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Abstract

Video recordings of operating room (OR) workflows are invaluable for
studying and improving teamwork among clinicians. Automating the
recognition of clinical activities in these videos is critical for applications
such as modeling interactions and enhancing safety and operational
efficiency. However, current methods largely depend on fully supervised
training, making datasets even harder to generate and often failing to gen-
eralize across ORs with different camera setups. Existing self-supervised
techniques focus on appearance-based tasks, overlooking vital semantic
information like object detection and human pose data. Incorporating
these semantic elements can narrow domain gaps and reduce the need for
extensive labeling. This thesis proposes new self-supervised approaches to
develop recognition approaches for monitoring OR workflows by empha-
sizing these “abstract” or semantic modalities. Such modalities are more
cost-effective and easier to obtain than manual annotations. Building on
recent advancements in self-supervised learning for computer vision, the
proposed methods utilize masked autoencoders, multimodal contrastive
learning, and carefully designed pretext tasks. Ultimately, this work aims to
minimize labeling requirements and bolster the scalability and adaptability
of surgical workflow monitoring.

Keywords: Deep learning - Computer Vision - Self-supervised Learning
- Multimodal Learning - OR Workflow - Video Understanding
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Résumé

L’analyse holistique de vidéos du bloc opératoire est essentielle pour
le développement de modeles d’intelligence artificielle capables de re-
connaitre automatiquement et précisément les différentes étapes du
workflow chirurgical. Cette reconnaissance automatique permettrait de
créer des modeles d’aide a la décision améliorant la sécurité, I’efficacité et le
temps d’utilisation du bloc opératoire. Les méthodes actuelles reposent sur
I'apprentissage supervisé, nécessitant beaucoup de données étiquetées, et
ne permettant pas un transfert facile dans des blocs operatoires disposant
d’un positionnement de camera different. Cette thése propose de nouvelles
approches auto-supervisées pour développer des méthodes d’analyse du
déroulement des activités opératoires, en mettant 'accent sur des modalités
abstraites ou sémantiques telles que la detection d’objet ou l’estimation de
pose des cliniciens. S’appuyant sur les avancées récentes de I'apprentissage
auto-supervisé en vision par ordinateur, les méthodes proposées utilisent
des autoencodeurs masqués, l'apprentissage contrastif multimodal et des
taches prétextuelles soigneusement congues. L'utilisation de ces modalités
moins cotiteuses en annotations permettra la mise en place de ces méthodes
dans des contextes cliniques réels.

Mots-Clés: Apprentissage profond - Vision par Ordinateur - Appren-
tissage auto-supervisé - Apprentissage Multimodal - Workflow au Bloc
Opératoire - Analyse de Vidéo
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1.1. BACKGROUND

1.1 Background

The widespread adoption of Artificial Intelligence (AI) across various in-
dustries creates numerous opportunities [Moencks 2022]. Driven by rapid
advancements in digital technologies and the generation of vast, diverse
datasets [Press 2013], Al continues to transform many aspects of daily
life [Allen 2013].

This unprecedented transformation has made everyday tools like chat-
bots, navigation apps [Cai 2024], and Al-driven search engines widely ac-
cessible to the general public, largely due to open availability and user-
friendly implementations driven by breakthroughs in models such as Ope-
nAl’s ChatGPT [Achiam 2023] and Google’s Gemini [Reid 2024]. These in-
novations were made possible by significant improvements in hardware
and the resurgence of deep learning, a branch of machine learning pre-
viously considered obsolete. Deep learning models optimize themselves
when provided sufficient quality data, which is abundantly available on-
line today. Consequently, these models are now the predominant approach
in machine learning. The rapid maturation of Al technologies has allowed
their integration into sensitive sectors such as finance and healthcare. Al’s
powerful data-processing capabilities in finance facilitate accurate predic-
tions of stock market trends influenced by social and political dynam-
ics [Bollen 2011]. Similarly, the sports industry increasingly employs Al-
driven analytics, enabling teams to collaborate with data scientists to devise
strategies based on historical performance data [Tuyls 2020] (cf. Fig. 1.1).
Such analyses address critical factors including injury prevention, fatigue
management, team coordination, and personalized coaching informed by
psychological player profiles [Tuyls 2020, Wang 2023c].

Inspired by advancements in other sectors, Al shows considerable
promise for healthcare. As Organisation for Economic Co-operation and
Development (OECD) countries face an aging population, individuals over
60 years of age currently exceeding one billion and projected to reach two
billion by mid-century [OECD 2021], healthcare systems are increasingly
strained. Public hospitals often struggle with staffing shortages, making it
challenging to provide adequate patient care. Al offers potential solutions
by improving hospital efficiency and automating routine, time-intensive
tasks such as scheduling and administrative inquiries [Topol 2025]. Fur-
thermore, Al-enabled initial patient screenings and triage processes allow
healthcare providers to prioritize critical cases, significantly reducing clini-
cian workloads and mitigating systemic bottlenecks.

As reported by a 2018 study [Childers 2018], surgical interventions ac-
count for approximately one-third of total healthcare expenditures in the
United States. Optimizing surgical practices represents a critical opportu-
nity for improving overall system safety and efficiency. By leveraging oper-
ating room video monitoring and human factors analysis, data-driven ap-
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O Ball (truth) @ Attackers (truth) @ Defenders (truth) Defenders (predicted)

Figure 1.1: Above: Example of a pose estimation model applied to a
penalty kick. The pose estimation is acquired using the top-down approach
from [Papandreou 2017]. Below: The prediction of defender motion is based
on ball and attacking tracking information, which shows different predic-
tions for right and left based on two distinct ball movements. Courtesy
of [Tuyls 2020].

plications hold significant promise for enhancing surgical safety, improving
procedural outcomes, and streamlining OR management.

Seamless collaboration between surgeons and intelligent systems forms
the foundation of Al's impact in the operating room. Unobtrusive visual
overlays lighten surgeons’ cognitive load, while transparent confidence
readouts let them calibrate trust without forfeiting autonomy [Acar 2025,
Sakamoto 2024]. Carefully timed, low-distraction alerts further guard
against fatigue and preserve focus during critical phases [Fallon 2024]. To-
gether, these design choices pave the way for Al to revolutionize the oper-
ating room.

1.2 Revolutionizing Operating Rooms with Al

The operating room is a specialized hospital unit where multidisciplinary
healthcare teams collaborate to perform medical procedures using both
manual and instrument-assisted techniques. Recent advances in imaging
technologies, particularly those driven by nuclear medicine and the de-
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velopment of sophisticated surgical instruments, have significantly trans-
formed the modern OR. As illustrated in Fig. A.1, contemporary ORs are
highly technological environments. These advancements have also altered
surgical methods; for example, procedures like cholecystectomies that once
required open surgery are now commonly performed using minimally in-
vasive surgery (MIS). MIS techniques involve small incisions through which
surgeons insert specialized instruments and miniature cameras, resulting in
reduced blood loss and shorter hospital stays [Bosch 2002].

Robotic-assisted surgery (RAS) extends the principles of MIS by intro-
ducing robotic platforms that enhance precision, control, and surgeon er-
gonomics. These systems provide high-definition, magnified 3D views of
the surgical field, allowing for greater instrument articulation, reducing
physical strain, and improving operative accuracy.

Modern ORs offer advanced capabilities but involve high operational
costs due to the need for specialized staff training and expensive equipment.
According to [Childers 2018], the cost of utilizing an OR can reach up to
$36 per minute, with even higher expenses incurred during robotic-assisted
surgeries due to longer procedures and additional training requirements.
Despite these increased costs, the ergonomic improvements provided by
modern surgical equipment partly justify the investment [Wee 2020]. Em-
pirical studies have demonstrated that advanced surgical procedures often
improve patient outcomes, reduce complication rates, and support quicker
recovery times [Reddy 2023].

Multiple case studies have investigated the challenges of effectively in-
tegrating robotic-assisted surgery into today’s OR environments [Catch-
pole 2018, Cofran 2021, Catchpole 2024]. Communication issues are among
the most significant barriers that can disrupt workflow and extend surgery
duration. Effective teamwork, especially during critical phases such as
docking surgical robots [Cofran 2021], is essential for maintaining smooth
OR operations. Another crucial concern for clinicians and hospital adminis-
trators is prolonged turnover times, the intervals between consecutive pro-
cedures in the same OR [Souders 2017]. Delays during turnover can signif-
icantly disrupt perioperative workflow, making this a critical quality met-
ric [Macario 2006]. Recent advances, such as process standardization and
video-based teamwork evaluations, offer promising solutions to address
these delays [Rosen 2018]. Analyzing these issues through a socio-technical
systems perspective, similar to approaches used in high-risk industries like
aviation, can provide valuable insights.

1.2.1 The OR as a Socio-technical System

In this section, we examine how modern ORs, particularly robotic-assisted
ORs, can be analyzed through the framework of socio-technical sys-
tems [Dias 2020]. Socio-technical theory [Cherns 1976, Baxter 2011] em-
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Figure 1.2: This figure shows the evolution of surgical practices from the
early 20th century to today. It also illustrates the changes in operating the-
atres, highlighting the transition to a more modern, highly technological,
and cluttered environment. Courtesy of [Letkowitz 2018]

phasizes the central role of teams, highlighting the specialization of mem-
bers and their effective interactions as foundations for creating autonomous
and efficient groups, rather than relying solely on individual or hierarchi-
cal control. These dynamics significantly shape the surgical environment.
Operating rooms contain various medical devices and equipment, includ-
ing robotic systems, which require coordinated operation by professionals
from multiple healthcare disciplines, such as surgery, anesthesiology, and
nursing. Team members must navigate constraints imposed by procedural
types, equipment complexity, and hospital protocols, resulting in a multi-
faceted and layered system. To manage this complexity, team members col-
laborate through defined tasks crucial for surgical success, including prepa-
ration of equipment, direct patient support, and timely communication re-
garding tool usage [Anne-Sophie 2009]. Communication within surgical
settings is multifaceted; it includes interpersonal exchanges and the inter-
pretation of meaningful data provided by surgical devices, thus supporting
surgeons by reducing cognitive load.

Improving communication, standardizing operational procedures, and
fostering a learning healthcare environment through innovation can signif-
icantly enhance OR efficiency, leading to better patient outcomes and re-
duced costs [Lee 2019]. Several core activities highlight the inherently col-
laborative nature of surgical teams. For instance, the seamless exchange
of surgical instruments between the scrub nurse and surgeon exemplifies
precise teamwork [Korkiakangas 2014, Svensson 2007]. Similarly, clear and
effective instruction from surgeons that is promptly followed by the team
is critical for procedural success [Svensson 2009]. Within anesthesia teams,
dynamic coordination relies on mutual and continuous monitoring among
team members [Undre 2006]. Additionally, laparoscopic procedures heav-
ily depend on collective interpretation and identification of surgical land-
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Figure 1.3: Side-by-side comparison of team coordination during pit stops
in Formula 1 and during handoffs from the ICU to the OR. ODA stands for
Operating Department Assistant, the peri-operative practitioner who works
alongside the anaesthetist. Courtesy of [Catchpole 2007]

marks and patient anatomy, further underscoring the importance of collab-
oration [Koschmann 2011]. Collaboration extends beyond the scope of in-
dividual surgeries, which is evident in organizational-level scheduling and
time management coordination.

Integrating robotic systems introduces significant shifts in OR dynam-
ics, presenting potential benefits and risks. Several studies [Catchpole 2015,
Schiff 2016, Koch 2022, Sheetz KH 2020] highlight critical challenges af-
fecting the safety and effectiveness of RAS, notably issues related to com-
munication breakdowns and coordination difficulties. Research address-
ing these teamwork-related challenges has found that strategies adapted
from high-performance fields such as motor sports pit-stop techniques (see
Fig. 1.2.1) effectively reduce technical errors and enhance overall surgical
performance [Catchpole 2007].

1.2.2 Al-Enhanced Operating Room Monitoring: Clinical
Applications

The modern OR, equipped with diverse monitoring devices and sensors,
generates extensive multimodal data. Ceiling-mounted cameras, in par-
ticular, capture comprehensive procedure workflows through RGB imag-
ing, depth streams, or low-resolution Time-of-Flight (ToF) videos. These
noninvasive data sources offer valuable insights into teamwork dynamics
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and could pave the way for Al-driven tools to monitor and enhance work-
flow coordination with the overall aim of improving surgical safety. In
the following, we discuss applications of various workflow monitoring ap-
proaches in the OR.

Situation Awareness in the OR Situational understanding, a human fac-
tor defined as the ability to perceive, comprehend, and predict future de-
velopments within a current situation, is critical for effective decision-
making in socio-technical systems [Patrick 2010]. Maintaining shared sit-
uation awareness among clinicians in OR teamwork can pose significant
challenges. The cognitive load associated with situation awareness could
be partially shifted to Al to mitigate this challenge. This can be achieved
through the development of situation-aware systems capable of interpret-
ing ongoing activities and delivering appropriate responses within specific
contexts. Digitally enhanced ORs, equipped with multi-modal data acquisi-
tion methods such as ceiling-mounted cameras, could facilitate the creation
of automated tools for activity detection and real-time tracking of surgical
progress.

Researchers are developing innovative methods leveraging computer vi-
sion and deep learning to enhance OR efficiency [Padoy 2008, Sharghi 2020,
Schmidt 2021, Twinanda 2015]. These methods analyze extensive surgi-
cal video footage to recognize specific tasks and generate detailed sur-
gical timelines. By delivering real-time or post-operative insights, such
technologies empower healthcare professionals to make better-informed
decisions, ultimately optimizing patient outcomes. Several foundational
components have also been introduced to support OR workflow mon-
itoring. Examples include semantic scene graph prediction, which de-
tects objects and captures interactions between clinicians and their environ-
ment [Ozsoy 2022, Ozsoy 2023], clinician role prediction [Ozsoy 2022], and
semantic segmentation of robotic and surgical instruments [Li 2020b].

Radiation Safety Monitoring Mobile fluoroscopy devices utilizing intra-
operative X-ray radiation have become essential tools in emergency de-
partments and operating theaters, especially in hybrid surgical procedures.
Clinicians must wear protective lead-lined gowns to prevent harmful expo-
sure from repeated radiation. Studies have documented significant health
risks associated with repeated exposure to intraoperative X-rays [Cari-
nou 2011, Verellen 1999, Koukorava 2014].

Recent research [Rodas 2017, Krebs 2022] (see Fig. 1.4) has introduced
simulation models capable of estimating radiation exposure to different
body regions, relying on predefined human body models. However, these
simulations could be enhanced by incorporating human pose estimation
(HPE) techniques to achieve more precise localization of key anatomical
joints at the pixel level. This has driven significant research interest in OR
workflow monitoring, particularly in developing advanced 2D and 3D HPE
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Figure 1.4: Visualization of radiation exposure of staff and patient for a con-
figuration where the X-ray source is under the bed [Rodas 2017]

methods [Srivastav 2018, Srivastav 2021, Srivastav 2020]. Incorporating ad-
ditional information about surgical activities could help provide detailed
reports on total exposure to radiation and per-activity exposure to better
optimize radiation.

Monitoring Group Activities in the OR Work in ORs is inherently col-
laborative and relies heavily on verbal and non-verbal social cues, such
as gaze direction and facial expressions. Over time, experienced surgical
teams develop specialized communication strategies that enhance their ef-
ficiency; for instance, familiarity among team members is known to signif-
icantly reduce operative durations [Witmer 2022]. Recent advancements in
machine interpretation of non-verbal signals, such as gaze estimation [Ne-
spolo 2022, Gershov 2022] and HPE, present promising opportunities for re-
ducing cognitive workloads during surgical procedures. The utility of such
monitoring technologies is particularly pronounced during critical surgi-
cal phases [Dias 2020]. Furthermore, structured communication briefings,
like Time-Out [Johnston 2009] and StOP? protocols [Keller 2022], have been
systematically linked to improved patient safety outcomes [Johnston 2009,
Keller 2022]. Automating the detection and differentiation of these briefings
could further reinforce safety measures within OR teams [Chen 2025].

Intensive Care Unit Monitoring Similar to ORs, intensive care units
(ICUs) require continuous monitoring by clinicians, placing a significant
burden on nurses, thereby increasing their workload. Given the abundance
of sensors and ceiling-mounted cameras, Al could enable automated moni-
toring within the ICU. For instance, AI models using HPE could detect po-
tential gestures or facial expressions indicative of pain. In [Davoudi 2019],
the authors demonstrated that they could effectively identify delirious pa-
tients by employing head pose estimation and limb tracking. Likewise,
in [Dai 2024], researchers utilized an HPE-based model to quantify patient
movement and assess sedation levels by measuring agitation.

Human-Machine Collaboration in Robotic-Assisted Surgery As dis-
cussed in Section 1.2.1, introducing robotic systems significantly al-
ters the dynamics within ORs, bringing both opportunities and chal-
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Figure 1.5: Visualization of smart ICU, with the different sensors used to
record data such as accelerometer sensors, video monitoring system, light
sensor, and sound sensor. Courtesy of [Davoudi 2019]

lenges [Sheetz KH 2020, Cofran 2021]. One promising direction is adaptive
autonomy; recent developments in supervised autonomous suturing have
demonstrated performance levels comparable to expert surgeons, suggest-
ing that future robotic systems could autonomously manage routine tasks
under surgeon supervision [Rivero-Moreno 2024]. Similarly, advancements
in robotic scrub-nurse technologies highlight progress toward greater au-
tonomy through enhanced human-machine interfaces (HMlIs) and real-time
Al monitoring. For example, Wagner et al. [Wagner 2024] have demon-
strated that robotic scrub-nurse arms, guided by live laparoscopic video
feeds, can accurately anticipate and provide 72% of the surgical instru-
ments required without relying on verbal instructions. This innovation
significantly reduces communication demands and enhances team situ-
ational awareness. Extending this concept, in [Li 2024], authors intro-
duced RoboNurse-VLA, integrating vision-language-action (VLA) models
that combine endoscopic visuals and spoken instructions to grasp and pass
previously unseen surgical instruments reliably. This multimodal interac-
tion exemplifies a more natural, intuitive collaboration between robots and
surgeons at the task level.

These studies emphasize the critical importance of seamlessly integrat-
ing predictive vision, advanced language processing, and ergonomically
optimized instrument exchange mechanisms. Such integration is essential
for evolving robotic-assisted surgery beyond merely being surgical tools,
transforming them into intelligent teammates capable of autonomously
sharing and managing surgical tasks.

1.2.3 Challenges for OR Workflow Monitoring Applications

Several challenges complicate using video-based deep learning methods in
surgical contexts, including strict data privacy requirements, limited data
availability, high labeling costs, and complex, variable operational environ-
ments. This change in data distribution could result in a significant failure
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of the recognition models. The following sections detail these constraints
and explain how they shape our research objectives.

Privacy Preservation Maintaining patient privacy during surgical proce-
dures requires careful management of recorded video content, particularly
when images extend beyond the internal views of the patient’s body. Such
external views can inadvertently disclose sensitive personal information.
Various techniques have been developed for endoscopic videos to automat-
ically identify and exclude out-of-body scenes, thus preventing unintended
identification of patients or clinical staff [Lavanchy 2023b, Zohar 2020]. In
the case of external footage of the OR, the privacy risks are even more pro-
nounced, as these often include visible faces of patients and medical person-
nel, potentially restricting data collection, which can be mitigated by face
detection [Issenhuth 2019] and using low-resolution images during the de-
ployment [Srivastav 2021, Srivastav 2020]. Nevertheless, recording clinician
activities remains crucial for comprehensive documentation and analysis of
workflows within ORs.

Several privacy-preserving methods have been proposed to mitigate
these concerns, including the use of depth cameras [Li 2020a], facial
anonymization techniques such as blurring [Flouty 2018, Bastian 2023c],
and reducing the resolution of RGB images [Srivastav 2021]. While effective
for privacy, these techniques alter the original data distribution compared
to conventional vision datasets, adversely affecting the performance of pre-
trained deep learning models for activity recognition. To counteract this
problem, researchers have proposed methods to adapt the models to the
privacy-preserving low-resolution images for human pose estimation and
person instance segmentation as the downstream tasks [Srivastav 2021, Sri-
vastav 2020]. These approaches have been shown to work well on the down-
sampled images with a downsampling factor as low as 12x.

Annotation Scarcity Technological advancements in ORs and the incorpo-
ration of various sensors, including cameras and endoscopic devices, have
significantly increased OR data availability. Such extensive video databases
are valuable for developing Al systems to monitor surgical workflows.
However, current Al methodologies usually depend on fully supervised ap-
proaches, necessitating manual annotation by clinical experts. This reliance
poses considerable challenges due to the limited availability of experts and
the high costs associated with their specialized knowledge.

To mitigate these annotation demands, an initial strategy involved ap-
plying transfer learning by leveraging pretrained feature extractors from
existing natural video datasets [Carreira 2017]. Although transfer learning
can partially reduce annotation burdens, it might not adequately capture
the specific features of surgical data, potentially limiting the effectiveness of
the resulting models. To tackle this, researchers have developed unsuper-
vised domain adaptation methods for the task of human pose estimation
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Figure 1.6: In this picture, we present the various modalities in the OR
datasets utilized in our thesis. On the left side, we display the raw visual
modalities from the datasets: RGB, Time of Flight, and Depth. On the right
side, we present abstract modalities such as 2D pose information, object
bounding boxes, and superpixel segmentation maps, image courtesy

and person instance segmentation in the OR by adapting models trained on
labeled datasets from natural settings to the unlabeled visually distinct OR
data [Srivastav 2021, Srivastav 2020].

Self-supervised learning methods are also emerging approaches that cir-
cumvent the need for manual labeling by automatically generating train-
ing objectives from unlabeled data. These methods enable models to learn
features pertinent to the surgical domain directly. Recent progress in self-
supervised learning [Chen 2020, Caron 2020, Sun 2022, Wei 2022] has no-
tably enhanced the extraction of meaningful features from unlabeled data,
demonstrating promising results across various computer vision applica-
tions.

Moreover, data-efficient representation learning methods have emerged
to address these challenges by extracting significant features from relatively
small datasets, making them especially valuable in medical and surgical
contexts. Complementing these approaches, label-efficient learning aims
to derive meaningful data representations using minimal or no manual an-
notations, proving particularly beneficial in environments like ORs, where
labeled data is scarce.

Generalization Ability Effective activity recognition in ORs necessitates
robust models across various configurations. Contemporary ORs prior-
itize adaptability to specific patient needs and procedural demands [Sa-
tava 2003], resulting in diverse technological setups and camera placements.
Consequently, activity recognition systems need to maintain consistent per-
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formance despite these environmental differences. Analyzing human mo-
tion is crucial in developing reliable OR activity recognition systems, and
the interaction between surgical staff and medical devices is another signifi-
cant factor. Gestures used by surgical personnel to communicate, along with
their interactions with medical equipment, present a valuable shared char-
acteristic that can facilitate generalization across different OR environments.
Leveraging structured semantic representations derived from these com-
mon interactions may effectively address domain gaps. These structured se-
mantic representations, referred to as “abstract modalities” by [Liang 2022],
are defined as modalities further removed from direct sensory inputs. As
Liang explains:

“Abstract modalities are those farther away from sensors, such as lan-
guage extracted from speech recordings, objects detected from images, or
even abstract concepts like sentiment intensity and object categories.”

Therefore, human joint coordinates, object bounding boxes, and object
categories serve as abstract modalities that can mitigate domain discrep-
ancies and enhance the generalizability of OR activity recognition systems.
Another crucial challenge in monitoring OR workflows is the inherent diffi-
culty in capturing the entire scene using a single camera viewpoint. This is
particularly problematic due to significant clinician and instrument move-
ment during critical OR phases, such as patient entry or robotic docking
in robot-assisted surgeries. Unlike human observers limited to one view-
point, Al-based systems can significantly benefit from multi-camera setups
offering simultaneous coverage from diverse angles [Kennedy-Metz 2021].
However, practical constraints might limit the availability of multiple cam-
eras or calibrated setups, as described in [Ozsoy 2022]. This underscores
the importance of leveraging multi-camera streams in a self-supervised ap-
proach, enabling the model to infer the OR’s spatial arrangement without
relying on additional calibration procedures.

1.3 Our Approach

This thesis addresses the annotation bottleneck challenges that hinder op-
erating room video analysis. We propose a self-supervised multimodal pre-
training framework that integrates both raw (e.g., RGB or Depth video) and
abstract (e.g., human pose, segmentation masks) modalities. Multimodal
pretraining is the process of jointly learning representations from hetero-
geneous data sources in an unsupervised manner, enabling the model to
extract complementary and semantically rich features without relying on
manual labels. Our approach harnesses the shared structure across modal-
ities to build robust, generalizable representations, especially suited to sur-
gical scenes’ complex, dynamic nature.

Second, our frameworks leverage these abstract modalities, such as
pose, as powerful proxies to achieve label-efficient learning. As an abstract
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modality, human pose captures essential structural and dynamic character-
istics of surgical activities. By exploiting pose-based representations, our
methods optimize data utilization and significantly improve labeling effi-
ciency, thus decreasing the dependency on explicit human annotations. This
reduction directly addresses practical constraints and privacy concerns as-
sociated with data annotation in the OR.

Guided by cognitive science insights into object categorization and the
perception of object dynamics [Kahneman 1992, Tenenbaum 2011], we de-
sign methods that exploit the motions and actions of objects and clinicians
to build compact video representations, thereby enhancing Al performance
in practical applications. Our experiments confirm that this principled focus
delivers more accurate and efficient video understanding.

Consequently, the core objectives of this thesis are:

(i) Label-efficiency through semantic priors: We leverage inexpensive,
unsupervised scene semantic priors to reduce annotation effort while
enhancing task accuracy.

(ii) Synergy with self-supervision: Integrating these priors with self-
supervised learning objectives yields additional performance gains on
downstream benchmarks.

(iii) Viewpoint-robust multimodal pretraining: Our multimodal pretrain-
ing demonstrates resilience to viewpoint shifts while retaining comple-
mentary information across modalities.

In the following, we briefly describe our contributions.

1.3.1 Analysis of Two Workflow Monitoring Datasets

We provide an in-depth analysis of the two main datasets collected from
robotic-assisted surgery operating rooms, which we will use in our experi-
ments. The first dataset, named OR-Seg [Li 2020a], focuses on the semantic
segmentation of clinicians and surgical instruments. It consists of images
captured by three strategically placed and calibrated Time-of-Flight cam-
eras. The second dataset, OR-AR [Sharghi 2020], which will serve as the
central focus of this thesis, also utilizes ToF cameras but employs mobile
devices. It represents the most extensive dataset for activity recognition
from external cameras in surgical environments. This dataset is particularly
valuable due to its diversity, encompassing multiple surgical centers, dif-
ferent procedures, and various surgical teams. Such variability makes it an
ideal resource to demonstrate the effectiveness of our self-supervised meth-
ods. Additionally, we will assess state-of-the-art (SOTA) object and person
detection algorithms using a limited subset of labeled data. Our analysis
shows that extracting semantic information from this dataset is possible
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with minimal labeling effort, and incorporating these semantic modalities
significantly mitigates the annotation bottleneck typically encountered in
activity recognition tasks.

1.3.2 Depth-based OR Workflow Monitoring with Super-
pixel Self-Supervision

As our first contribution, we propose a self-supervised pretext task us-
ing superpixel segmentation maps as abstract modality. Depth images
typically lack texture, making transferring models trained on natural im-
age datasets less effective for operating rooms’” semantic segmentation and
activity recognition tasks. Nevertheless, as highlighted earlier in para-
graph 1.2.3, depth images are beneficial because they preserve patient and
clinician privacy while fulfilling the strict OR environment requirements.

To better emphasize depth differences between semantic entities, we in-
troduce a pretext task centered on predicting the average distance between
the centroids of projected superpixel clusters, leveraging depth data and
camera intrinsic parameters. We hypothesize that depth variations effec-
tively highlight boundaries between semantic regions, thus improving se-
mantic segmentation performance. Additionally, encoding precise distance
information between superpixel clusters can enhance downstream activity
recognition tasks.

We first employ SLIC [Achanta 2012], a standard superpixel segmenta-
tion algorithm, to define superpixel clusters on depth maps. Subsequently,
we sample pairs of clusters across images within each dataset and utilize a
specialized pooling operator to incorporate geometric knowledge into our
embedding space. We demonstrate the effectiveness of our approach on
both OR-Seg [Li 2020a] and OR-AR [Sharghi 2020], using data-efficiency
protocols where models progressively receive increasing amounts of labeled
data in a semi-supervised manner. Our method substantially improves
compared to other self-supervised pretraining strategies on both datasets.

1.3.3 Self-Supervised Masked Object Embedding Predic-
tion for Object-Centric OR Activity Recognition

In our second contribution, we introduce a novel activity recognition task
based on object layouts, leveraging specialized object and person detectors
trained with a minimal subset of annotated bounding boxes from the OR-
AR dataset. We propose an MLP-based architecture, called ST(OR)?, that
temporally integrates bounding box coordinates and object category infor-
mation to classify video clips according to the depicted activity accurately.
We highlight the method’s sample-efficient nature through experiments fo-
cused on data efficiency.

Further, we extend this method by incorporating a refined architecture
utilizing a general-purpose transformer model [Vaswani 2017], taking ad-
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vantage of its inherent flexibility in modeling relationships among input
elements regardless of positional constraints. Leveraging the transformer’s
attention mechanism, we propose a self-supervised masked object embed-
ding task, inspired by prior computer vision research [Wei 2022, Sun 2022].
Our results demonstrate that this masked embedding task significantly en-
hances the performance of our model in recognizing operating room activi-
ties within the OR-AR dataset.

1.3.4 Robust OR Activity Recognition via Self-Supervised
Multimodal Feature Alignment of Video and Pose
Across Multiple Views

Our initial contributions introduced methods that independently leveraged
video streams from various perspectives. However, as highlighted in para-
graph 1.2.3, integrating multi-camera viewpoints can significantly enhance
the recognition of activities within the operating room. In this work, we aim
to address the following questions: How can features extracted from differ-
ent camera viewpoints be aligned effectively in a self-supervised manner to
improve our Al model’s robustness? Can human pose estimation serve as
an intermediary modality to bridge these differing viewpoints?

As our final contribution, we propose a novel self-supervised task,
called PreViPS, specifically designed for multiview video-pose pretraining.
First, we introduce an innovative pose-based action recognition architec-
ture employing a discrete, vector-quantized representation inspired by re-
cent research [Geng 2023]. Next, taking cues from video-language mod-
els [Radford 2021, Goel 2022], we develop a two-stream encoder architec-
ture that independently processes pose and RGB data. These streams are
then aligned using geometric constraints and a masked pose prediction
objective. We demonstrate that our pretraining method enhances perfor-
mance significantly, both in pose-based and RGB-based activity recognition
tasks. Moreover, our pretraining strategy results in performance gains in
single-view and cross-view scenarios, even when training and testing view-
points are entirely distinct. Evaluations on two benchmark datasets, OR-
AR [Sharghi 2020] and 4D-OR [Ozsoy 2022], underscore our approach’s ef-
fectiveness. Notably, the marked improvement in pose-only activity recog-
nition supports the utility of our method for privacy-preserving applica-
tions, as pose data inherently avoids identifiable information about clini-
cians and patients.

1.4 Thesis Outline

This thesis investigates the complexities involved in workflow monitoring
within operating room environments, particularly focusing on overcom-
ing the labeling bottleneck. We propose multi-modal learning strategies
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to enhance annotation efficiency that leverage self-supervision across ab-
stract representations and raw visual data. Our methods incorporate cost-
effective, unsupervised prior information, including superpixel segmenta-
tion, minimal bounding-box annotations for object detection, and advanced
2D pose estimation techniques for clinicians. We show that integrating these
inexpensive annotations significantly boosts labeling efficiency. Moreover,
combining these approaches with self-supervised learning objectives fur-
ther enhances performance in downstream tasks.
The thesis structure is organized as follows:

¢ Chapter 2 provides an overview of related research in video analysis
within computer vision. It begins by discussing unstructured repre-
sentations and then moves to structured representations using abstract
modalities. This chapter also reviews both unimodal and multimodal
self-supervised learning methods, highlighting their relevant applica-
tions in Surgical Data Science (SDS).

® Chapter 3 describes the OR-AR [Li 2020a], OR-Det [Hamoud 2023],
and OR-Seg [Sharghi 2020] datasets, providing comprehensive statis-
tics and benchmarking results for object detection tasks; these datasets
form the core of our experimental analysis in subsequent chapters.

¢ Chapter 4, published in [Hamoud 2022], proposes depth-guided ge-
ometric arrangement of superpixel clusters as a self-supervised pre-
text task, demonstrating improved semantic segmentation and activ-
ity recognition.

HAaMOUD, 1., KARARGYRIS, A., SHARGHI, A., MOHARERI, O., PADOY,
N. (2022). SELF-SUPERVISED LEARNING VIA CLUSTER DISTANCE
PREDICTION FOR OPERATING ROOM CONTEXT AWARENESS. IPCAI-
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND
SURGERY, 17(8), 1469-1476.

¢ Chapter 5, published in [Hamoud 2023], presents an object-centric
approach for video action recognition, emphasizing data efficiency
and integration potential with RGB features. This work has been fur-
ther enhanced through a transformer-based architecture, enabling a
masked object embedding self-supervised objective.

HAaMOUD, 1., JAMAL M. A, SRIVASTAV, V., MUTTER, D., PADOY, N., MO-
HARERI, O. (2023). ST(OR)2: SPATIO-TEMPORAL OBJECT LEVEL REA-
SONING FOR ACTIVITY RECOGNITION IN THE OPERATING ROOM. MED-
ICAL IMAGING WITH DEEP LEARNING (MIDL)
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¢ Chapter 6, based on [Hamoud 2025], investigates multimodal, multi-
view approaches to pose-based action recognition, enhancing porta-
bility and multimodal alignment. The work is a journal submission
under review.

HamouUD, 1., SRIVASTAV, V., JAMAL, M. A., MUTTER, D., Mo-
HARERI, O., PADOY, N. (2025). MULTI-VIEW VIDEO-POSE PRETRAIN-
ING FOR OPERATING ROOM SURGICAL ACTIVITY RECOGNITION. ARXIV
PREPRINT ARXIV:2502.13883.

¢ The final part, Chapter 7, discusses practical applications and future
directions for advancing research in OR surgical activity recognition.
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2.1. GLOBAL VIDEO REPRESENTATIONS

This chapter presents related literature on different methods and con-
cepts relevant to video representation learning, particularly emphasizing
their applications in surgical data science. The first section examines global
appearance-based models for surgical video action recognition. It traces the
evolution from traditional machine learning techniques to advanced deep
learning architectures and highlights their practical implications within Sur-
gical Data Science (SDS). The second section focuses specifically on struc-
tured semantic representations derived from abstract modalities. As in-
troduced previously (see Section 1.2.3), these modalities, including object
detection, human pose estimation, and superpixel segmentation, offer rich
and structured semantic information that complements raw visual data.
The third section reviews recent advancements in self-supervised learn-
ing methodologies for surgical video analysis, exploring both unimodal
and multimodal approaches that address the challenges associated with
annotated data scarcity. The final section then synthesizes operating-room
workflow-monitoring techniques, spanning human-pose estimation to the
automated detection of communication protocols, derived solely from ex-
ternal camera views.

2.1 Global Video Representations

This section will discuss global representations that utilize only the raw vi-
sual modalities. These methods directly leverage raw pixel information to
extract a unified representation for a specific frame or video clip.

2.1.1 Traditional Machine Learning Approaches for Video
Analysis

Early approaches in video action recognition within computer vision pre-
dominantly relied on handcrafted features, broadly categorized into spa-
tial features and spatio-temporal features. Spatial features characterize in-
dividual images using attributes like color [Jain 1996] and texture [Man-
junath 1996], typically represented by local descriptors capturing salient
spectral information. Sophisticated handcrafted descriptors, such as Scale-
Invariant Feature Transform (SIFT) [Lowe 2004] and Speeded-Up Robust
Features (SURF) [Bay 2008], were developed to enhance robustness against
image variations and augmentations.

Beyond single-frame analysis, spatio-temporal features incorporate tem-
poral dynamics within video sequences. Optical flow-based descriptors en-
code pixel-level motion patterns across frames, such as histograms of ori-
ented optical flow [Chaudhry 2009]. Additionally, three-dimensional occu-
pancy grids have been proposed to merge spatial information from multiple
viewpoints, effectively recognizing human actions [Weinland 2007]. Laptev
et al. [Laptev 2003] extended the concept of spatial interest points into the
temporal dimension, introducing space-time interest points (STIPs) that ro-
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Figure 2.1: Examples of global feature extractors used in early surgical ac-
tivity recognition methods. Left: Space-Time interest points [Laptev 2003]
extracted from video of surgemes [Zappella 2013]. Right: Illustration of the
3D occupancy grids used to extract features for OR workflow activities clas-
sification. Courtesy of [Zappella 2013, Padoy 2008]

bustly detect distinct motion patterns, even under challenging conditions
such as occlusions and dynamic backgrounds.

Traditional methods often employed dynamic probabilistic graphical
models to better model longer-term temporal dependencies, notably Hid-
den Markov Models (HMMs) [Rabiner 2007]. HMMs effectively represent
complex actions as sequences of transitions between hidden states, process-
ing sequences of feature vectors frame by frame. Action recognition in this
context involves evaluating the likelihood of observed image sequences fit-
ting a previously learned model.

Applications in SDS Traditional machine learning techniques were ex-
tensively applied in early SDS research, combining handcrafted features
and probabilistic models. Lalys et al. [Lalys 2010] successfully integrated
spatial descriptors (color, texture, shape) with HMMs and Support Vec-
tor Machines (SVMs) for surgical phase classification in pituitary surgeries.
Similarly, Haro et al. [Haro 2012] leveraged STIPs described by histograms
of oriented gradients and oriented optical flow, classifying surgical ges-
tures (surgemes) with SVMs. In parallel, [Padoy 2009] utilized 3D occu-
pancy grids combined with histograms of motion orientations for accurate
workflow activity recognition in operating rooms (see Fig. 2.1). Despite
their effectiveness, these traditional methods eventually faced limitations,
such as challenges in handling complex visual variations and difficulties in
automatically learning robust, high-level features from extensive datasets.
These pioneering methods established foundational approaches later com-
plemented by deep learning techniques due to their superior scalability and
feature representation capabilities.

2.1.2 Deep Learning Approaches for Video Analysis

With handcrafted features and graphical models” limitations in capturing
high-level abstractions and complex temporal patterns, deep learning meth-
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ods emerged as a powerful alternative for video analysis. These approaches
enable end-to-end learning of spatial and temporal features directly from
raw data, allowing for greater generalization and adaptability across com-
plex video understanding tasks.

Convolutional Approaches

Initial deep learning models for video analysis extended convolutional neu-
ral networks (CNNs) to handle temporal dynamics. Baccouche et al. [Bac-
couche 2011] introduced one of the earliest approaches, combining 3D con-
volutions with recurrent layers (LSTMs) to jointly model spatial and tempo-
ral dependencies. This architecture was refined with unsupervised strate-
gies for spatio-temporal representation learning [Baccouche 2012], laying
the groundwork for subsequent developments.
Modern convolutional approaches fall into two main categories:

¢ 3D Convolutional Networks: These networks extend 2D convolu-
tional kernels into the temporal domain, enabling the extraction of
motion features across multiple frames [Taylor 2010, Tran 2014, Karpa-
thy 2014]. While effective at capturing fine-grained motion patterns,
they introduce significant computational demands and require large
datasets for training.

¢ Two-stream Architectures: Proposed by Simonyan et al. [Si-
monyan 2014], these models process RGB frames and optical flow in
separate CNN streams. By learning complementary spatial and mo-
tion cues, they achieve improved recognition of actions with varying
temporal characteristics. However, reliance on precomputed optical
flow increases computational overhead.

Recurrent Neural Networks

Many works combine CNNs with recurrent neural networks (RNNs) to cap-
ture sequential dependencies more explicitly. Traditional RNNs, while theo-
retically suited for sequence modeling, suffer from vanishing gradient prob-
lems. Long Short-Term Memory (LSTM) networks address these limitations
via gating mechanisms that control information flow [Donahue 2014]. A
common pipeline extracts spatial features using a shared CNN and feeds
them to LSTMs to model temporal patterns. Despite their effectiveness,
these approaches often struggle to model detailed motion due to their re-
liance on aggregated frame-level features.

Attention-based Approaches

Transformers have recently redefined video analysis by leveraging attention
mechanisms that model long-range dependencies without recurrent or con-
volutional structures. Inspired by their success in natural language process-
ing, Vision Transformers (ViT) [Dosovitskiy 2020] and their video-specific
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variants like ViViT [Arnab 2021] apply self-attention to visual tokens, en-
abling flexible and scalable modeling of spatio-temporal information. How-
ever, the quadratic complexity of attention demands architectural optimiza-
tions, especially for long video sequences typical in surveillance, education,
or medical contexts.

These deep learning frameworks form the foundation of modern video
understanding, offering more robust, scalable, and semantically rich repre-
sentations than traditional handcrafted methods. Their flexibility and per-
formance have made them central to numerous domains, including health-
care and human activity analysis.

Applications in SDS

The adoption of deep learning in SDS has closely mirrored general advances
in video analysis. Early approaches leveraged pretrained CNN models such
as AlexNet [Krizhevsky 2012]. Twinanda et al. [Twinanda 2016] introduced
EndoNet, which extracted deep features using AlexNet and used a com-
bination of SVM and HMM to perform surgical phase recognition on the
Cholec80 dataset, a benchmark still widely used today. Their approach re-
flects early integration of convolutional features with probabilistic temporal
models (see Section 2.1.1).

Subsequently, deeper and more specialized networks were explored.
Zisimopoulos et al. [Zisimopoulos 2018] proposed DeepPhase, which com-
bined CNNs and LSTMs to model both spatial and temporal cues for phase
recognition, marking one of the earliest uses of recurrent models in SDS.
This architecture was further refined in EndoLSTM [Twinanda 2017], em-
phasizing temporal consistency across endoscopic frames.

To improve temporal resolution and handle real-time constraints, Czem-
piel et al. adapted the MS-TCN framework [Farha 2019] into TeCNO [Czem-
piel 2020], using causal convolutions to avoid future frame leakage. Recent
work by Czempiel et al. [Czempiel 2021] and Gao et al. [Gao 2021] explored
transformer-based models with temporal attention. OperA [Czempiel 2021]
introduced an attention regularization loss to improve focus on temporally
ambiguous frames, while Trans-SVNet [Gao 2021] fused ResNet-derived
spatial features with temporal encodings, accelerating inference through
parallel processing.

Given the high data requirements of transformers [Dosovitskiy 2020],
Bati et al. proposed EndoViT [Bati¢ 2024], employing domain-specific self-
supervised pretraining. Liu et al. [Liu 2023] introduced LoViT, which incor-
porated phase transition maps to better capture surgical phase boundaries.
These recent methods highlight adaptations of transformer architectures to
the unique constraints of SDS, including long sequences, limited annotated
data, and task-specific transitions.

Finally, several studies extended video understanding to the external
camera view. Sharghi et al. [Sharghi 2020] employed I3D models for work-
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flow recognition from external RGB streams. Schmidt et al. [Schmidt 2021]
enhanced this pipeline with cross-view attention to fuse multi-camera per-
spectives. Both works leveraged GRU networks [Chung 2014] to capture
temporal patterns across video clips, reflecting growing interest in contex-
tual, holistic OR activity analysis.

2.2 Structured Video Representations

While global video representations (Section 2.1) primarily rely on raw
pixel intensities and aggregated spatio-temporal cues, structured video rep-
resentations introduce a more semantically organized view of scene dy-
namics. Instead of encoding a video holistically, these approaches focus
on semantically meaningful entities such as objects, body joints, or pixel
groupings, capturing their temporal coherence and interactions over time.
This perspective draws inspiration from cognitive science. For instance,
studies have shown that humans, especially infants, rely on motion and
boundary-based cues rather than static appearance when perceiving ob-
jects [Scholl 2007]. Similarly, Johansson’s seminal work [Johansson 1973]
demonstrated that sparse joint motion is sufficient to infer human activities
like walking or dancing. Abstracting raw footage into structured compo-
nents in video understanding provides more interpretable and robust repre-
sentations, especially in cluttered or occluded environments like operating
rooms.

2.2.1 Abstract Modalities employed in Video Analysis

Object Presence and Detection transforms raw video into higher-level in-
formation by identifying and localizing objects using bounding boxes and
category labels [Wang 2018, Materzynska 2019, Herzig 2022, Radevski 2021].
This abstraction enables models to focus on semantically meaningful ele-
ments, improving robustness to lighting variations, occlusion, and back-
ground noise. By tracking objects” spatial layout and temporal interactions,
these approaches support reasoning over the dynamics of objects in a scene.

Human Pose Estimation encodes human body configurations through
skeletal keypoints. These representations reduce high-dimensional video
frames into structured motion descriptors invariant to appearance and can
be analyzed for action recognition. Pose estimation is particularly useful
in cluttered settings where body silhouettes are partially occluded, such as
surgical environments where medical staff interact closely.

Unsupervised Pixel Grouping refers to over-segmenting an image into
superpixels or temporally stable segments. These groupings preserve lo-
cal visual coherence and can serve as mid-level primitives for learning ac-
tions or scene structure without strong supervision. In [Ke 2010], super-
pixel volumes are compared to action templates via optical flow and vol-
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Figure 2.2: Examples of abstract modalities used in SDS. Tool presence infor-
mation [Blum 2008], human pose estimation [Srivastav 2018], object detec-
tions [Ozsoy 2022] and superpixel segmentation [Chakraborty 2013] using
the method developed in [Felzenszwalb 2004]

umetric matching, demonstrating their potential in action recognition (see
Figure 2.2).

Object-Centric Approaches for Video Analysis

While global feature models often capture background biases [Car-
reira 2017, Soomro 2012, Kuehne 2011], object-centric approaches introduce
more targeted representations by modeling interactions among detected
objects. Early strategies either aggregated object detection outputs glob-
ally [Wu 2016] or used graph-based methods such as STRG [Wang 2018] to
reason over object relationships across time.

Building on this, STIN [Materzynska 2019] introduced a dual-
stream framework using bounding-box and category information, while
ORViT [Herzig 2022] enhanced cross-stream communication through atten-
tion. ObjectViViT [Zhou 2023] further improved efficiency with strategic
token sampling for scalable reasoning.

Applications in SDS Early studies in surgical phase recogni-
tion [Padoy 2012, Blum 2008, Padoy 2008] primarily utilized Hidden
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Figure 2.3: Three recent SDS methods using abstract, semantically rich
modalities as intermediate representations: (1) role prediction in the
OR [Ozsoy 2022], (2) critical-view-of-safety assessment [Murali 2023], and
(3) phase estimation on CATARACTS [cCaughan Koksal 2024, Hajj 2019].

Markov Models (HMMs) based on surgical tool usage patterns extracted
from manually annotated recordings. Despite their effectiveness, these
approaches assumed a strictly sequential workflow, limiting their flexibility
in handling deviations.

Recent advancements include a graph-based representation proposed
in [Murali 2022], employing varying supervision levels from bounding
boxes to segmentation maps. This compact latent representation signifi-
cantly improved performance in assessing the critical view of safety (CVS).
Further extending this method, researchers in [Satyanaik 2024] demon-
strated its potential for domain adaptation across different clinical settings.

HPE-based Approaches for Video Analysis

Initially, skeleton-based action recognition methods predominantly em-
ployed recurrent neural networks and Long Short-Term Memory (LSTM)
models [Du 2015], benefiting from the sequential structure of skele-
tal data. Subsequent developments leveraged convolutional neural net-
works by converting joint data into 2D heatmaps. The “Ske2Grid” ap-
proach [Cai 2023], for instance, transformed skeletal sequences into grids
suitable for convolutional operations via bijective upsampling and coordi-
nate mapping.

Alternatively, several studies [Cheng , Cheng 2020, Chen 2021la,
Chen 2021b] have modeled skeletal structures as graphs, using
GCNs [Kipf 2016] to analyze joint relationships. Although GCNs ef-
fectively represent static topologies, their fixed kernels limit adaptability to
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variations in skeletal structure.

More recently, transformer-based models [Do 2024, Shi 2020, Duan 2023,
Gao 2022] have demonstrated superior capabilities in capturing long-term
dependencies between skeletal joints compared to GCN-based methods.
Nonetheless, transformers typically require extensive annotation data for
training.

Applications in SDS The novel dataset introduced in [Ozsoy 2022,
Ozsoy 2023] includes detailed mock recordings of knee replacement pro-
cedures and establishes a pioneering benchmark for semantic scene graph
analysis in surgical workflow monitoring. Enriched with multimodal an-
notations and clinical role predictions, this dataset underscores the signif-
icance of accurately capturing object interactions within surgical settings.
Additionally, the 2D pose-based methodology presented in [Chen 2025] ad-
dresses activity detection tasks such as “Time-out” and “StOP” identifica-
tion [Keller 2022] within the operating room context.

2.2.2 Pixel Grouping for Structure-Aware Reasoning

The study presented in SANGRIA [cCaughan Koksal 2024], the authors
propose an approach beyond simply utilizing labeled spatial information
to ground their graph-based representation. They employ a simple spec-
tral clustering technique to generate coarse segmentations, using pretrained
DINO [Caron 2021] weights. Each segmented instance is temporally con-
nected using the LightGlue [Lindenberger 2023] feature matcher. The au-
thors reason over the resulting graph using Graph Convolutional Network
(GCN) [Kipf 2016] modules and demonstrate competitive results on the
CATARACTS [Hajj 2019] benchmarks for surgical phase recognition.

2.3 Self-Supervised Video Representation Learn-
ing

Alternative methods utilizing intrinsic information within visual data have

emerged to address the data-labeling bottleneck associated with supervised

deep learning. Self-supervised learning (SSL), a subset of unsupervised

learning, focuses on deriving discriminative features directly from unla-

beled data, eliminating the need for human annotation. In the following,

we explore various self-supervised techniques to learn video representa-
tions, beginning with unimodal approaches based on pretext tasks.

2.3.1 Unimodal Self-Supervised Representation Learning

Pretext-Tasks Approaches

Early self-supervised methods for images followed the same paradigm as
supervised approaches. Different types of corruption were applied to the
images before feeding them to the network to recover the initial image. As
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their name states, “pretext” tasks try to solve mock tasks that mimic chil-
dren’s puzzles. By solving those mock tasks, these models learn low-level
local statistics about the extracted patch features in large datasets. Here is
an example of the two different types of pretext tasks:

¢ Data Imputation Tasks: In these pretext tasks [Pathak 2016,
Agrawal 2015, Zhang 2016], the original raw image is either partially
occluded or a paired version from a different modality is utilized to
predict the missing part of the image. Predicting color [Zhang 2016]
has the advantage of using practically free training data: any color
photo can serve as a training example by using the image’s L (light-
ness value) channel as input and its ab (color value) channels as
the supervisory signal. In [Agrawal 2015], the authors propose pre-
dicting camera transformation from image pairs as a pretext task,
drawing inspiration from how humans perceive and learn egomotion.
In [Pathak 2016], authors crop various parts of images, learning to pre-
dict and reconstruct the cropped windows.

¢ Context Prediction Tasks: Unlike the first tasks, spatial context tasks
are designed as classification tasks where the model learns to classify
the corruption done on it. For example, in [Doersch 2015], the authors
consider predicting the relative position of sampled patches from an
image as a pretext task. Two neighboring patches are sampled, and
the relative position is predicted out of 8 possibilities.

Pretext tasks designed for 2D image processing can be adapted to 3D
applications, enabling the training of 3D models using medical data such as
MRIs. Authors of [Taleb 2020] have demonstrated the advantages of these
pretraining objectives [Doersch 2015, Gidaris 2018] in brain MRI segmenta-
tion.

Similarly, pretext tasks exploiting the temporal dimension of videos have
also been proposed [Wang 2020, Xu 2019, Misra 2016] The goal of these
methods is to predict the corruption applied to the raw video by learning
the transformation categorically through classification.

Applications in SDS Drawing from general computer vision advance-
ments, researchers have adapted pretext tasks for the surgical domain to im-
prove instrument localization and identification. In [Ross 2017], the authors
pretrain a segmentation model on unlabelled data, using the colorization
approach (see Fig. 2.4) from [Zhang 2016]. In [Yengera 2018], the authors
propose using the remaining surgery duration as a pretext task for recogniz-
ing surgical phases. Tackling the temporal aspect of lengthy surgical video
understanding, [Bodenstedt 2017] introduced a frame-sorting pretext task
(see Fig. 2.5).
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Figure 2.4: Overview of the approach presented in [Ross 2017]. This method
involves a two-step process: pretraining through a colorization task on
unlabelled data, then fine-tuning the model using available labelled data.
Courtesy of [Ross 2017].

Figure 2.5: Overview of the approach presented in [Bodenstedt 2017]. This
method involves a two-step process: pretraining is performed through a
frame ordering task on unlabelled data and fine-tuning the model using
available labelled data. Courtesy of [Bodenstedt 2017].

Contrastive Representation Learning

Contrastive learning is widely used in self-supervised learning and has
achieved strong results in vision tasks [Chen 2020, He 2019, Caron 2020,
Grill 2020]. It maps sample features onto a unit hypersphere, ensuring that
positive sample pairs are close together while negative pairs are pushed
apart. SImCLR [Chen 2020] used large mini-batch sizes for diverse neg-
ative samples. MoCo [He 2019] addressed the computational bottleneck
with momentum encoders and a sample queue, while SwWAV [Caron 2020]
and BYOL [Grill 2020] opted to eliminate negative samples entirely.

Applications to Surgical Data Science In [Ramesh 2022], the authors
conduct a comprehensive evaluation of four state-of-the-art SSL meth-
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ods, MoCo v2 [He 2019], SimCLR [Chen 2020], SwWAV [Caron 2020], and
DINO [Caron 2021] within the context of surgical computer vision. Utiliz-
ing the Cholec80 dataset [Twinanda 2016], they assess the efficacy of these
methods on two fundamental tasks: surgical phase recognition and tool
presence detection. The study demonstrates that pretraining SSL models
on endoscopic data, followed by fine-tuning with limited annotations, sig-
nificantly enhances performance. Notably, they report improvements of up
to 7.4% in phase recognition and 20% in tool detection over generic SSL ap-
plications, and up to 14% over existing semi-supervised baselines. This un-
derscores the potential of in-domain SSL pretraining to reduce annotation
requirements while maintaining high accuracy in surgical video analysis.

Generative Representation Learning

Drawing inspiration from the autoencoder-based pre-training methods
used in Natural Language Processing, masked autoencoding techniques
have also been proposed for image and video analysis. The authors of BERT
(Bidirectional Encoder Representations from Transformers) [Devlin 2019]
introduced a denoising autoencoder that operates on discrete representa-
tions. Given the textual information’s compactness and semantic richness,
the masking ratio is kept relatively low, at only 15 %.

Given the high redundancy of information in visual data, the masking
ratio must be adjusted accordingly to prevent trivial reconstruction. Mul-
tiple masking strategies have been designed to make the masked regions
more semantically meaningful. In [Sun 2022], a method has been proposed,
focusing on the image’s high-motion parts using different optical flow in-
formation derivatives. Other works [Wei 2022] preferred using the latent
space for reconstruction, bootstrapping the power of strong SSL features.

Applications to Surgical Data Science In SurgMAE [Jamal 2023b], the au-
thors introduce a modified MAE approach. They employ a targeted to-
ken sampling strategy that selects tokens from regions with high spatio-
temporal activity, addressing limitations associated with conventional ran-
dom masking techniques. The proposed method demonstrates improved
performance on two surgical datasets [Hajj 2019, Sharghi 2020].

2.3.2 Multimodal Self-Supervised Representation Learning

Unlike unimodal representation learning, multimodal representation learn-
ing focuses on aligning the representations from different modalities in a
shared embedding space. The primary objective of these alignment strate-
gies is to enhance the performance of each modality individually while
ensuring that the integration of both modalities improves performance on
downstream tasks.

Multimodal pretraining also increases cross-modal retrieval and predic-
tive coding abilities. By optimizing representations of each modality feature
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in a shared latent space, multimodal representation learning allows for more
robust representations resistant to noise and missing data [McKinzie 2023].

Contrastive Representation Learning

Similar to unimodal contrastive representation learning, methods are de-
signed to optimize the similarity between paired instances using multiple
modalities. One such method is CLIP [Radford 2021], which employs a
dual-encoder approach, where each modality is processed by a separate
encoder. CLIP creates a multi-modal embedding space through the joint
training of an image and text encoder. CLIP aims to maximize the cosine
similarity between paired instances while minimizing the cosine similarity
between other instances, using the InfoNCE loss [van den Oord 2018].

Applications to SDS In their study, Jamal et al. [Jamal 2022] introduce a
multimodal adaptation of the self-supervised clustering method proposed
in [Caron 2020]. Instead of generating multiple augmented views from
the same video frame or clip, the authors leverage synchronized depth im-
ages as complementary views, effectively incorporating depth information
into the image encoder. They demonstrate the efficacy of their approach
through data-efficiency experiments on two surgical workflow monitoring
datasets, OR-AR [Sharghi 2020] and OR-Seg [Li 2020a], evaluating both ac-
tivity recognition and semantic segmentation tasks using external camera
viewpoints.

Cross-Modal Completion

Inspired by the method described in [Devlin 2019], which involves a trans-
former encoder-decoder architecture for predicting masked inputs in an au-
toregressive manner, the authors of [Lu 2019] propose an extension of this
approach in a multimodal context. They mask semantic features from visual
and textual branches and utilize cross-modal connections in the later layers
to effectively fuse information from both modalities.

In CROC [Xie 2024], the authors explore a method for reconstructing
masked visual features that have already been aligned. They use instruction
tokens and unmasked visual features as inputs to an LLM to reconstruct
the masked visual tokens. Instead of using the traditional unique mask
token, they propose a dynamic token pool to replace the masked tokens.
This approach provides better contextual cues and allows for a stronger
masking ratio, which has yielded more effective results with larger ratios.
MultiMAE [Bachmann 2022] adapts multimodal masking to diverse visual
inputs, including depth, RGB images, and semantic segmentation maps.
They maintain a low computational load by employing high masking ra-
tios across different modality encoders. Their experiments demonstrated
strong cross-modal coding capabilities and significant transfer performance
improvements. Their method was later expanded in 4M [Mizrahi 2024] to
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Figure 2.6: Architectures of two different multi-modal masking strate-
gies [Jamal 2023b, Mostafa 2025]. Right: In M33D [Jamal 2023a] au-
thors propose a joint RGB and Depth masking strategy. Left: authors
of [Mostafa 2025] propose using a joint optical-flow RGB masked autoen-
coder.

include not just image-like modalities but also to utilize textual data and
abstract modalities such as human pose and graph data.

Applications to SDS Concurrent with our prior research on OR-
AR [Sharghi 2020], Jamal et al. proposed M33D [Jamal 2023a], a multimodal
masked autoencoder that leverages synchronized intensity and depth maps.
Integrating these modalities within the encoder facilitates the transfer of
depth information into the intensity encoding, resulting in improved per-
formance in OR-AR activity recognition tasks. In contrast, other stud-
ies [Mostafa 2025, Fujii 2024] adopted an alternative approach by adapting
VideoMAE [Tong 2022] to utilize either optical-flow or gaze-based guidance
for selective masking. Specifically, Mostafa et al. [Mostafa 2025] employed
optical-flow guidance to mask image regions exhibiting substantial motion,
compelling their model to concentrate on semantically meaningful regions
within dynamic video clips. Similarly, in EgoSurgeryPhase [Fujii 2024], au-
thors masked regions corresponding to areas of visual fixation, achieving
comparable performance enhancements.

Multimodal Knowledge Distillation

Knowledge distillation was initially introduced by Hinton et al. [Hin-
ton 2015] as a technique to transfer knowledge from a teacher model to a
student model. This process involves training the student model to replicate
the intermediate representations of the teacher model. Although it was ini-
tially designed for model compression, knowledge distillation has also been
explored for cross-modal knowledge transfer, where the teacher and stu-
dent models receive different types of input data [Gupta 2015, Aytar 2016].

Radevski et al. [Radevski 2023] focus on utilizing multimodal data exclu-
sively for pretraining, demonstrating the effectiveness of their approach in
unimodal downstream experiments. They also incorporate layout modal-
ity using object bounding box information during the pretraining phase.
In their work on MM-CDFSL [Hatano 2024], the authors propose distill-
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ing knowledge from pretrained multimodal masked encoders trained using
RGB, optical flow, and hand pose information. They implement ensemble
inference with three different teacher models, achieving state-of-the-art per-
formance on action recognition benchmarks.

2.4 OR Workflow Monitoring

This section reviews literature on video representation learning with a fo-
cus on applications in surgical data science. The first section explores global
appearance-based models for surgical video action recognition, highlight-
ing the evolution from traditional machine learning to advanced deep learn-
ing methods. The second section examines structured semantic representa-
tions derived from abstract modalities, including object detection, human
pose estimation, and superpixel segmentation, introduced previously (see
Section 1.2.3). The third section discusses recent advances in self-supervised
learning for surgical video analysis, addressing annotated data scarcity
through unimodal and multimodal approaches.

Building upon these foundational methods, the following section syn-
thesizes these representation learning techniques within the context of
operating-room workflow monitoring. Specifically, it explores how the
global, structured, and self-supervised methods described earlier have been
adapted and integrated into systems capable of perceiving and analyzing
complex OR environments, including human-pose estimation and auto-
mated detection of communication protocols derived solely from external
camera views.

24.1 Human Pose Estimation and Activity Recognition in
the OR

Occlusions, clutter, and variable lighting challenge HPE in the OR. Early
works like [Kadkhodamohammadi 2014, Kadkhodamohammadi 2015]
leveraged RGB-D inputs and 3D pictorial structures for robust clinician
tracking. The release of datasets such as TUM-OR [Belagiannis 2016]
and MVOR [Srivastav 2018] enabled learning-based, multi-view pose es-
timation. Unsupervised domain adaptation techniques, notably Adap-
tOR [Srivastav 2021], reduced reliance on labeled data and enabled privacy-
preserving models. In parallel to these works focusing on HPE in the OR,
in [Twinanda 2015], authors propose an action classification algorithm us-
ing STIP [Laptev 2003] and HOG features to classify OR video clips into
the proper action class. Surgical activity recognition was later studied
in [Sharghi 2020], by using a two-stage approach with 3D convolutional
networks to extract features on the large OR-AR dataset [Sharghi 2020], and
then training GRU models to model long-range temporal dependencies. Re-
cent work extends this line through multi-view fusion [Schmidt 2021] and
self-supervised training regimes [Jamal 2023b, Jamal 2022].
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2.4.2 Human-Object Interactions and Scene Understanding

Accurately modeling staff-instrument interactions in the OR requires
rich semantic understanding of the scene. Early work by Ladikos et
al. [Ladikos 2008] addressed this problem by reconstructing a 3D repre-
sentation of all objects to predict potential collisions. More recent multi-
camera systems extend this idea, enabling simultaneous tool tracking and
surgeon-hand assignment [Basiev 2021]. Researchers have since broad-
ened the scope from instruments to full-scene semantic segmentation, la-
beling every clinically relevant entity—personnel, instruments, operating
tables, ceiling lights, monitors, and more—to build holistic context maps.
For robotic ORs, Li et al. [Li 2020a] proposed a multi-view 3-D segmenta-
tion framework, while SegmentOR [Bastian 2023b] accelerates annotation
through temporal label propagation. Scene-graph approaches such as 4D-
OR and LABRADOR [Ozsoy 2022, Ozsoy 2023] further structure these se-
mantics, encoding object relationships and procedural roles for higher-level
reasoning. Finally, gaze-estimation techniques [Gershov 2022] complement
physical tracking by capturing attention patterns. This capability can be
integrated into scene graphs to refine our understanding of fine-grained in-
teractions and communication protocols within the OR.

2.4.3 Skill Assessment and Protocol Recognition

Recent work focuses on evaluating technical skills and verifying safety pro-
tocol compliance. Depth-based methods [Zuckerman 2024] enable robust,
anonymous skill metrics extraction by detecting surgeon hands and surgi-
cal tools. Multi-modal OR data supports automatic phase and gesture clas-
sification [Basiev 2021]. Protocol adherence detection, such as recognizing
"Time-Out” and "StOP?” events [Chen 2025], leverages multi-camera video
and team activity modeling. On the protocol side, advanced video ana-
lytics can verify if safety protocols like Time-Outs are conducted, helping
to improve compliance and safety. These developments close the loop in
OR workflow monitoring: We can observe what and who is in the OR and
evaluate how well the team is performing and whether they are following
the critical steps safeguarding patient outcomes. The continuing challenge
lies in generalizing these models to diverse surgical procedures and hospi-
tal settings and integrating them smoothly into the OR without disrupting
routines. Nonetheless, the progress reviewed in this section demonstrates a
clear path toward smarter ORs where Al-driven systems support surgeons
and staff by providing timely insights into workflow dynamics, skill lev-
els, and protocol adherence, ultimately aiming for higher efficiency and im-
proved patient safety.
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2.5 Thesis Positioning

The primary objective of this thesis is to explore how self-supervised learn-
ing methods can benefit from structured video representations based on ab-
stract modalities in surgical data science. In contrast to prior SSL studies that
operate solely on raw pixel streams, we develop multimodal pretraining
objectives over semantically rich abstractions, object layouts, human poses,
and over-segmented visual regions to improve downstream understanding
of surgical workflows.
This research is motivated by three major challenges in SDS:

¢ the high cost of data annotation

¢ the variability in camera angles and frequent occlusions in operating
rooms

¢ the importance of capturing human-object and human-human inter-
actions for fine-grained workflow understanding

Structured representations offer a natural way to address these challenges
by directly embedding prior knowledge about scene semantics into the
learning process.

Our contributions begin with a detailed study of two multimodal OR
datasets [Li 2020a, Sharghi 2020] focused on semantic segmentation and
activity recognition, respectively. We propose a novel pretext task com-
bining unsupervised superpixel segmentation with depth-based privacy-
preserving representations. This task is designed to operate on local visual
features extracted from depth maps.

Furthermore, we explore the integration of structured modalities within
contrastive, generative, and multimodal SSL frameworks. In contrast to pre-
vious work [Jamal 2022, Jamal 2023b, Jamal 2023a], our models are trained
to align and reconstruct information from abstract representations rather
than raw frames alone. This structured supervision improves label effi-
ciency and provides more interpretable visual understanding.

This is the first comprehensive study systematically combining struc-
tured video abstraction with modern self-supervised learning paradigms
for SDS. The outcomes of this thesis pave the way for more data-efficient
and semantically grounded solutions in surgical workflow analysis using
external cameras.
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3.1. INTRODUCTION

3.1 Introduction

The availability of large-scale annotated video datasets has signifi-
cantly accelerated advancements in automatic video analysis. Pop-
ular general-purpose datasets capturing daily-life activities, such as
Something-Something [Goyal 2017], Kinetics [Carreira 2017], and
UCF101 [Soomro 2012], have contributed substantially to progress in
computer vision but often exhibit limited variability due to controlled
recording environments.

In medical domains, particularly surgical data science, privacy con-
straints have restricted the creation of similarly extensive and diverse
datasets. Recent efforts in surgical vision have produced specialized
datasets for various tasks including surgical phase recognition (e.g.,
Cholec80 [Twinanda 2016], CATARACTS [Hajj 2019], MultiBypass140 [La-
vanchy 2023a]) and semantic segmentation (e.g., EndoVis [Allan 2019, Al-
lan 2020], CholecSeg8K [Hong 2020], Endoscapes [Murali 2022]). However,
these datasets predominantly represent internal surgical views and do not
adequately capture the operating room workflow. This is critical for under-
standing human activities and interactions within the OR.

Initial work on room-level understanding by Twinanda et
al. [Twinanda 2015] introduced a private, multi-view RGB-D dataset
comprising fifteen atomic actions in vertebroplasty. Subsequent annota-
tions aggregated these primitives into higher-order activities, yet the data
remain unavailable to the community. Public initiatives have primarily
concentrated on human-pose estimation: MVOR and TUM-OR provide
multi-view RGB-D sequences with clinician keypoints and bounding
boxes [Srivastav 2018, Belagiannis 2016]. While indispensable for pose
research, they include limited or no activity labels, marking OR-level action
recognition as underrepresented.

To bridge this gap, this thesis focuses on analyzing the OR-AR
dataset [Sharghi 2020], aimed explicitly at detecting human activities in the
OR environment across robotic-assisted and traditional surgeries. Addition-
ally, a subset of OR-AR is extended with annotations for detecting OR de-
vices and clinicians. We also present OR-Seg [Li 2020a], a multiview seman-
tic segmentation dataset specifically focusing on robotic-assisted surgical in-
struments, leveraging depth map recordings captured in OR environments.

3.2 OR-AR Dataset

To automatically recognize the different activities related to OR workflow
monitoring, one must first describe them and their critical aspects to anno-
tate them properly without confusion. Here, we will define the 10 activities
annotated in the OR-AR dataset [Sharghi 2020, Jamal 2023b].
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3.2.1 Activity Definitions

¢ Sterile Preparation refers to all preoperative measures taken to estab-
lish and maintain a sterile surgical environment before the first inci-
sion [Kanji 2021]. This phase includes preparing the operating room
and instruments: for example, draping the robotic arms with sterile
covers, organizing and opening sterile instrument trays, and ensuring
all needed equipment is sterile and in place.

¢ Patient Roll-In/Roll-Out Roll-In is the process of bringing the patient
into the operating room and transferring them onto the operating table
at the start of the procedure. This typically coincides with the initia-
tion of anesthesia [Kanji 2021]. Conversely, patient roll-out refers to
transferring the patient off the operating table and out of the OR at the
end of the procedure [Zamudio 2023]. This final transfer occurs after
surgery, complete wound closure, and the patient has been awakened
from anesthesia.

* Patient Preparation involves properly positioning and securing the
patient. The surgical site on the patient’s body is then sterilized (skin
antiseptic prep) and draped with sterile sheets, integrating the patient
into the sterile field [Kanji 2024].

* Robot Roll-Up/Roll-Out denotes positioning the robotic surgical sys-
tem at the patient’s bedside in preparation for docking. Once the pa-
tient is prepped, the OR staff rearrange equipment and clear a path-
way for the robot to approach the operating table. Robot roll-out is
the step of pulling the robotic cart back and away from the operating
table. In other words, the robot is wheeled out of the immediate op-
erative field to allow unobstructed access to the patient for the final
steps [Kanji 2021].

* Robot Docking/Undocking: Robot docking is the process of attach-
ing the robotic system to the patient’s anatomy via the surgical tro-
cars (ports). After the robot has been rolled into place, each robotic
arm is “docked” by connecting it to a port inserted into the patient.
The camera arm is docked first, followed by the robotic arms. Robot
undocking is performed at the end of the robotic portion of surgery,
essentially detaching the robot from the patient. Robot Undocking
requires removing all robotic instruments and disengaging each arm
from the trocars in the patient in a controlled sequence.

* Robotic Surgery is the main intraoperative period the surgeon oper-
ates from the robotic console. After docking, the surgeon (and any
console-assisting surgeons or trainees) physically step away from the
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Sterile Preparation Patient Roll In Patlent Preparation Da Vincl Roll Up Da Vincl Docking

Label Occurences: 15.0% Label Occurences: 1.1% Label Occurences: 29.1% Label Occurences: 1.4% Label Occurences: 2.0%
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Da Vind Surgery Da Vincl Undacking Da Vinci Roll Back Patient Close Patlent Roll Out

Label Occurences: 37.9% Label Occurences: 1.3% Label Occurences: 1.1% Label Occurences: 7.0% Label Occurences: 4.2%

Figure 3.1: Visualization of the ten workflow monitoring activities anno-
tated on OR-AR [Sharghi 2020], with their corresponding label occurrences.
Courtesy of [Sharghi 2020]

patient’s bedside to the console to begin the robotic procedure [Zamu-
dio 2023].

* Patient Close: refers to all the activities in concluding the operation
after the robotic work is done, particularly closing and securing the
surgical incisions. Once the robot is undocked and moved aside, the
surgical team closes any internal fascial layers and then sutures or sta-
ples the skin incisions used for the ports or assist openings.

In [He 2022b, Jamal 2023b], authors discard the sterile preparation activity
in their activity recognition benchmarks. We follow the same evaluation
protocol in [Hamoud 2023, Hamoud 2025].

3.2.2 Acquisition of Videos

Two imaging carts were placed in each room, for a total of four carts, each
equipped with two ToF cameras. The baseline between the cameras on each
cart is 70 centimeters, and their orientation is fixed. This results in a slightly
different view in videos captured by the cameras from the same cart. How-
ever, different carts in the same room are set in strategic positions, such that
if a cart’s view is blocked due to clutter in the scene, the other cart can suc-
cessfully capture the activities. The OR-AR dataset contains 400 full-length
videos extracted from 103 surgical procedures. Videos were taken using
time-of-flight sensors and placed around the OR during robotic surgery.
The data was collected from 27 surgeons and included 30 types of surgeries
across two ORs over two years. The ToF cameras acquire intensity images
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Procedure Time by Stage with Standard Deviation

Time (seconds)

Procedure Stage

Figure 3.2: A breakdown of the different activity durations showing average
duration and associated standard deviation.

based on the reflection of infrared rays and depth maps of the recorded
scene.

3.2.3 OR-Det Dataset

The OR-AR dataset was later extended with bounding box annotations for
persons and objects. Five OR-specific objects and clinicians are annotated
on around 19K frames across 20 full-length videos. Objects that were anno-
tated with bounding boxes were: surgical gurney, sterile/non-sterile table,
patient side-cart (PSC), OR table, vision side-cart (VSC).

3.2.4 Evaluation Metrics

Action Recognition and Activity Recognition We distinguish between
two related but distinct tasks: action recognition and activity recognition.
Action recognition, commonly defined within the computer vision field,
refers to classifying short video clips into action categories. Typically, these
clips illustrate a single action. In contrast, activity recognition involves seg-
menting a more extended video sequence into relevant temporal segments,
each representing a specific activity containing several actions. Within the
SDS community, this task is also known as phase recognition.

* Action recognition (clip classification): Short clips are sampled so
that each lies entirely within a single activity segment (e.g., a 16-
second excerpt taken from the Robot Docking portion of the procedure).
Because every clip corresponds to exactly one label from the shared
vocabulary, the task is a standard multi-class classification problem.
Performance is reported with top-k accuracy, where a prediction is
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Figure 3.3: Above: A breakdown of the type of procedure distribution in
the OR-AR dataset. Below: A breakdown of the surgeon distribution in the
OR-AR dataset.
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Figure 3.4: Components of the da Vinci Surgical System: Patient Side Cart,
Vision Side Cart, and Surgeon Console. (Image courtesy of [Avgousti 2020])

deemed correct if the ground-truth label appears among the model’s k
highest-scoring classes.

* Activity recognition (long-video segmentation): A continuous OR
recording is processed with a sliding window: each window is first
classified by the action-recognition model, after which temporal mod-
eling (e.g.,, GRU [Chung 2014] decoding) produces contiguous time
segments. The resulting timeline is expressed with the same label set,
but now each label spans a variable-length interval. Following prior
work, segmentation quality is summarized by the mean Average Pre-
cision (mAP) over all activity classes [Sharghi 2020, He 2022b].

Object and Person Detection We use the Average Precision (AP) APy5.0.95
metric from COCO for the evaluation, which is the average over multiple
IoU (the minimum IoU to consider a positive match) from 0.5 to 0.95 with a
step of 0.05. We also provide APy5 and APy 75 as extra metrics to evaluate
the different baselines” performance at different precision levels in Table 3.2
and Table 3.1.

3.2.5 Results

Benchmark of SOTA Object Detectors The proposed frameworks in
Chapter 5 rely on detected objects and clinicians in the form of bounding
boxes on the integrity of the OR-AR dataset. As such, we preferably run
SOTA object detectors [He 2017, Carion 2020a, Zhu 2020] to extract layout
information for our object-centric frameworks. The statistics of our detected
objects and the performance of our surgical and clinician detectors are pro-
vided in Tables 3.2 and 3.1.
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Figure 3.5: Visualization of the nine annotated activities in the re-
stricted OR-AR dataset, with the annotated objects from the OR-Det
dataset [Hamoud 2023].

Backbone Method Dataset | AP | AP@0.5 | AP@0.75
ResNet50 Mask-RCNN COCO |76.8 94.0 86.5
ResNet101 Mask-RCNN COCO |783 95.3 87.7
ResNet50 DefDETR COCO |76.9 96.3 87.3
ConvNeXt-B | C-Mask-RCNN | IN1K 79.6 96.3 89.5

Table 3.1: Performance of different object detection methods for clinician
detection. Performance is given in (%). Results are given after fine-tuning
on OR-Det.

Backbone Method Dataset | AP | AP@0.5 | AP@0.75
ResNet50 Mask-RCNN COCO |59.3 86.0 61.6
ResNet101 Mask-RCNN COCO | 60.0 87.6 62.4
ResNet50 DefDETR COCO | 59.7 87.2 62.1
ConvNeXt-B | C-Mask-RCNN | IN1K 61.8 89.3 64.1

Table 3.2: Performance of different object detection methods for surgical
device detection. Performance is given in (%). Results are given after fine-
tuning on OR-Det.

46



CHAPTER 3. ANALYSIS OF TWO OPERATING ROOM WORKFLOW
MONITORING DATASETS

Benchmark of SOTA Activity Recognition Models When introducing the
OR-AR dataset, authors also proposed a comprehensive benchmark of dif-
ferent clip classification backbone models associated with temporal models.
We provide their results in Table 3.3.

Table 3.3: Performance comparison (%) of different backbone and temporal
model combinations.

Backbone Transformer Bi-GRU Uni-GRU TCN

13D 79.30+£0.06 94.04+0.66 90.95+0.74 91.33+0.23
SlowFast 79.42+1.71 94.334+0.19 90.70+0.4 89.79+1.08
TimeSformer 76.234+0.33 93.204+0.04 88.89+0.66 89.59+0.07
Swin 82.50+2.35 95.134+0.35 92.02+0.69 91.54+0.03

3.3 OR-Seg Dataset

Precise localization of robotic surgical devices is crucial for developing
context-aware systems. For example, the pixelwise 3D localization of the
Patient-Side Cart (the part of the surgical robot with robotic arms) could
pave the way for smarter surgical robots to dock themselves automatically.
As such, developing semantic segmentation tools in the robotic OR would
be a necessary step towards semi-autonomous surgical robots.

3.3.1 System Components of the da Vinci Surgical System

The OR-Seg [Li 2020a] provides detailed annotations of the da Vinci Surgi-
cal System’s components, focusing on the Patient-Side Cart (PSC) and the
Vision-Side Cart (VSC). These annotations are instrumental in developing
advanced perception systems for enhanced situational awareness in robotic-
assisted surgical environments.

Patient Side Cart The PSC is the operative component of the da Vinci
Surgical System, positioned adjacent to the patient during procedures. It
comprises multiple robotic arms that manipulate surgical instruments and
an endoscopic camera. Each arm has setup joints and instrument arms
designed to establish a remote center of motion, allowing precise instru-
ment maneuvering while minimizing force on the patient’s body wall. In
the dataset, PSC annotations include the spatial configuration of its robotic
arms.

Vision Side Cart The VSC serves as the visual interface of the da Vinci
Surgical System, housing the imaging and processing equipment necessary
for providing the surgeon with a high-definition, 3D view of the surgical
area. It includes components such as the illuminator, endoscopes, stereo
camera head, camera control units (CCUs), and a touchscreen monitor. An-
notations of the VSC in the dataset encompass its placement within the op-
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Ceiling Light
Mayo Stand

Table
Anesthesia Cart

OR Table

Figure 3.6: A breakdown of the distribution of pixelwise annotations for
each of the eight annotated objects, discarding background.

erating room, the endoscopic camera’s orientation and field of view, and the
interconnections between its various components.

3.3.2 Acquisition of Videos

The data was collected in a clinical development lab, where different robot-
assisted laparoscopic procedures were simulated, and the ToF cameras took
videos. The salient frames, i.e., frames with significant enough differences,
are then extracted from the videos. The dataset has two portions: single-
view and multi-view. The single-view dataset consists of 7980 images. The
data is captured by attaching the ToF cameras on the PSC directly, as shown
in Fig. 3.7. The example images are shown in Fig. 3.7. The color code and
pixel frequency for the eight classes in the dataset (excluding background)
are shown in Fig. 3.6.

3.3.3 Evaluation Metrics

Semantic Segmentation We use the standard mean Intersection over
Union (mloU) metric for our semantic segmentation task. In [Li 2020b],
authors also provide frequency weighted Intersection over Union (fwloU),
which we will also provide in Table 3.4.

3.3.4 Results

The authors also proposed a comprehensive benchmark of different seman-
tic segmentation models when introducing the OR-Seg dataset. We provide
their results in Table 3.4.
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(d)

Figure 3.7: (a) PSC robot with ToF cameras attached (in black rectangles) (b-
e) OP, USM1, USM4, BASE Camera viewpoints from the multi-view dataset.
Courtesy of [Li 2020a].

mloU fwloU
DeepLab V3+ [Chen 2017] 0.670 +0.036 0.857 +£0.014
CREF [Krdhenbtihl 2011] 0.671 +0.036 0.859 £ 0.014
MVPM |[Li 2020a] 0.685 +0.028 0.860 4= 0.011

Table 3.4: Comparison of mloU and fwloU for different models. Courtesy
of [Li 2020a]

3.4 Conclusion

In summary, this chapter has characterised the two datasets that underpin
all subsequent experiments in this thesis, OR-AR [Sharghi 2020] for mul-
tiview workflow monitoring and OR-Seg [Li 2020a] for pixel-accurate seg-
mentation of robotic devices. By comparing them with existing resources
(Table 3.5), we have shown that they uniquely combine depth imagery,
room-level activity labels, and detailed object annotations, filling critical
gaps in surgical-vision benchmarks. The algorithms developed in the fol-
lowing chapters will leverage these datasets to advance state-of-the-art per-
formance in activity recognition and semantic segmentation, ultimately con-
tributing to safer and more autonomous surgical workflows.
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Table 3.5: Comparison of Operating Room Datasets for Segmentation and

Activity Recognition

Dataset (Year) Modalities Camsg Size Annotation Real
Proc.
VerCArm?24 RGB-D (3x 3 1734 Action/Phase v’
[Twinanda 2015] | Asus Xtion), multiview | labels
synchronized video clips
views
sensORs RGB-D (2x 2 | 16 videos Action/Phase X
[Bastian 2023a] Kinect), 24 hours labels
synchronized
views
TUM-OR RGB (5x), 5 | 7000 2D /3D human X
[Belagiannis 2016] | synchronized multi-view | pose estimation
views frames
MVOR RGB-D (3% 3 |732 2D /3D human v
[Srivastav 2018] Kinect), multi-view | pose estimation
synchronized frames
views
4D-OR RGB-D, point 6 6,734 3D boxes, scene X
[Ozsoy 2022] clouds from timepoints | graphs, role
simulated OR labels
MM-OR RGB-D video, 8 92,983 Panoptic v
[Ozsoy 2025] audio, total; segmentation,
transcripts, 25,277 scene graphs,
robot logs labeled temporal labels
OR-AR ToF depth, IR 4 | =100 hours | Temporal v’
[Sharghi 2020] intensity from 103 phase/activity
procedures | labels
OR-Seg ToF depth, IR 4 7,980 Pixel-wise 2D v’
[Li 2020a] intensity single- semantic
view; 100 segmentation
multi-view
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4.1. INTRODUCTION

Figure 4.1: Visualization of a surgical scene with superpixel clusters repro-
jected and colorized on the point cloud.

This chapter introduces a novel self-supervised learning framework de-
signed to achieve efficient, privacy-preserving context awareness in robot-
assisted surgical environments. Our approach leverages spatial depth in-
formation captured by Time-of-Flight cameras to minimize dependency
on manual annotations. Extensive benchmarking against established self-
supervised methods, including RotNet [Gidaris 2018] and CPC v2 [van den
Oord 2018], demonstrates superior data efficiency and performance across
two publicly available datasets. This chapter is adapted from the following
publication:

HaMoOUD, I., KARARGYRIS, A., SHARGHI, A., MOHARERI, O., PADOY,
N. (2022). SELF-SUPERVISED LEARNING VIA CLUSTER DISTANCE
PREDICTION FOR OPERATING ROOM CONTEXT AWARENESS. IPCAI-
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND
SURGERY, 17(8), 1469-1476.

41 Introduction

While robot-assisted surgery can enhance surgical outcomes, it also intro-
duces additional complexities into operating room (OR) workflows, increas-
ing the potential for procedural errors [Sheetz KH 2020, Catchpole 2015].
Recent technological advances enable the integration of sensor-based data
collection within ORs, facilitating context-aware frameworks that have the
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potential to significantly improve workflow understanding and surgical
team coordination [Dias 2020].

Current computer vision and deep learning approaches have suc-
cessfully enabled detailed three-dimensional (3D) scene understanding in
ORs [Srivastav 2018, Sharghi 2020, Li 2020b], yet heavily rely on manual ex-
pert annotations. These annotations present substantial practical limitations
due to their high time and resource demands.

Addressing this limitation, we propose a self-supervised method based
on predicting relative Euclidean distances between superpixel regions in
depth images. Our approach is implemented through a two-stage encoder-
decoder architecture. In the first stage, we introduce an innovative pretext
task that learns viewpoint-invariant spatial relationships inherent to depth
data, crucial for reliable surgical context awareness. This viewpoint invari-
ance arises naturally from the consistent spatial distances between anatom-
ical and operational structures, irrespective of camera positioning.

In the second stage, we fine-tune the pretrained encoder for two surgical
perception tasks: activity classification and semantic segmentation, demon-
strating substantial data efficiency by reducing labeled data requirements
progressively. To validate our approach comprehensively, we benchmark
against established self-supervised techniques RotNet [Gidaris 2018] and
CPC v2 [van den Oord 2018], adapting these methodologies specifically for
depth data from ToF cameras.

The main technical contributions of this chapter are:

¢ Introduction of a novel viewpoint-invariant, self-supervised pretext
task specifically tailored for depth data obtained from ToF cameras,
addressing both data annotation challenges and privacy concerns

¢ Comprehensive experimental validation and benchmarking on two
public surgical datasets [Sharghi 2020, Li 2020b], confirming our
method’s superior effectiveness and generalizability compared to cur-
rent self-supervised learning approaches.

4.2 Methodology
4.2.1 Proposed Pretext Task

The robotic operating room is a highly streamlined platform in which the
personnel and objects are expected to follow a certain protocol and be at a
specific place at a specific time. Relative positions of objects in the room
can provide powerful information to integrate into surgical workflow anal-
ysis. In contrast to other pretext tasks, such as the one proposed in [Do-
ersch 2015], where only the 2D relative position of patches is used, our
pretext task aims at taking advantage of the depth information by predict-
ing the relative distance of objects in 3D without any annotations. To this
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Figure 4.2: Selected Superpixels Displayed After Filtering.

Superpixel based Filtering based on Pairing and distance
clustering heuristics generation

Figure 4.3: Pretext task annotation generation process using
SLIC [Achanta 2012] superpixel segmentation.
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end, we propose a new sampling method to extract homogeneous clusters
from our depth map (see Fig. 4.1) so each cluster belongs to one specific ob-
ject. Depth maps from different views are analyzed independently in our
work. Inspired by Ouyang et al., we propose a superpixel-based approach
to compute our clusters. Superpixels tend to be small-scale, dense image
regions that offer a nice and smooth unsupervised segmentation [Felzen-
szwalb 2004, Achanta 2012]. In this work, we employed the Simple Linear
Iterative Clustering (SLIC) method [Achanta 2012] because it is faster and
more memory efficient than other existing methods. In addition to these
quantifiable benefits, SLIC is easy to use and offers flexibility in terms of
compactness and the number of superpixels it generates.

4.2.2 Self-supervised labeling strategy

Superpixel Generation To extract homogeneous regions from our depth
map, SLIC [Achanta 2012] is used to define regions of an overall identical
depth and thus likely belonging to the same object (see Fig. 4.6). In our
experiments, we used the scikit-image implementation of SLIC. SLIC algo-
rithm clusters pixels in the five-dimensional space defined by the CIELAB
color components (I,4,b) and the pixel coordinates (x,y). We convert our
depth map information by repeating the L value 3 times for the RGB chan-
nels. The distance measure D used in SLIC combines color similarity and
spatial proximity, and is defined as:

m 2
D= \/ a2+ (G - dy) (4.1)
where:

e dlab is the Euclidean distance between the color vectors of the cluster
center k and pixel i in the CIELAB color space:

diap = \/ (I — 1% + (@ — )% + (b — by)? (42)

* dxy is the Euclidean distance between the spatial coordinates of the
cluster center k and pixel i

dyy = \/(xk — %)%+ (yk — vi)? (4.3)

¢ m is the compactness factor that limits adjacency degree and controls
the overall irregularity of superpixel shape.

¢ S is the grid interval, approximately equal to v HW /K, where H and
W are the image dimensions, and K is the desired number of super-
pixels.
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Algorithm 1: SLIC with Gaussian Smoothing

Input: Image I of size H x W, number of superpixels K,
compactness m, Gaussian smoothing parameter o
Output: Label map L with superpixel assignments
1 Apply Gaussian smoothing to image I:  Isnooth < Go * [;
2 Compute grid interval: S < vHW/K;
3 Initialize cluster centers Cy on a regular grid with spacing S;
1 Move each Ci to the lowest gradient positionina 3 x 3
neighborhood;
Initialize L(i) < —1, D(i) < oo;
repeat
foreach cluster center C do
foreach pixel i in 2S x 2S region around Cy, do
Compute color distance:

© ® N & wu

diap = \/(lk —1i)* + (ak — a;)* + (b — b;)?

Compute spatial distance:

dxy = \/(xk - xi)2 + (yk - yi)z

Compute combined distance:

Ds(i) = \/dlzab + (% : dxy>2

if D(i) < D(i) then

10 D(Z) — Ds(i),‘
11 L L(i) — k;

12 | foreach cluster k do
13 | Update Cy as the mean of all assigned pixels;

'y

14 until convergence or max iterations;
15 Enforce connectivity by relabeling disconnected components;

The approximate number of segments to be generated by SLIC was cho-
sen as 500, based on experiments and qualitative training data analysis. We
also choose o = 3 as width of the Gaussian smoothing kernel for preprocess-
ing the image to consider the noise in the depth maps. The compactness is
chosen as m = 3 to balance the importance between spatial proximity in the
image coordinates and depth proximity in the image intensity.

Filtering noisy clusters & Generating Pseudo-labels Once the superpix-
els are generated, we filter them using heuristics based on the convexity of
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Filtered Superpixels Proportion Superpixel Count per Image Single-Class Pixel Percentage
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Figure 4.4: Statistics on (a) proportion of filtered superpixels per image, (b)
number of superpixels per image, (c) percentage of pixels belonging to a
single class in each superpixel on OR-Seg [Li 2020a]
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Figure 4.5: Distribution of width and height of superpixel clusters on OR-
Seg [Li 2020a].
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the superpixel region (solidity over 0.75), the disparity of the depth inside
the cluster (std under 0.2m), and the number of missing values in the cluster
(less than 5%) to prevent having regions with too much noise. These heuris-
tics were chosen based on preliminary studies on our training data. We
are only interested in compact regions with very low deviation in the three
spatial directions. These superpixels can then be mapped to a set of points
in the corresponding point cloud. The available camera intrinsics and the
depth information are used to compute the corresponding coordinates for
each point in our clusters. In the end, we obtain for each image I a set of
point clusters {SP;, ..., SPy} and define the distance between two clusters
as the euclidean distance between the two centroids of the two point clouds
(see Fig. 4.6):

SP; = {x%,..., x}\,l} SP, = {x%,..., xlz\,z} xf cR3 (4.4)
YNl Y2 2

C==5F—+ Q== 45

N 2 N, (4.5)

SPiist = [|C1 — Co]2 . (4.6)

The euclidean distance between the superpixel clusters is regressed on the
distance between the corresponding learned representations in the feature
space, as expressed below:

hSP1 = fextract(DSPl) hSP2 = fextract(DSPQ) (4-7)
I, = ||hsp, — hsp,||2 (4.8)
Lpretext = ||ZZ - SPdistHl . (4~9)

where hsp, represents the feature vector extracted from our network fextract
by giving the corresponding depth map patch Dgp, as the input. Lpretext is
the loss regressed by our network illustrated in Fig. 4.6 and described in the
next section.

4.2.3 Encoder-Decoder architecture

Feature Extraction: ResNet-50 [He 2015] has been successfully employed
in many works for both semantic segmentation and activity detection. In
this work, we also utilize the same architecture as our backbone visual fea-
ture extraction model. This model maps 224 x 224 x 1 depth maps to a
feature space of size 9 x 9 x 2048. It is trained on frames extracted from the
videos without any temporal context.
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@epth Map H*W  Encoder-Decoder: FCN-32-ResNet-X ~ Output: Feature Map H*W*C \
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Figure 4.6: Framework used for self-supervised learning; numbers 4 and 5
on feature vectors refer to Figure A.3.

Architecture: To retrieve features at a superpixel level, we need to upscale
our feature space. This work uses FCN-32 [Shelhamer 2014] with a ResNet
backbone [He 2015] as our encoder-decoder architecture for simplicity and
computational efficiency. This architecture only contains one deconvolu-
tional layer and one upsampling module, resulting in a 224 x 224 x 32 fea-
ture map. We keep the same architecture for our semantic segmentation ex-
periments as for our pretext task. In contrast, we only keep the pretrained
ResNet encoder with a global average pooling and a fully connected layer
on top for our activity classification experiments.

Superpixel Sampling module (SPS): We sample the cluster features from
the decoder output map. We use the superpixel map’s external knowledge
to retrieve the position from which we sample our features. For each pair of
clusters, we consider the smallest bounding box around the superpixel and
extract the features from those two bounding boxes (see Fig. 4.6). Once those
features are pulled from the decoder output, we resize them to compute an
element-wise I, loss between them. The superpixel features are resized to
20 x 20 x 32.

4.2.4 Semi-supervised Learning: Semantic Segmentation &
Activity Classification

Methodology: Some critical studies on self-supervised learning have
demonstrated that results were dependent on the complexity of the dataset,
of the downstream task at hand, of the architecture used, and, of course, of
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Figure 4.7: t-SNE [van der Maaten 2008] visualization of the superpixel fea-
tures learned from the pretext task.

the amount of supervision [Newell 2020, Asano 2020]. Our aim is to answer
those concerns by demonstrating the utility of our method on two differ-
ent architectures with different complexities and two different downstream
tasks.

Evaluation Metrics: We use the same evaluation metrics as in the related
publications [Li 2020b, Schmidt 2021, Sharghi 2020], where mean average
precision (mAP) and mean intersection over union (mloU) are used to effec-
tively compare the results.

4.3 Experiments and Results

4.3.1 Operating Room Awareness Datasets

To demonstrate the applicability of our method, we use the following two
recent datasets captured from the OR and containing depth image data.

4.3.2 Unsupervised evaluation of self-supervised task

The t-SNE [van der Maaten 2008] method is a dimensionality reduction
method widely used in computer vision to evaluate qualitatively the fea-
tures learned by a neural network. In our case, each point in the 2D point
cloud represents the features belonging to one superpixel and extracted
from our SPS module.

Superpixel segmentation provides an oversegmentation of our image, so
it is very relevant to cluster the features extracted from those regions. These
features are obtained without supervision, and as we can see on Fig. 4.7, our
pretext task manages to learn identifiable clusters for most of the semantic
classes appearing in our semantic segmentation dataset. This is visible for
less frequent classes like the ceiling light and more frequent classes like the
human and OR table.

60



CHAPTER 4. DEPTH-BASED OR WORKFLOW MONITORING WITH SUPERPIXEL
SELF-SUPERVISION

4.3.3 Semi-supervised learning and data efficiency experi-
ments

Pretraining protocol: We evaluate our method against three baselines:

(1) In the first setting, we train from scratch without pretraining to mea-
sure the benefits of the other self-supervised methods.

(2) The first self-supervised baseline is RotNet [Gidaris 2018], which is
trained for 200 epochs to predict different rotations that have been applied
to the initial image following the implementation from Gidaris et al. [Gi-
daris 2018].

(3) The second self-supervised baseline is CPC v2 [van den Oord 2018]
trained using the authors” implementation for 200 epochs.

Our pretext task is trained with a learning rate of 3e-4 and a batch size of
32 for 200 epochs. We also ensure that all our baselines are trained fairly by
saving only the best-performing model on our validation dataset over 200
epochs.

Finetuning protocol: We evaluate our method semi-supervised with dif-
ferent amounts of annotated data (2%, 5%, 10%, 20%, 50%, 100%). We follow
the usual semi-supervised learning protocol and run our experiments with
ResNet-18 and ResNet-50 to show that our results do not depend on the
network complexity. Our results are averaged across five different random
splits for all different data regimes, to account for the randomness intro-
duced by sampling a small amount of data, as done in [Rofs 2018].

Downstream performance: The results are shown in Fig. 4.8. They
demonstrate the usefulness of the proposed task as a new pretraining task,
as it outperforms training from scratch, as expected. The gap becomes
smaller for all self-supervised pretraining experiments as we gradually in-
crease the amount of supervision. Our pretrained task consistently outper-
forms the two self-supervised approaches on the low-data regime across the
two architectures and tasks. It performs similarly in the high-data regime
for both tasks. The dominant takeaway is that self-supervised initialization
is especially helpful in lower-data regimes and often retains a small advan-
tage even at higher data fractions. For example, on activity classification,
our proposed task achieves the same mAP performance as training from
scratch using only half the number of annotations at 5% and 50%.

Statistical Significance Analysis: Using a Wilcoxon signed-rank test, we
further measure the statistical significance of our proposed pretext task per-
formance compared to the “scratch” baseline. We perform the significance
analysis for all data fractions, based upon the collected p-values adjusted by
Dunnett’s test across splits and Bonferroni-Holm correction across data frac-
tions. Our proposed method shows significant (p << 0.05) improvement on
both downstream tasks for the low regime data, up to 20% for semantic seg-
mentation and up to 10% for activity classification. It even shows significant
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Figure 4.8: Median mloU and mAP with Interquartile Range (IQR) as a func-
tion of training available labels as described in section 4.3. Our method out-
performs the baseline method without pretraining and is on par with other
self-supervised methods.

contributions for semantic segmentation to beat a narrower 0.01 significant
level on the three lower data fractions (2%, 5%, 10%).

4.4 Conclusion

In this chapter, we explored the use of self-supervision on depth maps to
improve semantic segmentation and activity recognition tasks in the sur-
gical operating room. To this end, we introduced a novel 3D-based pre-
text task that leverages the geometric structure of the OR layout. Our ap-
proach was compared with established self-supervised methods such as
RotNet [Gidaris 2018] and CPC v2 [van den Oord 2018], showing notable
performance gains in low-data regimes, highlighting the effectiveness of our
depth-driven supervision strategy.

While promising, our method currently falls short of state-of-the-art per-
formance benchmarks [Li 2020a], as reported in Table 3.4. This is partly
due to using a relatively simple FCN-32 architecture [Shelhamer 2014] and
ResNet backbones [He 2015]. These choices were made to isolate the pre-
text task’s effects, rather than optimize final segmentation performance. We
leave it to future work to focus on integrating our self-supervised depth-
based strategy into more advanced segmentation frameworks to realize its
full potential.
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While our self-supervised approach enables unsupervised oversegmen-
tation of the scene, the resulting superpixels lack semantic content, as they
are derived solely from depth cues. This limitation motivates the explo-
ration of strategies that incorporate higher-level semantic features to en-
hance the integration of abstract modalities. Accordingly, the next chapter
shifts focus toward incorporating object detection outputs, rich in both cat-
egorical and spatial information, to bridge this semantic gap and advance
the effectiveness of our multimodal scene understanding framework.
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5.1. INTRODUCTION

This chapter tackles the challenge of recognizing actions based on spatial
layouts by employing specialized object and person detectors. It focuses on
object-centric video analysis, modeling the geometric interactions among
surgical devices to generate informative representations for clip-level action
classification. The primary goal is to explore how an object-centric learning
approach can enhance the recognition of surgical activities by utilizing the
spatial positions of surgical instruments and clinicians as key distinguishing
features.

To achieve this, our approach unfolds in two primary steps. First, we in-
troduce a model that leverages category information from semantically de-
fined surgical objects, alongside spatial details derived from bounding box
coordinates. This initial model employs straightforward MLP modules for
object-centric reasoning. We then integrate these object-centric representa-
tions with traditional features extracted through a 3D CNN [Carreira 2017].

In the second step, we further advance our exploration by transitioning
to a permutation-invariant transformer-based architecture. This improved
model uses object-level features within a masked autoencoding framework,
establishing a pretraining objective designed to enhance the overall effec-
tiveness of our surgical activity recognition pipeline. Data-efficiency exper-
iments conducted throughout demonstrate the performance gains achieved
through this two-step, object-centric methodology.

This chapter is adapted from the following publication:

HaMOUD, 1., JAMAL M. A, SRIVASTAV, V., MUTTER, D., PADOY, N., MO-
HARERI, O. (2023). ST(OR)2: SPATIO-TEMPORAL OBJECT LEVEL REA-
SONING FOR ACTIVITY RECOGNITION IN THE OPERATING ROOM. MED-
ICAL IMAGING WITH DEEP LEARNING (MIDL)

5.1 Introduction

Recognizing surgical actions from low-resolution RGB or Time-of-Flight
(ToF) videos presents significant challenges due to visual clutter from vari-
ous surgical instruments and the complexity of multi-agent interactions. Re-
cent research indicates that incorporating object-centric features can effec-
tively address these challenges by highlighting critical visual regions related
to surgical activities. Prior approaches, such as STIN [Materzynska 2019],
STRG [Wang 2018], STLT [Radevski 2021], and ORViT [Herzig 2022],
leveraged annotated bounding boxes or general-purpose object detectors,
primarily targeting single-agent scenarios within standard environments.
However, robotic surgical contexts require specialized, domain-specific de-
tectors capable of accurately handling unique surgical instruments and in-
teractions among multiple clinicians.

To this end, we initially introduce ST(OR)?, a framework that utilizes
multilayer perceptron models built on spatial and semantic object-centric
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features. These features are derived from dedicated detectors trained to
identify surgical devices and clinicians in Robotic-Assisted Surgery (RAS)
environments. The extracted object-centric representations seamlessly inte-
grate with conventional appearance-based features, enhancing overall ac-
tivity recognition performance.

Building upon this, we propose an improved method, ORDynaRe, which
advances the architecture of ST(OR)? by introducing permutation invari-
ance and effectively modeling multiple instances within the same object cat-
egory, particularly for clinicians. ORDynaRe incorporates a self-supervised
learning approach tailored explicitly for surgical action recognition. It be-
gins with an off-the-shelf detector previously trained with supervised learn-
ing on annotated subsets of surgical data to identify clinicians and surgi-
cal instruments. Subsequently, this detector generates pseudo-bounding
boxes for unannotated training data, enabling the creation of robust, object-
centric representations. These representations are then projected into high-
dimensional spaces, temporally aligned using bounding box confidence
scores, and serve as inputs for a novel self-supervised pretraining strategy
inspired by masked image modeling techniques (e.g., VMAE [Tong 2022],
MaskFeat [Wei 2022], and MME [Sun 2022]). In contrast to traditional pixel-
based masking, our approach applies masking directly at the object-token
level within a transformer-based architecture, predicting both the classes
and positions of masked tokens.

This self-supervised methodology substantially enhances ORDynaRe’s
generalizability, allowing it to achieve robust performance even with lim-
ited labeled data. Experimental evaluations demonstrate that ORDynaRe
consistently improves object-centric model accuracy across varying super-
vision levels, matching or surpassing global, clip-based feature methods
when trained with as little as 20% labeled data.

5.2 Methodology

In this section, we will detail the methodologies of the two different archi-
tectures we iteratively proposed to model spatio-temporal layout effectively
for activity recognition in the OR. We first detail our MLP-based approach,
which shows improvements, even though the design of the method does
not allow for permutation invariance, and we were forced to aggregate the
features coming from different entities of the same category into a single
vector representation. Our extension of the architecture using multi-head
attention [Vaswani 2017] allowed us to better handle different entities of the
same category.

5.2.1 ST(OR)?: A MLP Based approach

We propose Spatio-Temporal Object-level Reasoning in the Operating Room
(ST(OR)?) for OR surgical activity recognition. ST(OR)? takes as input the 2-
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frame t4 frame t, frame tg

Object Categories

O Human

OR Table

Patient Side Cart
(PSC)

Action

Rollback of daVinci
robot

Figure 5.1: Example video illustrating the “daVinci Rollback” action class.
Our method emphasizes geometric interactions between semantically iden-
tified objects. In this instance, the proximity of a clinician to the PSC and
their movement away from the OR table serve as strong indicators for accu-
rately predicting the action.

d bounding boxes extracted from a T frame-long clip. We use the bounding
box geometric and semantic information about each object class to build our
graph. We use our spatio-temporal object graph to reason over the objects’
relative locations to recognize clip actions based on interaction dynamics.
This backbone is the first stage of our long video segmentation, allowing us
to extract reliable features.

In the second stage, we use the features extracted from our clip-based
model to train a temporal sequence model to capture long-range dependen-
cies in the videos.

Object-Centric Representation

We sample short T-frame-long clips from each phase of the longer OR surgi-
cal videos to train our backbone. Each object appearing in those frames will
serve as a node of our graph. Inspired by STIN [Materzynska 2019], each
node will be associated with specific features grounded on the position and
category of the object (cf Figure5.2).

Person/Object Detection We infer bounding boxes for all videos using
two Cascade Mask RCNN [Cai 2018] with a ConvNext backbone [Liu 2022]
pretrained on the OR-Det dataset introduced in Chapter 3, containing OR
images for human and RAS-specific objects. We will use N bounding boxes
for each frame of the videos. If a frame has fewer than N boxes, the remain-
ing feature vectors are padded with zeros.

Spatial Position Embedding We represent object position using their
bounding box coordinates as a 4-d vector containing center coordinates and
the width and height of the box. This 4-d vector is then forwarded to a

68



CHAPTER 5. SELF-SUPERVISED MASKED OBJECT EMBEDDING PREDICTION
FOR OBJECT-CENTRIC OR ACTIVITY RECOGNITION

multilayer perceptron to obtain a d-dimensional embedding.

iy = MLPSPE(bOXZ',t) i€ {1, . .,N}, t e {1, . ,T} (5.1)

Category Embedding We use the knowledge about the classes of objects
to enhance each node’s representation. Each of those C classes will be asso-
ciated with a d-dimensional learnable embedding, which is randomly ini-
tialized from an independent multivariate normal distribution.

classi; =ce€ {1,...,C} «j; =Embed, ic{l,... N}, te{l,...,T}
(5.2)
Both spatial position and category embedding are concatenated and
passed through an MLP to obtain a fused representation for each graph
node.

Xi = MLPpysion(0i¢|lis) i€{1,...,N}, te{l,...,T} (5.3)

Spatio-Temporal Reasoning

Category-wise Aggregation We aggregate features of objects in the same
category by summing them together. This alleviates any need to track dif-
ferent instances of the same class across frames, but it also discards instance-
specific information for humans.

pep= Y, xyp ce{l,...,C}, te{l,...,T} (5.4)

class; ;=c

Temporal-Category Interaction Module Using the aggregated features
for each object category, we first carry out temporal reasoning across cat-
egories after concatenating the ¢ features for each frame t of the clip.

¢c = MLPreyp(@cil|--||@er) c€{1,...,C} (5.5)

Once we obtain a feature vector representing the temporal evolution of
each object category, we perform category-wise reasoning over the concate-
nated features of each category to get a clip-level representation. We use a

cross-entropy loss on the output probabilities to train our clip classification
backbone.

Gelip = MLPCategory((Pc:l‘|---| |pc=c) (5.6)

Our object-level representation can also easily be combined with video

appearance features extracted from a 3D CNN; in our experiments, we will
be using I3D [Carreira 2017].
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Figure 5.2: Architecture of the ST(OR)? method: We first build our object
graph and aggregate features category-wise. In the second step, we reason
over time for each category, and then we reason over categories to obtain a
clip-level feature vector for action classification.

Temporal Sequence Modeling

Following our clip-based feature extraction, each video is then represented
as v; = {¢1,..., 7} with ¢; being the feature extracted from the t”* clip.
Those features can then be concatenated with the I3D features and fed to
Uni-GRU [Chung 2014]. This allows us to deal with long-range tempo-
ral dependencies and obtain a more robust temporal segmentation for long
videos.

5.2.2 ORDynaRe: A self-supervised Spatial-Temporal
Transformer approach

Unlike CNNs and RNNs, which are designed with specific inductive biases
based on the input type. Transformers [Vaswani 2017] can take as input
any type of unordered input, as long as the dimensions of the input are
kept constant across batches. They can be further expanded with specific
spatio-temporal information in positional embeddings. Our unordered set
of object layout information falls into this category. One way to alleviate
the manual supervision for activity recognition is to pretrain the model in
a self-supervised fashion on unlabeled videos before fine-tuning it for the
downstream task. Below, we introduce the proposed object-centric repre-
sentation, present our pretraining strategy, and discuss how it is integrated
with a transformer-based architecture.
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Figure 5.3: A schematic of our masking strategy. (A) Objects and persons
are detected and tracked across video frames, and the longest tracklet is
selected for masking. (B) The first and last bounding boxes of the tracklet are
retained as context, while object features in intermediate frames are hidden.
(C) A transformer processes the unmasked features to predict the position
and semantic class of the masked objects.

Object-Centric Representation

Tracking of Human/OR Objects To segment each frame of our clips
into object representations, we make use of two pretrained Cascade Mask
RCNN [Cai 2018] object detectors using a ConvNext backbone [Liu 2022],
same as in 5.2.1. The detectors are pretrained on OR images for human and
RAS-specific objects. We use N bounding boxes per frame of the videos,
with N being the maximum number of detected objects in a single frame.
We later link the boxes temporally using heuristics on bounding box over-
lap and object detection scores similarity.

Object Token Representation Each detected object is represented by its
(box)
it

ception (MLP) to obtain the spatial position embedding c;; € R?, (b) cate-
gory embedding «;; € R? initialized from a multivariate normal distribu-
tion for each of the C object categories, and (c) ROI pooled features p; ; € RY
from the detector. The spatial position embedding and category embedding
are fused and then concatenated with the ROI features, unlike ST(OR)?. We
further add a temporal positional encoding PE; € RR**“ to each object to-
ken ¢;; based on the order of the frame it belongs to in the clip, as can be

(a) bounding box information b € R* that is fed into a multilayer per-
& yer p
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seen in Figure 5.4. As transformers [Vaswani 2017] are order-invariant, we
need a way of including temporal information, which was handled by the
temporal interaction module in ST(OR)?.

@it = [MLPfysion ([0 %)) ||0i¢] + PE (5.7)
Masked Object Prediction

Our unsupervised task follows the mask-and-predict paradigm of the exist-
ing masked video modeling task [Tong 2022, Wu 2021]. Still, it replaces the
patch-level reconstruction objective by predicting the position and semantic
class of the masked object.

Notations: In our case, we mask object embeddings and train the model to
infer the content of their representations using its knowledge of unmasked
objects. Specifically, during training, we multiply each object’s representa-
tion by p;; € {0,1} before feeding it into the transformer. Let ¢;, be the

transformed token representation; we define (box) p(class) - (feature) aq the
linear heads on top of each transformed token to predict respectively the
bounding box coordinates, class and initial feature vector of the masked to-
ken.

Loss Functions: The unsupervised prediction loss is defined as the
weighted sum of a cross-entropy loss [(%55) on the semantics of each
masked object, a regression loss (**) to predict the bounding box coordi-
nates, and an auxiliary loss [(/¢47¢) to regress the initial features using an I,
loss. The “feature” loss serves as a regularization constraint since, in early
training steps, the spatial position embedding of each object token has not
been properly learned yet.

l(mask) _ l(ctlass) + lj(,lZOX) + Afeature ) ll(,{eature) (5.8)

it i

l(mask) _ Z(l . ,ui,t) . l(mask) (5_9)

1,t
it

Similarly to [Carion 2020b], we adopt a soft version of Intersection over
Union in our box loss, together with an /1 loss; this helps predict more accu-
rate bounding boxes and deal with frequent scale issues.

1999 = Apy - [RO9 (g7 ) = b)) 4 Ay, - (1 — gToU (B8 (g,), b))

it b it
(5.10)
Masked Object Sampling: For each clip we consider every short-term
tracklets of objects { (¢, box;;)|7;(t) = j, Vt,i} as a masking candidate. Ide-
ally, we would like our sampling strategy to ensure class balance in terms of
masked instances to ensure that our model learns meaningful information
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Figure 5.4: Architecture of ORDynaRe for action recognition: We first to-
kenize our videos at the object level. A special [CLS] token is appended to
the object tokens. We reason over space and time jointly as our transformer
attends to all objects across the video. The [CLS] token can be fused with
the appearance features using late concatenation for action prediction.

for all classes. We randomly sample a category and pick a random tracklet
belonging to this categorys; if it is present, we will otherwise pick the longest
tracklet candidate. We mask the object tokens corresponding to this tracklet,
but keep the first and last token as context (Figure 5.3). Of course, other set-
tings using multiple objects per frame masking could have been considered.
The current setting discards the potential benefits of non-local prediction by
using longer temporal ranges.

Fine-Tuning on Action Recognition

We propose a simple yet effective transformer-based approach operating on
a finite sequence of object vectors in IR?. We append a learned vector [CLS]
(Figure 5.8) as the first token of each sequence (akin to the [CLS] special to-
ken in [Bao 2021]) and use the output vector corresponding to that position
for clip-level action recognition. This vector can later be concatenated with
the globally extracted feature vector from an appearance model. We use a
linear head /(*") on top of the [CLS] token to output a probability vector.

When fine-tuning our model, we initialize the transformer and the lin-
ear layers that define our object tokens with the self-supervised pretrained
weights.
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5.3 [Experiments and Results

5.3.1 Dataset

We use the OR-AR dataset [Sharghi 2020], a large-scale dataset containing
up to 400 full-length videos from 103 surgical procedures. The collection
of the videos is achieved using 4 Time-of-Flight cameras positioned in key
placements on two different carts to capture the full OR comprehensively.

Temporal Annotations: Nine activities relative to RAS are annotated on
the dataset. The activity classes are highly imbalanced. Rollback and Roll-
out of the daVinci usually last between one and two minutes, while activ-
ities like Patient Preparation can last more than an hour. We use temporal
annotations to fine-tune our method on the action recognition end task.

Spatial Annotations:

The human and object detectors we use to extract object information are
trained on the OR-Det dataset introduced in Chapter 3. We provide the de-
tailed performance per class of the object and human detectors in Table 5.5.

5.3.2 Experiments

In our ORDynaRe experiments, we use a multi-head Attention trans-
former [Vaswani 2017] on top of our learned object token embeddings. We
set the number of layers and heads of our transformer to 8 and 12, respec-
tively. The dimension d of the object embeddings is chosen as 512. We select
I3D [Carreira 2017] as our feature extractor for our experiments involving
appearance-based models, but our approach can be applied to any other
spatiotemporal models. We measure performance on both clip classifica-
tion and long-video phase recognition, which we refer to as surgical action
recognition and surgical activity recognition, respectively.

Baselines

We examine the performance of our object-centric methods against multiple
baselines: (1)ORDynaRe (No SSL) method serves as a fundamental baseline
to demonstrate the utility of our pretraining. (2)I3D [Carreira 2017] is a
popular 3D CNN pretrained on Kinetics. It has been largely adopted in the
community. (3)I3D+STRG [Wang 2018] is an object-centric approach using
box information output by a pretrained RPN [Ren 2016]. This showcases
the effectiveness of our object-centric architecture. (4) TimesFormer [Berta-
sius 2021], and (5) MotionFormer [Patrick 2021] as the global image-centric
baselines. We choose (6) STRG [Wang 2018] and (7) ORViT [Herzig 2022] as
the local object-centric baselines. And also our (8-9) ST(OR)?
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Table 5.1: Results and comparison against baselines for OR surgical activity
recognition on complete procedures. mAP (%) is reported across three splits
for all data fractions, along with the average mAP

Surgical Activity Recognition
Temporal Model | Backbone | Visual Features | 2% 5% 10% 20% 100%

I3D v’ 19.7£2.8 39.2£19 53.5+15 79.5+09 90.7+0.6
Uni-GRU ST(OR)? X 27.3+2.1 48.8+1.7 582+19 683£1l.6 73.6%£1.3
I3D + ST(OR)? v’ 29.5+2.3 54.2+1.7 60.1+£1.6 82.3+1.4 91.8£1.0

Unsupervised pretraining.

We pretrain our model defined above by minimizing the previously de-
scribed 1("%5%) Joss, using a stochastic gradient descent as our optimizer. We
use a cosine learning rate schedule over 30 epochs, with 0.01 as the initial
learning rate and a weight decay of 10~°. We use this pretraining better to
initialize our object-centric model on the end task.

Fine-tuning Experiments

Utility of pretraining We show that our pretraining leads to substantial
gains in performance. As shown in Figure 5.5, the self-supervised pre-
trained ORDynaRe consistently overperforms the one trained from scratch
across all levels of supervision. Our self-supervised model overperforms or
is on par with the I3D baseline for up to 20% of labeled data. This highlights
the utility of pretraining our object-centric model.

Combining Object-Centric and Appearance Features When combined
with the I3D global features, the performance of our method is further im-
proved. The improvement introduced by our approach is noticeable in both
surgical clip action recognition Figure 5.5, Table 5.2, and long-video activity
recognition, as shown in Table 5.3. It further emphasizes exploiting object
information priors combined with appearance-based visual features.
Furthermore, the features learned from our pretrained object-centric ap-
proach lead to an impressive 90.47% mAP when trained with Bi-GRU on
surgical activity recognition without using any appearance-based model.

5.4 Conclusion

This chapter introduced a novel, geometrically grounded, object-centric ap-
proach to surgical video understanding, focusing on activity recognition in
the OR. Our method constructs a spatiotemporal graph based on the geo-
metric layout of clinicians and surgical instruments, enabling robust reason-
ing about surgical activities. It operates solely on RGB images without re-
quiring camera calibration or point cloud data, making it significantly more
memory and data-efficient than existing 3D-based methods.

We proposed a self-supervised pretraining strategy based on masked
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Table 5.2: Results and comparison against baselines for clip-based surgical
action classification. top-1 accuracy (%) is reported.

Surgical Action Classification

Backbone | Object-Centric Model | Top-1 Accuracy

13D X 87.9+0.9
TimesFormer X 85.7+0.4
MotionFormer X 84.5+1.2
13D STRG 88.4+1.2
MotionFormer ORViT 84.1+1.4
X ST(OR)? 47.3+2.1

13D ST(OR)? 89.4+0.8

X ORDynaRe 57.7+1.2

X ORDynare (SSL) 60.6+0.7

13D ORDynare (SSL) 91.4+0.9

Table 5.3: Results and comparison against baselines for OR surgical activity
recognition on complete procedures. We report mAP, Precision, Accuracy,
and Recall.

Surgical Activity Recognition
Temporal Model Method mAP Precision Accuracy Recall
13D 89.62 87.12 92.51 82.78
Uni-GRU ORDynaRe 80.53 71.84 87.37 70.17
I3D + ORDynaRe 91.13 89.16 95.22 85.41
I3D 93.45 90.74 96.22 85.64
Bi-GRU ORDynaRe 90.47 81.22 89.13 78.27
I3D + ORDynaRe 93.92 91.53 96.88 86.02

Table 5.4: Hyperparameter table for both self-supervised pretraining and
fine-tuning.

Hyperparameters pretraining | Fine-tuning
MLP hidden size 256 256
Nb. of object tokens/frame 15 15
Nb. of frame/clip 8 8
Sampling 1 fps 1 fps
Dropout 0.15 0.15
Learning rate 3x1073 6 x 1073
Warmup Epochs 0 10

Table 5.5: Class-specific performance for object detection class-specific.
mAP at IoU:0.5:0.95 (%) is reported on the testing set for our detector.

Object Detection Performance

Method ‘ Human ‘ Table ‘ Gurney ‘ PSC ‘ OR Table ‘ VsC

Cascade MaskRCNN | 793 | 65.4 | 574 |702| 464 |69.7
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o ORDynaRe (None)
—e— ORDynaRe (SSL)
—e— 13D (Kinetics)
13D + STRG (Kinetics)
80 13D + ORDynaRe (Kinetics + SSL)

Accuracy (%)

5% 10% 20% 100%

Figure 5.5: Results and comparison against baselines for ORDynaRe surgi-
cal action recognition on clip classification. Accuracy (%) is reported across
two different seeds for all data fractions.

human motion prediction to enhance temporal modeling and object aware-
ness. This strategy allows the model to learn from minimal context, effec-
tively capturing clinician interactions and cross-view temporal consistency
in an unsupervised manner.

Unlike prior methods that rely on dense point cloud inputs, our ap-
proach induces object-centric representations using only coarse geometric
cues such as bounding boxes. While already effective with limited labeled
data, future work could incorporate richer spatial features like human pose
estimation to improve activity recognition performance.

Overall, this contribution demonstrates the effectiveness of combining
geometric priors with self-supervised learning for scalable, efficient surgi-
cal video understanding, paving the way for more accessible and robust
models in data-scarce clinical environments.
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Figure 5.6: We highlight the eight objects with the highest attention score
with the [CLS] token across three different heads of the last layer. The action
conducted in the clip is the Roll-up of the daVinci. The representation of
the PSC across different heads illustrates its importance in recognizing this
specific action.
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Figure 5.7: Box and class predictions on four different clips. The dashed
bounding box is the predicted bounding box while the solid line is the
ground-truth bounding box.
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Figure 5.8: Comparison of normalized confusion matrices for action recog-
nition with (top) and without (bottom) self-supervised pretraining.
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6.1. INTRODUCTION

This chapter presents a novel calibration-free multi-view, multi-modal
pretraining framework to enhance surgical activity recognition (SAR) by ef-
fectively aligning human pose representations with visual data from uncal-
ibrated camera setups. To address the challenges posed by continuous 2D
pose data, we employ Pose as Compositional Tokens (PCT) [Geng 2023],
which discretizes pose information into structured tokens, facilitating inte-
gration within a dual-encoder architecture. Our framework introduces spe-
cialized pretraining objectives, including view invariance, geometric con-
straints, and masked pose modeling, to align pose and visual embeddings
across multiple views robustly. Extensive evaluations demonstrate that our
approach significantly outperforms existing methods, particularly in single-
view deployment scenarios, thereby advancing the capabilities of SAR sys-
tems in complex surgical environments.

This chapter is adapted from:

HAMOUD, 1., SRIVASTAV, V., JAMAL, M. A., MUTTER, D., MoO-
HARERI, O., PADOY, N. (2025). MULTI-VIEW VIDEO-POSE PRETRAIN-
ING FOR OPERATING ROOM SURGICAL ACTIVITY RECOGNITION. ARXIV
PREPRINT ARXIV:2502.13883.

6.1 Introduction

The modern Operating Room (OR) is a high-stakes, fast-paced socio-
technical environment where clinicians work collaboratively to ensure safe
and efficient surgical procedures. To support these efforts, ORs are increas-
ingly equipped with advanced sensors, including external cameras, to mon-
itor and analyze clinical activities. By leveraging these sensor-enhanced
capabilities of the OR, context-aware systems have emerged as a promis-
ing tool to optimize clinical workflows, support intra-operative decision-
making, and enable early detection of adverse events through automated
analysis of clinical processes [Maier-Hein 2022]. Recent developments in OR
applications highlight this potential, including radiation risk monitoring in
hybrid surgeries [Rodas 2018, Ladikos 2010], surgical workflow recogni-
tion [Padoy 2008, Czempiel 2020], and semantic scene understanding [Mu-
rali 2022, cCaughan Koksal 2024].

A key component of such systems is surgical activity recognition (SAR),
which aims to detect different activities or phases in long untrimmed
videos recorded from external multi-view cameras. Recent SAR mod-
els [Zhang 2021, Twinanda 2016, Sharghi 2020], inspired by advances in
action recognition, use clip-based approaches to segment videos into tem-
poral phases. However, these approaches do not fully exploit the multi-
view knowledge from the multi-camera setups and mainly rely on clip-
level or global image features, overlooking fine-grained details of clinicians’
movements. Some recently proposed methods based on the 4D-OR dataset
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address this limitation but require calibrated multi-view camera systems
and advanced point-cloud processing for semantic scene graph generation,
which is then used for surgical activity recognition [Ozsoy 2023]. However,
these methods can be computationally expensive and rely on calibrated
multi-view camera setups. These are challenging to acquire in practical OR
settings, especially in robot-assisted surgical procedures where vision cam-
eras are mounted on the movable surgical robot [Sharghi 2020].

As clinicians are the main dynamic actors in the OR, their fine-grained
localization is crucial for reliable SAR systems. Human pose estimation, a
computer vision task that localizes 2D body keypoints, has started to work
remarkably well even in complex scenarios [Cao 2017, Geng 2023]. SAR
models can significantly improve activity recognition accuracy by explicitly
integrating fine-grained pose information.

In parallel, computer vision has witnessed significant advances in multi-
modal pretraining [Radford 2021, Li 2021, Jia 2021], a paradigm that bridges
vision and language modalities. Models like CLIP [Radford 2021] and
ALIGN [Jia 2021] have demonstrated the ability to learn generalized multi-
modal representations by aligning visual concepts with natural language
descriptions using large-scale paired image-caption datasets. These models
have enabled a shift from task-specific to more generalist models in a uni-
fied framework capable of handling diverse downstream tasks [Zou 2024,
Lin 2023].

Motivated by these developments, this work introduces and investigates
a key research question: how can human pose representations be effectively
aligned with uncalibrated multi-view camera images in a multi-view multi-
modal pretraining framework? By addressing this question, we aim to im-
prove the performance of SAR systems as a downstream task by leverag-
ing human pose estimation, multi-modal pretraining, and multi-view video
analysis.

However, the task is non-trivial and presents challenges regarding suit-
able architecture design and effective pretraining objectives. From an archi-
tectural perspective, we propose a dual-encoder that processes both vision
and human pose modalities, similar to common vision-language architec-
tures [Radford 2021]. However, unlike vision-language architectures where
text is a discrete modality - with words or subwords transformed into dis-
crete token representations - the human pose is typically represented as con-
tinuous 2D keypoints. To overcome this challenge, we propose to use the
Pose as Compositional Tokens [Geng 2023], which tokenizes the continuous
2D human pose coordinates into discrete tokens. These tokenized embed-
dings convert the continuous poses into discrete tokens and handle occlu-
sions well by leveraging the dependency between joints encoded in the dis-
crete pose tokens.

Building on this architecture, we design a set of pretraining objectives to

83



6.1. INTRODUCTION

align pose and vision embeddings while exploiting the multi-view context.
The pretraining objectives follow the concept of CLIP [Radford 2021], where
discrete pose embeddings are brought closer to the corresponding view’s
image embeddings, and embeddings of different images are pushed apart
using InfoNCE loss [van den Oord 2018]. In the multi-view setting, we
propose to extend further the idea to achieve view invariance: the model not
only brings the pose embedding closer to its corresponding camera view
but also aligns it with embeddings from other camera views at the same
time stamp, and vice versa.

While these constraints help align multi-view pose and vision embed-
dings, they may still lack geometric alignment, leading to suboptimal down-
stream performance. To address this, we propose two additional geomet-
ric constraints to improve representation quality: cross-modality constraints -
these constraints ensure that pose and visual embeddings are geometrically
consistent across modalities, and in-modality constraints - these constraints
enforce consistency within the pose or visual modality itself, enhancing
structural coherence, similar to [Goel 2022].

Finally, we also leverage masked modeling, a technique widely used in vi-
sual and language representation learning [Tong 2022, Sun 2022, Wei 2022].
In masked image modeling, a portion of an image is hidden, and the model
learns to predict the masked content based on its surroundings. Instead of
applying this at the pixel level, we extend the idea to pose tokens. Specifically,
we mask a subset of pose tokens and feed them into a transformer-based
backbone, which learns to output a feature representation of the masked
content. These representations are then input to a transformer decoder to
predict the missing pose coordinates, encouraging the model to learn a ro-
bust representation of pose information.

In summary, this work introduces a novel multi-view, multi-modal pre-
training framework by incorporating pose as compositional tokens, aligning
embeddings across uncalibrated camera views, enforcing geometric con-
straints, and leveraging masked pose token prediction. We evaluate our
framework on the SAR downstream task, conducting extensive ablation
studies to analyze the contributions of each component and their impact
on overall performance. A key highlight of our approach is its adaptabil-
ity: even when fine-tuned with a single modality, our multi-modal pre-
training framework achieves significant performance gains. Overall, we
achieve significantly better results against strong baselines, thereby push-
ing the boundaries of surgical activity recognition, enabling a more accurate
and reliable understanding of clinical workflows in calibration-free multi-
view camera setups. Especially in single-view control experiments. This
can be useful for a practical scenario where the activity recognition system
should operate on a single camera at deployment time.
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Figure 6.1: Overview of our framework: Given a video clip, we first extract
all human poses using ViTPose-Base [Xu 2022]. We tokenize the poses using
PCT [Geng 2023] and use a two-stream approach with MaskFeat [Wei 2022]
on the vision features.

6.2 Methodology

In this section, we introduce PreViP§S, our calibration-free multi-view multi-
modal pretraining framework for surgical activity recognition (SAR). We
first introduce the problem and then describe the dual-encoder architecture,
detailing the video encoder for extracting visual features and our novel pose
encoder, which converts continuous 2D human pose coordinates into dis-
crete embeddings. Next, we describe our three multi-view multi-modal pre-
training objectives, which align video and pose embeddings across camera
views by enforcing cross- and in-modality geometric constraints and leveraging
masked pose token prediction. Finally, we explain the model finetuning process
for downstream SAR tasks, optimizing the learned representations for both
multi-view and single-view surgical activity recognition. Through these ar-
chitectural and training choices, PreViPS enables robust and efficient activity
recognition in complex surgical environments.

6.2.1 Problem Overview

Given a training dataset of multi-view human-centric video clips D =
{x|y*} where x € REXTX3*HxW i5 3 multi-view video-clip set captured by
C cameras over T frames with resolution H x W, and y* € RE*T*Nyx2xN;
represents the pseudo 2d human poses for N, persons with N;(= 17) num-
ber of joints (body keypoints) generated by an off-the-shelf human pose es-
timator, the goal to learn a joint latent space that correlates semantically
similar video clips with the corresponding poses across camera views and
vice versa.

Formally, our goal is to learn two mappings: F : x — R®*P and
G : y* — R“*P, which map a video clip and 2d pseudo poses into a C x D
dimensional latent vector, where D represents the embedding dimension.
To learn these two mappings, we employ a dual-branch model with a vi-
sion branch F and a pose branch G using transformer-based dual-encoder
architecture, described as follows.
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6.2.2 Dual-encoder Architecture

Video Encoder

We employ MaskFeat [Wei 2022] as our video encoder. Given a multi-view
video clip from C camera viewpoints, the encoder first applies a patch em-
bedding layer, which employs convolution and linear projection to transform
the video clip into a sequence of tokens. These token sequences are then
processed by a Vision Transformer to produce contextualized video embed-
dings I, € RP for each camera ¢ € [1,...,C], where I, corresponds to the
special [CLS] token, referred to as CLS¢, used in Vision Transformers.

Pose Encoder

Pose Token Representation Given a video clip, we use the VitPose-
B [Xu 2022] as an off-the-shelf pose estimator to generate pose sequences
for each camera view. We also gather identity information for each detected
pose using the established SORT [Bewley 2016] algorithm.

Let pj, € IR?*Ni be the acquired pose coordinates at camera viewpoint
c € [1,...,C] for a person i and timestep ¢. To obtain a compact and meaning-
ful representation for each single human pose, we pass p;, through a frozen
pose tokenizer [Geng 2023] to generate the following bottleneck represen-
tation: 7;, € RP. This structured representation models the dependency
between body joints and provides a distinct discrete representation similar
to the text modality in vision-language pretraining. For each camera stream,
we also append a learned vector [CLS] as the first token of each sequence
and use the output vector corresponding to that position for clip-level action
recognition. More specifically, each camera stream pose latent representa-
tion is represented as,

V¢ = {CLSj,7t{ 1, ...y, 1} € RP*(NpxT+1) (6.1)

In this notation, N, = 8 is the maximum number of detected persons per
frame. To ensure a consistent number of inputs, if the number of clinicians
in a frame is less than N, we pad the sequence with a special PAD token.

Positional Embeddings To encode spatiotemporal information in the
pose sequences, we incorporate positional embeddings for various at-
tributes such as time, track ID for persons, and viewpoint ID.

Concerning viewpoints, we adopt the method proposed by Geng et
al. [Geng 2023], which involves introducing learnable 1D parameters that
represent each viewpoint and timestep. For time and track ID, we utilize
2D sine and cosine functions as a form of positional encoding. These pa-
rameters are added to the features of each video pose token captured from
different perspectives.
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Network Architecture Given the previously defined representation, we
adopt a vanilla transformer [Vaswani 2017] as the backbone network.
The pose embeddings (aggregated with positional embeddings) described
above are fed to the pose transformer M.

Yy =M(©,Y) (6.2)

Here, © is the model parameters, and JA) is the updated latent representa-
tion for pose information. The pose transformer comprises a stack of L = 6
multihead self-attention layers. Each layer in the pose transformer M has
a standard architecture consisting of multi-head self-attention modules and
feed-forward networks. The encoder outputs a sequence of pose embed-
dings of dimension D.

6.2.3 Aligning video and pose embeddings

In this section, we outline our approach to cross-modal alignment. Our con-
trastive objective is to optimize the encoders specific to each modality. These
encoders map the global embeddings from each modality and viewpoint to
ensure their representations are closely aligned. Let [° = CLS{ represent
the learned embeddings for the video modality, and J° = CLS] represent
the learned embeddings for the pose modality, both at each camera view-
point c.

Multi-modal Contrastive Learning

Cross-Modality Alignment Let us first address the cross-modal align-
ment between image and pose modalities. We want embeddings of the same
samples from two viewpoints to be close to each other. Thus for each pair
of camera views (p,q) € [1,..., C]%, we aim to bring I} and ] closer together
while pushing apart the other embeddings from the remaining samples in
the minibatch of batch size N.

N P
51/] — Z Z exp(<In/]n>/T) ) (63)

1(pg)<C lec\lzl exp((If, J{)/7)

Here 7 is the temperature hyper-parameter that regulates the penalty to the
hard negative samples.

In-Modality Alignment Similar to cross-modal alignment, we also pro-
pose objectives to increase the similarity of embeddings from the same
modality that come from different viewpoints.

P 14
£ =t eXP(Un/In)/T) 6.4
v nzl ,37):<c T exp(I], 1) /1) ©4

We can define the L;,; and L;,; losses reflexively by adjusting the em-
beddings in the loss accordingly. The multi-modal contrastive objective in
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PreViPS aims to align the video and pose representations by minimizing the
loss function L¢,,, defined below:

1
Lcon = 1(51/1 + L+ L+ Lyyg) (6.5)

We refer to the pretraining following this loss, L¢,,, as CLIP* as it is an
adaptation of the CLIP objectives to the video-pose modalities with multi-
view constraints.

Sampling Policy Equations (6.3) and (6.4), are computed over N training
instances, each in the form of a video-clip pose pair. A naive sampling pol-
icy may randomly sample instances from adjacent temporal segments, lead-
ing to semantically similar negative samples. This may confuse the model
and hurt the final downstream performance. Therefore, we force each in-
stance of our minibatch to be temporally distant. We divide the complete
video into N segments, where N is the batch size, and sample one instance
from each segment.

Geometric Consistency

We propose incorporating geometric constraints into our pretraining objec-
tives, similar to CyCLIP in vision-language pretraining [Goel 2022]. We aim
to mitigate inconsistencies in the shared embedding spaces of video and
pose representations across different viewpoints. To achieve this, we intro-
duce two geometric consistency regularizers, which are defined over each
mini-batch as follows:

(1) Cross-Modal Geometric Consistency Loss: This loss minimizes discrep-
ancies in similarity scores for video-pose pairs across different viewpoints.
It is formulated as:

N
Lc—Geo = 2 Y (BT = (T 1), (6.6)

n=1(pq)<V

where I} and J;| represent video and pose embeddings, respectively, for
viewpoint p and g. Also, (I}, J}) and (J};, I}) measure the similarity between
video and pose embeddings for different viewpoints.

(2) In-Modal Geometric Consistency Loss: This loss ensures that similarity
scores remain consistent across viewpoints across video and pose pairs. It
is defined as:

N
'CI Geo — N Z Z 11;17/ IZ> - <]5/]Z>)2/ (67)

L(pg)<V

Here, (I}, I}) and (J},]J}}) measure the similarity between video and pose
pair embeddings, from two different viewpoints.

These constraints collectively enhance the geometric consistency of the
learned embeddings across modalities and viewpoints.
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Figure 6.2: We use different pretraining objectives on the global representa-
tions of each modality and viewpoint.

Masked Pose Modeling

We follow the encoder-decoder design in MAE [He 2022a], where the trans-
former encoder focuses on representation learning while the decoder imple-
ments the reconstruction task. Our decoder takes as input the aligned pose
features {777, ..., 7N, T} € RY>NpxTxd gutput by the encoder. The recon-

struction target corresponds to the initial coordinates of randomly sampled
pose tokens that have been masked before being fed to our encoder (see Fig.
6.2). We use the L), loss as a simple mean-squared error loss between the
predicted and target coordinates.

Finally, the total loss for all the pretraining objectives is defined as fol-
lows:

L atign = Lcon + A1 (Le—Geo + L1-Geo) + A2LMasks (6.8)

where A; and A, are hyperparameters controlling the importance of the ge-
ometric consistency and masked pose prediction regularizers.

6.2.4 Finetuning on Action Recognition

Our model is trained in two stages. Following the pretraining phase de-
scribed earlier, we finetune the pretrained encoders for surgical action
recognition. For each modality M € {I, ]} and each available viewpoint
c € [1,...,C], we extract a global token CLSS,. We stack these tokens and
perform an average pooling operation to obtain the overall global represen-
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tation. This representation is then input into a two-layer multi-layer per-
ceptron (MLP) to generate class probabilities. This adaptable representation
enables us to utilize different viewpoints in our pretraining, finetuning, and
testing framework.

6.3 Datasets

6.3.1 4D-OR Dataset

The 4D-OR dataset [Ozsoy 2022] encompasses 10 simulated total knee re-
placement surgeries carried out in a medical simulation center under the
supervision of orthopedic surgeons. The average recording duration is 11
minutes with 6,734 images per camera. The dataset is captured from 6 RGB-
D Kinect cameras strategically mounted on the OR ceiling, ensuring com-
plete coverage of the OR. Among the 6 available camera points of view, the
sixth camera offers a different perspective. It is located on the ceiling, thus
providing a quasi-bird’s-eye view of the scene. The workflow in the dataset
is a simulated and simplified version of an actual surgery, and the actors’
roles are regularly rotated to introduce variability in the dataset. The cam-
eras are fixed during all procedures, enabling the ablation experiments and,
notably, the cross-view experiments in section 6.4.2.

6.3.2 Implementation details

We implement our method using PyTorch [Paszke 2019] based on the PyS-
lowfast library. Our baseline model is the space-time MViT-S [Fan 2021]
with MaskFeat pretraining [Wei 2022]. In all experiments, we use an input
size of (8,224, 224) and a token cube size of (2, 16, 16), which results in a to-
tal of 784 vision tokens. As mentioned in section 6.2.2, we set N, = 8 as the
maximum number of persons detected in a single frame for both datasets,
resulting in a total of 64 pose tokens per viewpoint.

We exploit all available camera viewpoints in both datasets in our pre-
training experiments. We use a stochastic gradient descent as our optimizer,
with a cosine learning rate schedule over 50 epochs, with 0.01 as the initial
learning rate and a weight decay of 1e~>. We use A; = 0.5 and A, = 0.5 for
our pretraining experiments.

We finetune our models and baseline models using the AdamW opti-
mizer [Loshchilov 2017] with a learning rate of le~* and a batch size of 16
videos, applying cosine learning rate decay. In our experiments, we keep
the weights of the first 12 layers of the video encoder frozen.

During training, images are resized to the shortest side of 256 pixels for
pretraining and finetuning with a random crop to 224 pixels. For testing,
images are resized to the shortest side of 224 pixels with a center crop.

90



CHAPTER 6. ROBUST OR MULTIVIEW ACTIVITY RECOGNITION VIA
SELF-SUPERVISED MULTIMODAL FEATURE ALIGNMENT OF VIDEO AND POSE

Table 6.1: Accuracy (%) for surgical action recognition on the 4D-OR dataset
using different models and pretraining strategies. Results are averaged over
three seeds.

‘ ‘ ‘ Modalities ‘# Cases

Model ~ |PTMethod|PTData| RGB 2DPose| #1  #2 #3  #  #  #6

MViT-S MaskFeat K400 v’ X 50.8:12 63.6:03 72.3+05 76.2:07 79.8:15 84.6:09
ViT-B VMAE K400 v X 48.8:12 62.7:04 71.5:107 74.0415 77.3210 81.3407
PCT-TF None N/A X v’ 38.3:24 45.2:11 51.4:07 58.0+12 54.2411 69.5:08
PCT-MViT-S| MaskFeat K400 v’ v’ 53.2:15 64.8:08 78.5:24 80.5:21 83.4:12 85.1x07
MV-CLIP CLIP* 4D-OR v v’ 54.2:16 659115 79.3115 82.8414 84.2:15 85.5407
PreViPS Ours 4D-OR v’ v’ 55.4:21 68.2:15 80.9:27 85.2:114 88.7+08 89.6:04

Table 6.2: Accuracy (%) for surgical action recognition on the OR-AR dataset
across different models and data fractions. Results are averaged over three
seeds.

‘ ‘ ‘ Modalities ‘ Data %
Model ~ |PTMethod|PTData| ToF 2D Pose| 5%  10% 20% 50% 100%
MViT-S MaskFeat K400 v’ X 40.1414 56.7+03 63.2:05 80.6+07 86.3+13
ViT-B VMAE K400 v X 42.8+08 61.4+04 67.8+07 844115 88.9410
PCT-TF None N/A X v’ 385111 40.7:11 51.4407 58.0112 64.2:11
PCT-MVIiT-S| MaskFeat K400 v’ v’ 45.2:08 65.6:08 70.0424 844421 89.4:12
MV-CLIP CLIP* OR-AR v’ v 54.5:16 66.4415 71.8+20 85.2412 90.7411
PreViPS Ours OR-AR v’ v’ 58.4:115 70.1:15 73.3127 87.8:114 92.3:0s
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Figure 6.3: Above: We present our finetuning protocol, utilizing global rep-
resentations from various modalities and viewpoints. Below: Additionally,
we demonstrate the versatility of our approach, enabling us to train and test
our methods using different viewpoints.

6.4 Experiments and Results

Baselines: In this section, we present a series of baselines that illustrate
our pretraining strategy’s advantages and pose-centric representations. We
examine the performance of our method against five baselines:

¢ MaskFeat [Wei 2022] and VideoMAE [Tong 2022] are both state-of-
the-art self-supervised approach used in general computer vision.
These methods are visual-only approaches and do not use explicit pose
information. The purpose of including these methods is to demon-
strate the significant improvements that can be achieved by integrat-
ing pose information into our pretraining framework. This highlights
the effectiveness of both our pose architecture and our unsupervised
alignment objective in utilizing multi-modal information.

¢ PCT-TF (PCT + Transformer) method serves as a pose-only baseline to
show the performance of our pose-based approach as it has not been
explored yet for the task of surgical activity recognition from the ex-
ternal cameras.

¢ PCT-MVIT-S is derived from a dual-encoder architecture without any
pretraining. This architecture integrates our pose-based backbone
(PCT-TF) with the video backbone (MViT-S). The video backbone
has been pretrained using the Maskfeat method on the Kinetics-400
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dataset. This combination demonstrates the advantages of incorporat-
ing appearance-based features alongside our pose representations, as
pose information alone may not be sufficient to identify certain surgi-
cal actions.

¢ MV-CLIP utilizes the same architecture as PCT-MViT-S but further
pretrains both encoders with a multi-view video-pose adaptation of
the CLIP contrastive objective, referred to as CLIP* in section 6.2.3.

6.4.1 Data Efficient Transfer

Setup: We implement a data-efficient experimental protocol to demonstrate
the advantages of our unsupervised training approach. We pretrain our
MV-CLIP and PreViPS methods on each of the two datasets presented in
sections 6.3.1 and 3.2, using all available viewpoints: 6 for 4D-OR and 4
for OR-AR, respectively. We finetune our pretrained model with progres-
sively increasing amounts of labeled data. We use all available viewpoints
for finetuning our models. We utilize the averaged global representations
from every view and modality to create our clip representation.

To reduce potential bias in sampling videos from the dataset, we take
each data sample three times and calculate the mean and standard deviation
of the results. For both datasets, the testing and validation datasets remain
unchanged. The data-efficient performance of the models is presented in Ta-
ble 6.1 and Table 6.2. In Table 6.1, the "# Cases” column indicates the num-
ber of surgical cases used to fine-tune our models. These tables show that
our pretraining significantly improves downstream task performance. Con-
sistently, our PreViPS model outperforms the model trained from scratch
across all label percentages on both datasets. Notably, as the amount of
labeled data increases, the performance gap between the best video-based
baseline and our method without pretraining narrows, demonstrating the
effectiveness of our pretraining strategy.

6.4.2 Unimodal and Cross-View Evaluation

Our model adapts to various input modalities and viewpoints, allowing for
unimodal and cross-view setups. The following section will explain our
experimental setup for the cross-view, unimodal, and single-view experi-
ments. We have conducted our experiments with 4D-OR because the cam-
era setup is consistent, which helps us identify the cameras for our view-
point ablation study.

Robustness to Viewpoint Shift

To assess the influence of varying camera viewpoints, we conduct three ex-
periments. We test on one camera viewpoint in each experiment while using
the other two for training. We focus on cameras 1, 4, and 6, as they provide
a comprehensive overview of the scene with minimal overlap.
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X-View Setup |{1,4};6({1,6};4|{4,6};1
Accuracy Boost| +6.4 | +53 | +3.5

Table 6.3: Effectiveness of our alignment pretraining when holding out dif-
ferent viewpoints on 4D-OR. Performance increases are given in (%) for dif-
ferent Train-Test camera setups.

Scratch Pretrained
P) V) P) V)
695+1.5 85.1+0.7/71.9+1.3 86.8+0.6

Table 6.4: Effectiveness of our alignment pretraining when finetuning on a
single modality on 4D-OR. Top-1 Accuracy is given in (%) for both pose (P)
and video (V) modalities.

As mentioned in section 6.3.1, presenting the 4D-OR dataset, one view
(camera viewpoint 6) gives a very different perspective of the scene and has
the most minor overlap with the rest. Our results (see Table 6.3) demon-
strate that alignment pretraining significantly enhances performance across
all cross-view setups. This improvement is particularly pronounced when
testing on the top view from camera 6, demonstrating the effectiveness of
our pretraining approach.

Unimodal Evaluation

In these experiments, we investigate whether our pretraining method en-
hances unimodal activity recognition performance for both the pose-only and
vision-only single modality backbones. For the pose encoder, we initialize it
using weights from our multi-modal pretrained network while excluding
the weights of the video encoder. Similarly, for the video backbone, we dis-
regard the pose encoder weights.

As shown in Table 6.4, our multi-view representation pretraining proves
beneficial when finetuning on single modalities. When leveraging all avail-
able viewpoints, the pose backbone, which previously underperformed
without pretraining, achieves a performance increase from 69.5% to 71.9%.
Likewise, the video backbone’s performance improves modestly from 85.1%
to 86.8%. These results highlight the advantages of our pretraining ap-
proach for both modalities.

Single-view Evaluation

We conduct single-view experiments, where both training and testing occur
from the same viewpoint. These experiments use the same viewpoints as
those in the cross-view setup.
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Figure 6.4: GradCAM visualizations: In the visualization of videos,
brighter colors indicate higher attention. Notably, we observe that greater
attention is assigned to moving body parts. The top row shows activation
maps from our pretrained model with alignment objectives, while the bot-
tom row displays results from the model trained without video-pose align-

ment.
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Single View Setup | Camera 1|Camera 4 |Camera 6
Accuracy Boost | +5.6 | +32 | 451

Table 6.5: Effectiveness of alignment pretraining when finetuning on a sin-
gle view on 4D-OR. Performance increases are given in (%) is given in (%).
Testing is done on the same camera viewpoint.

The results in Table 6.5 show a significant improvement in single-view
control across different viewpoints when using our pretraining method.
This highlights the benefits of multi-view representation learning, even
when only a single camera is available for the downstream task.

6.4.3 Temporal Modeling

To enable in-context prediction and accurately model the sequential order
of activities, we build on prior work [Sharghi 2020, Jamal 2022] and ex-
tend our finetuning approach with a recurrent neural network to capture
global temporal information in the video. After extracting features from
the training videos, each video is represented as v; = {fi,..., fr}, where
fr denotes global embeddings averaged across different views and modal-
ities. These features are then processed using a Bidirectional Gated Recur-
rent Unit (BiGRU) [Chung 2014], producing an updated feature sequence
7 = {f1,.., fr}. The updated features are subsequently used for activity
classification.

The results presented in Table 6.6 underscore the advantages of integrat-
ing enhanced temporal modeling. The asterisk (*) in Table 6.6 indicates the
LABRADOR baseline [Ozsoy 2023], which uses point cloud and scene graph
information (using extra depth modality) and heuristic rules for activity
prediction. A direct comparison is impossible since our method does not
rely on semantic scene graph annotations or memory-heavy 3D point cloud
data.

Accordingly, we consider LABRADOR to be an upper-bound baseline.
Our video-pose-based approach attains competitive performance without
requiring fine-grained scene graph supervision.

6.4.4 Ablation Study and Analysis

We perform extensive ablation experiments on the 4D-OR dataset to study
the effect of our method’s different contributions and design choices.

Effects of number of Views We perform an ablation study to validate the
robustness of PreViPS to varying numbers of views during inference. We
observe that the performance increases as more views are available for rep-
resentation learning. A comparison is shown in Fig. 6.5 using only the pose
encoder. This is intuitive as different views provide varying perspectives,
which helps in recognizing actions better.
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Figure 6.5: Box-plots showing Accuracy distributions from 4D-OR clip clas-
sification experiment for different camera viewpoints available. Ablation
was run using only the pose modality as input.
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Table 6.6: Results and comparison against baselines for OR surgical activity
recognition on complete procedures. We provide the mAP, Precision, Accu-
racy, and F1 score.

Dataset | Model | mAP Precision Accuracy F1
MaskFeat 84.2 82.7 86.0 80.7
PCT-TF 77.1 75.3 78.3 75.6
4D-OR | PCT-MViT-S | 88.0 86.9 90.5 89.4
MV-CLIP 90.8 89.3 92.0 90.6
PreViP$S 92.9 91.7 94.2 93.4
4D-OR | LABRADOR* | N/A 96.0 97.0 97.0
MaskFeat 89.5 87.3 89.8 88.6
PCT-TF 75.2 73.6 77.0 75.6
OR-AR | PCT-MViT-S | 914 90.1 92.5 92.5
MV-CLIP 924 90.7 93.5 93.1
PreViP$S 93.6 92.0 95.4 94.3

MV Contrastive Geometric Mask Pose Accuracy Drop

v’ v’ v’ N/A
v’ X X -4.1
v’ X v’ -3.3
v’ v’ X -1.8

Table 6.7: Effect of keeping out different unsupervised objectives on Pre-
ViPS using 4D-OR. The multi-view contrastive objective is required in our
ablation study.

Effect of pretraining objectives We conduct an ablation study to assess
the contribution of each loss component in our pretraining objective, L 4jign,
as summarized in Table 6.7. The results show that all individual pretraining
objectives are essential for optimal performance.

Component Ablation on Pose Token Representation. We analyze the
components of our pose token representation, focusing on the choice of ar-
chitecture for the pose tokenizer. Specifically, we compare a simple MLP-
based tokenizer with the proposed PCT encoder. As shown in Table 6.8,
the compositional representation of PCT leads to a significant performance
improvement.

We integrate positional embeddings with pose embeddings to accurately
encode detected human poses with their timestep, track ID, and viewpoint
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Pose Token Ablation Accuracy (%)

MLP 2D Coords 60.3
PCT [Geng 2023] 69.5
W /O Pos Embed. 65.2

W Pos Embed. 68.4

Table 6.8: Effect of replacing the PCT [Geng 2023] pose tokenizer with a
simple MLP baseline. Benefits from adding positional embeddings in our
pose token representation.

ID. We conduct an ablation study on these positional encodings, and the
results in Table 6.8 demonstrate the performance gains achieved by incor-
porating them into the pose representation.

Finally, Figure 6.4 visualizes the differences in activation maps between
the pretrained model and a model trained without our alignment objectives.
The pretrained model shows greater attention to moving body keypoints,
indicating that our multi-modal pretraining approach effectively transfers
2D pose information to the vision encoder.

6.5 Conclusion

This chapter introduced PreViPS, a novel calibration-free pretraining frame-
work for surgical activity recognition that integrates multi-view and multi-
modal signals. To our knowledge, PreViPS is the first approach to align 2D
human pose and visual embeddings across uncalibrated camera views, a
significant advancement given the practical constraints of operating rooms,
where calibration is rarely feasible.

Our method enhances representation learning by combining discrete
pose tokenization, geometric constraints across and within modalities, and
masked pose modeling. These components collectively improve recogni-
tion performance in multi-view and single-view settings, while remaining
lightweight and calibration-agnostic.

This work underscores the potential of self-supervised and geometry-
aware learning in developing robust, scalable systems for surgical video un-
derstanding. PreViPS takes a meaningful step toward the practical deploy-
ment of intelligent systems in real-world surgical environments by elimi-
nating the need for precise calibration or depth sensing.
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7.1. SUMMARY OF CONTRIBUTIONS

This thesis presented a series of contributions to reduce supervision costs
for surgical video understanding by leveraging multimodal self-supervised
learning. We demonstrated how structured, semantically meaningful su-
pervision can be derived from unannotated data by introducing abstract
semantic modalities, such as object layouts, human pose, and spatial clus-
tering derived from depth cues. These methods improve robustness and
data efficiency in surgical scene analysis tasks, including activity recogni-
tion and semantic segmentation.

7.1 Summary of Contributions

Our contributions are unified under a common framework that uses cross-
modal alignment and proxy objectives to extract rich visual representations
with minimal annotation. Specifically, the proposed methodology can be
parsed along three principal methodological axes, namely:

* Geometric abstraction: We introduced depth-based clustering as a
structural proxy for unsupervised learning.

¢ Object-centric modeling: By leveraging object and clinician layouts,
we proposed masking-based objectives to capture co-presence and
spatial dependencies.

* Pose-guided alignment: Using off-the-shelf pose estimators, we
aligned temporal segments across multiple views and modalities via
contrastive pretraining strategies.

Together, these contributions move toward label-efficient learning in
complex surgical environments, providing insights into how abstract infor-
mation can structure visual representation learning.

7.1.1 Limitations

While this thesis proposes promising approaches for label-efficient surgical
scene understanding, several limitations will need to be addressed in the
future. These limitations point to areas where further research is necessary
to ensure broader applicability, performance stability, and practical deploy-
ment in clinical environments.

¢ Limited Generalizability Across Clinical Settings: Although the
dataset used in this work [Sharghi 2020] encompasses recordings from
multiple operating rooms, all data were collected within a single hos-
pital. Future studies could beneficially assess the proposed methods
in a broader range of surgical environments, teams, and procedural
standards to confirm and strengthen evidence for the robustness of
abstract modality interactions in heterogeneous clinical contexts.
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* Performance Gaps in Abstract Supervision: Techniques that rely
on abstract representations, such as human pose or object layouts,
still trail behind appearance-based models regarding raw predictive
accuracy. This limitation stems less from architectural challenges
and more from the lack of fine-grained information in abstract rep-
resentations. Notably, appearance-based features derived from self-
supervised frameworks like DINO [Caron 2021] have been shown
to encode rich object-level semantics [Siméoni 2021, Wang 2023a,
Wang 2023b, Arica 2024], suggesting an opportunity to combine these
complementary sources of information, rather than viewing them as
mutually exclusive, to enhance model performance further.

¢ Increased Computational Overhead: Using auxiliary modules such
as object detectors and pose estimators introduces additional compu-
tational costs during training and inference. These components may
hinder real-time deployment in ORs with limited computational re-
sources. Although object-centric approaches that implicitly encode
spatial structure (e.g., [Ding 2021]) offer potential solutions, striking
the right balance between model efficiency and expressiveness re-
mains an ongoing challenge.

7.2 Future Directions

Building upon the limitations discussed above, several promising research
directions emerge that can strengthen the scalability, efficiency, and clinical
relevance of multimodal learning systems in surgical environments.

7.2.1 Model Compression and Efficiency

As computational efficiency remains a key challenge for real-world deploy-
ment, future work should focus on model distillation and compression tech-
niques. One promising approach is to distill knowledge from large-scale
video encoders into smaller, more efficient abstract encoders. By compress-
ing visual content into object-centric tokens [Qian 2024], these lightweight
models can retain temporal reasoning capabilities while dramatically reduc-
ing computational costs. This is particularly beneficial in surgical settings,
where hardware resources are limited and real-time inference is critical.

7.2.2 End-to-End Learning of Semantic Modalities

Our current pipelines rely on external modules (e.g., object detectors, pose
estimators) to extract abstract modalities, which introduces latency and sys-
tem complexity. A key future direction involves developing end-to-end
architectures that predict abstract semantic representations (e.g., semantic
maps, object layouts, pose graphs) parallel to visual features. This inte-
grated design would improve efficiency, facilitate deployment, and support
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joint optimization of semantic and visual representations.

7.2.3 Multimodal Expansion and Cognitive Integration

Extending the modality space beyond vision and geometry offers another
fruitful avenue. Signals like audio cues, eye-tracking data, and haptic or
tactile feedback can enhance task definition and situational awareness. In-
tegrating these modalities could lead to a more robust understanding of
cognitive and procedural contexts. Furthermore, interdisciplinary collabo-
ration with cognitive scientists, human factors experts, and psychologists
may guide the design of semantically grounded representations, especially
for modeling intention, interaction, or mental workload in high-stakes en-
vironments.

7.2.4 Bridging Vision and Language for Cross-Modal Un-
derstanding

The discrete and semantically rich nature of abstract modalities (e.g., pose,
object-centric layouts) positions them as ideal intermediaries between vi-
sual and linguistic representations. This enables opportunities for vision-
language pretraining tailored to the surgical domain, where models learn to
align visual scenes with textual instructions, narration, or commands. Such
capabilities could unlock applications in robotic scene comprehension and
autonomous assistance. For example, object-aware models could be used
for vision-language navigation tasks, such as facilitating automatic surgical
robot docking, a foundational step toward Level 2 autonomy, where robots
execute predefined setup tasks in response to operator input [Yang 2017].
This aligns with recent advancements in cross-modal learning [Zhang 2024]
and may serve as a bridge between static perception and interactive Al sys-
tems.

7.2.5 Human-Robot Interaction and Clinical Translation

Real-world improvements depend heavily on effective human-robot col-
laboration. Recent breakthroughs, such as autonomous robots performing
suturing nearly as well as human experts [Rivero-Moreno 2024], and robotic
surgical assistants capable of anticipating surgeons’ instrument needs [Wag-
ner 2024, Li 2024], highlight how abstract semantic concepts can be prac-
tically integrated into robotic systems. Moving forward, research should
focus on multimodal learning within flexible autonomy frameworks to en-
hance robots” ability to transparently understand human intent, offer pre-
dictive support, and share tasks ergonomically. By combining sophisticated
semantic understanding with intuitive interfaces, surgical robots can trans-
form from passive tools into proactive partners, significantly improving
safety, efficiency, and the overall experience for surgeons.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2.6 Summary of Key Opportunities

Based on the discussion above, several opportunity areas are particularly
compelling:

¢ Reducing computational complexity: Through model distillation and
object-token compression [Qian 2024], future models can become sig-
nificantly more efficient without sacrificing temporal understanding,
crucial for clinical adoption.

* Enabling deployment through architectural simplification: End-to-
end models that natively output semantic representations can elimi-
nate dependencies on sequential external modules, improving infer-
ence time and reducing integration effort.

¢ Enhancing semantic understanding across modalities: Object-centric
abstraction is a natural bridge between vision and language. This
opens the door for multimodal applications in surgical robotics, real-
time decision support, and task-guided automation.

7.3 Conclusion

This thesis has demonstrated that abstract modalities combined with visual
data in a self-supervised setting offer a promising path toward efficient,
scalable surgical scene understanding. By grounding models in semantic
priors and structural cues, we move closer to the practical deployment of
Al systems in complex, real-world OR environments. Future work must fo-
cus on generalization, computational efficiency, and ergonomically sound
integration into clinical workflows.
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Résumé en francais

A.1 Introduction

L’irruption de I'Intelligence Artificielle (IA) dans de nombreux secteurs in-
dustriels s’inscrit dans une quatrieme révolution industrielle, nourrie par la
disponibilité croissante de données massives et hétérogenes. Le domaine
médical, et plus particulierement le bloc opératoire, bénéficie de cette dy-
namique avec l'intégration de capteurs visuels et de systémes robotiques.

Cependant, les signaux visuels complexes issus de ces environ-
nements ne sont pas directement exploitables par les modeles stan-
dards d’apprentissage profond, souvent préentrainés sur des bases de
données trés éloignées du contexte chirurgical. La compréhension automa-
tique des vidéos de chirurgie ouvre pourtant des perspectives majeures :
amélioration de I’ergonomie, standardisation des protocoles de communi-
cation et réduction de la charge cognitive des cliniciens.

Dans ce contexte, nous explorons 1'utilisation de représentations dites
abstraites [Liang 2022] (ex. pose humaine, superpixels, boites englobantes
d’objets). Ces modalités, dérivées mais plus structurées que les signaux
bruts, permettent de mieux généraliser tout en réduisant le besoin en an-
notations expertes.

A.2 Problématique et objectifs

Les approches actuelles d’analyse du workflow chirurgical reposent sur des
réseaux profonds supervisés, tres dépendants de larges bases de données
annotées. Or, dans le contexte du bloc opératoire :

* l'annotation nécessite une expertise médicale cotiteuse et rare ;

¢ la préservation de la vie privée limite la collecte et le partage des
données ;

¢ la variabilité des configurations (procédures, hopitaux, caméras) com-
plique la généralisation.
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A.3. CONTRIBUTIONS PRINCIPALES

Figure A.1: Cette figure illustre I’évolution des pratiques chirurgicales du
début du XX¢ siecle a aujourd’hui. Elle met également en évidence les
transformations des salles d’opération, marquées par la transition vers
un environnement plus moderne, hautement technologique et encombré.
D’apres [Letkowitz 2018].

L’objectif de cette these est de développer des méthodes d’apprentissage
multimodal auto-supervisé exploitant a la fois les signaux visuels bruts
(RGB, profondeur) et les modalités abstraites (pose, objets, superpixels). Ces
représentations visent a :

(i) réduire la dépendance aux annotations manuelles (label-efficiency) ;

(ii) améliorer la robustesse aux changements de points de vue et de do-
maines ;

(iii) préserver la confidentialité des patients et cliniciens.

A.3 Contributions principales

A.3.1 Analyse de jeux de données multimodaux

Cette these s’appuie sur deux jeux de données complémentaires dédiés au
suivi du workflow au bloc opératoire: OR-AR [Sharghi 2020] pour la re-
connaissance d’activités a 1’échelle de la salle, et OR-Seg [Li 2020a] pour
la segmentation pixel a pixel des composants robotiques. Contrairement
aux benchmarks endoscopiques, ces ressources couvrent la vue salle, des
modalités compatibles vie privée (ToF /IR) et des annotations adaptées aux taches
de contexte.

OR-AR Capteurs Time-of-Flight (profondeur + intensité IR) montés sur
quatre chariots (deux caméras/chariot, base ~70cm) positionnés pour
limiter les occultations. Le corpus regroupe 400 vidéos issues de 103
procédures, 27 chirurgiens, 30 types d’actes, sur 2 salles pendant 2
ans. Dix activités structurent le déroulé opératoire (préparation stérile,
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APPENDIX A. RESUME EN FRANCAIS

Sterile Preparation Patient Roll In Patlent Preparation Da Vincl Roll Up Da Vincl Docking

Label Occurences: 15.0% Label Occurences: 1.1% Label Occurences: 29.1% Label Occurences: 1.4% Label Occurences: 2.0%

Da Vind Surgery Da Vincl Undacking Da Vinci Roll Back Patient Close Patlent Roll Out
Label Occurences: 37.9% Label Occurences: 1.3% Label Occurences: 1.1% Label Occurences: 7.0% Label Occurences: 4.2%

Figure A.2: Visualisation des dix activités de suivi du flux de travail an-
notées dans OR-AR [Sharghi 2020], avec leurs occurrences respectives.
D’apres [Sharghi 2020].

roll-in/out patient, préparation patient, roll-up/out robot, docking/un-
docking, chirurgie robotique, fermeture). Suivant les protocoles de la
littérature [He 2022b, Jamal 2023b], la préparation stérile est souvent exclue
des évaluations (class imbalance/ambiguité). Un sous-ensemble, OR-Det,
annote 19k images (20 vidéos) en boites objets/personnes : brancard, tables
stérile/non-stérile, PSC, VSC, table d’opération et cliniciens support clé
pour le raisonnement “object-centric”.

OR-Seg Données ToF collectées en environnement de développement
clinique, avec scénarios de laparoscopie robot-assistée. Deux volets: mono-
vue (7980 images) et multi-vues (capteurs fixés sur le PSC). Les classes cou-
vrent les principaux sous-composants du systeme da Vinci; le fort déséquilibre
de pixels rend la fwloU informative en plus de la mIoU.

A4 Auto-supervision sur cartes de profondeur
par superpixels

Nous présentons un cadre d’auto-supervision destiné a ’analyse du con-
texte au bloc opératoire, reposant uniquement sur des cartes de profondeur
issues de capteurs temps de vol (ToF). L'objectif est double : réduire la
dépendance aux annotations expertes et préserver la confidentialité (pas
d’images RGB de visages), tout en améliorant la compréhension de la scene
pour la segmentation sémantique et la reconnaissance d’activités.

Idée directrice. Les distances géométriques entre entités de la salle (bras
robotisés, table, équipe) demeurent stables quel que soit le point de vue.
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A.4. AUTO-SUPERVISION SUR CARTES DE PROFONDEUR PAR SUPERPIXELS

Superpixel based Filtering based on Pairing and distance
clustering heuristics generation

Figure A.3: Pretext task annotation generation process using
SLIC [Achanta 2012] superpixel segmentation.

Nous exploitons cette invariance en formulant une tache prétexte qui ap-
prend a prédire la distance euclidienne 3D entre superpixels homogenes extraits
des cartes de profondeur.

Chaine de traitement

1. Sur-segmentation par superpixels (SLIC) sur 1'image de profondeur
lissée ; sélection de régions compactes et peu bruitées (criteres de con-
vexité, faible variance de profondeur, peu de valeurs manquantes).

2. Projection 3D des superpixels via les parametres intrinseques caméra ;
calcul de la distance entre centroides pour générer des pseudo-étiquettes
de distances.

3. Apprentissage auto-supervisé : un extracteur de caractéristiques (type
ResNet) suivi d"un simple décodeur apprend des représentations dont la
distance L, en espace des caractéristiques reproduit la distance 3D entre

superpixels (Lprstexte = |||11 — h2|l2 — d3p]).

4. Finetuning sur deux taches cibles : segmentation sémantique (mloU,
fwloU) et reconnaissance d’activités (mAP), avec différents taux
d’annotation (2 % a 100 %).

Jeux de données et tiches FEvaluation sur deux ressources publiques de
vision vue salle : OR-Seg (segmentation des composants du robot da Vinci)
et OR-AR (activités au niveau de la salle). Les métriques suivent les proto-
coles d’origine : mIoU/fwloU pour la segmentation, mAP pour l'activité.
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Références de comparaison Nous comparons a des méthodes d’auto-
supervision reconnues adaptées aux cartes de profondeur : prédiction
d’angles de rotation (RotNet) et contraste prédictif (CPC v2), ainsi qu’a un
apprentissage depuis zéro (sans pré-apprentissage). Les outils et hyper-
parameétres sont harmonisés (durées d’entrainement identiques, sélection
sur validation).

Résultats principaux

* Gain net en faible supervision : notre prétexte surpasse 1’entrainement
depuis zéro et devance RotNet/CPC v2 lorsque la fraction annotée est
taible (2-20 %), pour la segmentation et I'activité, et ce quelle que soit la taille
de 'extracteur (type ResNet-18/50).

¢ Convergence des performances lorsque la quantité d’annotations aug-
mente : l'écart se réduit et devient comparable aux autres auto-
supervisions a 50-100 %.

e Efficacité d’annotation : en reconnaissance d’activités, une performance
mAP équivalente a un modele entrainé a 50 % d’annotations peut étre
atteinte avec environ la moitié des annotations (ex. 5 % vs 50 % dans nos
essais).

¢ Significativité statistique : tests de Wilcoxon avec corrections (Dunnett,
Bonferroni-Holm) indiquent des améliorations significatives (p < 0.05)
dans les régimes peu annotés (jusqu'a 20 % pour la segmentation, 10 %
pour l'activité), et méme p < 0.01 sur les plus faibles fractions en seg-
mentation.

Analyse qualitative Les projections t-SNE des caractéristiques de super-
pixels montrent des amas cohérents par entité (ex. table, éclairage plafon-
nier, silhouettes humaines) sans supervision, signe que la tache prétexte capte
une structuration géométrique utile.

Forces et limites Forces : (i) confidentialité respectée (profondeur seule),
(ii) invariance au point de vue via la géométrie, (iii) frugalité en an-
notations et transfert aux deux taches. Limites : résultats en segmen-
tation encore en dega des meilleures architectures spécialisées, car nous
privilégions des architectures volontairement simples pour isoler I'effet du
prétexte. Un couplage avec des tétes de segmentation plus avancées devrait
améliorer le plafond de performance.

Conclusion. L’apprentissage auto-supervisé guidé par la géométrie sur
cartes de profondeur, via distances entre superpixels, constitue une voie
efficace pour doter le bloc opératoire d'une compréhension de contexte
économe en annotations et compatible avec la confidentialité. Cette brique
servira, dans les chapitres suivants, de socle a des approches plus riches
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A.5. RECONNAISSANCE D’ACTIVITES CENTREE-OBJETS AVEC
PRE-APPRENTISSAGE MASQUE

intégrant modalités abstraites (objets, pose) et multi-vues pour la reconnais-
sance d’activités.

A.5 Reconnaissance d’activités centrée-objets
avec pré-apprentissage masqué

Nous étudions une approche centrée-objets pour reconnaitre les activités
au bloc opératoire a partir de vidéos basse résolution (RGB ou ToF).
L'hypothese clé est que la disposition géométrique des dispositifs (PSC,
VSC, table d’opération, brancard, tables stérile/non stérile) et des cliniciens
porte une information discriminante forte. Deux étapes complémentaires

sont proposées.

Etape 1 — ST(OR)? : raisonnement objet-temps par réseaux simples.
Nous détectons personnes et objets a 1'aide de détecteurs spécialisés en-
trainés sur OR-Det (sous-ensemble annoté d’OR-AR). Pour chaque extrait
court, chaque détection est décrite par:

* une représentation spatiale (centre, largeur, hauteur de la boite),

* une représentation sémantique (catégorie).

Ces deux informations sont projetées par des MLP, puis agrégées par
catégorie afin d’éviter le suivi instance-par-instance. Un module temporel
compact raisonne ensuite au fil des images, puis entre catégories, pour produire
un vecteur d’extrait utilisé en classification d’action. Cette représentation
objet peut étre fusionnée a posteriori avec des descripteurs d’apparence
globaux issus d"un réseau vidéo (p. ex. I3D [Carreira 2017]). Sur la reconnais-
sance d’activités (segmentation longue), I'ajout de ST(OR)? aux descripteurs
d’apparence améliore la mAP sur OR-AR.

Limite. L'agrégation par catégorie supprime l'information des multiples
instances humaines, et 'ordre des objets dans une image ne devrait pas
influencer la prédiction : il faut un modele invariant par permutation.

Etape 2 — ORDynaRe : transformeur spatio-temporel et
pré-apprentissage masqué “centré-objets” Nous introduisons OR-
DynaRe, qui traite une séquence de tokens objets par un transformeur
spatio-temporel, ce qui apporte :

1. Invariance par permutation des objets au sein d"une image,
2. Gestion naturelle des multi-instances (notamment les cliniciens),

3. Pré-apprentissage auto-supervisé adapté aux objets

Chaque token combine: (i) position (boite), (ii) catégorie, (iii) car-
actéristiques de région issues du détecteur; un codage temporel est ajouté.
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Le pré-apprentissage masqué consiste a cacher une piste courte dun objet
(toutes les images intermédiaires) en ne gardant que le premier et le dernier
token comme contexte, puis a prédire pour les tokens masqués a la fois la
catégorie et la position (et, en régularisation, les caractéristiques initiales).
La perte combine entropie croisée (catégorie) et régression de boites (L1 +
gloU), sur les seuls tokens masqués.

Intégration et affinage Apres pré-apprentissage, on affine le transformeur
pour la classification d’actions d’extraits (token spécial [CLS]), puis pour
la reconnaissance d’activités (segmentation longue) via un décodeur tem-
porel (p.ex. GRU). Les vecteurs centrés-objets peuvent étre combinés aux
descripteurs d’apparence pour accroitre la robustesse.

Jeu de données et mesures Les expériences sont menées sur OR-
AR [Sharghi 2020] (9 activités retenues, fort déséquilibre de durées), avec
détecteurs entrainés sur OR-Det. Les mesures suivent les usages: exactitude
top-1 pour la classification d’actions (extraits), mAP pour la reconnaissance
d’activités (vidéos longues).

Résultats

* Apport du pré-apprentissage : ORDynaRe pré-entrainé surpasse la ver-
sion sans pré-apprentissage a toutes les fractions annotées, avec des gains
marqués en faible supervision (5-20 %).

* Complémentarité apparence/objets : la fusion avec des descripteurs
globaux (I3D) améliore encore la classification d’actions et la segmenta-
tion longue, et peut dépasser les méthodes purement globales lorsque
I’annotation est limitée.

¢ Interprétabilité : les cartes d’attention du token [CLS] mettent en
évidence les objets déterminants (p. ex. PSC pour roll-up/roll-back).

Conclusion. En structurant la vidéo par objets et en apprenant a re-
constituer leurs catégories et positions lorsqu’ils sont masqués, nous
obtenons des représentations temporelles efficaces, économes en étiquettes
et complémentaires aux indices d’apparence. Cette brique centrée-objets
prépare l'alignement avec d’autres modalités abstraites (p.ex. la pose) et
s’integre aux approches multi-vues présentées ensuite.

A.6 Alignement vidéo—pose multivues sans cali-
bration

Nous présentons PreViPS, un cadre de pré-apprentissage multimodal mul-
tivues sans calibration pour la reconnaissance d’activités au bloc opératoire.
L’idée centrale est d’aligner finement la pose humaine et les indices visuels
issus de caméras non calibrées, afin d’exploiter les gestes des cliniciens tout
en restant robuste aux changements de point de vue.
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A.6. ALIGNEMENT VIDEO-POSE MULTIVUES SANS CALIBRATION

Motivation. Les approches courantes de reconnaissance d’activités
(découpage en extraits puis modélisation temporelle) utilisent surtout des
indices globaux d’apparence et ignorent souvent les mouvements fins des
cliniciens ou exigent des montages calibrés et des nuages de points cotiteux.
Or, la pose 2D vue salle est aujourd’hui fiable et porteuse d'une sémantique
gestuelle déterminante.

Principe architectural. PreViPS s’appuie sur un double encodeur (vidéo
et pose) :

* Branche vidéo : encodeur vidéo de type ViT appris par masquage (Mask-
Feat), produisant un token global [CLS] par vue.

* Branche pose : les poses 2D (17 points) détectées par vue sont
discrétisées en tokens compositionnels (PCT), ce qui transforme des co-
ordonnées continues en tokens robustes aux occultations ; des codages
positionnels (temps, identité de suivi, identifiant de vue) structurent la
séquence. Un transformeur produit un [CLS] par vue.

Objectifs de pré-apprentissage. Nous alignons les représentations
vidéo—pose et favorisons l'invariance au point de vue par trois familles de
contraintes :

1. Contraste multimodal multivues (type CLIP adapté) : rapprocher, pour
un méme instant, la vidéo d’une vue et la pose de la méme scene (toutes
vues), tout en éloignant les paires négatives ; déclinaisons inter-modalité
(vidéo—pose) et intra-modalité (vidéo—-vidéo, pose—pose).

2. Cohérence géométrique : pénaliser les incohérences de similarité entre
modalités et au sein d’une modalité selon les vues, pour stabiliser 1’'espace
partagé.

3. Masquage de tokens de pose : masquer une partie des tokens de pose et
reconstruire les coordonnées manquantes via un petit décodeur, afin de
renforcer la représentation structurale des gestes.

La perte totale combine ces trois contributions avec des pondérations sim-
ples.

Affinage pour la tiche aval. Apres pré-apprentissage, on affine les en-
codeurs pour la classification d’actions (extraits multivues) puis pour la re-
connaissance d’activités (vidéos longues) en agrégeant les [CLS] de toutes les
vues et, si besoin, avec un décodeur temporel (BiGRU).

Jeux de données et protocole. Evaluations sur 4D-OR (6 caméras pla-
fonnieres, simulation guidée) et OR-AR (4 vues ToF en salle réelle).
Nous étudions : (i) parcimonie d’annotations (5-100 %), (ii) robustesse
inter-vues (apprentissage sur certaines caméras, test sur une autre), (iii)
monomodale (vidéo seule ou pose seule), (iv) monovue (apprentissage et
test sur la méme vue).
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Résultats (synthese).

* Données rares : PreViPS dépasse les pré-apprentissages visuels seuls
(MaskFeat, VideoMAE) et les variantes sans alignement pose—vidéo, avec
des gains nets de 5-20 % d’annotations.

¢ Changement de vue : l'alignement multivues sans calibration améliore
sensiblement les performances en cross-view (jusqu’a +6 pts selon la vue
tenue a '’écart), y compris sur la vue zénithale la plus différente.

* Monomodale : le pré-apprentissage multimodal bénéficie aussi aux
réglages pose seule et vidéo seule (+2 a +1.5 pts env.), montrant un trans-
fert croisé utile.

* Monovue et temporel : en monovue, les gains restent marqués (+3 a
+6 pts) ; I'ajout d'un décodeur temporel (BiGRU) consolide la chronologie
des phases et améliore toutes les mesures (mAP, exactitude, F1).

Conclusion. PreViPS montre qu'un alignement vidéo—-pose multivues,
combinant tokens de pose et contraintes géométriques, apporte des
représentations robustes et parcimonieuses en étiquettes pour la recon-
naissance d’activités en salle d’opération, sans calibration ni 3D lourde.
Ce cadre se préte naturellement aux extensions multi-modalités abstraites
(pose + objets) et aux déploiements réalistes a caméra unique.

A.7 Conclusion
A.7.1 Synthese et limites

Cette these a introduit des méthodes d’auto-supervision pour Ila
compréhension de vidéos chirurgicales en exploitant des modalités ab-
straites telles que le regroupement spatial basé sur la profondeur, les dis-
positions d’objets et la pose humaine. Ces modalités offrent une supervi-
sion sémantiquement riche sans annotations manuelles, améliorant la ro-
bustesse et l'efficacité en données pour des tdches comme la reconnais-
sance d’activités et la segmentation sémantique. Nos contributions se struc-
turent autour de trois axes principaux : (i) I’abstraction géométrique grace
au regroupement non supervisé de cartes de profondeur, (ii) le raison-
nement centré-objets via des objectifs de masquage et de co-présence,
et (iii) l’alignement guidé par la pose permettant de contraindre des
représentations issues de caméras multivues non calibrées. Ensemble, ces
travaux montrent comment 1'information structurelle peut guider efficace-
ment l’apprentissage multimodal de représentations.

Plusieurs limites demeurent néanmoins. D’une part, la généralisation
a travers des hopitaux et pratiques chirurgicales hétérogenes reste a
démontrer. D’autre part, les modalités abstraites, bien que sobres en an-
notations, restent moins performantes que les caractéristiques d’apparence
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pour la précision brute, ce qui incite a envisager des approches hybrides
combinant les deux sources. Enfin, la dépendance a des modules externes
(détecteurs d’objets, estimateurs de pose) introduit des cotits computation-
nels qui limitent 'utilisation en temps réel. Trouver le bon équilibre entre
efficacité et expressivité constitue donc un défi majeur.

A.7.2 Perspectives

A partir de ces constats, plusieurs pistes de recherche apparaissent promet-
teuses. Une premiére priorité concerne l’efficacité computationnelle : la
distillation de connaissances et la compression de grands encodeurs vers
des modeles légers basés sur des jetons objets pourraient permettre une
utilisation en temps réel au bloc opératoire. Une deuxiéme voie est le
développement d’architectures de bout-en-bout, capables de prédire di-
rectement des abstractions sémantiques (cartes, graphes de pose, disposi-
tions d’objets), sans dépendre de modules séquentiels, ce qui simplifierait
le déploiement. Une troisiéme perspective est I’extension multimodale, en
intégrant des signaux comme l'audio, le regard ou les retours haptiques,
afin d’améliorer la compréhension contextuelle et la modélisation cognitive.

Une opportunité majeure réside également dans le pont entre vision
et langage : la nature discrete et symbolique des modalités abstraites en
fait des médiateurs naturels entre vidéo et instructions textuelles. Cela ou-
vre la voie a des pré-apprentissages vision-langage adaptés au domaine
chirurgical, avec des applications en assistance robotique (navigation, po-
sitionnement automatique) ou en interfaces homme-machine plus intu-
itives. Enfin, les progres récents en autonomie robotique montrent déja
le potentiel d'un soutien prédictif et proactif. Intégrer des représentations
sémantiques riches a ces systémes pourrait transformer les robots chirurgi-
caux en partenaires ergonomiques, améliorant a la fois 1'efficacité, la sécurité
et ’expérience des équipes au bloc.

En résumé, cette these montre que les modalités abstraites, combinées
a l'auto-supervision visuelle, constituent une voie prometteuse vers une
compréhension de scene chirurgicale plus économe en annotations et
plus robuste. Les prochaines étapes devront viser la généralisation inter-
établissements, la réduction des cofits computationnels et I'intégration dans
des systémes réellement utilisables en contexte clinique.
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Acronyms

Al Artificial Intelligence

AP: Average Precision

BERT: Bidirectional Encoder Representations from Transformers
CAI: Computer Assisted Interventions
CAS: Context Aware Systems

CNN: Convolutional Neural Network
CREF: Conditional Random Field
DTW: Dynamic Time Warping

fps: frames per seconds

GRU: Gated Recurrent Unit

GPU: Graphics Processing Unit
HMM: Hidden Markov Model

HOG: Histogram of Oriented Gradients
HPE: Human Pose Estimation

IoU: Intersection over Union

LSTM: Long Short-Term Memory
MAE: Masked Auto Encoder

MIS: Minimally Invasive Surgery
MLP: Multi Layer Perceptron

OR: Operating Room

PSC: Patient Side Cart

REST: Representational State Transfer
RGBD: Red Green Blue + Depth

SAR: Synthetic Aperture Radar

SDS: Surgical Data Science
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SSL: Self Supervised Learning

SVM: Support Vector Machine

TCN: Temporal Convolutional Network
ToF: Time of Flight

ViT: Vision Transformer

VSC: Vision Side Cart
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The field of surgical computer vision has undergone considerable breakthroughs in recent years with the rising popularity of
deep neural network-based methods. However, standard fully-supervised approaches for training such models require vast
amounts of annotated data, imposing a prohibitively high cost; especially in the clinical domain. Self-Supervised Learning
(SSL) methods, which have begun to gain traction in the general computer vision community, represent a potential solution to
these annotation costs, allowing to learn useful representations from only unlabeled data. Still, the effectiveness of SSL methods
in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored. In this work, we
address this critical need by investigating four state-of-the-art SSL methods (MoCo v2, SimCLR, DINO, SwAV) in the context
of surgical computer vision. We present an extensive analysis of the performance of these methods on the Cholec80 dataset
for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection. We
examine their parameterization, then their behavior with respect to training data quantities in semi-supervised settings. Correct
transfer of these methods to surgery, as described and conducted in this work, leads to substantial performance gains over generic
uses of SSL - up to 7.4% on phase recognition and 20% on tool presence detection - as well as state-of-the-art semi-supervised
phase recognition approaches by up to 14%. Further results obtained on a highly diverse selection of surgical datasets exhibit
strong generalization properties. The code is available at https://github.com/CAMMA-public/SelfSupSurg.

Keywords: Self-supervised learning; Semi-supervised learning; Surgical computer vision; Deep learning; Endoscopic
videos; Laparoscopic cholecystectomy

1. Introduction resulting in approximately 630k hours of footage for just this
one type of procedure. Yet, datasets used for training current
surgical vision models remain disproportionately small. For
example, Cholec80 (Twinanda et al., 2016b), one of the most
popular datasets in the field (Maier-Hein et al., 2017), hardly
exceeds 50 hours of recordings. Apart from medico-legal
constraints, the critical factor leading to this sparsity of data
is the reliance on manual annotations. While labels for natural
images can be easily supplied by the general public, surgical
annotations usually require clinical expertise. As a result, the
fully supervised approach - i.e. training models with entirely
annotated datasets - may prove to be unsustainable in surgical
computer vision.

Automatic analysis and interpretation of visual signals from
the operating room (OR) is the primary concern of surgical
computer vision, a fast-growing discipline that is expected
to play a major role in the development of reliable deci-
sion support systems for surgeons (Maier-Hein et al., 2017).
Recent developments in the field have indeed resulted in
increasingly refined vision algorithms; however, a majority of
these studies have only been conducted on datasets containing
small amounts of recorded procedures, all of which have been
manually annotated by clinical experts. In future develop-
ments, much larger quantities of data will be required in order
to account for variations in anatomy, patient demographics,
clinical workflow, surgical skills, instrumentation, and image In computer vision, an alternative has emerged in the
acquisition (Maier-Hein et al., 2022). form of Self-Supervised Learning (SSL) (Jing and Tian,

For that purpose, raw video data can be supplied on a very  2021). Considerable progress has been made in this area,
large scale by laparoscopic surgeries, since they are guided by ith increasingly refined methods for extracting rich vector
intra-abdominal video streams: in the United States, nearly  representations from images without labels, using only the raw
IM laparoscopic cholecystectomies are performed each year,  pixe] data. This research topic has so far not been thoroughly

explored in surgical applications. In the few self-supervised
training tasks proposed by the community, learning from the
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A) HYPERPARAMETER STUDY
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Fig. 1. Three stages of the study: (A) Hyperparameter study: Analyzing the influence of hyperparameters when adapting SSL methods to the surgical
domain. (B) Data supply study: Evaluating the response of SSL methods to varying amounts of (1) labeled and (2) unlabeled data. (C) Generalization
study: observing how well SSL generalizes to a much larger variety of surgical data and tasks.

(Yang and Kahrs, 2021) or robot kinematics (Sestini et al.,
2021). State-of-the-art natural image SSL methods, with
their advanced representational capabilities, have yet to be
adequately demonstrated on surgical images.

However expanding SSL methods outside of natural images
can be challenging, especially in a complex domain such
as surgery. Most notably, heavy parameter tuning based on
heuristics (Xiao et al., 2020) might be required. Robustness
against large variations in domains and tasks also is not guar-
anteed; in-depth performance analysis has essentially been
conducted on general computer vision datasets (Feichtenhofer
et al., 2021a), most commonly Imagenet, which contains 14M
images and over 1000 visually distinct classes. In contrast,
Cholec80, one of the most prominent surgical computer vision
datasets (Maier-Hein et al., 2017), contains 80 videos of
procedures resulting in under 200k frames at 1fps. Only 7
classes of surgical phases and 7 classes of tools are featured;
moreover, the visual evidence to distinguish them is highly
sparse, especially for time-based tasks such as surgical phase
recognition, a coarse-grained form of activity recognition.
Further, since surgical videos can last up to several hours
depicting a relatively stable scene, it is non-trivial to determine
how existing SSL frameworks can best accommodate frames

coming from the same procedure. Finally, these issues may be
exacerbated by surgery-specific confounding factors such as
smoke, bleeding, occlusions, or rapid tool movements. Such
fundamental differences between natural and surgical image
data motivate the need for a thorough study of SSL in the
surgical domain.

The work presented here thoroughly addresses this need in
three distinct steps (see Fig. 1). We select four SSL methods -
MoCo v2 (Chen et al., 2020c), SimCLR (Chen et al., 2020b),
SwAV (Caron et al., 2020), DINO (Caron et al., 2021) -
suitably covering the state of the art in general computer
vision, and extensively examine hyperparameter variations for
each of them on Cholec80. We identify key differences with
the natural image domain, highlighting hyperparameter tuning
as a non-trivial and crucial element of SSL method transfer.
In the second step, we set hyperparameters to their optimal
values and test out the quality of the representations learned
through each of these methods on two classic surgical down-
stream tasks: phase recognition and tool presence detection.
Furthermore, we verify how these approaches respond to vary-
ing amounts of labeled and unlabeled data in a practical semi-
supervised setting. Here, we show that these methods, while
generic in design, achieve state-of-the-art performance for
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both tasks and significantly mitigate the reliance on annotated
data, adding up to 7.4% phase recognition F'; score and 20.4%
tool presence detection mAP. In the final step of the study, we
extend our experiments to additional tasks and datasets: phase
recognition & tool presence detection on HeiChole (Wagner
et al., 2021), phase recognition & tool presence detection on
CATARACTS (Al Hajj et al., 2019), action triplet recognition
with CholecT50 (Nwoye et al., 2022b), semantic segmentation
on Endoscapes (Alapatt et al., 2021), and 8 & 25 class
semantic segmentation with CaDIS (Grammatikopoulou et al.,
2021); thereby extensively covering the domain of surgical
vision with SSL.
This paper’s contributions are as follows:

1. Benchmarking of four state-of-the-art self-supervised
learning methods (MoCo v2 (Chen et al., 2020c), Sim-
CLR (Chen et al., 2020b), SWAV (Caron et al., 2020),
and DINO (Caron et al., 2021)) in the surgical domain.

2. Thorough experimentation ( ~200 experiments, 7000
GPU hours) and analysis of different design settings -
data augmentations, batch size, training duration, frame
rate, and initialization - highlighting a need for and
intuitions towards designing principled approaches for
domain transfer of SSL methods.

3. In-depth analysis on the adaptation of these methods,
originally developed using other datasets and tasks, to the
surgical domain with a comprehensive set of evaluation
protocols, spanning 10 surgical vision tasks in total
performed on 6 datasets.

4. Extensive evaluation (~280 experiments, 2000 GPU
hours) of the scalability of these methods to various
amounts of labeled and unlabeled data through an explo-
ration of both fully and semi-supervised settings.

2. Related Work

2.1. Self-supervised representation learning in computer vi-
sion

In the absence of external labels, SSL methods rely on the
input image’s intrinsic information to define a proxy loss to
minimize. This artificial loss forces the model to learn rich
vector representations of images, i.e. vectors in an embedding
space with relative positions that meaningfully reflect the
original visual content. The underlying expectation is that
these representations are suitable for a wide range of useful
downstream tasks.

The following paragraphs provide an overview of the var-
ious categories of SSL methods, tracing their evolution over
the past few years. Here we focus on non-surgical visual tasks,
considering mostly general computer vision works as well as
a few others in medical image analysis.

Early heuristics-based methods. Early SSL approaches
aimed to learn representations by training models to solve
a simple handcrafted task with some degree of relevance to
the target task (Kim et al., 2018). These included predicting
spatial context (Doersch et al., 2015), image rotation (Gidaris
et al., 2018), artificial classes based on geometric transforma-
tions (Dosovitskiy et al., 2014a), and image patch arrangement

(Noroozi and Favaro, 2016). Similarly, other works proposed
reconstructing image regions (Pathak et al., 2016) or coloriza-
tion (Zhang et al., 2016, 2017). An exhaustive review of SSL
methods based on pretext tasks is conducted in Jing and Tian
(2020).

Contrastive methods. More recently, contrastive learning
methods have emerged as an alternative to handcrafted heuris-
tics. These methods place less emphasis on the nature of
the pretext task, instead focusing on controlling the relative
position of features in the embedding space. They rely on
generating positive and negative pairs of samples, which are
then passed to a discriminative loss function to generate a
training signal.

Early works attempted to generate such samples from
within a single image using image patches (Dosovitskiy et al.,
2014b; Oord et al., 2018); however, these methods failed
to take advantage of relationships between different images.
Consequently, Wu et al. (2018) proposed the concept of a
memory bank to store representations of many instances,
which they leverage to impose an inter-instance discrimination
objective. He et al. (2020) refined this idea with MoCo,
using a momentum encoder rather than a memory bank to
store representations, thereby enabling the sampling of many
more instance pairs for the discrimination objective. An
improved version with an additional projection head and
more augmentations, MoCo v2, was later proposed by Chen
et al. (2020c). Recently, Chen et al. (2020b) introduced
SimCLR, a simpler framework outperforming many previous
works (Oord et al., 2018; Bachman et al., 2019; Henaff,
2020; Tian et al., 2020; Misra and Maaten, 2020) by using
aggressive data augmentations to generate ‘positive pairs’ for
the discrimination objective.

Among SSL approaches, contrastive learning in particular
has seen extensive use in research on medical image analysis
in recent years. This form of pretraining has been em-
ployed to support many medical vision tasks: most commonly
classification for diagnostic purposes (Chen et al., 2021; Ke
et al., 2021; Yang et al., 2021; Xing et al., 2021; Dong and
Voiculescu, 2021; Zhao and Yang, 2021; Huang et al., 2021;
Dufumier et al., 2021), but also more complex tasks such as
detection (Li et al., 2021; Tian et al., 2021; Lei et al., 2021),
segmentation (Wu et al., 2021; Hu et al., 2021; Zeng et al.,
2021; Boutillon et al., 2021; Zhou et al., 2021) and multimodal
tasks combining text with vision (Liu et al., 2021; Jiao et al.,
2020). Several imaging modalities are represented as well:
MRI (Wu et al., 2021; Hu et al., 2021; Dufumier et al., 2021;
Boutillon et al., 2021), CT (Yang et al., 2021; Lei et al., 2021;
Zhou et al., 2021), X-Ray (Li et al., 2021; Liu et al., 2021) and
ultrasound (Chen et al., 2021; Jiao et al., 2020).
Cluster-based and distillation-based methods. While con-
trastive methods have brought significant performance im-
provements, requiring positive and negative sampling during
training can be impractical, and has pushed the community
towards alternative approaches.

Self-supervised clustering methods (Caron et al., 2018;
Asano et al., 2019; Caron et al., 2020; Grill et al., 2020a;
Caron et al., 2021) provide another alternative to the pretext
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task-based approach, focusing on clustering latent image
representations in embedding space. Initially, Caron et. al. in-
troduced DEEPCLUSTER (Caron et al., 2018), which adapted
the k-means algorithm to assign clusters to images. Asano
et al. (2019) showed reformulating cluster assignment as an
optimal transport problem improves performance. SwAV
(Caron et al., 2020) further improves on this by constraining
augmented views of an image to have consistent cluster
assignments.

Other works, based on distillation, bootstrap multiple neu-

ral networks in a teacher-student fashion to learn latent rep-
resentations (Grill et al., 2020a). DINO (Caron et al., 2021)
applies this bootstrapping approach with vision transformers,
attaining state-of-the-art results.
Masked image modeling. Techniques based on concealing
parts of images, as mentioned in our previous paragraph on
heuristics-based methods, have existed in the computer vision
community for several years: Pathak et al. (2016)’s image
region reconstruction is one early example of masked image
modeling (MIM). The emergence of Transformer models,
however, led to a resurgence of MIM. Drawing inspiration
from masked language modeling tasks for Transformers in
natural language processing, recently published masked image
modeling techniques view images as sequences of visual
tokens, representing patches in a grid. A selection of tokens
in the sequence is masked, then prompted for prediction by a
Transformer employing attention on the sequence’s tokens.

iGPT (Chen et al., 2020a) used a Transformer to predict
individual pixels in images scaled down to low resolutions,
while ViT (Dosovitskiy et al., 2021) predicted the mean
colors of masked patches. BEiT (Bao et al., 2022), mc-BEiT
(Li et al., 2022), and PeCo (Dong et al., 2021) learned to
predict tokens produced by a VQ-VAE (Vector-Quantized
Variational Auto-Encoder (van den Oord et al., 2017)) from
masked patches. MaskFeat (Wei et al., 2022) studied a broad
spectrum of feature types and proposed to regress Histograms
of Oriented Gradients (HOG) for the masked content. MAE
(He et al., 2022) and SimMIM (Xie et al., 2022) proceeded
with direct regression on raw RGB pixel values.
Spatio-temporal methods. Parallel to static image methods
presented in the previous paragraphs, research on SSL has
explored video data through approaches tailored to spatio-
temporal models. Most of them rely on spatio-temporal
heuristics, with more emphasis on timing (Misra et al., 2016;
Fernando et al., 2017; Lee et al., 2017; Xu et al., 2019;
Wang et al., 2019; Jenni et al., 2020; Benaim et al., 2020)
or appearance (Vondrick et al., 2018; Ahsan et al., 2019;
Pathak et al., 2017; Kim et al., 2019; Diba et al., 2019). A
few contrastive methods exist as well (Qian et al., 2021; Pan
et al., 2021; Han et al., 2020). Recently, a large-scale study
by Feichtenhofer et al. (2021b) adapted four single-frame
SSL methods Chen et al. (2020b); He et al. (2020); Grill et al.
(2020b); Caron et al. (2020) to video data and compared their
performance.

Position of our work. Self-Supervised Learning is an
intensely active research topic, with a large number of very

distinct approaches proposed in recent years. For this reason,
choosing an SSL method - especially for anything other than
natural image data - is a complex problem: comparisons
presented in SSL works can only cover a small selection of
methods. More importantly, these comparisons are mainly
conducted on natural image datasets such as the Imagenet
dataset Deng et al. (2009); no reference point exists for
surgical datasets, which are entirely different in terms of
appearance. This is precisely the gap we fill with our work:
we study how SSL adapts to surgical computer vision using
a choice of methods that sufficiently span the state-of-the-art
for static images with methods based on contrastive learning,
clustering, and distillation. Masked Image Modeling methods
have not been selected since the patch division process that
makes those suitable for Transformers would first need to
be ported to the more classical architecture of ResNet50
(retained due to its status as the standard for SSL). This port
alone would require extensive and dedicated experimentation.
Spatio-temporal models, while potentially relevant for future
studies, are also omitted here due to challenging and radically
different temporal modeling requirements in the surgical do-
main: commonly used natural video datasets in SSL (Carreira
and Zisserman, 2017; Soomro et al., 2012; Kuehne et al.,
2011) contain short clips of a single action, contrasting heavily
with full recordings of surgical interventions.

2.2. Surgical computer vision.

General computer vision focuses on natural images with
scenes and items from everyday life. In contrast, surgical com-
puter vision aims at identifying surgical activities and objects
with varying degrees of detail. Early work in the field focused
on automatically recognizing surgical workflow at the coarsest
level through two fundamental tasks: phase recognition and
tool presence detection. These highly specialized visual tasks
prompted developments in terms of methodology separately
from the rest of computer vision, which we cover in the next
paragraphs.

Full supervision. Initial efforts in surgical computer vision
involved phase recognition based on handcrafted features
(Padoy et al., 2012; Blum et al., 2010). Deep learning was
first introduced to the field by Twinanda et al. (2016b) and
Dergachyova et al. (2016), replacing handcrafted features
with embeddings extracted by convolutional neural networks;
Twinanda et al. (2016b) in particular introduced the Cholec80
dataset, containing 80 videos of cholecystectomy annotated
with surgical phases and tool presence labels. This dataset
has since remained as one of the surgical computer vision
community’s main datasets (Maier-Hein et al., 2017), ap-
pearing in most works mentioned in this paragraph. With
surgical workflow and continuity of surgical actions playing
a major role in these tasks, spatio-temporal models quickly
emerged, outperforming single-frame models by a wide mar-
gin. Twinanda et al. (2016a) employed combinations of CNNs
and LSTMs for surgical phase recognition and tool presence
detection. Since then, increasingly refined spatio-temporal
architectures have been proposed to better model the tasks
(Jin et al., 2018, 2020; Czempiel et al., 2020; Jin et al., 2021;
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Czempiel et al., 2021). Recently, Rivoir et al. (2022) studied
end-to-end spatio-temporal models and the effect of Batch
Normalization on the success of these models. Outside of
these examples, a more comprehensive overview of surgical
phase recognition approaches is provided in a survey by
Garrow et al. (2021). For recognizing tools in cataract surgery,
Al Hajj et al. (2018) proposed combinations of CNNs and
RNNs with boosting.

Self-supervision in surgery. Self-supervision is still in the
very early stages of research within surgical computer vision.
While SSL methods in general computer vision have evolved
towards methods such as contrastive learning, clustering or
distillation (Section 2), self-supervision on surgical data is
still mostly limited to heuristics; for instance, Ross et al.
(2018) uses a colorization pretext task. Furthermore, the self-
supervised tasks seen in surgery generally involve external
information: da Costa Rocha et al. (2019); Sestini et al.
(2021) incorporate robot kinematics. Yengera et al. (2018)
rely on remaining surgery duration estimation as the pretext
task to improve surgical phase recognition on Cholec80. The
only existing examples of contrastive learning add external
information as well: Bodenstedt et al. (2017) used a frame
sorting task; later, Funke et al. (2018) introduced a method
named second-order temporal coherence. In both cases,
comparisons between frames are driven by time (i.e. relative
positions of frames inside of a video) instead of their actual
content.

Position of our work. Current research on surgical computer
vision heavily leans towards fully supervised methods, which
require large amounts of data to be annotated with clinical
expertise. For improved scalability, a few approaches involv-
ing self-supervision have been developed. These approaches,
however, heavily rely on heuristics and external information;
as such, they lag behind general SSL, which has expanded to a
larger spectrum of methods in recent years, all purely based on
pixel data. Our work targets this deficit by bringing recently
proposed SSL methods to surgery and adapting them to this
particular domain. Since single-frame feature extractors play
a fundamental role in state-of-the-art spatio-temporal models
in surgical computer vision, examining SSL methods designed
for static images is an obligatory first step, which is the focus
of this study.

3. Methodology

We first establish the setting of this study by introducing the
relevant surgical data and tasks, followed by our selection of
SSL methods. We then outline our experiments; three main
stages are defined as shown in Fig. 1, the hyperparameter
study (A), the data supply study (B) and the generalization
experiments (C). Stages A and B each examine in detail the
reaction of SSL in the surgical domain to a different factor,
respectively parameterization and available data quantities.
Stage C is an extension of our experiments to a much larger
variety of datasets and tasks. Implementation details for each
stage of this study are available in the supplementary material.

3.1. Surgical data & surgical tasks

Cholec80. Since its introduction by Twinanda et al. (2016b),
the Cholec80 dataset has been the foundation for many studies
in surgical computer vision; we, therefore, use it here for
our SSL benchmark. This dataset contains 80 videos of
complete laparoscopic cholecystectomy procedures, recorded
at 25 frames per second with a resolution of 854 x 480 or
1920 x 1080. The average video duration is 38 minutes with
16 minutes of standard deviation, indicating a high degree of
heterogeneity.

The two tasks used as downstream tasks are fool presence
detection and surgical phase recognition, mirroring the object
detection and action recognition tasks of general computer
vision, respectively.

Tool presence detection is a multi-class, multi-label clas-
sification problem aimed at identifying all the surgical tools
appearing in a given frame (Twinanda et al., 2016b; Nwoye
et al., 2019; Al Hajj et al., 2018). It goes beyond image-level
classification as zero, one, or several types of tools can be
detected in one surgical image frame at the same time. 7 tools
are featured, as described in Fig. 2.

Surgical phase recognition entails classifying every frame
of a recorded surgical procedure based on the activity being
performed. This is a challenging task since important tools
or anatomical parts often exit the field of view; as a result,
useful visual indicators for making predictions tend to be quite
sparse. Each procedure is decomposed into up to 7 phases
described in Fig. 3.

CHOLEC80 TOOLS

Occurrences
per video

Grasper Hold or move anatomy ‘ 128241669

Bipolar Coagulate, hold or move anatomy 111+106
with a pair of electrodes

Hook Dissect tissue or coagulate with an 1289+672
electrode

Clipper Ligate using clips . 4431

Scissors  Perform cuts % 75+48

Irrigator  Project water, aspirate fluids z 1234147

Specimen  Carry gallbladder ¢ 143484

bag 5

Fig. 2. Tools featured in the Cholec80 dataset.

Additional data & tasks. While experiments featured in this
work mostly focus on Cholec80 due to its prevalence in the
community, a later stage of our study looks at other interesting
datasets and surgical tasks. The digest of all datasets and tasks
are presented in Fig. 6.

HeiChole. The HeiChole? (Wagner et al., 2021) dataset,

’https://www.synapse.org/#!Synapse: syn18824884/wiki/

126



APPENDIX B. APPENDICES

This article has been accepted for publication in Medical Image Analysis. DOI: 10.1016/j.media.2023.102844 (2023) 6

CHOLEC80 PHASES

[Name | Description

Preparation Exposure of gallbladder by removal 1 8+1 7
of surrounding tissue

Calot triangle Exposure of the base of the liver bed 15. 6+11 1

dissection by dissecting the gallbladder neck

Clipping & Application of clips to the cystic duct, %) 9+21

cutting cutting of cystic duct

Gallbladder Dissection of gallbladder from the 12. 2+9 9

dissection liver bed

Gallbladder Insertion of dissected gallbladder 6+D 8

packaging into specimen bag

Cleaning & Coagulation of the liver bed and Bl 0+2 6

coagulation cleanup using the irrigator

Gallbladder ~ Extraction of the gallbladder through 1. 4+1 2,

extraction the umbilical trocar

Fig. 3. Phases featured in the Cholec80 dataset.

introduced as part of the EndoVis 2019 challenge, consists of
33 video recordings of cholecystectomy surgeries from three
different hospitals. The training set, consisting of 24 videos,
is publicly available while a test set of 9 videos is privately
held for evaluation. The complete dataset contains frame-
wise annotations of surgical phase and tool presence. Each
procedure is segmented into 7 phases and could feature up to
7 tools. The description of all the phases and tools is presented
in Wagner et al. (2021).

CATARACTS. The CATARACTS dataset, introduced as part
of the Challenge on Automatic Tool Annotation for cataRACT
Surgery (CATARACTS)? in 2017, is another popular dataset
in the surgical vision community. The dataset consists of
50 recordings of cataract surgical procedures. In a recent
edition of the challenge* (Al Hajj et al., 2019), the dataset was
fully annotated for both tool presence detection and surgical
activity recognition (step) tasks. In total, there are 19 steps
and 21 different tool classes. We use the same splits as the
CATARACTS 2020 challenge where the dataset was separated
into 25, 5, and 20 videos corresponding to a train, validation,
and test set, respectively.

CholecT50. CholecT50 is a video dataset of laparoscopic
cholecystectomy surgery introduced by Nwoye et al. (2022b)
to enable research on fine-grained action recognition. A col-
lection of 50 videos, of which 45 videos are from the Cholec80
dataset and an additional 5 videos from an in-house dataset
for cholecystectomy surgery, are fully annotated with action
triplet information in the form of (instrument, verb, target).
A total of 100 actions triplet classes are defined by Nwoye
et al. (2022b) as various combinations of 6 instruments, 10
verbs, and 15 targets. The dataset is split into 45 videos for
training and 5 videos for testing, following the split used in

591922
3https://cataracts.grand-challenge.org/
“https://www.synapse.org/#!Synapse:syn21680292/wiki/601561

the CholecTriplet2021 Challenge 3.

Endoscapes. Introduced by Alapatt et al. (2021), Endoscapes
is a dataset comprised of 2208 frames selected at regular
intervals (every 30 seconds) from 201 laparoscopic cholecys-
tectomy videos with pixel-wise annotations for the task of
semantic segmentation. A total of 29 semantic classes are
defined in Alapatt et al. (2021) with 6 anatomy classes, 19
instrument classes, and 4 other miscellaneous classes. We
follow the same data splits of Alapatt et al. (2021) in all
our experiments. CaDIS. CaDIS (Grammatikopoulou et al.,
2021) is a semantic segmentation dataset for cataract surgery.
The dataset consists of 4670 images extracted extending part
of the CATARACTS dataset with pixel-level annotations for
36 classes (29 surgical instrument classes, 4 anatomy classes,
and 3 miscellaneous classes). The 4670 images are split into
train, validation, and test sets comprising 3550, 534, and
586 images, respectively. Out of the three different eval-
uation tasks, representing increasing degrees of granularity,
we consider the two extremes for evaluation in this study.
Task I aims at differentiating anatomy and instruments in each
frame and hence consists of 8 semantic classes: 4 classes for
anatomical structures, 1 class for all instruments, and 3 classes
for all other objects appearing in the images. Task III, on the
other hand, focuses on more detailed instrument classification
by representing each instrument type and instrument tips as
separate classes totaling 25 classes.

3.2. Selected SSL methods

As shown in Section 2, general computer vision offers a
wide range of SSL methods. In order to adequately represent
the current state of the art, we select a total of four SSL meth-
ods: two contrastive (SimCLR (Chen et al., 2020b), MoCo v2
(He et al., 2020; Chen et al., 2020c)), one distillation-based
(DINO (Caron et al., 2020)), and one clustering-based (SWAV
(Caron et al., 2020)), see Fig. 4.

Several studies on unsupervised visual representation have
proposed approaches based on contrastive learning (Hadsell
et al.,, 2006; Wu et al., 2018; Van den Oord et al., 2018;
Hjelm et al., 2018; Zhuang et al., 2019; Henaff, 2020; Tian
et al., 2020; Bachman et al., 2019), with the core idea being to
maximize the representational similarity for pairs of positive
samples and dissimilarity for pairs of negative samples. A
key component of these methods is mining positive and
negative samples in a batch without explicit labels. A common
approach in these methods is, for each image, to consider its
augmentations as a corresponding positive sample, and other
images as corresponding negative samples. The positive and
the negative samples are passed through a base encoder to
obtain the corresponding positive (x, x*) and negative (x7)
embeddings. The InfoNCE loss (Oord et al., 2018) commonly
used in contrastive methods is defined as follows:

ot
e /T

Leontrastive = ]Ex,x*,x’ —log e (Zf:l e_,(.x—/-r) ’ )

Shttps://cholectriplet2021.grand-challenge.org/
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Fig. 4. We study four SSL methods from three categories: contrastive (SimCLR (Chen et al., 2020b) and MoCo v2 (He et al., 2020; Chen et al., 2020c)),
distillation-based (DINO (Caron et al., 2021)), and clustering-based (SwAV (Caron et al., 2020)). SimCLR and MoCo v2, as contrastive methods, use
embeddings from other images or a queue to generate negative embeddings (x~), respectively. MoCo v2 and DINO use an explicit momentum encoder
whose weights are updated using an exponential moving average (EMA). V6 are the gradients of the encoder’s weights 0, computed using a contrastive
10ss (Lcontrastive) for SimCLR and MoCo v2 and a similarity loss (Lginiariry) for DINO and SwAV. DINO uses a centering operation, and SWAV uses a
non-differentiable Sinkhorn-Knop (SK) transform (Cuturi, 2013) to avoid mode collapse in the absence of negative embeddings.

where 7 is a temperature hyperparameter for scaling the
embeddings. The negative samples are required in contrastive
methods to avoid model collapse to an identity solution. Each
of the following four selected SSL methods works on similar
principles with a few modifications.

SimCLR (Chen et al., 2020b) considers the other images
from a batch as negative samples and passes them through the
encoder to obtain the negative embeddings (x7) to compute
the contrastive 10ss, Leonsrasiive> USIng equation (1).

MoCo v2 He et al. (2020) introduced MoCo, employing a
large memory queue to store negative embeddings x~. This
queue allows decoupling the dictionary size from the mini-
batch size, in order to perform well even with smaller batch
sizes. Furthermore, since the queue contains embeddings
from different mini-batches, a momentum encoder is used
to enforce consistency across different mini-batches. The
weights of the momentum encoder (6,,) are updated using
an exponential moving average (EMA) of the weights of the
encoder (0): 8,, = 16,,+(1 —2)0, where A is a decay parameter.
MoCo v2 (Chen et al., 2020c) refines this design using an
additional projection head and more augmentations.

DINO (Caron et al., 2021), inspired by BYOL (Grill et al.,
2020b), uses a teacher-student approach in a knowledge-
distillation framework (Hinton et al., 2015). The student
encoder, parameterized by 6,, and the teacher encoder, param-
eterized by 6, are used to generate two positive embeddings,
x and x*, respectively. Similar to MoCo v2, the weights of
the teacher encoder are updated using EMA. However, DINO
also removes the dependency on negative samples; in the
absence of negative embeddings, this method avoids model
collapse using a centering operation. This operation first
computes the centers of the positive embeddings using EMA,

B
c=Ac+(1- /lc)é > x,.*, then subtracts the centers ¢ from the
i=1

positive embeddings to compute the mean-centered positive
embeddings, ¥* = x* — ¢. Here, B is a batch dimension and A,
is a centering decay parameter. The similarity loss

Lgimitarity = — Z softmax(x/7y) log(softmax(x* /7,))  (2)

is computed as a cross-entropy loss between the reference pos-
itive embedding, x, and mean-centered positive embeddings,
X*. The softmax() function normalizes embeddings that are
scaled differently using temperature parameters 7, and 7, for
the student and teacher encoders, respectively.

SwAV (Caron et al., 2020) circumvents the need for negative
embeddings by first transforming the positive embedding pair,
x and x*, to learned prototype embeddings, X¥ and X" and
then performing online clustering of the learned prototype em-
beddings using the Sinkhorn-Knopp (SK) algorithm (Cuturi,
2013). The SWAV similarity loss is

Lsimilarity = Dk (x| SK()_C+)), 3)
where Dk is the Kullback-Leibler divergence.

3.3. Hyperparameter study design

In the hyperparameter study (Fig. 1, A), we aim to better
understand the sensitivity of each SSL method to hyperpa-
rameter variations and establish a set of recommended values
that will later serve in practical use cases of semi-supervised
learning, as part of the data supply study (Fig. 1, B). To this
end, we select a subset of 5 critical hyperparameters:

o Type of augmentation
e Batch size

e Epochs

o Sampling rate

o Type of initialization

We then carefully analyze the influence of all 5 on the
model performance, for the tasks of phase recognition and tool
presence detection on the Cholec80 dataset. Each of those 5
hyperparameters defines a group of experiments, where the
relevant hyperparameter varies while others are set to the
default values shown in Table 1. For each value of that
hyperparameter, 4 models are trained - one for each selected
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Table 1. Observed SSL hyperparameters. Defaults are used in the

hyperpar: ter study. Rec ded values (best overall performance
in the hyperparameter study) are used in the data supply study.
Defaults Recommended
Multi-Crop 8 2
Augmentations Color . On On
Geometric On On
Strong-color Off Off
Batch size 512 256
Epochs 300 300
Sampling rate 1 5
Initialization Scratch Imagenet

fully supervised

SSL method. Linear evaluation is then performed on the
validation set, i.e. by training a linear classifier added on
top of the frozen backbone layers, for tool and phase tasks
separately. This validation protocol, commonly used in SSL
(Feichtenhofer et al., 2021a), verifies here how well each
method, for that particular hyperparameter value, maps frames
to linearly separable vector representations that are consistent
in terms of phase and tool content. Details for each experiment
group are provided in the following paragraphs.
Augmentations. Data augmentation is a crucial aspect of
SSL methods (Chen et al., 2020b): learning persistent feature
representations between different views of the same image (i.e.
between different augmented versions of the original image),
is the implicit task that SSL methods leverage in order to
produce powerful representations of unlabeled data. Hence, it
is imperative to understand the impact of this parameter when
shifting to different domains and tasks. While an exhaustive
search of augmentations is beyond the scope of this study
6, we decided to focus on broad categories of commonly
used augmentation techniques to train SSL methods (Caron
et al., 2021; Chen et al., 2020b; He et al., 2020), defined here
as Color, Geometric, Strong-color and Multi-Crop. Fig. 5
provides a description for each category.

Realistic color adjustments

Color

brightness, contrast, saturation
Geometric Spatial affine transforms

rotation, translation, scaling, shearing
Strong Heavy color corruption
Color

inversion, posterization, solarization
Multi Cropped duplicate views, including 2
Crop ¥ at a high resolution

fi@

2 views, 4 views, 8 views

Fig. 5. Data augmentation types involved in the hyperparameter study

SPretraining a ResNet-50 using SSL with a single hyperparameter setting
given our experimental design demands approximately 40 GPU hours using 4
NVIDIA V100s on average across considered methods.

All the mentioned augmentations are randomized during
training (Cubuk et al., 2020a); the randomization process
follows the implementation of Goyal et al. (2021).

Multi-Crop is set to 2, 4, or 8 crops with 2 crops always

sampled at a high resolution following Caron et al. (2020).
Each of the other 3 augmentation types is either on or off.
Considering all the possible combinations, we examine a total
of 3 %23 = 24 configurations for augmentations.
Batch size. Batch size is a crucial hyperparameter in SSL
methods: SimCLR (Chen et al., 2020b) established a positive
correlation between performance and batch size attributed to
the size of the pool of negative samples to draw from during
training. The other 3 approaches have presented the ability to
better function with smaller batches as an advantage, cutting
down memory requirements.

To examine these claims, we use batches of sizes 128, 256,
512, and 1024.

Epochs. Previous studies have shown that training time could
largely impact SSL performance. Given this, we investigate
the impact of training time by training each SSL method for
50, 100, 200, and 300 epochs.

Sampling rate. While the SSL methods we test are designed
for still images, we can apply them to video inputs by
simply extracting individual frames from each video. A key
consideration when doing so is the frame sampling rate, as
this can affect the relative homogeneity among various input
images. In this aspect, surgical videos pose a particularly
interesting technical setting, as they tend to provide a stable
context, and the only changes across frames, even for several
minutes of video, are manipulations of organs and medical
tools in the field of view. Consequently, while increasing the
number of frames sampled per second dramatically increases
the available training data, it is unclear whether this additional
data would be beneficial for SSL methods.

We experiment with sampling videos at 0.1, 0.33, 0.5, 1, 3,
and 5 frames per second (fps).

3.4. Data supply study design

In contrast with the previous section, the data supply study
(Fig. 1, B) operates with a completely fixed set of recom-
mended hyperparameters (Table 1), suitable for examining
our chosen SSL methods in practical semi-supervision use
cases: instead of freezing the backbone after self-supervised
training, here we finetune it with phase or tool annotations in
conjunction with a linear classifier. For phase recognition, we
also observe the performance obtained by adding a temporal
model (TCN, Czempiel et al. (2020)) after this step and
finetuning it separately as well: this provides a strong point of
comparison against the state of the art, while also gauging the
representations learned through SSL when used in a temporal
context.

Labeled data supply. We first focus on labeled data
only. Performance with respect to annotated data availability
(Fig. 1, B1) is examined in three settings, with supervised
finetuning performed after SSL on 40 videos (100% of the
entire Cholec80 training set), 10 videos (25%), or 5 videos
(12.5%) of the full data. To mitigate the effect of outliers,
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experiments for the last two settings are replicated on 3
randomly selected sets of videos. In all these configurations,
the same 40 unlabeled videos are used for self-supervised
pretraining.

Unlabeled data supply. In addition to this core set of
experiments focusing exclusively on varying labeled data, we
select one SSL method - MoCo v2 - and examine how it reacts
to changes in the amount of unlabeled data (Fig. 1, B2) used
for self-supervised training: from 1 to 10, 20, 40 and finally
80 unlabeled videos. Results are reported for varying numbers
of labeled videos used for finetuning.

3.5. Generalization study

Experiments conducted up to this point feature the
Cholec80 dataset with two tasks - phase recognition and tool
detection - representing only a small portion of the variability
of datasets used in surgical data science literature (Maier-Hein
et al., 2022). In order to determine how well SSL generalizes
to entirely different situations within surgery, we provide in
this final stage a set of complementary experiments of a previ-
ously selected SSL method - MoCo v2 - inspecting its behav-
ior across a total of 8 tasks across 5 different surgical datasets:
HeiChole (Wagner et al., 2021), CATARACTS (Zisimopoulos
et al., 2018), CholecT50 (Nwoye et al., 2019), Endoscapes
(Alapatt et al., 2021), and CaDIS (Grammatikopoulou et al.,
2021). Here the scope of the study is expanded by a consid-
erable amount in several aspects. First, we study the effect of
the SSL methods on the same surgical procedure and tasks
but on diverse clinical centers, with surgical data sourced
from 3 German hospitals (HeiChole). Next, we investigate
another type of minimally invasive surgery, i.e., cataract,
through the CATARACTS dataset, offering a radically dif-
ferent visual appearance from cholecystectomy. Here again,
we consider similar downstream tasks of surgical activity
(step) recognition and tool presence detection. We further
extend our analysis of SSL methods on yet another task,
surgical action triplet recognition, on the recently released
CholecT50 dataset. We add surgical scene segmentation as
well with the Endoscapes dataset. Finally, we conclude the
generalization study by analyzing the SSL methods on another
surgical procedure and task with the CaDIS dataset for scene
segmentation in cataract surgery. A visual summary of the
different dataset characteristics is shown in Fig. 6.

4. Results

4.1. Dataset Splits and Evaluation Metrics

In all our experiments, following previous literature (Czem-
piel et al., 2020; Jin et al., 2018; Twinanda et al., 2016b;
Czempiel et al., 2021), we use 40, 8, and 32 videos from
Cholec80 as our total available pool of training videos, our
validation set, and our test set, respectively.

In the hyperparameter study, we perform SSL pretraining
on the entire pool of 40 training videos and report the results
on the validation set.

In the data supply study, we further conduct semi-
supervised experiments with 5 videos (12.5% of Cholec80

Additional data & tasks

eo # of
4 7

Phase

HeiChole holecystectomy Heidelberg
Tool 7
Step 19
CATARACTS Cataract Brest
y Tool 21
CholecT50 Cholecystectomy Strasbourg Action 100

—
Endoscapes r'/'JCholecystectomy Strasbourg Segmentation 29

\. Cataract Brest
\4¢

Segmentation 8
Segmentation 25

CaDIS

Fig. 6. Data featured in the generalization experiments.

training set) and 10 videos (25% of Cholec80 training set)
of annotations, for which we employ two different sampling
strategies. For the comparison with external methods (Table
6), we use the predefined dataset split introduced in Shi et al.
(2021) as a sampling strategy to enable fair comparisons.
However, for the remainder of our experiments (see Tables
3,4, 5, and Figures 13, 14), we either make use of established
training splits (Twinanda et al., 2016b) for larger data settings
(40, 80 training videos), employ a stratified random sampling
approach or random uniform sampling when stratifying is
infeasible (1 training video). In each case when randomly
sampling, we sample three separate subset splits of the train-
ing videos, evaluate model performance on each split, and
report the mean and standard deviation across splits. Doing
so alleviates selection bias and allows for sound comparisons
across methods and experimental settings. Indeed, we find that
the variance in performance across dataset splits, particularly
in the low-data settings, can surpass performance differences
across methods, highlighting the need to sample multiple
splits.

For all phase and step recognition experiments, with the
exception of the external comparison (Table 6), we report per-
video F1 Score, computed by averaging across each video’s
F1 score. In these tables, the standard deviation is presented
across the sampled splits. Meanwhile, for the external com-
parison, we report a relaxed boundary per-video F Score,
originally introduced in the m2cail6-workflow challenge ’
and used by Shi et al. (2021), to enable a fair comparison.
The relaxed boundary metric introduces a 10 second ‘relaxed’
period centered around each ground truth phase transition;
during these periods, the two consecutive phases are consid-
ered to be correct classifications (e.g. phase 4 and phase 5 are
both accurate classifications in the 10 seconds before and after
the transition from phase 4 to 5). Consequently, the relaxed
boundary metric results in higher scores across methods.

For all tool presence detection experiments, we compute
mAP across all considered frames and in all the presented
tables the standard deviation is calculated across splits. Action

"http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge/
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Fig. 7. Performance of each method on Cholec80 varying the augmentation strategy for self-supervised pretraining. For each method and category of
augmentations, we show a boxplot with the change in performance from the default no-augmentation setting (using 2 crops for Multi-Crop), by enabling
that category of augmentation (using 4 or 8 crops for Multi-Crop). The boxplot whiskers were set to 1.5 times the interquartile range beyond the first
and third quartile; settings outside of this margin were defined as outliers and plotted as dots. Results were obtained using linear evaluation on the
validation set. Left: F|-score for phase recognition. Right: mAP for tool presence detection.

triplet recognition performance on the CholecT50 dataset
is measured using mAP over the 100 valid triplet classes.
Segmentation tasks featured in the generalization experiments
are all evaluated using F score.

4.2. Hyperparameter study

We present here the impact of hyperparameters variations
on the quality of the representations learned by the SSL
methods we selected, following the setup described in Section
338
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Fig. 8. Performance of each method on Cholec80 varying the Multi-Crop
augmentation strategy for self-supervised pretraining: 2,4 or 8 crops (2
high-resolution crops, remaining low resolution). Results were obtained
using linear evaluation on the validation set. Left: F;-score for phase
recognition. Right: mAP for tool presence detection.

t

Augmentations. In order to evaluate the impact of each of
the four augmentation categories, we show the improvement
introduced by the presence of each category across all the
considered experiments for each SSL method. For every aug-
mentation category, we examine the change in performance -

8GPU training presents some non-determinism that is not trivial to avoid.
Because performing several reruns of every experiment in the hyperparameter
study would be computationally impractical, we do so for one method
selected at random and present the standard deviation when performing linear
evaluation for both downstream tasks in order to contextualize our results.
The standard deviation across 5 reruns for this selection for phase recognition
and tool presence detection is 0.7 % F1 and 0.7 % mAP, respectively.

AF, and AmAP - caused by toggling it on (for Multi-Crop,
by switching it from 2 to either 4 or 8). To this end, in Fig.
7, we plot the following set of samples for the Multi-Crop (4
and 8 crops - MC4 and MCS8), Color (C), Geometric (G) and
Strong-Color (S) augmentation experiments, respectively:

MC8 = {(mcg cigjsk — mc2Cig;jSk)i=(1,0),j=(1.0).k=(10}}>
MC4 = {(mcy cigjsi — mcaCigsk)i=(1,0),j=(1.0}k=(1,0}}>
C = {(mcic18jsk — mcicogsu)i=.48).j=11.01k=101} (4
G = {(mcicjg1skc — Mcicjgosk)i=(2.4,8),j=(1,01k=(1,0}}s
S = {(mcicjgrs1 — mcic;grs0)i=(2.4.8).j=(1.01k=(1.0}}>

where mc is Multi-Crop augmentation and can take the values
2,4.8; ¢, g, s are, respectively, Color, Geometric and Strong-
Color augmentations, which can either be toggled on (1)
or off (0). For each augmentation setting, statistics for
AF, and AmAP are collected and represented as boxplots.
The average performance for each Multi-Crop setting is also
shown separately in Fig. 8.

Experimental results for phase recognition and tool pres-
ence detection, shown in Fig. 7, demonstrate the clear impact
that augmentation strategies have on the quality of the learned
representations, consistent across methods and tasks. We
make three main observations:

(1) In general, increasing the number of low-resolution
views on Multi-Crop negatively impacts performance. From
2 crops for MoCo v2, switching to 4 crops cuts down phase
recognition F; by 3.5%; switching to 8 cuts it down by
4.5%. This represents an important deviation from typical
results in the natural image domain, where additional low-
resolution views in Multi-Crop generally positively correlated
with improved performance (Caron et al., 2020, 2021). A
possible explanation may be the weaker value of ensuring
‘local-to-global’ feature invariance in the surgical domain; in
surgical phase recognition, for example, discriminative cues
may be scattered in the entire image, and be significant only
if considered as a whole: in light of this, forcing ‘local-
to-global’ invariant features may be challenging, or even
undesirable in this domain.
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(2) The Color augmentation consistently and significantly
improves performance. This is generally analogous to results
on the natural image domain (Feichtenhofer et al., 2021a):
as pointed out in (Chen et al., 2020b), augmentations like
Multi-Crop and Geometric mostly preserve the original color
distribution, leaving this as an easy shortcut for the network to
solve the predictive task; the Color augmentation is, therefore,
an important factor in learning meaningful representations.

(3) DINO is the method most affected by the specific
choice of augmentation; in particular, representation quality
dramatically drops when both Multi-Crop and Strong-Color
augmentations are used; a possible explanation may derive
from the general observation on Multi-Crop made previously:
compared to the other methods, DINO explicitly enforces the
‘local-to-global’ feature invariance by passing all views to the
student, but only global views to the teacher. While this task is
intrinsically difficult in the surgical domain, for the previously
discussed reasons, it may be made even more challenging by
the presence of the Strong-Color augmentation, leading to
unreliable feature representations.

Phase Recognition Tool Detection
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Fig. 9. Performance of each method on Cholec80 varying the batch size
used for self-supervised pretraining. Results were obtained using linear
evaluation on the validation set. Left: F;-score for phase recognition.
Right: mAP for tool presence detection.

Batch size. Overall, larger batch sizes do not improve feature
quality. Clear improvements are only perceivable between 128
and 256 (up to 4.8% F, for phase recognition, 5.6% mAP
for tool detection) across all tasks and methods - except for
phase recognition with SimCLR. Results for 256 and above,
however, generally contradict claims from other SSL. works
(Chen et al., 2020b; Caron et al., 2020, 2021), especially on
the phase recognition task (Fig. 9): from 256 to 1024, MoCo
v2’s F score drops by 5.5%. No clear positive impact of
increasing batch size past 256 can be seen on tool presence
detection either (Fig. 9).

This inconsistency with results obtained on natural images
is possibly due to differences in data scale since Cholec80 (at
1 fps: ~ 103 samples, 7 classes) is far smaller than ImageNet
(> 10° samples, 10° classes). During training, batches
are therefore sampled under completely different conditions;
since SSL methods, in the absence of labels, rely heavily on
negative and positive samples to separate classes, this can
affect the final performance.

In the literature, one documented adverse effect of larger
batches in SSL is shown by Chen et al. (2020b) on SimCLR,
when the batch size is pushed up to high values (>2048). A
scaled-back version of this phenomenon might be at play here.

Phase Recognition Tool Detection
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Fig. 10. Performance of each method on Cholec80 varying the number
of epochs used for self-supervised pretraining. Results were obtained
using linear evaluation on the validation set. Left: F;-score for phase
recognition. Right: mAP for tool presence detection.

Epochs. Overall, phase recognition and tool presence
detection performance (Fig. 10) tends to saturate as epochs
increase, with nuances from one SSL method to another.
SwAV and SimCLR in particular clearly peak earlier than
the other two methods at 100 epochs, losing up to 2%
phase recognition F; and 2% tool presence detection mAP
afterward. In contrast, MoCo v2 and DINO improve over
the entire 300-epoch training period, with, nonetheless, a
noticeable slowdown after 100 epochs.

This disparity could be a result of including a momentum
encoder (used by both MoCo v2 and DINO). The momentum
encoder enables a greater diversity in pairs of latent vectors
generated by the network backbone during training: in MoCo
v2, via a greater set of negative samples to choose from, and
in DINO, via the teacher network incorporating context from
a wider variety of samples. Consequently, longer training may
allow models to learn more robust representations.
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Fig. 11. Performance of each method on Cholec80 varying the Frames Per
Second for self-supervised pretraining. Results were obtained using lin-
ear evaluation on the validation set. Left: F|-score for phase recognition.
Right: mAP for tool presence detection.

Sampling rate. As previously stated, surgical videos pose
a particularly interesting technical setting for SSL research in
general because surgical videos often provide a very stable
context while the anatomy in the scene is manipulated. While
increasing the number of frames sampled per second could
dramatically expand the available training data, performance
might not increase due to redundancy. Indeed, with the 5
sampling rates examined here, we observe marginal utility
in sampling frames beyond a certain frequency. For both
tasks, when sampling frames at over 1 fps, we observe no
consistent improvement across methods or tasks when training
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Table 2. The average results across methods are presented for phase recognition, tool presence detection and the average across both tasks (Selection
metric). For each individual ablation, results are presented in descending order of performance according to the Selection metric. The Setting column
refers to the value of the parameter being ablated, while all other settings are kept to the default values specified in Table 1. For the augmentation
ablation, we use the following notations: MC - Multi-Crop, C - Color, G - Geometric, S - Strong-color; for the MC setting columns, we specify the total
number of crops used (including 2 high-resolution crops) and for the S, G, and C setting columns, we specify whether those augmentation categories

were included or “on”.

. . Selection Phase  Tool . Setting Selection Phase Tool
Ablation Setting | retric (F1)  (mAP) | Ablation MC C G S metric (F1) (mAP)
5.0 58.8 61.2 56.4 2 v v X 60.0 63.5 56.5
1.0 58.6 60.8 56.4 2 v v v 596 63.2 559
Sampling rate 3.0 58.4 61.2 55.6 4 v v Y 59.1 61.7 56.5
0.5 57.8 59.8 55.7 4 v ovoX 58.9 61.1 56.8
0.33 57.3 58.8 55.8 8 v v X 58.6 60.8 56.4
0.1 53.9 54.6 53.1 8 v v v 54.7 56.4 53.1
256 59.3 61.6 57.1 2 X v X 53.7 554 52.0
Batch size 1024 58.6 60.0 57.3 2 X v Vv 53.3 54.6 51.9
512 58.6 60.8 56.4 Augmentations
128 58.1 61.1 55.1 8 v ox v 45.5 47.5 43.6
FS 62.7 64.4 60.9 4 X X v 41.2 422 40.2
Initialization Rand 58.6 60.8 56.4 2 X X Vv 40.2 41.1 394
SS 579 58.9 56.8 8 X X Vv 37.3 37.8 36.8
300 58.6 60.8 56.4 4 X X X 373 36.9 37.6
Epochs 100 58.4 60.7 56.1 2 X X X 37.0 37.2 36.8
200 58.3 60.3 56.4 8§ X X X 36.8 35.8 37.7
50 55.5 58.0 53.0 8 X v V 33.1 314 34.8

with higher sampling rates (Fig. 11). This is an important
finding that may lend useful intuition to researchers apply-
ing SSL to domains with similar motion characteristics on
how best to allocate computational resources, when training
these intensive methods comes with a sizeable financial and
environmental cost. To note, for a fair comparison, we
perform this experiment here assuming an equal distribution
of computational resources, i.e. we evaluated the models after
performing self-supervised pretraining for the same number
of iterations for each frame rate. This implies that the 1 fps
experiments were trained for ~ 5 times as many epochs as the
5 fps experiments.

Initialization. In general computer vision, the common
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Fig. 12. Performance of each method on Cholec80 varying the network
initialization strategies before performing self-supervised pretraining:
random initialization (Rand.), ImageNet self-supervised (SS), ImageNet
fully-supervised (FS). Results were obtained using linear evaluation on
the validation set. Left: F';-score for phase recognition. Right: mAP for
tool presence detection.

practice for SSL experimentation is to train models to learn
self-supervised representations entirely from scratch (i.e. ran-
dom weights) before using these representations to attempt to
replicate fully supervised performance - for image recognition
on Imagenet, as a prominent example. Weights obtained in

this manner are then intended to serve as initialization for
downstream tasks. However, in surgical computer vision,
Imagenet fully supervised weights are considered as a readily
available resource: the practice of using them to initialize
models is tacitly recognized as standard by the community.
The choice of initialization is therefore not trivial, with 3
options available before starting SSL training on surgical data:

1. “Rand.”: randomly initializing weights

2. “SS”: initializing weights with self-supervised pretrain-
ing on ImageNet

3. “FS”: initializing weights with fully supervised pretrain-
ing on ImageNet

Across all SSL methods (Fig. 12), models initialized
with “FS” significantly outrank models with “Rand.* or “SS.”
initialization; most noticeably with MoCo v2 (up to +12%
phase recognition F, +11% tool detection mAP compared to
the other two). Results between “Rand.” and “SS.” do not
clearly favor one over the other. This is obviously a major dif-
ference from general computer vision, which expects models
initialized from scratch to improve on any downstream task
through SSL training. One explanation for this discrepancy
could be the set of invariances learned in the natural domain,
which may not apply to surgical images.

Hyperparameter study conclusion.  This study provides
a detailed view of each SSL method’s reaction to changes in
parametrization when operating in the surgical domain, expos-
ing noteworthy differences with the natural domain - regarding
augmentations, batch size and initialization most prominently.
However, when considering all four SSL. methods and both
tasks simultaneously, global trends can be difficult to clearly
point out. To achieve this in a quantitative and principled
manner, we define a selection metric, defined as the average
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of all phase recognition F; scores and tool presence detection
mAPs across all methods for a given setting. Using this,
we are able to rank the values of a given hyperparameter by
overall performance across downstream tasks, and then retain
the best. This forms a global set of recommended settings
(Table 1) for SSL in the surgical domain.

In Table 2, we present the results ranked according to this
selection metric for each ablation to facilitate the analysis of
invariant trends for methods and tasks. For each hyperparam-
eter, we summarize the trends in brief below:

e Sampling rate: We observe only a marginal utility of
increasing the sampling rate beyond a certain point, with
the selection metric saturating past 0.33 fps.

o Batch size: The results show that for the considered tasks
and dataset, SSL method performance is mostly robust to
variations of batch size. Varying the batch size between
128-1024 results in a maximum variation of 1.1% F1
and 2% mAP on average across methods for phase
recognition and tool presence detection, respectively.

o Initialization: Initialization before self-supervised repre-
sentation learning proves to be a critical hyperparameter
with significant and consistent gains in performance
across both methods and tasks. Initializing with Ima-
genet fully supervised (“FS”) weights proves to be the
optimal setting amongst the considered initializations.

e Epochs: For both considered tasks, we see significant
gains in performance up to 100 epochs after which it
plateaus, with an average variation of 0.4% F1 and 0.4%
mAP between 100 and 300 epochs.

e Augmentations: Interestingly, we observe largely consis-
tent trends for different augmentation settings for both
tasks. Color and geometric augmentations feature con-
sistently in top-performing augmentation settings. On
average across methods, the addition of multiple low-
resolution views and strong color augmentations has a
less clear impact on performance.

4.3. Data supply study

The recommended choice of hyperparameters mentioned
above provides, on average, close to optimal conditions for
observing our panel of SSL methods in practical use cases,
with varying quantities of labeled or unlabeled data. Our
proposed usage of SSL is defined as follows: self-supervised
training is performed in the surgical domain before finetuning
for surgical downstream tasks.

Labeled data supply. In this section of the data supply
study, self-supervised training is first performed on the entire
training set of Cholec80 with the recommended hyperparam-
eters. Surgical downstream task finetuning is then applied
using variable amounts of labeled data: 40 videos (100%
of the training set), or in semi-supervision with 10 videos
(25%) or 5 videos (12.5%); for these last two settings, the
portions of the training set are drawn following a stratified
random sampling approach (see Sec. 4.1). Results for

these experiments are reported in Tables 3 (phase recognition
on single frames), 4 (phase recognition on videos with a
temporal model), and 5 (tool presence detection). We compare
our proposed usage of SSL (“ours”) on Cholec80 using the
recommended hyperparameters (Table 1) with the mode of
operation borrowed from general computer vision (“base”) -
i.e. finetuning directly from weights pretrained with SSL on
Imagenet. The bottom row in each table (“No SSL”) provides
an additional point of comparison, where we finetune models
initialized with fully supervised Imagenet weights without any
SSL.

In most low-label settings (10, 5 videos), adding any
of the 4 SSL methods systematically improves performance
on both surgical tasks, compared to direct finetuning from
supervised Imagenet weights without SSL. This improvement
reaches up to 6.1% (5 videos, MoCo v2) for single-frame
phase recognition, 6% (5 videos, SWAV) for temporal phase
recognition, and 14.7% for tool presence detection (5 videos,
MoCo v2). Gains are consistently observed, especially in low-
label settings where standard deviation across splits mostly
stays underneath 3% (32 out of 48 table entries). 100%
label availability tends to saturate performance on downstream
tasks, leaving little room for improvement from SSL; still,
results are on par with those obtained without SSL for both
tool presence detection (mostly < 1% difference) and phase
recognition, with the largest deficit (-1.2%) recorded for
SwAV on single frames. Out of the four SSL methods
presented here, MoCo v2 seems to yield better results, 5 times
achieving the best performance for a given number of labeled
videos.

Most importantly, these results challenge the generaliz-
ability of general computer vision SSL. As demonstrated in
Oord et al. (2018); He et al. (2020); Chen et al. (2020c);
Caron et al. (2021), self-supervised pretraining on natural
images enhances downstream task performance in the natural
image domain; however, these gains may not carry over to
more complex and more specific domains. Indeed, when
pretrained on Imagenet, rarely do any of the SSL methods
featured here improve performance on surgical downstream
tasks, compared to the “No SSL” baseline (only 7 out of 36
times). For phase recognition, this usage of SSL can cause
F, score to drop by up to 1.9%, while for tool presence
detection, the degradation reaches up to 11.2% mAP. Overall,
our proposed use of SSL outperforms the “base” usage by up
to 6.2% on single-frame phase recognition, 7.4% on temporal
phase recognition, and 20.4% on tool presence detection.

Finally, we add an external comparison in Table 6 with
preexisting semi-supervised studies in surgical computer vi-
sion, based on results presented by Shi et al. (2021) for
semi-supervised phase recognition on Cholec80, and using the
same split and metric definition. As expected, selected SSL
methods applied to single-frame models are often outranked
by other approaches, by up to 16.6% (DINO vs SurgSSL, 10
videos); however the external methods, we compare against,
use temporal modeling, which gives them a strong advantage.
For a fairer comparison, we examine models trained with our
selected SSL methods used in conjunction with a temporal
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Table 3. Effect of our proposed SSL pretraining in the surgical domain (“Ours”) on surgical phase recognition performance from single frames. “Base”
refers to self-supervised pretraining on Imagenet only. ‘“No SSL” refers to fully supervised pretraining on Imagenet only. Bold indicates the best
performance for a given number of labeled videos.

Surgical phase recognition F; - single frame

Labels 40 videos 10 videos 5 videos

Base Ours Base Ours Base Ours
DINO 71.6 71.1 60.6 = 0.6 62.2+0.9 514 +5.1 563 +4.8
MoCo v2 70.3 71.3 58.5+0.6 64.4 + 1.7 52.1+4.5 58.1 +5.3
SimCLR 70.3 71.8 589 +24 63.5+1.1 51.3+3.9 572 +5.0
SwAV 70.2 70.3 58.8 +0.9 622+1.9 509 +4.5 57.1+3.7
No SSL 71.5 60.4 +0.4 52.0 £ 6.5

Table 4. Effect of our proposed SSL pretraining in the surgical domain (“Ours”) on surgical phase recognition performance from videos when finetuning
a temporal model (TCN - Czempiel et al. (2020)) on top of the backbones described in Table 3. Bold indicates the best performance for a given amount

of labeled videos.

Surgical phase recognition /' - temporal

Labels 40 videos 10 videos 5 videos

Base Ours Base Ours Base Ours
DINO 81.5 81.6 71.3+£0.6 704 £04 61.1 +£9.0 65.0+54
MoCo v2 79.5 79.6 69.1 + 1.8 74.1 + 0.4 63.4+43 66.1 £4.2
SimCLR 78.8 81.1 69.2 +2.4 72504 63.6 +3.9 66.6 +2.4
SwAV 78.4 79.5 68.7 = 0.5 714 £0.7 60.9 +7.0 68.3 +1.3
No SSL 80.3 70.1 £0.2 623+74

Table 5. Effect of our proposed SSL pretraining in the surgical domain (“Ours”) on surgical tool presence detection performance. Bold indicates the
best performance for a given amount of labeled videos.

Surgical tool presence detection mAP

Labels 40 videos 10 videos 5 videos

Base Ours Base Ours Base Ours
DINO 92.1 93.2 70.1 £2.7 81.2+14 50.6 + 1.6 68.7 +2.3
MoCo v2 92.9 93.5 704 1.3 85.7+1.1 56.5+3.3 74.7 + 1.8
SimCLR 90.4 93.1 66.7 = 0.1 83.0+0.9 493+ 14 69.7 +3.0
SwAV 92.5 92.8 70515 79.1 + 1.7 525+1.8 63.0+0.7
No SSL 93.6 779 £0.8 60.0 +£2.3

Table 6. External comparison with Shi et al. (2021) for semi-supervised surgical phase recognition. Bold indicates the best performance for a given

amount of labeled videos used for finetuning.

External comparison - surgical phase recognition F;

Labels 40 videos 10 videos 5 videos

External NL-RCNet 82.1 73.5 67.3
quoted from Shi et al. (2021) NL-RCNet+ 84.4 - -

CNN-BiLSTM-CRF - 75.3 70.9
MT - 773 71.0
SurgSSL - 80.6 78.6
Selected SSL methods DINO single frame 77.6 64.0 65.4
metric and split from Shi et al. (2021) temporal 91.8 81.1 76.9
MoCo v2 single frame 81.7 72.6 69.3
temporal 91.3 82.5 814
SimCLR single frame 84.5 73.8 67.0
temporal 93.6 85.0 80.0
SwAV single frame 86.1 67.1 69.5
temporal 91.0 79.8 80.7
Baselines No SSL single frame 81.0 65.6 60.8
metric and split from Shi et al. (2021) temporal 87.4 81.5 78.4
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model (TCN): in these situations, they surpass preexisting
semi-supervised approaches by a substantial amount - up to
14.1%. Top F, scores are achieved by SimCLR (93.6%,
labels on 40 videos - 85.0%, labels on 10 videos) and MoCo
v2 (81.4%, labels on 5 videos). To note, the architecture
we use is fairly simple (CNN - TCN) compared to the more
refined designs featured in the external methods; therefore our
performance gains derive from the SSL methodology itself,
and could further increase with more advanced architectures.
These observations strongly confirm the high value of bring-
ing SSL innovations from general computer vision to the
surgical domain.

Unlabeled data supply. Our main experiments examined
the performance of SSL in the surgical domain with a fixed
quantity of unlabeled data for self-supervised pretraining; in
this complementary set of experiments, we observe how SSL
reacts when the quantity of unlabeled videos varies. This
part of the study is conducted with MoCo v2 exclusively.
Overall, our results (Fig. 13 and 14) confirm a valuable
benefit of SSL: for the most part, expanding unlabeled data
- which is far easier than generating additional annotations -
leads to increased performance in downstream surgical tasks.
Particularly when few labeled instances are available, we
see extremely pronounced improvements brought about by
introducing SSL. For example, when only 5 labeled videos
are available, self-supervised pretraining on just 10 unlabeled
videos adds 4.2% F, for phase recognition and ~14.2% mAP
for tool presence detection. These results further reinforce
the practicality of utilizing these SSL methods in surgical
applications, where working with small datasets is often the
norm rather than the exception. We observe, however, two
main limitations.

Phase Recognition
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Fig. 13. Single-frame phase recognition performance of MoCo v2 w.r.t.
the number of unlabeled videos used for self-supervised pretraining, with
finetuning on 5, 10, and 40 labeled videos.

The first is a saturation phenomenon, apparent after 10
unlabeled videos; while going from 1 unlabeled video to 10
clearly improves feature quality (phase recognition, finetuning
on 5 labeled: +3.1% F; tool presence detection, finetuning
on 5 labeled: +9.3% mAP), results for 10 and up carry
more ambiguity, with large differences depending on the task.
While phase recognition performance slows down but still
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Fig. 14. Tool presence detection performance of MoCo v2 w.r.t. the
number of unlabeled videos used for self-supervised pretraining, with
finetuning on 5, 10, and 40 labeled videos.

increases by a noticeable amount (e.g. finetuning on 5 labeled,
+4.1% F, from 10 to 80), tool presence detection completely
halts.

The second is dilution by labeled data: using larger amounts
of annotated videos for finetuning pushes downstream per-
formance closer to its limits, which tends to equalize the
effect of adding unannotated videos. For example, for phase
recognition from 1 to 80 unlabeled videos, F; score increases
by 7.2% with 5 labeled but only by 2.7% with 40 labeled.
Dilution is much stronger for tool presence detection: from 1
to 80 unlabeled, the total mAP increase with 5 labeled is 9.5%,
while no gain is perceivable at all with 40 labeled.

As evidenced by these observations, the performance
growth brought by SSL can slow down as the unlabeled
data supply increases, depending on the amount of annotated
data available as well as the nature of the task. Tool labels
are tied to distinct pieces of visual evidence in the image;
their influence on the model’s final performance is therefore
extremely high, compared to unlabeled videos used in self-
supervision. In contrast, phase labels tend to accompany more
ambiguous visual cues, which would explain why the advan-
tage of using SSL is much more apparent for surgical phase
recognition: a model pretrained with 80 unlabeled videos and
finetuned on only 5 labeled videos reaches 60.3% F, which
is about the same as a model pretrained with 1 unlabeled but
finetuned on 10 labeled. Saturation for phase recognition is
also much softer than for tool presence detection, suggesting
performance can increase even further with more than 80
videos.

4.4. Generalization study

Using the same recommended hyperparameters established
in Section 4.2, we conduct experiments using MoCo v2 on
the collection of datasets presented in Section 3.5. Results are
presented in Table 7 demonstrating how SSL representations
could be adapted for data from other sources and for other
vision-based tasks.

HeiChole Experiments. In this first experiment series of
the generalization study, we utilize the HeiChole Benchmark
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Generalization Experiments

Exp # Dataset - architecture Labeled videos Labeled videos Labeled videos
SSL Dataset Metric No SSL MoCov2 No SSL MoCo v2 No SSL MoCo v2
HeiChole - TCN head 24 videos 4 videos 2 videos

1 Cholec80 Fy 58.6 64.7 41747 511+33 27660 39.0+1.2
HeiChole - linear head

2 Cholec80 mAP 62.5 66.9 36.7+29 43.7+04 251+6.1 303+23
CATARACTS - TCN head 25 videos 6 videos 3 videos

3 Cholec80 Fy 75.2 74.5 65.7 £55 650+56 528+47 507+1.0

4 CATARACTS F, 75.2 77.2 657+55 665+38 528+47 56.2+5.5
CATARACTS - linear head

5 Cholec80 mAP 56.1 47.6 37714 292+22 269+16 190+04

6 CATARACTS - mAP 56.1 573 37.7+14 40.8+05 269+16 31.2+4.2
CholecT50 - linear head 40 videos 10 videos 5 videos

7 Cholec80 mAP 19.4 26.7 144+02 207+02 112+x14 159+0.8
CholecT50 - RDV head

8 Cholec80 mAP 31.4 35.7 223+1.8 255+08 149+09 183+1.2
Endoscapes - DeepLabv3+ head 120 videos 30 videos 15 videos

9 Cholec80 F 73.2 73.2 63.6+1.0 64310 581+12 593=+1.7
CaDIS 8 classes - DeepLabv3+ head 19 videos 4 videos 2 videos

10 Cholec80 F, 86.9 87.1 796+1.6 825+12 795+16 814=x1.2

11 CaDIS F 86.9 86.9 796+1.6 832+08 795+16 81.3=x0.8
CaDIS 25 classes - DeepLabv3+ head

12 Cholec80 F 71.8 70.5 612+19 624+29 555+58 573+6.7

13 CaDIS - Fy 71.8 71.7 61.2+19 61.6+28 555+58 56.5+5.7

Table 7. Results on additional data & tasks; finetuning directly from ImageNet pretrained weights (No SSL) vs finetuning after MoCo V2 pretraining.
In each experiment, we state the model architecture placed after the ResNet50 backbone, the SSL dataset used to pretrain the backbone, and the task
and metric under consideration. For each dataset, we also conduct experiments with 3 subsets of labeled videos used for training.

for surgical workflow analysis. Similar to Cholec80, this Hei-
Chole dataset comprises videos for surgical phase recognition
and tool presence detection for laparoscopic cholecystectomy.
This serves as an ideal benchmark to evaluate how self-
supervised representations learned from similar data (same
procedure) could be used to boost performance for vision-
based tasks on independently sourced datasets with potentially
varying surgical workflows, acquisition methods, instrumenta-
tion, etc. Indeed, experiments 1 and 2 in Table 7 reveal signifi-
cant boosts in performance when initializing from models pre-
trained on Cholec80 (using SSL) at all considered proportions
of labeled data. Most notably, using only 2 labeled videos, we
observe boosts in performance of 11.4% for phase recognition
and 5.2% for tool presence detection. Based on the official
leaderboard of the HeiChole challenge, presented in Table 9,
this would have positioned our method in 1*' place for the tool
presence detection task and 4 for surgical phase recognition
using only a simple model architecture. These results strongly
exemplify the impact that SSL methods, such as the ones
investigated in this article, could have on learning from small
datasets and datasets with underrepresented characteristics,
problems endemic to surgical data science (Maier-Hein et al.,
2022).

CATARACTS Experiments. Similar to the HeiChole
benchmark, the CATARACTS dataset introduces two similar
tasks for surgical workflow recognition but with two notable
differences: (1) The CATARACTS datasets depict scenes

from cataract surgery procedures with a strikingly different
appearance and workflow from laparoscopic cholecystectomy
(2) The temporal task introduced with this dataset is surgi-
cal step recognition, which normally refers to finer tempo-
ral segments than surgical phases (Mascagni et al., 2022).
This series of experiments reveals two important findings.
Firstly, unlike the HeiChole experiments, models pretrained
on Cholec80 (Table 7, experiments 3 and 5) consistently
perform worse than models initialized from Imagenet (“No
SSL”). This may be attributed to the significantly distinct and
specific visual appearance of Cholec80 scenes serving as a
confounding factor when learning representations. However,
we do note that when initializing from SSL weights learned on
CATARACTS, we see consistent boosts of ~ 1 -4% compared
to Imagenet initializations across both the downstream tasks.
This provides an indication that the SSL setup presented in
this work could be adapted to other surgical datasets without
further hyperparameter tuning for the pretraining stage.

CholecT50 Experiments. In this series of experiments,
we aim to illustrate how self-supervised representations could
also help in more difficult workflow tasks like action recogni-
tion. To this end, we evaluate performance on CholecT50, a
large dataset of surgical actions annotated on videos sourced
from the same hospital as Cholec80. Note that the action
triplet recognition task on CholecT50 is performed twice (Ta-
ble 7, experiments 7 and 8): once using a simple linear head,
then a second time with Nwoye et al. (2022b)’s Rendezvous
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CholecTriplet 2021 challenge leaderboard

Rank Triplet recognition mAP
1 38.1
ond 35.8
MoCo V2 - RDV head 35.7
3rd 329
4™ (RDV baseline) 32.7

Table 8. Comparison of MoCo v2 pretraining against the official top 4
entries in the 2021 CholecTriplet challenge.

HeiChole Benchmark
Rank Phase (F;) | Rank Tool (Fy)
1 68.8 | MoCo V2 66.9
2 654 | 1 63.8
3 65.0 | 2 63.0
MoCo V2 64.7 | 3 58.2
4 63.6 | 4 50.1

Table 9. Comparison of MoCo v2 pretraining against the official top
4 entries for the phase and tool tasks in the HeiCholec Benchmark
(EndoVis challenge 2019).

(RDV) head. In both settings, we observe consistent and
marked boosts in performance at all proportions of labeled
data demonstrating the utility of these methods across model
design choices. Most impressively, utilizing a previously
published architecture (Nwoye et al., 2022b) with a generic
initialization of features would have placed 3"/ (Table 8) in the
CholecTriplet 2021 challenge (Nwoye et al., 2022a), further
illustrating the value that SSL could bring to the surgical data
science community.

Segmentation Experiments. Here, we aim to explore
how self-supervised representations also have utility for tasks
requiring more spatial reasoning than frame-level classifica-
tion. To this end, we use two surgical semantic segmentation
datasets: Endoscapes, consisting of laparoscopic cholecys-
tectomy videos sourced from the same hospital as Cholec80,
CaDIS 8 classes and CaDIS 25 classes, containing cataract
surgery videos. Consistently, across all three segmentation
tasks and labeled data settings, we observe trends consistent
with previous findings: pretraining models using SSL deliver
boosts in performance. However, the performance boosts are
generally less pronounced than the other considered image
recognition tasks. This may be because the considered SSL
methods define the learning problem by considering global-
level features from the complete image. However, semantic
segmentation requires more dense spatial reasoning. More
specific architectures choices (Caron et al., 2021) or SSL
methods (Wang et al., 2021; Xie et al., 2022) could further
improve downstream segmentation performance.

5. Conclusion

Despite major progress in the field of self-supervised repre-
sentation learning over the last several years, its adoption into
label-scarce fields like surgery, where it could perhaps have
the most significant impact, has been slow. This could be due

to the demonstrably heavy reliance on hyperparameter choices
that SSL methods demand. In this paper, we conduct an
extensive benchmark study to methodically identify effective
hyperparameter settings for the task of surgical phase recog-
nition and tool presence detection on the Cholec80 dataset.
From this strong foundation, we deployed SSL on a highly
diverse array of surgical datasets, obtaining solid results that
support its use for many surgical vision tasks.

Requiring over 7000 GPU hours, the hyperparameter study
demonstrates that this exploration is pivotal to the practical
utility of SSL in settings such as semi-supervised learning.
For example, initializing the base architecture using Imagenet
weights before SSL pretraining critically provided consistent,
marked boosts in performance over all other initializations.
While random initialization before performing self-supervised
representation learning is the standard practice in other large
studies, perhaps because of the relative size of the considered
datasets, this example highlights the need for principled,
adaptable methods to identify optimal settings for other do-
mains. Additionally, domain characteristics could indicate
the most significant parameters to prioritize for searches. For
instance, in our experiments, relatively slow motion patterns
may explain why sampling frames at higher rates for repre-
sentation learning provides little to no improvement beyond a
certain point.

In the data supply study, SSL pretraining shows promising
boosts in performance for all methods, particularly in label-
scarce scenarios for both phase recognition and tool presence
detection. Interestingly, these methods even outperform state-
of-the-art methods for semi-supervised phase recognition us-
ing only generic representational features. These results
are strongly indicative of the value of targeting surgical
applications using these SSL methods, which, within certain
limits, can be enhanced by simply incorporating additional
unannotated data.

The generalization study displays the full strength of SSL,
with strong results across many surgical contexts; again with
generic features obtained without labels. Excellent robustness
is demonstrated when switching to a different clinical center
or to another task - even the most fine-grained. Results
obtained on cataract surgery with hyperparameters conserved
from cholecystectomy are highly encouraging for even more
radical generalizations of SSL. Further, experimental valida-
tion on public challenges, a popular format to introduce and
benchmark new datasets, revealed that even simple model
architectures with “generic” SSL-based initializations achieve
more than competitive results compared to significantly more
sophisticated design choices. This is despite a recent survey
(Eisenmann et al., 2022) concluding that a median of 80
working hours and 267 GPU hours were dedicated in such
challenges to model development and training, respectively.
Overall, this section of the study presents a strong exemplifi-
cation of the value and impact that SSL methods, such as the
ones described in this work, could have on supporting ongoing
efforts in surgical data science, where small datasets with
underrepresented characteristics and expensive annotations
are a common occurrence.
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Out of the many possibilities opened up by this study, two
stand out as highly promising directions for future work: the
first one is federated learning (McMahan et al., 2017), where
SSL can play a major role by learning robust features from
data scattered across multiple clinical centers (Kassem et al.,
2022). Another natural progression from this work is to apply
these findings to recent work in spatio-temporal representation
learning and adapt them to the unique characteristics of
surgical videos.

Finally, we note that only a select subset of trends were
presented for analysis in this work due to many being results
aggregated across methods, splits, or other experimental
settings for brevity. ~ With around 500 experiments run
over 9000 GPU hours, we will disclose complete results
for the experiments conducted in this work, in order
to facilitate future research on SSL in surgery. The
code, along with results and checkpoints, is available at
https://github.com/CAMMA-public/SelfSupSurg.
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Résumé :

L’analyse holistique de vidéos du bloc opératoire est essentielle pour le développement
de modeles d’intelligence artificielle capables de reconnaitre automatiquement et
précisément les différentes étapes du workflow chirurgical. Cette reconnaissance
automatique permettrait de créer des modeles d’aide & la décision améliorant la
sécurité, 1'efficacité et le temps d’utilisation du bloc opératoire. Les méthodes actuelles
reposent sur l'apprentissage supervisé, nécessitant beaucoup de données étiquetées,
et ne permettant pas un transfert facile dans des blocs operatoires disposant d'un
positionnement de camera different. Cette thése propose de nouvelles approches
auto-supervisées pour développer des méthodes d’analyse du déroulement des
activités opératoires, en mettant 1’accent sur des modalités abstraites ou sémantiques
telles que la detection d’objet ou 'estimation de pose des cliniciens. S’appuyant sur
les avancées récentes de l’apprentissage auto-supervisé en vision par ordinateur, les
méthodes proposées utilisent des autoencodeurs masqués, I'apprentissage contrastif
multimodal et des tiches prétextuelles soigneusement concues. L’utilisation de ces
modalités moins cotiteuses en annotations permettra la mise en place de ces méthodes
dans des contextes cliniques réels.

Mots-Clés: Apprentissage profond - Vision par Ordinateur - Apprentissage auto-
supervisé - Apprentissage Multimodal - Workflow au Bloc Opératoire - Analyse de
Vidéo

Abstract :

Video recordings of operating room (OR) workflows are invaluable for studying
and improving teamwork among clinicians. Automating the recognition of clinical
activities in these videos is critical for applications such as modeling interactions
and enhancing safety and operational efficiency. However, current methods largely
depend on fully supervised training, making datasets even harder to generate and often
failing to generalize across ORs with different camera setups. Existing self-supervised
techniques focus on appearance-based tasks, overlooking vital semantic information
like object detection and human pose data. Incorporating these semantic elements
can narrow domain gaps and reduce the need for extensive labeling. This thesis
proposes new self-supervised approaches to develop recognition approaches for
monitoring OR workflows by emphasizing these “abstract” or semantic modalities.
Such modalities are more cost-effective and easier to obtain than manual annotations.
Building on recent advancements in self-supervised learning for computer vision, the
proposed methods utilize masked autoencoders, multimodal contrastive learning, and
carefully designed pretext tasks. Ultimately, this work aims to minimize labeling re-
quirements and bolster the scalability and adaptability of surgical workflow monitoring.

Keywords: Deep learning - Computer Vision - Self-supervised Learning - Multimodal
Learning - OR Workflow - Video Understanding
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