcul et représentation des k-concepts

Maintenant que la notion de concept graphe a été introduite, détaillons le processus

algorithmique permettant de calculer l’ensemble des k-concepts pour un contexte graphe

donné (section 4.5.1), ainsi que leur représentation graphique (section 4.5.2).
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Arêtes de  :

 

Arêtes de  :

 

Noeuds de 
                           

 

Calcul des arêtes de  Q

Figure 4.9 – Calcul des nœuds et arêtes de Q = Q1 ∩q Q2.

a
c

b

Tuple de projection

a
c

b

Renommage des noeuds via  
la fonction 

Tuple de projection

Figure 4.10 – Représentation algébrique et graphique de Q = Q1 ∩q Q2.

4.5.1 Algorithme de calcul des k-concepts

L’algorithme 4 synthétise l’algorithme de calcul des k-concepts décrit en détail dans

[Ferré et Cellier, 2020]. Il est important de noter que l’appellation k-concept signifie,
concept d’arité k, c’est-à-dire un concept dont l’extension est un ensemble de tuples d’ob-

jets d’arité k. Pour k = 1, on parle de concept unaire où une extension de concept est un
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Algorithm 4 Génération des k-concepts pour k ∈ 1..Z

Input : Un contexte graphe K = (O,A, I)

1: PatternBasis← ∅ // base des motifs (patterns) regroupés par core
2: Concepts← ∅ ; Patterns← {I}

3: for P ∈ Patterns do
4: Patterns← Patterns ∖ {P}

5: NewPatterns← GenerationOfGraphPatterns(P × I)

6: for Pa ∈ NewPatterns (non encore traités modulo isomorphisme) do
7: Pc ← le core de Pa

8: PattenBasis← PatternBasis ∪ {Pa@Pc}

9: for k ∈ 1...Z, x ∈ V (Pa)
k do

10: Concepts← Concepts ∪ConceptComputation(k, x)

11: end for
12: Patterns← Patterns ∪ {Pa}

13: end for
14: end for

ensemble d’objets
4
(comme enACF et en RCA). Pour k = 2, on parle de concepts binaires (ou

concept de relations binaires) où une extension de concept est un ensemble de couples d’ob-

jets. Par généralisation, on parle de concepts n-aires lorsque k = n. Par souci de simplicité,

les illustrations de cet algorithme se limiteront au cadre des concepts unaires. L’algorithme

4 prend en entrée un contexte graphe K = (O,A, I) et calcule l’ensemble des k-concepts
suivant les étapes ci-dessous.

Génération de graph patterns (ligne 5). Le premier ensemble de patterns est calculé en

effectuant le produit catégorique I×I . Chaque composante connexe (Pa) issue de ce produit

est considérée comme un pattern indépendant. Une étape d’optimisation est ensuite mise

en œuvre pour simplifier les patterns Pa en cas de nœuds dupliqués. Deux nœuds d’un

pattern sont dits dupliqués (ou équivalents) lorsqu’ils jouent exactement le même rôle dans

ce pattern, c’est-à-dire lorsqu’ils possèdent les mêmes liaisons/connexions. Par exemple,

dans le graphe G1 à la figure 4.4, les nœuds y1 et y2 illustrent des nœuds dupliqués.

Grouper les patterns par core (lignes 7 et 8). Cette étape consiste, pour chaque pattern
Pa, à calculer son pattern core Pc (ligne 7), puis à le rattacher au pattern partageant le même

core, s’il existe déjà ; sinon c’est un nouveau pattern qui est rajouté à la base de patterns

(ligne 8). Ce regroupement permet d’obtenir une représentation visuelle compacte.

Calcul des k-concepts pour chaque pattern Pa (ligne 10). Pour chaque valeur donnée
de k, et pour chaque tuple de projection x du pattern Pa, le concept graphe correspondant

4. Ensemble de tuples d’objets de taille 1 plus exactement.
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est obtenu par des opérations de projection et de fermeture : (1) calcul du plus petit retract Pr

de Pa contenant le tuple de projection x ; (2) calcul de l’extension du concept par fermeture

sur son intension, laquelle correspond au PGP Q = (x,Pr).

Itérer avec de nouveaux patterns. Les nouveaux patterns Pa obtenus comme expliqué

ci-dessus deviennent une entrée pour l’étape suivante (ligne 12). L’algorithme s’arrête par

saturation lorsque plus aucun nouveau pattern n’est généré (au sens de l’isomophisme).

De manière simple, on peut dire que l’algorithme de calcul des k-concepts se résume

à calculer les ensembles de graph patterns sur les données (contexte graphe) par produits

catégoriques de graphes, et de calculer ensuite les instances de ces patterns par projection

de chaque nœud/variable (du graph pattern) sur le contexte graphe.

4.5.2 Représentation des résultats en Graph-FCA

GCA présente ses résultats sous différents modes. Cette section présente les résultats

d’exécution deGCA sur le contexte graphe de la figure 4.1. Toutes les informations pratiques

sur le fonctionnement de l’outil gfca qui implémente GCA sont présentées en détail dans le

manuel [Ferré, 2019].

4.5.2.1 Représentation compacte : graph pattern

Le premier mode de présentation des résultats en GCA est la représentation compacte

sous forme de graph patterns qui met en évidence les structures relationnelles dans les

données en capturant les différentes connexions entre les concepts.

La figure 4.11 illustre l’ensemble des graph patterns (Q1 - Q4) produit par GCA sur le

contexte graphe de la figure 4.1. Comme on peut le constater, les instances des nœuds ou

variables n’ont pas encore été calculées. Par exemple, le pattern Q1 (en bleu) constitué d’un

seul nœud (Q1a), représente les personnes possédant la caractéristique male. La question
« quelles sont les personnes ayant la caractéristique male ? » correspond à l’intension du

concept. Son évaluation sur le contexte graphe permet d’identifier toutes les instances qui

satisfont cette condition. L’ensemble de ces instances forme l’extension du concept.

Techniquement, dans un graph pattern, chaque nœud identifie un concept unaire (pre-

mier compartiment), comme illustré à la figure 4.12. Le deuxième compartiment contient

les descriptions des objets, tandis que le troisième compartiment présente l’extension du

concept, obtenue en projetant chaque nœud sur le contexte graphe. Notons que dans l’iden-

tifiant Qix d’un concept, i indique le numéro du pattern et x est la chaîne de caractères

(généralement une seule lettre) qui identifie le concept par rapport au pattern. Par exemple,

Q1a est le premier concept du premier pattern (constitué d’un seul concept), et Q3b est
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Figure 4.11 – Graph patterns (hors projections) du contexte graphe de la figure 4.1.
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Figure 4.12 – Graph patterns (complet) du contexte graphe de la figure 4.1.

le deuxième concept du troisième pattern. En termes d’interprétation, Q1a correspond au

concept des hommes, c’est-à-dire aux individus ayant pour descriptionmale, tandis queQ3b
identifie le concept des fils, c’est-à-dire les individus décrits par l’attributmale et possédant
au moins un parent. L’intension d’un conceptQix dans un pattern P, est donnée par le PGP
((x),Pir) où Pir est le sous-pattern constitué du nœud x et du pattern core de P : il s’agit

du plus petit retract de P contenant le nœud x.

Dans la représentation visuelle, chaque graph pattern est illustré avec deux nuances

de couleur (une couleur par pattern) : la nuance vive pour les nœuds du pattern core et la

nuance claire pour les nœuds non-core. Les nœuds en nuance vive (core nodes) représentent
les nœuds spécifiques, tandis que les nœuds en nuance claire généralisent les informations

des nœuds spécifiques. En d’autres termes, le pattern core représente la sous-partie du pat-

tern utile à la description de chaque nœud du pattern, car contenant l’essentiel de l’infor-

mation contenue dans le pattern. À titre d’illustration, dans le pattern Q3 (en vert citron),

le pattern core correspond au sous-graphe Pabc, constitué des nœudsQ3a,Q3b, etQ3c. Par
exemple le concept de "parent" (Q3d) généralise les concepts de "père" (Q3c) et de "mère"
(Q3a). Ainsi, l’intension de Q3b est le PGP ((b),Pabc), car Q3b est inclus dans le pattern

core, tandis que l’intension du conceptQ3d est le PGP ((d),Pd) où Pd est plus petit retract

de Q3 qui contient Q3d, c’est-à-dire constitué du pattern core Pabc et du concept Q3d.
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4.5.2.2 Représentation hiérarchique

Un ordre de généralisation sur l’ensemble des concepts des graph patterns permet d’ob-

tenir une représentation hiérarchique des concepts qui est semblable à l’ensemble des treillis

interconnectés de RCA. Cette hiérarchie de concepts n’est rien d’autre que la représenta-

tion de la relation de subsomption
5
sur l’ensemble de concepts. Dans cette représentation,

les relations entre concepts sont remplacées par des labels textuels dans la partie intension-

nelle des concepts (deuxième compartiment). On obtient ainsi les concepts ordonnés des

plus spécifiques aux plus généraux du bas vers le haut, ce qui permet d’avoir une vue d’en-

semble de l’ordre de généralisation entre les concepts. La figure 4.13 illustre la hiérarchie

des concepts des patterns de la figure 4.12. La relation de subsomption est présentée par les

flèches en pointillés pointant des sur-concepts vers les sous-concepts.

Pour exemple, la relation has-parent entre les concepts Q3b et Q3c du pattern Q3 (fi-

gure 4.12) est représentée par l’attribut [has-parent _ c] dans l’intension du conceptQ3b de
la hiérarchie de concepts (figure 4.13), indiquant que les entités de Q3b ont leurs parents
dans Q3c. Inversement, cette relation est représentée par l’attribut [has-parent b_] dans
l’intension de Q3c, signifiant que ses entités ont leurs enfants dans Q3b. Ceci est rendu
possible par le fait que GCA gère automatiquement les relations dans leurs deux sens (di-

rect et indirect) ; il s’agit d’une propriété intrinsèque au produit catégorique de graphes.

De manière générale, comme dans cet exemple, l’outil de GCA n’affiche pas les bottom

concepts (�) qui ont une extension vide ni les top concepts (⊺) ayant une intension vide.

Notons aussi que cette représentation hiérarchique affiche l’extension et l’intension com-

plète des concepts.

4.5.2.3 Représentation combinée : graph patterns + hiérarchie de concepts

Le troisième mode de représentation des concepts graphes est une représentation qui

combine les représentations hiérarchique et graphique (graph patterns). Cette représenta-

tion combinée est la plus riche car met en évidence les connexions entre les concepts (vue

pattern) et l’ordre de généralisation sur l’ensemble des concepts. Il convient de noter que

cette représentation combinée est plus difficile à appréhender, bien qu’elle reste plus riche

et plus complète.

La figure 4.14 fournit la représentation combinée des concepts graphes calculés sur le

contexte graphe de la figure 4.1. Comme son nom l’indique, cette représentation combine

celle de la figure 4.12, où les relations entre les concepts sont indiquées par des arrêtes

orientées et étiquetées (en solide), et celle de la figure 4.13 où la relation de subsomption

est représentée par des flèches en pointillés.

5. Un concept C est subsumé par un concept D lorsque ext(C) ⊆ ext(D).
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Figure 4.13 – Hiérarchie de concepts de l’ensemble de graph patterns de la figure 4.12.

4.6 Notion de concepts automorphiques

La duplication des concepts dans les résultats de GCA est parfois nécessaire pour repré-

senter correctement les graph patterns qui capturent des symétries ou certaines structures

dans le contexte graphe. Nous appelons ces concepts dupliqués concepts automorphes, qui
sont des nœuds interchangeables dans un pattern. En effet, ils ont des intensions équiva-

lentes et ont la même extension.

Pour illustrer cette notion de concepts automorphes, utilisons le contexte graphe illustré

à la figure 4.15 qui décrit les relations entre les plats, les céréales et les pays. Ce contexte

graphe est composé de deux sous-graphes : les composantesC1 etC2 (cycle de longueur 3).
L’ensemble des patterns produits par GCA (résultant du produit I × I) sans extension des

concepts est présenté à la figure 4.16. Nous pouvons identifier que le pattern Q1 (en bleu)

capture la composante C2 du contexte graphe, et résulte du sous-produit de C2 par lui-

même (C2 × C2). Il en est de même pour le pattern Q3 qui résulte du sous-produit de C1
par lui-même et qui met en évidence un motif plus complexe et plus enrichit qui révèle les

interactions croisées de C1 × C1. Quant au pattern Q2 (en rouge), il capture la structure

de la composante C1 et généralise les composantes C1 et C2, car résulte du sous-produit

C1 ×C2 ou (C2 ×C1, inversement).
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Figure 4.14 – Résultats de GCA en représentation combinée (figure 4.13 + figure 4.12).

En faisant un zoom sur le pattern de nœudsQ2 (figure 4.17), nous remarquons les nœuds

Q2a et Q2f sont étiquetés (dish), Q2c et Q2e sont étiquetés {rice, cereal} et pour termi-

ner, Q2b et Q2d ont pour étiquette country. La figure 4.18 met en évidence le pattern de

concepts Q2 dans lequel les extensions (instances des nœuds) sont calculées. Comme nous

le constatons, ce pattern comporte six nœuds, mais seulement trois concepts unaires dis-

tincts (correspondant à trois extensions différentes). Les trois autres nœuds sont en réalité

des duplications, ce qui justifie leur désignation en tant que concepts automorphes. Par

exemple, les concepts Q2a et Q2f sont automorphes, car ont la même extension et une in-

tension équivalente (les plats reliés à leurs principales céréales qui sont reliées à leur pays

de production). Il ne s’agit donc que de différentes représentations d’unmême concept théo-

rique. Aussi, les concepts Q2c et Q2e sont automorphes au même titre que le sont Q2b et
Q2d.

Tout comme le traitement automatique des relations dans les deux sens, le phénomène

de concepts automophes est intrinsèquement lié à la définition du produit catégorique de

graphes qui capture les interactions combinées entre les motifs du contexte graphe et par
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Figure 4.16 – Graph patterns (hors projection) du contexte graphe de la figure 4.15.

conséquent, capture indirectement les motifs du contexte graphe.

Pour une représentation hiérarchique qui respecte la structure de treillis, les concepts

automorphes sont représentés dans la vue hiérarchique par des méta-nœuds (boîtes en

pointillés) les regroupant. Par exemple, Q2d et Q2b dans la figure 4.19 qui fournit la re-

présentation hiérarchique de l’ensemble des concepts graphes du contexte de la figure 4.15.

Il est important de remarquer la notation parenthésée dans les noms (identifiants) de

certains concepts en l’occurrence : Q2d (e), Q2e (d) et Q2f (d e). Les éléments entre pa-

renthèses indiquent les nœuds utiles à la description du concept concerné. Nous avons

précédemment défini l’intension d’un concept Qix d’un pattern P comme étant le PGP

((x),Pir), où Pir désigne le plus petit retract de P contenant le nœud x. Avec cette notation
parenthésée, Pir devient le plus petit retract de P qui contient x et les nœuds indiqués entre
parenthèses. Pour illustration, int(Q2d (e)) = ((d),P2r) où P2r est constitué de tous les
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Figure 4.19 – Hiérarchie de concepts GCA sur le contexte graphe de la figure 4.15.

nœuds du pattern Q2 (figure 4.18) à l’exception du nœudQ2f (d e). Par contre, l’intension
de Q2f (d e) impliquera tous les nœuds de Q2.
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4.7 Conclusion

Ce chapitre a présenté GCAqui étend l’Analyse Formelle de Concepts (AFC) aux graphes,

dont la structure permet une représentation flexible des données sous forme d’entités re-

liées par des relations d’arité quelconque. À partir d’un graphe de données appelé contexte

graphe, GCA calcule les graph patterns qui mettent en évidence les différentes connexions

entre les concepts, et par conséquent, différents schémas d’information sur l’ensemble du

contexte graphe. Ces patterns sont calculés par produit catégorique de graphes et leurs

instances sont obtenues par calcul de la projection de leurs nœuds sur le contexte graphe.

Notons que GCA a la capacité de traiter les relations n(> 2)-aires et que son opération

fondamentale à savoir le produit catégorique de graphes lui confère le traitement automa-

tique des relations dans les deux sens (direct et inverse), ainsi que la possibilité de capturer

des symétries et certaines structures du contexte graphe, par le biais des concepts dits au-

tomorphes. En termes de présentation des résultats, GCA offre différentes possibilités en

fonction de l’aspect principal visé par l’analyse : (1) la vue graph patterns pour mettre en

évidence les structures relationnelles dans les données, (2) le vue hiérarchique pour mettre

en évidence l’ordre de généralisation sur les concepts et (3) la vue combinée pour une re-

présentation complète qui combine la vue graph patterns et la vue hiérarchique.

Le chapitre 5 suivant propose une synthèse des principaux travaux ayant exploré les

liens ou rapprochements possibles entre RCA et GCA.
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Chapitre 5 : État de l’art sur les rapprochements entre RCA et GCA

5.1 Introduction

Comme présenté à la section 2.5, plusieurs extensions de l’Analyse Formelle de Concepts

(AFC) [Ganter et Wille, 1999] ont été proposées pour le traitement de données com-

plexes [Ferré, 2023 ; Ferré et Ridoux, 2000 ; Ganter et Kuznetsov, 2001] et de données

multi-relationnelles [Bazin et al., 2024 ; Boffa, 2022 ; Kötters, 2013]. Parmi ces exten-

sions, l’Analyse Relationnelle de Concepts (Relational Concept Analysis - RCA) [Huchard
et al., 2007 ; Rouane-Hacene et al., 2013] et l’Analyse Conceptuelle des Graphes (Graph-

FCA/GCA) [Ferré, 2015 ; Ferré et Cellier, 2020], toutes deux conçues pour les données

multi-relationnelles, présentent quelques similitudes notamment : le calcul des concepts

unaires, l’usage du quantificateur existentiel (∃), ainsi que le traitement des relations bi-

naires.

En effet, lemodèle de données de RCA, constitué d’une Famille Relationnelle de Contextes

(FRC) représentant un ensemble de tables et leurs associations, peut être formalisé sous

forme de graphe. Réciproquement, si l’on se limite aux relations binaires, le modèle de

GCA qui est un contexte graphe, peut être aisément représenté par un ensemble de tables

relationnelles. Ainsi, même du point de vue de la structure des données, RCA et GCA ma-

nipulent des représentations équivalentes lorsqu’on considère exclusivement des relations

binaires.

Quelques travaux dans la littérature ont abordé, de manière directe ou indirecte, les

relations entre les approches RCA et GCA, en se concentrant sur différents aspects, notam-

ment :

— la lecture et l’interprétation de la famille de treillis produite par RCA, tâche reconnue

comme difficile ;

— la question de la navigation au sein de la famille de treillis RCA, qui demeure centrale ;

— le traitement des relations n-aires par ces deux approches ;

— la comparaison de RCA et GCA sur des cas d’application concrets.

Ce chapitre propose une synthèse de ces travaux, regroupés selon les catégories de ques-

tions qu’ils soulèvent. La section 5.2 présente d’abord les aspects liés à la navigation, à l’ex-

ploration et à la visualisation des résultats produits par RCA. La section 5.3 examine ensuite

les relations entre RCA et GCA sous l’angle de l’interprétation des ensembles de treillis re-

lationnels, tandis que la section 5.4 traite des questions de modélisation et de comparaison

entre les deux approches.

5.2 Naviguer, explorer et visualiser les résultats de RCA

RCA produit une famille de treillis, un pour chaque catégorie d’objets, reliés entre eux

par des attributs relationnels qui traduisent les liens inter-objets initiaux. L’un des enjeux
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majeurs pour une utilisation efficace de RCA réside ainsi dans l’interprétation de ces résul-

tats. En effet, l’ensemble des treillis générés peut rapidement devenir difficile à interpréter,

notamment lorsque leur taille est importante, car l’intension d’un concept peut dépendre

récursivement de celles d’autres concepts. Pour remédier à cette complexité, plusieurs ap-

proches ont été proposées, allant de l’adaptation du processus d’exploration dans RCA au

développement d’outils spécifiques dédiés à la visualisation et à la navigation dans les ré-

sultats. Cette section présente les principaux travaux menés dans ce cadre.

5.2.1 Adaptation de RCA pour une exploration progressive

Dolques et al. [Dolqes et al., 2015] ont proposé une adaptation de RCA visant à rendre

l’exploration des données progressive et interactive. Dans cette approche, l’utilisateur choi-

sit, avant chaque itération de RCA, les contextes objets–attributs et objets–objets qu’il sou-

haite intégrer au processus d’analyse, ce qui permet de limiter le nombre de concepts gé-

nérés et de rendre l’exploration plus flexible.

Plusieurs points de variation du processus RCA peuvent être exploités pour améliorer

son utilisation dans un cadre d’analyse exploratoire. Pour chacun de ces points de variation,

les auteurs proposent un scénario alternatif au processus classique de RCA (tel que décrit

dans l’algorithme 3), dans lequel l’utilisateur est impliqué en choisissant l’étape suivante

du déroulement. Les scénarios alternatifs proposés sont :

— Initialisation : construction des treillis uniquement pour les contextes objets–attributs

sélectionnés, plutôt que pour l’ensemble des contextes. D’autres structures peuvent

être construites, telles que les AOC-posets [Berry et al., 2012] ou les treillis Iceberg

[Stumme et al., 2002].

— Extension des contextes objets–attributs : sélection d’un sous-ensemble de la famille

de contextes relationnels et différents opérateurs de mise à l’échelle pour chaque

contexte objets-objets sélectionné, au lieu de mettre à l’échelle tous les contextes

objets-attributs à chaque étape. Il convient de noter qu’une relation objets-objets

choisie nécessite un treillis de concepts regroupant les objets de son codomaine qui

doivent avoir été calculés à une étape précédente.

— Construction (mise à jour) des treillis : construction uniquement des treillis correspon-

dant aux contextes objets–attributs sélectionnés. D’autres structures peuvent égale-

ment être construites à cette étape, telles que des AOC-posets ou des treillis Iceberg.

— Arrêt du processus : décision laissée à l’expert lorsque le point fixe n’est pas encore

atteint.

Sur la base de ces variations possibles du processus RCA, les auteurs introduisent deux

notions centrales pour formaliser l’exploration guidée des données : le chemin exploratoire

(exploratory path) et le modèle de données par étapes (step data-model). Le modèle de don-

nées par étapes correspond à une configuration particulière du processus à une itération
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donnée. Étant donnée une Famille Relationnelle de Contextes (FRC) (K,R), un step data-
model DMs (défini comme un triplet) décrit l’ensemble des choix de paramétrage effectués

à une étape donnée : (1) la FRC partielle (Ks,Rs) considérée, avec Ks ⊆K et Rs ⊆ R ; (2)

les quantificateurs de scaling associés à chaque contexte objets-objets de Rs ; (3) le choix

de l’algorithme de construction des treillis (treillis complet, AOC-poset, treillis Iceberg avec

un seuil donné, etc.) pour chaque contexte objets-attributs deKs.

Un chemin exploratoire est alors défini comme une séquence de modèles de données

par étapes (DMs0,DMs1, . . . ,DMsp), où chaque DMsi constitue la configuration utilisée

à l’étape i du processus. Ce chemin obéit aux contraintes suivantes :

— le modèle de données de la première étape ne contient que des contextes objets-

attributs ;

— à une étape i ∈ {1,2, . . . , p}, si un contexte objets-objets Rj fait partie du modèle de

données, le contexte correspondant à son domaine doit également être inclus dans le

modèle de données de cette même étape.

— à une étape i ∈ {1,2, . . . , p}, si un contexte objets-objets Rj fait partie du modèle de

données, un treillis de concepts sur son codomaine devrait avoir été construit à une

étape précédente q < i.

Cette approche d’exploration progressive a été implémentée dans l’outil RCAExplore

[Dolqes et al., 2019], qui permet à l’utilisateur de piloter le processus d’analyse en sélec-

tionnant dynamiquement les contextes, quantificateurs et algorithmes à chaque étape. Ces

adaptations du processus RCA classique visent à produire des résultats pertinents plus ra-

pidement, en limitant le nombre de treillis construits (idéalement à ceux présentant un réel

intérêt pour l’analyse) tout en réduisant la complexité globale de l’exploration et en offrant

à l’expert la possibilité de guider la découverte selon son intuition et les motifs émergents

au fil de l’analyse.

5.2.2 Réglage du processus d’exploration RCA

Pour aider l’analyste à anticiper, contrôler et interpréter les résultats produits par RCA,

Ouzerdine et al. [Ouzerdine et al., 2022] proposent trois surcouches destinées à encadrer

le processus d’analyse. En effet, RCA repose sur une grande variété d’opérateurs de mise

à l’échelle, qui confèrent au processus d’analyse une forte flexibilité et une expressivité

importante. Cependant, cette richesse peut également complexifier la tâche de l’analyste,

en raison de la multiplicité des paramètres à configurer.

Pour répondre à cette difficulté, les auteurs intègrent ces sur-couches à l’outil RCAEx-

plore [Dolqes et al., 2019], qui permet une variété d’utilisations de RCA. Par exemple,

dans RCAExplore, l’utilisateur peut à chaque étape du processus, changer les quantifica-

teurs d’échelle, les contextes formels et les relations à considérer. Les trois sur-couches

proposées sont présentées ci-après.
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— La première sur-couche consiste à exprimer des contraintes sur les quantificateurs

d’échelle, afin de garantir la cohérence de leur choix. En effet, RCAExplore offre la

possibilité de choisir parmi plusieurs quantificateurs pour les relations, mais parfois,

certaines relations sont sémantiquement liées et les quantificateurs qui leur sont as-

sociés doivent donc être cohérents. Les relations sont alors regroupées par classes

d’équivalence de telle sorte que les relations d’une même classe reçoivent toutes le

même quantificateur d’échelle à chaque étape du processus. Le quantificateur d’échelle

d’une classe reste variable d’une étape à l’autre.

— La deuxième sur-couche consiste à faciliter l’interprétation des expressions des attri-

buts, car l’une des difficultés rencontrées par l’utilisateur est de comprendre l’impact

du choix des quantificateurs d’échelle sur son analyse. Pour cela, un interpréteur qui

traduit automatiquement les choix réalisés sur l’interface utilisateur en une expres-

sion formatée respectant un langage fixé a été développé.

— La troisième sur-couche consiste à fournir des métriques quantitatives sur les treillis

de concepts à construire et sur des règles d’implication relationnelle particulières

afin d’aider les experts à affiner l’analyse. Les métriques permettent aux experts de

disposer d’un aperçu sur les treillis (nombre de concepts, nombre et support des règles

générées), et ainsi de réorienter l’analyse, en étendant ou en restreignant la recherche.

5.2.3 Navigation dans les treillis RCA

RCAviz
1
est un outil en ligne conçu pour faciliter la navigation et l’exploration au sein

d’une famille de treillis issus de RCA [Huchard et al., 2024 ; Muller et al., 2022]. Il per-

met à l’utilisateur de définir un point de départ de la navigation en sélectionnant un sous-

ensemble d’objets et d’attributs d’intérêt, servant de base à la navigation dans les treillis.

L’outil prend en entrée les résultats de RCA (ensemble de treillis interconnectés) encodés

au format JSON, lequel peut être généré à l’aide de l’outil FCA4J [Gutierrez et al., 2022].

Dans la pratique, la conception d’une visualisation interactive repose sur un processus

itératif comprenant généralement trois étapes : (i) la définition des besoins et des structures

de données adaptées, (ii) la conception d’encodages visuels et de mécanismes d’interaction

répondant à ces besoins, et (iii) la validation auprès des utilisateurs, qui permet de réajuster

les objectifs et les fonctionnalités au fil des itérations [Munzner, 2009 ; Sedlmair et al.,

2012]. Dans le cas de RCAviz, les besoins fonctionnels et visuels ont été définis à l’issue

de plusieurs réunions collaboratives réunissant trois experts en visualisation chargés du

développement de la plateforme, un expert RCA, et un expert en données [Huchard et al.,

2024]. La liste des besoins identifiés, formalisés et implémentés dans RCAviz, se décline en

quatre points essentiels principaux.

1. Sélection d’un concept. Une navigation étape par étape nécessite un point de départ.

1. https://rcaviz.lirmm.fr/
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Dans RCAviz, il s’agit d’un concept initial, obtenu après la sélection des attributs ou

des objets qui intéressent l’utilisateur.

2. Visualisation d’un concept et de ses voisins. L’utilisateur doit pouvoir voir le contenu
d’un concept (avec ses objets et ses attributs) ainsi que ses concepts voisins, c’est-à-

dire les concepts de niveau inférieur (sous-concepts) et niveau supérieur (sur-concepts)

dans le treillis et les concepts voisins dans les autres treillis.

3. Navigation étape par étape. L’utilisateur doit pouvoir explorer les concepts voisins du
concept affiché (qu’ils appartiennent au même treillis ou à un autre).

4. Historique. L’utilisateur doit pouvoir conserver un historique de sa navigation, c’est-

à-dire la liste des concepts précédemment explorés. Il doit également pouvoir navi-

guer dans cet historique et l’enregistrer afin de pouvoir reprendre son exploration

ultérieurement.

Pour illustrer le fonctionnement de RCAviz, considérons de nouveau l’exemple de la

FRC1 (K = {KPerson,KCar,KGarage}, R = {owner, sell, maintain}) présenté dans le tableau 3.1,

à propos des personnes, des voitures et des garages.

La première étape du processus consiste à charger le résultat de RCA au format JSON.

L’utilisateur peut ensuite soit conserver le contexte proposé par défaut (ici KCar), soit en

sélectionner un autre ; dans notre exemple, le contexte choisi estKGarage. La figure 5.1 illustre

l’étape de sélection de concepts, dans laquelle les garages A et B sont choisis comme objets

d’intérêt, ainsi l’attribut relationnel ∃maintain : 42. Le concept 38, mis en évidence en gras,

correspond au concept introduisant l’attribut relationnel sélectionné (avant la sélection de

cet attribut, plusieurs concepts candidats étaient possibles : 5, 34, 38 et 39). Le concept 38

représente ainsi le concept de garages d’extension {A,B}. Une fois ce concept sélectionné,
l’utilisateur valide la sélection via le bouton Confirm pour initier la navigation.

La figure 5.2 présente ensuite l’interface de navigation après cinq étapes d’exploration,

débutant à partir du concept 38. Cette interface montre l’historique de navigation (pan-

neau supérieur) retraçant la séquence des concepts explorés et l’explorateur (panneaux in-

férieurs). L’explorateur est divisé en trois sous-panneaux :

1. Panneau central : affiche le concept actuellement sélectionné (ici le concept 8), posi-

tionné au centre, ainsi que son voisinage, c’est-à-dire ses concepts parents et enfants
dans le treillis du contexte courant (KGarage).

2. Panneau gauche : présente le contexte précédemment exploré, permettant de retracer

le parcours de navigation.

3. Panneau droit : s’active lorsque l’utilisateur survole un lien dans le panneau central,

affichant alors un aperçu du contexte cible de ce lien ; dans cet exemple, le concept 24
de KCar .

Pour résumer, dans RCAviz, la navigation se compose d’une vue initiale permettant de

sélectionner le concept de départ (le sélecteur de concepts) et de deux vues coordonnées :

l’explorateur qui permet de naviguer étape par étape et l’historique qui permet de retra-

cer le parcours de navigation. L’historique de navigation met en évidence les dépendances
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Figure 5.1 – Sélection du concept 38 pour exploration

relationnelles entre les concepts explorés, ce qui s’apparente dans une certaine mesure à

la vue graph pattern dans GCA qui met en évidence les structures relationnelles entre les

concepts.

5.2.4 Navigation basée sur les requêtes

Naviguer dans une famille de treillis interconnectés afin de trouver des concepts d’inté-

rêt n’est pas une tâche triviale, en raison de la taille potentiellement importante des treillis

et de la nécessité pour l’expert de passer d’un treillis à l’autre. Azmeh et al. [Azmeh et al.,

2011] proposent une approche de navigation dans une famille de treillis de concepts à partir

des requêtes relationnelles formulées par un expert.

Une requête relationnelle est définie comme une composition de plusieurs requêtes

simples
2
[Messai et al., 2005], enrichies de contraintes relationnelles. Par exemple, sur un

contexte formel décrivant les pays selon leur continent, une requête simple pourrait être :

2. Le terme requête simple renvoie à une requête formulée à partir d’un seul contexte formel.
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Figure 5.2 – Interface d’exploration RCAviz : historique (en haut), contexte précédent (à

gauche), contexte actuel (au centre), contexte suivant (à droite).

quels sont les pays d’Europe?

Par définition, une requête relationnelle est étroitement liée aumodèle de données sous-

jacent et doit respecter la structure de la Famille Relationnelle de Contextes (FRC) sur la-

quelle elle s’appuie. À titre d’illustration, considérons une FRC décrivant plusieurs entités

(les pays, les restaurants, les plats mexicains, les ingrédients et les sauces (salsas)) ainsi
que les relations qui les relient, comme représenté dans le schéma de la figure 5.3 (partie

gauche). Un exemple de requête relationnelle qr formulée sur cette FRC pourrait être le sui-

vant : « Je recherche un pays ayant pour attribut “fr”, qui possède un restaurant servant des
plats contenant du poulet, du fromage et des tortillas de maïs ; je recherche également une

salsa “piquante” qui accompagne ce plat. » [Azmeh et al., 2011]. Le schéma correspondant à

cette requête reprend celui de la FRC initiale, à l’exception de la relation made-in, qui n’est
pas utilisée dans la formulation de la requête qr, comme illustré dans la partie droite de la

figure 5.3.

De manière générale, à partir des données multi-relationnelles (FRC) et d’une requête

qui contient des variables que l’on cherche à instancier, deux objectifs principaux sont pour-

suivis :

— Trouver l’ensemble des objets satisfaisant la requête, chaque réponse correspondant

à une instanciation possible des variables présentes dans la requête ;

82



5.2. NAVIGUER, EXPLORER ET VISUALISER LES RÉSULTATS DE RCA

Figure 5.3 – Modèle données (à gauche) et schéma de requête (à droite) [Azmeh et al.,

2011].

— Classer les objets associés à chaque variable selon leur degré de satisfaction des contraintes

exprimées dans la requête, afin de dégager des réponses alternatives.

La requête relationnelle peut être modélisée sous la forme d’un graphe orienté acyclique

(DirectedAcyclic Graph –DAG), dans lequel certains nœuds sont étiquetés par des variables

et d’autres par des objets. Dans cette représentation, les nœuds correspondent de manière

approximative aux contextes formels (objets–attributs), et les arêtes traduisent les contextes

relationnels (objets–objets). Un ordre total sur les arêtes du DAG est défini par un expert

afin de guider la séquence de parcours. Sur cette base, l’algorithme de navigation procède

en explorant successivement les différents treillis selon cet ordre, ce qui permet d’identifier

les objets satisfaisant la requête ainsi que d’éventuelles réponses alternatives. La notion de

réponses alternatives est à rapprocher de celle de concepts voisins dans RCAviz.

La formulation des requêtes sous forme DAG comportant des variables à instancier pré-

sente une forte analogie avec la notion de Projected Graph Pattern (PGP) utilisée dans GCA.
Dans GCA, les projections effectuées sur les nœuds des graph patterns permettent d’identi-

fier les instances répondant aux contraintes définies par le PGP. Il convient de noter qu’avec

GCA, les PGPs peuvent inclure des cycles, contrairement au cas où les requêtes sont consi-

dérées comme des DAGs. Par comparaison à RCAviz, la navigation fondée sur une requête

formulée en DAG offre une exploration plus ciblée et un voisinage plus spécifique. En effet,

le chemin de navigation est explicitement déterminé par l’ordre total imposé sur les arêtes

du DAG, ce qui guide de manière contrôlée la navigation.

Parallèlement à la question de navigation, une autre approche pour faciliter l’analyse

des résultats de RCA consiste à résumer la famille de treillis en un ensemble ordonné de

graphes. Cela permet d’obtenir une vue d’ensemble des informations contenues dans la fa-

mille de treillis, car les graphes mettent en évidence les différentes connexions entre les

concepts. Nous présentons brièvement les deux stratégies principales de la littérature pour

la transformation de l’ensemble des treillis RCA en graphes. Il s’agit d’une part de l’ex-

traction des graphes orientés acycliques [Nica et al., 2016a ; Nica et al., 2020] - également

appelés Closed Partially Ordered Patterns (CPO-patterns)[Casas-Garriga, 2005] - et d’autre
part de l’extraction des composantes fortement connexes [Ferré et Cellier, 2018].
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5.3 Interprétation de l’ensemble des treillis relationnels

5.3.1 Analyse des données séquentielles avec RCA

Nica et al. proposent un processus complet d’exploration de données temporelles ou

séquentielles fondé sur RCA [Nica et al., 2016a ; Nica et al., 2020]. Leur approche consiste

à calculer des CPO-patterns (Closed Partially Ordered patterns) [Casas-Garriga, 2005] à
partir des résultats produits par RCA. L’objectif principal est de faciliter l’interprétation

des résultats par les experts, en exploitant la structure hiérarchique des treillis pour mettre

en évidence la relation de généralisation entre les motifs extraits. Cette organisation hié-

rarchique des CPO-patterns constitue un support d’analyse visuelle et offre une vue d’en-

semble des régularités découvertes.

Le processus d’exploration proposé se décompose en deux étapes principales :

1. Application de RCA à la Famille Relationnelle de Contextes (FRC) qui encode les don-

nées séquentielles à analyser, afin d’obtenir une famille de treillis de concepts, un par

contexte objets-attributs. Notons que les concepts dans ces treillis contiennent deux

types d’attributs relationnels : (1) les attributs relationnels qualitatifs qui encodent
les relations "simples" entre les objets/évènements (Par exemple, l’examen médical

détecte un symptôme grave.) et (2) les attributs relationnels temporels qui encode la

chronologie entre les évènements (Par exemple, le test viral est_précédé_par un exa-

men médical.)

2. Parcours des concepts interconnectés issus des résultats de RCA afin d’extraire di-

rectement un CPO-pattern pour chaque concept d’un treillis principal choisi (main
lattice). Ce treillis principal est le treillis qui contient les objets d’intérêt à analyser

(par exemple les tests viraux). Les CPO-patterns obtenus sont automatiquement or-

ganisés grâce à l’ordre de généralisation qui existe entre les concepts associés. Cette

hiérarchie de graphes facilite également le processus de réponse aux requêtes sur les

entités du treillis principal.

Une approche naïve d’extraction de patterns séquentiels à partir des intensions de concepts

prend en compte tous les attributs relationnels qualitatifs et temporels. Néanmoins, cer-

taines propriétés des résultats de RCA peuvent être utilisées pour améliorer le processus

d’extraction. Ces propriétés permettent de réduire les redondances en ne considérant que

les attributs relationnels qualitatifs pointant sur les concepts les plus spécifiques (Propriété

1) et d’élaguer les attributs relationnels temporels qui peuvent être déduits par transitivité

(Propriété 2). Notons que ce travail se concentre uniquement sur le scaling existentiel (∃)

et ne traite pas d’autres types de scaling.

Propriété 1. Soient C1 et C2 deux concepts tels que C1 ⪯ C2. Si un concept C est tel que

∃ r(C1) ∈ Int(C), alors nous avons également ∃ r(C2) ∈ Int(C). Pour cette raison, ∃ r(C2)
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est considéré comme redondant pour la description de C .

Propriété 2. Soit t un attribut relationnel temporel. Soient C , C1 et C2 trois concepts tels

que {∃t(C1),∃t(C2)} ⊆ Int(C), et ∃t(C2) ∈ Int(C1). Alors ∃t(C2) ∈ Int(C) peut être

déduit de ∃t(C1) ∈ Int(C) à partir de la transitivité de la relation t.

L’algorithme de construction de la hiérarchie de CPO-patterns prend en entrée une fa-

mille de treillis en indiquant le treillis principal et sa sortie est un treillis de structures de

CPO-patterns, c’est-à-dire un treillis dans lequel les concepts principaux (du treillis princi-

pal) sont étendus avec les CPO-patterns correspondants. Pour chaque concept principalCp,

dont l’intension comporte au moins un attribut relationnel temporel, une liste de concepts

adjacents est établie selon une approche en largeur, sur la base des Propriétés 1 et 2. Les

concepts adjacents sont ensuite explorés en s’appuyant sur les attributs relationnels tem-

porels de leurs intensions. En répétant ce processus pour chaque relation temporelle dans

l’intension de Cp , on obtient un graphe que l’on peut appeler son graphe d’intension tem-

porelle (que l’on note GCp), car il rassemble l’ensemble des concepts qui sont reliés à Cp

par un chemin de relations temporelles. Pour chaque concept exploré, un sommet est dé-

rivé et étiqueté avec un itemset (extension du concept) qui se caractérise par ses attributs

formels (au sens de l’AFC) et ses attributs relationnels qualitatifs. L’étiquetage des sommets

est décrit en détail dans [Nica et al., 2016a] et se base sur l’analyse des attributs relationnels

qualitatifs, en fonction de la généralité ou de la spécificité du concept auquel ils renvoient.

Plus précisément, un CPO-pattern résume un ensemble demotifs séquentiels fermés qui

coexistent dans les mêmes séquences analysées [Casas-Garriga, 2005]. En effet, chaque

attribut relationnel temporel d’une intension d’un concept principal permet d’extraire au

moins un pattern séquentiel. Un CPO-pattern peut s’apparenter à un PGP (Projected Graph

Pattern) de GCA dans une certaine mesure ; le point commun étant une représentation

compacte de l’intension d’un concept (du treillis principal) sous forme d’un graphe. Plus

précisément, si on suppose que les relations entre les concepts de GCA sont des relations

temporelles, un CPO-pattern d’un conceptC , correspondra dans GCA au PGP ((C), Pr) ou

Pr est le sous-graphe contenant tous les concepts utiles à la description de C . La différence
majeure se trouve alors dans le fait que la structure du CPO-pattern (graph direct acyclique)

est ici déterminée uniquement par les relations temporelles. De plus, un CPO-pattern est

calculé pour chaque concept, contrairement aux graph patterns GCA, qui capturent les

factorisations entre PGPs, en ce sens qu’un graph pattern regroupe pour chacun de ses

concepts tous les concepts utiles à sa description.

Notons que ce travail d’extraction de CPO-patterns, initialement appliqué à des données

séquentielles classiques, a également été étendu à l’exploration de données séquentielles

hétérogènes, c’est-à-dire constituées d’éléments de nature différente [Nica et al., 2018].

Cette extension met ainsi en évidence la capacité de l’approche à analyser des données

séquentielles quelle que soit leur complexité.
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5.3.2 Hiérarchie des graphes de concepts sur les résultats de RCA

Toujours dans cette optique de faciliter la lecture des résultats de RCA, Ferré et Cellier

montrent comment les hiérarchies des graphes de concepts peuvent faciliter l’interpréta-

tion des treillis RCA [Ferré et Cellier, 2018]. Les auteurs proposent une représentation

équivalente et non redondante d’une famille de treillis RCA sous la forme d’une hiérarchie

de graphes de concepts. Dans cette hiérarchie, chaque concept appartient à un seul graphe

de concepts et chaque graphe de concepts montre les relations entre plusieurs concepts.

L’idée sous-jacente au calcul des graphes de concepts repose sur l’identification des

structures relationnelles comme des sous-ensembles de concepts interdépendants issus de

différents treillis, puis à les utiliser comme éléments constitutifs de la représentation hié-

rarchique. Ces structures relationnelles sont définies comme les composantes fortement

connexes (Strongly Connected Components - SCC)[Even, 2011] du graphe de dépendance
entre les concepts. L’intuition derrière ce graphe de dépendance (Définition 5.1) est que

l’intension d’un concept dépend de ses ancêtres dans le treillis (dépendances intra-treillis

induites par la relation de subsomption), mais aussi des concepts cibles de ses attributs

relationnels (dépendances inter-treillis).

Définition 5.1 (Graphe de dépendance). Soit L un ensemble de treillis de RCA. Le graphe

de dépendance de L est le graphe orienté GL = (V,E) où :

— V est l’ensemble de tous les concepts de tous les treillis dans L, à l’exception des

bottom concepts,

— E est l’ensemble des dépendances entre concepts C1 → C2, lorsque C2 est un concept

parent de C1 (C1 ⪯ C2), où C1 est étiqueté par un attribut relationnel ∃ r(C2), c’est-

à-dire ∃ r(C2) ∈ Int(C1).

À partir de la définition du graphe de dépendance GL, un SCC de GL est un ensemble

maximal de concepts (provenant éventuellement de plusieurs treillis) où chaque concept a

un chemin de dépendance vers tous les autres concepts du SCC pour la définition de son in-

tension. Les SCCs sont ensuite utilisés pour définir les graphes de concepts (Définition 5.2).

Définition 5.2 (Graphe de concepts). Un graphe de concepts est le sous-graphe de la fa-

mille de treillis (enrichi des arêtes relationnelles) qui est induit par un SCC deGL. Il mélange

donc des concepts provenant de plusieurs treillis, ainsi que les arêtes de treillis (relation de

subsomption) et des arêtes relationnelles (attributs relationnels).

Par ailleurs, on sait que les SCCs d’un graphe forment un graphe orienté acyclique
3
, où

SCC1 → SCC2 si un concept quelconque de SCC1 dépend d’un concept quelconque de

SCC2, c’est-à-dire un concept de SCC1 est en relation avec un concept de SCC2. Ainsi,

3. Un graphe orienté acyclique dans lequel les SCCs sont "contractés" en super-nœuds.
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les graphes de concepts d’un ensemble de treillis RCA peuvent donc être organisés en une

hiérarchie de graphes de concepts, comme la hiérarchie de CPO-patterns.

Pour illustration, considérons l’exemple de la famille royale présenté au chapitre 4. Pour

calculer les graphes de concepts RCA dans cet exemple, les auteurs ajoutent la relation

inverse "child" aux données. Le résultat de RCA est un treillis de concepts similaire à la

hiérarchie de concepts présentée à la figure 4.13, à la différence que le top concept y est ex-

plicitement représenté. La figure 5.4 illustre la hiérarchie des graphes de concepts obtenus

pour cet exemple, telle que présentée dans [Ferré et Cellier, 2018]. Dans cette hiérarchie,

les concepts sont regroupés en cinq graphes de concepts. Pour interpréter ces graphes, nous

nous appuyons sur les résultats de GCA obtenus pour cet exemple, à savoir l’ensemble des

graph patterns de la figure 4.12. En effet, les graph patterns de GCA sont équivalents aux

graphes de concepts RCA obtenus pour cet exemple, à quelques différences de représenta-

tion près [Ferré et Cellier, 2018].

— Le graphe de conceptsG5 n’est pas détaillé pour des raisons de lisibilité ; il correspond
au graph pattern Q4 (figure 4.12), constitué de dix concepts. Il contient des concepts

les plus spécifiques, ce qui explique sa position au bas de la hiérarchie.

— Le grapheG4 correspond au graph pattern Q3 (figure 4.12), où, par exemple, le nœud

p10 représente le concept des parents et correspond au concept Q3d.

— Les graphes G3 et G2 représentent respectivement les concepts des personnes de

caractéristique female (concept Q2a) et male (concept Q1a)
— Enfin, G1 représente le concept englobant toutes les personnes, c’est-à-dire le top

concept.

Les auteurs soulignent toutefois que l’équivalence observée entre RCA et GCA dans cet

exemple ne saurait être généralisée. En effet, cette correspondance ne se vérifie pas dans

d’autres cas étudiés, notamment celui portant sur les relations entre patients et traitements

présenté dans [Rouane-Hacene et al., 2013].

En comparaison au travail précédent sur l’extraction des CPO-patterns [Nica et al.,

2016a ; Nica et al., 2020], ce travail d’extraction des SCCs ne considère également que la

mise à l’échelle existentielle (∃), bien que l’approche reste applicable à d’autres opérateurs

de mise à l’échelle. En complément de l’objectif d’interprétation visé par ces deux travaux,

voici quelques points de divergence :

— Les CPO-patterns sont définis pour les données séquentielles et sont uniquement gé-

nérés pour les concepts d’un treillis choisi (main lattice). La génération des CPO-

patterns pour chaque concept du treillis choisi peut entraîner l’omission de certaines

factorisations potentielles entre les patterns, et ainsi faire perdre des informations

intéressantes.

— Le calcul des graphes de concepts par extraction des composantes fortement connexes

ne fait aucune hypothèse sur la famille de contextes, et peut en conséquence traiter
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Figure 5.4 – Hiérarchie des graphes de concepts pour l’exemple de la famille royale : les

flèches indiquent les relations entre concepts, les lignes pointillées représentent la relation

de subsomption entre les concepts [Ferré et Cellier, 2018].

toutes sortes de structures relationnelles et pas seulement des séquences. Il n’est pas

nécessaire de choisir un treillis comme point de départ comme avec les CPO-patterns.

En comparaison à GCA, un graphe de concepts est similaire à un graph pattern GCA à

la différence que la relation de subsomption entre les concepts n’est pas représentée dans

les patterns GCA. En effet, un graphe de concepts met en évidence les différentes rela-

tions entre les concepts et chaque concept a un chemin de dépendance vers tous les autres

concepts du SCC. Dans un graph pattern GCA, tous les concepts interdépendants, du point

de vue de la définition des intensions sont membre d’un seul et même pattern. En outre,

cette représentation hiérarchique des graphes de concepts se rapproche de la représenta-

tion combinée des résultats dans GCA qui combine justement les représentations graphique

(vue graph patterns) et hiérarchique. Tandis qu’en GCA, la représentation combinée peut

complexifier la lecture, la hiérarchie des graphes de concepts privilégie un ordre de géné-

ralisation porté sur les graphes, tout en maintenant la subsomption entre concepts, ce qui

facilite la visualisation.

Comme nous pouvons le constater, l’ensemble de ces travaux ne comparent pas direc-

tement RCA et GCA, ni en termes de fonctionnement, ni en termes de résultats. Toutefois,

le point commun entre ces travaux réside dans la transformation des résultats de RCA sous

forme de graphes, ainsi que dans la navigation à travers les treillis, qui impliquent de tra-

verser le graphe de dépendance entre les concepts. Cela évoque immédiatement GCA, qui
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calcule les graph patterns, et montre qu’il est possible de passer de la structure de pattern

à une structure hiérarchique en application un ordre de généralisation sur l’ensemble des

concepts des graph patterns. À cet stade, des similitudes potentielles entre RCA et GCA

peuvent être envisagées, d’autant plus que le passage des treillis RCA aux graphes rejoint

l’objectif des graph patterns GCA : faciliter l’interprétation tout en capturant les régularités

présentes dans les données ; ce qui contribue également au traitement des requêtes.

5.4 Modélisation et comparaison

Les travaux présentés jusqu’ici font un rapprochement indirect entre RCA et GCA grâce

à la transformation des résultats de RCA sous forme de graphes. Keip et al. ont effectué

une comparaison pratique (sur un jeu de données réel) de TCA (Triadic Concept Analysis)
[Lehmann et Wille, 1995], RCA et GCA pour la modélisation des valeurs indéterminées

dans les données ternaires [Keip et al., 2020]. Dans ce travail, les relations ternaires sont

directement traitées par les approches TCA et GCA, tandis que RCA nécessite d’effectuer

des transformations en amont, pour encoder ces relations ternaires au format binaire.

En réalité, la représentation des données relationnelles est une question récurrente dans

de nombreux domaines, de la fouille de données [Džeroski, 2003], des bases de données

[Jones et Song, 2000 ; Song et Jones, 1995] aux Logiques de Descriptions (LD) [Baader

et al., 2003]. Par exemple [Hodo et al., 2023] combine FCA et LD pour calculer les clusters

sur les graphes de connaissances, de manière similaire à RCA. Pour ce qui concerne RCA,

Keip et al. ont utilisé RCA pour le traitement des relations ternaires en appliquant certaines

transformations et encodages aux données sources [Keip et al., 2019].

5.4.1 Modélisation des données ternaires en RCA

Au-delà des relations binaires, les relations d’arité élevée doivent être transformées pour

être traitées par RCA. L’effet de la formulation des données dans RCA pour un modèle

de données contenant plusieurs relations binaires et une relation ternaire a été étudié par

[Keip et al., 2019]. Dans ce travail, deux modèles d’encodage à savoir la réification et la

décomposition sont utilisés pour transformer la relation ternaire en relations binaires.

— Réification. La réification d’une relation ternaire r a consisté à représenter r en plu-

sieurs relations binaires. Cette représentation passe par l’ajout d’un contexte objets-

attributs intermédiaire dont les entités sont les triplets d’objets, instances de r et qui
sont reliés aux entités de départ par le biais des contextes objets-objets (relations

binaires). Formellement, une relation ternaire r(A,B,C) est transformée en 3 rela-

tions binaires : r1(ABC,A), r2(ABC,B) et r3(ABC,C) où ABC est le contexte

objets-attributs contenant les instances de r c’est-à-dire des triplets d’objets.

— Décomposition. Dans ce travail, la décomposition de la relation ternaire r a consisté
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à projeter r en trois relations binaires, une pour chaque paire d’ensembles d’objets

liés. La décomposition de la relation r(A,B,C) s’encode en trois relations binaires :

r1(A,B), r2(B,C), and r3(A,C).

Les auteurs ont effectué une évaluation à la fois qualitative et quantitative de ces deux

encodages sur un exemple concret. L’évaluation quantitative a consisté à examiner la taille

des structures conceptuelles (ensemble de treillis interconnectés) produites. D’un point de

vue global, l’encodage par réification a produit moins de concepts (et d’attributs relation-

nels) que la méthode par décomposition. Pour ce qui est de l’évaluation qualitative, elle a

consisté en l’évaluation de leurs capacités respectives à répondre à un scénario de rem-

placement concernant la protection des plantes contre les ravageurs. En résumé, ces deux

modèles d’encodage ont permis de satisfaire la requête présentée par l’expert du domaine.

Cependant, un ensemble de trois relations binaires (encodage par décomposition) n’est pas

équivalent à une relation ternaire. Ainsi, l’encodage par décomposition sera donc parfois

moins précis, car il ne dispose pas de relation ternaire.

5.4.2 Comparaison Pratique de TCA, RCA et GCA

Comme évoqué précédemment, dans le travail de [Keip et al., 2020] qui propose une

comparaison pratique de TCA, RCA et GCA sur un modèle de données réel constitué d’une

relation seule ternaire, la relation ternaire a directement été traitée par TCA et GCA. En

effet, GCA étend FCA aux relations n-aires et une relation ternaire peut être intégrée dans

un schéma TCA, c’est-à-dire " un objet o possède l’attribut a sous la condition b ". Pour
ce qui concerne RCA, des modélisations doivent être faites en amont pour transformer les

relations ternaires en relations binaires compatibles au format RCA [Keip et al., 2019].

Pour cette application, trois différents encodages ont été utilisés pour pour transformer

la relation ternaire.

— Le premier encodage a consisté en la réification d’une relation ternaire r(A,B,C)
en un ensemble de trois relations r1(ABC,A), r2(ABC,B) et r3(ABC,C) comme

décrit précédemment.

— Le deuxième encodage a consisté en une décomposition d’une relation r(A,B,C) en
une chaîne de deux relations binaires r1(A,B) and r2(B,C).

— Le troisième encodage (partitionnement) a consisté à partitionner une relation ter-

naire r(A,B,C) suivant les entités de la catégorie B en un ensemble {bi(A,C)}bi∈B
de relations binaires, de sorte que chaque instance bi de B devient une relation. Avec

cet encodage, le treillis de concepts de la catégorie B est perdu.

Les auteurs comparent les trois approches (TCA, RCA et GCA) sur leurs concepts, leur

flexibilité, leur lisibilité et leur facilité d’utilisation. En ce qui concerne la lisibilité et la fa-

cilité d’utilisation, TCA et GCA présentent tous deux leurs résultats sous la forme d’un

ensemble unique. TCA énumère les concepts triadiques, tandis que GCA relie ses concepts

dans des graph patterns. RCA relie également les concepts, mais il est nécessaire de passer
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d’un treillis à l’autre pour accéder à la classification globale. Un encodage de la relation ter-

naire en relations binaires a été utilisé avec GCA, pour illustrer la facilité d’interprétation

des résultats de GCA, sur les relations binaires par rapport à ses résultats sur les relations

ternaires. Pour ce qui est de la visibilité des hiérarchies de concepts et des structures rela-

tionnelles, les treillis de concepts triadiques sont difficiles à visualiser et à comprendre dans

leur intégralité, même avec le paradigme de projection utilisé par l’outil FCA Tools Bundle
[Kis et al., 2016]. RCA représente clairement les hiérarchies de concepts, une pour chaque

type d’objet, mais pas les patterns/structures relationnels comme GCA. GCA dispose de

trois modes de sortie : affichage des hiérarchies uniquement, comme RCA, affichage des

modèles relationnels uniquement, ou affichage des deux combinés. Pour cette application,

TCA est l’approche qui produit le moins de concepts, suivie de RCA avec partitionnement,
puis RCA avec décomposition en chaîne, GCA et enfin RCA avec réification, qui est celle
produisant le plus grand nombre de concepts.

Pour terminer, notons que la transformation des données contenant des relations ter-

naires en une famille relationnelle de contextes (binaires) n’est pas une tâche triviale et

peut souvent conduire à des pertes d’informations suivant le type d’encodage utilisé. C’est

dans cette dynamique qu’une piste d’extension de RCA [Rouane-Hacene et al., 2013] pour

prendre en compte les relations ternaires a été explorée dans [Leutwyler et al., 2022]. Les

auteurs définissent une famille relationnelle de contextes ternaires comme étant une paire

(K,R) où K est un ensemble de contextes formels et R est un ensemble de relations bi-

naires ou ternaires entre des objets, dont au moins une est ternaire entre les concepts. Un

attribut relationnel ternaire devient un attribut relationnel qui pointe sur deux concepts

cibles de sorte à former une arête ternaire. Cette extension de RCA aux relations ternaires

reste limitée au quantificateur existentiel (∃) et mérite d’être évaluée dans différents scéna-

rios afin d’analyser sa scalabilité, sa complexité et la lisibilité des résultats dans un contexte

d’application pratique.

5.5 Conclusion

Dans ce chapitre, nous avons présenté une synthèse des principaux travaux de la litté-

rature traitant, de manière directe ou indirecte, des liens existant entre les deux approches,

RCA et GCA.

Comme nous avons pu le constater, les travaux sur ce sujet restent relativement peu

nombreux. Certains établissent un rapprochement indirect entre RCA et GCA en trans-

formant les résultats de RCA sous forme de graphes afin de faciliter leur interprétation.

L’étude de [Keip et al., 2020] présente une comparaison pratique entre RCA et GCA sur

un jeu de données réel, limitée à l’analyse des résultats en termes de flexibilité et de lisibi-

lité. Ces travaux suggèrent l’existence de similitudes potentielles entre les deux approches.

Toutefois, les comparaisons réalisées jusqu’à présent entre RCA et GCA se sont principa-

lement concentrées sur des aspects spécifiques, tels que l’interprétation des résultats, et
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aucune étude globale n’a encore analysé de manière approfondie leurs caractéristiques ni

les résultats qu’elles produisent.

Dans la deuxième partie de cette thèse, nous présentons nos contributions, qui portent

sur une comparaison à la fois empirique et théorique des deux approches RCA et GCA. Le

chapitre 6 introduit la méthodologique adoptée pour conduire cette étude comparative.
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Chapitre 6

Approche Méthodologiqe

Comme présenté dans les chapitres précédents, l’Analyse Relationnelle de Concepts

(Relational Concept Analysis - RCA) [Rouane-Hacene et al., 2013] et l’analyse conceptuelle
des graphes (Graph-FCA/GCA) [Ferré et Cellier, 2020] sont deux extensions de l’Analyse

Formelle de Concepts (AFC) [Ganter etWille, 1999] pour le traitement des données multi-

relationnelles. Bien que leurs objectifs et leurs résultats semblent similaires, la modélisation

des données et la définition des concepts sont différentes dans les deux approches.

Les rapprochements réalisés jusqu’à présent entre RCA et GCA se sont focalisés sur

certains aspects spécifiques, tels que l’interprétation et la visualisation des résultats, comme

exposé au chapitre 5. Il apparaît donc pertinent d’élargir la comparaison entre RCA et GCA,

de manière à fournir à l’analyste des éléments d’aide au choix de l’approche la plus adaptée,

selon la nature des données ou des résultats attendus. En termes de résultats, le concept

constitue l’unité de connaissance commune aux deux approches. Ainsi, la question centrale

de leur comparaison consiste à déterminer comment l’ensemble des concepts RCA se situe
par rapport à l’ensemble de concepts GCA, et réciproquement. Répondre à une telle question
suppose naturellement d’examiner le positionnement d’un concept RCA par rapport à un

concept GCA, et inversement.

Un concept est constitué de deux dimensions : l’extension qui représente les objets

(instances) du concept, et l’intension qui décrit l’ensemble des caractéristiques que par-

tagent ces objets. RCA définit les extensions de concepts comme des ensembles d’objets et

les intensions de concepts par des ensembles d’attributs formels et relationnels. GCA définit

les extensions de concepts comme des ensembles de tuples d’objets et les intensions comme

des Projected Graph Patterns (PGP). Pour comparer un concept RCA à un concept GCA, il

convient dans un premier temps d’examiner leurs extensions, puis, dans un second temps,

d’analyser leurs intensions, car ces deux dimensions sont définies différemment dans les

deux approches.

Bien que RCA et GCA visent toutes deux à calculer des concepts sur des données multi-

relationnelles tout en capturant les relations entre les objets, elles diffèrent sur de nombreux

aspects. Nous avons donc structuré notre étude comparative selon deux axes principaux :

la comparaison dans leur cadre commun et celle sur leurs différences, comme l’illustre la fi-

gure 6.1. Le premier axe, relatif à leur paramétrage commun, se décline en deux dimensions :

la dimension extensionnelle et la dimension intensionnelle.

Nous débutons au chapitre 7 avec la comparaison extensionnelle des deux approches et
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RCA
 Extents: sets of objects 

 Intents: formal and
           relational attributes

 Extents : sets of  object   
                  tuples 
 Intents: Projected Graph 
                 Patterns

 

 1. Extensional comparison
 

  RCA and GCA on 
 their  differences

N-ary relations, cycles,
 N-ary concepts 2. Intensional comparison

RCA and GCA on 
 their common ground

GCA

Figure 6.1 – Axes de comparaison examinés entre RCA et GCA.

montrons que l’ensemble des extensions de concepts RCA est inclus dans l’ensemble des

extensions de concepts GCA. Autrement dit, ce chapitre met en évidence que, sur un même

jeu de données, à chaque concept RCA correspond un concept GCA possédant la même ex-

tension. En effet, les extensions des concepts RCA et GCA se définissent toutes deux comme

des ensembles d’objets dans leur cadre commun. Après cette comparaison extensionnelle

de RCA et GCA, nous poursuivons au chapitre 8 avec l’analyse intensionnelle, qui vise à

caractériser la nature des relations qui existent entre l’intension d’un concept RCA et celle

d’un concept GCA.

RCA et GCA définissent les intensions de concepts demanière distincte. Par conséquent,

celles-ci ne sont pas directement comparables et nécessitent l’adoption d’une représentation

commune. Nous avons retenu les graphes comme représentation partagée, car ils consti-

tuent une structure naturelle pour modéliser des données multi-relationnelles et parce que

des travaux antérieurs vont dans ce sens pour RCA [Ferré et Cellier, 2018 ; Nica et al.,

2016a]. La première étape a ainsi consisté à transformer la famille de treillis de concepts

RCA en un ensemble de patterns relationnels comparables aux graph patterns GCA. Nous

avons ensuite démontré que l’ensemble des intensions de concepts RCA est inclus dans ce-

lui des intensions de concepts GCA, en établissant que l’ensemble des patterns relationnels

de RCA est inclus dans l’ensemble des graph patterns GCA. Combiné au résultat de la com-

paraison extensionnelle, ce résultat de la comparaison intensionnelle permet de conclure

que l’ensemble des concepts RCA est inclus dans l’ensemble des concepts GCA.

Le deuxième axe de comparaison, centré sur les différences entre RCA et GCA, est ex-

ploré au chapitre 9. L’objectif est ici de comparer les deux approches sous un angle pra-

tique, afin d’examiner dans quelle mesure leurs différences peuvent être complémentaires
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et bénéfiques pour l’analyse. Ce chapitre aborde en particulier les questions relatives à la

modélisation des relations n-aires et au traitement des cycles dans les deux approches.

En somme, la première contribution (chapitre 7) est consacrée à la comparaison exten-
sionnelle de RCA et GCA dans leur cadre commun. La deuxième contribution (chapitre 8)

porte sur la comparaison intensionnelle de ces deux approches, également dans leur

cadre commun. Enfin, la troisième contribution (chapitre 9) propose une analyse compara-

tive de RCA et GCA du point de vue de leurs différences.
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Chapitre 7

Comparaison extensionnelle de RCA et

GCA dans leur cadre commun
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Ce chapitre présente notre première contribution sur la comparaison extensionnelle de

RCA et GCA, tant de manière empirique que théorique. On montre que les extensions de

concepts RCA sont incluses dans les extensions de concepts GCA. La section 7.1 dresse un

aperçu général des différences entre RCA et GCA, et la section 7.2 aborde la modélisation

des relations dans ces deux approches. La comparaison des extensions des concepts RCA et

GCA est ensuite menée en section 7.3, à partir d’expérimentations sur des exemples. Enfin,

la section 7.4 propose une validation théorique des observations faites sur les exemples, par

le biais de démonstrations formelles.
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7.1 Aperçu des différences entre de RCA et GCA

D’un point de vue général, RCA et GCA se distinguent à plusieurs niveaux, allant des

principes algorithmiques, de la présentation des résultats aux types de données et relations

pris en compte par chaque approche. Cette section fournit une brève description de l’en-

semble des différences entre RCA et GCA.

Quantificateurs. GCA utilise (implicitement) uniquement le quantificateur existentiel ∃,

tandis que RCA utilise une diversité de quantificateurs (∃, ∃∀, ∃∀≥n%, etc.) [Braud et al.,

2018], qui confèrent au processus d’analyse une forte flexibilité en termes de précision

de l’information qui peut être extraite. Pour illustration, sur un jeu de données à propos

des repas et leurs ingrédients (avec une relation "contient" entre les repas et les ingré-

dients), on pourrait être intéressé par la recherche des repas dont au moins 50% des in-

grédients sont de même type ou ont les mêmes caractéristiques. En d’autres termes, on

cherche des repas ayant au moins 50% de leurs ingrédients dans un même concept des in-

grédients. Par exemple, les repas dont 50% des ingrédients sont des légumes (légume ici est
un attribut des ingrédients). Il suffira pour filtrer, d’appliquer un scaling relationnel avec

l’opérateur universal-percent ∃∀≥50% sur la relation contient. Ainsi, un attribut relation-

nel ∃∀≥50%contient(C_ingredient) sera ajouté à un repas si et et seulement C_ingredient
contient au moins 50% de ses ingrédients. L’impact des quantificateurs a été étudié en détail

dans [Braud et al., 2018].

Présentation des résultats. Le résultat de RCA consiste en une famille de treillis inter-

connectés par des attributs relationnels. Une difficulté réside dans la navigation entre les

treillis lorsque l’ensemble de données est volumineux, c’est pourquoi des outils ont été pro-

posés pour résumer ou simplifier l’interprétation des résultats de RCA [Ferré et Cellier,

2018 ; Huchard et al., 2024 ; Nica et al., 2016a]. Du côté de GCA, l’outil gfca [Ferré, 2019]
dispose de trois modes de présentation des résultats : des hiérarchies de concepts comme

la famille de treillis RCA, des structures relationnelles entre les concepts (graph patterns),

et enfin une représentation combinée des hiérarchies de concepts et des graph patterns.

Processus algorithmique. D’un point de vue algorithmique, les concepts RCA sont calcu-

lés par application de l’AFC sur les contextes objets-attributs au fil des itérations de scaling

jusqu’au point fixe, tandis que GCA opère par intersection de graphes jusqu’à saturation.

Cette intersection de graphes, qui correspond au produit catégorique de graphes, permet à

GCA de prendre automatiquement en compte les relations inverses. Les approches RCA et

GCA disposent chacune d’un ensemble d’options permettant de contrôler les résultats. Par

exemple, RCA peut recourir à différents algorithmes, tels que Ares [Dicky et al., 1994] et

Hermes [Berry et al., 2012] pour le calcul des sous-hiérarchies de Galois [Godin et Mili,

1993], ou encore iceberg [Stumme et al., 2002], destiné au calcul du sup-demi-treillis. Par

défaut, tous les concepts sont calculés. En ce qui concerne GCA, il existe plusieurs options
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telles que : -only-cores pour limiter la génération aux pattern cores, -minsupp N pour limiter

la sortie aux concepts unaires dont la taille de l’extension est supérieure ou égale à N .

Traitement des relations n-aires. RCA se limite au traitement des relations binaires,

tandis que GCA est conçu pour traiter directement les relations d’arité quelconque. Par

conséquent, le traitement des données contenant les relations d’arité supérieure à 2 néces-

site des modélisations supplémentaires, pour les mettre au format RCA [Keip et al., 2020,

2019]. Du côté de GCA, la question peut se poser sur la lecture et l’interprétation des graph

patterns lorsque les relations ont une grande arité.

Concepts n-aires. RCA se limite au calcul de concepts unaires, contrairement à GCA, qui

calcule également des concepts n(> 1)-aires (appelés concepts de relations n-aires). Les

extensions des concepts n-aires sont des ensembles de n-uplets d’objets et les intensions
sont des Projected Graph Patterns -PGP dont les tuples de projection sont de longueur n
(projection sur n éléments). De la même manière que les concepts unaires représentent des

groupes d’éléments ayant des caractéristiques communes, les concepts n-aires représentent

des groupes de tuples d’objets ayant des caractéristiques communes, et permettent ainsi

d’exprimer des structures plus riches. Par exemple, dans un contexte graphe présentant les

membres d’une famille avec une relation "parent", le concept binaire de "frère ou sœur" peut

être découvert et décrit par un PGP comme "une paire de personnes ayant le même père

(parent masculin) et la même mère (parent féminin)".

Définition des concepts. RCA et GCA définissent les concepts de deux manières diffé-

rentes. RCA définit ses extensions de concepts par des ensembles d’objets et ses intensions

par des ensembles d’attributs (formels et relationnels). Du côté de GCA, les extensions de

concepts sont définies par des ensembles de tuples d’objets, et les intensions de concepts

sont définies par des PGPs.

Cette liste de différences entre RCA et GCA révèle que ces deux approches ont quelques

similitudes notamment : l’utilisation du quantificateur ∃, le traitement des relations unaires

et binaires, ainsi que le calcul des concepts unaires. Il est très important de noter que RCA

et GCA ne modélisent pas les relations de la même façon. Bien que le sens des relations

soit indiqué dans le contexte graphe (graphe orienté) le processus de GCA traite automa-

tiquement les relations dans les deux sens (direct et inverse), tandis que RCA prend en

compte les relations telles qu’elles sont explicitement définies dans la Famille Relationnelle

de Contextes (FRC), c’est-à-dire des domaines vers les codomaines.

La section suivante illustre, à travers un exemple, la différence de modélisation des re-

lations par les deux approches RCA et GCA.
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7.2 Modélisation des relations dans RCA et GCA

Bien que les relations soient orientées dans les contextes graphes GCA les considère

dans les deux sens. En revanche, dans RCA, pour qu’une relation soit prise en compte à la

fois dans le sens direct et dans le sens inverse, il est nécessaire de l’indiquer explicitement

dans la FRC en ajoutant la relation directe ainsi que son inverse. Pour élucider ce point, nous

reprenons l’exemple FRC1 (K = {KPerson,KCar,KGarage},R = {owner, sell, maintain}) présenté
dans le tableau 3.1 (chapitre 3), à propos des personnes, des voitures et des garages. La

démarche consiste à présenter, puis à confronter les résultats obtenus avec RCA et GCA

sur cet exemple.

La figure 7.1 illustre le contexte graphe CG1
1
correspondant à FRC1. Pour une visua-

lisation qui met en avant la définition d’un contexte graphe en tant qu’une relation d’in-

cidence entre des tuples d’objets et des attributs, le tableau 7.1 met en évidence la repré-

sentation tabulaire
2
des relations binaires de CG1. FRC1 (tableau 3.1) et CG1 (figure 7.1)

sont deux structures qui représentent les mêmes informations : les garages qui vendent

et/ou entretiennent les voitures appartenant à des personnes. La définition des relations

sell(OGarage,OCar),maintain(OGarage,OCar) et owner(OCar,OPerson) pour RCA précise l’orien-

tation des relations et signifie que les concepts de KGarage et de KCar contiendront des at-

tributs relationnels dans leurs intensions en plus des attributs unaires. En revanche, les

concepts de KPerson n’auront que des attributs unaires dans leurs intensions, car les objets

OPerson de KPerson ne constituent le domaine (la source) d’aucun contexte relationnel.

Tableau 7.1 – Représentation tabulaire des relations binaires de CG1.

(Garage, Car) ma
int
ain

sel
l

(A, car1) × ×

(A, car6) × ×

(D, car2) ×

(D, car5) ×

(C, car2) ×

(C, car5) ×

(B, car3) × ×

(B, car4) × ×

(Car, Person) ow
ner

(car1, Bob) ×

(car6, Bob) ×

(car2, Julie) ×

(car5, Julie) ×

(car3, Charlie) ×

(car4, Alice) ×

En termes de résultats, référons-nous au tableau 3.10 qui récapitule le nombre de concepts

par contexte objets-attributs au fil des itérations de RCA sur FRC1. Il en ressort que le ré-

1. CG est mis pour Contexte Graphe

2. Ces deux tableaux, fusionnés en power Contexte family [Wille, 1997], correspondraient à K2
: le

contexte des relations binaires.
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A

manufacturer

car1
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single

owner
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married

owner

D
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car5
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female
city
single

car4

Tesla
sedan

ownerowner

C

manufacturer

sell sell

owner

B

chain

sell
maintain

sell
maintain

Figure 7.1 – Contexte graphe CG1 correspondant à FRC1.

sultat RCA sur FRC1, que nous notons par RCA(FRC1) compte un total de 40 concepts : 10
concepts pour KPerson, 17 concepts pour KCar et 13 concepts pour KGarage. Dans cette étude

comparative, similairement à l’outil de GCA qui n’affiche pas les bottom (�) concepts lors-

qu’elles ont une extension vide, nous ne les considérons pas dans le nombre de concepts

(pour RCA et GCA), ce qui ramène à 37 concepts pour RCA(FRC1). Le résultat d’exécution

de GCA sur CG1, noté GCA(CG1), compte 7 patterns constitués d’un total de 45 3
concepts

unaires. Cet ensemble de patterns est présenté à la figure 7.2.

Comme nous l’avons déjà souligné, GCA traite systématiquement les relations à la fois

dans leur sens direct et dans leur sens inverse. Pour illustrer, considérons la hiérarchie des

concepts sur les personnes, présentée à la figure 7.3. On remarque que les concepts des per-

sonnes contiennent des liens vers les concepts des voitures. À titre d’exemple, l’intension du

concept Q3d (figure 7.3) contient les arêtes [owner a _] et [owner b _]. L’arête [owner a _]
représente la relation owner entre les nœuds a (Q3a) et d (Q3d) ; et l’arête [owner b _] repré-
sente la relation owner entre les nœuds b (Q3b) et d du pattern Q3 (figure 7.2). Cela signifie

que les instances du concept Q3d sont en réalité caractérisées par la relation owner−1 avec
les nœuds a et b du pattern Q3. En effet, les instances du concept Q3d sont propriétaires

des voitures des concepts Q3a et Q3b. Plus précisément, Bob est propriétaire des voitures
car6 (Q3a) et car1 (Q3b). Notons que ces arêtes doivent être lues comme faisant partie

d’un même pattern. Par exemple, les arêtes [owner a _] dans Q3d et [owner a _] dans Q5c
sont distinctes. L’une renvoie àQ3a et l’autre renvoie àQ5a. Leur généralisation dans leur

3. Les top (⊺) concepts qui ne sont pas affichés par l’outil de GCA (celui des Garages dans ce cas) sont

rajoutés dans le nombre de concepts
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Q1d

car6
car5
car4
car3
car2
car1

Q1b

Julie
Charlie

Bob
Alice

owner

Q1a

D
B
A

maintain

Q1c

C
B
A

sell

Q2a

D
A

Q2b
family
car2
car1

maintain

Q2e

car6
car5
car2
car1

maintain

Q2d
countryside

married
Julie
Bob

owner owner

Q2c
manufacturer

C
A

sell sell

Q3e
Renault

car6
car1

Q3d
countryside

married
male
Bob

owner

Q3b
family
Renault

car1

owner

Q3c
manufacturer

A

sell
maintain

sell
maintain

Q3a
berline
Renault

car6

sell
maintain

owner

Q4c
countryside

female
married

Julie

Q4d
service

D

Q4f
Peugeot

car5
car2

maintain

Q4a
Peugeot
family
car2

maintain

Q4e
Peugeot

sport
car5

maintain

Q4b
manufacturer

C

sell sellsell

owner ownerowner

Q5f (g)
Tesla
car4
car3

Q5g (f)
city

single
Charlie
Alice

owner

Q5e
Tesla
sport
car3

Q5d
city

single
male

Charlie

owner

Q5c
city

female
single
Alice

Q5a
Tesla

berline
car4

owner

Q5b
chain

B

sell
maintain

sell
maintain

sell
maintain

Q6c

car6
car3
car1

Q6e
male

Charlie
Bob

owner

Q6a

Bob
Alice

Q6d
berline

car6
car4

owner

Q6f

car6
car4
car1

owner

Q6g (h)

car6
car4
car3
car1

Q6h (g)

Charlie
Bob
Alice

owner

Q6b

B
A

sell
maintain

sell
maintain

sell
maintain

sell
maintain

Q7a

D
B

Q7d

car5
car4
car2

maintain

Q7g (i)

car5
car4
car3
car2

maintain

Q7h

car5
car3
car2

maintain

Q7f
sport
car5
car3

maintain

Q7e
female
Julie
Alice

owner

Q7i (g)

Julie
Charlie
Alice

owner

Q7b

Julie
Charlie

ownerowner

Q7c

C
B

sellsell sellsell

Figure 7.2 – Ensemble des graph patterns du contexte graphe CG1.

sur-concept Q6a apparaît sous la forme de l’arête [owner d _] renvoyant au concept Q6d.

La hiérarchie de concepts des personnes provenant de GCA(CG1) (figure 7.3) compte 13

concepts contre 9 concepts pour le treillis des personnes (figure 7.4) issu de RCA(FRC1). Il

convient de préciser que les 9 concepts de RCA(FRC1) possèdent chacun un équivalent dans

GCA(CG1), du point de vue des extensions. Les 4 concepts supplémentairesQ6a,Q6h,Q7b
et Q7i qui n’ont pas d’équivalents dans RCA(FRC1) sont strictement décrits par leur re-

lation owner−1 vers les concepts voitures dont ils sont respectivement propriétaires (voir

les patterns Q6 et Q7 - figure 7.2). D’où la création de 4 concepts supplémentaires dans

la hiérarchie des voitures (décrits inversement par leur relation owner vers les concepts

Q6a,Q6h,Q7b et Q7i respectivement) par rapport au treillis des voitures de RCA(FRC1).

Finalement, en comparant les extensions des concepts, les 37 concepts de RCA(FRC1) sont

inclus dans les 45 concepts de GCA(CG1) : RCA(FRC1) ⊂ GCA(CG1). Les 8 concepts sup-
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Figure 7.3 – Hiérarchie des concepts Person issue de

GCA(CG1).
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Bob
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Person_8

city
single

Person_5

countryside
married

Figure 7.4 – Treillis de KPerson issu de

RCA(FRC1).

plémentaires de GCA(CG1) sont liés à l’intégration automatique des relations inverses dans

le processus de GCA. Donc, intuitivement, l’ajout des relations inverses dans les données

de RCA devrait permettre de rapprocher les résultats de RCA de ceux de GCA.

Dans la suite, afin d’examiner plus en profondeur la différence entre les deux approches,

nous les comparerons à partir de leurs points communs, à savoir :
— le calcul des concepts unaires, car RCA se limite aux concepts unaires,

— l’usage du quantificateur ∃ pour RCA, car GCA ne dispose que du quantificateur ∃

implicitement,

— le traitement des données contenant uniquement des relations unaires et binaires, car

les relations n(> 2)-aires nécessitent des modélisations supplémentaires dans RCA

[Keip et al., 2019],

— l’ajout des relations inverses dans les données de RCA, car GCA intègre automati-

quement les relations inverses dans son processus.

La section suivante présente une comparaison empirique de RCA et GCA dans ce cadre

commun, sur différents exemples.

7.3 Comparaison empirique de RCA et GCA

Nous avons précédemment constaté que certains concepts de GCA, non produits par

RCA, sont liés à l’intégration automatique des relations inverses dans le processus de GCA.

105



Chapitre 7 : Comparaison extensionnelle de RCA et GCA dans leur cadre commun

On s’attend à ce que l’ajout des relations inverses dans les données de RCA rapproche autant

que possible ses résultats de ceux de GCA. La question qui se pose est alors de déterminer

dans quelle mesure ce rapprochement est effectif. Nous comparons dans un premier temps

RCA(FRC) et RCA(FRC_r), où FRC_r = FRC + relations inverses, avec FRC une Famille

Relationnelle de Contextes. Ensuite, nous présentons d’une part deux exemples pour les-

quels RCA(FRC_r) ≡GCA(GC) et d’autre part, nous présentons trois exemples pour lesquels

RCA(FRC_r) /≡ GCA(GC), GC étant le contexte graphe correspondant à la FRC considérée.

Cette comparaison empirique fait partie des travaux présentés dans [Fokou et al., 2024a].

7.3.1 Ajout des relations inverses à une FRC

L’ajout de relations inverses à une FRC entraîne un ajout d’informations dans les don-

nées, donc l’ajout de nouveaux attributs relationnels qui peut conduire à la modification

des intensions des concepts existants ou à la construction de nouveaux concepts. Ceci est

cohérent avec le processus de RCA, car il y a toujours au moins autant de concepts dans un

treillis à l’itération i + 1 qu’à l’itération i. Formellement, pour toute FRC, on a :

RCA(FRC) ⊆ RCA(FRC_r) (7.1)

Pour l’exemple FRC1, l’ajout des relations inverses se fait en ajoutant 3 contextes re-

lationnels : sell_r(OCar,OGarage), owner_r(OPerson,OCar) etmaintain_r(OCar,OGarage) qui sont

respectivement l’inverse des relations sell, owner etmaintain. La FRC résultante est désignée

par FRC1_r, avec la chaîne "_r" (pour reverse) qui matérialise les inverses tant dans les noms

des relations que dans les noms des FRCs. Pour illustration, la relation owner_r(OPerson,OCar)

définit le fait qu’une personne possède une voiture. Ensuite, dans le processus de RCA, les

concepts construits sur le contexte KCar, par association avec l’opérateur de scaling et la

relation owner_r, seront utilisés pour former des attributs relationnels afin d’étendre le

contexte KPerson. Dans la suite, une FRCi étendue par l’ajout des relations inverses est dési-

gnée par FRCi_r.

Le résultat RCA(FRC1) compte 37 concepts qui sont tous inclus dans RCA(FRC1_r) qui

compte 45 concepts. Pour exemple, les figures 7.4 et 7.5 présentent les treillis de KPerson

construits respectivement à partir de FRC1 et FRC1_r. Il en résulte 4 concepts supplémen-

taires {Person_10, Person_11, Person_12, Person_13} dans le deuxième treillis (figure

7.5), en raison des attributs relationnels de la forme ∃ owner_r(Car_i) qui étendent le
contexte KPerson. Ces concepts supplémentaires sont strictement dûs à l’ajout des relations

inverses, car comme nous pouvons le constater, ce sont tous des concepts introduits par

les attributs relationnels de la forme ∃ owner_r(Car_i). Dans cette même logique, ces 4
concepts supplémentaires vont générer 4 attributs relationnels qui vont à leur tour in-

duire 4 nouveaux concepts des voitures {Car_17, Car_18, Car_19, Car_20}. Ces nouveaux
concepts des voitures sont strictement décrits de manière inverse via la relation owner poin-
tant sur les concepts {Person_10, Person_11, Person_12, Person_13} comme mis en évi-
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dence dans la figure 7.6, qui montre le treillis KCar issu de RCA(FRC1_r) sans le bottom

concept
4
. Par ailleurs, remarquons la présence des attributs relationnels induits par les re-

lations inverses sell_r et maintain_r qui enrichissent les intensions des concepts de KCar.

Pour ce qui est du contexte KGarage, son nombre de concepts est resté inchangé, mais les

intensions de certains concepts ont été modifiées pour intégrer les attributs relationnels

induits par les nouveaux concepts de KCar.

Person_9

∃ owner_r(Car_13)

Person_6

male
∃ owner_r(Car_15)

Person_13

∃ owner_r(Car_20)

Person_0

∃ owner_r(Car_0)
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∃ owner_r(Car_4)
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∃ owner_r(Car_2)

Julie
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∃ owner_r(Car_11)
∃ owner_r(Car_6)
∃ owner_r(Car_1)

Bob
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∃ owner_r(Car_14)

Person_12

∃ owner_r(Car_19)

Person_8

city
single

∃ owner_r(Car_9)

Person_11

∃ owner_r(Car_7)
∃ owner_r(Car_18)

Person_10

∃ owner_r(Car_8)
∃ owner_r(Car_17)

Person_5

countryside
married

∃ owner_r(Car_12)
∃ owner_r(Car_16)

Figure 7.5 – Treillis de KPerson issu de RCA(FRC1_r).

7.3.2 Équivalence entre les résultats deGCAet deRCAavec relation
inverses

Une comparaison des résultats RCA(FRC1_r) et GCA(CG1) montre une équivalence du

point de vue des extensions de concepts. À titre d’illustration, examinons les concepts de

KPerson représentés dans les treillis de la figure 7.5 pour RCA et de la figure 7.3 pour GCA.

Les deux treillis ont le même nombre de concepts et les concepts ont les mêmes extensions.

Il en est de même pour les treillis de voitures et des garages. En résumé, pour cet exemple,

on montre que, lorsque l’on applique RCA à FRC1_r contenant les relations inverses, le

résultat RCA(FRC1_r) est équivalent au résultat obtenu avec GCA sur le contexte graphe

4. Le concept bottom (�) a été supprimé. Il en sera de même pour le reste des treillis de ce chapitre, pour

des raisons de lisibilité.

107



Chapitre 7 : Comparaison extensionnelle de RCA et GCA dans leur cadre commun
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Figure 7.6 – Treillis de KCar issu de RCA(FRC1_r).

CG1 correspondant :

RCA(FRC1_r) ≡ GCA(CG1) (7.2)

Considérons à présent un second exemple, à savoir celui de la famille royale britannique

présenté dans le chapitre 4 (figure 4.1) et désignons-le par CG2. Le tableau 7.2 illustre la

FRC2 correspondant à CG2. La FRC2 est constituée d’un contexte objets-attributs Personne
qui décrit les personnes par leur genre et un contexte objets-objets (has-parent) qui indique
qu’une personne a pour parent une autre personne. Cet exemple a la particularité d’être

constitué d’une seule relation dont le domaine et le codomaine sont identiques, mais il

est néanmoins nécessaire d’y ajouter la relation inverse. L’analyse de ce second exemple

s’inscrit dans la même logique que celle de l’exemple précédent.

La figure 7.7montre le treillis de concepts RCA(FRC2) qui compte 8 concepts, regroupant
les personnes suivant leur genre et suivant le fait qu’ils aient des parents. La hiérarchie

de concepts issue de GCA(CG2) a déjà été présentée à la figure 4.13, mais pour faciliter

la comparaison, la figure 7.8 reprend cette hiérarchie de concepts. En comparaison avec

RCA(FRC2), GCA(CG2) compte 18 concepts (le ⊺ concept y compris) contre 8 concepts pour
RCA(FRC2) :RCA(FRC2) ⊆GCA(CG2). En effet, GCA(CG2) contient aussi le regroupement

des personnes selon qu’ils aient des enfants, ce qui est rendu possible grâce à l’intégration
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Tableau 7.2 – FRC2 (K = {Personne}, R = {has-parent}) correspondant au contexte graphe

CG2.

Personne male female

Georges ×

Charlotte ×

William ×

Harry ×

Kate ×

Diana ×

Charles ×

has-parent G
e
o
r
g
e
s

C
h
a
r
l
o
t
t
e

W
i
l
l
i
a
m

H
a
r
r
y

K
a
t
e

D
i
a
n
a

C
h
a
r
l
e
s

Georges × ×

Charlotte × ×

William × ×

Harry × ×

Kate

Diana

Charles

automatique des relations inverses. À titre d’illustration, les conceptsQ4i,Q4g etQ3d sont
des exemples de concepts qui regroupent des personnes ayant des enfants.

Comme dans l’exemple précédent, on ajoute les relations inverses pour se mettre au

même niveau d’information que dans GCA. La FRC2_r est construite en ajoutant la rela-

tion has-child comme inverse de la relation has-parent. Cette relation inverse a tout son

sens dans cet exemple, car si x a pour parent y alors y a naturellement pour enfant x.
Le résultat RCA(FRC2_r) est présenté à la figure 7.9 et compte 18 concepts. Comme nous

pouvons le constater, ce treillis contient bien entendu aussi des regroupements des per-

sonnes (concepts) suivant le fait qu’ils ont des enfants. Par exemple, les concepts family_9,
family_16 et family_11 mis en évidence en gras (figure 7.9), correspondent respective-

ment aux concepts Q4i, Q4g et Q3d de GCA(CG2). Notons que le ⊺ concept family_3
de RCA(FRC2_r) a une intension vide, c’est ce qui justifie pourquoi il n’est pas affiché du

côté de GCA (figure 7.8). En tout, avec l’ajout de la relation inverse has-child, RCA et GCA

produisent les mêmes concepts pour cet exemple :

RCA(FRC2) ⊆ RCA(FRC2_r) ≡ GCA(CG2) (7.3)

Ces deux exemples suggèrent que l’ajout de relations inverses dans les données de RCA

conduit à des résultats équivalents pour les deux approches. Toutefois, comme nous le ver-

rons dans la section suivante, il existe des cas où, malgré l’ajout de relations inverses dans

les données de RCA, les deux approches donnent des résultats distincts : certains concepts

obtenus en GCA ne sont pas générés par RCA.
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family_3

family_2

male

Charles

family_1

female

Kate
Diana

family_5

William
Harry

family_6

∃  has-parent(family_3)
∃  has-parent(family_2)
∃  has-parent(family_1)

family_4

Charlotte

family_8

∃  has-parent(family_5)
∃  has-parent(family_6)

family_7

Georges

Figure 7.7 – Treillis de concepts RCA(FRC2).

7.3.3 Non-équivalence entre les résultats de RCA et GCA

Les exemples que nous traitons ici sont des variantes du contexte graphe CG1 (figure 7.1)

obtenus en effectuant de petites modifications sur les connexions entre les objets pour avoir

différents schémas de données. Nous présentons ci-dessous les 3 variantes considérées et

désignées respectivement par CG1a, CG1b et CG1c. Les FRCs associées, intégrant les relations

inverses sont respectivement désignées par FRC1a_r, FRC1b_r et FRC1c_r.

RCA(FRC1a_r) /≡GCA(CG1a). Le contexte graphe CG1a est obtenu en modifiant la relation

maintain dans CG1 (figure 7.1) pour que la voiture car6 soit entretenue par le garageD au

lieu du garageA, comme mis en évidence dans la figure 7.10. CG1a est alors composé de

deux sous-graphes comparé à CG1 qui se compose de trois graphes. En termes d’informa-

tions, on peut dire que CG1 contient les garages (A et B) qui vendent et entretiennent leurs
voitures, les garages (C) qui vendent uniquement des voitures et les garages (D) qui entre-
tiennent uniquement les voitures - le garage D fait l’entretien des voitures vendus par des

garages (C) qui vendent uniquement les voitures. Suite à la modification effectuée sur la re-

lationmaintain pour obtenir CG1a, on a désormais les garages qui entretiennent les voitures
vendus par des garages qui vendent et entretiennent les voitures - le garage D entretient la

voiture car6 vendue par le garage A qui vend et entretient la voiture car1.

Concernant les résultats, GCA(CG1a) compte 53 concepts contre 52 pour RCA(FRC1a_r),
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Q1a
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Diana

William
Charles

Q4g
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Charles

Q4i

has-parent d _
has-parent a _

Kate
William

Q4b

female
has-parent f _

Diana

Q4c
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has-parent d _
has-parent a _

Kate

Figure 7.8 – Hiérarchie de concepts de CG2.

ce qui fait un concept supplémentaire du côté de GCA par rapport à RCA. La figure 7.11

montre le PGP Q2z = ((z), P2z) décrivant le concept d’extension {car5, car2, car1} (en
vert) qui identifie ce concept supplémentaire. Le pattern P2z désigne le sous-graphe in-

cluant le nœud z, les nœuds principaux (core nodes) - en rouge - ainsi que l’ensemble des

autres nœuds nécessaires à la description de z, mentionnés entre parenthèses dans l’iden-

tifiant (nom) du concept Q2z (s m k l o bc). Il s’agit de la notation parenthésée décrite dans

le chapitre 4 consacré à GCA.

Nous décrivons maintenant ce qui caractérise ce concept supplémentaire. Comme le

montre la figure 7.11, les nœuds adjacents à z sont les nœuds bc, l et o introduits par les
relations : sell(bc, z), maintain(l, z) et owner(z, o). Les autres nœuds sont introduits par

ces nœuds adjacents (les adjacents des adjacents de z) et ainsi de suite jusqu’aux nœuds

principaux (core nodes) qui portent l’information principale du pattern. Une description

simplifiée de z peut être formulée comme suit : z est le concept des voitures vendues par

un garage bc, entretenues par un garage l et appartenant à une personne o, qui possède
également une voiture familiale (family) s et une autre voiture m, toutes deux vendues

par le même garage bc. Cette description inclut le cycle (bc, s, o, m, bc). À ce stade, nous

soupçonnons que ce cycle pourrait être la raison pour laquelle RCA ne construit pas ce

concept.
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family_3
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family_1

female
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∃  has-parent(family_13)
∃  has-parent(family_14)
∃  has-parent(family_16)

Harry

family_5

William

family_8

family_9

∃  has-child(family_1)
∃  has-child(family_6)
∃  has-child(family_15)
∃  has-child(family_17)

family_11

∃  has-child(family_3)
∃  has-child(family_2)
∃  has-child(family_10)
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family_13

Charles

family_16
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∃  has-child(family_5)
∃  has-child(family_8)
∃  has-child(family_11)
∃  has-child(family_9)

family_14

Diana

Figure 7.9 – Treillis de concepts RCA(FRC2_r).

Enfin, en termes de complexité et de facilité d’interprétation, GCA(CG1) ne contient pas

de concepts automorphes, contrairement à GCA(CG1a) qui en possède 17, c’est-à-dire 17
doublons du point de vue des extensions de concepts. Pour ce qui est du nombre de graph

patterns, CG1 produit 7 patterns (figure 7.2) contre 3 graph patterns pour CG1a. Concrète-

ment, les graph patterns de GCA(CG1) sont plus petits (à l’image des motifs présents dans

CG1) et donc plus simples à comprendre par rapport à ceux de GCA(CG1a).

RCA(FRC1b_r) /≡ GCA(CG1b). La deuxième variante CG1b (figure 7.12) est obtenue de CG1

suite à la même modification effectuée sur la relation maintain pour obtenir CG1a, en plus

d’une modification de la relation owner. Dans le contexte graphe CG1b tel que le montre

la figure 7.12, la voiture car2 qui avait pour propriétaire Julie appartient dorénavant à

Charlie et inversement, car3 qui appartenait à Charlie devient une propriété de Julie.
La remarque principale en ce qui concerne la structure du contexte graphe, est qu’il est

composé d’un seul graphe plutôt que de plusieurs (petits) graphes comme dans CG1 ou

CG1a. Au niveau des résultats, GCA(CG1b) contient 66 concepts contre 64 concepts pour

RCA(FRC1b_r), soit deux concepts en plus du côté de GCA, car les 64 concepts de RCA
ont leurs concepts équivalents dans les concepts de GCA. Les 66 concepts de GCA(CG1b)
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C
manufacturer

sell sell
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B
chain

sell
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maintain

Figure 7.10 – Contexte graphe CG1a.

sont regroupés en un seul graph pattern, tandis que CG1 produit 7 patterns et CG1a en

produit 3. Par ailleurs, GCA(CG1b) contient 230 concepts automorphes, soit plus du triple

du nombre de concepts unaires, ce qui augmente singulièrement la taille du pattern (qui a

au total 66 + 230 nœuds) et par conséquent sa difficulté d’interprétation. D’un point de vue

pratique, même si les concepts automorphes sont mis de côté, il est difficile d’interpréter en

langage naturel ce que pourrait exprimer un graph pattern constitué de 66 concepts.

RCA(FRC1c_r) /≡ GCA(CG1c). La troisième variante CG1c est obtenue de CG1 par sup-

pression du garage D et par ajout d’une nouvelle personne (Jean). Les relations (owner,
sell et maintain) ont été réorganisées comme illustré à la figure 7.13. Ce nouveau contexte

graphe est composé de deux graphes comme CG1a. GCA(CG1c) contient 50 concepts contre
48 concepts pour RCA(FRC1c_r), soit deux concepts en plus du côté de GCA. GCA(CG1c)

contient 27 concepts automorphes et l’ensemble de ses concepts est regroupé en 3 graph

patterns (au même titre que CG1a) contre 7 graph patterns pour CG1.

Une analyse des concepts de GCA(CG1b) et de GCA(CG1c) qui ne sont pas produits du

côté de RCA a été faite et le point commun entre ces concepts de GCA est la présence des
cycles dans leurs descriptions, ce qui peut expliquer le fait que RCA ne construit pas ces

concepts.

À partir de ces observations, on constate que plus le contexte graphe est connecté (c’est-

à-dire avec un nombre réduit de composantes), comme dans CG1b (figure 7.12), plus GCA

est susceptible de produire des patterns complexes
5
, et plus le nombre de concepts auto-

morphes tend à augmenter. Ceci s’explique par le fait que GCA dans son fonctionnement,

5. En termes de nombre de nœuds et de connexions entre ces nœuds.
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Figure 7.11 – PGP Q2z avec z comme tuple de projection.

capture les structures du contexte graphe ainsi que les structures combinées qui en dé-

coulent. A contrario, pour un contexte graphe composé d’un ensemble de graphes simples
6

comme dans CG1 (figure 7.1), GCA produit des patterns relativement simples, à l’image des

motifs présents dans le contexte graphe.

Ajout des relations inverses dans GCA. L’impact de l’ajout des relations inverses dans

les données de GCA a été examiné sur les cinq exemples CG1, CG2, CG1a, CG1b et CG1c.

Comme pour RCA, les relations inverses (arêtes binaires inverses) ont été intégrées dans

chacun de ces contextes graphes, afin d’analyser d’éventuelles différences dans les résul-

tats de GCA par rapport à ceux obtenus à partir des données initiales (sans arêtes inverses).

Tout naturellement, les relations inverses sont perçues par GCA comme des doublons en ce

sens qu’elles n’apportent pas de nouvelles informations, car logiquement, GCA intègre déjà

automatiquement ces informations inverses au cours de son processus. Cette observation

peut être formulée par :GCA(CG) ≡GCA(CG_r). Pour illustration, la figure 7.14 montre le

graph pattern Q1 issu de GCA(CG1) et de GCA(CG1_r) respectivement. Nous pouvons re-

marquer que l’unique différence entre ces deux patterns se trouve au niveau des connexions

entre les concepts.

En résumé, l’ensemble de ces observations et analyses permettent de conjecturer que

l’ensemble des extensions de concepts de RCA est inclus dans l’ensemble des extensions de

concepts de GCA. Aussi, l’ajout des relations inverses dans les données de RCA permet de

réduire l’écart entre les résultats des deux approches. Le tableau 7.3 établit une synthèse de

l’ensemble des résultats de ces expériences en récapitulant pour chaque exemple le nombre

de concepts, le nombre de graph patterns, ainsi que le nombre de concepts automorphes

(doublons). Le bloc en vert met en évidence les exemples pour lesquels il y a équivalence de

6. En termes de taille et de structure des connexions.
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Figure 7.12 – Contexte graphe CG1b.

résultats entre RCA (avec intégration des relations inverses) et GCA. Inversement, le bloc en

orange délimite les exemples pour lesquels GCA produit des concepts en plus par rapport

à RCA, c’est-à-dire le résultat de RCA est strictement inclus dans celui de GCA malgré

l’ajout des relations inverses. En comparant les nombres de concepts des colonnes RCA et

GCA, l’impact des relations inverses par rapport aux nombres de concepts de RCA_r est
clairement perceptible.

Tableau 7.3 – Récapitulatif du nombre de concepts, de graph patterns et de concepts auto-

morphes (doublons).

Exemple RCA RCA_r GCA Patterns Doublons
CG1 37 45 45 7 0

CG2 8 18 18 4 0

CG1a 40 52 53 3 17

CG1b 41 64 66 1 230

CG1c 33 48 50 3 27

La section suivante présente les démonstrations formelles qui viennent corroborer les

observations issues des exemples précédents.

7.4 Comparaison théorique

Nous poursuivons notre analyse en présentant dans cette section, une étude théorique

relative à la comparaison entre RCA et GCA au regard de leurs extensions de concepts.
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Figure 7.13 – Contexte graphe CG1c.

Comme nous ne considérons que les concepts unaires, cela revient à comparer des en-

sembles d’ensembles d’objets. En effet, les ensembles d’objets sont lesmêmes des deux côtés,

bien qu’ils soient divisés en contextes formels dans le modèle initial de données en entrée

de RCA. Étant donné CR l’ensemble des extensions de concepts RCA, et CG l’ensemble des

extensions de concepts GCA, nous démontrons queCR ⊆ CG, et que l’inverse n’est pas vrai.

Avant d’énoncer et de démontrer ce résultat, nous établissons d’une part, quelques obser-

vations concernant les concepts RCA par rapport à leur processus de génération itératif

et d’autre part la traduction d’une FRC en un contexte graphe équivalent afin de guider la

comparaison. Cette comparaison théorique fait partie des travaux présentés dans [Fokou

et al., 2025b].

7.4.1 Notion de rang et d’intension initiale d’un concept RCA

Le processus de génération de concepts RCA est itératif. À chaque itération, de nou-

veaux concepts peuvent être définis et les intensions des concepts existants peuvent être

enrichies, grâce à de nouveaux attributs relationnels dérivés des nouveaux concepts de l’ité-

ration précédente. Un concept étant identifié par son extension, on peut dire qu’un nouveau

concept est une nouvelle extension. Le processus itératif s’arrête lorsqu’aucun nouveau

concept n’est créé, ce qui se produit après un nombre fini d’étapes, car l’ensemble des ob-

jets est fini, et donc l’ensemble des extensions possibles est également fini.

RCA considère toujours les concepts après la dernière itération, c’est-à-dire les paires

(X,Y ) où Y est l’intension finale. Nous introduisons deux nouvelles notions : le rang d’un
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Figure 7.14 – Graph pattern Q1 issu de GCA(CG1) et son équivalent issu de GCA(CG1_r).

concept et l’intension initiale d’un concept.

Définition 7.1 (Rang d’un concept). Le rang d’un concept C = (X,Y ) de RCA, noté

rank(C), est l’itération RCA i ≥ 0 qui génère pour la première fois un concept avec l’ex-

tension X .

Définition 7.2 (Intension initiale). L’intension initiale d’un concept C = (X,Y ) de RCA,

notée Înt(C) ou simplement Ŷ , est l’intension de C à l’itération rank(C), c’est-à-dire

lorsque l’extension X a été générée pour la première fois. Nous avons donc Ŷ ′ =X .

Par définition des itérations RCA qui ne peuvent qu’ajouter de nouveaux attributs re-

lationnels, nous avons Ŷ ⊆ Y . Nous pouvons également dire que l’intension initiale d’un

concept C ne peut se référer qu’à des concepts Ci (via des attributs relationnels) tels que

rank(Ci) < rank(C), car un concept ne peut être utilisé avant d’avoir été créé. Ces résultats
préliminaires sont importants car les intensions initiales brisent les cycles qui peuvent exis-

ter dans les intensions finales des concepts. Cela établit donc un ordre topologique entre les

concepts via leur rang, tout en préservant la caractérisation des extensions puisqueX = Ŷ ′.

7.4.2 Transposition des FRCs en contextes graphes

Afin d’avoir une base de comparaison solide, une Famille Relationnelle de Contextes

(FRC) du côté de RCA doit d’abord être traduite en un contexte graphe équivalent du côté

de GCA. Cela est relativement simple lorsque l’on se limite à leur base commune, car les
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deux approches disposent des données multi-relationnelles. La principale subtilité concerne

l’ensemble des objets qui est partitionné dans RCA (via les contextes objets-attributs) et non

dans GCA. Cela conduit à l’introduction d’attributs unaires supplémentaires pour représen-

ter les différentes catégories d’objets.

Définition 7.3. Soit (K,R) une FRC. Le contexte grapheK = (O,A, I) correspondant est
défini comme suit :

— O ∶= ⋃i=1..nOi : l’ensemble des objets est l’union disjointe des ensembles d’objets de

tous les contextes objets-attributs Ki ∈ K ;

— A = A1 ∪A2 : l’ensemble des attributs est composé d’attributs unaires (A1) et d’attri-

buts binaires (A2), où :

● A1 ∶= ⋃i=1..n({aKi
} ∪Ai) : l’ensemble des attributs unaires est l’union disjointe

des ensembles d’attributs de tous les contextes objets-attributs, étendu avec le

nom des contextes (aKi
) comme types (catégories) d’objets ;

● A2 ∶= {rk}k=1..m : l’ensemble des attributs binaires est l’ensemble des noms de

relations, un pour chaque contexte objets-objets ;

— La relation d’incidence entre les tuples d’objets et les attributs est définie comme suit :

I ∶= {aKi
(o) ∣ Ki ∈ K, o ∈ Oi}

∪ {a(o) ∣ o ∈ Oi, a ∈ Ai, (o, a) ∈ Ii}

∪ {r(o1, o2) ∣ r ∈ R, (o1, o2) ∈ r}

Par exemple, le contexte graphe correspondant à FRC2 à propos de la famille royale,

présentée dans le tableau 7.2 est égale à K = (O,A, I) avec :

— O = OPersonne

— A = A1 ∪A2 où A1 = {aPersonne} ∪APersonne et A2 = {has-parent}
— I = {aPersonne(o) ∣ o ∈ OPersonne}

∪ {a(o) ∣ (o, a) ∈ IPersonne}
∪ {has-parent(o1, o2) ∣ (o1, o2) ∈ has-parent}

Notons qu’aucune information n’est perdue au cours du processus de traduction , et la

traduction peut être facilement inversée tant que les attributs aKi
sont différenciés des

autres attributs unaires. Cependant, il n’existe pas de traduction générale évidente des

contextes graphes vers les FRCs en raison de l’absence de catégories d’objets et de l’exis-

tence possible de relations n-aires.

7.4.3 Comparaison des ensembles d’extensions de concepts

Nous démontrons ci-après que toutes les extensions de concepts RCA sont également

des extensions de concepts GCA. Cette hypothèse a été émise précédemment à la section 7.3
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à partir des observations faites sur les exemples, où il a également été observé que l’inverse

n’est pas toujours vrai. Afin d’établir cette preuve, nous construisons d’abord un Projected
Graph Pattern (PGP) qui simule l’intension initiale d’un concept RCA, puis nous démontrons

deux lemmes concernant cette construction.

Définition 7.4 (PGP simulant un concept RCA). Soit C un concept dans une famille

de treillis de concepts RCA. Soit C = {Ck} le sous-ensemble des concepts qui participent

à la description de C , c’est-à-dire les concepts référencés dans les attributs relationnels de

l’intension initiale de C , et de manière récursive dans l’intension initiale de ces concepts. C

inclut égalementC lui-même en tant queC0. Nous définissons le PGPQ = (x0, P0) simulant

C en introduisant un ensemble de variablesX = {xk}, contenant une variable distincte pour

chaque concept Ck ∈ C ; et en définissant un pattern Pk pour chaque concept Ck tel que :

Pk ∶= {aKi
(xk) ∣ Ck appartient au treillis de concepts du contexte Ki}

∪ {a(xk) ∣ a ∈ Înt(Ck)}

∪ ⋃ {{r(xk, xl)} ∪ Pl ∣ ∃r(Cl) ∈ Înt(Ck)}

Nous définissons Qk = (xk, Pk) comme le PGP qui simule Ck, et nous notons cette relation

de simulation Qk ∼ Ck.

La définition récursive de Pk est bien définie grâce à l’ordre topologique basé sur le rang

des intensions initiales. Le cas de base est constitué de concepts de rang 0, qui n’ont aucun
attribut relationnel dans leur intension initiale.

Pour illustration, définissons le PGP qui simule le concept family_8 du treillis de la

figure 7.7. Pour des raisons de lisibilité, les concepts de ce treillis sont renommés Cfi pour

chaque concept family_i, par exemple Cf8 pour le concept family_8. Supposons 7 que
Înt(Cf8) = {∃has-parent(Cf5),∃has-parent(Cf6)} et trouvons Qf8 = (x8, Pf8), le PGP qui

simuleCf8. L’intension initiale de chacun des conceptsCf5 etCf6 contient les attributs rela-

tionnels référençant les concepts {Cf3,Cf2,Cf1}. Par conséquent, l’ensemble des concepts

qui participent à la description de Cf8 est C = {Cf5,Cf6,Cf3,Cf2,Cf1}. On a :

Pf8 = {aPersonne(x8)}
∪ {has-parent(x8, x5)} ∪ Pf5

∪ {has-parent(x8, x6)} ∪ Pf6

Avec :

Pf5 = {aPersonne(x5),male(x5)}
∪ {has-parent(x5, x3)} ∪ Pf3

∪ {has-parent(x5, x2)} ∪ Pf2

∪ {has-parent(x5, x1)} ∪ Pf1

Pf6 = {aPersonne(x6)}
∪ {has-parent(x6, x3)} ∪ Pf3

∪ {has-parent(x6, x2)} ∪ Pf2

∪ {has-parent(x6, x1)} ∪ Pf1

7. Factuellement, l’intension de Cf8 contient aussi l’intension de Cf6. De plus l’intension initiale de Cf8

est égale à son intension finale.
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has-parent

Figure 7.15 – Représentation graphique du pattern Pf8 qui simule le concept Cf8.

Où :Pf1 = {aPersonne(x1), female(x1)},Pf2 = {aPersonne(x2),male(x2)} etPf3 = {aPersonne(x3)}.

La figure 7.15 illustre la représentation graphique du pattern Pf8 dans lequel les flèches

reliant les nœuds représentent la relation has-parent. Pf8 fournit en réalité la description

du concept Cf8 identifié par la variable x8, c’est-à-dire : les personnes (x8) qui ont pour
parents des personnes (x5, x6) ayant eux aussi des parents (x1, x2, x3). Donc x8 est la variable
qui identifie (représente) les personnes ayant un grand-parent, c’est le cas de Charlotte et
Georges, ce qui justifie le résultat Ext(Cf8) = {Charlotte,Georges}.

Lemme 1. Sous les conditions de la définition 7.4, nous avons pour tout Ck ∈ C

Qk ∼ Ck Ô⇒ ext(Qk) = Ext(Ck).

Démonstration. Nous prouvons ce lemme par récurrence sur le rang des concepts dans C.

Dans le cas général, nous considérons un concept Ck de rang n, appartenant au contexte

Ki. Nous supposons que le lemme est vrai pour tous les concepts de rang inférieur à n, en

particulier ceux qui apparaissent dans l’intension initiale Ŷk de Ck.

(1)Nous prouvons d’abord queExt(Ck) ⊆ ext(Qk). En considérant un certain ok ∈ Ext(Ck),

nous devons prouver que ok ∈ ext(Qk), qui est défini par ext(Qk) = {o ∣ Qk ⊆q (o, I)}.

Ainsi, ok ∈ ext(Qk) est vrai si et seulementQk ⊆q (ok, I), c’est-à-dire qu’il existe une appli-

cation ϕ des variables aux objets telle que ϕ(xk) = ok et ϕ(Pk) ⊆ I (voir définition 4.7 sur
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l’inclusion des PGPs). Nous avons ok ∈ Ext(Ck) = Ŷ ′k = ⋂α∈Ŷk
α′ 8, c’est-à-dire que ok ∈ α′

pour tous les éléments α de l’intension initiale. Il existe deux types d’éléments :

— Attributs formels (α = a ∈ Ai) : ok ∈ α′ implique que ok ∈ a′, donc (ok, a) ∈ Ii.

— Attributs relationnels (α = ∃r(Cl)) : ok ∈ α′ implique ici que ok ∈ (∃r(Cl))
′
, ce qui

implique qu’il existe un objet ol tel que (ok, ol) ∈ r et ol ∈ Ext(Cl). En appliquant l’hy-

pothèse de récurrence, nous obtenons ol ∈ ext(Ql), et donc il existe une application

ϕl telle que ϕl(xl) = ol et ϕl(Pl) ⊆ I .

Nous définissons l’application ϕ ∶= {xk → ok} ∪ ⋃l ϕl comme l’union des applications

de chaque attribut relationnel plus l’application de xk à ok. Il reste donc à montrer que

ϕ(Pk) ⊆ I . Pk peut être décomposé en sous-ensembles d’éléments suivants :

— aKi
(xk) : ok appartient au contexteKi, donc nous avons aKi

(ok) ∈ I selon la définition

du contexte graphe qui correspond à la FRC.

— a(xk) : par définition deQk, nous avons a ∈ Ŷk, donc comme vu ci-dessus, nous avons

(ok, a) ∈ Ii, donc a(ok) ∈ I .

— r(xk, xl) : par définition de Qk, nous avons ∃r(Cl) ∈ Ŷk, donc comme vu ci-dessus,

nous avons (ok, ol) ∈ r, donc r(ok, ol) ∈ I .

— Pl ⊆ Pk : nous avons vu plus haut que ϕl(Pl) ⊆ I , donc par définition de ϕ qui inclut

ϕl, nous avons également ϕ(Pl) ⊆ I .

Comme toutes les parties de Pk se projettent sur des parties de I via ϕ, on obtient ϕ(Pk) ⊆ I .

(2) Nous prouvons ensuite que ext(Qk) ⊆ Ext(Ck). En considérant ok ∈ ext(Qk),

nous savons qu’il existe une application ϕ des variables aux objets telle que ϕ(xk) = ok
et ϕ(Pk) ⊆ I . Nous devons prouver que ok ∈ Ext(Ck) = Ŷ ′k = ⋂α∈Ŷk

α′. Nous devons donc

prouver que ok appartient à l’extension de chaque élément α de l’intension initiale. Nous le

faisons pour les deux types d’éléments :

— α = a ∈ Ai (attribut formel) : par définition de Qk, nous savons que a(xk) ∈ Pk. À

partir de ϕ(Pk) ⊆ I , nous obtenons ϕ(a(xk)) ∈ I , puis à partir de ϕ(xk) = ok, nous

obtenons a(ok) ∈ I . Nous obtenons donc également (ok, a) ∈ Ii par traduction du

contexte, et par conséquent, ok ∈ a′.

— α = ∃r(Cl) (attribut relationnel) : par définition deQk, nous savons que r(xk, xl) ∈ Pk

et Pl ⊆ Pk. À partir des contraintes sur ϕ, nous pouvons déduire que r(ok, ol) ∈ I , avec

ol = ϕ(xl), et ϕ(Pl) ⊆ I . À partir de là, nous pouvons conclure que ol ∈ ext(Ql), en

projetant simplement ϕ sur les variables de Pl. En appliquant l’hypothèse de récur-

rence, nous obtenons ol ∈ Ext(Cl). À partir de r(ok, ol) ∈ I , nous obtenons également

(ok, ol) ∈ r par traduction du contexte. Nous avons donc ok ∈ (∃r(Cl))
′
, par définition

de l’extension d’un attribut relationnel.

8. L’opérateur
′
correspond à l’opérateur de dérivation qui à un ensemble d’attributs associe l’ensemble

d’objets qui partagent ces attributs.
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Le cas de base est pour rank(Ck) = 0. La même preuve que dans le cas général peut

être utilisée, car l’hypothèse de récurrence n’est utilisée que pour les attributs relationnels,

et les concepts de rang 0 n’en ont aucun.

Théorème 2. Soient (K,R) une FRC etK son contexte graphe correspondant. Pour chaque

concept RCA sur (K,R), il existe un concept GCA sur K ayant la même extension.

Démonstration. Considérons un conceptC dans une famille de treillis de concepts et le PGP

Q qui simuleC , c’est-à-dire tel queQ ∼ C . Comme cas particulier du lemme précédent avec

k = 0, nous avons ext(Q) = Ext(C). Dans GCA, le couple (ext , int) est une connexion de

Galois, donc (ext(Q), int(ext(Q))) forme un concept, et donc ext(Q) est l’extension d’un

concept GCA.

7.4.4 Comparaison en cas d’ajout des relations inverses dans les don-
nées de RCA

Les observations faites sur les exemples de la section 7.3 ont montré que l’ajout des re-

lations inverses aux données de RCA permet de rapprocher les résultats RCA de ceux de

GCA, car GCA prend automatiquement en compte les relations inverses dans son proces-

sus. Formellement, pour chaque relation r ∈ R dans la FRC (K,R), une nouvelle relation
r− = {(oj, oi) ∣ (oi, oj) ∈ r} est incluse dans l’ensemble des relations. Nous notons R− l’en-
semble des relations inverses dérivées d’un ensemble de relations R, sachant que l’inverse
d’une relation est nommé en rajoutant la chaîne "_r" à la fin du nom de la relation (comme

en section 7.3.1).

La question que nous abordons dans cette section est de savoir si le résultat précédent

indiquant l’inclusion des extensions RCA dans les extensions GCA reste vrai avec l’ajout

des relations inverses dans les données de RCA. Nous démontrons que l’inclusion reste

valide en montrant que l’ensemble des extensions GCA n’est pas affecté par l’introduction

des arêtes binaires inverses dans les données de GCA.

Lemme 2. SoientK = (O,A, I) un contexte de graphe etK− = (O,A−, I−) son extension

avec les relations inverses, c’est-à-dire A− = A ∪ R−, où R ⊆ A est l’ensemble des attri-

buts binaires dans A, et I− = I ∪ {r−(oj, oi) ∣ r(oi, oj) ∈ I}. Il existe une correspondance

biunivoque entre les concepts de K et les concepts de K− :

(R,Q) ∈ GCA(K) ⇐⇒ (R,Q−) ∈ GCA(K−),

où, étant donné Q = (x,P ), nous avons Q− = (x,P −) et P − = P ∪ {r−(y, x) ∣ r(x, y) ∈ P}.
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Démonstration. Le calcul des intensions des concepts GCA se résume à des produits caté-

goriques répétés de la relation d’incidence. En particulier, lorsque l’arête r(x, y) appartient

à I × . . . × I (n fois), cela signifie que pour tout i ∈ 1..n, il existe une paire d’objets (ui, vi)

telle que r(ui, vi) ∈ I . Par définition de I−, il s’ensuit que pour tout i ∈ 1..n, nous avons éga-

lement r−(vi, ui) ∈ I−. À partir de là, nous concluons que le produit catégorique I−× . . .×I−

contient r−(y, x) en plus de r(x, y). En effet, le produit catégorique définit x = (u1, . . . , un)

et y = (v1, . . . , vn). L’inverse est également vrai. Chaque fois que r−(y, x) ∈ I− × . . . × I−,

nous avons r(x, y) ∈ I × . . .×I car chaque fois que r−(vi, ui) ∈ I− est vrai, r(ui, vi) ∈ I ⊆ I−.

Cela implique que les concepts de K− peuvent être dérivés des concepts de K , simple-

ment en ajoutant des arêtes binaires inverses dans les patterns selon la définition ci-dessus

de P −. Les extensions de concepts sont les mêmes.

Sur la base de ce lemme, le Théorème 2 précédent peut être étendu à une FRC intégrant

les relations inverses.

Théorème 3. Soient (K,R) une FRC etK son contexte graphe correspondant. Pour chaque

concept RCA de la FRC étendue (K,R ∪R−), il existe un concept GCA deK avec la même

extension.

Démonstration. Il est facile de voir que siK est le contexte graphe correspondant à la FRC

(K,R), alors K− est le contexte graphe correspondant à la FRC étendue avec les relations

inverses. Par conséquent, d’après le théorème 2, toutes les extensions des concepts de la

FRC étendue sont des extensions des concepts deK−. Le Lemme 2 montre queK etK− ont

les mêmes extensions de concepts. Par conséquent, toutes les extensions des concepts de la

FRC étendue sont des extensions de concepts du contexte graphe non étendu K .

En résumé, les démonstrations confirment que l’ensemble des extensions des concepts

produit par RCA est inclus dans celui des concepts de GCA. De plus, l’intégration explicite

des relations inverses dans GCA s’avère superflue, puisqu’elle n’induit aucun changement

dans les résultats.

7.5 Conclusion

Dans ce chapitre, nous avons mené une étude comparative de RCA et de GCA du point

de vue des extensions de concepts. Cette analyse a mis en évidence que, si les deux ap-

proches présentent de nombreuses différences, elles partagent néanmoins certains points

communs, notamment l’utilisation du quantificateur ∃, le calcul des concepts unaires, ainsi

que le traitement des relations binaires. Par ailleurs, la prise en compte automatique des re-

lations inverses dans le processus de GCA est compensée du côté de RCA par l’ajout manuel
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de ces relations dans les données. Cette intégration des relations inverses en RCA permet

ainsi de rapprocher ses résultats de ceux de GCA.

Sur la base de ces points communs, ce chapitre a d’abord montré, à travers plusieurs

exemples, que l’ensemble des extensions de concepts de RCA est inclus dans celui de GCA.

Autrement dit, pour tout concept RCA, il existe un concept GCA possédant la même exten-

sion. Ce constat empirique a ensuite été étayé par une démonstration théorique établissant

formellement que l’ensemble des extensions des concepts RCA est effectivement inclus dans

l’ensemble des extensions des concepts GCA. Par ailleurs, il a également été démontré que

l’ajout des relations inverses dans les données de GCA n’entraîne aucun changement sur

l’ensemble des concepts, hormis l’introduction d’arêtes redondantes.

Le chapitre suivant propose une comparaison intensionnelle de RCA et GCA, com-

plétant ainsi la deuxième dimension nécessaire à la mise en parallèle de l’ensemble des

concepts RCA avec celui de GCA.
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Comparaison intensionnelle de RCA et

GCA dans leur cadre commun
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Ce chapitre est consacré à la comparaison des intensions des concepts RCA et GCA dans

leur cadre commun. Nous y démontrons que les intensions des concepts RCA sont incluses

dans celles des concepts GCA. Nous commençons par préciser la notion d’intension pour un

concept RCA et pour un concept GCA dans la section 8.1. Ensuite, la section 8.2 présente

le processus de transformation d’une famille de treillis RCA en un ensemble de patterns

relationnels comparables aux graph patterns GCA. Le rapprochement entre les patterns

relationnels RCA et les graph patterns GCA est ensuite effectué dans la section 8.3. La sec-

tion 8.4 aborde la comparaison intensionnelle proprement dite et démontre que l’ensemble

des patterns relationnels issus de RCA est inclus dans l’ensemble des graph patterns GCA.

Enfin, la section 8.5 met en évidence l’apport pratique des patterns relationnels RCA, au-

delà de leur rôle de passerelle pour cette étude comparative. Cette étude comparative de

RCA et GCA, sous l’angle de leurs intensions de concepts, s’inscrit dans le cadre des tra-

vaux publiés dans [Fokou et al., 2025b].
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8.1 Intensions des concepts RCA et GCA

Afin de bien expliciter la notion d’intension pour un concept RCA et un concept GCA,

cette section détaille successivement l’intension d’un concept RCA, puis celle du concept

GCA correspondant, c’est-à-dire le concept GCA possédant la même extension.

Pour ce faire, nous utilisons l’exemple de la FRC du tableau 8.1, désignée par FRC3 qui

porte sur les animaux et les aliments qu’ils consomment. Le contexte graphe CG3 corres-

pondant est présenté à la figure 8.1. La figure 8.2 présente la famille de treillis obtenue sur

FRC3 et la figure 8.3 illustre l’ensemble des graph patterns GCA calculé sur CG3. Notre illus-

tration de la notion d’intension de concept porte sur le concept animal d’extension {a1, a4},
dont le nom (identifiant) est animals_2 du côte de RCA (figure 8.2) etQ3c du côté de GCA

(figure 8.3).

Tableau 8.1 – FRC3 (K = {KAnimal,KFood}, R = {eat}) à propos des animaux et de leurs

aliments.

KAnimal h
e
r
b
i
v
o
r
e

c
a
r
n
i
v
o
r
e

a1 ×

a2 ×

a3 ×

a4 ×

KFood fruit grass meat

f1 ×

f2 ×

f3 ×

f4 ×

f5 ×

f6 ×

eat f1 f2 f3 f4 f5 f6

a1 × × × ×

a2 × ×

a3 × ×

a4 × × × ×

a1

herbivore

f1

fruit

eat

f3

grass

eat

f4

fruit

eat

f2

grass

eat

f6

meat

f5

meat

a4

herbivore

eateateat eat

a3

carnivore

eat eat

a2

carnivore

eat eat

Figure 8.1 – Contexte graphe CG3 correspondant à FRC3 (figure 8.1).

8.1.1 Intension d’un concept RCA

L’intension d’un concept RCA se compose, d’une part, des attributs unaires caractéri-

sant les objets du concept, et d’autre part, des attributs relationnels qui capturent les re-
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animals_3

∃ eat(food_4)

 

animals_2

herbivore
∃ eat(food_3)
∃ eat(food_2)

a1
a4

animals_0

∃ eat(food_0)

 

animals_1

carnivore
∃ eat(food_1)

a2
a3

food_4

 

 

food_3

fruit

f1
f4

food_0

 

 

food_2

grass

f2
f3

food_1

meat

f5
f6

Figure 8.2 – Famille de treillis RCA obtenue sur FRC3.

lations entre ces objets et d’autres objets. Par conséquent, l’interprétation complète d’une

intension de concept requiert de naviguer dans la famille de treillis au moyen des attributs

relationnels qui relient les concepts entre eux. Les chemins de navigation sont déterminés

par les attributs relationnels de l’intension du concept à analyser et, de manière récursive,

par l’intension des concepts référencés par ces attributs relationnels.

Pour illustration, l’intension complète du concept animals_2 (figure 8.2) est l’ensemble

{herbivore,∃eat(food_2),∃eat(food_3),∃eat(food_4)} qui contient trois attributs rela-
tionnels pointant sur les concepts du contexteKFood. L’ensemble des concepts qui participent

à l’interprétation de l’intension du concept animals_2 est illustré à la figure 8.4 sous forme

d’un graphe orienté qui met en évidence les connexions entre ces concepts. Ce graphe re-

présente les différents chemins de navigation au sein de la famille de treillis, conduisant à

l’interprétation de l’intension du concept animals_2. Par exemple, le chemin menant au

concept food_3 indique que les animaux de animals_2 (les herbivores) se nourrissent de

fruits. Notons qu’il s’agit ici d’un cas simple, puisque le treillis de KFood ne contient pas

d’attributs relationnels. En revanche, dans l’exemple FRC1 (tableau 3.1) relatif aux garages,

voitures et personnes, les intensions des concepts de KGarage font référence à des concepts

de KCar, dont les intensions renvoient à leur tour à des concepts de KPerson, comme l’illustre

l’extrait de la figure 3.11.

Un tel "graphe navigation" correspond en réalité à un arbre dont la racine est le concept

que l’on cherche à décrire et qui constitue le point de départ de la navigation dans la famille
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Figure 8.3 – Ensemble de graph patterns de CG3.

de treillis. Comme on peut le constater, cette notion de "graphe navigation" se rapproche de

celle de Projected Graph Pattern (PGP) qui simule un concept RCA (définition 7.4). Il suffit

d’abstraire les extensions des concepts à l’aide des variables et d’étiqueter les arêtes par

les noms de relations des attributs relationnels (le quantificateur peut être omis, puisque

nous ne considérons que le quantificateur ∃). On obtient ainsi un graphe orienté et éti-

queté qui représente la description du nœud racine. À titre d’illustration, le graphe de la

figure 8.5, exprimant que les herbivores consomment des fruits et des herbes, constitue une

version généralisée du graphe navigation de la figure 8.4, et capture uniquement l’informa-

tion intensionnelle.

8.1.2 Intension d’un concept GCA

GCA produit en sortie un ensemble de graph patterns, chacun représentant un ensemble

maximal de concepts interdépendants pour l’interprétation de leurs intensions respectives.

Comme décrit à la section 4.5.2.1, l’intension de chaque concept d’un graph pattern s’obtient

par projection du pattern sur le concept (nœud) concerné. Par définition, l’intension d’un

concept Qix dans un pattern P, est donnée par le PGP ((x),Pir), où Pir correspond au

sous-pattern constitué du nœud x et du pattern core de P.

À titre d’illustration, considérons le concept Q3c du pattern Q3 en vert (figure 8.3). Le

pattern core de Q3 correspond au sous-pattern (en couleur vive) constitué des concepts

Q3c, Q3a et Q3b. Ainsi, seuls les concepts du pattern core sont impliqués dans la descrip-
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animals_2
herbivore

∃ eat(food_2)
∃ eat(food_3)
∃ eat(food_4)

a1
a4

food_2
grass

f2
f3

food_3
fruit
f1
f4

food_4

f1
f2
f3
f4
f5
f6

Figure 8.4 – Graphe représentant les concepts impliqués dans l’intension de animals_2.

herbivore fruit

grass

Figure 8.5 – Graph d’intension correspondant au graphe de description de la figure 8.4.

tion de l’intension deQ3c, carQ3c fait lui-même partie du pattern core. La figure 8.6 met en

évidence la projection du pattern Q3 sur le concept Q3c au sens de la définition de l’inten-

sion d’un concept GCA. Dans cette figure, le sous-pattern encadré illustre l’ensemble des

concepts qui participent à la description deQ3c tout en capturant les différentes connexions
entre ces concepts. Ce sous-pattern (encadré) peut également être interprété comme un

arbre ayant pour racine le tuple de projection Q3c.

En comparant les illustrations des figures 8.4 et 8.6, on observe que la définition du PGP
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Q3d
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Q3a
fruit
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f1

Q3b
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Q3c
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a4
a1

eat eat eat

Projection sur 

Figure 8.6 – Projection du pattern Q3 sur le concept Q3c.

dans GCA permet de recentrer le pattern sur le concept à analyser tout en éliminant les

redondances. Le conceptQ3d généralise les conceptsQ3a etQ3b en regroupant l’ensemble

des aliments consommés par les animaux du concept Q3c. Cependant, par définition, GCA
exclut Q3d de l’intension de Q3c, le considérant comme redondant pour sa description.

En revanche, du côté de RCA où l’intension complète d’un concept s’obtient par héritage

descendant des attributs, tous les attributs relationnels d’un concept sont pris en compte

pour l’interprétation de son intension.

8.2 Des familles de treillis de concepts RCA aux pat-
terns relationnels

Dans cette section, nous décrivons le processus de transformation d’une famille de

treillis de concepts RCA en un ensemble de patterns relationnels semblables aux graph

patterns de GCA. Ce processus de transformation s’appuie sur les notions de graphe de dé-

pendance et de graphe de concepts d’une famille de treillis, telles que définies dans [Ferré

et Cellier, 2018].

8.2.1 Graphe de dépendance d’une famille de treillis de concepts

La transformation d’une famille de treillis de concepts en une hiérarchie de graphes de

concepts a été décrite dans [Ferré et Cellier, 2018] sur la base des composantes fortement
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Figure 8.7 – Résultats RCA sur FRC3_r qui intègre la relation inverse eat_r.

connexes (Strongly Connected Components - SCC) [Even, 2011] du graphe de dépendance
(définition 5.1) entre les concepts. Comme décrit dans [Ferré et Cellier, 2018] et tel que

présenté dans le section 5.3.2, l’intuition sous-jacente au graphe de dépendance est que

l’intension d’un concept dépend de ses ancêtres dans le treillis (dépendances intra-treillis,

induites par la relation de subsumption) et des concepts cibles de ses attributs relationnels

(dépendances inter-treillis, induites par les attributs relationnels).

Nous illustrons les définitions de graphe de dépendance (définition 5.1) et de graphe

de concepts (définition 5.2) à l’aide de l’exemple FRC3 du tableau 8.1. La figure 8.7 montre

la famille de treillis RCA obtenue à partir de FRC3_r, qui intègre les relations inverses (ici

eat_r) à FRC3. Le graphe de dépendance est ensuite construit sur cette famille de treillis de

la figure 8.7. On dit qu’un concept C1 dépend d’un concept C2 ( noté C1 → C2), lorsque C2

est un parent deC1 (C1 ⪯ C2), ou lorsqueC1 est étiqueté par un attribut relationnel ∃r(C2),

c’est-à-dire ∃r(C2) ∈ Int(C1). À titre d’illustration, dans la famille de treillis présentée à la

figure 8.7 voici deux exemples de relations de dépendance entre concepts :

— animals_2→ animals_3, car animals_2 ⪯ animals_3
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— animals_2→ food_3, car ∃eat(food_3) ∈ Int(animals_2).

La figure 8.8 montre le graphe de dépendance de la famille de treillis présentée à la figure 8.7

avec ses 3 SCCs mis en évidence par des cercles. Pour une meilleure lisibilité, les arêtes

sont représentées de deux manières : les arêtes en pointillés représentent la relation de

subsomption entre les concepts, tandis que les arêtes pleines et étiquetées matérialisent les

attributs relationnels entre les concepts. Par exemple, l’arête entre les concepts animals_2
et food_3 étiquetée par ∃ eat matérialise le fait que ∃ eat(food_3) ∈ Int(animals_2).

animals_3
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a3
a4

food_4
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f2
f3
f4
f5
f6

∃ eat

animals_2

herbivore

a1
a4
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f3
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a2
a3
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∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

∃ eat_r

Figure 8.8 – Graphe de dépendance de la famille de treillis de la figure 8.7.

Un graphe de concepts est défini comme un SCC du graphe de dépendance, c’est-à-dire

un ensemble maximal de concepts où chaque concept a un chemin de dépendance vers

tous les autres concepts (du SCC). Pour capturer les structures relationnelles à partir de

ces graphes de concepts, nous ne conserverons que les arêtes correspondant aux attributs
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relationnels. En effet, on sait comment reconstruire les arêtes traduisant la relation de sub-

somption. Il existe deux difficultés pour obtenir des patterns relationnels semblables aux

graph patterns GCA à partir de ces graphes de concepts.

— La première difficulté concerne les arêtes inter-SCC (par exemple, l’arête ∃ eat entre
les concepts animals_1 et food_4 dans la figure 8.8), la question est de savoir si on

perd de l’information sur les intensions des concepts en ignorant ces arêtes inter-SCC.

— La deuxième difficulté réside dans la présence de relations inverses qui ne sont pas

explicitement représentées dans les graph patterns GCA.

Il convient de noter que les arêtes inter-SCC n’ont pas d’arêtes réciproques, sinon elles

seraient des arêtes intra-SCC. Ces deux difficultés sont résolues dans la section suivante

par la notion de redondance des attributs relationnels.

8.2.2 Attributs relationnels redondants

Une interprétation naïve de l’intension d’un concept prend en compte tous ses attri-

buts relationnels, dont certains n’apportent aucune nouvelle information sur la description

du concept. Par exemple, l’intension complète du concept animals_2 (figure 8.7) contient

les attributs relationnels ∃eat(food_2), ∃eat(food_3), ∃eat(food_5) et ∃eat(food_4). Les
deux premiers attributs relationnels suffisent pour la description du concept animals_2,
tandis que ∃eat(food_5) et ∃eat(food_4) sont redondants. En effet, ces deux derniers attri-
buts n’apportent aucune information nouvelle par rapport à ∃eat(food_2) et ∃eat(food_3),
car le concept food_4 subsume le concept food_5 qui est lui-même le subsumant direct des

concepts food_2 et food_3. Le lemme 3 introduit la notion de redondance des attributs

relationnels, telle qu’elle est définie dans [Nica et al., 2016a ; Nica et al., 2016c].

Lemme 3. Soient C1 et C2 deux concepts tels que C1 ⪯ C2. Si un concept C est tel que

∃ r(C1) ∈ Int(C), alors nous avons également ∃ r(C2) ∈ Int(C). Pour cette raison, ∃ r(C2)

est considéré comme redondant pour la description de C .

Démonstration. Soient deux concepts C1 = (X1, Y1) et C2 = (X2, Y2).

∃r(C1) ∈ Int(C) ⇐⇒ ∀o ∈ Ext(C), r(o) ∩X1 /= ∅. Puisque C1 ⪯ C2, X1 ⊆ X2 et donc,

r(o) ∩ X2 /= ∅ ⇐⇒ ∃r(C2) ∈ Int(C). Par conséquent, les attributs relationnels sont

ordonnés et ∃r(C2) est redondant dans l’interprétation de C .

Ce lemme définit les redondances sur la base desquelles on peut réduire la description

d’un concept à son intension la plus spécifique. Cependant, en examinant plus en détail

l’exemple du concept animals_2, nous pouvons différencier les deux attributs redondants

∃ eat(food_5) et ∃ eat(food_4). Le premier fait référence au subsumant direct des deux

concepts food_2 et food_3, tandis que le second fait référence au concept food_4 qui

couvre également le concept food_1 et contient des objets supplémentaires (f5, f6) qui
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n’ont aucun lien avec les objets de animals_2 que l’on cherche à décrire. Ceci ajoute une

sorte de bruit à la description de animals_2. Logiquement, il n’y a pas d’attribut relationnel

inverse dans l’intension de food_4 qui pointe vers animals_2, car food_4 contient des ob-
jets n’ayant aucun lien avec ceux de animals_2. Ce type d’attribut est qualifié de fortement
redondant et est défini dans le lemme suivant.

Lemme 4. Soient C = (X,Y ) et C1 = (X1, Y1) deux concepts formels. Si ∃ r(C1) ∈ Y

et ∃ r−(C) /∈ Y1, alors il existe un concept C2 = (X2, Y2) ⪯ C1 tel que ∃ r(C2) ∈ Y et

∃ r−(C) ∈ Y2 avec X2 = X1 ∩ ⋃{r(o) ∣ o ∈ X}. On dit alors que ∃ r(C1) est fortement

redondant pour la description de C .

Démonstration. Nous devons prouver que : (1) X2 ⊆ X1, ce qui est trivial par définition de

X2, (2) ∃r−(C) ∈ Y2 , et (3) ∃r(C2) ∈ Y .

Pour prouver que ∃r−(C) ∈ Y2, nous partons de ce que cela implique d’être un élément

de X2 : ∀oj ∈X2 ∶ oj ∈ ∪{r(o) ∣ o ∈X}, par définition de X2

⇒ ∀oj ∈X2 ∶ ∃oi ∈X ∶ (oi, oj) ∈ r, par définition de r(oi)

⇒ ∀oj ∈X2 ∶ ∃oi ∈X ∶ (oj, oi) ∈ r−, par définition de la relation inverse

⇒ ∃r−(C) ∈ Y2, par définition des attributs relationnels dans l’intension de C2.

Pour prouver que ∃r(C2) ∈ Y , nous partons du fait que ∃r(C1) ∈ Y , ce qui implique

∀oi ∈X ∶ ∃oj ∈X1 ∶ (oi, oj) ∈ r

⇒ ∀oi ∈X ∶ ∃oj ∈X1 ∶ (oi, oj) ∈ r, donc oj ∈ ∪{r(oi) ∣ oi ∈X}

⇒ ∀oi ∈X ∶ ∃oj ∈X2 ∶ (oi, oj) ∈ r, par définition de X2

⇒ ∃r(C2) ∈ Y , par définition des attributs relationnels dans l’intension de C .

Le lemme 4 établit qu’un attribut relationnel ne possédant pas d’attribut relationnel ré-
ciproque est fortement redondant ; c’est précisément le cas des arêtes inter-SCC. Par consé-

quent, ignorer les arêtes inter-SCC n’entraîne pas de perte d’information dans l’interpréta-

tion des intensions de concepts. Cela permet ainsi de résoudre la première difficulté relative

aux arêtes inter-SCC, comme mentionné dans la section précédente. Une fois supprimés les

attributs relationnels qualifiés de fortement redondants, tous les attributs relationnels res-

tants possèdent un attribut inverse (ou réciproque). Cela signifie que, les arêtes induites

par les relations inverses peuvent être ignorées à l’instar de ce qui est fait dans les graph

patterns GCA. Cette simplification répond à la deuxième difficulté, liée à la présence des

attributs relationnels inverses dans les patterns relationnels.

8.2.3 Patterns relationnels RCA

Un pattern relationnel RCA est induit par chaque SCC du graphe de dépendance de la

famille de treillis de concepts. Cette section définit d’abord un tel pattern relationnel comme
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un pattern d’extensions, d’attributs et de relations (Extent-Attribute-Relation pattern (EAR-
pattern), en anglais), qui servira de représentation commune pour comparer les intensions

des concepts RCA et GCA. Ensuite, les EAR-patterns de RCA (définition 8.2) sont définis

sur la base de ce qui précède, c’est-à-dire en utilisant uniquement les arêtes relationnelles

intra-SCC et en ignorant les arêtes inverses en raison de leur redondance.

Définition 8.1 (EAR-pattern). Soit O un ensemble d’objets, A un ensemble d’attributs

(formels) etR un ensemble de relations binaires. Un Extent-Attribute-Relation pattern (EAR-
pattern) est un graphe orienté étiqueté P = (V,E,LV , LE) où :

— les nœuds V ⊆ 2O sont les extensions de concepts, c’est-à-dire des ensembles d’objets ;

— E ⊆ V × V est un ensemble d’arêtes orientées reliant les extensions ;

— LV ∶ V → 2A est la fonction d’étiquetage des nœuds par des ensembles d’attributs

formels ;

— LE ∶ E → 2R est la fonction d’étiquetage des arêtes par des ensembles de relations.

Définition 8.2 (EAR-pattern RCA). Soit S un SCC d’un graphe de dépendances GL. Le

EAR-pattern RCA induit par S est le EAR-pattern PS = (V,E,LV , LE) où :

— V = {Ext(C) ∣ C ∈ S} : extensions des concepts de S ;

— E = {(Ext(C1),Ext(C2)) ∣ C1, C2 ∈ S, ∃r(C2) ∈ Int(C1)} : les arêtes corres-

pondent aux attributs relationnels dans les intensions des concepts ;

— LV (Ext(C)) = {a ∈ A ∣ a ∈ Int(C)} : les étiquettes des extensions sont les attributs

unaires dans les intensions des concepts ;

— LE((Ext(C1),Ext(C2))) = {r ∈ R ∣ ∃r(C2) ∈ C1} : les étiquettes des arêtes sont les

noms de relations des attributs relationnels reliant les concepts.

Pour illustration, la figure 8.9 présente l’ensemble des EAR-patterns RCA obtenus à par-

tir de la famille de treillis illustrée à la figure 8.7. Comme on peut le constater, cet ensemble

d’EAR-patterns RCA correspond à l’ensemble de graph patterns GCA obtenu sur le même

exemple, tel que présenté à la figure 8.3. Il est important de souligner que pour une fa-

mille de treillis de concepts donnée, l’ensemble des EAR-patterns RCA correspondant est

équivalent en termes d’informations à la famille de treillis de concepts d’origine.

En résumé, pour une famille de treillis de concepts obtenue à partir d’une famille rela-

tionnelle de contextes (intégrant les relations inverses), l’ensemble des EAR-patterns RCA

correspondants est construit selon le processus suivant : (1) construction du graphe de dé-

pendance de la famille de treillis, (2) calcul des SCCs du graphe de dépendance, (3) sup-

pression des arêtes induites par la relation de subsomption, (4) suppression des attributs

relationnels fortement redondants et (5) suppression des attributs relationnels induits par

les relations inverses. Il convient de noter que ces résultats sont obtenus grâce aux relations

inverses qui jouent un rôle important dans le calcul des SCCs.
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Figure 8.9 – EAR-patterns RCA de la famille de treillis présentée à la figure 8.7.

Grâce à cette transformation des résultats de RCA sous forme de EAR-patterns, compa-

rables aux graph patterns de GCA, il devient possible d’envisager une comparaison entre

les deux types de patterns. Cependant, les EAR-patterns RCA et les graph patterns GCA ne

sont pas toujours directement comparables, car les graph patterns GCA peuvent souvent

comporter plusieurs nœuds correspondant au même concept, ce que l’on désigne par les

concepts automorphes. Par conséquent, nous commençons par transformer les graph pat-

terns GCA en EAR-patterns.

8.3 Des graph patterns GCA aux EAR-patterns

En GCA, la duplication des concepts est parfois nécessaire pour représenter correcte-

ment les graph patterns présentant des symétries ou capturant certaines structures, telles

que les cycles. Les concepts dupliqués, appelés concepts automorphes, représentent diffé-
rentes occurrences d’un même concept, comme décrit à la section 4.6 (chapitre 4). En re-

vanche, RCA ne produit pas de tels concepts automorphes. L’approche consiste donc à

fusionner les occurrences de concepts automorphes dans les graph patterns GCA. Pour un

graph pattern P , fusionner ses concepts automorphes revient à calculer son graphe quotient
par rapport à ses extensions de concepts, c’est-à-dire que deux nœuds sont regroupés dans

la même classe s’ils partagent la même extension.

Définition 8.3 (Graphe quotient). Soit G un graphe et soit P = V1, . . . , Vk une partition
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Figure 8.10 – Graph pattern Q2 avec concepts automorphes (à gauche) et une représenta-

tion de son graphe quotient correspondant à droite.

de l’ensemble des sommets de G en classes non vides. Le quotient G/P de G par P est le

graphe dont les sommets sont les ensembles V1, . . . , Vk et dont les arêtes sont les paires

(Vi, Vj), i /= j, telles qu’il existe ui ∈ Vi, uj ∈ Vj et (ui, uj) ∈ E(G) [Hahn et Tardif, 1997].

Pour illustration, la figure 8.10 présente le graph pattern Q2 (issu de l’exemple traité à

la section 4.6) ainsi qu’une représentation de son graphe (pattern) quotient. Dans ce pattern

quotient, chacune des deux occurrences d’un même nœud de Q2 est fusionnée en une seule

occurrence.

Dans un pattern quotient P ⊆ V∗×A d’un graph pattern,A contient des attributs unaires

qui étiquettent les nœuds (identifiés par des ensembles d’objets) et contient les attributs

n-aires (relations) qui étiquettent les arêtes connectantn nœuds. SiP est limité aux relations

binaires, comme c’est le cas dans ce travail, A peut être partitionné en deux ensembles : les

attributs unaires (A1) et les attributs binaires (A2), également appelés relations binaires. Le

pattern P peut donc être représenté de manière équivalente comme un EAR-pattern selon

la définition suivante.

Définition 8.4 (EAR-pattern GCA ). Soit P ⊆ V∗ × A le graphe quotient d’un graph

pattern GCA. Soit A = A1 ∪A2, avec A1 l’ensemble des attributs unaires et A2 l’ensemble

des attributs binaires. Le EAR-pattern de P s’écrit PG = (V,E,LV , LE) où :
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— V = {v ∣ ∃a ∈ A, ((. . . , v, . . .), a) ∈ P} ;

— E = {(v1, v2) ∣ ∃a ∈ A, ((v1, v2), a) ∈ P} ;

— LV (v) = {a ∈ A1 ∣ ((v), a) ∈ P} ;

— LE((v1, v2)) = {r ∈ A2 ∣ ((v1, v2), r) ∈ P}.

Compte tenu de ces définitions, les résultats produits par RCA et GCA peuvent être

transformés dans une représentation commune, appelée EAR-patterns, permettant ainsi la

comparaison de leurs intensions de concepts. La section suivante démontre que l’ensemble

des intensions de concepts issus de RCA est inclus dans celui de GCA.

8.4 Comparaison des EAR-Patterns RCA et GCA

Soient (K,R) une FRC,K le contexte graphe correspondant, et F = (K,R∪R−) la FRC
étendue avec les relations inverses. Soit S = ⋃{S1, S2, ..., Sm} = (VS,ES, LVS

, LES
) l’union

disjointe
1
des EAR-patterns RCA de F et soit P = ⋃{P1, P2, ..., Pn} = (VP ,EP , LVP

, LEP
)

l’union disjointe des EAR-patterns GCA deK . Dans ce qui suit, nous prouvons que S est un

sous-graphe de P au sens de la définition 8.5, et, par conséquent, que chaque EAR-pattern

RCA est un sous-graphe d’un EAR-pattern GCA.

Définition 8.5 (Sous-graphe). Soient G1 = (V1,E1, LV 1, LE1) et G2 = (V2,E2, LV 2, LE2)

deux graphes étiquetés. G2 est un sous-graphe étiqueté de G1 (G2 ⊆ G1) si et seulement si

V2 ⊆ V1,E2 ⊆ E1,∀v ∈ V2 ∶ LV2(v) = LV1(v) et∀(v1, v2) ∈ E2 ∶ LE2((v1, v2)) = LE1((v1, v2)).

Avant d’énoncer notre théorème, nous introduisons le lemme 5, qui servira pour sa

démonstration.

Lemme 5. Pour tout R ∈ Rk, and π ∈ Πl
k, nous avons π(int(R)) = int(π(R)) [Ferré et

Cellier, 2020].

Démonstration. Soit R = {o1, . . . , on}. π(int(R)) = π(⋂o∈R (o, I))

= π((ψ(o1, . . . , on), I × . . . × I)) = (π(ψ(o1, . . . , on)), I × . . . × I)

= (ψ(π(o1), . . . , π(on)), I × . . . × I) = ⋂o∈R (π(o), I) = ⋂o∈π(R) (o, I) = int(π(R))

Théorème 4. Soit F = (K,R ∪ R−) une FRC étendue avec des relations inverses et K le

contexte graphe correspondant à la FRC (K,R). Soit S = ⋃i Si l’union des EAR-patterns

RCA de F et soit P = ⋃j Pj l’union des EAR-patterns GCA de K . Nous avons S ⊆ P , et

donc ∀Si ∶ ∃Pj ∶ Si ⊆ Pj .

1. Chaque concept appartient à un et un seul pattern.
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Démonstration. Soit CR l’ensemble des extensions de concepts RCA de F et CG l’ensemble

des extensions de concepts GCA deK . En nous basant sur le résultatCR ⊆ CG (théorème 3),

nous voulons prouver que S ⊆ P en démontrant que :

— ∀(v1, v2) ∈ ES ∶ (v1, v2) ∈ EP , LES
((v1, v2)) = LEP

((v1, v2)) (1)
— et ∀vi ∈ VS ∶ vi ∈ VP , LVS

(vi) = LVP
(vi) (2).

(1) Soit (v1, v2) ∈ ES une arête, et r ∈ LES
(v1, v2) une relation dans son étiquette, où

v1 et v2 correspondent aux extensions des concepts C1,C2 respectivement. Cela implique

que ∃r(C2) ∈ Int(C1) et ∃r−(C1) ∈ Int(C2), par définition des EAR-patterns RCA. Alors

∀o1 ∈ v1 ∶ ∃o2 ∈ v2 ∶ (o1, o2) ∈ r et ∀o2 ∈ v2 ∶ ∃o1 ∈ v1 ∶ (o2, o1) ∈ r−, donc (o1, o2) ∈ r (*),

d’après la définition des attributs relationnels.

Soit R12 = {(o1, o2) ∣ o1 ∈ v1, o2 ∈ v2, (o1, o2) ∈ r} un object relation (définition 4.6)

d’arité 2. Nous avons π1(R12) = {π1(o1, o2) ∣ (o1, o2) ∈ R12} = v1 et π2(R12) = {π2(o1, o2) ∣

(o1, o2) ∈ R12} = v2 2
, selon (*).

Soit Q12 = int(R12) = ∩q{Q((o1, o2))}(o1,o2)∈R12
= ((y1, y2), P12), pour un certain

pattern P12, par définition de l’intension d’un object relation d’arité 2. Cela implique que

r(y1, y2) ∈ P12, par définition de R12.

Prouvons que ext(((y1), P12)) = v1 et ext(((y2), P12)) = v2, c’est-à-dire que les nœuds

y1, y2 dans le EAR-pattern GCA correspondent aux nœuds v1, v2 dans le EAR-pattern RCA.

ext(((y1), P12))

= ext(π1(Q12)), car π1((y1, y2)) = y1
= ext(π1(int(R12))), car Q12 est l’intension de R12

= ext(int(π1(R12))), d’après le lemme 5

= ext(int(v1)), puisque π1(R12) = v1
= v1, car v1 ∈ CR ⊆ CG, donc v1 est fermé en tant qu’une extension de concept. Par ana-

logie, nous avons également ext(((y2), P12)) = v2. Ces résultats impliquent que r(y1, y2) ∈

P12, donc, d’après la définition des EAR-patterns GCA, (v1, v2) est une arête dans P , et r

est l’une de ses étiquettes.

De plus, si r est une étiquette de (v1, v2) dansP , alors r(y1, y2) ∈ P12, donc on a r(o1, o2)

pour tous les (o1, o2) ∈ ext(Q12). Par conséquent, pour tout o1 ∈ π1(ext(Q12)) = v1, il

existe o2 ∈ π2(ext(Q12)) = v2 tel que (o1, o2) ∈ r. Il en résulte que ∃r(C2) ∈ Int(C1). De

même, nous avons ∃r−(C1) ∈ Int(C2). Par conséquent, r est une étiquette de l’arête (v1, v2)

dans S.

(2) Soit v ∈ VS un nœud et a ∈ LVS
(v) un attribut d’étiquette, où v correspond à l’exten-

2. π1 et π2 représentent respectivement la projection sur la première et la deuxième composante d’un

tuple ou d’un ensemble de tuples.
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sion d’un concept C . Cela implique que a ∈ Int(C) par définition des EAR-patterns RCA,

donc ∀o ∈ v ∶ a(o).

Soit Q = int(v) = ((y), P ) pour un certain pattern P . Nous avons a(y) ∈ P car Q

généralise tous les objets de v, qui ont tous l’attribut a. De plus, ext(Q) = ext(int(v)) = v

car v ∈ CR ⊆ CG. Alors, d’après la définition des EAR-patterns GCA, v est un nœud de P ,

et a est l’une de ses étiquettes.

De plus, si a est une étiquette de v, alors a(y) ∈ P , donc on a a(o) pour tout o ∈ v, d’où

a ∈ Int(C), et enfin a est une étiquette de v dans S.

Le théorème 4 couvre trois configurations. Premièrement, il peut arriver que S = P ,
c’est-à-dire que l’ensemble des EAR-patterns soit identique dans les résultats des deux ap-

proches. Un exemple illustratif est celui des animaux et des aliments qu’ils consomment :

les figures 8.9 et 8.3 présentent respectivement l’ensemble des EAR-patterns RCA et l’en-

semble graph patterns GCA (qui coïncide ici avec l’ensemble des EAR-patterns GCA, en

l’absence de concepts automorphes).

Deuxièmement, il peut exister une correspondance biunivoque entre les EAR-patterns

des deux approches, mais au moins une paire de patterns distincts Si et Pj vérifie Si ⊂ Pj .

Les exemples concernant les voitures et les garages, présentés à la section 7.3.3, illustrent

bien cette configuration où GCA produit des concepts supplémentaires par rapport à RCA.

À titre d’illustration, la figure 8.11 présente le EAR-pattern GCA (P2) incluant le concept

Q2z (en vert), absent du résultat de RCA pour l’exemple CG1a/ FRC1a_r. La figure 8.12

présente le EAR-pattern RCA (S3) correspondant. Ces deux figures mettent en évidence la

relation S3 ⊂ P2.

La troisième configuration apparaît lorsqu’il existe un patternPj qui ne peut être associé

à aucun pattern Si. C’est notamment le cas de l’exemple portant sur les cycles, qui sera

présenté et analysé dans le chapitre 9.

En conclusion, chaque EAR-pattern de RCA est un sous-graphe d’un EAR-pattern de

GCA. Par conséquent, l’ensemble des intensions de concepts RCA est inclus dans celui des

concepts GCA.

8.5 Potentiel pratique des EAR-patterns RCA

Au-delà de leur rôle de passerelle pour la comparaison intensionnelle entre RCA et GCA,

les EAR-patterns RCA constituent une base solide pour faciliter l’interprétation de la famille

de treillis RCA. Ils offrent une représentation compacte et lisible des résultats de RCA, avec

suppression des redondances. Ainsi, les EAR-patterns améliorent à la fois l’exploration et
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Figure 8.11 – Représentation du EAR-pattern GCA contenant le concept Q2z non produit

par RCA. La notation parenthésée des noms des concepts est abrégée par "(...)" pour plus

lisibilité. Par exemple, dans Q2l (...), la partie "(...)" représente les éléments (s m k o bc).
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Figure 8.12 – EAR-pattern RCA associé au EAR-pattern GCA de la figure 8.11.

l’interprétation des résultats en proposant une vue synthétique et structurée des relations

inter-concepts.

À l’instar du travail sur la représentation de la famille de treillis RCA sous forme d’une

hiérarchie de graphes de concepts [Ferré et Cellier, 2018], il est possible de structu-

rer hiérarchiquement l’ensemble des EAR-patterns RCA. Une telle hiérarchie pourrait être

construite en se basant sur la relation de subsomption entre les concepts (du point de vue

des extensions), offrant ainsi une représentation plus lisible que celle proposée dans [Ferré

et Cellier, 2018], dans la mesure où les attributs relationnels strictement redondants ont

été supprimés dans les EAR-patterns RCA.
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La transformation des résultats de RCA en un ensemble de EAR-patterns, constitue éga-

lement une base solide pour un usage combiné des approches RCA et GCA. Par exemple,

alors que GCA utilise les concepts automorphes pour capturer des structures symétriques

ou la présence des cycles dans les données, les EAR-patterns RCA permettent de repré-

senter des structures plus générales, faisant abstraction des détails spécifiques capturés par

GCA via les concepts automorphes. Une analyse conjointe de ces deux types de structures

offrirait la possibilité d’extraire différents niveaux de connaissances.

De plus, les EAR-patterns RCA, tels qu’ils sont définis actuellement avec le quanti-

ficateur existentiel ∃, fournissent une base qu’on peut étendre à des familles de treillis

construites avec d’autres quantificateurs de scaling (∃∀,∃ ⊇, etc.) [Braud et al., 2018]. Cela

permettrait de dépasser la limitation actuelle de GCA, dont les patterns n’utilisent implici-

tement que le quantificateur ∃, et de produire des patterns relationnels plus représentatifs

des structures présentes dans les données. L’intuition serait alors de redéfinir et d’adapter

la notion de redondance des attributs relationnels pour différents quantificateurs.

8.6 Conclusion

Dans chapitre, nous avons conduit une étude comparative de RCA et de GCA du point

de vue de leurs intensions de concepts dans leur cadre commun. Celui-ci inclut notamment

l’utilisation du quantificateur existentiel ∃, le calcul des concepts unaires, le traitement des

relations binaires, ainsi que l’intégration des relations inverses dans les données de RCA.

Pour mener à bien cette comparaison, nous avons transformé la famille de treillis RCA

en un ensemble de patterns relationnels semblables aux graph patterns GCA, afin de rendre

les intensions de concepts des deux approches directement comparables. Nous avons en-

suite établi que l’ensemble des intensions de concepts RCA est inclus dans celui de GCA,

en démontrant que chaque pattern relationnel RCA constitue un sous-graphe d’un pattern

GCA pour un même jeu de données. Ce résultat, combiné à celui de la comparaison exten-

sionnelle – qui démontre que l’ensemble des extensions de concepts RCA est inclus dans

celui de GCA – permet de conclure que les résultats de RCA sont inclus dans ceux GCA.

Par conséquent, GCA apparaît comme plus expressif que RCA dans leur cadre commun.

La comparaison de RCA et GCA sur leurs dimensions extensionnelle et intensionnelle

a été menée dans une optique de rapprochement des deux approches. Le chapitre suivant

propose, une comparaison de RCA et GCA à travers leurs différences.
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Chapitre 9

Analyse comparative de RCA et de GCA

à travers leurs différences

Sommaire
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Comme mentionné précédemment, RCA et GCA diffèrent sur plusieurs aspects, notam-

ment la modélisation des relations n-aires et le traitement des cycles. Dans ce chapitre, nous

proposons une analyse comparative de RCA et de GCA à travers leurs différences. Plutôt

que de chercher à rapprocher les deux approches, l’objectif est d’examiner dans quelle me-

sure leurs divergences peuvent se révéler complémentaires et bénéfiques pour l’analyse.

Nous abordons ainsi les différences liées à la modélisation des relations ternaires (et n-aires

en général) ainsi qu’au traitement des cycles. La section 9.1 analyse l’influence de la modé-

lisation des relations n-aires sur les résultats des deux approches, tandis que la section 9.2

met en évidence leurs différences dans le traitement des cycles. La section 9.3 présente une

expérimentation de RCA et GCA sur un jeu de données réel, et la section 9.4 termine par

un aperçu des atouts et limites de ces deux approches.
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9.1 Impacts de la modélisation des relations n-aires sur
les résultats de RCA et de GCA

Dans de nombreux domaines réels, les données sont de nature multi-relationnelles, ce

qui permet de représenter plusieurs types d’interactions entre les entités. La représentation

et l’analyse de ces données sont nécessaires pour comprendre des phénomènes complexes

impliquant de multiples entités. À titre d’exemple, dans le domaine de la recherche, un cher-

cheur peut être affilié à plusieurs institutions, collaborer avec différents chercheurs et orga-

niser des événements avec d’autres chercheurs. L’analyse de données multi-relationnelles

peut nécessiter des choix de modélisation, tels que la représentation des relations n-aires,

et ce choix peut avoir une incidence sur les réponses aux questions d’analyse.

En matière de traitement de relations, RCA se limite aux relations binaires, tandis que

GCA est conçue pour prendre en charge directement les relations n-aires d’arité quel-

conque. Ainsi, les relations n-aires doivent être transformées en relations binaires afin de

s’adapter au format de données de RCA [Keip et al., 2019]. Cette section propose une com-

paraison pratique entre RCA et GCA, centrée sur leurs différence dans le traitement des

relations n-aires, en mettant un accent sur leur capacité à répondre aux questions d’ana-

lyse. Cette comparaison des deux approches a été publiée dans [Fokou et al., 2025a].

9.1.1 Données et questions d’analyse

Pour cette étude, nous considérons le contexte graphe CG6 illustré à la figure 9.1, qui

décrit un réseau de chercheurs, leurs affiliations ainsi que leurs activités, telles que l’orga-

nisation de conférences et la publication d’articles
1
. Ce contexte graphe est composé de 5

catégories d’objets :

— researcher : décrit les chercheurs {R1, . . . ,R6} par leur nombre de publications,

qui peut être inférieur à 10 (n_pub_inf_10) ou supérieur à 10 (n_pub_sup_10), et par
leur nombre de citations, qui peut être inférieur à 20 (n_cit_inf_20) ou supérieur à 20
(n_cit_sup_20) ;

— institution (inst) : décrit les institutions {I1, . . . , I4} par leur type (university, company)
et par leur pays (France, Romania) ;

— paper : décrit les articles {P1, . . . , P4} par leur type (journal, conference (cf)) et par
le fait qu’ils ont été cités (cited) ;

— role : représente les différents rôles {g_chair, p_chair, l_organizer} correspondant à
general chair, program chair et local organizer respectivement ;

— conference (conf ) : représente les différentes conférences {ICCS, ICFCA, CLA}.

1. Il convient de noter que ce contexte graphe ne représente qu’un extrait de ce que pourrait être un tel

graphe de données pour une communauté de chercheurs dans un domaine donné (par exemple, l’AFC).
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Figure 9.1 – Contexte graphe CG6 décrivant les chercheurs et leurs activités.

Les catégories role et conference n’ont pas d’attributs. En ce qui concerne les relations,

CG6 comprend :

— la relation binaire is_affiliated_to(researcher, inst), qui indique à quelle institution
un chercheur est affilié ;

— la relation ternaire publish(researcher, paper, inst), qui signifie qu’un chercheur

publie un article avec une affiliation donnée ;

— et la relation ternaire organize(researcher, conf, role), qui indique qu’un chercheur
organise une conférence en y occupant un rôle donné.

GCA utilise des nœuds en ellipse pour représenter les relations n-aires (pour n > 2) et
utilise des chiffres pour indiquer la position des entités dans la relation. Pour les relations

ternaires, ces chiffres vont de 1 à 3, par exemple organize(R4, ICFCA, p_chair) dans la
figure 9.1.

Sur un tel jeu de données, l’utilisateur peut formuler diverses requêtes ; en voici deux

exemples :

— query1 : l’ensemble des institutions dont les chercheurs ont organisé une conférence ;

— query2 : l’ensemble des chercheurs qui ont publié des articles et sont affiliés à une

institution française.

Nous nous appuyons sur ces deux requêtes pour examiner l’effet de la modélisation des

données sur les résultats produits par RCA et GCA, et donc sur leurs réponses aux questions

d’analyse. La section suivante présente la modélisation des relations ternaires dans les deux

approches.
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9.1.2 Modélisation des relations ternaires

RCA nécessite une modélisation initiale pour les relations n-aires, et cette modélisation

n’est pas sans conséquences, car elle peut entraîner des pertes d’informations structurelles.

La question qui se pose est de savoir comment modéliser efficacement les relations n-aires à

la manière de RCA. En ce qui concerne GCA, la question porte sur la difficulté d’interpréter

les patterns calculés directement sur les relations n-aires. Nous explorons comment chacune

des approches RCA (suivant la modélisation des données) et GCA satisfait les questions

query1 et query2.

9.1.2.1 Modélisation des relations ternaires avec RCA

Pour répondre aux questions query1 et query2 avec RCA, nous recourons aux encodages
par réification, décomposition et partitionnement présentés dans [Keip et al., 2020, 2019]

pour modéliser les relations ternaires, comme décrit à la section 5.4. Parmi ces encodages,

la réification n’entraîne pas de perte d’informations, la décomposition quant à elle peut

conduire à une perte d’informations structurelles, tandis que le partitionnement entraîne

une perte de connectivité.

Encodage par réification. Les relations publish et organize sont réifiées par la création
de nouveaux contextes formels et relationnels. La relation organize(researcher, conf, role)
est encodée en ajoutant un contexte formel organisation (Org) – sans attributs – dont les

entités correspondent aux triplets représentant les instances de la relation ternaire organize,
ainsi que trois contextes relationnels reliant les entités de Org aux composantes initiales

de organize : is_done_by(Org, researcher), is_about(Org, conf) et with_role(Org, role).
De façon similaire, la relation publish(researcher, paper, inst) est représentée par trois

contextes relationnels : concern(Publish, paper), is_published_by(Publish, researcher)
et with_affiliation(Publish, inst), où les entités de Publish sont des triplets représentant

les instances de la relation ternaire publish.

Avec la réification, RCA (sans intégration des relations inverses dans les données) pro-

duit 61 concepts (hors concepts bottom
2
) et inclut la réponse à query2 mais pas celle à

query1. Après l’ajout des relations inverses 3, RCA génère 99 concepts ; parmi eux, le concept

Inst_12 fournit la réponse à query1. Certaines requêtes nécessitent en effet l’intégration

des relations inverses dans les données. Par exemple, pour query1, l’inverse de la relation
is_affiliated_to a été ajouté afin de relier les entités de la catégorie institution à celles de

researcher.

La figure 9.2 présente un extrait des concepts RCA liés au concept Inst_12, c’est-à-dire
participant à la définition de son intension. Les flèches représentent les attributs relation-

2. Dans la suite, les concepts bottom ne sont pas pris en compte dans les résultats de RCA et de GCA.

3. Pour la suite de l’analyse, des relations inverses sont ajoutées aux données de RCA.
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Figure 9.2 – Description spécifique de l’intension du concept Inst_12 (réification).

nels entre les concepts, et les relations se terminant par "_r" correspondent aux relations

inverses. L’extension de Inst_12 est {I1, I3}, ce qui constitue la réponse à query1. Son in-

tension indique qu’il s’agit des institutions dont les chercheurs (conceptsR_14, R_15) sont
reliés aux concepts deOrg (conceptsOrg_5, Org_12, Org_13, encadrés en bleu) représen-
tant les entités réifiées sous forme de triplets. En examinant l’intension de ces conceptsOrg,
toutes les informations sur chaque groupe d’organisation sont accessibles : les chercheurs

impliqués, les institutions concernées et les rôles des chercheurs dans l’organisation des

conférences.

Dans le cas de query2, le résultat est {R5, R6} qui correspond à l’extension du concept

R_13, dont l’intension indique qu’il s’agit des chercheurs affiliés à des institutions fran-

çaises ({I1, I4}) et participant aux publications du conceptPublish_8, qui a pour extension
{(R5, P4, I4), (R6, P4, I1)}. Comme pour les concepts Org, l’intension des concepts

Publish fournit toutes les informations relatives à une publication : les chercheurs, les ar-

ticles et les affiliations associées.

Encodage par décomposition en chaîne. Les relations ternaires sont transformées en

une chaîne de deux relations binaires. Ainsi, organize(researcher, conf, role) est encodée
par is_organize_by(conf, researcher) et has_role(researcher, role), indiquant qu’une confé-
rence est organisée par un chercheur et qu’un chercheur possède un rôle. De même, la re-

lation publish(researcher, paper, inst) est encodée par is_publish_by(paper, researcher)
et belong_to(researcher, inst), signifiant qu’un article est publié par un chercheur et qu’un
chercheur appartient à une institution (comme avec la relation is_affiliated_to).

Avec la décomposition en chaîne, RCA produit un total de 59 concepts et inclut les

réponses à query1 et query2. La figure 9.3 illustre un extrait du concept R_13 dont l’ex-

tension répond à query2. Son intension montre que les chercheurs {R5, R6} sont affi-
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Figure 9.3 – Description spécifique de l’intension du concept R_13 (décomposition).

liés à des institutions françaises ({I1, I4}) et ont publié l’article P4 (concept Paper_1).
Contrairement à la réification, il n’y a aucune indication spécifiant qu’un article est pu-

blié par un chercheur ayant une affiliation donnée. En ce qui concerne query1, sa réponse
est {I1, I3}, l’extension du concept Inst_11 dont l’intension exprime qu’il s’agit des ins-

titutions ayant des chercheurs qui ont des rôles et ont organisé des conférences. Comme

dans le cas de la relation publish, cela n’indique pas spécifiquement qu’une conférence est

organisée par un chercheur ayant un rôle donné. Nous notons également que la relation

has_role(researcher, role) à elle seule n’est pas très significative, car un chercheur pos-

sède un rôle en ce qui concerne sa participation à l’organisation d’une conférence. En effet,

la décomposition en chaîne entraîne une perte d’informations structurelles, car elle ne per-

met pas de capturer la dépendance globale entre les entités.

Encodage par partitionnement. Les relations sont partitionnées en fonction des en-

tités d’une de leurs composantes. Ainsi, la relation organize(researcher, conf, role) est
scindée, selon les entités de role, en un ensemble de relations rolei(chercheur, conf) pour
chaque rolei ∈ role. Par exemple, p_chair(R4, ICFCA) signifie que le chercheurR4 est le
program chair de la conférence ICFCA. Pour la relation publish(researcher, paper, inst),
un partitionnement selon les entités de la catégorie institution produit des instances de la

forme I4(R5, P4), indiquant que le chercheur R5 a publié l’article P4 avec l’affiliation I4.
Cependant, ce partitionnement génère une forme de conflit, dans la mesure où les entités de

la catégorie institution interviennent également dans la relation is_affiliated_to : la même

entité se retrouve ainsi partagée entre un objet et une relation. Pour des raisons similaires,

un partitionnement de publish sur les entités de researcher n’est pas envisageable, celles-ci
étant déjà impliquées dans d’autres relations (is_affiliated_to et organize) 4. La seule option
restante consiste donc à partitionner sur les entités paper, ce qui conduit à des relations de
la forme paperi(researcher, inst) pour chaque paperi ∈ paper.

Avec ce partitionnement, RCA produit 37 concepts et contient la réponse à query2 mais

pas celle à query1. En effet, les entités de la catégorie institution sont décrites par leurs

chercheurs (via la relation is_affiliated_to_r), lesquels sont caractérisés par leurs affilia-

4. Remarquons que dans [Keip et al., 2020], le partitionnement a été appliqué à un jeu de données ne

comportant qu’une seule relation ternaire, ce qui excluait toute possibilité de conflit.
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Figure 9.4 – Description spécifique de l’intension du concept R_13 (partitionnement).

tions et leurs articles. Cela justifie la présence d’une réponse à query2, portant sur les cher-
cheurs qui ont publié des articles et sont affiliés à une institution française. En revanche,

comme les chercheurs ont occupé des rôles différents dans l’organisation des conférences,

l’ensemble des chercheurs impliqués dans l’organisation ne constitue pas un concept. Par

conséquent, l’ensemble des institutions caractérisées par ces chercheurs ne forme pas non

plus un concept, ce qui explique l’absence de réponse à query1.

En ce qui concerne query2, son résultat est {R5, R6}, l’extension de R_13 représen-

tée dans la figure 9.4. Son intension indique que les chercheurs {R5, R6} sont affiliés à

des institutions françaises ({I1, I4}) et ont publié l’article P4 avec les affiliations {I1, I4}.
Cependant, nous ne disposons d’aucune information sur les caractéristiques de P4, contrai-
rement à la réification et à la décomposition en chaîne (voir figure 9.3). Le partitionnement

permet de capturer la dépendance globale entre les entités, mais entraîne également une perte

des caractéristiques associées aux objets des catégories partitionnées, et donc la perte des

concepts correspondants. Dans notre cas, nous perdons les concepts des catégories role et
paper.

9.1.2.2 Modélisation des relations ternaires avec GCA

GCA appliqué directement sur les données initiales (GCA-ternaire) génère 9 graph pat-

terns comprenant au total 63 concepts. Les réponses aux requêtes query1 et query2 se

trouvent respectivement dans les patterns P7 (figure 9.5) et P9 (figure 9.6). À l’instar du

contexte graphe, les relations ternaires apparaissent dans les graph patterns sous la forme

de nœuds en ellipse.

La solution à query1, qui concerne les institutions dont les chercheurs ont organisé une
conférence est {I1, I3}, correspondant à l’extension du concept Q7a dans P7 (figure 9.5).

Le pattern P7 capture l’organisation des conférences par des chercheurs, en indiquant les

rôles et affiliations associés. Il met en évidence : (i) l’ensemble des chercheurs impliqués

dans l’organisation d’au moins une conférence (Q7m), (ii) leurs institutions d’affiliation

(Q7a), (iii) les conférences effectivement organisées (Q7i), ainsi que (iv) les rôles occupés
par les chercheurs lors de ces organisations (Q7h).
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Figure 9.5 – Pattern P7 extrait des patterns du contexte graphe de la figure 9.1 .

La réponse à la question query2, relative aux chercheurs ayant publié des articles et affi-

liés à une institution française est {R5, R6}. Elle correspond à l’extension du conceptQ9k
du pattern P9, représenté à la figure 9.6. Dans ce pattern, le concept Q9k constitue une

généralisation des concepts Q9f et Q9e. Plus précisément, Q9f regroupe les chercheurs

ayant publié un article et étant affiliés à une institution française caractérisée par l’attribut

university, tandis que Q9e regroupe ceux ayant publié un article et étant affiliés à une ins-

titution française caractérisée par l’attribut company. Les concepts Q9f et Q9e permettent

ainsi de répondre à des questions plus spécifiques concernant la publication d’articles par

les chercheurs. Grâce à un pattern, de nombreuses questions peuvent être traitées, chaque

concept représentant à la fois une question et sa réponse : la question est définie par l’inten-

sion du concept et la réponse par son extension. Par exemple, la réponse à la requête "quels

chercheurs ont organisé des conférences et publié des articles" est {R6}, correspondant à
l’extension de Q9f (figure 9.6). Les graph patterns mettent ainsi en évidence les multiples

connexions existant entre les concepts.

Comme indiqué au chapitre 4, dans la représentation hiérarchique des patterns GCA, les

relations entre les concepts sont exprimées sous forme d’étiquettes textuelles dans les des-

criptions des concepts. Par exemple, la relation ternaire publish(Q9k, Q9c, Q9i) reliant les
concepts Q9k, Q9c, Q9i dans le pattern P9 sera représentée par l’étiquette [publish _ c i]
dans l’intension deQ9k, ce qui signifie que : pour chaque chercheur k ∈ ext(Q9k), il existe
un article c ∈ ext(Q9c) et une institution i ∈ ext(Q9i) tels que la relation publish(k, c, i)
est vérifiée. Naturellement, plus l’arité d’une relation est élevée, plus il devient difficile de

lire et d’interpréter les intensions des concepts en langage naturel. Cela soulève la question

des encodages possibles des relations n-aires pour rendre les patterns de GCA plus lisibles.

Faut-il alors représenter les relations n-aires par des relations binaires (ou d’arité inférieure
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Figure 9.6 – Pattern P9 extrait des patterns du contexte graphe de la figure 9.1.

à n) afin de faciliter l’interprétation des patterns GCA? Dans la comparaison suivante, nous

analysons également les résultats de GCA obtenus avec les trois encodages appliqués aux

données de RCA.

9.1.3 Comparaison des résultats

Pour rappel, GCA-ternaire (c’est-à-dire appliquée aux données initiales) produit un total
de 63 concepts répartis en 9 graph patterns contenant 7 concepts automorphes (différentes

occurrences d’un même concept).

Tout comme RCA, GCA produit 99 concepts à partir des données encodées par réifi-

cation. Les 36 concepts supplémentaires (par rapport aux 63 concepts obtenus avec GCA-
ternaire) proviennent des entités réifiées et n’affectent pas les concepts des catégories ini-
tiales, qui restent inchangés. De plus, le nombre de graph patterns reste identique (9), mais

leur taille – c’est-à-dire le nombre de concepts par pattern – augmente avec l’ajout de nou-

veaux concepts, entraînant une augmentation du nombre de concepts automorphes : 110

contre seulement 7 avec GCA-ternaire. Ces observations mettent en évidence les limites

de la réification : elle augmente la taille des données, ce qui entraîne une croissance du

nombre de concepts et de la taille des graph patterns. GCA se montre peu adaptée à la réifi-

cation, car en plus de l’introduction de nouveaux concepts supplémentaires, l’augmentation

significative du nombre de concepts automorphes complique la lecture et l’interprétation

des patterns. En revanche, la réification présente l’avantage de préserver l’intégralité des

dimensions des relations sans perte d’information et de permettre la gestion de relations

d’arités variées en normalisant leur représentation.
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Figure 9.7 – Équivalent du pattern P7 de la figure 9.5.
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Avec la décomposition en chaîne, GCA produit 59 concepts (identiquement à RCA) re-

partis en 9 patterns contenant 4 concepts automorphes. Les patterns GCA ne comportent

plus de relations ternaires (nœuds en ellipse) et apparaissent ainsi plus lisibles, donc plus

faciles à interpréter. La figure 9.7 présente l’équivalent du pattern P7 (figure 9.5) obtenu

à partir de la décomposition en chaîne. Comme pour RCA, cette transformation entraîne

une perte d’informations structurelles et peut introduire des ambiguïtés. À titre d’exemple,

lorsqu’une même entité est partagée entre deux relations binaires, il devient difficile, voire

impossible, de reconstituer la relation d’origine.

Pour le cas du partitionnement, GCA produit 37 concepts, 11 graph patterns, sans aucun

concept automorphe. Le nombre réduit de concepts s’explique par la perte de ceux associés

aux catégories partitionnées. Il en résulte des patterns plus petits et moins riches en liens

entre les entités. La figure 9.8 illustre le pattern P2, qui contient la réponse à la question

query2, représentée par l’extension du conceptQ2b. Comme on peut le constater, les carac-

téristiques de l’article P4 ont disparu. Ce pattern P2 correspond à l’extrait RCA présenté

dans la figure 9.4.

Il convient de souligner que ces différents encodages peuvent être étendus à des rela-

tions d’arité supérieure à 3, et que le choix de l’encodage dépend des questions d’analyse.

Selon les requêtes à traiter, un encodage peut se révéler plus approprié qu’un autre. Par

exemple, le partitionnement effectué sur la relation organize n’a pas permis de répondre à

query1. L’analyste peut également envisager des encodages combinés. À titre d’illustration,

la modélisation d’une relation r(A,B,C,D,E) d’arité 5 peut commencer par sa décompo-

sition en une chaîne de 2 relations ternaires r1(A,B,C) et r2(C,D,E), puis se poursuivre
par la réification de r1 et le partitionnement de r2. Enfin, la différence entre le nombre de

concepts obtenus avec GCA-ternaire (63 concepts) et ceux produits par GCA sur la décom-
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position en chaîne (59 concepts) ou le partitionnement (37 concepts) illustre clairement la

perte d’informations associée à ces encodages, et donc la réduction de la capacité à répondre

à certaines requêtes selon la modélisation choisie. Cependant, ces encodages peuvent être

utilisés dans GCA (avec des conséquences similaires à celles observées pour RCA) pour

simplifier les graph patterns, qui deviennent plus difficiles à analyser pour les relations de

grande arité. Il s’agit ainsi d’un compromis entre la lisibilité des patterns et la conservation

des informations, comme le montre la comparaison entre le pattern de la figure 9.7 et le

pattern P7 de la figure 9.5.

9.2 Traitement des cycles par RCA et GCA

L’étude des cycles et de leur longueur est essentielle dans de nombreux domaines, car

ils reflètent des interactions complexes qui ne peuvent se réduire à de simples relations di-

rectes. Par exemple, dans les réseaux sociaux, les cycles révèlent des communautés fermées

et des relations de réciprocité, offrant une meilleure compréhension de la structure et la

cohésion des groupes. À titre d’illustration, l’équilibre des réseaux sociaux a été évalué à

partir de leurs cycles simples dans [Giscard et al., 2017]. En biologie, les réseaux métabo-

liques présentent souvent des structures cycliques, rendant leur détection et leur analyse

cruciales. Klamt et al. calculent ainsi des chemins et des cycles dans les graphes d’inter-

actions biologiques [Klamt et von Kamp, 2009], tandis que Sridharan et al. identifient des

cycles de substrats dans des réseaux métaboliques [Sridharan et al., 2015].

La comparaison des extensions de concepts RCA et GCA a montré que, même avec

l’intégration des relations inverses qui rapprochent les résultats de RCA de ceux de GCA,

il existe des situations où certains concepts GCA n’ont pas de correspondants dans RCA.

Les analyses indiquent que ces concepts GCA absents dans les résultats de RCA présentent

tous des cycles dans leurs intensions. Il est donc intéressant d’examiner plus en détail la

manière dont ces deux approches traitent les cycles. Dans cette section, nous étudions, au

moyen de 2 exemples, les différences de traitement des cycles par RCA et GCA, ainsi que

l’effet de ces cycles sur leurs résultats. Cette analyse fait partie des travaux présentés dans

[Fokou et al., 2024a].

Cycles de longueur 2-4. Le premier exemple, illustré par le contexte graphe CG4 de

la figure 9.9, comporte un cycle de longueur 2 et un cycle longueur 4, définis par la relation

sociale love(Person,Person). Le tableau 9.1 présente la Famille Relationnelle de Contextes

(FRC4) correspondant à CG4.

En termes de résultats, la figure 9.11 présente l’ensemble des graph patterns GCA obte-

nus sur CG4 – Q1 (bleu), Q2 (rouge), Q3 (vert citron), Q4 (vert) – tandis que la figure 9.13

montre la vue hiérarchique correspondante. Comme l’illustrent ces résultats, les patterns

Q2, Q3 et Q4 contiennent des concepts automorphes, leurs cycles étant capturés via ces

concepts. Par exemple, les nœuds a et b dans Q2 sont deux concepts automorphes : ils pos-
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Figure 9.9 – Contexte graphe constitué

des cycles de longueur 2-4 (CG4).
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Figure 9.10 – Contexte graphe constitué

des cycles de longueur 2-3 (CG5).

Tableau 9.1 – FRC4 (K = {Person}, R = {love}) correspondant au contexte graphe CG4

Person male female

Jean ×

Julie ×

Julien ×

Jeanne ×

Bob ×

Anne ×

love Jean Julie Julien Jeanne Bob Anne

Jean ×

Julie ×

Julien ×

Jeanne ×

Bob ×

Anne ×

sèdent la même extension et des intensions équivalentes. Le pattern Q2 décrit ainsi deux

personnes qui s’aiment, formant un cycle de longueur 2.

Comme décrit au chapitre 4, la duplication des concepts dans GCA est souvent néces-

saire pour représenter correctement les graph patterns qui présentent des symétries. Ces

concepts automorphes sont regroupés dans la vue hiérarchique sous forme de méta-nœuds

(indiqués par des boîtes en pointillés), comme par exemple Q2a et Q2b dans la figure 9.13.
Le top concept Q3a-d dans la figure 9.13, dont l’extension inclut toutes les personnes, est

dupliqué en quatre nœuds formant un cycle de longueur 4 (voir la figure 9.11). Ce pattern

particulier mérite une explication : en examinant les données (figure 9.9), il apparaît que

toutes les personnes sont impliquées dans un cycle de longueur 2 ou de longueur 4. La gé-

néralisation la plus spécifique correspond donc à un cycle de longueur 4, puisqu’un cycle
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Q4d male
Bob
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Figure 9.11 – Graph patterns du contexte graphe CG4 (figure 9.9).

de longueur 2 peut simuler un cycle de longueur 4 en parcourant le cycle deux fois.

La figure 9.12 présente le treillis RCA correspondant (ici, la famille de treillis ne com-

prend qu’un seul treillis). Le concept person_3 (top concept) possède pour attribut rela-

tionnel ∃ love(person_3). Il s’agit d’un concept auto-référencé, matérialisant le fait qu’une

personne aime une autre personne. Le concept person_3 est équivalent aux concepts auto-
morphes qui composent le pattern Q3, car ils ont tous la même extension. Néanmoins,

comme mentionné précédemment, leurs intensions sont définies différemment et véhi-

culent donc des informations distinctes : l’intension de Q3a-d intègre la taille du cycle à

travers les concepts automorphes, tandis que l’intension de person_3 fournit une informa-

tion plus abstraite. Les concepts person_1 et person_2 qui se réfèrent l’un à l’autre par le

biais d’attributs relationnels, représentent respectivement le fait qu’une personne female
aime une personne male et vice versa. Ces concepts person_1 et person_2 ont respective-
ment les mêmes extensions que Q4a-b et Q4c-d, mais leurs intensions diffèrent. Comme

pour Q3, Q4 forme un cycle de longueur 4, composé de deux paires de concepts auto-

morphes, comme le montre la figure 9.13.

Enfin, compte tenu du fait que les concepts automorphes sont considérés comme iden-

tiques, la hiérarchie de concepts de la figure 9.13 contient 6 concepts pour GCA (Q1a,Q1b,
Q2a-b,Q4a-b,Q4c-d,Q3a-d), contre 3 concepts pour RCA (person_1, person_2, person_3),
comme illustré dans la figure 9.12. Les concepts Q1a,Q1b, Q2a-b n’ont pas d’équivalents
dans RCA, car RCA ne tient pas compte de la longueur des cycles. Par exemple, le pattern

Q1 décrit qu’une femme et un homme s’aiment (cycle de longueur 2). Dans RCA, les ins-

tances Anne et Bob possèdent respectivement les mêmes attributs relationnels que Julie,
et Julien, à savoir {∃ love(male), ∃ love_r(male)}, et {∃ love(female), ∃ love_r(female)}.
Par conséquent, toutes ces instances sont regroupées dans les deux concepts person_1 et

person_2.

Les figures 9.14 et 9.15 montrent respectivement les EAR-patterns GCA et RCA obtenus
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Figure 9.12 – Treillis RCA obtenu sur

FRC4 (tableau 9.1).
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Figure 9.13 – Hiérarchie de concepts GCA

obtenue sur CG4.

pour cet exemple. Ces représentations permettent d’observer plus clairement les différences

entre les deux approches. La fusion des concepts automorphes dans les EAR-patterns GCA,

transforme certains cycles en boucles, généralisant ainsi la structure comme dans le résultat

de RCA. C’est le cas de l’EAR-pattern GCA basé sur le conceptQ3a (en vert citron), qui est

équivalent à l’EAR-pattern RCA construit sur le concept person_1, contrairement au graph

pattern initial (figure 9.11) représentant un cycle de longueur 4. En résumé, GCA produit

deux EAR-patterns supplémentaires (Q1 et Q2) absents du résultat de RCA.

Cycles de longueur 2-3. Dans ce second exemple, nous modifions CG4 afin d’étudier

l’effet des cycles dont les longueurs n’ont pas de relation multiple/diviseur. Cette modifi-

cation consiste à supprimer le nœud Jeanne, ce qui raccourcit le cycle de longueur 4 à

une longueur de 3. Ce nouveau contexte graphe, nommé CG5, est présenté à la figure 9.10,

et la Famille Relationnelle de Contextes correspondante est désignée par FRC5. Les graph

patterns générés par GCA sur CG5 sont illustrés à la figure 9.16, avec des longueurs variant

entre 2, 3 et 6. Les patterns de longueur 2 et 3 capturent et généralisent la structure des

cycles présents dans les données, tandis que ceux de longueur 6 généralisent les cycles de

longueur 2 et 3. Par exemple, Q1 et Q4 correspondent au contexte graphe CG5 (figure 9.10),

Q2 généralise Q1, Q3 généralise Q4, Q5 généralise Q3 et Q4, et ainsi de suite. Cela montre

que, dans les patterns GCA, la généralisation la plus spécifique correspond à un cycle dont

la longueur est le plus petit commun multiple des longueurs des cycles dans le contexte

graphe, tout comme dans CG4 où la généralisation la plus spécifique était un cycle de lon-

gueur 4, soit le plus petit commun multiple de 2 et 4.
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Q1a
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Q1b
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Figure 9.14 – Représentation des EAR-patterns

associés aux graph patterns de la figure 9.11.
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love

person_2

male

Jean
Julien
Bob

person_1

female

Julie
Jeanne
Anne

lovelove

Figure 9.15 – EAR-patterns associés

au treillis RCA de la figure 9.12.

Contrairement à l’exemple CG4, où le concept d’extension {Anne} (Q1a dans la fi-

gure 9.13) n’avait pas d’équivalent dans les résultats de RCA (figure 9.12), il est bien pré-

sent dans les résultats RCA obtenus sur FRC5 (concept person_11 dans la figure 9.17). En

effet, lors du processus itératif, les attributs relationnels de {Anne} et {Bob} diffèrent de
ceux des autres instances, car ils pointent vers des concepts distincts. RCA capture ainsi la

différence entre les deux cycles : une femme aime un homme qui aime une femme versus
une femme aime un homme qui aime un homme , sans tenir compte de leur longueur. GCA

produit deux concepts supplémentaires par rapport à RCA sur CG5 (23 concepts contre 21) :

les concepts automorphesQ2a-b etQ5a-c (figure 9.16) représentent respectivement les per-

sonnes impliquées dans des cycles de longueur 2 et 3, indépendamment de leur genre. Dans

RCA, ces deux patterns sont généralisés dans le top concept auto-référencé, qui peut être

interprété comme une personne qui aime une personne et qui est aimée par une personne.

Ces analyses permettent de conclure que, lorsque les données contiennent des cycles,

certains graph patterns GCA peuvent représenter des cycles que RCA ne peut pas expri-

mer explicitement, puisque les cycles en RCA sont capturés via des attributs relationnels

renvoyant à des concepts. Là où GCA utilise des concepts automorphes pour représenter

distinctement certains cycles, RCA les généralise en des boucles simples ou les perd. C’est

le cas des patterns Q2 et Q5 (figure 9.16), qui ne sont pas explicitement représentés dans

le résultat de RCA, mais sont englobés dans le top concept. Ainsi, GCA conserve des infor-

mations sur la longueur des cycles, ce qui n’est pas le cas dans RCA.

157



Chapitre 9 : Analyse comparative de RCA et de GCA à travers leurs différences

Q1a

female

Anne

Q1b

male

Bob

love love

Q2a

Anne
Bob

Q2b

Anne
Bob

love love

Q3b

Julie
Julien

Q3c

male

Julien
Jean

love

Q3a

Julie
Jean

love

love

Q4b

male

Jean

Q4a

female

Julie

love

Q4c

male

Julien

love

love

Q5a

Julie
Julien
Jean

Q5c

Julie
Julien
Jean

love

Q5b

Julie
Julien
Jean

love

love

Q6a

Anne
Julie
Jean

Q6e

Julie
Bob
Julien

love

Q6b

Anne
Julie
Julien

Q6f

male

Bob
Julien
Jean

love

love

Q6c

Anne
Julien
Jean

Q6d

Julie
Bob
Jean

love

love

love

Q7a

Anne
Julie
Bob
Julien
Jean

Q7f

Anne
Julie
Bob
Julien
Jean

love

Q7d

Anne
Julie
Bob
Julien
Jean

Q7c

Anne
Julie
Bob
Julien
Jean

love

Q7b

Anne
Julie
Bob
Julien
Jean

love

Q7e

Anne
Julie
Bob
Julien
Jean

love

lovelove

Q8e

male

Bob
Julien

Q8a

Anne
Jean

love

Q8c

Julie
Bob

love

Q8f

male

Bob
Jean

Q8d

female

Anne
Julie

love

Q8b

Anne
Julien

love

love

love

Figure 9.16 – GCA patterns for CG5.

9.3 Mise enœuvre de RCA et GCA sur un jeu de données
réel

Dans cette section, nous mettons en œuvre RCA et GCA sur un jeu de données réel,

issu d’une ancienne pharmacopée arabe [Kahl, 2009]. Ces données ont déjà été explorées à

l’aide de l’Analyse Formelle de Concepts (AFC) et de RCA dans [Fokou et al., 2024b], dans le

but d’extraire les connaissances reliant les symptômes aux ingrédients des remèdes qui les
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Figure 9.17 – Treillis RCA obtenu sur FRC5 correspondant à CG5 où les concepts 4 et 11

sont mis en évidence.

traitent. L’objectif était de répondre à des questions formulés par des biologistes, telles que :

"existe-t-il des groupes d’ingrédients pouvant être associés à des groupes de symptômes?".

Nous présentons ici la synthèse des résultats obtenus avec RCA, ainsi que les difficultés

rencontrées lors de l’application de GCA sur ces mêmes données.

Figure 9.18 – Modèle de données de FRC7 reliant les symptômes aux ingrédients.

Le modèle de données utilisé encode les relations entre les symptômes, les remèdes

et les ingrédients comme l’illustre le diagramme de la figure 9.18. Pour cette analyse, les

données ont été limitées à un sous-ensemble de remèdes traitant les symptômes de la

fièvre, leurs ingrédients et les symptômes associés. La FRC qui en découle est définie par

(K,R) = ({KSymptoms,KRemedies,KIngredients}, {isTreatedBy, isComposedOf}) et est désignée par
FRC7. Le contexte KSymptoms (105 × 9) décrit les symptômes par leur type (catégorie) – ces

catégories sont basées sur l’expertise – le contexte KRemedies (26 × 13) décrit les remèdes

par leurs formes et le contexte KIngredients (156 × 147) décrit les ingrédients par leurs taxons
(espèce et famille). Concernant les contextes relationnels, le contexte isTreatedBy décrit la

relation selon laquelle un symptôme est traité par un remède, tandis que le contexte isCom-
posedOf exprime le fait qu’un remède est composé de certains ingrédients.

Les expériences ont été réalisées sur un ordinateur équipé d’un processeur Intel Core i7-

12850HX (16 Cœurs avec Hyper-Threading, frequence 2.1-4.8GHz) et de 16Go de mémoire

RAM DDR5.
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9.3.1 Analyse avec RCA

Pour l’analyse avec RCA, deux combinaisons de quantificateurs de scaling ont été uti-

lisées afin d’extraire différents niveaux d’information : (1) le quantificateur ∃ est appliqué

aux deux relations, (2) le quantificateur ∃∀ est appliqué à la relation isTreatedBy, tandis que
le quantificateur ∃ est utilisé pour isComposedOf.

Quantificateur ∃. En termes de résultats, la famille de treillis de concepts obtenue

contient des séquences d’informations suivant la structure du diagramme illustré à la fi-

gure 9.18, les relations étant quantifiées demanière existentielle. Cette configuration permet

d’extraire des connaissances de la forme : pour chaque x ∈ Ext(Symptoms_i), il existe un
remède y qui traite x et il existe un ingrédient z qui compose y, reliant ainsi les symptômes

et les ingrédients à travers les remèdes. RCA produit un total de 1126 concepts, repartis

comme suit :

— 837 concepts pour le contexte KSymptoms ;

— 168 concepts pour le contexte KRemedies ;

— 121 concepts pour le contexte KIngredients.

Afin de faciliter l’analyse, un treillis Iceberg (avec un seuil de 4 %) [Stumme et al., 2002] a

été construit sur le contexte KSymptoms. La figure 9.19 illustre un extrait de concepts connec-

tés issus des résultats de RCA. Elle met en évidence les symptômes (extension du concept

Symptoms_39) traités par au moins un remède appartenant au concept Remedies_105
(ainsi qu’à ses sur-concepts Remedies_130 et Remedies_165), lesquels sont composés

d’aumoins un ingrédient provenant des familles apiaceae (Ingredients_121), zingiberaceae
(Ingredients_102) et piperaceae (Ingredients_112). Cet extrait suggère que les ingrédients
issus de ces familles de plantes sont utiles pour le traitement des symptômes regroupés dans

Symptoms_39. En effet, le poivre (peper) et la cardamome (cardamom), par exemple, sont

bien connus pour leurs effets bénéfiques sur les troubles digestifs.

Nous avons ensuite intégré les relations inverses dans FRC7 afin d’analyser les résul-

tats et d’observer le comportement de RCA dans ce contexte. L’exécution de RCA a été blo-

quée après la troisième itération de scaling dans l’outil RCAExplore [Dolqes et al., 2019]

(jusqu’à interruption manuelle du processus). De même, dans l’outil FCA4J [Gutierrez et

al., 2022], l’exécution a échoué après la troisième itération de scaling avec une erreur d’al-

location mémoire. À ce stade, le nombre total de concepts générés atteint 42 445, repartis
comme suit :

— 3443 concepts contre 837 pour le treillis de KSymptoms ;

— 16 720 concepts contre 168 pour le treillis de KRemedies ;

— 22 282 concepts contre 121 pour le treillis de KIngredients.

Ces statistiques montrent que le nombre de concepts est déjà considérable dès la troi-

sième itération de scaling, ce qui illustre le caractère potentiellement explosif du calcul à

l’itération suivante, tant en termes de taille des contextes formels (en nombre d’attributs

relationnels) qu’en taille des treillis produits. On peut donc conclure, à la lumière de ce cas
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Figure 9.19 – Extrait des résultats de RCA sur FRC7 avec les quantificateurs ∃ / ∃.

applicatif, que l’ajout systématique des relations inverses n’est pas toujours pertinent dans

les applications pratiques de RCA, au risque pour l’analyste d’être rapidement submergé

par un nombre excessif de concepts. Par ailleurs, selon les objectifs d’analyse, certaines

relations inverses peuvent ne pas être significatives.

Quantificateurs ∃∀ et ∃. L’utilisation du quantificateur ∃∀ sur la relation isTreatedBy
et du quantificateur ∃ sur la relation isComposedOf permet d’extraire des séquences d’in-

formations sous la forme suivante : pour chaque x ∈ Ext(Symptoms_i), tous les remèdes
y qui traitent x appartiennent à Ext(Remedies_j), et il existe au moins un ingrédient
z ∈ Ext(Ingredients_p) qui compose y. Ainsi, l’ingrédient z est utile pour le traitement

du symptôme x.

Le concept Symptoms_31 illustré à la figure 9.20, possède une extension plus restreinte
que celle du concept Symptoms_39 présenté à la figure 9.19, bien que leurs attributs rela-

tionnels renvoient aux mêmes concepts du treillis de KRemedies. En effet, avec l’utilisation du

quantificateur ∃∀ sur la relation isTreatedBy, tous les remèdes qui traitent les symptômes

de Symptoms_31 appartiennent à l’extension du concept Remedies_105 (ainsi qu’à celles
de ses sur-concepts Remedies_130 et Remedies_165). Cette contrainte explique l’absence
du symptôme diarrhoea dans l’extension de Symptoms_31, car celui-ci est traité à la fois
par Remedy 152 et par un autre remède n’appartenant pas au concept Remedies_105. Fi-
nalement, ce concept fournit une information plus précise que celle obtenue avec le quan-

tificateur ∃. Il permet de conclure qu’il existe au plus trois remèdes qui traitent ces quatre

symptômes digestifs, et que leurs ingrédients proviennent de quelques familles de plantes

bien identifiées. Ce résultat peut conduire à une étude plus approfondie de ces remèdes spé-

cifiques ainsi que des ingrédients qu’ils partagent, afin de mieux comprendre leur efficacité
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Figure 9.20 – Extrait des résultats de RCA sur FRC7 avec les quantificateurs ∃∀ / ∃.

potentielle dans le traitement des troubles digestifs.

9.3.2 Analyse avec GCA

Pour analyser ces données avecGCA, la FRC7 a été transformée afin d’obtenir le contexte

graphe correspondant, noté CG7. La figure 9.21 illustre un extrait partiel de ce contexte

graphe. Celui-ci se compose d’une grande composante connectée, relativement dense en

relations, ainsi que de quelques nœuds isolés.
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Figure 9.21 – Extrait du contexte graphe CG7 correspondant à RFC7.

L’exécution de GCA sur ce contexte graphe ne produit aucun résultat, même partiel. Le

processus est bloqué dès les premières étapes, plus précisément lors du premier calcul du

produit catégorique I7× I7, où I7 désigne la relation d’incidence de CG7. Comme GCA vise

162



9.3. MISE EN ŒUVRE DE RCA ET GCA SUR UN JEU DE DONNÉES RÉEL

à capturer les structures présentes dans le contexte graphe, le pattern résultant du produit

représenterait donc une structure de très grande taille, correspondant à la forme globale de

CG7 (voir figure 9.21). Or, CG7 contient 287 sommets, ce qui implique que le produit I7×

I7 génère un graphe de 2872 sommets, rendant le calcul extrêmement coûteux en mémoire

et en temps de traitement. De plus, pour calculer le concept unaire correspondant à un

nœud x d’un pattern P , il est nécessaire de déterminer le plus petit retract (définition 4.3)

de P contenant x, qui sert à définir l’intension du concept. Cette opération accroît encore

la complexité, en raison de la taille du graphe et du nombre élevé de retracts à calculer.

Comme nous l’avons vu précédemment, l’intégration des relations inverses conduit

RCA à produire 42 445 concepts dès la troisième itération de scaling, avant que son exé-

cution ne se bloque. Cela signifie que, si l’on suppose que l’ensemble des concepts produits

par RCA est équivalent à celui de GCA pour cet exemple, le résultat de GCA correspondrait

alors un à graph pattern d’au moins 42 445 nœuds (concepts). Compte tenu de la structure

du graphe, il est raisonnable de penser que le nombre de concepts automorphes y serait non

négligeable, ce qui complexifierait encore davantage la structure du graph pattern résultant,

tant en taille qu’en densité des relations.

Pour vérifier l’hypothèse concernant la présence de nombreux concepts automorphes,

nous avons extrait un sous-graphe de CG7, composé de 24 nœuds et de 66 arêtes (unaires

et binaires), que nous appelons CG8. Sur cet extrait, l’exécution de GCA parvient à calculer

(en quelques secondes) une partie des résultats avant de se bloquer. L’analyse de ce résultat

partiel révèle que GCA a produit un graph pattern de 93 nœuds, comprenant 63 concepts

unaires et 20 concepts automorphes.

Du côté de RCA, l’analyse produit une famille de treillis comptant au total 42 concepts

lorsque les relations inverses ne sont pas prises en compte. L’intégration des relations in-

verses fait passer ce nombre à 63. Le calcul des EAR-patterns sur cette famille de treillis

aboutit à un unique EAR-pattern, qui met en évidence les connexions entre les 63 concepts.

La figure 9.22 présente un extrait de ce EAR-pattern RCA, où les noms de relations sont

abrégés en isC pour isComposedOf et en isT pour isTreatedBy, afin d’un faciliter la lec-

ture. Dans cet extrait, on observe les informations relatives au traitement du symptôme

putrid_fevers, à savoir que ce symptôme est traité entre autres par les remèdesRemedy 16
et Remedy 20, tous deux sous forme de pastille, et composés des ingrédients du concept

ingr_10. En particulier, les ingrédients de Remedy 20 proviennent de la famille apiaceae.

Ce résultat permet de constater que la difficulté de GCA ne dépend pas seulement de

la taille du contexte graphe, mais surtout de sa structure, notamment les relations de type

n-n (plusieurs-à-plusieurs). D’autres expériences menées dans le cadre de ce travail ont

montré que GCA fonctionne moins efficacement lorsque le contexte graphe se compose

d’une grande composante connectée avec de nombreuses connexions, par rapport à des

graphes constitués d’ensemble de petites composantes. Cette observation a également été

corroborée sur les variantes de l’exemple concernant les voitures et les garages, analysées

dans la section 7.3.3.
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Figure 9.22 – Extrait du EAR-pattern RCA obtenu sur FRC8 correspondant à CG8.

Dans de tels cas "pathologiques", où GCA peine à compléter les calculs, une solution

pourrait consister à calculer d’abord les familles de treillis RCA, puis à en déduire les EAR-
patterns associées. Ces derniers mettent en évidence les structures relationnelles entre les

concepts, de la même manière que les graph patterns GCA. Pour un exemple comme celui

traité ici, le EAR-pattern RCA résultant serait constitué de minimum 42 445 concepts avec
leurs relations correspondantes. En pratique, une telle structure est difficilement exploi-

table par un expert métier. Il serait donc par exemple intéressant d’envisager des solutions

permettant d’effectuer des requêtes ciblées sur ces structures afin de faciliter l’analyse.

9.4 Atouts et limites de RCA et GCA d’un point de vue
pratique

D’un point de vue pratique, RCA et GCA présentent chacun des avantages et des limites.

Cette section en expose quelques-uns

Complexité de calcul. Le calcul du produit catégorique de graphes devient rapidement

coûteux lorsque les graphes sont de grande taille et présentent de nombreuses connexions

entre les éléments. C’est le cas de l’exemple CG7 présenté précédemment, pour lequel l’exé-

cution de GCA a été bloquée par manque de ressources. En revanche, dans de tels scénarios

où le nombre de concepts est très important, RCA peut pallier ces problèmes de perfor-

mances et de lisibilité en permettant de filtrer les concepts, par exemple en construisant
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des treillis Iceberg [Stumme et al., 2002] ou des sous-hiérarchies de Galois [Godin et Mili,

1993].

Les quantificateurs de scaling. Contrairement à GCA, qui n’utilise implicitement

que le quantificateur ∃, RCA bénéficie d’une diversité de quantificateurs (∃, ∃∀, ∃∀≥n%,

etc.) [Braud et al., 2018 ; Rouane-Hacene et al., 2013]. Cette variété confère au proces-

sus d’analyse une grande flexibilité en termes de précision de l’information qui peut être

extraite. Ainsi, ces quantificateurs permettent à l’analyste de capturer différents niveaux

d’informations.

Lisibilité des résultats. La représentation principale des résultats de GCA sous forme

de graph patterns offre une vue compacte des concepts et permet d’obtenir une vision glo-

bale des structures présentes dans les données, ce qui constitue un avantage pour l’analyse.

En revanche, l’interprétation des résultats de RCA peut être plus difficile lorsque l’ensemble

de données est volumineux, en raison de la nécessité de naviguer entre plusieurs treillis.

C’est pourquoi des outils tels que RCAviz [Huchard et al., 2024] ont été développés pour

faciliter cette navigation. Toujours dans cet objectif de rendre l’interprétation des résultats

de RCA plus accessible, Gutierrez et al. se sont intéressés à la génération de descriptions en

langage naturel des artefacts RCA à l’aide des Large Language Models (LLMs) [Gutierrez

et al., 2025].

Modélisation des relations. RCA et GCA modélisent les relations de différentes ma-

nières. La capacité de GCA à traiter les relations n-aires d’arité quelconque constitue un

avantage majeur pour l’analyse, car permet d’éviter les encodages préalables qui peuvent

entraîner une perte d’information. Cependant, l’interprétation des résultats devient plus

complexe à mesure que l’arité des relations augmente, ce qui peut nécessiter le recours à

des encodages tels que le partitionnement ou la décomposition pour réduire l’arité des re-

lations. Aussi, le fait que GCA intègre automatiquement les relations inverse peut s’avérer

problématique pour des données contenant des relations symétriques, ces dernières étant

alors prises en compte en double. Enfin, pour l’analyse des données comportant des cycles,

RCA et GCA peuvent être utilisés de manière complémentaire afin de capturer différents

niveaux de longueur des cycles.

Concept n-aires. RCA se limite au calcul de concepts unaires, tandis que GCA cal-

cule également des concepts n-aires (ou concepts de relations n-aires), dont les extensions

sont constituées d’ensembles de n-uplets d’objets. La possibilité de calculer les concepts

n-aires constitue un avantage, car elle permet de représenter des structures plus riches et,

par conséquent, de répondre à des requêtes d’analyse plus complexes.

9.5 Conclusion

Dans ce chapitre, nous avons réalisé une analyse comparative de RCA et de GCA en

nous focalisant sur leurs différences, notamment en ce qui concerne la modélisation des
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relations n-aires et le traitement des cycles.

Dans un premier temps, nous avons comparé RCA et GCA sur la modélisation des re-

lations ternaires, en examinant leur capacité à répondre aux questions d’analyse. En effet,

GCA permet de traiter directement les relations ternaires (et, de manière générale, les re-

lations n-aires), tandis que RCA se limite aux relations binaires. Nous avons utilisé trois

encodages (réification, décomposition en chaîne et partitionnement) pour modéliser les don-

nées de RCA, et nous avons analysé l’impact de ces encodages en termes de perte d’infor-

mations, d’augmentation de la taille des données et, par conséquent, de capacité à résoudre

les requêtes. Nous avons ensuite appliqués ces mêmes encodages aux données de GCA. Les

résultats montrent que les encodages par décomposition et par partitionnement produisent
des graph patterns plus lisibles et plus faciles à interpréter.

Dans un second temps, nous avons analysé les différences de traitement des cycles entre

les deux approches. Cette analyse a révélé que GCA capture certains cycles qui ne peuvent

pas être représentés par RCA, dans la mesure où, en RCA, les cycles sont pris en compte

par le biais d’attributs relationnels revoyant à des concepts. Elle a également montré que, là

où GCA utilise des concepts automorphes pour représenter explicitement certains cycles,

RCA les généralise en boucles simples. Par ailleurs, nous avons évoqué l’impact positif de

la prise en charge des concepts n-aires par GCA et de l’utilisation de divers quantificateurs

dans RCA sur la qualité de l’analyse. En conclusion, les différences entre RCA et GCA ap-

paraissent comme complémentaires et peuvent être exploitées conjointement pour enrichir

une tâche d’analyse.
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Chapitre 10

Conclusion et Perspectives

10.1 Conclusion

L’Analyse Relationnelle de Concepts (RCA) et l’analyse conceptuelle des graphes (GCA)

constituent deux extensions majeures de l’Analyse Formelle de Concepts (AFC), dévelop-

pées pour répondre au besoin croissant de traiter des données multi-relationnelles. Comme

discuté au chapitre 5, les travaux existants cherchant à rapprocher ou comparer RCA et

GCA se sont concentrés sur des aspects spécifiques, notamment l’interprétation des résul-

tats. Cependant, aucune étude n’avait jusqu’à présent proposé une comparaison globale

et approfondie, ni sur leurs fondements théoriques, ni sur la nature des résultats produits.

L’étude menée dans le cadre de cette thèse a ainsi permis d’élargir la portée de cette compa-

raison, en offrant une vision plus complète des similarités et des différences entre ces deux

approches, aussi bien du point de vue théorique que pratique.

La première partie a présenté le cadre général du travail. Le chapitre 2 a introduit les

notions fondamentales de l’Analyse Formelle de Concepts (AFC), ainsi qu’un aperçu de ses

principales extensions destinées aux données multi-relationnelles. Les chapitres 3 et 4 ont

ensuite présenté, respectivement, les approches RCA et GCA, qui constituent le socle de

ce travail. Enfin, le chapitre 5 a proposé une synthèse de l’état de l’art sur les liens et les

rapprochements entre RCA et GCA.

La deuxième partie de cette thèse a présenté les principaux résultats obtenus. Ces contri-

butions concernent à la fois les aspects théoriques et pratiques des méthodes RCA et GCA.

Elles sont résumées ci-dessous.

Inclusion de l’ensemble des concepts RCA dans celui de GCA. Nous avons démontré

que, pour un même jeu de données, l’ensemble des concepts produits par RCA est inclus

dans celui généré par GCA sous un paramétrage commun, ce qui met en évidence le carac-

tère expressif de GCA par rapport à RCA [Fokou et al., 2025b]. Ce paramétrage commun

repose notamment sur :

— l’utilisation du quantificateur existentiel (∃) ;

— le calcul des concepts unaires ;

— le traitement des relations binaires ;

— et l’intégration des relations inverses dans les données de RCA.
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Cette dernière condition permet de compenser la prise en compte implicite des relations

inverses dans le processus de GCA, assurant ainsi une base commune pour la comparaison

des deux approches.

Transformation de la famille de treillis RCA en graphes. Dans cette base commune,

nous avons proposé et formalisé une transformation de la famille de treillis de concepts

produite par RCA en un ensemble de patterns relationnels, appelés EAR-patterns. Ces pat-

terns offrent une représentation plus compacte et lisible des résultats de RCA, constituant

ainsi une base solide pour améliorer leur interprétation et leur visualisation.

Modélisation des relations n-aires. L’étude menée sur la modélisation des relations n-

aires dans RCA et GCA nous a permis de montrer que les encodages couramment utilisés

en RCA (la réification, la décomposition et le partitionnement) ont un impact significatif

sur la capacité à répondre aux requêtes d’analyse. Nous avons également montré que les

encodages par décomposition et partitionnement, lorsqu’ils sont appliqués dans GCA, per-

mettent de produire des graph patterns plus lisibles et plus faciles à interpréter. Cela suggère

que ces stratégies d’encodage pourraient être exploitées en GCA pour faciliter l’analyse et

la compréhension des résultats, car la complexité des graph patterns augmente avec l’arité

des relations.

Traitement des cycles. Notre étude sur le traitement des cycles a révélé que GCA est ca-

pable de capturer certains cycles que RCA ne peut pas représenter, du fait que, dans RCA,

les cycles sont modélisés à travers des attributs relationnels renvoyant à d’autres concepts.

Par ailleurs, GCA utilise des concepts automorphes pour représenter explicitement certains

cycles, tandis que RCA tend à les généraliser sous la forme de boucles simples. Ces observa-

tions indiquent que, pour des tâches d’analyse visant à identifier ou caractériser la longueur

et la structure des cycles, GCA se révèle plus adaptée.

Dans l’ensemble, ces résultats montrent que RCA et GCA sont complémentaires, cha-

cune présentant des avantages spécifiques selon les objectifs d’analyse. Leur utilisation

conjointe pourrait ainsi permettre d’enrichir les tâches d’analyse.

10.2 Perspectives

Les résultats issus de cette étude comparative entre RCA etGCAouvrent plusieurs pistes

de recherche prometteuses. Ils invitent notamment à approfondir les questions d’interopé-

rabilité, de complémentarité et de combinaison entre les différentes extensions de l’AFC

appliquées aux données multi-relationnelles, et plus particulièrement entre RCA et GCA.

Dans cette section, nous présentons quelques perspectives que nous jugeons intéressantes

à explorer dans la continuité de ce travail.
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Extension des EAR-patterns RCA à d’autres quantificateurs. Les EAR-patterns RCA
constituent une base solide pour faciliter l’interprétation de la famille de treillis générée

par RCA. Cependant, leur définition actuelle se limite au quantificateur existentiel (∃). Une

première perspective intéressante consisterait à étendre les EAR-patterns aux familles de

treillis construites avec d’autres quantificateurs tels que ∃∀,∃ ⊇, etc. [Braud et al., 2018],

afin de calculer des patterns relationnels plus représentatifs des structures présentes dans

les données. Pour cela, il faudrait redéfinir la notion de redondance des attributs relation-

nels pour chaque quantificateur. Par ailleurs, l’ajout des relations inverses dans les données

de RCA, bien qu’essentiel pour le calcul des composantes fortement connexes servant de

base pour la définition des RCA-patterns, n’est pas toujours pertinent en pratique. L’étude

menée sur les données issues d’une pharmacopée a montré que cet ajout peut, d’une part,

accroître de manière excessive le nombre de concepts – rendant l’analyse plus complexe –

et, d’autre part, ne pas toujours avoir de sens selon les objectifs d’analyse. Ainsi, une al-

ternative consisterait à intégrer les arêtes inverses au niveau du graphe de dépendances,

plutôt que directement dans les données, sous certaines conditions de cohérence. Une telle

approche permettrait d’obtenir des EAR-patterns plus petits, fidèles aux données initiales

(sans relations inverses) et donc plus faciles à interpréter.

Modélisation. Il serait intéressant d’étendre et d’approfondir, sur des jeux de données réels,
l’étude comparative de RCA et GCA en se focalisant sur l’impact de la modélisation des rela-

tions ternaires sur leur capacité à répondre aux questions d’analyse. Cette investigation per-

mettrait d’évaluer à la fois la complexité induite par les différents encodages et la lisibilité

réelle des résultats. En parallèle, il serait intéressant d’étudier l’impact d’autres différences

clés entre RCA et GCA, telles que l’utilisation des quantificateurs, le calcul des concepts

n-aires, ou encore les différents paramètres proposés par les outils qui implémentent ces

deux approches. L’objectif serait de définir une catégorisation des contextes applicatifs, afin

d’identifier pour chaque type de données ou question d’analyse l’approche la plus adaptée,

RCA ou GCA. D’un point de vue pratique, le développement d’un cadre complet d’analyse

permettant de choisir, de manière guidée, les encodages (réification, décomposition, parti-
tionnement, etc.), les méthodes (RCA, GCA, etc.), les quantificateurs de scaling et d’autres

paramètres en fonction des questions d’analyse serait très utile pour les experts métier. Un

tel cadre devrait notamment offrir la possibilité à l’analyste de simuler différents scénarios

d’analyse afin de sélectionner celui qui répond le mieux à ses besoins.

Concepts n-aires. La capacité à calculer les concepts n-aires constitue un atout pour l’ana-
lyse, car ces concepts permettent de représenter des structures plus riches et de répondre à

des requêtes d’analyse plus complexes. Actuellement, RCA se limite aux concepts unaires,

tandis que GCA définit des concepts n-aires. Une perspective intéressante serait d’étendre

cette notion à RCA afin de combiner l’avantage des concepts n-aires de GCA avec la flexi-

bilité offerte par les quantificateurs de RCA. Formellement, ces concepts n-aires pourraient

être définis en s’appuyant sur les EAR-patterns RCA et en utilisant un calcul de projec-

tion de graphes similaire à celui employé dans GCA. D’un point de vue pratique, pour que
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l’analyste puisse exploiter pleinement ces concepts n-aires, il serait nécessaire de disposer

d’une plateforme de navigation des graphes comparable à RCAviz [Huchard et al., 2024].

Une telle plateforme permettrait d’explorer le voisinage d’un ou plusieurs concepts au sein

des patterns, et de calculer un concept n-aire en sélectionnant les propriétés correspondant

à son intension (nœuds et arêtes). Concrètement, cela reviendrait à construire et évaluer

une requête conjonctive ciblée, limitant ainsi le calcul aux concepts n-aires pertinents par

rapport aux objectifs d’analyse de l’utilisateur.

Version déclarative de RCA. RCA est actuellement définie de manière itérative, et il se-

rait intéressant de proposer un modèle déclaratif de RCA. Un tel modèle ouvrirait des pistes

pour combiner RCA avec d’autres extensions de l’AFC et ainsi étudier leur interopérabi-

lité et coopération. Concrètement, un modèle déclaratif de RCA permettrait de dévelop-

per de nouvelles extensions de l’AFC qui combine RCA et d’autres extensions existantes.

Par exemple, on pourrait imaginer une extension combinant RCA et les structures de mo-

tifs (pattern structures) [Ganter et Kuznetsov, 2001], afin de tirer parti des avantages des

deux extensions, à l’instar de l’extension Graph-PS [Ferré, 2023], qui combine GCA et les

structures de motifs. Une piste pour définir un modèle déclaratif de RCA pourrait passer

par la construction d’un graphe de descriptions d’une TBox [Baader, 2003], représentant

une abstraction du graphe de dépendances d’une famille de treillis RCA, sans inclure les

extensions des concepts ni la relation de subsomption. On pourrait également définir l’in-

tension d’un concept RCA en s’inspirant du PGP simulant un concept RCA et du travail de

[Kötters, 2016], qui assimile les intensions de concepts RCA aux motifs d’arbres enracinés

(rooted tree patterns).
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Vanessa Laure FOKOU

Comparaison empirique et théorique d’approches en
analyse de concepts formels pour les données

multi-relationnelles

Résumé : L’Analyse Relationnelle de Concepts (RCA) et Graph-FCA (GCA) sont deux

extensions majeures de l’Analyse Formelle de Concepts développées pour le traitement des

données multi-relationnelles. Ce travail propose une étude comparative à la fois théorique

et empirique, des deux approches RCA et GCA dans le but d’établir leurs similitudes et

différences sur une base solide, et de fournir à l’analyste des repères pour choisir l’approche

la plus adaptée selon la nature des données et des objectifs d’analyse. Nous démontrons

que GCA est plus expressif que RCA en montrant que l’ensemble de concepts produits par

RCA est inclus dans l’ensemble de concepts produits par GCA. Nous proposons également

une transformation de la famille de treillis RCA en un ensemble de graphes, permettant

ainsi d’améliorer l’exploration et l’interprétation des résultats. Une mise en œuvre sur un

jeu de données issu d’une ancienne pharmacopée arabe a permis de mettre en avant la

complémentarité de ces deux approches.

Mots clés : Analyse Formelle de Concepts, Analyse Relationnelle de Concepts, Graph-FCA,

Treillis, Fouille de données multi-relationnelles, Graphe de connaissances, Motif de graphe.

Abstract : Relational Concept Analysis (RCA) and Graph-FCA (GCA) are two major exten-

sions of Formal Concept Analysis developed for the processing ofmulti-relational data. This

work proposes a comparative study, both theoretical and empirical, of the two approache,

RCA and GCA, with the aim of establishing their similarities and differences on a solid

basis, and providing analysts with guidelines for choosing the most appropriate approach

according to the nature of the data and the objectives of the analysis. We demonstrate that

GCA is more expressive than RCA by showing that the set of concepts produced by RCA is

included in the set of concepts produced by GCA. We also propose a transformation of the

RCA lattice family into a set of graphs, thus improving the exploration and interpretation

of results. An experiment on a dataset from an ancient Arabic pharmacopoeia highlighted

the complementarity of these two approaches.

Keywords : Formal Concept Analysis, Relational Concept Analysis, Graph-FCA, Lattice,

Multi-relational data mining, Knowledge graph, Graph pattern.
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