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DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

Abstract - English version

EDF has developed the thermo-hydraulic code THY C-coeur to simulate water flow in the cores of
PWRs (Pressurized Water Reactors) and to evaluate the Departure from Nucleate Boiling Ratio
(DNBR), an indicator of the margin to the boiling crisis that could threaten core integrity. THYC-
coeur mainly solves steady-state problems using finite volume schemes. Although each computation
is fast (about 10 seconds for an industrial configuration), the very large number of required simula-
tions (several million) makes code acceleration necessary, which is the main goal of this thesis. The
drift-flux models are first presented and analyzed. Several analytical solutions are then constructed.
To more easily study certain numerical phenomena, a simplified prototype called ThermoTorch has
been developed. After verifying the global numerical scheme in both steady-state and transient
regimes, an acceleration method using initialization from neural networks was tested.

Abstract - French version

EDF a développé le code thermo-hydraulique THY C-coeur pour simuler I’écoulement d’eau dans le
cceur des Réacteurs a Eau Pressurisée (REP) et évaluer le Rapport de Flux Thermique Critique
(RFTC), indicateur de la marge a la crise d’ébullition pouvant menacer l'intégrité du coeur. THYC-
ceeur résout principalement des problémes stationnaires via des schémas volumes finis. Bien que
le calcul soit rapide (10 s pour une configuration industrielle), le grand nombre de simulations
requises (plusieurs millions) rend nécessaire une accélération du code, objectif de cette these. Les
modéles drift-flux sont d’abord présentés et analysés. Plusieurs solutions analytiques sont ensuite
construites. Afin d’étudier plus facilement certains phénoménes numériques, un prototype simplifié,
appelé ThermoTorch est développé. Aprés une vérification en stationnaire et en instationnaire du
schéma numérique global, une méthode d’accélération utilisant une initialisation issue de réseaux
de neurones a été testée.
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Introduction

Cette thése a été réalisée dans le cadre du contrat EDF CIFRE 2022-1027, sous la direction de
Philippe Helluy. Elle s’est déroulée au sein du département Mécaniques des Fluides, Energies et
Environnement (MFEE) sur le site EDF Lab R&D & Chatou, en collaboration avec 'Institut de
Recherche Mathématiques Avancées (IRMA, UMR 7501) a I’Université de Strasbourg.

1 Nuclear energy in France

1.1 Operation of a pressurized water reactor

In 2023, nuclear energy enabled the production of 320,4 TWh of the energy in France, accounting
for 65.3% of total electricity production. In 2025, Electricité de France (EDF) operates 57 nuclear
power plants. These reactors have different powers. 32 reactors have an electrical power of 900
MWe and 20 reactors of 1300 MWe. There are also 4 N4-type reactors with a power of 1450 MWe
and one EPR, with a power of 1650 MWe. All of these nuclear reactors are Pressurized Water
Reactors (PWRs). A simplified diagram of a PWR is shown in Figure 1. A PWR relies on three
circuits: the primary circuit, the secondary circuit, and the tertiary circuit (also called the cooling
loop).

The primary circuit consists of several major components: the reactor core, the pressurizer, the
steam generator, and the primary pump. A reactor includes 3 or 4 primary loops (steam generator,
pump) supplied by a single reactor core. To extract the energy released from fission, a heat transfer
fluid (water) is pumped into the core by the primary pumps. It heats up as it comes into contact
with the fuel. During normal operation of a nuclear power plant, the water remains mostly in liquid
form thanks to the high pressure maintained by the pressurizer. The heated water then flows into
the steam generator, which is a heat exchanger where heat from the primary circuit is transferred
to the secondary circuit. In the secondary circuit, the water is vaporized into the steam generator
and drives the various turbines to generate electricity. After delivering its work in the turbine, the
steam is condensed in the condenser and then injected again in the steam generator. Cooling in the
condenser is provided by the tertiary circuit, which draws water from a river or the sea. Depending
on the plant’s configuration (open or closed), a cooling tower may be added to the tertiary circuit.
This thesis focuses on the flow within a single component of the primary circuit: the reactor core.
This component is detailed in the following section.
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Diagram of a Pressurized Water Reactor (PWR). Tikz diagram from Gloria Faccanoni’s thesis [41].

1.2 Nuclear reactor core composition

In the reactor core, water flows bottom-up. It enters at a temperature of about 290°C' and exits the
core at approximately 320°C'. It is pressurized to around 155 bar, which enables the water to remain
mostly in liquid form despite the very high temperature. Under normal operating conditions, a small
portion of the flow may vaporize into steam. Under accident conditions, a two-phase water-steam
mixture with a non-negligible amount of steam may be encountered. The mixture velocities are
roughly 5 m.s~! for nominal conditions.

The reactor core is loaded with nuclear fuel composed of uranium oxide (UOg) enriched to about 4%
uranium-235. The fissile element can also be plutonium for MOX fuel. This fuel is manufactured
in the form of 1.35 cm high pellets. Several pellets are inserted into fuel rods, which are encased
in cladding around the fuel. This cladding, made of zirconium alloy, ensures the fuel rod’s sealing
to prevent the release of radioactive material into the primary circuit. An assembly is made up
of 264 rods grouped together and is 4 or 5 m long. Figure 2 shows the pellets, rods, and a fuel
assembly. An assembly also includes guide tubes for inserting control rods, which regulate the
nuclear reaction. These control rods are attached to a cluster located above the assembly. Within
the assembly, spacer and mixing grids are placed at regular intervals. The spacer grids keep the
fuel rods in place within the assembly, while the mixing grids promote flow mixing to homogenize
the water. This homogenization prevents hot spots by introducing turbulence. These grids help to
avoid safety-critical conditions such as the boiling crisis described below.

10
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FIGURE 2
Scheme of a fuel assembly composed of fuel rods containing pellets of uranium. Credit: EnergyEncyclopedia.com.

The reactor core is composed of a steel vessel called the Reactor Pressure Vessel, which withstands
the pressure inside the core. The vessel is filled with a variable number of assemblies depending
on the desired core power: 157 assemblies for a 900 MWe reactor, 193 for 1300 MWe, 205 for 1450
MWe and 241 for EPR. Water flows through this highly obstructed environment, featuring very
complex solid geometries (grids, rods, guide tubes, etc.). Despite the fact that the flow is mainly
axial from bottom to top, transverse flows can occur between assemblies, as the space between them
is left open. Inside the assemblies, water primarily flows through the spaces between the fuel rods
and remove the heat produced by the nuclear reaction. The space between four fuel rods is called
a sub-channel, as shown in Figure 3.

Sub-channel

FIGURE 3
Image of a fuel assembly model with a zoom on the sub-channels. Source EDF R&D.
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2 Boiling two-phase flow

2.1 Boiling regimes

At reactor core pressure of 155 bar, the saturation temperature of water is approximately 350°C.
Water enters the reactor core as a turbulent single-phase liquid flow, with a Reynolds number of
Re ~ 500000. As the fluid is heated during its upward passage through the reactor core, it may
undergo various boiling regimes and heat transfer mechanisms. The two phases, liquid and gas, can
exhibit a variety of complex structures. Steam can appear in the form of small bubbles of vapor (of
a size of around ~ 10™* m) to large vapor pockets encompassing the entire space between fuel rods
(around ~ 1072 m). The different regimes are described in Figure 4.

The heat transfer begins with a pure liquid convective heat transfer, as the liquid is heated toward
saturation. As the heat flux increases, the wall temperature Ty, increases. Once the wall temperature
exceeds the saturation temperature Ts,;, the Onset of Nucleate Boiling (ONB) begins. From
the ONB, the nucleate boiling (see Figure 4) occurs. The wall surface is sufficiently hot to vaporize
water at its surface. Vapor bubbles appear at the wall surface and can detach. The liquid is not at
saturation on average but vapor already appears on the rods: this is the subcooled boiling. When
the enthalpy of the fluid mixture increases, the nucleate boiling continues. Slugs and columns of
vapor can appear. These bigger structures detach from the wall surface and are convected upward.

As the enthalpy increases further, the vapor structures agglomerate into vapor pockets. Nucleate
boiling may abruptly transition to film boiling: when this point is reached the heat flux is called
critical heat flux. This phenomenon is called the Departure from Nucleate Boiling (DNB).
The difference between the temperature of the cladding and the fluid temperature varies violently
from several degrees to hundreds of degrees. This is the boiling crisis during which the wall temper-
ature is so high (> 1000°C') that thermo-mechanical damage can occur in the cladding, threatening
the integrity of the fuel rods in a nuclear reactor core. The boiling crisis is especially dangerous
because it involves an hysteresis phenomenon. Once the critical heat flux is exceeded, the heat flux
must be reduced all the way to the Leidenfrost point [55] to return to nucleate boiling. It is therefore
crucial to ensure that the critical heat flux is not reached at any location within the nuclear reactor
core. Under normal reactor core operating conditions, the heat flux remains within the subcooled
nucleate boiling region.

12
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FIGURE 4
Boiling regimes for an upward low quality flow. lllustration extracted from [141].

2.2 Departure From Nucleate Boiling Ratio

The distance to DNB is measured with the Departure from Nucleate Boiling Ratio (DNBR).
It is defined by the ratio between the local heat flux ¢ and the critical heat flux ¢pyp that would
trigger the DNB:

DNBR = ¢D(;VB. (1)

DNBR is a local quantity defined at each point in the reactor core. It is essential to ensure that
the value is always greater than one everywhere in the reactor core (DNBR > 1). The flux ¢pnp
is obtained using a critical heat flux correlation. This correlation predicts the local value of
¢pnB as a function of the surface average values in a sub-channel of pressure P, mass flux of the
mixture G, and equilibrium quality X (see Equation (5.1)), such that

¢pnB = ¢pnB(P, G, X). (2)

The parameters of the correlation are fixed based on experimental critical heat flux test results.
To evaluate the DNBR in a reactor core during design or fuel reload planning, a thermal-hydraulic
code can be used. This code must be able to provide local fields of pressure, mass flux, and dynamic
quality throughout the entire core for a two-phase flow with subcooled boiling. Once the DNBR
field is determined, the minimum value over the entire core is considered, as it is the most limiting
point in terms of margin to DNB. This minimum value is called DNBRmin which should satisfy

DNBRmin > 1. (3)

3 THYC-coeur: a component code simulating 3D flows in nuclear
reactor cores

To ensure the safety of PWRs, EDF developed the thermal-hydraulic code THY C-coeur |7], which
simulates the two-phase flow in the reactor core. This code enables the calculation of the 3D field of
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Departure from Nucleate Boiling Ratio (DNBR) in the core. This section begins with a brief
review of nuclear reactor core codes. Two possible approaches to handle geometry are described
in Section 3.1. The porous media approach is the one used in THYC-coeur and is presented in
Section 3.2. The characteristics of THY C-coeur code are detailed in Section 3.3. Finally, Section
3.4 presents the safety studies done with THY C-coeur and explains the motivation for accelerating
the code.

3.1 A brief review of reactor core codes

For thermal-hydraulic simulation, several scales can be considered (see Figure 5).
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FIGURE 5
[llustration of the different simulation scales: local, component and system. Source: EDF R&D.

e The first and most macroscopic scale is the system scale, where several components of a
circuit are simulated simultaneously. These system codes include CATHARE [14] in France,
TRACE [8, 112, RELAP5 [46] in the USA, and MARS [26] in South Korea. To precisely
evaluate the DNBR field over the entire reactor core, this scale is too macroscopic.

e The second scale that can be considered is the local CFD scale, using CFD codes such
as code_saturne [4] developed by EDF or NEPTUNE CFD [65, 103|, jointly developed by
EDF, Framatome, CEA and ASNR. The local scale is precise but is unable to simulate a full
reactor core with current computational capabilities. It would require hundreds of billions of
cells to represent the full core with a wall resolved mesh. These codes are currently used to
simulate flow locally, for a bundle of just a few rods at most when resolving the wall or an
assembly without resolving the wall.

e The third scale is the component scale. The entire reactor core is represented with a mesh
of cells of a size in the order of centimeters, which makes it possible to calculate the flow in
the entire core in an acceptable CPU time. With a component scale code, fields such as P,
G, and X can be obtained over the entire reactor core, allowing DNBR field and DNBRmin
to be evaluated. The trade-off of a fast component-scale code is that the model operates at
a macroscopic scale, involving macroscopic terms that require closure laws. Experiments and
high-fidelity CFD simulations are necessary to determine the parameters of the correlations
used in these closure laws. Therefore, these closure laws are only validated over specific ranges
of physical quantities and configurations.

Many component-scale codes exist worldwide to simulate two-phase flows in a reactor core. Two
approaches are possible to account for the complex geometry of fuel assemblies in a reactor core.

e The coupled sub-channel approach simulates each sub-channel independently and couples
them numerically. It is highly efficient in terms of computational time.
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e The porous media approach integrates the solid structures into a cartesian mesh through

a porosity field (see Section 3.2). With its true 3D model, the porous approach enables a finer
representation of transverse flows.

For both approaches, two main physical models are used.

e The drift-flux model [81, 82| considers the water and steam phases as a homogeneous

mixture. It can be formulated with 3 or 4 equations depending on the physical phenomena
taken into account. The drift-flux model is robust and enables fast simulations. The velocity
difference between the two phases is modeled by a relative velocity, obtained from a drift-flux
correlation law [145]. A partial differential equation for relative velocity can be added to the
model instead of the drift-flux correlation.

The two-fluid model [82] represents each phase separately by its conservation laws. In this
model, the difficulty lies in the modeling of the transfer terms between phases. This model
easily simulates configurations with two phases out of thermodynamic equilibrium or cases
where the vapor and liquid velocities differ greatly. The two-fluid model can also be extended
to a three-phase framework with a 9-equation model. It is the case for COBRA-TF [135] and
CTF [125] codes.

Table 1 lists some component codes according to their choice of geometric approach (sub-channel /
porous media) and physical model (drift-flux, two-fluid model).

Sub-channel approach Porous approach
FLICA III-F (Framatome - France)
COBRA III-C [119] / IV [134] (PNNL - USA)
= THINC 1V |21, 25] (Westinghouse - USA)
K VIPRE-01 [30, 132] (EPRI - USA) THY C-coeur [7]
= VIPRE-W [94] (Westinghouse - USA) (EDF /Framatome - France)
E SUBCHANFLOW |79, 126] (KIT - Germany) FLICA IV [136] and
ﬁ ASSERT-PV [118| (AECL - Canada) FLICA V [102] (CEA - France)
= MATRA [142] (KAERI - South Korea) ESCOT [43, 97] (KAERI - South Korea)
= ATHAS [128] (XJTU - China)
CORTH-v2.0 [34] (NPIC - China)
LINDEN [10] (CGN - China)
=
g COBRA-TF [135] (USA) COMMIX |35, 104] (Argonne
. CTF [125] (USA) .
-CE VIPRE-02 [87] (EPRI - USA) National Labo;atory - USAh)
g ATHAS-02 [77] (XJTU - China) CUPID (143, 144] (KAERI - South Korea)
H

TABLE 1
Comparison table of schemes characteristics for THY C-coeur applications.

Several codes are also derived from the American COBRA code: the Bulgarian code COBSOFM
[114], which is derived from COBRA III-C and adapted for VVER reactors, or the code developed
by Areva NP called COBRA FLX [5]. Framatome also developed a code from COBRA-TF called
F-COBRA-TF [57].

3.2 Porous approach

The porous approach used in THY C-coeur considers control volumes containing both a solid volume
Vs and a fluid volume V; (see Figure 6). The exact geometry of the solid is disregarded. For each
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control volume with a total volume V}; + Vj, the porosity is defined as

Vy

Ezm.

FIGURE 6
Diagram explaining the porous approach.

The model equations are integrated over these control volumes. The presence of solid matter is
therefore only taken into account through porosity € and source terms appearing in the equations
(heat input, pressure losses). These closure terms are modeled by physical laws that are represen-
tative of the case under consideration. For example, mixing and spacer grids are represented by
singular pressure losses in the model.

This method first allows to get rid of the complex geometry of solids in the reactor core. It enables
modeling flows in a cluttered medium with mesh sizes on the order of a centimeter. It uses a 3D
cartesian mesh to represent the reactor core, making the code efficient in terms of CPU time.

3.3 Characteristics of THY C-coeur code

First developments of the THY C-coeur code began in 1986. A validation report on THY C-coeur was
written in 1998, based on numerous experimental test results. In 2006, the French nuclear safety
authority approved the use of THYC-coeur for safety demonstrations. In 2018, co-development
between Framatome and EDF began to integrate THYC-coeur into the new ODYSSEE calculation
chain. A new validation report was submitted to the safety authority in 2025. In EDF, the THYC-
coeur code is developed in the department Mécanique des Fluides, Energies et Environnement
(MFEE) of EDF R&D. In order to meet the needs listed in Sections 1.2 and 2.1, several modeling
choices were made for THY C-coeur code.

e Fast and accurate computation of 3D flows throughout an entire reactor core.
— Component scale code.

e Consideration of actual 3D flows, particularly transverse flows between sub-channels and as-
semblies; Component-scale simulation of flows in a cluttered medium with complex geometry.
— 3D porous media approach.

e Simulation of two-phase flows with phase change at high temperature and high pressure;
Consideration of the velocity difference between the vapor phase and the liquid phase.
— Drift-flux model [81, 82]|.
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e Consideration of the subcooled boiling phenomenon.
— Addition of the disequilibrium equation on the mass fraction of vapor, leading to a
4-equation drift-flux model.

e Conservation of physical quantities (mass, energy...).
— Finite volume formulation.

The subcooled boiling phenomenon has a significant impact on the DNBR value. Indeed, subcooled
boiling increases the dynamic quality X, which can greatly reduce the critical heat flux ¢pnp.
Therefore, it is important to take this phenomenon into account to predict the DNBR value observed
in real conditions.

To defined the drift-flux model in THYC-coeur with a porous approach, several closure laws are
required for the macroscopic quantities appearing in the equations (these terms are discussed in
Chapter 1). Correlations (parameterized functions) are used as closure laws. These correlations are
developed and calibrated based on results from experimental tests or high-fidelity CFD calculations
(DNS, LES). In particular, the drift-flux model relies on the drift-flux correlation [145] for the
relative velocity between phases, noted w,. This correlation is based on a formulation that takes
into account certain physical phenomena such as the buoyancy of the vapor in the liquid, but also
the effects of non-uniform distribution of the vapor void fraction and flow velocity (lower velocity
near the wall and higher at the center of sub-channels). In THYC-coeur, these parameters are
obtained either with the Chexal-Lellouche correlation [22, 23, 24|, or with the Bestion correlation
[14]. In THYC-coeur, the power at the surface of fuel rods is an input parameter. It is either
provided by the user or comes from a coupling with a neutronics code and a fuel rod thermal code.

3.4 Industrial motivations to accelerate THY C-coeur

THYC-coeur is mainly used to obtain the steady-state of two-phase flows for nominal or accidental
conditions, through an unsteady simulation. As part of the safety studies carried out for a new
reactor, for design studies during ten-year inspections or for fuel reloading safety analysis, a very
large number of accidental scenarios must be analyzed. At the time the code was developed, a
small number of calculations with very conservative assumptions were performed for each study,
leading to very penalizing studies, which sometimes deviate from reality. Recently, a more realistic
treatment of the core’s initial conditions and physical parameters has led to a significant increase in
the number of configurations studied. Moreover, in 2017, THY C-coeur was selected to be integrated
into the new industrial computational chain ODYSSEE for future studies, starting with the design
of the EPR2 plants. As a result, the number of computations performed with THYC-coeur has
been increasing significantly over the years, now reaching millions of simulations each year.

Compared to a sub-channel approach, the 3D modeling with a porous approach enables for better
flow modeling, particularly the transverse flows between sub-channels. However, this choice impacts
the computation time. A reactor core computation with an industrial mesh takes about 10 seconds
with THYC-coeur (on a mono-core workstation with an industrial mesh using the quarter sym-
metry of the core), whereas a sub-channel code calculation takes only a few seconds, with FLICA
for example. The computations with THYC-coeur are already fast, especially compared to CFD
calculations. But millions of THYC-coeur calculations are launched simultaneously for industrial
studies, which represent a non-negligible CPU time. Reducing computational time is therefore crit-
ical. This thesis contributes to the ongoing effort to accelerate THY C-coeur code, aiming to reduce
computational time without compromising the accuracy of the results.
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4 Contents of the thesis

The objective of this work is to propose methods to accelerate the THYC-coeur code, a partially
unbalanced homogeneous two-phase model in a heterogeneous porous medium. To this end, the
thesis is divided into three main parts, which are organized as follows.

Part I: Two-phase flow model The first part, which includes the first three chapters, is dedi-
cated to the presentation and analysis of drift-flux models for two-phase flows. The drift-flux models
[81, 82| are presented in Chapter 1. In particular, the chapter details the steps to go from the
local conservation equations of each phase to the drift-flux model. Drift-flux models are mixture
models that include several macroscopic terms that need to be modeled. Chapter 1 presents some
closure laws used to obtain these terms. In particular, the closure law used for the relative velocity
using the Zuber and Findlay model [145] is discussed. The resulting PDEs models are analyzed in
Chapter 2, where the model is studied to determine whether it is hyperbolic, in order to ensure
meaningful time-dependent solutions.

Part II: THYC-coeur with relative velocity The second part, which includes the fourth
and fifth chapters, proposes new numerical schemes for the fourth equation on the vapor mass
fraction for the industrial THYC-coeur code, with a relative velocity. Chapter 4 presents three
new schemes for the fourth equation. Several test cases are simulated to verify the schemes and their
convergence rates. In Chapter 5, the schemes are implemented in the industrial THY C-coeur code,
and a database of industrial cases is used to continue the verification of the schemes and compare
the performance in terms of CPU time and accuracy of the schemes.

Part III: ThermoTorch 1D without relative velocity Chapter 6 presents the ThermoTorch
code. It is a simplified prototype with zero relative velocity that reproduces certain characteristics
of THYC-coeur. This code is used in Chapter 7 to verify the numerical schemes of the code for
both steady and unsteady configurations. Finally, Chapter 8 presents an Al-driven acceleration
method and shows the results obtained with ThermoTorch.

A more detailed summary of the content of each chapter can be found in the Synthesis of thesis
work section below.
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Synthesis of the thesis work

1 Chapter 1

In this chapter, the physical models considered in the work of this thesis are presented. These
models allow for the simulation of two-phase flow (water-steam) in a medium obstructed by the
presence of solid material. They are derived from the models proposed by Ishii in [81, 82].

For each phase, noted k € {g,l}, with g denoting the gas and [ the liquid, the local conservation
equations (mass, momentum, and energy) are considered. In order to define the quantities for each
phase at any instant, the local equations are time-averaged. This time-averaging introduces the
local void fraction «y, which corresponds to the probability of finding phase k at a given time
and location. The time-averaging also introduces interfacial exchange terms between phases (mass
transfer, momentum transfer, and energy transfer).

The equations are then averaged in space over a volume V| containing a solid volume V; and a fluid
volume Vy. This allows to avoid dealing with the complex geometry of the solids. This introduces
the fluid porosity € given by

€= L (5)

Vi+ Vs

The spatial averaging also introduces source terms due to the presence of solids. A six-equation
model averaged in time and space is obtained. Considering that the two-phase flow behaves similarly
to a homogeneous mixture, the objective here is to simplify the model in order to obtain a robust
physical model that is not costly in CPU time to simulate. After defining mixture quantities, the
equations are summed for each phase to obtain three mixture equations. This summation eliminates
the interfacial transfer terms. By taking the difference between the energy equation of each phase, a
disequilibrium equation on the relative specific enthalpy is obtained. The same process is done with
the momentum equations to obtain an equation on the relative velocity between phases, denoted
u, and defined by

u, =uy, —u, (6)

with u, the velocity of the gas phase and u; the velocity of the liquid phase. The last disequilibrium
equation is the equation on the mass fraction of vapor. To reduce the number of equations, several
assumptions are made:

e The minority phase is always considered at saturation, which allows the removal of the dise-
quilibrium equation for specific relative enthalpy,

e The relative velocity is obtained through a closure law, which eliminates the equation on the
relative velocity. This closure law is derived from the drift-flux theory developed in [145].

If the equation for the mass fraction of vapor is considered, an unbalanced 4-equation model is ob-
tained. This allows modeling of non-equilibrium thermodynamic flow, particularly the phenomenon
of subcooled boiling, where boiling can begin even when the liquid is not yet at saturation in average
(a spatial averaging operator is used). To do this, the interfacial mass transfer term involved in the
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mass fraction of vapor equation must be modeled. If the mixture is considered to be at saturation,
this equation disappears and the 3-equation model at equilibrium is obtained.

In this chapter, two 4-equation models are presented: a conservative model in total energy, and
an enthalpy-based model. The enthalpy-based model corresponds to the one implemented in the
industrial code THYC-coeur [7|. To obtain it, several additional assumptions were made: the heat
contribution due to viscous friction between phases and to solid friction has been neglected, and the
sum of the transfer of thermal energy between phases has been neglected in the enthalpy balance.

To close the systems of equations presented, several terms must be modeled, such as fluid friction,
solid friction, relative velocity, mass transfer. For this, closure laws modeling the main physical
phenomena are used. In this chapter, these closure laws are described, in particular for the mass
transfer term and for the relative velocity. For the relative velocity, two different correlations are
proposed: the Bestion correlation [14] and the Chexal-Lellouche correlation [22].

2 Chapter 2

The models from Chapter 1 are studied in Chapter 2 in simplified configurations to determine
whether the models derived from the 4-equation drift-flux model are hyperbolic in order to ensure
stable time-dependent solutions. The following models are analyzed in the chapter:

e Drift-flux barotrop model with a constant relative velocity: The drift-flux model is
considered without an equation on energy and for a constant relative velocity. The eigenvalues
of the system can not be obtained analytically. Using the intermediate value theorem, the
model is strictly hyperbolic for u,.g # 0.

e 4-equation model without relative velocity: This model is equivalent to an HRM model
[16]. Considering c the speed of sound of the mixture, the eigenvalues are A € {u, u, u+c, u—c}.
This model is hyperbolic. This implies having an equation of state for the mixture that
ensures a real speed of sound.

e Drift-flux 4-equation model with a constant relative velocity u,¢: This model is more
complex than the HRM model. Only one analytical eigenvalue is obtainable u; = u—yu,g. The
other analytical eigenvalues are not obtainable. The characteristic polynomial is evaluated
for the gas velocity ug = u + (1 — y)u,o. Using the intermediate value theorem, the system is
hyperbolic if the derivative of the characteristic polynomial is negative in u; = u — yu,q. This
is a sufficient condition for hyperbolicity. With p the pressure, p the density of the mixture
and y the mass fraction, the system is hyperbolic if

mazx lch
C{L(pu va) <0 or |u7“0| < u, (p7 P y) = C%c(p’pa y)v (7)
1

with
dh 1
CT(p,p,y) = ya ' (p, p.y <yg p) - ) :
L) = v o) (v 520 o
C (0, p,y) = (1 = pyvy(p)),
where ¢ is the mixture speed of sound and a = (%) . Once again, this result is valid when

the mixture equation of state ensures a real speed of sound. In the appendix to this chapter,
this sufficient condition is studied for a water-steam mixture at 155 bar.
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3 Chapter 3

The objective of this chapter is to propose analytical solutions for simplified versions of the models
presented in Chapter 1. The first part focuses on the fourth equation concerning the mass fraction
of vapor only, in order to provide analytical solutions for testing finite volume schemes in Chapter
4 by isolating the equation from the complete system. A free medium is considered here. Three
new exact solutions are presented. First, two steady-state solutions, with most of the equation
parameters taken constant (pg, 7o, uo,7g), are presented. The first one uses a constant relative
velocity u,g. The second one uses the approximated Bestion correlation presented in Chapter 1.
This correlation proposes the relative velocity as a function of the mass fraction:

14+ (6—-1)y

wl) =~ )

with 0 and up constant parameters. These analytical solutions are used in Chapter 4 to verify
steady-state numerical schemes for the fourth equation on the mass fraction. The third solution is
an unsteady solution of the fourth equation, once again using the approximated Bestion correlation
ur(y). This self-similar solution gives the mass fraction as a function of the variable &:

x

&(x,t) = e (10)
This solution is also used in Chapter 4 to verify the scheme for unsteady solutions. The second
section of the chapter is extracted from an article published during the PhD thesis [70]. The
three-equation model is considered without relative velocity u, = 0, corresponding to an HEM-type
model [16] in a porous medium of porosity £(z) and with an energy input ¢(x,t). Two new self-
similar analytical solutions from [70| are presented for two different configurations of this model.
These solutions will be used for verification of the industrial code THYC-coeur in future work. The
solutions depend on the variable &:

£(z,t) = . 1o > 0. (11)

X
t+ 1o

The first solution is obtained without heat input and with a non uniform porosity e(z) satisfying:

- (3

with « and x constants. The analytical solution is proposed for a general equation of state, and
the particular case of the ideal gas is detailed at the end. For the second solution, a flow with an
arbitrary equation of state in a free medium is considered. A heat input of the following form is

applied: .
. (13)

The derivation of this solution leads to an ODE system in £ that must be solved numerically.

d’(x’t) =

Chapter 3 also includes three appendices to detail already known solutions used in this work.
The first appendix presents a steady-state solution of the three-equation model from [78], adapted
to the case under consideration. This analytical solution is obtained using a Newton method and
for a general equation of state. It is used in Chapter 7 to verify the ThermoTorch code in the
steady-state three-equation configuration.

In the second appendix, solutions to Riemann problems for the three-equation model with an ideal
gas equation of state are presented. In particular, the three Riemann problems considered are a
symmetric double rarefaction wave, a symmetric double shock wave, and the Sod shock tube. They
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are used in Chapter 7 to study the behavior of the ThermoTorch numerical schemes for both
regular solutions and shock solutions when using the 3-equation model.

Finally, the last appendix presents a mixture equation of state derived from a mixture of ideal gases
with the same polytropic index «. The equation of state is written as:

e(ps p.y) = yeg + (1 —y)er = ﬁ + ho(y), (14)

with
ho(y) = yhog + (1 — y)ho, (15)

where 7, hog and hg; are constant parameters to set. This particular equation of state is used to find
a solution to a Riemann problem for the 4-equation model. This solution is used in Chapter 7 to
study the unsteady numerical scheme of ThermoTorch with the four-equation model, in particular
the scheme used for the energy equation.

4 Chapter 4

This chapter is an extended version of an article published during the PhD thesis [93]. It focuses
on the disequilibrium equation for the mass fraction of vapor y:

(9((;;‘1])+V- (ya) + V- (y(l —y)qT) :pyTierTp, (16)
where p is the mixture density, q is the mixture mass flux, q, = pu, the relative mass flux, y the
mass fraction at equilibrium, 7 the relaxation time to equilibrium and I', > 0 the vapor production.
This equation is similar to the one studied in [53]. It models non-equilibrium flow, with a mass
fraction y that tends to deviate from the equilibrium mass fraction 7 due to a direct production
term I',, and is brought back to equilibrium after a characteristic time 7. The originality of this
transport equation comes from the drift-flux term, which is a convection term of the nonlinear
quantity y(1 — y) by the relative mass flux g,.

First, the continuous maximum principle is studied on Equation (16) to ensure that the mass fraction
remains between zero and one. Then, three finite volume schemes - called QRd, QRq, and QG -
are proposed for this equation. These schemes are presented in an article published during the
PhD thesis [93]. These are linear implicit schemes, presented in a multidimensional unstructured
framework. The study is limited to linear numerical schemes, so that these can be used in the
THYC-coeur code. They respect the maximum principle for the vapor mass fraction, which must
remain between 0 and 1. To achieve this, no time step condition is required for the QRd and
QRq schemes. The QG scheme has a constraint on the time step, which is not limiting in the
concerned applications. In this context, the production term, which does not necessarily respect
the continuous maximum principle, is not considered in these schemes.

The schemes are implemented in a 1D prototype that simulates only the fourth equation. Using
analytical solutions of the fourth equation from Chapter 3, the schemes are first tested on one-
dimensional steady-state solutions. This steady-state solution is obtained for constant parameters
(p,q,qr,7,7). Two test cases representative of reactor flow conditions are studied. This verification
demonstrates the consistency of the three schemes, which have a convergence rate equal to one in
space. The QG and QRq schemes appear to be more accurate than the QRd scheme for a fixed
mesh, especially when a significant negative relative velocity is considered.

The proposed QRd and QRq schemes are not conservative in unsteady conditions. They are there-
fore not suitable for simulating unsteady solutions, as shown in the appendix of this chapter. The
QG scheme can be verified on an unsteady solution. By considering a constant CFL value, a conver-
gence curve is produced for the unsteady solution of the fourth equation proposed in Chapter 3.
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A convergence rate close to one is obtained for the QG scheme, as expected. In Chapter 5, these
schemes are then implemented in the industrial code THY C-coeur in order to evaluate their perfor-
mance impact compared to the reference scheme of THYC-coeur. In this study on the THY C-coeur
code, the disequilibrium equation is no longer treated independently as in Chapter 4 but as part
of the complete THY C-coeur system (see Chapter 1 for the model).

In the appendix of this chapter, a numerical scheme is proposed for the production term I', in order
to recover the maximum principle at the discrete level, that is, to ensure that the mass fraction
always remains between 0 and 1. Indeed, without control, an arbitrary model for the term I', > 0
can cause the mass fraction to evolve to values greater than one. At the discrete level, the proposed
GAMc scheme allows the equation to be modified locally to ensure that the solution remains below
one. This corrective scheme can only be used for steady-state solution search, since the unsteady
behavior is altered due to the control.

5 Chapter 5

The three schemes proposed in Chapter 4 have been implemented in the industrial code THYC-
coeur [7]. To verify their implementation and consistency, a database of 36 148 steady-state indus-
trial cases is used. These cases correspond to a configuration of an N4 reactor, a French nuclear
reactor type, under different physical conditions (inlet temperature and mass flux, outlet pressure,
power shape). This database is called the Bias Curve Database. It was originally created to config-
ure a protection system called SPIN (Systéme de Protection Intégré Numérique in French), used to
ensure the safety of an operating facility. First, the Bias Curve Database is presented, along with
the SPIN protection system. Then, the three schemes introduced in Chapter 4 [93] are compared
to the reference scheme of THYC-coeur on the Bias Curve Database. Two different models are
considered, depending on the correlation used for the relative velocity. The first model is based on
the Bestion correlation [14], while the second is based on the Chexal-Lellouche correlation [22]. For
each scheme, the performance in terms of accuracy (compared to the reference scheme) and in terms
of CPU time are evaluated. The comparisons are carried out using industrial numerical parameters
(mesh size, time step, etc.) and aim to evaluate the performance of the schemes in predicting the
solution of the continuous equation model when the industrial numerical parameters are fixed.

The results obtained validate the implementation and consistency of the three new schemes for both
models. These new schemes provide increased robustness for the code. For the model using the
Chexal-Lellouche correlation, the schemes also provide a 50% gain in CPU time compared to the
reference scheme, when considering the same numerical parameters (time step, stopping criteria,
etc.). The findings of this comparison are summarized in Table 2, which lists the advantages and
limitations of using each scheme in the THYC-coeur context. It shows that the QG scheme is the
most appropriate scheme for use in THYC-coeur. In particular, it is very robust, provides the best
accuracy for a given mesh with the Chexal-Lellouche correlation, and can be used for unsteady
simulations. The QG scheme has a weak constraint on the time step, unlike the QRd and QRq
schemes, but this constraint is not actually limiting in practice. In particular, it is not reached for
the applications tested here.
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Scheme Constraints Other Steady-state Steady-state Unsteady
time step constraints Bestion Chexal-Lellouche simulations
REF Complex - Valid Less recommended -
Outlet BC o .
QRd None e Valid Less recommended | Not suitable
Not limiting
QRq None Co-current flows Valid Recommended Not suitable
Low . -
QG Not li(l)l\l\i‘ring None Valid Recommended Recommended
TABLE 2
Comparison table of schemes characteristics for THY C-coeur applications.
6 Chapter 6

The ThermoTorch 1D code (see the article published during the PhD thesis [68]) is a one-dimensional
finite volume code simulating a two-phase flow. It is a prototype that shares the same general
characteristics with the industrial THY C-coeur code [7], but with simplified physics. Thus, the 4-
equation model and the 3-equation model from THY C-coeur presented in Chapter 1 are considered
for ThermoTorch without second-order terms (diffusion, friction...) and with a simplified mixture
equation of state. Moreover, a null relative velocity is considered here. This allows for a simple
model that can be used in the next two chapters to verify the numerical schemes of ThermoTorch 1D
for steady and unsteady solutions (see Chapter 7) or to evaluate the performance of a method to
accelerate the search for a steady state using an initialization from a neural network (see Chapter
8).

Chapter 6 begins with the presentation of the models implemented in ThermoTorch: the 3-equation
model and the 4-equation model. The model is manipulated to express the system with the following
unknowns: pressure, mass flux ¢ = pu, specific enthalpy h = e + p/p, and mass fraction y (for the
4-equation model only). Next, the spatial and temporal discretization is detailed. In particular,
a staggered grid mesh is used with a uniform mesh size Ax. In ThermoTorch, the solution fields
are initialized. Then, the evolution in time of the solution is computed with a time discretization
based on a time step At. The time step At can be either constant or computed based on a CFL
number derived from the speed of one of the system’s waves. This method allows for the simulation
of unsteady flows as well as reaching the steady state by advancing in time until the solution no
longer evolves.

The finite volume numerical schemes used to discretize the continuous equation system are developed
in the third part of the chapter. Semi-implicit schemes are proposed, allowing each equation to be
written in terms of the time increment of the unknowns. A pseudo-entropy function s is introduced
to decouple the energy equation from the rest of the system. It corresponds to a mixture quantity
derived from the entropies of each phase:

s=ysq+ (1 —y)s, (17)

with s, the gas entropy and s; the liquid entropy. For the 4-equation model, this function is not
the entropy of the system. It satisfies

dJ
Tids = dh — (v +y(1; — Ts(p))j;y)dp + 5, dy, (18)
with B
sy = (hy — hy) = Ti(s1 = 34) = (p, Ti) — fiy(p, Ts) + (Ts — T1)3,. (19)
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The blue terms are neglected to fully decouple the energy equation. The function s is only used in
the unsteady part of the scheme. Thus, this approximation only affects unsteady solutions for the
4-equation model. The impact of this approximation is evaluated in Chapter 7. The matrix system
of the 4-equation model, obtained by considering the time increments of unknowns (p, s, q,y), can
be written in the following form,

Ass 0 0 0 0S8 B

0 Ay, O 0 oY | | By (20)
Apa5 Ap,y Apvp Apvq op Bp ’

0 0 Agp Agg 0Q B,

where 0S, §Y, 6P and 6Q (with d¢ = ¢"t! — ¢", ¢ € {S,Y, P,Q}) are the vector solutions corre-
sponding to the temporal increments of function s, mass fraction y, pressure p and mass flux ¢ on
their respective meshes. For example, §S = (s"*! — 5" )ic[o,n,]- This finite volume scheme allows
solving a time step in several independent stages, decoupling the mass fraction and the function s
from the other variables. The vector 0§ is obtained using

68 = Ay 1 Bs, (21)

and the vector §Y using
-1
oY = A, By. (22)

Then, the coupled momentum-pressure system can be written
(Ap,p Ap,q> <6P> _ <Bp — A, 08 — Ap,y5Y> (23)
Agp Agq) \0Q By

The matrix of this system is mostly sparse, so the Python representation scipy.sparse.csc_matrix
is used. The vectors P and 6@ are obtained by inverting directly the sparse matrix, using the
Python method scipy.sparse.linalg.spsolve. The 3-equation model can be solved in a similar
way, without considering the equation for the mass fraction y. The final part of the chapter aims
to present the code configurations used in the following chapters. The equations of state available
in the code are also presented.

7 Chapter 7

In this chapter, the numerical schemes of ThermoTorch presented in Chapter 6 are tested. The
objective is to verify the implementation of the numerical schemes in ThermoTorch and to evaluate
the convergence rate of these schemes in space and time. The configurations from Chapter 3 are
implemented, and the approximate numerical solutions obtained with ThermoTorch are compared
with the analytical solutions described in Chapter 3. Throughout this chapter, no relative velocity
is considered, as no analytical solution is known up to our knowledge for the model with relative
velocity. Several types of solutions are studied in this chapter to verify different characteristics of
the schemes.

e Steady-state solutions of the 3-equation model: These solutions make it possible to
study the spatial convergence rate of the ThermoTorch scheme for regular 1D solutions of the
3-equation model. The configuration studied is a heated channel with conditions close to the
one of a flow in a reactor core. A convergence rate of one in space is obtained.

e Unsteady solutions of 1D Riemann problems for the 3-equation model: These so-
lutions are used to study the 3-equation model of ThermoTorch for unsteady configurations.
The different 1D Riemann problems studied are: a symmetric double rarefaction wave case
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(regular solution), a symmetric double shock wave case (solutions with shocks) and the Sod
shock tube case [131]. Simulations are obtained with a constant CFL number (when consid-
ering fast waves):

CFLy e = 0.5. (24)

This study shows that the ThermoTorch schemes for the 3-equation model have a convergence
rate superior to 1/2 (and which appears to approach one) in space and time for the unsteady
regular solution considered (symmetric two-rarefaction wave) [52]. For solutions with shocks,
a consistency error is introduced by the non-conservative schemes used here as expected [51,
76]. As a consequence, the pressure and density plateaus are not perfectly predicted for the
symmetric two-shock wave case. It is shown that the magnitude of this consistency error is
negligible compared to the error introduced by using an industrial mesh for conditions close
to those of a reactor core flow.

e Unsteady solutions of 1D regular Riemann problems for the 4-equation model:
These Riemann problems are used to evaluate the behavior of the ThermoTorch scheme with
the 4-equation model in unsteady conditions. In particular, this study assesses the impact
of using pseudo-entropy and the approximation made in its linearization (see Equation (18))
compared to using the system’s actual entropy s. This is made possible by the equation of
state proposed in Chapter 3, for which the mixture entropy is known.

The pseudo-entropy approximation introduces a consistency error in the energy equation for
unsteady solutions. This error is highlighted with a convergence study. When pseudo-entropy
is used, the error between the analytical and numerical solution reaches a plateau as the mesh
is refined. On the contrary, with entropy, the ThermoTorch scheme shows a convergence rate
of 1/2 (expected due to the contact wave in the solution). The magnitude of the consistency
error due to the approximation on pseudo-entropy is evaluated and compared to the error
introduced by using an industrial mesh. The errors are estimated for various flow conditions
encountered in nuclear reactor cores. It is observed that in most cases, the consistency error
is negligible.

In ThermoTorch, the use of the pseudo-entropy s allows the energy equation to be completely decou-
pled from the other equations. As a result, this yields a numerically robust model for steady-state
computation with excellent run-time performance. In return, a consistency error is introduced in
the transient regime, which becomes more significant as the configuration deviates from thermody-
namic equilibrium. This confirms that it is negligible in most cases for nuclear reactor core unsteady
applications.

8 Chapter 8

This chapter is an extended version of a conference article [92|. It proposes a Machine Learning-
based method to accelerate convergence of a finite-volume code when looking for steady-state solu-
tions. A Deep Neural Network is developed to predict the steady-state solutions. These predicted
solutions are used to initialize the computation, aiming to reduce the number of external iterations
(the desired effect is represented in Figure 7) compared to another initialization such as a constant
field initialization. The development of this method has first appeared in the article [68] published
during the PhD thesis.
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Steady-state

Prediction from neural N
network cst

le

Constant initialization

FIGURE 7
[llustration of the neural network methodology to accelerate the convergence toward the steady-state.

The performance of this method, i.e. the gain in number of iterations before convergence towards
steady-state, is evaluated with the 1D prototype ThermoTorch, presented in Chapter 6. The
heated channel configuration (from Chapter 6) is used, with four boundary conditions (inlet mass
flux ¢, and temperature Tj,, outlet pressure py,+ and uniform heat input ¢p). The detailed method-
ology for training and using the neural network is represented in Figure 8. Both 3-equation and
4-equation models of ThermoTorch are tested.

' Building database

Tin, Qin s Pout, 0 ThermoTorch 1D Stationary solutions p(z), q(x), s(x) [ 1/(.1')}

1
1
1
1
1
1
1
1
1
1
1
' Database
1

Tins Gins Pouts Po Neural Network Predictions p(z), $(z) [, ,{)(,1:)}

ThermoTorch 1D Stationary solutions p(z), ¢(x), s(z) [ y(;lrﬂ

! Using Neural Network

FIGURE 8
Construction of the database used for training and acceleration of ThermoTorch 1D with a neural network.

A first neural network has been developed with the mean square error between the prediction and the
steady-state solution (for each field) as a loss function. After optimization of the hyperparameters
of the network, good results were observed for a neural network with 2 hidden layers of 200 neurons
per layer. A training data set of 10000 cases and a test data set of 1000 cases are used. The method
accelerates all cases, regardless of the model. The average gain obtained is 70 4+ 19% when focusing
on the 3-equation model and 48 + 21% with the 4-equation model.

The loss function is not entirely correlated with the observed gain. A study on the frequencies of
the error between the prediction and the solution was carried out. It has been observed that the
gain is not the same depending on the frequency of the error applied (with the same amplitude).
In particular, the perturbations of low frequencies for the entropy have a huge impact on the
performance to reach the steady-state.

In the second part of the chapter, a new loss function is proposed. It takes into account the first
frequencies of the Discrete Fourier Transform (DFT) of the error in entropy. With this loss function,
the gain is increased by more than 10%. It becomes 83+11% for the 3-equation model and 61+18%
for the 4-equation model.
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Two-phase flow models
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Chapter 1

Two-phase flow models with a relative
velocity between phases

The volume of fluid in a core is in the order of 10 m3, whereas the size of a steam bubble is in the
order of 10719 m3. It is therefore inconceivable to explicitly simulate the vapor and liquid phases of
the flow. Simulation codes designed to simulate two-phase core flows are therefore based on time-
and space-averaged equations, solved on mesh sizes of 1072 to 1076 m?. As it will be shown in this
chapter, the 3 time- and space-averaged equations for each phase (mass, momentum and energy)
can be rewritten as 3 equations for mixture and 3 equations for phase disequilibrium. The simplest
model is to consider the liquid-vapor mixture as a homogeneous fluid with local kinematic and ther-
modynamic equilibrium between the phases. Taking into account the difference of velocity between
the phases, linked to their density difference, and the thermodynamic disequilibrium, mainly gener-
ated by the heat flux from the fuel rod, improves the prediction of the thermal-hydraulic quantities
used as inputs to critical flow predictors. The way in which disequilibrium are taken into account
differs from one code to another. Three methods often considered are:

e 3-equation mixture models including closure laws modeling the resultant of phase disequilib-
rium (industrial reactor core codes such as THINC [21], VIPRE [132]).

e 4-equation models, which add a transport equation based on the thermodynamic disequilib-
rium between phases (industrial reactor core codes such as THYC [7], FLICA [136]).

e G-equation models, known as two-fluid models, or even 9-equation models (industrial reactor
core codes such as CTF [120]).

The aim of this chapter is to present the establishment of a 4-equation model from local instanta-
neous equations. The steps leading to the THY C-coeur model will be detailed, and the assumptions
made will be explained. An alternative 4-equation model will also be proposed, which has the ad-
vantage of being conservative. The models will be used in several chapters of this thesis.

1.1 Governing equations for each phase

The objective is to model water-steam flows (or more generally, two-phase flows) in a nuclear
reactor core, a large-scale domain that is particularly cluttered with complex solid structures with
a large range of sizes. To achieve this, a two-phase Eulerian model is considered. This model is
first averaged in time to obtain phase equations where phase quantities are defined (non zero) at
any instant. A porous approach is then considered through spatial integration in order to bypass
the complex detailed geometry of the solid medium (see Introduction - Section 3.2). This porous
approach allows for a fast robust model at the component scale but additional terms due to averaging
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must be modeled by physical closure laws, which accounts for the geometry and physical conditions
considered.

The model must simulate a high-pressure, high-flow regime with phase change and account for
the relative velocity between phases. The phenomenon of subcooled boiling (see Introduction -
Section 2.1) must also be included in the model, as this phenomenon has a significant impact on the
Departure from Nucleate Boiling Ratio (DNBR) (see Introduction - Sections 2.1 and 2.2). These
considerations lead to the use of either a 3-equation model with analytical closure laws for subcooled
boiling, either a 4-equation drift-flux mixture model. In [2], a drift-flux model with relative velocity
between phases is considered. This model does not take into account the energy equation. The
4-equation model proposed in this work is an extension of this drift-flux model.

First, the local instant equations are written for each phase before averaging them in time and space.
The method and the hypothesis for obtaining a mixture model are taken from [82] and are recalled
here. Then, the two different sets of equations used in this work are discussed: the total energy
4-equation model, for mathematical analysis and then the enthalpy 4-equation model, model
used in the industrial code THY C-coeur [7]. Finally, some of the closure laws required are discussed,
especially the relative velocity between the phases.

1.1.1 Local instant formulation

A two-phase flow in which two phases are mixed is considered: a liquid phase (denoted by the
subscript 1) and a gas phase (denoted by the subscript g). Each phase k is described by the
following local quantities: its density pg, its velocity uy, its pressure pg, and its specific internal
energy ej. Furthermore, each phase is governed by an Equation of State (noted EoS) such that

ek = e(Pk; Pk )- (1.1)

The specific total energy Ej, can be defined by

2
u
Ek=€k+‘§‘, (1.2)
and the specific enthalpy hj by
hp :ek—i—&. (1.3)
Pk

For each phase, a specific entropy function si(pg, px) can be obtained with

2 68k 5Sk
0 1-4

where the speed of sound ¢k (px, pr) is defined by

(prew)? = (g;’:)l (pk — i (g;i)pk ) (1.5)

Pk

The temperature T}, of phase k is defined by the relation
T, = (gk) | (16)
Sk / py,

It gives the following differential
Tidsy = dey + prpdug, (17)
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with the specific volume v, of phase k defined by

1
v = —. 1.8
o (1.8)

Each phase locally satisfies three conservation laws: the mass balance (1.9), the momentum balance
(1.10) and the energy balance (1.11). The local instant mass balance for phase k writes

aa[;k +V - (prug) = 0. (1.9)
The momentum balance writes
% (prug) + V- (prug @ ug) + V- (pela — Ti) = pig, (1.10)
with Ty the viscous stress and g the gravity constant. The energy balance is
% (peEr) +V - (prEruy) + V - ((kad —Ty)- uk) ==V -+ kg uy, (1.11)

with o the heat flux and I; the identity matrix.

1.1.2 Averaged equations
Time averaging

Equations (1.9), (1.10) and (1.11) are instantaneous local formulations. The quantities of each
phase are therefore not continuous, as phase k is not present at all times. They are averaged
in time to extend their definition to every instant. At an instant ¢ty and a position xg, a time
interval At is considered centered on instant tg such that it is large enough to smooth out the local
variations of properties but small enough compared to the macroscopic time constant representing
the unsteadiness of the bulk flow. The details of the computations are provided in Appendix
1.A.1. Several definitions are recalled in this section. The time interval during which phase k is
present is noted Atg. The local void fraction (or local time fraction) can be defined by
Aty

ak(Xo,to) = Tt S [O, ” (112)

It corresponds to the probability of finding phase k£ at a given time and location. Considering
interfaces between phases of null thickness, the immiscibility condition writes

ap+ag = 1. (1.13)

The quantity f} is the mean value of a function f; over the interval At such that

— 1

fk,(X(),t[)) = / fk(XO,t)dt. (1.14)
Al Jielto—At/2,t0+A1/2]

This operation is applied to the local instant equations. A more physical average is the mean of the
function fi on the time interval Aty where fi is not null. It is noted f, such that

= 1 ’t
Fr(x0,t0) = / iy )t = TEC0:10). (1.15)
Aty Jieaty) Qg

where [Atg] is the union of all intervals where phase k is present during [to — %, to + %} The
density py is defined (strictly positive) only at times when phase k is present and zero otherwise.
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The mean value weighted by the density is used for extensive variable 1. It is noted %Zk and defined
by

Y= ——. (1.16)

Time averaging introduces source terms due to interface between phases (see Appendix 1.A.1).
Using these definitions and Equation (1.9), the time averaged mass balance for phase k writes

o, _ _
5 (akpr) + V- (arpyy) = Ty, (1.17)

where I'j, is the mass transfer from phase k£ to the other, which satisfies

Y T =0. (1.18)
k

From Equation (1.10), the time averaged of momentum balance for phase k writes

0 = =~ — = =
g (akﬁkuk) +V- (akﬁkuk & uk) + V(agp,) = V- (Ozk(Tk + TZ)) + appLg + my, (1.19)

where T}ti is the viscous stress due to turbulent effects defined in Appendix 1.A.1 (see Equation
(1.139)) and my the transfer of momentum from phase k to the other, which satisfies, with o the
surface tension (depending on several quantities) between phases,

> my =mp (o). (1.20)
k

The term my,, (o) is detailed in [83]. It is null when the surface tension is neglected (¢ ~ 0). The
turbulent fluctuations of kinetic energy are neglected in the energy equation (see Appendix 1.A.1).
Using Equation (1.11), the time averaged total energy balance is

6 _ ~ 12 _ ~ 12 R _
8t<akpk(ek+ ‘ug‘ )> +V- (akpk(ew’“;” Jik) + V- (uBpue) =
-V (ak(ik + <P}i)) (1.21)

+V. (ak(?k + Tl,;) . ﬁk)
+ 8k - Uy + Zi,

with ¢} the heat flux due to turbulent effects defined in Equation (1.141) and Ej, the transfer of
total energy from phase k to the other, which satisfies

> Sk =Em(0). (1.22)
k

The term Z,,(0) is defined in [83] and is null when ¢ = 0. The functions m,, and =,, depend
exclusively on the surface tension o between phases. In this work, the effect of the surface tension
is neglected so that m,, = 0 and =,, = 0.
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Space averaging

The equations are also spatially averaged. This allows the integration of solid obstacles into the
equations. This porous approach models flows in a complex geometry (fuel rods, mixing grids,
supporting grids, etc.) without considering the exact geometry of the solid. The method for spatial
integration in a cluttered environment is derived from methods developed initially for natural porous
media [116], especially for Stokes flow using Darcy’s Law [140]. The variables are averaged over a
volume Vj centered on a position xg. This volume contains a volume V; of fluid and a volume Vj
of solid (see Figure 1.2), such that

Vo = Vi + V. (1.23)
The fluid porosity can be defined as
Vy
= . 1.24
c Vo (1.24)

The space-averaging process is similar to the time-averaging one, but porosity £(x) is independent
of time (0;¢ = 0) and provided as input data, unlike the local void fraction ag(x,t) which is an
unknown depending on time and space. Spatial integration introduces source terms in the equations
due to the presence of solid in the flow. No terms appear in the mass conservation equation since
the solid does not produce matter. In the momentum equation, solid friction introduces a pressure
drop on phase k noted my,. In the energy equation, energy transfer from the solid to phase k is
considered through the term Zjs. Similarly to time-averaging, several space averages are defined.
For a quantity f, the mean value on volume Vj is noted (fy) such that

(fr) (x0,t) = fk(X t)dx (1.25)

Vo

The mean value of quantity fi on the volume of fluid V; is noted ( fx)) and defined by
(k) (x0,1)

1
(fi) (x0,) = fr(x,t)dx = (1.26)
Vf Vf &
As a consequence, the local void fraction averaged in space writes:
Vi
<<Oék>> (X07t0) = Vkv (127)
f

with Vi the volume occupied by the phase k at instant ¢y (in volume Vp). (ag) is simply called
void fraction and still satisfies the immiscibility condition. A mean value weighted by the local void
fraction is defined for an intensive variable f; (density, pressure, friction...) such that

fo = <<Z§Z;>> (1.28)

Finally, a mean value weighted by ajpy, is defined for the extensive variable 1, (velocity, energy...)
such that

o) _ o)

(cwpr) — Cond o (1.29)

The computation to obtain the space-averaged equations from the time-averaged equations is de-
tailed in Appendix 1.A.2. Spatial turbulent terms appear when averaging the terms of the form
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akﬁk{ﬁ\kﬁk in the momentum and energy balances. They are noted with the superscript st to dis-
tinguish it from the turbulent flux due to time-averaging (noted with superscript ¢). Averaging
Equation (1.17), the space-averaged mass balance for phase k writes

0

5z (& Gaw) or) + V- (= () prur) = e (). (1.30)

Using Equation (1.19), the space-averaged momentum balance for phase k writes

2 (<o) i) + V- (= o) i @ ) +< o) Vi =
V- (o) (Tet TL+ 7)) (1.31)
+efon) fis

+ & (my ) + myg,

where my, is the friction on phase k£ due to the solid and Tit the turbulent friction due to space
averaging. As for the time average, the spatial fluctuations of kinetic energy have been neglected.
Using Equation (1.21), the space-averaged total energy balance for phase k writes

2 (<tow) iEr) +9 - (= fow) i) + V - (= o) i) =
-V (8 (oY) (@ + <,/ov§€ + Qozt) )

+ 9 (= o) (Te+ TL+TE) - )

+ & (o) Arg - Wk + € (Zn) + Zns,

(1.32)

—~ =~ |2
where E}, = e, + |u’2“’ is the total energy for phase k, Zis is the energy received by phase k from
the solid and ¢§’ the turbulent heat flux due to space averaging. Manipulating these equations (see

Appendix 1.A.2 for detailed computation), the enthalpy equation can be written

£ (o) i) + = ox) W - Vi

= V- (= on) (@1 + 9}, + 1))

e o) (Te+ Th+ T« v, (1.33)

2 (= tewd ihe) + 9 - (= o) pietic) =

=2
+e («Ek» — () - W + (L) “;)

+ Eks — Mg - Ug.

The heat given by the solid to the phase k is noted ¢ps = Zps — my; - {TV; The transfer of thermal
energy between phases is written Ay and defined by

~ 12

..

A = (Ex) + (mp) - = (Te) (1.34)

Remark: It is important to point out here that, despite neglecting surface tension, the sum of Ay,
terms is not, a priori, equal to zero because the phases have not the same velocity u, # u;, and
thus
= 2 =
o _J8

> A= (r,) (5 =5 — fmy) - (8 — @) # 0. (1.35)
k
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For the application concerned, the heat provided by the solid is large compared to the dissipation due
to friction (including also the space and turbulent friction due to averaging) and to the interfacial
transfer of thermal energy between phase. Hence, neglecting these terms in Equation (1.33), the
equation for thermal energy becomes

O (<o i) + 9 - (= o) i) = (< og) ) + < o) s - Vi
V- (clon) (Bl rer))
+ el + Prs,

with

> Ap=0. (1.37)

k

1.2 Mixture model

Considering the 3 space- and time-averaged Equations (1.30),(1.31) and (1.32) (or Equation (1.36))
for each phase k, a 6-equation model is obtained. This model approaches a Baer-Nunziato type
model [9] with porous medium, for which a 7** equation on the void rate should be considered.

Considering that the two-phase flow behaves similarly to a homogeneous mixture, the objective here
is to simplify the model (to a 4-equation model) in order to obtain a robust physical model that
is not costly in CPU time. First, mixture quantities are defined based on the weighted-sum of the
variables of each phase. The equations are summed for each phase to obtain three mixture equations.
Two disequilibrium equations are also derived for momentum and total energy by subtracting the
gas phase equations from the liquid ones. Then, assumptions detailed later allow to free ourselves
of these disequilibrium equations. The last disequilibrium equation which is the mass balance for
the gaseous phase is retained. The methodology is a 3D extension of |72, 81| where the space was
averaged on a section to obtain the one-dimensional drift-flux model.

Two different sets of equations can be obtained depending on the energy equation considered (total
energy or enthalpy). After defining the mixture and disequilibrium quantities, the two different 4-
equation models are discussed according to the energy equation considered. In order to simplify the
notations, the averaging operators (for time and space) are abandoned. So, from now on, the time-
and space-averaged quantities are the density pg, the velocity ug, the pressure pg, the enthalpy Ay,
the total energy Ej, the friction terms Ty + Tt + T5, the heat fluxes ¢ + ! + ', the interfacial
mass transfer I'y, the interfacial momentum transfer my and the interfacial energy transfer =;,. The
void fraction for phase k averaged in space is noted «ay. Using these notations, the mass balance
writes

0
g (earpr) + V - (eapppuy) = ey, (1.38)

the momentum balance writes

0

En (ecwprug) + V - (ecpprpuy, ® ug) + e Vpy, =
V- (a (Te+ T+ T3 ) (1.39)
+ eokpLg

+ emy, + myg,
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and the total energy balance writes

0
o (earppEr) +V - (6akPkEkuk) + V- (ecwpruy) =

-V <€ak (o + ok + i) ) (1.40)
+ V. (60% (Tk + Tz + Tit) . uk)
+eagprg - Uy + €5k + Egs.

If the enthalpy equation is considered instead of the total energy (these two different equations are
not equivalent due to different approximations), it writes

0 0
g (eanprhi) + V - <5akpkhkuk) =5 (eawpy) + eaguy, - Vpy,
-V (sak (er + @)+ @7) )

+ A + dps,

(1.41)

1.2.1 Mixture and disequilibrium quantities

The mass fraction of phase k is defined and noted y;. It is obtained from the void fraction oy using

Pm

with py, the mixture density defined by p,, = agpy + aip;. It gives

Yo +u = 1. (1.43)

The following notations are used

{agza , aq=1—aqa, (1.44)

Y=y , y=1-—uy.

To obtain mixture quantities, variables based on unit mass are weighted by the mass fraction y,
whereas the ones based on unit volume or surface are weighted by void fraction ag. It can be
summarized by

fo = arfy for f=p,p, T, T T 0,0, o™,
k

(1.45)
Ym = _ yrtop for ¥ =u,e, h, E.
k

Mixture momentum and energy source terms due to the solid are obtained by summing the contri-
bution of each phase such that
ms = Z mps,
k

Es = ZEksv (1.46)
k

¢s = Z(Z)ks
k
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Disequilibrium quantities are introduced, such as the relative velocity between phases u, defined
by
u, =u, —u, (1.47)

and the relative specific enthalpy L, defined by
L=hyg—Mh, (1.48)

where the enthalpy of each phase are defined by (1.3). The relative specific enthalpy L does not
necessarily correspond to the classical latent heat because the two phases are not always saturated
in the model.

1.2.2 Mixture equations

To obtain the mixture equations, surface tension is neglected, so that only one pressure is considered
for both phases

Pm = DI = Pg, (1.49)

As explained above, this hypothesis also enables to neglect the mixture source terms m,, (o) and
Em (o). Considering an intensive variable f based on unit volume, the following identity is used

S anfin = ot + o1 =9) (22— ), (1.50)
% Pg Pl
For a variable ¢ based on unit mass, a similar identity is
> prtrs = prtmtm + pmy(1 —y) (b, — 1) ur, (1.51)
k

These equations use the mixture quantities for variables based on unit volume (density, friction
tensors, heat fluxes) or unit mass (velocity, internal energy, enthalpy, total energy) defined in
Equations (1.45).

Summing Equation (1.38) for each phase k, mixture mass balance is obtained

2 (com) + V- (pmtin) =0, (1:52)

Summing Equation (1.39) for each phase k, mixture momentum balance writes

%(spmum) + V- (spmum ® um) +V- <5pmy(1 —yu, ® uT) +eVp, =
v. (E(Tm”fnnf;;)) (1.53)

+ EpmE + my.
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Summing Equation (1.40) for each phase k, a first equation for energy is
0
—(5mem) +V - (5memum) + V- <5pmy(1 —y)(Ey — El)ur)

T el (324 -

—V~(s(¢m+¢$n+sof£))

+V- (z-:(Tm +TL + T8 um> (1.54)
T,+T+T8 T,4TE+ T
+V- <epmy(1y) R -ur)
Pg Pl
+EpmUm - 8
+ 2,
where the mixture total energy FE,, is defined by
Jug|”
By = ZykEk =ém+ Zyk 5 (1.55)
k k

When the relative velocity is not null, the mixture total energy can not be defined as usual with
the mixture internal energy and the mixture velocity because
2
u
Em:€m+|;|+y(1_y)

2 2
D e+ |u’2”| . (1.56)

|y

2

If Equation (1.41) on enthalpy is considered for each phase and if several assumptions are made (ne-
glecting friction contribution to dissipation and the transfer of mechanical energy between phases),
the mixture enthalpy equation writes (see Appendix 1.A.2 for details)

0
—(epmhm) + V - (epmhmug,)+V - <€pmy(1 — y)Lur) =

ot
Opm 1 1
5—+5[u +y(l — ———u}'V
ot m y( y)pm(pg pl) T Pm (157)
=V (e(om+ @l + @im) ) + 65,
where the mixture enthalpy is defined by
han =yl :Zyk(€k+1)ﬂ> = e + 2, (1.58)
k k Pk Pm

This equation is the one used in the THYC-coeur code, and is not strictly equivalent to the total
energy equation, as some terms have been neglected in between.

1.2.3 Assumptions to reduce the number of equations

To eliminate the disequilibrium equation for the relative specific enthalpy L, it is assumed that the
dispersed phase (most often the gas phase) is saturated. In this case, the scalar L is no longer an
unknown and can be expressed from other unknowns (pressure, mixture enthalpy and mass fraction).
This makes it possible to eliminate the energy disequilibrium equation, reducing the model from six
equations to five.
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The relative velocity is approximated by a closure law that accounts for the main physical phe-
nomena causing a velocity difference between the phases. The correlations used for the relative
velocity are derived from the drift-flux model [145] and detailed in Section 1.4.2. Thanks to this
closure law, the complex equation for the relative velocity involving source terms to be modeled is
not considered. This assumptions allow to reduce the number of equation from five to four.

1.2.4 Disequilibrium equation

The only disequilibrium equation considered is the equation on the vapor mass fraction y. This
equation could be eliminated by considering the thermal equilibrium, which means that both phases
are at saturation, i.e. when both phases are at the same temperature: the saturation temperature
noted T4 and defined by the equilibrium of chemical potentials at pressure p,, (see Section 1.3.3
for details on saturation). The mass fraction at equilibrium writes

hm - El(pm)
Eg(pm) — Iy (Pm) 7

Y(him, Pm) = (1.59)

where hgy(pm) (resp. hi(pm)) is the specific enthalpy of the gas phase (resp. liquid phase) at
saturation (see Equation (1.66) for quantities at saturation). This thermal equilibrium leads to a
3-equation model (see Appendix 1.B). However, within the framework of THYC-coeur code, the
phenomenon of subcooled boiling plays a significant role in predicting the Departure from Nucleate
Boiling Ratio (DNBR). To account for this, the equation for the vapor mass fraction is retained. It
is expressed as

0
&(Epmy) + V. (epmyum +epmy(l — y)ur) =ely, (1.60)

where the source term I'y corresponds to the mass transfer from the gaseous phase to the liquid
one. It should take into account several physical phenomena (subcooled boiling, evaporation at
saturation, recondensation...). It will be discussed in Section 1.4.1. The disequilibrium equation is
also called the vapor mass fraction balance or the fourth equation.

1.3 4-equation models

The two energy Equations (1.54) and (1.57) proposed here are not equivalent because additional
assumptions have been made to obtain the equation on enthalpy. As a consequence, two different
systems can be defined: the total energy 4-equation model (using Equation (1.54)) and the enthalpy
4-equation model (using Equation (1.57)). They are described below with the assumptions detailed
for each model. In other chapters, the subscript m used for mixture quantities is sometimes dropped
to improve readability.
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1.3.1 Total energy 4-equation model

The total energy 4-equation model is

(

g(gpm) +V. (5pmum) =0,

ot
%(z—:pmum) + V- (epmum @ up) + V- (6pmy(1 —yu, ® ur) +eVp, =
Ve (o(Tm + Th +T30))
+Epmg + my,
gt(smem) +V - (epmBntin) + V - (2pmy(1 = y) (B, — B)w, )

+V- <f~: <pm {um + pmy(L —y) <plg - plz> ur])) = (1.61)

—V-(e(cpercpﬁnﬂoii))
LV (e(Tm+Tfn+T;§)-um)

Tg+T;+T;t_Tl+T';+T;‘t 'u>
Pg Pl '

+V. <€pmy(1 - y) (

+ Epmum - g + Es,

0
{ a(gpmy) +V- (Epmyum) +V. (Epmy(l - y)ur) =ely.

The main assumptions made to obtain this model are

e The surface tension has been neglected, so that the same pressure p,, is considered for both
phases. Moreover, the mixture source terms my, (respectively =,,) in the momentum (respec-
tively energy) balance are null,

e Space and time turbulent fluctuations of kinetic energy have been neglected in the energy
equation.

If this model is considered with € = 1, without source terms due to solid, gravity and mass transfer,
the total energy formulation is a system of conservative equations. In this case, it can be likened
to an extension of the HRM-type model [16] with the addition of a relative velocity u, between
phases. This model will be used to study the hyperbolicity (see Chapter 2) of the model and to
provide analytical solutions for one dimensional Riemann problems (see Chapter 3).
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1.3.2 Enthalpy 4-equation model

The enthalpy 4-equation model writes

e
a(gpm) +V. ({‘:pmum) =0,
gt(epmum) + V- (Epmum ® um) + V. <€pmy(1 —yu, ® ur) +eVpy, =
Vo (=(To+ T+ Tih))
+Epmg + my,
1.62
%(wmhm) + V- (epmhmtny,) +V - (5pmy(1 - y)Lur) = (1.62)
Opm 1 1
e+ 5[um +y(l— y)pm(;g - E)ur] - Vpm
-V. (5(‘Pm + ‘an + ‘Pié)) + ¢S7
0
a (5pmy) +V. (Epmyum) +V. (epmy(l - y)ur) = Erg'

The same assumptions as for the total energy model have been made. The additional assumptions
compared to the total energy model are:

e The heat contributions due to viscous friction between phases and to solid friction have been
neglected in the enthalpy balance. This approximation is justified for nominal conditions of
a reactor core. It is not relevant during the start-up of a reactor core, where friction is used
to heat the primary circuit before initiating the nuclear reaction, but this configuration is not
studied here.

e The sum of the transfer of thermal energy between phases ), Ay has been neglected in the
enthalpy balance.

The enthalpy 4-equation model is the one used in the code THYC-coeur, in Chapter 5, and a
simplified version is also implemented in the ThermoTorch code presented in Chapter 6.

Generally, the two models presented are not equivalent. When the relative velocity is zero and when
friction terms and diffusive flux are neglected, the models with total energy and enthalpy become
equivalent. The first model proposed in total energy is a conservative model (when considering a free
medium). This model allows for the study of hyperbolicity and is suitable for handling shock waves.
The enthalpy-based model, on the other hand, is not written in conservative form. Certain terms
have been neglected in order to express the enthalpy equation without source terms representing
interphase transfer. These assumptions are valid for the applications of THYC-coeur code. This
leads to an energy equation with several advantages for numerical simulation. In particular, the
decoupling of the energy equation from the rest of the system allows for solving energy independently
(see Chapter 6).

1.3.3 Mixture Equation of State

The terms of frictions (laminar and turbulent) and of heat flux (laminar and turbulent) due to solid,
the relative velocity and the mass transfer are modeled with closure laws. The sets of equations are
composed of four equations but five mixture unknowns: density p,,, velocity u,,, enthalpy h,, (or
total energy E,,), mass fraction y and pressure p,,. An equation of state for the mixture is needed
to link the energy to density and pressure. For each phase (liquid and gas), the equation of state
from Equation (1.1) is still considered valid for the averaged quantities such that

er = ex(Pm: pr), k € {1, g} (1.63)

42



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

Saturation is reached when the chemical potentials of the two phases are at equilibrium. It defines
the saturation temperature Ty, such that

Mg(pm, Tsat(pm)) = Nl(pma Tsat(pm))> (1.64)

where the chemical potential is defined by
k(D Tie) = hy — TSk (1.65)

The thermodynamic quantities of a saturated phase k considered depend only on pressure p,,. In
this case, and for the rest of this work, a quantity f at saturation is noted

fk (pma Tk = Tsat(])m)) = Tk(pm) (166)

From now on, time averaging is no longer used, so the operator ~ always corresponds to saturation,
without the risk of conflicting notations. To simplify the discussions, the dispersed phase considered
at saturation here is the gaseous phase such that
Tg = Tsat(pm)7
ﬁg(pm) = /)g(Pm, Tsat(pm)),

€q(Pm) = €g(Pm, Pg), (1.67)
_ p
hg(pm) = €4(pm) + =
Pg
The equation of state for the mixture (noted Mixture EoS) writes
_ 11—y
em(Pm; pmy y) = yeg(pm) + (L =yt [ pmypr = 4———— (1.68)
It can also be written with enthalpy such that
_ 1—y
hm<pma Pms y) = yhg(pm) + (1 - y)hl Pm, pP1 = 1 Y (1'69)
pm Dg(Pm)

The mixture speed of sound is defined by

e\t Ode
(pmcm)2 = <m> (pm - pgn, <m> ) . (170)
Opm / oy P ) py

The speed of sound in the mixture is smaller than the two speeds of sound for one-phase flow (either
liquid or gas) which is well known [107]. It is assumed here that the EoS for each phase are chosen
such that the mixture speed of sound is real. This mixture speed of sound corresponds to the wave
velocity in the case u, = 0 (see Section 2.4.1). Using h,, = yhy + (1 — y)hy, the relative specific
enthalpy L = Eg — hy is given by

hg (pm) - hm

L(pmahmay) = 1—y

> 0. (1.71)
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1.4 Closure laws

Closure laws are needed for the following terms: the stress tensors (laminar and turbulent) T, +
T! + T8 the heat fluxes (laminar and turbulent) ¢, + ¢! + @5 the relative velocity u,, the
friction due to solid my, the heat due to solide ®, and the mass transfer source term I'y. For each
term, many closure laws have been proposed based on experimental data. Only closure laws for the
mass transfer source term and relative velocity are presented hereafter. The form of the friction
and flow terms is given in Section 1.4.3. The other closure laws are described in [7].

1.4.1 Mass transfer source term

Taking into account the fourth equation allows for the consideration of flows that are out of thermal
equilibrium, which means that liquid and gas can be present at different temperatures in the same
location. It can model, for example, the phenomenon of subcooled boiling, where the liquid is
not yet at saturation on average, but vapor production has already begun at the wall. The gas
temperature is noted Ty, the liquid temperature 7; and the saturation temperature Teq¢(pm) at
pressure py,. If the gas phase is the dispersed phase, the gas phase is at saturation (but not the
liquid a priori) so that

Tg = Tsat(pm) 7é 1. (172)

In the case where the gas phase becomes dominant, the liquid phase is at saturation, and the gas
is out of thermodynamic equilibrium, such that

,Tl = Tsat(pm) 7é Tg. (173)

The fourth equation models the deviation of the vapor mass fraction y from the thermodynamic
equilibrium fraction § (when both phases are at saturation), defined by Equation (1.59).

It is necessary to model the mass transfer term I'y, in particular to account for two major physical
phenomena. The first phenomenon is the vapor production I', due to the heat flux from the solid
®, supplied to the fluid. The second is the mass transfer due to interfacial exchanges between
the phases, denoted I';e. This last term accounts for different configurations depending on which
phase is out of equilibrium: the recondensation of saturated gas bubbles in the subcooled liquid
phase, the vaporization triggered by pressure variations, the vaporization of saturated droplets in a
superheated vapor flow, etc. These two contributions are summed so that

T, =T+ T, (1.74)

Mass transfer due to the heat flux I',

The fraction of the heat flux @, directly used for vaporization is noted x € [0,1]. The latent heat is
defined by L = hy — hy, which is the energy needed to vaporize 1kg of saturated liquid. The vapor
production due to the heat flux is

D,
T,= XE > 0. (1.75)

The parameter xy must then be modeled to account for the physical phenomena occurring in a
reactor core. The closure laws used for y are not detailed here. A law is proposed in the modeling
of the ThermoTorch 1D code in Chapter 6. If no precautions are taken in the closure law for Y,
the production term I', won’t respect the maximum principle for the mass fraction (see Chapter
4). This source term can then produce so much steam that the mass fraction exceeds 1.
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Mass transfer due to interfacial exchanges I';.

If the mixture were at thermodynamic equilibrium, no heat exchange would occur between the
phases, and the mass transfer due to interfacial exchanges I';e would be null, so that I';.(y) = 0.
By using a first-order Taylor expansion close to thermodynamic equilibrium and knowing that I';
is expressed in kg.m™3.s71, T';. can be written in the form

Y-y

Lie(y) = pm — (1.76)

where 7 is a relaxation time and ¥ the mass fraction at equilibrium from Equation (1.59). Like
the parameter y, the relaxation time 7 is modeled by a closure law. One possibility is a constant
relaxation time or one that depends on the deviation from saturation. A correlation is detailed in
Chapter 6. If 7 > 0 and 3§ € [0, 1], this source term for the return to equilibrium ensures the
maximum principle (see Section 4.1.2), i.e. the mass fraction remains between 0 and 1.

1.4.2 Relative velocity between phases

The simplest model would consider a zero relative velocity. In this case, both phases have the
same velocity, and several terms disappear from the equations. However, the relative velocity has
a major impact in the model results. Neglecting the relative velocity would mean ignoring many
physical phenomena in the reactor core, such as the buoyancy of the gas phase rising faster than the
liquid or the growth of gas bubbles before detachment from the wall. Moreover, spatially averaged
equations are considered here. The average velocity is not representative of the velocity profile.
For example, in a sub-channel, bubbles close to the wall experience a lower liquid velocity than the
average velocity, whereas once in the center of the flow, the entrainment velocity is much higher.
These spatial distribution phenomena of void fraction and velocity are not accounted for in the
absence of relative velocity.

Zuber and Findlay [145] developed a drift-flux model where the gas velocity results from the su-
perposition of the entrainment velocity of the two-phase flow and a drift velocity that reflects
the balance between buoyancy and the interfacial friction of gas bubbles in the liquid flow. The
model depends on two parameters, the drift velocity uy; and the distribution parameter Cp. In
the literature, plenty of drift-flux correlations have been proposed to represent different geometric
configurations and operating conditions.

First, a brief history of the Zuber & Findlay model [145] is presented. Next, the drift-flux model
is derived before explaining the numerical constraints of using this model in the 4-equation system.
The two correlations used in this work will then be detailed: the Chexal-Lellouche correlation and
the Bestion correlation. A brief literature review will present the validation of those two correlations.

History of the Zuber & Findlay model

A one-dimensional two-phase flow is considered through a section A. Using the local void fraction
a, the superficial flux of the flow is

J=1Jg + I (1.77)

with j, = augy being the gas superficial flux and j; = (1 — o)y the liquid superficial flux. Behringer
[13] proposed the first model in 1936 by writing the gas phase velocity as

Ug = J + ugj. (1.78)

This formulation considers the gas drift velocity ug; relative to the liquid (often due to gravity and
surface tension between the gas and liquid) resulting from the local effect of the relative velocity.
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However, it does not account for the non-uniform distribution of the mass flux and void fraction in
the section. Bankoff’s work [11] considers this non-uniform distribution of the mass flux by writing
the slip ratio S using a Bankoff parameter K € [0.5,1.0] (for circular pipes) such that

ug  1— ()

S = W K=(a) (1.79)
with (o) the mean of the void fraction on a surface normal to the flow. Armand [6] adds pressure in
this type of model by exploring a wide range of pressures for high mass fluxes. Numerous subsequent
studies have attempted to account for both the effects of local relative velocity and non-uniform
distribution. In particular, Griffith [63] expresses the terminal velocity of a bubble to determine
the drift velocity for a slug flow in two-phase flow. The parallel works of Nicklin and al. [109] and
Neal [108] propose a distribution coefficient Cy to account for the non-uniform effects of the flow
by writing

Ug = Coj + Ugj- (1.80)

While Nicklin et al. [109] refer to the actual velocity of the vapor plug, Neal [108] already speaks
of the averaged velocity as total cross-sectional average gas velocity.

Zuber & Findlay model

To truly consider these distribution effects, Zuber & Findlay [145] average the physical quantities
over the section A of the flow such that

1
(f) = A/ fdA. (1.81)
A
The average (f) ., Wweighted by the surface distribution of the void fraction is also used such that
af
(o =2D0 (1.82)

(@)

The drift-flux model introduces two parameters: the drift velocity (ug;), and the distribution
coefficient Cjy. Equation (1.78) can be averaged weighted by the void fraction

(aj)
(ug), = T T (ugj)q, - (1.83)
From now on, the problem is not symmetric anymore and the gas phase is considered dispersed

as the average are weighted by the void fraction of the gas phase. Generally, the non uniform
distribution of the void fraction and velocity cause (ug),, # (uy). Indeed, considering non-uniform

spatial distributions: o) (o) ,
" _ \aug) _ {g) Jg \ _ w) .
(ug)y ( a) 7 <a> () (1849

)
{aj)
(@) ()

(ug)q = Co (4) + (ugj), - (1.85)

Noting the distribution coefficient Cy = Equation (1.83) rewrites

Noting (8) = %, Zuber & Findlay [145] propose an experimentally usable formulation to determine
the average void fraction based on the volumetric mass fluxes of each fluid (through (5)) and the
chosen drift-flux model (Co and (ug;),,) by using

Cot Tl Tughy +Co (1)

(1.86)
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The distribution coefficient Cjy accounts for the non-uniform distribution of the flow and void frac-
tion, while the drift velocity (ug;), accounts for the local relative velocity effects (due to gravity
for example). To truly account for the physics of the flow, the coefficient Cy must verify certain
conditions depending on the void fraction at the wall oy, and the void fraction at the center of
the flow qcenger:

1. When the flow satisfies ayan < acenter, Co € [1,1.5],
2. When the flow satisfies aqi > Qeenter, 0 < Co < 1,
3. For uniform profiles (e = Qcenter), Co = 1.

In particular, for boiling flows, at low void fractions, the bubbles remain closed to the wall and are
convected at a slower speed than the average speed (Cy < 1). As the void fraction increases, the
bubbles eventually detach completely from the wall and are carried in the central flow, which is
faster than the average flow (Cy > 1). When the flow becomes single-phase gas, the distribution
coefficient must be 1. Therefore, Cy should approach 1 as o approaches 1.

Many studies have followed to propose correlations for the parameters of the drift-flux model to
better match experimental results. While some propose flow maps as advised by Zuber & Findlay,
others suggest correlations that apply over large operating ranges for specific geometries, neglecting
the flow pattern. The two correlations proposed here belong to this second category, which are
suitable for industrial applications where the application framework is specific and where the very
high pressure (> 70 bar) does not allow for the consideration of classical flow maps. They have been
developed for flows in confined spaces such as a tube or a rod bundle of a combustible assembly.
The hydraulic diameter dj, is defined as the characteristic size of the subchannel of the rod bundle
(or the diameter of the tube) considered.

The drift-flux model has been developed in a 1D framework. It can be extended to consider 3D
flows such as in [61] where the distribution parameter is adapted in 3D. It is not necessary when
the configuration is three dimensional but the flow is essentially axial, i.e. the flow along the fuel
rods from the bottom to the top of the core. Indeed, the transverse velocities ug,, i.e. the flows
between fuel rods and between assemblies are negligible compared to the axial one u,. For nominal
cases, Uy ~ 3 — 5 m.s"1 >> Ugy ~ 0.2 m.s~ L. For transverse flows, the relative velocity due to the
drift model is not considered.

Numerical considerations for drift-flux models

The drift-flux velocity was initially created to estimate the average of void fraction over a section
of a 1D flow from the average superficial fluxes of each phase. This model was later considered in
6-equation two-fluid numerical codes, such as the TRACE code [112] or in system codes such as the
RELAPS5 code [46] or CATHARE [14]. In this context, this model is used to evaluate the friction
coefficient between the liquid phase and the gas phase.

For these applications, the drift-flux velocity model is involved in an intermediate calculation and
does not need to verify numerical conditions for implementation. In THYC-coeur code, the corre-
lation is used to directly evaluate the relative velocity between phases. This methodology can be
found in the FLICA code [136] or in recent work in the ESCOT code [43, 97]. To obtain the formula
for the relative velocity, some computations are necessary. Using j = augy + (1 — a)u;, Equation
(1.83) gives

(1g),, = Col () (ug)y, + (1= () ), ] + (), - (1.87)
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—n

From now on, the average operators are omitted. Using & o the following identities are used
g

(1_75:[/
C1+4y(6-1)

1.88
Ug :um+(1_y)ur7 ( )
U = Upy — YUy
Using Equations (1.87) and (1.88), the relative velocity writes
1 0—1 - Co—1

1—y 14y —1)(1—Cp)’

The relative velocity appears in several terms of Equations (1.62). Considering Equation (1.89),

the relative velocity proportional to ﬁ The most limiting term that may not remain bounded

in Equations (1.62), is y(1 — y)u2, which appears in the Momentum Balance. To ensure that the

T
computation of the relative velocity is numerically feasible, regardless of the void fraction, the

parameters must verify three constraints.

1. The drift velocity ug; must remain bounded for 0 < o < 1 and must verify

ugi = O ((1-a)'/?). (1.90)

2. The distribution coefficient Cy must remain bounded and verify

(1-Co)= O ((1- a)t/?). (1.91)

3. The distribution coefficient must verify

1 5
C°<1+y(5—1):a(5—1)' (1.92)

Chexal-Lellouche correlation

The Chexal-Lellouche correlation |22, 23, 24| has been developed to cover a full range of pressures,
flows, void fractions, and different fluid types typical of flows in nuclear reactor core, for PWR and
BWR fuel assemblies. Only the parameters for an ascending vertical flow of water /steam (co-current
flows) are detailed here. Other formulations for different fluids and geometries can be found in [23,
24]. The parameters ug; and Cy depend upon the density of each phase, the void fraction a and
the hydraulic diameter dj. The Reynolds Number for each phase also appears, defined by

d
Rey = SHPRORSR ) — (g,1), (1.93)

M

with pg the dynamic viscosity of phase k. The flow quality of the vapor is noted x4 and is obtained
through

wq= PoY% (1.94)
PmUm
so that the Reynolds Numbers rewrite
e, — ZaPatiath
. He Vot (1.95)
Re, — Ld)pridn
2
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A fluid Reynolds Number is defined by

Rey = max(Reg, Rep). (1.96)
Using these definitions and the ratio of densities noted § = ’;—f, the drift velocity (oriented in the
same direction as gravity) writes
og(8 — 1) 0.25
Ugj = 1.41 C’l(a,Ref) X Cg(pl,pg) X Cg(Rel) X C4(dh) T 9 (1.97)

with o the surface tension between water and steam, g the gravitational constant and

R -1
Cy=(1- d)Bl where B; = min (O.S; [1 + exp (760(?(])00)} ),
If 6 <18, Cy = 0.4757[In(6)]*"
fC;>1 Cy=1 150
02 = It 5 518 —1 with 05 = T,
Y KOs <1 G = (1 ~exp | - 193{)}) (1.98)
Rey
Cs = max (0'5’ 2 exp [_ 300000])’
IfCs>1, Cy=1,
-1 0.09144\0.-6
C ith Cg = .
4 IfCs <1, Cy= (1—exp[_1€86:|> W1 6 ( dy )
The distribution coefficient Cy writes
L
Co = - 1.99
" Ko+ (1 - Ko)arv’ (1.99)
with
(KO =B+ (1 — 31)50'25,
L, — 1 — e Cr 7
1—eCp
C,=——Ler
p(pcr - p)
. 1+1.576
Y1 -B

Here p.. denotes the critical pressure for water. This correlation is valid for a wide range of

parameters:
0.01 < a < 0.95,

0.02 kgm 2.5 < G < 2160 kg.m 257!,
1 bar < p < 150 bar,
1.1 kWm™2 < ¢, < 2210 kW.m ™2,
0°C < ATy < 30°C,
0.009 m < dj, < 0.048 m,

(1.101)
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where ATy, is the deviation from saturation. In reactor core conditions at low void fraction,
the relative velocity obtained with this correlation is negative and close to the mixture velocity
(in absolute value). This models the growth of gas bubbles during their formation before they
detach and are carried away in the flow. The Chexal-Lellouche correlation satisfies the numerical
constraints (1.90) and (1.91) as

L~ _ B
Ugj ™~ (1 —«)”', By €[0.5,0.8] > 0.5, (1102
Co=1+K(1—-a)4+o0s51(1—0a),K €R.

The Chexal-Lellouche correlation does not satisfy condition (1.92), at low pressure and high void
fraction. In practice, these conditions are never reached in industrial applications. This correlation
is for example implemented in the 6-equation code RELAPS5 [46] and in the 4-equation code ESCOT
[97]. This correlation is used in THYC-coeur code [7]| until V6.0.

Bestion correlation

The Bestion correlation [14] has been developed for dispersed flows in PWR applications. It is
based on the terminal velocity of a vapor bubble with a characteristic size dj, in a vertical flow (see
Appendix 1.C). Despite its simplicity, it shows good results for dispersed and stratified flows [28,
66, 105]. The drift-flux parameters for a vertical flow are

{ugj — 0.188/gdy(6 — 1),

S (1.103)

with the drift velocity pointing upward (opposite to gravity). The coefficient 0.188 has been set
to match several experimental results [14]. Despite automatically satisfying constraints (1.91) and
(1.92), this correlation does not verify the numerical constraint (1.90). Numerical precautions must
be considered at very high mass fraction (y — 1). In PWRs conditions, the mass fraction never
reaches this value for steady-state solutions. This correlation is used in the system code CATHARE
[14] or the code TRACE |8, 112]. In the original article [14], the distribution coefficient Cp is not
specified. While Miwa and al. [105] use the formula Cy = 1, Gui and al. |66] present a different
formula:

_ —1
Co = { 1.2 -0.2V6 for a < 0.4, (1.104)

1.0 for o > 0.4.

The formula Cy = 1 is the most accurate for PWR applications [66]. It was retained for THY C-coeur
V7.0.

Validation of the correlations

It is difficult to compare relative velocity models for the 4-equation model because this model is
directly coupled to the closure laws used for the relaxation time 7 and the fraction of the heat flux
used for vaporization x. Many studies compare relative velocity correlations |28, 66, 72, 73, 85, 113|
with experimental results approximating the operating conditions of PWR and BWR as closely as
possible. In most articles, the tests considered are at low pressure. In the articles [66, 85, 105], the
pressures are p € [0.1,2.0] MPa. In Coddington and al. |28|, the experimental data in PWR/BWR
geometry does not exceed 10 MPa. Ozaki and al. [113] use experimental data with rod bundles
geometry but still at low pressure.

The Chexal-Lellouche and Bestion correlations are among the most accurate in all these compar-
isons, particularly for PWR-type geometries. Gui et al. [66] notes that Bestion tends to underesti-
mate the void fraction for a > 0.75, whereas Chexal-Lellouche seems to better predict this region.
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However, it emphasizes that Chexal-Lellouche significantly overestimates the void fraction for low
void fractions. In Julia and al. [85], the Bestion correlation is the most accurate, with a relative
prediction error of the void fraction of +23.8% compared to Chexal-Lellouche, for which the error
is £38.6%. The article by Ozaki and al. [113] analyzes the FRIGG experimental data (p € [1,8.7]
MPa, G € [470 — 2160] kg.m~2.s71). The Bestion correlation underestimates the void fraction for
all experimental points, especially for high void fractions. For Chexal-Lellouche, the void fraction
is slightly underestimated at high void fractions. Unlike the Inoue [80] and Maier and Codding-
ton [101] correlations, also implemented in the industrial code THYC-coeur, which consider only
pressure and mass mass flux, the Bestion and Chexal-Lellouche correlations can also work at other
operating points (e.g., at low pressure) even if the performance is less optimal.

Despite all these experimental comparison, there is a lack of results at the nominal pressure of a
reactor core (p > 100 bar). High pressures make testing and visualization very complex. However,
the analysis of the PSBT case results [121], which are the closest experimental data to PWR pressure
conditions, shows that the Bestion correlation presents better results than Chexal-Lellouche. The
two presented correlations are considered in the following.

For THYC-coeur code |7], an additional term is considered for relative velocity, due to turbulent

effect and to mass fraction gradient. It is added to the drift-flux relative velocity noted udrift-flux,

The total relative velocity writes

: D
THYC drift-flux
u —u — Ty, 1.105

where D is a turbulent diffusion coefficient modeled by a closure law. Unlike drift-flux relative
velocity, which has a component only along the axial flow, the turbulent term has components in
each direction.

1.4.3 Additional closure laws

Viscous terms T,, + T! + T5! are modeled using a mixture viscosity p and a turbulent viscosity
such that

2
T+ T+ To = (i + 1) (Vg + Vuy, — 3V W 1). (1.106)

Thermal diffusive fluxes are expressed by Fourier’s law as follows
<Pm+‘an+<Pfﬁ = A+ M)V, (1.107)

where ) is the mixture conductivity and ) is the mixture turbulent conductivity. The closure laws
for viscosity (laminar and turbulent) and for conductivity (laminar and turbulent) are detailed in
[7]. With the exception of Chapter 5, where the complete THYC-coeur model is considered, these
2nd-order terms are neglected in the work presented here.

1.5 THYC-coeur model

In THYC-coeur, the enthalpy 4-equation model is used. By omitting the indices m for the mixing
quantities, the model is written as follows
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(0
a(sp) + V. (apu) =0,
0
a(epu) + V- (epu®@u)+ V- (5py(1 —yYu, ® ur) +eVp =
V. (5(T T TSt))
+epg + my,
o (1.108
E(&ph) + V. (ephu) + V- (&?py(l — y)Lur> = )
Op 1 1
€—+€[u+ 1— ———ur}‘Vp
5t y( y)p(pg pl)
-V (6(<P + o'+ soSt)) + ¢s,
0
\ a(epy) + V- (epyu) + V - (epy(1 — y)u,) = ely.
The porosity € is a given function. The system is composed of 18 unknowns
P, 0, Ur, h, Y, p, ng T, Tta TStv my, L, Pgs PL; P, (Pta (PSta Ps. (1109)

The following relations and equations close the system:

The pressure p, the mixture velocity u, the mixture enthalpy h and the mass fraction y
are the main unknowns of the system, determined by the four equations of the model.

The density p is obtained with the Mixture Equation of State (1.69). The EoS gives h(p, p,y).
It can be reversed to obtain the density p.

The phase densities p, and p; are obtained using the assumption that the minority phase is
at saturation. If the gaseous phase is at saturation for example

pg(p) = ﬁg(p)7

1—y 1.110
pu(p,yp) = T (1.110)

The specific relative enthalpy L is obtained with Equation (1.71).

The relative velocity u, is computed with the drift-flux model from Equation (1.89). The
drift-flux parameters ugy; and Cj are obtained with the Bestion correlation (see Equation
(1.103)) or with the Chexal-Lellouche correlation (see Equations (1.97), (1.98) and (1.99)). A
turbulent contribution due to mass fraction gradient can be added with Equation (1.105).

The mass transfer I'y is decomposed in two terms (see Equation (1.74)): the mass transfer due
to heat flux from Equation (1.75) and the mass transfer due to interfactial exchanges from
Equation (1.76).

The viscous friction terms T 4 T + T* are modeled with Equation (1.106) using a mixture
viscosity and a turbulent viscosity.

The diffusive heat fluxes ¢ + ¢! + ¢ are expressed with Fourier’s law from Equation (1.107).

The source terms due to solid mg and ®; are detailed in [7].
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1.A Detailed computation of the model

In this appendix, the computation to obtain the time- and space-averaged equations is detailed.
The derivation of this model is based on [33, 82].

1.A.1 Time averaging
Definition of time intervals and local void fraction

For a point xg in the domain, an instant { is considered. The quantities are averaged over the time
interval denoted At (see Figure 1.1) centered on ¢y, which is sufficiently large to smooth out the local
variations of properties but small enough compared to the macroscopic time constant unsteadiness
of the bulk flow. The following notation is adopted

At At
[A] = [to — =, to + —]. (1.111)
2 2
my(xo, t)
1 (6t);
st |y 8ty
|
1 |
1
|
l g 1 l g
1
|
1
1
|
0 Ll >t
G to
At/2 At/2

FiGURE 1.1
State density (defined in Equation (1.112)) for the liquid during interval At - Scheme representing the different
time intervals.

During the interval At, the fluid is liquid for several time intervals (dt;); and gaseous for several
intervals (dty); (see Figure 1.1). The following notations are used: At; = >.(6%;); and Aty =
>_;(6tg);. To simplify the integration intervals, the notation ¢ € [Aty] is used for an instant ¢ when
the phase k is present. The state density function for phase k can be defined by

my(z,t) = {1 ifs € [Atl, (1.112)

0 otherwise.

The state density function enables to extend the definition of phase quantities fj, for any instant.
The local void fraction « of phase k is

1 _ Aty

ak(xg,tg) = At/t " my(z, t)dt = AL (1.113)
€
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It corresponds to the probability of finding phase k£ at the given time and location. It is also called
the local time fraction. During phase change between liquid and gas, an interface j at instant ¢; of
thickness €; and velocity v; exists during an interval (0t;); such that

(8t:); = L, (1.114)
Unj

with v,; > 0 the normal velocity of the interface. During the interval At, several interfaces j may
appear (see Figure 1.1). At; denotes the time interval where an interface is present, such that

At =) (6t;); < At. (1.115)

J

The time interval At is therefore decomposed as follows

At = At; + Aty + Aty (1.116)

Non stationary interfaces of zero thickness are considered such that

lim (8t;); = 0,Vj with |v/| # 0. (1.117)
Ej—)O

With this assumption, At; = 0 such that

At = Aty + Aty (1.118)

Using Equation (1.118), the immiscibility condition can be written for the local void fractions

ag+ao=1. (1.119)

Definition of several time averaging operators
A first time average f}, is defined as the mean value of a function fj over the interval At such that
— 1
Feleosto) = 5 [ fulxo,t)dt. (1.120)
te[At]

Using this definition, the local void fraction rewrites as a time average of the state density function
g = . (1.121)

A more natural mean value for quantity fy is the average value using the state density function as
a weighting function. This time average is noted f, such that
= mpfe  fr 1

Xg,tp) = ——— = — = — Xg, t)dt. 1.122
Fubarto) = Tt = b= B [ ot (1122)

It corresponds to the mean value on interval [At;] where phase k exists. The time average f is
adapted to intensive quantities such as the pressure or the density. For extensive quantities (velocity,
specific energy...), mass weighted mean value must be defined. For an extensive quantity 1y, the
time average weighted by the density is noted 1/112 and defined by

o Pk _ PEVR (1.123)
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The local instant equations are averaged using operator ~. This operator is not commutative
with temporal and spatial derivatives. The commutation of the operator introduces a source term
that involves the jump of the derived quantity at interface. Each interface j is defined by its
outward normal nj for the side of phase k. The normal velocity of the interface is still denoted

Upj = |Vj - nk| > 0. The following relations are given by [82]:

Ofi _ Ofx 1 1
E(Xojto) = GTO(XO’tO) At Z ong (fk(Xoig)nk VJ)
1 ] (1.124)
V fi(x0, to) = V fr(xo0,t0) + AL Z 7fk(X07t])
Methodology
The methodology is detailed for a model equation on variable v, defined by
0
pgtwk + V- (petbrug) + V- £, — pxe = 0, (1.125)

with fi a flux and xi a scalar volumetric source. This methodology is the same when 1 is a
vector. The flux f; becomes a tensor and xj a vector. Time fluctuating quantities are noted with
superscript / and defined by

Pk :ﬁ+p;cv
u, = Uy + u;c, (1.126)
P = PV + Ve

Using the properties (?) = ? and 4 = u, the fluctuating quantities satisfy

Pl =0,
prty = 0.

Using these properties, the following identity is obtained

etk = pruit + £, (1.128)

with the turbulent flux f} defined by

fl = pryjul. (1.129)

The time-averaging of Equation (1.125) is detailed in several steps below.

e Time-averaging the local instant formulation:

Oprr
ot

+ V- (prtrug) + V- £ — prxe = 0. (1.130)

e Using the distributive property of time-average:

Dprti

5 TV (prtbwug) + V - £, — pxe = 0. (1.131)

95



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

e Using Equations (1.124) for differential operators, which introduces a source term:

8 _ .
pg;bk + V- (prtrug) + V- £ — prxe = V5, (1.132)
with 1 1
vy, = A7 ; Eni (ki (a, — vj) + ) (1.133)

e Using the weighted quantities by the density function (noted ?)

0/ — I - .
e (Oékpsz) + V- (arpetrug) + V- (ofr) — arpexr = V.. (1.134)

~

e Using the weighted quantities by the density pp (noted f) and Equation (1.128):

0 ( —~ = > = = - i
g (akmwk) + V- (arpptrty) + V- (o (Fr + 1)) — arppXn = V.. (1.135)

Time-averaged equations

The methodology described above is used on Equations (1.9), (1.10) and (1.11). Considering ¢y, = 1,
fi, = 0 and i = 0, the time-averaged mass balance writes

doup _
Og“tpk + V- (axpplix) = Tk, (1.136)
with . )
_ j |
T =—7%; Ej : oy e (it = v3)) (1.137)

Considering ¥, = ug, fr = prly — Tr and yx = g, the time-averaged momentum balance is
a —_— A - o~ o~ o — =
5 (arpptix) + V - (arpptiy © Gx) + V(arpy) = V - <ak(Tk + Ti:)) + aprg + mg,  (1.138)

with
T =—f; = —pruj ® u,
(1.139)

1 1
my = ——— E —, - [pr(ur — vj) @ ug + prla — Tyl
At - Unj

2
Considering v = E = ej + %’f, fi, = or — (pklg — Tk) - ug and x = g - ug, the time-averaged
energy balance is

of — (. @ (u)? O A
&(akpk<€k+2k+l2€ >+V-<akpk ek+7k+ ; uk>:

-V (ak@k + 1 — (—pela + T - UZ) (1.140)

+ V- (o (=Dgla + Tg) - Upg)
+ pyg - U + Ek,
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with £} the turbulent term due to time averaging and Zj, the total energy transfer between phase k
and the other such that

) (1.141)

_ 1 1 uy,
Ep = —Eani [Pk(uk_vj) (6k+2) + (prda — Tr) - ui + o1
j

Using the fluctuating terms for pressure and friction such that py = p,, +p}, and Ty = T:k+ T, the

following identity can be used using pjuj, = 0 and enthalpy hy = ey, + ];—2

A2 1\2
ff — (—pila + Ti) - u), = py, (ek+2+uk u), + (u '2“) )uﬁc—HD;gu,C T, -u, u),
(1.142)
prhiul + T O
= Pk uk—i- U+ pp——— 9 u, — Iy -ug.
The turbulent enthalpy flux is noted <,o§€ and defined by
ol = prhjul. (1.143)

In the considered applications where high pressures and temperatures are considered, internal energy
is dominant compared to the kinetic energy. Therefore, time fluctuations of kinetic energy can be
neglected (in the time derivative, the convection and Equation (1.142)). The energy equation writes

finally:
0 - (. u - (. W\ . —
% (akpk (ek + 2k> >+V . (akﬁk (ek + 2k> uk) +V- (ozkpkuk) =
-V (ak@k + 502)) (1.144)

+ V- (ap(Tr+ T4 - 1)
+ Oékﬁkg U + Zg.

At the interface, there is no accumulation of mass. Using the results of [83], the sum of the source
terms can be expressed as function of the surface tension between phases such that

> Tw=0,
k
ka = my,(0), (1.145)

1.A.2 Space averaging

Considering a volume Vj centered at point xg, the fluid is occupying a volume Vy and several solids
are occupying the volume V; (see Figure 1.2). The total surface of solids contained in volume V
is noted S; with an outward normal noted n;. The objective is to space-average using the averages
defined from Equations (1.25), (1.26), (1.28) and (1.29). Considering the model of Equations (1.135),

a methodology similar to time averaging is used.
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FIGURE 1.2
Control volume V{ considered with fluid occupying a volume V; and several solids occupying a volume V; of
surface S; and normal n;.

Similarly to time-averaging, spatial fluctuating moment (noted with ” superscript) are considered
such that N
ﬁk = 1/1\2 + u/k/7

bk = br + Uy for extensive variables, (1.146)

Oék?k = () fr + ai fr for intensive variables.

A similar identity than for the time averaging is used

((cxpribntin)) = Gon) roowtie + (o) £, (1.147)
with £ the spatial turbulent flux defined by

£ = —«ak@fguk b o (1.148)

The spatial turbulent flux is noted with the superscript st to avoid confusion with the turbulence
due to time averaging. Differential operators do not commute with space averaging. Using results
from [110], Space-averaged of the time derivative writes

3fk . a<fk> 1 . .
<W> i VO/& fevi - n;dS, (1.149)

where v; is the velocity at the interface between solid and fluid. For gradient operators, two different
formulas can be used

(V(arfr)) = V(e (o) fi) + —/ o frn;dS, (1.150)
and . ,
(V(enfi)) = e faw) Vi + = /S ag fiinidS. (1.151)

These formulas are extensible to vectors by transforming gradient in a divergence. There is no
general agreement on which form of Equation (1.150) or (1.151) should be applied for each gradient
and divergence that appears in the governing equations. It depends on the correlation used for the
closure laws. Special attention must be taken when using correlations from the literature, minding
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to how the authors define their correlation function. Using Equation (1.149) and (1.150), the space
average of the convective term can be written:

<6ag:@> + <V : (O‘kﬁ{/’\kﬁk)> = W +V- <akﬁ@ﬁk> L)

—I-/ agpr (g — v;)dS.
S,

The solids are still in the medium, and the fluid does not penetrate the solid. Hence, for all instant
t and for x € S;, v;(t) = 0 and ug(x,t) = 0 so that Equation (1.152) becomes

<aag:@> + (V- (nprtniin) ) = W + V- (i) (1.153)

The following methodology is used on Equation (1.135):

e Space-averaging the equation:
Y _ ’ I
<8t (Ozkpklbk)> + <V . (akﬁkwkuk)> + <V . (ak(fk + f,i))> — <akPka> = <‘I’k> . (1.154)
e Using (1.153) and (1.150), which involves source terms due to solid:

a o~ — o~ = — .
a<akp71/1k> +V. <Oékﬁk1/1kuk> +V. <ak(fk + f;ﬁ)> — (orppXk) = (¥y) + V7,  (1.155)
with

ZZ/ (axfr + £f) - midS. (1.156)

k3

e Transforming space average on volume Vp to fluid space average on volume V; by using
Equation (1.26):

gi (euriin)) + ¥ (e feupidusc) )

i B | (1.157)
+ V- (= (anEr+£0) ) — e (arpen) = e (wi) + w3
e Using identity from Equation (1.147) and weighted average:
0 = =
g (6 (o) pk¢k> +V. (5 (7Y Pk¢kUk> (1158)

+ V- (= o) (B+ 8+ £) ) — e G G = = () + w3

This methodology is applied to Equations (1.136), (1.138) and (1.144). For spatial gradient and
divergence, Equation (1.150) is mostly used. An exception is made for the treatment of pressure
in the momentum balance where Equation (1.151) is used. This must be taken into account for
modeling the source term (friction) due to the solid in this equation. This formulation allows for a
pressure term that enables the recovery of hydrostatic pressure for a case with zero velocity. The
space-averaged mass balance is

0

5 Elar) o) +V - (e (o) pruix) = € (Ts). (1.159)
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The space-averaged momentum balance is

(= on) i) 9 - (< () it © ) + = o) Vi =
V- (=) (Te+ Te+TH) ) (1.160)
+efon) g
+ ¢ (my ) + my;,

with my the friction on phase k due to the solid and th the friction due to space turbulence such
that

w  awppuy @ uf)
)

— — puloul . (1.161)

—
P —

Y2
Similarly to time-averaging, the spatial fluctuations of kinetic energy

are neglected. The same

manipulation (see Equation (1.142)) leads to the space-averaged energy balance

=2 —~2
gt (5 () pr <é~2 + u;)) +V. (5 () pr (éi + u;) IAJN;) + V- (e (ar) prug) =

~V - (clen) (B + o+ i) ) (1.162)
+ V- (o) (Te+ Th+TH) - 60)

+e(an) prg - up + e (Ex) + Eps,

with Zs the total energy given from the solid to phase k£ and cpzt the heat flux due to space
turbulence such that << — ”>>
t o pyhyay,
pr = (1.163)
(o)

Enthalpy equation

Equation (1.162) can be manipulated to obtain an equation on enthalpy. Equations (1.160) (noted
Ek ) and (1.159) (noted EE, ) are used to obtain the equation on kinetic energy with
—~2
k k =~ =~ k U
(Emom - Emassuk) “Uy + Emass?’ (1164)

so that the equation for kinetic energy writes

=2 =2
;Gmmﬁﬁyv(ww@ﬁﬁwwwﬁiww

W [V (2 o) (Te+ T+ T3

+ e (o) preg - Uy

(1.165)

=2
+ & (mp) - W — (D) 5 + - T
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Subtracting Equation (1.165) from Equation (1.162), the internal energy equation writes

O (= howd i) +9 - (= o) i) + i - ¥ (< o) ) =
— V- (= o) @+ oh+ 9i))
e () (Te+ TL+TH) : v, (1.166)
=2
te <<<Ek>> — () - 8 + (Te) “’;)

+ Egs — My, - Uy

Defining the averaged enthalpy of phase k as

ho— & o4 PE
~

hy = e + (1.167)
Pk

the enthalpy equation writes

O (= o i) + 9 - (= o) i) = (= oag) ) + = o) s - Vi

= V- (= o) (@B + o+ i)
e (o) (Te+ TL+ T v, (1.168)

Uk

=2
+e <<<Ek>> — (my) - W+ () 2)

+ Egs — My, - Uy

1.B  Thermodynamic equilibrium - 3-equation model

Model (1.61) is a 4-equation model with a phase in thermodynamic disequilibrium. The model can
be simplified by considering that the two phases are at saturation, when the regime becomes two-
phase. In that case, the mass fraction is considered at thermodynamic equilibrium and is therefore
no longer an unknown in the system. It can be expressed as a function of the other variables
(A, Pm) such that

hm - El(pm)
Eg(pm) — Iy (Pm) .

Y(Pmy ) = (1.169)

As a consequence, the disequilibrium Equation (1.60) is not solved anymore and the model, called
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3-equation model from now on, is written (with the notations of Equations (1.61)) :

é(‘C:pm) +V. (Epmum) =0,

ot
%(epmum) + V- (epmum @ uy,) + V- (epmy(l —yu, ® ur> =
~ eV + V- (T + T + i)
+Epmg + my,
gt(smem) +V - (epmBntin) + V- (2pmy(1 = y) (B, — B)uw, )

noa (5 (pm [um + (1= 1) (plg _ ;) uD) _ (1.170)

—V'(E(¢m+¢§n+cpf£))
V- (T + T+ T0) -

Ty + T, + T Tl+T§+T7t> u)
_ u,

Pg Pl

+ V. <6pmy(1 - y) <

+ epmUym - g+ Zs.

This 3-equation model is an extension of the HEM model [16] in a porous medium with a relative
velocity between phases.

1.C Discussion on the Bestion correlation

1.C.1 Terminal velocity of a slug

The Bestion correlation can be derived from physical arguments about the terminal velocity of a
gas bubble in a two-phase steady state flow without phase change and for low void fraction. The
case considered is unidimensional and the following formulas are used:

Jj=aug+ (1 —a)u,

Ugj = ug —j = (1 — a)uy, (1.171)
§="1L
Pg

Considering low void fractions, the frictional force from the two-phase flow on the gas is expressed
as

F = —K(ug —j), (1.172)
with K a positive drag coefficient. For the steady-state, the momentum balance for each phase

write _
adzp = —apgg — K(ug — j),

_ (1.173)
(1= )8up = =(1 = a)pg + K(ug — j).
By substituting the pressure gradient, the frictional force writes
F = —Kugj = a(l —a)py(6 —1)g. (1.174)
The considered symmetric drag coeflicient is
1 _ .

p d’
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with d a characteristic length of the flow. For low void fraction, p;/p ~ 1, such that
_ |ug;|
K ~a(l—a)pg I (1.176)

The drift velocity becomes

[ug;| ~ /(6 —1)gd. (1.177)

Considering the hydraulic diameter dj, as the characteristic length and using ug; = (1 — a)u,,
Bestion correlation is retrieved
1 1 1+y(d—1)
~ ——/(0 — 1)gd; wh = . 1.178
Ur ~ T ( )ghwerel_a - ( )

1.C.2 Approximated Bestion correlation

For a water-steam mixture, the pressures considered in reactor core applications are in the range
p € [40,200] bar. The pressure difference between the inlet and the outlet is approximately Ap ~ 3
bar for the 1300MWe/N4 PWR, and Ap ~ 2 bar for the 900MWe PWR. The most constraining
case is considered with Ap = 3 bar. To obtain some orders of magnitude, the value of the ratio §

is estimated by considering saturation J(p) = 2UP)  The density ratio varies in the range § € [3,40]

ROk
(data extracted from the thermodynamics of the industrial code THYC-coeur for a water-steam
mixture at saturation). At a given pressure p and a given mass fraction y, the relative variation 7,

of the relative velocity for the Bestion correlation with a pressure variation Ap = 3 bar is computed

such that A A
ur(9,0(p + ) — ur(y,6(p — 7))
Ur(y75(p))

Tur(pv y) = [%] (1179)

Figure 1.3 shows the ratio r,, as a function of the pressure for different mass fraction. It increases
as the mass fraction increases but the error remains below 13% for any mass fraction or pressure
considered. In more than 90% of considered case, the pressure satisfies p € [120,160] bar and the
mass fraction respects y < 0.1. Within these ranges, the relative variation never exceeds 4.5%. As
a first approximation, it is possible to consider the relative velocity independent of the pressure. An
approximate formulation of the Bestion correlation can then be proposed with §. being a constant
chosen by the user according to the pressure of the case studied.

_ 1+y(be—1)

ulPP (y) 0.188+/gdp (0. — 1). (1.180)

This approximated Bestion correlation, which depends only on the mass fraction y, allows the
computation of an analytical solution for the disequilibrium equation to compare the accuracy of
finite volume schemes (see Chapter 3 - Section 3.1).

63



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

16 y =0.00 |
y =0.01
y =0.05
y=0.10 |
y = 0.50
y = 0.90

NS
IANN %

rur [%]

6

\\
4

— ]

|
2
40 60 80 100 120 140 160 180 200

p [bars]

FIGURE 1.3
Relative variation of the relative velocity as a function of the pressure (for several mass fraction) for Ap = 3 bar
- Bestion correlation.
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Chapter 2

Hyperbolicity of the simplified models

2.1 Introduction

Hyperbolicity is a property that ensures the stability of solutions over time. If hyperbolicity
is not guaranteed, numerical solutions may explode in finite time (see for example [50], or [67] -
page 158, Figure 8.16/b for two-phase systems). In a hyperbolic system, waves propagate at finite
real speeds. In this chapter, the objective is to study the hyperbolicity of the conservative model
composed of Equations (1.61) proposed in Chapter 1. This model corresponds to a drift-flux two-
phase flow model with a relative velocity u, between the phases. The system of equations presented
in Section 1.3.1 is considered in a 1D framework. Second-order differential terms (diffusion) and
all zeroth-order differential source terms (solid friction, gravity, mass transfer, etc.) are not taken
into account. Moreover, a free medium (¢ = 1) is considered. The subscripts m for the mixture
quantities are removed to improve readability. The studied model is therefore written as

Ap + 0z (pu) =0,
O (pu) + Oy (pu2 + py(1 — y)u? + p) =0,

Ou(o) + 0. (pu+ pu(1 = 5)(Ey ~ Eur) + 0x (p[u-+ 1 =) (- = Y] ) =0, D

A (py) + Oq <pyu +py(1 - y)ur) =0,

with the total energy of the mixture defined by

2

u
EzyEng(l—y)Ez:eJr?er(l—y)

[\D. ‘ ﬁﬁw

The relative quantities are noted with a subscript r and defined as:

¢7’ = ¢g - ¢la with QS € {ya u, v, 6}. (23)
An exception is made for pressure p, defined in Equation (2.50).

An equation of state for the internal energy of the mixture is considered to close the system:

e=e(p,p,y). (2.4)

The methodology for studying hyperbolicity is described in Section 2.2. Several systems of increasing
complexity, derived from system of Equations (2.1), are considered. First, Equations (2.1) are
studied without the energy equation in Section 2.3, assuming a barotropic relation between density
and pressure. Then, the 4-equation model is considered in Section 2.4. First, the system is studied
without relative velocity in Section 2.4.1. This system corresponds to an HRM system [16]. In
Section 2.4.2, a constant relative velocity is introduced.
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2.2 Methodology

A conservative system of equations can be written

KW + 9, (F(W)) =0, (2.5)

with W the vector of conservative quantities (for example W = (p, pu, pE, py)) and F(W) the
conservative fluxes associated with the quantities W. To study the hyperbolicity of the model, the
system is expressed in a non-conservative form using the vector Y:

8,Y + B(Y)d,Y =0, (2.6)

where B(Y) is the convective matrix. The system of equations (2.5) is hyperbolic if and only if
the matrix B is diagonalizable with real eigenvalues. It is strictly hyperbolic if the eigenvalues
are distinct. The characteristic polynomial of the matrix B is computed and defined as

P()) = det(B(Y) — ALy). (2.7)

The polynomial P(\) is then examined to determine the eigenvalues A satisfying
P(\) =0. (2.8)
If an analytical computation of these roots is too complex, the intermediate value theorem can be

applied to the polynomial P, which is a continuous function of A, to ensure that the polynomial has
real roots. To simplify the equations, the following notations are used in this chapter:

E=y(l-y) €0, i],
y=2y—1 €[-1,1].

(2.9)

2.3 Hyperbolicity of the barotropic drift-flux model without energy
equation
Model of Equations (2.1) is considered without the total energy equation. The conservative un-

knowns are (p, pu, py). A barotropic relation is considered for density of each phase pg(p). We
assume that the barotropic equation of state for each phase satisfies

d 1

ﬁ:?>0,

v (2.10)
@:l>0 .
dp cl2 ’

with ¢k, k € {l, g} the speed of sound in phase k, assumed to be real. The density of the mixture is

defined by

1 1
=Y 4--9Y (2.11)

p(py)  pg(p)  pilp)

Using speeds of sound within each phase, the differential for mixture density is

1
dp = C—de + mdy, (2.12)
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with

1 21— 2
=Y (p) +— i <p) , where c is the real mixture speed of sound,
G pi

(2.13)

1
v , where vy = — and v = Yyvg + (1 - ?J)Ul-
Pk

The system of equations can be written
Op + 2 (pu) =0,
By (pu) + 9. (pu® + p&ui + p(p,y)) =0, (2.14)
9 (py) + 0, (pyu + pﬁur) =0,

with u,(y) a relative velocity depending upon the mass fraction. It is rewritten in a non-conservative
form, highlighting the terms due to the relative velocity in blue

Otp + udzp + pOyu = 0,
O + udu + v, (pﬁuf) + v (p(p,y)) =0, (2.15)
Oy + udpy + v, (pu,) = 0.

Using Equations (2.14), the system can be written in a matrix form, with Y = (p, u, y):

Y +B(Y)0, Y =0, (2.16)
with
U p 0
B=[v(c®+&u?) u 9,u?) —vme*|. (2.17)
v€u, 0w+ 09y(&u,)
The characteristic polynomial is defined by
P(\) = det(B — A\1y). (2.18)
Using the notation
rT=u— A (2.19)
the polynomial writes
P(x) = 23 + 0, (¢uy)2® — (2 + &ud)x — (0y(&ur) + vmfur)c2 + E2u20,u,. (2.20)

When considering a constant relative velocity
Up = UypQ, (2.21)

the following relations can be used

Oyur = 0,
vt (2.22)
ay(fur) = —Yruro,

with y, defined in Equation (2.3). The characteristic polynomial becomes

P(z,u;) = 2° — yrunz? — (2 + Euly)z — (vmé — yp)uzoc®. (2.23)
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The polynomial P satisfies:
P(—z,—uz) = P(z,un). (2.24)

For w, = uy9 > 0, if the polynomial has three real roots (z1,z2,z3), then for u, = —u,g < 0 the
quantities (—x1, —xg, —x3) are real roots of the characteristic polynomial. This allows us to study
only the case u,g > 0. We first focus on cases where

E£0s y#Oory #1. (2.25)

The case £ = 0 is treated later. The velocities of each phase uy = v+ (1 — y)uyo and u; = u — yuy
are considered. We note

Tg=u—ug=—(1—y)un <0, (2.26)
Ty =u—u = yur >0, .
with x4, # x; because u,g # 0. The polynomial is evaluated for z, and x;:
(P(z = Tg) = urocty(1 — mu(l —y))
= %yu’r’ocz > 07
v, (2.27)
P(z = x;) = —uroc® (1 — y)(1 + moy)
= —ﬂ(l — y)upoc? < 0.
( v
It is interesting to note that, using the definition of the void fraction,
o= % e [0, 1], (2.28)
we can write
Pz = x,) = auyoc > 0, (2.20)
Pz =) = —(1 — a)uypc® < 0. '
Using
P(z —» —00) = —0o0,
Plx=z,<0) >0,
( ¢ <0) (2.30)

P(z=2;>0) <0,
P(z — +00) = 400,

and the intermediate value theorem, the polynomial P admit three distinct real roots (for u,g # 0).
The barotropic drift-flux system with a constant relative velocity is strictly hyperbolic when

urg 7 0 and & # 0.

Case £ = 0: The characteristic polynomial from Equation (2.23) can be written:

P(x) = (x — yrup) (2% — ) — E(ugz + vmcPuyg). (2.31)

When ¢ = 0, the characteristic polynomial has three roots (v — ¢,u — y,uyo, u 4+ ¢). The system is
also hyperbolic.

68



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

2.4 Hyperbolicity of the 4-equation drift-flux model

In this Section, the 4-equation model is studied. Considering the equation of state for internal
energy from Equation (2.4), the differential for internal energy writes

de = adp + bdp + mdy, (2.32)
with
= (&)
00/
0
P/ py
o (86)
e

The mixture speed of sound is defined by

1
A =aYp? —b), withv=", (2.34)
p

It is assumed that the equation of state ensures a real speed of sound ¢ for the mixture. Each phase
k is characterized by an equation of state ex(p, pi), such that

; (2.35)

dek = akdp + bkdpk,
Cr, = a’lzl(pvz - bk)7

with ¢ the speed of sound in phase k. By considering the gas phase at saturation during this work,
the thermodynamic coefficients write:

dv
a=yag+ (1 —y)a + yd—;(agPZCE —aipic}),

' (%)2 o (2.36)

m = L — p*ac®o,,

Pl ? ap
¢ = <_> 2
\ p a

In the following, the model is first studied when the relative velocity is zero in Section 2.4.1. Then
a constant relative velocity u, = u,¢ is considered in Section 2.4.2.

2.4.1 Four-equation model with null relative velocity
System (2.1) is considered now without relative velocity. The obtained system is a HRM Model
[16]:

Orp + Oy (pu) =0,
d:(pu) + 0u(pu® +p) = 0,
O (pE) + 0z (pEu) + 9 (pu) =0, (2.37)

Ok (py) + s (P?JU) = 0.
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The relative velocity is null so that the mixture total energy writes

E=c+ % (2.38)

The equation for kinetic energy is obtained by multiplying the momentum balance equation in its

non-conservative form by w. It is then subtracted from the total energy equation to derive the
equation on internal energy:

O (pe) + O, (peu) + pOyu = 0. (2.39)

Using the linearization of internal energy in Equation (2.32) and the speed of sound in Equation
(2.34), the pressure equation is obtained

Op + udyp + pcdyu = 0. (2.40)

Using variables Y = (p,u, p,y), the non-conservative system writes

oY + B(Y)0,Y =0, (2.41)
with
v p 0 O
0 v v O
B = 0 pc u 0 (2.42)
0 0 0 u

The eigenvalues A can be easily computed
A€ {u,u,u+c,u—c}. (2.43)

The eigenvalue u is a double eigenvalue and spans a two-dimensional vector space with the eigen-
vectors 1 = (1,0,0,0) and r9 = (0,0,0,1). The system is therefore hyperbolic.
2.4.2 Four-equation model with constant relative velocity

System (2.1) is now considered with a constant non-zero relative velocity u, = u,o # 0. The system
writes, with the terms due to the relative velocity highlighted in blue,

O¢p + Oy (pu) =0, (a)
O (pu) + 0y (pu2 + péu?, +p) =0, (b)
O (pE) + Oy (pEu + pé(Ey — El)/u,o) + Oy <p {u + p& (vg — vy) ’lL740:|) =0, (¢ (2.44)
9 (py) + 0 (pyu + piuro) =0, (d)

with
2

Ug u12

E=y6g+(1—y)ez+yf2 +(1—y)*2,
2 2

u U

E,—E =e,— 4 _ L

g l eg €l+2 9

(2.45)
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Using
ug :u+(1_y)u7’07 (2 46)
U = U — Yuro,
we have ) )
E=e+ =+ § M,
2 21 ) (2.47)
E; — E; = e, +uuy + 2 yugo,
with e, defined in Equation (2.3). The latent heat L = hy — h; appears when using:
1—2¢
Ey— E +p(vg —v) = L+ uu + '/ugo. (2.48)

2

The system of equations is transformed to more easily obtain the characteristic polynomial. We
recall the notations used:

%ﬁ=2y—L (2.49)
=yl —y).
The following new notations are introduced:
br = ﬂfug(p
p=p, (2.50)
p=p+pr

Using the notations from Equations (2.50), Equations (2.44) write in a non conservative way

Op + poyu + udyp = 0, (a)
. 2.51
PpOE + pudpE + 0, (L1u,0) + 0y (Fu) — 0y (ﬁ%u%) -0, () (2:51)
(d)

POy + pulyy + Oy (p£u,,,o) =0.

Non conservative system in (p,u,p,y)

The system is written in the new set of variables: (p,u,p,y), with p the modified density and p
the modified pressure, as defined in Equations (2.50). The computations are detailed in Appendix
2.A.1. During the manipulations, the equation on internal energy is obtained:

2
p(Ore + udse) + 0. (FuroL) + e = purod (U5 ) = 0. (2.52)

The final system in non-conservative form using the variables (p, u, p,y) writes:

Oyp + (u - yruro)azﬁ"" pOzu = 0,
Oru + uOzu + v0:p = 0,

_ _ _ - (2.53)
O¢p + uOLp + (,002 I Auuro)azu + A;ﬂh-oamp + Ayur(]azy + a_1£7L7'Oé);1:L(p’p’ y) =0,
Oy + w0y + vu00zp = 0,
with
Az = a 'o(L — m) — yrudy,
Ay = ptupo(l +va™t), (2.54)

2 -1
Ay = _gurOa .

71



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

The latent heat L is written here as a function of the variables (p,p,y). Its derivatives with respect
to these variables are detailed in Appendix 2.A.2. In the following, the notation used for partial
derivatives of any function f is:
of
z), .,

)

Equations (2.53) can be written in a matrix formulation:

)
oY oY u
—+B(Y)—=0, Y=|_]1, 2.56
5 TBY) 5 5 (2.56)
Y
with
U — Yrltiro 23 0 0
B(Y) = 0 “ v 0 (2.57)
N Azuro + (1*'[{'11,,.()Lﬁ pc® + Ay w4 (Fl{u,,()L]; Ayurg + (z,*lfu,,()Ly ' '
VUrQ 0 0 u

The characteristic polynomial of matrix B(Y) is computed in the following to study the eigenvalues
of the system.

Characteristic polynomial

The following notations are used in the following:

1

g=a v,
B=1+y,
G = g(L —m) = pc*v,, with v, from Equation (2.3), (2.58)
_1dhg
a1 g
F=a'L,= —®
\ 1-— Y

We are looking for the eigenvalues A of the matrix B(Y). By setting x = u — A, the characteristic
polynomial of the matrix can be written as:

Pz =u—\) =det(B(W) — My) = z* + Az + B2®> + Cz + D, (2.59)
with
A = (F¢& - yr)uro,
B =—(+ (8 + Fy,)Eury),
C = (G¢+ By — 1)) uro + (gyr — FE)Eudy,
D = g&€uyy — (GE + Pyr)yusy.

(2.60)

The calculation of the polynomial P(z) is detailed in Appendix 2.A.3. As expected, we retrieve
the eigenvalues A € {u+ ¢,u — ¢, u,u} when u,g = 0. Similarly to Section 2.3, the polynomial P(x)
satisfies the following property when u,¢ # O:

P(—x,—ur) = P(x, uro). (2.61)
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This allows us to study only the case where u,g > 0. We evaluate the characteristic polynomial for
the velocities of each phase u, and u;. We again use the notations:

rg=u—ug=—(1—yuog <0, (2.62)
T = U — U = YUrQ > 0. ’
The calculations are detailed in Appendix 2.A.3. We obtain:
P(w = 1 = —(1 = gty < 0) = —pgyciuy <0, 26
P(x = 21 = yuyo > 0) =0, '
with x4 # ;7 as u,o # 0. Using the following properties when considering y # 0,
@ P(x — —o0) = +o0,
@ P(z =24 <0) = —pug(p)ycuzy <0, (2.64)
@ Pz =x,>0)=0,

@ P(x — +00) = +o0,

the intermediate value theorem allows us to assert that when the derivative of the polynomial P
satisfies

Pz =x) <0, (2.65)
it is sufficient for the characteristic polynomial to have four distinct real roots. The derivative of
polynomial P in x = x; writes

P'(x)) = Clugy — Cyctuy, (2.66)
with
Ct(p,p,y) = ya ' (p. p,y) (yC?;(p) - ;) 7 2.67)
CY(p, p,y) = (1 = y)pur = (1 = pyvy(p)) > 0.
If the thermodynamic function C? satisfies
Ct(p,p,y) <0, (2.68)

hyperbolicity is ensured for any constant relative velocity u.q. If this condition is not satisfied, the
constant relative velocity u,¢ should satisfy:

Ch(p, p,y)
Cl(p. p,y)

max

luro| < u** (p, p,y) = c(p, p,y). (2.69)

Sufficient condition for hyperbolicity: The drift-flux system of Equations (2.44) with a con-
stant relative velocity u,g # 0 is strictly hyperbolic if

Ch(p, p,y)
Ch(p, p,y)

max

Clp,p,y) <0 or  |uw| < u(p, p,y) = c(p, p,y), (2.70)

with

_ dh 1
Cp, p,y) = ya " (p, p,y) (yd—;(p) — —> :

p (2.71)

Ch(p,poy) =1 — pyvg(p) =1 —«a,

where « is the void fraction.
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When the first condition is not met, the maximum relative speed u]"** tends towards zero as the mass
fraction approaches one, i.e. when the liquid phase disappear. Here, this result is obtained with the
vapor phase at saturation. In practice, it is the liquid phase that is considered at saturation when
mass fraction approaches one (and another condition for hyperbolicity would be obtained). The
sufficient condition for hyperbolicity is discussed more broadly in Appendix 2.B when considering
a mixture of water and vapor at 155 bar.

Case y = 0: When considering the case where y = 0, the characteristic polynomial from Equation
(2.59) writes:
P(z) = z(x + up) (2 — 2). (2.72)

In that case, the system is hyperbolic, with four distinct real roots A € {u — ¢, u + ug, u + c}.
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2.A Detailed computations for the hyperbolicity of the 4-equation
model with a constant relative velocity

In this appendix, the detailed calculations for the hyperbolicity of the drift-flux 4-equation model
with a constant relative velocity u,g # 0 are presented. First, the manipulations of Equations (2.44)
to obtain a model in the variables (p, u, p,y) are shown. Then, a discussion is carried out on latent
heat and its derivative. Finally, the detailed computation of the characteristic polynomial of the
Jacobian matrix of the fluxes is provided. As a reminder, the following notations are used:

(yr =2y — 1,
E=y(l—vy),

pr = puly, (2.73)
p = p&,
pP=p+tpr

2.A.1 Computation to obtain the model in variables (p,u,p,y)

The steps to go from the system of Equations (2.51) in (p,u, E,y) to the system in (p,u,p,y) are
described.

e Internal energy equation: The internal energy equation is obtained using the same mech-
anism as in Section 2.4.1 with some difference due to the relative velocity. First, the kinetic
energy equation is calculated using the momentum balance from Equation (2.51)-(b) and by

multiplying it by u:
2

u u? o
) (p?) + O, (pu?) +udy (5) = 0. (2.74)
Equation (2.74) is subtracted from the total energy Equation (2.51)-(c). An equation on the

quantity e + &u,/2 is obtained:

.9
p(@t (e + 511,30/2) + ud, (e + 5/11,20/2)) + 0, (pE/u,,.oL) + pOyu — Oy (pgu,‘o%) =0. (2.75)

Assuming that relative velocity is constant, an equation on §u%0 /2 is obtained from Equation
(2.51)-(d) on mass fraction y multiplied by (2y — 1)uZy:

2 2 Yrliz :
p(@t (§ufy/2) + udy (Euro/2)> — T&E (p€uro) = 0. (2.76)

Subtracting Equation (2.76) from Equation (2.75), the internal energy equation is

2
p((Bre + udie) + O (FuroL) + ot — purods (Y572 ) = 0. (2.77)

e Equation on modified pressure p: The internal energy Equation (2.77) is transformed into
an equation on the pressure p thanks to the linearization from Equation (2.32). Subtracting
Equation (2.51)-(a) multiplied by the thermodynamic coefficient b and Equation (2.51)-(d) by
thermodynamic coefficient m from the internal energy equation, the pressure equation writes

Oep + udyp + pa~ L (pv? — b)Oyu
—a 'eud 0y
+ ailv(L — M) UpOzp
+a '¢u00,L = 0.

(2.78)
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Using Equation (2.76) in its conservative form gives an equation on the relative pressure p,:

atpr + (U - yruro)axpr + praxu- (2'79)

The equation on the modified pressure can be written by summing Equations (2.78) and
(2.79):

0P + u0sp + (pc? + Ayting)Opu

+ Asu,005p
plir0Czp (2.80)
+ Ayuro0zy
+a Yeur08,L =0,
with
Az = ailv(L —m) — yrufo,
Ay = ptuso(1 +va™t), (2.81)

2 -1
Ay = —Euroa o

¢ Equation on modified density p: The equation on modified density p = p€ is obtained by
summing Equation (2.51)-(a) on density p multiplied by ¢ and Equation (2.51)-(d) on mass
fraction y multiplied by (1 — 2y):

p + (v — yrtr0)0zp + pOyu = 0. (2:82)

Considering Equation (2.82) on modified density p, Equation (2.80) on modified pressure p, Equa-
tion (2.51)-(b) on velocity and Equation (2.51)-(d) on mass fraction, the system in variables

(p,u,p,y) is obtained

Op + (u — ypti0)O0pp + pOyu = 0,
Ost + w0zt + v0zp = 0,
_ _ ) _ . o (2.83)

atp —+ Uaxp -+ (,OC + Auur[))axu - Aﬁur()axp aF Ayur(ja:cy +a SUTO()Z,’L(p7p7 y) = 07

Oty + u0ry + vu00zp = 0,
with
Az = a (L —m) — yrudy,
Ay = plupo(l +va™t),
Ay — —fufoa_l,

L(p,p,y) = L(p = p/&,p =D — puzy, y = ).

(2.84)

Here the latent heat L is expressed in variables (p, p,y). It is discussed below.

2.A.2 Latent heat

Latent heat L = hy(p) — hi(p, h,y) appears in the system when u,g # 0. The following notation is
used for partial derivative of any function f depending upon (z,y, 2):

R = () @) (289
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The differential on enthalpy is obtained from the linearization on internal energy (see Equation

(2.32)):

dh = (a + v)dp — ac*dp + mdy. (2.86)
Starting from
h = hy(p) + (1 = y)L(p, p,y), (2.87)
the derivatives for the latent heat L(p, p,y) are:
( dh
<6L) —L, = @ ety
/), 1—y
2
<3L) g, -0 (2.88)
ap - 1—y
<6L) L-m ptac®v,
_— = Ly = = .
oy op 1—y 1—y

The latent heat is considered as a function of (p, p,y):

L(p,py) = Llp=p/&,p =D — pulo,y = ). (2.89)
The derivative of L are B )
Ly = ng — upoLp,
Ly = Ly, (2.90)
Ly=1Ly,+ %LP,

with Ly, L, et L, given by Equations (2.88).

2.A.3 Detailed computation of the characteristic polynomial

The characteristic polynomial, defined by

Pz =u— ) =det(B(W) — ), (2.91)
writes for Equations (2.53):
T — Yplro p€ 0 0
0 T v 0
P(z) = - - -, 2.92
(z) Azurg + a_lfuroLg pc 4+ Ayuyg T+ a_lfuroLﬁ Ayurg + a‘lfuroLy ( )
VURQ 0 0 T

with, using notations of Equations (2.58),
Ay =G — yruzo,
Ay = p&Buro, (2.93)
Ay = —ptguly.

Using the Leibniz formula for determinants, the determinant is developed along the last line:

123 0 !
P(x) = — vuyg z v ’
pc2 + Ayurg T+ pg&uroLy Ayuro + pg€uroLy (2.94)
T — YrlUro 23 0 |
+a 0 v .

Azt + pg€uroLy pc + Ayuro T+ pg€uroLy
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Developing it once again along the first line for each determinant:

P(x) = — guy (vAy + gL, )

" v ) z (2.95)
* x(x a yTUTO) pC2 + Auuro xr + ngurozﬁ + péw <v ﬁurO * géuro ﬁ) )
Finally the characteristic polynomial writes
P(z)= z*+ (a_lfilg — YUz
—(c® + vAyuro + pgly, Lyuly)r®
(2.96)

+ (yTuTO(CQ + UAUUTO) + §UTO(A]5 + ngzﬁ)) z

—&(vAy + gLy )u,.

Using Equations (2.90), Equations (2.93) and notations from Equations (2.58), it simplifies to

Pz =u—\) =det(B(W) = M) = 2* + A2 + B2 + Cz + D, (2.97)
with
A= (Ff - yr)“r()a
B = *(C2+(5+Fyr)§u,2,0), (2.98)
C = (GE+ By — D) uro + (gyr — FE)&uy,
D = g&%uyy — (GE+ Sy )yury.
Evaluation of the characteristic polynomial in particular values
Polynomial P from Equation (2.97) is evaluated for x = zu,g, z € R. It writes
P(x = zup) = Pi(2)u%y + Pa(2)uk, (2.99)
with
Pi(z) = —c*2% + ((Sy — 1)+ Gf)z — y(GE + y.c?), (2.100)
Py(z) = 24 + (FE = y)2" = (B + Fyp)€2” + (gyr — FE)Ez + g€°. '
The roots of polynomials P; and P, are studied.
e The roots of polynomial P; are:
G¢
A=y 5 a= -ty =i (1-y)). (2.101)

e The roots of polynomial P» are:

=y 5 z=—(1-y);

2o T VeIt g) (2.102)

34 — 9 9 :

z =y is a root for Pi(z) and P5(z), so x = yuyg is a root of the characteristic polynomial P(x).
Moreover, the polynomial Pj is evaluated for 22 = —(1 — y):

Pi(z=—(1—-y)) = —(yc® + GE) = —yvypc* < 0. (2.103)
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It is interesting to note that the value z = y and z = —(1 — y) corresponds to compute respectively
the value of the polynomial for the liquid velocity u; = u — yu,o and for for the vapor velocity uy =
u+ (1 —y)uro. To properly use the intermediate value theorem, the derivative of the characteristic
polynomial should be evaluated in x; = yu,g. It writes:

P'(z;) = CTudy — ChPuyg, (2.104)

with

dh 1
Ch y My — a_l » My ( -2 _>)
10, p,y) =ya " (p, p,y) ydp(p) 5

Cy(p, p,y) = (1= y)pv = (1 = pyvy(p)) > 0.

(2.105)

2.B Study of the sufficient condition for hyperbolicity when con-
sidering a constant relative velocity

The sufficient condition for hyperbolicity of the drift-flux 4-equation model with a constant relative
velocity writes:

Ch(p. p.y)

c(p, p, ), (2.106)
Cr(p, p,y) ( )

Clp,py) <0 or  |uw| < u(p,p,y) =

with

Cl(p,p.y) =ya ' (p,p,y) <ydhg (p) — 1> :

dp 7 p (2.107)

Cl(p. p.y) = 1 — pyvg(p).

A two-phase flow of liquid water and steam is considered here and the sufficient condition is eval-
uated for this mixture. The physical properties of vapor and liquid water are obtained using the
Python module iapws! [139]. It is developped by the International Association for the Properties
of Water and Steam (IAPWS). The version IAPWS97 is used here, corresponding to the industrial
formulation. A constant pressure characteristic of a reactor core is considered:

p = 155 bar. (2.108)

An out-of-equilibrium two-phase flow is considered with the deviation from equilibrium defined by

Ayet =y —7, (2.109)

where y is the mass fraction of vapor and y the mass fraction at equilibrium. Several values for the
deviation are considered:

Aye? € {0,0.01,0.05}. (2.110)

A zero deviation corresponds to a flow at thermodynamic equilibrium. A deviation of 0.01 is
commonly encountered in real reactor core flows in the subcooled boiling region, whereas a deviation
of 0.05 is a maximum value that is very rarely reached in reality.

The ratio of the maximum relative velocity to the speed of sound, called maximum ratio and
noted u;"** /¢, is shown in Figure 2.1 as a function of the mass fraction y for the different deviations
from equilibrium considered. In the same figure, the ratio between the relative velocity obtained
with Bestion’s correlation [14] (see Equation (1.103), with an hydraulic diameter of dj, = 0.011185
m) and the speed of sound of the mixture, called Bestion ratio and noted u%/c, is also shown. The

"https://iapws.readthedocs.io/en/latest/modules.html
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maximum ratio u**" /c varies little with the deviation from equilibrium except at very high mass
fractions. In most of the domain, the Bestion ratio is well below the maximum ratio, which ensures
hyperbolicity. When the mass fraction approaches one, the Bestion ratio exceeds the maximum
ratio, and it is no longer possible to conclude on the system’s hyperbolicity. These mass fraction
values are never encountered in practice for flows in reactor cores. Therefore, the sufficient condition
for hyperbolicity is not limiting in the vast majority of cases.

102

10t

10°+ —— Maximal ratio u/c - Ay®? = 0.0 \

= = Bestion ratio u?/c - Ay = 0.0 1
= Maximal ratio u"®/c - Ay®? = 0.01

= = Bestion ratio u?/c - Ay®? = 0.01 wx
= Maximal ratio u™®/c - Ay®9 = 0.05 2%

= = Bestion ratio u?/c - Ay = 0.05

Ratio u,/c

107t

-2
10 =

10-3 —

0.0 0.2 0.4 0.6 0.8 1.0
Mass fraction y

FIGURE 2.1
Maximum ratio u/"*® /c and Bestion ratio u’/c as functions of the mass fraction y for different deviations from
equilibrium and at pressure p = 155 bar.
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Chapter 3

Some analytical solutions of the
simplified two phase flow models

In this chapter, several analytical solutions are derived from the simplified equations of the model
proposed in Section 1.3.1, where no friction or heat flux are considered. These analytical solutions
are used for verification of finite volume schemes. In Section 3.1, the disequilibrium equation alone is
considered with most parameters constant. Two steady-state solutions and one unsteady solution are
detailed for use in Chapter 4 to verify the various schemes proposed, in particular for the non-linear
relative velocity convection term. In Section 3.2, two self-similar analytical solutions are detailed
for the 3-equation model (see Appendix 1.B). The first solution uses the model for a porous flow,
while the second considers a free medium but with a heating term. These solutions can be used to
check finite-volume scheme. In appendices, several other analytical solutions are proposed. They
are taken from literature or derived from known results. They are used in Chapter 7 to verify the
global finite-volume schemes proposed in Chapter 6. In Appendix 3.A, a solution from [78] is
derived for the 3-equation model. Appendix 3.B presents the solutions of various 1D Riemann
problems for a single-phase Euler 3-equation model. In Appendix 3.A, the 4-equation two-phase
model is considered. An analytical solution is proposed when a simplified mixture equation of state
is used.

3.1 Analytical solutions for the disequilibrium equation

In this section, the 1D disequilibrium equation is considered on the domain 2 = [0, 1] and in a free
medium (¢ = 1). The production term I', due to heat flow is not considered. Mixture density and
velocity are considered constant, hence

{p(.%’,t) = pP0o, (31)

u(z,t) = up.

As a consequence, the mass conservation is satisfied. The disequilibrium equation writes in this
case

oy 0 B
ot + %(QUO +y(1 —y)u,(x,t)) =

where u,(z,t), 7(z,t) and y(z,t) are given functions, called input functions here. A Dirichlet
boundary solution is applied on the left of the domain such that

y(w,t) -y

T(x,t) (3:2)

y(z =0,t) = yo. (3.3)
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Density pg no longer appears in the disequilibrium equation. However, a value must be specified
numerically. This value has no impact on the solution. It is therefore taken at pg = 1 kg.m 3. Two
steady-state solutions are presented first. The first considers constant uniform input functions. The
second solution uses the same input functions except for relative velocity, where the approximated
Bestion correlation is used. A third unsteady solution is derived with the approximated Bestion
correlation. The functions 7 and 7 are chosen so as to obtain a self-similar solution.

3.1.1 Steady-state solution for constant parameters with constant relative ve-
locity

The input functions are taken uniform such that, Vz,

ur () = uro,
y(z) = Yo, (3.4)
T(z) = 710.

Equation (3.2) writes in this case, for a steady-state solution,

Oy Yo~y
(uo + (1 - 2y)uro)8fx == (3.5)

where the Boundary Condition (3.3) is chosen to respect yo < 7,. Defining the following notations

N\, — UrQ
T T )

Uo (3.6)
lo = ugTo,

Equation (3.5) writes

Oy _Yo—y
1 1 -2\ )= = , 3.7
(140 =258 = 2o (37)
It can be rewritten 5 B
(7. 9 _ Y% Y
()\lm(yo y) + )\log) O lO ’ (38)

with

)\lin - 2)\7“7 (3 9)
Nog = 1+ A (1 — 27). '

Integrating between 0 and x, the solution y is given by the implicit formulation

Atin (Y(2) — Y0) — Aiog In (%;—};?) = % (3.10)

Numerically, the solution is obtained with a dichotomy. It is used in Section 4.3.1 and Section 4.3.2
to verify the spatial convergence rate of the schemes proposed for the disequilibrium equation.

3.1.2 Steady-state solution for constant parameters with the approximated
Bestion correlation

A very similar configuration to the one presented before is considered here. Some parameters are
still taken constant such that
ylz,t) =7
{y( ) ) Yo, (311)

7(z,t) = 70.
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For relative velocity, the approximated Bestion correlation from Equation (1.180) is considered such
that

1+(0—-1
ur(y) = wub with up = 0.188/gdp (6 — 1). (3.12)
-y
Using notations
Ap = =2
b o y
lo = uoTo, (3.13)
Qe = 2(5 — 1))\{,,
Equation (3.2) writes
9y _Yo—y
14+ A = = . 3.14
Defining
N = a,
e (3.15)
Alog =1 + )\b + acyo,
Equation (3.14) rewrites
- 9y Yo~y
(_)‘?in(y() - y) + )‘?og)% = Ol() : (316)
Integrating once again between 0 and x, the solution y satisfies the implicit formulation
Yo — Yl a8
A (§(2) — 90) + A In (—2 ( >) __z (3.17)
Yo — Yo lo

The solution is once again obtained through a dichotomy. This solution is used in Section 4.3.3
to evaluate an approximate performance of the proposed scheme for steady-state with Bestion
correlation.

3.1.3 Unsteady solution with approximated Bestion correlation

The third analytical solution is unsteady. The equation is considered on an interval [tg,¢1]. Using
once again, the approximated Bestion correlation (3.12), unsteady Equation (3.2) writes

7+u0—x+%(y(l+(5—1)y)ub> = W (3.18)

where y(z,t) and 7(x,t) are chosen input functions. The following notations are once again used

)\b = %7
Ug (3.19)
e =206 — Dy
Equation (3.18) rewrites
Oy 9y _ylx,t)—y
% 14 M+ auy) 2 = YD~ Y 3.20
ot Fuo(l 4+ +a y)f)x T(z, 1) (3:20)

Input functions y(x,t) and 7(x,t) are chosen so that the solutions of Equation (3.20) are self-similar
solutions depending upon the variable

(z,t) = (3.21)

ugt”
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The time and space derivative for a function y(&) are

89_ £,
E*—Ey(é)v
&U_ 1
%—@y(f)-

When looking for y(¢), Equation (3.20) writes

(L4 2+ acy(©) = €]y/(8) = —— (. 1) — y(&)).

The following forms are taken for input functions with

t
xo(1+ X+ acy(§) =€)’

Yz, t) = g€ = u%) = G + 71 c08(x08) + Ta sin(x06),

T(z,t) = 7(&,t) =

with x¢ a constant parameter,

(3.22)

(3.23)

(3.24)

where 7, 7; and 7, are constant parameters. To ensure the maximum principle for this Equation
(see Section 4.1.2), the proposed functions must respect the constraints V(x,t) € [0, 1] x [0, T,

T >0,
y € [0,1].
As y(&) € [0, 1], the first constraint of Equation (3.25) implies that

Tmax

> . Tmar
Tup(1+ X))’
with 2,0 = 1 m here.

Considering 7, € [0, 1], the second constraint is automatically satisfied when

To = [71] + 172,
To < 1—[71] — |72l

Using input functions of Equations (3.24), Equation (3.23) becomes
y'(€) + x0y(§) = x0¥.-

Using the Boundary Condition (3.3), the solution of this equation is

y(&) = 7o + y1 cos(xo€) + y2 sin(xo€) + (Yo — ¥y — yl)e_X"f,

with L
Y1 = Y1 292’

4T
Yo = Y1 23/2.
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The following parameters are chosen

gO = Yo,

_ 1

Y1 = 5%, (3.31)
_ 1

Yo Qyo,

so that y1 = 0, y2 = yo and Yy = ¥; + Y. To respect Conditions (3.27), the parameter yo should
satisfy

2
yo € [0, §] (3.32)
In that case, the solution is
1.
y(€) = (1+ 5 sin(xo8))yo € [0,1]. (3.33)

This unsteady analytical solution is used to verify the performance of finite volume schemes for the
disequilibrium equation in Section 4.3.4.

3.2 Unsteady solutions for the 3-equation model

This section is extracted from Article [70], a work published during the PhD Thesis in collaboration
with Jean-Marc Hérard. Some exact solutions are available for Euler equations, both in the steady
and the unsteady framework, at least in a one-dimensional setting. Regular solutions in rarefaction
waves are well known from long (see [58, 130] for instance), and are also mandatory in order to
build the one-dimensional unsteady solution of the Riemann problem when no source term arises.
For the Homogeneous Equilibrium Model (HEM) [16, 17] or the Homogeneous Relaxation Model
(HRM) [12, 16, 17|, steady and unsteady numerical solutions can also be found when considering
fluid flows in ducts with variable cross section (see for instance [45, 60, 69, 98]). However, few exact
solutions are available when investigating flows with heat transfer, even in the steady case (see |29,
44, 78, 127]), and to our knowledge none in the unsteady case, when retaining the HEM model (or
Euler equations) in a porous medium (or equivalently in a duct with variable cross section).

Hence we give focus herein on two reference unsteady solutions of the HEM model, in a 1D
framework, when the fluid flows in a porous medium, or when some heat source term arises.
Using the notations e for porosity, p for density, u for velocity, p for pressure and e(p, p) for internal
energy the corresponding system writes

O (ep) + O, (spu) =0,
O (Epu) + 0, (5pu2) +e0,p =0,
O (eE) + 0 (cu(E + p)) = ed(z, 1),
Oie =0,

(3.34)

with the total energy F = p(%u2 + e(p, p))7 the internal energy e(p, p) given by a thermodynamic
law, the porosity (z) a given spatial function and the heating source term ¢(x, t) also given by the
user.
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3.2.1 A self-similar unsteady solution without heat exchange.

Considering System (3.34) without heat exchange, it writes

A (ep) + 0z (epu) =0,
Oy (apu) + 0, (apu2) +e0zp =0,
O (eE) + 0z (eu(E + p)) =0,
Oie = 0.

(3.35)

We note v = 1/p the specific volume and we define the entropy as the function satisfying

A(p,p) (g;)p - (g‘;)p =0, (3.36)

with ¢ the speed of sound defined by

(pe)* = (g;) h (p —p (g;)p)- (3.37)

p

By making the classical variable change from (p, pu, F,¢) to (s,u,p,¢€), the system becomes

Os + udys = 0,
Ort + w0zt + v0zp = 0,

3.38
Oip + udyp + pcOyu + pCanxE =0, ( )
ate =0.
By denoting the variable vector Y = (s,u, p,€), the system is first rewritten in matrix form
oY + A0, Y =0, (3.39)
u 0 0 0
0 u w 0
0 pc* u pc*Z
0 0 O 0

and then we search for solutions depending only on § = 7. In this case, the solutions u(§), s(§) and
p(§) must satisfy, vVt > 0,

(w-95© =0,
= ©u(€) + Lop(€) =0, (3.41)
- O + o) = —petu S

In the following, we exclude the degenerate constant case e(x) = g9. The third equation (multiplied
by x) imposes a particular form to the porosity (z), such that, with x; € R,

(0%
e(z) = (x) , with a constant o € R*. (3.42)
rrL
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Remark 1: Specific values for a.

We can highlight some specific values for ae. The specific value o = 1 corresponds to a radial solution
corresponding to e(z) oc 2mx , while a = 2 corresponds to a spherical solution where £(z) oc 4mz?.
O

The first equation imposes, for u(£) # &, a constant entropy

s(&) = so. (3.43)

The solutions (u(§),p(§)) must be such that

P'(€) = p(€ — u(§)u'(8),
(

« 3.44
pl )+ (u— () = —pPul§) - 240

Excluding the void case (p = 0), the equations combine into

2
[ = (u— )2 u'(€) + aucg(@ =0. (3.45)
Remark 2:
e For the particular case a = 0, we recover the trivial solutions u(§) = up and p(§) = po.
Moreover, for u'(£) # 0, the solutions satisfy

C—(u—€?*=0st=u+tc, (3.46)

which correspond to the two characteristics associated with the two Genuinely Non Linear
fields (GNL) for Euler equations A = u — c and A = u + c.

e In the general case a # 0, the constant solution (u,p) = (ug,po) is admissible if and only
if Upg = 0.

g

In the case a # —1, we look for velocity solutions of the form

u(§) = a, (3.47)

with an unknown constant a. Using Equation (3.45), we have

a((1+a)c® — (a—1)%¢%) =0. (3.48)
For any EOS, we note p
EOS (¢, 50) = L . .
%) = [ oo (349

For a # 0, we deduce from Equation (3.48)
(1 —a)¢

=+-—=. 3.50
ofg) = U =2 (3.50
o If c = (\C}%, using the first Equation from (3.44) and Equation (3.49), an equation linking
unknowns a and c is obtained
a&V1+ a+ fPO5(c(€), s0) = 0. (3.51)
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o If ¢ = U=9¢ the relation is

\/177
a1+ a — fE95(c(€),s0) = 0. (3.52)

Summary: A one-dimensional self-similar regular solution (s(¢),u(§),c(€)) of Equations (3.35),

with £(z,t) = &5, t0 > 0 and e(z) = <£) € [0,1],zo € R, is given by

0

s(§) = so,

u®) = “51’ (3.53)
C(E) _ ( _a)§’

with a € R, such that Equation (3.51) is satisfied when (a — 1)§ > 0, or fulfilling Equation (3.52)
when (1 —a)¢ > 0.

Equation (3.51) (or Equation (3.52)), together with Equation (3.50), which must be valid for all &,
lead to a compatibility condition on a. We consider two specific EOS in the following remarks.

Remark 3: Perfect gas EOS: We consider a perfect gas thermodynamics respecting p = (y —
1)pe,v > 1. We can then write
s =In(pp™"), (354
2(p.s) = e p T '

We have, using s = sy,

dp _ 2¢(s0,p)
/ p)sop) ~ -1 (3.55)

o If ¢(§) = (\/1;), from Equation (3.51), we get

f— <a - 1)

Thus
2
= . 3.57
v+ 14+ a(y—1) (3.57)
When the porosity is uniform (e = gg i.e. a = 0), we retrieve the standard value a = Moreover

7—%—1
Equation (3.51) corresponds to the Riemann invariant associated with the 1-rarefaction wave in the

Riemann problem [29, 130].

2
If c(¢) = L=t t th It a = ith a similar signifi f
o If ¢(§) e We get the same result a Tl ta(—1) with a similar significance for

Equation (3.52) that is a Riemann invariant of the 3-wave, when ¢ = .

Remark 4: Stiffened gas EOS: Considering a stiffened gas EOS

p+am=(y—1)pe, (3.58)
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with 7 > 0 and v > 1, we get once again

2c

EOS
£E05 —

(3.59)

C, SO) -

It leads to the same solution for the constant a as in Equation (3.57). O

Numerical application for a radial case: We consider the solution for a choice @« = 1 on a
domain [0,z7]. A perfect gas of constant v = 1.2 is chosen. In this case, for T'=1s, x;, = 2 m and
ur, = axy/T with a = 1/, the solutions are represented in Figure 3.1. The initial (respectively
boundary) conditions are deduced from the analytical solution given in Equation (3.53), setting
t = 0 (respectively x = zp, xp being a boundary).
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FiGURE 3.1
Analytical solution foraa =1,y =1.2and zy =20 mat T = 1.0 s.

3.2.2 A self-similar unsteady solution in free medium with a specific heat pro-
file.

For this solution, we consider a free medium (¢ =
System (3.34) becomes

1) and a specific heat source term noted ¢(z,t).

0p + 9z (pu) = 0,
Ot (pu) + 0y (pu2 —|—p) =0,
HE + 8; (u(E + p)) = o(a,t).

(3.60)

Using a change of variables from (p, pu, E) to (u,p,s), the system writes

O + u0,u + v0,p = 0,

-1
Ogp + udyp + pCQOzU = (ae) vo(, 1),

o/, (3.61)

Os de\ !
OrS + u0ys = <3p>p (3})) vo(z,t).

p
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We look for solutions depending on

xa

£= (t+to)?’

(3.62)
i.e. by normalizing £ = %,B € R*, for variables s(§), u(€) and p(§) where t9 > 0 is a constant.
The momentum equation shows that non-trivial solutions require § = 1. It constrains the heating
profile to satisfy

¢(x,t) = (t+to) ' (€), (3.63)
with () to be given by the user.
The entropy equation gives
; 0s de\
wo-0¢0=(5) (5) = (3.61)

For this particular form of the heating source term, the variables must satisfy

u—=¢ 0 0 s (%;)p (g;)pl v(§)
0 wu=-€& v |-l = 0 . (3.65)

Remark 5: Case ¢ = 0.

For the particular case where the heating term is not considered, we find the classic framework. The
solution (s,u,p)(§) = (so0,u0,po) is then trivial. In the general case, a non-trivial solution (u,p)
then imposes

(w—8>*—c=@wuw—-€+c)(lu—E&—c)=0, (3.66)

with §'(€) = 0 < s(€) = so.
U

We consider the general case 1(£) # 0. We can note that the profile (u(),p(§)) = (uo,po) is no
longer a solution of System (3.65). The first two equations can be rewritten as:

P(€) = —p(&) (u(©) — ' (€), (3.67)
and 1
PO~ (e - 92 = (5)  w0l©)
5en -1 P70 (3.68)
& () — (u(©) - ?)u'(§) = (8;> V2(EN(E):
p

Equation (3.68) imposes ¢ — (u — £)? # 0. The solutions must satisfy

(e — (95 (9e\7 e L)
€= (8p>p <3p>p © (u(€) =€)’

/ _ 1 % - 2

0= gagr () OV (3.59)
Iie\ u—¢ % -

PO = g (5y), MOHO
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Summary: A one-dimensional self-similar regular solution (s(&),u(&),p(§)) of Equations (3.60),
with a heat source given by Equation (3.63), is obtained through Equations (3.69).

For an arbitrary (), the integration of Equations (3.69) is not trivial. It can be done numerically
using an implicit Euler method, proceeding backwards, and using a very dense mesh of the £ axis,
see [60] for the numerical method. In particular, the specific case with perfect gas EOS of [3] can be
mentioned, where the considered heating is in the form of ¢ = %% —1¢4 A € R and fits within
the framework proposed here.

Remark 6: Perfect gas EOS. Considering the perfect gas thermodynamics law defined in (3.54),

9s _ 1 Oe _ v
(Fp)p =5 and (8p>p = 557, SO we have

u—¢ 0 0 s' (v—=Dy(E)p!

0 uwu—-¢ wv ||| = 0 . (3.70)
0 w u=¢& (v = D(€)

When v = 0, some manipulations of Equations (3.65) lead to

(u— €) (2(u &)+ (y— 1)u’> = 0. (3.71)

We recover the results from Section 3.2.1 for a constant porosity € = 1. In this case, the velocity
writes

2
—up = ——(£— &), 3.72
u(§) — uo — (€ — o) (3.72)
leading to the profile of the sound velocity with ¢(§) = +(u(§) — &). O

3.2.3 Conclusion

We have presented two analytical solutions of the HEM model in a 1D framework when the fluid
flows through a porous medium or when a heating profile is applied to the fluid. For the first
solution with porosity, exact solutions are given for a perfect gas and a stiffened gas EOS but this
can be extended to more complex EOS. The second solution with heating is valid for any EOS.
Obviously, it would be interesting to numerically test the two proposed solutions and compare them
with solutions obtained from numerical schemes.

We refer the readers who are not familiar with classical exact solutions to references [29, 58, 130],
among others for pure one-dimensional exact solutions of Euler equations, when o = 0 (or equiva-
lently when the porosity is uniform (e(z) = €p)) and without any heat source term, focusing on a
perfect gas EOS.
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3.A Steady-state for 3-equation model

The 3-equation model of Section 1.B is considered in a free medium (¢ = 1). A steady-state
analytical solution is proposed for this model in a 1D framework. This solution is a simplified
version of the one from [78] and is used in Chapter 7 to verify ThermoTorch’s global 3-equation
finite volume scheme. The configuration for this analytical solution is a 1D tube on the domain
[0, L] with an incoming flow of single-phase liquid water undersaturated at = 0 such that

p(z =0) = pin, (3.73)

In this section, the notations for the specific volume and the specific enthalpy are

1
v= -,

p (3.74)
h =e+ pv.

From Equations (3.73), it can be deduced

{h(m = 0) = hy(pin, Ton),

p( = 0) = pi(pims To). (3.75)

Second order differential terms, gravity and solid friction are neglected. Relative velocity is assumed
to be zero. The resulting model is an Euler model with a total energy equation that includes a
known heating term ¢(z) such that

Orp + 0z (pu) = 0,

O (pu) + 95 (pu® +p) =0, (3.76)
O (pE) + 05 (puE + pu) = ¢(z).

The equation of state for the mixture is initially written in internal energy (see Equation (1.68)).
It can be written in enthalpy. The 3-equation model is considered, so the equation of state depends
only on pressure and density. It is noted h°%(p, p). Transforming the equation on total-energy in
an equation on enthalpy, the steady-state system writes

Oy (pu) =0,
0z (pu?) = —0up, (3.77)
Oz (phu) = ud,p + ¢(x).
In this configuration, the mass flux is uniform such that
q(z) = p(z)u(x) = qo > 0. (3.78)
The constant mass flux ensures

9z (pu?) = 9 (qgv) = qg0xv. (3.79)

Using constant mass flux qg, the momentum and energy equations become

Oup = — 305,
2 3.80
Oyh = M _ qgam <U> ) ( )
qo 2
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Let’s suppose that State (a) at point x, is known. It is noted (pg,va, hq). Set of Equations (3.80)
is integrated between State (a) and an unknown State (b) such that

P6(vb) = Pa — @3 (Vp — Va),

1 b 2 (381)
(o) = ha + == [ o@).dz = B~ o).
0 Jz=a

The function G(vp) can be defined by

G(vy) = W% (py(vs), vy) — ho(vs).- (3.82)

A Newton method is used to find v, such that G(vp) = 0, giving the solution for state (b), knowing
state (a).

3.B Unsteady solutions for 1D Riemann problems - one-phase flow

1D Riemann problems are considered here in the framework of Euler equations (with an energy
equation) combined with a perfect gas Equation of State (EoS). A spatial one-dimensional domain
Q) centered on 0 is used. At initial time ¢ = 0, two constant states are defined on either side of the
discontinuity in z = 0: the left state is denoted L and the right state is denoted R. Figure 3.2 shows
the initial configuration of the problem.

Y, = (PLJ)L, ’U'L) Yr= (/)R,PR,UR)

0

FIiGURE 3.2
Initial configuration for 1D Riemann problems with the 3-equation model.

Three different test cases are studied here according to the initial values for each quantity: the
symmetric double rarefaction wave in Section 3.B.1, the symmetric double shock wave in Section
3.B.2 and the Sod shock tube in Section 3.B.3. The first two problems are symmetric problems
corresponding to classical test cases to simulate two different wall boundary conditions when using
the mirror technique. The third problem is the classical Sod Shock Tube problem from [131]. First,
the equation of state and the system of equations used for these Riemann problems are detailed.
Then, a general methodology based on the results of [58] and [130] is presented. This methodology
is then applied to determine the analytical solutions of the three test cases presented here.

The perfect gas FoS writes:

p=pe(y—1),
s(p,p) = ¢y In(pp™7), (3.83)
c(p.p) = \[7,

with v = 7/5 and ¢, = 1000 J.kg~—'.K~!. We consider the Euler equations

W = (p7 u? E)?
ow + 0,F(w) = 0, with ) (3.84)
F = (pu, pu” + p, puE + pu).
The fluxes matrix F is diagonalizable with three real eigenvalues noted A such that
A€ {u—c(p,p),u,u+c(p,p)}. (3.85)
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Across a shock, the Rankine-Hugoniot jump conditions between the left state I and the right state
r are
—o(w, —w;)+ (F, —F;) =0, (3.86)

with o the propagation speed. Using this condition on the mass conservation equation enables to
obtain the propagation speed
o= PrUy — PLU]

3.87
Pr — Pl ( )

A 1D tube is considered in the domain = € [—1,1] m. It is initialized with two different states: a
left state (noted L) for z < 0 and a right state (noted R) for x > 0. For each configuration, the

condition
2

v—1

ur —ur, < (c(prspr) + c(PRs PR)): (3.88)

with ¢(p, p) the speed of sound, is respected so that no vacuum appears. The existence and unique-
ness is assured for the considered problem (see for instance [130]). We look for self-similar solutions
depending upon the variable

¢ =

% (3.89)

3.B.1 Symmetric double rarefaction wave

Table 3.1 describes the initial conditions with pg,ug and pg positive constants. For this config-
uration, two symmetric rarefaction waves propagate in opposite directions. Due to symmetrical
initial conditions, the contact discontinuity is a "ghost wave". This configuration corresponds to
the behavior of the scheme when applying the mirror technique close to wall boundary conditions
where the fluid is sucked.

Left state | Right state

PL = PO PR = PO
Uy, = —Ug | Ur = ug >

PL = Po PR = Po

TABLE 3.1
Generic initial conditions for symmetric double rarefaction wave.

For a time ¢ > 0, the space is divided into four distinct regions with constant states, separated by
three waves (see Figure 3.3). A l-rarefaction wave propagates to the left in the domain x < 0 and
t > 0, the 2-contact wave is a "ghost wave" fixed at x = 0 for ¢ > 0 and the 3-rarefaction wave
propagates to the right in the domain x > 0 and ¢ > 0.
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1-rarefaction 3-rarefaction

(p**7p**’ u**)

2-contact

(PLaprL) (pR7pR7uR)

\ 4

FiGURE 3.3
Scheme of the solution for double symmetric rarefaction wave test case.

The invariants at the 2-contact wave are
u** — u*7
{ - x (3.90)

The problem is symmetric, so that

* — O,

The symmetry of the problem enables to study only the domain x < 0, so that only the 1-rarefaction
wave is considered. The Riemann invariants for the 1-rarefaction wave are

ur, + c(pr, =u"+ c(p*, p*),
L 1 (pL,pL) ~ -1 (p*, p") (3.92)
s" = s(p*, p") = s(pL, pr)-
The perfect gas EoS (3.83) gives
pp~"(§) = pLpp - (3.93)

The 1-rarefaction induces a relaxation for £ € [, £*] with £* = u*—c(p*, p*) and 1, = ur—c(pL, pL.)-
Using Equations (3.92), the solution for the 1-rarefaction wave is V¢ € [£1, £,

l€) = up + — (€ &),
(€)= ul®) — &,
e(e)?\ (3.94)
o) = (25) 7
9O = (")

3.B.2 Symmetric double shock wave

Table 3.2 describes the initial conditions with pg,up and py positive constants. In this case, two
symmetric shock waves propagate in opposite directions. Due to symmetrical initial conditions, the
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contact discontinuity is still a "ghost wave". This configuration corresponds to the behavior of the
scheme when applying the mirror technique close to wall boundary conditions where the fluid is

impinging the wall.

Left state | Right state
pL = po PR = PO
ur, = ug >0 UR = —UgQ
brL = po PR = Po
TABLE 3.2

Generic initial conditions for symmetric double shock wave.

For a time ¢ > 0, two shock waves and one contact discontinuity divide the domain into four distinct
regions with constant states (see Figure 3.4). The 2-contact discontinuity is a "ghost wave" that
remains stationary at x = 0 for ¢ > 0. For ¢ > 0, a 1-shock wave propagates to the left in the
domain z < 0, while a 3-shock wave propagates to the right in the domain x > 0.

t

A

1-shock 3-shock
<p**7p**’ u**)

2-contact

(PLaprL) (pR7pR>UR)

Y

A

FiGUrE 3.4
Scheme of the solution for double symmetric shock wave test case.

Once again, the problem is symmetric and (p, u) are preserved through the contact wave. Hence

u™ =t :0’
p* =, (3.95)

p** — P*-

For shock waves, the jump conditions (3.86) are adjusted to eliminate the dependence on the

propagation speed such that

pior(w — ur)? = (pr — 1) (pr — p1),

pAp (11 (3.96)
e(pr, pr) — epi, pr) + % < > =0.

Pr Pl

Due to symmetry, only the domain > 0 needs to be studied, with the 3-shock wave to be consid-
ered. The state (p*,p*) needs to be determined. Noting

*

=l s (3.97)
PR
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and using perfect gas EoS (3.83), the second equation of (3.96) becomes

pt pz—1
LA > 1, 3.98
pr  B—=z (3.98)
with 41
vy
— 1S )
8 1 (3.99)

By substituting this formula into the first equation of (3.96), we obtain

Psps(z) = (B+1)(1 — 2)2 — C2(8 — 2) = 0, with ¢ = p’;”%? and z € [1, 3]. (3.100)
R

Using Psps(1) < 0 and Pspg(B) > 0, the solution z € [1, [ exists and can be computed with the
relation

L_2+(2+QB+VA

2
200+ B +0) avec A = (24 (24 ¢)B)" —4(1+ B+ 1+ B). (3.101)

The state (p*, p*) can be computed from the value of z. Using Equation (3.87), the speed of the
3-shock wave is

o® = _ PRIE ¢ (3.102)

pP* = PR
3.B.3 Sod shock tube

The Sod Shock Tube is a classical test case from [131]. Unlike the two previous tests, the initial
conditions, summarized in Table 3.3, are not symmetrical.

Left state | Right state
PL = 1 PR = 0.125
ur, = 0 uUur = 0

prL=10° | pr=10%

TABLE 3.3
Initial conditions for Sod shock tube test case.

Four distinct regions with constant states divide the domain for a time ¢ > 0. These regions are
separated by different type of wave (for t > 0): the l-rarefaction wave propagates in the domain
x < 0, the 2-contact wave propagates in the domain x > 0 and the 3-shock wave also propagates in
the domain x > 0 but at a higher speed than the 2-contact wave. A scheme of this configuration is
shown in Figure 3.5.
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1-rarefaction 2-contact 3-shock

(pLap[nuL) (pR7pR7uR)

\ 4

FIGURE 3.5
Scheme of the solution for the Sod shock tube test case.

At the 2-contact wave, we have ©** = u* and p™* = p*. The system has 4 unknowns (u*, p*, p*, p**).
Using the Riemann invariant (3.92) for the 1-rarefaction wave, we can write, with ¢z, = ¢(pr, pr.),

cp =u"+ c(p*, "),
v—1 y—1 ( ) (3.103)

s(pr.pL) = s(*, p*) © pLpy =" (p*) 7.

ur, +

Using the entropy conservation, we compute the speed of sound c(p*, p*) as a function of the left

state
~y—1

* * ﬁ
R C (3.104)
P pL

Injecting (3.104) in the first Riemann invariant of Equations (3.103) gives a first formula for the
velocity u* as a function of p* noted uz‘l)

y—1
wnp)=u, + ——[1—- | — cr,. 3.105
mF7) =ur ’Y—l< <pL> ) r ( )

Now considering the 3-shock, Equations (3.96) for jump conditions write

B *__\/(pR—P*)(PR—P**)
UR u =

PR (3.106)
k _ 1 ok
Pl it = o
PR B—z PR
with the sign of up — u* given by the entropy inequality. Combining the two equations, the velocity
writes
HN1l—-2)1-
=g [PRBFDA=2) 1=z (3.107)
PR B—z z
The variable z can be rewritten .
BE +1
2(p*) = pZZRi. (3.108)
T8
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Using Equations (3.99) and (3.108), we obtain a second equation for u* as a function of p*, noted

U(2)

* * = u ¢ 2 . *
Uiy (P*) = ur + R\/(V_l)(ﬁ_z(p*))z(p*)( (p*) — 1), (3.109)

with cgp = \/'yprél . The solution for p* is obtained numerically by solving
u(yy(P") = uly)(p*) with p* € [pr,pr]. (3.110)

A dichotomy is used to get the pressure p* from Equation (3.110). The 1-rarefaction wave induces
a relaxation for £ € [£r,&*] with £ = ur — ¢r and £* = u* — ¢(p*, p*). Using Equation (3.87), the
speed of the 2-contact wave is

c® = u*. (3.111)

Using again Equation (3.87), the speed of the 3-shock wave is

o= LT 550 (3.112)
p** — pr
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3.C Analytical solution for the 4-equation model - 1D Riemann
Problem

In this section, the objective is to determine an analytical solution of the 4-equation model with a
simplified mixture Equation of State (EoS). This solution is used to verify the numerical schemes for
the 4-equation model in Chapter 7. In order to find an analytical solution, the conservative Model
(1.61) is used in a one-dimensional simplified framework. Zeroth-order and 2nd-order terms are
neglected. Relative velocity is taken to be zero. In this configuration, the 4-equation conservative
model in total energy from Equations (1.61) is equivalent to the 4-equation enthalpy model from
Equations (1.108). The system is written in conservative variables W = (p, pu, pE, py)

Ap + 0z (pu) =0,
Oy (pu) + O, (pu2) + Oxp =0,

3.113
Oy (pE) + 0, (pEu) + 0, (pu) =0, ( )
0 (py) + 9z (pyu) =0,
with E the total energy defined by
E:e+%u2. (3.114)

A mixture EoS depending upon the mass fraction y is used here to verify the resolution of the
4-equation model. It is constructed with a mixture of perfect gas in Section 3.C.1. The Equation
of State writes, with v > 1,

_ p
e(p,py) = FeEnN ho(y), (3.115)

with hg(y) a function depending only upon the mass fraction.

The system is rewritten in a non-conservative form. The internal energy equation is obtained using
the momentum equation multiplied by the velocity and the total energy equation. The classical
internal energy equation of an Euler-type system is obtained:

Ore + udze + pvdzu = 0, (3.116)

using the notation v = % for the specific volume. Defining the sound velocity by the formulation

oe\ "t (p Oe

2

pc = () ( —p <> ) , (3.117)
O/ py \ P 0P/ py

Oup 4+ udyp + pc2yu = 0. (3.118)

the pressure equation writes

An entropy s for the system should satisfy the relationship

? (‘93> +<8s> = 0. (3.119)
8]3 Y ap b,y

If s(p, p,y) is an entropy of the system, the function $(p, p,y) = f(y)-s(p, p,y)+so0(y), with f(y) and
so(y) any regular functions, is also an entropy of the system. If a function s satisfies the Equation
(3.119), the entropy equation simply writes

Os + u0zs = 0. (3.120)
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The non-conservative system writes

Oy + udyy =0,

Ors + udys = 0,

Ort + w0, + v0zp = 0,
O¢p + u0Lp + pc28xu =0.

(3.121)

A 1D Riemann problem is studied in Section 3.C.2 for the Equations (3.121) with EoS (3.115).

3.C.1 Simplified mixture EoS

A mixture as defined in Section 1.3.3 is considered, where the two phases are in pressure equilibrium,
at pressure p. For each phase (liquid and gaseous), a perfect gas EoS is considered here, with the
same constant polytropic index v for both phases

p
er(p, = ———— + hog, 3.122
k (P, Pk) oy — 1) + ok (3.122)

where hgg is a constant. The entropy associated to phase k is

oy,
sk(py k) = conln | == | + sok, (3.123)
with ¢, the specific heat capacity at constant volume of phase k and sgi a constant. This gives the
phase temperature T with

cokTk(p, pr) = (3.124)

pr(y —1)

The parameters of the two EoS can be set to approximate the thermodynamics of water-vapor under
nuclear reactor conditions. These parameters are listed below:

77h097 hOluc’UgaC'l)l)SOgvSOl' (3125)

The mixture EoS writes, by using v = % = yvg + (1 —y)u,

e(p, py) =yeg+ (L —yley = ﬁ + ho(y), (3.126)

with
ho(y) = yhog + (1 — y)hor- (3.127)

Using Equation (3.117), the speed of sound of the mixture can be computed. It is independent of

the mass fraction such that +p
(p,p) = s (3.128)

Remark on entropy Using Condition (3.119), an entropy for the mixture is

5(0,7,9) = culy) In <§p_1> T soly), (3.129)
with

{80(3/) = ysog + (1 = y)so, (3.130)

cv(y) = yeug + (1 = y)eu.
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This choice of ¢,(y) and sg(y) enables to recover the entropy of each phase for limits y — 0 and
y — 1. The temperature of the mixture can then be written

_ p _ ycngg + (1 - y)cvlTl
Tiopy) = peo(y)(y—1) cu(y) ' (3.131)

The proposed entropy satisfies the following thermodynamic relationship
Tds = de + pdv + s,dy, (3.132)

with

dso dey 15— so(?/)) ‘ (3.133)

sy=—@<y>+T(d—y(y>+ oy

These results will be used in Chapter 6 to study the resolution algorithm and the entropy used
numerically.

3.C.2 1D Riemann Problem - Analytical solution

An infinite 1D domain is considered. At initial time ¢t = 0, two constant states are defined on either
side of the discontinuity in & = 0: the left state is denoted L and the right state is denoted R.
Figure 3.6 shows the initial configuration of the problem. The solution proposed here is based on
the methodology developed in [130] or in [58].

YL — (/)L1 pbrL,ur, yL) YR — (pR7 PR, UR, yR) x
0
FIGURE 3.6
Initial configuration for a 1D Riemann problem with the 4-equation model.
System (3.121) writes, using Y = (y, s, u, p),
oY +B(Y)o,Y =0, (3.134)
with
v 0 0 0
0 u 0 O
B= 00 u v (3.135)
0 0 pc w
The eigenvalues of this matrix are
Al =u—c,
Ao = u,
? (3.136)
A3 = u,
M =u+c
The corresponding eigenvectors are
ry = <O7 07 17 —pC)7
ro = (1,0,0,0),
2= ) (3.137)
r3 = (07 17 0) 0)7
ry = (0,0,1, pc).
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Four waves propagate in the domain, associated to each eigenvalue. For eigenvalue A;, the associated
wave is denoted i-wave. The 2- and 3-waves are LD waves because Vy \; - r;(Y) = 0 for i = 2,3.
They propagate at the same velocity u. The 1- and 4-waves are GNL waves. The structure of the
solution is represented in Figure 3.7, where the constant states Yy, Y*, Y** and YR are separated
by waves (LD and GNL).

t
1-wave GNL 1 2,3-waves LD 4-wave GNL
'(p**7p**’ U**, y**)

(p*,p*,u*, y*)

(pL, Pr,ur, yL) (PR,PR7 UR, yR)

I
N
L
N
d
I
N
N
L
I
N
L4
I
d
N
L
N
N
L4
N
4
N
|

X
FiGURE 3.7
Structure of the solution for a 1D Riemann Problem - 4-equation model.
The Riemann invariants ¢; associated with the i-wave are determined by computing
Vy (¢i(Y)) -r;(Y) = 0. (3.138)

The Riemann invariants are

_ P dp
s {y,s,u—i—/o pC(s,p,y)}’
¢2,3 = {u,p}, (3139)

_ P dp
= {y’s’u_/o pC(S,p,y)}'

On either side of a shock wave propagating at speed o, the left state is denoted [ and the right state
r. The following notations are adopted for the jump of a function f and its mean value across the

shock
[f] = f’l’ - flu
N (3.140)

f="5"

The Rankine-Hugoniot conditions for Sytem (3.113) write

—olp] + [pu] =0,
—alpu] + [pu® + p] = 0,

2 1 3.141
-0 [pe + pl;] + [pue + 2pu3} + [up] =0, ( )

(—olpy] + [puy] = 0.
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Using the following notation

w=u-—o, (3.142)
the jump conditions become
[pw] =0,
2 _
pzpi[u] = [plll, (3.143)
pw ([e] +p[v]) =0,
pwly] = 0.

The relationships obtained above are valid for any EoS. For cases where w # 0, thus in GNL waves,

the mass fraction jump is zero
[y] = 0. (3.144)

When the mixture EoS (3.115) is used, the internal energy jump writes

[e] = Lp_vl +ho(y)} = Lp_vJ : (3.145)

By manipulating Relationships (3.143) with EoS (3.115), the pressure ratio as a function of the
density ratio is obtained for shock waves

-1
g _ ﬁ;_ - (3.146)
with 41
ﬁ - %7
(3.147)
.y
Pr

with z < 1 in the 1-shock wave and z > 1 in the 4-shock wave. Finally, using the entropy inequality,
the relations are

( Z:ﬁ,
Pr
n_ Bz—1
pro Bz (3.148)
] = — [p][r]
pior’
[yl =0,

with z E]%, 1] (resp. z € [1, A]) in a 1-shock wave (resp. in a 4-shock wave).

Considering the initial conditions Y and Y g and using all these results, it is possible to prove
(using a similar methodology as in [130]) that a unique self-similar solution Y ({ = 7),z € R, >0
exists to the 1D Riemann problem, with positive density, without vacuum, if the following condition
is satisfied:

: s + cr)- (3.149)

Uur —ur, <

This unique solution is composed of four constant states Y, Y*, Y** Ypg, separated by contact
waves, rarefaction waves and shock waves.

Similar results as for a perfect gas are obtained.
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Chapter 4

Finite volume schemes for the
disequilibrium equation

The disequilibrium equation defined in Section 1.2.4 is considered. The maximum principle for
the mass fraction is widely investigated, either for diffusive problems (see among others [40]) or in
hybrid convection-diffusion problems (see among others [47, 53, 54, 91, 100]). Most of the time, a null
relative velocity is considered in the convective flux model. In the sequel, the system involving two
mass balance equations with a non null relative velocity (see also [53, 54]) is considered: Equations
(1.52) and (1.60). For now, the production term of the disequilibrium equation is not considered.
It is studied separately in Appendix 4.D.

First, the disequilibrium equation is recalled and notations are settled in Section 4.1.1. Once the
continuous maximum principle has been examined in Section 4.1.2, three distinct linear finite volume
schemes complying with the discrete maximum principle with no (or with a weak) restriction on
the time step are proposed in Section 4.2. Eventually, numerical simulations are used to assess the
accuracy of the schemes in Section 4.3 using analytical solutions from Section 3.1. The proposed
schemes can be used in a broader framework such as two-phase flow models like those from Chapter
1.

This chapter is an extended version of a scientific article published during the thesis in Comptes
Rendus Mécanique de I’Académie des Sciences (see [93]). Sections 4.3.2, 4.3.3 and 4.3.4 have been
added to the published version to enhance the numerical verification database of the schemes.

4.1 Continuous equations for the disequilibrium

4.1.1 Governing equations

The system considered is composed of Equations (1.52) and (1.60) (see also [53] for a similar system):

gp—l—V-q:O,
3fpy) y-y “1)
W‘FV' (ya) +V - (y(l—y)%) :pT+Fp¢

where q is the mixture mass flux and q, the relative mass flux

{ 4= (4.2)

qr = pUyr.
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In this section, the production term due to the heat flux I, (see Section 1.4.1) is not addressed;
it has been removed from the disequilibrium equation. This study focuses on the evolution of the
mass fraction y in this flow. It evolves according to a mass flux q; = q + (1 — y)q,. The system of
equations is studied on a spatial domain 2, over a time period [0,T]. The boundary of € is noted
I". Noting the outward unit normal np, the boundary can be split according to the sign of the flow

as
=T, UT_UT,, (4.3)

where
'y ={xel,q(x,t) -nr <0},

' ={xel,q(x,t) -nr >0}, (4.4)
Iy ={xel,q(x,t)-nr =0}.
In this Chapter, the following notation, already used in Chapter 2, is once again used:
{=y(l—y). (4.5)
To study the continuous maximum principle, the mass flux noted q¢ is defined by
e =q+ (1-2y)q,. (4.6)
The boundary I' can also be split according to the sign of the mass flux qg:
r=rsurturs, (4.7)

where
Fi_:{XEP, q§-nr<0},
I'* ={xer, qe - nr > 0}, (4.8)
I$, ={x €T, q¢-nr =0}

The four parameters q, q,, 7y and 7 are given functions here:

e q(x,t) the mixture mass flux, given by a momentum conservation equation or provided as
input data,

e q,(x,t) the relative mass flux, provided as input data. It is often given with a drift-flux closure
law related to the other parameters,

e y(x,t) € [0,1] the equilibrium mass fraction, reached after a characteristic relaxation time
7(x,t) > 0. y and 7 are obtained through closure laws.

This system of equations must be completed by initial conditions for the mass fraction and the
density

{y(xat =0) = yo(x), (4.9)

p(x,t=0) = po(x),

and by suitable boundary conditions for the mass fraction (and also for the density on I'}).

4.1.2 Continuous maximum principle

Property 1 (Continuous maximum principle): For the density p(x,t) > 0, assume initial
conditions such that y(x,t = 0) € [0, 1] and boundary conditions such that y(x € Pi,t) € [0, 1],
with Fi = {x € I',q¢ - nr < 0}. Consider closure laws for source terms such that 3(x,t) € [0, 1]
and 7(x,t) > 0. If the quantity ((1 —2y)V - q, + 2q, - Vy)/p is bounded on €2 x [0, 7], then the
mass fraction y(x,t) solution of (4.1) lies in [0, 1] on © x [0, T]. O
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Using the same methodology as [53] and [99], the proof of this property is given in Appendix
4.A. We recall that the positivity of the density is ensured as long as the divergence of the mixture
velocity u is bounded and that the incoming flow has a positive density p(x € I';,¢) > 0. In the
following, the focus shifts on the mass fraction governing equation with unknown y. A discrete
finite volume scheme for the density p will be assumed (see Equation (4.14)).

Remark: In order to ensure the continuous maximum principle for the mass fraction y and the
positivity of the density p, two different input boundaries I'; and FS_ are considered in the most
general case. For applications concerned, co-current flows entering the domain are considered.
Hence the phase velocities have the same sign, such that

Vx € T4, ug - u > 0 with { u; = u+t(l-yu, (4.10)
u = u-—yuy.
Hence, noting that
a=p(yuy +(1-y)w), (4.11)

q¢ = p((1 = y)uy +yw),
the dot product of these mass fluxes is g¢ - q = p? (y(l —y)(ug—uy)? —|—ug-ul) > 0 but also I'§, = Iy,
$ =T, and I =T_.
4.2 Finite volume schemes

4.2.1 Discretization and notations

The time interval [0, T] is discretised in Ny intervals [t7, "1, n € [0, Ny — 1] with At" = ¢*+! —
t",n € [0, Ny — 1] such that

tY=0 ; Vnel[0,Np—1],t"" ="+ At" and T = 7. (4.12)

The domain €2 is also discretised in Ng cells (cell i is noted €2;) such that

A staggered mesh is considered. These two different meshes are described in Figure 4.1 for a 2D
cartesian mesh. The mesh from Equation (4.13) is the pressure mesh (yellow cell in Figure 4.1)
where the scalar is defined at the center of the cell. The velocities and mass fluxes are determined
on the velocity meshes (green and blue cells in Figure 4.1), defined by the edges of the pressure
mesh.

108



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

AIZ'

A
\ 4

A control volume for velocity
mesh along y

Ay; A control volume for velocity
mesh along x
J A control volume for pressure
mesh
y
— L X

FIGURE 4.1
Cartesian staggered grid in 2D configuration and control volumes associated with each mesh.

Scheme 4.2 represents a pressure cell ¢ with three neighboring pressure cells j, k, [, a boundary wall
face w and a inlet/outlet boundary face noted co. Configuration presented here is an unstructured
mesh because the proposed schemes are available for any unstructured mesh. However, numerical
results presented in this chapter are obtained on cartesian staggered meshes.

n;

FIGURE 4.2
Cell ¢ with (4, k,1) neighboring inner cells, a wall boundary face w and an inlet/outlet boundary face cc.

Considering the pressure mesh, Equations (4.1) are integrated on each cell i between time t" (su-
perscript n for variables) and time #"*! (superscript n + 1 for variables). A superscript * is used
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for data taken at an intermediate state t*, which is either ¢* or t"*1. The explicit or implicit choice
will be decided according to the wanted properties of the scheme. The following notations are used:

e 0! the approximate value of the continuous quantity € on cell ¢ at time ¢",
e w; the volume of cell 7,

e j € v(i) the neighbors of cell 1,

e S;; the surface of intersection of cell ¢ with its neighbor cell j,

e n;; the normal unit vector of the surface S;; outward cell 1,

° q;'kj = q;‘j -n;; the normal mixture mass flux between cell ¢ and cell j,

o (q)! y = (qp)F ;- 1y; the normal relative mass flux between cell ¢ and cell j,

® (q9); =aq;; +(1— yij)(qr)l] the normal gas mass flux between cell 7 and cell j. The explicit
choice for y;% will result in a linear numerical scheme. The spatial discretisation for the mass
fraction y;; at interface ¢j is detailed in the sequel.

Here, qj; (respectively (qr);‘j) is an estimation of the mass flux q (respectively q,) at interface ij
at time t* € [t", t"H1].
4.2.2 Finite volume discretization

Finite volume methods are well adapted to treat conservation issues and to keep physical quantities
in valid bounds. Focusing on the system of mass balances (4.1), Gastaldo and al. [53| introduces a
non linear implicit scheme (with respect to y), which guarantees the discrete maximum principle
with no restriction on the time step, even if some non-zero relative velocity is accounted for. Here,
a linear implicit scheme is proposed first with some restriction on the time step in order to
comply with the discrete maximum principle. Then two other linear implicit schemes satisfying
the maximum principle without any condition on the time step are presented.

The finite volume scheme for the total mass conservation is assumed to be

wilpp = pp) + ALY Sijql = 0. (4.14)
jev(?)

Turning to the mass fraction equation, the following choices have been made:

e The unsteady term is decomposed in two parts:
Ipy
ar [ SBbd0 s (o) = (e
= o (i =y +yr T (O P w; |, using (4.14). (4.15)
N————

= —At" Z Sijq;‘j

J€v(i)

e The mass fraction is taken implicit in the source term

/w. pyT;de A pfwM, (4.16)
i i
where t# € [t",t"*1] such that:
pl# >0,
# < [0,1], (4.17)
Ti# > 0.
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In the sequel, the choice made is pz# =p2, yjz# =y and TZ-# =T/

e Turning to convection contributions, two different methods are used. The first method simply
considers the total convection: V - (yq) + V. (y(l — y)qr) =V. (ng). The scheme using
this method is nicknamed QG and is detailed in the sequel. It introduces a condition on the
time step to preserve the discrete maximum principle. The second method treats the mixture
convection and the relative convection separately. Two different schemes are detailed, labeled
QRd scheme and QRq scheme. The latter two schemes approximate the non-linear convection
so that the problem is well-posed and the discrete mass fraction remains in physical bounds
[0, 1] whatever the time step is.

In the sequel, the following notation is used for the sign of z:
1 ifz>0,
%8(2) = { 0 ifz<0. (4.18)

In order to simplify notations, sg;; = sg(q;‘j), sgfj = sg((qg);kj) and sg; 1= sg((q,n);kj) are used.
In the following, the proposed schemes are detailed for cells within the domain in Sections 4.2.3,
4.2.4 and 4.2.5. The treatment of boundary conditions is carried out in Appendix 4.B, and the
conclusions are summarized in Section 4.2.6.

4.2.3 Global scheme with QG Scheme
Definition of QG Scheme

For the gas mass flux convection, a standard implicit upwind scheme is used [39]. With QG scheme,
the global scheme is written with the sign convention, for each cell €;:

Pi Wz(yzn_‘—l y?) — A" Z Siqu Zn+1

jev(@)
1 1 v -yt (4.19)
+ A" Z Sij(qg);fj {ngjyll+ + (1 ng]) n+ } Atnp?wllTinl
€ (i) !
The mass fraction yj; at interface 4j involved in the gas mass flux
(29)5; = a5 + (1 — i) (ar)ij» (4.20)
is approximated here using an upwind scheme based on sign of the mixture mass flux q;‘j:
n y? if qzy 2 0
o~ . 4.21
Yij { Y5 if qu < 0. ( )

Other consistent choices could be made as long as y;; € [0, 1].

Discrete maximum principle

Now, we examine if the discrete mass fraction remains within [0, 1] on the IV cells with this scheme.

Property 2 (Maximum principle for the mass fraction with QG scheme): Assume that
the physical parameters are such that: 7' > 0 and g} € [0,1], k € [1, N]. If the initial conditions
are such that Vk € [1, N],y € [0, 1], then the global scheme with QG ensures that y'*! remains
in [0,1], Vi € [1, N], when the time step At™ satisfies, Vi € [1, N]:

At A )
(1 - y?) + (1 — yz ) n Z S’LJ ym q"“)ij > 0. (422)
Ti ]Gv(z

0
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Obviously, the condition on the time step is automatically satisfied when q, = 0.
PRrROOF Using equation (4.19) obtained for each cell ¢ € [1, N], the system can be expressed in the
following matrix form

A = (aij),
A Y™ = B with V(4,5) € [1, N]?, B = (b), (4.23)

Y o= ()

The discrete system for Y =1-Y can be expressed too as
IS ) B = (k) = Zjaij_bz>7
AY" ! =B =A x1-B with V(i,j) € [1,N]?, ~ N 4.24
(4,5) €[ | AA = (@) = (ay), ( )
Yt o= () = (-y)

We also introduce the quantity A;(A) on each cell by Aj(A) = |aii| — > 2jc,¢) lai;|. Its definition
implies that A;(A) = AZ(K) The coefficients of the matrix system and the quantity A; are

At® A~ Sy

Ay = azz - 1 + n + “n ((Qg)zjsgl] q;kj)7
i Pi oo Wi
Jev(i)
N A" S;; g
@i =0 =, (q)7;(1 —sgj;),
A"
T A S (4.25)
_ t "
bi=1—y)+ — =T+ = > —*((ap)i; — )
v bojeu(d)
Assuming that a; > 0
A" AP S
Az(A) =1 7_771 T n ujj ((qg)u qU)
A e I

Remark: The following two formulations are equivalent:

1 * * 1 Sz ¥
o Z (005 — aiy) = o > ==y e (4.26)

Wy
’L jev() v ojev(i) ¢

The conditions V(i,j) € [1, N]? a; > 0,a;; <0 and A; > 0 ensure that the matrix A is invertible
and its inverse has positive coefficients (see [27, 137]). In order to satisfy the maximum principle,
the vectors B and B also need to fulfill b; > 0 and b; > 0 with i € [1,N]. To summarize, the
conditions for the scheme are

ag > 0 , a; < 0,5€0(i),
Vi€ [1,N],{ Ai(A) > 0, (4.27)
b; > 0 , b > 0.

For 7' > 0, g € [0,1],k € [1, N] and when ;' € [0,1],7 € [1, N], the maximum principle for the
mass fraction with QG scheme is satisfied when the properties (4.27) are fulfilled. Actually, the
condition on (b;) is equivalent to (4.22). If condition (4.22) is satisfied, then the coefficients (a;;)
and (A;) are positive as a; > A; > b;. The other two conditions a;; < 0 and b; > 0 are always
satisfied.
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4.2.4 Global Scheme with QRd Scheme
Definition of QRd Scheme

For the mixture mass flux contribution to the convection flux, a standard upwind scheme is once
again used as in equation (4.19). The global scheme with QRd scheme is written

ooy —u) + A 7 Syaly { (1 - sei) () - i) |

Jjeu(i)
+A Y Sz'j(qr)?j{sg%y?“(l =)+ (1= seiy)yf (1 - y?“)} (4.28)
jev(i)
om _ ,n+l

i
Discrete maximum principle

Property 3 (Maximum principle for the mass fraction with QRd scheme): Assume that
the physical parameters are such that: 7' > 0 and g;® € [0, 1],Vk € [1, N]. If the initial conditions
are such that V& € [1, N],y; € [0,1], then the global scheme with QRd ensures that y?“ remains
in [0,1], Vi € [1, N], whatever the time step At" is.

O

The scheme is rigorously conservative in space only for the discrete steady states, i.e. when yi"Jrl =
y?,i € [1, N]. This is not an issue in practice, when the method is applied to the computations of
steady states.

PROOF Using the same methodology as for QG scheme, a similar discrete system (noted d) is

written from (4.28) for QRd scheme:

Ay = ((a)ij),
Ay Y™ = By with V(i,5) € [1, N]?, Bs = ((ba)i), (4.29)
Y" = (y)

Using the blue color to denote the terms linked to QRd scheme, the coefficients of the matrix system
and the quantity A; are

~ At AL Sii . S o
(aa)ii = (aq)ii =14+ — + n( > Halsg — D+ Y j{(q")m‘ (seij — 45 ))7

Wi

jev(i) jev(i)
. A" Sii
(aq)ij = (@q)ij = v ﬁQij(l — 88:5)

n Atnfn At" SIJ x (T n
(ba)i = yi" + 7% + 7 <jg(:i) E(Qr)ij(%ij — Dy; )v (4.30)
~ n A" —n A" Sij . n
(ba)i = (1 —y") + Tﬁ(l -)+ n( Z wf](qr)ijsgij(l —Y; )),

i i \jev()

A" A" Sy
Ai(Ag) =1+ T n( Z CTJ(QT)U (seij — l/j))-

¢ o \jeu(i) "
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For given values ¢, and (g,)%, (k,1) € [1, N]?, and for 7 > 0, y € [0,1],k € [1, N], the following
conditions are fulfilled when y" € [0,1],7 € [1, N]:

(ag)ii > 0 , (aq)ij < 0,7 €v(i),
Vi € [1, N], Ai(Ay) > 0, R (4.31)
(bg)i > 0 , (bg)i > 0,

whatever the time step At™ is. Once again using the results [27, 137|, the matrix A, is invertible
and its inverse has positive coeflicients. Hence the maximum principle for the mass fraction y is
satisfied whatever the time step At™ is when using QRd scheme.

4.2.5 Global scheme with QRq Scheme
Definition of QRq Scheme

QRq scheme not only takes into account the sign of the relative mass flux (as QRd Scheme) but
also the sign of the mixture mass flux inside the relative mass flux contribution to the convection
flux. The global QRq scheme is

pras(yt =) + A 3 Sy { (1 —sey) (v - i) }
jev(d)

) [ ose{mra -yt —sel) + it @ - yisel |
+ At Z Sij(ar)i;

(4.32)
Pt (1= sgap) {w (U= (1 = sfy) + 97 (1 - y)sel; |

Discrete maximum principle

Property 4 (Maximum principle for the mass fraction with QRq scheme): Assume
that the physical parameters are such that: 777 > 0 and g € [0,1],k € [1,N]. If the initial
conditions are such that & € [1, N,y € [0,1], then QRq scheme ensures that yi"Jrl remains in
[0,1], ¢ € [1, N], whatever the time step At™ is, provided that the mass fluxes fulfill the following
conditions, when ¢;; < 0:

o If (QT);Fj 2 0

qi; + (ar)i;(1 — yj) < 0. (4.33)
e Otherwise if (¢,);; <0
g5 — (ar)ijyj <0 (4.34)
No condition arises when qu > 0.
O

For a co-current flow (considered here), these conditions are automatically satisfied. Once again,
the scheme is rigorously conservative in space only for the steady states (y?+1 =yl i€ [1,N]).
PROOF Using the same methodology as for QRd scheme, the discrete system from (4.32) is written

A, = ((aq)ij)’
A, Y =B, with ¥(i, j) € [1, N]?, B, = ((by)i) (4.35)
Y=o ().

Using the blue color to denote the terms linked to QRq scheme, the coefficients of the matrix system
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and the quantity A;(A,) are

At
(ag)ii =1+ —-
A
At Sis Sii . , ,
+ pﬂ( Z UiQ:j(sgij —1)+ Z ?j:((lr)zjsgij (Sg;j - ?J?));
v jev(s) jewv(i)
A" S At"™ S;; N , ,
(ag)ij = o E%‘j(l —sg;;) + T?E(Qr)ij(l —sg;;) (e — 7)),

%

At A S
(bg)i =y + Tﬁy? + n( Z —(qr)7;(s8i; — 1)<Sgijyzn +(1- Sgij)y@)v
7

to\jev(d) (4.36)
~ A" _
(bg)i = (1 =) + —-(1 =)
i
At" Siji . s
+ n( Z j(%)iﬁg% (1 - [Sgiﬂ/gl +(1— Sgij)?/?)] ))
Pi \jeuoy “
Assuming that Vj € v(i), (aq)ij <0,
Atn Atn S ] * T n n
Ai(Ag) =1+ ——+ n( Z —(qr);; (Sgi:i — [sgijui’ + (1 —sgij)yy] ))
7i i N\ Wi
J€v(i)
Examining the sign of these coefficients raises two conditions on the mass fluxes .
e When ¢; <0 and (¢-)7; >0
g + (¢r)i;(1 = yj) <0. (4.37)
e When ¢; <0 and (g-);; <0
a; — (gr)5;95 <0. (4.38)

When ¢, and (g,)}, (k,1) € [1, N]? satisfy the previous conditions (4.37)-(4.38), and if 7 > 0,
gy €[0,1],k € [1, N], the following properties are satisfied when y* € [0,1],7 € [1, N]:

(agii > 0 , (ag)ij < 0,j€v(i),
Vie [1,N], Ai(Ay) > O, R (4.39)
(bg)i = 0 , (bgi = 0,

whatever the time step At" is. Once more, using common results of [27, 137|, the matrix A,
is invertible and its inverse has positive coefficients. Hence the maximum principle for the mass
fraction with QRq scheme is satisfied whatever the time step At™ is, as long as the conditions
(4.37)-(4.38) on the mass fluxes are respected.

4.2.6 Conclusion for the boundary conditions

For each scheme, a study of the finite volume scheme for boundary cells is detailed in Appendix
4.B when considering a given valid mass fraction y», € [0,1] outside. The main conclusions for
each scheme are summarized here. If a co-current flow is considered, QRq scheme still satisfies the
discrete maximum principle without any condition on the time step. Turning to QG scheme, a
slightly different condition on the time step arises for cells sharing a face with the boundary. This
condition must be taken into account as it can be the most constraining one. Eventually, QRd
scheme still has no limit on the time step. However, the boundary flux used in the QRd scheme
must be handled carefully on an outlet face (with respect to the mixture mass flux ¢;oo > 0 defined
in Figure 4.2). When the mass fraction is unknown on this face, the expression of the flux should
be modified or another boundary flux should be preferred (such as the one used in QRq Scheme).
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4.3 Numerical verification of the schemes

In this section, regular analytical solutions from Section 3.1 are used to compare the accuracy of
each scheme, for steady-state solutions and one unsteady case. First, the spatial consistency and
convergence rate of the schemes for two steady state solutions are studied. If the scheme is stable
and conservative (for steady-state conditions), consistency ensures that the finite volume scheme
converges to the correct solution as the mesh size tends to zero [38]. The order of convergence indi-
cates how fast the solution approaches the exact solution as the mesh size decreases. The proposed
schemes are analytically first-order accurate. Subsequently, a database of 600 constant-parameter
cases (solution from Section 3.1.1) is launched for each scheme to determine the performance of the
schemes as a function of relative velocity magnitude, enabling an initial estimate of the accuracy in
the ranges of the Chexal-Lellouche and the Bestion correlations. A second database of 200 cases is
launched for an analytical solution with the approximated Bestion correlation (solution from Sec-
tion 3.1.2), in order to take a closer look at the behavior of schemes with this correlation. Finally,
the transient solution from Section 3.1.3 is considered in order to estimate the performance of the
QG Scheme to simulate unsteady cases. Appendix 4.C explains why the QRd and QRq Schemes
are not suitable for unsteady simulations.

For each case, 1D configurations of the disequilibrium equation are considered on domain © = [0, 1].
For steady-state solutions, the solution is not explicit and must be computed. A dichotomy is used
with an accuracy of 10712,

4.3.1 Consistency and convergence rate of the schemes for steady state solutions

In this section, the regular steady-state analytical solution from Section 3.1.1 is considered for
Equation (4.1). The parameters (p,u,7, T, u,) are considered constant and uniform on the domain.
They are noted with the subscript 0. A Dirichlet boundary condition on the left of the domain
y(x = 0) = 0 is applied. Two test cases corresponding to two configurations representative of a
nuclear reactor core are considered. They are noted Test Case 1 and Test Case 2. Table 4.1 gives the
parameters of the two test cases. Test Case 1 approaches the behavior of a reactor core flow under
accidental conditions, whereas Test Case 2 simulates the nominal flow during normal operation at
the bottom of the core, with the occurrence of subcooled boiling. Steady-state numerical solutions
are obtained for each scheme with an unsteady simulation using a fixed time step of

At =0.01 s. (4.40)
Quantity | Test case 1 | Test case 2 Unit
00 500 700 kg.m™3
Yo 0.3 0.0304 —
(mn 7 9 m.s~!
UrQ 1 —4.3 m.s~!
T0 1.5 0.01 S
TABLE 4.1

Parameters for the test cases representative of reactor core conditions.

The steady-state numerical solution y%% for QRd scheme and yiyh, for QRq scheme as well as the
exact solution g, are computed, using a mesh size Az = 1072 m. Results are given in Figure 4.3
for Test Case 1 and in Figure 4.4 for Test Case 2 for a number of cells n, = 1000. The steady-state
solution for QG scheme is not represented here as the solution is very similar to the one obtained
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with QRq scheme. QRd and QRq schemes seem to give similar results for Test Case 1. For Test
Case 2 where the solution adopts a logarithmic form, QRd scheme is less accurate than QRq scheme.

0.025

0.020 =

0.015 >

> -
0.010 > -~
-
0.005 p -
- —— Numerical solution ydd - QRd scheme
- - . . r
e —— Numerical solution y3/?, - QRq Scheme
0.000 ~ Exact Solution Yex |
| | |
0.0 0.2 0.4 0.6 0.8 1.0
x [m]

FIGURE 4.3
Test Case 1 - Mass fraction y as a function of z - QRd scheme (blue line), QRq scheme (green line) and exact
(dotted orange) solutions.

0.030 //
[
0.025 1

0.020

o015

0.010

0005 —— Numerical solution yd¢, - QRd scheme |

—— Numerical solution yZ%, - QRq Scheme
Exact Solution yex i

0.000

0.0 0.2 0.4 0.6 0.8 1.0

x [m]

FIGURE 4.4
Test Case 2 - Mass fraction y as a function of 2 - QRd scheme (blue line), QRq scheme (green line) and exact
(dotted orange) solutions.

Figure 4.5 (resp. 4.6) shows the convergence rate with the three schemes for Test Case 1 (resp. Test
Case 2) using different mesh sizes: Az € [107°,107!] m. The error between the numerical solution
and the exact solution is called Lo-norm. It is computed for each mesh size and defined by

_ Hynum - y€x||2

erry = with [|z||, =
2 Hyem“2 || ||2

1 &, L
S a2 n, = || 441
np &0 {AwJ (4.41)

As expected, the three schemes comply with the convergence rate of first order in space. For a given
mesh size, QRq scheme and QG scheme have similar accuracy for Test Case 1 and Test Case 2.
While QRd scheme is as accurate as the others for Test Case 1, it is less accurate for Test Case 2.
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FIGURE 4.5

Lo-norm of the error as a function of the mesh size for QG (green), QRd (red) and QRq (orange)
schemes.
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—— QRq Scheme: log(y) = 0.978x log(dx) + 0.332; r2 = 0.999
—— QG Scheme: log(y) = 0.978x log(dx) + 0.332; r2 = 0.999

/ —— QRd Scheme: log(y) = 0.931x log(dx) + 1.223; r?2 = 0.999 -

1075 104 1073 1072 107!
Ax [m]
FIGURE 4.6

Loy-norm of the error as a function of the mesh size for QG (green), QRd (red) and QRq (orange)
schemes.

4.3.2 Comparison for steady-state simulations with constant parameters

The two previous test cases verified the consistency and the expected convergence rate of 1 for
steady-state solutions. However, different accuracies can be observed, particularly for Test Case 2.
The aim is to extend this work to a larger number of cases in order to compare the accuracy of the
schemes. To this end, the constant-parameter solution of Section 3.1.1 is still considered.

ug =95 m.s_l,

po = 700 kg.m ™3, (4.42)
yo = 0.
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Considering 10 logarithmically spaced values for 7, in the interval [0.01,0.5], the accuracy of the
schemes is evaluated by scanning 20 values for the ratio A, in the interval [—0.9,0.5]. This method-
ology is repeated for 3 different values of relaxation time 7 € {0.01,1,100} This database of 600
cases approaching the characteristics of a reactor core is used to test the accuracy of each scheme.
Considering the two correlations presented in Section 1.4.2, the ratio A\, obtained for reactor condi-
tions are A, € [0.0,0.05] for the Bestion correlation and A, € [-0.9, —0.5] for the Chexal-Lellouche
one. This method is a way to study the approximate behavior of the scheme for each correlation
on regular steady-state solutions.

For numerical simulations, the number of cells in the mesh is 1000. The time step used to reach the
steady-state solution is At = 0.01 s and the stopping criterion is set to 107!3. For each scheme and
each case, the Lo-norm of the error is computed. Figure 4.7 represents the Lo-norm (averaged over
the different 7,) as a function of the A, ratio for the three relaxation times considered. The standard
deviation is shown in dotted lines. The A\, domain corresponding to each relative velocity correlation
is shown on the figure, in orange for Bestion and blue for Chexal-Lellouche. Whatever the domain,
the accuracy increases with increasing relaxation time. In the Bestion domain, the accuracy of all
3 schemes is very similar. This is also the case for all positive relative velocities. In this domain,
accuracy depends very little on the equilibrium mass fraction. As the relative velocity becomes
negative, accuracies deteriorate. In the Chexal-Lellouche domain, the QG and QRq schemes have
the same accuracy, which increases slightly with decreasing relative velocity. The QRd scheme is
less accurate than the other two for negative A,. Whatever the scheme, accuracy varies slightly as
a function of the equilibrium mass fraction, even more so as relaxation time increases.

Chexal-Lellouche Correlation Bestion Correlation

T
—— QG Scheme
—— QRd Scheme
—— QRq Scheme .
--- Standard deviation
e T=1e-02s
Ao T=1s
v T1=1e+02s

e —————0—0—9

4
===y

L, Norm of the error (log scale)

-6 i}%
BRGREEL e =SS
-0.8 -0.6 -0.4 -0.2 0.0 012 0.4
Ratio A,

FIGURE 4.7
Ly Norm of the error as a function of the ratio A, (averaged over 10 values of 7) for each scheme and three
different values of 79 (No difference between the three schemes in the Bestion interval).

For steady-state solutions with a relative velocity magnitude of the order of that obtained with the
Chexal-Lellouche correlation, QG and QRq schemes are more accurate than QRd scheme. The QG
and QRq schemes are therefore recommended when a steady-state case is simulated with Chexal-
Lellouche. This study does not draw any conclusion for the Bestion correlation, where all three
schemes appear to be equally accurate.
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4.3.3 Comparison for steady-states with the approximated Bestion correlation

In order to better study the behavior of the schemes when applying the Bestion correlation, the
analytical solution from Section 3.1.2 is investigated. The hydraulic diameter considered is d =
0.011185 m, a characteristic value for reactor cores. The relative velocity of the approximated
Bestion correlation (see Appendix 1.C) is

:1+(5—1)y

1=y up(9). (4.43)

s

With the exception of the relative velocity, all parameters are assumed constant and uniform,
with the same mixture velocity and density as the previous cases (see Equation (4.42)). Only one
relaxation time 79 = 1 s is simulated here. The interval of the density ratio ¢ used in Section 1.C
is used once again with 20 values taken from this interval. For each value of ratio d, 10 values for
the equilibrium mass fraction are once again used. The resulting database contains 200 test cases.
For numerical simulations, the same numerical parameters are used as in the previous section.
Figure 4.8 represents the Lo-norm of the error (averaged over 7,) as a function of the ratio ¢ for
each scheme. The standard deviation is shown in dotted lines. Whatever the scheme, accuracy
increases as the ratio J increases. Equilibrium mass fraction plays an increasing role on accuracy
as the ratio § increases. The three schemes have similar accuracies. However, QRd is slightly more
accurate than the other two, QRq and QG.
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FIGURE 4.8
Loy-norm of the error as a function of the ratio ¢ (averaged over 10 values of 7,) for each scheme - 75 = 1 s.

4.3.4 Comparison of the schemes for unsteady simulations

In this section, the transient auto-similar analytical solution of Section 3.1.3 is used to determine
the accuracy of the QG Scheme for unsteady simulations. The QRd and QRq Schemes are not
conservative in time for unsteady conditions. Appendix 4.C provides an explanation of why these
schemes cannot be used to study unsteady solutions.

The solution considered here is obtained with the approximated Bestion correlation and the following

parameters are considered:
0 =10,

yo = 0.2, (4.44)
dp, = 0.011185 m.
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The spatial domain studied is 2 = [0, 1]. Using the variable £ = , for tg = 1 s, the solution

uo(t + to)
1y, the mass fraction at equilibrium 7 and the relaxation time 7 are given by

y(€) = (1+ 5 sin(x08) o
t 4+ to
Xo(1+ X + acy(§) =€)’

7() = (1+ 5 coslxo8) + 3 sin(x08) o,

T(z,t) =

(4.45)

with xo = 20, a. = 0.67 and A, = 0.04. The test case is computed on the time interval [t1, t2] with
t1 =0 s and 9 = 0.1 s. Using ug = 5.0 m.s~ 1, the initial time ¢; satisfies the constraint

L
t1 +tg > ——— =0.193 s. 4.46
T w1+ ) (4.46)
The solution obtained is studied at time t3, computed with a CFL condition satisfying
UOAt
CFL = = 0.5. 4.47
AL (4.47)

Figure 4.9 represents, at instant to, the analytical and numerical solutions obtained with the QG
Scheme for a mesh of n, = 1000 cells. The solution for the QG Scheme seems to capture the right
form of the analytical solution.

T T
0.30 = QG - Numerical solution -t =0.10 s -
\ = = Analytical solution -t = 0.10 s
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FIGURE 4.9
Analytical and numerical solutions for the QG Scheme at time to = 0.1 s - n, = 1000.

A convergence study is done with a mesh size Az varying in [107%,107!] m, corresponding to a
number of cells n, varying in [10,10000]. The simulations are still computed with

CFL = 0.5. (4.48)

In Figure 4.10, the Ls-norm error is represented as a function of the number of cells for the QG
Scheme. Table 4.2 represents the numerical values of the convergence rate computed for QG Scheme.
It can be observed that QG scheme converges to the correct solution with a convergence rate that
tends to 1, as expected [38]. The QG Scheme can be used for unsteady simulations.
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FIGURE 4.10
Lo-norm of the error as a function of the number of cells n, for the QG Scheme - t5 = 0.1 s.

Number of cells | Convergence rate
10
21 0.9843
46 0.9903
100 0.9949
215 0.9975
464 0.9988
1000 0.9994
2154 0.9997
4641 0.9998
10000 0.9999
TABLE 4.2

Spatial convergence rate for the QG Scheme, computed at t5 = 0.1 s at constant CFL.

4.3.5 Conclusion

These initial tests on simple 1D solutions enable to assess the approximate performance of the
various schemes. Despite a slight constraint on the time step, the QG scheme seems more suitable
for all applications. Indeed, it shows a convergence order of 1 in both space and time, is the most
accurate of the three schemes, and can be used for unsteady simulations. If the time-step condition
of QG scheme becomes limiting for steady-state applications, the QRd and QRq Schemes can be
used. In that case, the QRq Scheme would then be recommended when using the Chexal-Lellouche
correlation (or other correlations leading to a negative relative velocity). However, care must be
taken in cases where the two-phase flow is no longer co-current. For counter-current flows where
the time-step constraint of the QG Scheme is limiting, the QRd Scheme can be used. For unsteady
simulations, the QRd and QRq Schemes cannot be used, only the QG Scheme is valid.

All the results obtained here are obtained with 1D simulations and with most parameters taken
constant and uniform. This is not necessarily representative of a 3D case where the mass fraction
equation is coupled to the complete system and to a complex mixture equation of state. However,
these verification cases allow for the identification of global trends which are confirmed in Chapter
5, where the industrial code THY C-coeur is used on 3D cases of reactor cores.
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4.A Continuous maximum principle

The studied equations are

dp
d(py) y—y 49)
i +V-(yq)+V-<y(1—y)qr)— :

The notation £ = y(1 — y) is used to study the maximum principle for y. Indeed, if £ > 0 then

y(1—y) >0syel0,1]. (4.50)

The governing equation for £ can be obtained from the non-conservative equations of y and 1 — y
as described below:

<p(9ty+q-Vy+V -(¢ar) = pf’?’) x(1—y)
(4.51)
- (Pat(l ~y)+a-V(1-y) -V -(q,) = p“‘”;“‘”) xy.
Then
S — 2§ . I
pohé+a-VE+ (1 -2y)V - (Ear) = p with S = y(1 - 9) +y(1 —y). (4.52)
Using the standard notations {; = max(£,0) and £ = —min(¢,0), equation (4.52) is multiplied
by (—¢-)
¢ 2 ) —S¢_ —2¢2
(pat < : ) 1q V< )) F-2)(EY q - Eqr V) = p B )
T
2 2 2
(05) + 2 (a5) w(0-mn) .
G g e .
re{a-mva - v (0-2a) | - -
Finally, the equation obtained is
2 2 2 S a
o (o5 )+ 2 (lar 1 -2a 5 ) + {0 - 208 a - a w0 -2} = AEEE
(4.55)

2
We define the quantity E(t) = / p%dQ and split the outside surface domain according to the sign
Q

of the mass flux q¢ = q+ (1 — 2y)q,:

ré ={xeT, q¢-nr =0},
I$ ={xel, g np <0}, (4.56)
I* ={xer, q¢ - np > 0}.
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Then, the quantity E(t) satisfies

diit) =- /F [(q+ (1- 2y)qr)£ﬂ -npdl’ — /Q %{(1 -2y)V-q, —q, V(1 - 2y)}dﬂ s
_/ p(5+2€—)€7_
Q T
Assumptions:

1. Relevant mass fraction on the boundary conditions: £_(x € Fi, t)=0.

2. Mass fraction for the initial condition such that: £_(x € Q,t = 0) = 0 and thus E(t =0) = 0.
3. 2|(1-2y)V-qr —qr- V(1 - 2y)} e L>(Q,[0,T]).

4. Equilibrium mass fraction such that: g € [0, 1] implying (S+2£_) > 0 (proof of lemma below).
5. Positive relaxation time scale 7 > 0 and density p > 0.

Thus we have
Pl o [1((1 —2)V.q, —q, - V(1- 2y))} ax. (4.58)

Assuming the assumptions previously presented,

dE(t)
dt

<[l la-20 a —a, v -2)] || £00). (4.59)

o

Using the Gronwall’s inequality [64] and E(0) = 0, it enables to conclude that E(t) = 0 on [0,T].

Lemma: If § € [0,1] then S+ 2{_ > 0 with S = g(1 —y) + y(1 — )
PROOF Let’s assume that g € [0, 1].

Case £ =0

If & =0, then y € [0, 1] implying that S > 0.

As a consequence, we have S+ 2 >0

Case £_ #0
<0,
€= ¢ <0, thus { Y (4.60)
or y > 1.
If y <0, using S =y + y(1 — 2y), the following inequality is satisfied:
y = S < 1l-y
= Sy =z y(l-y)=¢
and S(l-y) =z yA-y)=¢ (4.61)
So Sly+l—-y)=85 > 2&=-2¢_.

If y > 1, the same proof can be used in a symmetric way. Finally, we have §+2¢_ > 0 for y € R.[J
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4.B Extension of the schemes to boundaries conditions

As shown in Figure 4.2, we consider a cell ¢ containing several faces shared with j € v(4) neighboring
cells, a wall face (noted w) and an inlet /outlet face (noted with an index ico). The inlet/outlet face
has a surface S0, a given valid mass fraction Y, € [0, 1] outside and an outward unit normal ne.
The mass fluxes on this face are noted

Gico = Qioo * Moo,
(@r)ico = (Ar)ico * Do, (4.62)
(Qg)ioo = Qico T+ (1 - yioo)(%“)iom

where

Only one inlet/outlet face is considered here but the discussion is valid for several ones. For
quantities on the inlet/outlet boundary face, the instants considered are not specified here for the
sake of readability. These values are given as data, hence any consistent formula can be used, with
Yoo € [y%, vy ). Conditions (4.27),(4.31) and (4.39) are computed in order to satisfy the discrete
maximum principle for cell i. Blue terms are terms added due to the inlet/outlet boundary face.

4.B.1 Boundary condition for QG scheme

For cell ¢ from Figure 4.2, QG scheme is written

oyt =yl — A Y Sya; vt — A Siscgicey ™

J€v(i)
X 1 1
FAr Y Sylag)h {sabult + (- st}
= (4.64)
+ At" Sico(qg)ioo {585 yf T + (1 — 587 )yoo |
—-n n+l

%
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Using this scheme, coefficients arising from conditions (4.27) are

At® A~ Sy

@ii =1 + n + n ] ((Qg):jsgzgj - q;})
T p; . L Wi
jewv(3)
A" S0
+ o (@)ool — i)
A 2T 1 oY
az] —At Wi p? (1 Sgij)7

At At™ S;
bi :y? + y? - ;OO ((]g)ioo(l - Sgggo):l/om

N n At" | —n At" SZ * *
bi =(1 —y;') + 7(1 U+ — > ;((Qq)ij ) (4.65)
! Uojeu() "
At"™ Siso

((4g)ioo (Yoo + (1 = Yoo)s8L) — Gios)-

Powi
Assuming that a; > 0,
A" AP Sii . .
AN(A) =1+ —+ —~ —((49)5; — a;)
T P T Wi
jev(3)
A" S0
’ZI_Y,

Wi ((q(])zoobg:]OO - (;hoo)

The three conditions a;; > 0, A; > 0 and ?)\Z > 0 are not always fulfilled. Using the formula
(4g)ico (Yoo + (1 = Yoo)sgls,) < 88 (dg)icos (4.66)

it can be stated that a; > A; > /b\l The only remaining condition on the time step is once again
on b;. This condition, which is slightly different from (4.22), should be monitored as it can become
the most constraining one.

4.B.2 Boundary condition for QRd scheme

For cell ¢ from Figure 4.2, QRd scheme is written

Plwilyl ™ —yf) + A Y Sija {(1 — sg;;) (y;?“ - y;“rl)}
jev(i)

+ A" SiooGioo (1 — 5800 (yoo - yf{"+1)

+arm Y Sij(qr)?j{sgz’jy?“(l —y}) + (1 —sgj;)yf(1— yf‘“)} (4.67)

Jjev(?)
o A" St (0 oo sfoct ™ (1= o) (1= sehocJyso (1= 4+ |
o ,n+l
= At"pllw; Yo — Y i/z

7
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Using this scheme, coefficients arising from conditions (4.31) are

A" A Sii Sij, % (o n
(ad)ii =1+ o + n( Z UJQU (ng 1) + Z F'J(QT)ij (ng’j - yj) )

k ©o\jeu() ' jeu(i)
At"™ S0 At"™ S0
+ n 7(1 (5g7oc - 1) + n ((Jr)wc <5§>z:>c - l/oo)
P Wi Pi Wi
At S,
(ad) “n 7] (1 - ngg)
At AL Si) i
(bd)l _yz + + < Z —L (qT)Zj (ng 1)y]>
z pz . i
J€v(i)
N N
Pl w; Pl w;

- A AR Si; i
(bd)l :(1 —Yi ) + 7<1 —Y; ) + n( Z wj (qr)wsgzj(l —Y; )>
Ti b \jev(d)

At" S0 At" S0

%ioo“ioo_l 1 - Yoo r)icos 7001_007
o (sg ) y)+p? o (g )icoS8ioo (1 = Yoo)
Atn A Si; .

Ai(Ag) =1+ =+ < > )i (e — ) )
T P\ ey @

N N B
P? Tiqwo (502'00 - 1) + P? Ti(QT)wo (bgioo - yoo> .

Once more, no condition on the time step arises for the QRd scheme. However, it should be handled

carefully for an outlet boundary (with respect to mixture mass flux ¢jc > 0). Indeed, whatever

the sign of the relative mass flux (¢,)ico, the flux requires a given value of yo. If the value of the

outlet mass fraction y is unknown, a different consistent formula should be used to approximate
€ [0,1] (for instance yoo = y;'). Otherwise the flux should be modified.

4.B.3 Boundary condition for QRq scheme
For cell ¢ from Figure 4.2, QRq scheme is written
Pyt — i) + A Y Sya {(1—se) (T i) |
jev(i)
) * sgij{ym vt (L = sely) + ui (- y)sel |
+ A Z Sij(%")z'j n n+1 r n+1 N\ T (4 69)
=0 +(1 - Sgij){yj (I =y ) —sgij) +y 7 (1= )Sgij} '

sioo {11 (1 — ) (1 = selo) +yi T (1 - )sel |

+ AinS7oc((J7’)7oc
+(1 = s8100) {1 = o) }

_ . n+l
:Atnp?wziyl Ys

7
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Using this scheme, coefficients arising from conditions (4.39) are

At" At™ Sij * Sij * r n
(ag)ii =1+ o + n( Z ﬁQij(ng’j -1)+ Z wi'j(qT)ingij (ng‘j — Y ) )

: i N\jeo@) jev()
At™ S; A" S; . ,
+ p;I, iqz—oo(sgioo - 1) + ;1 cz}ijo(Q7”)i<>05gic>o (ngoo - yz{l)v
I At Sy,
(aq)ij :ﬁ Eqij(l —8g;j) + ﬁ?j(qr)zj(l —sg;;) (sef; —vf)
At A Sy
(bg)i =yi" + 75%1 + p’."b( Z i(Qr)ij(ngj —1) (Sgijyzn +(1— Sgij)y;'l))
‘ to\jeul)
At" S;
S 2 (s — 1) (oo + (1= 5oe) (@)ioe ) voe
Pi Wi
Atn S T n
o f(qr)msgm(sgm -y},
= At o 4.70
()i =(1 = y?) + = (1 = 7)) (4.70)
K2
NG Sy
+— ( Z i(%‘)ijsg:j (1 — [sgijuf + (1 —sgi;)v})] ))
P \jeuti)
A" Siso
i (38is0 — 1(Gico — Yoo(@r)ice) (1 = Yoo)
P Wi
agn2ioo r)ice go ot (1 - yP).
At P 58i00S8ioo (1 — ¥i')
Assuming that Vj € v(i), (aq)i; <0,
NN Sy
Ai(Ag) =1+ —+ n( Z —(gr); (Sggj — [sgiyi + (1 —sgi;)y; ] ))
7 P . Wi
jev(i)
A" S; At™ S; N
+ p;I, L:i:cqwo(sgioo - 1) + ,O;;L f(q’r)ioosgioo (bg;oc - -I/Zl)

The same conditions as (4.37) and (4.38) on the mass fluxes for neighboring inner cells arise again
from condition agj < 0. Similar conditions appear for the boundary face from condition b! > 0 and

Z? > 0. When ¢; < 0, the inlet boundary mass fluxes must satisfy

Qico + (1 - yoo)(QT)ioo <0,

471
Gico — (@r)icoloo < 0. (4.71)

When (4.71) is satisfied, no condition on the time step appears. Conditions (4.71) are automatically
satisfied when a co-current flow is considered, because in this case, the mixture mass flux ¢;, the

gas mass flux (¢g)ico = Gico + (1 — Yoo ) (@r )ico and the liquid mass flux (¢;)icc = ico — Yoo (¢r)ice have
the same sign. When (4.71) is not satisfied, a condition on the time step appears from condition
b! > 0 or from condition b} > 0.

4.C Why do the QRd Scheme and the QRq Scheme not converge
for unsteady simulations?

Similarly to what is done for the QG Scheme in Section 4.3.4, a convergence study can be achieved
for the QRd and QRq Schemes, using the same regular solution and numerical parameters. The
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CFL value is kept unchanged such that

CFL = 0.5. (4.72)

For n, € [10,10000], the error as a function of the number of cells is shown in Figure 4.11 for
each scheme, by comparing the numerical solutions to the analytical solution at time to = 0.1 s.
While the QG Scheme exhibited the expected first-order convergence, the QRd and QRq Schemes
quickly reach a plateau (the green and blue curves overlap). This indicates that these schemes do
not converge to the correct solution.

In Figure 4.12, the error as a function of number of cells is shown for simulations performed at
different CFL values using the QRd Scheme. As the CFL increases, the error observed on the plateau
also increases. The objective of this appendix is to provide an explanation for these observations.
The Lax-Wendroff theorem guarantees convergence for a conservative, stable, and consistent finite
volume scheme [38|. However, this is not an equivalence. Therefore, it does not directly justify
why the non-conservative schemes fail to converge to the correct solution here. An explanation is
proposed below.

T
y =& QRd Scheme-t=0.1s
=#— QRq Scheme-t=0.1s
=#— QG Scheme-t=0.1s

1072

o \

L,-Norm of the error [-]
»
»

10t 10? 103 104
Number of cells ny [-]

FIGURE 4.11
Lo-norm of the error as a function of the number of cells n, for each scheme - t5 = 0.1 s (blue and green curves
are overlapped).
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== CFL=0.5
== CFL=1
4 —A— CFL=5
§ - r Y = A = r Y L)
= oan-2
o 10
2
-
Y=
°
E \
1
o
z
g
- = —A
100 102 103
Number of cells ny [-]
FIGURE 4.12

Lo-norm of the error as a function of the number of cells n, for different CFL values - QRd Scheme - t5 = 0.1 s.

The continuous fourth Equation is considered on the spatial domain [0, L] for ¢ € [t1,t2]. The mass
fraction y satisfies

A (py) + 0. F = pg, (4.73)

with F' = qy + ¢-y(1 — y) the flux. Considering an instant ¢", Equation (4.73) is integrated on the
whole domain [0, L] to obtain a global conservation balance for the mass fraction, such that

OW (") + Fr(t") — Fo(t") = Sp(t"), (4.74)
with

W= /OL(py)dx,

L = _
SL=/ ! =Yz,
0 T

and the fluxes Fjy and F7,, which are the inlet and outlet fluxes at the boundaries of the domain.

(4.75)

Now, the discretized equation is considered, using a non-conservative scheme (QRd or QRq). On a
cell i € [1,ng], it writes

yitt —yp g~y
Py Ae+ FL = By = pom—t— A, (4.76)
(2

with FZIE /2 the flux at face i + 1/2 for cell . The flux considered for cell i + 1 on the same face is
written F:}—_l /2° Since the scheme is non-conservative in the unsteady case, the fluxes are not equal:

F::E/Q # FZ.T_E/Q. The difference is noted AFi’j_l/z such that

_ it -

AFﬂrlm - Fin+1/2 o Fz'n+1/2' (4.77)

Equation (4.76) is summed over the whole mesh. Each term is considered separately. The time
derivative term is written as follows

Py A Ar= /O Ok (py) (t")dz + o(Az) + o( At)
=1

_ 5, < /O L(py)d:v) (t%) + o(Az) + o(AL) (4.78)

= O W (t") + o(At) + o(Ax).
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Summing the source term gives

yz_yznﬂ T "y "Ydx + o o(Ax
Z A _/ - Y=Y (") dx + o(At) + o(Ax) (419)

= SL(t") + o(Az) + o(At).

The summation of the fluxes can be simplified, but a sum remains due to the difference AF}",
defined in Equation (4.77). It can be expressed as

Z (F e = F ) = Flyy g = Fijg + Z AFY
= = (4.80)
= Fp(t") — Fo(t") + o(At) + o(Ax) +ZA e
Equation (4.76), summed over the domain, can be written
O W (t") + Fr(t") — Fo(t") = SL(t") + Ry + o(Az) + o(At), (4.81)

with

ZA 2 (4.82)

Equation (4.81) approaches continuous Equation (4.74) at time t", with first-order accuracy in both
time and space, except for the source term R,,. For a conservative scheme, this source term is strictly
zero, and the equations are therefore equivalent. For the non-conservative schemes considered here,
the objective is to study this source term. For the QRd scheme, the term is written as follows:

A 1+1/2 = (¢r )1+1/2( (1_%) yi(1— y:lﬂ))

= (@)} (Wi = ) (4.83)

n o in
= (%)iﬂﬂ@(t , ;) At + o(At).

For the QRq Scheme, it is

AF+1/2 (q )z+1/2( (1 - yz—i—l) 3/?(1 - yﬁ?))

= ()7 o WP = ol + el = v )

n Y n

(4.84)

At each interface, the error AF}" | /2
are non-zero. The summation over the entire domain will yield

is first-order in time. For unsteady simulation, (AF}" /Q)ie[l,nm}

o At
Ry~ Y At ~ngAt ~ ~, ~ CFL. (4.85)
=1

Indeed, at each interface, a non-zero error AF" 12 proportional to the time step is accumulated.
After summing over the entire domain, the accumulated error becomes proportional to the number
of faces, that is, to the inverse of the mesh size Az. In this case, at constant CFL, an error is
introduced and does not decrease with mesh refinement. The discretized Equation (4.76) does not
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simulate the continuous Equation (4.73), but a modified equation with an additional source term
R,, added at each time step.

To verify this, the value of the error reached on the plateau is measured as a function of the CFL
for CFL € [0.5,5]. The case is studied for n, = 2500, which is a sufficient value to reach the
plateau when CFL = 0.5. In Figure 4.13, the error obtained on the plateau as a function of the
CFL is shown for the QRd and QRq Schemes. As expected, a straight line is obtained: the error is
proportional to the CFL.

If the proposed schemes exhibited an error AF; T_LH /2 of second order in time, the source term R,
would be of first order in space (at constant CFL). This would eliminate the error made when
refining the mesh. However, this is in no way a proof that a non-conservative scheme with second-
order error in time necessarily converges to the correct solution for regular solutions. Other reasons
may arise that prevent the scheme from converging to the correct solution.

== QRd Sche‘me -t=0.1s )
0.012+ =¥~ QRq Scheme-t=10.1s
0.010
0.008 //
0.004 /
0.002 /

/

o
=3
S
o

L,-Norm of the error [-]

1 2 3 4 5
CFLI[-]
FIGURE 4.13
Lo-norm of the error as a function of the CFL for the QRd and QRq Schemes - t5 = 0.1 s.

4.D Production control scheme

The production term due to the heat flux is added to the disequilibrium equation with the formu-

lation
XPs

T, =
P

> 0. (4.86)

If the closure law for y is not chosen wisely (proportional to 1 — gy for example), this term does not
respect the continuous maximum principle for the upper bound 1. In the case where the correlation
of x is arbitrary, a finite volume scheme is proposed in this section to ensure the maximum principle
for the discrete solution. In order to propose a general scheme that also works for a negative
destruction term that may not respect the mass fraction bound 0, a general source term denoted I'
of any sign is considered in the disequilibrium equation. The disequilibrium equation writes in this

case
(py)

5 TV (ya) +V - (y(l - y)qr) = pgT;y + I'(x,1). (4.87)

A first naive scheme is proposed for this source term. This first discretization scheme does not

ensure the maximum principle. It is referred to as GAMi. A second scheme is then proposed to
recover the maximum principle at a discrete level, denoted GAMec. This scheme adds a control
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that modifies the solution when approaching the boundary (0 or 1) to ensure that the discrete mass
fraction remains bounded between 0 and 1. The notations for discretization from Section 4.2.1 are
used here.

4.D.1 Finite volume scheme
Direct GAMi Scheme

The first obvious idea is a simple naive scheme, called here GAMi. Its formulation is

/ TdQ ~ Mw;, (4.88)

where T'f denotes the value of the source term in cell 4 for time t* € [t",#""!] such that

I = D(a, ). (4.89)

This scheme is consistent but may violate the upper bound 1 (resp. the lower bound 0) for the mass
fraction when I'f > 0 (resp. I'f < 0).

Modified GAMc Scheme
Using sg/ = sg(I'}), the GAMc scheme is

max (1 —yP, &) ©/ max (Y, ec)

. ( 1— gttt y > .
/ LdQ ~Tjw, - | sg) ! +(1—sg?)—=-——— | with0 < e, < 1. (4.90)
w;
With this scheme, the steady-state solution is modified when the mass fraction is above (1 — &)
(resp. below &.) for positive (resp. negative) source term I' so that the solution remains in [0, 1] at
all times. When away from the bounds, GAMc Scheme is consistent for the steady-state solution
and it respects the maximum principle for bound 0 and 1.

Property (Maximum principle with the production term): Assuming Vi, y!" € [0, 1], GAMc
Scheme ensures that y"™ € [0,1].

Proof Using GAMc Scheme, the following contributions are added to the matrix system previously
studied for the disequilibrium equation for each scheme (see Equations (4.30),(4.36) or (4.65)):

I Iy
L g [ — (1 — ) P S— >0

)it =50 e —yre0 T W max (e =

ag)ii =0,
(ag)is . (4.91)

b)) = sq? : >0

(bg)i = sg; max (1 —yP,e.) —

(l;g)i =0

The contributions respect conditions from Equations (4.27) so GAMc Scheme ensures the maximum
principle for the lower bound 0 and for the upper bound 1. O

GAMc Scheme is proposed in a framework for any source term. Turning to applications in THY C-
coeur model, production terms considered are such that I'(x,¢) > 0. As a consequence, the solution
is modified only in the region [1 — &, 1] for the mass fraction. Using e, = 1072, this interval is never
reached for steady states in PWR applications.
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For the following numerical simulations used to verify GAMc Scheme, the production term is taken

implicitly I'] = F?H as it is a given data. The scheme is
1—yrtt
7

with e, = 107°. (4.92)

[dQ ~ 7w,
/wi i Y (1—yPec)

For applications in the industrial code THY C-coeur, the implicit formulation is harder to obtain so
the explicit form is considered. In that case, the scheme is

n+1

oy . »
TdQ ~ Tw; C th e, =107". 4.93
/Wi o Wi max (1 —y?, &) WL €e ( )

The control parameter €. is important. It’s this parameter that modifies the solution close to the
bounds. Without it, the solution would remain stuck at bound 0 or 1 (see Figure 4.14).

4.D.2 Numerical verification of the scheme

Case without flow

The following production term is considered

Iy = 177 kgm™3.s71,
Il = 03 kgm3.s7!
_ —t/7r . 00 g ;
['(t) =Ty cos(wt)e +I'ec > 0 with w = 031 radfs, (4.94)
7 = 5.0 s.

Considering no velocity (q = 0 and g, = 0) in the disequilibrium equation and a constant uniform
equilibrium mass fraction 7, and density pg, the equation becomes a 0D equation with mass fraction
depending only on time. It writes

po=1 kg'm_s’
Yo — Y i 70 = 2.0 s,
POy = po 07_0 + I'(t) with 7 = 0.01 (4.95)
y(t=0)=0.2.

The mass fractions for each scheme (GAMi and GAMc) as a function of time are represented in
Figure 4.14 for a domain Q = [0, 1] m. This figure also shows the case where the GAMc scheme is
used without a control parameter .. As expected, GAMc Scheme limits the upper bound for the
mass fraction to 1. Thanks to the control parameter ¢., the solution for GAMc Scheme remains
in [1 — &, 1[ without never reaching 1, which is not the case without a control .. After a while,
the solution for GAMc Scheme exits the control interval [1 — &, 1[ and join the solution of GAMi
scheme, reaching the same steady-state solution.
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FIGURE 4.14
Mass fraction y as a function of time for GAMc Scheme (with or without control parameter ¢, = 107?) and
GAMi Scheme.

Case with flow

From Equation (4.95), uniform and constant 1D mass fluxes are added ¢ = ¢° = 1.0 kg.m 2.5~ ;
¢ = ¢ = 0.3 kg.m~2.s71. Mass fraction at different points of the domain 2 = [0, 1] m as a function
of time is represented in Figure 4.15 (for each scheme). The solid line represents the solution with
GAMc Scheme, while the dotted one represents the solution with GAMi Scheme. GAMc scheme
prevents the mass fraction from exceeding the upper bound 1 while ensuring the right steady-state
solution at each point of the domain.

"~
/1 —— =
175 4 x=025m |
i —— x=05m
1
1.50 '.A\ ' ¥ — x=0.75m |
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FIGURE 4.15
Mass fraction y for an unsteady 1D case: GAMc scheme (in solid line) and GAMi scheme (in dotted line).

4.D.3 Conclusion

GAMc Scheme is particularly interesting for THY C-coeur application when searching for steady-
state solution. For the steady-state solutions considered, mass fraction remain in the bounds [0, 1].
However, during the convergence, the time advancement algorithm may cause the mass fraction y
to exit the bound one because of the source term I'j, particularly when the time step is increased.
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In this case, several correlation laws defined for y € [0, 1] may diverge, and the simulation fails to
converge. The GAMc scheme prevents this behavior and allows large time steps while ensuring the
right final steady-state solution. However, when considering unsteady solutions, that is better to
use the GAMi Scheme.

When GAMc Scheme is used, care must be taken to ensure that the final steady-state solution
obtained is sufficiently far from boundary 1, i.e.: y < 1 —&.. Otherwise, the solution obtained may
be altered by the numerical scheme. Choosing ¢, = 107 is sufficient for THY C-coeur applications.
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Chapter 5

Benchmark of the numerical schemes in
THY C-coeur

This chapter is devoted to the verification of the three finite-volume schemes proposed in Chapter
4, which have been implemented in the industrial code THYC-coeur. The objective is to verify
the implementation and evaluate the performance of the schemes in terms of accuracy and CPU
time. Here, the goal is to compare the new schemes with the reference scheme from THY C-coeur.
The comparisons are carried out using industrial numerical parameters (mesh size, time step, etc.)
and aim to evaluate the performance of the schemes in predicting the solution of the continuous
equation model when the industrial numerical parameters are fixed.

To this end, an industrial database to compute the Departure from Nucleate Boiling Ratio (DNBR,
see Introduction - Section 2.2) is used. It is called the Bias Curves Database (BCD). This database
contains state points, corresponding to different operating conditions such as pressure, temperature,
power and other parameters of a reactor core. The BCD is specific to a nuclear reactor core geometry.

In practice, this database is used to configure one of the protection systems called SPIN (for french
Systéme de Protection Intégré Numérique). In this work, the Bias Curves Database is not used for
its primary purpose. Indeed, this extensive database can also be used to investigate the impact of
numerical and/or physical model modifications on the performance when comparing two versions
of THYC-coeur. It is also a way to determine the robustness of the code, the limitations on the
time step and to evaluate if some state points diverge.

In this chapter, the complete 4-equation physical model of THY C-coeur is used. For each scheme,
performance is evaluated in terms of accuracy (compared to the reference scheme), CPU time, and
number of iterations before convergence towards the steady state. The impact on performance is
assessed for two different correlations for the relative velocity: the Bestion and the Chexal-Lellouche
correlations, which are presented in Section 1.4.2. It was important to evaluate the impact of the
new schemes on these two correlations for several reasons. First, during the course of the PhD work,
the relative velocity correlation used by default in THY C-coeur changed from the Chexal-Lellouche
correlation to the Bestion correlation. The two correlations are therefore currently used in industrial
applications. Moreover, these two correlations allow testing solutions for two very different orders of
magnitude for relative velocities. The relative velocity for Chexal-Lellouche is negative and almost
reaches the mixture velocity in absolute value, whereas that of Bestion is positive and very small
compared to the mixture velocity.

The BCD and its associated protection system are presented in Section 5.1. The methodology and
the indicators used to assess performance and accuracy on the database are explained in Section
5.2. Then, the BCD is computed to evaluate the impact on performance of the three finite-volume
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schemes proposed in Chapter 4 and to compare them to the reference scheme. Section 5.3 shows
the results for the Bestion correlation, and Section 5.4 those for the Chexal-Lellouche correlation.

5.1 Presentation of the SPIN protection system and of the Bias
Curves Database

In this section, the operation of the SPIN system is presented. Then, the BCD content is detailed.

5.1.1 SPIN protection system

The system called SPIN (for french Systéme de Protection Intégré Numérique) is an automatic
protection system integrated into reactors. It evaluates the maximum vapor mass fraction in the
core as well as the margin to the boiling crisis, for a functioning nuclear power plant. It is based
on signals measured in the primary circuit. This system is used to quickly evaluate the margin
to the safety criteria, with a computational cycle of around 200 ms. It computes, every 200 ms,
approximated values for the maximum vapor mass fraction and the minimum of the Departure
from Nucleate Boiling Ratio (DNBR - see Section 2.2 of Introduction) in the reactor core. If these
quantities reach a threshold value, the system triggers the automatic shutdown of the reactor (noted
AAR for Arrét Automatique du Réacteur in French), i.e., the shutdown of the nuclear reaction by
the drop of control rods, which are neutron-absorbing elements.

In this work, the Bias Curves Database used for N4-type reactors is employed. The N4 series is
the third generation of reactors in the current French nuclear fleet, following the 900 MWe and
1300 MWe series. These reactors are second-generation pressurized water reactors developed by
Framatome and EDF. A N4 reactor produces 1450 MWe at nominal power. Four N4 reactors have
been built in France, two at the Chooz plant, commissioned in 2000, and two at the Civaux plant,
commissioned in 2002. For the N4 series, the Bias Curves Database consists of 36 148 state points.

Figure 5.2 shows a diagram explaining the set up and operation of the SPIN system. First, the
SPIN system evaluates the state of the core based on real-time measured data. For this, several
sensors measure certain physical quantities in the primary circuit around the nuclear reactor core,
where measurements are easier to perform. The locations, where the quantities are measured for
the operation of the SPIN system, are shown in Figure 5.1 which represents the primary circuit of
a nuclear power plant (with french notations). The quantities measured are:

e The outlet pressure, which is measured directly in the pressurizer.

e The inlet mass flux , which is given by the speed of the Reactor Coolant Pumps (RCP) in
the primary circuit. It gives the inlet mass flux for one of the four loops of the system, (so
four computations of the SPIN system are done in parallel, one for each loop).

e The inlet temperature of the core which is measured by a probe. A second temperature
probe at the outlet along with the mass flux of one of the four loops allows obtaining one
fourth of the total core power through an enthalpy balance (at constant mass flux ).

Additionally, neutron detectors, called fission chambers, measure the neutron flux according to the
height in the core. This allows to obtain the normalized axial power shape in the core. Another
necessary quantity is the FAH, or FDH (from the french Facteur d’élévation d’enthalpie)). It
corresponds to the ratio between the power of the hottest rod in the assembly and the average
power of a rod in the core (as a function of the height). Sensors continuously measure the position
of the control rods in the reactor core. The position of the control rod enables to evaluate the FDH
per core slice according to the height within the core using tabulations. These tabulations, giving
the FDH as a function of the control rod positions, are obtained with neutronics computations.
The tabulations are updated monthly based on the fuel burn-up, which corresponds to the current
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consumption state of the fuel. The total power and the FDH are used to transform the normalized
axial power shape into the hot channel axial power distribution.

All these quantities enable the evaluation of the one-dimensional enthalpy field in the hot assembly
as a function of the height in the core (through an enthalpy rise calculation). For this computation,
the flow is considered in a single channel. Based on the inlet mass flux and enthalpy, and considering
a constant pressure, the mixture velocity can also be obtained along the channel.

Thus, the SPIN system provides the approximate 1D vectors for the enthalpy and mass velocity
fields in the hottest channel in the core. To improve this simplified calculation, empirical corrections
(based on FDH, and other measured parameters) are applied to the local enthalpy and mass velocity
evaluated by the single-channel calculation. This allows taking into account the impact of flow
redistribution between the assemblies in the core. These functions, called bias curves, are applied
to the enthalpy and mass velocity. Subsequently, a critical heat flux correlation is used to obtain
the approximate value of the DNBRmin, i.e., the minimum DNBR value in the reactor core. The
bias curves are complex functions that contain many parameters to be adjusted. These parameters
are set using the results of the minimum DNBR in the core from a 3D thermohydraulic code such
as THYC-coeur, hence the creation of the Bias Curves Database. This adjustment must be redone
for any change (change of fuel, core operating parameters, or critical heat flux correlation).

Pression
primaire

PUISSANCE NUCLEAIRE

Cote des grappes |

Signaux chaines neutroniques

Températures en
branches froides et chaudes

POMPES DE CHARGE Vitesse pompes

FIGURE 5.1
Scheme of the primary circuit with the measurement points enabling the SPIN system to operate. For simplicity,
only one of the four primary loops is pictured.
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FIGURE 5.2
Operation of the SPIN system.

5.1.2 Bias Curves Database

For a given geometry of a reactor core, the BCD contains the 3D fields characterizing the flow in
the core based on six input parameters:

the inlet mass flux,
the inlet temperature,
the outlet pressure,
the total power,

the axial power shape,
the FDH.

The variation of these parameters within predefined ranges leads to the creation of a database of
36 148 points (for N4 reactor with a fuel management called ALCADE).

The Bias Curves Database consists of a large number of cases, covering most normal and accidental
operating conditions for a reactor core. They are therefore a valuable tool for evaluating the
performance in terms of accuracy, CPU time and robustness of numerical changes in THY C-coeur.
This makes it possible to verify that modifications (to physical models, numerical schemes, etc.)
have no impact, or only a minimal one, on the results obtained with the current THY C-coeur code
used in industrial applications. In the following, this database is thus used to assess the impact of
the schemes proposed in Chapter 4 on the DNBR results.

Using the THYC-coeur reference scheme, the state points of the BCD are computed with a fixed
time step of At = 0.01 s for industrial applications. By exploiting the symmetries of the reactor core
power distribution, the spatial mesh represents only one-eighth of the entire reactor. A cartesian
mesh is considered here with an industrial configuration, called semi-refined mesh. The core is
meshed with one cell per fuel assembly, except for the central assemblies, which are meshed at the
subchannel level (324 cells per assembly). Figure 5.3 shows the semi-refined mesh for a full reactor
core, highlighting the eighth-of-core mesh. For this work, we choose to use an axial mesh (along the
main flow axis) consisting of cells with a maximum size of 13 cm, over a total height of 4.7945 m.
The total mesh contains approximately 15 000 cells.
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FIGURE 5.3
Semi-refined industrial mesh for a nuclear reactor core.

To compute the DNBRmin, the equilibrium quality X is used in the THYC-coeur code. Using
notations from Chapter 1, it corresponds to

_ Yqghg + (1 —y)qh, — gmhy
qmL

X

(5.1)

The equilibrium quality serves as an indicator of how strongly the flow is two-phase. It is directly
related to the mass fraction y but accounts for the dynamic effects due to the mass flux of each
phase. The equilibrium quality is used in the following schemes as the color map for BCD results.

5.2 Definition of the performance indicators

The three finite-volume schemes (see Chapter 4) for the disequilibrium equation on the mass
fraction have been implemented in THYC-coeur. The schemes for the other equations (total mass,
momentum and energy) are not modified. These three new implementations are called QG Scheme,
QRd Scheme and QRq Scheme. These schemes are compared to the current scheme of THY C-coeur,
which is called here REF Scheme.

In THYC-coeur, the stopping criterion corresponds to the convergence condition used for deciding
whether a steady-state has been reached. This criterion is compared to the Lo-norm of the temporal
increments for each variable (entropy, pressure, mass flux and mass fraction), normalized by the
Lo-norm of the variable at the current time. For each relative velocity correlation (Bestion and
Chexal-Lellouche), the four schemes are tested for two different stopping criteria (1071 and 107%).

A criterion of 10~ corresponds to steady-state solutions obtained up to machine precision (for a
given mesh size and time step). At this criterion, the new schemes can be compared to the REF
Scheme to verify the implementation and compare the accuracy. BCD results with this criterion
are noted cvREF, cvQG, cvQRd and cvQRq. The cvREF are the reference results and are used for
every comparison in the following.

The stopping criterion of 10~* corresponds to the stopping criterion used in industrial applications.
It is a compromise between accuracy and CPU time, providing results with acceptable variation of
DNBR and reasonable CPU time. BCD results, obtained with this criterion, are noted indREF,
indQG, indQRd and indQRq. They are compared to cvREF.

Bias Curves Database is run with a constant time step At = 0.01s, which is the industrial value
currently used in THY C-coeur.
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The new schemes proposed for the fourth equation make it possible to eliminate constraints on
the time step. The times step could be then increased to gain CPU time. However, increasing
the time step tends to degrade the steady-state solutions when keeping industrial stopping criteria.
The accuracy of the resulting solutions then becomes insufficient, as dispersion in DNBR results
compared to the reference exceed the allowed thresholds. There can be various reasons for this
degradation in the solution. Increasing the time step worsens the iterative resolution of the matrix
systems at each time step, for the coupled momentum-pressure resolution. Moreover, the stopping
criterion of THY C-coeur can become sensitive to the time step when it is increased to high values.
This is due to nonlinear effects in the computation of the residuals, which uses the increments of
the computed variables. This can cause premature termination of steady-state calculations. Time
stepping could also be managed with a variable time step, depending on a constraint such as a CFL
condition. This possibility is not explored here, as the majority of the industrial applications use a
fixed time step. The work is therefore limited here to the constant industrial time step of At = 0.01
S.

In order to evaluate the performance of each BCD computation, several numerical indicators are
defined. Mean quantities on the full database (of Ngop = 36148 cases) are defined with the notation

Poep=~—— S £ (5.2)

Ngep
i€[1,Npcp]

where f; is the value of quantity f for Case i, with f being the CPU time t.p,, the number of
iterations Njter, or the variation of DNBR. To evaluate the performance in accuracy, the absolute
and relative variations of DNBR are computed on each case with the following notations
ADNBR = DNBR™" — DNBR"*/,
DNBR"™" — DNBR"®/ (5-3)
DNBR"/ ’

where DNBR"®/ is the DNBR obtained with cvREF and DNBR™" the BCD computation considered
(cvQG, cvQRd, cvQRq, indREF, indQG, indQRd, indQRq).

A,DNBR =

In industrial applications, a variation of DNBR less than +0.1% or £0.001 is considered negligible.
If the variation remains less than +0.5% or +0.005, it is considered acceptable, particularly when
the DNBR is high (superior to 2). The number of cases where the relative variation exceeds
+0.1% or +0.5% are computed when comparing two BCD results. They are noted respectively
N(|A| > 0.1%) and N(J]A,| > 0.5%). The geometric mean of the variation of DNBR is defined by:

1
m(Ay) = = (log|ADNBR|) i = =5 D, log|ADNBR;|. (5.4)
BCD |
i€[1,Npcp]
With this definition, the average variation of DNBR is 10~™(&")%. As a consequence, the higher
the value of m(A,), the smaller the variation, meaning that the scheme solutions are closer to the
cvREF results. To evaluate the performance, the mean CPU time, noted (tcpy)gop, and the mean
number of iterations before convergence, noted (Nje) pcps are computed using Equation (5.2).

For each BCD computation, the evaluated performance indicators in terms of accuracy and CPU
time are:
e The geometric mean variation of DNBR m(A,),
e The number of cases where the relative variation of the DNBR exceeds £0.1% (noted
N(|Ay] > 0.1%)) or £0.5% (noted N(|A,| > 0.5%)),
e The mean CPU time (tcpu)pgeps
e The mean number of iterations before convergence (Njter) gop-
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5.3 Numerical results of the Bias Curves Database with the Bestion
correlation

5.3.1 Verification of the implementation

Using the Bestion correlation from Equation (1.103) for the relative velocity, Bias Curves Database
is rTun with a stopping criterion of 10~!! for the four schemes (REF, QG, QRd and QRq). Figure 5.4
(resp. 5.5, 5.6) represents the variation of DNBR for cvQG (resp. for cvQRd, cvQQRq) compared with
cvREF as a function of the reference DNBR (from ¢vREF). Different lines represent the industrial
limits: the black solid line shows the threshold ADNBR = =£0.01, the dotted blue ADNBR =
+0.005, the solid red A, DNBR = £1% and the dashed green for A, DNBR = £0.5%. The indicators
m(A,) are, evaluated

for QG Scheme:  m(A,) =11.0+0.05,

for QRd Scheme: m(A,) =10.8+£1.2, (5.5)

for QRq Scheme:  m(A,) = 11.0 + 0.06.

We conclude that the implementation of the three new schemes is valid and the accuracy obtained
is very similar to cvREF as the DNBR variations are far from the criterion of +0.1%.
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FIGURE 5.4
Relative variation of DNBR for cvQG as a function of the DNBR with the Bestion correlation.
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FIGURE 5.5
Relative variation of DNBR for cvQRd as a function of the DNBR with the Bestion correlation.
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FIGURE 5.6
Relative variation of DNBR for cvQRq as a function of the DNBR with the Bestion correlation.

5.3.2 Impact on the performance at an industrial stopping criterion

Now, the BCD are run with an industrial stopping criterion of 10~% for each scheme. The DNBR
variations (compared with cvREF) are represented as a function of the DNBR (of cvREF) in Figure
5.7 for indREF, in Figure 5.8 for indQG, in Figure 5.9 for indQRd and in Figure 5.10 for indQRgq.

The performance indicators for each scheme are summarized in Table 5.1.

The schemes are similar in performance in terms of accuracy or computing time. For each scheme
only a very few state points (4-6) are above the limit of +0.1% for the variation of DNBR and
with a high DNBR of reference (> 2). These slightly larger variations are caused by a threshold
effect on DNBR computation when vaporization occurs. The four schemes are considered equivalent
for the Bestion correlation and for a stopping criterion of 1074, This observation does not imply
that the resolution of the fourth equation has a small impact on the solution. The differences
between the proposed schemes mainly lie in the treatment of the relative velocity term. With the
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Bestion correlation, the relative velocity is very small compared to the mixture velocity. Therefore,
differences in the scheme have little impact on the solution. This is why the observed performances
are similar in terms of both accuracy and CPU time. A more noticeable effect is seen with the
Chexal-Lellouche correlation, as shown in the following section.

Scheme indREF indQG indQRd indQRq
m(A,) 6.43+4.44 | 6.40+444 | 6.39+4.44 | 6.40+4.44
N(|A] > 0.1%) 5 6 4 5
N(|A] > 0.5%) 0 0 0 0
(tepu) gop (8) 791+1.02 | 7.80+1.01 | 7.86+1.01 | 7.85+1.01
(Niter) oD 67.15£9.40 | 67.07+£9.32 | 67.04 £9.28 | 67.08 £9.30

TABLE 5.1
Performance indicators for each scheme with the Bestion correlation and a stopping criterion of 1074,
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FIGURE 5.7
Relative variation of DNBR for indREF as a function of the DNBR with the Bestion correlation.
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FIGURE 5.8
Relative variation of DNBR for indQG as a function of the DNBR with the Bestion correlation.
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FIGURE 5.9
Relative variation of DNBR for indQRd as a function of the DNBR with the Bestion correlation.
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FIGURE 5.10
Relative variation of DNBR for indQRq as a function of the DNBR with the Bestion correlation.

5.4 Numerical results of the Bias Curves Database with the Chexal-
Lellouche correlation

5.4.1 Verification of the implementation

The Bias Curves Database is computed for the Chexal-Lellouche correlation. First, the BCD results
for each scheme is compared with cvREF for a stopping criterion of 107!, Figure 5.11 (resp. 5.12
and 5.13) represents the variation of DNBR for ¢cvQG (resp. ¢cvQRd and ¢cvQRq) as a function of
the DNBR (for cvREF).

The QRd and REF Scheme have similar results for the stopping criterion of 107'*. For the QG
and QRq Scheme, several state points show dispersion of DNBR compared to the reference scheme,
as seen in Figure 5.11 and Figure 5.13. This is due to the fact that the spatial discretizations (for
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steady-state) of the QG Scheme and the QRq Scheme differ from that of the REF Scheme for the
non-linear term involving the relative velocity (see Section 4.3). This leads to different solutions
on the industrial mesh used in THYC-coeur. This effect is particularly noticeable for the
Chexal-Lellouche correlation, where the relative velocity reaches high negative values (almost equal
in magnitude to the mixture velocity) as shown in Section 4.3. This effect was not observed with
the Bestion correlation because the relative velocity in this case is lower and positive. In Figures
5.11 and 5.13, the two-phase points (X > 0.2) are particularly affected, as the non-linear term is
larger in these cases (since it takes the form u,y(1 — y)). For these two-phase cases (X > 0.2), the
variation is negative, which means that the QG and QRq schemes are more penalizing than the
reference scheme. However, these variations remain below +0.5%, which is still acceptable. These
differences arise because the axial mesh used is not fully converged. The new schemes offer a slight
gain in accuracy for an equivalent mesh, as shown in the analyses in Section 4.3. It is therefore
recommended to use these new schemes when applying the Chexal-Lellouche correlation.
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FIGURE 5.11
Relative variation of DNBR for cvQG as a function of the DNBR with the Chexal-Lellouche correlation.
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FIGURE 5.12
Relative variation of DNBR for cvQRd as a function of the DNBR with the Chexal-Lellouche correlation.
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FIGURE 5.13
Relative variation of DNBR for cvQRq as a function of the DNBR with the Chexal-Lellouche correlation.

5.4.2 Impact on the performance at an industrial stopping criterion

For each scheme and with a stopping criterion of 1074, the DNBR variations compared with cvREF
are represented as a function of the DNBR in Figure 5.14 for REF Scheme, in Figure 5.15 for QG
Scheme, in Figure 5.16 for QRd Scheme and in Figure 5.17 for QRq Scheme. The performance
indicators for each scheme are shown in Table 5.2.

As for the stopping criterion of 107!, the QG and QRq Scheme show a dispersion of DNBR (when
comparing to cvREF) with variations higher than +0.1%. The dispersion is still acceptable, with
most variations less than +0.5%. The QRd Scheme and the REF Scheme show a negligible DNBR
dispersion. For the Chexal-Lellouche correlation, the three new schemes (QG, QRd and QRq) are
faster, by almost a factor 2 in the number of iterations and in CPU time: the new implementation
of the disequilibrium equation allows for a 50% reduction in computation time. As a conclusion, all
schemes can be used and the QRq and QG schemes should be prioritized.

Scheme indREF indQG indQRd indQRq
m(A,) 6.38 +4.48 3.68 +3.80 6.01 +4.44 3.62+3.76
N(|A,| > 0.1%) 4 1168 10 1180
N(|A,| > 0.5%) 0 1 0 2
{tepu) gop (8) 14.98 + 4.06 7.96 £ 1.16 8.36 + 1.55 8.27 +1.37
(Niter) op 134.94 + 36.78 | 69.25 £9.84 | 70.24 +£11.84 | 72.09 4+ 11.82

TABLE 5.2
Performance indicators for scheme with the Chexal-Lellouche correlation and a stopping criterion of 1074,
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FIGURE 5.14
Relative variation of DNBR for indREF as a function of the DNBR with the Chexal-Lellouche correlation.
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FIGURE 5.15
Relative variation of DNBR for indQG as a function of the DNBR with the Chexal-Lellouche correlation.
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FIGURE 5.16
Relative variation of DNBR for indQRd as a function of the DNBR with the Chexal-Lellouche correlation.
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FIGURE 5.17
Relative variation of DNBR for indQRq as a function of the DNBR with the Chexal-Lellouche correlation.

5.5 Schemes comparison

Table 5.3 summarizes the usage recommendations for each scheme based on the simulations per-
formed with THYC-coeur. It leads to the conclusion that the QG Scheme should be used by
default for steady-state simulations. If the time step condition becomes limiting in some cases,
the QRq scheme is then recommended, except in the case of counter-current flows. In practice,
counter-current flows are almost never encountered for the applications concerned here. If, in the
future, some counter-current simulations need to be performed and the QG Scheme imposes a too
constraining time step, the QRd Scheme could be used instead. For unsteady simulations, the
QG Scheme should also be used. Note that in the case of unsteady simulations, the QRd and
QRq schemes are, by construction, not applicable.

The three new finite-volume scheme implementations in THYC-coeur have improved the perfor-
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mance for the Chexal-Lellouche correlation, particularly in terms of CPU time. For the Bestion
correlation, no performance improvement was observed. However, the new schemes offer better
robustness with a control over the time step condition (or even eliminate it), while maintaining the
same level of accuracy on industrial meshes.

Comparison table of schemes characteristics for THY C-coeur applications.
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Scheme Constraints Other Steady-state Steady-state Unsteady
time step constraints Bestion Chexal-Lellouche simulations

REF Complex - Valid Less recommended -
Outlet BC , .

QRd None o e Valid Less recommended | Not suitable
Not limiting

QRq None Co-current flows Valid Recommended Not suitable

T; ] - .
QG Not 11(1)1\;1 ting None Valid Recommended Recommended
TABLE 5.3



Part 111

ThermoTorch 1D without relative
velocity
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Chapter 6

ThermoTorch: a 1D finite volume code

The ThermoTorch 1D code simulates a one-dimensional two-phase water-steam flow using a finite-
volume method. Its initial version was presented in [68]. The current version of ThermoTorch 1D
is described in details in this chapter.

This code is a simplified, one-dimensional version of the THYC-coeur code. The objective is to have
a prototype that remains close enough to the industrial code to allow testing of numerical schemes
and a new method to accelerate the convergence towards the steady-state. It is used in Chapter
7 to validate the proposed numerical schemes, in both steady-state and unsteady cases, comparing
the results with the analytical solutions presented in Chapter 3. In Chapter 8, a steady-state
configuration of the code that is representative of a sub-channel flow in a reactor core, is used to
test a Machine Learning-based acceleration method envisioned for the industrial THY C-coeur code.

First, the physical model implemented in the code is presented in Section 6.1, with a focus on the two
continuous systems of equations proposed. In Section 6.2, the temporal and spatial discretizations
are detailed. Based on this discretization, the numerical schemes implemented in the code are then
explained in Section 6.3. Finally, Section 6.4 highlights the different configurations of the code used
in the following chapters.

6.1 System of equations

In this section, the two physical models used in the ThermoTorch code are presented. They are
simplified versions of the THYC-coeur model. First, the system of conservative equations is detailed
for the two models implemented in ThermoTorch. Then, the equations are manipulated to derive
the systems implemented numerically.

6.1.1 Conservative balance equations

A one-dimensional spatial domain Q = [Tmin, Tmax| 1s considered during a time interval [0,7] to
represent a two-phase flow of a water-steam mixture. A volumetric heat source, denoted ¢(zx,t),
can be applied over a portion of the domain. Two models are available in ThermoTorch: the 3-
equation model, which describes a thermodynamic equilibrium two-phase flow, and the 4-equation
model, which accounts for subcooled boiling (see Chapter 1). The simplifications compared to the
THYC-coeur code are as follows: the flow is considered in a free medium

e(z) =1, (6.1)

without second-order differential terms, without gravity and friction due to solid and with no relative
velocity
ur = 0. (6.2)
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With these hypotheses, the two formulations of the energy equation presented in Chapter 1 - in
terms of total energy or in terms of enthalpy - are equivalent. The model is expressed in terms of
the total energy, in order to obtain a conservative system similar to the one exposed in Chapter
3. The resulting 4-equation model is similar to a Homogeneous Relaxation Model (HRM) [16]:

Orp + 0 (pu) = 0,
O (pu) 4= 0 (pu2) + Oxp =0,

6.3
O (pE) + 0z (puE) + 0 (pu) = ¢(x, ), (6.3)
0:(py) + Ou (puy) =T,
with i
u
E=eppy) + 5 o
r - X¢(@) +p27;y.

where  is the fraction used for vaporization, and 7 is the relaxation time required to reach thermo-
dynamic equilibrium (see Section 1.4.1 for details). These two quantities are modeled using closure
laws as detailed in Appendix 6.A. An equation of state provides the internal energy e as a function
of pressure p, mixture density p and mass fraction y:

_ 11—y
cp,p,y) =yeg(p) + A —yler | popr=7—""—|>

(6.5)
P Pg(p)

with €, the internal energy and p, the density of the gas phase computed at saturation (see Equation
(1.66)).

The 3-equation model consists of the same equations as those in Equations (6.3), except for the
fourth equation, which governs the mass fraction y. The equation is not solved; instead, the mass
fraction is computed at thermodynamic equilibrium using Equation (1.59), which is recalled here:

_ ~ h(p,p) — lu(p)
y(p,p) = Top) —Tulp) (6.6)

with h(p, p) = e(p,p) + % the enthalpy. The 3-equation model is:

Oup + 0z (pu) = 0,
Oy (pu) + O, (pu2) + 0xp =0, 67)
O (pE) + 0z (puE) + 05 (pu) = ¢(z),

y =7(p,p).

2

with E =e(p, p,7) + 5.

6.1.2 Unknowns considered and implemented equations

Equations (6.3) are expressed in terms of density, velocity, total energy, and mass fraction. The
objective is to transform these equations to obtain a final system expressed in terms of pressure p,
mixture mass flux defined by ¢ = pu, mixture enthalpy h, and mass fraction y. The aim of these
manipulations is to obtain a system of equations that is easily implementable numerically, particu-
larly by decoupling the discrete equations on mass fraction and on energy from the other equations
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in order to solve the unknowns step by step. This section presents the necessary transformations
to obtain this final system, which is then discretized using finite volume schemes in Sections 6.2
and 6.3. First, the steps required to derive the enthalpy equation from the total energy equation
are presented. However, the obtained equation is still coupled with the pressure. Numerically, this
would imply having a coupled system of pressure, velocity, and enthalpy. In this case, the matrix
system is complex to solve, which can significantly increase CPU computation time. The objec-
tive is therefore to propose a method to decouple energy from the velocity-pressure system. To do
this, a thermodynamic function, denoted s, depending on enthalpy, pressure, and mass fraction, is
introduced. It is called the pseudo-entropy and noted s as it is defined as a mixture quantity
from entropy of each phase. For the 3-equation model, the pseudo-entropy is an entropy of the
system (see Section 6.3). When considering the 4-equation model, this pseudo-entropy should not
be confused with the actual entropy of the system noted s, whose formula is not explicitly known.
An approximation on the pseudo-entropy enables to express the energy equation independently of
the other equations when it is discretized in time (see Section 6.3).

Using the mixture EoS, the density is expressed as a function of pressure, mass fraction, and the
pseudo-entropy s. This makes it possible to write the total mass conservation equation in the form
of a pressure equation. In the momentum equation, a change of variable from velocity u to the mass
flux ¢ = pu allows the equation to be rewritten in terms of the mass flux.

Transformation of the total energy equation into the enthalpy equation

The total energy equation is rewritten in terms of enthalpy using a standard manipulation. The
kinetic energy equation is obtained by multiplying the momentum equation by the velocity (and
using the total mass conservation):

2 2

u—) + 0y (pu%) + udyp = 0. (6.8)

at(P 9

This equation is subtracted from the total energy equation. Using the mixture enthalpy h = e+p/p,
the energy equation writes

Ot (ph) + 0z (puh) = Oip + udyp + &(). (6.9)

Definition of the pseudo-entropy s

The energy Equation (6.9) is still coupled with the pressure. In what follows, a thermodynamic
function called pseudo-entropy and noted s is proposed to decouple the discretized energy equation
from the pressure equation. It is defined as a mixture quantity, derived from the entropy of each
phase:

s(p, b, y) = ysg(p) + (1 —y)si (p, = —— y

with the gas phase assumed to be at saturation here. For the 3-equation model, the pseudo-entropy
corresponds to the entropy of the system s = s. It satisfies

0s 0s
8]7 PY ap 2y

where the mixture speed of sound ¢(p, p,y) is defined by
de\ Oe
(p0)? = () b <) . (6.12)
Op Py ( Op p,y)
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The following differential equation can be used
Tids = dh — vdp, (6.13)

with v = % and T} the liquid temperature. This expression is valid for both one-phase liquid flow
and two-phase flow. It allows Equation (6.9) to be written in terms of entropy, decoupled from the
other variables:

73|01 (ps) + 0 (pus) | = (). (6.14)

Equation (6.13) is not valid for the 4-equation model, when the mixture is not at thermody-
namic equilibrium. In that case, the two phases do not have the same temperature. The
system entropy cannot be easily derived from the entropies of each phase in this case. The
pseudo-entropy s of Equation (6.10) is not the entropy of the system. It satisfies

d .
Tids = dh — (v + y(T) — Ts<p>>di;>dp +5ydy, (6.15)
with B
sy = (h — hg) = Ti(s1 — 34) = pu(p, Th) — By (p, Ts) + (Ts — 1})3,. (6.16)

The temperature T}, of phase k is defined in Equation (1.6) and the chemical potential u of phase
of phase k in Equation (1.65). As expected, Equation (6.13) can be obtained from Equation (6.15)
when the liquid phase is also assumed to be at saturation, since, in that case: p = ; = g, and
T, =1Ts (p)

The pseudo-entropy s is used in the implicit formulation of the numerical schemes within the
enthalpy equation for the 4-equation model (see Section 6.3.1) through the following approximation

T10s =~ 0h — vop. (6.17)

With this approximation, the discrete energy equation can be decoupled from the other equations,
although some terms have been neglected (highlighted in blue in Equation (6.15)). It is detailed
in Section 6.3. As it will be shown in Section 6.3, this approximation is used only in the unsteady
part of the discrete numerical scheme. In the steady-state balance (8, (puh) — udyp + ¢(z)), the
energy equation is still expressed in terms of enthalpy and pressure. When considering steady-
state, the unsteady terms in the equations tend toward zero. The terms neglected (blue terms in
Equation (6.15)) in the differential of the pseudo-entropy are therefore zero at that point. The
steady-state solution of the original continuous model is thus preserved despite this approximation.
This approximation only imposes a different numerical path for the computation to reach the steady
state. Thus, the resulting steady-state solutions are not affected by this approximation.
In Chapter 7, a smooth unsteady solution of a one-dimensional Riemann problem for the 4-
equation model (with a simplified mixture thermodynamics) is used to evaluate the impact of this
approximation on unsteady solutions.

Mixture density linearization to rewrite the total mass conservation equation

The objective is to transform the mass conservation equation into an equation for pressure. To do
so, the mixture density p(p, s,y) can be expressed as a function of pressure p, pseudo-entropy s, and
mass fraction y, using the mixture EoS. The linearized form of the density is written as follows

dp = adp + Bds + mdy, (6.18)

- — (9 — (9 — (9
with o = (Bp)&y’ B = (85)%/ and m = (ay)p’s.
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The coefficients «, § and m are given in Appendix 6.C for different equations of state available
in ThermoTorch. The total mass conservation equation from Equations (6.3) can be rewritten

a0ip + BOs + mOyy + Ozq = 0. (619)

System of equations implemented numerically

The chosen unknowns for the final system are (p, ¢, h,y) (or (p, g, h) for the 3-equation model). The
system for the 4-equation model in ThermoTorch 1D consists of the total mass balance (equation
for pressure), the momentum balance (equation for mass flux), the energy balance (equation for
enthalpy), and the mass fraction balance (equation for mass fraction):

V(z,t) € 2 x[0,T], T > 0 and Q = [Tmin, Tmaz),

adp + BOs + mOy + 0zq = 0,
dq + 9z (uq) + 8xp =0,
Oy (ph) — 0up + 0x () — udsp = 6(x), &2
O (py) + 0z (ay) =Ty + pg-

The resulting system of equations is easily implementable numerically. However, it is no longer in
a conservative form, which means that the resulting numerical model will not be able to simulate
solutions with shocks (see Section 7.2). In practice, the industrial code THY C-coeur is not used for
applications involving shocks. The 3-equation model is the same model as Equations (6.20), but
without the mass fraction equation.

6.2 Discretization framework for finite volume schemes

The continuous equations presented in the previous section are studied on a one-dimensional domain
Q = [Tmin, Tmaz) Over the time interval [0,7]. In this section, the temporal and spatial discretiza-
tions are presented. This allows for the transition from a continuous problem to a discrete one,
whose solution approximates that of the continuous solution. After discretizing the time interval,
the spatial discretization is introduced to enable the integration of the time-discretized equations
using finite volume schemes. Here, a staggered grid mesh is used. It enables to avoid odd-even
decoupling between pressure and momentum leading to checkerboards patterns. The staggered
mesh grid also provides a gain in accuracy, compared to collocated grids. In particular, the pressure
gradient in the momentum balance is centered. This choice is also justified by the fact that this
type of scheme has good behavior in the low Mach limit (see for example [71]). Finally, the various
methods available in ThermoTorch for controlling the time step are presented.

6.2.1 Time discretization

The time interval [0, 7] is discretised in Ny intervals [t", t" 1] n € [0, Ny — 1] with At" = "+ —
t",n € [0, Ny — 1] such that

=0 ; VYnel0,Ny—1], t"™ =" + At" and T = t"'7T, (6.21)

For any function f(x,t), its value at time ¢" is written:

Yn e [0, N7, Ve € Q,  f™(z) = f(z, t"). (6.22)

The time increment of f(z,t) between time " and t"*! is defined by

Ve eQ, of(z)=f"(x) - f(x). (6.23)
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6.2.2 Spatial discretization with a staggered grid

A regular one-dimensional staggered Cartesian mesh is implemented in ThermoTorch. It is rep-
resented in Figure 6.1. This means that scalar variables are stored in the centers of the control
volumes while the mass flux (and velocity) variables are defined at the faces of the control volumes,
giving the staggered grid. The first mesh, where pressure, energy, and mass fraction are defined,
is called pressure mesh. The second mesh is centered on the faces of the pressure cells, which
defines new control volumes. This mesh is called flow mesh. To construct this staggered mesh,
the spatial domain Q = [Zpin, Tmaz] 18 divided into cells of uniform size, which define the control
volumes for the pressure mesh. The size of the cells is denoted Ax and satisfies

Tmax — Tmin
A = ———— 6.24
e (6:24)

with n, + 1 the number of cells in the pressure mesh. The cell centers of the pressure mesh are
noted z; with i € [0,n,]. They satisfy, Vi € [0, n,],

i = Toin + (1 — 1/2) A, (6.25)

The flow mesh is composed of n, cells of center xz;_;/, with i € [1,n;]. The centers satisfy,
Vi € [1,ng],

The value of the function f"(z),z € Q at point z; of the pressure mesh is noted:

Vn € [0, Nr),i € [0,nz], fI'= f"(z:) = f(t", x5). (6.27)

The value of function f"(x),r € Q at point z;_; /5 of the flow mesh is noted:

Vn € [0,Nr],i € [Lina],  fity)5=f"(@ic12) = [(t" @io1/2)- (6.28)

a

v

Pressure mesh — Cell i

. Pressure, enthalpy, density,
Velocity, mass flux mass fraction

Volume w;_4,

.1
Flow mesh —Cell i — >

Volume w;

FIiGURE 6.1
Schematic representation of the staggered-grid mesh in ThermoTorch 1D.

Starting from Equations (6.20), the pressure, energy, and mass fraction equations are integrated
over the control volumes of the pressure mesh, whereas the momentum equation is integrated over

158



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

the control volumes of the flow mesh. w; denotes the volume of the cell 7, which has neighboring
cells i — 1 and 7 + 1. Similarly, w;_;/, denotes the volume of the flow cell i —1/2 (see Figure 6.1),
with neighboring cells i — 3/2 and i + 1/2.

6.2.3 Control of the time step

Time advancement can be handled in different ways in ThermoTorch. First, simulations can be
performed with a constant time step Aty chosen by the user, such that Vn € [0, Np — 1]

At = Aty (6.29)

A CFL can also be imposed by the user, either by considering only the fluid velocity (slow wave)
as follows, Vn € [0, Np — 1],

A
A" = CFL,———— (6.30)
max ‘%‘4/2‘
’Le[l,nz}
or by considering the mixture speed of sound (fast wave),
A
A" = CFLy . e — (6.31)
iem[fﬁi] (’“i71/2| + Ci71/2)

6.3 Finite volume numerical scheme

In this section, using the temporal and spatial discretizations from Section 6.2, the numerical scheme
used to solve the system of Equations (6.20) with a finite volume scheme is described. A similar
scheme is used for the 3-equation model, excluding the scheme for the equation for the mass fraction.

Using Equations (6.20) from Section 6.1.2, the time discretization detailed in Section 6.3.1 is used
to describe the time-stepping method applied to these equations. Then, the global finite volume
scheme is presented for each equation in Section 6.3.2, by integrating the time-discretized equations
over the staggered grid mesh.

For the numerical schemes of each equation, the terms are made as implicit as possible in order to
easily increase the time step. However, the terms are made implicit only on the condition that the
equations are not recoupled with each other.

6.3.1 Time stepping

Methodology

Equations (6.20) are formulated at time t"*1. An implicit Euler scheme is used for the time
derivative, such that for f € {p,q,s,y}, Vo € Q,

SN a) = M) 6 f(w)
- Atn N

O f (z, 1) (6.32)

For enthalpy and mass fraction, mass conservation is used and the density is evaluated at time t”.
For f € {h,y}, the implicit time-stepping scheme is, Yz € Q,
875 (pf) (JJ, thrl) = patf(xv tn+1) - fal’Q(xa thrl)

~p N 0™
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The time-stepping scheme is taken implicit (at time ¢"*1), so that most of the terms detailed below
are taken implicitly (at time t"!). Several exceptions should be noted. The density appearing
as a factor of the time derivatives is always taken at time ¢", as was done in Equation (6.33). In
addition, the transport vector, whether it is the mass flux ¢ or the velocity u, is taken at time ¢™,
so that the scheme is linear and not coupled with the momentum equation when considering the
mass fraction and energy equation. This allows the mass fraction and energy equations to remain
decoupled from the other equations, particularly from the momentum equation. As a consequence,
for any function f € {q, h,p,y} transported by the mass flux g (or the velocity u), the following
scheme is used, Vx € §,

O, (qf) (fL‘, tn—H) ~ O, <qnfn+1)

~ 0x (¢" ()0 (2)) + Du (¢" () f" (). (6.34)

The pressure gradient in the momentum balance and the mass flux gradient in the mass balance
are treated implicitly, i.e. evaluated at time t"*! so that, Vz € Q,

{(%p(ﬂs, ") = 9,(0p) () + 9up™ (),

&Cq(x,tnﬂ) — am (5(]) (x) + (%q"(a:) (6.35)

Pressure equation

The conservation of the mass was written in pressure, pseudo-entropy s and mass fraction. The
time derivative are taken implicit and the mass flux is time-discretized with Equation (6.35) so that
the mass balance discretized at time "1 writes:

a"6p + "85 + m" Sy + At"9, (0q) = —At"9.q" (z). (6.36)

In this equation for pressure, the increments of the four unknowns considered appear. It is then
coupled with the three other equations.

Momentum equation

Using Equations (6.33),(6.34) and (6.35), the time-stepping scheme for the momentum writes:

6+ A0, (u"6q) + A0, (5p) = ~At" (8, (u"q") + Oup" ). (6.37)

The time-stepping scheme for the momentum equation couples the pressure (due to the gradient d,p)
and the mass flux. As explained later, the mass fraction and energy equations (with the pseudo-
entropy formulation) are written decoupled from pressure and mass flux. This allows the mass
fraction and pseudo-entropy increments to be solved independently. What remains is the coupled
velocity-pressure system, expressed in terms of pressure increment §p and mass flux increment dg
with Equations (6.36) and (6.37).

Energy equation

Using Equations (6.33) and (6.34) for the enthalpy Equation (6.9), the time-stepping scheme for
the enthalpy equation is

p" (5’1(56) — v"dp(x)
Atn Atr
with

) + 0:(q"0h) — 0: (u"0p) — (0hdaq" — Opdpu™) = —BHM"(x),  (6.38)

BHM"(z) = 0, (¢"h") — 9z (u"p") — h"0pq™ — p"Opu™ — ¢" (). (6.39)
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The pressure increment appears in this equation due to the presence of the time derivative of
pressure Oip & % and the pressure transport term u0,p = 0, (up) — pdu discretized at time "1
(implicit scheme). Without further manipulation, the enthalpy equation remain coupled with the
pressure equation. The linearized approximation of the pseudo-entropy s from Equation (6.17)
is used to write 1}"0s ~ 6h — v"dp, so that the time-discretized enthalpy equation becomes

T

p
L Tpss 4 170, (g"05) — T70s0,0" = ~BHM". (6.40)
With this new formulation in pseudo-entropy, the time-stepping scheme for the energy equation is
independent of the other equations.

Mass fraction equation

For the disequilibrium equation on the mass fraction, the scheme presented in Chapter 4 is used
(the three proposed schemes QG, QRd, and QRq are equivalent since the relative velocity is zero).
For the production term I',, the two schemes GAMi and GAMc are implemented in ThermoTorch
(see Appendix 4.D.1). Only the GAMi scheme is presented here. The time-stepping scheme of
the mass fraction equation from System (6.20) writes:

V2 t”{'L

P8y + AL (8, (¢"0y) — Syduq”) + L TAn

Sy = —At"BYM", (6.41)

with
yr=y"
BYM" = 9,(¢"y") — y"9:q" — p" . ry. (6.42)

The equation on mass fraction is independent of other increments. It will be solved independently.

Global time-stepping scheme

Equations (6.20) at time ¢"*! are approximated by the following time-stepping scheme:

a""0p + 05 + m" oy + At"0,(6q) = —At"BMM" (),

0q + At"0,(u"dq) + At"0,(6p) = —At"BQM"(z),
P05 + T A" (8 (¢™0s) —550xq ) = —At"BHM"(z), (6.43)
POy + At" (&C (q”dy) — 6y8mq”) + (51/ = —At"BYM"(z),

with the steady-state balance at time ¢" defined by

BMM”(x) = 0h"

BQM"(z) = 0, (u"q") + dp",

BHMn — 833 (qnhn) . hnaan _ (335 (unpn) _pnaxun) _ (bn(x), (644)
| BV (@) = 0, (¢7") — 7 0u” — L

6.3.2 Spatial integration and global numerical scheme

In this section, the time-discretized Equations (6.43) are integrated over the control volumes of
the spatial mesh. The energy equation, the mass fraction equation and the pressure equation are
integrated on the pressure mesh, for a cell i. The mass flux equation (momentum equation) is
integrated on the flow mesh, for a cell i — 1/2. Details on the scheme used for the convective terms
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is first provided. Then, the interpolation of the velocity on the pressure mesh is presented to use it
in the discrete momentum equation. The global schemes for each equation are then given.

Scheme for the convective terms on pressure mesh

Several convective terms are integrated over the pressure mesh. The variables involved are f €
{9s,0y, ™, p",y"}. As in Section 4.2, the sign of the mass flux q?_l/g at cell i — 1/2 is denoted

0 lf q?—l/z < O,

. (6.45)
1if q?—1/2 > 0.

S8i-1/2 = Sg(q::l/z) = {

An upwind implicit scheme, depending on the sign of the mass flux, is used for the convective terms,
for f € {ds,dy,n",p",y"},

/ O (¢" f)d2 ~ [‘I?H/z (sgiy1/2fi + (1 — 58i41/2) fiv1)
w; . (6.46)

_ q?_l/Q (Sgi_l/gfi—l +(1— Sgi—1/2)fi)} Azr’

The terms of the form " f9,¢™", which appear due to mass conservation, for f € {ds, dy, h",y"} are

integrated using
Wi

[ 1000~ £y~ ) A (6.47

k3

For the convective term of the pressure in the energy balance, the mass flux ¢" is replaced by the
velocity u” in Equations (6.46) and (6.47). To obtain the velocity on the flow mesh nodes, the
following interpolation is used, Vi € [1,ng],

24

12 (6.48)
Pyt Py

n
Ui_1/2

Interpolation of the velocity on the pressure mesh and finite volume scheme for the
momentum equation

For the mass flux (momentum balance), the integration of convective terms on the flow mesh
introduces the velocity on the pressure mesh, denoted u,. An interpolation is necessary and is given
by, Vi € [0, ng],

Gy jo T 4o

(up)i’ = 207 (6.49)
A sign function for the velocity on the pressure mesh can be defined by, Vi € [0, n,],
0 if (up)i <0,
Y= m = ! 6.50
The finite volume scheme for the convective terms writes, for f € {dq, ¢"},
/ O (Unf)dQ ~ [(Up)?(sggfiq/z + (1 — quf)fi+1/2)
Wi-1/2 (6.51)

n u u Wi—1/2
- (Up)iq(sgiqfi_g/z +(1- Sgi—l)fi—lp)} Tx/
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Energy equation

The finite volume scheme for the energy equation is, Vi € [0, n,],

a; ;—105i-1 + a3 ;08; + a; ;105,41 = bj, (6.52)
with
At™
a;i—l - nAmq?—l/QSgi—l/%
A n
ag,i =1+ ——=— AT (qz 1/288i—-1/2 — q,+1/2(1 - ng+1/2)>
At”
a7 i1 N @it1/2(1 = 58it1/2),
RN (6.53)
s n n n n . n n
by =— W <qz‘+1/2(1 = 88iy1/2)(hi1 — hi') + qz'_1/2bgi—1/2(hi - hil))
Atn n 7 () n n n
+ oM (T Ax U2 (1 = 98i41/2) (Pi1 — P7) + iy /988i-1/2(P}" — Pi"1)
At™
¢Tl
WRR

The matrix As s of size (ng +1,m; + 1), built from coefficients (af; | < 0,af; > 1,a},,; <0), is an
invertible tridiagonal matrix and its inverse matrix have positive Coefﬁc1ents

V(i, ) € [0,ng]?, (A7 4)i; > O. (6.54)

Mass fraction equation

The GAMi Scheme (see Appendix 4.D.1) is used for the production term in the mass fraction
equation. For the disequilibrium equation, the global scheme is written, Vi € [0, ny|,

z - 16yz 1+ a 6% + a; Z+15yz+1 = b (655)
with
( A"

i1 =~ qu‘n—l/zsgi—l/%
At A

_1+ ™ A P A (qz 1/258i— 1/2—%+1/2(1—ng+1/2)>

A
zz+1 PZA ql+1/2( Sgi+1/2)7

At
by =— m <qzn+1/2(1 - Sgi+1/2)(y?+1 —y)+ Q?—1/25gi71/2(y? - y?—l))

At
+ 7(yz —Y; )

(6.56)

The matrix Ay, of size (n, + 1,1, + 1), built from coefficients (a?, ; < 0,aY, >1,aY,, , <0) is a
invertible tridiagonal matrix and its inverse is a matrix with pos1t1ve coefﬁ01ents:

V(i, ) € [0,ng]?, (A, })ij > 0. (6.57)
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Coupled system pressure-velocity

The coupled pressure-velocity system is written below with the implicit terms in blue. The pressure
equation writes, Vi € [0, ng],

- A" A" Joik m?

opi + M(&IHA/Q —0qi12) = — <0%A(q1+1/2 Q?_1/2)> + ;%5% + a; 0Ys- (6.58)

i

The global scheme of the momentum equation is, Vi € [1,ng],

16012+ @it 2+ @iy 10012 + (01— Opi) = B, (6.59)
with
ag,z'—l == %(Up)?qsgﬁh
it =1+ S (o) — ()i (1 — s 1)),
W ir = o ()1 s, (6.60)

Atn n u n u n
b = — A:z[ (up)i158i 14, 3/2 ((up)isgi - (Up)i71(1—5g171)>qz;1/2

)0 = selaliago + 0 — 910

6.3.3 Matrix system formulation and variable resolution order

The global finite volume schemes of Equations (6.52), (6.55), (6.58) and (6.59) can be written with
a matrix formulation

Ass 0 0 0 5S B,
0 4, O 0 oY B,
b p— 9 6;61
Aps Apy App Apg opP By ( )
0 U Age Al oQ B,
where §S, 0Y, 6P and §(Q) are the vector solutions:
0S = 551)16[0 ng)»
oY = 5yz)ze[0 ng) (6 62)

(

(
P = (5]91)16[0 ng)s
0Q = (0¢i—1/2)ie[1,na]-

The choice of pseudo-entropy and the scheme for the mass fraction allows for obtaining a block
matrix system with the desired form, that is, with an equation on the mass fraction and on the
pseudo-entropy, independent of the other variables. This makes it possible to separate the resolution
of a time step into several independent steps that are easier to solve than the full system. First, the
pseudo-entropy equation can be solved, then the one for the mass fraction. Once the increments
0S and dY are determined, the coupled pressure-velocity system is then solved. The vector dS is

obtained using
68 = A, B, (6.63)

and the vector JY using
§Y = A, By. (6.64)
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The matrices A s and A, are tridiagonal in the one-dimensional framework considered here. Their
inversion is performed using an LU decomposition. Once the vectors §S and JY are determined,
the matrices A, s and A, are moved to the right-hand side of the equation to formulate a coupled
pressure-velocity system. The pressure-velocity system remains coupled and is written as

(Ap,p Ap,q> <5P> _ <Bp — Ap 08 — Ap7y5Y) . (6.65)
Aq,p Aq,q 5Q B‘I

Numerically, a sparse matrix is used to represent this block matrix, using the format scipy.sparse.
csc_matrix. The vectors 0 P and §() are obtained by inverting the sparse matrix, using the Python
method scipy.sparse.linalg.spsolve.

6.3.4 Steady-state computations

To compute steady state solutions, the ThermoTorch code starts from an initial state and advances
in time until the steady state is reached. The initial state is defined by uniform fields based on the
boundary conditions. To determine whether the steady state has been achieved, residuals based
on increments are computed at each time step for each solved variable. The residuals for variables
defined on the pressure mesh (s, y and p) are

Zév?
1 =
res) = | =0, with v € {5,5,p}, (6.66)
D)
1=0

and the residuals for the mass flux on the flow mesh are

) 25%’2—1/2

n i=1

resy = o | . (6.67)
> (a8 p)?
i=1

The user provides a stopping criterion for each variable, denoted as crit, (for variable v). The
computation stops when the residuals from the last three time steps are below the stopping criterion
for each variable, which corresponds to

max (resZ_Q, res” !

,resﬁ) < crity, with v € {s,y,p, ¢}. (6.68)

6.4 Configurations considered with the code

In this section, the various configurations implemented in ThermoTorch are described. These corre-
spond to test cases simulated in Chapter 7 and Chapter 8. For each configuration, the assump-
tions made and the EoS used are detailed.

6.4.1 Steady-state Heated Channel Configuration

The Heated Channel Configuration (HCC) is shown in Figure 6.2. The objective is to approximate
the flow in a sub-channel of a nuclear reactor core. A one-dimensional heated pipe of length L. = 4.16
m is considered. A flow of liquid water enters the domain. A volumetric heat input heats the liquid
water, possibly up to saturation, where the liquid vaporizes. The flow is characterized by several
boundary conditions:
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e the inlet temperature Tj,,

e the inlet mass flux g,

e the outlet pressure poyt,

e the volumetric heat input ¢g, uniform and constant for x € [L/8,7L/8].

The 3- and 4-equation models can be considered for this configuration where only steady-states
are studied. Liquid water is entering the domain so that, when the 4-equation model is used, the
additional boundary condition for the mass fraction is always y = 0 at the inlet. For the 3-equation
model, an analytical solution can be obtained (see Appendix 3.A). It is used in Chapter 7 to
verify the scheme of ThermoTorch in steady-state. In Chapter 8, the HCC is used to evaluate
the performance of an acceleration method using machine learning to converge faster towards the
steady-state.

Heating ¢,
Vbbbl

Liquid water Pressure
Tin' din Pout

FIGURE 6.2
Scheme of the configuration for the Heated Channel Configuration

Equation of State for the Heated Channel Configuration

For this configuration, a mixture of stiffened gases is considered to obtain the mixture EoS. Each
phase (liquid water and vapor) is described by a stiffened gas EoS (see [42, 95, 96]) with both phases
assumed to be at the same mixing pressure p:

b + YkPook

ex(p, pr) = + ho, k € {g,1}, 6.69
K (P, pk) o — 1) ok {9.1} (6.69)

with the following constants to be set:
e the polytropic index 7,
e the reference enthalpy hgy,
e the minimum pressure psof.-

The temperature T} of phase k is defined by

P+ Doo k
Ty (p, pr) = =

_ PPk 6.70
prcok (Vi — 1) (6.70)

with ¢, the constant specific volumetric heat capacity of phase k. The entropy of phase k writes

sk(ers pr) = ok + cor In (e, — hok — Pookp Dop *), (6.71)

with the reference entropy sgr, a constant to be set. The EoS considered for phase k has five
parameters to set: Dook, Vi, Cok, hor and sgr. It gives ten settable parameters to reproduce the
behavior of liquid and vapor water under conditions of pressure and temperature of a nuclear reactor
core. To achieve this, two points (of different temperature) are considered: one at a pressure of 155
bar and one at 150 bar, as follows:

e Point (a): Liquid water at 7T; = 310°C, p, = 155 bar,

166



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

e Point (b): Vapor at T, = 350°C, p, = 155 bar,
e Point (c): Saturated mixture at p. = 150 bar.

Point (a) is used to set the parameters of the liquid. Point (b) is used to set three of the gas
parameters. The last two gas parameters, the reference entropy and enthalpy, are set in order to
match the saturation temperature at pressure of Point (a) and Point (¢). The exact equations
used to set each parameter, as well as the numerical values obtained for each phase, are described
in Appendix 6.B. Using the Equation of State for each phase, the mixture EoS is defined as
explained in Section 1.3.3, in particular Equation (1.68).

Numerical boundary conditions for heated channel configuration

The boundary conditions are the inlet mass flux ¢;,, the inlet temperature T;,, and the outlet
pressure poy¢. The inlet mass flux g;, is set by a Dirichlet condition on the inlet cell of the flow
mesh:

vn, qzﬂzl/g = Qin- (6.72)

To ensure the desired temperature at the inlet, a Dirichlet condition is applied to the function s on
the inlet cell in the pressure mesh domain. For this, the entropy of the liquid phase is evaluated at
the pressure calculated at the inlet cell:

Vn, si_g = si(p = pi=o, Il = Tin). (6.73)

The pressure boundary condition py,: is enforced by a Dirichlet condition on the outlet cell of the
pressure mesh.

Vn, pin, = Dout- (6.74)

Finally, a liquid water flow is assumed at the inlet. The inlet mass fraction is therefore set to zero
for the 4-equation model
Vn, yio=0. (6.75)

To determine the number of boundary conditions at the inlet and the outlet, we consider the
results of [36, 37]. When considering the 4-equation model, the system admit four real eigenvalues
(u—c,u,u,u+c) (see Section 2.4.1). Subsonic cases with wu;, > 0 and uy, < 0 are considered here.
At the inlet, only one wave exit the domain, so three (four unknowns minus one wave) boundary
conditions are necessary (¢in, Tin, Yin here). At the outlet, three waves exit the domain, only one
(four unknowns minus three waves) boundary condition is necessary (poy: here). For the 3-equation
model with eigenvalues (u — ¢,u,u + ¢), the results are: two boundary conditions for the inlet
(qin, Tin, here) and one for the outlet (pyy: here).

6.4.2 Unsteady configuration for Riemann problems

In Chapter 7, unsteady analytical solutions of Riemann problems are tested to verify the numerical
schemes. These analytical solutions are detailed in Appendix 3.B for the 3-equation model and
in Appendix 3.C for the 4-equation model. In this context, no heating or phase change is taken
into account

¢ =0,
I'=0, (6.76)
T — +00.

The equation for mass fraction is, in that configuration,
O (py) + 0z (puy) = 0. (6.77)

A simplified equation of state is used for the mixture. It depends on the model considered.
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3-equation model EoS
For the solutions of the 3-equation model, the mixture EoS is a perfect gas EoS:

p

oo (6.78)

e(p,p) =

with v = 1.4.

4-equation model EoS

When considering the 4-equation model for Riemann Problems, the mixture EoS defined in Ap-
pendix 3.C.1 is used. It is an extension of the perfect gas EoS with a reference energy hg that
depends upon the mass fraction y. It corresponds to the mixture of two perfect gas EoS with the
same polytropic index, but different reference enthalpies. For a phase k, the EoS writes:

b
er(p, = —— + hok. 6.79
k (P, Pk) oy =1y +hor (6.79)

The mixture EoS writes »
e(p,p,y) = — + hoy), 6.80
(p.p.9) = gy o) (6:80)

with

ho(y) = yhog -+ (1 — y)hol. (681)
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6.A Closure laws

In this section, the closure laws used in Thermotorch for the fraction x used for vaporization, and
the relaxation time 7, are detailed. These laws appear in the disequilibrium equation. The hydraulic
diameter d;, and the liquid conductivity A; are two constant parameters involved in the closure laws.
They are set to

dj, = 0.011185 m,
(6.82)

N =05 Wm LKL

6.A.1 Fraction used for vaporization

The closure law for the fraction y used for vaporization is taken from Saha-Zuber [124]. This
function is used to model subcooled boiling, by triggering the vaporization of liquid even when the
saturation temperature is not reached. This phenomenon occurs only when the liquid temperature
is close enough to saturation. The function x must therefore depend on the liquid temperature
T; and should only activate above a temperature called the subcooled boiling temperature,
denoted T,. Subcooled boiling can occur when the liquid is not, on average, at saturation, but the
wall heat flux is high enough to instantly vaporize the liquid at the wall. The temperature T,; must
therefore decrease as the heat input ¢g increases. The temperature T} is obtained with

Td = Tsat - Cl¢07 (6'83)

where the constant C is defined according to the value of the Peclet number Pe

d
Pe = L2l (6.84)
Al
If Pe <7 x 104,
d
C = 0.0225, (6.85)
Al
and else 154
C = . (6.86)
lqlep.

Once subcooled boiling begins, the fraction x increases progressively from 0 to 1. It reaches 1 when
saturation is achieved, i.e., when T; = Ty,:. The complete correlation for the fraction y is

0 it T, < Ty,
_ ) (T —T)*(3Tsat — 2T, — Ty) .
x(T)) = (Ti d sat l d if Ty € [Ty Tag (6.87)
(Tsat _ Td)2 l [ d7 t[’
1 if T'l Z Tsat-

6.A.2 Relaxation time

In the disequilibrium equation, subcooled boiling allows the mass fraction y to deviate from the
equilibrium mass fraction §. A return-to-equilibrium term is added to account for certain physical
phenomena, such as recondensation. The relaxation time therefore represents the time required to
return to thermodynamic equilibrium, which is not instantaneous. It is calculated using a correlation
known as the bubble diameter tau. This correlation is based on the characteristic bubble diameter
in the flow, dj = 10~* m. Its formula is deduced from the methodology of [122].
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The function used to compute the relaxation time 7 depends on whether the liquid is far from or
near saturation:

ply =y (hg —h) . o
£ |Togr — Ty > 103K,
F(0 Ty 1 et =Tl > 10

o (6.88)
p(L—y)cpy
F

else.

In this correlation, the relaxation time 7 depends on a quantity F' defined by

6
F= \/cgd—o‘, (6.89)
b
with the void fraction « defined by
a=22¢c0,1, (6.90)
Pg
and the quantity C5 defined by
4uPF oy \ep
Cy = ———+= 6.91
2 s (6.91)
where uf?F is the relative velocity between phases, obtained with a correlation. In order to use

this closure law, a non-zero relative velocity must be considered. Despite the fact that the model
assumes zero relative velocity here, the Bestion correlation (see Section 1.4.2) is used to estimate
the value of the quantity 7:

1
L N I <pl - 1). (6.92)
11—« Pg

6.B Adjustement of thermodynamic parameters from water-steam
data under reactor conditions for the EoS of the heated channel
configuration

The physical properties of vapor and liquid water are obtained using the Python module iapws!
[139]. This module provides the thermodynamic properties for water and steam. It is developped
by the International Association for the Properties of Water and Steam (IAPWS). The version
TAPWS97 is used here, corresponding to the industrial formulation. The parameters of the EoS are
determined for Points (a), (b) and (c) defined in Section 6.4.1 and used to set the parameters of
the stiffened gas EoS for each phase. The parameters for the liquid EoS are determined using Point

(a).
e The heat capacity is set to
o = Y. (6.93)

e Parameters (7, poo;) are chosen to ensure the speed of sound cga) and the density p(“) at point

(a), which gives
(@) (@)
)

M (6.94)
Pool
p(a) CvlT(a) ’
"https://iapws.readthedocs.io/en/latest/modules.html

=1+
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e The reference enthalpy is set to satisfy

hor = h(Y — 3cn T, (6.95)

e The reference entropy ensures the entropy at Point (a) such that

(a) _
_ (a) _ P A Pool [ (a))
S0l = 8 ¢y In <le — (,0 ) . (6.96)

The parameters poog, vg and cyq for the gas phase are fixed using Point (b) in a similar way as for
the liquid parameters:

e The heat capacity is set to
Cog = 2. (6.97)

e Parameters (74, P0g) are chosen to impose the speed of sound cgb) and the density p(b) at

point (b), such that
@ (0>
p (cs ) (b)

Pocg = —————— — P 7,

Vg (698)
Poog

Vg =14+ ——~.

g p(b)cng(b)

For the parameters ho, and so4, they are chosen so that the physical saturation temperature is

reached for pressure p(® and for pressure p(® such that

TS (p(a)a /l'(l(/a ’5()(]) = Ts(a)v
© . ) (6.99)
Ts(p ¢ ah(]ga S()g) = Tsc .
The resulting numerical values for the parameters are listed in Table 6.1.
Parameter Liquid Vapor Unit
Dook 433027888.73886645 2265618.76 Pa
Vi 1.347721005 1.092548 -
Cok 3030.1475144213396 | 3273.937158624049 | J/kg/K
hok —987900.1770384915 377353.1095 J/kg
S0k —33462.74606510723 —41040.96603 J/kg/K
TABLE 6.1
Stiffened gas EoS parameters for each phase.
6.C Thermodynamic coefficients for the density linearization
The density p is linearized as a function of pressure p, the function s and mass fraction y:
dp = adp + Bds + mdy. (6.100)

In this appendix, the formulas for the coefficients «, 8, and m for a general mixture EoS are given.
The formulas for the various EoS considered are then provided.
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6.C.1 General case

The differential of the density of phase k& can be written

dpr(p, sk) = cdp + Brdsk. (6.101)

The case in which the gas phase is at saturation is considered. In that case, the entropy of the
gas, Sg, is at saturation and depends only on pressure. It is denoted 5,4(p). The liquid density is a
function of pressure, the pseudo-entropy s and mass fraction

s —ysy(p
pl(p757y) = Pl <p7 S = 12/_.2()) . (6102)

Using Equation (6.101) for each phase, the coefficients o, 5 and m write
) 2 +(1_)2 + %(2/3_%)
o = p yvgag y vl al y dp Ug g vl l ’

2
p= (g) Brs (6.103)

o[ P (v B ity elo,1g,
0 else.

If it is the liquid phase is considered to be at saturation, the coefficients can be written symmetrically
by inverting the indices g and [. In the following, the coefficients are provided for each EoS considered
in ThermoTorch.

6.C.2 Configuration for Riemann problems

Perfect gas EoS

The pefect gas EoS is considered for the Riemann problems with the 3-equation model. When
considering the perfect gas EoS for the mixture, the coefficients write

_ P
o= —,
vp
g=—L (6.104)
YCv
m =10

4-equation model EoS

When using the 4-equation model, the mixture EoS given in Equation (6.80) (detailed in Section
3.C.1) is used.

The pseudo-entropy s is used because, for a general thermodynamic framework, the entropy of the
non-equilibrium system is not known. The resulting coefficients for this EoS are:

a:p+/)2y<W_%>d%:P py Ti—Tyds
Y Y \eu g/ dp p yely) T dp
2
g <P> PP e L (6.105)
pL) Yeul Yeu(y) picol yeo(y) T
2 S1— 3g>
m = v — Vg) — )
g <( 9) YPICul
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In that case, the entropy of the mixture is known for the EoS considered. If it is used instead of

the pseudo-entropy s, the resulting coefficients are given by:

o’ = £
P’
s___ P
p= 'ch(y)’
s P dso dey, s —so(y)
" T W) ( dy W)+ Cﬁ/(y) cu(y) )’

(6.106)

In Chapter 7, both methods (with the pseudo-entropy s and the entropy s) are explored to study
the impact of using the pseudo-entropy s on unsteady solutions compared to the entropy s, in

particular the use of the approximation in Equation (6.17).

6.C.3 Heated Channel Configuration

For each phase, the density pi can be expressed as a function of the pressure and the entropy sj of

phase k using the stiffened gas law as follows:

1
(Pt Dok \ Sk — Sok
Pk(pa Sk) =\ —— exXp\————" |-
Ve —1 Vi Cok

Coefficients o and B of phase k are given by:

o= —Pk
Vi (P + Poo,k)’
Pk
Br = — :
VkCok

(6.107)

(6.108)

The coefficients from Equations (6.108) are used in Equations (6.103) to obtain «, 5 and m.
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Chapter 7

Verification of finite volume schemes in
ThermoTorch

In this chapter, several analytical solutions from Chapter 3 are used to verify the schemes of the
ThermoTorch code presented in Chapter 6. The objective is to verify the implementation of the
schemes and to evaluate the convergence rate of the schemes in space for steady-state solutions and
the convergence rate of the scheme in space and time (for a constant CFL number) for unsteady
solutions. First, the steady-state solution of the heated channel configuration (see Section 6.4 for
the configuration and Appendix 3.A for the solution) is used to verify the steady-state schemes
for the 3-equation model of ThermoTorch in Section 7.1. Then, one-dimensional Riemann problem
solutions for the 3-equation model (see Appendix 3.B) are tested in Section 7.2. These solutions
enable to study the behavior of ThermoTorch’s schemes for unsteady solutions, either smooth or
with shocks. Finally, Section 7.3 presents the behavior of the schemes when the disequilibrium
equation is activated, using an analytical solution of a Riemann problem for the 4-equation model
(see Appendix 3.C). In particular, this enables to evaluate the impact of using the pseudo-entropy
s in ThermoTorch schemes (described in Section 6.1.2) on the accuracy.

7.1 Verification of ThermoTorch for steady-state solutions

In this section, the analytical solution from Appendix 3.A is used as the solution of the 3-equation
model for the Heated Channel Configuration presented in Section 6.4.1. Two different cases are
studied. The first one is to a single-phase case where the liquid is heated as it flows through the
channel without reaching saturation. It is referred to as the liquid case. The second case corresponds
to a two-phase case where the applied heat flux is high enough to vaporize part of the liquid; it
is referred to as the two-phase case. The boundary conditions for these two cases are shown in
Table 7.1. The two test cases are implemented in ThermoTorch to verify the implementation and
consistency (for steady states) of the numerical schemes of ThermoTorch. In particular, the spatial
convergence rate of the scheme is studied. To do so, the analytical solution from Appendix 3.A
is used. As a reminder, the solution is obtained by integrating between two points (a) and (b). The
solution at point (b) is given from the state at point (a). The solution is therefore computed step
by step from the inlet conditions. To do this, a Newton method is used, with an accuracy of 1078,
This analytical solution is compared to the numerical solution obtained with ThermoTorch. For
all the calculations performed in this section, the 3-equation model is considered and the following
numerical parameters are used. The stopping criteria are set to 10™® for all variables (pressure,
mass flux, entropy). A CFL, condition, based on the mixture velocity, is used for time-stepping
such that

CFL, = 5. (7.1)
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Parameter | Liquid case | Two-phase case Unit
Qin 3500 1500 kg.m=2.s7!
T; 273.15 273.15 °C
Dout 155 155 bar
b0 108 108 W.m ™3
TABLE 7.1

Boundary conditions for the liquid and the two-phase cases.

7.1.1 Solutions of ThermoTorch for two steady-state cases

Both cases are first computed using a mesh composed of n, = 50 cells. It corresponds to the ap-
proximate size of the industrial mesh used in THY C-coeur along the axial direction (main direction
of the flow in the core). Figures 7.1 and 7.2 show the residuals (defined in Section 6.3.4) as a func-
tion of physical time for the liquid case and the two-phase case, respectively. The residuals clearly
decrease over time until reaching steady state, achieved when the residuals are below 10~® for each
variable (which is lower than simple precision). For the two-phase case, a significant variation in
the pressure residuals is observed during the initial iterations (for a physical time less than 1s).
This variation seems to correspond to the transition of the flow into the two-phase regime. Indeed,
the initial constant initialization corresponds to a single-phase liquid flow, and the transition to
two-phase causes a significant pressure variation (see the slope break in the numerical solutions
below in Figure 7.5).
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FIiGURE 7.1
Residuals for pressure, mass flux and entropy as a function of time for the liquid case with n, = 50.
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FIGURE 7.2
Residuals for pressure, mass flux and entropy as a function of time for the two-phase case with n, = 50.

Figure 7.3 (resp. Figure 7.5) shows the analytical solution and the numerical solution from Ther-
moTorch (with n, = 50 cells) for the liquid (resp. two-phase) case. Pressure, enthalpy, velocity and
mass fraction are plotted. The exact and numerical temperatures are shown in Figure 7.4 for the
liquid case and in Figure 7.6 for the two-phase case. The saturation temperature is also shown on
these figures. The configuration is one-dimensional, so the mass flux is uniform in the steady-state
solution. Heating is applied starting from = = L/8, which causes a progressive increase in enthalpy
from that point until 7L/8, where the heating is turned off.

In the liquid case, the liquid heats up but does not reach saturation. The flow therefore remains
in the liquid phase, and the mass fraction of vapor remains equal to zero. In this situation, the
increase in liquid temperature leads to a decrease in density due to thermal dilatation, which causes
an increase in velocity. The pressure slightly decreases throughout the domain.

For the two-phase case, the mass flux is lower, and the liquid is more heated before being convected.
It eventually reaches saturation. From that point (approximately x = 2.2 m), the temperature
remains at saturation while the enthalpy continues to increase gradually. From this location, vapor
begins to appear, and then the vapor mass fraction increases progressively. The appearance of the
vapor phase causes a slope break in the velocity and pressure curves. Vapor is much lighter than
liquid water. The effect of liquid density expansion is replaced by the phase change effect, which
causes a faster decrease in density, hence the change in slope.
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FIGURE 7.5
Exact (dotted orange) and numerical (blue solid line, n,, = 50) solutions with the 3-equation model for the HCC
two-phase case.
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FIGURE 7.6
Exact (dotted orange) and numerical (blue solid line, n, = 50) temperatures with the 3-equation model for the
HCC two-phase case.

Despite a very coarse mesh, the numerical results obtained are already very close to the exact
solution. The two-phase case is also simulated with a finer mesh of n, = 500 cells. The resulting
numerical solution is shown in Figure 7.7, and the temperature in Figure 7.8. The numerical solution
approaches the exact solution more closely. To further investigate the consistency of the schemes,
a convergence study is conducted below.
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FIGURE 7.7
Exact (dotted orange) and numerical (blue solid line, n, = 500) solutions with the 3-equation model for the HCC
two-phase case.
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FIGURE 7.8
Exact (dotted orange) and numerical (blue solid line, n,, = 500) temperatures with the 3-equation model for the
HCC two-phase case.

7.1.2 Consistency and convergence rate of ThermoTorch scheme for steady-
state

For each test case, a convergence study is conducted for steady-state solutions. The number of cells
varies between 10 and 10 cells. An error using the Lo-norm is computed for each variable between
the analytical solution and the numerical solution. The resulting error in pressure, enthalpy, mass
flux and velocity is shown as a function of the number of cells in the mesh in Figure 7.9 for the
liquid case and in Figure 7.10 for the two-phase case. The convergence rates computed between
two mesh sizes are summarized in Table 7.2 for the liquid case and in Table 7.3 for the two-phase
case. Regardless of the case, for pressure and enthalpy, a slope close to one is quickly reached. For
the mass flux, the error is constant throughout the domain at a value of around 10~!'. It means
that the solution is already the exact solution up to machine precision. A slope greater than one is
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observed on the coarser meshes for velocity. It oscillates depending on the mesh sizes. The average
observed slope is around 1.4 — 1.5, which is higher than first-order accuracy. This high order may
be explained by the use of a staggered grid mesh with uniform cells. This allows for second-order
spatial accuracy with the centered scheme for the pressure gradient in the momentum equation,
which could explain the higher order observed for the velocity.

As expected, a spatial convergence rate close to one is observed for pressure and enthalpy for both
test cases. The ThermoTorch schemes are therefore consistent at steady state for regular solutions
of the 3-equation model.
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Lo-norm of the error as a function of the number of cells for the liquid case.
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Mesh size | p ‘ h ‘ u ‘ q
10

31 1.04 | 1.05 | 1.56 | 0.25
100 1.00 | 1.00 | 1.36 | -0.34
316 1.01 | 1.01 | 1.51 | 0.00
1000 1.00 | 1.00 | 1.50 | 0.16
3162 1.00 | 1.00 | 1.67 | 0.00
10000 1.00 | 1.00 | 1.33 | -0.01

TABLE 7.2
Convergence rate for pressure, enthalpy, velocity and mass flux for the liquid case.

Mesh size | p ‘ h ‘ u ‘ q
10

31 1.03 | 1.05 | 1.78 | -1.63
100 0.98 | 1.00 | 1.52 | 0.35
316 1.00 | 1.01 | 2.14 | 0.14
1000 1.00 | 1.00 | 0.50 | 0.20
3162 1.00 | 1.00 | 1.42 | 0.07
10000 1.00 | 1.00 | 1.33 | 0.02

TABLE 7.3
Convergence rate for pressure, enthalpy, velocity and mass flux for the two-phase case.

7.2 Verification of ThermoTorch for unsteady one-dimensional Rie-
mann problems with the 3-equation model

In this section, one-dimensional Riemann problems for the 3-equation model are used to verify
the ThermoTorch code for unsteady simulations. The three test cases considered are the solutions
developed in Appendix 3.B: the symmetric two-rarefaction wave, the symmetric two-shock wave,
and the Sod shock tube test case. They are used to evaluate of the behavior of ThermoTorch’s
numerical schemes for both smooth solutions and solutions with shocks. In all these cases, a perfect
gas law is used for the mixture (see Section 6.4.2) with a polytropic index of 1.4. Unless otherwise
specified, the simulations are carried out at constant CFL, considering the following value of the
CFLy4. associated with the fast waves (described in Section 6.2.3):

CFLysc = 0.5. (7.2)

7.2.1 Symmetric double rarefaction wave

The symmetric double rarefaction wave test case is considered here. It corresponds to the one-
dimensional Riemann problem described in Appendix 3.B.1. The analytical solution obtained is
a smooth unsteady solution. Table 7.4 describes the initial conditions for the test case. We note
this configuration SDR (Symmetric Double Rarefaction wave). Two test cases are considered with
two different initial velocity conditions ug. The first test case (resp. second test case) is simulated
with ug = 2 m.s™! (resp. ug = 10 m.s~!) and is noted SDR-2 (resp. SDR-10).

To study the ThermoTorch scheme, the numerical results for SDR-2 and SDR-10 cases are compared
with the analytical solutions at a time t,,4, = 10 ms. For this time, the solution is fully developed
and the rarefaction waves are far enough from the boundaries.
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Left state | Right state Unit
pr = 1000 | pr =1000 | kg.m™3

urp = —ug | ug =ug >0 | m.s~?
pr=10% | pr=10° Pa
TABLE 7.4

Initial conditions for symmetric double rarefaction wave test case.

For a number of cells n, = {10,103, 10*}, the numerical and analytical solutions are shown at time
tmaz in Figure 7.11 for SDR-2 and in Figure 7.12 for SDR-10. The solutions are smooth solutions.
Despite a sharp variation in physical quantities for the SDR-2 case, the slope is not infinite and
corresponds to the expansion wave. At first glance, the solutions of each case appear to converge to
the analytical solution with mesh refinement. The scheme accurately captures the rarefaction waves,
and the numerical plateaus seem to match the analytical solution. Apart from some perturbations
at the origin, a constant solution for entropy is observed throughout the entire domain.
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FiGure 7.11
Symmetric double rarefaction wave (SDR-2) - Analytical and numerical solutions for n, € {102,10%,10%}.
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FIGURE 7.12
Symmetric double rarefaction wave (SDR-10) - Analytical and numerical solutions for n, € {10%,103,10*}.

The errors (in La-norm) between the numerical and the analytical solutions for variables (p, p, u)
are shown as function of the mesh size for n, € [31,56234] in Figure 7.13 for SDR-2 and in Figure
7.14 for SDR-10. Table 7.5 (resp. Table 7.6) represents the numerical values of the convergence
rate for SDR-2 Case (resp. SDR-10 Case). The approximate solution converges towards the exact
solution for each case as expected (see for example [52]). The ThermoTorch schemes are consistent
for smooth unsteady solutions using the 3-equation model. As observed in Figures 7.13 and 7.14,
the convergence rate increases as the number of cells increases, and both test cases show the same
behavior. The convergence rate increases with monotonic growth to reach 0.6 — 0.7 for fine meshes,
as expected (see for example [52]). For both test cases, the slope increases by 0.3 between the
coarsest and finest mesh. The convergence rate has not yet reached a stabilized value for the
meshes considered. The expected convergence rate is 1~ for the rarefaction waves and 1/2 for the
contact wave at the center. Since the case is symmetric, it is possible that the 1/2-order error is
compensated and vanishes, which explains the higher order obtained.
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Number of cells | Pressure | Velocity | Density
100
177 0.29 0.29 0.29
316 0.32 0.32 0.32
562 0.33 0.34 0.34
1000 0.36 0.36 0.36
1778 0.39 0.39 0.39
3162 0.43 0.43 0.43
5623 0.47 0.47 0.47
10000 0.51 0.51 0.51
17782 0.54 0.54 0.54
31622 0.58 0.58 0.58
56234 0.61 0.61 0.61
TABLE 7.5

Symmetric double rarefaction wave (SDR-2) - Convergence rate for pressure, velocity and density as a function

of the number of cells with a velocity of 2 m.s™".

Number of cells | Pressure | Velocity | Density
100
177 0.45 0.46 0.45
316 0.49 0.50 0.49
562 0.52 0.54 0.53
1000 0.56 0.57 0.56
1778 0.59 0.60 0.59
3162 0.62 0.63 0.62
5623 0.64 0.66 0.65
10000 0.66 0.67 0.67
17782 0.68 0.69 0.68
31622 0.69 0.70 0.69
56234 0.70 0.71 0.70
TABLE 7.6

Symmetric double rarefaction wave (SDR-10) - Convergence rate for pressure, velocity and density as a function

of the number of cells with a velocity of 10 m.s~*.

7.2.2 Symmetric double shock wave

The symmetric double shock wave test case from Appendix 3.B.2 is considered. The analytical
solution is a solution with two shock waves propagating toward the exit, symmetrically in the
domain. Table 7.7 describes the initial conditions. We note this configuration SDS (Symmetric
Double Shock wave). Three different velocity conditions are considered ug € {2,10,20} m.s~!. The
three test cases are respectively noted SDS-2, SDS-10 and SDS-20.

Left state | Right state | Unit
pr, = 1000 | pr = 1000 | kg.m™3
urp, =ug >0 | up = —up m.s !
pr, = 10° pr = 10° Pa
TABLE 7.7

Initial conditions for symmetric double shock wave test case.
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The numerical results for SDS-2, SDS-10 and SDS-20 Cases with the ThermoTorch scheme are
compared with the analytical solutions at a time t,,,, = 10 ms, such that the shock waves are
fully developed but far enough from the boundaries. For n, = {102,103, 10*}, the numerical and
analytical solutions are shown at time t,,4, in Figure 7.15 for SDS-2, in Figure 7.16 for SDS-10 and
in Figure 7.18 for SDS-20. While one might think that the ThermoTorch schemes converge to the
correct solution for the SDS-2 case, a consistency error seems to emerge when the kinetic energy
pu? /2 increases for SDS-10 and SDS-20 cases. Indeed, the plateau values of pressure and density
obtained numerically do not seem to match the analytical values, even for the refined case (n, = 10*
cells). This is visible in Figure 7.17, where a zoom on the density plateau is shown for SDS-10.
Moreover, the shock speed estimated numerically does not appear to match that of the analytical
solution. This consistency error, which is expected for the scalar case [76] and for the system case
of Euler equations [51], is confirmed by a convergence study presented below.
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FIGURE 7.15
Symmetric double shock wave (SDS-2) - Analytical and numerical solutions for n, € {10%,10%,10%}.
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FIGURE 7.16
Symmetric double shock wave (SDS-10) - Analytical and numerical solutions for n, € {102,103, 10%}.
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FIGURE 7.17
Symmetric double shock wave (SDS-10) - Zoom on the analytical and numerical solutions for density with
ne € {10%,10%,10%}.
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FIGURE 7.18
Symmetric double shock wave (SDS-20) - Analytical and numerical solutions for n, € {102,103, 10%}.

The Lo-norm of the errors between the numerical and the analytical solutions for variables (p, p, u)
are shown as a function of the number of cells for n, € [31,31622] in Figure 7.19 for SDS-2, in
Figure 7.20 for SDS-10 and in Figure 7.21 for SDS-20. Table 7.8 (resp. Table 7.9) represents for
SDR-2 Case (resp. SDR-10 Case) the numerical values for the convergence rates computed. The
convergence rate for pressure, density and velocity increases as the number of cells increases for
SDS-2 Case and SDS-10 Case (only for low number of cells in the latter case). For SDS-10, when
ny > 1778, the errors reach a plateau showing that the scheme converges to another solution as
shown in Table 7.9. For SDS-2 Case, the mesh sizes considered are not fine enough to reach the
plateau. The SDS-20 Case displays a similar behavior to SDS-10 case but the plateau is reached
for a lower number of cells (n, = 200). The errors observed on the plateau are in the order of
3-6 x 1072, This clearly corresponds to a consistency error rather than machine precision, which
would be significantly lower. The numerical schemes do not converge to the analytical solution
but rather to a solution that exhibits different value plateaus and shock propagation speeds. This
consistency error is expected (see for instance [76] for the scalar case, and [51] for the Euler case)
when the discretized equations are derived from non-conservative continuous equations, instead
of the straightforward finite volume formulation associated with the true conservation laws. In
the following, the objective is to evaluate the magnitude of the error and compare it to other
discretization-induced errors, such as those introduced by using an industrial spatial mesh.
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FIGURE 7.19

Symmetric double shock wave (SDS-2) - La-norm of the error as a function of the number of cells n, for variables
(p,u, p) with a velocity of 2 m.s™1.
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FIGURE 7.20

Symmetric double shock wave (SDS-10) - Ly-norm of the error as a function of the number of cells n,, for variables
(p,u, p) with a velocity of 10 m.s~!.
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FIiGURE 7.21
Symmetric double shock wave (SDS-20) - Lo-norm of the error as a function of the number of cells n, for variables

1

Number of cells | Pressure | Velocity | Density
31
56 0.15 0.38 0.15
100 0.27 0.24 0.27
177 0.30 0.22 0.30
316 0.27 0.31 0.27
562 0.31 0.30 0.31
1000 0.32 0.32 0.32
1778 0.34 0.33 0.34
3162 0.36 0.37 0.36
5623 0.40 0.40 0.40
10000 0.45 0.44 0.45
17782 0.47 0.48 0.47
31622 0.49 0.49 0.49
TABLE 7.8

Symmetric double shock wave (SDS-2) - Convergence rate for pressure, velocity and density as a function of the

number of cells with a velocity of 2 m.s™1.
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Number of cells | Pressure | Velocity | Density
31
42 0.32 0.27 0.34
56 0.57 -0.07 0.60
74 0.38 0.40 0.37
100 0.08 0.56 0.08
133 0.65 0.21 0.65
177 0.19 0.58 0.19
237 0.49 0.45 0.48
316 0.52 0.26 0.54
421 0.25 0.34 0.27
562 0.55 0.75 0.53
749 0.16 0.23 0.19
1000 0.43 0.26 0.44
1333 0.10 0.29 0.10
1778 0.53 0.54 0.54
2371 0.09 -0.03 0.09
3162 -0.41 -0.40 -0.44
4216 0.03 -0.03 0.02
5623 -0.12 -0.15 -0.13
7498 0.00 -0.03 -0.01
10000 -0.11 -0.14 -0.12
13335 -0.06 -0.08 -0.07
17782 -0.08 -0.10 -0.09
31622 -0.03 -0.04 -0.04

TABLE 7.9

Symmetric double shock wave (SDS-10) - Convergence rate for pressure, velocity and density as a function of the

number of cells with a velocity of 10 m.s™!.

7.2.3 Numerical evaluation of the consistency error for solutions with shocks

In order to determine the magnitude of the consistency error made on the pressure and density
plateaus, the test cases are studied with a fine mesh of size n, = 10*. The relative error compared
to the analytical values is calculated on the central plateaus for pressure and density, considering
velocities in {2,10,20} m.s~!. The formula used for the relative error is

ne=10% _
errr(f) _ | numf 7ffeacact| % 100 [%]’ (73)

with f € {p, p}. Table 7.10 represents the error obtained for each test case (for the density and the
pressure). The relative error increases as the velocity of the test case increases. For a velocity of
ug = 2 m.s~ L, the error is well below 0.01%. It increases to around 0.1% for the case ug = 10 m.s~ 1.
For a high velocity of 20 m.s™!, the error is in the order of 0.5%. The errors made on pressure and
density are therefore quite small.
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Consistency | Consistency
Test case | ug [m.s™!] error for error for
pressure [%] | density [%)]
SDS-2 2 15x107% | 2x107*
SDS-10 10 0.11 0.06
SDS-20 20 0.66 0.55
TABLE 7.10

Relative consistency error between the numerical and analytical values obtained on the central plateau for pressure
and density with a mesh of 10* cells.

The consistency error can be compared to the error caused by the use of industrial meshes. For
each velocity considered (2, 10 and 20 m.s~!), the consistency error and the numerical error due
to the use of an industrial mesh are plotted as a function of the position on the central plateau
(at time tyqp = 10 ms) in Figure 7.22 for pressure and in Figure 7.23 for density. The numerical
error due to an industrial mesh corresponds to the error between the analytical solution and the
numerical solution with a mesh of 100 cells, corresponding to an industrial mesh. Relative errors
are shown in these two figures. Since the solution is symmetric, only positive abscissas are shown.
With an industrial mesh, the shock is poorly resolved. The error on the plateau tends to increase
as it approaches the shock, particularly for > 0.25 m. Regardless of the velocity, the error on
pressure and density reaches around 10%, a value, which is much higher than the consistency error.
The consistency error is all the more small compared to the numerical error due to the industrial
mesh when the velocity is low. If we consider the configurations encountered in nuclear reactor
cores, i.e. the application of THYC-coeur, the maximum velocities encountered are in the order of
4 to 5 m.s~!. For these velocities and with an industrial mesh, the consistency error due to the
numerical schemes is therefore negligible.
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FIGURE 7.22
Consistency error and numerical error due to industrial mesh as a function of the position = on the plateau of

pressure for velocities in {2,10,20} m.s~!.
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FiGURE 7.23
Consistency error and numerical error due to an industrial mesh as a function of the position 2 on the plateau of
density for velocities in {2, 10,20} m.s™'.

7.2.4 Impact of the CFL value on the shock profile

ThermoTorch scheme is implicit so that the CFL,;. number can be increased to values greater
than 1. Figure 7.24 shows the numerical solutions of SDS-10 Test Case for CFL,. € {0.1,0.5,2.5}
with a number of cells n, = 200. When a low CFL is used (CFL,. = 0.1 here), significant though
stable oscillations appear near the shocks. These oscillations disappear when the CFL is increased.
However, the higher the CFL, the less accurately the shock is resolved (the slope is less steep), with
an increasingly significant diffusion. The use of implicit schemes therefore allows for an increase in
CFL, but this is not recommended if shocks are present in the case considered. Optimal values are
of order CFL,4. ~ 1.
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FIGURE 7.24
Symmetric double shock wave (SDS-10) - Numerical solution with n, = 200 for three different CFLe
{0.1,0.5,2.5} - Velocity 10 m.s~ .
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7.2.5 Sod shock tube

The Sod Shock Tube is a classical test case from [131]. Unlike the two previous tests, the initial
conditions, summarized in Table 7.11, are not symmetrical.

Left state | Right state
PL = 1 PR = 0.125
ur, = 0 ur = 0

prL=10° | pr=10*

TABLE 7.11

Initial conditions for Sod shock tube test case.

The analytical solution is compared with the results of numerical simulations with the scheme of
ThermoTorch at a time #,,,,, = 0.3 ms. The numerical results are computed for number of cells
Ng € {102, 103, 104}. The results are shown in Figure 7.25 at time t,,4;. A zoom on the 2-contact
and 3-shock wave for density is shown in Figure 7.26. The solution seems to be well predicted for the
1-rarefaction wave but the constant states (p*, p*,u*) and (p**, p*, u*) converge to another solution
when the number of cells increases (see the zoom in Figure 7.26), as expected (see for instance
[51, 76]). It can also be noted in Figure 7.26 that the speed of the 3-shock wave for the numerical
solution is not the same as the analytical one. The same behavior than for the symmetric double
shock wave is observable for consistency errors due to the presence of a shock.
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FIGURE 7.25
Sod shock tube - Analytical and numerical solutions with n, € {10%, 103,10%}.
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—— Ny =100 = n,=1000 ~—— n,=10000 == Exact Solution

Density

=

FIGURE 7.26
Sod shock tube - Analytical and numerical solutions for the density (zoomed) with n, € {10%,103,10%}.

In Figure 7.27, the Lo-norm of the errors is represented as a function of the number of cells for
the pressure, the velocity and the density. The presence of plateaus for n, > 103 confirms that the

numerical solution converges to another solution than the analytical one (again, see |76| for scalar
case and [51] for Euler Equations).
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FIGURE 7.27
Sod shock tube - La-norm of the error as a function of the number of cells for variables (p, u, p).

7.3 Verification of ThermoTorch for a smooth one-dimensional Rie-
mann problem with the 4-equation model

In this section, a solution to a Riemann problem (from Appendix 3.C) is used to verify the

unsteady numerical methods of ThermoTorch with the 4-equation model. Here, the objective is
to determine the consistency error introduced by the use of the pseudo-entropy approximation in
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the unsteady part of the energy equation scheme (see Section 6.1.2) of ThermoTorch. Smooth
solutions with rarefaction waves are considered, since Section 7.2 has already shown a consistency
error for shock solutions with the 3-equation model, which would also appear for the 4-equation
model. The analytical solution from Appendix 3.C is obtained using a simple mixture equation
of state, for which the entropy formula of the system is known (unlike the general case). Thus,
the analytical results can be compared with the results obtained with ThermoTorch when either
entropy or pseudo-entropy is used.

First, the analytical solution with two-rarefaction waves is presented in Section 7.3.1. The pseudo-
entropy approximation causes a consistency error due to two neglected terms: one term from the
time variation of pressure and another from the time variation of the mass fraction. To decouple
these two effects and first study the consistency error due to pressure, a case where the mass fraction
remains uniform is studied. Section 7.3.2 compares the results of this case obtained with entropy
(without consistency error) and pseudo-entropy (with consistency error on pressure). Section 7.3.3
proposes to numerically evaluate the magnitude of the error caused by the consistency error in
pressure. In particular, the impact is evaluated as a function of the initial velocity conditions and
the deviation from thermodynamic equilibrium. Appendix 7.D explores a case where the mass
fraction is also variable.

7.3.1 Analytical solution and methodology
Two-rarefaction wave Riemann problem

The analytical solution with its mixture equation of state from Appendix 3.C is used. The initial
conditions at ¢t = 0 s are described in Figure 7.28. Several values for the velocities ug > 0 and
ur, < 0 are considered, always under subsonic conditions. The configurations considered are chosen
so that two rarefaction waves develop. The structure of the solution is shown in Figure 7.29. Two
rarefaction waves propagate through the medium at speeds u — ¢ and ©+ c¢. A double contact wave
propagates at speed u in the center. The intermediate states are denoted with indices * and *x as
indicated in Figure 7.29. The pressure and the velocity are the same for the states * and **. The
detailed formulas to obtain the * and *x states can be found in Appendix 7.A. They are noted
respectively p, and u, as shown in Figure 7.29.

Y. = (pr,pr,ur,Yr) Yr = (pr, PR, UR: YR)

0

FIGURE 7.28
Initial configuration for a 1D Riemann problem with the 4-equation model.
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FIGURE 7.29
Scheme of the solution for the two-rarefaction waves case for the 4-equation model.

Regardless of the initialization side X € {L, R}, the mass fraction yx must not be too far from the
equilibrium mass fraction §(px, px). Otherwise, the code becomes unstable for the equation of state
considered. Indeed, this can lead to negative thermodynamic quantities (temperature, density) for
the liquid. For each configuration in the following, the mass fraction at equilibrium is obtained with
the boundary conditions and the deviation from equilibrium is defined by:

AyY = yx —T(px, px). (7.4)

The flow is locally at thermodynamic equilibrium if Ayig = 0. If the deviation from equilibrium is
positive, the flow is in subcooled boiling T} < Tsq¢, with Tiq: the saturation temperature and T; the
liquid temperature. If the deviation is negative, then the liquid is superheated (T} > Tyqt).

Pseudo-entropy and entropy computations

The configuration presented above is simulated with ThermoTorch. Two numerical methods are
used. First, the method using pseudo-entropy is applied. It corresponds to a numerical method
presented in Chapter 6. In this numerical scheme with pseudo-entropy, the blue and green terms
in the following linearization have been neglected for the unsteady terms of the energy equation

scheme:
d

Tyds = dh — (v + y(T} — Tu(p)) d;j )dp + sy, (7.5)

with

sy = (i — hg) = Ti(s1 — 3¢) = pu(p, 1)) — ﬁg(p7 Ts) + (Ts — T1)3,- (7.6)

For the approximate unsteady solutions computed with this scheme, this approximation introduces
two consistency errors, one due to the variation of pressure (in green in Equation (7.5)) and the
other due to the variation of mass fraction (in blue in Equation (7.5)). For the simplified mixture
equation of state used in ThermoTorch, the entropy of the mixture is known. With p the pressure,
p the mixture density, and y the mass fraction of vapor, the mixture entropy writes:

S(ovp.) = solw) + el log (27 ). &
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The equation in entropy writes:

pOss + Oy (qs) — 50,q = 0. (7.8)

In ThermoTorch, a scheme similar to the one used for the mass fraction (see Equations (6.41) and
(6.42) without source terms) is implemented for Equation (7.8) in entropy. The analytical solution
of the problem can be compared with the solution obtained using the system entropy (without
consistency error) or with the pseudo-entropy (with a consistency error). First (in Section 7.3.2 and
Section 7.3.3), solutions with constant mass fraction y are considered. This allows evaluating only
the impact of the consistency error due to pressure (in blue in Equation (7.5)), independently of
the error due to the mass fraction.

All the simulations in this section are carried out with a constant CFL value, based on the fast
waves (see Section 6.2.3):
CFLyyc = 0.5. (7.9)

We denote t,,4, as the maximum simulation time, i.e. the time at which one of the expansion waves
reaches the boundary of the domain. All solutions are compared at the time tcomparison defined as:

75comparison = 0.3 tmaz- (710)

This allows obtaining fully developed solutions without the appearance of boundary effects.

7.3.2 Two-rarefaction waves solution with a constant mass fraction
Configuration

In this section, a symmetric configuration is considered:

Pr = PL = Po,
Yr = YL = Yo, (711)
urp = —uy, = ug > 0,
PR = PL = po-
It gives a symmetric initialization for the mass fraction at equilibrium:
Y(pr, pr) =¥Y(PL, PL) = Yo- (7.12)
The deviation from equilibrium is noted
Ayp” = yo — Yo- (7.13)

This configuration corresponds to the simulation of a boundary condition at a wall. In this con-
figuration, two rarefaction waves propagate on either side of the origin (z = 0). The wavefront of
the 1-rarefaction wave propagates to the left of the domain at the speed —uy — ¢(po, po) and the
wavefront of the 4-rarefaction wave propagates to the right of the domain at the symmetric speed
uo + ¢(po, po). Due to symmetry, the 2,3-contact wave is steady (us = 0). Since the mass fraction y
and entropy s are Riemann invariants in rarefaction waves and the configuration is symmetric, they
remain uniformly constant, regardless of the simulated time. The contact is therefore a stationary
ghost wave at x = 0 as the jump in mass fraction and entropy is null.
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Data set of test cases

The objective is to select parameters that are representative of the conditions encountered in reactor
core flows. A first reference case is chosen to be representative of a core reactor flow with moderate
mass fraction. It is called Test Case 0. A typical reactor core mixture pressure and velocity
are selected: py = 155 bar and ug = 5 m.s~!. The mass fraction at equilibrium is 7, = 0.01.
This case simulates a subcooled two-phase flow, with a deviation from thermodynamic equilibrium
of Ayg? = 0.01, so that yo = 0.02. The density is computed from these conditions, it is py =
769kg.m 3. Starting from this reference case, eleven test cases are considered to study the behavior
of the scheme on this regular symmetric solution for conditions encountered in nominal operations
but also for accidental cases. For wg, arbitrary values of 10 and 30 m.s~! are considered. For 7"
and Ayg?, representative values have been selected, based on steady state THYC-calculations (see
details in Appendix 7.B). The parameters considered for each case are shown in Table 7.12.

First, Test Case 0 is used to study the shape of the solutions obtained with pseudo-entropy and
with entropy in Section 7.3.2. It is also used to study the order of convergence of the numerical
scheme for this solution (also in Section 7.3.2). Subsequently, the other cases are used to evaluate
the evolution of the consistency error due to pressure as a function of the variation of parameters
(velocity, mass fraction at equilibrium, deviation from equilibrium) in Section 7.3.3. For each case,
only one parameter varies, allowing a sensitivity analysis for each variable such as:

e Cases 1-2: Sensitivity analysis on velocity ug,

e Cases 3-6: Sensitivity analysis on the mass fraction at equilibrium ¥y, with a constant deviation
Ayl

e Cases 7-11: Sensitivity analysis on the deviation from equilibrium Ayg? with a constant mass
fraction at equilibrium %),

Case | 70 o [oar] | 7 1] | A0 =] | w0 =] | 20
0 ) 155 0.01 0.01 0.02 769
1 10 155 0.01 0.01 0.02 769
2 30 155 0.01 0.01 0.02 769
3 ) 155 0.05 0.01 0.06 602
4 ) 155 0.1 0.01 0.11 473
) ) 155 0.2 0.01 0.21 331
6 5} 155 0.3 0.01 0.31 255
7 9 155 0.01 —0.005 0.005 575
8 5} 155 0.01 0 0.01 627
9 ) 155 0.01 0.005 0.015 691
10 b} 155 0.01 0.02 0.03 993
11 b} 155 0.01 0.03 0.04 1400

TABLE 7.12
Initial conditions for the test cases of symmetric two-rarefaction waves.

Comparison of the solutions obtained with entropy and pseudo-entropy

Test Case 0 is first simulated with pseudo-entropy and with entropy. The numerical solution ob-
tained for n, € {102,103, 10%} and the analytical solution are shown in Figure 7.30 when entropy
is used, and in Figure 7.31 when pseudo-entropy is used. A zoom on the central plateaus for pres-
sure and density are represented in Figure 7.32 when using entropy and in Figure 7.33 when using
pseudo-entropy. As expected, the solution is symmetric, with two rarefaction waves propagating

199



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

at the same speed in opposite directions outward from the domain. Since the observed time is
tecomparison = 0.3 tmaz, the waves are approximately one-third of the way through the domain. The
velocity g considered here is 5 m.s~!, which is low compared to the speed of sound in the domain
(in the order of 250 m.s~! with the equation of state and thermodynamic parameters considered
here). As a result, the rarefaction waves are very steep, but they are indeed rarefaction waves and
not shocks.

When entropy is used in ThermoTorch, the numerical solution appears to approach the analytical
solution as the mesh is refined. The pressure and density plateau seems to converge toward the an-
alytical values. When pseudo-entropy is used, the numerical solution no longer appears to converge
to the analytical solution but rather to a different one, with a notably different pressure and density
plateau. Since the central pressure and density values are incorrect, this also affects the position
of the rarefaction waves. A consistency error in the unsteady solutions of the four-equation model
thus arises due to the pressure term neglected in the energy equation (see Section 6.1.2). This con-
sistency error is visually noticeable, and the computed difference in pressure between the plateau
of the numerical solution with the finest mesh and the analytical solution is in the order of 0.07%.
A convergence study confirms these observations below. Whether using entropy or pseudo-entropy,
the numerical solution does produce a 2,3-contact wave that is a ghost wave. The observed solution
for the mass fraction is indeed constant.
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FiGURE 7.30
Test Case 0 - Analytical and numerical solutions with n, € {10%,10%,10*} when using entropy.
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FiGURE 7.31
Test Case 0 - Analytical and numerical solutions with n, € {102,10%,10*} when using the pseudo-entropy.
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FIGURE 7.32
Test Case 0 - Analytical and numerical pressure and density fields with n, € {10%,103,10*} when using entropy
- zoom on the central plateaus.
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FIGURE 7.33
Test Case 0 - Analytical and numerical pressure and density fields with n, € {10%,103,10*} when using the
pseudo-entropy - zoom on the central plateaus.

Study of the convergence rate

The numerical schemes used in ThermoTorch are first-order in both time and space. Therefore, a
convergence rate of 1 is expected for the rarefaction waves and 1/2 at the contact discontinuity.
The contact is thus the limiting factor, and the overall convergence rate should be around 1/2.

For each case (with entropy and with pseudo-entropy), a convergence study is carried out by evalu-
ating the Lo-norm error on all variables between the analytical solution and the numerical solution
obtained at time tcomparison- The errors (in Lo-norm) between the numerical and analytical solu-
tions for the variables (p, p,u,y) are shown as a function of the number of cells for n, € [102, 10%77]
in Figure 7.34 when entropy is used and for n, € [102,10%*5] in Figure 7.35 when pseudo-entropy
is used. Table 7.13 (resp. Table 7.14) presents the numerical values for the convergence rates
computed when entropy (resp. pseudo-entropy) is considered.

The mass fraction is constant in the analytical solution. This behavior is well reproduced by both
methods (with entropy or pseudo-entropy). The error on the mass fraction is therefore close to
round-of error (in the order of 10716). As a result, the convergence rate for mass fraction is not
observable with this Test Case where mass fraction is constant. This is why the convergence rate for
mass fraction is not shown in Tables 7.13 and 7.14. In Figure 7.34, the error decreases for pressure,
velocity, and density, with a convergence rate that increases gradually and exceeds slightly the value
of 0.5. As expected, the ThermoTorch scheme with entropy converges to the correct solution, with
a convergence rate of 1/2.

When pseudo-entropy is used, as already observed in Figure 7.36, the numerical scheme does not
converge to the analytical solution but to another solution due to a consistency error in the energy
equation. The order of convergence therefore gradually decreases as the mesh is refined. A plateau
is reached for the error in pressure, density, and velocity in Figure 7.35. This plateau is reached
starting from a mesh of 17782 cells.
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FIiGURE 7.34
Test Case 0 - La-norm of the error as a function of the number of cells n, for variables (p,u, p,y) when the
entropy is considered.
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FiGURE 7.35
Test Case 0 - La-norm of the error as a function of the number of cells n, for variables (p,u, p,y) when the
pseudo-entropy s is considered.
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Number of cells | Pressure | Velocity | Density

100

177 0.26 0.29 0.27
316 0.27 0.27 0.27
562 0.30 0.29 0.30
1000 0.32 0.32 0.32
1778 0.33 0.33 0.33
3162 0.36 0.36 0.36
5623 0.38 0.38 0.38
10000 0.42 0.42 0.42
17782 0.45 0.45 0.45
31622 0.49 0.49 0.49
56234 0.53 0.53 0.53

TABLE 7.13
Test Case 0 - Convergence rate for pressure, velocity and density as a function of the number of cells when the
entropy is considered.

Number of cells | Pressure | Velocity | Density

100

177 0.25 0.28 0.26
316 0.25 0.26 0.25
562 0.26 0.27 0.27
1000 0.27 0.27 0.27
1778 0.24 0.25 0.25
3162 0.22 0.23 0.22
5623 0.17 0.18 0.18
10000 0.12 0.12 0.12
17782 0.06 0.06 0.06
31622 0.02 0.02 0.01

TABLE 7.14
Test Case 0 - Convergence rate for pressure, velocity and density as a function of the number of cells when the
pseudo-entropy s is considered.

7.3.3 Numerical evaluation of the consistency error due to the pseudo-entropy
approximation

As observed in Section 7.3.2, the ThermoTorch numerical scheme with pseudo-entropy gives an
approximate solution that does not converge to the analytical solution as the mesh is refined. The
objective of this section is to evaluate the order of magnitude of the consistency error due to pressure
(see green term in Equation (7.5)). In particular, sensitivity analyses are carried out by varying
the velocity ug, the equilibrium mass fraction 7,, and the deviation from equilibrium Ayg?. To
do this, the consistency error due to pressure is computed using the quantity el.. This quantity
corresponds to the relative error made on the pressure plateau with the pseudo-entropy scheme
compared to the analytical solution. Let p§1:3000 denote the value of the pressure plateau obtained
with pseudo-entropy for a sufficiently fine mesh (n, = 3000), and peyqct the analytical value of the
pressure plateau. The consistency error e, is then given by:

ngZBOOO - pezact} ' (714)

Pezact

-
€. =
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This consistency error is compared with the error made on the pressure plateau due to the use
of an industrial mesh. To do this, the solution with entropy is considered on an industrial mesh
(ny = 50). On the pressure plateau, denoted P, the pressure computed with the industrial mesh
is noted p"e=(xp). It depends on the position zp on the plateau P at the comparison time
tecomparison- Lhe relative error e} (P) on the pressure plateau due to the use of an industrial mesh
is thus evaluated with:

|pnr750 )

— Pexact ’

Vaep € P, e, (zp) = (7.15)

Pezact

The average value over the entire plateau, denoted (el ), is used to compare with the consistency
error. It is calculated with:

(Cmlap)) = [ eimlop)dzn ~ 5 Zezm p); (7.16)

where (zp); are the Np points of the industrial mesh located on the pressure plateau. In the
following, the errors e and (e}, ) are computed for comparison. The objective is to verify that this
consistency error is neghglble Compared to the error caused by the use of the industrial mesh.

In the case considered here, the mass fraction is constant. The consistency error is caused by a
pressure term neglected in the linearization of the pseudo-entropy. This term is noted f, and is
given by

dsg

fopr5,9) = y(Ty(p) = Tu(p: 5,9)) 5 7

(p)- (7.17)

The consistency error should therefore be more significant when the mass fraction is high, and
when the deviation from equilibrium, represented by the factor Ty — 7} in Equation (7.17) is large.
Sensitivity analyses are conducted to study the impact of variations in velocity, mass fraction, and
deviation from equilibrium on the consistency error.

Consistency error as a function of the velocity

In this section, the results obtained for Test Cases 0, 1, and 2 with pseudo-entropy are compared.
The velocity ug varies for these Test Cases from 5 m.s~! to 30 m.s~!. Figure 7.31 (resp. 7.36)
shows the analytical and numerical solutions for n, € {102,103, 10*} of Test Case 1 (resp. Test
Case 2), for which the initial velocity is ug = 10 m.s~! (resp. up = 30 m.s~!). These solutions can
be compared with Figure 7.31, where Test Case 0 is shown (velocity ug = 5 m.s~1). The rarefaction
waves become less steep as the velocity increases, as expected. The error on the plateau appears
to increase slightly with velocity. Table 7.15 shows the errors e and (e}, ,) as a function of the test
cases. Figures 7.38, 7.39, and 7.40 show the error e}, (zp) due to the 1ndustr1al mesh as a function
of the position on the plateau xp (green solid line) for Test Cases 0, 1, and 2. The values of (e], )
and e are also shown with the green dashed and pink solid lines.

The use of an industrial mesh causes significant errors at the edges of the plateau because the
rarefaction waves are poorly resolved with so few cells. An increase in the consistency error with
the flow velocity is observed. The error due to the use of the industrial mesh also increases. As
shown in Table 7.15, for Test Case 0, the consistency error of 0.07% is much lower (by a factor of 7)
than the error due to the industrial mesh (0.45%). As the velocity increases, the consistency error
increases more rapidly than the error due to the industrial mesh. It remains negligible (factor of
6) for Test Case 1 where ug = 10 m.s~ . For Test Case 2, the consistency error is still more than
three times lower than the error due to the industrial mesh, but it becomes less negligible.

This sensitivity study shows that the consistency error is negligible for Test Case 0 when an industrial
mesh is used. This error increases with the mixture velocity ug. It is shown that the consistency
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error is proportional to velocity in Section 7.3.4. It is also negligible for ug = 10 m.s~!. It is no
longer completely negligible for high velocities (ug = 30 m.s~!) even if the consistency error remains

below the error due to industrial mesh, but such velocities are not encountered in nuclear reactor
core conditions.
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FIGURE 7.36
Test case 1 - Analytical and numerical solutions with n, € {102,10%,10*} when using the pseudo-entropy.
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FIGURE 7.37
Test case 2 - Analytical and numerical solutions with n, € {102,103, 10*} when using the pseudo-entropy.
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Test case 0 - Relative error el (and its average value (¢f,) in dotted green) as a function of the position on the
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Test case 1 - Relative error ¢, (and its average value (€], ) in dotted green) as a function of the position on the
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Case | uolm.s~1] | e [%] | (ef,,) [%]
0 5 007 | 0.45
1 10 0.16 1.04
2 30 0.60 2.86
TABLE 7.15

Relative error on the pressure plateau as a function of the velocity of the test case.

= Consistency error e for n, = 3000 cells with pseudo-entropy - 5 m/s
== Numerical error ef,, with a mesh of n, = 50 cells using entropy - 5 m/s
= = Average of the numerical error (ef,,) with a mesh of n, =50 cells using entropy - 5 m/s

-0.2 -0.1 0.0 0.1 0.2
Position on the plateau x, [m]

FIGURE 7.38

m

plateau xp. The consistency error €/, is also represented in pink.

= Consistency error e/ for n, = 3000 cells with pseudo-entropy - 10 m/s
= Numerical error e, with a mesh of n, =50 cells using entropy - 10 m/s
= = Average of the numerical error (ef,,) with a mesh of n, =50 cells using entropy - 10 m/s

-0.2 -0.1 0.0 0.1 0.2
Position on the plateau x, [m]

FIGURE 7.39

plateau xp. The consistency error €/, is also represented in pink.
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14 = Consistency error e[ for n, = 3000 cells with pseudo-entropy - 30 m/s
== Numerical error ef,, with a mesh of ny =50 cells using entropy - 30 m/s
= = Average of the numerical error (ef,,) with a mesh of ny = 50 cells using entropy - 30 m/s

= =
o N

Relative error on pressure [%]
©

——— e

-0.2 -0.1 0.0 0.1 0.2
Position on the plateau x, [m]

FIGURE 7.40
Test case 2 - Relative error el (and its average value (eZ,) in dotted green) as a function of the position on the
plateau xp. The consistency error €/, is also represented in pink.

Consistency error as a function of the mass fraction at constant deviation from equi-
librium

Test Cases 3-6 are computed, gradually increasing the equilibrium mass fraction yg while main-
taining the deviation from equilibrium Ayg?, so that the mass fraction y also increases. Table 7.16
shows the errors el and (e} ) as a function of the equilibrium mass fraction 7,. The increase in mass
fraction causes an increase in the consistency error. The neglected term y(7;—T, g)ddi}f is proportional
to the mass fraction y, which explains the increase in consistency error with the mass fraction. From
a mass fraction of 0.1, the error is no longer negligible compared to the error due to the industrial
mesh. However, when the mass fraction increases above y = 0.1, the deviation from equilibrium
is well below the 0.01 for nuclear reactor core conditions. This is discussed in Appendix 7.C in
order to determine the pairs (7, Ayy?) for which the consistency error is negligible.

Gase | o | o 8] | (chm) 1A
0 0.01 | 0.07 0.45
0.05 | 0.15 0.39
0.1 0.20 0.35
0.2 0.24 0.28
0.3 0.27 0.32

Y| O = | W

TABLE 7.16
Relative error on the pressure plateau as a function of the mass fraction at equilibrium.

Consistency error as a function of the deviation from the equilibrium at constant mass
fraction at equilibrium

Test Cases 7-11 are computed. This allows the behavior of the consistency error in pressure to
be studied as a function of the deviation from thermodynamic equilibrium Ayg?. Test Case 7 is
an initial configuration where the liquid is supersaturated (yo < 7,). Test Case 8 corresponds to
an initial configuration at thermodynamic equilibrium (yo = 7). Test Cases 9-11 are cases with
subcooled boiling (yo > Tg)-

Table 7.17 shows the errors e and (el ) as a function of the deviation from equilibrium Ayy?. The
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further the flow is from thermodynamic equilibrium, the greater the consistency error, whether the
deviation is positive or negative. This can be explained by analyzing the neglected term, which is
proportional to y(1;—Ty) Cilipg. The greater the deviation from thermodynamic equilibrium (regardless
of its sign), the greater the temperature difference between the two phases Tj — T, which increases
the consistency error. An error is still observed for the case Ayg? = 0 because the initial state is at
equilibrium, but the intermediate state * is no longer at equilibrium, which introduces a consistency
error.

While the error is negligible at thermodynamic equilibrium compared to the error due to the use of
an industrial mesh, it gradually increases as the flow deviates from equilibrium. It remains negligible
compared to the error due to the industrial mesh up to Ayg? = 0.01. From Ayg? = 0.02, the error
is no longer negligible. This sensitivity analysis makes it possible to evaluate the behavior of the
consistency error as a function of the deviation from equilibrium. However, this analysis was carried
out for constant y,. The approximate values from which the consistency error is negligible depends
not only on the deviation from equilibrium but on the pair (7,, Ayg?). A study on these pairs is
carried out in Appendix 7.C in order to more precisely determine the combinations for which the
error is negligible.

Case | Ayg'[-] | ep [%] | (efn) (%]
7 -0.005 0.006 0.38
8 0 1.4e-04 0.40
9 0.005 0.02 0.43
0 0.01 0.07 0.45
10 0.02 0.30 0.52
11 0.03 0.90 0.64
TABLE 7.17

Relative error on the pressure plateau as a function of the deviation from equilibrium.

7.3.4 Conclusion on the consistency error

An analytical estimate for the pressure consistency error is detailed in Appendix 7.C. This made
it possible to quickly scan the (g, Ayy?) space to estimate when the consistency error is negligible
compared to the error due to the industrial mesh, when vy = 5 m.s~!. The sensitivity studies
and Figure 7.44 (in Appendix 7.C) have shown that the consistency error (due to the neglected

pressure term) is negligible compared to the error caused by using an industrial mesh, when:

e the velocity is under 10 m.s~ !,

e the equilibrium mass fraction and the deviation from equilibrium are in the green zone of
Figure 7.44.

The ThermoTorch scheme with pseudo-entropy allows for obtaining good results for steady-state
solutions very quickly thanks to the pseudo-entropy approximation, which decouples the energy
equation from the other equations. However, this approximation introduces a consistency error
when computing unsteady solutions using the 4-equation model. According to these results, the
consistency error may no longer be considered negligible when extreme accidental conditions are
considered.

To study fast transients with the 4-equation model, particularly for highly out-of-equilibrium flows,
a new numerical method should be used to eliminate the consistency error due to pressure. Sev-
eral methods could be proposed in this case. First, the development of a triple coupled pressure-
momentum-pseudo-entropy system with iterative resolution could solve this problem. As discussed
in Appendix 7.C, this method is likely to be CPU time-consuming. Another method could be to
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propose a new numerical scheme for energy, possibly based on the internal energy of the mixture
(see [18, 19] and all the work related to the co-authors of these articles).

It is important to recall here that the results were obtained with a one-dimensional model with the
simplified physical model of ThermoTorch and for a single Riemann problem case at constant mass
fraction. The obtained conclusions should be consolidated with other test cases.

This first study focuses only on the consistency error caused by pressure variation (see the green
term in Equation (7.5)). The consistency error due to variation in the mass fraction (blue term
in Equation (7.5)) was not taken into account. Appendix 7.D presents a convergence study on
a case with variable mass fraction when entropy and when pseudo-entropy are used. It is more
difficult to determine the magnitude of this error because it is inherently coupled with the error
due to pressure variation. However, it is not necessarily important to determine whether this error
is negligible. The consistency error due to the mass fraction (in green in Equation (7.5)) could be
easily corrected by considering the resolution system of ThermoTorch (see Chapter 6). Indeed, the
numerical scheme for the disequilibrium equation on the mass fraction is decoupled from all other
variables in the system (see Section 6.3). It can be solved first, and thus the variations in the mass
fraction y would be known. The green term in Equation (7.5) could then be added to the energy
equation.
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7.A Derivation details of the solution for the unsteady Riemann
problem with the 4-equations model

7.A.1 General case

The solution and the equation of state from Appendix 3.C are used. The mixture entropy is

5(0,pr9) = s0(y) + coly) log (fj”_ 1) . (7.18)

The speed of sound of the mixture is

_jp
c(p,p) = = (7.19)

The solution is a self-similar function of the variable £ = 7, whose structure is described in Figure
7.29. Two rarefaction waves propagate on either side of the domain: the 1-rarefaction between state
L and %, and the 4-rarefaction between state *x and R. A double contact wave, called the 2,3-contact
wave, propagates at the center, between the two rarefaction waves. According to Appendix 3.C,
the Riemann invariants for each wave are:

¢1 = {y7 S, u + /72_61}7
$2,3 = {u,p}, (7.20)

2c
¢s=A{y,s,u— ﬁ}

The following four states are considered:
e Known left state: Y7, = (pr,pr,ur,yr),
e Left intermediate state to be determined: Yi = (p«, s, Us, Yx),
e Right intermediate state to be determined: Yi. = (pux, Disy Usss Yo ),
e Known right state: Yr = (pr, Pr, URr, YR)-

There are therefore eight unknowns (four for each intermediate state) to be determined. According
to the invariants at the 2,3-contact wave, the states * and xx have the same velocity and the same

pressure such that:
Usesxe = Usx,
{ (7.21)

In each rarefaction wave, the mass fraction is conserved such that:

Yo =L (7.22)
Yxx = YR-

The following notations are adopted:

CL = C(pLapL)7
RF =wup + 2L ,
v-1 (7.23)
cr = (PR, PR),
_ 2cp
| R — UR ~— 1.
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The system to be solved now contains only four unknowns: py, ., p«, psx. The remaining four
relations (two for each rarefaction) are written as:

( s(ps, pssyr) = s(pr, pr,yL),
2C(p*,p*) _ R+

v -
7.24
2e(pespes) _ o (72
T o — fip,
v—1

5(ps, pes, YR) = S(DR> PR, YR)-

Since the mass fraction is conserved in the rarefaction waves, the entropy equalities can be rewritten

as:
- -
«Px  — PL )
e T (7.25)
p*p**) :pRpR .
The system is then solved using the following relations:
PR -
r=— (pRPL) 1/77
PL
1
_ + -
Uy = 1+\/;(RL —l-\/;RR),
-1
c. = (R} — u*)’yT,
1 (7.26)
2L\
Px = | C—— )
YPL
P = T Px,
Px 7
o)
PL
7.A.2 Symmetric configuration
When considering a symmetric configuration such that
Pr = PL = Po,
PR = PL = PO, (727)
Yr = YL = Yo,
urp = —uy, = ug > 0.
The intermediate state * and *x simplified. The 2,3-contact wave becomes a ghost wave:
Px = P
e = Prws (7.28)
Usx = Usx = 0,
Ysx = Ysxx = Y0-

The speed of sound c,, the pressure p, and the density p,. of the intermediate state can be written

212



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

using Equations (7.26)

-1
Cy = C[, — 9 uo,
1
9 -1
pe = <c$7’;§0> , (7.29)
_ 2 p"/ 'Y,yj 2y
Pe = Dopg | <C* 0) = f(po, po)c 1.
YPo

7.B Analysis of two THYC-coeur computations in accidental con-
ditions.

In this appendix, the objective is to propose boundary conditions for the Riemann problem that
correspond to values encountered in reactor core flows. To consider realistic conditions in a reactor
core, two THYC-coeur simulations are run. Two configurations are simulated, one under typical
accidental conditions (called accidental case) and one in extreme accidental conditions (called severe
accidental case). The mass fraction along the hottest assembly (where under-saturated boiling is
most significant) is considered in order to examine the most penalizing conditions, i.e., those furthest
from equilibrium. The considered cases are taken from the Bias Curve Database (see Section 5.1),
among the most penalizing ones for the consistency error, i.e., with a high mass fraction and
significant subcooled boiling (see Section 7.3.3).

The left part of Figure 7.41 (resp. Figure 7.42) shows the mass fraction and the equilibrium mass
fraction as a function of height z in the core for the accidental case (resp. the severe accidental
case). The right part of Figure 7.41 shows the deviation from equilibrium as a function of the
equilibrium mass fraction for the accidental case, and Figure 7.42 does so for the severe accidental
case. For both cases, it is observed that the axial flow in the core can be divided into three regions.
The description is given for the accidental case. First, in the lower region of the core (z € [0, 2.8]
m), the flow is single-phase liquid. Both the mass fraction and the equilibrium mass fraction are
zero, and the deviation from equilibrium is also zero. The liquid is heated by the heat flux from the
fuel.

The second region, defined by z € [2.8,3.3] m, is the subcooled boiling zone. The liquid begins
to vaporize even though it is not, on average, at saturation. The mass fraction therefore increases
while the equilibrium mass fraction remains zero. This is where the deviation from equilibrium
reaches its maximum value (Ayg? ~ 0.017).

Eventually, the mixture reaches saturation and the equilibrium mass fraction begins to increase
(for z > 3.3 m). This is the third region (z € [3.3,4.8] m), where the deviation from equilibrium
gradually decreases towards zero.

In the severe accidental case, these three regions also exist but occur at different heights. The
third region is much wider. For y > 0.1, the deviation from equilibrium is near zero. While in the
accidental case the maximum mass fraction is 0.07 and the maximum deviation from equilibrium is
0.017, in the severe accidental case these values are higher, with a maximum mass fraction of 0.35
and a maximum deviation of 0.03.
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Mass fraction and mass fraction at equilibrium as a function of height (left) and deviation from equilibrium as a
function of the mass fraction at equilibrium (right) - Accidental conditions of a nuclear reactor core.
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Mass fraction and mass fraction at equilibrium as a function of height (left) and deviation from equilibrium as a
function of the mass fraction at equilibrium (right) - Severe accidental conditions of a nuclear reactor core.

7.C Estimation of the consistency error due to pressure

In this appendix, the consistency error e is analytically evaluated to show that the error is pro-
portional to the neglected function f, from Equation (7.17). Subsequently, the results obtained
from the various sensitivity studies are summarized. In particular, this section details under which
conditions the consistency error is negligible compared to the error due to the industrial mesh.

The consistency error is due to the term fy(p,s,y) = y(Ty — Tl)%, which is neglected in the
linearization of the pseudo-entropy. When the pseudo-entropy is used, the resolved energy equation
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is
pT; (05 + udys) = 0. (7.30)

The calculation to obtain the solution of the Riemann problem carried out in Appendix 3.C can
be performed again. This time, the linearization of the density is expressed differently from the case
with entropy, using Equation (6.105). The quantities f calculated for the case with pseudo-entropy
are denoted f, and those calculated with entropy are written without a tilde. Then, using Equation
(6.105):

a=a(l+ M), (7.31)

with o = (g—g) , Q= (g—;) and the function A defined from the neglected function f, such that:
5y 5y

)‘(pasvy) :p(’y_l)fp(pasay) (732)

The speed of sound computed with the pseudo-entropy is written ¢, such that

c=— = : (7.33)

p

with ¢ the speed of sound computed with entropy, i.e. ¢ = o The objective is to derive an

approximate formula for the consistency error in pressure. It is assumed that the neglected function
fp (see Equation (7.17)) in the energy equation when using pseudo-entropy is small compared to
the specific volume of the mixture:

ds
fo=y(Ty - Tz)CTpg <. (7.34)

This implies a slight modification of the speed of sound when using the pseudo-entropy compared
to the actual speed of sound ¢ (when entropy is used). It implies

A s,y) = p(y = 1) fp(ps s, y) < 1. (7.35)

We can, as a first approximation, use the solution from Appendix 7.A. The Riemann invariant in
the 4-rarefaction wave can be rewritten as:

2 2¢(Px, s
ug — C(p()va) ~ C(p 14 ) (736)

VIFAr=1) VIt -1)

The modified speed of sound ¢, (px, px) obtained on the plateau using the pseudo-entropy can there-
fore be rewritten in terms of the speed of sound ¢, obtained on the plateau using entropy:

c(j);,ﬁ*)zc*< _%@ (m_1)>, (7.37)

where
YD«

p*'

(7.38)

The analytical solution from Appendix 7.A, using Equations (7.29) for a symmetric case, ensures
that the pressure obtained on the plateau is written as:

2y

P« = f(po,po)ci™". (7.39)
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Assuming that this equation remains valid when the pseudo-entropy is used, the pressure obtained
on the plateau is:

2y
27 —1 F—1
Pi ~ f(po, po)ei t x (1—721“)( 1+/\—1)>V
Cx
1 L (7.40)
— —1
zp*<1—72“°(\/1+A—1))” .
Cx

The value of the consistency error can then be approximately estimated. This approximation will
be denoted as e’ and is obtained with

2y
~ D — -1 F—1
6£:|p* x| ~ <17 @( 1+)\1>>AY —11. (7.41)
D« 2 o
As A < 1 and considering % << 1, the approximate consistency error can be simplified to
~  yugA . ds
€~ 5o With A= p(y = Dy(Ti — Tg)d—;- (7.42)

This estimated consistency error é?; is compared to the consistency error measured in ThermoTorch
in Figure 7.43. This analytical approximation appears to be accurate compared to the numerically
measured value for most of the Test Cases. The points for Test Case 2 and 11 are less accurate
because the assumptions made are no longer valid: for Test Case 2, the fluid velocity ug = 30 m.s™*
is no longer negligible compared to the speed of sound on the plateau (ug/c, ~ 0.16), and for Test
Case 11, it is the function A that is no longer negligible compared to 1, since A ~ 0.32 in that case.
When the assumptions are valid, the consistency error is indeed proportional to the neglected term
fp=y(T; — Tg)%, but also to the initial velocity ug, which explains the observations made in the
various sensitivity studies in Section 7.3.3.
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FIGURE 7.43

Consistency error €. as a function of the estimated consistency error er.

The estimated consistency error is used to scan the (7y, Ayg?) plane and compare the obtained
consistency error with the industrial mesh error e  for a constant velocity uy = 5 m.s~ . The
considered cases are taken within the range (o, Ayg?) € [0.0,0.5] x [—0.01,0.04]. A grid with
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100 values for the mass fraction at equilibrium % interval and 60 values for the deviation from
equilibrium Ayg? interval is considered. Only physically valid cases are retained, i.e., cases where
the mass fraction is positive and the deviation from equilibrium is low enough for the equation of
state to yield a liquid phase with positive temperature and density. The final data set includes 4451
cases for which the ratio eZ./ (e} ) is computed. Figure 7.44 shows this ratio as a function of the mass
fraction at equilibrium and the deviation from equilibrium. The values for the accidental and severe
accidental cases from Figures 7.41 and 7.42 are also shown. For accidental and severe accidental
conditions, the most penalizing cases were considered here. It is observed that for the accidental
case, regardless of the point considered in the core, the consistency error on pressure is negligible.
For the severe accidental case, the subcooled boiling zone extends beyond the region where the
consistency error is negligible (e’/ (el ) > 1). The consistency error is not always negligible in
the subcooled zone. A slope break is observable at the center of the domain in Figure 7.44. The
approximate consistency error is continuous, but the error due to the use of an industrial mesh
shows a discontinuity at that point. This is due to the calculation of the average error over the
plateau. With so few cells used for averaging, a sudden variation in the error on the plateau causes
a sharp change in the average error. This is the case at the location of this slope break.

=== Accidental conditions
= Severe accidental conditions 3.6

Deviation from equilibrium Ay®?

-0.01 —
0.0 0.1 0.2 3

. 0.5
Mass fraction at equilibrium y
FIGURE 7.44

Ratio e/ (el,.) as a function of deviation from equilibrium Ayt? and mass fraction 3. The values for the

accidental and severe accidental cases of Figures 7.41 and 7.42 are also represented.

7.D Two rarefaction waves solution with a mass fraction jump

In this appendix, the solution to the Riemann problem found in Appendix 7.A is used again. The
pressure in the left and right states is the same, and the velocities still have the same magnitude
but opposite directions:

{pR =PL = Po; (7.43)

urp = —uy, = ug > 0.

However, the left and right states do not have the same initial mass fraction yr # yr. The mass
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fraction at equilibrium is initialized uniformly throughout the domain at t = 0 such that

7(po, pr,YR) = Y(Po, PL,YL) = To» (7.44)

which sets the density for state L and R.

The test case is numbered Test Case 12. The boundary conditions for Test Case 12 are shown
in Table 7.18. The analytical solution to this Riemann problem includes two rarefaction waves
propagating in opposite directions. A double contact wave separates the two intermediate states
x and #x. These intermediate states share the same velocity u, and pressure p,. The contact
propagates at velocity us. At the contact, a jump in mass fraction and density is observed.

Uuo _ PL PR

Case _ bar - — _ — _
ey | o ol | 50 H o 11| o 2y | om 1| o

12 5 155 0.01 0.015 691 0.02 769

TABLE 7.18
Initial conditions for the test case of two-rarefaction waves with a mass fraction jump.

Test Case 12 is simulated with pseudo-entropy and with entropy. The numerical solution obtained
for n, € {10%,10%,10*} are alongside the analytical solution in Figure 7.45 when entropy is used,
and in Figure 7.46 when pseudo-entropy is used. As expected, the analytical solution have two
rarefaction waves propagating in opposite directions and a contact wave propagating at a velocity
uy ~ 0.12 m.s~1. At this contact wave, a mass fraction jump as well as a density jump are observed.
Since the observed time is tcomparison = 0.3 timae, the rarefaction waves are approximately one-third
of the way through the domain. As the velocity ug considered is once again low compared to the
speed of sound, the rarefaction waves are very steep.

When entropy is used in ThermoTorch, the numerical solution seems to approach the analytical
solution as the mesh is refined. A zoom on the plateaus for each variable is represented in Figure
7.47. For the velocity, the numerical solution provides two different values for the velocity plateaus
in states * and %%, with both plateaus located on either side of the analytical value. However,
they both appear to converge toward the analytical value as the mesh is refined. The jumps in
density and mass fraction are well captured by the scheme, but the scheme seems to struggle to
converge rapidly to the analytical solution. A singularity is also noticeable at the contact in the
velocity profile. Since the numerical schemes in ThermoTorch are first-order, the expected order of
convergence for this solution is once again 1/2, due to the contact.

When pseudo-entropy is used, the numerical solution no longer appears to converge to the analytical
solution but rather to a different one, with a different pressure, velocity and density plateau. This
effect is more visible in Figure 7.48. As the solutions obtained on the plateaus are not the analytical
ones, the rarefaction waves are also badly resolved. As expected, a consistency error appears for
unsteady solution when using the pseudo-entropy. For this solutions, the two neglected terms of
Equation (7.5) (the green term in pressure and the blue term in mass fraction) intervene in the
consistency error.
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Test Case 12 - Analytical and numerical solutions with n, € {10%,10%,10*} when using entropy.
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FIGURE 7.46
Test Case 12 - Analytical and numerical solutions with n, € {10%,10%,10*} when using the pseudo-entropy.
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Test Case 12 - Zoom on nalytical and numerical solutions with n, € {10%,10%,10*} when using entropy.
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FIGURE 7.48
Test Case 12 - Zoom on analytical and numerical solutions with n, € {10%,10%,10*} when using the pseudo-
entropy.

A convergence study is conducted for each method (with entropy and with pseudo-entropy) to
confirm the observations made in Figures 7.45 and 7.46. The errors (in Lg-norm) between the
numerical and analytical solutions for the variables (p, p,u,y) at time tcomparison are shown as a
function of the number of cells for n, € [10%,10%7] in Figure 7.49 when entropy is used, and for
ng € [10%,10*?] in Figure 7.50 when pseudo-entropy is used. Table 7.19 (resp. Table 7.20) presents
the numerical values for the convergence rates computed when entropy (resp. pseudo-entropy) is
considered.

When entropy is used, a convergence rate approaching 1/2 is observed for pressure and velocity.
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This is the expected value with first-order spatial schemes for a solution involving a contact wave.
For density and mass fraction, the convergence rates fluctuate and appears to increase monotonically
over the last two meshes size. The actual convergence rate for mass fraction and density has not
yet been reached for the meshes considered. However, it is expected that the convergence rate will

stabilize around 1/2 as the mesh is refined.

When pseudo-entropy is used, the errors for pressure and velocity appear to reach a plateau. The
convergence rate in pressure and velocity decreases starting from a mesh of 1000 cells and reaches a
plateau for a mesh with 31622 cells. The scheme converges toward the wrong solution, as expected
due to the consistency error introduced in the energy equation. The errors due to pressure variation
(blue term in Equation (7.5)) and mass fraction variation (green term in Equation (7.5)) accumulate

in this case.
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FIGURE 7.49
Test Case 12 - Error (Le-norm) as a function of the number of cells n, for variables (p, u, p,y) when the entropy
is considered.
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FIGURE 7.50
Test Case 12 - Error (La-norm) as a function of the number of cells n, for variables (p,u, p,y) when the pseudo-
entropy s is considered.

Number of cells | Pressure | Velocity | Density ‘ Mass fraction
100
177 0.26 0.29 0.26 0.60
316 0.36 0.21 0.35 -0.37
562 0.28 0.32 0.27 -0.09
1000 0.33 0.30 0.30 -0.20
1778 0.33 0.34 0.27 -0.28
3162 0.35 0.35 0.24 -0.32
5623 0.38 0.38 -0.16 -1.03
10000 0.41 0.41 0.70 0.99
17782 0.45 0.45 0.30 0.15
31622 0.49 0.49 0.43 0.35
56234 0.53 0.53 0.37 0.26

TABLE 7.19
Test Case 12 - Convergence rate for pressure, velocity, density and mass fraction as a function of the number of
cells when the entropy is considered.
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Test Case 12 - Convergence rate for pressure, velocity, density and mass fraction as a function of the number of

Number of cells | Pressure | Velocity | Density | Mass fraction
100
177 0.27 0.28 0.26 0.60
316 0.34 0.19 0.34 -0.28
562 0.26 0.30 0.26 -0.04
1000 0.30 0.27 0.29 -0.16
1778 0.27 0.29 0.25 -0.25
3162 0.27 0.27 0.23 -0.30
5623 0.25 0.26 -0.42 -1.43
10000 0.18 0.19 0.54 1.00
17782 0.14 0.15 0.34 0.54
31622 0.08 0.08 -0.14 -0.11
TABLE 7.20

cells when the pseudo-entropy s is considered.
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Chapter 8

Steady-state convergence acceleration
using initialization from a neural
network

The development of this method has first appeared in the article [68] published during the PhD.
This chapter continues the research presented at NURETH-21 [92] and updated it with the latest
results.

This work proposes a Machine Learning-based method to accelerate convergence of THY C-coeur
when looking for steady-state solutions. To evaluate the potential of the ML approach in a 1D
configuration, the simplified 1D code ThermoTorch [68] is used (see Chapter 6). A Deep Neural
Network (DNN) is developed to predict the numerical solutions generated by the ThermoTorch code.
These predicted solutions are used to initialize the computation, aiming to reduce the number
of external iterations. This code simulates water flow in a heated channel with phase change
(vaporization). The use of a Neural Network (NN) is particularly justified here, as extensive datasets
of results are easily obtained.

Machine Learning is increasingly widespread across various fields. Numerous applications of Ma-
chine Learning in fluid mechanics have been developed [20, 138], particularly for improving CFD
performance, such as accelerating the resolution of a Poisson problem [1]. When dealing with com-
plex partial differential equation (PDE) systems commonly encountered in this domain, additional
information and constraints can be incorporated into standard neural network architectures. One
prominent method, known as Physics-Informed Neural Networks (PINNs), integrates physical prin-
ciples directly into the loss function (the function to be optimized) of the neural network [84, 86,
117, 129]. Another approach involves adapting the structure of the network itself [15, 32| to add
physical properties, such as ensuring divergence-free behavior [106], and the conservation of the
energy [62] or boundary conditions [90]. Incorporating physical constraints allows for more robust
neural networks able to generalize to domains beyond their training datasets.

For the application concerned here, using such complex networks would significantly increase the
time of prediction without necessarily providing a major gain in acceleration. Here, the aim is
not to supplant the code. The goal is to design and train a predictive NN that is not overly
complex, ensuring that its predictions are computationally fast. In this work, standard Multi-Layer
Perceptrons (MLPs) [59] are used which take boundary conditions of ThermoTorch as input and
try to predict the outputs fields of the code. As the results presented here show, the accuracy
of simple DNNs has been proved to be sufficient to significantly accelerate the code and allows
for rapid predictions (negligible time compared to the finite volume computation). A preliminary
Deep Feedforward Network was proposed in [68], and initial tests showed a 20% acceleration on the
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3-equation ThermoTorch model.

Improvements of the initial NN are described here, including normalization, better data generation,
and hyperparameter optimization. Additionally, the application is extended to both physical models
of ThermoTorch (3-equation and 4-equation). Inspired by PINNs, which incorporate physical con-
straints into the loss function, a new loss function is proposed to minimize those error in frequencies
that slow down convergence.

8.1 Methodology

The methodology is first presented, which involves using predictions from a Neural Network (NN) as
initializations of unsteady simulations to accelerate the convergence toward the steady state. Next,
the generation process of the different datasets and their normalizations are described. The structure
of the NN used is also detailed. Finally, a quick proof of concept is presented, demonstrating that
initializing with a solution close to the steady-state effectively reduces the iterations needed for
convergence.

8.1.1 Training a neural network to predict steady state solution

In this section, the ThermoTorch 1D code presented in Chapter 6 is used with the Heated Channel
Configuration. The code requires four boundary conditions:

e the liquid inlet mass flux ¢;;,,

e the inlet temperature Tj, of the liquid flow,
e the volumetric heat input ¢,

e the outlet pressure pyy:.

These four scalars are the input data. At the steady-state, the ThermoTorch provides three (or
four) solutions fields on a one dimensional mesh of n, cells:

e the entropy s,

e the pressure p,

e the mass flux ¢,

e the mass fraction y (only for the 4-equation model).

The configuration is one dimensional, the mass flux remains constant along the mesh so it does not
need to be predicted by the NN. The output data consists of the two (resp. three) arrays of size
n, composed of the pressure, the entropy (resp. the pressure, the entropy and the mass fraction)
for the 3-equation model (resp. for the 4-equation model). The number of cells is kept constant
for all this work with n, = 50. With this choice, the output data is composed of 100 (resp. 150)
scalar values for the 3-equation model (resp. 4-equation model). Convergence is achieved through
an unsteady simulation with a constant time step At.

The objective is to train a neural network to predict the steady state from the input data (T, gin,
Pouts ¢0). The predicted fields are denoted as (p, 8, 9). To achieve this, a dataset composed of input
data and corresponding steady-state solution fields (output data) must first be generated. During
the learning phase, this dataset is used to train the NN. The idea is to use the NN’s predictions
as initializations of computations to converge more quickly. For this method to be effective, a
simple NN must be proposed to quickly predict approximate solution fields that are sufficiently
accurate to accelerate the convergence. This methodology is described in Figure 8.1. To evaluate
the NN performance, the indicator considered is the relative gain in the number of iterations before
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convergence, denoted as g,.. The relative gain compares the number of iterations to converge from
constant fields, denoted as N4, and the number of iterations to converge from the NN predicted
fields, denoted as N,,,; such that

Nest — Ny
gr = ——. (8.1)
" Ncst
i Building database 1
' Tin, qin, Pout, $o ThermoTorch 1D Stationary solutions p(z), ¢(z), s(z) [, y(z)] E
! Database E
L e :
" el ey e 1
Y Tin. Gin, Pous, b0 Neural Network Predictions p(z), §(z) [, g}(:z')} 1
: I ;
: ThermoTorch 1D Stationary solutions p(x), ¢(x), s(x) { ,1/(,'1')} 1
' Using Neural Network :

FIGURE 8.1
Construction of the database used for training and acceleration of ThermoTorch 1D with a neural network.

8.1.2 Characteristics of the Neural Network

In this work, Multi-Layer Perceptrons (MLPs) are used, which are NNs with multiple successive
layers, each layer being linearly connected to all neurons in the previous layer and then activated
with a non-linear function [59]|. The input layer represents the input data of ThermoTorch, i.e.,
four scalars (inlet mass flux, inlet temperature, outlet pressure and volumetric heat input), and
the output layer represents the output values, either 100 or 150 scalars depending on the model
considered. The layers between these input and output layers are the hidden layers. The number
of layers and neurons per layer for the hidden layers will be discussed later. At each layer (except
the output), an activation function is applied to introduce non-linearity into the network. This
enables the Universal Function Approximation Theorem for Deep Neural Networks (DNNs) [31, 75,
115], which guarantees that a sufficiently large NN can approximate any function. The activation
functions used are Rectified Linear Units (ReLU) [48, 49, 56]. This type of activation function
is a standard choice for DNNs and has demonstrated excellent performance, despite not being
differentiable at 0.

To train the neural network, the defined convergence criterion is the loss function, simply called the
loss hereafter. In the first part of this work, a classic Mean Squared Error (MSE) Loss was chosen.
In Section 8.3, an evolution of this loss to improve the results is discussed. Using a steady state
solution of a field x and the NN predicted field %X, the MSE for one field (see the extension to several
fields in (8.7)) writes

MSE(x, %) = ||x — ]2 = 3 (1 — ). (8.2)

e i
The fields are normalized before computing the loss (see Section 8.1.3). After initializing the weights

of the NN, an iterative process is launched to optimize these weights so that the loss decreases.
This is the learning phase, during which, at each iteration called an epoch, the gradient of the
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loss is evaluated with a backpropagation algorithm [123] and the gradient descent enables the
NN training. The algorithm used for gradient descent is the Adam algorithm [89]. The PyTorch
(https://pytorch.org/) module was used to build the neural network. During the training, the
number of cases given at once to optimize the loss, called the batch size, is 50. Its value is discussed
in Section 8.2.3.

8.1.3 Data generation and normalization

To train the NN, a dataset is generated. For this, a range of values for each input was chosen to
correspond to the applications of the industrial code THY C-coeur as follows:

Pout € [140,170] bar,
qin € [1000,5000] kg.m 2571,
T € [600, min(618, Tsar (pout))] K,
¢o € [107,min(5 - 10%, Gyap(Pouts Tins @in)] Woem ™2,

(8.3)

with Tsat(Pout) the saturation temperature so that the inlet flow is a subcooled (or saturated) liquid
flow and with ¢4, the heat input that allows for the complete vaporization of the liquid flow.
The dataset of input conditions is generated randomly, while respecting the above conditions. The
output fields for each of these state points are obtained through a ThermoTorch 1D computation.
This dataset is divided into two parts: the training dataset, which consists of the cases provided to
the network for training, and the validation dataset, for which the loss is calculated at each epoch
of the training to detect when the network has converged and started to overfit, which can prevent
it from generalizing effectively. Additionally, a third dataset, called the test dataset, is generated
independently to compute the relative gain to determine the NN performance once trained. The
pressure variations are small along the pipe (no pressure losses are considered in this simplified
model), i.e. pin — Pout << Pout- To learn effectively, the output fields considered are As and Ap,
such that Vi € [1,n,)]

{Api = Pi — Pout (8 4)

Asi =S8 — Sl(ﬂnapout)‘

For the 4-equation model, the vapor mass fraction is directly given as an output field. The neural
network considers each output scalar independently, whether it is a value of entropy, pressure, or
vapor mass fraction. To optimize the network’s learning, the fields are normalized. Unlike the
results presented in [68|, which used min-max normalization, the normalization considered here is
median normalization [59]. It has been observed that the neural network is more effective with this
normalization for the considered application. For a case noted j in the training dataset composed
of n. cases, the variable x at cell ¢ is normalized as follows

:Ei’j = 7, (8.5)

where (x;),, is the mean value and o, (z;) the standard deviation for the field x at cell 7 on the
entire training dataset (n. cases) defined by

1 &
(Tidn, = " Z Li,js
¢ g

(8.6)

1 & 2
C ]:1
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The neural network developed is sufficiently accurate to ensure valid values for the pressure and
entropy, which guarantees the proper functioning of ThermoTorch 1D. When using the 4-equation
model, the predicted vapor mass fraction must be filtered after denormalization to ensure y € [0, 1].
It often happens that the prediction provides a negative vapor mass fraction when the steady state
value is close to zero.

For the cost function, the considered loss is the sum of the MSE/\LOSS on each normalized field.
Noting V = (As, Ap,y) the normalized steady-state solution and V = (A§, Ap,§) the normalized
prediction, the loss function is

Loss(V,V)= Y MSE(x,%). (8.7)
xe{As,Ap,¥}

8.1.4 Proof of concept

To evaluate the performance of the method, a proof of concept was carried out with the 3-equation
model. A test dataset of 1000 different cases (chosen randomly) is considered and their steady
states are determined. After normalizing the fields, a random perturbation of amplitude € is added,
representing the error made by the neural network with its prediction. The number of iterations
required to return to the steady state is then observed. This process is repeated n, = 5 times for
each case to generate perturbations of different forms. The entropy field and the pressure field are
perturbed as follows

ii,j,k =k + Eﬂ,j7k,Pi7j7k S U(—l, 1),i S [1,nx],j S [1,110],/{: IS [l,nr], (8.8)

with x € {Z}J), ANS} and U(—1,1) a continuous uniform distribution between —1 and 1. On Figure
8.2, the average value of the relative gain (averaged over the number of repetitions n, and the
number of cases n. in the test dataset) and the associated standard deviation is shown as a function
of the amplitude of the applied perturbation (noted €). As expected, when the amplitude of the
perturbation decreases, the relative gain increases. Initializing with a solution close to the steady
state solution thus effectively accelerates convergence. High accuracy (e < 10~%) must be achieved
to reach the maximum gain. For less precise perturbations, the acceleration is still interesting, but
the slope is steep, and the standard deviation is large, indicating that the gain can vary over a wide
range. Therefore, it can be expected that neural networks will have variable performance depending
on the cases considered.
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FIGURE 8.2
Proof of concept - Relative gain as a function of the amplitude of the random perturbations - Averaged on 1000
cases.

8.2 Sensitiviy analysis and performance obtained with the MSE
Loss

In this section, the performance of the method is evaluated using the MSE Loss introduced above.
To this end, datasets for training, validation, and testing are generated randomly, respecting the
ranges conditions of Equations (8.3). The required size of these datasets is discussed in Section
8.2.1. Once the datasets are defined, the influence of ThermoTorch’s numerical parameters on
performance is analyzed in Section 8.2.2. Next, a sensitivity study is carried out on various NN
parameters, known as hyperparameters, in Section 8.2.3. The results obtained with the optimized
NN are then presented in Section 8.2.4 for both the 3-equation and the 4-equation models.

To study the impact of a specific parameter, all other parameters are set to their default values.
The NN and ThermoTorch parameters, as well as the dataset sizes, are listed in Table 8.1. This
table provides both the default values and the ranges of variation used for the sensitivity analysis.
Some parameters remain fixed, in which case no range is specified.

The performance metric for these sensitivity analyses is the average relative gain on a test set of
1000 cases. The relative gain varies significantly depending on the cases and the NN’s predictions.
As a result, the gain has a high standard deviation, which can make the sensitivity analysis more
difficult to interpret.
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Parameter ‘ Default Value ‘ Range sensitivity analysis
Datasets size
Training and validation dataset 10000 100 - 20000
Proportion used for validation 10% -
Test dataset 1000 10-2000
Hyperparameters of the NN
Number of epochs 500 1-1000
Batch size 50 2-9000
Neurons per layer 200 10-500
Number of layers 2 1-4
Loss MSE -
Optimizer Adam -
Initial learning rate 0.001 -
Numerical parameters of ThermoTorch
Time step (s) 0.05 0.05-0.5
Stopping criterion 10~* 1072 —-1078
TABLE 8.1
Default values and ranges of variation for parameters for the datasets used, the NN and ThermoTorch's numerical
parameters.

8.2.1 Size of the training, validation and test datasets

The impact of dataset sizes on performance is studied, both for the test dataset and the training
dataset, to evaluate the sizes needed to train and test the NN. Sensitivity analyses are detailed in
Appendix 8.B. The main results are summarized here.

The size of the training dataset should be sufficient to reach good and stable acceleration. Without
enough cases to train on, the neural network is not able to generalize well, and the accuracy of its
predictions can be poor. On the other hand, the time required to generate the dataset and to train
the neural network increases proportionally with its size. Various sizes of training (and validation)
datasets are evaluated, ranging from 100 to 20000 cases (chosen randomly). The results presented
in Appendix 8.B.1 indicate that a dataset size of 10000 cases is sufficient for training, whether
for the 3-equation or the 4-equation model. The same base of 10000 cases is used for both models
(3-equations and 4-equations) throughout this work to allow performance comparisons. To verify
that convergence is reached, 10% of the dataset is used as the validation dataset.

The size of the test dataset is a major factor in evaluating the NN’s performance. It must be large
enough to ensure that the results obtained are representative of the method’s overall performance.
However, increasing the test dataset size significantly increases computation time. A method is
developed in Appendix 8.B.2 to test different sizes, ranging from 10 to 2000. A test dataset size
of 1000 cases is found to be sufficient, providing performance results within a 2% margin of error.
This test base is used to evaluate the performance of all trained networks throughout this study,
regardless of the model used.

8.2.2 Impact of the numerical parameters of ThermoTorch on the performance

The number of iterations before convergence varies significantly depending on two numerical pa-
rameters in ThermoTorch: the fixed time step At used, and the value of the stopping criterion (see
Chapter 6).

The sensitivity analyses are detailed in Appendix 8.C, where the performance of the method is
evaluated for different time steps and stopping criteria. These numerical parameters, and especially
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the stopping criterion, have a significant impact on the observed gain. Therefore, the performance
of the method should be evaluated based on fixed stopping criterion and a fixed time step. To align
as closely as possible with industrial applications, a time step of At = 0.05 s and stopping criterion
of 107* (to obtain the same order of number of iterations to reach convergence as THY C-coeur) are
selected to evaluate the method’s performance.

8.2.3 Optimization of the hyperparameters

The structure of the proposed neural network allows for the adjustment of numerous hyperparame-
ters to optimize the network’s performance. A sensitivity analysis was conducted for each parameter
listed in Table 8.1 for both the 3-equation and the 4-equation models. In order to identify the in-
dividual impact of each hyperparameter on performance, the other hyperparameters are kept fixed
at their default values, as shown in Table 8.1. The analyses are detailed in Appendix 8.D and the
main results are summarized below.

e Number of epochs: By monitoring the loss of the validation dataset, it is possible to
determine when the neural network is overfitting, as the validation loss starts to increase
or stagnate. The application considered here is not particularly prone to overfitting. After
testing several numbers of epochs between 1 and 2000, the value of 500 epochs ensures that
convergence is reached, i.e. the average gain no longer varies significantly after this epoch,
regardless of the model used (3-equation or 4-equation).

e Number of hidden neural layers and number of neurons per layer: When the number
of hidden layers (and number of neurons per layer) increase, the neural network becomes more
precise, but it may also lead to increased overfitting and longer prediction time. Several NNs
with two hidden layers have been tested, with the number of neurons per layer ranging from
10 to 500. Starting from 100 neurons per layer, the average gain no longer increases. A
configuration with 200 neurons per layer is therefore chosen. Similarly, with 200 neurons per
layer, networks with 1, 2, 3, or 4 layers were tested, and the impact on the gain was found to
be very low. A network with two hideen layers is retained.

e Batch size: The batch size corresponds to the size of the data packets used to optimize the
loss. The batch sizes can have an impact on performance. In [88], it is shown that the use
of large batch size can lead to poor generalization. Reducing the batch size increases the
training time and can lead to oscillations of the loss for the case considered here, unlike large
batch sizes, where the loss is smoother. Batch sizes, ranging from 2 to 9 000 have been tested
in Appendix 8.D. Except for a batch size of 2, the performance does not vary significantly
with the batch size for the application considered. The default value used is 50.

We observed that the training process is highly resistant to overfitting for this application. The
number of epochs is optimized primarily to minimize computation time while ensuring that training
converges as quickly as possible. This is also why dropout [74, 133] and L1/L2 regularization [111]
are not implemented.

8.2.4 Acceleration results with optimized neural network using MSE Loss

The optimized neural network was tested to evaluate the average relative gain on the test dataset of
1000 cases. The distribution of relative gains is shown in Figure 8.3, on the left for the 3-equation
model and on the right for the 4-equation model. The liquid cases, where the flow remains completely
liquid, are separated from the two-phase cases, where the vapor mass fraction is positive. First, the
method accelerates every case, regardless of the model. The average gain obtained is 70 +19% for
the 3-equation model and 48 + 21% for the 4-equation model. The network is slightly less effective
for the 4-equation model, which appears to be more difficult to predict, particularly because the
vapor mass fraction field must also be predicted.
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The histogram of the relative gain on the test dataset is represented in Figure 8.3 for both models.
For the 3-equation model (Figure 8.3 - left), many cases are already accelerated almost to the
maximum (80% — 100% range). Apart from these cases, most other cases have a relative gain
between 30% and 70%. There is no notable difference between the liquid and two-phase cases.
For the 4-equation model (Figure 8.3 - right), few cases are accelerated to the maximum. Unlike
the 3-equation model, there is a significant difference between the liquid and two-phase cases. The
liquid cases are very well accelerated, while most two-phase cases have a relative gain of between
20% and 50%. The difference of performance between the 3-equation and 4-equation models is
due to the fourth equation, that slows the convergence. In Appendix 8.F, the neural network
trained with the 3-equation model is used to initialize the 4-equation model. Despite differences in
results between the two models, the same performance are obtained than the ones obtained with
the neural network trained on the 4-equation model. Therefore, the handling of the mass fraction
in the prediction should be improved in order to achieve similar accelerations observed with the
3-equation model.

Averaged relative gain: 70.33 +/- 18.73 % Averaged relative gain: 48.30 +/- 20.79 %
| Liquid cases - average: 71.35 +/- 18.93 % 140 Wmm Liquid cases - average: 68.66 +/- 15.22 %
140 Two-phase cases - average: 69.75 +/- 18.60 % Two-phase cases - average: 36.69 +/- 13.24 %
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FIGURE 8.3
Histogram of relative gain on the test dataset of 1000 cases - MSE Loss - 3-equation (left) and 4-equation model

(right).

8.3 Optimization with regularization on normal modes

In this section, a spatial frequency analysis is performed to study the impact of the shape of the
fields on acceleration. A new loss function is proposed and tested.

8.3.1 Correlation between prediction accuracy and acceleration performance

The MSE Loss was a good initial indicator already showing interesting accelerations. The aim is
to better understand the mechanisms governing convergence. For each case in the test dataset,
the relative gain as a function of the MSE Loss (computed for each variable independently) is
plotted, separating the liquid cases from the two-phase cases. Figure 8.4 represents the results
(for entropy and pressure) for the 3-equation model, and Figure 8.5 for the 4-equation model (for
entropy, pressure, and mass fraction). The points are colored according to the maximum mass
fraction reached in the pipe, which allows distinguishing between single-phase and two-phase cases.

The loss in pressure is not related to the gain. Regardless of the case, the network is sufficiently
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accurate for pressure, so that the error in pressure is not a limiting factor. For the 4-equation model,

pressure accuracy is better for most single-phase cases, and this appears to enable significantly higher
gains for these liquid cases.
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For the 3-equation model, entropy is correlated with the relative gain. The error in entropy seems
to drive the gain in iterations but the gain in iterations varies greatly, especially for cases where
the loss exceeds a value of 1072. We observe that two cases with the same error in entropy can
be accelerated very differently. For example, cases are accelerated from 40% to 90% for the same
entropy loss of 107!, Concerning the neural network’s accuracy, acceleration is therefore not driven
only by accuracy but by another factor yet to be determined.

For the 4-equation model, the two-phase cases are predicted with much less accuracy. A correlation
between the error in entropy and relative gain in iterations is still observed. Unlike the 3-equation
model, the behavior differs depending on whether the cases are single-phase or two-phase: the
correlation slope is not the same, with the slope for two-phase cases being significantly lower.
Therefore, much higher accuracy in entropy is required for two-phase cases to achieve significant
acceleration. In all cases, a spread in gains similar to that observed with the 3-equation model
appears. The same conclusion applies as for the 3-equation model: another factor besides the
accuracy of the solutions seems to influence the gain. There does not appear to be any correlation
between the gain and the loss in mass fraction.

In conclusion, entropy appears to be the key to increasing acceleration. To further enhance the
network’s performance, two issues can be addressed. First, improving the accuracy of entropy
enable to move toward the left of the figure on the gain-loss correlation, particularly for the two-
phase cases in the 4-equation model. The second issue is the spread of the correlation. As mentioned
earlier, the same accuracy can result in very different gains. The goal in the continuation of this
work is to understand the origin of this spread in the correlation and try to limit it.

8.3.2 Normal mode analysis of the model

Given that the same loss can give two very different results, the shape of the spatial perturbations
is studied. It corresponds to the shape of the difference between the predicted solution and the
corresponding steady state. The spatial frequency domain, also called normal modes, is used for
analyzing the perturbation. Under steady-state conditions, only one variable at a time - entropy,
pressure, or mass fraction - is perturbed using a sinusoidal function with frequency f,, corresponding
to the eigenmodes of the considered mesh, such that

Ty

o , Ny
fp=—""—,ip €0, 5

. 8.9
Az ] (8.9)
This perturbation is applied to the non-normalized fields and has an amplitude € corresponding to
the characteristic amplitude of the error made by the neural network on the non-normalized fields:
€p = 103 for pressure, €, = 10~ for entropy, and €y = 1077 for mass fraction. For a frequency Ips
the field used as initialization is, Vi € [1,ny],

hi = h; + e, sin(2w fpz;), h e {Ap,As,y}. (8.10)

The number of iterations required to return to the steady state is studied for each perturbation.
Figure 8.6 represents the results obtained for the 3-equation model (left) and for the 4-equation
model (right) averaged over the test dataset. The perturbation in pressure has no impact on con-
vergence as cases converge in three iterations, confirming the observation made in Section 8.3.1.
A slight increase in iterations is observed for very low-frequency perturbations in pressure, but it
remains negligible compared to the other variables. For entropy, the behavior is very different.
Low-frequency perturbations in entropy have a very strong impact on convergence, regardless of the
model considered. Similarly, in the 4-equation model, low frequencies in mass fraction perturbation
force the system to perform several iterations before converging. Moreover, the number of iterations
remains high for high-frequency perturbations because the filtering (y € [0, 1]) used before initializ-
ing with the mass fraction reintroduces low frequencies. To conclude, given the current accuracy of
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the neural network, low frequencies in entropy and mass fraction perturbations must be excluded.
Moreover, it is observed that regardless of the frequency, the limit on the number of iterations for
entropy and mass fraction remains high (superior to 10 iterations for mass fraction and 8 iterations
for entropy). Therefore, achieving high accuracy on these variables is essential.
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FIGURE 8.6
Number of iterations to reach convergence as a function of the spatial frequency of the perturbation - 3-equation
(left) and 4-equation model (right).

The considered system thus struggles to eliminate low-frequency perturbations for entropy (and
for mass fraction). The objective is to try to reduce low-frequency perturbations in the predicted
solutions. Therefore, the neural network must be trained to predict accurate solutions with as few
low-frequency errors as possible for entropy. For the 4-equation model, the mass fraction would also
need to be addressed, but this work focuses on handling entropy for now. A new loss function is
proposed with an additional term that minimizes low-frequency perturbations in entropy. A cutoff
frequency f. is considered, beyond which perturbation frequencies are no longer taken into account.
The cut index is noted . such that i. = fon,Ax, i. € [0,n,]. Noting o > 0 as the proportion of the
frequency term in the total loss and DFT(f) as the Discrete spatial Fourier Transform of function
f, the MSE+DFT Loss is written, using the same vectors V and \A/', as in Equation (8.7),

Loss(V,V)=(1—a) > MSE(x,X)+ax HDFT(KS — A8)[0,4c]

2
) (8.11)
x€{As,Ap,¥}

8.3.3 Acceleration results with regularization on normal modes

Using the MSE+DFT Loss, different neural networks are studied, varying the parameters a €
[0.1,0.9] and i, € [1,4y,] with iy, = ny/2(= 25) as the maximal value for i.. A detailed sensitivity
analysis on the two parameters i, and « can be found in Appendix 8.E. This study shows that
for i, > 5 and a < 0.7, the MSE+DFT Loss leads to a performance increase of approximately 10%.
The performance is analyzed in detail for the parameters 7. = 25 and o = 0.5. The histograms of
the number of cases per relative gain are represented in Figure 8.7, on the left for the 3-equation
model and on the right for the 4-equation model. For both models, the average gain increases by
more than 10% with the new loss function. For the 3-equation model, almost maximum acceleration
is achieved for all cases, with an average gain of 83 +11%. Compared to the results in Figure 8.3
for the 3-equation model, most of the cases that were previously in the [30,60]% range have now
reached maximum acceleration (> 80%). This new NN has achieved an acceleration for the 3-
equation model that approaches the maximum reachable value. Indeed, 67.3% of the cases require
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fewer than 4 iterations to converge, i.e., are maximally accelerated. Moreover, 90% of the cases
converge in fewer than 10 iterations (whereas no case converges in fewer than 10 iterations with
constant initialization).

For the 4-equation model, the average gain reaches 61 +18%. While the single-phase cases are very
well accelerated, the gain for the two-phase cases remains around 50%. Only 4 cases are accelerated
to the maximum (fewer than 4 iterations to converge), and 40.6% of the cases converge in fewer than
10 iterations. This represents 98% of the single-phase cases and only 7% of the two-phase cases.
Further work can therefore be undertaken to try to accelerate the two-phase cases. The problem
may be partly due to the mass fraction. Therefore, it is important to also address the low-frequency
perturbations of the mass fraction. However, the final processing that ensures y € [0,1] tends to
inject low-frequency perturbations in all cases, even if the prediction shows only high-frequency
errors. As a consequence, adding a DFT term for mass fraction similar to the one for entropy is not
suited for this variable, and a different method for handling mass fraction is required.

Averaged relative gain: 83.26 +/- 11.04 % Averaged relative gain: 60.98 +/- 17.51 %
|| Liquid cases - average: 85.64 +/- 6.45 % || Liquid cases - average: 77.41 +/- 7.08 %
200 Two-phase cases - average: 81.91 +/- 12.75 % 100 Two-phase cases - average: 51.62 +/- 14.53 %
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FIGURE 8.7
Histogram of relative gain on the test dataset of 1000 cases - MSE+DFT Loss - 3-equation (left) and 4-equation
model (right).

8.4 Conclusion and perspectives

The proposed method with a simple MSE Loss enables an interesting acceleration of ThermoTorch
1D once the network hyperparameters are optimized (about 67% for the 3-equation model and
48% for the 4-equation model on average). Adding low-frequency processing for entropy in the
MSE+DFT Loss increases the gain obtained by 10%, regardless of the model. For the 4-equation
model, additional processing on the mass fraction is necessary to further increase the gain.

This work reveals the potential performance of the proposed method in accelerating the convergence
to steady state of a finite volume thermal hydraulic code. It is now necessary to increase the
complexity of the physics (pressure losses, diffusion, turbulence, etc.) and verify if the method
remains efficient. The addition of these new terms may have an impact on the frequency behavior
of the system of equations. Therefore, the normal mode analysis for each variable, especially
pressure, will need to be repeated. Furthermore, in the current model without pressure losses, the
pressure does not vary significantly across the domain, allowing for accurate predictions by the
neural network. The introduction of pressure losses could complicate the pressure profile and thus
affect the performance of the method.
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The next important step in this work is the transition to three-dimensional cases. Indeed, the
current model is one-dimensional and provides almost constant pressure. The transition to three-
dimensional changes this, and the prediction of other fields may also become important. In particu-
lar, it will become necessary to predict the mass flux in all three directions, meaning three additional
fields that will significantly impact convergence. Furthermore, the mesh size will increase (moving
to thousands of cells). Therefore, the neural network will need to be adapted to maintain sufficient
accuracy for each field, or multiple independent neural networks could be proposed, each trained
for a specific variable. Finally, 3D geometry also complicates the analysis of spatial normal modes.
The analysis must be carried out in each direction, applying sinusoidal perturbation separately in
one direction at a time.
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8.A Implementation

In Figure 8.8, the implementation of the Python model for training and testing neural networks is
detailed. Python files are represented in blue. The data is shown in green and framed in navy blue
if normalized. Finally, ThermoTorch computations and NN predictions are represented in orange.
The DataLoader format from the PyTorch package is used to facilitate training, particularly batch
processing. The entire code is written in Python, and the package used for the neural network is
exclusively the PyTorch package!.

generate_database.py train_nn.py

generation() train_database()

Y A 4
Test dataset Training dataset

opts_training{}

normalization data Neural Network
(UEERYS ) (NN)

ThermoTorch

opts_tht{}

predicted output

Niter NN
initialization
Uil 27 ThermoTorch
use_neurons_model() N ;e cOnstant
initialization

opts_tht{}

FIGURE 8.8
Implementation of the method for accelerating ThermoTorch using neural networks — Training and usage.

8.B Sensitivity analysis on the size of the datasets

8.B.1 Training dataset size

The performance of the obtained NNs is evaluated on the same dataset of 1000 test cases. Figure
8.9 shows the average gain and standard deviation on this test dataset as a function of the training
dataset size, which varies from 100 to 20 000 cases. For small training dataset sizes (< 2 500), the
gain is relatively low, as the neural network does not have enough data to perform well. From 5000
cases onward, the gain stabilizes regardless of the equation model. To ensure a sufficiently large
dataset for sensitivity studies, a default dataset of 10 000 cases is selected. The same cases (only
the boundary conditions) are used for both the 3-equation and 4-equation models to allow for result
comparisons.

"https://pytorch.org - V1.13.1/
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FIGURE 8.9
Relative gain as a function of the size of the training dataset - 3-equation (left) and 4-equation (right) model.

8.B.2 Test dataset size

For the test dataset, the goal is to determine the dataset size at which the average gain becomes

representative of the method. A set of 20 000 different cases is randomly generated, independently
of the training dataset.

To evaluate a test dataset size Niest, Niest cases are randomly drawn from this set of 20,000 cases.
Ten different draws are performed for each N;es value. The average gain (over the entire test set)
is then computed for each draw and averaged over all draws. The mean gain, averaged over all
test sets and draws, is plotted as a function of the test dataset size in Figure 8.10. The standard
deviation (computed over all draws) is also shown. Regardless of the model used, the gain stabilizes

with a standard deviation of less than 2% from 500 cases onward. Therefore, the default test dataset
size is set to 1 000.
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FIGURE 8.10
Relative gain as a function of the size of the test dataset - 3-equation (left) and 4-equation (right) model.
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8.C Sensitivity analysis on ThermoTorch numerical parameters

To study the numerical parameters of ThermoTorch, a NN with fixed characteristics, as listed in
Table 8.1, is used. Using the trained NN with a dataset of 10 000 cases, the relative gain is evaluated
on a test dataset of 1 000 cases (see Appendix 8.B for the choice of test and training dataset sizes).

Figure 8.11 shows the average gain and its standard deviation as a function of the time step, while
Figure 8.12 illustrates the average gain and its standard deviation as a function of the stopping
criterion. In Figure 8.11, as the time step increases, the gain decreases slightly, with the effect being
more noticeable for the 3-equation model. In Figure 8.12; the gain increases significantly as the
stopping criterion becomes stricter. This is because the NN-based prediction method saves iterations
that correspond to the initial iterations in a constant initialization approach. Increasing the stopping
criterion greatly reduces the number of iterations before convergence, thereby significantly increasing
the relative gain. Thus, the numerical parameters of ThermoTorch have a major impact on the NN’s
performance. These values should be fixed for all sensitivity studies.
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FiGURE 8.11
Relative gain as a function of the time step used in ThermoTorch - 3-equation (left) and 4-equation (right) model.
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FIGURE 8.12
Relative gain as a function of the stopping criterion used in ThermoTorch - 3-equation (left) and 4-equation
(right) model.
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8.D Sensitivity analysis on hyperparameters of the NN

To study the individual impact of each hyperparameter on the observed gain, the other parameters
are kept fixed. The default values are listed in Table 8.1.

8.D.1 Stopping number of epochs for training

The final number of epochs corresponds to the number of training iterations (gradient descent steps)
performed on the entire training dataset. Figure 8.13 illustrates the loss during the training of the
3-equation model’s NN as a function of the number of epochs. The training loss is shown in blue,
while the validation loss is shown in orange.

During training, gradient descent optimization reduces the training loss. Simultaneously, the vali-
dation loss also decreases until it reaches an oscillating plateau at around 200 epochs. Beyond this
point, the network no longer learns to generalize but instead overfits the training data. However,
the obtained performance is not affected by overfitting because the provided data is not noisy, as it
originates from ThermoTorch computational results.

To verify this, the relative gain was evaluated as a function of the stopping number of training
epochs and is shown in Figure 8.14 for both models, ranging the number of epochs from 1 to 1000.
As expected, the gain reaches a plateau at around 200 epochs and remains nearly unchanged, even
at 1000 epochs where the network has overfitted. To ensure convergence across all tests performed,
the stopping number of iterations is set to 500 by default, except for the sensitivity analysis for the
batch size (see below).

—— Training Loss
Validation Loss

Loss [-]

0%%

bt ||
AL L T
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Epoch [-]

FiGURE 8.13
Training and validation loss as a function of the number of epochs - 3-equation model.

241



DEVELOPMENT OF AN EFFICIENT NUMERICAL RESOLUTION OF A HOMOGENEOUS TWO-PHASE MODEL

70
90
T 60
80
T A
- A A A A -
R0 A S
< A 50 A A
c c A A A
‘s 60 ©
b m40
[} ]
250 2 A A
- -
5 5
& 40 & 30
30
20
20
10
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of epochs Number of epochs

FIiGURE 8.14
Relative gain as a function of the stopping number of epochs - 3-equation (left) and 4-equation (right) model.

8.D.2 Batch size

The batch size corresponds to the number of cases fed into the training process at once during
gradient descent. In the literature, it is generally recommended to use a relatively small batch size
to improve prediction accuracy [88]. Training and validation losses are shown in Figure 8.15 for two
different batch sizes: one of 2 and one of 9000. A small batch size allows convergence to be reached
more quickly in terms of the number of epochs required (although the computational time can be
higher) compared to a large batch size. Convergence is achieved after 150 epochs for a batch size of
2, whereas 2000 epochs are needed for a batch size of 9000. However, with a smaller batch size, the
loss exhibits much greater oscillations, which makes automatic convergence detection more difficult.

This is not an issue here since no early stopping criterion is used, and a fixed number of epochs is
employed.

For batch sizes ranging from 2 to 9000, the performance of the resulting neural networks is shown
in Figure 8.16. Increasing the batch size requires a higher number of training epochs. For batch
sizes greater than 1000, the maximum number of epochs is increased to 2000. It can be observed
that for the smallest batch size of 2, the performance is degraded. Aside from this case, batch size
has little impact on the final performance. To maintain a stopping number of epochs of 500, the
default value of 50 is retained for batch size.
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FIGURE 8.15
Training and validation loss as a function of the number of epochs for batch size of 2 (left) and 9000 (right) -
3-equation model.
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FIGURE 8.16
Relative gain as a function of the batch size - 3-equation (left) and 4-equation (right) model.

8.D.3 Number of neurons per layer and number of layers

The number of neurons and the number of layers are the key structural elements of the network, as
they define the number of degrees of freedom to be trained. To limit the number of computations,
only specific tests were conducted. First, a two-hidden-layer structure with equal-sized layers was
chosen, and the number of neurons per layer varied between 10 and 500. Figure 8.17 shows the
relative gain obtained as a function of the number of neurons per layer. From 100 neurons per
layer onward, the relative gain remains stable. Increasing the number of neurons further increases
training and prediction time without improving performance. For the 4-equation model, the relative
gain even tends to decrease with a large number of neurons per layer. The default value selected

is 200 neurons per layer. This value depends on the size of the numerical mesh in ThermoTorch,
which is kept at 50 cells here.

Once the number of neurons per layer was fixed, an analysis was conducted on the number of layers,
ranging from 1 to 4. Figure 8.18 illustrates the relative gain as a function of the number of layers.

Performance does not appear to vary significantly with the number of layers, so a two-hidden-layer
architecture was chosen as the default.
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FIGURE 8.17

Relative gain as a function of the number of neurons per layer for NN with two hidden layers - 3-equation (left)
and 4-equation (right) model.
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FIGURE 8.18
Relative gain as a function of the number of hidden layers of 200 neurons per layer - 3-equation (left) and
4-equation (right) model.

8.E Sensitivity analysis on the parameters of the MSE+DFT Loss

In the MSE+DFT Loss, two new parameters are introduced: the frequency term proportion a €
[0, 1] and the cutoff index i, € [0, 25]. A sensitivity analysis was performed on these two parameters
for e € [0.1,0.9] and i, € [0,25]. Figure 8.19 shows the relative gain as a function of the parameter
a for different values of the cutoff index, and Figure 8.20 shows the relative gain as a function of
the cutoff index i, for different values of the parameter «. For each figure, the left figure is for the
3-equation model and the right figure for the 4-equation model.

When enough spatial frequencies are considered (i. > 5), neural networks trained with the MSE
+ DFT Loss become more performant than those trained with the MSE Loss, represented by a
dotted black line in Figure 8.20. The treatment of low spatial frequencies for entropy perturbation
has a positive impact on the relative gain, as expected. If i, > 5, the gain remains constant for
a < 0.7. When a > 0.7, the spatial frequency term becomes too dominant in the loss. The learning
process will optimize the low frequencies of entropy but will no longer predict the pressure and mass
fraction accurately. The selected values are i, = 25 and « = 0.5. Regardless of the model, adding
the spatial frequency term to the loss function results in a performance increase of approximately

10%.
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FIGURE 8.19
Relative gain as a function of the parameter « for different values of the cutoff index i. - MSE+DFT Loss -
3-equation (left) and 4-equation (right) model.
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FIGURE 8.20
Relative gain as a function of the cutoff index i, for different values of the parameter o« - MSE+DFT Loss -
3-equation (left) and 4-equation (right) model.

8.F Using the 3-equation NN to predict the 4-equation model

The neural network trained for the 3-equation model is referred to as NN-3eq, and the one trained
for the 4-equation model as NN-4eq. The relative gains for each loss function and each model
are presented in Table 8.2. The last row shows the relative gain obtained when using NN-3eq to
initialize the 4-equation model. In this case, the mass fraction is initialized using the thermodynamic
equilibrium value computed from entropy and pressure. With this initialization, the gain obtained
is higher than that achieved using NN-4eq, particularly for the MSE Loss. It accelerates the two-
phase flow cases, in particular. For two-phase flow, the average gain is 36.7% for NN-4eq and 42.4%
for NN-3eq. This result may seem surprising, as NN-3eq predicts a different solution for entropy
and mass fraction. Several arguments can explain this outcome.

First, NN-3eq only needs to predict two fields (100 values), whereas NN-4eq must predict three
(150 values). NN-3eq is therefore more accurate for entropy, as can be seen by comparing the losses
in Figures 8.4 and 8.5. The average entropy MSE Loss is 4.9 x 1072 for the 3-equation model
and 8.4 x 1072 for the 4-equation model (on the test dataset for the MSE Loss NN). This is even
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more pronounced when only the two-phase cases are considered. In that case, the average errors in
entropy are 6.3 x 1072 for NN-3eq and 1.38 x 10~ for NN-4eq.

However, these average errors are computed by comparing NN-3eq to the exact solution of the 3-
equation model, which is not the same as that of the 4-equation model. But the difference between
the 3-equation and 4-equation steady states only appears in the subcooled boiling zone, where the
liquid is under-saturated and vapor begins to form. In both THYC-coeur and ThermoTorch, the
models define this subcooled boiling region quite narrowly. It is rare for the mass fraction to deviate
significantly from its equilibrium value. As a result, entropy and mass fraction fields are very similar
in both the 3- and 4-equation models. In fact, if the 4-equation model is initialized using the steady-
state solution of the 3-equation model computed with ThermoTorch, the simulation converges in
an average of 7 iterations (on the test dataset), corresponding to an average gain of 81%.

Finally, the NN-4eq model predicts the mass fraction, which is a particularly challenging field to
estimate. Mass fraction variations are typically small and can differ significantly between cases.
All cases start with a region of variable size in which the water remains in the liquid phase, and
the neural network must predict a strictly zero value there. The prediction is often worse than
the thermodynamic equilibrium mass fraction, which is already very close to the non-equilibrium
solution. In fact, the predicted field often shows small oscillations near zero in the single-phase
region that must be damped out by the solver during convergence.

All of these reasons help explain the improved performance obtained by using the NN-3eq network.
This indicates that further work is needed on mass fraction prediction for NN-4eq to become more
effective. One idea, for instance, to reduce oscillations in the mass fraction within the single-phase
region, would be to train the network to also predict the boiling onset location and enforce a strictly
zero mass fraction up to the beginning of boiling.

Initialization | MSE (%) | MSE+DFT (%) | Gain due to DFT (%)
3-equation model
NN-3eq | 70+£19 [ 83+£11 | +13
4-equation model
NN-4eq 48 + 21 61 £ 18 +13
NN-3eq 93 £+ 23 64 + 21 +11
TABLE 8.2

Relative gain as a function of the used initialization - MSE and MSE+DFT Loss.

246



Conclusion and perspectives

Conclusion

The objective of this PhD thesis was to accelerate the THYC-coeur code [7], a component code
used to simulate two-phase flows in the reactor cores of Pressurized Water Reactors. Compared to
most of two-phase codes, the specificities of THYC-COEUR model are :

e The use of a fully 3D porous model approach. This means that the solid is integrated into
the fluid domain through porosity, which calculates the fraction of liquid in a control volume.
The exact geometry of the solid is disregarded, and macroscopic interaction terms with the
solid must be modeled.

e The use of a drift-flux model for relative velocity between liquid and vapor [81, 82]. The
drift-flux correlation for the relative velocity [145] accounts for buoyancy of vapor structures
and for the non-uniform distribution of mixture velocity and vapor void fraction.

e The use of a fourth equation for the mass of the vapor phase, to better model subcooled
boiling.

The numerical scheme of the code is based on staggered meshes and an upwind convection scheme,
with a decoupling of the energy equation. To achieve acceleration of the code, the work of the PhD
thesis was divided into three main parts.

Part I - Two-phase flow model

e The first chapter of the thesis has focused on studying the drift-flux models and the vari-
ous correlations used to evaluate the relative velocity in the THYC-coeur code: the Bestion
correlation [14] and the Chexal-Lellouche correlation [22].

e The relative velocity and the fourth disequilibrium equation both introduce significant com-
plexity to the model. Chapter 2 attempts to provide initial insights into the study of hyper-
bolicity of the 4-equation drift-flux model. Only the case of a constant relative velocity could
be studied. In this simplified framework, a sufficient condition for the model to be hyperbolic
was determined. This result relies on the intermediate value theorem, and the eigenvalues of
the system could not be obtained analytically. Increasing the complexity of the problem by
considering a variable relative velocity appears to be challenging.

e In the final chapter of this first part, some analytical solutions are provided for models derived
from the 4-equation and 3-equation models. By considering simple configurations, these ana-
lytical solutions enable the verification of codes in the second and third parts of this thesis.
This chapter has provided two new self-similar solutions for the unsteady 3-equation model
[70]. The first one is a porous medium solution without heat exchange and the second one is
a solution with heat exchange in a free medium.
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Part II - THY C-coeur with relative velocity: After studying the drift-flux models to better
understand their behavior, the second part of the thesis proposes a first acceleration method by
analyzing the finite volume schemes used in the THY C-coeur. It focuses specifically on the numerical
schemes for the fourth equation of the model, which concerns the mass fraction of vapor. This work
on the schemes was divided into two phases.

e In a first phase, three new finite volume schemes for the fourth equation have been proposed
[93]: the QRd scheme, the QRq scheme, and the QG scheme. After studying the maximum
principle on the continuous equation to ensure y € [0, 1], the discrete maximum principle
has been analyzed for the three new schemes. The QRd and QRq schemes have no con-
straint on the time step but the QRq scheme can only be used for co-current flows. The
last scheme, called QG Scheme, presents a constraint on the time step, which is not limiting
for nuclear reactor core applications. All three schemes are linear and first-order in space
schemes. The convergence rate was confirmed by a convergence study on a prototype isolat-
ing the disequilibrium equation. The QG and QRq schemes appear slightly more accurate for
the intended applications. The QG scheme has been also verified for unsteady simulations
and a convergence rate of one in space and time was obtained. The QRd and QRq schemes
are not conservative in unsteady conditions. Therefore, they cannot be used for transient
computations. The three schemes are particularly interesting because they offer a discrete
equation for the mass fraction that is independent of the other variables during time stepping.
This allows the equation to be solved independently, thereby saving computational time. It
is recommended to use the QG scheme by default.

e In the second phase of the work on the disequilibrium equation schemes, the three newly
proposed schemes were implemented in the industrial THY C-coeur code. These schemes are
compatible with an unstructured staggered grid mesh, and thus can be implemented in THY C-
coeur, which uses a Cartesian staggered grid. The three schemes were tested, and their results
were compared with those obtained using the default THY C-coeur scheme.

The Bias Curve Database (a database of 36148 representative cases of normal and accidental
reactor core flows) was used to evaluate the behavior of two different models with the scheme.
These two models differ by the correlation used for the relative velocity: one uses the Bestion
correlation [14], and the other the Chexal-Lellouche correlation [22]. Both correlations are
used industrially in THY C-coeur. It was shown that the new schemes improve the robustness
of the code. For the model using Chexal-Lellouche, a computational time gain of over 50%
was also observed compared to the reference scheme. For the Bestion correlation, performance
was similar between the new schemes and the reference scheme.

This work on the disequilibrium equation scheme led to the proposal of a summary table in the
conclusion of Chapter 5, which recommends the scheme to use, depending on the simulation
(steady or unsteady) and the model considered (Bestion or Chexal-Lellouche).

Part III - ThermoTorch 1D without relative velocity: In this final part of the thesis work,
a 1D prototype called ThermoTorch is presented. It reproduces part of the behavior and numerical
schemes of THYC-coeur with a simplified model. This code, developed in collaboration with the
thesis director in [68], is a tool that allows for testing new methods and precisely analyzing results
before moving on to the industrial code and potentially time-consuming developments. The physical
model is simplified, in particular by considering zero relative velocity. It is implemented in a one-
dimensional framework on a staggered grid mesh. Both the 3-equation and 4-equation models
have been developed. The code has been used in Chapter 7 for the verification of the numerical
schemes implemented in both steady and unsteady conditions; and in Chapter 8 to evaluate the
performance of a method of initialization by a neural network to accelerate the convergence toward
the steady-state solution.
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e Verification of the numerical schemes: Several solutions from Chapter 3 were imple-
mented and tested using ThermoTorch. This confirmed first a convergence rate of one in
space for steady-state solutions. In a second phase, unsteady solutions were used to evaluate
the impact of the consistency error in ThermoTorch scheme for transient regimes due to an
approximation in the pseudo-entropy linearization.

These difficulties are linked to the fact that the entropy of the drift-flux 4-equation model
cannot be obtained analytically for any equation of state, even with zero relative velocity.
A pseudo-entropy, along with an approximation in its linearization, was therefore used in
the numerical schemes to decouple the energy equation from the coupled momentum-pressure
system. This element is key to achieving an efficient code for steady-state solutions. The
consistency error does not exist in the steady regime.

The thesis work showed that this error increases as the flow deviates from thermodynamic
equilibrium. Moreover, it demonstrated that the error introduced is negligible compared to
the error caused by using an industrial mesh for the majority of conditions encountered in
reactor core flows.

¢ Steady-state convergence acceleration using initialization from a neural network:
The ThermoTorch code was used to evaluate an acceleration method based on machine learn-
ing. A neural network was trained to predict the steady-state solution of the ThermoTorch
code, and the network’s predictions were used as initializations for ThermoTorch computa-
tions. This method is particularly appealing because it combines the speed of neural network
evaluation with the physical reliability of a validated code. Moreover, the method can be
implemented without requiring intrusive modifications to the code.

Very promising results were obtained with a first network, showing a 50% — 70% reduction in
the number of iterations to reach convergence (depending on the physical model). A study
of the code’s behavior with respect to the spatial frequency of perturbations in the solution
fields revealed that low-frequency perturbations in the entropy prevent the code to converge
quickly. It led to the design of a second network incorporating a discrete Fourier transform
term on entropy in the loss function to reduce these types of perturbations, which further
improved the method’s performance by an additional 10%. This preliminary study validated
the approach, which now needs to be tested on the industrial THY C-coeur code.

Summary: The thesis work contributed to a deeper understanding of the drift-flux model and
proposed several acceleration methods. The first method, focused on numerical schemes, have been
developed right through the implementation and testing within the industrial THYC-coeur code.
The second method, based on Al-driven initialization, remains at the prototype stage. However,
the preliminary results obtained with the ThermoTorch code are particularly promising and pave
the way for further investigation using the industrial code. Finally, the verification of numerical
schemes with ThermoTorch provided valuable insights into the use of pseudo-entropy and its impact
on unsteady solutions. This helped to clarify the limitations and behavior of the scheme in transient
regimes.

Perspectives

The work in this thesis has answered many questions, but raises many more. Some leads have
been fully explored, such as the finite volume schemes developed for the fourth equation. For other
directions of research, several perspectives are proposed here.

e Work on hyperbolicity: The work on the hyperbolicity of the drift-flux model proposed in
the thesis is unfortunately only partial, stopping at the case of a constant relative velocity. It
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would be interesting to improve our understanding of the sufficient condition of hyperbolicity
obtained, but also to possibly push the work even further by working with a variable relative
velocity, starting with a relative velocity depending only on the mass fraction (like the ap-
proximated Bestion correlation proposed in the appendix of Chapter 1). This might need
to no longer consider a general equation of state, but to tackle the problem with increasing
difficulty, starting for example with a perfect gas mixture.

e Analytical solutions: In Chapter 3, two self-similar unsteady solutions have been proposed
for the 3-equation model: one with a variable porosity and the other in a free medium with
a heat source term. It would be interesting to implement them for ThermoTorch in order to
further verify the numerical schemes.

Moreover, all the proposed analytical solutions have zero relative velocity. Work could be
carried out to find a configuration for which an analytical solution exists. This would en-
able verification of the numerical schemes implemented in THYC-coeur for terms containing
relative velocity.

e Verification of ThermoTorch and scheme for the energy equation: The thesis work
concluded that the use of pseudo-entropy introduces a consistency error for unsteady solutions.
It would be interesting to test alternatives to this pseudo-entropy scheme that would not
introduce a consistency error, as proposed in the conclusion of Chapter 7. This will provide
a scheme that can be used under all conditions for unsteady solutions. For these new proposed
methods, however, it will be necessary to evaluate the performance obtained for the search of
steady-state solutions.

e Acceleration by Machine Learning: The initial results on ThermoTorch are very promis-
ing. The next step is transitioning to the industrial THYC-coeur code. It presents several
challenges:

— Increased physical complexity: THY C-coeur includes numerous closure laws, making the
physical model more difficult to predict accurately with a neural network.

— 3D implementation: moving from one-dimensional to three-dimensional flows could sig-
nificantly impact the method’s performance. The spatial mode analysis performed in
one-dimensional configuration must be extended to all three directions to understand
how perturbations behave in the numerical model depending on orientation.

— Mass fraction prediction: the method could be further improved by refining how the
mass fraction is handled in the 4-equation model.

Despite these challenges, the method shows strong potential. It can be generalized to any code
computing steady-state solutions on a fixed mesh and could be a valuable tool for broader
industrial use.
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Résumé en francais

A Introduction

A.1 Fonctionnement d’un réacteur & eau pressurisée

En 2023, I’énergie nucléaire a permis de produire 320,4 TWh d’électricité en France, représentant
65,3% de la production totale d’électricité. En 2025, Electricité de France (EDF) exploite 57
réacteurs nucléaires. Ces réacteurs ont des puissances différentes : 32 réacteurs ont une puissance
électrique de 900 MWe, 20 réacteurs de 1300 MWe, 4 réacteurs de type N4 ont une puissance de
1450 MWe, et un réacteur EPR a une puissance de 1650 MWe. Tous ces réacteurs nucléaires sont
des Reéacteurs a Eau Pressurisée (REP), comme représenté dans la Figure 8.21. Un REP fonctionne
avec trois circuits : le circuit primaire, le circuit secondaire et le circuit tertiaire (également appelé
boucle de refroidissement).

Le circuit primaire comprend plusieurs composants majeurs : le coeur du réacteur, le pressuriseur,
le générateur de vapeur et la pompe primaire. Un réacteur est constitué de 3 ou 4 boucles pri-
maires (générateur de vapeur, pompe) alimentées par un seul coeur de réacteur. Pour extraire
I'énergie libérée par la fission, un fluide caloporteur (I’eau) est pompé dans le coeur par les pompes
primaires. Il se réchauffe au contact du combustible. Pendant le fonctionnement normal d’une
centrale nucléaire, ’eau reste principalement a 1’état liquide grace & la haute pression maintenue
par le pressuriseur. L’eau chauffée circule ensuite vers le générateur de vapeur, qui est un échangeur
de chaleur qui transfert la chaleur du circuit primaire au circuit secondaire.

Dans le circuit secondaire, I'eau est vaporisée dans le générateur de vapeur puis entraine les dif-
férentes turbines pour produire de I'électricité. Aprés avoir fourni son travail dans la turbine, la
vapeur est recondensée dans le condenseur, puis réinjectée dans le générateur de vapeur. Le re-
froidissement dans le condenseur est assuré par le circuit tertiaire, qui puise de ’eau dans une
riviére ou dans la mer. Selon la configuration de la centrale (en boucle ouverte ou fermée), une tour
de refroidissement peut étre ajoutée au circuit tertiaire.

Cette theése se concentre sur I’écoulement au sein d’un seul composant du circuit primaire : le coeur
du réacteur. Ce composant est détaillé dans la section suivante.
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Schéma d'un Réacteur a Eau Préssurisée (REP). Schéma Tikz de |a thése de Gloria Faccanoni[41].

A.2 Présentation du coeur de réacteur nucléaire

Dans le coeur du réacteur, I’eau circule de bas en haut. Elle entre a une température d’environ
290°C et sort du coeur a environ 320°C. Elle est maintenue sous une pression d’environ 155 bars,
ce qui permet a l’eau de rester principalement & ’état liquide malgré la température trés élevée.
En conditions normales de fonctionnement, une petite partie de I’écoulement peut se vaporiser. En
cas d’accident, on peut rencontrer un mélange diphasique eau-vapeur contenant une quantité non
négligeable de vapeur. Les vitesses du mélange sont de I'ordre de 5 m.s~! en régime nominal.

Le coeur du réacteur est chargé avec du combustible nucléaire composé d’oxyde d’uranium (UO3)
enrichi & environ 4% en uranium-235. L’élément fissile peut également étre du plutonium dans le cas
du combustible MOX. Ce combustible est fabriqué sous forme de pastilles de 1.35 cm de hauteur.
Plusieurs pastilles sont insérées dans des crayons combustibles, comportant une gaine qui entoure le
combustible. Cette gaine, faite d’un alliage de zirconium, assure ’étanchéité du crayon afin d’éviter
le rejet de matiéres radioactives dans le circuit primaire.

Un assemblage est constitué de 264 crayons regroupés ensemble et mesure 4 & 5 métres de long.
La Figure 8.22 montre les pastilles, les crayons et un assemblage combustible. Un assemblage
comprend également des tubes guides permettant I'insertion des barres de controle, qui régulent la
réaction nucléaire. Ces barres de controle sont fixées & une grappe de controle situé au-dessus de
I’assemblage.

A lintérieur de I’assemblage, des grilles d’espacement et de mélange sont placées & intervalles
réguliers. Les grilles d’espacement maintiennent les crayons combustibles en place dans ’assemblage,
tandis que les grilles de mélange favorisent le mélange pour homogénéiser I’écoulement. Cette
homogénéisation permet d’éviter les points chauds en introduisant de la turbulence.
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FIGURE 8.22
Schéma d'un assemblage combustible composé de crayons combustibles contenant des pastilles d'uranium. Crédit:
EnergyEncyclopedia.com.

Le coeur du réacteur est constitué d’une cuve en acier qui résiste a la pression interne du coeur. Cette
cuve est remplie d’'un nombre variable d’assemblages selon la puissance souhaitée du coeur : 157
assemblages pour un réacteur de 900 MWe, 193 pour 1300 MWe, 205 pour 1450 MWe et 241 pour
I’EPR. L’eau circule dans cet environnement fortement obstrué, présentant des géométries solides
trés complexes (grilles, crayons, tubes guides, etc.). Bien que I’écoulement soit principalement axial,
de bas en haut, des écoulements transverses peuvent se produire entre les assemblages, car 1’espace
entre eux est laissé ouvert. A l'intérieur des assemblages, 1'eau circule principalement entre les
crayons combustibles et évacue la chaleur produite par la réaction nucléaire. L’espace entre quatre
crayons combustibles est appelé un sous-canal, comme illustré dans la Figure 8.23.

Sub-channel

FIGURE 8.23
Image d'une maquette d'assemblage combustible avec un zoom sur le sous-canal. Source EDF R&D.
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A.3 Régimes d’ébullition

A une pression de 155 bars dans le coeur du réacteur, la température de saturation de Ieau est
d’environ 350°C'. L’eau entre dans le coeur du réacteur sous forme d’un écoulement monophasique
turbulent, avec un nombre de Reynolds de I'ordre de Re ~ 500000. Au fur et & mesure que le
fluide est chauffé lors de son ascension dans le coeur, ’écoulement peut traverser différents régimes
d’ébullition et mécanismes de transfert thermique. Les deux phases, liquide et vapeur, peuvent
présenter une grande variété de structures complexes. La vapeur peut apparaitre sous forme de
petites bulles (de Pordre de ~ 10~ m) jusqu’a de grandes poches de vapeur occupant tout l'espace
entre les crayons combustibles (environ ~ 1072 m). Les différents régimes sont illustrés dans la
Figure 8.24. Le transfert thermique débute par un transfert convectif en liquide pur, lorsque le
liquide est chauffé vers la température de saturation. Lorsque le flux thermique augmente, la
température de paroi T, augmente. Une fois que T, dépasse la température de saturation Ty, le
début de I’ébullition nucléée (ONB, en anglais) se produit. A partir de ce point, I’ébullition
nucléée (voir Figure 8.24) a lieu. La surface de la paroi est suffisamment chaude pour vaporiser ’eau
& son contact. Des bulles de vapeur apparaissent & la surface de la paroi et peuvent se détacher.
Le liquide n’est pas saturé en moyenne, mais de la vapeur apparait déja sur les crayons : c’est
I’ébullition sous-saturée.

Lorsque I’enthalpie du mélange fluide augmente, I’ébullition nucléée se poursuit. Des colonnes ou
poches de vapeur plus grandes peuvent apparaitre. Ces structures se détachent de la paroi et sont
entrainées vers le haut. Avec une enthalpie encore plus élevée, les structures de vapeur s’agglomérent
en poches de vapeur. L’ébullition nucléée peut alors basculer brutalement vers une ébullition en
film : lorsque ce point est atteint, le flux thermique est appelé flux thermique critique. Ce
phénomeéne est appelé départ de I’ébullition nucléée (DNB, en anglais). La différence entre la
température de la gaine et celle du fluide varie fortement, passant de quelques degrés & plusieurs
centaines de degrés. C’est la crise d’ébullition, durant laquelle la température de paroi devient si
élevée (> 1000°C') que des dommages thermo-mécaniques peuvent survenir dans la gaine, menagant
I'intégrité des crayons combustibles dans le coeur du réacteur.

La crise d’ébullition est particuliérement dangereuse car elle implique un phénoméne d’hystérésis.
Une fois le flux thermique critique dépassé, il faut réduire le flux thermique jusqu’au point de
Leidenfrost [55] pour revenir a ’ébullition nucléée. Il est donc crucial de s’assurer que le flux
thermique critique ne soit atteint nulle part dans le coeur du réacteur nucléaire. En conditions
normales de fonctionnement du coeur, le flux thermique reste dans la zone de I’ébullition nucléée
sous-saturée.
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Régimes d'ébullition pour un écoulement ascendant et faible titre vapeur. lllustration extraite de [141].

A.4 Rapport de Flux Thermique Critique

La distance a la crise d’ébullition est mesurée avec le Rapport de Flux Thermique Critique
(RFTC). 11 est définit comme le rapport entre le flux de chaleur local ¢ et le flux de chaleur critique
$DNB:

RFTC = ¢D;V B (8.12)

Le RFTC est une grandeur locale définie en chaque point du coeur du réacteur. Il est essentiel de
s’assurer que sa valeur soit toujours supérieure a un partout dans le coeur du réacteur (RFTC > 1).

Le flux ¢pnp est obtenu a 'aide d’une corrélation. Cette corrélation permet de prédire la valeur
locale de ¢pnp en fonction des valeurs moyennes de surface dans un sous-canal, notamment la
pression P, le flux massique du mélange G, et le titre a I’équilibre X (voir 'Equation (5.1)), tel que

¢onB = ¢pnB(P, G, X). (8.13)

Les paramétres de la corrélation sont déterminés & partir de résultats expérimentaux d’essais. Pour
évaluer le RFTC dans le coeur d’un réacteur lors de la conception ou de la planification du recharge-
ment du combustible, on peut utiliser un code thermo-hydraulique. Ce code doit étre capable de
fournir les champs locaux de pression, de flux massique et du titre dynamique dans I’ensemble du
coeur, pour un écoulement diphasique avec ébullition sous-saturée. Une fois le champ de RFTC
déterminé, on considére la valeur minimale sur I’ensemble du coeur, car c¢’est le point le plus limitant
en termes de marge. Cette valeur minimale est appelée RFTCmin et doit satisfaire

RFTCmin > 1. (8.14)

Pour garantir la stireté des REP, EDF a développé le code thermo-hydraulique THY C-coeur |7], qui
simule I’écoulement diphasique dans le coeur du réacteur. Ce code permet de calculer le champ 3D
du ratio du Rapport de Flux Thermique Critique (RFTC) dans le coeur. Cette section commence
par une bréve revue des codes de coeur de réacteur nucléaire. Deux approches possibles pour traiter
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la géométrie sont décrites dans la Section A.5. L’approche milieu poreux, utilisée dans THY C-coeur,
est présentée dans la Section A.6. Les caractéristiques du code THY C-coeur sont détaillées dans
la Section A.7. Enfin, la Section A.8 présente les études de stireté réalisées avec THY C-coeur et
explique la motivation pour accélérer le code.

A.5 Etude bibliographique des codes de réacteur nucléaire

Pour les simulations thermo-hydrauliques, plusieurs échelles peuvent étre considérées (voir Figure
8.25).

Aial velocity
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FIGURE 8.25
Illustration des différentes échelles de simulations: local, composante and systéme. Source: EDF R&D.

e La premiére et la plus macroscopique des échelles est 1’échelle systéme, ou plusieurs com-
posants d’un circuit sont simulés simultanément. Ces codes systéme incluent CATHARE [14]
en France, TRACE [8, 112], RELAP5 [46] aux Etats-Unis, et MARS [26] en Corée du Sud.
Pour évaluer précisément le champ RFTC sur I’ensemble du coeur du réacteur, cette échelle
est trop macroscopique.

e La deuxiéme échelle que I'on peut considérer est 1’échelle locale CFD, utilisant des codes
CFD tels que code saturne [4] développé par EDF ou NEPTUNE CFD [65, 103|, développé
conjointement par EDF, Framatome, le CEA et 'ASNR. L’échelle locale est précise mais ne
permet pas de simuler un coeur de réacteur complet avec les capacités de calcul actuelles.
Il faudrait des centaines de milliards de cellules pour représenter le coeur complet avec un
maillage résolvant la paroi. Ces codes sont actuellement utilisés pour simuler localement
I’écoulement, sur un faisceau de quelques crayons au maximum lorsque la paroi est résolue,
ou sur un assemblage sans résolution de la paroi.

e La troisiéme échelle est 1’échelle composant. Le coeur entier du réacteur est représenté
avec un maillage de cellules de taille de l'ordre du centimétre, ce qui permet de calculer
I’écoulement dans tout le cceur avec un temps CPU acceptable. Avec un code a 1’échelle
composant, des champs tels que P, G et X peuvent étre obtenus sur l’ensemble du coeur
du réacteur, permettant d’évaluer le champ RFTC et le RFTCmin. Le compromis d’un
code rapide & I’échelle composant est que le modéle fonctionne a une échelle macroscopique,
impliquant des termes macroscopiques qui nécessitent des lois de fermeture. Des expériences
et des simulations CFD haute fidélité sont nécessaires pour déterminer les paramétres des
corrélations utilisées dans ces lois de fermeture. Par conséquent, ces lois de fermeture ne sont
validées que sur des plages spécifiques de grandeurs physiques et de configurations.

De nombreux codes composant existe dans le monde pour simuler des écoulements diphasiques en
coeur de réacteur. Deux approches sont possibles pour prendre en compte la géométrie complexe.
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e [’approche sous-canaux couplés simule chaque sous-canal indépendamment et les couple
numériquement. C’est une approche trés efficace en terme de temps de calcul.

e [’approche poreuse intégre les structures solides dans un maillage cartésien a travers un
champ de porosité (voir Section A.6). Avec son modéle 3D réel, 'approche poreuse permet de
mieux prendre en compte les écoulements transverses.

Pour chaque approche, deux modéles physiques principaux sont utilisés.

e Le modéle drift-flux [81, 82| considére les phases eau et vapeur comme un mélange ho-
mogéne. Il peut étre formulé avec 3 ou 4 équations selon les phénoménes physiques pris en
compte. Le modéle drift-flux est robuste et permet des simulations rapides. La différence de
vitesse entre les deux phases est modélisée par une vitesse relative, obtenue & partir d’'une
loi de corrélation drift-flux [145|. Une équation aux dérivées partielles pour la vitesse relative
peut étre ajoutée au modéle a la place de la corrélation drift-flux.

e Le modéle bi-fluides [82] représente chaque phase séparément par ses lois de conservation.
Dans ce modéle, la difficulté réside dans la modélisation des termes de transfert entre les
phases. Ce modéle permet de simuler facilement des configurations avec deux phases hors
équilibre thermodynamique ou des cas ou les vitesses de vapeur et de liquide différent forte-
ment. Le modéle & deux phases peut également étre étendu a un cadre a trois phases avec un
modele a 9 équations. C’est le cas des codes COBRA-TF [135] et CTF [125].

A.6 Approche poreuse

L’approche poreuse utilisée dans THY C-coeur considére des volumes de controle contenant & la fois
un volume solide V; et un volume fluide Vy (voir Figure 8.26). La géométrie exacte du solide est
ignorée. Pour chaque volume de controle de volume total Vy + Vi, la porosité est définie comme

Vy

= —, 8.15
Vi+ Vs ( )

3

FIGURE 8.26
Schéma expliquant I'approche poreuse.

Les équations du modéle sont intégrées sur ces volumes de contréle. La présence de matiére solide
n’est donc prise en compte que par la porosité ¢ et les termes sources apparaissant dans les équations
(apport de chaleur, pertes de charge). Ces termes de fermeture sont modélisés par des lois physiques
représentatives du cas étudié. Par exemple, les grilles de mélange et d’espacement sont représentées
par des pertes de charge singuliéres dans le modéle.

Cette méthode permet tout d’abord de s’affranchir de la géométrie complexe des solides dans le
coeur du réacteur. Elle permet de modéliser les écoulements dans un milieu encombré avec des
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mailles de 'ordre du centimétre. Elle utilise un maillage cartésienne 3D pour représenter le coeur
du réacteur, ce qui rend le code efficace en temps de calcul.

A.7 Caractéristiques du code THY C-coeur

Les premiers développements du code THY C-coeur ont commencé en 1986. Un rapport de valida-
tion du code a été rédigé en 1998, basé sur de nombreux résultats expérimentaux d’essais. En 2006,
I’autorité frangaise de siireté nucléaire a approuvé 'utilisation de THY C-coeur pour les démonstra-
tions de stireté. En 2018, un co-développement entre Framatome et EDF' a été lancé pour intégrer
THYC-coeur dans la nouvelle chaine de calcul ODYSSEE. Un nouveau rapport de validation a été
soumis a ’autorité de stireté en 2025.

Chez EDF, le code THYC-coeur est développé au sein du département Mécanique des Fluides,
Energies et Environnement (MFEE) de EDF R&D. Afin de répondre aux besoins décrits dans les
Sections A.2 et A.3, plusieurs choix de modélisation ont été faits pour le code THYC-coeur.

e Calcul rapide et précis d’écoulement 3D & travers tout le coeur de réacteur.
— Code a échelle composante.

e Considération d’écoulements vraiment 3D, particuliérement avec prise en compte les écoule-
ments transverses entre les sous-canaux et assemblages. Simulation de 1’échelle composante
avec des écoulements dans une géométrie complexe.

— Approche poreuse 3D.

e Simulation d’un écoulement diphasique avec changement d’état a haute température et haute
pression. Considération de la vitesse relative entre la phase vapeur et la phase liquide.
— Modéle de dérive, appelé modéle drift-flux 81, 82].

e Prise en compte du phénoméne d’ébullition sous-saturée.
— Ajout d’une équation de déséquilibre sur le titre massique vapeur, menant & un modéle
drift-flux & 4 équations.

Pour définir le modéle drift-flux dans THYC-coeur avec une approche poreuse, plusieurs lois de
fermeture sont nécessaires pour les grandeurs macroscopiques apparaissant dans les équations (ces
termes sont abordés dans le Chapitre 1). Des corrélations sont utilisées comme lois de fermeture.
Ces corrélations sont développées et calibrées & partir de résultats d’essais expérimentaux ou de
calculs CFD haute fidélité (DNS, LES).

En particulier, le modéle drift-flux repose sur la corrélation de drift-flux [145] pour la vitesse relative
entre les phases, notée u,. Cette corrélation repose sur une formulation qui prend en compte certains
phénomeénes physiques tels que la poussée d’Archiméde de la vapeur dans le liquide, mais aussi les
effets de distribution non uniforme de la fraction volumique de vapeur et de la vitesse d’écoulement
(vitesse plus faible prés de la paroi et plus élevée au centre des sous-canaux).

Dans THY C-coeur, ces paramétres sont obtenus soit avec la corrélation de Chexal-Lellouche [22,
23, 24|, soit avec la corrélation de Bestion [14]. Dans THYC-coeur, la puissance a la surface des
crayons combustibles est un paramétre d’entrée. Elle est soit fournie par 'utilisateur, soit issue
d’un couplage avec un code de neutronique et un code thermique de crayon combustible.

A.8 DMotivations industrielles d’accélerer le code THY C-coeur

THYC-coeur est principalement utilisé pour obtenir 1’état stationnaire des écoulements diphasiques
dans des conditions nominales ou accidentelles, via une simulation transitoire. Dans le cadre des
études de siireté menées pour un nouveau réacteur, pour les études de conception lors des visites
décennales, ou pour les analyses de siireté liées au rechargement du combustible, un trés grand
nombre de scénarios accidentels doivent étre analysés. A 1’époque du développement du code, un
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petit nombre de calculs avec des hypothéses trés conservatrices étaient réalisés pour chaque étude,
ce qui conduisait a des analyses trés pénalisantes, parfois éloignées de la réalité. Récemment, un
traitement plus réaliste des conditions initiales du cceur et des paramétres physiques a conduit &
une augmentation significative du nombre de configurations étudiées.

Par ailleurs, en 2017, THYC-coeur a été sélectionné pour étre intégré dans la nouvelle chaine de
calcul industrielle ODYSSEE pour les études futures, en commengant par la conception des réacteurs
EPR2. En conséquence, le nombre de calculs réalisés avec THY C-coeur a fortement augmenté au fil
des années, atteignant désormais plusieurs millions de simulations par an. Comparée & une approche
par sous-canaux, la modélisation 3D avec une approche poreuse permet une meilleure représentation
des écoulements, notamment des écoulements transverses entre sous-canaux. Cependant, ce choix a
un impact sur le temps de calcul. Un calcul du cceur de réacteur avec une maille industrielle prend
environ 10 secondes avec THYC-coeur (sur une station mono-cceur avec un maillage industrielle
utilisant la symétrie quart de coeur), alors qu'un code sous-canaux comme FLICA ne prend que
quelques secondes. Les calculs avec THY C-coeur sont déja rapides, surtout comparés aux calculs
CFD, mais le lancement simultané de millions de simulations pour les études industrielles représente
un temps CPU non négligeable. Il est donc crucial de réduire le temps de calcul. Cette thése s’inscrit
dans effort en cours visant a accélérer le code THY C-coeur, avec pour objectif de réduire le temps
de calcul sans compromettre la précision des résultats.

B Synthése des travaux de thése

B.1 Chapitre 1

Dans ce chapitre, les modéles physiques considérés dans le cadre de cette thése sont présentés. Ces
modeles permettent de simuler un écoulement diphasique (eau-vapeur) dans un milieu obstrué par
la présence de matiére solide. Ils sont dérivés des modeéles proposés par Ishii dans [81, 82].

Pour chaque phase, notée k € {g,l}, avec g désignant le gaz et [ le liquide, les équations locales
de conservation (masse, quantité de mouvement et énergie) sont considérées. Afin de définir les
grandeurs pour chaque phase & tout instant, les équations locales sont moyennées temporellement.
Ce moyennage temporel introduit la fraction volumique locale ay, qui correspond & la probabilité
de présence de la phase k & un instant et un endroit donnés. Le moyennage temporel introduit
également des termes d’échange interfacial entre les phases (transfert de masse, de quantité de
mouvement et d’énergie).

Les équations sont ensuite moyennées en espace sur un volume Vj contenant un volume solide Vj
et un volume fluide Vy. Cela permet d’éviter d’avoir a traiter la géométrie complexe des solides.
Cette méthode fait apparaitre la porosité fluide € donné par
Vi

€= ViV (8.16)
Le moyennage spatial introduit également des termes sources dus a la présence des solides. On ob-
tient un modéle & six équations moyenné dans le temps et ’espace. En considérant que 1’écoulement
diphasique se comporte comme un mélange homogéne, ’objectif est ici de simplifier le modéle afin
d’obtenir un modéle physique robuste et peu cotliteux en temps de calcul. Aprés avoir défini les
grandeurs du mélange, les équations sont sommées pour chaque phase afin d’obtenir trois équations
de mélange. Cette sommation permet d’éliminer les termes de transfert interfacial. En prenant la
différence entre les équations d’énergie de chaque phase, on obtient une équation de déséquilibre
sur I’enthalpie spécifique relative. Le méme procédé est appliqué aux équations de quantité de
mouvement pour obtenir une équation sur la vitesse relative entre les phases, notée u, et définie
par

u, =uy, —u, (8.17)
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avec uy la vitesse de la phase gazeuse et u; la vitesse de la phase liquide. La derniére équation
de déséquilibre est celle sur la fraction massique de vapeur. Pour réduire le nombre d’équations,
plusieurs hypothéses sont faites :

e La phase minoritaire est toujours considérée & saturation, ce qui permet de supprimer 1’équa-
tion de déséquilibre sur I’enthalpie spécifique relative,

e La vitesse relative est obtenue via une loi de fermeture, ce qui élimine 1’équation sur la vitesse
relative. Cette loi de fermeture est dérivée de la méthode de drift-flux développée dans [145].

Si 'on considére 1’équation sur la fraction massique de vapeur, on obtient un modéle a 4 équations
déséquilibré. Cela permet de modéliser un écoulement thermodynamique hors équilibre, en partic-
ulier le phénoméne d’ébullition sous-saturée, ot I’ébullition peut commencer méme lorsque le liquide
n’est pas encore a saturation en moyenne (un opérateur de moyennage spatial est utilisé¢). Pour
cela, le terme de transfert de masse interfacial impliqué dans ’équation de la fraction massique de
vapeur doit étre modélisé. Si le mélange est considéré & saturation, cette équation disparait et on
obtient le modéle & 3 équations a I’équilibre.

Dans ce chapitre, deux modéles a 4 équations sont présentés : un modéle conservatif en énergie to-
tale, et un modéle basé sur 'enthalpie. Le modéle basé sur I’enthalpie correspond a celui implémenté
dans le code industriel THYC-coeur [7]. Pour l'obtenir, plusieurs hypothéses supplémentaires ont
été faites : la contribution thermique due au frottement visqueux entre les phases et au frottement
solide a été négligée, et la somme des transferts d’énergie thermique entre les phases a été négligée
dans le bilan d’enthalpie.

Pour fermer les systémes d’équations présentés, plusieurs termes doivent étre modélisés, tels que le
frottement fluide, le frottement solide, la vitesse relative, le transfert de masse... Pour cela, des lois
de fermeture modélisant les principaux phénoménes physiques sont utilisées. Dans ce chapitre, ces
lois de fermeture sont décrites, en particulier pour le terme de transfert de masse et pour la vitesse
relative. Pour cette derniére, deux corrélations différentes sont proposées : la corrélation de Bestion
[14] et la corrélation de Chexal-Lellouche [22].

B.2 Chapitre 2

Les modéles du Chapitre 1 sont étudiés dans le Chapitre 2 dans des configurations simplifiées
afin de déterminer si les modéles dérivés du modéle drift-flux & 4 équations sont hyperboliques, ce
qui permet de garantir des solutions transitoires stables. Les modéles suivants sont analysés dans
ce chapitre :

e Modéle barotrope de drift-flux avec une vitesse relative constante : Le modéle de
drift-flux est considéré sans équation sur I’énergie et avec une vitesse relative constante. Les
valeurs propres du systéme ne peuvent pas étre obtenues analytiquement. En utilisant le
théoréme des valeurs intermédiaires, le modéle est strictement hyperbolique pour u,q # 0.

e Modéle a 4 équations sans vitesse relative : Ce modéle est équivalent & un modéle
HRM [16]. En considérant ¢ comme la vitesse du son du mélange, les valeurs propres sont
A € {u,u,u + ¢,u — c}. Ce modéle est hyperbolique. Cela implique de disposer d’une
équation d’état pour le mélange garantissant une vitesse du son réelle.

e Modéle drift-flux a 4 équations avec une vitesse relative constante u,¢ : Ce mod-
éle est plus complexe que le modéle HRM. Une seule valeur propre analytique est obtenue :
u; = u — Yupg. Les autres valeurs propres analytiques ne sont pas accessibles. Le polynoéme
caractéristique est évalué pour la vitesse de la phase gazeuse ug = u + (1 — y)uo. En util-
isant le théoréme des valeurs intermédiaires, le systéme est hyperbolique si la dérivée du
polynéme caractéristique est négative en u; = u — yu,g. Il s’agit d’une condition suffisante
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d’hyperbolicité. Avec p la pression, p la densité du mélange et y la fraction massique, le
systéme est hyperbolique si

Ch
Cl(p.psy) <0 ou  |ugo| < ul™(p,p,y) = C%C(p,p,y), (8.18)
1

avec dh
1
Ch s My = ail » Mo < -2 - ) )
T, p,y) =ya " (p,p,y) ydp(p) 5
Ch(p, p,y) = (1 — pyvg(p)),

ol ¢ est la vitesse du son du mélange et a = (g—;) . Encore une fois, ce résultat est valable
p7y

(8.19)

lorsque I'équation d’état du mélange garantit une vitesse du son réelle. Dans ’annexe de ce
chapitre, cette condition suffisante est étudiée pour un mélange eau-vapeur a 155 bars.

B.3 Chapitre 3

L’objectif de ce chapitre est de proposer des solutions analytiques pour des versions simplifiées des
modéles présentés dans le Chapitre 1. La premiére partie se concentre sur la quatriéme équation
concernant uniquement la fraction massique de vapeur, afin de fournir des solutions analytiques
pour tester les schémas volumes finis dans le Chapitre 4, en isolant cette équation du systéme
complet. Un milieu libre sans porosité est considéré ici.

Trois nouvelles solutions exactes sont présentées. Tout d’abord, deux solutions & 1’état station-
naire, avec la plupart des paramétres de 1’équation considérés comme constants (pg, 70, %o, Jg), sont
proposées. La premiére utilise une vitesse relative constante u,g. La seconde utilise la corrélation
approchée de Bestion présentée dans le Chapitre 1. Cette corrélation propose la vitesse relative
comme une fonction de la fraction massique :

1+ (0-1)y
urly) = (1= y)u

avec § et up des paramétres constants. Ces solutions analytiques sont utilisées dans le Chapitre
4 pour vérifier les schémas numériques stationnaires pour la quatriéme équation sur la fraction
massique. La troisiéme solution est une solution instationnaire de la quatriéme équation, utilisant &
nouveau la corrélation approchée de Bestion u,(y). Cette solution auto-similaire donne la fraction
massique en fonction de la variable ¢ :

(8.20)

x

uot '

Cette solution est également utilisée dans le Chapitre 4 pour vérifier le schéma pour les solutions
instationnaires.

La seconde section du chapitre est extraite d’un article publié pendant la thése [70]. Le modéle a trois
équations est considéré sans vitesse relative u, = 0, correspondant & un modéle de type HEM [16]
dans un milieu poreux de porosité £(z) et avec un apport d’énergie ¢(z,t). Deux nouvelles solutions
analytiques auto-similaires issues de [70] sont présentées pour deux configurations différentes de ce
modéle. Ces solutions seront utilisées pour la vérification du code industriel THY C-coeur dans des
travaux futurs. Les solutions dépendent de la variable & :

E(x,t) = to > 0. (8.22)

x
t+to’
La premiére solution est obtenue sans apport de chaleur et avec une porosité non uniforme ()

vérifiant : N
T
== 8.23
() (.23)
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avec « et xy des constantes. La solution analytique est proposée pour une équation d’état générale,
et le cas particulier du gaz parfait est détaillé a la fin. Pour la seconde solution, un écoulement avec
une équation d’état arbitraire dans un milieu libre est considéré. Un apport de chaleur de la forme
suivante est appliqué :

1

Bot) = e, (324

La dérivation de cette solution conduit & un systéme d’EDO en £ qui doit étre résolu numériquement.

Le Chapitre 3 inclut également trois annexes pour détailler des solutions déja connues utilisées
dans ce travail. La premiére annexe présente une solution stationnaire du modéle & trois équations
issue de [78], adaptée au cas étudié. Cette solution analytique est obtenue via une méthode de
Newton et pour une équation d’état générale. Elle est utilisée dans le Chapitre 7 pour vérifier le
code ThermoTorch dans la configuration stationnaire du modéle & trois équations.

Dans la seconde annexe, des solutions de problémes de Riemann pour le modéle a trois équations avec
une équation d’état de gaz parfait sont présentées. En particulier, les trois problémes de Riemann
considérés sont : une double onde de détente symétrique, une double onde de choc symétrique, et le
tube a choc de Sod. Ils sont utilisés dans le Chapitre 7 pour étudier le comportement des schémas
numériques de ThermoTorch, aussi bien pour les solutions réguliéres que pour les solutions avec
chocs, en utilisant le modéle a trois équations.

Enfin, la derniére annexe présente une équation d’état de mélange dérivée d’un mélange de gaz
parfait ayant le méme indice polytropique . L’équation d’état est écrite comme :

e(p,p,y) = yeg + (1 —ye = ﬁ + ho(y), (8.25)

avec

ho(y) = yhog + (1 — y)har, (8.26)

ol v, hog et ho; sont des parameétres constants a fixer. Cette équation d’état particuliére est utilisée
pour trouver une solution a un probléme de Riemann pour le modéle & 4 équations. Cette solution
est utilisée dans le Chapitre 7 pour étudier le schéma numérique instationnaire de ThermoTorch
avec le modeéle & quatre équations, en particulier le schéma utilisé pour I’équation d’énergie.

B.4 Chapitre 4

Ce chapitre est une version étendue d'un article publié durant la these [93]. Il est centré sur
I’équation de déséquilibre pour la fraction massique de vapeur y :

a(gf) +V-(ya) + V- (y(l - y)qr) - p% + T, (8.27)
ol p est la masse volumique du mélange, q est le flux massique du mélange, q, = pu, le flux
massique relatif, ¥ le titre massique a I’équilibre, 7 le temps de relaxation a l'équilibre et I'), > 0
la production de vapeur. Cette équation est similaire & celle étudiée dans [53]. Elle modélise un
écoulement hors équilibre, avec une fraction massique y qui tend a s’écarter de la fraction massique
d’équilibre i sous l'effet d’'un terme de production direct I',, et qui est ramenée vers ’équilibre
aprés un temps caractéristique 7. L’originalité de cette équation de transport réside dans le terme
de drift-flux, qui est un terme de convection de la quantité non linéaire y(1 —y) par le flux massique
relatif q..

Dans un premier temps, le principe du maximum continu est étudié sur 'Equation (8.27) afin de
garantir que la fraction massique reste comprise entre zéro et un. Ensuite, trois schémas volumes
finis - appelés QRd, QRq et QG - sont proposés pour cette équation. Ces schémas sont présentés
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dans un article publié durant la thése [93]. Il s’agit de schémas implicites linéaires, présentés dans
un cadre multidimensionnel non structuré. L’étude est limitée a des schémas numériques linéaires,
afin qu’ils puissent étre utilisés dans le code THY C-coeur. Ils respectent le principe du maximum
pour la fraction massique de vapeur, qui doit rester entre 0 et 1. Pour cela, aucune condition sur le
pas de temps n’est requise pour les schémas QRd et QRq. Le schéma QG impose une contrainte sur
le pas de temps, qui est non limitante dans les applications concernées. Dans ce contexte, le terme
de production, qui ne respecte pas nécessairement le principe du maximum continu, n’est pas pris
en compte dans ces schémas.

Les schémas sont implémentés dans un prototype 1D qui simule uniquement la quatriéme équation.
En utilisant les solutions analytiques de la quatriéme équation issues du Chapitre 3, les schémas
sont d’abord testés sur des solutions stationnaires unidimensionnelles. Cette solution stationnaire
est obtenue pour des paramétres constants (p, ¢, ¢, 7, 7). Deux cas tests représentatifs des conditions
d’écoulement en réacteur sont étudiés. Cette vérification démontre la cohérence des trois schémas,
qui présentent un ordre de convergence spatial égal & un. Les schémas QG et QRq apparaissent
plus précis que le schéma QRd pour une maille fixée, notamment lorsque ’on considére une vitesse
relative négative significative.

Les schémas QRd et QRq proposés ne sont pas conservatifs en régime transitoire. Ils ne sont donc
pas adaptés a la simulation de solutions instationnaires, comme montré dans I’annexe de ce chapitre.
Le schéma QG peut étre vérifié sur une solution instationnaire. En considérant une valeur de CFL
constante, une courbe de convergence est produite pour la solution instationnaire de la quatriéme
équation proposée dans le Chapitre 3. Un ordre de convergence proche de un est obtenu pour le
schéma QG, comme attendu.

Dans le Chapitre 5, ces schémas sont ensuite implémentés dans le code industriel THY C-coeur afin
d’évaluer leur impact sur les performances par rapport au schéma de référence de THY C-coeur. Dans
cette étude sur le code THY C-coeur, ’équation de déséquilibre n’est plus traitée indépendamment
comme dans le Chapitre 4, mais comme partie intégrante du systéme complet THY C-coeur (voir
Chapitre 1 pour le modéle).

Dans I’annexe de ce chapitre, un schéma numérique est proposé pour le terme de production I';, afin
de rétablir le principe du maximum au niveau discret, ¢’est-a-dire garantir que la fraction massique
reste toujours entre 0 et 1. En effet, sans controle, un modéle arbitraire pour le terme I', > 0 peut
entrainer une évolution de la fraction massique vers des valeurs supérieures 4 un. Au niveau discret,
le schéma correctif GAMc proposé permet de modifier localement 1’équation pour garantir que la
solution reste inférieure a un. Ce schéma correctif ne peut étre utilisé que pour la recherche de
solution stationnaire, car le comportement transitoire est altéré en raison du controle.

B.5 Chapitre 5

Les trois schémas proposés dans le Chapitre 4 ont été implémentés dans le code industriel THYC-
coeur [7]. Pour vérifier leur implémentation et leur cohérence, une base de données de 36148 cas
industriels stationnaires est utilisée. Ces cas correspondent & une configuration de réacteur de type
N4, sous différentes conditions physiques (température d’entrée et flux massique, pression de sortie,
distribution de puissance). Cette base de données est appelée Bias Curves Database. Elle a été
initialement créée pour configurer un systéme de protection appelé SPIN (Systéme de Protection
Intégré Numeérique), utilisé pour garantir la stireté d’une installation en fonctionnement.

Dans un premier temps, la Bias Curves Database est présentée, ainsi que le systéme de protection
SPIN. Ensuite, les trois schémas introduits dans le Chapitre 4 [93] sont comparés au schéma de
référence de THY C-coeur sur cette base de données. Deux modéles différents sont considérés, selon
la corrélation utilisée pour la vitesse relative. Le premier modéle repose sur la corrélation de Bestion
[14], tandis que le second repose sur la corrélation de Chexal-Lellouche [22]. Pour chaque schéma,
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les performances en termes de précision (par rapport au schéma de référence) et en termes de
temps CPU sont évaluées. Les comparaisons sont réalisées en utilisant des paramétres numériques
industriels (taille de maillage, pas de temps, etc.) et visent a évaluer la capacité des schémas a
prédire la solution du modéle d’équation continue lorsque les paramétres numériques industriels
sont fixés.

Les résultats obtenus valident 'implémentation et la cohérence des trois nouveaux schémas pour
les deux modéles. Ces nouveaux schémas apportent une robustesse accrue au code. Pour le modéle
utilisant la corrélation de Chexal-Lellouche, les schémas permettent également un gain de 50% en
temps CPU par rapport au schéma de référence, en considérant les mémes paramétres numériques
(pas de temps, critéres d’arrét, etc.). Les conclusions de cette comparaison sont résumées dans
le Tableau 8.3, qui liste les avantages et les limitations de l'utilisation de chaque schéma dans le
contexte de THYC-coeur. Il en ressort que le schéma QG est le plus adapté a une utilisation dans
THYC-coeur. En particulier, il est trés robuste, offre la meilleure précision pour un maillage donnée
avec la corrélation de Chexal-Lellouche, et peut étre utilisé pour des simulations transitoires. Le
schéma QG présente une faible contrainte sur le pas de temps, contrairement aux schémas QRd et
QRq, mais cette contrainte n’est pas limitante en pratique. En particulier, elle n’est jamais atteinte
pour les applications testées ici.

Sché Contraintes Autres Stationnaire Stationnaire Simulations
chéma . . . . .
pas de temps contraintes Bestion Chexal-Lellouche | instationnaires
REF Complexe - Valide Moins recommandé -
CL de sortie . . )
QRd Aucune L Valide Moins recommandé Non adapté
Non limitante
Ecoulements _—
QRq Aucune Valide Recommandé Non adapté
co-courant
Faible .
QG . . Aucune Valide Recommandé Recommandé
Non limitante
TABLE 8.3

Tableau de comparaison des caractéristiques des schémas pour les applications THYC-coeur.

B.6 Chapitre 6

Le code ThermoTorch 1D (voir I'article publié durant la thése [68]) est un code unidimensionnel
en volumes finis simulant un écoulement diphasique. Il s’agit d’un prototype partageant les mémes
caractéristiques générales que le code industriel THY C-coeur [7], mais avec une physique simplifiée.
Ainsi, les modéles & 4 équations et a 3 équations de THY C-coeur présentés dans le Chapitre 1 sont
considérés dans ThermoTorch sans termes du second ordre (diffusion, frottement...) et avec une
équation d’état simplifiée pour le mélange. De plus, une vitesse relative nulle est considérée ici. Cela
permet d’obtenir un modéle simple qui sera utilisé dans les deux chapitres suivants pour vérifier les
schémas numériques de ThermoTorch 1D pour des solutions stationnaires et instationnaires (voir
Chapitre 7), ou pour évaluer les performances d’'une méthode d’accélération de la recherche de
I'état stationnaire par initialisation via un réseau de neurones (voir Chapitre 8).

Le Chapitre 6 commence par la présentation des modéles implémentés dans ThermoTorch : le
modéle & 3 équations et le modéle a 4 équations. Le modeéle est manipulé pour exprimer le systéme
avec les inconnues suivantes : pression p, flux massique ¢ = pu, enthalpie spécifique h = e +p/p, et
fraction massique y (uniquement pour le modeéle a 4 équations). Ensuite, les discrétisations spatiale
et temporelle sont détaillées. En particulier, un maillage & grilles décalées est utilisée avec une
taille de maille uniforme Az. Dans ThermoTorch, les champs solutions sont initialisés, puis un
instationnaire est calculée avec une discrétisation temporelle basée sur un pas de temps At. Ce
pas de temps peut étre constant ou calculé & partir d'un nombre de CFL dérivé de la vitesse d'une
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des ondes du systéme. Cette méthode permet de simuler des écoulements transitoires ainsi que
d’atteindre I’état stationnaire en avancant dans le temps jusqu’a ce que la solution ne varie plus.

Les schémas numériques en volumes finis utilisés pour discrétiser le systéme d’équations continues
sont présentés dans la troisiéme partie du chapitre. Des schémas semi-implicites sont proposés,
permettant d’écrire chaque équation linéairement en fonction de I'incrément temporel des inconnues.
Une fonction appelée pseudo-entropie s est introduite pour découpler I’équation d’énergie du reste
du systéme. Elle correspond & une grandeur du mélange dérivée des entropies de chaque phase :

s =ys, + (1—y)su, (8.28)

avec s, I'entropie de la phase gazeuse et s; celle de la phase liquide. Pour le modéle a 4 équations,
cette fonction n’est pas I'entropie du systéme. Elle satisfait

dsg
Tids = dh — (v + (T — T2(7)) G 2 )dp + 5,y (8.29)
avec B
5, = (hi = hy) = Ti(st = 54) = ju(p, 7o) = iy (0. 1) + (Ts = T (8.30)

Les termes en bleu sont négligés pour découpler complétement ’équation d’énergie. La fonction s
est uniquement utilisée dans la partie instationnaire du schéma. Ainsi, cette approximation n’affecte
que les solutions transitoires du modéle & 4 équations. L’impact de cette approximation est évalué
dans le Chapitre 7. Le systéme matriciel du modéle & 4 équations, obtenu en considérant les
incréments temporels des inconnues (p, s, ¢, y), peut s’écrire sous la forme :

Ass 0 0 0 58 B,
0 A, 0 0 |]oY B,
, = : 8.31
Ap:5 Ap7y Apvp Apvq opr Bp ( )
0 0 Ay A,/ \6Q B,

o1 6S, 6Y, 6P et 6Q (avec 6¢ = ¢" 1 —¢™, ¢ € {S,Y, P,Q})sont les vecteurs solutions correspondant
aux incréments temporels de la fonction s, de la fraction massique y, de la pression p et du flux
massique ¢ sur leurs maillages respectifs. Par exemple, 6S = (s"! — 5n)ie[0,nx]- Ce schéma en
volumes finis permet de résoudre un pas de temps en plusieurs étapes indépendantes, en découplant
la fraction massique et la fonction s des autres variables. Le vecteur 6S est obtenu en utilisant

68 = A, B, (8.32)
et le vecteur dY en utilisant
§Y = A, By. (8.33)

Alors, le systéme couplé vitesse-pression peut s’écrire :
<Ap,p Ap’q) <5P> _ (Bp —Aps0S — Ap,y5Y> . (8.34)
Agp Aqq) \0Q By

La matrice de ce systéme est principalement creuse, donc la représentation Python scipy.sparse.
csc_matrix est utilisée. Les vecteurs P et 4@ sont obtenus en inversant directement la matrice
creuse, en utilisant la méthode Python scipy.sparse.linalg.spsolve. Le modéle a trois équations
peut étre résolu de maniére similaire, sans prendre en compte 1’équation pour la fraction massique y.
La derniére partie du chapitre vise a présenter les configurations du code utilisées dans les chapitres
suivants. Les équations d’état disponibles dans le code sont également présentées.
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B.7 Chapitre 7

Dans ce chapitre, les schémas numériques de ThermoTorch présentés dans le Chapitre 6 sont
testés. L’objectif est de vérifier 'implémentation des schémas numériques dans ThermoTorch et
d’évaluer leur ordre de convergence en espace et en temps. Les configurations du Chapitre 3 sont
mises en ceuvre, et les solutions numériques approchées obtenues avec ThermoTorch sont comparées
aux solutions analytiques décrites dans le Chapitre 3. Tout au long de ce chapitre, aucune vitesse
relative n’est considérée, car a notre connaissance, aucune solution analytique n’est disponible pour
le modéle avec vitesse relative. Plusieurs types de solutions sont étudiés dans ce chapitre afin de
vérifier différentes propriétés des schémas.

e Solutions stationnaires du modéle a trois équations : Ces solutions permettent d’étu-
dier l'ordre de convergence spatiale du schéma ThermoTorch pour des solutions réguliéres
1D du modéle a trois équations. La configuration étudiée est celle d’un canal chauffé avec
des conditions proches de celles d’un écoulement dans un cceur de réacteur. Un ordre de
convergence spatial égal & un est obtenu.

e Solutions instationnaires de problémes de Riemann 1D pour le modéle a trois
équations : Ces solutions sont utilisées pour étudier le modéle & trois équations de Thermo-
Torch dans des configurations instationnaires. Les différents problémes de Riemann 1D étudiés
sont : un cas symétrique avec deux ondes de détente (solution réguliére), un cas symétrique
avec deux ondes de choc (solutions avec chocs), et le cas du tube a choc de Sod [131]. Les
simulations sont réalisées avec un nombre CFL constant (en considérant les ondes rapides) :

CFLytc = 0.5. (8.35)

Cette étude montre que les schémas ThermoTorch pour le modéle a trois équations présentent
un ordre de convergence supérieur & 1/2 (et semblant tendre vers un) en espace et en temps
pour la solution réguliére instationnaire considérée (double onde de détente symétrique) [52].
Pour les solutions avec chocs, une erreur de consistance est introduite par les schémas non
conservatifs utilisés ici, comme attendu [51, 76]. En conséquence, les plateaux de pression et
de densité ne sont pas parfaitement prédits dans le cas des deux ondes de choc symétriques. 1l
est montré que 'amplitude de cette erreur de consistance est négligeable comparée & l'erreur
introduite par 'utilisation d’'un maillage industriel dans des conditions proches de celles d’un
écoulement en coeur de réacteur.

e Solutions instationnaires de problémes de Riemann réguliers 1D pour le modéle a
quatre équations : Ces problémes de Riemann sont utilisés pour évaluer le comportement
du schéma ThermoTorch avec le modéle & quatre équations dans des conditions instation-
naires. En particulier, cette étude évalue I'impact de 'utilisation de la pseudo-entropie et de
I'approximation faite lors de sa linéarisation (voir 'Equation (8.29)) par rapport a 'utilisation
de 'entropie réelle du systéme s. Cela est rendu possible grace a ’équation d’état proposée
dans le Chapitre 3, pour laquelle ’entropie du mélange est connue.

L’approximation de la pseudo-entropie introduit une erreur de consistance dans I’équation de
I’énergie pour les solutions instationnaires. Cette erreur est mise en évidence par une étude
de convergence. Lorsque la pseudo-entropie est utilisée, l'erreur entre la solution analytique
et la solution numérique atteint un plateau a mesure que le maillage est raffiné. En revanche,
avec l’entropie, le schéma ThermoTorch montre un ordre de convergence de 1/2 (attendu en
raison de la présence d’une onde de contact dans la solution). L’amplitude de lerreur de
consistance due & I'approximation sur la pseudo-entropie est évaluée et comparée a ’erreur
introduite par 'utilisation d’un maillage industriel. Les erreurs sont estimées pour diverses
conditions d’écoulement rencontrées dans les coeurs de réacteurs nucléaires. Il est observé que
dans la plupart des cas, l'erreur de consistance est négligeable.
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Dans ThermoTorch, 'utilisation de la pseudo-entropie s permet de découpler complétement 1’équa-
tion de I’énergie des autres équations. Cela donne un modéle numériquement robuste pour le calcul
stationnaire avec d’excellentes performances en temps de calcul. En contrepartie, une erreur de
consistance est introduite en régime transitoire, qui devient plus significative lorsque la configuration
s’éloigne de I’équilibre thermodynamique.

B.8 Chapitre 8

Ce chapitre est une version étendue d’un article de conférence [92]|. Il propose une méthode basée
sur 'apprentissage automatique pour accélérer la convergence d’un code volumes finis lors de la
recherche de solutions stationnaires. Un réseau de neurones profond est développé afin de prédire
les solutions stationnaires. Ces solutions prédites sont utilisées pour initialiser le calcul, dans le
but de réduire le nombre d’itérations externes (l'effet recherché est illustré dans la Figure 8.27) par
rapport & une autre initialisation, comme une initialisation par champ constant. Le développement
de cette méthode est apparu pour la premiére fois dans l’article [68] publié durant la theése.

Steady-state

Prediction from neural N
network cst

Nm[

Constant initialization

FIGURE 8.27
Illustration de I'initialization par réseau de neurones pour accélérer la recherche du stationnaire.

Les performances de cette méthode, c’est-a-dire le gain en nombre d’itérations avant convergence
vers I’état stationnaire, sont évaluées avec le prototype 1D ThermoTorch, présenté dans le Chapitre
6. La configuration du canal chauffé (issue du Chapitre 6) est utilisée, avec quatre conditions aux
limites (flux massique ¢;, et température Tj,, entrants, pression de sortie po,: et flux de chaleur
uniforme ¢p). La méthodologie détaillée pour 'entrainement et 1'utilisation du réseau de neurones
est représentée dans la Figure 8.28. Les modéles a trois et quatre équations de ThermoTorch sont
tous deux testés.

[}
Construction de la base de données

1 ]
1 ]
1 ]
1 1
' Tin, dins Pout, ¢o ThermoTorch 1D > Solutions stationnaires p(z), q(x), s(x) [ ;1/(,1‘)} ]
: :
1 1
1 1
] Database 1
1 ]
s /5~ 60 A A 1
froemsmememememeseereeeeemepenenened LN oy )
! 1
| Tin. Gin: Pouts 9o Neural Network Prédictions p(z), $(z) [ [/(;1,‘)} 1
: I 1
! 1
! 1
] - ThermoTorch 1D | Solutions stationnaires p(z), ¢(z), s(z)[,y(z)] |
! Utilisation '

FIGURE 8.28
Construction de la base de données utilisée pour I'entrainement et utilisation du réseau de neurones pour accélérer
ThermoTorch 1D.
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Un premier réseau de neurones a été développé avec 'erreur quadratique moyenne entre la prédic-
tion et la solution stationnaire (pour chaque champ) comme fonction de cotit. Aprés optimisation
des hyperparamétres du réseau, de bons résultats ont été observés pour un réseau de neurones com-
portant deux couches cachées de 200 neurones chacune. Un ensemble de données d’apprentissage
de 10000 cas et un ensemble de test de 1000 cas sont utilisés. La méthode permet d’accélérer tous
les cas, quel que soit le modele. Le gain moyen obtenu est de 70 + 19% pour le modéle a trois
équations et de 48 + 21% pour le modéle & quatre équations.

La fonction de coiit n’est pas entiérement corrélée au gain observé. Une étude sur les fréquences
de l'erreur entre la prédiction et la solution a été menée. Il a été observé que le gain n’est pas le
méme selon la fréquence de 'erreur de la prédiction (a amplitude constante). En particulier, les
perturbations de basses fréquences sur I’entropie ont un impact majeur sur les performances pour
atteindre I'état stationnaire.

Dans la seconde partie du chapitre, une nouvelle fonction de coiit est proposée. Elle prend en compte
les premiéres fréquences de la transformée de Fourier discréte de l'erreur sur ’entropie. Avec cette
fonction de coiit, le gain est augmenté de plus de 10%. Il atteint 83 + 11% pour le modéle a trois
équations et 61 + 18% pour le modéle & quatre équations.
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Pour assurer la slreté des REP, EDF a développé le code de thermo-hydraulique

THYC-coeur qui simule I'écoulement de I'eau dans le coeur. Ce code permet de calculer
en tout point du coeur le Rapport de Flux Thermique Critique (RFTC), mesurant I'écart
entre le flux de chaleur réel et le flux de chaleur critique a ne pas dépasser pour ne pas
causer la crise d’ébullition qui peut menacer l'intégrité du coeur du réacteur.
THYC-coeur utilise des schémas volumes finis et est principalement utilisé pour résoudre
des problemes stationnaires a des instants critiques d’accidents. Malgré un temps de
calcul réduit (environ 10 secondes pour une configuration industrielle de coeur de
réacteur), un trés grand nombre de calculs (plusieurs millions) est nécessaire. Lobjectif
de cette these est donc d’accélérer le temps de calcul du code THYC-coeur.
Pour cela, les modéles de drift-flux sont présentés (Chapitre 1) et analysés (Chapitre
2). Plusieurs solutions analytiques de ces modéles sont présentées (Chapitre 3). Par la
suite, plusieurs méthodes d’accélération sont proposées. Tout d’abord, des nouveaux
schémas volumes finis pour I'équation de déséquilibre du modéle sont proposés et
vérifies (Chapitre 4). Une fois implémentées dans le code industriel, la robustesse et
I'accélération obtenue sont évaluées (Chapitre 5). Afin de pouvoir étudier plus facilement
certains phénomenes numériques et tester une méthode d’accélération par IA, un
prototype simplifi¢ de THYC-coeur, appelé ThermoTorch est développé (Chapitre 6).
Une vérification en stationnaire et en instationnaire du schéma numérique global est
réalisé (Chapitre 7). Enfin, une méthode d’accélération par IA utilisant une initialisation
issue de réseaux de neurones a été testée (Chapitre 8).
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Gauthier LAZARE
Développement d’une méthode numérique performante pour la

résolution d’'un modele diphasique homogene partiellement

déséquilibré en milieu poreux hétérogene.

Résumé

EDF a développé le code thermo-hydraulique THYC-coeur pour simuler I'écoulement d’eau dans le coeur des
Réacteurs a Eau Pressurisée (REP) et évaluer le Rapport de Flux Thermique Critique (RFTC), indicateur de la
marge a la crise d’ébullition pouvant menacer l'intégrité du cceur. THYC-coeur résout principalement des
problémes stationnaires via des schémas volumes finis. Bien que le calcul soit rapide (10 s pour une
configuration industrielle), le grand nombre de simulations requises (plusieurs millions) rend nécessaire une
accélération du code, objectif de cette thése. Les modeles drift-flux sont d’abord présentés et analysés.
Plusieurs solutions analytiques sont ensuite construites. Afin d’étudier plus facilement certains phénomenes
numeériques, un prototype simplifié, appelé ThermoTorch est développé. Aprés une vérification en stationnaire
et en instationnaire du schéma numérique global, une méthode d’accélération utilisant une initialisation issue

de réseaux de neurones a été testée.

Mots clés : Thermo-hydraulique, schémas volumes finis, sreté nucléaire, écoulement diphasique, équations
aux dérivées partielles.

Abstract

EDF has developed the thermo-hydraulic code THYC-coeur to simulate water flow in the cores of PWRs
(Pressurized Water Reactors) and to evaluate the Departure from Nucleate Boiling Ratio (DNBR), an indicator
of the margin to the boiling crisis that could threaten core integrity. THYC-coeur mainly solves steady-state
problems using finite volume schemes. Although each computation is fast (about 10 seconds for an industrial
configuration), the very large number of required simulations (several million) makes code acceleration
necessary, which is the main goal of this thesis. The drift-flux models are first presented and analyzed. Several
analytical solutions are then constructed. To more easily study certain numerical phenomena, a simplified
prototype called ThermoTorch has been developed. After verifying the global numerical scheme in both steady-

state and transient regimes, an acceleration method using initialization from neural networks was tested.

Keywords: Thermo-hydraulics, finite volume schemes, nuclear safety, two-phase flows, partial differential
equations
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