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Abstract

This thesis is dedicated to advancing the role of in silico modeling in pharmaceutical
research, addressing the persistent challenges of late-stage failures and inefficiencies
in drug development. ADMET (Absorption, Distribution, Metabolism, Elimination,
and Toxicity) testing often occurs too late in the pipeline, driving up costs and delaying
progress. To mitigate these issues, in silico modeling, particularly early ADMET
(eADMET) prediction, has become essential for streamlining decision-making in early
drug discovery. However, the complexity of human biology, evolving assays, and data
inconsistencies necessitate predictive models that are not only accurate but also
adaptable and interpretable. This thesis presents a systematic approach to refining
eADMET modeling through data curation, multi-task learning, large-scale

applicability, and human-machine collaboration.

The first part of this work focuses on solubility modeling, emphasizing the challenges
posed by assay variability and dataset inconsistencies regarding thermodynamic
solubility. We also demonstrate that kinetic solubility data, contrary to common
assumptions, can be reliably modeled when properly curated. A framework for
solubility prediction is introduced, improving model accuracy and reproducibility.
The second part investigates drug absorption modeling using multi-task learning
(MTL). By leveraging shared patterns among related endpoints, MTL enhances
predictive performance over single-task models. This approach is then expanded to
ultra-large datasets encompassing ADMET and bioactivity measures. To further
optimize lead selection, we explore collective intelligence strategies, comparing expert
feedback to modeling at the late-stage optimization phase. Finally, the thesis examines
the broader landscape of Al-driven drug discovery, critically assessing industry

trends, overhyped claims, and the reality of AI's impact on pharmaceutical R&D.

The findings highlight the importance of high-quality data, rigorous validation, and
interdisciplinary collaboration for sustainable Al adoption. This work underscores the
necessity of flexible, interpretable, and data-driven in silico tools to enhance efficiency
in modern drug discovery, ultimately aiding the search for safer and more effective

medicines.
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Chapter 1. Resumé en Francais

1.1. Introduction

La découverte de nouveaux médicaments est un processus complexe et exigeant en
ressources, impliquant plusieurs étapes allant de l'identification initiale de la cible aux
essais cliniques. Une phase critique est l'optimisation des composés leads, ou les
structures chimiques sont révisées pour améliorer l'efficacité, la sélectivité et les
propriétés pharmacocinétiques tout en minimisant la toxicité potentielle.! Malgré des
efforts considérables, les échecs liés aux propriétés ADMET (Absorption, Distribution,
Métabolisme, Elimination et Toxicité) restent un obstacle majeur, avec des études
récentes indiquant qu'environ 90 % des candidats-médicaments échouent lors du
développement clinique en raison de problemes d'efficacité et de sécurité.?* Ces échecs
contribuent a I'escalade des cotits du développement de médicaments, estimés entre

1,3 et 2,8 milliards de dollars par nouveau médicament.*

Cette these contribue a répondre a ces défis grace a des techniques d'apprentissage
automatique (Machine Learning, ML) et d'intelligence artificielle (IA) permettant
I'analyse de données complexes, facilitant la prédiction des propriétés moléculaires,
des interactions ligand-cible et des effets secondaires potentiels.>® La prolifération de
larges ensembles de données a certes révolutionné la découverte de médicaments,
mais les prises de décision en découverte de médicaments sont d’autant plus
impactées par les problématiques liées aux données, par exemple: les données

incertaines ou incohérentes ou des modeles statistiques inadéquats.”

Cette these se concentre sur l'amélioration du processus de sélection des données et
I'amélioration des méthodes de décision en développant des modeles computationnels
pour la prédiction des propriétés ADMET, en explorant 1'espace chimique a travers la
cartographie topographique générative (Generative Topographique Mapping, GTM)
et en exploitant des approches d'intelligence collective. Par I'intégration de données
de haute qualité a des modeéles robustes, ces travaux contribuent a améliorer les
processus décisionnels, réduisant les taux d'attrition et optimisant les ressources

investies dans le développement de nouveaux médicaments.
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1.2. Méthodologies pour I’Apprentissage Automatique

Les modeles d'apprentissage automatique développés au cours de la découverte de
meédicaments reposent souvent sur les relations quantitatives structure-propriété
(QSPR), établissant une fonction Y=f(X), ou X est la représentation d'une entité
chimique par des descripteurs moléculaires et Y, une propriété d’intérét telle que la
solubilité. Ces travaux ajoutent deux approches complémentaires a ces modeles
QSPR : I'exploration rationnelle de 1’espace chimique a l'aide de cartes GTMS, et la
définition de domaines d’applicabilité (Applicability Domain, AD) visant a estimer la

pertinence des prédictions — Isolation Forest®, par exemple.

Cette these présente par ailleurs, des approches récentes de modélisation QSPR
reposant sur des réseaux de neurones artificiels basés sur des graphes (Graph Neural
Network, GNN). Ces méthodes formulent des modeles dont les données chimiques
utilisées en entrées se présentent sous forme de graphes moléculaires.’* Nos travaux
illustrent I'intérét de ces méthodes, pour leurs performances, leur capacité a traiter des
grands ensembles de données et pour la facilité avec laquelle des concepts élaborés,

comme l"apprentissage multi-taches, sont formulés."

L'apprentissage multitaiche (Multi Task Learning, MTL), est une extension de
I'apprentissage monotache (Single Task Learning, STL). La stratégie consiste a
entrainer un unique modele MTL sur plusieurs taches connexes simultanément au lieu
d’entrainer des modeles STL indépendants pour chacune de ces taches. Un modele
multi-tache est moins compliqué a entrainer car il ne faut fixer les valeurs des
parametres libres que de ce seul modele MTL au lieu de devoir les fixer pour chaque
modele STL séparément.’> Au cours de nos travaux, nous avons constaté que des
synergies entre les taches sont assez fréquentes pour accroitre, globalement, la
généralisation des modeles, des antagonismes pouvant également étre observés, se
traduisant par la détérioration des performances pour certaines taches. Dans cette
these, nous appliquons des méthodes MTL basées sur GNN pour développer des
modeles prédictifs (Figure 1). Les modeles sont entrainés sur des ensembles de
données soigneusement nettoyés pour assurer la qualité des prédictions, et diverses

métriques, sont utilisées pour évaluer leurs performances.
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1.3. Résultats & Discussions

La these s’articule autour de quatre volets : (1) la modélisation de la solubilité des
composés chimiques, (2) le développement d'une approche multitache pour prédire
’absorption des petites molécules, (3) 'extension de cette approche a grande échelle
pour le profilage des propriétés ADMET et de nombreuses activités biologiques, et (4)
I'application des modeles prédictifs dans l'optimisation des leads en chimie
médicinale, comparée aux méthodes d’intelligence collective. Chaque section explore
des méthodes innovantes pour affiner la prédiction des propriétés ADMET, avec une

attention particuliere portée au nettoyage des données et aux techniques de

modélisation.
Input Graph Neural Network Prediction
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Figure 1: Schéma du workflow de prédiction combinant un MTL GNN avec la GTM et I’évaluation
du domaine d’applicabilité. Les structures d’entrée sont traitées via des couches de passage de
messages (Message Passing), d’agrégation (Aggregation) et de propagation direct (Feed-Forward
Network, FEN) pour prédire des propriétés telles que Papp (perméabilité apparente), PPB (liaison aux
protéines plasmatiques) et LogS (log10 de la solubilité en molaire). L’AD garantit des prédictions dans
un espace chimique valide, tandis que la GTM permet la visualisation et l’évaluation des

caractéristiques des espaces chimique locaux.
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Modélisation de la Solubilité des Composes Chimiques
Solubilité Thermodynamique

La prédiction précise de la solubilité aqueuse demeure un défi. Les modeles existants
offrent souvent de bonnes performances sur les données d'entrainement mais
échouent a se généraliser a de nouveaux composés. Nous avons compilé une liste
exhaustive de jeux de données de solubilité, identifiant des sources négligées et des
recouvrements. En nettoyant et en standardisant le jeu de données AqSolDB*, nous
avons créé un jeu de données de haute qualité, AqSolDBc, pour l'entrainement des

modeles.

En utilisant a la fois des méthodes de foréts aléatoires (Random Forest, RF) et des
GNN, nous avons développé des modeles prédictifs pour la solubilité aqueuse (Figure
2a). L'utilisation de ces modeles pour prédire de nouvelles données a révélé
I'importance de définir leurs domaines d'applicabilité ; expliquant les performances
décevantes des modéles mis en production en négligeant cet aspect (Figure 2b). Ces
conclusions soulignent I'importance de la qualité des données et les défis liés a

l'extrapolation au-dela du domaine d’entrainement.!*
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Solubilité Cinétique

Dans une perspective de criblage de molécules, la solubilité cinétique est plus
pertinente que la solubilité thermodynamique car elle fixe les concentrations
maximales auxquelles des échantillons peuvent étre testées. L'analyse des données de
solubilité cinétique et thermodynamique a confirmé les relations connues entre ces
deux types de solubilité (Figure 2c). Les données de solubilité cinétique obtenues par
différents protocoles se sont révélées cohérents, permettant ainsi de fusionner ces
données en un jeu unique et exclusif pour entrainer des modeles prédictifs. Ces
modeles renforcent la conclusion que la solubilité cinétique dépend moins de la

meéthode de mesure expérimentale que ce qui était initialement supposé (Figure 2a).'>

a
) Acceptable model mLitterature mIndustrial
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Figure 2 : Evaluation et analyses des modeéles et valeurs de solubilité cinétique et thermodynamique.
(a) Benchmark des performances des modeles public sur des données externes public et industrielles.
Une zone grise définit les métriques nécessaires pour qu’'un modele soit considéré performant. (b)
Performances en RMSE d’un modele entrainé sur des données publiques et validé sur des données
externes avec ou sans 'utilisation d’un domaine d’applicabilité. (c) Analyse comparative des valeurs de
solubilité cinétiques et thermodynamiques. La couleur représente la densité des 186 composés du jeu
de données de la Chimiotheque Nationale Essentielle, allant de faible (noir) a élever (jaune). La ligne

pointillée orange indique la limite supérieure pour les mesures de solubilité cinétique (0,2 mM).
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Approche Multitache pour Prédire 1’Absorption des Petites
Molécules

L’absorption d'une petite molécule, influencée par la perméabilité et la solubilité, est
un défi majeur en optimisation de leads. Nous avons modélisé la perméabilité via des
approches multitaches pour améliorer la précision des prédictions d'absorption. Nos
résultats confirment les facteurs clés influengant l'absorption. En comparant des
modeles MTL et STL basés sur des GNN, les modeles MTL se sont révélés supérieurs
pour les petits jeux de données. Pour tester 'apprentissage multitache, nous avons
introduit une tache « leurre », I'énergie libre d’hydratation (HFE), qui n’a pas profité
des synergies MTL, perdant méme en performance par rapport au STL (Figure 3). Par
ailleurs, les modeles basés sur des données publiques se généralisent mal aux données
industrielles, a cause de disparités dans l'espace chimique, les conditions
expérimentales et la qualité des données. Les modeles GNN STL se montrent plus
robustes pour les grands jeux de données. Ces travaux soulignent I'importance de

regrouper des taches connexes pour optimiser les modeles multitaches.
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Figure 3 : Analyse des effets de synergie et d'antagonisme dans les modeles GNN MTL versus STL
(a) Données publiques (b) Données industrielles. La taille des points est proportionnelle a la taille du
jeu de données. Les points rouges représentent les endpoints de perméabilité, les points bleus ceux de

solubilité, et les points noirs représentent le HFE, tache neutre.
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Proftilage des Propriétés ADMET et des Activités Biologiques

Aujourd'hui, de nombreux jeux de données et serveurs web autorisent la modélisation
des propriétés ADMET et de l'activité biologique, avec des benchmarks comme le
Therapeutic Data Commons, démocratisant les themes de la découverte du
médicament aupres des experts de l'apprentissage automatique. Les serveurs sont
souvent redondants et mettent en ceuvre des approches analogues. Pour contribuer a
la production de modeles et de serveurs de prédictions plus fiables, nous avons
travaillé un jeu de données de haute qualité spécifiquement orienté pour la découverte
de médicaments, en compilant des données de BindingDB, OChem et ChEMBL. Nous
avons meéticuleusement nettoyé celles-ci en se basant sur les métadonnées
expérimentales visant a améliorer leur cohérence et leur validité. Le modele MTL GNN
développé prédit simultanément plus de 2,000 activités biologiques et propriétés
ADMET. Divers descripteurs moléculaires et algorithmes, dont la GNN, ont été
évalués sur des données publiques et privées. Cette étude représente le modele MTL
de régression le plus large dans le domaine ADMET. Les performances sur chaque
tache sont comparables ou meilleures que celles des modeles mono-tache. La Figure 4
montre des performances représentatives, avec des améliorations notables, comme
pour pIC50 IL8. Les taches avec peu de données bénéficient particulierement du MTL,

car le réseau de taches est assez dense pour éviter des taches isolées.
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propriétés modélisées. Les performances des modéles sur les données de tests sont représentées par le

R2. Chaque barre indique le R? moyen avec un intervalle d’erreur représentant la déviation standard.
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L’Intelligence Collective et les Méthodes Automatisées dans
I’'Optimisation ADMET

Les campagnes d'optimisation en chimie médicinale sont souvent basées sur des
meéthodes prédictives et l'intuition des chimistes, influencées par leurs expériences et
biais personnels. Afin d'introduire l'intelligence collective dans ce domaine, nous
avons recueilli les réponses de 92 chercheurs de Sanofi a des questions d'optimisation
de leads. Cela nous a permis d’analyser comment l'expertise et la confiance affectent
les choix en conception moléculaire. Nos résultats montrent que l'intelligence
collective améliore les taux de réussite pour des taches courantes telles que la
prédiction de I'hydrophobicité, la perméabilité et la solubilité (Figure 5). Toutefois,
pour des phénomenes moins familiers, comme l'inhibition du canal cardiaque hERG,
I'efficacité diminue. Nos conclusions suggerent que l'intelligence collective pourrait
constituer une voie prometteuse pour renforcer le processus de décision dans la

découverte de médicaments.!6
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Figure 5 : Performances de l'intelligence collective par niveau d'expertise et propriétés ADMET.
(Gauche) Diagrammes en violon du taux de succes (Success Rate, SR) par niveau d'expertise pour
chaque groupe et tous les participants (en bleu). La médiane est représentée par ligne d’étranglement
de la boite grise. Les SR collectifs sont montrés par des cercles pleins blancs. (Droite) Diagrammes en

violon du SR pour chaque propriété.



CHAPTER 1. RESUME EN FRANCAIS 16

1.4. Conclusion Générale

Cette these établit des bases solides pour l'intégration de 1'apprentissage automatique
dans la prédiction des propriétés ADMET, en proposant des contributions majeures a
la modélisation moléculaire et a la réduction des échecs en recherche pharmaceutique.
Les travaux mettent en avant I'importance du nettoyage des données et de la définition
des domaines d'applicabilité pour garantir des prédictions fiables, en particulier pour

des composés hors de I'espace chimique initial des modeles.

Les approches multitaches se sont révélées particulierement efficaces pour exploiter
les synergies entre propriétés connexes, notamment sur des données limitées,
améliorant ainsi la généralisation des modeles et leurs performances globales.
L’intégration des réseaux de neurones sur graphes et des outils de visualisation,
comme la cartographie topographique générative, a renforcé la précision des

prédictions tout en offrant des moyens d’explorer I'espace chimique.

Enfin, en associant modeles prédictifs et intelligence collective, cette these a démontré
que l'expertise humaine peut complémenter les outils automatisés. Ces travaux posent
les bases d'une modélisation ADMET hybride, combinant apprentissage profond et

intelligence collective.

Chaque partie du travail a contribué a une meilleure compréhension et optimisation
des processus de décision et de découverte de médicaments, en fournissant des outils

et des ressources accessibles pour la recherche.
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Chapter 2. General Introduction

The pharmaceutical industry faces steep R&D costs and high late-stage failure rates.
About 40% of attrition in the early 1990s was linked to poor pharmacokinetics. For a
chemical to function as a drug, it must be absorbed, distributed to target areas,
metabolized without losing activity, and eliminated effectively while limiting its
toxicity (ADMET).”” ADMET has long been crucial in drug development and has
gained increased attention over the past 10 years. Early ADMET assessments reduced
project failures to under 10% by 2000, yet the number of novel therapeutics approved
by the FDA has been declining, as roughly half of drugs in development still fail due
to pharmacokinetic deficiencies, and even approved drugs often present toxicology
issues (Figure 1).13° Hence, challenges persist, especially in areas like toxicology and

clinical safety, necessitating improved and standardized toxicity testing methods.

Commercial reasons —— — Pharmacokinetics

Miscellaneous —

Animal toxicity —

" Metabolism
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Figure 1: Main causes of failure in the drug development phase.

Recently, several companies have integrated early ADMET considerations with
systematic project management to address these challenges. By integrating early
attrition strategies and lean modeling, the frameworks seek to reduce ADMET
screening costs by preventing unnecessary investment in molecules with low
probability of success.?’ For instance, one framework currently used by AstraZeneca
hasled to ajump in overall success rates (from candidate nomination to Phase III) from

4% to 19% and a shortening of optimization cycle times from 26 to 19 months.?
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2.1. Drug Discovery & Development

Understanding how various properties affect drug candidates is crucial to improving
their success rates. This chapter provides a comprehensive overview of the modern

drug discovery and development process.
Overview

Drug discovery is a multi-phase process that spans over a decade and requires
significant investments of time and money, often exceeding $2 billion.* It begins with
identifying potential drug candidates through rational design and properties
optimization before advancing to preclinical and clinical trials. The actual model of
drug discovery has led to a sharp increase in R&D costs but no significant rise in the
number of FDA-approved new molecular entities (NMEs) since the 1990s.2 From 2009
onward, the cost of bringing a new drug to market has risen by 10% annually.
Meanwhile, the investment required has fluctuated between $314 million and $2.8
billion, while the median market exclusivity period for first-in-class drugs has
shortened from 10.2 years in the 1970s to 1.2 years in the late 1990s, highlighting the

intensification of competition.*?
Early Discovery of Drugs

The earliest forms of drug discovery relied on natural sources, with ancient
civilizations utilizing plant extracts, minerals, and animal-derived substances for
medicinal purposes. Natural products have been historically successful as antibiotics,
chemotherapeutics, immunosuppressants, and crop protection agents.?* Traditional
medicine systems such as Ayurveda, Traditional Chinese Medicine, and Greek
pharmacopeia documented the effects of bioactive substancess.® During the
Renaissance and Enlightenment periods, the extraction and isolation of active
ingredients became more refined. Advances in organic chemistry enabled the
identification of alkaloids such as morphine, quinine, and strychnine. By the 19th
century, Friedrich Wohler's synthesis of urea in 1828 marked the advent of synthetic
medicinal chemistry, proving that organic compounds could be artificially

synthesized rather than solely derived from natural sources.?
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Rise of Rational Design & High Throughput Screening

Between 1990 and 2010, pharmaceutical companies shifted away from natural product
discovery in favor of rational design.?* The 20th century ushered in a revolution in
medicinal chemistry, transitioning from serendipity to systematic drug development.
The introduction of X-ray crystallography, nuclear magnetic resonance (NMR)
spectroscopy, and cryo-electron microscopy (cryo-EM) provided unprecedented
insights into drug-target interactions. Simultaneously, the birth of the pharmaceutical
industry accelerated the synthesis and screening of chemical libraries. Hence,
numerous “targets” linked to diseases where aimed, which some more or less
“druggable” (e.g., capacity to be selectively influenced by therapeutics) than others.
The emergence of combinatorial chemistry and high-throughput screening (HTS) in
the late 20th century dramatically increased the efficiency of drug discovery.
Automation and robotics enabled researchers to screen thousands of compounds
against biological targets, leading to significant advancements in fields such as

oncology and infectious diseases.?”
The Bid Data & Computational Drug Design Era

The 21st century brought molecular biology, genomics, and bioinformatics. Genomic
sequencing has unveiled numerous potential drug targets, while advancements in
artificial intelligence (AI) have facilitated structure-based drug design. As drug
discovery becomes standardized, more actors are focusing on the same targets,
increasing competition and pushing research toward novel territories such as RNA
targeting, with the recently FDA-approved Branaplam and Risdiplam.* Moreover, the
concept of “druggability” is becoming obsolete, as evidenced by RAS targets,

considered undruggable during 30 years but have now seen approvals like Sotorasib.?

As of today, the drug discovery and development process unfold in three key phases:
(i) exploratory research to identify and optimize active compounds targeting a specific
biological mechanism; (ii) preclinical and early clinical testing, first on animals and
then on healthy humans; and (iii) clinical trials on patients to assess efficacy and safety.
If deemed effective and safe, the compound undergoes regulatory approval by
authorities such as the FDA, obtaining market authorization. The technical aspects of

this process are outlined (Figure 2).
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From Diseases to Target Validation

The high attrition rate in drug development means that the cost of a single successful
drug must cover the expenses of numerous failed candidates, making drug discovery
an expensive and resource-intensive process. To sustain innovation and profitability,
the pharmaceutical industry must continuously replenish its pipeline with promising
targets.®® This process begins with a molecular and cellular analysis of diseases, where
researchers map dysregulated pathways to identify proteins or genes related to
pathology. For example, targeting aberrant kinase signaling in cancer or excessive
cytokine activity in autoimmune diseases has led to therapies like Tofacitinib,

Ruxolitinib, and Osimertinib.3!

Target identification Hit-to-Lead Preclinical Studies

Hit Discovery Lead Optimization Clinical Studies

Figure 2: Drug Discovery and Development process. Schematic representation of the
key stages in drug discovery and development. The process begins with Target
Identification, selecting a biological target relevant to a disease. Hit Discovery
identifies active compounds via high-throughput screening or computational
methods. In Hit-to-Lead, candidates are refined for potency, selectivity, and drug-like
properties. Lead Optimization enhances efficacy, safety, and pharmacokinetics.
Preclinical Studies assess toxicity and pharmacodynamics in vitro and in vivo. Clinical
Studies progress through Phase I (safety/dosage), Phase II (efficacy/side effects), and
Phase III (confirmation/large-scale evaluation) before regulatory approval and market

introduction.
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Elucidating the Disease Mechanism

Extensive molecular profiling of diseased tissues and experimental models has
revolutionized our understanding of pathological mechanisms. This allowed to
identify aberrant tau phosphorylation as cause of neuronal function disruption linked
to Alzheimer's disease.® Biomarkers (e.g., molecular indicators of disease presence or
severity) has been employed to further validate the therapeutic relevance of pathways
or protein families, enabling researchers to distinguish true disease drivers from

incidental.3!

Many therapeutic targets are proteins which reside within protein families sharing
structural and functional similarities.®® For instance, kinases are implicated in cancer,
immunodeficiencies, viral infections, neurodegenerative diseases, diabetes, and
inflammatory diseases with the RAS gene family.3* Other notable examples include
G-Protein-Coupled Receptors (GPCRs), which account for roughly 34% of approved
drugs and ion channels that have been the target of drug development for the past 50

years (e.g., phenytoin, carbamazepine).36%

Focusing on these target families capitalizes on a wealth of existing data. Strategies
vary and may include inhibitors that block activity at orthosteric or allosteric sites,
activators that stabilize specific conformations, or compounds that induce structural
shifts. Depending on the target’s nature and accessibility, the therapeutics may either
be a small molecule, peptide, antibody, or nucleic acid (e.g., siRNA, antisense

oligonucleotides).
Target Identification & Validation

Once the target is identified, the validation consolidates its potential by assessing its
“druggability”. Validation typically involves in vitro assays or animal models to
determine the therapeutic strategy at the molecular level.3! Without loss of generality
and to fix ideas, the target can be a protein. The studies start from observations
indicating the biological function, the role of the protein in a biological pathway or a
physiological process. Endogenous or exogenous modulators can be discovered
during this process, or mutations can indicate strategic molecular mechanisms that can

be exploited.
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Discovery of Potent Leads

The target identification is followed by the search for active hits. This process typically
involves three core steps: i) Compound screening, often in a HTS format, to evaluate
thousands or even millions of molecules for potency; ii) Hit identification, which
selects the most promising active compounds from the initial screen; and iii) Hit
validation, during which potency and specificity are confirmed through secondary

assays (Figure 3).%
Hit Discovery

Hit discovery typically begins with HTS to test large libraries of compounds against a
biological target. Over the past two decades, small-molecule drug discovery has been
driven by HTS, with estimated hit rates as low as 0.01-1.00%, depending on factors
such as the definition of a “hit”, target nature, assay type, and the diversity of the
compound pool.”*4 In this screening phase, a small fraction of compounds may
display measurable activity, although false positives often arise from experimental
artifacts or nonspecific binding. Subsequent counter-screens and orthogonal assays

help confirm genuine activity, filtering out spurious results.

HTS & Virtual Cell-based Initial
Screenjng Assays Synthesis
10° 10,000 o ﬂ -4 — =100
Screening e A s 1 \ Leads
Libraries Lo N ] / / DMTA
Drug-Likeliness Permeability Elimination \ /
Potency Metabolism Selectivity -
cLogP Solubility Toxicity
O Hits Selected Hits Initial Leads

Figure 3: Screening process from hit to lead. Schematic representation of the screening
workflow and the progressive reduction in library size at each stage. The process
begins with high-throughput and/or virtual screening, leveraging miniaturized and
cost-effective assays. Hits are refined through more complex and informative models
such as cell-based assays. Selected compounds proceed to Initial Synthesis before

entering the Design-Make-Test-Analyze (DMTA) cycle.
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Typical HTS libraries contain up to 10°-10” compounds, and up to 10'° compounds with
DNA-encoded libraries (DEL), which still represent a minute portion of the chemical
space.i42 As of 2015, 125 million compounds were commercial available; by 2025, this
number exceeded 64.9 billion compounds, driven by the growth of the Enamine REAL
collection.® These campaigns rely on “screening libraries”. Commercial libraries
typically contain millions of purchasable compounds covering diverse chemical
scaffolds, while in-house libraries are curated from proprietary research efforts.
Nevertheless, the development and maintenance of large in-house libraries remain
costly and are typically restricted to the chemical space of past projects, with little to
no emphasis on exploring uncharted regions. In response, newer strategies have
emerged such as fragment-based screening, DEL, and combinatorial chemistry to
create smaller, more diverse libraries that require fewer resources yet maintain broad
chemical coverage.”** Regardless of the approach, screening efforts should ensure that
hits show consistent activity, are not driven by assay artifacts or nonspecific effects,
and do not bind closely related targets. Confirmation typically involves dose-response
profiling and orthogonal assays. Although a hit may possess moderate potency (e.g.,
micromolar ICsy values when nanomolar is expected), it can still form the basis for a
successful lead if it exhibits potential for on-target optimization and favorable ADMET
characteristics (Figure 4). Yet, over time, a general trend has also emerged toward the
synthesis of larger and more lipophilic compounds, a phenomenon referred to as
“molecular obesity” #0454 These compounds often exhibit high efficacy but poor

pharmacokinetics and safety profiles.*
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Hit-to-Lead

Once a set of validated hits has been identified, the focus shifts to refining and
optimizing the best candidates in an iterative optimization process, transforming hits
into “lead” compounds. Medicinal chemists structurally relate hits into congeneric
series and analyze structure—activity relationships (SARs), the ways in which small
structural modifications affect potency and selectivity (Figure 5). This stage initiates
multiparametric optimization, a data-driven process aimed at simultaneously
satisfying a set of predefined thresholds across several parameters (a.k.a. blueprint);
including potency, selectivity, and ADMET properties.*® In parallel, structure—
property relationships (SPRs) examine eADMET endpoints to help identify liabilities
before they become insurmountable in later development; for instance, screening for
interactions with the hERG channel can mitigate the risk of QT prolongation, a
common cause of drug monitoring and withdrawals (Terfénadine), similarly profiling
unintended kinase inhibition can flag molecules with off-target toxicity, ensuring safer
drug development pipelines. If such safety or pharmacokinetic issues cannot be

resolved through structural modifications, the candidate will be discontinued. #-5!
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[ustrations of key molecular modifications and their impact on biological activity,

highlighting structural features that contribute to potency and half-life.
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Practically, hit-to-lead efforts follow a Design—-Make-Test-Analyze (DMTA) cycle
(Figure 6). In this cycle, chemists supported by modelers design structural
modifications based on current SAR/SPR data, synthesize or acquire the new analogs,
test them for biological activity and ADMET properties, and finally analyze the
outcomes to inform the next design iteration. This method is an embodying application
of active learning (AL).>> Consequently, medicinal chemists face challenging multi-
objective optimization (MOO) problems. This steps generally require support from
medicinal chemists, chemical intuition, experimental data, and generative or
predictive models. Despite its effectiveness, the DMTA cycle can be time-consuming,
often taking weeks per iteration. Efforts to enhance efficiency include automated
synthesis, simulations, active learning, computational profiling, organ-on-chip and
ultimately automated laboratories, aiming to shorten cycles time that still exceed 4-8
weeks with more cost-efficient methods.?”** Compounds that balance potency,

selectivity, and ADMET profiles emerge from this iterative optimization as ”"leads”.
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Figure 6: Overview of the DMTA (Design-Make-Test-Analyze) cycle. The process
involves iterative refinement of molecular structures, synthesis of candidate
compounds, experimental evaluation, and computational analysis to guide
subsequent design steps. Each phase contributes to optimizing properties such as

ADMET and bioactivity, ensuring data-driven decision-making in drug discovery.
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Identifying a New Drug

Unlike earlier discovery phases, where the emphasis centered on finding any active
compound, this stage places greater weight on the lead’s properties essential for

clinical success.5*
Lead Optimization

Optimization efforts begin as soon as active compounds are identified. As leads with
promising on-target activity emerge, optimization intensifies and profiles become
more complex, incorporating additional safety endpoints. These steps refine
properties essential for success in preclinical models and, ultimately, in humans.
Medicinal chemists leverage MOO techniques, recognizing that bolstering one
characteristic, such as improving permeability, may inadvertently result in an
undesired hERG binding.> This optimization continues until a small number of
compounds a.k.a. clinical candidates show maximal potential for efficacious, safe
administration, at which point they transition to the more resource-intensive drug
development stage. The late-stage transition from lead to preclinical and clinical
candidates is subject to high attrition rates. They are usually due to toxicity, as
preclinical models often lack translational relevance to humans. Hence, this requires
mechanistic toxicology to understand and improve the transferability, with more than
50% of experimental work conducted in-house to ensure speed and flexibility with
large companies adopting tiered toxicity screening: combining in silico, in vitro, and

in vivo approaches to reduce late-stage failures.>
Drug Development

Drug development follows a series of evaluations to confirm a compound’s
therapeutic potential and safety before it can reach patients. Initially, preclinical
studies use both in vitro assays and animal models to assess pharmacodynamics and
pharmacokinetics, as well as short- and long-term toxicology. These tests characterize
the compound’s safety margins such as dose—exposure relationships. It is estimated

that less than 10% of the initial chemical entities reach the market.
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Clinical trials begin with Phase I, which typically involves a small group of healthy
volunteers to establish basic safety, tolerability, and pharmacokinetic profiles. Phase II
enrolls patients with the target disease to refine dosing, gather preliminary efficacy
data, and further detail the safety profile in a more relevant clinical context. By
PhaseIIl, the study population expands significantly to confirm clinical efficacy,
identify side effects, and compare the new compound against existing therapeutic
standards. Data accumulated from these trials are compiled into a regulatory dossier,
such as a New Drug Application (NDA) for the Food and Drug Administration (FDA)
or a Marketing Authorization Application (MAA) for the European Medicines Agency
(EMA). Regulatory authorities allow the market launch of the drug and mandate post-
marketing surveillance (pharmacovigilance) to monitor any long-term or low-

incidence adverse effects.%”
2.2. Computational Approaches in Drug Discovery

Data is the primary driver in drug discovery and development. In recent years, the
acquisition of data has surged, not only in quantity, thanks to HTS and combinatorial
chemistry, but also in quality, due to the standardization of assay protocols. This
wealth has extended the application of AI. Breakthroughs such as AlphaFold,
underscore its potential in supporting de novo design.”® However, the effectiveness of
Al is dependent on the availability of vast amounts of precise, high-quality data. In the
chemical context, if the data is noisy or of poor quality, Al-driven decisions may yield
false positives, leading to suboptimal decisions. Hence, Al outputs must be evaluated.
Integrating these computational insights with expert human judgment is essential to

ensure that decisions in drug discovery are both accurate and reliable.
Overview

Al-driven chemoinformatics enables tasks such as predicting assay outcomes,
mapping chemical space, generating novel compounds, and optimizing molecular
structures. Computer-assisted drug design (CADD) refines these in silico approaches,
offering more targeted searches than traditional SAR methods. By identifying key
molecular interactions and suggesting modifications to enhance activity and ADMET

properties, CADD offer higher success rate to hit discovery.



33 2.2. COMPUTATIONAL APPROACHES IN DRUG DISCOVERY

A key application of these computational methods is Virtual Screening (VS), which
facilitates hit identification by exploring large chemical libraries. Depending on target
structure availability, VS is categorized into structure-based and ligand-based
approaches, with hybrid methods integrating both when applicable. The success of hit
identification depends not only on the strategy but also on the quality of the library
and the complexity of the target itself. By applying Al-driven methods with optimized

approaches, drug discovery can be made more efficient and precise (Figure 7).
Structure-based Drug Design

Structure-based drug design (SBDD) enables the identification of bioactive
compounds by leveraging the three-dimensional structure of biological targets.
Typically, SBDD begins with molecular docking, where chemical compounds (ligands)
are positioned within the binding site of a target protein.” The binding affinity of each
ligand is then approximated using empirical scoring functions. While this method can
efficiently prioritize potential drug candidates, its success depends on the availability
of high-resolution target structures and the accuracy of docking and scoring

algorithms.506!
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Figure 7: Key computational strategies in drug discovery.
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Advances in Structural Data for SBDD

The effectiveness of structure-based approaches relies on access to accurate 3D
representations of target proteins (Table 1). High-resolution structural data are ideally
obtained through X-ray crystallography, NMR spectroscopy, or cryo-EM. However,
many pharmaceutically relevant targets lack experimentally resolved structures. To
address this, computational techniques such as homology modeling can be used to

construct 3D models based on known protein structures.

Recent breakthroughs in protein structure prediction, particularly with AlphaFold and
the newly introduced AlphaFold3 by Google DeepMind and Isomorphic Labs, have
significantly expanded structural coverage. AF3 claims to outperform state-of-the-art
docking tools in predicting protein-ligand interactions and offers superior accuracy in
modeling protein-nucleic acid interactions compared to specialized predictors like
RoseTTAFold. Additionally, recent advancements in structure resolution methods
such as cryo-EM have provided unprecedented insights into previously elusive

targets, further enhancing the potential of SBDD.62-64
Computational Strategies for Ultra-Large Libraries

The rapid growth of ultra-large chemical libraries, often exceeding billions of
compounds, presents a computational challenge for traditional docking simulations.
To overcome this, novel AL and deep docking workflows have been developed,
integrating machine learning techniques with molecular docking to optimize
compound selection and sampling efficiency. This allows for more targeted

exploration of vast chemical spaces while maintaining computational feasibility.®5%

To further refine hit selection, additional more computationally intensive techniques
such as binding site water analysis, diversity selection, and absolute free energy
perturbation (AB-FEP) scoring can be employed. AB-FEP, for instance, provides highly
accurate free energy of binding (AAG) estimations, improving the ranking of candidate

molecules before experimental validation.
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Table 1: Structure-based drug design (SBDD) methods.

Method Description Pros Cons
] Predicts binding
Molecular Docking . .
using scoring
functions Fast Poor accuracy
Epinaine = Etivand—orotein — (Etigand + Evrotei :
binding ligand—protein ( ligand protem) (Hit diSCOVEI‘y)
Molecular Dynamics Simulates ligand- Flexible Slow
F = ma target dynamics Dynamic  Force fields
Free Energy Perturbation (FEP) Calculates binding Expensive
free energy Accurate For}Ze fields
AG = —RT InK (Lead optimization)
Fragment-Based Drug Design (FBDD)
Identifies/optimizes Novel Weak binders
LE = AG small fragments scaffolds Iterative
# heavey atoms
Pharmacophore Modeling Defines key activity Virtual Needs actives
d(A,B) < d* features screening

Where the variable,

Epindaing is the binding energy estimation (kcal/mol or kJ/mol),
AG is the free energy change (binding affinity),

R is the gas constant (1.987 cal/mol-K),

T is the temperature (K, Kelvin),

K is the binding constant (M),

LE is the ligand efficiency (kcal/mol per heavy atom).
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Ligand-based Drug Design

Ligand-based drug design (LBDD) is a fundamental approach for VS that relies on
known bioactive compounds rather than direct structural information of a target
protein. This method is particularly valuable when high-resolution target structures
are unavailable, allowing researchers to predict activity, toxicity, and other

pharmacokinetic properties based on molecular similarity principles (Table 2).

Two main ligand-based screening approaches exist, either based on (i) 2D similarity
search and modeling or (ii) 3D shape search and pharmacophore modeling. 2D
approaches are based on fingerprints, allowing rapid and scalable evaluation but
lacking 3D information such as the binding poses. 3D methods are mainly employed
to compare molecular conformations based on shape and volume. They are relevant
to capture 3D signals such as chirality but suffer from inaccuracies of the physical
models they are based on, and of their irrelevance when taking into account the

complicated and unknown processes driving the interactions of the ligand to a target.

LBDD typically starts with one or more reference compounds with known biological
activity. These molecules serve as templates for computational searches across large
chemical libraries using 2D or 3D similarity screening. The underlying assumption is
that structurally similar compounds often exhibit similar biological activity, a principle
known as “chemical promiscuity”. Once SAR data are available, in silico models can

be developed, validated, and used for compound selection.®”

These models rely on chemical representations to predict experimental endpoints
through Quantitative Structure Activity/Property Relationship (QSAR/QSPR)
modeling which has been essential in drug discovery for more than 60 years. QSAR
relying on deep learning models a.k.a. Deep QSAR have emerged over the past 20
years, enabled by advances in neural networks, computational power, and large

molecular databases.
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Table 2: Ligand-based drug design (LBDD) methods.

Method Description Pros Cons
QSAR/QSPR Model experimental data from . Data quality
molecular descriptors Predictive sensitive
Y =fX) P
Similarity Searching

ANB Finds compounds similar to actives Fast Lacks novelty

S=
AUB

Ligand-Based Virtual

Screening (LBVS) Screens libraries by ligand similarity ,Qul,Ck Neefis known
filtering ligands
Ranking & similarity scores
Generative Models
Generates molecules using deep Novel Outputs can
Al/ML-based molecule learning or combinatorial approaches scaffolds  be unusuable
generation
Where the variable,

X is the molecular descriptor,

Y is the predicted biological activity.
Machine Learning & QSAR

Drug design is a sampling problem where medicinal chemists select promising
candidates from an unimaginably large pool of compounds. Random selection is
impractical due to unfavorable odds.® Once SAR data are available, predictive models
(e.g., Random Forest) and pharmacophore-based methods can be employed to
virtually screen those libraries. Such strategies aim to avoid undesirable compounds
and focus on ”activity islands” containing attractive entities for specific drug discovery
projects. Machine learning (ML)-guided virtual screening offers a promising support
by rapidly evaluating compounds in silico, enabling the exploration of chemical

libraries orders of magnitude larger than those accessible by traditional HTS.%-"!
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De-Novo Generation

Beyond screening existing libraries, generative models, viewed as a form of pattern
matching in chemical design, allow the automated design of new compounds. Since
the 1990s, computer-based de novo design methods have served as idea generators to
support drug discovery.”?”® Unlike earlier molecular design engines that relied on
explicit chemical transformations, such as virtual reaction schemes based on reaction
and assembly rules like fragment growing and linking; generative models represent
chemical knowledge implicitly through statistical probabilities derived from data
distributions. This means the "language" of these models is not traditional textbook
chemistry but learned from training data. Chemical language models are able to
design novel molecules and optimize bioactivity when guided with Reinforcement
Learning (RL) methods. For instance, deep QSAR-guided generative model where
shown to produce a RORY inverse agonist (ICso = 370 nM) and a PI3Ky inhibitor (K; =
63 nM).6574

Requirements for Improved Methods

Despite significant scientific and technological progress, R&D productivity in drug
discovery declined between 1950 and 2010, largely due to an over-reliance on high-
throughput screening and limited predictive models.”>”® These methods were
hindered by restricted computational power, small and noisy datasets, and a narrow
pool of available algorithms that failed to capture the complexity of biological systems.
To address this, drug discovery is shifting from brute-force screening to intelligent, Al-
enhanced strategies. Deep learning-driven QSAR, generative Al, and advanced
computational models, when coupled with high-quality data, offer a more efficient
and predictive approach. By integrating these tools, researchers can refine candidate
selection, reduce failure rates, and maximize success, making the process both faster

and more cost-effective.40
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Chapter 3. Modeling for Drug Discovery

In this chapter, we provide an overview of the core concepts and techniques that
underpin this work. We begin by discussing how molecular data are transformed into
learnable representations for machine learning models. Next, we review the principal
source of data, their standardization, and the methods to apply them in a drug
discovery context, with a special focus on graph neural networks, multitask methods,

and applicability domains.
3.1. Compound Representation & Databases

Training a predictive model requires a structured, tabular dataset that accurately
describes each sample. Since molecules are composed of various atoms and bonds,
specialized processing is necessary to render them compatible with machine learning
algorithms. In this section, we review the common input formats in cheminformatics

and the primary methods used for molecular featurization.
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Figure 8: Representations of MRTX849 across different feature dimensions. (0D)
Scalar properties such as molecular weight; (1D) feature-based description; (2D)
graph-based representation; (3D) spatial conformation; and (4D) dynamic

representation incorporating molecular flexibility and conformational ensembles.
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Levels of Information

Molecular descriptions can be represented at varying levels of detail, ranging from
coarse metrics (such as simple atom counts) to more precise multidimensional
representations (e.g., 3D, 4D or 5D models). In the context of ligand-based modeling,
we mainly focus on two-dimensional (2D) representations. The chosen level of detail
involves a trade-off between the quantity of information provided, its distillation, and

its overall accuracy (Figure 8).

SMILES Representation

The SMILES (Simplified Molecular Input Line Entry System) format is a one-
dimensional, token-based representation widely used in the community. SMILES
encodes a molecule’s connectivity and bond types in a human-readable, lightweight
string. It can also include annotations for stereochemistry, isotopic labels, or points of
substitution. One limitation of SMILES is that a single compound can be represented
by multiple valid strings, and small modifications to a SMILES string may result in an
incorrect molecular structure. Canonical SMILES address this by applying
deterministic rules to ensure a unique representation, using graph-based atom

ranking, lexicographic sorting, and a standardized traversal path.
Graph-based Representation

Alternatively, molecules can be naturally represented as graphs, where atoms are
depicted as nodes and bonds as edges. In this formalism, a molecule is modeled as a
graph G(V, E), where V denotes the set of vertices, here atoms and E the set of edges,
here bonds. Connectivity information is typically captured using an adjacency matrix,
and atoms are assigned identifiers based on a chosen numbering scheme. Although
graph-based representations provide an intuitive visualization and are well-suited for
many machine learning applications, different numbering approaches may lead to
variations in node labeling. Hence, variations exist across software implementations

due to differences in ranking algorithms that can be answered using identifiers.
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Chemical Identifiers

The IUPAC International Chemical Identifier (InChI) encodes molecular structures in
a layered, deterministic format, capturing atomic composition, connectivity,
hydrogenation, stereochemistry, and isotopic information. Unlike SMILES, InChl
ensures a unique, software-independent representation for identical structures,
enhancing data consistency. The InChl Key is a fixed-length, hashed version of InChl,
optimized for fast indexing and searching. As a lossy transformation, it is non-
reversible, preventing structure reconstruction while ensuring efficient molecular
identification. When used alongside SMILES, it provides a robust dual-check system

for confirming the uniqueness of chemical entries across molecular registries.
Synthesizable Compounds Libraries

Hit identification relies on screening large, diverse, and synthetically accessible
libraries which have over the years increased exponentially in size (Figure 9). Ultra-
large, make-on-demand collections now exceed 100 billion compounds.” High-
throughput methods benefit from vast datasets, while computationally intensive
approaches require smaller, curated selections. Larger screens explore broader

chemical space but come with trade-offs in accuracy, cost, and efficiency.”s”
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Figure 9: Growth of synthesizable small molecule libraries (2013-2025). Evolution of

the largest available small molecule libraries over time.
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Commercial Libraries

Commercial libraries like Enamine, ChemBridge, Life Chemicals, Asinex, Specs,
Maybridge HitFinder, and Prestwick Chemical Library provide diverse, non-
annotated compounds essential for hit discovery. The Enamine collection contains
several chemical libraries based on combinatorial reaction of building blockS. They
represent one of the largest libraries, with compounds deliverable under 2 weeks with
a probability of synthesis of 80% or more. For instance, Enamine REAL database now
offers 5.5 billion unique compounds, expandable to ~38 billion. As of today, Enamine

represent the main distributor of screening libraries for HTS.%
ZINC

The ZINC database is a publicly available chemical library containing nearly 2 billion
compounds, sourced from repositories such as PubChem, ChEMBL, and commercial
vendors. The database grew from less than 1 million molecules in 2006 to more than
37 billion in 2024, a 50,000-fold increase. Each molecule is annotated with
purchasability details, vendor sources, and key physicochemical properties such as
molecular weight, LogP, hydrogen bond donors/acceptors, and rotatable bonds. ZINC
also provides pre-generated 3D conformations for docking and structure-based virtual

screening.%
Experimental Databases

Measuring compound properties requires costly, time-consuming assays prone to
variability. Additionally, in vitro testing is restricted to stable, water-soluble
compounds, limiting chemical space exploration. To address these challenges, public
databases aggregate and standardize experimental data from publications, patents,
and large screening campaigns. With over 20,000 to 30,000 new compounds published
annually, various digital repositories provide structured access to medicinal chemistry
data. PubChem, ChEMBL, and BindingDB offer quantitative bioactivity data, while
DrugBank and KEGG provide binary interaction data. ChEMBL features expert-

curated records, while BindingDB integrates data from literature and patents.
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PubChem BioAssay

PubChem is the largest publicly accessible bioactivity database, containing
approximately 230 million bioactivity records covering over 320 million compounds.®!
The database is structured into three main components. PubChem Substance stores
chemical substance data submitted by contributors. PubChem Compound
consolidates multiple substance records into unique compound entries using
automated processes to reduce redundancy. PubChem BioAssay compiles bioactivity
results, primarily from HTS and confirmatory assays. Despite its vast coverage,

PubChem data is not curated, meaning that inconsistencies and errors may exist.
ChEMBL

ChEMBL is a publicly available bioactivity database maintained by the European
Bioinformatics Institute (EBI), part of the European Molecular Biology Laboratory
(EMBL).#? Originally developed by Galapagos NV under the name StARlite, it was
acquired by EBI in 2008 and has since evolved into one of the most widely used
resources in drug discovery. As the second largest bioactivity database, ChEMBL
contains over 15 million bioactivity records. Data is extracted from scientific literature,
patents, and external databases. However, variability in experimental conditions
necessitates further filtering before computational analysis.* The database undergoes
regular annual updates, ensuring the continuous integration of new data. ChEMBL
has been extensively used during the past 15 years. Numerous studies have curated

its measurements to deliver publicly available datasets ready for QSAR.
BindingDB

BindingDB is a publicly available database dedicated to experimentally measured
binding affinities of small molecules interacting with protein targets.®> The database
contains over 1 million binding affinity measurements, derived from both cell-based
assays and isolated protein target assays. BindingDB provides data in 2D and 3D

formats.
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OChem

OChem is a publicly available database primarily focused on ADMET properties.®
OChem provides a richly annotated collection of physicochemical and
pharmacokinetic data. Users can filter and customize datasets based on specific
metadata. OChem’s dataset is partially orthogonal to ChEMBL, meaning it
complements but does not entirely overlap with ChEMBL’s bioactivity-focused

records.
Benchmark Datasets

In recent years, several benchmark datasets have been developed for the ML
community to evaluate predictive models, including Tox21, Therapeutic Data
Commons, and MoleculeNet.?>” These datasets compile ADMET and bioactivity data
obtained either from ChEMBL or from sources published over the past two decades.
While they have been widely adopted for benchmarking by the machine learning and
deep learning community, their quality and standardization remain suboptimal,

limiting their direct applicability to real-world pharmaceutical challenges.®
3.2. Data Preprocessing & Featurization

Building a predictive model starts with data acquisition, assembling a curated dataset

of chemical compounds with experimentally measured activity values.
Curation & Filtering

Datasets tailored to specific properties often undergo modeling, ensuring prior quality
checks. Reviewed and published datasets reduce reliability concerns, but many
ADMET datasets compile data from varied sources with inconsistent experimental
details. Limited assay information and missing references hinder data verification,
affecting quality. While smaller datasets may offer higher accuracy, they restrict

chemical space coverage, potentially limiting model applicability.



CHAPTER 3. MODELING FOR DRUG DISCOVERY 46

Data Caveats

Obtaining homogeneous data remains a challenge due to the cost and time required
for experimental measurements. When direct experimental determination is not
feasible, researchers rely on public datasets, which vary in format and reliability. Some
datasets are structured and tailored to specific biological activities, while others
aggregate diverse experimental measurements from the literature. Regardless of the
source, an ideal dataset must meet three essential criteria: reliability, homogeneity, and
sufficient size. Reliable data minimizes errors introduced by transcription, structural
misclassification, or inconsistencies between different sources. Errors can arise from
automated structure conversion, manual transcription mistakes, or misclassification of
molecular properties.®® Additionally, datasets often contain duplicates, mixtures, or
undefined stereochemistry, which introduce biases into machine learning models. To
address these challenges, researchers employ cross-validation of activity
measurements for the same compound across different sources, detect outliers based
on significant deviations in predicted activity, and standardize assay protocols to

improve comparability.
Good Practices

ADMET data is limited in experimental quantity. Yet, the dataset size must be
sufficient to meaningfully represent the desired chemical space. Global models aim to
cover a broad chemical landscape, while local models focus on congeneric chemical
series. While no universal rule exists, studies indicate that dataset size significantly
impacts model performance. Tropsha highlighted that excessively large datasets
complicate model construction, whereas small datasets risk random correlations and
overfitting.® To mitigate these risks, careful feature selection and validation

techniques are necessary to prevent overfitting and ensure model reliability.

Structure standardization begins with the removal of unwanted molecular
components, such as fragments, solvent molecules, and counterions, ensuring that
only the primary molecular structure is retained. Neutralization and tautomer
standardization are performed to create uniform molecular representations. The
dominant tautomer is selected based on predefined rules to ensure structural

consistency across the dataset.
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Table 3: Molecular descriptors across different dimension levels.

Dim.  Description Examples Pros Cons
. . Molecular weight Simple e
oD Basic properties Atom/bond count Fast Can t distinguish
and counts , isomers
Rings count Interpretable
Drug-likeliness LogP, LogD, pKa Key for ADMET No structural
1D Physchem i .
Solubility endpoints context
features
D g:;iiﬁi}sﬁcd ECFP, MACCS keys, Encodes structures No 3D info
. iy Wiener/Balaban index Key for QSAR Sensible to hashing
informations
ial
3D Sg:?; incd Volume, dipole Show conformation  Needs conformers
ront HOMO-LUMO Reactivity info Slow
descriptors

Dynamic and
4D pharmacophore
informations

Molecular Dynamics Includes flexibility Compute intensive

Pharmacophoric keys Realistic

For datasets requiring pH-dependent ionization, tools are used to adjust structures at
a physiological pH of 7.4 or specific pH depending on the assay conditions. Duplicate
removal is then performed by generating canonical SMILES and InChlI Key, allowing
identification and elimination of redundant structures. To ensure high-quality
predictive modeling, each compound in the dataset must have a unique value. A
decision is made based on data reliability, either retaining the most experimentally
validated value or using statistical aggregation (e.g., median value) if multiple valid

measurements exist.
Featurization

The section below presents common featurization of chemical structures. The methods
take as input a molecular graph and transform it in a vector of numerical information
describing the physicochemical or structural properties of the molecules. In this study,
we focus on 0D, 1D, and 2D descriptors, as the bioactive conformation of molecules is
usually unknown. They are commonly used for similarity searches, virtual screening,
and modeling (Table 3).



CHAPTER 3. MODELING FOR DRUG DISCOVERY 48

Structural Keys & Physicochemical Descriptors

Structural keys are coded into fingerprints based on a predefined dictionary of
fragments. Fingerprints are numerical vectors that encode molecular structures by
representing the presence or absence of specific substructures by bits. One of the most
widely used structural key-based fingerprints is MACCS (Molecular ACCess System)
keys, introduced by Molecular Design Limited (MDL).”® This system defines 166
structural keys, optimized for molecular similarity searches (Table 4). An extended
320-bit version is also used for broader substructure coverage. These fingerprints
assign each bit to a specific chemical motif. Physicochemical descriptors capture
medicinal chemistry properties. They include simple parameters such as hydrogen
bond donors, as well as more complex engineered descriptors like topological polar

surface area. While interpretable, they lack detail.
Molecular Fingerprints

Fingerprints can be categorized into linear connectivity-based and circular topology-
based representations. Linear Connectivity-Based Fingerprints enumerate all
substructures by considering the shortest paths between connected atoms. Each path
is hashed as a bit in the fingerprint. Circular fingerprints, also known as atom-centered
tragments (ACF), define a sphere around a central atom and capture all neighboring
atomic connections within a predefined radius. These are repeated for every atom.
However, since a single bit can correspond to multiple fragments due to hash
collisions, different substructures may be mapped to the same position. This
redundancy introduce ambiguity, potentially misleading models. Some fingerprints
go beyond binary encoding and track how often each substructure appears. These
frequency-aware versions retain more structural information and improve
performance in machine learning tasks by reducing ambiguity and enriching feature

representation.
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3.2. DATA PREPROCESSING & FEATURIZATION

Table 4: Overview of molecular descriptor calculation tools. Summary of key

computational tools for molecular descriptor calculation, categorized by license type,

descriptor range, and features.

Tool License Type Description
Constitutional (MW, atom/bond counts),
physicochemical (LogP, PSA, H-bond
RDKit! Open-source ~200 descriptors donors/acceptors), topological
(BSD) (0D-3D) (connectivity indices), geometric (3D
volume, shape), electronic (formal charge),
fingerprints
CDK> Open-source ~100 descriptors Constitutional, physicochemical,
(LGPL) (0D-2D) topological, substructure-based
. Constitutional, physicochemical,
- ~1
MORDRED* Open-source 800 descriptors topological, electronic (HOMO-LUMO),
(MIT) (0D-3D) ,
geometric features
Variable size Substructure descriptors including atom-
ISIDA* Proprietary (fragment-based, centered fragments, bond-centered
~100-10,000) fragments, connectivity matrices
itutional, physicochemical
. ~300 descriptors Cons.tltutlona , P _ysu:oc em%ca ,
MOE*. Proprietary topological, electronic, geometric, and
(0D-3D) .
pharmacophore-based descriptors
Variable size Topological, substructure-based, hashed
9 -
Avalon Open-source (~1000-10,000) fingerprints
Large set Constitutional, physicochemical,
81 -
PubChem Open-source (~700-1000) topological, fingerprints
SMARTS-based substructure keys
MACCS*” Open-source 166-bit encoding molecular fragments and
functional groups
AtomPairs®  Open-source Variable size Connectivity , atom pairs, distance-based

(~1000-10,000)

fragment pairs
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The Morgan algorithm (1965) was initially developed to solve molecular isomorphism
problems by iteratively assigning numerical identifiers to atoms. This laid the
foundation for Extended Connectivity Fingerprints (ECFPs).” ECFPs encode
substructures in binary vectors. ISIDA fragment descriptors have been developed as
refined topological fingerprints that count fragment occurrences rather than binary
presence.** ISIDA provides linear (sequence-based) and circular (ACF-based)
fragmentation, offering. Various fingerprinting methods have emerged, including
Avalon, PubChem and CDK fingerprints.*>100

Model Embedding

Molecular featurization can also be achieved through model embedding, where
compounds are represented as continuous latent vectors generated from pretrained
neural networks. Embeddings are learned representations optimized for predicting
target endpoints (Figure 10). However, they typically have high dimensionality and
non-linear relationships, making them harder to interpret. Additionally, embedding
may struggle with out-of-distribution molecules. Several popular architectures have
been explored for molecular embedding, including Graph Neural Networks (GNNs),
Variational Autoencoders (VAEs), and Transformer-based models. Examples include
Mol2Vec!!, which adapts word embeddings, and ChemBERTa!®?, a bidirectional

Transformer-based molecular representation model

Encoding
Layers

Predictive
Layers

D I

Latent space ’

Embedding

( Similarity ) ( Chemography ) (Transfertlearning) ( Clustering ) G\pplicabilityDoma\'D

Figure 10: From molecular graph to predictive applications methods. Representation

of the transformation from a molecular graph to predictive applications.
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3.3. Chemical Space Cartography

In this section, we discuss the various methods of representation of a chemical space
on a 2D maps. Chemical space, an abstract landscape where molecules are positioned

on a map based on similarity.
Linear

Unsupervised methods like Principal Component Analysis (PCA) reduce
dimensionality by transforming correlated descriptors into uncorrelated principal
components. PCA optimally reconstructs the dataset using linear combinations of
features and captures maximum variance along the first components. However, it does
not exploit potentially simpler non-linear structures. The first principal components
capture the maximum variance in the dataset, but its reliance on orthogonal

transformations limits its ability to capture complex non-linear relationships.!%
Non-Linear
t-SNE

Non-linear dimensionality reduction methods are widely used to map high-
dimensional chemical spaces into interpretable 2D projections. t-SNE is a probabilistic,
non-linear technique that projects high-dimensional data into lower dimensions while
preserving local relationships. It converts Euclidean distances between molecules into
conditional probabilities, representing the likelihood of two points being neighbors.
The algorithm then minimizes the difference between probability distributions in the
high- and low-dimensional spaces, ensuring that molecular neighbors remain close in
the 2D map. While effective at capturing local structures, t-SNE can struggle with

global relationships and is computationally expensive for large datasets.!*
UMAP

UMAP constructs a graph-based representation of data, optimizing embeddings via
Riemannian geometry and fuzzy simplicial sets. It preserves both local and global
structures more effectively than t-SNE, offers faster computations, and supports out-

of-sample projections through a learned transformation function.'®
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Generative Topographic Mapping

GTM is a probabilistic dimensionality reduction method introduced by Bishop et al.
(1998) as an extension of Self-Organizing Maps (SOM).10%61%7 Unlike t-SNE and UMAP,
which rely on stochastic neighbor embeddings, GTM models high-dimensional data
as a continuous manifold embedded in a lower-dimensional space (Figure 11). GTM
represents the high-dimensional descriptor space using a grid of nodes, where each
node is assigned a set of Gaussian Radial Basis Functions (RBFs). These functions
define a smooth, flexible surface that is trained to match the distribution of molecular
data. The manifold is iteratively adjusted to fit the densest regions of the dataset,
ensuring that molecules with similar properties remain close on the 2D projection.
Once trained, molecules are mapped onto the manifold and subsequently unfolded
into a readable 2D representation. Instead of direct point placement like in t-SNE or
UMAP, GTM assigns responsibility scores to molecules, indicating their association
with different nodes on the grid. However, it requires careful tuning of grid resolution
and RBF parameters to achieve optimal performance.!%
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Figure 11: Generative Topographic Mapping (GTM) training workflow. The GTM fits
a manifold (a square bounded bidimensional geometric object) on the dataset
embedded in high dimensional space. Each data point, corresponding to molecules, is
explained as a sample of a normal distribution centered on the manifold. Conversely,
each position on the manifold is associated to a density of molecules in the chemical
space. Sampling on the GTM means sampling the chemical structures from a region of

interest of the chemical space
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3.4. QSPR Modeling

The SAR and SPR concepts originated in 1868 when Crum-Brown and Fraser!'®
proposed that a compound's biological activity is directly linked to its chemical
structure. This idea was further developed by Richet!!’, Meyer!!!, and Overton'?, who
demonstrated strong correlations between molecular properties and biological effects.
The modern QSAR era began in 1964 with Hansch et al., who formulated the first
mathematical model predicting partition coefficients using electronic descriptors,

setting the foundation for systematic structure-activity modeling.!!®

QSPR/QSAR models aim to predict a chemical property (Y) from molecular
descriptors (X) using a mathematical function f(X). These models enable researchers to
estimate biological activity, toxicity, or physicochemical properties of untested
compounds. A functional QSAR model requires three essential components: (i) a
dataset containing experimental values for the target property, (ii) a set of molecular
descriptors that encode relevant structural and physicochemical features, and (iii) a
statistical or machine learning approach to infer the relationship between X and Y. To
ensure scientific rigor and regulatory acceptance, the OECD (Organisation for
Economic Co-operation and Development) has proposed a set of five widely
recognized principles for QSAR model validation. These principles emphasize the
importance of: (1) a defined endpoint relevant to human or environmental health, (2)
an unambiguous algorithm that is transparent and reproducible, (3) a clearly described
domain of applicability indicating where the model makes reliable predictions, (4)
robust performance metrics evaluated through internal and external validation
procedures, and (5) mechanistic interpretability where possible. These guidelines have
become a cornerstone in the development of regulatory-compliant predictive models

for chemical safety assessment.

While traditional QSPR models have proven valuable, their scope can be limited by
the assumption of linear relationships between molecular descriptors and properties.
This is where machine learning approaches such as decision tress come into play,
offering a more flexible, non-linear approach to modeling that can better capture the

complexities of structure-activity relationships.
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Machine Learning
Decision Trees

Decision tree training follows a recursive partitioning approach.!* At each node, a
descriptor (X) is selected as a splitting criterion, based on its ability to minimize the
variance of the target property (Y) within each subset (Figure 12). This process
continues until a stopping condition is met, such as a minimum number of data points
per leaf or a threshold on variance reduction. The splitting threshold for each
descriptor is determined by optimizing the sum of squared errors, ensuring that each
branch maximally explains the variance in Y. To prevent overfitting, decision trees
undergo pruning, where unnecessary branches that do not significantly improve
prediction accuracy are removed. Overly complex trees can lead to models that fit
noise rather than true relationships, reducing their generalizability. Conversely, trees
that are too shallow may suffer from underfitting, failing to capture meaningful
patterns in the data. Decision trees are valued for their interpretability and ability to

handle non-linear relationships without requiring extensive data preprocessing.

» Root node

.............................................. + Branch

e |eaf

Figure 12: Decision tree structure for classification or regression. Input features X and
Y are evaluated at the root node, where the first split occurs based on a decision
criterion. Branches represent conditions leading to further nodes. At the end of each

path, leaf nodes contain the final predictions or classifications.
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Random Forest

To overcome the limitations of single decision trees, ensemble learning techniques
aggregate multiple models to improve predictive accuracy and reduce variance.!’®
Random Forests use bootstrap aggregation (bagging), where multiple decision trees
are trained on random subsets of the training data and molecular descriptors (Figure
13). Each tree makes an independent prediction, and the final output is obtained by
averaging the predictions (in regression) or taking a majority vote (in classification).
The randomness introduced in feature selection and data sampling reduces

overfitting, leading to better generalization.
Gradient Boosting

Unlike Random Forest, Gradient Boosting improves model performance through
sequential training, where each tree corrects the errors of the previous one. Unlike
bagging, which trains models independently, boosting assigns higher weights to
mispredicted samples, ensuring that each subsequent tree focuses more on difficult
cases. This makes boosting methods like AdaBoost!'® and XGBoost!'” highly effective
for improving accuracy, especially in noisy datasets. Gradient Boosting models tend
to outperform Random Forests in many regression tasks but are more computationally

expensive and prone to overfitting if not properly regularized.

Model 1 Model 2 Model N
X Y X Y X Y
Mean

Figure 13: Random Forest ensemble prediction. Each tree generates an individual

prediction, the final output is obtained by aggregating the predictions from all trees.
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Support Vector Machine

Support Vector Machines (SVM) can effectively handle non-linearly separable
problems using kernel functions, which project the input data into a higher-
dimensional space where a linear separation is possible. This transformation is known
as the kernel trick, first introduced by Boser, Guyon, and Vapnik!!® (1995) to extend the
applicability of SVM to more complex datasets. By mapping the original descriptor
space into a Hilbert space, SVMs can model intricate relationships between molecular
descriptors and biological activity. A kernel function computes a similarity measure
between data points in the transformed space without explicitly computing the high-
dimensional representation, making SVM computationally efficient, yet non-
parallelizable. Common kernel types include the linear kernel, the polynomial kernel,
and the RBF kernel, which models complex non-linear relationships by emphasizing

local descriptor similarities.
k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a non-parametric method.!? It assigns a
predicted value to a molecule based on the properties of its k most similar compounds
in a multidimensional descriptor space (Figure 14). Molecular similarity is typically
determined using Euclidean distance, or Tanimoto similarity, with the latter being
more common for chemical fingerprints. In k-NN regression, the predicted activity of
a molecule is computed as the weighted or unweighted average of its k-nearest
neighbors” activity values. In the weighted approach, closer neighbors have a greater

influence, with weights typically inversely proportional to the distance.
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Figure 14: k-Nearest Neighbors (k-NN) prediction approach.
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Deep Learning

Neural networks are computational models inspired by the structure and function of
biological neural networks in animal brains. These models consist of artificial neurons
that process and transmit signals through weighted connections, like synapses in the
human brain. Each neuron receives numerical inputs, applies a non-linear activation
function, and transmits the output to the next layer. The strength of each connection is
determined by trainable weights, which are adjusted during the learning process.
Neurons are typically organized into three types of layers. The input layer receives
raw data, such as molecular descriptors. The hidden layers process this data through
multiple transformations, extracting meaningful representations, and the output layer

produces the final predictions, such as the bioactivity of a molecule.
Deep Neural Networks

A neural network is considered deep when it contains two or more hidden layers.
These Deep Neural Networks (DNNs) have become essential tools in drug discovery
due to their capacity to learn complex, non-linear relationships from high-dimensional

data.

By stacking multiple layers of processing units, DNNs progressively extract
increasingly abstract features from raw inputs, such as molecular descriptors,
fingerprints, or physicochemical properties, transforming low-level information into

high-level representations.

Each layer in a DNN applies a learned affine transformation followed by a non-linear
activation function, such as ReLU or tanh. This sequential structure implements a
composition of functions, allowing the network to approximate intricate mappings
between input and output spaces.!® The typical architecture includes an input layer,
one or more hidden layers for intermediate representation learning, and an output
layer that delivers the final prediction, for example, a molecular property or bioactivity

score.
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Training a DNN involves minimizing a loss function that quantifies the discrepancy
between predicted and true values. This is achieved through a sequence of operations:
forward propagation computes predictions across the network; the loss is then
calculated using a function like Mean Squared Error for regression; and
backpropagation computes gradients of the loss with respect to each parameter. These
gradients guide weight updates through optimization algorithms such as stochastic
gradient descent (SGD) descent'” or Adam'?, repeated over multiple epochs until

convergence or early stopping.

DNNs have achieved state-of-the-art performance in several key areas of drug
discovery, including molecular property prediction, de novo molecular generation,

virtual screening, and ADMET profiling.!2>1%
Graph Neural Networks

Molecular compounds being described as graphs, calculated molecular descriptors or
fingerprints are an intermediate step that can be integrated in an end-to-end modeling
approach. In this frame, Graph Neural Networks (GNN) have emerged as an attractive
technology since 2016.1%1 GNNs operate through several essential mechanisms.
Node embeddings assign feature vectors to atoms representing properties such as
atomic number and hybridization state. Message passing allows nodes to exchange
information with their neighbors to refine representations. Aggregation functions such
as mean pooling, sum pooling, or attention-based weighting combine node
information. Graph convolutional layers extract structural features from the molecular

graph.

GNNs have outperformed traditional molecular fingerprints such as Morgan
fingerprints in predicting molecular properties, bioactivity, and drug-likeness. A
notable example is AttentiveFP, which achieves state-of-the-art performance by
incorporating self-attention mechanisms, allowing the model to focus on relevant
molecular substructures during learning.'® GNNs are now widely used in virtual
screening for drug candidates, chemical space exploration for molecular diversity

analysis, and ADMET property prediction.
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Multi-Output
Ensemble Modeling

Predictive models trained on the same task often produce different outputs due to
variations in training data, descriptor sets, hyperparameters, or learning algorithms.
To improve accuracy, robustness, and generalization, ensemble modeling aggregates
multiple predictions, reducing biases toward the dataset composition and model
variance, integrating more values in the output. Two common approaches are majority
voting for classification, where the most frequently predicted class is selected, and

averaging predictions for regression, which smooths variations between models.

Beyond these basic strategies, more advanced ensemble techniques exist. Bagging
(Bootstrap Aggregating) improves stability by training multiple models on different
bootstrapped subsets of data, as seen in Random Forests. Boosting iteratively adjusts
model weights to enhance weak predictions, with popular implementations including
Gradient Boosting and XGBoost. Stacking combines multiple models by training a
meta-model on their predictions. These ensemble approaches are widely applied in
QSAR modeling, molecular property prediction, and ADMET screening, where
consensus models generally outperform individual models in terms of accuracy and

reliability. 131132

Solubility

Solubility
Permeability
Stability

Figure 15: Comparative representation of a Single-Task to a Multi-Task predictive
Graph Neural Network.
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Multi-Task Learning

Multi-Task Learning (MTL) is a machine learning paradigm where a model is trained
to perform multiple related tasks simultaneously, leveraging shared representations
to improve generalization across tasks. Instead of training separate models for each
task, MTL introduces an inductive bias that allows knowledge transfer, particularly
beneficial when tasks share underlying patterns (Figure 15). This approach is
commonly used in various domains, where learning from related objectives enhances
predictive performance and reduces overfitting. It has demonstrated improved

accuracy against standard approach for QSAR modeling.®

One of the key advantages of MTL is its ability to maximize the use of limited datasets.
In domains such as ADMET prediction, QSAR modeling, and bioactivity profiling,
data availability is often sparse. By training a model on multiple related objectives,
MTL allows it to extract meaningful features even from small datasets, improving
performance compared to single-task models. Studies have shown that MTL
consistently outperforms single-task QSAR models when predicting related
endpoints, such as different toxicity measures or multiple kinase inhibitions, by

capturing common molecular features across tasks.!s

A critical aspect of MTL is determining the relative importance of tasks in the loss
function: different tasks may have varying scales, convergence rates, or signal to noise
ratio, for instance. We use task weighting to ensure that no single task dominates the
optimization process. Here, the overall loss function in MTL is typically a weighted

sum of individual task losses:

n
Lyt = Z w;L;
i=1

where L; represents the loss for task i and w; is the weight assigned to that task.
Choosing appropriate task weights is crucial because improper weighting can lead to
model bias, where one task is prioritized over others, leading to suboptimal
generalization. Proper task weighting significantly impacts model stability,
convergence, and predictive performance, particularly when dealing with imbalanced

datasets or tasks with different difficulty levels (Table 5).
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Table 5: Loss weighting methods for multi-task modeling.

Method Description Advantages Limitations
11 i impl
Fixed Weights'>* Manually asst gned Simple Lacks adaptability
constant weights Account for data scale
Uncertainty-Based Adjusts task weights . Sensitive to data scale
. s ; Prevents imbalance . i
Weighting!3 based on uncertainty Requires tuning

Adjusts weights to

GradNorm!'® equalize gradient Dynamic learning Requires tuning
magnitudes
Pareto Finds an optimal balance Adaptative . .
ce . Computation intensive
Optimization?% between task losses Learns trade-offs.
Meta-Learning- Uses models to adjust task . Requires tunin
5 J Adaptative d 5

Based Weighting'? weights dynamically Computation intensive

Despite its advantages, MTL is not always beneficial. When tasks are too unrelated or
exhibit conflicting learning objectives, negative transfer can occur, where the model’s
performance degrades due to interference from irrelevant tasks. Proper task selection
and dataset curation are crucial to prevent such issues. Additionally, designing an
effective MTL model as an artificial neural network requires careful tuning of
architectural components, such as shared vs. task-specific layers, weighting of

different loss functions, and handling of imbalanced task distributions.!213



CHAPTER 3. MODELING FOR DRUG DISCOVERY 62

Model Validation

A robust validation strategy is essential to ensure QSAR models are predictive and
generalizable. Poor validation can lead to overfitting, underfitting, or spurious
correlations, compromising model reliability. Ensuring the reliability of a QSAR model
requires a rigorous validation strategy. A poorly validated model may appear accurate
on training data but fail on new compounds due to overfitting, underfitting, or
spurious correlations. To avoid these pitfalls, validation must assess both predictive

accuracy and generalizability.
External Validation & Cross-Validation

The gold standard for evaluating model performance is testing on an independent
external set, ensuring predictions are not biased by the training data. To maximize
reliability, the test set should include structurally diverse compounds within the
model’s applicability domain. When data is limited, cross-validation (CV) provides an
estimate of model stability. The most common approach, k-fold CV, partitions data
into k subsets, iteratively training on k-1 folds and testing on the remaining one. Leave-
one-out CV further maximizes data use but tends to over-estimate the generalization
performances while being computationally intensive. Stratified k-fold CV is
recommended to control the instability of the performance measures in presence of

imbalanced datasets.
Bias, Variance, and Overfitting

A model’s error stems from bias (systematic underestimation of complexity) and
variance (excessive sensitivity to training data). Underfitting occurs when a model is
too simplistic, failing to capture structure-activity relationships, mostly because of a
lack of expressivity of the concept used to fit the data (too few molecular descriptors,
for instance). Overfitting, in contrast, arises when a model memorizes training data
rather than learning general patterns. This is common when the number of molecular
descriptors exceeds the number of compounds, and the machine learning algorithm is
insufficiently regularized. A practical guideline for multi-linear regression is
maintaining a sample-to-descriptor ratio of at least 3:1 to reduce spurious

correlations.139140
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Metrics

Model evaluation relies on quantitative metrics that compare predicted values to
experimental data, ensuring the accuracy of a model’s performance (Table 6). For
regression models, several key indicators are used. The coefficient of determination
(R?) measures how well the model explains the variance in experimental data, with
values close to 1 indicating a strong fit. The Root Mean Squared Error (RMSE) assesses
the dispersion of prediction errors, where lower RMSE values indicate better
performance and a closer alignment between predicted and actual values. As RMSE is
very sensitive to outliers, we supplement it with the Mean Absolute Error (MAE).
Using both provides insight into the distribution of errors, offering an intuitive

measure of the average deviation between predictions and experimental results.

Table 6: Performance metrics for regression models.

Metric Equation
1 n
Mean Squared Error (MSE) MSE = EZ(% —9)?
i=1
1 n
Root Mean Squared Error (RMSE) RMSE = EZ(% — )2
i=1
1 n
Mean Absolute Error (MAE) MAE = ;zm = 3l
i=1
Y (Vi — 9,)2
Coefficient of Determination (R?) R?=1- (yl—}il)z
Xvi—¥)

Where the variable,

n is the total number of samples in the dataset.

y; is the actual value (ground truth) for the i*" sample.
9; is the predicted value for the i*" sample.

y is the mean of the actual value.
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Applicability Domain

The applicability domain (AD) is a key concept in QSAR modeling, determining the
chemical space where a model’s predictions remain reliable. Since models are trained
on a limited set of molecules, their predictive accuracy depends on whether new
compounds fall within the structural and property range covered. Predictions for
molecules outside this domain tend to be unreliable due to a lack of learned patterns

to generalize from. Various approaches exist to define the AD.

Table 7 Main range-based applicability domain methods.

Method Description Pros Cons
Bounding Box!4! Defines AD.by setting min Simple Too rigid
and max limits for each Fast No variabilit
Xmin <X < Xinax descriptor. Intuitive y
- Defines AD based
Z-Score Method eimes . .?se on Assumes normality
standard deviations from Handl riabilit Skewn nsiti
X € [ — ko, 1 + ko] the mean. andles variability ewness sensitive
ile- U tile cutoff
Percentile-Based Range ses percentiie cutolls ) ) May exclude useful
(e.g., 5th-95th) to define a Outlier-resistant
. data
Piow = X < Xpign feature-wise range.
Where the variable,

X, is the feature value of the sample.
o is the standard deviation of the feature.
i is the mean of the feature in training data.

k is a defined threshold.



65 3.4. QSPR MODELING

Table 8: Main distance-based applicability domain methods.

Method Description Pros Cons
. . Requires matrix inversion
Measures how influential a Detects d . .
Leverage Method .. . Assumes linearity
sample is in feature space  extrapolation . . )
Sensitive to collinearity
Mahalanobis Measures distance from Captures Assumes Gaussian distribution
Distance mean correlation Computation intense
. . . . . Ignores correlation
Euclidean Straight-line distance to Simple ghor ..
. Scaling-sensitive
Distance mean Interpretable

Equal feature weighting

Range-based

Range-based methods establish the AD by setting minimum and maximum thresholds
for molecular descriptors based on values observed in the training set (Table 7). A
molecule is considered within the AD if all its descriptor values fall within these limits.
The most common techniques in this category include bounding box and PCA
bounding box approaches.!*> These methods are computationally efficient and easy to
implement. Additionally, they ignore sparsely populated regions in the descriptor
space, increasing the risk of unreliable predictions. As a result, range-based methods

tend to be highly restrictive.
Distance-based

Distance-based approaches define the AD by measuring the proximity of new
molecules to those in the training set. These methods are widely used.!** One common
approach is centroid-based distances, where molecules are compared to a central
reference point of the training set. Several distance metrics are used in this context
(Table 8). These methods establish a threshold beyond which molecules are
considered outside the AD.
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Model-based

Model-based approaches define the AD by leveraging ML techniques that analyze
patterns, anomalies, and outliers within the training dataset. Unlike geometric or
distance-based methods, these approaches rely on statistical learning to determine
whether a new molecule belongs to the known chemical space. Various methods exist

to define the model.
Isolation Forest

The Isolation Forest (IF) method is designed for anomaly detection by constructing an
ensemble of randomly partitioned decision trees (Figure 16).° The underlying
principle is that outliers require fewer splits to be isolated, whereas inliers need more.
The process involves randomly segmenting the dataset into decision trees and
recording the depth at which each molecule is isolated. Molecules with shorter path
lengths are considered outliers, and a predefined threshold determines whether a
molecule belongs to the applicability domain. This method is efficient for large
datasets, robust to irrelevant features, and non-parametric, making it flexible for
different datasets. The AD based on IF are softer (accepting more compounds in the
AD) or harder (refusing more compounds in the AD) depending on the contamination

parameter. It defines the proportion of isolated instances in the training set.
One -Class Support Vector Machine

The One-Class Support Vector Machine (OcSVM) is an extension of SVM tailored for
unsupervised anomaly detection.!* It learns a decision boundary around the training
data, classifying new samples as inside or outside the applicability domain. The model
constructs a hypersphere or hyperplane enclosing most training data points, using
kernel functions such as the RBF to capture complex relationships between molecular
descriptors. This method is particularly effective for high-dimensional data, for non-
vectorial data and non-linearly separable datasets. It is sensitive to kernel selection and
is controlled by the kernel parameters, if any, as well as the cost, regularizing the
boundary. The algorithm may be computationally expensive for large datasets because

of the kernel estimation.



67 3.4. QSPR MODELING

Local Outlier Factor

The Local Outlier Factor (LOF) algorithm assesses whether a molecule lies within the
applicability domain by comparing its local data density to that of its neighbors.!4
Unlike global distance-based methods, LOF focuses on the immediate chemical
environment of each molecule. It begins by identifying the k nearest neighbors of a
given molecule and computing the local density based on their proximity. This local
density is then compared to the densities of the neighbors themselves. If the molecule
resides in a much sparser region than its neighbors, it is flagged as an outlier. In AD
applications, molecules with similar densities to the training data are considered in-
domain, while those with significantly lower densities are flagged as outside the
domain. The choice of k is crucial: a smaller k allows for higher sensitivity to rare
patterns but may increase noise, while a larger k stabilizes the assessment but may

overlook subtle deviations.
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Figure 16: Mechanism of prediction by the Isolation Forest. The model consists of
multiple randomly partitioned decision trees, where each tree recursively splits the
data until individual points are isolated. Outliers are identified as compounds
requiring fewer splits to be isolated, meaning they appear closer to the root in most
trees. The final anomaly score is computed by aggregating the outputs across all trees,

with compounds classified as outliers receiving consistently high anomaly scores.
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Chapter 4. Modeling of Solubility

The ability of a drug candidate to dissolve in an aqueous environment is a critical
factor influencing its development, formulation, and therapeutic success. Solubility
dictates bioavailability, impacts pharmacokinetics, and directly affects dosing
requirements. As illustrated by the Mayer-Overton Rule more the 100 years ago, the
drug potency correlates with the oil solubility, supporting the importance of molecular

solubility and its relation with drug solution and target interaction.®

Poor aqueous solubility is a major cause of late-stage failures in drug development, as
it can lead to suboptimal absorption, necessitate high-dose, and thus increase the risk
of toxicity where high lipophilicity is usually linked with increased risk of hERG
blocking (cardiotoxicity) and phospholipidosis. Consequently, solubility screening is

an essential step in early-stage drug discovery.

Despite its importance, solubility prediction remains a significant challenge.
Experimental measurements vary across laboratories due to methodological
differences, batch effects, and inconsistencies in reporting standards. Many solubility
datasets result from iterative aggregation, often incorporating low-quality
measurements, computational predictions, or data that do not adhere to OECD
guidelines.’*¢ This lack of standardization complicates the development of reliable

predictive models.

In this chapter, we investigate the challenges of modeling solubility. While
thermodynamic solubility is crucial for late-stage development, kinetic solubility is
widely used in early screening but suffers from high protocol sensitivity and
interlaboratory variability. We analyze the relationship between these two solubility
types, demonstrating their poor correlation and the need for separate predictive
models. By benchmarking existing approaches, we reveal the limitations of current
models is due to inconsistent data curation and measurement variability. Contrary to
expectations, we find that kinetic solubility datasets show higher reproducibility than
assumed, allowing for the development of accurate QSPR models. We propose a
workflow to improve solubility predictions, providing curated datasets and models to

enhance their reliability and utility in drug discovery.
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4.1. Thermodynamic Solubility
Introduction

Machine learning has shown promise in solubility

prediction, with recent models achieving
seemingly strong performance. However, their
reliability in prospective applications is often
overestimated. Many models rely on overlapping
training sets, leading to overfitting rather than
Additionally, the

applicability domain of these models is rarely

genuine generalizability.
well-defined, further limiting their practical use in
real-world drug discovery. In this section, we
investigate these challenges by analyzing over
two decades of thermodynamic solubility
datasets, computational models, and acquisition
methods (Figure 17). We explore historical
dataset curation practices, evaluate data quality,

and assess the generalization capacity of state-of-

the-art solubility prediction models.

Shaking

Dissolution

Filtration & Dilution

=l

Main Terminology

Thermodynamic solubility is
the maximum concentration of
a compound that dissolves in a
solvent at equilibrium,
typically used in late-stage
drug development due to its
reproducibility and relevance

for formulation.

Applicability domain is the
descriptor space within which a
predictive model is expected to
provide  reliable  results,
ensuring that predictions are
made only for compounds
similar to those in the training

data.

LC-MS

Figure 17: Thermodynamic solubility measurement using the shake flask method. The
process begins with compound dissolution, where the molecule is introduced into a
solvent (typically water or a buffer) and shaken to reach equilibrium. The solution is
then filtered, followed by quantification of the dissolved compound using techniques
such as UV-Vis spectroscopy, HPLC, or LC-MS.
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OPEN Will we ever be able to accurately
anawvsis  predict solubility?

P. Llompart*?, C. Minoletti?, S. Baybekov?, D. Horvath*, G. Marcou®*™ & A.Varnek(®?

. Accurate prediction of thermodynamic solubility by machine leaming remains a challenge.

© Recent models often display good performances, but their reliability may be deceiving when used

. prospectively. This study investigates the origins of these discrepancies, following three directions: a

. historical perspective, an analysis of the aqueous solubility dataverse and data quality. We investigated
. over 20 years of published solubility datasets and models, highlighting overlooked datasets and

. the overlaps between popular sets. We benchmarked recently published models on a novel curated

. solubility dataset and report poor performances. We also propose a workflow to cure aqueous solubility
© data aiming at producing useful models for bench chemist. Our results demonstrate that some state-of-
: the-art models are not ready for public usage because they lack a well-defined applicability domain and
: overlook historical data sources. We report the impact of factors influencing the utility of the models:

: interlaboratory standard deviation, ionic state of the solute and data sources. The herein obtained

. models, and quality-assessed datasets are publicly available.

. Introduction
. Aqueous solubility is a strategic parameter in synthetic, medicinal and environmental chemistry. It is one
. of the main parameters affecting bioavailability. Thus, a better understanding of this property is expected to
. improve success in drug design', as a key player in pharmacokinetics and ADME-Tox (Absorption, Distribution,
. Metabolism, Excretion, and Toxicity) proﬁlingz. Solubility governs the fraction of the active substance available
© for absorption in the gastro-intestinal tract. Besides, a poor solubility of a compound or of a metabolite can be
. a threat for the patient: the substance may accumulate and crystalize, as exemplified by kidney stone diseases.
* Galenic formulation can improve the therapeutic potential of a compound?, but a soluble drug candidate is
. always a safer option for clinical trials.
: However, measuring aqueous solubility is not always feasible at the early discovery stage because of the low
: throughput and large sample requirements*’. For this reason, in silico predictive approaches have become highly
. valuable to prioritize drug candidates and reduce the number of experimental tests. Latest progress in this field
: is mainly due to (i) the organization of aqueous solubility prediction challenges, shedding a new light on existing
© tools; (ii) the public release of large aqueous solubility datasets; (iii) the advent of new machine learning meth-
. ods promising unprecedented predictive performances. The current status quo in solubility prediction, which
© this study aims to analyze, is therefore very intricate.

In the first part of this study, we first remind the theoretical background of aqueous dissolution process,
. underlining the ambiguities and complexity of this measure. Next, we review the large number of datasets
. already published. Third, we critically discuss published models. This enables us, in a second part, to propose
. new guidelines to process thermodynamic aqueous solubility data. We applied them to existing datasets and
¢ proceed to a modeling exercise resulting in new QSAR models. All curated datasets and obtained models are
. publicly available at https://doi.org/10.57745/CZV ZIA®.

. Background of aqueous solubility. Several types of solubility measurements are reported in the litera-
. ture, depending on the method and conditions of measurement. The thermodynamic solubility is described as
: the maximum concentration of a compound in solution, at equilibrium with its most stable crystalline form.
© 'This solubility is usually measured during lead optimization phases and is used as source of in silico regression
* models’. However, the above definition is not unambiguous, as the solute may, beyond physically dissolving,
. also chemically interact with water — with significant impact on the equilibrium. Therefore, no less than three
¢ distinct “thermodynamic” solubility measures are being used: water, apparent and intrinsic. The water solubility

Laboratory of Chemoinformatics, UMR7140, University of Strasbourg, Strasbourg, France. 2lDD/CADD, Sanofi,
: Vitry-Sur-Seine, France. ®e-mail: g.marcou@unistra.fr
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is measured with pure water as the added solvent. At equilibrium, the solution is a mixture of the potentially
many proteolytic microspecies of the solute, and the sum of their concentration counts as “water solubility”.
Acid-base interactions induce self-buffering effects, stabilizing the solution at a specific pH value, which must
be reported as well. By contrast, the apparent solubility is defined in a fixed-pH buffer solution; it is also called
buffer solubility and reflects the relative population of dissolved microspecies at the buffer pH. Finally, the intrinsic
solubility (S,) is the maximum concentration of the neutral compound: the pH of the solution is adjusted so the
non-ionized compound becomes the predominant microspecies. Under certain assumptions and approxima-
tions, the Henderson-Hasselbalch (HH, Eq. (3) equation estimate the aqueous solubility (S), from the intrinsic
solubility (S,), the acidity or basicity constant (pK, or pKy), and the pH®. Additionally, the kinetic solubility is often
preferred during the early phase of drug discovery at the screening platforms level. It is frequently described as
the lowest concentration at which the species starts to precipitate when diluting a 10 mM DMSO stock solution in
buffer, usually Phosphate-Buffered Saline (PBS) 7.4. The kinetic solubility is usually perceived as a crude estimate
of the thermodynamic solubility. Although these values are related, they quantify distinct phenomena: in kinetic
measurements, there is no control or knowledge of the precipitating crystalline or amorphous form’, and artefacts
due to supersaturation cannot be excluded. Additionally, there may exist large variations in the experimental
setup between providers of kinetic solubility values; as a result, many of them cannot be used together®.

Accurately predicting thermodynamic solubility remains a challenge as numerous physicochemical and ther-
modynamic factors are involved. Some of them are, the solid-solvated phase transition, solid state (amorph or
crystal), temperature, polymorphism, intermolecular interactions between solute-solvent and the co-occurring
ionic forms of electrolytes'’. Even though numerous drugs are electrolytes, they are still hard to predict at spe-
cific pH as their aqueous solubility is the result of co-occurring microspecies'!'2. Over the past decades, several
approaches have been developed to early identify poorly soluble compounds.

Experimental techniques. To ensure high quality data, experiments should use pure substance, temperature
control and sufficient time for the solute to reach equilibrium. The current OECD 105 Guideline for the testing
of chemicals'® recommends two approaches for measuring thermodynamic water solubility: (i) the shake-flask
method for chemicals with a solubility above 10 mg/L (ii) the column elution or slow-stir method for chemicals
with solubilities below 10 mg/L.

The shake-flask method consists of mixing a solute in water until the thermodynamic equilibrium between
the solid and solvated phase is reached. Then, the two phases are separated by either centrifugation or filtration.
The column elution method consists of pumping water through a column coated with the chemical. The water
flows at a constant rate through the column and is recirculated until equilibrium. For each method, the concen-
tration of compound in the filtrate is measured to obtain the thermodynamic solubility. When working with sur-
factants, the slow-stir method should be used. Surfactants are amphiphilic organic compounds highly miscible
in water. However, agitation and high concentration can induce micelle formation, distorting the measurements.
This concentration point is called the Critical Micelle Concentration (CMC). The slow-stir avoids emulsion and
helps solubilize low-density compounds using a controlled magnetic stirring.

An advanced technique called CheqSol was suggested by Llinas et al.'*. Developed by Stuart et al.'* to estab-
lish thermodynamic equilibrium conditions during measurement, the technique can measure the intrinsic and
kinetic solubility of ionizable compounds. It is an automated titration method where the pH is adjusted until the
solute precipitate or until the precipitate dissolves itself. The concentration of uncharged species is deduced from
the point of equilibrium and the pK,; this process is called Chasing Solubility. The method works down to 1 mg/L
and is restrained to mono- and di-protic compounds with known pK, / pK,.

Limit of detection and quantification. 'The LoQ is the lowest possible concentration of an analyte that can be
quantified by the method with precision and confidence. The LoD is the lowest concentration at which the
method can detect. Thus, LoQ defines the limits associated to a 95% probability of obtaining correct value. Their
determination is important as they define the sensitivity of the analytical method used. Thus, using measure-
ments lower than the LoD or LoQ present higher probability of error. Compounds labeled “below LoD/LoQ”
may not be used in regression models as their effective solubility is not precisely known but are safe to be labeled
as “insoluble” in categorical models.

Dataset description. 'Thermodynamic solubility data sets gather these measurements and property prediction.
Over the years, the ensemble of data has continued to grow to now reach more than 20 libraries available online,
some of them containing more than 50,000 entries, Fig. 1. Depending on their source, experimental conditions
such as the temperature (T°C), pH, cosolvents and others may be reported. These metadata should also be taken
in account when refining data for modeling.

These libraries largely overlap, drawing a very complex network of relationships. Numerous modelers
have used the dataset of Huuskonen ef al.'® from 2000, which gathers entries from AquaSol'” and PhysProp'®.
AquaSol was published in 1990 by Yalkowsky et al., reporting almost 20,000 records for 6,000 compounds. By
that time, it was the most extensive compilation of thermodynamic solubility measurements for unionized com-
pounds. Before that, PhysProp, published in 1994 by Syracuse, was the first large set containing values for 1,297
organic compounds. The ESOL' library, was disclosed in 2004 by Delaney; it contains 2,874 measurements for
both ionized and unionized compounds.

As of now, these sets are still widely used and found in other libraries such as EPI Suite®’, Wang et al.’® from
2007, Wang et al.?! from 2009 and Kim et al. from 2020. Reporting recent measurements, their size ranges from
1,676 entries for Wang et al. from 2007, to 8,031 entries for EPI Suite. Fusion of datasets into ever growing super-
sets raises the problem of proper management of “duplicate” entries. If both merged sets independently include
the same experimental value taken from a same source, trivial duplication of the entry should be imperatively

20
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Fig. 1 Network of the reported thermodynamic aqueous solubility datasets. Supersets composed by merging
of previously available datasets are connected to the latter by directed edges, on which a hollow square
connector designs the superset. For example, Raevsky et al."** includes Schaper et al.'**, and is included in
both OChem2020, and AqSolDB2020. The node size defines the number of entries of the datasets. The node
color defines the age of the dataset, from dark blue (old) to white (recent). ECP stands for eChemPortal, and
ChemID + states ChemIDPlus.

avoided, when there is a risk of having one item in the training set and its identical in the validation set. This
concern EPI Suite 2009, ESOL 2004, OPERA 2018, Tetko et al.?* and Huuskonen ef al.'°. Moreover, it appears
that the actual types of solubility reported by the sets differ. Some, such as Wiki-pS0 of 2020 and Llinas et al. of
2008 only contain intrinsic solubility entries. Llinas et al.' of 2008 reports 105 measurements available online.
They were obtained using the CheqSol technique and used during the Solubility Challenge 2 (SC2). Wiki-pS0%*
is a private database of drug-like compounds owned by in-ADME research. As of 2009, Wiki-pS0 contained
6,355 entries for 3,014 unique compounds. Entries were obtained from CheqSol measurements, or through the
conversion of aqueous to intrinsic solubility using pDISOL-X.

However, other datasets like AqSolDB? and OChem? are undefined mixtures of intrinsic, apparent and
water solubility data. They now represent the largest thermodynamic solubility repositories freely available.
OChem is an online platform reporting properties measurements linked to scientific articles and offering a
modelling interface. As of September 2022, OChem “Water Solubility” (property = 46, in the OChem database
structure) dataset contains 51,602 entries for almost 15,000 compounds and different solubility types, labeled
as intrinsic solubilities. It also contains a dataset of “Water Solubility at pH” (property =363, in the OChem
database structure). The database aggregates entries from almost 150 sources, federating most of today’s meas-
urements. However, it remains rarely used by the community, with only three applications for aqueous solubility
data in 2021-2023, by Panapitiya et al.¥’, Wiercioch et al.?®, and Lowe ef al.”®. In comparison, AqSolDB which
was published in 2020 has already been used in 2021 by Francoeur et al.** and Sluga et al.*!, in 2022 by Meng et
al??and Lee et al., and in 2023 by Lowe et al.”’. AqSolDB is one of the largest publicly accessible set with 9,982
entries. It compiles nine open-source data sets. AqSolDB is known to have measurements of quality obtained
from liquid, solid, or crystallized substances. Due to their diversity in solubility types, conditions and measure-
ment techniques, these datasets require thorough curation to be used for modeling.

Yet, some sets remain poorly shared or used by the community. In particular, this concerns PubMed,
QikProp*, ChemIDplus*, Khune et al.* of 1995, eChemPortal*” and Wiki-pS0. eChemPortal provide free pub-
lic access to information on the properties of chemicals. Most of them are part of ECHA REACH®, within
which details about experimental conditions, protocol and substance composition can be found. ChemIDplus
is a database containing information from the Toxicology Data Network. It contains chemical records of drugs,
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pesticides, pollutants, and toxins. Although relatively vintage, these datasets are overlooked resources that con-
tain a wealth of experimental data.

Solubility prediction. ~Predictive approaches are either based on theorical equations or Machine Learning (ML)
methods, including Neural Networks (NN). The few approaches based on first principles are mainly applied to
estimate the solvation energy changes associated with a solute transitioning from its solid state to its solvated
state.

From a thermodynamic point of view, solubilization can be managed in one or two steps starting from a
solid material. It can either be by sublimation from solid to gas or by fusion from solid to liquid, followed with
an energy transfer to water. Hence, in 1965 Irmann* coupled the entropy of fusion (AS,,) to the melting point
(MP) through a group contribution approach to predict water solubility. Then, in 1968, Hansch et al.* found
that the water solubility of organic liquid compounds was linearly dependent to the octanol/water partition coef-
ficient (Log P, ,). Yalkowsky et al.*' combined these results in 1980 to develop the General Solubility Equation
(GSE) and estimate the base-10 logarithm of water solubility Log,,S,, using the MP and Log P, ,, - see Eq. (1).

Log, (S,,) = 0.5 —0.01 - (MP — 25) — LogP,,, (1)

The equation is restrained to solid nonelectrolytes, but it usually performs well (RMSE: 0.7-0.8log) when
employed with experimental values®. Here, an electrolyte is a chemical substance that produces mobile charges.
As most drugs are electrolytes, only few are covered by the GSE. Also, High Throughput Screening (HTS) does
not usually include the measurement of MP and Log P,,,, which are thus replaced by predicted values. Their
use can introduce major discrepancies in the estimation of thermodynamic solubility, not to mention that the
prediction of MP represents itself a challenge. Thus, the GSE is not practically useful for large-scale predictions.

20 years of solubility modelling.  Most of today’s models are Quantitative Structure Property Relationship
(QSPR). These methods seek to find a mathematical function expressed as Y = f(X) where X defines a set of N
molecular descriptors [D,, D,, ..., Dy] to correlate to the response value Y. Of course, the inner representation of
a chemical graph by a GNN (Graph Neural Network) is no different. In our case, this Y value is the base-10loga-
rithm of the molar measurement of thermodynamic solubility, expressed as Log,,(S).

Machine learning methods are mainly used to develop regression models leveraged on the compound’s topo-
logical, electronic, structural 2D/3D features, and molecular fragment counts. Models are then optimized using
many ML methods to best fit the descriptors set. Recently, feature-based NN, graph-based NN (GNN) and
structural attention methods have been used to develop powerful solubility predictive models. Tables 1 to 3
report a representative but not exhaustive list of aqueous solubility models developed over the last 20 years. It
aims to highlight significant trends and achievements in this area. While the table includes models using diverse
methods, caution is advised regarding overly optimistic performances. Depending on the data and approach
employed, three periods can be distinguished. Prior to 2008, models were trained on vast datasets such as
AquaSol, PhysProp and their aggregation, Huuskonen et al.'® (Table 1). Few methods (ANN, SVM, MLR and
theorical equations) were applied as the most decisive parameter of one’s ML model performance was the size
and diversity of its training set. From them, two lessons can be shared:

+ The relationship between solubility and the classical descriptors used here tends to be largely non-linear.
Therefore, in this context, ANNs clearly outperformed linear regression.

«+  The prediction performances are limited by the quality of the experimental data. It is usually measured using
the Inter-laboratory Standard Deviation (SDi) - Eq. (2). It is considered as a lower limit for theoretical predic-
tion accuracy, and it was pointed out that the SDi can reach up to 1.0 log unit.

(2)

The SDi depends of the average value ¥ of the n replicated measures, x;.

Few attempts were also made to predict" the infrinsic solubility using the HH equation. An ANN was trained
on PhysProp to obtain the predicted aqueous solubility. Acidity and basicity constants (pK, and pK,) required
by HH were estimated by pKaPlugIn from ChemAxon*.. The HH equation depends on the ionization state of the
compounds and can thus be used by Hansen’s combined model to compute the intrinsic solubility (Log (S,)) as
a function of pH - see Eq. (3).

Log(S,) = Log(Sy) + (1 + 10#1PKd 4 10®KempiD)y (3

In 2007, Johnson ef al.** renewed this approach by postulating an ansatz describing the intrinsic solubility as
a function of the pK,, pKy, pH and, crystal packing y . and degree of ionization F; - see Eq. (4). The influence
of the crystal lattice on the solubility were simulated [’;y amolecular dynamics simulation®.

Nacigs Npases
Y (pH—pKa)+ E (pKbj—pH) +1
J

Log (S,;;) = Log (Sy) + min|Log 10 7 4250 —x et

-pack

4
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Year | Refe Descrip Size Dataset Method RMSE | R2
1997 | Huuskonenetal®” | Electrotopological / Topological | 83 Litterature ANN - 0.84
0.67
MLR
0.87
2000 | Huuskonen et al.'¢ Structural 694 Khune et al. —
0.85
ANN —
0.84
MLR 0.81 0.85
Tetko et al.> Molconn-Z 1,291 Huuskonen et al.
ANN 0.66 0.9
2001 |Ranetal® Melting Point / cLogP 380 AquaSol GSE 0.76 -
Bruneau® 2D/3D/Charge/ Katrizky 2,233 Huuskonen et al. ANN 0.82 —
Liu et al® 2D Topological 1,312 | Huuskonen et al. ANN 0.71 —
Klamt et al.*® QM 257 QikProp dataset MLR 0.61 —
2002 | Engkvistet al® 1D/2D Descriptors 1,290 | Huuskonen et al. ANN — 0.95
Chenetal.”® Dipole, PSA, Vol MW. Rot. & | 35, Litterature MLR 0.86 | 0.71
H-acc/don and D
Wegner & Zell** 2D Topological 1,290 | Huuskonen et al. ANN 0.54 —
AquaSol, PhysProp,
Cheng & Merz* Cerius 2,440 | Merck Index, PDR, MLR-GA 1.01 —
2003 emMe
MLR 0.89
Yan & Gasteiger™ PETRA 1,293 | Huuskonen et al. —
ANN 0.94
Lind & Maltseva® Electrostatic, QM &topological | 1,296 | Huuskonen et al. SVM 0.68 0.89
Yanet al.”? PETRA 2,084 | Huuskonen et al. ANN — 0.94
Hou et al.”® 2D Topological 1,299 | Huuskonen et al. MLR — 0.9
Frohlich et al”® MOE & JOElib 1,297 Huuskonen et al. SVM — 0.9
2004 4,115 | Aquasol, Physprop, MLR &PLS 084
Votano et al.'® Fragments & Counts PDR, Taskinen, Tetko, | ANN — 0.84
1sa0 | Lobel ANN 0.86
John S. Delaney® | cLogP, MW & Count 2874 | Abraham, Pesticide | ooy - 055
anual, Syngenta
Matthew Clark!®! 2D descriptors 3,724 | PhysProp PLS — 0.84
2005 PLS
Catana et al "™ MOE, E-state & ISIS key L7 | Pfiserproprictary & - 'Non LincarPLS | 0.48 | 094
NN
Hansen et al.*® MOE 2D/3D 4,569 | PhysProp ANN 0.97 0.94
2006 GSE 0.92 0.73
Wassvik et al.'”* Tmi LogP, Sm, Hm & 428 Astrazeneca
Molconn-Z Mod. GSE 073 [078
. Delaney et al.,
Wang et al. 3D Topological, cLogB MW |} 476 | Hyuskonen efal,, Hou | MLR 074 |09
& Count etal
2007 | Johnson et al VOLSURF 362 Literature MLR & HH 0.61 0.88
1,290 | Huuskonen et al. 0.55 0.93
Schwaighofer et al.'* | Dragon GP
eh ¢ 4597 | Huuskonenetal & 055|091

Table 1. Reported performances of the thermodynamic solubility models published from 1997 to 2007. ANN:
Artificial Neural Network ASE: Abraham Solvation Equation CNN: Convolutional Neural Network CPANN:
Count-Propagation Artificial Neural Network DNN: Deep Neural Network D-GIN: Directed GIN D-MPNN:
Directed-MPNN GIN: Graph Isomorphism Network GP: Gaussian Process GNN: Graph Neural Network GSE:
General Solubility Equation HH: Henderson-Hasselbalch equation KNN: Kernel Neural Network LS-SVM:
Least-Square Support Vector Machine MAT: Molecule Attention Transformer MK: Multi Kernel MLR: Multi
Linear Regression MLR-GA: Multi Linear Regression Genetic Algorithm MPNN: Message Passing Neural
Network NFP: Neural FingerPrint NL-PLS: Non-Linear Partial Least Square PLS: Partial Least Square RF:
Random Forest RM: Replacement Method SMILES: Simplified Molecule Input Line Entry System SNN: Shallow
Neural Network SR: Stepwise regression SVM: Support Vector Machine SVR: Support Vector Regression TE:
Theorical Equation UG-RNN: Undirected Graph Recurrent Neural Network CR: Contracted Ring LMO: Leave-
Many-Out LOO: Leave-One-Out

It should also be noted that:

«  Solubility is an equilibrium between solute-solvent interactions and crystal formation. Yalkowsky et al.*!
proposed to use the melting point in the GSE as an early attempt to integrate crystal lattice effects. As MP
depends on the polymorph, this approach is sensitive to polymorphism of solutes. So, the GSE requires either
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Year | Reference Descriptors Size | Dataset Method RMSE | R2
Cheung ef al.'”* MOE 110 Litterature MLR — 09
ANN 0.85
Duchowicz et al.'® Dragon 166 Merck Index RM — 0.85
Huuskonen et al®* DayLight 191 éﬂ:fgﬁﬁ?;;;i?np MLR — Jos
2008 | 11ghes et al. " cLopP & Tim 237 gﬂﬁ:;ﬂﬁ‘( o ﬁf Rytting efal. Z/\[FL; 103|063
Zhou et al.® ECFP 1,299 | Huuskonen et al. PLS 0.71 0.85
Husskonen ef al.** cLogP & Counts 365 AquaSol MLR — 0.87
Du-Cuny ef al.'® LogP, Fragments & Index 2,473 | Roche proprietary PLS 042 [0.84
Obrezanova et al.'® ATC, logP, Volume & MW 592 Syracuse GP 0.71 0.88
Wang et al.* ATC,Clogh, MW 474 | Delaneyetal. &Huuskonen |y 098|083
2009 MLR 095 |074
Hewittet al.** LogP, Tb & Dragon 104 SC1
ANN 1.51 0.79
Duchowicz & Castro'® | Dragon 145 Merck Index MLR 09 0.76
Ghafourian & Bozorgi''! | ACD-Labs & TSAR 3D 141 Rytting et al. SR 071 | —
Muratov et al.' 2D Simplex 290 Klampt et al. PLS — 0.81
Cao et al® Dragon 225 Llinas et al. & Merck Index SVR — 0.74
Jain & Yalkowsky"™* é‘f&g coefficients, Melting | g3 | Aquasol & EPA TE — Jom
Eric et al.'™, CODESSA 319 Rytting et al. MLR 0.96 0.66
2010 MLR 08 055
Louis at al'*® Marvin & Karselson 74 Bergstrom et al. & others ANN 074 {059
SVM 0.83 0.53
MLR 0.92 0.71
Fatemi et al.''® LFER from ADME Boxes 145 Duchowicz et al. LS-SVM 0.73 {085
ANN 0.75 0.72
) 0.51 0.62
o Chevillard ef al.** ?/5[[?)% ADMET predictor & 1,897 g(hg(s:E;mp, Huuskonen et al. RE 072 056
0.89 0.23
Slavica et al > CODESSA 374 Eric Slavica et al. CPANN 068 |—
UG-RNN 0.58 0.92
UG-RNN-CR | 0.79 0.86
Lusci et al ¥ 2D Graph 1,144 | Delaney et al. gl\CI;N+lngP 0.61 0.91
2013 ggfﬁgp 063 091
2D kernel 0.61 0.91
VOLSURE, CPSA, Energy
Salahinejad et al.'” lattice and Sublimation 4,376 | PhysProp MLR — 0.9
enthalpie
PLS 1.08 —
2014 | McDonagh et al.''® CDK 100 CSD RF 0.93
SVR 117

Table 2. Reported performances of the thermodynamic solubility models published from 2008 to 2014.

an experimental knowledge of the MP of the solutes or a precise knowledge of the polymorph. In both cases,
it may be easier to measure the solubility directly.

« Additionally, the solubility of a compound is highly dependent on its acid-base properties, particularly when
the solution pH is within 2log units of the compound’s pK,. Any errors in estimating pKa can lead to large
deviations in solubility values. Thus, it may be safer to rely on experimental determination for these proper-
ties rather than trying to estimate them in QSPR models.

The abundance of modeling approaches motivated Llinas et al.™ to organize in 2008 the Solubility Challenge
(SC1). Its goal was to correctly predict the intrinsic solubility from 32 compounds using a given training set of
100 compounds. The challenge data covered a wide and high range in measurements, from 0.5 to 3.0 log unit.
To predict it, participants used the full range of existing methods. Models performances highlighted difficulties
in the prediction of highly and poorly soluble compounds. Overall, only about one-third of the compounds
were correctly predicted by the best performing models, with the lower RMSE around 0.6 log*. SC1 sparked
debates on how to enhance the predictive methods as well as the quality of the measurements. It also triggered
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Year fi Descrip Size Dataset Method RMSE | R2
Kim et al.'® RDKIT 1,676 | Willighagen et al., Wang et al. & Delaney et al. Multi-kernel 0.61 0.91
2017 SVM L12
Coley et al.'>® Undirected 2D graph 1,144 Delaney et al. —
CNN 0.56
Goh et al* SMILES 1,128 ESOL DNN 0.63 —
2018 3DGCN (DNN) 0.66
1
Choetal™ 2D Graph &3D bond 270 | ESOL Weave (DNN) 078 | —
eatures
NFP (DNN) 0.79
2019 | Choetal ' Atoms features 270 ESOL GCN 0.63 —
DNN 1 0.78
SNN 1 0.73
Deng & Jia'* 2D Graph 1,128 | Delaney et al. RNN 0.97 0.72
CNN 1.05 0.73
ESOL 0.94 0.78
CDK DLS-100 MLP 0.99 0.71
Boobier et al. 100
— — HUMAN 0.94 072
MGCN 0.13 0.99
2,874 Delaney et al.
SchNet 0.1 0.99
2020 | Gaoetal'?* 3D Graph
MGCN 0.05 0.99
694 Huuskonen et al.
SchNet 0.05 0.99
Cui et al.>® Fingerprints 9,943 ChemIDplus, PubMed & Litterature ResNet CNN 0.68 0.41
GSE 117 0.6
Alex Avdeef* AbSolv and RDKIT 3,014 Wiki-pS0 ASE 1 0.71
RF 0.6 0.89
ANN 0.59 0.93
Sluga et al.** Dragon & MD topological | 9,982 AqSolDB
MLR 122 0.58
Falcon-Cano ef al.'”® | RDKit & Alvascience 9,982 AqSolDB RF 0.73 0.72
‘Wiercioch et al. 2 2D Graph 1,311 OChem GNN 0.59 —
Shen et al.*® 2D Graph 1,128 | ESOL CNN (MolMapNet) 0.58 -
ANN 0.97 0.42
_ GSE 112 0.22
Tosca et al 17 ChemGPS 270 Litterature
ANN 118 0.7
GSE 12 0.69
D-GIN 0.8
D-MPNN 0.86
GIN 1.09
Wieder et al.'** 2D Graph 5216 | Delaney et al. —
RF 076
SVM 0.73
KNN 1.06
Chen & Tseng'” SMILES 1,128 | Delaney CNN 0.56 0.96
MDM 1.05 0.77
2021 - 150 Mordred, ED Features, . GNN L07 0.76
oy Panapitiya et al. Rdkit & NWChem 17,149 | Gaoetal. & Cuietal. SMILES 14 073
2023
SCHNET 123 0.69
Francoeur et al 2D Graph 9,893 AqSolDB MAT 171 0.68
M = 2D Graph L2810 |\ 0 1aSol, PhysProp, ESOL, OChem & AqSolDB ChemProp 052 |—
eng et al.”* Tay . uaSol, PhysProp, » em 0
s P 30099 | 2 yeiop 4 AttentiveFP 0.59
MDM 1.05 0.77
GNN 107 0.76
Panapitiya et al.*” BD G',aph’ SE?D 11,868 | Gaoetal
escriptors & Fragments SMILES 114 0.73
SCHNET 123 0.69
BCSA
GCN
Houetal."*! SMILES 9,943 Cuietal. 0.8 0.88
AttentiveFP
MPNN
Leeet al ™ 2D-Graph & Molecular FP | 12,849 | AqSolDB, ONSC, AAT & BNNLap LightGBM 0.96 0.8
ADDOoPT, AqSolDB, Bradley, eChemPortal AP1,
»
Lowe et al PabEL 8037 | LookChem, OChem, OPERA, PubChem, QSARDB RE 097|082

Table 3. Reported performances of the thermodynamic solubility models published from 2015 to 2023.
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the development of numerous models by the community, for which estimating the quality of the data took prec-
edence over enhancing accuracy.

These methods employed novel neural network architectures (Table 2). For instance, Lusci et al.*” intro-
duced in 2013 a method based on Undirected Graphs (UG). Their approach was applied with a 10-fold internal
Cross-Validation (CV) to ESOL, Llinas ef al. 2008, and Huuskonen et al.'® and reached a low RMSE of 0.58 log,.
Number of other approaches were introduced during this period: MLR by Huuskonen et al.*8 in 2008, PLS by
Zhou et al.*’ in 2008, MLR by Wang ef al.! in 2009 and CPANN by Eric et al.¥ in 2012.

This raise of powerful machine-learning methods available motivated Llinas and Avdeef®! to organize a sec-
ond Solubility Challenge (SC2) in 2019. This time, they invited participants to apply their own models to 2 data-
sets. Set 1 consisted of 100 druglike compounds with an average SDi of 0.17 log. Set 2 contained 32 molecules
with an average SDi of 0.62 log. Participants were asked to use their own training set. No significant improve-
ments were found compared to the SC1°2, Every method worked equally well and achieved a minimal RMSE of
0‘70 10 14,51,53.

Thegcurrent period is marked by a trend of deep learning architecture and molecular embedding inputs
emerged (Table 3). In 2018, Goh et al.** introduced SMILE2vec, the first interpretable DNN to use SMILES for
chemical property prediction. The developed NN was inspired by Word2Vec, a DL technique commonly used in
NLP research. By comparing the performance of different Bayesian optimization techniques for hyperparameter
tuning on the ESOL dataset, they were able to identify the most effective architecture, CNN-GRU. Applied to
ESOL validation set, their model achieved a RMSE of 0.63log and demonstrated interpretability by highlighting
chemical functions, using a residual NN as a mask to identify important characters from the input. Their model
accuracy outperformed feature-based methods.

A similar approach was conducted by Cui et al.*® in 2020 by adapting the well-known ResNet to accept
PubChem fingerprints as input. They constructed N-layers (N = 14, 20, or 26) CNN models based on the
architecture of ResNet. Models were evaluated with a 10-fold CV on 9,943 compounds from ChemIDplus and
PubMed. They achieved a RMSE of 0.68 log, highlighting the advantage of going deeper. However, this is in
contradiction with Francoeur et al.* results from 2021, concluding that smaller networks performed better.

In their study, Francoeur et al. optimized a Molecular Attention Transformer (MAT) to predict aqueous
solubility from SMILES representation, called SolTranNet. Their method is based on the MAT architecture
developed by Maziarka et al.”® MAT functions by applying self-attention to a molecular graph where each node
is defined as a feature vector. Vectors are then combined with the adjacency matrix before being fed to the NN
layers. The MAT hyperparameters were optimized by minimizing the RMSE of an AqSolDB subset. To validate
their model, SolTranNet was applied to three different test sets: the SC2 test set, Cui ef al. 2020 dataset, and
Boobier ef al.?2 2017 dataset, resulting in RMSE values of 1.295, 0.813 and 0.8451log, respectively. Sol TranNet has
comparable performance to current ML models. However, Francoeur et al.¥ points out that the small size of the
community test sets limits the conclusions to be drawn from their reported performances. Even when trained
over large sets, models may not be generalizable to other datasets, especially those from specific domains, such
as compounds of pharmaceutical interest, as also mentioned in Lovri¢ et al.”.

We hypothesized that the performances published might be optimistic, because of: (i) inaccurate delimitation
or failure from the applicability domain, if defined, and (ii) lack of independent external validation sets. Yet, cau-
tion is warranted when comparing model efficacy across studies, given the significant variability in test sets and
methodologies. As of now, numerous models are still published without validation on completely independent
sets. Different validation strategies, such as internal and external, can be distinguished, varying in levels of rigor.
Internal validation makes use of the same data from which the model was fitted. External validation requires an
independent dataset to correctly assess the model’s reproducibility and generalizability, and thus application to
other chemical spaces (CS). However, it's a common misconception that splitting a dataset into a training and
a validation set (random split or k-fold CV) is sufficient, especially with GNN where data leakage can happen.
Data leakage occurs when information from the test set is used in the training process, which can lead to biased
performance assessment of the model. In CV, the test sets are independent to some extent*® but the training set
largely overlap. In the case of GNN, this can happen if the GNN has seen test set chemical structures during the
pre-training process. This problem has been discussed in various studies, offering alternative validation tech-
niques as potential solutions®. Despite these criticisms, the efficacy of cross-validation remains undiscussed, as
empirically demonstrated in works by Breiman & Spector® and further supported theoretically by Vapnik®!. The
importance of the test set size, coverage and quality is supported by Francoeur et al.*. Ideally, this set should be
meaningful and be excluded from the model training to ensure realistic performances. For instance, Cui et al.
in 2020 validated their DNN models on two small test sets of 62, and 5 compounds, obtaining RMSE of 0.681
and 0.689 LogS unit, respectively. These test sets are arguably small, but the former was aggregated from recent
literature while the second was composed of new in-house data. In this publication, models’ performances were
also compared to human expert performances. This contrasted with previously reported results in Boobier et al.
in 2017. In this study, models were trained and tested on 100 compounds from the DLS-100 dataset which
regroup S entries, mostly from Llinas et al. 2008 and Rytting ef al.%%. Data were used following a train/test split
of 75/25 compounds. As a result, humans performed equally as ML models with a RMSE of 1.087 for the former
against 1.1401log for the later.

Results

Data. For this study, we used two public thermodynamic solubility datasets: AqSolDBc (our clean version of
AgSolDB) and OChem. Our intent was to externally validate models trained on AqSolDBc by testing them over
public data. Datasets are resumed in the Table 4.

SCIENTIFICDATA|  (2024) 11:303 | https://doi.org/10.1038/s41597-024-03105-6 8



CHAPTER 4. MODELING OF SOLUBILITY 78

www.nature.com/scientificdata/

Datasets Size

AqSolDBc 8,047
OChem 7,463
Shared with AgSolDBc 5212
Specific to OChem 2,251

Table 4. List of datasets and their sizes used for building and validating models. AqSolDBc is a clean version of
AqSolDB and OChem is a public dataset.

Chemical space maps. The distribution of the CS over the map is shown in Fig. 2 and Fig. 3. The dense
population at its center correspond to small and diverse compounds. The solubility landscape displays multiple
gradients from high to poor thermodynamic solubility. The distinct chemical sets were represented on the map as
class landscapes, to help comprehend how they position to one another in CS (Fig. 4). The set specific to OChem
fills vacant regions of AqSolDBc CS.

External validation. Public models were validated using public data from OChem. Priority was given to
NN and models trained on AqSolDB. The validation process also involved testing the GSE (described above). We
additionally trained Random Forest (RF) and MPNN (ChemProp®?) models on AqSolDBc.

Public data. To confirm the difficulty of predicting test chemical spaces uncovered by our training set, the
best performing models were applied to OChem data. We report in Fig. 5 the MSE performances over the set spe-
cific to OChem, which range from 1.74 to 2.17 log. AqSolPred shows the best performance on the two sets with
an MSE of 1.74log and R* of 0.56. ChemProp presents a close MSE of 1.84log.

Applicability domain. The AD of a predictive model is a theoretical region of the CS covered by the model
features. It delineates a region of the CS based on the similarity to the training set. Predictions on compounds in
AD are considered reliable whereas out of AD they are considered uncertain. Still, few thermodynamic solubility
models are delivered with an AD: Hewitt et al.>*, Chevillard et al.**, Cao et al.®® and Lusci et al. 2013.

Application of an Isolation Forest based AD are resumed for RF models with MOE2D descriptors are illus-
trated in Fig. 6. Comparable behavior is obtained using other ML approaches. The general trend is a decrease of
the RMSE as the AD coverage get more restrictive - decreasing test set coverage - with the increase of the con-
tamination value. At some point, the test set coverage reduces too much, and the validation becomes unstable.
This effect is visible on OChem data.

Effect of the cleaning procedure from AqSolDB to AqSolDBc.  To assess the impact of the cleaning
procedure, several models were built on both AqSolDB and AqSolDBc datasets to observe the difference. RF
models were constructed using MOE2D (n =203) and ISIDA® (8 sets, n =284 to 22,880) descriptors. Data were
split into 10 folds. For RE nine folds were used as the training set, and one as the test set. The test set was kept
consistent for all models to ensure a fair comparison. Additionally, MPNN (ChemProp) models were trained. For
MPNN, eight folds were used as the training set, one as the validation set, and one as the test set. The GSE was
also applied. The RMSE of MPNN, GSE, and RF are reported in Table 5. Performances over AqSolDBc should be
compared to those of AqSolDB. Overall, the curation of AqSolDB resulted in a systematic improvement of the
RMSE by ~0.10log, supporting the proposed curation procedure, despite the reduced absolute training set size
due to curation.

Discussion

Recommendations for the curation of solubility data. Based on this analysis, we propose a decision
tree for the curation of thermodynamic solubility data (Fig. 13). It starts by a verification of the chemical struc-
ture. This can be verified using the CAS number and checking a structural database.

The next step concerns the experimental protocol and its resulting SDi — when replica measurements are
available. A crucial point to look at is the confidence of the measure. Values obtained below LOD/LOQ are sub-
ject to uncertainties and should not be used when developing regression models. One other source of variability
is the substance purity as the components in solution greatly affect the measured value.

To avoid backlash, the training set should be restrained to mono-constituent substances measured at room
temperature and neutral pH.

The last point revolves around the compound stability and hydrophobicity. The OECD guideline 105 recom-
mends a water solubility cut-off of 10 mg/L for the shake-flask. Below that the column elution or slow stir should
be applied, depending on the substance state, stability, and volatility. An initial idea of the method is formulated
in the well-documented reviews presented by Ferguson et al.*” in 2009, and Birch Heidi ef al. in 2019%¢, These
authors introduced additional rules depending on the compound’s expected stability. Since shake-flask and col-
umn elution take few hours to days to equilibrate, the half-life cut-offis set to 24 hours. Meanwhile, the cut-offis
set to 7 days for the slow-stir method as it may require weeks to equilibrate.

External validation. Since 2017, thermodynamic solubility prediction has become a sandbox for the appli-
cation of cutting-edge NN. These models present RMSE ranging from 0.35 to 1.71 log unit. Displaying good
internal validation statistics may be misleading for drug designers seeking the best model. As mentioned earlier,
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Fig. 2 GTM density landscape of the chemical space jointly covered by AqSolDBc and OChem. White spaces
are unpopulated areas. Colors represent the number of molecules per nodes, from blue (low) to red (high).

these models often lack extensive external validation, and thus their performance should be considered with
skepticism, particularly when applied to New Chemical Entities.

Publicdata. To confirm the difficulty of predicting test chemical spaces uncovered by our training set, the
best performing models were applied to OChem data. The relevance of previously performed external validation
may be questioned. For instance, evaluating performances using sets too small, internal, or distant from a target
application (i.e. pharmaceutical data) may be an issue. Validation sets, which are meant to evaluate models in the
context of their specific characteristics, should be carefully chosen based on their composition, diversity, size,
and quality. It is important to note that each external test set presents its own challenges due to its peculiarities
(size, diversity, predominance of various chemotypes, etc.), and past success on external validation does not
guarantee future performance on different test sets. Moreover, Neural Network architectures do not display any
breakthrough performances. As hypothesized previously, certain prediction errors may be avoided by using an
Applicability Domain (AD) with published models.

Inter-laboratory standard deviation.  The other possible source of prediction error could be the presence
of poorly reproducible or variable training data. If the thermodynamic solubility is not known with sufficient
accuracy or exhibits significant variability, it can introduce uncertainty into the models and distort their assess-
ment. We analyzed the SDi of the OChem sets and the Median Average Error (MAE) of the set specific to OChem.
The MAE is the median of the absolute difference between predictions and measurements for a given compound.
Here we discuss MAE using results from a 10-fold cross-validation of ChemProp on OChem data, as a represent-
ative example model.

As OChem comprises datasets from various sources, the independent quality of each source can be inves-
tigated. To do so, the distributions of the SDi are confronted to the source of their entries (Fig. 8). The X-axis
defines the source datasets found in OChem. To better highlight the quality of AqSolDBc, the set specific to
OChem and shared with AqSolDBc are displayed as separated boxes. It is important to note that errors could
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Fig. 3 GTM landscape of the thermodynamic solubility from AqSolDBc and OChem datasets. Colors represent
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be attributable to a range of factors such as measuring the solubility of the wrong compound, different solution
compositions, and typos in recorded numbers or units. Furthermore, care must be taken when combining data
from different temperatures or techniques to minimize the introduction of errors.

Overall, the compounds specific to OChem exhibit high SDi and MAE, which appear to be correlated. This
suggests that the difficulties in predicting properties of compounds specific to OChem could stem from its
relatively poorer data quality. The boxplots for SDi also show qualitative agreement. It should be noted that
most compounds are well predicted, but the portion of the dataset with the highest SDi accounts for most of the
reported error.

To summarize, these results illustrate that a decrease in measurement reliability negatively impacts the qual-
ity of models and validation.

Impact of the data characteristics. The MAE (Median Absolute Error) was computed using the results
of the 10-fold CV from all RF and MPNN models (Fig. 7) on the AqSolDBc dataset. Models trained on the
AgSolDBc are overall more predictive in the high and low solubility ranges compared to those trained on
AgSolDB. For compounds with thermodynamic solubility ranging from -4.0 to 0.0 log, the MAE remains below
1.0log. It also tends to rise the further one strays from this range.

We investigated the influence of the ionization state of the principal microspecies at pH 7.0 on the error of
prediction. The Charge Ratio (CR), which is the sum of charges divided by the number of charges was used to
assign compounds to subsets:

«  Non-Electrolytes
o Uncharged: CR=0

o Electrolytes
e Zwitterion
« Positive: CR= +1
« Negative: CR=—1

Figure 9 presents the Regression Error Characteristic (REC) curves for each of these subsets obtained from
the results of the 10-fold CV. They display the error tolerance expressed as MAE on the X-axis against the per-
centage of points predicted within the tolerance. An ideal model should be represented by a REC reaching the
top left corner of the plot. It should be noted that the presence of microspecies in solution can affect the meas-
urement, resulting in a slight difference in solubility value. Here, the defined subsets are used to highlight which
compounds may be prone to these variabilities and thus give larger predictive errors. From these plots, zwitteri-
ons appear easier to predict than positively and negatively charged species. Finally, the most difficult targets are
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Fig. 4 Classlandscape of the test sets versus the training set, AqSolDBc. The color represents the proportion
of compounds from each dataset. Blue regions are populated with structures from AqSolDBc. White spaces are
unpopulated areas and red spaces are from compounds specific to OChem datasets.

uncharged species. This is probably due to the fact that most poorly soluble species are actually uncharged, and
some neutral species may be incorrectly identified as uncharged by the machine learner for rare groups.

Since AqSolDB and AqSolDBc are aggregations of public datasets, it was also possible to study the influence
of data sources on the measured performances of the models (Fig. 10). The Huuskonen dataset is certainly the
easiest data collection to predict. The largest errors are observed on the Raevsky, EPI Suite 2020 and, mostly
eChemPortal 2020 datasets. The eChemPortal provides a lot of input data to AqSolDB, but it appears that they
might be a large source of erroneous entries. Therefore, the eChemPortal dataset requires a closer look which is
out of the scope of this study.

Hard-to-predict compounds.  Finally, the information concerning the 20 hardest-to-predict compounds
(having the largest MAE) from AqSolDBc are reported in Table 6 and Fig. 11. Most of them are hydrophobic
compounds from eChemPortal and measured using the shake-flask method. However, the OECD 105 advises to
use the column elution with poorly soluble molecules. The usual lack of confidence over poorly soluble substance
can be partially explained by the non-respect of the OECD.

Interpretation of the model. To evaluate the contribution of each atom into the modelled solubility, we
employed ColorAtom®. This interface employed our RF model based on ISIDA fragment descriptors to pro-
duce chemical structures where each atom bears an atomic contribution of the value calculated by the model. The
20 hardest-to-predict compounds were passed on ColorAtom. Their colored structures are reported Fig. 12. As
expected, the polar parts of the molecules are usually colored in blue (high solubilization) whereas aromatic and
aliphatic moieties are in red (poor solubilization).

Key results. In our study, we conducted an extensive analysis of thermodynamic solubility using two datasets:
AqSolDBc and OChem. Our findings underscored the complexities and challenges of solubility prediction, but
also highlighted potential strategies for improvement.

The mapping of chemical space revealed a diverse range of the solubility subspaces, highlighting the value of
using diverse and complementary datasets. Despite the diversity of data, external validation revealed that all mod-
els struggled. This finding underscored the importance of model refinement and the need to consider the applica-
bility domain when applying models to novel data. Moreover, the curation of AqSolDB into AqSolDBc significantly
improved the RMSE, showing that data cleaning procedures can substantially enhance prediction accuracy.
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Fig. 5 Predicted thermodynamic solubility against experimental solubility for the set specific to OChem. The
red line represents a - 1.0log interval. The hexbins represent the density of points in the plot.

Our study also revealed that inter-laboratory variability and the source of data can significantly influence
model performance. This highlights the importance of measurement reliability and stringent data validation
procedures, raising questions about the quality of datasets like eChemPortal.

Our study corroborates the findings of Lowe et al.”’, emphasizing the complexity and challenges in solubil-
ity prediction across diverse chemical spaces. We found that RF models provide a balanced and interpretable
framework. The model’s interpretation underscored the essential role of fragment-based modeling approaches in
elucidating the underlying mechanisms of the predictions. These insights underline the importance of the appli-
cation of OECD® principles for enhancing predictive accuracy and interpretability. Additionally, we investigated
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Fig. 6 Performance of the RF model (MOE2D) using the IsolationForest Applicability Domain. Performances
were computed for each increment of the contamination parameter, from 0.0 to 0.99. Normalized RMSE is the
external validation RMSE at contamination X divided by the RMSE at contamination zero.

RF RF MPNN
Dataset MOE2D ISIDA | ChemProp GSE (Eq. 1)
AqSolDBc 0.78 0.91 0.79 1.86
AqSolDB 0.86 0.99 0.89 2.05

Table 5. Root-Mean Squared Error (RMSE) of the RE, MPNN and GSE through 10-fold CV on AgSolDBc &
AgSolDB. Colors are ranged from green (low RMSE) to red (high RMSE).

the 20 hardest- to-predict compounds, most of which were hydrophobic and measured using unsuitable meth-
ods. This underscored the need of carefully selecting entries based on their experimental procedure, to which we
answered by delivering a decision tree for the curation of solubility data.

Overall, our findings indicate that while advancements have been made in the field of solubility prediction,
challenges remain. These insights offer valuable guidance for future research and model refinement.

Summary. Published solubility models often display attractive performances. However, these same models
very often fail in prospective predictions. This work aimed at clarifying the reasons for these repeated failures.

First, we compiled a comprehensive list of solubility datasets and highlighted their interconnections. It
appears that some data sources are overlooked and others frequently aggregated.

Second, we observed that the use of sophisticated neural network architectures did not lead to any break-
through, although major scientific discussions were triggered by both solubility challenges 1 and 2.

Third, when applied to an external public dataset, all models performed poorly. This is probably due to an
applicability domain issue.

Fourth, we conducted a thorough reevaluation of the popular AgSolDB dataset to address potential incon-
sistencies and improve its quality. Our analysis led to the creation of a new version of the dataset, which exhib-
its improved internal consistency by ensuring that the data points are more reliable and better adhere to the
principles of solubility prediction. This revised dataset allows for a more accurate assessment of factors that
impact the performance of solubility prediction models, ultimately leading to better model development and
evaluation. This allowed us to observe the influence of factors impacting the performances of the models: the
laboratory standard deviation, the ionic state of the solute, and the source of the solubility data. It appears that
the eChemPortal probably contains some corrupted data and requires careful data cleaning.

Lastly, we provide a thoroughly curated version of AqSolDB called AqSolDBc, obtained followinga decision
tree based on experimental conditions. With these rules, we hope to offer a correct way to curate aqueous solu-
bility data. This set was used to train RF and MPNN models for solubility prediction and IsolationForest mod-
els for Applicability Domain. Models trained on public data, applied during this project are publicly available
(https://chematlas.chimie.unistra.fr/ WebTools/predictor_solubility.php).
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Fig. 8 Boxplots of the experimental standard deviation (SDi) of compounds in the OChem database. Data
shared with AqSolDB (blue) are also present in AqSolDBc, and data specific to O Chem (red) are absent from
AgSolDBc. Boxplots are restrained to SDi > 0.01log.

Methods

Data curation.  For these approaches to produce accurate predictions over a vast CS, a high quality and diver-
sified training set is a must. However, preserving accurate measurements necessitates accounting for experimental
variability, often evaluated with the SDi. Experimental thermodynamic solubility data can have inaccuracies up to
1.5log, according to John C. Dearden”. Additionally, Llinas ef al. reported that measurements between laborato-
ries may vary by 0.5 to 0.6log. Poor reproducibility can be the consequence of unintentional mistakes brought on
by combining entries with heterogenous conditions, or of poor quality>.
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Fig. 10 REC curve of each of the 9 AqSolDB data source. The y-axis is the proportion of AqSolDBc predicted
better than a threshold MAE value on the x-axis; MAE from the 10-fold CV computed over all models for
AqSolDBc.

In the following, we propose a guideline for the improvement of thermodynamic solubility data set qual-
ity, which we applied to AqSelDB. This dataset, aggregated by Sorkun et al.?* in 2020, was chosen for its size,
diversity, and well referenced entries. To curate AqSolDB and obtain an experimentally homogenous library,
we followed the flowchart illustrated in Fig. 13. Chemaxon’s JChem™ software was employed for structural
database standardization. In case of ambiguities, chemical structures were verified in ChemSpider” to benefit
from its crowd sourced annotations. When possible, these structures were also searched in the CSD where the
values of bond lengths, angles and torsions help to disambiguate the nature of chemical functions. CAS numbers
were verified using SciFinder’ before using them to retrieve manually described experimental conditions from
eChemPortal”, EPI Suite?’, and PubChem’® if available. Overall, 608 entries containing partial records on start
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and final pH, measurement limitation, composition, origin, stability, or cosolvents were reported (Fig. 14). The
forementioned experimental conditions and their importance to modelers are discussed.

PH sensitive species.  'The thermodynamic solubility of ionizable compounds strongly depends on the pH and
the presence of buffer or ions. These factors can influence the microspecies equilibrium by interacting with the
solute. For instance, the counter-ion effect can increase, or decrease this solubility. Therefore, several control
steps are recommended:

+  Verifying the validity of the reported salt structure using its CAS number. This is manageable using the Sci-
Finder” database and verifying when possible, in the Cambridge Structural Database’” (CSD).

«  Selecting measurements without buffer, added acids/bases, cosolvents and surfactants.

« Restraining the data to entries reportinga final pH=74 1.

Ionized compounds obtained through standardization should correspond to the major microspecies in solu-
tion. The microspecies distributions have been obtained using ChemAxon pKa Plugin*. Compounds present-
ing too many microspecies (more than 4) and those with uncertain major microspecies at pH 7.0 have been
excluded, because we could not decide which structure to use for modeling.

Overall, 399 entries from AqSolDB obtained in the presence of buffer, cosolvent, or undesirable pH were
excluded. Five entries were also deemed uncertain for having ionized structures different from the major
microspecies or poor microspecies distribution.

Substance composition. Water solubility is a property of pure compounds. However, it is sometimes reported
for substances. Pure compounds solubilities cannot be considered together with complex substances solubilities.
The European Chemical Agency® describes three types of substance:

«  UVCB (Unknown or Variable composition, Complex reaction productions or biological materials), contain
several chemicals without a complete understanding of their identity. Their composition is variable and often
unknown. They usually originate from industrial processes or biological extracts.

«  Multi-constituent, account for a mix of known chemicals and impurities. Reported ingredients should repre-
sent 10% to 80% of the substance.

«  Mono-constituent refers to a solute that only contains one major component with up to 20% impurity. How-
ever, this level of purity is still high and can have a significant impact on solubility, bioactivity, and other
important factors. It should be noted that such a high level of impurities can negatively affect the results and
should be taken into consideration during their interpretation.

Ninety-nine entries from AqSolDB were found and eliminated for being UVCB, or multi-constituent sub-
stances (Fig. 14).

Unstable species. Chemical stability is related to the degradation processes. In solution, the compound
can be subject to hydrolysis, hydration (R-(C=0)-R — R-C(OH),-R’), photolysis, oxidation, biodegradation, and
polymerization. These are generally dependent on the pH and temperature. The hydrolysis represents the most
difficult ones to avoid during experimentation. Solubility test systems can limit photolysis by using amber glass
bottles, aluminum or be done in the dark. Oxidation can be limited by working under anaerobic conditions,
through nitrogen or argon flushing or by limiting the air headspace. Chemicals for which hydrolysis rapidly
occur should be excluded to avoid measurements altered by reaction products. Care should be taken with com-
pounds containing reactive functional groups such as mono- and poly- halogenated aliphatic (alkyl halides),
epoxides, organophosphorus esters, carboxylic acid esters, carbamates, nitriles, organometallic, and peroxides.
The Degradation Time (DT50) can be used to investigate the compounds stability. The DT50 is the period after
which half of the original amount of chemical is degraded. Hydrophilic compounds with a DT50 lower than
24hours and hydrophobic with a DT50 lower than 7 days should be discarded*®. We identified 52 such entries in
AqSolDB. Reversible reactions with water, such as hydration of activated aldehydes or internal hemiacetal for-
mation in sugars are not de facto signaling compound instability but are sources of prediction error because the
actual “solute” structures differ from the input standard form of the molecule.

Other errors.  We identified 17 suspicious entries in AqSolDB resulted from either averaging measurement of
similar chemicals or predictions with ML methods. In our opinion, such values should not be used for model
building. Lastly, the experimental procedure may be biased. For example, two entries were discarded because the
calibration of instruments was performed under different conditions than used to run the test samples.

Duplicate measurements. A common outcome of datasets aggregation is the occurrence of duplicated meas-
urements. Managing them is a chance to investigate uncertainties. However, it is desirable to maintain one value
per structure, preferably the median. This only make sense when reported values are relatively close. When there
are only two very different values, or there are two or three clusters of different values associated to compounds
with the same InChI Key, the median or average value becomes meaningless. Such cases are filtered out by a
SDi > 0.5log threshold.

The result of this process to the AqSolDB is labeled AqSolDBc in the following.
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D CAS LogS | Remark Method
A-5961 |40530-60-7 | =9.22 [N.C Flask

A-2317 | 1229-55-6 —8.93 | Valid N.§

A-5817 |65059-45-2 | —8.27 [N.C Flask

A-5546 | CID:83010 | -7.74 [N.C N.S

A-2282 | 520-27-4 —7.51 | Valid Flask

A-5104 |131-53-3 —7.27 | Valid Flask

A-5996 | 72102-84-2 | —6.49 | Below LOD Flask

A-2783 | 10043-11-5 | —6.39 | Valid N.S

A-2664 |18230-61-0 | —6.25 [N.C N.§

A-2162 | 15305-07-4 | —6.19 | Valid Column elution
A-2035 | 14324-55-1 | —5.53 | Unstable Column elution
A-5480 | 1324-35-2 —445 |NC Flask

A-3034 | 10010-67-0 | —2.75 | Self-buffering | N.S

A-2955 | 26339-90-2 | —1.10 | Valid N.§

A-5444 | 78181-99-4 | —0.80 | Unstable N.S

A-5410 | 70900-27-5 | —0.44 | Valid Flask

A-5225 |121-54-0 0.07 Valid Flask

A-1890 |15332-99-7 | 0.65 Unstable QSAR

A-2918 | 63500-71-0 |2.14 N.C N.S

Table 6. Information concerning the experimental conditions of the 20 hardest-to-predict compounds

from AqSolDBc. The 20 hardest-to-predict compounds display the highest MAE over all models. Remarks
accounting for non-valid conditions to our guidelines are specified. The first letter of the ID corresponds to the
source of the entry (see Fig. 10). N.C: Non-Conclusive, N.S: Not Specified.

Test Set Curation. Based on the number of entries, OChem represents the largest thermodynamic solubil-
ity repository. More than half of them are from AqSolDB, EPI Suite, VEGA”, TEST” and OPERA®. Following
standardization, 7,463 unique structures remained, with values ranging from -13.17 to 1.70log units. Out of
these, 70% are found to overlap with AqSolDBc. To assess the model’s performance on both overlapping and
unique compounds from the OChem dataset, it was divided into two subsets: a set shared with AqSolDBc con-
taining 5,212 compounds and a set specific to OChem with 2,251 compounds, which were harder to predict.

Chemical space maps. The various compound sets were compared using Generative Topographic Mapping
(GTM). The GTM method inserts a manifold into a N-dimensional molecular descriptor space populated by a set
of representative chemical structures. By shifting the centers of Radial Basis Functions, the technique maximizes
the log likelihood (LLh) while fitting the manifold to data. Subsequently, the data points are projected onto the
manifold before unbending it. A vector of normalized probabilities (responsibilities), computed on the nodes of
a grid over the manifold, is used to represent each compound in the latent space. The complete data set can there-
fore be described as a vector of cumulative responsibilities which is figured as a map and termed as a landscape.

Here, a combined dataset composed of 4,463 unique structures was created from AqSolDBc and OChem.
ISIDA descriptors were employed for GTM training, as previous studies demonstrated their comprehensive
coverage of the relevant chemical space and their ability to effectively represent molecular structures®'. The
descriptor space includes descriptors related to aromaticity as well as ISIDA counts of sequences and fragments
from 2 to 3 atoms, representing a total of 6,121 distinct fragments (Nomenclature: IIAB(2-3)_CI)*2. The GTM
manifold was trained using 100 iterations before being resampled to obtain a map of 8,000 nodes. The map is
colored based on property and class values, which subsequently generate property and class landscapes for data
set comparisons. To achieve this, the responsibility-weighted mean of the class labels/property values of resident
objects is obtained from each node’s mean class/property value®.

External validation. Public models were validated using public data from OChem. Priority was given to NN
and models trained on AqSolDB. The validation process also involved testing the GSE (described above).

«  AqSolPred is a consensus predictor based on 3 models originally trained with a version of AqSolDB depleted
of eChemPortal and EPI Suite subsets. Authors used 123 2D descriptors in NN, RF and XGBoost methods.
Their consensus model scored a RMSE of 0.35log on the Huuskonen benchmark dataset.

« SolTranNet also uses the SMILES representation. It is built upon a molecule attention transformer (MAT)
architecture. It applies self-attention to molecular graph representation, where each node is characterized by a
feature vector which is then combined with the adjacency and distance matrices of the molecule. The distance
matrix is built on a minimized 3D model of the molecule.

For training QSAR models on AqSolDBc we used Random Forest (RF) and MPNN (ChemProp®). The RF is
from scikit-learn®* implementation with MOE2D®* descriptors excluding LogS and (number of descrip-
tors=203) to limit the usage of predicted properties as descriptors. Using other software suite such as ISIDA led
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Fig. 11 Structures and compound ID from the 20 hardest-to-predict compounds from AqSolDBc. The first
letter of the ID corresponds to the source of the entry (see Fig. 10).

to similar results. We also used OChem models (LogPo/w: ALOGPS 2.1, 2016; MP: Best estate, 2015) to predict
LogPo/w and MP and used the computed values as input to the GSE. The ChemProp MPNN model is a Directed
Message Passing Neural Network (D-MPNN) renowned for producing reliable predictive models of chemical
properties. Finally, ChemProp was used alone and in consensus with AqSolPred.

The consensus prediction was conducted to improve the applicability of AqSolPred as it was trained with a
version of AqSolDB lacking eChemPortal and EPI Suite. Following the guidelines shared by the authors, models
were used as intended: the performances announced were retrieved. Models were applied to 7,463 compounds
from OChem.

Applicability domain.  We used Isolation Forest*® models as AD to verify our hypothesis. The Isolation
Forest method constructs an ensemble of trees for a given dataset. During the tree-building process, each tree is
grown by recursively selecting a random feature and a random split value between the minimum and maximum
values of the selected feature to partition the observations. Instances with short average path lengths within the
trees are identified as outliers. The essence of the Isolation Forest algorithm lies in this random partitioning to
identify outliers. The IsolationForest models were trained with AqSolDBc (MOE2D descriptors, n = 203) using
scikit-learn® with an increasing contamination parameter, from 0.0 to 0.99.

The contamination parameter defines the expected proportion of outliers within the training set and is used
by the Isolation Forest as a threshold to discriminate outliers from inliers. In other words, a contamination of
0 corresponds to a 100% coverage of the applicability domain (no molecule rejected) and a contamination of 1
corresponds to a 0% coverage of the applicability domain (all molecule rejected). OChem’s set was applied to
these models. The RMSE from the compounds within the AD was computed for each incrementation of the
contamination Fig. 15.
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Fig. 12 Structures and compound ID from the 20 hardest-to-predict compounds colored using ColorAtom.
Coloration of compounds according to the fragment-based RF model. Red and blue regions correspond,
respectively, to negative and positive contributions to LogS. Dark colors correspond to large positive or negative
atomic contributions.

Data availability
The authors declare that the data supporting the findings of this study are available free of charge®. The repository
features multiple datasets that have been curated for this research. The repository contains the following files:

File AqSolDBc.csv
Curated data from the AqSolDB. The available columns are:

® ID Compound ID (string)

® [nChIInChlI code of the chemical structure (string)

® Solubility Mole/L logarithm of the thermodynamic solubility in water at pH 7 (+/—1) at ~300K (float)
® SMILEScurated Curated SMILES code of the chemical structure (string)

® SD Standard laboratory Deviation, default value: —1 (float)

® Group Data quality label imported from AqSolDB (string)

® Dataset Source of the data point (string)

® Composition Purity of the substance: mono-constituent, multi-constituent, UVCB (Categorical)

® Error Identifier error on the data point, default value: None (String)

® Charge Estimated formal charge of the compound at pH 7: Positive, Negative, Zwiterion, Uncharged
(Categorical)
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Fig. 13 Flowchart describing the guidelines followed from compound standardization to data curation.
Chemical structures are standardized and ionized using Chemaxon tools. To resolve some ambiguities the
structures are verified in the ChemSpider database and in the CSD. Experimental meta-data are systematically
retrieved, and the main chemical structure is extracted. The data are filtered according to the experimental
conditions. When several thermodynamic solubility values are available, an entry is discarded if there is a doubt
about which value to keep; otherwise, the median value is conserved.
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Shake-Flask

File OChemUnseen.csv
Solubility data from OChem, curated and orthogonal to AqSolDB. The available columns are:

® SMILES Curated SMILES code of the chemical structure (string)
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®L0gS Mole/L logarithm of the thermodynamic solubility in water at pH 7 (4 /—1) (float)

File OChemOverlapping.csv

Solubility data from OChem, curated; chemical structures are also present inside AqSolDB. The available col-
umns are:

® SMILES Curated SMILES code of the chemical structure (string)
® LogS Mole/L logarithm of the thermodynamic solubility in water at pH 7 (4 /—1) (float)

File OChemCurated.csv
Solubility data from OChem, curated. The available columns are:

® ID Compound ID (string)

® Name Compound name (string)

® SMILES Curated SMILES code of the chemical structure (string)

® SDi Standard laboratory Deviation, default value: —1 (float)

® Reference Unformated bibliographic reference which the data point is originating from (string)
® LogS Mole/L logarithm of the thermodynamic solubility in water at pH 7 (4 /—1) (float)

® EXTERNALID Compound ID as appearing in its data source, default value: None (string)

® CASRN CAS number of the compound, default value: None (string)

@ ARTICLEID Source ID linked to the column Reference (string)

o Temperature Temperature of the measure, in K (float)

Code availability

No custom code has been used.
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Outline

In this study we demonstrate that some widely used models fail to deliver robust
predictions when applied to new data. To address these issues, we propose a workflow
for curating high-quality aqueous solubility datasets and improving predictive
reliability. Our findings underscore the need for rigorous dataset validation and
highlight the impact of factors such as interlaboratory variability, ionic states, and data
provenance. The curated datasets and trained models resulting from this study are

made publicly available to facilitate further improvements in solubility modeling.

This approach was applied in collaboration with Sanofi Frankfurt for the design and
selection of soluble phosphines, leading to the successful proposition of novel water-
soluble phosphines (Figure 18). The collaboration resulted in a publication'¥, further
validating the effectiveness of our methodology in real-world drug discovery

applications.
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Figure 18: Preparation of pegylated phosphines. (a) Synthesis of water-soluble
pegylated phosphines. (b) Solubility of different triphenylphosphines in water (3
mg/mL).
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4.2. Kinetic Solubility
Introduction

Machine learning has demonstrated potential in
predicting solubility, but its application to kinetic
solubility remains underexplored. Many existing
models focus on thermodynamic solubility, assuming
it can serve as a proxy for kinetic solubility, yet recent
studies highlight their lack of correlation. Kinetic
solubility, often used in early drug discovery, is
known for its variability due to differences in
experimental setups, solvent residues, and pH control.
These factors have contributed to the perception that
kinetic solubility is less reproducible, deterring efforts
to develop predictive models. In this section, we
investigate the acquisition, reproducibility and
modelisability of kinetic solubility assays (Figure 19).
We analyze large kinetic solubility datasets, compare
their inter-laboratory consistency, and benchmark

machine learning models trained on these datasets.

Main Terminology

Nominal Concentration is
the predefined
concentration of a
compound in solution at
which kinetic solubility is
measured. It serves as an

upper
solubility values in assays.

limit for kinetic

Precipitation onset is the
point at  which a
compound  begins  to
precipitate out of solution
due to exceeding its kinetic
solubility threshold,
influenced by solvent and

pH.

Solubilisation (DMSO) Stock solution

Buffer dilution

Light Scattering

Figure 19: Kinetic solubility measurement. The process begins with dilution of a

compound from an organic stock solution (e.g.,, DMSO) into a buffer, potentially

causing precipitation. After incubation, the solution is filtered or centrifuged, and the

dissolved fraction is quantified. This method estimates solubility before equilibrium is

reached, making it particularly useful for HTS.
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1 | INTRODUCTION

Aqueous solubility is an essential property of a com-
pound to be measured in drug discovery and develop-
ment [3,4]. It is a parameter to assess the bioavail-
ability of a compound and it is important to avoid bias
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Abstract

Kinetic aqueous or buffer solubility is important parameter measuring suit-
ability of compounds for high throughput assays in early drug discovery while
thermodynamic solubility is reserved for later stages of drug discovery and
development. Kinetic solubility is also considered to have low inter-laboratory
reproducibility because of its sensitivity to protocol parameters [1]. Presum-
ably, this is why little efforts have been put to build QSPR models for kinetic
in comparison to thermodynamic aqueous solubility. Here, we investigate the
reproducibility and modelability of kinetic solubility assays. We first analyzed
the relationship between kinetic and thermodynamic solubility data, and then
examined the consistency of data from different kinetic assays. In this con-
tribution, we report differences between kinetic and thermodynamic sol-
ubility data that are consistent with those reported by others [1,2] and good
agreement between data from different kinetic solubility campaigns in con-
trast to general expectations. The latter is confirmed by achieving high per-
forming QSPR models trained on merged kinetic solubility datasets. The poor
performance of QSPR model trained on thermodynamic solubility when ap-
plied to kinetic solubility dataset reinforces the conclusion that kinetic and
thermodynamic solubilities do not correlate: one cannot be used as an ersatz
for the other. This encourages for building predictive models for kinetic sol-
ubility. The kinetic solubility QSPR model developed in this study is freely
accessible through the Predictor web service of the Laboratory of Chemo-
informatics (https://chematlas.chimie.unistra.fr/cgi-bin/predictor2.cgi).
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on the measurement of a bioactivity, such as a
masking effect - i.e. when the saturation of an assay is
due to the solubility limit of a compound and not to
the biological material tested [5, 6]. Different steps of
drug discovery and development focus on different as-
pects of solubility, which in turn dictates the choice of
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experimental approach used to measure solubility
[3, 4].

Solubility can be classified depending on the meas-
urement protocol. If a setup involves the dissolution of a
solid compound in a solvent, it is considered to be ther-
modynamic (assay) solubility. In case the source of a
compound is a sample from the stock solution, the meas-
urement is regarded as kinetic (assay) solubility. Anoth-
er difference resides in the fact that thermodynamic sol-
ubility determines highest solubility limit, while kinetic
determinations are carried out at a single concentration.
Although kinetic solubility is operated in high through-
put screening (HTS) conditions in order to anticipate sol-
ubility issues during a screening campaign, new meth-
ods have been developed during the last two decades, to
also adapt thermodynamic solubility assays to HTS con-
ditions [1, 3]. Yet, differences in experimental setups
lead to several advantages of kinetic over thermody-
namic measurement assays types: (i) higher dissolution
rate and (ii) control of the pH. Since the starting point
for kinetic solubility assays is a stock solution, solubiliza-
tion process does not involve a disruption of the crystal
lattice. Nevertheless, residues of an organic solvent,
which might affect the real water solubility, remain pres-
ent in the final medium. The preservation of pH is en-
sured by the maximal concentration of the solute that is
never able to compete with the buffer.

Integration of aqueous solubility data in a single da-
taset requires inspection of the precise definition of sol-
ubility type and measurement setup. The diversity of sol-
ubility data may be an issue if data of incompatible
origins are accidentally added to a dataset for training of
in silico models [7]. This issue accumulates with other
parameters the solubility naturally depends on, such as
solid properties (crystalline, polymorph, amorphous),
particle aggregation or measurement temperature [3],
degrading the predictive performances of the models.
Most of these in silico models are designed to predict
thermodynamic solubility, whereas models predicting ki-
netic solubility are scarce [8-11]. A non-exhaustive list of
few reported quantitative structure-property relationship
(QSPR) models targeting kinetic solubility is given in
Table 1. We assume that such a small number of models
is explained by a belief that kinetic solubility data are
not as valuable for modelling as thermodynamic sol-
ubility data, as they are considered not reproducible due
to sensitivity to experimental conditions of an assay [12].
Nevertheless, it is kinetic solubility which is generally
measured during the first stages of drug discovery and is
of primary interest for screening platforms. Therefore, in
silico models are useful upstream or in parallel to HTS
and experimental kinetic solubility assessment: either for

TABLE 1 Published QSPR models predicting kinetic
solubility. Performance values correspond to the highest score
reported in respective articles.

Model Availability Performance
MetaClassifier (RF) [8] No Accuracy (test) =0.65
Pruned MLSMR [9] No ROC AUC (test)=0.86
GAT MTB [10] No MAE (test)=0.44

R? (test)=0.3
Model10 [11] No Accuracy (test) =0.86

ROC AUC (test)=0.93

filtering compounds or to facilitate the identification and
localization of problems during the assay.

In this work, we investigate the reproducibility and
modelability of kinetic solubility. First, we analyze scat-
ter plots comparing kinetic and thermodynamic sol-
ubility values of compounds. Then, we compare different
kinetic methods by comparing solubility values of com-
pounds duplicated in different datasets. Finally, we re-
port the predictive performances of models trained on
kinetic solubility datasets and investigate predictions
made on other kinetic solubility datasets. The best model
is freely available on the web-server of the Laboratory of
Chemoinformatics [13].

2 | DATA

The solubility datasets presented in this paper were used
(i) to study the difference between kinetic and thermo-
dynamic solubility assay types; (ii) to analyze the con-
sistency between solubility data obtained using different
kinetic solubility assays; (iii) to build and validate QSPR
models (Table 2). Molecular structures of all the datasets
were standardized using ChemAxon Standardizer [14]
(see Supplementary Information). We interpreted kinetic
solubility data in terms of two classes: “Soluble” (kinetic
solubility >1mM) and “Insoluble” (kinetic solubility
<1 mM), in analogy to fragment-based screening practi-
ces [15-17]. The precise definition of these labels needs
to be adjusted depending on the specific datasets men-
tioned below. Table 2 and Figure 1 resumes the charac-
teristics of all kinetic solubility datasets used in this
work and discussed below.

2.1 | Description of datasets

Among the following datasets, PICT, CNE2, Prestwick
Chemicals has never been published before.
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211 | PICT

The dataset was provided by Plateforme Intégrée de
Criblage de Toulouse (PICT) screening platform. It
consists of kinetic solubility measurements for 939
fragments (small organic molecules). The measure-
ments were performed in PBS buffer solution (pH 7.2)
(with 1% DMSO from stock solution) using NMR tech-
nique for detection (see Supplementary Information
for experimental details). Adding uncertainties in sam-
ple preparation and detection, experts recommend to
interpret a fragment of this dataset as “Insoluble” if
the reported concentration is <780 uM and “Soluble”
if the concentration is >880 uM. In-between the sol-
ubility label is undecided. Other curation steps in-
cluded removal of data points reporting a concen-
tration greater than the nominal sample concentration
(1 mM) or greater than the concentration in the stock
solution, indicative of an error. After the curation and
removal of 46 confirmed outliers and suspicious data
points (see Supplementary Information Table S5), the
total number of compounds in the dataset was 606
(513 “Soluble” and 93 “Insoluble™).

model

QSPR

training  validation
+
ding wouy popropaaq ‘TFT0T ‘1SLISYST

QSPR
model

solubility data
reproducibility analysis
S 49 91 T00£T0T ) TO01 0P

Kinetic

Q¥ AR

Purpose

Kinetic vs
thermodynamic
solubility comparison

i auuO fopm

Curated dataset size
(soluble/insoluble)®
606 (513/93)

989 (900/89
9276 (9276/0
44510 (0/44510
605 (0/605
525(0/525
17320 (71/17249
282 (114/168

2.1.2 | Prestwick chemicals

This dataset originates from the Prestwick Chemicals
company. Kinetic solubility was measured for 1049
fragments in a buffer solution (pH 7.4) using static
light scattering (SLS). Compounds are categorized as
“Soluble” or “Insoluble” at 1mM PBS (with 1%
DMSO from stock solution). Data curation involved
removal of identical duplicate measurements, as well
as the molecules found soluble at higher concen-
trations, 5 mM and/or 10 mM, but not at 1 mM con- 3
centration, implying an error. The curated dataset
consists of 989 compounds (900 “Soluble” and 89 “In-
soluble”).

suonpuos) pur suwa | 341 925 [STOT0 1] w0

Max sample concentration

1 mM

1 mM

1 mM
0.15mM ”
350 ug/mL
0.2 mM
None
None

o

Measurement technique

NMR

SLS

Visual observation
CLND
Nephelometry
HPLC-UV
Nephelometry
Shake-flask

2.1.3 | Life chemicals

Life Chemicals company provided kinetic solubility
data for one of its fragment libraries [18]. Solubility
of 11457 fragments was visually determined based
on scattering observed in solutions at 1 mM con-
centration in PBS (pH 7.4) with 0.5% DMSO. After
removal of data points with no kinetic solubility,
the curated dataset consists of 9276 “Soluble” mole-
cules.

N-containing compounds

Compound
type
Fragments
Fragments
Fragments
Any

Any
Any
Any

Curated solubility datasets used in this study.
" The nominal (maximal) concentration reported in the description of the assay is 0.2 mM. NMR - nuclear magnetic resonance; SLS — static light scattering; CLND - chemiluminescent nitrogen detection; HPLC-

““Soluble” and “Insoluble™ labels were given according to 1 mM threshold.
UV - high-performance liquid chromatography-ultraviolet.

TABLE 2
a1

PICT
Prestwick
Life Chemicals
MLSMR
Boehringer
CNE2
Industrial (all)
CNEL
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Number of compounds
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FIGURE 1
a logarithmic scale.

214 | MLSMR

The Molecular Libraries Small Molecule Repository
(MLSMR) [19] is a collection of small molecules com-
piled under the initiative of National Institutes of Health
(NIH) and screened by Sanford-Burnham Center for
Chemical Genomics (SBCCG). To our knowledge,
MLSMR is the largest kinetic solubility dataset available
in PubChem and it is composed of 57824 data points
measured in PBS (pH 7.4) using quantitative chem-
iluminescent nitrogen detection (CLND). Although,
0.2 mM was reported as the nominal concentration of a
sample, a large fraction of the reported concentration
(about 31 % of the dataset) is in the range of (0.15; 0.151].
Based on this observation, we assumed 0.15 mM as the
actual sample nominal concentration and removed data
points which reported concentration greater than or
equal to 0.15 mM (13262 data points). Additionally, data
curation included removal of duplicate molecules while
taking median of their solubility values (mean of stan-
dard deviations over the duplicates=9.85 uM). The re-
sulting curated dataset contained 44510 nitrogen con-
taining compounds which are insoluble at 0.15 mM, and
therefore labeled “Insoluble” at 1 mM.

2.1.5 | Boehringer

Boehringer Ingelheim Pharma GmbH & Co. shared a da-
taset of 789 kinetic solubility measurements [20] per-
formed in PBS (pH 7.4) using nephelometry method.
Data points with reported precipitate formation in
DMSO stock solution and those for which solubility val-
ue was only bounded (relation denoted as “>") were re-
moved. The curated dataset contained 605 compounds
that are all “Insoluble” at 1 mM. This dataset was used
for QSPR modelling. The full dataset (789 data points)
was used to discuss the alignment of solubility values be-
tween different kinetic solubility assays.

5449 4363

980
I . I }

merged-frag

Test sets
45593

10536 17249

merged-all industrial (frag)  industrial (all)

Distribution of “Soluble” (green)/“Insoluble” (red) classes in training and test sets. The population axis follows

2.1.6 | CNE1 and CNE2

Chimiothéque Nationale Essentielle (CNE) is a repre-
sentative collection of physical samples of pure com-
pounds from a larger chemical library of biologically rel-
evant substances and natural extracts called
Chimiothéque Nationale [21]. CNE1 is referring to the
first generation of this representative collection of 640
compounds, most of which has been depleted. CNE2 is a
currently available new representative collection of 1040
compounds. Aqueous solubility of both of these collec-
tions have been measured by the “Plateforme de Chimie
Biologique Intégrative de Strasbourg” (PCBIS) screening
platform. PCBIS has measured thermodynamic solubility
for CNE1 collection, whereas CNE2 collection was
screened for kinetic solubility. Thermodynamic sol-
ubility was measured using shake-flask method, whereas
kinetic solubility was measured using HPLC-UV meth-
od, at 200 uM nominal concentration (see Supple-
mentary Information for details). Data curation process
was identical to Oprisiu [22]. Insoluble compounds
which solubility was lower than the limit of detection
have been ignored for the discussion. In addition, for
CNE2, the following data points were removed:

L]

entries with reported concentration>210 uM, imply-
ing an experimental error;

¢ measurements with signs of impurity (multiple peaks
in chromatogram);

compounds with observed precipitation in stock sol-
utions.

*

The CNE1 contains 282 compounds and the cura-
tion step yielded 525 compounds in CNEZ2, all of which
are insoluble based on 1 mM threshold. CNE1 and
CNE2 datasets were used to analyze differences be-
tween thermodynamic and kinetic solubility assay
types, whereas the latter was also used for QSPR mod-
el training.
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2.1.7 | Industrial data

The kinetic solubility dataset provided by Sanofi con-
tained solubility values of 18407 compounds measured
from a 10 mM stock in PBS (pH 7.4) using neph-
elometry technique. The curation procedure involved
duplicate molecule processing by taking median sol-
ubility value, and removal of data points in [0.8; 1.2]
mM range according to expert opinion. The latter step
is related to possible experimental error that could po-
tentially change solubility label based on 1 mM thresh-
old. The curated dataset was composed of 17320 com-
pounds, including 71 “Soluble” and 17249 “Insoluble”
compounds. A subset of the curated dataset composed
of 1017 fragment-like compounds only consisted of 37
“Soluble” and 980 “Insoluble” compounds. Fragments
were defined according to the rule of 3 (Ro3) [23]: cal-
culated logP < 3, molecular weight <300 g/mol, num-
ber of hydrogen bond donors <3, number of hydrogen
bond acceptors < 3.

A subset of compounds for which both thermody-
namic and kinetic solubility were measured contained
334 molecules. It was used to investigate the relation-
ship between thermodynamic and kinetic solubility as-
say types. The whole dataset, “industrial (all)”, and the
fragment-like subset, “industrial (frag)”, were used as
test sets for external validation of the trained QSPR
models.

2.2 | Preparation of the merged kinetic
solubility training set

In this section, we describe the preparation of the
merged dataset comprising data of PICT, Prestwick
Chemicals, Life Chemicals, Boehringer, CNE2, and
MLSMR. The dataset “industrial (all)” and its subset “in-
dustrial (frag)” containing fragment-like compounds are
used as external validation for QSPR models: they have
been considered a posteriori, after all model building
and validation have been concluded.

Intormarncs

We identified duplicated compounds between the
different datasets and tried to resolve the conflicting
(Tables 3 and 4). PICT and Prestwick Chemicals have
5 compounds in common but the labels are in agree-
ment. The labels of 2 compounds out of 27 in common
between PICT and Life Chemicals datasets do not
match. These 2 data were ignored because we could
not resolve this conflict. There are 4 duplicates be-
tween the PICT and MLSMR datasets; labels differed
for 3 of them and the discrepancy could not be solved
for 1 of them - this data was ignored. For the remain-
ing 2, the “Soluble” label was accepted because the re-
ported concentration in MLSMR was close enough to
the nominal concentration to assume that in fact,
these compounds were fully dissolved.

We found 3 CNE2 molecules that had contradicting
solubility class labels relative to other datasets (2 mol-
ecules between CNE2 and Prestwick Chemicals; 1
molecule between CNE2 and Life Chemicals). The 2
CNE2 molecules had solubility values (179 uM,
180 uM) close enough to the nominal sample concen-
tration (200 uM) to assume that the compounds were
in fact fully dissolved, considering measurement un-
certainty. For this reason, the labels “Soluble” from
both Prestwick Chemicals and Life Chemicals have
been accepted. The remaining CNE2 compound had
“Insoluble” class label (39 uM solubility value) which
contradicted Life Chemicals” “Soluble” label. As we
could not resolve this contradiction, the datapoint has
not been included in the merged dataset.

The MLSMR had 208 molecules in duplicate with
the other datasets. After a thorough analysis, a large
population (116 molecules) of data points was in the
[140; 150] pM range, which is close enough to the
nominal value of 150 uM, to assume that the com-
pounds were in fact fully dissolved. For these 116
MLSMR data points we accepted the labels “Soluble”
from the other datasets. We could not resolve the
contradicting labels for the remaining 92 MLSMR du-
plicate measurements and these datapoints were ig-
nored.

TABLE 3 The number of common compounds between each pair of kinetic solubility datasets. The LC and Prestwick datasets are
composed of categorical values only, whereas the other datasets contained numerical values.

Boehringer LC MLSMR PICT Prestwick CNE2
LC 0
MLSMR 12 189
PICT 0 28 14
Prestwick 0 39 169 5
CNE2 0 1 8 1 5
Industrial (all) 1 19 92 0 11 3
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TABLE 4 Comparison of kinetic solubility of compounds common to pairs of datasets. The table is composed of cases when only one
compound was in common between a given pair of datasets. The case of “Industrial (all)” vs CNE2 compound is an exception: it is
reported separately from the scatter plot presented in Figure 6, because it could not be quantified in CNE2 measurements.

Dataset A Dataset B
Compound and solubility and solubility
HN s Life Chemicals CNE2
) / Soluble at 1 mM 0.18 mM
d (—31log) (—3.741og)
[+]
e PICT CNE2
H 1 0.9 mM 0.25 mM
= (—3.05 log) (—3.61log)
Industrial (all) CNE2
0.001 mM <10 uM
(—6log) K
(L TJ\Q)J Industrial (all) Boehringer
/T(\? 0.006 mM 0.005 mM
[j (—5.22 log) (—5.3log)
3 | METHOD
3.1 | Molecular descriptors

We used ISIDA substructural molecular fragments
(SMF) [24] representing 2D substructures (fragments) of
various topologies (sequence of atoms only, sequence of
atoms and bonds, atom-centered fragments, triplets) and
sizes (see Table S1 in Supplementary Information). The
descriptor value is the occurrence of a given fragment in
the chemical structure. The minimal length of fragment
descriptors was 2 atoms, while the maximal length var-
ied from 2 to 5 atoms. Combination of different top-
ologies and sizes resulted in generation of 112 descriptor
sets.

3.2 | Machine learning method

Support Vector Machine (SVM) method was im-
plemented in this study for the generation of kinetic
solubility QSPR models and potential outliers’ de-
tection. The SVM method offers the advantage of ro-
bustness against outliers, thanks to its epsilon-in-
sensitive loss function. The libsvm 3.24 software
package [25] was used for training and validation of
SVM models. Selection of optimal SVM hyper-
parameters, SVM kernels and descriptor sets was

Comment

Difference between log values=0.74
Good alignment (difference within 1 log unit)

Difference between log values=0.56
Good alignment (difference within 1 log unit)

One can assume good alignment considering the limitations
of the reported data in both the industrial dataset and
the CNE2.

Difference between log values=0.08
Good alignment (difference within 1 log unit)

performed using genetic algorithm (GA) implemented
in the libsvm-GA package [26].

Four statistical metrics are used here: sensitivity, spe-
cificity, balanced accuracy (BA), Matthew’s correlation
coefficient (MCC). They are calculated using the equa-
tions given below (TP - true positive; TN - true negative;
FP - false positive; FN - false negative). In this context,
soluble class is regarded as “Positive” class, and in-
soluble class is regarded as “Negative” class.

Sensitivity = TP/(TP + FN) (1)
Specificity = TN /(TN + FP) 2

BA = (Sensitivity + Specificity) /2 3)
MCC = (TN x TP — FN x FP)/ @

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3.3 | Modeling workflow

The modeling workflow of kinetic solubility QSPR
models applied in this study can be divided into 3
steps: (1) molecular descriptor calculation; (2) model
building and validation using cross-validation; (3)
consensus model preparation (Figure 2). ISIDA frag-
ment descriptors were computed for each training set
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during cross-validation. The hyperparameters of the
models were optimized using a GA, with the cross-
validation performances as scoring function. The top
performing models were included in a consensus
model. The selected models were then retrained on
the whole dataset and included in the consensus
model integrated into the ISIDA Predictor software
[27] (available both as desktop software and web
service [13]). The ISIDA Predictor software was used
to predict kinetic solubility on the industrial data.
The reported external performances concern this ap-
plication of the model.

In addition to the application of QSPR models,
the ISIDA Predictor software incorporates an

p Molecular descriptor
[ Data processing ] » [ calcula!inn‘p ]

Standardization
Duplicate processing

ISIDA fragment descriptors

assessment of predicted value confidences. Scoring
of prediction confidence is based on the number of
applied models and concordance between the pre-
dicted labels given by each applied individual model
of the consensus model. Each individual model pre-
diction is considered according to the model’s ap-
plicability domain, defined by fragment control rule
[28]. Fragment control states that if a test molecule
contains at least one new fragment compared to
those observed in the training set, the model is not
applied.

The ISIDA Predictor provides 4 labels of prediction
confidence: “Low”, “Average”, “Good”, “Optimal”. In
this paper, for kinetic solubility QSPR models we con-
sidered only the test compounds with “Optimal” pre-
diction confidence.

While an ideal classification model would excel at
predicting compounds from both classes, in the con-

. text of kinetic solubility, the primary goal is to identify
[ pp—r——— ] [ Model traiming and ] and eliminate insoluble molecules. From a statistical
e R d: _odaton perspective, the model should exhibit high Specificity

10-CV performance

Selected models re-trained on
the whole dataset

Consensus model integrated in
ISIDA Predictor

2

External validation

Application to
- "industrial (all)" test set
- “industrial (frag)” test set

GA optimization algorithm
10-fold cross-validation

FIGURE 2 The modelling workflow of kinetic solubility
QSPR models. The main steps are pre-processing data, computing
molecular descriptor, training and validating individual models
and implementation of the consensus model. External validation
results from application of the final consensus model to the test
sets (industrial (all) and industrial (frag) datasets). SVM - Support
Vector Machine; GA - Genetic Algorithm; 10-CV - 10-fold cross-
validation.

(the ability to predict insoluble molecules accurately)
while still maintaining high BA and MCC. Perform-
ance metrics for the developed kinetic models are
summarized in Table 5.

We also challenged an independent thermody-
namic solubility QSPR model to predict the kinetic
solubility label using a 1 mM threshold. This QSPR
model has been trained on a dataset comprised of
42159 industrial and public solubility data
(doi:10.57745/CZVZIA). The model was trained us-
ing Chemprop software package [29] that imple-
ments a message passing neural network method.
The validation performance on a test set of 5728
compounds was RMSE (root mean squared error)=
0.59.

TABLE 5 10-fold cross-validation (10-CV) performance of consensus QSPR models developed in this work.™!
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#
individual
models
in the Standard Standard
consensus deviation deviation Sensitivity Specificity z
Model Training set  model BAuo™  (BApw) MCCpuc'”  (MCCyuo)  (10-CV) (10-CV) £
prest_model Prestwick 5 0.68 0.09 0.39 0.16 0.96 0.4 :
Chemicals ;_
pict_model PICT 3 0.71 0.06 0.46 0.17 0.94 0.48 mé
merged-frag_ Merged (frag) 7 0.87 0.01 0.75 0.02 0.91 0.84 ;:Lf
model H
merged-all_model Merged (all) 12 0.93 0.004 0.86 0.005 0.88 0.98

12l Each representing ensemble of individual SVM models built on ISIDA fragment descriptors.
' BA - balanced accuracy; MCC - Matthew’s correlation coefficient.
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4 | RESULTS AND DISCUSSION
41 | Kinetic and thermodynamic
solubility

Saal and Petereit [2] described three different types of re-
lationship between kinetic and thermodynamic sol-
ubility visualized on Figure 3. The first one (Zone A)
corresponds to compounds fully dissolved in a kinetic
solubility measurement because their thermodynamic
solubility is equal to or larger than the nominal of the
measure. The second type (Zone B) is typical for the
compounds whose kinetic solubility is larger than ther-
modynamic one. This behavior can be explained by the
solid-state form of the precipitate that may differ from a
kinetic to a thermodynamic measurement [30]. In ki-
netic solubility measurements, the solid that forms can
be amorphous or a metastable crystal polymorph; ther-
modynamic measurements start from a crystal that must
be solubilized and are expected to let only the lowest
soluble solid to form. The measurement can be compli-
cated if the compound leads to polymorphic crystal
structures [31]. The third type (Zone C) represents com-
pounds for whom kinetic and thermodynamic sol-
ubilities correlate.

In this context two new datasets - Industrial and Chi-
miothéque Nationale Essentielle version 1 and 2 (CNE1
and CNE2) - have been analyzed. The former dataset
shows a rather different pattern (Figure 4) from what is
expected (Figure 3). The scattered data points are or-
ganized along several horizontal lines, at certain kinetic
solubility values. This dataset corresponds to several ki-
netic solubility determination campaigns carried out at
different concentrations. These horizontal lines corre-
spond to the different nominal concentrations of the
many nephelometry kinetic measurements aggregated in
this dataset. The contributors to this dataset were look-
ing for the nominal concentration at which each com-
pound begins to appear insoluble. To this end, they scan-
ned several of them and reported a concentration that
appear to behave as in the zone A exemplified in the
Figure 3.

In Figure 5, the solubility values distribution aligns
with expectations (Figure 3). While the majority of data
points are accumulated at about —3.7 log kinetic sol-
ubility, the others are instances of the case when kinetic
solubility is greater than or equal to the thermodynamic
solubility. Apart from 6 outlying data points, the overall
picture resembles the pattern described by Saal and Pe-
tereit [2]. The 6 compounds on the lower right hand of
the plot, not matching the expectations are disclosed in
the Supplementary Information (Table S4). The limit of
detection at —3.7 log has been explained by Saal and

Log$ Thermadynamic 0

ss00e s0essessess coe see

Mex kinelic
salusiity

Log$ Kinetic

FIGURE 3 Different types of relationship between
thermodynamic and kinetic solubility. Zone A: kinetic solubility of
compounds is at the nominal concentration; zone B: kinetic
solubility greater than thermodynamic solubility; zone C: kinetic
solubility equals to thermodynamic solubility.

LogS Thermeodynamic (M)

Logs Kinetic (M)

FIGURE 4 Comparison of kinetic and thermodynamic
solubility values of the industrial dataset (334 compounds). Green
dots represent differences <1 log unit between kinetic and
thermodynamic values, red dots > =1 log unit. Orange dashed
lines show a 1 log margin.

Log$ Thermodynamic (M}

LogS Kinetic (M)

edif<1log eair

FIGURE 5 Comparison of kinetic and thermodynamic
solubility values of Chimiothéque Nationale Essentielle dataset
(186 compounds). Green dots represent differences <1 log unit
between kinetic and thermodynamic values, red dots > =1 log
unit. Orange dashed lines show a 1 log margin.
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9of 12

Petereit [2] as resulting from the nominal concentration
and the maximum DMSO concentration allowed in the
incubation medium.

The difference between kinetic and thermodynamic
solubility measurements can originate from solvent-
mediated transformations occurring between different
polymorphic forms of the compound [31,32]. Re-
crystallization leads to the most stable polymorphic
form which is characterized by its lower solubility.
Measurement of a compound at any other metastable
form results in different concentration (kinetic sol-
ubility) as it did not reach equilibrium state with the
solution. Equally important factor is the quality of the
measured compounds. Compounds with a low purity
will lead to stock solutions with concentration errors,
followed by calibration errors and finally, measure-
ment errors. Additionally, it is now better understood
that “kinetic solubility” does not refer to a kinetic phe-
nomenon, and therefore, this terminology is contested
[32].

4.2 | Analysis of available kinetic
datasets

This section reports the comparison of different kinetic
solubility datasets based on common compounds be-
tween each pair of datasets. The findings of this study
have been used to build the merged datasets (see section
“Preparation of the merged kinetic solubility training
set”).

FIGURE 6

In Table 3, a number of common compounds for
each pair of kinetic solubility datasets is given. The
analysis of common compounds was conducted in two
ways: by scatter plots, for datasets containing numer-
ical values; by pairwise comparison of datasets con-
taining categorical values. The cases where there was
only one common compound were studied in-
dividually.

Scatter plots presented in Figure 6 generally show
the good agreement between datasets (within 1log
margin). Vertical alignment of data points observed
in scatter plots involving MLSMR data correspond to
the upper limit of value set by the nominal sample
concentration. For one compound the reported sol-
ubility is <10 uM in CNE2 and 1 pM in the industrial
dataset.

The pairwise comparison of the LC/PICT,
LC/Prestwick Chemicals and PICT/Prestwick Chem-
icals dataset pairs shows (Figure 7) consistency of ki-
netic solubility data: only 2 molecules out of 16 are
differently labeled in LC and PICT, in the other data-
set all labels are fully consistent. The datasets whose
max solubility value is less than 1 mM (MLSMR,
CNE2) were not considered during this comparison,
since the solubility label between 1 mM and their
nominal concentration cannot be decided.

Table 4 consists of cases where only one molecule
was common to pairs of datasets, except for a com-
pound common to “Industrial (all)” and CNE2, which
was detected below the limit of quantification of the
CNE2 measures. Overall, these data confirm the good

.

Scatter plots comparing kinetic solubility values of dataset pairs. The unit is logS (in molar). The number of common

compounds is given at the top right corner of the plot. Green dots represent cases when the absolute difference between kinetic solubility
values is less than 1 log unit and red dots indicate when the difference is greater than or equal to 1 log unit. Orange dashed lines shows

1 log margin.
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Prestwick Chemicals Life Chemicals Life Chemicals
Soluble Insoluble Soluble Insoluble - Soluble Insoluble
= E £3
Q Soluble 5 0 53 Soluble 14 o % E | Soluble 39 0
o T 3 e
-4
Insoluble 0 0 Insoluble 2 [ | insoluie 0 0

FIGURE 7

Pairwise comparison of kinetic solubility classes for the datasets composed of fragment-like compounds.

TABLE 6 Performance of models on industrial kinetic solubility datasets. “industrial (frag)” is a subset of the whole “industrial (all)”
dataset which is composed of only fragment-like compounds (complying Ro3).

Performance on “industrial (all)” test set

Test set size in AD after removal of

molecules also present in the training set

Model (soluble/insoluble) Sensitivity Specificity BA MCC
prest_model 1004 (11/993) 1 0.73 0.87 0.17
pict_model 150 (9/141) 1 0.38 0.69 0.19
merged-frag_model 855 (19/836) 0.58 0.9 0.74 0.23
merged-all_model 345 (7/338) 0.71 0.97 0.84 0.49
therm_model No AD filter (71/17249) 0.145 0.98 0.56 0.05
Performance on “industrial (frag)” test set

Test set size in AD after removal of

molecules also present in the training set
Model (soluble/insoluble) Sensitivity Specificity BA MCC
prest_model 131 (11/120) 1 0.18 0.59 0.14
pict_model 88 (8/80) 1 0.06 0.53 0.08
merged-frag_model 195 (18/177) 0.61 0.62 0.61 0.13
merged-all_model 48 (7/41) 0.71 0.85 0.78 0.48
therm_model No AD filter (37/980) 0.24 0.79 0.52 0.02

agreement between kinetic solubility measures from
independent sources.

43 | Modelling of kinetic solubility
Considering the observed reproducibility of the kinetic
solubility measures, we proposed to merge these data-
sets in order to build predictive QSPR models. For this
purpose, all kinetic solubility datasets (except the in-
dustrial dataset used as an external test set) were
merged in the “merged-all_model” data set. The data
processing of the mixed “merged (all)” dataset resulted
in 56129 molecules: 10536 “Soluble” and 45593 “In-
soluble”. A “merged (frag)” subset containing frag-
ment-like compounds was prepared from the whole
“merged (all)” dataset. It is composed of 5449 “Solu-
ble” and 4363 “Insoluble” molecules, 9812 molecules
in total.

QSPR models built using the above datasets was com-
pared to the models trained on individual kinetic sol-
ubility datasets. A thermodynamic solubility model has
been challenged to predict the kinetic solubility classes,
for comparison. Evaluation of models’ performance was
performed both on the whole “industrial (all)” dataset as
well as its subset composed of fragment-like compounds
only, “industrial (frag)”. Any molecule found in both the
training set and the industrial set was discarded for com-
puting the performances: for “industrial (all)”, “prest_
model” training set had 8 molecules in common, “pict_
model” had 0, “merged-frag_model” had 36, “merged-all_
model” had 98; for “industrial (frag)”, “prest_model”
training set had 3 molecules in common, “pict_model”
had 0, “merged-frag_model” had 36, “merged-all_model”
had 37.

Since molecules in the industrial dataset are very
different from the ones in the training dataset, the
data coverage of all models is less than 20%: for
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“industrial (all)”, “prest_model” was applied to 1004
molecules with “Optimal” confidence prediction label
(5.8% of the “industrial (all)” with no common mole-
cules with the training set of “prest model”), “pict_
model” to 150 molecules (0.9%), “merged-frag_model”
to 855 molecules (4.9%), “merged-all_model” to 345
molecules (2%); for “industrial (frag)”, “prest_model”
was applied to 88 molecules with “Optimal” con-
fidence prediction label (12.9% of the “industrial (all)”
with no common molecules with the training set of
“prest_model™), “pict_model” to 131 molecules (8.7%),
“merged-frag_model” to 195 molecules (19.9%),
“merged-all_model” to 48 molecules (4.9%).

The results show that models trained on a combi-
nation of kinetic solubility datasets (“merged-all_mod-
el”, “merged-frag_model”) show higher MCC and Spe-
cificity values, compared to those trained on
individual datasets, both in “industrial (all)” and “in-
dustrial (frag)” test sets (Table 6). When applied to the
“industrial (frag)” test set, the "merged-frag-_model"
demonstrates inferior results compared to the
“merged-all_model“. The latter benefits from a more
extensive training set, despite the former‘s special-
ization, which includes only fragment-like com-
pounds. Moreover, one can see that the ratio of soluble
to insoluble molecules in the “merged-all_model” (
20.2) is closer to the ratio in the “industrial (frag)”
test set (x0.07), rather than the more equally dis-
tributed training set of the “merged-frag model” (
~1.25). Actually, the mismatch of the prior expect-
ation of the other kinetic solubility models (“prest_
model”, “pict_model”) compared to the actual “Solu-
ble”/“Insoluble” distributions observed in the various
dataset can have a negative impact on their perform-
ances. This adds to the weaknesses of these models re-
sulting from the relatively small size of their training
sets.

For early drug discovery solubility screening cam-
paigns, it is better to identify and remove insoluble
compounds. For this reason, it is preferable for a QSPR
model to have high predictive rate of insoluble mole-
cules (Specificity), while preserving a high BA and
MCC. Given that, the “merged-all_model” is a better
candidate to be used for virtual screening (see Supple-
mentary Information Table S2 for details). The use of a
thermodynamic solubility model for such task seems a
wrong idea, as illustrated by the performance of a re-
cent predictive QSPR model used for this task (therm_
model, Table 6).

The benchmarking of existing models that were de-
scribed in Table 1 and Table S3, is not possible due to
unavailability of those models.

5 | CONCLUSIONS

The analysis of kinetic and thermodynamic solubility
data confirmed the previously known patterns [2] of
relationship between these two solubility types, name-
ly, the three scenarios: (i) upper limit of kinetic sol-
ubility constrained by the assay setup, (ii) over-
estimation of kinetic solubility relative to
thermodynamic solubility, (iii) equal kinetic and ther-
modynamic solubility.

Our analysis also demonstrated that the kinetic
solubility data obtained using different measurement
protocols are in good agreement with each other, in-
dicating good inter-laboratory reproducibility.

This allowed us to merge the kinetic solubility data
into a single dataset on which predictive models were
trained. This dataset (doi:10.57745/ZWSOWC) contains
exclusive data from Prestwick Chemicals, PICT and
CNE2 never reported so far. The modelability of the
merged dataset using different detection methods
strengthen the conclusion that kinetic solubility data are
not as assay-dependent as initially assumed. It should be
noted that the model trained on thermodynamic sol-
ubility data fails to evaluate kinetic solubility, emphasiz-
ing that these are conceptually related but different
measurements.

This contribution led to the publicly available QSPR
model predicting kinetic solubility freely accessible
through the Predictor web service of the Laboratory of
Chemoinformatics (https://chematlas.chimie.unistra.fr/
cgi-bin/predictor2.cgi). The model can be used for priori-
tization of screening compounds by preliminary assess-
ing kinetic solubility at pH 7.4 and at 1 mM nominal
concentration and a DMSO maximal concentration of
2% in the incubation medium. It is recommended to
consider only “Optimal” predicted values when applying
this model.
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Outline

Contrary to a common assumption, our findings indicate that kinetic solubility data
from different protocols exhibit good agreement, supporting the feasibility of robust
predictive modeling. We further show that thermodynamic solubility models fail to
generalize to kinetic solubility, reinforcing the necessity for dedicated QSPR models to
be used in the preparation of plates for HTS. To address these challenges, we present
a workflow for curating high-quality kinetic solubility datasets and training reliable
predictive models. The curated datasets and trained models from this study are made

publicly available to support further improvements in solubility modeling.
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Chapter 5. Modeling of Drug Absorption

5.1. Multi-Task for Permeability Prediction

Introduction

The journey of a drug through the body involves
multiple pharmacokinetic phases each determining

therapeutic efficacy and safety.
Passing the Absorption Barrier

Absorption, the first step, encompasses the transfer of
a xenobiotic from the gastrointestinal tract, primarily
the small intestine, into systemic circulation. After the
dosage form disintegrates and the active ingredient
dissolves in digestive fluids, the compound must cross
the epithelial cells either paracellularly (between cells)
or transcellularly (through cells) (Figure 20). In any

case, most drugs must first enter the systemic

Main Terminology

Xenobiotics are  any
foreign chemical substance

within an organism.

Therapeutic efficacy is the
ability of a drug to
produce  the  desired

treatment effect.

Recovery ak.a mass-
balance is the efficiency
with which a drug is
retrieved or detected after

a process.

circulation before reaching their target.

Many small-molecule drugs exert their effect by binding deep within the hydrophobic
core of proteins. These buried sites are typically less accessible to water, making them
difficult targets for polar compounds. Strong and selective binding at such interfaces
often relies on hydrophobic interactions, which favor lipophilic ligands. While
medicinal chemistry has emphasized reducing lipophilicity to improve solubility,
metabolic stability, and overall pharmacokinetics, many clinically successful drugs
still span a wide range of lipophilicity values. For instance, Desflurane binds within
intrahelical transmembrane cavities of the GABAa receptor, and Propofol targets
similar sites in the glycine receptor. Flecainide, an antiarrhythmic drug, reaches its site
in the Navl.5 sodium channel through lateral lipid-facing fenestrations.” Yet,
although increasing lipophilicity may enhance target binding, it often comes at the cost

of reduced bioavailability, and higher risk of off-target effects.
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To navigate this trade-off, medicinal chemists leverage structural features to control
these endpoints. Fluorine or trifluoromethyl groups are often introduced not only to
increase stability and fine-tune lipophilicity and binding kinetics. In some cases, drugs
exploit internal hydrogen bonds, as intramolecular H-bonding in a hydrophobic
pocket can act as a strong, directional anchor that reinforces binding affinity. This
strategy is observed in Ivacaftor. Similarly, polar groups like sulfonamides can act as

amphiphilic anchors at the protein-membrane interface, as seen with Fasiglifam.

To further characterize membrane permeation, permeability assays such as Caco-2 and
PAMPA are commonly used. The Caco-2 assay models intestinal absorption through
a monolayer of human epithelial cells, capturing both passive and active transport
mechanisms. In contrast, the PAMPA assay focuses exclusively on passive diffusion
by measuring a compound’s ability to cross an artificial lipid membrane. Comparing
permeability between these two methods helps determine whether a molecule
primarily relies on passive diffusion or engages in transporter-mediated processes
(Figure 21).1* While comparing results from both assays can help identify transport

route, such dual profiling is rarely performed in practice due to cost and resource

constraints.
Simple diffusion Facilitated diffusion Active import Active export
-
L@ ')
@ h ¥

Figure 20: Mechanisms of membrane permeation.
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Although these assays focus on the membrane transport, oral delivery also depends
on overcoming other barriers. To fully grasp a drug’s early fate, one must also consider
degradation, metabolic transformation, and transporter-mediated efflux. A key
limitation to absorption is enzymatic hydrolysis by enzymes such as peptidases and
esterases. Interestingly, this liability can be turned into an advantage: prodrugs are
often designed with cleavable substituents (e.g., phosphates) that enhance solubility
or permeability and are selectively activated by hydrolases or cytochrome P450
enzymes. Even when degradation is avoided and permeability is favorable, a
compound may still be actively expelled from enterocytes by efflux transporters. P-
glycoprotein (P-gP). This process operates in concert with intestinal CYP enzymes
further limiting systemic exposure through what is known as the “intestinal first-pass”
effect, a barrier that acts in addition to hepatic first-pass metabolism and can

substantially reduce the bioavailable fraction of orally administered drugs.
Distribution in the System

Once in systemic circulation, the distribution phase covers how a xenobiotic moves via
the blood and partitions among different tissues. Blood is composed of red blood cells,
white blood cells, and plasma. The plasma itself contains about plasma proteins,
primarily albumins, a-l-acid glycoproteins (AGP), lipoproteins, and globulins.
Albumin generally binds acidic or neutral drugs, while AGP binds basic or neutral
compounds. These reversible bindings create an equilibrium between bound
(reservoir) and free (active) fractions, with only the free fraction able to transit, exert

therapeutic effects, be metabolized, or undergo elimination.

PAMPA
Paracellular transport
o000 9000 Active/Passive Influx  «
2 f
o000 o060 —
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Metabolism
Lysosomal Trapping

PAMPA Permeability

S

Caco-2

Figure 21: Comparison of Caco-2 and PAMPA permeability assays.
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Once a drug reaches systemic circulation, its distribution refers to the reversible
transfer from blood into various tissues. Initially, the unbound fraction (f,,) of the
compound distributes within the extracellular space. Further penetration into cells or
deep tissue compartments depends on the molecule’s physicochemical properties

(e.g., lipophilicity, size, polarity) and the location of its pharmacological target.

For example, lipophilic antibiotics such as Azithromycin show extensive tissue
distribution, often accumulating in phagocytic cells and intracellular compartments.
While this favors efficacy against intracellular pathogens, excessive sequestration can
also limit the free concentration available to bind bacterial ribosomes, highlighting a
delicate balance between distribution and target engagement. In contrast, hydrophilic
compounds like aminoglycosides are largely restricted to extracellular fluids due to

their polarity and poor membrane permeability.#
A key pharmacokinetic parameter used to quantify the extent of tissue distribution is
the volume of distribution (Vd), defined as:

Vd = Amount of drug in the body

Plasma concentration

This parameter reflects the apparent, not anatomical, volume into which a drug
disperses to yield the observed plasma concentration. High Vd values typically
indicate extensive tissue uptake and low plasma levels, often observed in lipophilic or
weakly plasma protein-bound compounds. Low Vd values suggest the drug is mostly
confined to the bloodstream, commonly due to strong binding to plasma proteins or
high polarity.’® Another fundamental parameter influencing distribution is the
fraction unbound in plasma which determines the portion of drug that is free to leave
the vascular space, interact with targets, undergo metabolism, or be eliminated. It is

calculated as:

_ Cunbound
fu=—(——

Ctotal

Where the variable,
Cunbouna 1s the free (unbound) drug concentration in plasma,

Ctotar 1S the total drug concentration in plasma (bound + unbound).
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Only the unbound drug is pharmacologically active, able to cross membranes, interact
with targets, undergo metabolism, or be excreted. Binding to plasma proteins,
primarily albumin (for acidic and neutral drugs) and AGP (for basic and some neutral
drugs), acts as a dynamic reservoir that reduces the f,, thereby modulating both

distribution and clearance.

A low f, (e.g., ~1%) indicates that most of the drug is protein-bound, which typically
limits distribution into tissues, results in a low Vd, slows clearance, and may prolong
the drug’s half-life. In contrast, a high f,, (e.g., >10%) means more drug is available in
its free form, facilitating broader tissue distribution and often leading to a higher Vd

and faster engagement with peripheral compartments.

fu is measured using equilibrium dialysis, ultrafiltration, or ultracentrifugation which
are techniques that estimate the proportion of free versus bound drug in plasma,

typically conducted in vitro using human or animal plasma (e.g., rat, dog).

Vd is determined from in vivo pharmacokinetic studies, typically after intravenous
dosing to avoid absorption bias. It is calculated from early plasma concentration-time

profiles using non-compartmental or model-based methods.

Understanding the relationship between f,, and Vd is essential when predicting tissue
exposure, drug efficacy, and the potential for drug—drug interactions. For instance,
displacement of a highly protein-bound drug by a co-administered compound can

transiently increase f,,, elevate free plasma concentrations, and raise the risk of toxicity.

However, even when f, is high and Vd suggests favorable distribution, access to
certain tissues may still be restricted by biological barriers. The most notable example
is the blood-brain barrier (BBB). Formed by tightly connected endothelial cells, the
BBB blocks paracellular diffusion and actively limits drug entry through a network of
efflux transporters such as P-gP and BCRP. These features mean that only a narrow
subset of compounds, typically small, lipophilic, non-ionized molecules that are not
efflux substrates, can penetrate the CNS. Consequently, less than 2% of small
molecules intended for central nervous system targets successfully achieve therapeutic
brain concentrations, making BBB penetration a major challenge in

neuropharmacology.'>!



117 5.1. MULTI-TASK FOR PERMEABILITY PREDICTION

Research Approach

This chapter presents a large-scale analysis and predictive modeling of absorption data
from both public and industrial sources, examining relationships between major
permeability parameters and unveiling common misconceptions about transport
routes. We employ MTL to develop predictive models for absorption and validate
their performance across diverse datasets, underscoring the influence of protocol
variations on model robustness. Recovery, distribution coefficients, and topological
polar surface area emerge as critical factors in Multi-Parameter Optimization (MPO),
offering clearer directions for lead selection. We also incorporate Generative
Topographic Mapping for chemical space visualization, aiding the identification of

absorption hurdles and refining lead optimization strategies.
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Garbage in, garbage out: An industrial perspective on drug absorption
modeling
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'Laboratory of Cheminformatics, UMR7140, University of Strasbourg, Strasbourg, France
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Abstract

Lead optimization failures are often linked to poor absorption, compounded by strong efflux transport and
low recovery. Here we report a comprehensive analysis and modeling of public and industrial data on
adsorption of organic molecules. Comparative analysis of one pharma-industrial chemical space was used
to examine the relationship between critical permeability parameters. Our findings highlighted
misconceptions in the transport route characterization. We demonstrated the importance of considering
recovery, distribution coefficient, and topological polar surface area during Multi-Parameter Optimization.
A Multi-Task Learning approach was employed for predictive model development. The models built on
the public data were validated on the industrial data, revealing key discrepancies influenced by variation
in experimental protocols. Our analysis emphasizes the model building on proprietary data in industrial
absorption evaluations, which allows to avoid applicability domain issues and standardized measurement
protocols. Finally, the integration of predictive models with Generative Topographic Mapping for chemical
space exploration introduces a novel strategy to better understand optimization challenges. This work
proposes a visual approach for MPO to improve drug discovery efficiency. The developed public models

and curated public datasets are publicly accessible.
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Introduction
The exploration of drug permeability constitutes an essential facet of pharmacokinetics and

pharmacology, serving as a critical determinant in the Absorption, Distribution, Metabolism, Excretion,
and Toxicity (ADMET) profile of drug molecules. This parameter underpins several key aspects,
including bioavailability and therapeutic efficacy of drugs within the human body'. Drug absorption in
general refers to the ability of a compound to cross two different membranes: the intestine and the blood-
brain barrier (BBB). This process is governed by both the drug's physicochemical attributes and the
nature of the biological barriers it encounters. The small intestine, a principal site for oral drug
absorption, boasts heterogeneous cellular architecture and an extended surface area due to the presence
of folds, villi, and microvilli, factors that significantly influence absorption. In contrast, the blood-brain
barrier, which regulates brain uptake, consists of tightly joined endothelial cells that restrict the entry of

most substances to maintain CNS homeostasis?.

Biological membranes act as selective barriers, and their interaction with drugs is influenced by factors
including the drug's molecular size, lipophilicity, and hydrogen bonding capacity, as elucidated by
Lipinski's Rule of Five*. Additional factors such as molecular flexibility and the topological polar
surface area are considered critical determinants for BBB absorption®. The process is even more complex
considering the intricacies of different transport mechanisms. While small molecular entities (SME)
permeate via passive diffusion and active transport, macromolecules require specific mechanisms such
as pinocytosis and receptor-mediated endocytosis. This study, however, focuses on SME absorption,

leaving the endocytosis transport outside of our focus.

In recent years, the focus has shifted towards employing computational methods for a more reliable and
systematic approach to drug development. The evolution of in vitro and in silico models has greatly
enhanced the understanding of drug permeability®’. Particularly, machine learning and data analytics
have been employed to analyze large datasets, paving the way for the development of quantitative
structure—property relationships (QSPR)® 7. These advancements, however, are not without their

limitations. Discrepancies in datasets across different labs and the lack of consensus on optimal
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modeling parameters emphasizes the need for continuous refinement in our understanding and

prediction of drug permeability'®.

The aim of this study is to enrich our understanding of intestinal absorption data, contrasting between
publicly available and industry owned sets. We systematically explore various aspects of drug
absorption throughout the chemical space to pinpoint crucial molecular properties and substructures that
govern permeation (Figure 1). Our approach involved analyzing in-vitro assays to identify discrepancies
in existing permeability models and developing robust in silico models. We propose to use Multi-Task
Learning (MTL) in this context, based on Graph Neural Network (GNN) and Generative Topographic
Mapping (GTM). We report and analyze when this strategy leads to enhanced QSAR models and
highlight synergies (and antagonisms) between datasets. To this end we gathered datasets expressing
specific aspects of permeation: permeability, efflux ratios, and solubility. Pharmaceutical industry data
have been used for validation of models trained on public data. This validation exposed limitations in
public models that we analyze as mostly due to experimental variabilities across the data sources. By
integrating our findings with GTM, we construct a comprehensive absorption landscape map that
elucidates how specific absorption requirements can be achieved and highlights the inherent difficulties

in meeting these criteria.
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Methodology
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Figure 1: Research workflow of the study. Methodology. Progressing from Data Extraction to Chemical

Space Mapping through Analysis, Curation, and Machine Learning (ML) Integration. Transport Route

Characterization. The predictive models embedding is analyzed using chemography approaches and

interpreted for transport route. Findings. To resume our claim regarding permeability, we gathered new

datasets, release new predictive models for 17 public endpoints, ensuring biological and chemical

interpretability.

Background: Drug permeability

Understanding the mechanism of drug absorption is pivotal for optimizing drug efficacy. The absorption

pathways across a cell monolayer include passive diffusion, active transport, paracellular, and transcellular

transport, each contributing to the drug's overall permeability. Employing in vitro models’ assays can
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provide valuable insights into these processes. However, the experimental conditions must be accounted

to avoid misleading analysis interpretations’.

Routes of passage
Paracellular and transcellular pathways represent the main route of drug absorption. While the

transcellular passage is mainly used by lipophilic compounds such as propranolol, the paracellular is
more relevant for hydrophilic molecules of low molecular weight (like mannitol). Drug transport is
function of the membrane surface area and morphology. The lack of microvilli in cell-based assays
reduce the available surface which hinder the paracellular transport of lipophilic compounds, requiring

more time to be absorbed®.

Active transport involves drug transporters. They can be categorized into uptake and efflux types and
belong to two primary transporter superfamilies: the ATP-binding cassette (ABC) and the solute carrier
(SLC and SLCO) families. These transporters can either facilitate or opposes the flux of molecules
resulting of their concentration gradients, thereby influencing the permeability of the biological
membranes, and ultimately, the bioavailability. Efflux transporters like P-glycoprotein (P-gP, MDR1
gene), and multidrug resistance proteins (MRP 1-6) can be considered as acting as a barrier. Found in
tissues like the small intestine, colon, bile duct, and BBB, the P-gP pump prevents the diffusion of toxic

2122

compounds and drugs as, for instance, paclitaxel and etoposide®"**.

In-vitro assay systems
One of the critical aspects of in vitro studies is the choice of the model used to estimate the permeability

in vivo. Various cell lines such as Caco-2 (Cancer colon 2), MDCK (Madin-Darby Canine Kidney), and
artificial membrane models like PAMPA (Parallel Artificial Membrane Permeability Assay) have been
employed to mimic biological barriers®?*. PAMPA, introduced in 1998, mimics the intestinal
epithelium using a hydrophobic filter usually coated with a mixture of lecithin and phospholipids®.
Unlike cellular models, PAMPA focuses solely on passive diffusion. This model serves as a high

through-put primary screening tool in the early stages of drug discovery?*-2.

The relationship between PAMPA permeability and lipophilicity, particularly LogD and LogP, is

complex and subject to ongoing debate. While initial studies indicated a linear correlation between LogD
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and PAMPA, recent research suggests a parabolic relationship with optimal permeability at LogD pH
7.4 PBS (LogD7.4) with values of 2.0 to 5.0 log®. This contrasts with studies emphasizing a strong link
between PAMPA and LogP3. The current consensus, as illustrated by Avdeef, identifies PAMPA as a
valuable tool for permeability assessment. PAMPA is depicted as correlated to Caco-2 while being much
more rapid and cost-effective than Caco-2 and LogP?!. However, comparing PAMPA or PAMPA-BBB

with Caco-2 assays is considered crucial for identifying actively transported compounds.

Caco-2 cells, originally isolated from human colorectal adenocarcinoma, are widely considered the
industry standard for studying intestinal drug absorption?>. These cells spontaneously differentiate into
enterocytes and form tight junctions, mimicking the human intestinal epithelial barrier in 21 days?.
They exhibit both passive and active transport mechanisms*. However, certain limitations exist: the
absence of villi formation and variable protein expression across laboratories*®*, An alternative is the
Madin-Darby Canine Kidney (MDCK) epithelial cell lines, derived from canine kidney tissue. They are
advantageous over Caco-2 for their shorter culture times of 3-7 days****. They are used to estimate
epithelial transport with higher (MDCKI) or lower (MDCKII) monolayer resistance. However, their
non-human origin brings specific challenges: the low activity of transporters expressed by MDCK such
as the P-gP pump make them non valid for mechanistic studies**. Engineered MDCK lines exist to
study specific transport mechanisms. MDCK-MDRI overexpresses P-gP to mimic the BBB efflux,
while MDCK-LE suppresses it, aiming at the assessment of passive permeability. MDCK-MDR1 and
BBB lipid composition are close, making them good model to study Central Nervous System (CNS)

permeability3-3637,

Absorption metrics
To sum up, absorption is measured on in vitro assays that models, schematically, either the intestinal or

the brain epithelium. Absorption is quantified by three parameters that are measured in these assays: the
apparent permeability (Pyy), the efflux ratio (ER), and the recovery (Rec).

The experiment starts by injection of a concentration of drug on the apical (or donor) side of the
membrane while basolateral (or acceptor) compartment drug concentration is null. It ends when the

equilibrium concentrations of the drug on both side of the membrane has been reached (Figure 2).
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Protocol for cell-based permeability assay
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Figure 2: Standard method for the measurement of in vitro permeability. The protocol presents the
cell acquisition and culture, its differentiation, and the control of the Trans-Epithelial Electrical
Resistance (TEER) of the monolayer until the addition of the compound. The readout is the measure of
the compound concentration in the acceptor chamber over time. These readouts are interpreted to deduce

the endpoint values.

Apparent permeability
The Py, quantifies the flux of the drug across the membrane, from the donor (apical) to the acceptor

(basolateral) compartment, relative to the initial drug concentration and the surface area of the
monolayer or membrane. For the measurement of permeability to be accurate and meaningful, it is
essential to maintain sink conditions. These conditions ensure the drug concentration in the acceptor
compartment remain negligeable compared to the donor compartment, emulating drug dispersion by
blood flow in the body. This prevents drug accumulation on the acceptor side, allowing for uninterrupted

transport and reliable measurement. The Py, is defined according to equation ( 1 ):
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p, =2 1 1
WP gt Cy. A (hH

Where:

aQ . . . .
d—f is the quantity of drug transported through the membrane per surface unit of the membrane and time

unit at given moment of the experiment,
Cyis the initial drug concentration on the apical (or donor) side,

A is the surface area of the monolayer or membrane.

Efflux ratio
The ER is a measure of the activity of efflux transporters, which pump xenobiotics out of cells and

maintain a concentration difference between both side of the membrane. It is calculated as the ratio of
the apparent permeability in the basolateral-to-apical direction (involving efflux transport) to the
apparent permeability in the apical-to-basolateral direction (typically involving passive diffusion and
possibly uptake transport). The equation for the efflux ratio is ( 2 ):

(2)

ER = Papp, B-to—A

P app, A-to-B
Where:

P

app, B—to—a 1S the apparent permeability in the basolateral-to-apical direction,
Papp, a-to-p 18 the apparent permeability in the apical-to-basolateral direction.
An ER>>1 suggests active efflux transport and an ER<<1 an active uptake. An ER~1 suggests a passive

transport.

Recovery
Recovery is the amount of test compound that can be accounted for at the end of an experiment. It is

calculated as the sum of the amounts of the compound in the apical and basolateral compartments, relative

to the initial amount. The equation for recovery is ( 3 ):

Qo

Rec
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Where:
Q4 1s the amount of the compound in the apical compartment,
Qg 1is the amount in the basolateral compartment,
Qo 1is the initial amount of the compound.
Recovery is used as a quality control of the assay. A Rec between 80% and 100% indicates that the
assay performance is satisfactory, and that the compound is stable and not extensively bound to the assay
apparatus.
However, several factors can influence the recovery rate. When Rec values are under 80 %, a significant
amount of the tested drug is missing from the experiment, either because it has accumulated in the assay
membrane or assay apparatus, or because the compound being degraded or metabolized. A Rec over
100 % can sometimes be observed. Such discrepancy can be indicative of metabolic process if readouts
are obtained from LC-MS-MS or issue in the analytical part of the assay.*®** Researchers must be
mindful of the intrinsic limitations of each model and metrics, as variability in permeability results from
heterogeneous factors and assay conditions'**. These factors range from laboratory-specific conditions

to intrinsic cell line properties* 2.

Limitations
Early-stage drug candidates are typically engineered with a focus on structure-activity relationship

(SAR) targeting potency toward a protein target and a favorable pharmacological profile. This
optimization often leads to candidates that are lipophilic and possess poor aqueous solubility, sometimes

lower than 0.01 mg/mL.

Stock compound solubility
The low aqueous solubility is a major hurdle when evaluating these candidates in permeability models,

especially those involving cell-based assays like Caco-2. These cells are sensitive to typical organic
cosolvents like dimethylsulfoxide (DMSO) or propylene glycol (PG) and using them at concentrations
above 5% compromises the integrity of the cellular tight junctions, whereas PAMPA assay can be used
up to 10% DMSO. This complicates data interpretation: cosolvents may subtly deteriorate the membrane

and, as the concentration of the tested compound rises in the comportments of the experiment (basal,
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apical or the membrane itself), it may de-solubilize and compromise its quantitative detection. This can

render the data unreliable and impact mass balance recovery?.

Non-specific binding
One of the most pervasive issues is non-specific binding to plastic devices and cells. It impacts the drug

concentration in both the donor and receiver compartments, undermining the recovery and estimation
of permeability. Labware and plastic binding mainly concern highly lipophilic drug candidates.
Intracellular binding, or ion trapping, affects basic compounds by trapping them in lysosomes. This
process is absent from artificial membrane assays*. In cell-based assays, compounds can display a high
membrane retention and a low solubility, leading to a recovery loss. To counteract this effect, it has been
demonstrated that including additives like Bovine Serum Albumin (BSA) or surfactant improves
compounds’ desorption from the membrane***. The rational for the presence of BSA in the acceptor
compartment is to mimic the in-vivo environment where circulating blood induces sink effect. These
conditions reduce the accumulation of lipophilic compounds in the cell monolayer. Lastly, BSA limits
the adsorption on plastic surface and filters. Summing up, the addition of BSA improves recovery while

maintaining the biological relevance of the experimental model membrane.

pH-partition hypothesis
In-vitro assays typically operate optimally at neutral pH, whereas the lumen to blood exhibits as 6.5/7.4

pH gradient*. This difference in pH levels is not trivial; it significantly influences the absorption
behavior of both acidic and basic drug compounds. In-vitro permeability assay can either apply iso-pH
(a pH of 7.4 in the apical and basolateral sides) or gradient-pH media (apical to basolateral pH from 6.5
to 7.4). The iso-pH setup simplifies the experimental design and models better the ileum absorption but
deactivates Di/Tri peptide transporters (PEPT1). The gradient-pH setup is better to simulate general
intestinal absorption but introduces 'false efflux'. The ionic charge difference between the basal and

apical compartment decreases in bases absorption and increase in acid efflux®.

Metabolic enzymes
Cell-based models express enzymes found at the brush border of enterocytes such as alkaline

phosphatase, sucrase, and amino peptidase®. But they also express metabolic enzymes from Phase I

(CYP P450) and II (hydrolases, carboxylesterases, and uridine diphosphoglucuronosyl transferases).

10
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These enzymes play a significant role in metabolizing solutes during permeability measurements,
impacting the mass balance and thus, the measured permeability?'. Yet, they can’t be considered as a
standardized metabolism model as enzyme expression is variable due to dependence upon media pH
and number of passages. For instance, PEPT2 is inactive in iso-pH assay and CYP isozymes are under-

expressed in Caco-2 cells in comparison to human tissues®.

Xenobiotic transporters
As compounds are screened using UM range concentration, active efflux transport may not be limited.

Whereas in vivo the concentration at site can reach mM range, allowing the blockage of transporters and
making the efflux an in vitro artifact. This concerns high dosage compound with low toxicity. In the
other case, the evaluation of efflux is crucial but can be limited*®. The measurement of ER depends on
the quantity of transporters expressed and active by the cells. But this is highly variable as illustrated in
inter-laboratory studies comparing Caco-2 permeability data from multiple teams. This contributes to
the variability of the efflux measurements and foster standardization approach to mitigate discrepancies
in permeability™>?*#°, Efflux activity can be determined by comparing compound permeability with and
without specific P-gP inhibitors, such as verapamil or cyclosporine A. This approach seeks to reduce

variability of efflux measurements.

Key concepts of permeability measurement
The above discussion is summarized below. As it is based on an artificial membrane, PAMPA are

certainly the more reproducible. But it is also the less biologically relevant assay. On the other hand,
Caco-2 and MDCK based assays are impacted by false efflux, variations in the expression of metabolic
enzymes and transporters, accounting for reproducibility issues. The permeability measure is influenced

also by the solubility of the tested compound and its sensitivity to pH (Figure 3).
Interpretation and sanitization of permeability data must consider:

e Minimize cell line variability for standardization: To enhance data reliability, the passage
numbers, variability in protein expression and transporter activity should be minimized.
e Verify recovery to ensure data integrity: Mass balance and recovery rates in assays can

identify issues with compound stability, noise, adsorption, or metabolism.

11
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¢ Incorporate transporter inhibitors to evaluate active efflux: Applying transporter inhibitors
can reveal the contribution of active efflux to the overall permeability. It is not recommended
to fuse datasets prepared with differences in such treatments.

e Limit co-solvents for monolayer integrity: Addition of co-solvent (DMSO) to leverage
solubility issues can deteriorate the cell integrity and the permeability measurement. For this
reason, data acquisition in the presence of DMSO should be considered separately.

e Correctly choose the permeability model: PAMPA mimics an artificial passive diffusion,
Caco-2 models intestinal permeability, and MDCK, the passive diffusion or BBB transport.
Although they are all labeled as permeability data, they should not be confused nor be fused.

¢ Verify the presence of BSA limiting non-specific binding: Addition of BSA limits the loss of
solute through binding to plastic devices, cells, or ion trapping while emulating sink conditions.
This is a source of variability observed in permeability values for a given compound.

o Controlled pH conditions for standardization: Difference between the apical and basolateral
pH influences the absorption process by modulating the activity of xenobiotic transporters.
Therefore, the use of a buffer can be another source of variability.

¢ Reduced solute concentration to avoid transporter saturation: In vitro cell assays use high
compound concentration, saturating transporters and masking the presence of active efflux.

Therefore, it is not possible to fuse data prepared using largely differing concentration ranges.

MDCK-MDR1 Caco-2 MDCK /11
High human P-gP expression pH-dependent mechanism Canine-specific transporters Active
Canine-specific transporters lon trapping phenomenom Variable protein expression T t
Correlated to brain uptake Active metabolic process Inter-assay variability ranspor
PAMPA-BBB PAMPA MDCK-LE
Correlated to brain uptake Labware & plastic binding Suppressed P-gP expression Passive
Labware & plastic binding Relation with lipophilicity Canine-specific transporters Diffusi
Inter-assay variability Sensitive to co-solvent Require additional model fusion
Blood-Brain-Barrier Intestinal

Figure 3: Factors influencing the reproducibility of permeability measurements in permeability
assays.
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Considering the impact of all experimental parameters, data curation leads inevitably to fragmentation
of an initial dataset of permeability to many related smaller subsets, which are more homogeneous and
meaningful both biologically and chemically. This motivates the use of specific machine learning
approaches to maximize the benefit of these data, namely, multi-task learning algorithms.

Materials & Methods

Data source
Public experimental values were recovered from three public databases: OChem™’, ChEMBL?!, and

BindingDB* and used for analysis and validation hereafter. Measurement regarding apparent
permeability, recovery, efflux ratio, solubility, hydration free energy, plasma protein binding (PPB),
partition coefficient (LogP), distribution coefficient (LogD7.4), brain distribution (LogBB), and P-
glycoprotein inhibition (pIC50 P-gP) data were collected (Table S1). For data availability reasons, we
focused on measures obtained from PAMPA, Caco-2, MDCK, MDCK-LE, and MDCK-MDR 1 models.
Additional apparent permeability, distribution, and recovery data were sourced from Sanofi, referred to
as Industrial but not included in the published dataset. Apparent permeability measurements were
converted to cm/s and transformed to a base 10 logarithmic scale for modeling purpose®®. As the efflux
ratio spans multiple orders of magnitude, the values were converted to a base 10 logarithmic scale.

Hydration free energy (HFE) quantifies the energy change when a compound transfers from the gas
phase to an aqueous environment, indicating its solubilization capacity in water. In the context of this
study, HFE is included for two reasons. First, the HFE dataset remains consistent across both academic
and industrial segments, allowing for direct comparison of predictive models using identical
compounds. This consistency is essential for robustly evaluating model performance across different
datasets. Second, HFE functions as a neutral endpoint concerning permeability, providing a neutral
reference to examine interactions between tasks in a MTL modeling approach. This inclusion allows
assessment of whether MTL models affect performance on an endpoint theoretically independent of
permeability, ensuring that any observed synergies or antagonisms are genuine interactions rather than
artifacts of the modeling technique. Thus, integrating HFE into the study is crucial for evaluating the
hypothesis that MTL models do not inherently improve or degrade performance for endpoints like HFE

compared to STL models.

13
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Data curation & standardization
Assay sources were verified by checking methods of measurement (Table S1) to model endpoints with

standardized assay across the dataset. Then, for each dataset, structures were standardized using
Chemaxon’s Jchem (ChemAxon. Jchem Base, version 22.19.0 (2022)) software by removing the salts,
removing stereochemistry, removing the aromaticity before recomputing it, ionizing the structure at pH
7.4 and selection of a standard tautomer. After standardization, several chemical structures appeared
duplicated because of merging different data sources and ignoring the stereochemistry. In case of
duplicated entries, the standard deviation (SDi) ( 4 ) and median of the experimental values were
computed (Table S2, Figure S1-4). Compounds with a standard deviation exceeding 0.5 log units for
apparent permeability and solubility, or 5% for recovery, were excluded. For the remaining compounds,
the median value was defined as the response value when considering more than two measurements;
otherwise, the worst value among the two measurements was used. The resulting dataset is called
AbsSolDB (Figure 4)'.

Ni, (g — )2 (4)

SDi =
l n—1

Where:

e x; denotes each individual observation for given duplicated compound.

e X represents the arithmetic mean of duplicated observations.

14
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Figure 4: Flowchart describing the guidelines followed from compound standardization to data

preparation for modeling. Chemical structures are standardized and ionized using Chemaxon tools.

Experimental meta-data are retrieved and used to filter assays by cell-lines, experimental conditions,

and presence of inhibitors. When several thermodynamic solubility values are available, an entry is

discarded if there is a doubt about which value to keep; otherwise, the median or the smaller value is

conserved.
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Physico-chemical and structural descriptors

To ensure the performance consistency across tasks in Single Task Learning (STL) models, we evaluated
abroad spectrum of descriptor types during model optimization. This approach aimed at exploring diverse
molecular representations, thereby better assessing the limit of models. Descriptors’ calculation was
based only on the 2D structures, justifying that stereoisomers information was ignored. Physicochemical
properties, and Morgan fingerprints (ECFP 4, and 6 of 1024 and 2048 bits) were calculated using RDKit*.
Fragment-based descriptors were computed using ISIDA%. Different combination of fragmentation type
(-t 0 -t 3/6/9”), fragment length (‘-12 -u 3/4/5°), and option (*’,”—UseFormalCharge’, ‘—DoAllWays’,
‘--UseFormalCharge —DoAllWays’) were tested. In total, 36 descriptors set were prepared per dataset.
Diverse CDK fingerprints were generated (LingoFP, SigFP, GraphFP, ExtFP, PubchemFP, SubFP,
AP2DFP, KRFP), and MORDRED 2D descriptors were also prepared. In total, 50 different descriptor

sets proposing diverse approaches to represent compounds were obtained.

Modelling approach
Predictive in silico models
Data Partitioning Scheme

The MTL approach involves certain tasks sharing the same compounds, necessitating their simultaneous
presence in both training and testing datasets. This requirement, coupled with the sometimes-low
effective counts for some tasks, imposes a significant constraint on the composition of cross-validation.
Given the sparse data in certain tasks, a conventional random split would not suffice as all tasks were
accounted at once. To overcome this, we implemented a quantile-based splitting methodology. This
approach was preferred as tasks are processed in parallel even though the datasets are not independent,
as they share certain compounds. It's crucial to acknowledge this interconnectedness when composing
training and testing datasets to ensure that the model is trained on a representative sample of the data.
This technique involves dividing the data distribution of each task into quantiles. We then randomly
sample without replacement a proportion of data from each quantile, corresponding to the desired
training/testing split ratio. This approach not only maintains the diversity of the dataset but also ensures

an equitable representation of data points, particularly tasks with fewer measurements. By splitting all
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tasks at once, train and test set do not share structures between two different tasks, thus preventing a
possible data leakage (Figure 4, S5).

The implementation of this scheme is such that each dataset is partitioned into two subsets: a training
subset, constituting 80% of the total data, and a testing subset, comprising the remaining 20%. Within
the training subset, we perform further stratification to obtain sets for 3-fold Cross-Validation (CV).
Models optimal hyperparameters are optimized during CV by repeatedly training on two sets and testing
on one. This approach is erucial for enhancing the stability and generalization of our predictive models.
For the validation phase, the model is retrained on the training subset using the optimal hyperparameters,
methods, and descriptors identified during CV. This data partitioning scheme is applied to the public
and industrial data. The retrained models are then evaluated on the public test set and industrial test set,
defined here as an external set. The industrial test is orthogonal to the public test. Different modeling

approaches have been applied.

Machine learning algorithms
Random Forest
Random Forest is an ensemble learning technique that constructs multiple decision trees during training

and outputs the average prediction of the individual trees for regression tasks. This approach provides a

robust mechanism to handle noisy data and controls overfitting™’.

Support Vector Regression
Support Vector Regression (SVR) applies the principles of Support Vector Machine (SVM) to fit a

hyperplane in a high-dimensional space in a way that minimizes the error within a certain threshold.
SVR is known for its outlier’s robustness, model’s stability, and reliable modeling of complex non-
linear relationships®.

Generative Topographic Mapping

Generative Topographic Mapping in an unsupervised dimensionality reduction algorithm. GTM
introduces a two-dimensional hypersurface, or manifold, into the initial high-dimensional data space,
typically characterized by N dimensions. The objective of GTM is to mold the manifold so that it
accurately reflects the distribution of the dataset. This fitting process is achieved through the Expectation
Maximization (EM) algorithm, which diligently works to minimize the log-likelihood of the training
data. Upon completion of this fitting phase, each data point is projected onto a two-dimensional latent
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grid composed of K nodes. Within this latent space, data points are represented by vectors of normalized
probabilities, a.k.a responsibilities. These responsibilities essentially quantify the association of each
data point with the nodes on the manifold’s grid®. GTM was employed to visualize the chemical space
landscape, focusing on two key aspects: the density of data points within this space and the spatial
distribution in function of specific properties. In the density landscape, each node cumulates the
responsibilities from all projected compounds. This allows the identification of areas with high and low
density. GTM property landscape were used as a tool to explore a predefined space, allowing for the
analysis of multiple parameters simultaneously® 2,

Chemical content analysis of the map

Interesting regions of a Generative Topographic Map (GTM) are analyzed using the BRICS (Breaking
of Retrosynthetically Interesting Chemical Substructures) approach®. This method involves
decomposing molecules into meaningful substructures based on retrosynthetic principles, which is
useful for identifying structural alerts. BRICS fragments are generated by applying rules to break the
molecule at specific bonds, primarily involving heteroatoms or functional groups, ensuring the
fragments are chemically feasible and relevant.

To analyze GTM regions, we first select a region from the public map and extract public compounds
with a responsibility greater than 0.05 to its occupied nodes. For each of these compounds, BRICS
fragments are generated, creating a list of structural patterns. These patterns are then counted to
determine their frequency within the region. The regions are annotated based on these fragments,
arranged in decreasing order of frequency, highlighting common structural features that may impact
permeability.

Graph Neural Network
Graph Neural Networks are neural networks designed to work with graph-represented data®. Two

architectures based on GNN were employed for this study:
- ChemProp focused on learning molecular representations. It uses Message-Passing Neural
Networks (MPNN) to aggregate information from the local chemical environment of atoms

within a molecule®.
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- AttentiveFP incorporates attention mechanisms to focus on relevant parts of the molecular
graph. The aim is to focus on substructures and relations between substructures within a

molecule®.

Parameter optimization and model selection
Hyperparameters tuning was executed using Sequential Model-Based Optimization (SMBO)®. SMBO

is an application of Bayesian Optimization characterized by its methodical approach to updating the
probability model in a sequential manner. Each evaluation of the objective function using a specific set
of values informs an update to the model, underpinning the concept that, over time, the model will
progressively converge to accurately represent the true objective function optimum.

In this case, the objective function is defined as the Root Mean Square Error (RMSE) of model
predictions—over a predefined parameter space (Table S3). For Generative Topographic Mapping, a
SMBO was used as Bayesian Optimization method®. The free parameters of each machine learning
method used, leading to models exhibiting the lowest RMSE on the internal test set, was identified as
optimal.

Performances metrics

To assess the performance of our regression models, we employ the coefficient of determination (R2),
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) per task. R2 (6) represents the
goodness-of-fit of a model. It reveals how much of the variance in the dependent variable is captured by
the independent variables. It ranges from 0 to 1, where a value closer to 1 indicates better model fit; thus,

it is independent of the units in which a given task is expressed.

RZ—1— Zisavi —90) (6)
PRI G
Where:
n is the total number of observations,
9; is the predicted value for the i-th observation,
y; 1s the actual value for the i-th observation,

¥; is the mean of the actual values y.
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RMSE (7) quantifies the difference between the predicted and observed values per task, penalizing larger
errors more severely by squaring them before averaging. The RMSE is expressed in the units of the given

task and is not too sensitive to the composition of the dataset used to compute it - in contrast to R2.
[1 " (7)
RMSE = —Z i —9)*
Nidi=

n is the total number of observations,

Where:

9; is the predicted value for the i-th observation,

y; is the actual value for the i-th observation.

MAE (8) represents the accuracy of a regression model to a certain task. Compared to RMSE, MAE is less
sensitive to outliers or large errors. It is an arithmetic average of absolute errors.

1" §
MAE =" |y, =9 (8)
N

=1

Where:
n is the total number of observations,
9, is the predicted value for the i-th observation,

y; is the actual value for the i-th observation.

MSE (9) measures the average of the squares of the errors, that is, the average squared difference
between the estimated values and the actual value. It provides a measure of the quality of a predictive

model.

iy . 9
MSE = —Z i —90* )
Nédi=1

These metrics are computed for each task, providing a comprehensive measure of the model's

performance across various aspects of the data.
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Loss function
The MTL models adopt a loss function based on the Mean Squared Error (MSE). Our multi-task loss

function is a weighted sum of the MSE for each task ( 11 ). We opted for fixed weights per task to
compute the multi-task loss function ( 10 ). Weights values are normalized to ensure that their sum
equals 1. As each task has its own units, the weights represent the different scales covered by these units,
maintaining a consistent range of values across all tasks. This ensures a balanced contribution of each
task to the overall loss calculation and effectively outputs real values.

The weights are estimated as follows:

1
|max(values;) — min (values;)| (10)
w; = - 1
Lj=1 max(values; ) — min (values;
j J]

Where:

w; is the initial weight for the i-th task,

values; is the range of experimental values of the i-th task,
n is the total number of tasks.

The multi-task loss function then expresses as:

n
Loss = Z MSE; * w;
= (11)

where MSE; is the Mean Squared Error of the prediction against experimental values for

the i-th task.

Ensemble modeling
The consensus prediction was employed to combine the predictions of multiple models into a unified

one. The consensus prediction (y) is the arithmetic average of predicted values J; by each individual i
model. This allow to also compute a standard deviation of the predicted values that is used as a

contribution to prediction uncertainty.

Applicability domain
The Applicability Domain (AD) of a predictive model represents a specific area within the Chemical

Space (CS) that is well-described by the model's features, effectively marking the boundaries within

which the model's predictions are considered reliable. We defined it as a region based on the proximity
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and similarity of new compounds to those in the training set. We expect to control that predictions are
made on compounds for which the model is relevant.

As each task has a specific dataset, we have defined an AD for each task. As MTL models output
predictions for all tasks at once, some of them are filtered out, if the query compound does not belong
to corresponding applicability domain.

We used One-Class Support Vector Machine (OcSVM)#7 to define the applicability domain. OcSVM
is used to define a boundary around the training set compounds. In AD determination, OcSVM is used
to identify test data points outside that boundary, and thus a prediction about that data point is unreliable.
We set the kernel to Radial Basis Function (RBF) with a gamma value of 107, which adjusts the
expressivity of the kernel to describe the decision boundary. The v parameter, which balances the

model’s sensitivity to outliers, was optimized during AD development.
Absorption Score (AS)

Scoring compounds to identify potential leads within a given chemical space is a key strategy in drug
development. We introduce an Absorption Score (AS) to reflect the desirability of a compound from an
absorption perspective, integrating solubility, efflux, and permeability into a single metric. The AS aims
to pinpoint regions within the chemical space that consistently exhibit undesirable absorption
characteristics, providing higher confidence in the assessment.

To calculate the AS, solubility, permeability, and efflux measurements are first discretized into
"desirable”" and "undesirable" groups based on literature-derived thresholds (see Table S2). Each
endpoint is analyzed on a GTM of the chemical space, producing class landscape colored with a
“desirability” scale from 0 to 1. Merging these landscapes generates consensus desirability landscapes,
which combine endpoints into a unified view.

For instance, the consensus solubility landscape aggregates kinetic, apparent, and water solubility data.
The consensus score (Sc) ( 12 ) for each node in these landscapes is computed as the weighted sum of
the individual endpoints, with each endpoint modulated by its respective sum of responsibilities within

the node. The formula for the node desirability score is:
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_ Yi=1(Stnoge.i * Rtnode,i) (12)
Z?':]_ Rtnode,i

Scnode -

where St;,qe,; Tepresents the predicted desirability score of the ith endpoint on a given node of the map,
and Rt, 40 ; denotes the corresponding responsibility. This approach emphasizes the impact of each
endpoint based on its relative importance, as indicated by its responsibility on a given region of the
chemical space.

Consensus landscapes were computed for solubility (kinetic, apparent buffer, water), efflux ratio (Caco-
2, MDCK-MDR), and apparent permeability (PAMPA, Caco-2, MDCK, MDCK-MDR1, MDCK-LE).
These consensus landscapes enhance the reliability of mapping experimental values within certain
regions. To facilitate this multiparametric visualization we propose to merge the three consensus
landscapes, defining the Absorption Score ( 13 ).

The AS provides a nuanced analysis of the chemical space, integrating solubility, permeability, and
efflux in one metric. The formula for the AS is:

SCPapp if SCPapp > 05 (]J’)
Absorption Score = { Scgfrx — SCsowubitity

2
The AS ranges from -0.5 to 1. AS from 0.5 to 1 indicates acceptable permeability, for which the impact
of any undesirable efflux or solubility issues is not considered. In the other case, if AS is comprised
between -0.5 and 0.5, this indicates a suboptimal permeability (Scpepp < 0.5). This sub-range helps

identify whether the permeability issues arise from efflux or solubility:

— AS tends to -0.5: Indicates that the compound has desirable solubility properties but undesirable
efflux.

— AS tends to 0.5: Indicates that the compound has desirable efflux properties but undesirable
solubility.

— AS close to 0: Suggests that both efflux and solubility are equally problematic, or that other

factors are contributing to the poor permeability.
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By emphasizing regions where permeability is a limiting factor, the AS facilitates the identification of

problematic areas within the chemical space.

Results

Data characterization
To better estimate the relationship between the different endpoints, we conducted dataset analysis

focusing on structural redundancy and correlations between tasks (Figure 5).
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Figure 5: Redundancy and correlation matrices as hierarchical heatmaps. Redundancy matrices

are asymmetric. Bottom-left section of the matrices represents the Xj; ratio, of chemical compounds

from the i" data set within the j" data set. Top-right represents Xji ratio, of chemical compounds from

the j™ data set within the i data set. (a) Public. (b) Industrial. Spearman correlation P;; matrices are
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symmetric computed using experimental values from shared chemical compounds between the i dataset

with the j* dataset. (c) Public. (d) Industrial.

Public

Public datasets include few shared structures between the endpoints (Figure 5a). Large coverage
concerns MDCK-MDR1 permeability with efflux, and hydration free energy with water solubility and
LogP. This limited redundancy suggests a diverse yet fragmented chemical space from public data. The
correlation analysis (Figure 5c) further elucidates this point. Despite the low coverage, strong
correlations are observed, particularly in the inverse relationship between LogP, LogD and solubility,
and the positive correlation among MDCK, Caco-2, and PAMPA permeability, which are correlated to

efflux.
Industrial

In contrast, industrial data (Figure 5b) exhibit greater coverage. This is particularly evident for LogD7.4,
apparent solubility, and permeability assays. Weak coverage is observed for LogP, P-gP pIC50, and
PPB, aligning with the industry's focus on solubility, permeability, and LogD-.4. This illustrates the more
systematic research implemented in drug discovery within industry to characterize compounds of
interest. The correlation matrix (Figure 5d) shows consistent patterns but with weaker correlations in
solubility: differences between the various types of solubilities is more evident.

Comparative insights

Despite their wide-ranging nature, public datasets exhibit significant variations in chemical space across
different endpoints, stemming from their compilation from numerous studies. Yet, their strong
correlations suggest intrinsic links between the tasks. Industrial data include multiple high coverage and
positive/negative correlations between tasks.

Data analysis
To elucidate the links between endpoints, we investigated the dependencies between tasks with strong

positive or negative relations (Figure 6).
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Figure 6: Correlation between absorption endpoints. The color code stands for the density (left
column), Lipinsky score (right column) and, in the middle column recovery Caco-2, tPSA and LogD7.4.
(a) Caco-2 permeability against PAMPA permeability (b) Caco-2 efflux against Caco-2 permeability.

(¢) Caco-2 recovery against PAMPA recovery.

Permeability from PAMPA to Caco-2

In comparing apparent permeability between Caco-2 and PAMPA models, it is observed that Caco-2
permeability is generally lower. Literature”' indicates passive diffusion for compounds adhering to the
x=y trend and suggests the involvement of active efflux mechanisms for instances where Caco-2 <<
PAMPA. Conversely, instances of higher Caco-2 permeability than PAMPA is suggested to be

characterized by an uptake process.
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Efflux & permeability from Caco-2

Analysis of the Caco-2 apparent permeability against the efflux ratio revealed a strong inverse
correlation, emphasizing molecules with a high efflux ratio typically have a topological Polar Surface
Area (tPSA) above 120 A2, This observation is in line with Lipinski's tPSA criterion to mitigate efflux

effects’.

Recovery from PAMPA to Caco-2
Investigation into the recovery rates between Caco-2 and PAMPA models unveiled that higher recovery

in Caco-2 compared to PAMPA often correlates with increased permeability, potentially highlighting
the role of metabolism or experimental noise. Specifically, anomalies in Caco-2 recovery exceeding
100% may hint at an overestimation of measured permeability, whereas recoveries below 60% could
indicate its underestimation due to non-specific binding or metabolism. The comparative analysis
between Caco-2 and PAMPA requires using recovery to elucidate this possible bias.

Recovery & permeability from PAMPA & Caco-2

A focused study on the correlation between recovery and apparent permeability across both Caco-2 and
PAMPA models revealed a complex relationship. Optimal Caco-2 was found in compounds with a tPSA
below 120 A% and a LogD14 below 3 log, aligning with Lipinski's rules®. The PAMPA model, however,
displayed a nuanced relationship where high LogD-.4 compounds often showed increased permeability
but with potentially reduced recovery due to non-specific binding, especially in compounds exhibiting
high lipophilicity (LogD74 > 3) (Figure S6). This pattern is indicative of potential issues with non-
specific binding in the PAMPA assay, particularly for compounds exhibiting high lipophilicity.

Our analysis further reveals that compounds achieving favorable permeability values in PAMPA
frequently may display an unfavorable profile when assessed with more biologically relevant assays as
exemplified with Caco-2. These observations tend to suggest that PAMPA could be a replacement for
LogD7.4 measurements and vice versa. Specifically, high Py, values in PAMPA tend to favor compounds
with elevated LogD7.4 values, which, according to Caco-2 data, are often associated with lower recovery
rates. LogD7.4, known for its high reproducibility, emerges as a crucial indicator of PAMPA recovery in
our study. Particularly, we observed that when LogD;.4 is equal to or greater than 3, the recovery rates

in PAMPA assays often fall below 60%. This finding underlines the enduring relevance of LogD7.4 as a
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reliable measure of hydrophobicity. Coupled with Caco-2 permeability and tPSA data, LogD7.4 forms a

robust triad of parameters, facilitating effective multi-parameter optimization in ADMET profiling.

Application of predictive models
Here we examine the efficacy of MTL in comparison to other ML methods. Each model was trained

using the same train set and the best parameters identified following CV (Table S4). Their performances
were then assessed on both public test sets and external industrial sets. The prediction from the best
performing models on the test set are presented (Figure 7). Particularly noteworthy is the consistently

superior performance of MTL and RF-STL algorithms on the public test set (Figures S7-9).
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Figure 7: Correlation between experimental and predicted properties. (a) Public test (b) Industrial
test. The coloration depicts the density of compounds as the base-10 logarithm of the number of unique
compounds. MTL: MTL-GNN using ChemProp; GNN: ChemProp STL; ATT: AttentiveFP STL; RF:
RandomForest STL; SVR: Support Vector Machine STL; GTM: Generative Topographic Mapping
STL.

Analysis of the model performance on the (industrial) external validation set (Figure 7b) revealed good
agreement with experimental data overall but failed for certain endpoints: Caco-2 permeability, PAMPA
permeability, efflux, and LogBB. We formulated three hypotheses to interpret these inconsistencies.
They may stem from (i) chemical space differences between datasets, (ii) experimental condition
variability, or (iii) data quality.

Employing an ensemble approach, which involves averaging the predictions of all models for each
compound to improve accuracy and robustness, highlighted collective failures in predicting apparent
solubility and Caco-2 permeability (Figure S10). Collective failures define the consensus of predictions
from multiple models systematically failing, resulting in high variability in consensus prediction errors
for these two endpoints. This indicates that compounds were consistently predicted incorrectly across
the models for these specific endpoints.

While public and industrial data share the same “apparent solubility” and “Caco-2 permeability” labels,
they correspond to different experiments. Industrial data do use BSA and efflux computation is different
from public data (Table S1). Apparent buffer solubility from public datasets uses other protocols
compared to our industrial data. Using industrial data to develop MTL models (Table S5) showed good
performance on an external industrial dataset (Figure 8). Models trained on industrial data appear to be
more robust, probably reflecting the more systematic approach in data acquisition. The issue is therefore

not much into the quality of the public datasets, but that they do not compare to industrial data.

30



CHAPTER 5. MODELING OF DRUG ABSORPTION

148

PAMPA-BBB

MDC GLE Pe-meability

Caco-2 Efflux

1584 -
- ax100 =l
A1 ® 6x10° 2
251 a
—ag 3x10° N 102
< 4% 10 g
2 » o .
5-52 - #. 3% 10° - 5
B 2 2x10° A K
E 5gl® s .
561 ee** 2% 10° 10 5
2 1 <
-604 7" 3
Il o
10° 10° o o 10°
—€.0 5.6 ~5.2 ~4.3 44 65 6.0 55 5.0 —45 0 1 ¢ 39 2511584
MDCK dermeabil ty MDCK-MDR1 Permeability Caco-2 Permezhility
3x100 o o
as I% 6x10° 100
% o H
50 4x10° - EL
e ~ 2x10° 0 107 5
H 3%10° M
2 58 2
3 3
o 2107 " E
w0 i E
60 w2
65 z
100 10 o 100
=65 =60 -5 =50 —d4.5 —55 —6.C -55 -50 —4.5 —7.2 —64 —56 —48
10gP P-3P p C50 100 MNCK-MNRT Fflux Kinetic Solubility
7 -
’ .8
ax10° 1005
g
ot £
H 3x10° . g
3 5
3 . 100 5
a 2x10° E
5
H
g
ne o 10%
2 0 z 4 6 a 5 13 7 8 1 3 15 63 251 —5.6 —52 -4.8 4.4 -1
Aoparent Solubility Hydraticn tree Energy
ox10° 8
107 H
: 108 axe g
s 3x10°%5
10-
& 2o €
2
2
3
g
100 10v 100
5.6 5.2 —48 4.4 —4.0 % 5 4 -3 2 16 12 & 4 D
E il tal
. Caco-3 Recovary PAMPA Racovery “perimenta
5
E
€109 102 é
E
s 4100 &
% 3x10° "l:
2 5
& ot
25100 z
e
10" o

-l€ -08 00 08 16
Experimental

20 a0 6 80 103
Experimental

15 30 45 50 75 90
Exparimentz!

Figure 8: Correlation between experimental and predicted properties from industrial model on
industrial test set. The coloration depicts the density of compounds as the base-10 logarithm of the

number of unique compounds.

Applicability domain
In this study, we built Applicability Domain (AD) models utilizing latent space representations of

compounds, derived from the public MTL-GNN model. This model was selected for its adept
representation of the drug absorption space and reliable performances.

For the AD models, the One-Class Support Vector Machine (OcSVM) was employed. These models
were trained on latent vectors (LV) representation of the training dataset and tested on the LV

representation of the test set. Each endpoint uses a different OcSVM applicability domain, with its own
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v parameter value. The v parameter measures the partition of data that is out of the AD. By default, it
has been set to 0.2. For some endpoints, we observed that the in-AD performances did not change when
increasing this value, while for others, a plateau was achieved for larger values. These observations are
compiled in the Table 1. The optimized models were subsequently applied considering AD to both
public and industrial datasets.

Few endpoints, including PAMPA-BBB, MDCK-LE permeability, PPB, and HFE, were significantly
influenced by the AD. The RMSE improvements for PAMPA-BBB and HFE can be attributed to low
amounts of data and sparse coverage of the chemical space. Models trained on public data were then
applied to industrial data with and without AD. In most cases, the application of AD resulted in an
improved RMSE: for apparent solubility, LogD74, PPB, we observed marginal RMSE reductions of -
8%, -10%, and -7% respectively. Yet, the performances of public models on industrial data are
disappointing. Using an AD did not solve this issue. Therefore, the generalization of the public models
to private data cannot be explained by the content of the public and industrial chemical spaces. We
hypothesize that there shall exist some other discrepancies regarding the definition of the endpoints in
public databases compared to the industrial data sources.

Table 1: Endpoint Performance of models trained on public data, with and without applicability
domain on public and industrial test sets. The outlier sensitivity represents the v parameter of the

OcSVM and the % Out the ratio of compounds defined as Out of Applicability Domain.

Endpoint Assay Outlier RMSE Public RMSE Industrial
Sensitivity w/o AD wAD % Out wio AD  wAD % Out

Efflux Ratio Caco-2 0.2 0.51 0.48 0.12 0.72 0.70 0.05

MDCK-MDR1 0.2 0.38 0.34 0.13 - - -
Caco-2 0.4 0.53 0.51 0.26 0.92 0.92 0.06

MDCK 0.2 0.49 0.45 0.11 - - -

Apparent MDCK-LE 0.5 0.39 0.35 0.51 - - -

Permeability =~ MDCK-MDR1 0.2 0.32 0.31 0.17 - - -
PAMPA 0.6 0.47 0.46 0.10 0.72 0.70 0.09

PAMPA-BBB 0.2 0.29 0.25 0.24 - - -

Inhibition pIC50 P-gP 0.2 0.52 0.51 0.16 - - -
LogSupp 0.2 0.62 0.56 0.10 1.14 1.04 0.04
LogSkin 0.2 0.41 0.40 0.11 0.43 0.42 0.11

Lipophilicity LogSw 0.4 0.80 0.72 0.12 - - -
LogP 0.4 0.50 0.50 0.13 0.77 0.76 0.09
LogD74 0.6 0.60 0.56 0.10 0.98 0.91 0.04

HFE 0.2 0.96 0.91 0.09 - - -
Distribution LogBB 0.4 0.41 0.37 0.24 0.67 0.64 0.10
PPB 0.6 16.76 13.45 0.43 14.5 13.5 0.32
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Interpreting the absorption chemical space
Absorption is a complex process influenced by numerous factors, including solubility, non-specific

binding, efflux, metabolism, and distribution. To computationally dissect this phenomenon, we focused
on poorly permeable compounds within the chemical space. We used the GNN-MTL embedding of
these compounds to represent the chemical space using a GTM. The number of traits, the RBF width
and the regularization were optimized to enhance the GTM's performance in predicting all defined tasks
(Table S6). The optimal parameters (number of traits: 80; RBF width: 1.0; regularization: 0.01) were
utilized to train a GTM on a 30,000 compounds Frame Set. All compounds were then projected onto
this map. The maps were color-coded based on the cumulative sum of responsibilities, a.k.a density
landscape (Figures S11 & S12), and the endpoints experimental values of each compound, a.k.a property
landscapes by continuous values (Figures S13 & S14) or classes based on expert-defined medicinal
chemistry threshold (Figure S15 & S16, Table S2). An additional score was generated by categorizing
experimental values into 'good' or 'bad' classes (see ‘Absorption Score (AS), Table S2). This class
landscape was superimposed, and scores were summed, using responsibility as a weight for
permeability, solubility, and efflux (Figure S17). In this representation, an overall desirability score was
plotted (Figure 9), considering all experimental tasks.

This plot highlights numerous clusters of low interest, where multiple endpoints concur on the
problematic characteristics of certain subspaces. Numerous clusters with low scores can be observed
within the public and industrial landscapes, demonstrating their high resolution (Figure 9b).
Comparing the landscapes of efflux, permeability, and solubility we identified subspaces where poor
permeability stemmed either from poor solubility, high efflux, or both (Figure 9c). In this map, red areas
indicate poor permeability related to high efflux, blue to poor solubility, and darker spaces indicate both
high eftlux and low solubility. Since a color on Figure 6¢ can be obtain only of all needed experimental
properties are provided, there are more regions where such color could not be computed. This mapping
identifies highly undesirable spaces. It aids in optimizing compounds by signaling potential new

solubility limitations when attempting to reduce efflux.
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density landscape aggregates projections of all molecules in the datasets. The overall score landscape
integrates all endpoints. The Absorption Score landscape, transitioning from red to blue, denotes areas
where permeability is influenced by either efflux, solubility, or both. Grey areas are associated to good

permeability, unaffected significantly by either efflux or solubility issues.

Identification of undesired fragments
As explained in paragraph “Chemical content analysis of the map”, the public maps were analyzed using

BRICS. For solubility issues, fragments like polychlorophenyl, steroids, perfluoro, and alkoxy acyl were
identified. For efflux concerns, fragments such as long chains, adamantane, macrocycles, and alkoxy
acyl were highlighted (Tables S7 & S8; Figure S18 & S19).

The most frequent BRICS from undesirable regions (Figure 10) revealed compounds like tri-sulfinates,
steroids, and macrocycles associated with poor solubility, and benzosulfones, small cyclopeptoids with
poor permeability due to high efflux. This analysis suggests chemical modifications to improve the

permeability while avoiding introducing new issues.

34



CHAPTER 5. MODELING OF DRUG ABSORPTION 152

Figure 10: Structural analysis of major BRICS in problematic subspaces. Areas in red and blue
represent poor permeability due to efflux or solubility, respectively. Darker areas indicate the co-
occurrence of both issues. The chemical substructures are the most frequent BRICS found in the

chemical space regions framed by the corresponding boxes.

Case Study

To evaluate the GTM map's capability to accurately differentiate between compounds with desired and
undesired properties, particularly within highly similar congeneric series, we projected the series from
the study by Degorce et al.”. Their work focused on developing a series of IRAK4 inhibitors that are
orally efficacious, aiming to overcome the challenges of low permeability and high efflux encountered
in pyrrolopyrimidine series. Their approach involved optimizing substituents on a pyrrolotriazine core,
leading to the identification of compound 30 (Figure 11) resulting from the permeability optimization
of this study. This section seeks to evaluate the map’s capability to monitor this published optimization

procedure and its ability to identify compound 30.
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Figure 11: Analysis of the projection of the pyrrolotriazine series. Compounds are annotated with
their series ID and in parenthesis, the measured efflux ratio from Caco-2 assay. Areas in light red
represent poor permeability due to strong efflux. Light grey colored areas indicate compounds with low

efflux and high permeability.

The analysis displays a consensus landscape that groups structurally similar compounds. Despite their
similarities, these compounds are divided into distinct subspaces tied to specific structural traits, such
as the presence of morpholine and oxane substituted pyrrolotriazine within the upper cluster. This spatial
organization not only separates compounds based on efflux and permeability but also places structurally
similar compounds in different subspaces of permeability profile.

Analysis of synergetic and antagonistic tasks within MTL

To evaluate the interplay effects between different ADMET endpoints in MTL versus STL, we analyzed
the RMSE variations of the public and industrial GNN performance when applied to their respective test
set. Our objective was to understand how the tasks in MTL affects predictive performance compared to

STL, particularly considering dataset size.
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Figure 12: Analysis of synergy and antagonistic effects in GNN MTL versus STL models (a) Public
data (b) Industrial data. The size of the point is proportional to the size of the dataset. Points in red
represent permeability endpoints, blue represent solubility endpoints, and black represents the HFE, the

neutral task. White dots indicate other tasks.

The analysis reveals that for both public and industrial models, the MTL improves RMSE for smaller
permeability datasets but degrades performance for unrelated tasks such as HFE, with an RMSE increase
exceeding 30% (Figure 12). Larger datasets (>1000 compounds) tend to perform better with STL.
Comparing public and industrial datasets, we find that industrial datasets, particularly those related to
permeability, show minimal performance differences between STL and MTL due to higher data quality
and quantity. These findings indicate that MTL can enhance predictive accuracy for related smaller tasks
but may hinder performance for unrelated tasks, emphasizing the need for careful task selection and

consideration of dataset characteristics in MTL applications.

Discussion and Conclusions
The present work addressed misconceptions in SME permeability and showcased the efficacy of MTL-

GNN models for ADMET optimization through GTM. Traditional optimization processes have largely
depended on Caco-2 and PAMPA studies to delineate transport pathways'*"7. Over the year, the
development of drug-likeliness filters*’®77 has aimed to ease the identification of undesired properties.

Our investigation illustrated the discrepancies between public and industrial data. However, we aimed
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to go beyond and formalize the differences between these data sources. Hence, this work aims to provide
a clearer and more comprehensive perspective on permeability challenges. Additionally, it introduces
an explainable and predictive approach for SME permeability optimization.

Our comparative analysis of PAMPA and Caco-2 assays for assessing transport routes reveals
misconceptions. First, low-to-high permeability compounds in PAMPA/Caco-2 assay comparison may
be attributable to labware binding, rather than solely to active efflux mechanisms™. Secondly, instances
where Caco-2 permeability surpasses PAMPA permeability —previously attributed to uptake—may
reflect high recovery rates influenced by metabolic processes or experimental noise. This emphasizes
the critical role of metabolic data, acquired through LC-MS/MS, in refining permeability evaluations?®.
Our research elucidates the relationship between LogD;7.4 and non-specific binding in PAMPA models,
which adversely affects apparent permeability measurements. The impact of LogD74 in drug

permeability is well-documented’®*

, with poor LogD7.4 values frequently indicative of permeability
issues. Yet, we observed compounds with suboptimal LogD7 4 and unreliable PAMPA permeability, as
further investigations revealed compromised recovery due to non-specific binding to labware. These
observations underscore the limitations of PAMPA assays. Recovery issues lead to underestimated
apparent permeability values. The identified optimal recovery range (80% to 95%) is consistent with

prior studies*>*!

, reinforcing its importance for data analysis and curation.

Moreover, efflux mechanisms markedly affect the permeability of drug-like molecules. We report clear
correlation between topological polar surface area and efflux, consistent with previously reported
observations®*>®, across various cellular models, establishing tPSA as a consistent efflux determinant.
The application of publicly available models to industrial data highlighted significant limitations,
particularly when slight variations in experimental conditions led to model inaccuracies. This is
exemplified in the assessment of Caco-2 permeability, where the inclusion of BSA has an impact on the
model's performance on low permeability compounds*#!. Despite these challenges, our findings suggest
that industrial datasets, characterized by consistent parameters and standardized protocols, provide a

solid basis for QSPR models with improved performances. All the modeling approaches have been

optimized on the public data, and successfully transposed on the industrial data. This demonstrates the
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advantage of employing public architectural frameworks with industrial data. On the other hand,
application of models trained on public data to the industrial setup was in some cases disappointing.
Utilizing the latent vectors from the GNN-MTL models, we achieved high-resolution mapping of the
chemical space, integrating it with experimental data for enhanced insight. This approach offers a refined
understanding of the chemical factors influencing drug permeability, namely solubility issues and efflux.
The ability to derive a consensus experimental landscape for ensemble scoring, defines a novel method
to explain ADMET failure.

We expect such analysis to be applicable to the entire ADME-Tox and target inhibition spectrum. Such
methods would be beneficial for consensus ADMET profiling and the identification of binding to anti-

target families.
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BBB: Blood-Brain Barrier
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BSA: Bovine Serum Albumin
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EM: Expectation Maximization
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MPO: Multi-Parameter Optimization

MSE: Mean Squared Error
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P-gP: P-glycoprotein

PPB: Plasma Protein Binding

OcSVM: One-Class Support Vector Machine
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Table S1: Description of the endpoints and their conditions of measurements.

Endpoint

Assay

Source

Conditions

Unit

Efflux Ratio

Caco-2

Industrial

LC-MS/MS
Transport Time: 2h
TC7 Cell Lines
Plate Type: Becton D24 Well 1.0 pM
Passage Number: 35-72
BSA A/B: 0.5/5 %
Concentration: 1-10 pM

log10(Papp-clacridar/Papp-wo-etacridar)

Public

Passage Number: 20-100
BSA: 0 %
Concentration: 1-10 uM

logi0(PappBa/Pappas)

MDCK-MDRI1

Public

Passage Number: 20-100
BSA: 0 %
Concentration: 1-10 pM

logio(Pappsa/Pappas)

Apparent
Permeability

Caco-2

Industrial

LC-MS/MS
Transport Time: 2h
TC?7 Cell Lines
Plate Type: Becton D24 Well 1.0 uM
Passage Number: 35-72
BSA A/B: 0.5/5 %
Concentration: 1-10 pM

log10(Papp)

Public

Passage Number: 35-72
BSA A/B: 0 %
Concentration: 1-10 uyM

1og10(Papp)

MDCK
MDCK-LE
MDCK-MDR1

Public

Passage Number: 35-72
BSA A/B: 0 %
Concentration: 1-10 uM

log10(Papp)

PAMPA

Industrial

PION double sink
LC-MS/MS
Transport Time: 2h
Membrane: GIT
Temperature: 22°C
Concentration: 1-10 uyM

log10(Papp)

Public

pH A/B: 7.4/7.4
Concentration: 1-10 uM

log10(Papp)

PAMPA-BBB

Public

Brain lipid extract membrane:
PC, PE, PS, PBLE, PVDF
DMSO 0-5%

log10(Papp)

Inhibition

pIC50 P-gP

Public

MDCK-MDRI1 cell line
Rhodamin 123/Digoxin substrate

log10(IC50)

Physico-Chemical

Apparent
Solubility
(LogSupp)

Public

Phosphate buffer 0.1 M.
At 25+5°Celsius and pH 7.4+1 log.

logio(M)

Industrial

Phosphate buffer 0.1 M.
At 2545°Celsius and pH 7.4+1 log.

logio(M)

Kinetic
Solubility
(LogSkin)

Public

Concentration: 10 mM DMSO
Temperature 25°Celsius
PBS Buffer pH 7.4

logio(M)

Industrial

Concentration: 10 mM DMSO
Nephelometer (Industrial)
Temperature 25°Celsius
PBS Buffer pH 7.4+1 log.

logio(M)

Water Solubility
(LogSw)

Industrial

Shake-Flask/Column elution
Pure water
25+5°Celsius
pH 7+1 log.

logio(M)

LogP

Public

Temperature: 22-25°C
HPLC / ShakeFlask
pH 7+1 log
Pure Water

logio(Coctano/ Cwater)

Industrial

Temperature: 22-25°C
HPLC / ShakeFlask
pH 741 log
Pure Water

log10(Coctanal/ Cwater)

LogD7.4

Public

Temperature: 22-25°C

10g10(Coctanol/Chutrer)
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RP-HPLC / ShakeFlask
pH 7.4 PBS

Temperature: 22-25°C
Industrial RP-HPLC / ShakeFlask
pH 7.4 PBS

1og10(Coctanol/Chuter)

Hydration Free

Encrey (HFE) Public Alchemical free energy

logio(kcal/mol)

Rat

Public Matrix: Plasma

1-(Cree/Crota)* 100

Rat
Plasma Protein Temperature: 37°C
Distribution Binding (PPB) Supplier: Harlan
Matrix: Plasma
Concentration: 5-25 pM
LC-MS/MS

Industrial

1-(Crree/Crota) ¥ 100

Ratio Public Rat
Brain/Blood Intravenous administration

AUCsnin/ AUCglood

(LogBB) Industrial Rat .. .
Intravenous administration

AUCBnin/ AUCBlood

Permeability data were excluded if:

e 1o continuous value was available.

e no information was given about the data sources.

e measurement was done in presence of MDR1 or CYP P450 inhibitors/inducer.

o the flux was measured from compartment B to A for Pg.
o the flux was evaluated after more than 100 passage.

o The TEER was lower than 200 ohm.cm2 for Caco-2 and 150 for MDCK

To avoid conserving experimental values measured below or above the limit of quantification.
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Table S2: Comparison of unique molecules count before and after curation for each endpoint.

Endpoint Assay Source All % of public Threshold Reference
Cacor P 2,355 100 D <03 !
Efflux Ratio I 5,752 0 D <03 !
MDCK-MDR1 P 3,237 100 D<05 2
Caco P 1,228 100 -55<D Industrial
[ 80,440 0 -55<D Industrial
MDCK P 317 100 -5.0<D 3
Apparent MDCK-LE P 697 100 -5.0<D +
Permeability MDCK-MDRI P 407 100 -55<D s
PAMPA-BBB P 559 100 -53<D 6
I 15.463 0 45<D Industrial
PAMPA P 2,343 100 45<D Industrial
i 1.353 49 00<D 6
Distribution LogBB P 666 100 00<D 6
I 13.437 58 90.0 % <D 7
PPB
P 7.841 100 90.0 % < D 7
Recovery Caco-2 I 19067 0 80.0 % <D Industrial
PAMPA I 71,986 0 80.0 % <D Industrial
Inhibition pIC50 P-gP P 1,141 100 D<6.0 Industrial
LogSun I 83,246 0 -40<D !
P 4,915 100 -40<D !
LogSun P 43386 100 -50<D Industrial
I 59,501 73 -5.0<D Industrial
. e LogSw P 7,957 100 40<D 8
Lipophilicity P 10,627 100 D <40 [
LogP i 13.060 81 D <40 !
LogDrs P 5.315 100 D<4.0 !
I 128,243 4 D <4.0 !
HFE P 618 100 D<4.0 9

P : Public
I: Industrial

D : Desired range of measurements in a drug discovery context
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Figure S5: Distribution of experimental Measurement after train and test Split. (a) Public (b)

Industrial.

Table S3: Hyperparameters search space per public STL model.

Model Hyperparameter Possible values
RF max_depth [-, 10, 20, 30]
n_estimators [100, ..., 500]
C [0.1, ..., 10]
SVR Epsilon [0.01, ..., 1]
kernel [rbf]
N_nodes [2000, ..., 5000]
N_rbf 30, ..., 80
GT™ Width_rbf [0[.001, s 1]0]
Regularization [0.01, ..., 100]
ffn_hidden_size [200, 300, 400]
ChemProp fin_num layers [1.2,3]
fingerprint_dim [200, 300, 400]
AttentiveFP radius [2,3,4,5]
T [2,3,4,5]

11
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Table S4: Optimal values of hyperparameters per public STL model.

Endpoint Assay RF SVR GTM ChemProp AttentiveFP
R Caco-2 9.5_1,-242 9.5_1,8.85,0.38 0.5.2,4245,43 200, 2 200, 3, 4
Efflux Ratio 5 N . 5
MDCK-MDR1 3.4_0,30,279 3.5.1,09,028 3.4_1,3700, 62 200, 3 300, 5,5
Caco-2 9_3_1, 30, 298 9.3.0,9.50,0.07 PCFP, 4660, 76 300, 2 200, 5,2
MDCK 9_4_3,30,356 9.5.0,1.45,0.11 9_4.0, 3490, 63 200, 2 400, 3,4
Apparent MDCK-LE 6_3.0, -, 469 3.4_1,5.86,0.02 3_4_0,3690, 70 400, 1 200, 4,3
Permeability MDCK-MDR1 6.4_1,-,413 6.4_1,5.47,0.65 642, 3606, 56 200, 3 200, 4,5
PAMPA 9.4.1,-,477 6.5_1,4.85,0.12 6_4_0, 3020, 56 4002 200, 3, 4
PAMPA-BBB 930,20, 446 9.3.1,7.65,0.18 Ecfp6_2048, 2300, 46 300. 1 300, 4,3
. PPB 6.33,- 199 6_3_1,5.85,0.57 Rdki2D, 3660, 39 200, 1 400, 3, 4
Distribution N N n o
LogBB 9.5.2,30, 185 9.5.2,7.4,031 SubFP, 3600, 59 300, 2 200, 4, 4
Inhibition pLC50 P-gP 6_5_0,30, 432 9.4.3,1.77,0.81 EXIFP, 4180, 37 300, 3 400,5,3
HFE 9_4_3,20, 338 9.3.0,5.65,0.21 9.3_3, 2700, 56 200, 1 200, 4, 4
LogSup Rdkit2D, 30, 300 6.5_1,9.87,0.18 9.3_2,2420, 61 200, 3 200, 4,3
. o LogSk Mordred, -, 323 Rdkit2D, 6.9, 0.40 Rdkit2D, 2295, 64 200, 2 300, 3,5
Lipophilicity it2 2 it2 2 2 2 2
LogSw Rdkit2D, -, 300 Mordred, 9.5, 0.2 Rdkit2D, 4200, 72 300, 2 200, 3, 4
LogP 9.5.2,20,295 6.5.1,32,025 6_5_2, 4325, 60 200, 2 200, 4, 4
3 300, 3,5

LogDr.4 3.3.1,-,229 9.52,62,0.6 6.5_1,3645, 64 300,

ISIDA descriptors follow a notation such as F_L_QO, where:
¢ F(Fragmentation Type): Defines the method used to generate molecular fragments.
o 3: Sequences of atoms and bonds + atom count.
o 6: Atom-centered fragments based on sequences of atoms and bonds + atom count.
o 9: Atom-centered fragments based on sequences of atoms and bonds of fixed length +
atom count.
¢ L (Path Length): Specifies the range of fragment lengths, measured in atoms.
o Represents the minimum and maximum number of atoms considered in a fragment.
¢ O (Fragmentation Options): Additional settings applied to the fragmentation process.
o 0: None (default).
1: UseFormalCharge.
2: DoAllWays.
3: UseFormalCharge + DoAllWays.

0O 0 O

Example:
¢ 3_4 0: Sequences of atoms and bonds + atom count, with fragments ranging from 2 to 4 atoms
in length, and no additional options applied.
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Figure S7: Barplots of the R2 performance from the STL and MTL models. The bar color depends
on the method. (a) Performances on the Public Test Set. (b) Performances on the Industrial External Set.
Cs: Consensus Prediction taking the mean; MTL: MTL-GNN using ChemProp; GNN: ChemProp STL;
ATT: AttentiveFP STL; RF: RandomForest STL; SVR: Support Vector Machine STL; GTM:
Generative Topographic Mapping STL.
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Figure S8: Barplots of the RMSE performance from the STL and MTL models. The bar color
depends on the method. (a) Performances on the Public Test Set. (b) Performances on the Industrial
External Set. Cs: Consensus Prediction taking the mean; MTL: MTL-GNN using ChemProp; GNN:
ChemProp STL; ATT: AttentiveFP STL; RF: RandomForest STL; SVR: Support Vector Machine STL;
GTM: Generative Topographic Mapping STL.
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Figure S9: Barplots of the MAE performance from the STL and MTL models. The bar color
depends on the method. (a) Performances on the Public Test Set. (b) Performances on the Industrial
External Set. Cs: Consensus Prediction taking the mean; MTL: MTL-GNN using ChemProp; GNN:
ChemProp STL; ATT: AttentiveFP STL; RF: RandomForest STL; SVR: Support Vector Machine STL;

GTM: Generative Topographic Mapping STL.
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Figure S10: Correlation between experimental measurement and consensus prediction per
endpoint. The bins color depends on the standard deviation of the predictions over all models per

compound. (a) Prediction on the Public Test Set. (b) Prediction on the Industrial External Set.
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Table S5: Performances of the public MTL-GNN Model applied on the public test set and the
industrial GNN-MTL model applied of the industrial test. The best performing model per endpoint
is highlighted in bold for data shared between industrial and public sets.

Endpoint A Similar Industrial Public

ndpoin ssay Data R2 RMSE __ MAE R2 RMSE __ MAE
Efflux Ratio Caco-2 - 0.54 0.51 037 034 0.54 0.40
MDCK-MDRI Yes 044 042 031 045 0.41 0.30

Caco-2 - 0.71 0.46 033 0.58 0.55 041
MDCK Yes 0.32 0.40 0.30 022 0.49 0.37
Apparent MDCK-LE Yes 0.44 042 0.29 0.48 0.38 0.27
Permeability =~ MDCK-MDRI Yes 0.63 0.38 0.28 0.70 0.34 0.25
PAMPA - 052 0.27 0.19 0.50 0.48 0.36
PAMPA-BBB Yes 0.67 0.23 0.17 0.51 0.27 0.19

Recovery Caco-2 - 041 13.67 10.94 - - -

PAMPA - 0.24 16.94 13.29 - - -
Distribution LogBB - 0.44 0.56 042 0.43 0.45 0.35
PPB - 046 15.04 8.60 0.38 20.96 13.49
Inhibition pICS0 P-gP Yes 0.51 0.67 0.49 0.59 0.68 0.45
LogSapp - 0.68 08 06 0.49 0.69 0.54
LogSkn - 0.48 041 032 0.53 0.42 032
Livonhilicit LogS., Yes 0.80 1.00 0.79 0.78 1.03 0.75
pophilicity LogP - 0.82 0.76 0.56 0.85 0.72 0.53
LogDr.4 - 0.81 0.59 044 0.75 0.75 0.57
HFE Yes 0.69 1.94 1.38 0.70 1.89 1.42
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Table S6: Performances of the public MTL-GTM Model applied on the public test set.

R2

Endpoint Assay
MTL-GTM  Best
. Caco-2 0.29 0.34
Efflux Ratio  /hcx.MDRI 0.38 045
Caco-2 0.55 0.58
MDCK 0.19 0.28
Apparent MDCK-LE 0.25 0.48
Permeability MDCK-MDR1 0.57 0.70
PAMPA 041 0.50
PAMPA-BBB 0.23 0.51
P LogBB 0.23 043
Distribution PPB 0.26 038
Inhibition pIC50 P-gP 0.54 0.59
LogSup 0.36 0.49
LogSkin 045 0.53
s P LogSw 0.67 0.78
Lipophilicity LogP 0.59 085
LogD7.4 045 0.75
HFE 0.53 0.70
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Figure S11: Density landscape of the public library over the public GTM manifold. The quantity

of projected compounds is depicted as the base-10 logarithm of the cumulated sum of responsibilities.
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Figure S15: Class property landscape of the public library over the public GTM manifold. The
responsibility-weighted class property depicts the desired class over the map. 1 represent the best range

of measurement over/below a defined threshold, represented in blue, the inverse in red.
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Figure S16: Class property landscape of the industrial library over the industrial GTM manifold.
The responsibility-weighted class property depicts the desired class over the map. 1 represent the best

range of measurement over/below a defined threshold, represented in blue, the inverse in red.
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Figure S17: Score landscapes of the permeability, efflux, and solubility. (a) Public. (b) Industrial.
The responsibility-weighted score is obtained by considering the overlay of all landscape associated to
a certain endpoint. For instance, MDCK-MDRI and Caco-2 landscapes are combined to obtain the

efflux-specific score landscape. 1 represent the best score, represented in blue, the inverse in red.
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Table S7: Structure and details of the top 30 fragments found in poorly permeable public
compounds subject to low solubility. Details present the number of counts per fragment over the full
library with the mean absorption score over all compounds sharing this fragment. Score close to 0.5

indicates co-occurrence of permeability and solubility problem, without high efflux.

Fragment SMILES Details
[*1c1en2c(C)e([*])nc2e([*])n1 Count: 15 - Score: 0.30
[*]c1cecec2c3c10C1CCCCAC(C2)N(C)CCC314 Count: 7 - Score: 0.16
[*1clec(N)n2nc([*])ec2nl Count: 21 - Score: 0.15
[*]Ccc(cyccc(o)c([*])c Count: 19 - Score: 0.14
[*¥]C1CCC2(C)C(=CCC3C2C(0)CC2(C)C([*])C(0)CcC32)Cl Count: 19 - Score: 0.14
[*In1c([*])c(CHN)c(C)c1C Count: 10 - Score: 0.14
[*]=CC=Nclcc(C)ccnl Count: 18 - Score: 0.13
[*]c(c)cc(c)cc(C)C Count: 11 - Score: 0.13
[*Ic1nc(Clc(Cl)ncIN Count: 8 - Score: 0.13
[*Ic1cc(Cl)e(Cl)c(Cl)c1[*] Count: 9 - Score: 0.12
[¥*]CN1C(=0)COc2clcc(C)cc2[N+](=0)[0-] Count: 21 - Score: 0.12
[*]C(N)C(0)=NC1C(=0)N2C1SC(C)(C)C2[*] Count: 15 - Score: 0.12
[*]clccee2ne[nH]c12 Count: 11 - Score: 0.11
[*]CC(C)(C)C(=0)NO Count: 11 - Score: 0.11
[*]clce(Br)c(Br)c(Br)cl Count: 16 - Score: 0.11
[*]=CCcccec(=0)o Count: 17 - Score: 0.10
[*1c1nn2c¢(O)c([*])c(C)nc2c1[*] Count: 11 - Score: 0.10
[*In1c(=0)[nH]c2cc([*])c(F)cc2c1=0 Count: 21 - Score: 0.10
[*]C(=0)NN=Cc1c(Cl)[nH]c2cccecl2 Count: 16 - Score: 0.10
[*IN1CC2CCC1CN2[*] Count: 17 - Score: 0.10
[*]C(=0)C(N=Ncleccc([*])ccl[N+](=0)[O-])C(C)=0 Count: 18 - Score: 0.09
[*]clec2cecenc2sl Count: 29 - Score: 0.09
[*In1c(=0)c([*])c(N)c2cecec21 Count: 13 - Score: 0.09
[*1clcec(Cl)c2c1CC(O)CC2 Count: 18 - Score: 0.09
[*INC1CCCc2cec([*])cc21 Count: 12 - Score: 0.09
[*]c(co)c(c)(c)C Count: 12 - Score: 0.09
[*]C(=0)C(=COC)clccceccl[*] Count: 18 - Score: 0.09
[*1C10c2¢(Br)cc(S(F)(F)(F)(F)F)ecc2C=C1C(=0)O Count: 11 - Score: 0.09
[*]C(=0)CC(=0)NNC(=0)CCC Count: 21 - Score: 0.09
[*]c1nc2ceec([*])c2s1 Count: 19 - Score: 0.09
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Table S8: Structure and details of the top 30 fragments found in poorly permeable public
compounds subject to high efflux. Details present the number of counts per fragment over the full
library with the mean absorption score over all compounds sharing this fragment. Score close to -0.5

indicates co-occurrence of permeability and efflux problem, without poor solubility.

Fragment SMILES Details
[*1clen2c(C)c([*])nc2c([*])n1 Count: 15 - Score: -0.30
[*]clceec2c3c10C1CCCCAC(C2)N(C)CCC314 Count: 7 - Score: -0.16
[*lclcc(N)n2ne([*])cc2nl Count: 21 - Score: -0.15
[*]cc(c)cec(o)c([*])C Count: 19 - Score: -0.14
[¥]€1CCC2(C)C(=CCC3C2C(0)CC2(C)C([*])C(0)cc32)Ccl Count: 19 - Score; -0.14
[*In2c([*])c(CH#N)c(C)c1C Count: 10 - Score: -0.14
[*]=CC=Nc1lcc(C)cenl Count: 18 - Score: -0.13
[*]Cc(c)cc(C)cc(C)c Count: 11 - Score: -0.13
[*1cinc(Cl)c(Cl)ncIN Count: 8 - Score: -0.13
[*1clec(Cl)c(Chc(Cl)cl[*] Count: 9 - Score: -0.12
[*ICN1C(=0)COc2clcc(C)cc2[N+](=0)[O-] Count: 21 - Score: -0.12
[*]C(N)C(0)=NC1C(=0)N2C1SC(C)(C)C2[*] Count: 15 - Score: -0.12
[*lclccee2ne[nH]c12 Count: 11 - Score: -0.11
[*]cc(C)(C)Cc(=0O)NO Count: 11 - Score: -0.11
[*]clcc(Br)c(Br)c(Br)cl Count: 16 - Score: -0.11
[*¥]=CCccccc(=0)0 Count: 17 - Score: -0.10
[*1c1nn2c¢(O)c([*])c(C)nc2cl[*] Count: 11 - Score: -0.10
[*In1c(=0)[nH]c2cc([*])c(F)cc2c1=0 Count: 21 - Score: -0.10
[*]C(=O)NN=Cc1c(Cl)[nH]c2cccecc12 Count: 16 - Score: -0.10
[*IN1CC2CCC1CN2[*] Count: 17 - Score: -0.10
[*¥]C(=0)C(N=Nclccc([*])cc1[N+](=0)[O-])C(C)=0 Count: 18 - Score: -0.09
[*]clcc2eecenc2sl Count: 29 - Score: -0.09
[*In1c(=0)c([*])c(N)c2cccec21 Count: 13 - Score: -0.09
[*]c1ecc(Cl)c2c1CC(O)CC2 Count: 18 - Score: -0.09
[*INC1CCCc2ccc([*])cc21 Count: 12 - Score: -0.09
[*]C(CO)C(C)(C)C Count: 12 - Score: -0.09
[*1C(=0)C(=COC)clcccecl*] Count: 18 - Score: -0.09
[*1C10c2c(Br)cc(S(F)(F)(F)(F)F)cc2C=C1C(=0)O Count: 11 - Score: -0.09
[*]C(=0)CC(=0)NNC(=0)CccC Count: 21 - Score: -0.09
[*]lcinc2ccee([*])c2s1 Count: 19 - Score: -0.09
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Figure S18: Structure of the top 30 fragments found in poorly permeable public compounds

subject to low solubility. Fragments are ordered from worst to acceptable absorption score.
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Figure S19: Structure of the top 30 fragments found in poorly permeable public compounds

subject to high efflux. Fragments are ordered from worst to acceptable absorption score.
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Outline

By integrating both public and proprietary data, this work spotlights the importance
of tailored predictive tools in industrial drug development to curb applicability
domain issues and fortify the reliability of absorption predictions. All developed
models and curated datasets are made publicly available to fuel ongoing research and

streamline the drug discovery pipeline.
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Chapter 6. Large-scale ADMET Profiling

6.1. From ADMET to Bioactivity Prediction

Introduction

After absorption and distribution, some molecules
reach their targets unchanged, but many are subject to
metabolic transformation, a key determinant of how
long it remains in the body, how it is eliminated, and
whether it will lead to toxic species. While distribution
governs where a drug travels, metabolism determines
what the body does to it: whether it is inactivated,
bioactivated, or rendered hydrophilic for excretion.
These

impacting the duration of action and the risk profile.

transformations are crucial in clearance,

For orally administered drugs, the first major metabolic
hurdle is the “first-pass effect”. Before reaching
systemic circulation, a fraction of the absorbed dose
may be metabolized in the intestinal wall or liver.
Enzymes such as esterases and cytochromes can
significantly reduce the concentration of parent drug

that enters the bloodstream.

Beyond first-pass metabolism, the drug may continue
to undergo biotransformation in the liver, as well as in
other compartments such as the intestine, lung, kidney,
and even the plasma. These reactions govern not only
how the compound is modified, but also how
efficiently it can be cleared via hepatic or renal
pathways. This phase dictates the pharmacokinetic
profile, ultimately influencing dosing and formulation

strategies.

Main Terminology

Off-target  refers to
unintended interactions
between a drug and

biological targets other

than the intended
receptor or enzyme,
potentially causing
adverse effects.

Metabolic oxidation
describes a Phase I
process, typically
involving cytochrome

P450 enzymes, where a
drug undergoes chemical

(e.g.,
addition of oxygen) to

modification

increase its polarity.

Metabolic conjugation is
a Phase II process in
which polar groups (such
as glucuronic acid or
sulfate) are attached to a
drug or its metabolites,
enhancing water
solubility and promoting

excretion.
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Metabolism

Metabolic oxidation and metabolic conjugation greatly =~ Bioactivation  is  the
affect a drug’s fate in the body by reducing its enzymatic process where a
bioavailability and potentially generating reactive non-toxic compound is
intermediates. These processes are categorized into converted into a reactive
Phase I and Phase II reactions.'® Phase I reactions, such ~ or toxic metabolite, often
as oxidation, dealkylation, hydroxylation, and by  cytochrome  P450
deamination, introduce or expose functional groups, enzymes.
increasing a  compound’s  polarity.  These
) ) . . Idiosyncratic reaction is
transformations are primarily mediated by enzymes
_ - an uncommon and
such as cytochrome P450 (CYP450), flavin-containing
unpredictable adverse
monooxygenases (FMO), and esterases. Many drugs .
) ) ) . response to a drug, arising
are primarily metabolized by CYP450 isoenzymes,
particularly CYP3A4, CYP2C9, CYP2C19, CYP2De,
and CYP1A2. Most of the 200 most frequently

prescribed medications in the US rely on these

from genetic or
immunologic factors, and
not related to its primary
soformms 15 pharmacological action.

Phase II reactions involve conjugation, where functional groups such as glucuronides,
sulfates, or acetyl groups are added to enhance aqueous solubility, facilitating
excretion via bile or urine. A compound may serve as a substrate for a metabolic
enzyme, be an inhibitor that blocks enzyme function, or act as an inducer that increases
enzyme expression, further complicating the metabolism profile (Figure 22). Metabolic
stability assays assess a compound’s susceptibility to be metabolized. One of the most
widely used assays is the liver microsomal stability test, where drug depletion over
time is measured in microsomal fractions enriched with CYP enzymes. These assays
help estimate intrinsic clearance by determining how rapidly a compound is
metabolized under controlled conditions. On the other hand, inhibition assays target
specific CYP isoforms, measuring whether a molecule inhibits a key metabolic
pathway. These experiments are essential in predicting drug-drug interactions, as
potent inhibitors can cause the perturbation of expected pharmacokinetics of co-

administrated drugs.



CHAPTER 6. LARGE-SCALE ADMET PROFILING 202

Elimination

Elimination (a.k.a. Excretion) proceeds primarily through hepatic and renal routes. In
the liver, drug molecules and their metabolites travel to hepatocytes via both the portal
vein and the hepatic artery.’® Enzymes responsible for drug metabolism reside in
reticulum endoplasmic and mitochondria of the hepatocytes. Once metabolized, the
active compound or its metabolites are secreted into bile canaliculi, which are
physically separate from the blood supply. Bile then carries these substances to the
intestine, where they can either be excreted with feces or reabsorbed into the
bloodstream (enterohepatic recirculation). Any fraction of the drug that remains
unmetabolized in the hepatic circulation eventually leaves the liver via the hepatic vein

and reenters systemic circulation.

Clearance (CL) is a key parameter of xenobiotics elimination, representing the volume
of plasma cleared of a drug per unit time. It provides insight into how efficiently the
body eliminates a compound and directly influences drug dosing regimens. A higher
clearance value indicates rapid elimination, often requiring more frequent
administration, whereas lower clearance values suggest prolonged drug retention in
the body.

Metabolism
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—— Hepatotoxicity
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Figure 22: Drug metabolism and toxicity-related failures in Drug Development.
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Different ways to express clearance exist, with the most fundamental equation being;:

_ Dose
T AUC

CL = CLtOt ES CLhep + CLren

Where the variable,

Dose is the amount of drug administered (e.g., mg or umol),

AUC (Area Under the Curve) is the total drug exposure over time (e.g., mg-h/L),
CL¢o: (Total clearance) is the sum of hepatic (CLj,,) and renal clearance (CL;p,).

By combining these clearance pathways, a drug’s overall elimination efficiency can be
evaluated, aiding in the prediction of pharmacokinetics across different patient

populations.

Intrinsic clearance (CLint), on the other hand, describes the liver’s inherent ability to
metabolize a drug independent of hepatic blood flow. It is commonly measured using
liver microsomes or hepatocytes in vitro. The relationship between intrinsic clearance
and hepatic clearance is described by the well-stirred liver model:

fu * CLint * QH
QH + fu * CLint

CLhep =

Where the variable,
Qy is the hepatic blood flow (e.g., L/min),
fu is the fraction of unbound drug in plasma (unitless),

CLiy¢ is the intrinsic clearance (e.g., mL/min or L/h, typically normalized per mg of

microsomal protein or per million cells in vitro).

This equation differentiates between flow-limited clearance, where drug elimination
is governed by hepatic perfusion (high CL;,;), and capacity-limited clearance, where
enzyme activity is the rate-limiting step (low CL;,,). This distinction is essential for

understanding the impact of physiological changes on drug metabolism.
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Renal clearance (CLrwn) quantifies drug elimination through the kidneys. It is
influenced by glomerular filtration, active tubular secretion, and passive reabsorption.

Renal clearance is determined using the equation:
CLyen = fe * CL

where f, is the fraction of the drug excreted unchanged in urine. This parameter helps
assess whether renal elimination is a primary clearance route for a given compound.

Another critical concept is the half-life (t1, in hours or minutes), which describes how
2

long it takes for the plasma concentration of a drug to decrease by half.

_0.693+Vd

‘ CL

N =

where Vd represents the volume of distribution (e.g., L or mL).

Short half-lives indicate rapid clearance and necessitate frequent dosing, whereas long

half-lives suggest prolonged drug activity and extended dosing intervals.
Toxicity

Toxicity can arise from multiple mechanisms, with metabolism and administered dose
playing central roles. Off-target toxicity occurs when a drug interacts with unintended
molecular targets, such as hERG potassium channels, leading to cardiac arrhythmias,
or when it inhibits CYP450 enzymes, directly causing hepatotoxicity through enzyme
inhibition or reactive intermediate accumulation.’®'¢ Although increased exposure
due to drug—drug interactions can indirectly lead to toxicity, intrinsic toxicity generally
arises from direct drug or metabolite-driven cellular damage, distinct from simple
dose-dependent effects. Excessive dosing or prolonged exposure can therefore

precipitate adverse effects.

On-target toxicity arises when a drug engages its intended molecular target in
unintended tissues, leading to adverse effects. For example, statins lower cholesterol
by inhibiting HMG-CoA reductase in the liver, but can also inhibit the same enzyme
in muscle tissue, contributing to myopathy and rhabdomyolysis in susceptible

individuals.”
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Many PIK inhibitors have on-target toxicities due to their role in essential cellular
housekeeping functions.® Hypersensitivity reactions occur if drugs or their reactive
metabolites form covalent bonds with their target, generating haptens that can trigger

antibody production and immunological responses.

Drug metabolism can yield reactive intermediates (bioactivation) capable of binding
to cellular components or eliciting immune responses. ¥ Acetaminophen is a prime
example; while the parent drug is safe at therapeutic concentrations, one of its minor
metabolites (NAPQI) causes hepatotoxicity. Although drug discovery primarily
evaluates parent molecules, identifying potential toxic metabolites remains crucial.
Idiosyncratic reactions are especially problematic because they are highly individual
(driven by genetic and immunological differences) and rarely detected in early animal

models. Often, such reactions come to light only after extensive testing in humans.

Consequently, toxicity evaluations are typically conducted in at least two mammalian
species, usually starting with rodents due to their practicality and low cost, and
complemented by non-rodents (e.g., dog or pig) when rodents insufficiently reflect
human physiology. The route of administration tested usually aligns with intended
clinical use, although alternative routes are occasionally employed to circumvent
pharmacokinetic limitations (e.g., extensive first-pass metabolism). Modern toxicology
studies prioritize maximum tolerated dose, no observed adverse effect level (NOAEL),

and exposure margins, rather than routinely determining lethal doses (LDs).'
Application of ML

Assessment strategies include in vivo toxicology studies of varying durations, in vitro
assays, and computational modeling. QSAR methods correlate molecular descriptors
with observed toxicity, in addition to molecular docking preferred to explore possible
interactions with toxicologically relevant targets such as hERG channels!®1¢! or specific
CYP isoforms.'®>1¢> These in silico approaches, aligned with the European REACH
framework, help reduce animal testing by embracing alternative methods and
integrating the 3R principle (Reduction, Refinement, Replacement).1¢1¢” Despite these
advances, single-task QSAR models often fail to capture how metabolic
transformations or clearance can shift toxicity profiles. This underscores the need to

incorporate metabolism-related data into predictive models.!¢%-17
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In this chapter, we highlight MTL as a solution to broad pharmacokinetic profiling. By
simultaneously modeling clearance, half-life, and various toxicity endpoints, MTL
takes advantage of correlations among tasks. Recent work suggests that MTL
outperforms single-task models for ADMET and potency predictions, paving the way
for faster and more reliable drug development. Several open-source web services now
leverage early ADMET (eADMET) strategies, but data sources and methods can be
redundant or fragmented. To address these gaps, we have built a unified MTL model
handling hundreds of continuous tasks in parallel and introduced the OneADMET
dataset, a comprehensive curated repository merging diverse ADMET endpoints from
public sources (Figure 23). This enables a single model to concurrently assess critical
pharmacokinetic and toxicological parameters, streamlining early liability detection.

Distribution ——

PhysChem —

Bioactivities ADMET

Standardization ~—— Toxicity

Absorption —

Curation
Metabolism —

95% endpoints 5% endpoints
40% measurements 60% measurements — Elimination
~500 pts/dataset ~5,000 pts/dataset

Figure 23: Data Integration from ChEMBL and BindingDB. A pie chart illustrates the

number of tasks per dataset, reflecting dataset diversity and scale.
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Abstract

Multi-task learning (MTL) has emerged as a powerful strategy in computational drug discovery,
addressing the inherent complexity and variability in pharmacokinetic and pharmacodynamic profiling.
This approach promises enhanced predictive performance and generalizability compared to traditional
single-task models. Recent studies underscore MTL utility in improving ADMET (Absorption,
Distribution, Metabolism, Elimination, and Toxicity) and potency predictions, foundational for efficient
drug design. Recent years have seen emerging several exciting open-source web services for carly
ADMET assessment (eADMET). This contribution aims first to provide a critical review of them
regarding data sources, methods, and redundancy between them. Second, building on our observations,
we have developed a unified model simultaneously processing hundreds of continuous tasks and we
introduce the OneADMET dataset—a comprehensive curated resource from public datasets. Finally, we
propose a reference web service for eADMET and bioactivities prediction. Our findings demonstrate
that the multi-task model equals or outperforms conventional single-task models in reducing prediction
errors. Comparatively, MTL model deployment and maintenance are simpler and computationally more
efficient for profiling. This study confirms the robustness of large-scale MTL for detailed

pharmacokinetics profiling and contributes to the field with the provision of the OneADMET dataset.

Introduction

Lead optimization is a critical phase of drug discovery. Following hit identification, the aim is to
improve the efficacy, selectivity, and pharmacokinetic properties of chemical compounds to be
considered as drug candidates. Another aspect is to understand and control their toxicities'. Drug
candidates are then processed to the next stage: pre-clinical development aiming at improving their
safety before testing on humans.

Lead optimization failures related to ADMET propertics remain a significant hurdle in drug
development. ADMET issues are responsible for approximately 60% of clinical trial failures, leading to
substantial delays in delivering new treatments to patients and investment losses, the economic burden
of drug development continues to escalate, with the average cost of bringing a new drug to market
estimated at over $2.6 billion* *. Early identification and optimization of ADMET characteristics are
therefore key to enhance the success rates of drug. Therefore, new methodologies, data models for

eADMET contributes to research and development of new drugs with enhanced productivity”.



209 6.1. FROM ADMET TO BIOACTIVITY PREDICTION

In this contribution, we propose a new Multi-Task Learning model for prediction of 44 eADMET
properties and 1,489 bioactivitics. The public model and related public dataset called OneADMET arc

provided open source (Figure 1).

Framework of OneADMET
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Figure 1: Presentation of the predictive workflow of the webserver, and ADMET to bioactivities endpoints covered.

Multi-Task Learning
MTL consists in optimizing a single model against multiple tasks simultaneously. This approach unifies

over several statistical models the choice of common representations and free parameter values. It has

2



CHAPTER 6. LARGE-SCALE ADMET PROFILING 210

been observed that this approach may improve the models generalization for related tasks, although such
synergetic behavior between tasks can hardly be anticipated®”.

Below, we review the current state of MTL in ADMET modelling and assess available webservers (see
Table 1). We focused our attention on the differences in underlying data and models they use. We also
report the usage of an applicability domain (AD), defining the chemical space where predictions are
reliable, that is crucial to control predictions accuracy. Models without proper AD consideration may

yield unreliable predictions for compounds outside their training scope®.

Emergence of Multi-Task Learning in ADMET modeling
The first reported application of Multi-Task Learning for ADMET was pioneered in 2009 by Varnek et

al. They used an Artificial aSsociative Neural Network (ASNN) within an MTL framework to predict
tissue-air partition coefficients for human and rat tissues across 11 regression tasks, utilizing a dataset
of 648 samples®. In 2011, Su et al. advanced the field by employing Max-Margin Conditional Random
Fields (MMCRF) to predict bioactivity against cancer cell lines encompassing 4,547 samples and 60
classification tasks'®. These early studies demonstrated the potential of MTL in cheminformatics and

ADMET modeling.

Growth following the Tox21 challenge
The year 2016 marked an acceleration in the development of MTL for ADMET modeling, largely due

to the outcomes of the Tox21 Data Challenge. The Tox21 program is a collaborative initiative involving
several U.S. federal agencies aimed at developing better toxicity assessment methods''. The challenge
provided a dataset of 12,707 compounds tested across 12 in-vitro assays related to nuclear receptor
signaling and stress response pathways. Mayr et al. applied Deep Neural Networks (DNN) within an
MTL framework to predict these 12 toxicity-related tasks, achieving top performance on multiple assays
and demonstrating significant improvements over STL models'. Their approach led to a performance
increase of up to 5% compared to some single task models, showcasing the efficacy of MTL in handling
complex biological data.

In the subsequent five years, 16 studies explored MTL for ADMET, with seven originating from
industrial companies. For instance, Wenzel et al. from Sanofi highlighted the importance of combining
tasks from correlated domains when developing average size MTL models of few tasks. They found that
adding unrelated tasks could lead to decreased performance, emphasizing the need for careful task
selection'®. Other studies pushed the boundaries of MTL by increasing the number of simultancous tasks.
Zakharov et al. developed a Deep Learning Consensus Architecture (DLCA) trained on 201,599 samples
from ChEMBL and Tox21 datasets, covering 820 regression and 12 classification tasks. Their work
showcased the scalability of MTL models in handling large and diverse datasets'®. The MELLODDY
(Machine Learning Ledger Orchestration for Drug Discovery) consortium added to MTL the concept of
federated learning approach. The consortium including several pharmaceutical companies trained

models collaboratively through using arithmetic operations on encrypted data. This initiative
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encompassed 26,000 classification tasks, including ADMET relevant ones, using data from industrial
partners, representing a unique and large-scale application of MTLY.

In 2022, scveral authors promoted the Therapeutics Data Commons (TDC) and MoleculeNct to be used
as standards for benchmarking along with standardized protocols'®!”. Since then, at least five studies
specifically focused on MTL for ADMET have used these benchmarking datasets in their entirety or in
part for model validation. For example, Zhang et al. in 2022 employed a BERT-based model on over
1.7 million samples from ChEMBL and MoleculeNet, covering 71 classification and 16 regression
tasks'®. However, standardized benchmarking datasets are not aiming for data quality and relevance.
Walters informally highlighted discrepancies such as duplicate entries with conflicting responses,
ionization issues, and standardization problems within these datasets'. These issues can lead to
perturbed predictions and biased cvaluations, potentially compromising modecl reliability?C.

In response to these challenges, collaborative open-source cfforts like the Polaris initiative arc emerging
to ensure the curation of high-quality, standardized benchmarks®'. Yet, ongoing work is necessary to
address these data quality issues fully, especially since some models trained on problematic datasets are

currently deployed on public web servers.

Table 1: Historic of the application of the MTL approaches to the modelling of ADMET properties and bioactivities.
The number of tasks and their type of either classification or regression is informed. The number of samples in the dataset used
to train the MTL model is added. The quantity is either the exact value or an estimation based on the source of the data in the

case of poorly described methods.

Year Group Method # samples | Datasource | Reg | Cls Types Code
. tissue-air partition
2009 | Vamcketal? | ASNN, PLS 648 K““ﬁé‘y | - | coefficients for human ;
o and rat tissues
NCT-Cancer Bioactivity against
10 - -
2011 Suctal. MMCRF 4,547 from PCBA® 60 cancer cell lines
N dar et PCBA,
2015 ams“l'; are DNN 37.8M | MUVS,DUD- | - | 259 - -
a E?, Tox21%7
2016 | Mayretal.” DNN 12,707 Tox21 - 12 - -
Keames etal | DNN, wDNN | 280,000 | Voriex: - | ss0 | _ hERGinhibition, -
Pubchem solubility, metabolism
29 10 ) on-target potency, off- -
2017 Xuetal. DNN 30,000 Kaggle 13 target ADME activitics Githuh
. Kaggle P
Ramsundar et Progressive N enzymatic inhibition, .
al 31 DNN 114,000 Feu.tors, 316 - ADME/Tox Github
Kinase, UV
2018 | Lietal® DNN 13,000 PCBA - 5 inhibition CYP450 -
isoforms
Zakharov et al. . ChEMBL, Regression (ChREMBL),
DLCA 201,599 Tox21 820 12 Classification (Tox21) )
Wenzel et al."? DNN 81,309 ChEMB.L’ 14 - - -
2019 Sanofi
Liu et al.*? DNN, GCNN | 250,000 Amgen - 5 - -
GGRNN OChem, solubility, partition
Capela et al.** Y 27,057 ChEMBL, 6 - coefficients, boiling Github
GAIN, GIN . . E—
Litterature point, vapor pressure
Lietal® DNN-SMOTE 12,707 Tox21 - 12 - -
2020 ChEMBL,
Peng et al 3¢ GNN 12,741 Tox21, 4 3 - -
Litterature
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Montanari et logD, solubility, melting
al¥? GCN 537,443 Bayer 10 - | point, membrane affinity, | Github
i serum albumin binding
Feinberg et
al. 3 GCNN 2,290,861 Merck 31 - - -
Bochringer,
Bayer,
H“":f?fk " | Federated NN | 2,000,000 |  Novartis, - 26600 - Github
: Amgen, GSK,
Janssen
. . LD50, IGC50, LC50 .
. At 4] 39 PR, B s ., N .
2021 | Karim et al. NN, GCN 8,277 Litterature 4 LC50.DM Github
CapsNet, L
40 > -
Wang ct al. RBM 12,707 Tox21 12 toxicity targets
ChEMBL,
Xiong et al.¥! GA 250,000 PubChem, 13 40 - Github
OCHEM
Hamzi¢ et al.** GNN 180,000 Novartis 17 - - -
ChEMBL. -
18 i) _ -
Zhang ct al. BERT 1.700,000 MoleculeNet!” 16 71 Github
Tian et al.*? XGBoost 80,519 TDC'® 9 13 - Github
o s
2022 | Zhanget al.® LiteGEM, 50,000 ’ 4 32 - -
GINE PubChem,
! Drugbank
Mora et al.# CNN 209,319 | AstraZeneca 4 - Intrinsic clearance -
IUPHARY, Multi-class classification
Wang etal.* | DNN, GCN 31,033 BindingDB, - 22 | (activity against specific | Github
ChEMBL nuclear receptors)
s B
snina ot al 46 e ~
Sosnina ct al. DNN 500,000 VlmlCE}EMBL 4435 | 158 PQSAR(4276)), Cls Github
(ViralChEMBL)
Vangala et al.*! GCN 80,000 TDC 10 | 30 - -
2023 Du et al.”? UCS’TI(\;IEA’ 43,291 Litterature 6 18 - Github
MoleculeNet ESQL, Freesolv,
53 » N i Tici i R
Hu et al. MPNN 9,026 Litterature 4 Llpophlhcn.y, Metlting
point
Aj etal* GNN, ANN 65,467 PubChem - 5 CYP isoforms Github
Swanson et MPNN 35,774 TDC 10 | 31 - Github
57
Yang et al.® MPNN 750,000 Merck?, 57 - Github
Litterature
ChEMBL,
Fuetal.™® MPNN 400,000 PubChem, 18 59 - -
OCHEM
ChEMBL,
DrugBank,
2024 s CPDB*,
Gu et al. CL-GNN 370,000 ECOTOX®!, 119 - - -
OpenFoodTox"
2
M.W. et al.® MPNN 1,180,700 | Boehringer, | g | og - -
Biogen
. TDC
65 s : B
Kim et al. GNN, GT 105,183 MoleeuleNet 9 13
ANN  Artificial Associative Neural Network GIN  Graph [somorphism Network
ASNN  Artificial Associative Neural Network GNN  Graph Neural Network
BERT Bidirectional Encoder Representations GP  Gaussian Process
Transformers
CaspNet  Capsule Network GT  Graph Transformers
CL  Contrastive Learning LiteGEM  Lite Geometry Enhanced Molecular

Representation Learning
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CPDB  Carcinogenic Potency Database MGA  Multi-Task Graph Attention
CNN  Convolutional Neural Network MMCRF Max-Margin Conditional Random Field
DNN  Deep Neural Network MPNN  Message Passing Neural Network
DLCA  Deep Learning Consensus Architecture MTGL  Multi-Task Graph Learning
DUD-E  Directory of Useful Decoy - Enhanced MUV Maximum Unbiased Validation
GA  Graph Attention NN Neural Network
GAIN  Graph Attention [somorphism Network PCBA PubChem BioAssay
GCN  Graph Convolutional Network PLS  Partial Least Square
GCNN  Graph Convolutional Neural Network RBM  Restricted Boltzmann Machine
GGRNN  Gated Recursive Neural Network SMOTE Synthetic Minority Oversampling TEchnique

GINE  Graph Isomorphism Network with Edge
Webservers for ADMET profilling: Evolution, Challenges, and Futures directions
Advances in data science for drug discovery are reflected in the availability of publicly accessible
webservers for eADMET predictions. Notable platforms include SwissADME®*, admetSAR®,
ADMETIlab* and pkCSM®. They aim at enabling rapid assessment of compounds across numerous
endpoints.
Introduction and early development of ADMET webservers
Over the past 12 years, webservers dedicated to ADMET profiling have been instrumental in drug
discovery and toxicity prediction. They implemented early machine learning methods such as Support
Vector Machines (SVM) and Random Forests (RF). In 2012, Cheng et al.®® introduced admetSAR, one
of the first webservers in this domain, using SVM on a dataset of approximately 210,000 compounds
compiled from literature sources. This platform covered five regression tasks and 22 classification tasks,
setting a foundation for subsequent tools. By 2015, pkCSM, developed by Pires et al., integrated multiple
machine learning techniques, including RF, Logistic Regression (LR), and Model Tree Regression
(MTR), to predict ADMET properties using a dataset of over 112,000 compounds®. pkCSM offered
predictions for 14 regression tasks and 17 classification tasks, highlighting the versatility of machine

learning methods in ADMET profiling.

MTL models-based web services
The landscape of ADMET web services began to shift in 2018 with the introduction of MTL methods.

DeepCYP, developed by Li et al. was among the first, using an autoencoders (AE), for predicting
cytochrome P450 (CYP) enzyme interactions using a datasct of 13,000 compounds®. By 2021, more
deep artificial neural network models have been developed: cight out of ten new web services have been
proposed based on various MTL architectures. For instance, ADMETIab 2.0 by Xiong et al. utilized
Graph Attention Transformer network (GAT) on a dataset of 250,000 compounds from ChEMBL,
PubChem, OCHEM, and EPA databases, offering predictions for 13 regression and 40 classification
tasks*'. The average number of training samples also saw a significant increase approaching

close to 200,000 compounds covering millions of data points. This expansion reflects the

growing availability of chemical data.
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The overused data and actual state

A critical issue in the current state of ADMET webservers is the overreliance on the same datasets,
leading to significant overlap and questioning the uniqueness of cach platform. Many popular
webservers, such as admetSAR, ADMETIab, and ADMET-ALI, utilize datascts likc Tox21 and the TDC,
as shown in Table 1. The frequent usc of Tox21 data is particularly questionable regarding its uscefulness,
as it focuses on a limited range of toxicity endpoints. Moreover, the lack of discussion on data curation
by different servers suggests that minimal preprocessing is conducted, potentially affecting model
reliability®. Additionally, while MTL applications in ADMET have scen an increase in data samplcs,
with up to 1-2 million compounds in some studies, many webservers still lack such extensive chemical
space coverage™. Accessibilily issues also arise, as some webservers, like H-ADMET, which were
accessible at time of publication, are now restricted to users with a Baidu account, effectively limiting
access to those outside China*,

Table 2: List of the webservers available for ADMET and biological activity profiling. Webservers out of service are
indicated with * and webservers not available outside China, meaning they require a Baidu account and thus a Chinese phone
number are indicated with **. The usage of MTL approach by the webserver is indicated as Yes for MTL. The number of
samples or at least their estimation has been added for each webserver, with the number of classification or regression task and

the usage of Applicability Domain or not.

Year| Name Authors | MTL Model Size Database Origin Reg.| Cls. | AD | Pre.
admetSARS| | . . .
2012 link Cheng et al. - SVM 210,000 Literature® 5122 - C
__ 70,
2014 ProTo*x I Drwal et al. - | Pharmacophore | 38,000 Literature™ 1 16| - |C
o7, %
2015 pkCSM Douglas ctal. | - RF’ML%{GP’ 112,435 | admetSAR, Litterature™ 7™ | 14 | 17 | - -
VNN- ChEMBL, PubChem,
ADMET™ Schyman et al. - vNN 70,336 Litterature®®2! 1 14 [Yes| S
link
2017 SwissADME|
92 link Daina et al. - SVM 48,709 Metrabase 5 8 - -
ADMETlab? RF, SVM, RP ChEMBL, EPA,
R . il nkBHE5.89.94-117 R
- 3 link Dong et al. PLS. NB. DT 288,967 DrugBank 7 124 S
enCY P2
D“Pﬁf PRI Lietal | Yes AE 13,000 PCBA'™ s |- 1|s
Predictor
NCATS" |Zakharov etal.| Yes DNN 259,855 ChEMBL, Tox21% 820 12 | Yes| S
link
DrugBank,
admetSAR RF, SVM, kNN, ChEMBL899094-96.98
2019 2.0% Tink Yang et al. - GCN 210,000 105,108-110,113,13,114,1 16 4 43 | Yes| S
CPDB®, Tox21%
Admet DrugBank,
,'?fl.' ,| Guanetal | - |SVM.RF,kNN| 3,702 ChEMBLS5890949%- | 5 | 16 | - | §
score” " linK 10L109,113,116 WITHDRAWN
2020 PPECYESH Banerjee cral. | - RF 17,143 SuperCYP?2! s |ves|
. ChEMBL®-5 899 117.122,13
2021 ‘ZDU%Eﬁakb Xiongetal. | Yes GAT 250,000 [PCBA''S, OCHEM', EPA | 13 | 40 | - S
ChEMBL, PCBA'T,
I-ADMET!23 . . DrugBank,
2022 link Wei et al. Yes | GCNN, GAT | 250,729 Litterature®-59.9094-9695- 28 | 31 |Yes| S
105,108-110,113,113,114,116
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Tox21%,
toxCSMULi| G, C.de Siet| | RF,XGBoost, | |33 oo | Litterature S5 109 enisor- | o0 |
nk al. AB 139
+17.65.83.94,98,109.112.140. 141,14
ADNMETOOO! Tianetal | Yes | XGBoost | 80519 [MPC7 N s [1a| -] -
DrugBank, ChEMBL,
- CPDB%, PCBA'™,
GNN, LiteGEM, Littérature®3-9> 9% 107,114,123, 1481 .
ADMET* | Zh tal. | Y b I 50,0000 | 4 ] 36 - S
#%|ink angeta & GINE+ 50155 Tox21%3, SuperCYP121,
S CYPReact!*®
ChEMBL 77 128.130,131.135,136,15
ADMETsar| vt | Yes | CLMGraph | 370,000 | 2151 DrugBank, TOX, | 16 [ 97 | - | s
3.0 link @
OFT
ADMET lab 2,0848582.94
117,122,123 PCBALLS,
Deen-PKI OCHEM!?, Tox21%, I-
P 7 Myungetal. | Yes MPNN 350,695 ADMET, toxCSM 24 | 49 | - S
link 78.81,9091,114,115,127-139
2024 kaSMn 78
Protox 3.0170 . . Tox21%, PCBAS, CPDB®, .
link Banerjeeetal.| - RF, DNN 263,832 ET6, OFT 2 160 | - S
ADMET Ch TDCI7-6853.94.98 109,112,140, 141,14
- Anson et - g emprop- 1148,148,149 R R
AT link Swanson etal.| Yes RDKit 80,519 10 | 31
ADMETlab ChEMBL!7"176 PCBA!'S,
5.0 e | Yengetal | Yes DMPNN | 400,000 OCHEM 24 185 | -1]s
AB  Adaptative Boosting kNN  k-Nearest Neighbors
AE  AutoEncoder LiteGEM  Lite Geometry-Enhanced Molecular
CLMGraph Contrastive Learning-based Multi-Task Graph LR Logistic Regression
DNN  Deep Neural Network MPNN  Message-Passing Neural Network
DT Decision Tree MTR Model Tree Regression
ET EcoTox NB  Naive Bayes
ERT Extremely Randomized Trees OFT  OpenFoodTox
GAT  Graph Attention Transformer PLS  Partial-Least Square
GCNN  Graph Convolution Neural Network RF  Random Forest
GCN  Graph Convolution Network RP  Rccursive Partitioning
GINE+  Graph Isomorphism Network with Edge - Enhanced SVM  Support Vector Machine
GNN  Graph Neural Network vNN  variable Nearest Neighbors
GP  Gaussian Process XGBoost  Extreme Gradient Boosting

*: Out of service, **: Not available outside China, Reg.: Regression endpoints, Cls.: Classification endpoints, Prc.:
Preprocessing of the data, C: Curation & Standardization, S: Only standardization.

The overlap of webservers
Although one might assume that each ADMET webserver offers unique functionalities, a detailed

analysis reveals substantial overlap in both the datasets utilized and the tasks provided, prompting
questions about their overall distinctiveness and utility. Figure 2 showcases the various datasets and
tasks offered by these webservers. Data is a scarce resource in ADMET modelling which require
cxperts’” knowledge to curate it into modclizable data. Figurc 2a follows the publication ycar of the
webservers against the time at which their data were published. Most of the data sources are dating back
to 2012, with webservers published in 2024 having most of their data dating back 2012-2013, hence a
+10-ycar gap with the actual state of the public databascs. Only ADMETIlab 3.0 and admctSAR 3.0
scems to usc recent sources, published around 5 years ago. This drawback is accompanicd by the lack

of preparation and curation (Table 2) of novel data. Figure 2b highlights the proportion of endpoints
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being cited under the same source. Overall, at least half of the webservers seems to be built on the same
datascts, without ongoing any additional curation cxcept a standardization of the SMILES (Table 2).
The count is limited to studics citing the source of their data, as certain omitted it. Figure 2¢ present the
most represented tasks from the webservers. The most prevalent tasks involve predicting cytochrome
P450 (CYP) inhibitors and substrates, derived from datasets by Veith et al.'"™ and Carbon-Mangels et
al."", These datasets are part of the TDC and are extensively used across almost all webservers with half
of them citing these sources. Following this, the blood-brain barrier (BBB) permeability data from
Martins et al.'*, the aqueous solubility (LogS) data from AqSolDb ¥, and the human intestinal

1 143

absorption (HIA) data from Hou et al.'* are among the most frequently employed. Additionally, P-

1% is commonly uscd. The LDso toxicity data from Zhu ct

glycoprotein (P-gP) data from Broccatelli ct a
al.'”” and AMES tcst data from thc same study arc also prevalent. Furthcrmorc, the Tox21 datascts arc
utilized by approximatcly one-third to half of the webservers. This significant overlap in datasets uscd,
shared tasks, lack of curation, age of the datasets indicates that many webservers do not implement
specific data curation methods to enhance the quality of their predictive models, thereby affecting their
uniqueness and overall effectiveness.

The datasets are used as is, the authors being confident in the results of previously published work and
lacking the addition of recent experimental measurements, But aggregation of experimental data is prone
to heterogeneity in conditions and numerous studies, The practices and understanding on the data are
improving over time. Hence even a legitimate research data source should be re-examined regularly

considering these advances and updated where needed.
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Figure 2: Analysis of the data and endpoints used by webservers. (a) Boxplot of the distribution of training data publication
year against the year of the webserver publication. The dashed line highlights the timeline where the publication year of the
data equals the publication year of the webserver. Only webservers citing their sources are present and annotated as A: ProTox-
11, B: pkCSM, C: vNN-ADMET, D: DeepCYP, E: ADMETIab, F: admetSAR 2.0, G: Admet-score, H: SuperCYPsPred, I:
ADMETlab 2.0, J: toxCSM, K: I-ADMET, L: H-ADMET, M: ADMETboost, N: ADMET-AL O: Deep-PK, P: Protox 3.0, Q:
ADMETIab 3.0, R: ADMETsar 3.0, S: admetSAR, T: SwissADME, U: Predictor NCATS. (b) Countplot of the most cited
reference used by the webservers, The full bar is the number of webservers presenting the endpoint. The hashed bar is the
number of webservers citing the reference for the associated endpoint. (¢) Heatmap of the most popular ADMET endpoints

presented by each webserver. Blank spaces mean the endpoint is not delivered by the webserver.

Materials & Methods

Data Collection
We present a dataset which is an extensive collection of endpoints regarding drug discovery endpoints,

public experimental values were recovered from three public databases: OChem!'?*, ChREMBL'™, and
BindingDB'™. These data sources have been selected because of the possibility to source cach datapoint,
mostly from international reviewed bibliographic sources. Only continuous mcasurcments were
recovered as the focus of the work regards regression models. Only datasets containing 30 compounds

or more have been included. Experimental units were standardized per endpoint to homogenize the
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measurements, choosing units that are met most frequently and assuming that they are more consensual.
(Table S1).

Metadata curation

A given endpoint is sometime the output of several assays. Although these assays have the same aim,
they might differ sufficiently so that the measured output values are not compatible. For this reason,
each documented values of our endpoints were reviewed and decisions for merging these sources were

taken. The criteria for merging are given Table S2.

Curation and Standardization

The collected datasets went further through several steps of data filtering, curation and standardization.
These steps delineate a region of the chemical space that we defined as of interest for drug discovery
today. Additionally, it standardizes how compounds and substances of interest are represented. First we

filtered out compounds with:

- less than 10 atoms,
- no heteroatom or one carbon atom,
- containing an isotope,

- containing an atom which element is out of this list: C, H, O, N, §, F, CI, P, Br, 1, Si, B.
The standardization procedures included the following steps:

- stripping salt, keeping the largest component,
- removing stereochemistry information — considered as unreliable at this stage,
- removing the aromaticity — it is restored as the last step of the process,

- selecting of a standard tautomer.

After standardization, several chemical structures appeared duplicated because of merging different data
sources and ignoring the stereochemistry. In case of duplicated entries, the standard deviation (SDi) (1)
and median of the experimental values were computed. Compounds with a standard deviation exceeding
0.5 log units, or 5% for endpoints expressed in percent, were excluded'®’. These cutoffs have been
chosen to reflect our desired modeling prediction quality, expressed as RMSE. If more than two
measurements were available for a non-excluded compound, the median value was taken as the response
value. If only two measurements were available for a non-excluded compound, the value reflecting a
less favorable outcome (e.g., poor permeability rather than good permeability) was chosen. This
approach prioritizes avoiding false positives, focusing instead on false negatives to minimize the risk of
pursuing non-viable compounds and save time'®’, Only datasets with at least 30 unique compounds were

considered for modeling.
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1)
SDi = @

The SDi is the standard deviation of n; duplicated observations on a given compound, where:

e x; denotes each individual observation for given duplicated compound.

e X represents the arithmetic mean of duplicated observations.

Data Split
For each task, the corresponding dataset is partitioned into two subsets: a training subset, constituting

80% of the total data, and a testing subset, comprising the remaining 20%. Within the training subset,
we perform a tuning 3-fold stratified Cross-Validation (CV)'*! for optimization of machine learning
method and hyperparameters, as well as optimization of the molecular descriptors sets. Then, a model
is retrained on the training subset using the optimal hyperparameters, methods, and descriptors identified
during CV. The resulting final models are put for production and used on the test set, using an
Applicability Domain (AD). The test set predictions compose an external validation, The public and
industrial dataset led to the generation of public and industrial test sets that are orthogonal to each other.
The public set is disclosed and used to train the public model, while the industrial set is not disclosed,
and only used to validate the public model, and prepare an undisclosed industrial model. External
validation performances measures are discussed only if the number of predictions after AD application
is larger than 10% of the population of the test set.

To facilitate the analysis, we decided to monitor the presence of the same compounds across different
tasks. Due to MTL context, we had to make sure that such compound was found exclusively either in
the training set or in the test set. This requirement, coupled with the sometimes-low population datasets
of some tasks, imposes an important constraint on the composition of the 3-fold cross-validation folds.
We used a single stratified sampling taking advantage of the standardization of the endpoint values. All
values were assembled into one dataset that was sampled uniformly per percentile without replacement.
All data points associated to a given drawn molecule were located either in a training set or a test set,
thus avoiding data leakage.

Molecular Featurization

During this study, we explored diverse molecular representations. Descriptors calculation was based
only on the 2D structures, justifying that stereoisomers information was ignored. Descriptors were
computed using scikit-fingerprints'® (Table S3).

Modelling Methods

We used for single task learning, a set of machine learning methods listed in Table S4, both linear and
non-linear. Each method uses its own set of hyperparameters that have been optimized using a Bayesian

optimization algorithm. The Bayesian optimization was carried over 30 iterations. The optimization

12
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process employed the Tree-structured Parzen Estimator (TPE) algorithm implemented in the Optuna'®?

framework. The resolution and the domain of values explored during optimization is provided in the
same table. The objective function minimized during optimization root was the averaged mean squared
error (RMSE) calculated over the tuning 3-fold cross-validation described earlier.

Hyperparameters Optimization

To achieve optimal model performance, hyperparameter optimization was performed by exploring two
main parameter spaces: the method-specific parameter space and the descriptor-specific parameter
space. The method-specific space includes parameters inherent to the predictive algorithm, such as the
number of estimators in Random Forest or the kernel type in Support Vector Machines. The descriptor-
specific space focuses on the parameters impacting the input features such as the number of bits or radius
of fingerprint (ECFP), ensuring the best possible representation of molecular properties.

Loss Function of the MTL models

We opted for fixed weights (2) per task to compute the multi-task loss function. The MTL models adopt
a loss function based on the weighted Mean Squared Error (3) (WMSE) defined as a weighted sum of
the MSE for each task (4). Weights values are normalized. As each task has its own units, the weights
are representing the different scales covered by these units, maintaining a consistent range of values
across all tasks. This ensures a balanced contribution of each task to the overall loss calculation and
effectively outputs real values.

The weights (2) are estimated as follows:
1
w |max(values;) — min (values;)| 2)
=1 |max(values;) — min (values;)|

Where:
w; is the initial weight for the i-th task,
values; is the set of experimental values of the i-th task,

n is the total number of tasks.

MSE (3) measures the average of the squares of the errors, that is, the average squared difference between
the estimated values and the actual value. The MSE of a task is one of the contributing terms of the loss
function.
1
MSE == ok &
Nédi=
Where:
¥; is the predicted value for the i-th observation,

v; is the actual value for the i-th observation.
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These metrics are computed for each task, providing a comprehensive measure of the model's performance

across different aspects of the data.

The multi-task loss function (4) then expresses as:

n
Loss = z MSE; * w;
i=1 (4)
where MSE; is the Mean Squared Error of the prediction against experimental values for

the i-th task.

Metrics

To assess the performance of our regression models, we employ the coefficient of determination (R?),
Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) per task.
R? (5) represents the goodness-of-fit of a model. It reveals how much of the variance in the dependent
variable is captured by the independent variables. It ranges from 0 to 1, where a value closer to 1 indicates

better model fit; thus, it is independent of the units in which a given task is expressed.

Rz gm0~ 3i) (5)
i = 7))

Where:

n is the total number of observations,

¥; is the predicted value for the i-th observation,
¥; is the actual value for the i-th observation,

¥; is the mean of the actual values y.

RMSE (6) quantifics the difference between the predicted and observed values per task, penalizing larger
crrors morc scverely by squaring them before averaging. The RMSE is expressed in the units of the given
task and is not too sensitive to the value range of the task, in contrast to R%

RMSE = VMSE ()

Where:
n is the total number of observations,
¥ is the predicted value for the i-th observation,

y; is the actual value for the i-th observation.

MAE (7) represents the accuracy of a regression model to a certain task. Compared to RMSE, MAE is less

sensitive to outlying large errors. It is an arithmetic average of errors absolute value.

14
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1n N 7

MAE == |y, -9 @
n i=1

Where:

n is the total number of observations,

¥ is the predicted value for the i-th observation,

y; is the actual value for the i-th observation.

Applicability Domain
The AD of a predictive model represents the Chemical Space (CS) region that is sampled by the training

dataset, marking the boundaries within which the model's predictions are considered reliable. As each
task has a specific dataset, we have defined an AD for each task. During this study, we applied the Local
Outlier Factor method with standard hyperparameters (n_neighbors=20, contamination=0.2), which are
well-suited for handling chemical space variability'®. LOF is a density-based method that identifies
outliers by comparing a sample’s local density to that of its neighbors. A score close to | indicates a
well-represented sample, while higher values suggest outliers. By applying LOF, we identify molecules
in underrepresented regions, ensuring predictions remain within a well-defined and reliable space,
reducing the risk of extrapolation errors,

Results & Discussion

OneADMET is a meticulously expert curated public dataset designed to support robust and transparent
predictive modeling for drug discovery. OncADMET integrates high-quality data from diverse public
sources, ensuring consistent data collection protocols. Data for OneADMET were sourced from well-
established repositories: OChem and ChEMBL for ADMET-related endpoints, and OChem and
BindingDB for biological activity data. OneADMET is the disclosed public dataset while the industrial
dataset, the extended version including the industrial data cannot be disclosed.

The public dataset contains 1,119,719 endpoint values for 738,161 compounds (Figure Sla, S1b). Most
compounds adhere to QED drug-likeness standards (Figure 3a). It spans 1,533 endpoints: 44 ADMET
endpoints and 1,489 biological activities. Most biological activities are IC50 and Ki measurements and
a smaller fraction is expressed as EC50 and Kd data (Figure Slc, S1d). The contrast between the
industrial and the OneADMET (public) underscores the focused and systematic nature of industrial
measurements (e.g., Caco-2 permeability, LogD7.4), which typically involve 1,000 to 10,000
congeneric compounds, compared to the more diverse but smaller-scale public datasets of 500—1,000
compounds (Figure 3b).

OneADMET is structured into two primary domains: ADMET endpoints and biological activity tasks.
While biological activity tasks are more numerous, ADMET tasks involve larger datasets, typically
comprising 1,000-10,000 compounds per task, compared to the 100-1,000 compounds per task in
biological activity data (Figure 3c, 3d).



CHAPTER 6. LARGE-SCALE ADMET PROFILING 224

We examined the number of endpoints reported per compound. Public compounds are generally
mecasurcd on a single endpoint (Figure 3¢). In contrast, industrial compounds are typically measured on
2-3 cndpoints. This is another illustration of the systematic cvaluation protocols applicd in
pharmaceutical pipelines.

We explored relationships between tasks by constructing a correlation matrix based on shared
compounds between tasks. Among public datasets from OneADMET, approximately 50% of tasks
exhibit positive or negative correlations, forming groups of related activities . These cluster tend to group
tasks that are expected and already reported by others as exemplified by the cluster grouping CYP
plC50, lipophilicity, and solubility (Figure S2). Industrial datasets showed stronger degrees of
correlation, the consistency of the measurements in the dataset allows to observe relationships that are
hardly noticcable in the public datasct. Industrial compounds in an industrial drug development process
arc investigated for a biological property of interest and quite systematically, for microsomal stability,
LogD, and LogP sharing significant data (Figure S3).

Moreover, compound sharing between endpoints revealed limited overlap in public datasets (e.g., CYP
and microsomal clearance, Figure S4). In contrast, industrial datasets demonstrated a high degree of
overlap in compound measurements across related endpoints, reflecting the systematic approach of
industrial drug development processes. For instance, compounds investigated for biological properties
were routinely evaluated for complementary ADMET endpoints like microsomal stability, LogD, and
LogP, resulting in strong data connections between these endpoints (Figure S5).

We expected that the correlations between tasks would translate into model building synergies for MTL.
Highly correlated clusters reflect shared underlying processes or mechanisms, enhancing the potential

for MTL to leverage interdependencics between tasks.
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Figure 3: Presentation of the data of OneADMET from drug-likeliness metrics to overall R? performances on the

ADMET endpoints. (a) Distribution of the QED of the public (orange), the industrial (purple) and all compounds of the full
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set (black). (b) Distribution of the size of the datasets in function of their domain as either public, industrial, or all compounds.
(¢) Distribution of the size of the datasets in function of their class as either ADMET or potency a.k.a bioactivities or all. (d)
Count plot of the number of dataset a.k.a task per domain or/and class. (e) Distribution of the number of measurements per
compound in function of their domain. (f) Cumulative distribution of the median R? (Pearson), of individual models selected
for the consensus, on the endpoints external test sets in function of their domain or class. (g) Cumulative distribution of the
median R? (Pearson), of individual models selected for the consensus, as a function of the potency task as either EC50, 1C50,
Ki, or Kd. (h) Boxplot of the median R? (Pearson), of individual models selected for the consensus for ADMET or potency
tasks (i) Boxplot distribution of the R? (Pearson), of all individual models on the test per ADMET tasks for the public, and for
asubset of the ADMET task for the industrial. The color of the box depends on the ADMET category.

Development of ML methods
The public OneADMET dataset was applied to develop predictive models. These models illustrate the

modelisability of each task. Models were trained on a training set covering 80% of the data and validated
on the remaining 20%. Hyperparameter optimization was conducted as part of the training procedure,
based stratified 3-fold cross-validation and 30 iterations of a Bayesian optimization procedure. This
approach was conducted systematically and consistently: each model was developed using the same
partition of data for training, testing and cross-validation. Both STL (Single-Task Learning) and MTL
models were trained on identical data. To summarize, the ChemProp GNN MTL model was optimized
and benchmarked against state-of-the-art methods such as Random Forest, XGBoost, STL GNN, Kernel
Ridge Regression (KR), K-Nearest Neighbors (KNN), and Support Vector Regression (SVR). Each
method was evaluated across an exhaustive combination of descriptors and endpoints, exploring the

modelisability of a large space of features.

Performance on ADMET and Biological Activity Endpoints
The performance of predictive models was assessed using R? scores per endpoint. The cumulative

distribution of the median test performances of models (Figure 3f) was used to compare the
performances of the public model applied to the public test and the industrial model applied to the
industrial test. First, we observed that the performances are overall similar for ADMET endpoints.
Second, biological activity tasks showed generally higher predictive performance, with the median R?

values averaging at 0.8,
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Potency Measures and Endpoint Complexity

Performance was then examined based on potency measures such as IC50, EC50, Kd, and Ki (Figure
3g). IC50 is the concentration of a compound required to inhibit 50% of a target’s activity, typically
measured in enzyme or cell-based assays, and influenced by substrate concentration and assay
conditions. EC50 represents the concentration needed to achieve 50% of the maximal functional
response in a cellular system, affected by receptor density, signaling pathways, and assay sensitivity.
Kd quantifies the equilibrium dissociation of a ligand from its target, determined in controlled
biophysical assays, making it a stable measure of binding affinity. Ki defines the intrinsic binding
affinity of an inhibitor, calculated in competitive binding assays and independent of enzyme or substrate
concentrations.

EC50 endpoints were the hardest to predict, Kd endpoints the easiest, with IC50 in between. Variability
in IC50 values can arise due to differences in assay conditions, including buffer composition,
temperature, pH, and experimental setup. Such variability complicates direct comparisons across
datasets. EC50 values, dependent on functional responses, are further influenced by receptor density,
downstream signaling, and assay sensitivity, leading to higher variability compared to IC50 or Kd. This
variability explains the broader error distributions and lower predictive performance observed for ECS0
endpoints. In contrast, Kd reflecting binding affinities under controlled conditions, result in more stable
and accurate predictions, as reflected in higher R? values.

General Predictive Performance
To evaluate the general performance of all predictive models, both median and best-case R? scores per

endpoint were analyzed (Figure 3h). For ADMET endpoints:

¢ Median R? values were typically in the range of 0.4-0.6.

¢ Best models showed an increase of +0.1 to +0.2 in R? from the median performances to the best

model performances, highlighting the importance of adequate hyperparameters optimization.

For biological activity tasks:

¢ Median R? scores ranged from 0.6 to 0.8, with best-case scores often exceeding 0.8.

» Best models showed an increase of +0.05 to 0.1 in R2
The median R2 tends to be a bit lowered because of the use of inadequate molecular descriptors. It was

consistently observed, as others before use'®*

, that Estate and MACCS descriptors are generally not the
best choice. Also, biological activity endpoints exhibited greater variability in performance, likely due
to smaller dataset sizes. Some of these datasets are displaying an obvious SAR on congeneric chemical
families — as the pKi TTK (Threonine Tyrosine Kinase) human dataset for instance. On the other hand,
other tasks involved a small number of instances that are very diverse so that there sometimes little
ground to support a prediction for an external instance, for instance the pIC50 TNRIA (Tumor Necrosis
factor Receptor superfamily member 1A) human dataset.

However, we did not investigated outliers in the different datasets. Some errors may remain due to

ambiguities in the exact definition of some biological targets can be confusing. For instance, CDK2
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activities are often assumed to be acquired on CDK2/cyclinA2-based assays. However, the experimental
setup sometimes requires verification to not be confused with an assay involving another cyclin
dependent kinase, an affinity measured without cyclin or with another cyclin. An example of a
compound tested on CDK2 that can be confused in this way is NU6027 (CHEMBL303948, BDB5566).
Other sources of errors that can be cited are: experimental noise, usage of different probes, application
to various engineered proteins or cell-lines, compounds stability, ratio of DMSO.

We observed however that biological activity endpoints tend to be more modelisable than ADMET
endpoints. This is to confront to a higher experimental noise in ADMET data as observed comparing
the SDi for ADMET datasets and biological activity datasets. Yet, optimized models for ADMET
endpoints were still able to achieve competitive performance.

Category-specific insights

The R? distributions across categories (Figure 3i) reveals that physicochemical endpoints are the easiest
to predict, with scores averaging 0.7-0.8. Other ADMET categories, such as metabolism and absorption,
exhibited moderate performance (R* ~0.5), while toxicity endpoints proved the most challenging, with
20% of tasks achieving R*> < 0.4. Our previous work highlighted similar challenges, particularly in the
context of Caco-2 and PAMPA assays. For example, we observed that discrepancies in permeability
predictions were often linked to experimental variability, restraining public to be merged with industrial
data and making the application of public models to industrial data non-viable.

The measurement of efflux ratios and apparent permeability further exemplifies this disparity. For
instance, as highlighted in our previous studies, industrial assays for Caco-2 often incorporate Bovine
Serum Albumin (BSA) to enhance absorption modeling, while public datasets omit BSA altogether,
relying on simpler protocols. Similarly, PAMPA assays differ in membrane types, pH gradients, and
transport conditions, leading to variations in logl0 permeability measurements. Boxplots summarizing
test performance revealed that industrial and public datasets showed similar distributions, except in the

worst-performing cases, where public endpoints for specific toxicity measures had the lowest R? values.
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Figure 4: Analysis of the performance of the predictive models. (a) Density distribution of the rank of the models
performances on the test set in function of the logarithm 10 of the size of the dataset. Distributions are colored from purple
(low density) to yellow (high density). (MTL: Multi-Task Learning, STL: Single-Task Learning, ML: Machine Learning) (b)
Barplot of the total time in CPU hours to train and optimized models for all the endpoints, per method. The value is considered
using one CPU or GPU for GNN models, on a single threaded process (dashed, not in parallel) or if possible (with
RandomForest, XGBoost and k-Nearest Neighbors) on Multi-threaded process (not dashed, in parallel). (¢) Inference time in
seconds in function of the number of compounds by either using standard ML (Random Forest) or the Multi-Task GNN, cither
on CPU (dashed) or GPU (not dashed).

Method comparisons
To evaluate the impact of descriptors and methods on predictive performance, we conducted a

comprehensive comparison across all datasets. The goal was to identify cases where specific descriptors
or methods were better suited and to assess the added value of MTL in large-scale applications. For this,
we ranked per endpoint all models, each corresponding to the use of one method applied to one set of

descriptors, according to their RMSE, assigning the lowest rank to the best-performing combination
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(Figure 4a). We also compared methods using R? scores to provide a detailed understanding of their
cfficacy.

A subsct of R? performances for public data 1s shown in Figurcs S6, highlighting the closc performance
of MTL models to STL models. However, STL occasionally exhibited significant performance failures
whatever algorithm being used, but not all algorithms are failing for the same tasks. As a result, it is not
possible to recommend a solution that would fit all problems optimally, which is another illustration of
the No Free Lunch theorem'®,

The relationship between descriptors, methods, and performance was explored using heatmaps of ranks
for ADMET and bioactivity endpoints (Figures S7a and S7b). No single method consistently achieved
a median rank over all methods below 7, indicating no universally superior combination of method and
descriptor. However, XGBoost consistently outperformed RF, which in tum outperformed other
mcthods. For bioactivity endpoints, descriptors like Avalon and ECFP werc marginally better, whilc for
ADMET tasks, these descriptors showed more pronounced deviations in performance. Overall,
XGBoost or RF paired with Avalon or ECFP descriptors emerged as reliable options for modeling novel
datasets, requiring minimal hyperparameter optimization to achieve strong performance with R? around
0.6 t0 0.9.

We observed that R? scores across all endpoints followed a Gaussian distribution when plotted against
dataset size (log10) (Figure S7c). The performance of models on larger datasets, particularly ADMET-
related endpoints, reflects the nature of these data. ADMET datascts arc extensive and span highly
diverse chemical spaces, but their cell-based nature introduces significant variability, even with
standardized approaches. Even with meticulous curation, conditions can significantly impact model
performance, as numerous samples may lack properly annotated metadata. This limitation constrains
dataset refinement and is further compounded by inherent assay noisc. Factors such as transporter
cxpression, measurcment conditions, and compound-specific propertics—such as lipophilicity and
affinity for laboratory apparatus, contribute to variability, making it challenging to achieve consistently
high performance, regardless of dataset size.

We observed a performance peak between R? = 0.6 and 0.8 for datasets of around 1,000 compounds.
Methods such as XGBoost and RF consistently outperformed SVR, KR, and KNN on large datasets.
While GNN MTL and STL performed similarly on large datasets, MTL demonstrated superior
performance on smaller datasets, outperforming GNN STL, RF, and XGBoost. This observation is
particularly interesting as an attractive feature of MTL medels is to improve the generalizability of
statistical models for datascts that lack data points, using the training on large models to supplement the
missing information'®’s, It is nice to observe this statistical behavior in such large MTL model, using a

default weighting scheme.
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Rank comparison across dataset sizes
To further assess method performance, we analyzed method ranks against dataset sizes (Figure 4a). For

small datasets (<500 compounds), STL GNN often underperformed, while MTL GNN maintained in
the top ranks. For small datasets, competitive methods are SVR and KNN.

On medium-sized datasets (500-5,000 compounds), the XGBoost and RF appeared more efficient, RF
being more efficient for the least populated datasets. However, both STL GNN and MTL GNN appeared
also as methods of choice. We found interesting to observe the ranks of the two methods exchanging as
the size of the dataset is increasing: MTL for smaller dataset and STL for larger ones.

For large datasets (>5,000 compounds), STL GNN, MTL GNN, and XGBoost emerged as the leading
methods. Finally, the MTL GNN and XGboost proved to be useful on a wide range of dataset sizes. On
the other hand, the KernelRidge was dominated systematically. In contrast to an SVR, the KernelRidge
uses all data points of a dataset to build a model and has a quadratic loss function. It is therefore more
susceptible to outlying observation. We hypothesize that it should require higher quality data and a more

thorough exploration of the kemnel space to make the method shine.

Computational Efficiency in Training and Inference
Modeling also involves considerations of computational time for descriptor computation, training, and

inference. Training time was analyzed across dataset sizes (Figure S$7d). We performed all calculations
on the Amazon Web Service, using multiple g5.4xlarge instances (16 CPUs, 64 RAM, 1 NVIDIA A10G
GPU), parallelizing the processes on each, and estimated the CPU threading and GPU time to compute
with the timeit module. Therefore, all results reported are only indicative. For MTL we report the time
for training the whole model for all endpoints in parallel, while for STL approach we report the time
needed to train all models sequentially. The calculation of the molecular descriptors is included in the
computation times reported.

Methods like SVR, KNN, and KR showed strong dependence on dataset size, with SVR training times
approaching those of STL GNN for large datasets. Among all methods, STL GNN had the slowest
training speed, while MTL, RF, and XGBoost were the most scalable. The training time for MTL GNN
was comparable to XGBoost. However, the hyperparameters of an MTL methods are optimized once.
The method saves a lot of efforts compared to a sequence of STL models where hyperparameters needs
to be optimized on cach task.

Inference speed was another critical consideration. We report time measurements using a single
g5.xlarge instances (4 CPUs, 16 RAM, 1 NVIDIA A10G GPU) machine by either running computing
on the GPU, or CPU by single-, or multi-threading. The time required for inference on increasing dataset
sizes was compared for standard methods like RF and SVR against MTL GNN on both CPU and GPU
(Figure S8). Standardization and descriptors computation emerged as the primary bottleneck. It is
observed also that whatever solution used, the computational time is evolving linearly with the size of

the dataset to infer. The GNN approaches appear to be more efficient to infer large dataset (>10000
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compounds). We hypothesize that it is due to the more efficient calculation of the embedded molecular
featurization, MTL GNN can efficiently use GPU and be sensibly faster for the largest datasets,
Applicability Domain

Predictive models are inherently prone to errors, particularly when applied to unseen data that differ
from training samples in structure or response values. To mitigate this, predictive models must operate
within an AD, a framework designed to identify compounds that fall inside or outside the learning space
of the model. For each dataset, an AD was prepared using the Local Outlier Factor algorithm, The AD
was designed to identify compounds within the chemical space of the training dataset where predictions
are reliable, ensuring that the model does not extrapolate to areas of the chemical space with insufficient
representation, To establish the AD for each endpoint, we utilized the best descriptor identified during
the benchmark process, ensuring that the AD was tailored to the specific features and characteristics of
the dataset. The Local Outlier Factor method was applied using standard hyperparameters. Each
endpoint's best single-task learning model was paired with its corresponding LOF model to ensure
precise and endpoint-specific AD estimation.

Conclusion

This study presents a comprehensive approach to improving predictive modeling in drug discovery by
integrating a unified MTL framework with the extensive OneADMET dataset. With data encompassing
over 738,161 compounds and 1,119,719 million measurements across 44 ADMET endpoints and 1,489
biological activity metrics, OneADMET offers a detailed and reliable resource that addresses long-
standing data limitations, supporting both academic research and industrial applications?*!%5,

A rigorous data standardization process underpins our work, involving careful filtering of duplicates,
minimization of experimental noise, and strict quality controls. This foundation accurately reflects the
complex chemical and biological realities inherent in drug discovery and builds on carlier studies that
advocate for integrative methodologies in handling heterogeneous datascts'®. Transitioning from STL
to MTL offers several advantages:

- STL models require separate hyperparameter optimization for each endpoint, which increases
computational complexity as the number of tasks grows. MTL, however, allows for a single
optimization step across all tasks, thereby streamlining the process and reducing overhead®.

- The shared latent representations in MTL facilitate the capture of inter-task dependencies, such
as correlations among CYP inhibition, microsomal stability, and lipophilicity. This observation
supports previous findings and underscores MTL’s potential to improve predictive performance,
particularly in scenarios with limited data.

- By consolidating multiple predictive tasks into one model, the MTL approach reduces the
complexity involved in deployment and ongoing maintenance compared to managing a suite of
STL models'".

- While MTL may seem more extensive than necessary for a single endpoint, its true value lies

in integrating related endpoints to provide richer predictive insights, Importantly, the inference
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time remains comparable to that of STL models, as both rely on similar processes such as

molecular structure standardization and descriptor computation.

The performance of our models is reflected in best R? values of 0.6-0.8 for ADMET tasks and 0.7-0.9

for biological activity tasks, aligning well with state-of-the-art benchmarks'®

. These results suggest that
our unified large-scale MTL framework is effective in capturing complex, interrelated biological
phenomena while capturing distant tasks.

Nevertheless, challenges remain. Variability in experimental conditions continues to impact model
performance, a concern highlighted by several experts'®’. In response, initiatives such as the Polaris
project have emerged to enhance data curation and accessibility, helping to address these
inconsistencies?'. Additionally, advances in federated learning'® and the development of integrative
databases offer promising avenues for further improvement.

Looking forward, the OneADMET dataset and our unified MTL framework provide a solid foundation
for continued application of large MTL in predictive modeling for drug discovery. Future efforts should
focus on ongoing data curation, refining applicability domains, and incorporating new experimental
measurements to capture even more complex biological interactions. Expanding this framework to
integrate additional chemical and biological information may further enhance predictive performance'®'.
In parallel, ongoing improvements in model interpretability, uncertainty estimation, and multi-modal
data integration are expected to drive methodological progress, ultimately paving the way for more
effective and reliable predictive pipelines.
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Abbreviations
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ADMET : Absorption, Distribution, Metabolism, Elimination, and Toxicity
eADMET : early ADMET assessment

AE : AutoEncoder
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ASNN : Artificial Associative Neural Network
BBB : Blood-Brain Barrier

BERT : Bidirectional Encoder Representations from Transformers
BSA : Bovine Serum Albumin

CapsNet : Capsule Network

CL : Contrastive Learning

CNN : Convolutional Neural Network

CPDB : Carcinogenic Potency Database

CS : Chemical Space

CYP : Cytochrome P450

DL : Deep Learning

DLCA : Decp Learning Consensus Architecture
DNN : Deep Neural Network

DUD-E : Directory of Useful Decoys — Enhanced
EC50 : Half maximal effective concentration

EPA : Environmental Protection Agency

GAT : Graph Attention Transformer

GCN : Graph Convolutional Network

GCNN : Graph Convolutional Neural Network
GGRNN : Gated Graph Recursive Neural Network
GIN : Graph Isomorphism Nctwork

GINE : Graph Isomorphism Network with Edge
GNN : Graph Neural Network

GP : Gaussian Process

GT : Graph Transtormer

1C50 : Half maximal inhibitory concentration
IUPHAR : International Union of Basic and Clinical Pharmacology
Kd : Equilibrium dissociation constant

Ki : Inhibition constant

KNN : k-Nearest Neighbors

KR : Kernel Ridge Regression
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LD50 : Lethal Dose for 50% of the population

LOF : Local Outlier Factor

LR : Logistic Regression

ML : Machine Learning

MTR : Model Tree Regression

MTL : Multi-Task Learning

MUYV : Maximum Unbiased Validation

NB : Naive Bayes

NCI : National Cancer Institute

OChem : Online Chemical Databasc

PCBA : PubChem BioAssay

pIC350 : Negative logarithm of the IC50 value

P-gP : P-glycoprotein

PLS : Partial Least Square

QED : Quantitative Estimate of Drug-likeness

RBM : Restricted Boltzmann Machine

RF : Random Forest

RMSE : Root Mean Squared Error

RNN : Recurrent Neural Network

SMILES : Simplified Molecular Input Line Entry System
SMOTE : Synthetic Minority Over-sampling Technique
STL : Single-Task Learning

SVM : Support Vector Machine

SVR : Support Vector Regression

TDC : Therapeutics Data Commons

Tox21 : Toxicology in the 2 1st Century program
wMSE : Weighted Mean Squared Error

XGBoost : Extreme Gradient Boosting
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Table S1: Standardized units of the modelled ADMET and biological activity endpoints.

Endpoints Units
Bioactivities (IC50, EC50, Ki, Kd, GI50, TC50)  -log10(mol/L)
Solubility log10(mol/L)
Apparent permeability log10(meter/seconds)
Total/Renal clearance log10(mL/min/kg)
Microsomal clearance log10(mL/min/10° cells)
Half-life log10(hours)
Dose (LD50, TD50) log10(mg/kg)
Volume of Distribution at steady state log10(L/kg)
Plasma Protein Binding %
Microsomal stability %
MRTD log10(mol/kg)
LogBB -
Hydration Free Energy log10(kcal/mol)
Efflux ratio -
Recovery %
LogP -
LOgD7A4 -
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Table S2 : Description of the conditions blueprint used to filter experimental data.

Endpoint Assay Conditions
Passage Number: 20-100
Caco-2 BSA: 0 %
. Concentration: 1-10 uM
Efflux Ratio Passage Number: 20-100
MDCK-MDR1 BSA: 0 %
Concentration: 1-10 uM
Passage Number: 35-72
Caco-2 BSA A/B: 0%
Concentration: 1-10 uM
Apparent TTE
Permeability MDCK-LE Pa“;gse AN:%PES‘QS 2
MDCK-MDR1 Concentration: 1-10 pM
pH A/B: 7.4/7.4
PAMPA Concentration: 1-10 uM
Brain lipid extract membrane:
PAMPA-BBB PC, PE, PS, PBLE, PVDF
DMSO 0-5%
o ore MDCK-MDRI cell line
Inhibition pICS0 P-gP Rhodamin 123/Digoxin substrate
- Phosphate buffer 0.1 M.
Apparent Solubility (LogSup) At 25£5°Colsi and pH 7.441 log.
Concentration: 10 mM DMSO
Kinetic Solubility (LogSkin) Temperature 25°Celsius
PBS Buffer pH 7.4
Shake-Flask/Column elution
Water Solubility (LogSw) zgfgigszzg
it 71 g
Temperature: 22-25°C
LoaP HPLC / ShakeFlask
s pH 741 log
Pure Water
Temperature: 22-25°C
LogD74 RP-HPLC / ShakeFlask
pH 7.4 PBS
Hydration Free Energy (HFE) Alchemical free energy
Plasma Protein Binding Rat
(PPB) Matrix: Plasma
Distribution . . Rat
Ratio Brain/Blood (LogBB) Intravenous administration
Volume distribution at steady SI :ﬁ;rfnn;:mzlgi;?ﬁlfé;}
state (VDss) : )
LC-MS/MS
Human or Rat plasma
Half-life plasma Temperature: 37°C
LC-MS/MS
Human or Rat plasma
Half-life microsomal Temperature: 37°C
LC-MS/MS
Mouse or Rat
I Liver microsmoes
Elimination

Clearance Microsomal

Cofactor regeneration system (NADPH)
Temperature: 37°C
Incubation time: 0-60 min
Buffer pH: 74

Clearance plasma

Rat or Human
LC-MS/MS

Stability microsomal

Mouse or Rat
Liver microsomes
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Compound stability measured under NADPH-
dependent oxidation
Buffer pH 7.4

Clearance total

Rat (Sprague Dawley)
Intravenous injection
LC-MS/MS quantification

Metabolism

CYPIAL

Enzyme activity assay
Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS

CYPIA2

Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Phenacetin

CYP2B6

Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Bupropion

CYP2C9

Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Diclofenac

CYP2C19

Enzyme activity assay
Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Omeprazole

CYP2D6

CYP3A4

Enzyme activity assay
Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Dextromethorphan
Enzyme activity assay
Temperature: 37°C
Buffer pH: 7.4
Fluorometric or LC-MS/MS
Substrate: Midazolam or testosterone

Stability microsomal

Mouse or Rat
Liver microsomes
Compound stability measured under NADPH-
dependent oxidation
Buffer pH 7.4

Toxicity

hERG pIC50

Manual/Automatised patch-clamp or fluorescence-
based assays
Non engineered hERG for HEK293 and CHO cells
Incubation at 37°C
Buffer pH 7.4

Cell proliferation IC50

HEK293
MTT or SRB assay
Incubation 24-72h

DMSO <=0.1%
Temperature 37°C
CO2 5%

MRTD

Derived from human clinical studies or FDA data;

calculated based on the Maximum Recommended

Therapeutic Dose (mg/kg/day) normalized to body
weight.

LD50

Acute toxicity test
Oral gavage

GI50

Measured using tumor-derived cell lines; GIS0 defined
as the concentration inhibiting growth by 50%; assay
types include MTT, SRB, or ATP-based assays in 96-

well plates; incubation: 24-72h; 37°C; COa: 5%.

TDS0

Chronic toxicity study
Dose-response over months
Wistar rats
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Table S3: Molecular descriptors used for the models’ preparation and their optimization

domains.

Descriptors Hyperparameters Optimization domain
Avalon fp_size 256, 512, 1024, 2048
count True, False
fp_size 1024, 2048, 4096
radius 2,3
ECFP include_chirality True, False
count True, False
fp_size 1024, 2048, 4096
AtomPairs §cale_by_hac ) True, False
include_chirality True, False
count True, False
PubChem count True, False
MACCS count True, False
RDKit2D - -
EState type sum, bit, count

Table S4: Predictive methods used and their optimization domains.

K-Nearest Neighbors weights

Methods Hyperparameters Optimization domain
n_estimators 100-300
learning_rate [0.01-0.3] log = True
XGBoost max_depth 3-15
subsample 0.6-1.0
n_neighbors 1-30

uniform, distance

algorithm ball_tree, kd_tree

alpha (0.01-10) log = True
KernelRidge kernel linear, rbf

gamma 0.001-0.1 log = True

C 0.1-5.0 log = True
Support Vector Machine kernel linear, rbf

gamma 0.001-0.1 log = True

n_estimators 100-300
Random Forest max_depth 5-20

max_features 0.5-1.0

n_layers 1,3

layer_size 300, 1000, 2500
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Figure S1: Presentation of the data of OneADMET and the range of performances. (a) Count plot of the number of unique
compounds per domain or/and class. (b) Count plot of the number of measurements per domain or/and class. (¢) Distribution
of the industrial potency datasets by bioactivity types considering IC50 (purple), Ki (blue), EC50 (blue), and Kd (orange). (d)
Distribution of the public potency datasets by bioactivity types considering IC50 (purple), Ki (blue), EC50 (blue), and Kd
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Figure S3: Hierarchical heatmap of the Spearman correlation between the industrial ADMET endpoints. Correlation is
only computed if at least 30 compounds are shared between the datasets. Correlations are colored in green and anti-correlations
are colored in purple. Datasets sharing less than 30 compounds or with a correlation of 0 are colored in grey.



CHAPTER 6. LARGE-SCALE ADMET PROFILING 258

= CYP2B6 (IC50, Human, Biochemical)
- CYP2C9 (IC50, Human, Biochemical)
~CYP1A1 (IC50, Human, i
= CYP1A2 (IC50, Human, Biochemical)
indingDB__pIC50_CYPLA2_HUMAN_Bioche

-CYP2C19 (IC50, Human, Biochemical)
- Clearance Renal
E

-LD50 (Rodent, po)

rLD50 (Rat, po)

100 L MRTD

-LogBB

- Permeability (Caco2)

- TD50 (Rat)

- Solubility (Water)

| | ~hERG (IC50, Hamster, Cell)

[ -Permeability (MDCK-MDR1)

- Half Life (Human, Microsome)

- Half Life (Rat, Plasma)

~MDR1B (IC50, Mouse, Biochemical)
~CYP3A4 (Ki, Human, Biochemical)
-LogP

- Half Life (Human, Plasma)

- Efflux Ratio (MDCK-MDR1)

-0 ~PPB (Human)

-VDss (Dog)

rEfflux Ratio (Caco2)

- Permeability (MDCK-LE)

- CYP3A4 (IC50, Human, Biochemical)
-LogD74

- Clearance Total (Rat, iv)

~MDR1 (IC50, Human, Biochemical)
- Permeability (PAMPA)

-a0

Ratio of coverage

- Solubility (PBS)

~hERG (Ki, Hamster, Celly
Cell (Ics0)
- GI50 (Tumor)

- Solubility (Kinetic)

rHalf Life (Rat, Microsome)

~CYP2D6 (IC50, Human, Biochemical)

- Clearance Microsomal (Mouse)
Clearance Microsomal (Rat)
Stability Microsomal (Mouse)
Stability Microsomal (Rat)

LogP

Solubility (Water)
HFE

GI50 (Tumor)

MDRLB (IC50, Mouse, Biochemical)
MRTD

PPB (Human)
Permeability (Caco2)

LogBB
Clearance Microsomal (Mouse)

LogD74

Solubility (Kinetic)

VDss (Dog)
MDR1 (IC50, Human, Biochemical)

TDS0 (Rat)

Clearance Total (Rat, iv)
Biochemical)

LD50 (Rat, po)
hERG (Ki, Hamster, Cell)

LD50 (Rodent, po)

Clearance Renal

ity Microsomal (Rat)

Half Life (Rat, Plasma)

hERG (IC50, Hamster, Cell)
Cell Proliferation (IC50)

Half Life (Human, Plasma)

Half Life (Rat, Microsome)
Permeability (MDCK-MDR1)

CYP1A1 (IC50, Human, Biochemical)

Clearance
Stability Microsomal (Mouse)

£
b

Half Life (Human, Microsome)

CYP2C9 (IC50, Human, Biochemical)
CYP1A2 (IC50, Human, Biochemical)
CYP2DE6 (IC50, Human, Biochemical)
CYP2B6 (IC50, Human, Biochemical)
CYP3A4 (IC50, Human, Biochemical)
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Figure S6: Barplot of the R? performances distribution per method for a subset of 75 public endpoints. Methods are
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Distributions are colored from purple (low density) to yellow (high density). (b) Heatmap of the mean rank +- the std for the
combination of method and descriptors for the ADMETSs endpoints. Low ranks are colored in blue and high rank in red. (¢)
Heatmap of the mean rank +- the std for the combination of method and descriptors for the potency endpoints. Low ranks are
colored in blue and high rank in red. (d) Density distribution of the time to train the models in function of the logarithm 10 of
the size of the dataset. Distributions are colored from purple (low density) to yellow (high density).
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Outline

In this study we show that this multi-task framework rivals or surpasses conventional
single-task models while simplifying large-scale deployment. We also propose a
reference web service for ADMET and bioactivity predictions, giving researchers a
one-stop solution to flag metabolic liabilities and toxicological red flags before
incurring animal studies or clinical trials. Both the OneADMET dataset and the MTL
model are released under an open-source license, offering a valuable resource for

robust, cost-effective, and ethically responsible drug discovery.
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Chapter 7. Collective Intelligence

7.1. Industrial Application
Introduction

In 350 BCE, Aristotle proposed that groups often

outperform lone experts when opinions are
aggregated. This idea resurfaced in 1907 when
Francis Galton observed that crowds at a livestock
fair accurately guessed an ox’s weight, surpassing
individual estimates.’”’ In the 1950s, the RAND
Corporation formalized similar principles with the
Delphi Method, using anonymous expert feedback in
iterative rounds to predict events and reach
consensus.”? By 1997, Pierre Lévy had coined the
term “collective intelligence” in his book Collective
Intelligence: Mankind’s Emerging World in Cyberspace,
stressing how digital platforms could amplify human

collaboration.”

Advances in technology accelerated the spread of
collective intelligence. Wikipedia’s founding in 2001
demonstrated that cooperative editing could produce
and maintain the world’s largest encyclopedia. In
2004, James Surowiecki's The Wisdom of Crowds
further popularized the concept, using real-world
examples to illustrate that organized groups can solve

problems more effectively than isolated specialists.!”

Main Terminology

Wisdom of the crowd
refers to how aggregated
judgments from diverse,
independent contributors

can surpass individual

expert decisions.

Digital swarm and swarm
intelligence describes

decentralized and self-
organizing group behavior
modeled on insect colonies,
where simple actions at the
individual level collectively

solve complex problems.

Peer production is a

collaborative model in
which volunteers (online)
jointly create and refine
content  or  products,
typified by open-source

software projects.

The Good Judgment Project in the early 2010s used tournaments to show that pooled
forecasts often outperformed top analysts in predicting geopolitical events.!” More
recently, “digital swarms” and Al-assisted collaboration platforms have refined how

groups share knowledge, distill insights, and reach consensus in real time.
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Drug discovery has become a vital testing ground for collective intelligence. Since
2008, the Foldit project developed by the Baker Laboratory has relied on crowdsourced
puzzle-solving to unravel complex protein structures, proving that laypeople can
sometimes provide breakthroughs that elude experts.'” Modern initiatives incorporate
massive genomic databases, robotic HTS, and global discussion forums where
researchers exchange insights on candidate molecules. In emergencies such as new
pandemics or target-related health concerns, crowdsourced data analysis and Al-
driven approaches have the potential to accelerate drug design and testing. To address
this, initiatives such as the Collaborative Modeling Project for Androgen Receptor
Activity (CoMPARA) and the Collaborative Estrogen Receptor Activity Prediction
Project (CERAPP) have applied large-scale predictive modeling to assess chemical
risks. These projects, led by the U.S. Environmental Protection Agency (EPA), have
leveraged global expertise, enlisting 25 international research groups to develop

computational models for screening over 55,000 chemical structures.'””

In this chapter, we explore the intersection of collective intelligence and computational
modeling in the context of drug discovery, with a specific focus on lead optimization.
Building on prior research demonstrating the effectiveness of aggregated expert input,
we conducted a study involving 92 Sanofi researchers from diverse scientific
backgrounds. Participants provided anonymous feedback on lead compounds,
enabling the construction of a collective intelligence agent whose predictive accuracy

was then compared to an artificial intelligence model developed in parallel.
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ABSTRACT: Over the past decade, collective intelligence, i.e., the intelligence that
emerges from collective efforts, has transformed complex problem-solving and
decision-making. In drug discovery, decision-making often relies on medicinal
chemistry intuition. The present study explores the application of collective
intelligence in drug discovery, focusing on lead optimization. Ninety-two Sanofi
researchers with diverse expertise participated anonymously in an exercise centered
on ADMET-related questions. Their feedback was used to build a collective
intelligence agent, which was compared to an artificial intelligence model. The study
led to three major conclusions: first, collective intelligence improves decision-making
in optimizing ADMET endpoints, compared to individual decisions. Second,
collective intelligence outperforms artificial intelligence for all other endpoints but
hERG inhibition. Finally, we observe complementarity between collective human and
artificial intelligence. Overall, this research highlights the potential of collective
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intelligence in drug discovery and the importance of a synergistic approach combining human and artificial intelligence in project

decision making.

B INTRODUCTION

Chemical intuition can be defined as the ability of experienced
chemists to anticipate the outcomes of chemical reactions,
predict molecular interactions, and envisage the impact of
structural modifications on a compound’s properties. This
intuition, honed through years of practice, guides chemists in
the complex, multistep process of drug discovery. During the
drug optimization stage, medicinal chemistry intuition is often
employed to estimate the ADMET (absorption, distribution,
metabolism, excretion, and toxicity) properties of a molecule
based on its similarity to known compounds. In an industrial
setting, this intuition combined with in silico property
prediction models drive the multiparametric lead optimization
process."l Recently, the responses of 35 chemists on binary
medicinal chemistry questions were provided as input to an
artificial intelligence (AI) learning-to-rank framework. This
work led to the development of an implicit drug-likeliness
scoring function, able to capture aspects of chemistry not
covered by other computational counterparts, i.e., metrics and
rule sets.”

While medicinal chemistry intuition in drug discovery relies
heavily on individual experience, know-how and personal
bias,"™¢ collective intelligence (CI), i.e., the ability of a group
to solve complex problems by leveraging the diverse
perspectives and expertise of its members, has shown
considerable improvement in reinforcing human decision-

© XXXX American Chemical Society

A4 ACS Publications

making.” Collective intelligence thrives on significant group
size, participants diversity as well as different data aggregation
methods. This methodology can outperform the capacity of
individual group members and even surpass those of experts in
complex decision making tasks.””” CI effectiveness lies in its
ability to merge multiple viewpoints into a cohesive answer,
thereby mitigating the impact of individual decision biases,
reducing noise, and harnessing the plurality of ideas,
knowledge bases, and cognitive approaches.

The persistent biases within medicinal chemistry decision-
making were also highlighted in a viewpoint article by
Gomez.'" The study revealed that medicinal chemists agreed
with their own decisions only 50% of the time, while, when
comparing their decisions to those of their peers, this
agreement dropped to 28%.'° These inconsistencies are
attributed to biases such as anchoring and loss aversion. The
study also acknowledges that, through the aggregation of
responses, medicinal chemists tend to make more accurate
decisions as a collective than when considering individual
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Figure 1. Overview of the collective intelligence experiment and main results. (a) Distribution of the 74 questions in the questionnaire in the form
of a waffle plot. Each box corresponds to a question colored by endpoint. The numbers are a guide for the eye that indicate the order of the
questions. (b) Participants’ partitioning per self-labeled medicinal chemistry expertise, with group 1 corresponding to the least experts and group S
to the most experts. (c) Violin plots of the SR by expertise level for each group (color code as in 1b) and all participants (blue). The median is
shown as a horizontal line across the thinnest part of the boxes. The error bars correspond to the interquartile range. The collective SR (based on
the most frequent or “democratic” answers) are shown as white-filled circles, while the outliers are depicted as small circles. (d) Bubble plot of the
number of responses (size) and mean SR (color) dependence on medicinal chemistry self-labeling and confidence level per question. The color
scale corresponds to the success rate, while the bubble size is indicative of the number of questions for the specific confidence—expertise pair. (e)
Endpoint distribution of the 74 questions. (f) Violin plots of the SR for each endpoint (colors as in e). The remaining plot features are as for c. (g)
Bubble plot of the number of responses (size) and mean SR (color) dependence on endpoint and confidence level per question. As in subfigure d,
the color scale corresponds to the success rate, while the bubble size is indicative of the number of questions for the specific confidence—expertise
pair.

responses, reinforcing the value of consolidating diverse inputs
for drug discovery projects.

Collective intelligence and chemical intuition have already
been combined in the fields of metal—organic frameworks''
and inorganic chemistry experiments.'> Nevertheless, the most
striking scientific results have been produced for the prediction
of biological structures through the Foldit initiative."> As of
now, Foldit has been applied to other related fields such as
small molecule and protein design."* Recently, a similar
crowdsourcing approach was adopted for RNA design and
folding prediction."”'® Only a few examples exist where

collective intelligence has been applied to the decision making
in drug discovery.“‘I7 Often drug discovery, and in particular
the stage of lead optimization, relies heavily on singular experts
or small project teams, however, as illustrated by Hong and
Page,B groups with diverse perspectives can outperform like-
minded experts. In the context of drug design, this diversity,
referred to as heterogeneous collective intelligence, could yield
a yet more efficient process.

Inspired by the growth of chemistry design environments,
such as Torx, LiveDesign, and DesignHub, that provide a
robust framework allowing for collaborative feedback and

https:/doi.org/10.1021/ac 4c03066
J. Med. Chem. XXXX, XXX, XXX~XXX
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chemistry ideas generation in drug discovery, we conducted an
experiment with Sanofi scientists from diverse scientific
backgrounds ranging from Pharmacokinetics, Structural and
In vitro Biology to Molecular Modeling and Medicinal
Chemistry. Our goal was to investigate whether the application
of collective intelligence can improve the decision-making
process in ADMET optimization. To address this question, we
first compared the performance of collective inputs versus
those made individually. By employing various aggregation
methods, we aimed to understand the critical factors
influencing the success rate (SR) of utilizing a collective
human intelligence approach, such as the confidence placed by
individual participants in the answers they gave, in addition to
their perceived medicinal chemistry expertise. Furthermore, we
identified medicinal chemistry pitfalls in the collective answers
and examined how these can bias the lead to optimization
process. We finally sought to assess the performance of an Al
model to augment the individual and collective decision-
making processes.

B RESULTS

This section is organized as follows. First, we provide an
overview of the data we obtained from our experiment and
demonstrate that a correlation exists between the responses of
the participants and both their medicinal chemistry back-
ground and confidence per response. Second, we assess the
performance of collective intelligence per ADMET endpoint,
examining how the team composition and the aggregation
method influence the collective outcomes. Finally, we explore
the collective biases encountered in medicinal chemistry
during the exercise and underscore the complementarity
between Al and CI responses.

Overview of the Experiment and Analysis of the
Collective Intelligence. During the experiment, 92 partic-
ipants with diverse scientific backgrounds and roles in drug
discovery were asked 74 ADMET optimization questions
(Figure la). Participants self-rated their medicinal chemistry
expertise on a scale from 1, equivalent to minimal knowledge,
up to level S, which equated to experts in medicinal chemistry
(Figure 1b). Due to technical limitations, the experiment was
divided into two sessions of 37 questions each. For each
question participants were given a chemical scaffold and asked
to choose the “best” of three proposed substituents for a
specified ADMET endpoint (Figure S1). Additionally, for each
answer given, participants were required to rate their
confidence in the response given, ranging from 1 (low
confidence) to S (high confidence). The experiment yielded
a total of 6808 responses and their corresponding confidence
levels.

The median of the global performance defined as success
rate, i.e., correct responses over the total number of questions,
was 43%, while the lowest and highest success rates recorded
were 8% and 73%, respectively (median and outliers of blue
violin plot in Figure 1c). The global median attained aligns
closely with group 3 (43%), which is lower than groups 4
(52%) and S (58%). As a reminder the groups were defined
based on the participants’ self-rated medicinal chemistry
expertise. One out of four participants had a success rate of
more than 50%. With three possible answers for each question,
the random success rate is expected to be 33%.

The CI response is defined as the answer selected using a
“democratic” approach, ie, most frequent response per
question. Globally, the CI response exceeded the median SR

for all expertise-based groups as well as for the global group, by
up to 18% (Figure 1c). Based on these SRs, groups 1 and 2 can
be merged and classified as a “non-experts” cohort while
individuals in groups 4 and S merged and classified as
“experts”. Participants in group 3 exhibit diverse performances,
with SR ranging from a low 20% up to 62%, which aligns with
unreliable self-evaluation, in concordance with previous
studies.'® Interestingly, characterizing group 3 participants as
“experts” does not significantly affect the “expert” SR: 56 + 6%
when only groups 4 and § are considered, versus 52 + 7%
when group 3 is also included (Figure S2a,b). To validate our
choice to include group 3 in the “experts” cohort, we
performed an a posteriori analysis, where we classified all
participants with individual SR less than 50% as “non-experts”
and those with SR more than 50% as “experts” (Figure S2c).

Individuals with higher self-assessed expertise displayed
greater confidence in their answers (Figures 1d and S3a). For
instance, 81% of level 5 experts assigned a confidence level
greater than or equal to 3 (Figure S3a). In contrast, non-
experts predominantly chose the lowest confidence value
(Figure S3a), with no correlation demonstrated between their
SR and confidence levels (Figure 1d). However, a confidence
level above 3 combined with an expertise level above 2
consistently led to a SR exceeding 50%. These data highlight
the significance of achieving high success rates when
combining higher confidence and expertise levels.

The ADMET questions chosen for this study focused on five
endpoints: the partition coefficient (log P), distribution
coefficient (log D), aqueous solubility (log S), apparent
permeability (Papp), and hERG inhibition (Figure le). Over
half of the questions were related to aqueous solubility and
distribution coefficient. Significant variations in the SR are
observed for the different endpoints. While log P, permeability,
and solubility endpoints achieved median SR of ~40% or
more, the median SR for hERG and log D was closer to the
random benchmark of 33% (Figures 1f and S4). Overall, CI
was shown to be effective across most of the endpoints studied.
Remarkably for the log P analysis, the collective SR value
exceeded the median individual SR, achieving 100%. Similarly,
for solubility and permeability, CI improved SR by ~20%
relative to the median of the individual SR (white-filled circles
versus the horizontal line across the thinnest part of the box,
Figure 1f). In the case of log D, an SR improvement of
approximately 10% was observed. However, for hRERG CI did
not enhance performance (Figure 1f).

Interestingly, the prevalence of low and medium confidence
responses was uniform across different endpoints (Figures 1g
and S3b). This finding suggests that confidence proportions
are more influenced by the self-rated medicinal chemistry
expertise group rather than the specific endpoint. For log P and
permeability, there is a distinct correlation between confidence
levels and SR. Conversely, for the hERG endpoint, no such
correlation was apparent, indicating that in more complex
problems, confidence may not be the key determinant of high
SR.

To further investi§ate these observations, we built a 2D map
using the UMAP" (Figure SS). Each dot on the map
represents one participation to the experiment, with their
position determined by the proximity in the participants’
responses and confidence levels. Interestingly, experts and non-
experts, occupy distinct areas with different SR. Participants
self-labeled as level 2 or 3 are dispersed across the plot and are
sometimes found in areas occupied by experts (Figures SSa

https:/doi.org/10.1021/acs jmedchem.4c03066
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Figure 2. Evolution of the collective success rate. (a) Collective SR for all endpoints using different aggregation methods. The collective answer is
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Collective SR for all endpoints using log odds for the different participants’ groups. (c) Collective SR for log P and for all participants. (d)

Collective SR for hERG and for all participants.

and SSb). These results suggest significant noise in the self-
rated expertise levels. In the second part of the exercise
(session two), the participants seem to have understood the
difficulty of the questions and adjusted their level of expertise
appropriately. This phenomenon is indicated in the graph by
more distinct separation between expertise levels (Figure
SS5c,d).

Overall, our analyses show that the primary determinant
correlated to increased SR is the level of confidence individuals
place in judging if they have correctly responded to each
question.

Collective Performance Dynamics and the Effect of
Aggregation Methods. This section of the study is focused
on understanding how different aggregation methods affect the

ps://doi.org/10.1021/ac: 4c03066
J. Med. Chem. XXXX, XXX, XXX~XXX




CHAPTER 7. COLLECTIVE INTELLIGENCE

272

Journal of Medicinal Chemistry

pubs.acs.org/jmc

d
8 EY
%
10 ° o‘ =
¥ 5
~ ®
= 3 - 41 ;. o ©
o
S X o
g- 0 ..:o l‘ ® g 8
S ° 4 . °
T s ° o % °
= °
& -10{ o Logp % ?‘3
@ Permeability
o Solubility
w
5] e gD )
e hERG ’? &
-15  -10 -5 0 5 10 15

Principal Component 1

Principal Component 2

80
000 8 :.
0000
10 P ° ~.§ b4
° 70
o
5 ® g & o .
$ 3o 0F
dEk Tatt 2
T o & & e
° ~ ° 50
w
-5 ) ® .0 o §
» w03
(] w
&F o & %
-10 4 o ?0
30
. 3
B
T T T T T T T 20
=15 -10 =3 0 5 10 15

Principal Component 1

Figure 3. t-SNE map of the CI library. Each point represents a unique compound colored by (a) ADMET endpoint and (b) the success rate of the

related question using the CI “most frequent” aggregation method.

SR of CI in drug design, with a particular focus on levels of
confidence and expertise, as well as participants population, i.e.,
self-rated level in medicinal chemistry. To this end, the sample
size was iteratively increased from 1 to 92 (the total number of
study participants) for each analysis conducted. For each
iteration, all unique combinations of individuals without
permutations, i.e., without the same participation being
accounted for more than once, were analyzed to determine a
distinct collective SR distribution. The evolution of this SR was
analyzed based on the ADMET endpoint, expertise group, or
aggregation method (see Figure 2 and Supporting Information
Figures S6—S512).

The collective responses for this study were obtained using
six different aggregation methods: the “democratic” approach
(most frequent response), log confidence weighting (log
odds), fuzzy logic aggregation, confidence weighting, expertise
weighting, and coweighting by expertise and confidence. For
the questions corresponding to all endpoints together and
using the democratic approach, the SR increased by 15% when
the analysis was carried out going from a single participant to
20. A SR value converges to 60% when the responses of all 92
participants were considered (Figure 2a). Weighting by
expertise had zero effect to the collective intelligence
performance, while log confidence weighting achieved a 5%
increase compared to the most frequent SR, with only 15
participants. This effect is noticeable for smaller teams, but it
becomes less pronounced and diminishes as the group size
increases. These results indicate log confidence-based
aggregation to be an effective aggregation method, enabling
high collective SRs with smaller teams.

The evolution of CI SR was also analyzed across expertise
groups (Figures 2b and S6). The non-expert group requires
over 40 participants to reach a SR of approximately 50%,
whereas the expert and mixed groups surpass 55% SR with
only 10 (experts) and 15 (mixed) participants, respectively.
This suggests that an effective CI team for drug design should
ideally include some experts and consist of a minimum of 15
members. Notably, the CI SR difference between an all-expert

team and a mixed team was minimal, with the mixed team
requiring ~5 more participants to achieve comparable results
using the log odds aggregation method (Figure S6).

The collective performance dynamics were also analyzed for
each endpoint independently (Figures 2¢,d and S6—S11).
Using mixed-expertise teams, an 80% SR can be achieved with
just ten participants for log P (Figure 2c). This trend also held
for permeability and solubility (Figures S8 and S9). However,
for hERG, over 70 participants were needed to exceed a 50%
SR. A noticeable result is that for hERG and only for the
groups that include experts, the best performing aggregation
method is the one that accounts for the self-rated expertise
level in medicinal chemistry, i.e., groups 1 to 5 defined above
(Figures 2d, S10, and S12). For log D values, the influence of
this expertise level was less pronounced (Figures S11 and S12).

We compared the collective SR to the individual mean SR
across various endpoints (Figure S13). Simulating groups of 2
to 30 participants with an increment of one participant, we
found that CI SR is correlated to the mean individual SR
(Figure S13). More specifically, a 5—10% boost in the mean
individual success rate leads to a 50% improvement in
collective success rates for log P, permeability, and log D,
and a 30% increase for solubility and hERG.

Medicinal Chemistry Pitfalls. This section aims to
uncover potential biases in collective decision-making for
optimization tasks. A 2D t-SNE** map was built to represent
the chemical space, with each point corresponding to a
compound (Figure 3). The set of all the unique compounds
used in the questionnaire is termed as “CI library”. This set,
consisting of 193 compounds, was projected on the t-SNE map
(Figure 3). The map reveals that no endpoint, among the five
studied herein, occupies specific areas, indicating that, despite
the relatively small size of our data set, the compounds used in
this study are diverse. Some compounds overlap between
endpoints as they were derived from the same research work,
albeit they are not structurally identical (Figure S3). When
examining the mapping of the CI SR (using the “most
frequent” aggregation method), the performance appears

https:/doi.org/10.1021/acs jmedchem.4c03066
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“The table presents the collectively worst predicted examples, i.e., worst success rate per ADMET endpoint.

dispersed for all five endpoints, indicating that there are no
apparent “easy-to-predict” properties for specific scaffolds or
chemical families (Figure S14).

A breakdown of the CI “most frequent” answers with regards
to the self-labeled medicinal chemistry groups and endpoints
demonstrates no apparent trend between the frequency of an
answer per group and its correctness (Figure S15). As
expected, for log P, the “most frequent” answer corresponds
to the correct answer, in agreement with what we presented
previously. Despite this, the number of participants per group

giving this answer is neither stable nor follows a trend. This is
true for all endpoints, where the “most frequent” answer is not
necessarily correct, and the number of participants per group
does not seem to follow a rule, e.g, one would expect that
when the “most frequent” is wrong, the number of experts
(groups 4 or S) giving this answer would decrease compared to
the correct answers (Figure S15, wrong answers are annotated
with an “x”). This analysis demonstrates that the frequency of
an answer, albeit a key factor for the success of the collective

https://doi.org/10.1021/ac: Ac03066
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intelligence, needs to be complemented by other parameters,
such as the confidence per question.

To better understand the collective errors or misconceptions
of the participants, the worst-performing questions were
examined. The structures selected by most participants were
compared to the correct answers to try to investigate the
origins of the errors (Table 1).

There are multiple strategies to enhance permeability
depending on whether it is a passive diffusion issue or linked
to a transporter. Those strategies involve increasing lip-
ophilicity and moving from ionizable groups to nonionizable
groups. Additional optimization plans are, for instance,
reducing polarity, altering flexibility, replacing polar groups
by isosters, lowering hydrogen bonding or favorizing intra-
molecular hydrogen bonding. In case 2 from Table I, the
correct answer was a tertiary amine, known to be less basic, but
most participants selected the pyrrolidine derivative. It was
difficult to adopt a posteriori analysis to select the correct
compound in this example as the log D of both derivatives
were quite similar. Another example of where it was difficult to
predict global properties from the given structure was case 1,
where it was challenging to foresee the impact of unsaturation
of the imidazolidinone group on permeability.

For questions related to improving solubility, the partic-
ipants often favored polar compounds, adhering to the
principal that increasing polarity typically leads to improved
solubility.29 Yet, in case 3, the two most-selected choices of
participants involve compounds that undergo chemical
modifications affecting dissolution more significantly than
polarity. The majority of participants rationalized that adding
an ethylene glycol moiety would increase polarity, however, the
log P was similar between both compounds. Factors affecting
solid state destabilization (e.g, solid states, packing) might
have weighted more and led to 3- to 4-fold difference in
thermodynamic solubility. In case 4, where substructures
known for enhancing solubility competed, the correct
compound was the less common cyclopropyl-substituted N-
methyl piperazine.30 Responses were evenly split: experts
chose N-methyl piperazine derivative, whereas naive partic-
ipants favored the morpholine :malog.m""l None of the groups
selected the correct answer. With hindsight, medicinal
chemists agreed that cyclopropyl can be considered as a
bioisoster of alkene moiety or also a phenyl ring, and as such, it
did not occur to be an appropriate strategy to improve
solubility.””

Despite its direct relation to log P where CI was shown to be
effective, log D-related collective decisions showed limitations.
This effect arises from pK,’s influence on log D, making it hard
to predict a compound’s ionization state, especially with
multiple ionizable sites and mesomere interdependence.’’
Cases 5 and 6 exemplify this complexity, where altering
nitrogen positions in the aromatic cycle and introducing
groups like methyl or O-methyl complicates the intuitive
evaluation of inductive effects beyond common rules.**

hERG affinity prediction also proved challenging, due to its
dependence to both a compound’s intrinsic properties and its
interaction with the hERG channel, known for its flexibility
and the structural diversity of its binders.”> A characteristic
example is case 7, where participants chose a compound with
an acidic moiety on a saturated ring that will likely prevent
m—r interactions typical in the hERG binding site. Never-
theless, the correct compound relied more on the electronic
effects of its aromatic moiety. In case 8, the selection was

influenced by the molecule’s characteristics, which exhibited
reduced basicity and steric hindrance with the bridge moiety,
potentially lowering hERG affinity. The correct answer,
substitutions that lower hERG affinity, pertains to a molecule
that likely adopts a nontraditional binding mode, deviating
from expected interaction patterns.

We have also examined a few “surprising” cases, where the
participants of group 3 with less expertise in medicinal
chemistry have collectively selected the correct answers
contrary to the expert group S (Table S1). For log P, the
experts performed worse than group 3 in a single occasion for
which it is not evident why the CI of experts did not select the
correct answer. Similarly, the permeability assessment under-
estimated the availability of morpholine oxygen to form
hydrogen bonds with water. Regarding solubility, experts did
not fully account for the solubilizing effect of an —OH group,
instead overestimating the impact of a methyl group on
pyridine. The log D evaluations showed minimal differences
between groups, but it was counterintuitive to suggest that
adding an S-methyl group would lower log D, a proposal only
non-experts made. For hERG, the suggestion to use an
aliphatic cycle to avoid potential 7z-stacking interactions was
also counterintuitive. These observations suggest two potential
biases among experts: their organic synthesis knowledge
influencing their estimation of building blocks’ lipophilicity
or partial solubility, and their familiarity with global models,
like in the case of hERG. In ambiguous cases, non-experts, not
influenced by such biases, may have made the correct choices
through intuition and/or chance.

Collective Intelligence versus Al Models. We also
evaluated the performance of predictive models, specifically the
ChemProp®® graph neural networks (GNNs), in similar
decision tasks. GNN models, trained on curated public data
(Table S2, Figures S16 and S17), were used to respond to the
CI questionnaire. Their objective was to predict endpoint
measurements and select options leading to optimal values, i.e.,
lower log P, log D, and hERG pICS0 and higher log S and
permeability. We first compared the GNNs’ SR to both
individual and confidence-weighted CI performances (Figure
4a). Subsequently, we assessed the potential of Al to enhance
the CI process (Figure 4b—e).

As shown above, across all the endpoints investigated, with
the exception of hERG, both mixed and expert-led CI groups
outperformed individual performances for both “all” or
“experts” cohorts. In addition, both the mixed and expert-led
CI groups also outperformed responses generated by the GNN
models (Figure 4a). The differences between the SR of CI and
GNN for log P, permeability, and log D were in the range of
20—-30% (Figure 4a, shades of purple versus gray). While
GNNs matched the performance of experts (unaggregated) in
log P and solubility and performed worse than all CI
approaches, they significantly surpassed all human responses,
individual or collective, in assessing hERG inhibition. Overall,
for complex endpoints, such as solubility and log D, results
from CI, individuals, and GNNs were not particularly
satisfactory. This being said, some individuals achieved SRs
over 60%, in challenging areas like hERG or log D, highlighting
the value of substantial expertise (Figure 1f, small circles).

Inspired by these results, we explored the potential of
additivity between GNNs and CI, assessing their comple-
mentary strengths. We separated the answers to incorrect by all
methods, correct by human collective intelligence, correct by
GNN or correct by both (Figures 4b—e and S18). For GNN
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the answer from the unique models was taken, whereas for CI
we used the log odds method applied to answers from the full
cohort. Analysis showed that GNNs provided correct answers
for 20% of the questions where CI failed, while CI succeeded
in 32% of cases where GNN struggled. If one was able to
combine GNN and CI correct answers, the overall perform-
ance would improve from 60% for the collective intelligence
group alone to 81% with the addition of GNN over all
endpoints. The complementarity between GNNs and CI was
particularly evident for solubility and hERG, where GNN
would contribute to a 27—47% increase in the SR over the
value identified using CI alone. Overall, a potential synergy
between GNN and our collective intelligence methods would
lead to an impressive SR of 87%, 81%, and 83% for hERG,
solubility, and permeability, respectively. For log P, CI
performs already exceptionally well while for log D the more
challenging questions were missed by both CI and the GNN
model (Figure S18).

B DISCUSSION

Lead optimization campaigns are driven, or are at least, greatly
influenced by the medicinal chemistry intuition of the project
chemist leader(s). This medicinal chemistry intuition is
inextricably linked to individual drug-likeness standards that
depend on the chemist’s experience, “know-how”, and
bias.**"** Thus, characterizing a clear drug-likeness signal
from medicinal chemistry intuition is a challenge.

We have presented an innovative approach to accelerate the
lead optimization process that combines notions from the field
of collective intelligence, medicinal chemistry, and machine
learning. The responses of 92 participants to 74 medicinal
chemistry multiple-choice questions offered insights on the
influence of expertise and confidence on the application of
collective intelligence in drug discovery. It is important to
emphasize that both medicinal chemistry expertise and
confidence per question were by design included in our
questionnaire, in order to be used as parameters in the analysis,
and in particular in the data aggregation process.

Through ADMET optimization tasks, we observed varying
success rates over self-labeled non-experts and experts in
medicinal chemistry. A classification of participants based on
success rate (SR) revealed the superiority of teams composed
of individuals with varying levels of expertise over those that
lacked such variation, in agreement with previous works in the
cognitive science field." Moreover, the self-assessment of
expertise in medicinal chemistry served as a proxy for
subjective confidence, which has been shown to correlate
with decision-making accuracy and can effectively enhance
group performance through confidence-weighted aggrega-
tion.”” By capturing participants’ subjective confidence, we
accounted for factors beyond experience that contribute to
expertise, such as individual aptitude and continuous
leaming.40

The variability in participants’ confidence levels reflects a
realistic self-assessment of their knowledge and uncertainty,
consistent with the self-consistency model of subjective
confidence.”' Incorporating these confidence levels into our
aggregation methods enhances the accuracy of collective
judgments, as supported by prior research.*”** This approach
effectively leverages individual differences in expertise and
confidence, improving group decision-making accuracy in
complex tasks.

A significant correlation between confidence levels per
answer and expertise was observed, with higher confidence
generally aligning with higher expertise levels. In parallel, we
demonstrated that the primary determinant of SR is the level
of confidence per answer expressed by participants, illustrating
its importance in decision-making. Another noticeable result
was the lack of correlation between SR and intermediate
expertise levels. This could be due to a combination of factors:
over- or under-confidence among participants, varying
experience levels relative to a specific endpoint, and the
inherent difficulty of the questions asked.

Performance varied across log P, log D, permeability,
solubility, and hERG inhibition endpoints. Aggregation
methods that account for collective intelligence significantly
enhanced the success rates for tasks such as log P, permeability,
and solubility, indicating the value of using such methods to
address these endpoints at a project level. For example, for log
P, we observe an average performance of 75% with only 10
participants from diverse backgrounds with the log odds
method that uses the information on confidence per response
to aggregate the data (Figure 2c). In practice, this method and
other examples presented in the Results section (Figures 2c
and S12) demonstrate the added value of collective decision-
making related to at least certain ADMET endpoints.

Our results indicate that collective intelligence (CI)
methods excel for endpoints involving better understood
phenomena, such as log P, solubility, and permeability, but are
less effective in complex areas such as hERG and log D. This
observation is consistent with Condorcet’s Jury Theorem,
which suggests that when individual decision-makers have a
probability of making a correct decision slightly above random
chance (33%), the likelihood of a correct collective decision
increases with the number of participants (Figure 2c).
Conversely, for more complex endpoints such as hERG and
log D (Figure 2d), where individual accuracy falls below
random chance, increasing the number of participants may
paradoxically reduce the likelihood of a correct outcome.

Challenging endpoints, like hERG and log D, may require
more expert input, detailed structural information, expert-
focused aggregation strategies or different presentation of
chemical structures, possibly including 3D information. It is
likely that the format of the questionnaire itself plays a role in
the participants’ cognitive process, e.g, a chemist would
probably respond differently if the whole molecule was shown
rather than only the substitution. Additionally, the brief period
for responses may have limited the comprehensive evaluation
of complex chemical phenomena, such as tautomeric changes
and inductive or mesomeric effects, crucial for efficient
optimization. A direction that could explain such cognitive
phenomena and possibly further improve data aggregation is
the inclusion of a timestamp per question, i.e., response time.
This timestamp could help elaborate the discrepancies between
intermediate medicinal chemistry levels and SR, easily identify
the most challenging questions, and further improve the overall
SR by using for example a combination of confidence and
timestamp per question as aggregation method. Unfortunately,
with the given setup we employed herein (see Methods), it was
not possible to register the specific information.

The ensemble of our results demonstrates the need for
tailored collective decision-making approaches in drug design,
considering the varying complexities of different endpoints, the
expertise of project members, and the “expert”“non-expert”
ratio. We found that reweighting responses based on
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confidence improved these tasks notably. Conversely, complex
endpoints like hERG and log D benefited from either an
expert-dominant group or expertise-based aggregation. The
study also revealed that the effectiveness of aggregation
methods varied with the endpoint and group makeup.
Democratic and confidence-based methods were particularly
effective, especially with mixed groups of non-experts and
experts. Overall, the aggregation method plays a crucial role in
maximizing the performance of collective decision-making for
drug design, with different methods suiting different endpoints
and group compositions. This finding highlights the
importance of carefully selecting aggregation methods based
on the specific requirements of the task and the expertise of the
participants involved. As a future direction, one might consider
exploring more endpoints relevant to the lead optimization
process combined with all the above-mentioned aggregation
methods, response time or more project-specific tasks.

The use of GNN models in our study showcased CI's ability
to either match or outdo machine learning in certain domains.
For log P and permeability, CI surpassed individual experts and
GNNs, while in the case of hERG, the GNN model
outperformed all human approaches. Medicinal chemistry
experts” CI outperforms the GNN model in most endpoints
because it leverages diverse expertise and confidence levels,
enhancing decision-making accuracy through confidence-
weighted aggregation. This human-centric approach excels in
adapting to varying endpoint complexities, which AT models
may struggle with due to their reliance on limited training data
and lack of intuitive judgment. Additionally, the model is
constrained by the inherent noise in the data, making it
difficult to distinguish between very similar compounds,
especially in the late-stage phase of lead optimization, where
subtle differences are often obscured by data variability. Our
results also underscore the potential of synergy between Al and
CI, particularly in complex tasks (Figure 4b—e). Based on
these results one could envisage a combined human and AI
collective intelligence framework.

The present study is based on a human-centric collective
intelligence approach that has its foundation in the study Vox
Populi by Galton.”" Similar approaches have seen limited, but
impactful applications in different scientific fields. Two
characteristic examples are the NIH chemical probes
initiative'® and the CHEMDNER corpus study,’® which have
focused on chemical data curation through human annotation.
In the future, similar efforts should involve broader
participation from both academia and industry for large-scale
annotation challenges and can be facilitated by platforms like
Metis."” These efforts could mirror similar practices in other
fields, such as medical imaging and image segmentation, where
human annotations are critical for developing models that
replicate expert-level insights.” Such an initiative applied in
the lead optimization drug discovery stage may focus on, e.g,
sites of metabolism identification, recognition of undesired
functional groups related to ADMET objectives, or annotation
of reactive sites.

In a more Al-centric CI approach the outputs of an
ensemble of predictive models are combined to increase
performance. The emergence of generative models such as
large language models (LLMs) or autoencoders (AE) extend
this concept, allowing Al to process and output text-data. LLM
applications have already demonstrated that they can model
human voting, creating an automated, diverse set of decisions
that emulate human input.*”*" Moreover, having proven their

applicability to chemistry tasks,”’ LLMs could be applied to
compounds selection or molecular generation where, function-
ing as a collective artificial intelligence has the potential to
form expert communities.’”"’

The primary aim of our research is to evaluate how CI can
complement both human expertise and AI models in
improving the prediction of ADMET properties, focusing on
identifying areas where each approach excels. Unlike the
Choung et al. study,‘ which aimed to learn broad medicinal
chemistry rules, our approach focuses on specific ADMET
challenges and the aggregation of multiple viewpoints to create
stronger, context-specific decisions. Our goal is to explore how
small, diverse teams can work more efficiently, especially for
challenging tasks like hERG binding and solubility prediction.
One could envisage a CI framework composed of numerous
computational models, roughly equivalent in number to the
participating medicinal chemists. Each model would utilize
distinct descriptors or metrics, fostering a rich diversity in the
decision-making process. Additionally, aggregation methods
could employ iterative voting or variable weights, balancing
confidence against factors like applicability domain scores.
Such an approach might also benefit from transforming the
typically discrete space of molecular transformations into a
high-dimensional continuous decision space, thereby facilitat-
ing the identification of optimal solutions in the explored
chemical series.”* In this context, we have initiated follow-up
experiments with hybrid teams of humans and neural
networks. Another example of a hybrid human-AI framework,
where human output is combined with AI models, is the
human-in-the-loop approach.” In this approach, Al models
propose tasks that humans then annotate. Such models are
now evolving to promote collaboration between humans and
Al by integrating Al in the human collective, forming
consensus answers, similarly to the Future House project
(https://www.futurehouse.org/). Inspired by this approach, a
framework where a global community of researchers
contributes and refines Al-generated hypotheses could greatly
enhance the drug discovery process.

There are also other powerful in silico techniques, such as
free energy perturbation (FEP) calculations, which have
demonstrated exceptional accuracy in certain contexts,
particularly for properties like binding affinity, selectivity,
solubility, and stability. FEP, while computationally expensive,
is a pure physics-based method that offers a high level of
precision and that is not dependent on the quality of the
training set like ML approaches. FEP applied on a series of
hERG inhibitors shows very encouraging results in terms of
affinity prediction.”® Also, recent advancements in machine
learning have explored the use of FEP-trained models, that
combine the accuracy of FEP with the efficiency of machine
learning, allowing for broader application in ADMET
prediction tasks like hERG inhibition.”® In the hERG modeling
case, one could envisage using hERG 3D structures to evaluate
the binding affinity of a library of virtual molecules by FEP.
FEP predictions can be used to augment and enrich the data
set necessary to train a Machine Learning model. While our
study focuses on the use of a GNN for ADMET predictions, it
is important to consider these alternative methods in future
studies to better understand the strengths and limitations of
different but complementary in silico approaches.
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B CONCLUSIONS

Overall, our study shows that an effective Cl-inspired drug
design framework requires clear problem framing, appropriate
aggregation methods, and a balanced team of mixed expertise,
with ideally 15—20 participants, to achieve significant success
rates. Our results highlight CI's relevance to drug design,
particularly in improving the quality of optimization proposals
from a project team across various stages of drug discovery.
Moreover, we demonstrated that CI can be a valuable tool
particularly for additive properties such as log P and solubility,
where human intuition and expertise can be aggregated to
achieve high predictive accuracy. We acknowledge, however,
that CI has limitations when applied to more complex and
nonadditive properties like log D and hERG binding, where
the patterns are less obvious and more challenging to capture
“at a glance”. In such cases, machine learning models, which
can identify subtle relationships from large data sets, often
outperform collective human intuition.

While our study demonstrates that on several occasions CI
can outperform a specific GNN model for certain ADMET
endpoints, we recognize that this result is context dependent.
The performance of Al models is highly sensitive to various
factors, including the model architecture, the quality and size
of the training data set, and the nature of the task. Therefore, it
is important to interpret our findings with caution, as they may
not generalize to all machine learning or AI models. Future
studies should explore a broader range of Al architectures,
including more advanced models such as transformers, deep
learning ensembles, or methods trained on larger, more diverse
data sets. Additionally, the comparison between CI and Al
models should be examined across a wider set of chemical and
biological endpoints to better understand the circumstances in
which each approach excels. By adopting this more nuanced
approach, we aim to highlight the complementary strengths of
CI and A, rather than positioning them as mutually exclusive
or universally superior.

Further exploration of CI for intricate tasks like hERG is
essential, focusing on refining question formats and integrating
structural information effectively. Another promising avenue is
hybridizing CI by blending human insights with machine
learning models, leveraging the strengths of both to create a
potent decision-making tool, especially in low data regimes.
For log P and permeability, CI outperformed both individual
experts and GNNs, while for hERG, the GNN model excelled
beyond all human approaches. Based on our results, a refined
collective intelligence framework could involve numerous
computational models, each utilizing distinct descriptors or
metrics, thereby enhancing decision-making diversity. Aggre-
gation methods such as iterative voting or variable weights
could balance confidence with factors like applicability domain
scores. Transforming the discrete space of molecular trans-
formations into a high-dimensional continuous decision space
could further optimize solutions. Our hope is that the CI field
will continue to evolve, offering innovative and more effective
solutions in the ever-complex realm of drug discovery.

B EXPERIMENTAL SECTION

Experimental Design. Population Description. This study
involved a group of 92 volunteers with diverse levels of expertise in
medicinal chemistry and backgrounds from analytical chemistry and
crystallography to in vitro biology and data science. The distribution
of participants across research departments was highly heterogeneous
(Figure S19). The majority are from Medicinal and Drug Conjugate

Chemistry and Molecular Modeling, together accounting for half of
the cohort. Departments outside of the modeling and chemistry
domains, such as DMPK (Drug Metabolism and Pharmacokinetics),
Analytical, and Biology make up about one-third of the participants.
Overall, most participants possess a solid understanding of drug
targets, as well as the key concepts related to compound hydro-
philicity. Their knowledge of which functional groups should be
avoided or preferred varies depending on their department and level
of experience.

Before the experiment, to preserve anonymity and encourage
unbiased participation, each participant was asked to self-evaluate
their expertise in medicinal chemistry on a scale from 1 (little or no
experience) to 5 (expert). This self-assessment served as a proxy for
subjective confidence, which has been shown to correlate with
decision-making accuracy and can effectively enhance group perform-
ance through confidence-weighted aggregation.’” By capturing
participants’ subjective confidence, we accounted for factors beyond
experience that contribute to expertise, such as individual aptitude
and continuous learning.*’

Throughout the present manuscript and Supporting Information,
the results corresponding to each group are color-coded as in Figure
1

Questionnaire Preparation. The experimental questions focused
on late-stage lead compound optimization, targeting specific ADMET-
related properties, often called endpoints in medicinal chemistry
terminology, namely log P, log D, permeability, solubility, and hERG
inhibition.

Log P is the logarithm of the partition coefficient (P) of a
compound between two immiscible phases, usually octanol (as a
stand-in for lipids or fats) and water (aqueous phase). It is a measure
of the compound’s lipophilicity and is calculated as

Cls.
logP = log[[ ]umnul]

water

where [C], .0 is the concentration of the compound in octanol and
[Clyater is the concentration of the compound in water.

Log D is similar to log P but specifically accounts for the ionization
state of a compound at a particular pH. It is the logarithm of the
distribution coefficient, which quantifies the distribution of all forms
(ionized and nonionized) of the compound between the two phases,
usually a phosphate buffer sodium (PBS) solution (corresponding to
the aqueous phase) and octanol (corresponding to the lipids phase).
It is defined as

Cloc
Log Dy = log{ —[[C]]m"“‘]
buffer

where [Cyg. is the concentration of the compound in PBS buffer
and [C] e is the concentration of the compound in octanol.

Permeability quantifies the rate at which a molecule crosses
biological membranes, such as the intestinal epithelium. The apparent
permeability (P,,,) measured from in vitro assay models is calculated
using the following equation

dQ 1

4 AG,

where dQ/dt is the rate of appearance of the drug on the receiver side
of the cell monolayer (in moles per time unit), A is the surface area of
the cell monolayer (in square centimeters), and C, is the initial
concentration of the drug on the donor side (in moles per volume
unit).

Solubility (log S) is the maximum quantity of a solute that can
dissolve in a given quantity of solvent at a specific temperature,
reaching a state of thermodynamic equilibrium with the undissolved
solute. The solubility of a molecule is an important factor that
determines the ability to perform experimental assessment. It is often
expressed in a log scale for convenience

log § = log(C,,)
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where C,, is the molar concentration of the compound in solution at
equilibrium.

hERG (human ether-a-go-go-related gene) refers to a gene that
codes for Kvll.1 protein, the alpha subunit of a potassium ion
channel in the heart, often denoted for simplicity as hERG channel.
The hERG channel is crucial for the cardiac action potential’s
repolarization phase. Compounds that inhibit the hERG channel can
prolong the QT interval on the electrocardiogram, leading to a risk of
cardiac death. hERG inhibition is measured using patch-clamp
electrophysiology. This method records the concentration required
to inhibit 50% of the channel activity.

The format of each question consisted of a scaffold with one
substitution site, accompanied by three potential modifications
(Figure S1). The participants were instructed to select the
substitution among the three options presented that in their opinion
best improved a specific endpoint. While acknowledging the 33%
probability of random correct responses inherent in a three-option
multiple-choice format, the impact of such randomness diminishes
with larger participant groups, as supported by the Condorcet Jury
Theorem.”” Practical constraints, such as the availability of distinct
and objectively ranked options based on real data, informed our
choice of using three options. This approach also minimized cognitive
load and prevented increased randomness due to decision fatigue
under time constraints.””

By design the correct answers were, for most of the questions,
significantly better than the second-best option. The questions were
designed to challenge and tap into the participants’ medicinal
chemistry intuition without prior preparation (see also the comment
below regarding the given time per question). Lead optimization tasks
were gathered from the literature.” —>%*"~%*

We define the “CI library” as the set of 193 unique compounds
used in our experiment’s questionnaire. These compounds are listed
in two supplementary CSV files: Compounds Experimentals.csv,
which provides the experimental values for solubility, dissociation
coefficient, lipophilicity, hERG binding, and permeability (where
available from the original paper), and Compounds_structures.csv,
which enumerates all unique SMILES structures referenced as the “CI
library” in the study.

Collective Intelligence Data Collection. Data collection was
facilitated through PigeonHole,” an interactive platform that enables
real-time survey. Our experiment was separated into two sessions that
took place on the same day, with a break of 30 min between them.
The participants used QR codes to access the questions and had 60 s
for the first session and 30 s for the second session to respond. The
time was adjusted during the second session after the observation that
30 s per question were enough for the participants. The time allowed
per question was intentionally small to account for intuitive responses,
however, due to technical limitations, it was not possible keep track of
the response timestamp per participant. Participants were discouraged
to interact and exchange with each other to avoid dilution of the
results, error propagation and noise between different levels in
medicinal chemistry. All participations were anonymous and labeled
by the expertise level in medicinal chemistry defined by the users at
the beginning of each session. The raw data collected was then
standardized for subsequent analysis.

Data Aggregation Methods. Different aggregation methods were
tested to determine the Collective Intelligence Success Rate (CI SR),
including most-frequent (also coined as “democratic” in the text),
confidence-weighted, expertise-weighted, confidence- and expertise-
weighted, log odds, and fuzzy logic aggregation. Every method assigns
a score K to each of the three options available (A, B, or C) and the
option receiving the highest K score was selected as the collective
answer.

Most Frequent. The most-frequent or “democratic” method, also
known as the mode, involves identifying the value or values that occur
with the greatest frequency in a data set. It is commonly used in
scenarios where data points are categorical or discrete.

In its general form, for a data set X = {x;,xy, ..,x,}, which in our
case is the {A, B, C}, the resulting set C after applying the most-
frequent method is given by

C={x"eX|Ks>K,Vxe€X} (1)

where K, represents the count of the value x for each question.
Weighting Based on Expertise in Medicinal Chemistry Self-
Labeling. The responses are aggregated by weighing them according
to the predefined expertise levels of the participants.
For each answer x € X = {x,,x,, ..,x,} a score K is defined as

Ix

K= Wexpertise,
i=1 @
where Wi is given by
_ expertise
wcxpl:nlst‘ - ZN "
expertise
j=1 SXP i (3)

and K, is the score per question for each of the three options available
(A, B, or C), I, is the number of participants that answered x and N is
the total number of participants. The resulting set C after applying the
expertise-weighted method is given by eq 1.

Weighting Based on Confidence per Question. The responses are
aggregated by weighing them according to the confidence given in the
response by the participants.

For each answer x € X = {x,,x,, ..,x,} a score K, is defined as

1,

K, = Z Weonfidence
=1 (4)

where W, g4ence, iS given by

confidence;

Weonfidence, —

Z;\;l confidence; (s)

and K, is the score per question for each of the three options available
(A, B, or C), I, is the number of participants that answered x and N is
the total number of participants. The resulting set C after applying the
confidence-weighted method is again given by eq 1.

Confidence & Expertise Weight. This approach combines both
confidence and expertise weights for each response.

For each answer x € X = {x,,x,, ...,x,} a score K_ is defined as

I

K= 2 (wcxpl‘rhsc + “’cunﬁdcncc,)

=1 ' (6)
where I, is the number of participants that answered X, Weypertise, and
Weonfidence: ad are given by egs 3 and 5, respectively. The resulting set
C that corresponds to the 74 answers is given by eq 1.

Log Odds. Given a set of responses where each response has an
associated confidence value, the score A for each unique answer j is
calculated by summing the natural logarithm of the confidence values
for all instances of that answer.

Thus, the log odds score is defined as

L~

K, = ), In(confidence,)
E ™)

where [, is the number of instances for which the answer was x, and
confidence, is the confidence value for the i-th instance of A",
The answer with the highest log odds score is selected.

Fuzzy Logic Aggregation. This method employs fuzzy logic
principles to aggregate data, focusing on the degree of belief
(represented by confidence) in each response to determine the
most likely answer.

lx
K = Z,= 1 Weonfidence,
) & ®)

where [, is the number of instances for which the answer was x, and
fidence, is the confidence value for the i-th instance of x.

Supervised & Unsupervised Learning Applications. In this
study, we employed computational methods to investigate biases in

cc
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self-labeling, misconceptions regarding ADMET optimization, and the
application of machine learning techniques to actively improved
models using insights from collective intelligence.

Participants Map. We employed the UMAP'’ unsupervised
learning algorithm implementation®” to better compare individual
participants from sessions 1 and 2 using projections in the 2D space.
Training data were defined as the participants answer and confidence
level. Answers were converted to numerical values (“A”: 1, “B”™: 2,
“C”: 3) before scaling the data. The UMAP*® (min_dist = 0.1,
n_components = 2, n_neighbors = 15, random_state = 42) was
trained without any hyperparameter optimization. For each session,
the two first dimensions were projected.

Chemical Space Map. The t-SNE* (t-distributed Stochastic
Neighbor Embedding) unsupervised learning algorithm from scikit-
learn”” was used to build chemical maps from the 193 molecules
comprising the CI chemical library. The ECFP4™ fingerprints with
2048 bits were computed from all compounds before training the t-
SNE (n_components = 2, perplexity = 30, random_state = 42)
without any hyperparameter optimization. All compounds were then
projected using the two first dimensions.

Deep Learning Application. Data Gathering and Preparation.
Public experimental data were sourced from three databases:
OChem,” ChEMBL,” and BindingDB.‘)I These data sets encom-
passed a range of measurements such as Caco-2 apparent
permeability, apparent solubility, log P, log D, and hERG pICS0.
The data sets underwent a rigorous curation process to ensure quality
and consistency:

e Data lacking continuous values, source information, or
measured under specific conditions (e.g., presence of
MDRI/CYP inhibitors/inducers, pH gradient conditions)
were excluded.

e Data outside specified ranges for each measure (e.g, —8 <
Papp < —2) were also removed.

e Chemical structures were then standardized through salt
removal, stereochemistry elimination, aromaticity reassign-
ment, ionization at pH 7.4, and selection of a standard
tautomer.

e In case of duplicates, a single value was assigned per unique
compound by keeping the median of the experimental value if
the experimental standard deviation variations did not exceed
0.5 log.”

Machine Learning Models. For the machine learning model, the
data sets were divided into training (80%) and test (20%) subsets.
The ChemProp GNN model®® was trained without hyperparameters
optimization and validated on the internal test set. Training
parameters were defined as follows: epochs = 100, depth = 3,
batch_size = 64, hidden_size = 300, and metric = rmse.

Retraining the GNN models with the full data set (100%) instead
of 80% led to small performance improvements for log P, solubility,
and hERG, with success rates increasing by up to 9% (Table S3).
However, for permeability (for which we had the smallest data set)
and log D, no significant improvement was observed, and in some
cases, the success rate decreased slightly by 8%. The excluded 20% of
the data was reserved for validation purposes to evaluate the model’s
performance on unseen data, a standard practice to prevent overfitting
and ensure generalizability.

We also examined the overlap between the GNN training set and
the compounds used in the collective intelligence questionnaire.
Minimal overlap was identified for two endpoints, namely solubility
and hERG (Table $3). For log P, permeability, and log D, no overlap
was detected between the training data and the questionnaire
compounds, ensuring that the GNN'’s predictions were not influenced
by prior exposure to these molecules.

Performance Metrics. To assess the performance of our models,
we employed the coefficient of determination (R*), root mean
squared error (RMSE) and mean absolute error (MAE) (Table S2).
R-squared measures the effectiveness of a model in explaining the
variation in the dependent variable. It indicates the proportion of the
variance in the dependent variable that is predictable from the

independent variables, with values ranging from 0 to 1. A value closer
to 1 signifies a higher degree of model accuracy. RMSE evaluates the
differences between predicted and actual values, emphasizing larger
errors by squaring them before computing the average. This metric is
particularly useful in scenarios where large deviations are especially
undesirable. MAE, on the other hand, assesses the precision of a
regression model. Unlike RMSE, MAE is less influenced by outliers or
significant errors, as it calculates the simple average of the absolute
differences between predicted and observed values.

B ASSOCIATED CONTENT

Data Availability Statement

The complete data set from this study, encompassing survey
responses, as well as the survey and molecules used to train and
test the models, is accessible on GitHub at https://github.
com/Sanofi-Public/IDD-Collective-Intelligence. We ensured
ethical compliance as feedback from all participants remain
anonymous.

Data Availability Statement

We have made the trained models and all associated code used
to from data analysis and generation publicly available under
an MIT license at https://github.com/Sanofi-Public/IDD-
Collective-Intelligence. For ease of integration into chem-
informatics workflows, a Conda package is provided. These
neural network models were developed utilizing the Chemprop
library, version 1.7.0.

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c03066.

We have included a list of SI items and a brief
description of each file including the file type extension.
The files include: Questionnary Presented.pdf, a PDF of
the PowerPoint containing all presented questions from
the collective intelligence exercise using Pigeonhole;
Questionnary_Answers.pdf, a PDF of the same Power-
Point with the correct answers highlighted (PDF)
Compounds_Experimentals.csv, a CSV file with exper-
imental data for compounds, detailing properties like
SMILES, log P, log S, Papp, and hERG IC;j, values with
corresponding units and levels; and Compounds_Struc-
tures.csv, a CSV file listing the SMILES notation for the
structures of the compounds alongside their compound
IDs (ZIP)
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Figure S1: Example of the way the questions were presented to the participants. Each question had a
title that corresponded to the endpoint of interest (top), one scaffold with an R-group substitution point

to be replaced (middle) and three possible substituents (bottom).
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horizontal line across the thinnest part of the grey boxes. Alongside the boxes, error bars extend from
the median line to cover the interquartile range. The collective or democratic SR are shown as white-
filled circles. The outliers per group are depicted as small circles. b) SR for groups 1-2 (low or no
background), 3 (averaged and mixed level), 4-5 (experts) and all the participants. ¢) SR by non-experts,
i.e., participants with personal SR less than 50%, and experts, i.e., individuals with SR more than 50%.

The violin plot of the SR of all participants is shown again here as a guide for the eye.
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Figure S6: Evolution of the collective success rate as a function of the number of participants in the
population per aggregation method and for all endpoints. The collective SR is denoted per expertise

group, from non-expert (1-2) in purple, expert (3-5) in green, and all participants in blue.
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Figure S8: Evolution of the collective success rate as a function of the number of participants in the
population per aggregation method for the permeability endpoint. The collective SR is denoted per
expertise group, from non-expert (1-2) in purple, expert (3-5) in green, and all participants in blue.

Groups are colored as in Figure S6.

Note: In the "weighted by expertise” method, as the number of participants grows, the SR for all
participants declines, whereas SR improves for experts and non-experts individually. This trend likely
results from diverging assessments between experts and non-experts. These differences weaken the
combined group's SR, as the aggregated answers fail to align with either group’s specific preferences.

Similar, though less pronounced, effects are seen for solubility and log D.
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from non-expert (1-2) in purple, expert (3-5) in green, and all participants in blue. Groups are colored

as in Figure S6.
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Figure S6.
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Figure S13: Boxplots illustrating the relationship between collective intelligence success rate and mean

individual success rate across endpoints. Boxes highlight the median of the distribution of mean

individual success rate per CI success rate with red dots indicating outliers.
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Figure S14: -SNE map of the collective intelligence chemical space per endpoint. Each point represents
a unique compound colored by the success rate of the related question using the CI ‘most frequent’

aggregation method.

Note: the subplots of Figure S14 were prepared using the same data as in Figure 3 of the main
manuscript but separated by endpoint.
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Table S1: Selection of cases from the CI questionnaire where level 3 participants outperformed

individual experts. The table presents the collectively selected compound by average individual experts

against the correct selection from level 3 participants, per ADMET endpoint.
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Table S2: Performance of the Graph Neural Networks on the public internal test set on ADMET

endpoints.
Endpoints Number of unique compounds R? RMSE MAE
LogP 10,668 0.93 0.47 0.33
Permeability 1,259 0.55 0.56 0.42
Solubility 5,012 0.48 0.68 0.52
LogD 5,347 0.84 0.60 0.4
hERG 8,050 0.56 0.61 0.43
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Figure S16: Distribution of experimental measurements from public data used for modelling purposes.

The present endpoints are expressed in 10g10(Coctano/Cyaer) for LogP, logio(cm/s) for permeability,
logi0(Chuiter) for solubility, 1ogi0(Coctanol/Chuter) for LogD, and pIC50 for hERG inhibition.
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Figure S17: Correlation between experimental and predicted value per endpoint. The color scale

depicts the density of compounds as the base-10 logarithm of the number of unique compounds.

S22



307 7.1. INDUSTRIAL APPLICATION

]
=2

LogP LogD
100 9 100 9
HEEl Human Il Human

[ GNN & Human [ GNN & Human

— 801 O GNN 804 [ GNN

o

= BB Both BB Both

o

U 60

=

wn

c

©

S 40

e

e

©

& 504

0 .
Incorrect Correct Incorrect Correct
Response Response

Figure S18: Answer success and failure ratio (y-axis) and count (number in boxes) for a) logP and for

b) logD. Answers are grouped per source, i.e., human, GNN (predictive model), GNN & Human, and

both.

S23



CHAPTER 7. COLLECTIVE INTELLIGENCE

308

Table S3: Overlap between the training set of the GNN model and compounds used in the collective
intelligence questionnaire. The table shows the number of unique compounds per question in the
exercise and identifies overlaps where compounds from the questionnaire and training sets have
matching InChl Keys, standardized using identical protocols. Each set was used to train a GNN model,

which was then applied to predict outcomes in the collective intelligence exercise. The GNN success

rate for each ADMET endpoint is also reported.

Endpoints hof cpds.in the: | #ef cpfls In B Ovz:):,pnal:uscitess Ovle(:(l)::) TI'al:uscecj:ess
exercise train set

Count Rate Count Rate
LogP 36 10,668 0 0.58 0 0.67
Permeability 36 1,259 0 0.33 0 0.25
Solubility 78 5,012 16 0.46 17 0.54
LogD 27 5,347 0.22 0 0.22
hERG 45 8,050 8 0.73 12 0.80
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Figure S19: Distribution of the participation of each research department in the collective intelligence
exercise. The Medicinal and Drug Conjugate Chemistry departments were merged into the same group
such as the Structural Biology with the In-vitro Biology department and the DMPK (Drug Metabolism
and Pharmacokinetics) with the Analytical department. The Others group define the Chemistry Process
and CMC (Chemistry, Manufacturing and Controls) departments.
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Outline

In this study, we reveal that collective intelligence consistently outperforms individual
decision-making in optimizing ADMET endpoints and, in most cases, surpasses Al-
driven predictions, except for hERG inhibition, where AI maintains an advantage.
Moreover, we identify a complementary relationship between human expertise and
machine learning, suggesting that hybrid approaches could enhance predictive
accuracy for complex pharmacokinetic and toxicological assessments. This study
represents a foundation for future drug discovery research in hybrid intelligence

frameworks.
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Chapter 8. Conclusions & Perspectives

As of today, modeling in drug discovery has reached a stage where the bottleneck is
no longer the prediction method or the descriptors but rather the data itself. In other
words, data now drives the choice of the most appropriate ML method based on its
size, diversity, and quality. One of the main limitations is quality, which is affected by
experimental bias, inherent noise in assays, human error, and a lack of condition

homogeneity.

In this thesis, we explored the limitations of modeling experimental data in an
industrial drug discovery context. Driving the discovery and development of a drug
requires navigating chemical space under multi-objective constraints, most of which
are derived from experimental assays. These assays are interdependent, meaning that

improving one property may lead to failure in several others.

To evaluate and propose compounds with better potential, projects are supported by
modelers and data scientists. As a result, the quality of decisions depends not only on
human expertise but also on the accuracy of models, an accuracy that, ultimately, relies

on the data bottleneck.
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8.1. Data Quality & Modeling in Drug Discovery
Solubility

In this thesis, we explored numerous ways to improve data curation and modeling
approaches. These approaches were first applied to one of the most challenging
endpoints to model accurately: solubility. Initial work on kinetic solubility revealed
that different assays are more similar in measured values than expected. This insight
led to the design and development of predictive models suited for early screening
campaigns, where companies need to broadly screen large libraries and retain only
compounds that may be soluble. This ensures that only testable compounds are used,

preventing wasted resources on acquiring insoluble, dry-brick compounds.

However, solubility is not merely a binary decision. During later-stage optimization,
solubility, and particularly precise solubility estimation, becomes a key parameter in
multi-objective optimization. To guide and validate such a framework,
thermodynamic solubility is often estimated, favoring PBS 7.4 or pure water
solubility. This assay provides a continuous estimation of a compound’s maximum
concentration in solution. Despite its importance, it is highly susceptible to various
sources of noise. Our work on water solubility exposed the flawed state of existing
solubility data, a consequence of years of poor curation, aggregation, and
reaggregation of overlapping datasets, along with the failure to adhere to OECD
guidelines. Through multiple steps of curation, modeling, and validation, we
identified the most error-prone and low-quality data sources and established a
guideline for the proper curation of solubility data.

Absorption

Given the multi-objective nature of drug discovery, we explored the next major
limitation in a drug’s journey: its absorption once solubilized. This process involves
numerous interrelated assay properties. To model them accurately, we conducted an
in-depth analysis of the factors influencing different permeability assays, including
cell lines, inhibitors, and various assay-specific conditions. This research ultimately led
us to compare the application of standard single-task ML approaches with GNN-based
MTL models.
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By leveraging multi-task models, we aimed to exploit task relationships to enhance
information extraction from the model. Our study demonstrated a significant
improvement in predictive performance with MTL, particularly for small datasets,
while predictions on larger datasets remained as accurate as before. Moreover, these
models not only delivered better generalization and performance but also provided
high-quality representations of compounds. To illustrate this, we featurized thousands
of compounds using the model’s graph embeddings and projected them onto a
chemical space map. This highlighted the model’s ability to correctly represent highly
related endpoints with fine granularity. Ultimately, this work contributed to the
development of novel high-performance models and a highly curated dataset for

absorption prediction.

OneADMET

Since decision-making in drug discovery extends beyond a drug’s transit from pill to
bloodstream, we expanded our approach to account for distribution, metabolism,
toxicity, and even activity and selectivity. This involved applying the MTL approach
to thousands of endpoints. However, as ML models are highly sensitive to noise and
data distribution, an initial round of thorough curation and standardization was
necessary. This step led to the creation of OneADMET, the largest and most curated
dataset of continuous ADMET and activity data.

This dataset was then used to train a large-scale GNN-MTL model, which was
rigorously benchmarked against popular ML approaches. The study demonstrated the
broad applicability of MTL models, which not only matched the best optimized SVM
on small datasets but also outperformed XGBoost on medium-sized data and
remained competitive with single-task GNN models on large datasets. Beyond their
power and versatility, these models are also highly efficient. With a single MTL model,
we can generate predictions that would otherwise require thousands of individual
models and tens of descriptor calculations per compound, not to mention the storage
and computational costs of handling such extensive descriptors and models. As of
today, GNN-MTL offers the best balance between cost, performance, speed, and
applicability. It is not just a predictor but also a featurizer, an interpreter, and an

uncertainty estimator for large-scale virtual screening with more reliable decisions.
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Collective Intelligence

Hence, these studies raise an important question: which strategies lead to the best
decisions? Are they those fully driven by Al, made by a single expert, or decided by a

group of individuals?

To gain deeper insights into this problem, we applied the concept of collective
intelligence to decision-making in late-stage lead optimization and compared it to
decisions solely reliant on state-of-the-art ML models. Our findings revealed that

groups composed of both experts and non-experts can make reliable decisions.

When testing different sample sizes, we identified a threshold where cohort size no
longer influenced success rates. A group of 10 to 20 individuals proved sufficient to
enhance decision-making, often matching or even outperforming both expert-driven
and ML-based approaches. However, this collective strategy had its limitations. Its
application to complex endpoints, such as hERG inhibition, failed to yield significant
advantages. Leading and collaborating within a target project team requires
integrating diverse approaches and methods in a collective manner. The potential of
collective intelligence is not confined to lead optimization, it can be applied across

various stages of the drug discovery process due to its versatility.

Beyond this, other strategies, such as swarm intelligence, ant colony optimization, and
crowdsourcing, remain underexplored but have shown early promise. Understanding
how to effectively integrate Al, human expertise, and collective strategies in drug

discovery remains a critical challenge for the field.
Research Perspectives

Throughout this thesis, it has been made clear that the performance and reliability of
predictive models in industrial drug discovery are tightly linked to the quality of input
data, the robustness of curation workflows, and the sophistication of computational
frameworks. While multi-task learning models have shown promise, further
improvements in model performance will rely heavily on resolving persistent
challenges in data annotation and fostering more productive, interactive forms of
human-AlI collaboration. Moving forward, advances in large language models (LLMs)

and Al agents offer a compelling path to address these issues.
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Enhancing Modeling with Al Agents

A crucial bottleneck in model-driven drug discovery remains the time-consuming and
error-prone process of data curation. Recent developments in LLMs provide a scalable
solution to automate the extraction and annotation of chemical and biological
knowledge from unstructured textual sources such as scientific articles, patents, and
lab notebooks. By leveraging transformer-based architecture, LLMs can parse and
organize complex domain-specific information with increasing accuracy. For instance,
Schilling-Wilhelmi et et al.””® demonstrated workflows that combine automated
annotation with human-in-the-loop corrections to ensure high fidelity, while Ai et al.'”
showcased how fine-tuned models can outperform traditional rule-based systems in
extracting synthetic procedures. Similarly, Vangala et al.’® applied GPT-based models
to patent mining, uncovering previously overlooked chemical reactions, and
Kosonocky et al.!®! highlighted the capacity of LLMs to infer functional-structural

relationships hidden in patent corpora.

Beyond annotation, LLMs hold potential for flagging inconsistencies within datasets
through learned recognition of underlying chemical or biological patterns, thus
improving overall data integrity. Embedding such tools into curation workflows can
dramatically reduce manual overhead, enhance consistency, and accelerate the

generation of high-quality datasets.

Human-Agent Collaboration in Drug Discovery

Beyond static annotation tasks, LLMs are starting to be deployed as dynamic, decision-
support tools that operate as digital co-scientists. These agents integrate reasoning,
planning, and execution modules to autonomously perform and interpret tasks.
However, general-purpose LLMs often underperform in generative tasks like multi-
step retrosynthesis. To overcome these limitations, purpose-built systems like
ChemCrow!®? and ChemLLM!® have been developed. ChemCrow extends GPT-4 with
tool integration through LangChain and chain-of-thought prompting, enabling it to
access and use autonomously chemistry-specific tools and reason across multiple steps

to complete synthesis or design tasks.
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Strategic Outlook & Integration into R&D Pipelines

As drug discovery increasingly relies on large-scale computation, integrating LLM-
based annotation tools and autonomous scientific agents into R&D pipelines presents
a compelling strategic opportunity. These systems could streamline manual
workflows, enhance data integrity, and improve model generalization by reducing
inconsistencies in input data. Yet, their current limitations, most notably a reliance on
training data and lack of domain reasoning, mean expert oversight remains critical.
LLMs should not replace human expertise, but rather augment it, provided their
deployment is governed by rigorous standards for validation, transparency, and

pharmacological relevance.

Looking ahead, LLM-based agents could extend well beyond data curation to actively
support ADMET prediction and decision-making. Acting as digital collaborators, they
may assist medicinal chemists and modelers in tasks such as docking compounds into
target pockets, summarizing SAR trends, flagging potential liabilities, or preparing
compound sets filtered by metabolic or safety criteria. With growing multimodal
capacities, these agents could synthesize structural data, bioassay results, and
literature to generate context-aware recommendations and refine hypotheses in real

time.

To make this vision operational, workflows would need to be modularized into agent-
executable steps, domain constraints embedded via fine-tuning or chemical prompts,
and predictive backends, such as docking engines or PBPK models, interfaced
seamlessly. Crucially, expert feedback mechanisms must be built into interactive tools,

allowing users to refine, validate, or redirect outputs on the fly.

This trajectory outlines the rise of an agentic collective, a collaborative network of Al
systems working in coordination with human scientists, not as isolated utilities but as
contextual, task-specialized partners. Rather than replacing decision-making, these
agents could serve to sharpen it, enhancing the pace, consistency, and creativity in

early drug discovery.
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8.2. State of the field

Even though QSAR is now celebrating its 60th anniversary, the field is only now
entering its most prolific and active research period. As Al continues to integrate into
drug discovery, it raises a critical tension: should these models serve merely as tools
to assist experts, or are they gradually shaping a shift toward automation-driven
strategies? The field stands at a crossroads where enthusiasm for Al-driven efficiency
collides with the reality of its practical constraints. The next section explores how this
dynamic is unfolding, tracing the trajectory of Al adoption in drug discovery, from

initial breakthroughs to the recalibration of expectations.
From Innovation to Disillusion

The integration of Al into drug discovery follows a well-documented pattern,
resembling the rise and fall of the internet boom of the 1990s, the social media
explosion of the 2000s, and the blockchain craze of the 2010s.!%!% Each of these
technologies followed a cycle of early innovation, rapid adoption, exaggerated claims,
reality check, and eventually stabilization into practical applications.’®¢ Al in
pharmaceutical research is no exception. Initially heralded as game-changing for
automation, data analysis, and predictive modeling, Al has been widely promoted as
the future of drug discovery. But as with past trends, the enthusiasm has often been

accompanied by overstatements, blurring the lines between science and marketing.!¥”
The Marketing of Science

The push to accelerate drug development has led pharma, biotech, and contract
research organizations (CRO) to adopt AI/ML more widely. Though explored since
the 1990s (e.g., AstraZeneca’s early infrastructure), recent gains in data, computing,
and algorithms have expanded their practical use across the full drug discovery
pipeline. In recent years, optimism has surged as Al was credited with revolutionizing
drug discovery, from molecular design to toxicity prediction. This wave of enthusiasm
has also made these companies prime targets for Al-driven biotech firms.!*8 Faced with
the choice of building in-house expertise or partnering with external Al companies,
pharmaceutical companies must navigate a landscape where true innovation and bold

marketing claims, disguised as scientific papers, often mix.
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Recently, in 2024, Google DeepMind’s AlphaFold 3'®, following version of the
successful and performant AlphaFold 2!, was published as a closed-source model in
Nature, only five months after being received by the journal.®® Many criticized the
release as a promotional maneuver rather than a scientific contribution. Mounting
pressure eventually forced DeepMind to publish an open-source version months later,
revealing tensions between academic transparency and corporate interests.’? In
January 2025, In Silico Medicine reported using quantum computing to characterize
KRAS inhibitors, a notoriously hard target under investigation since 1982, with over
100 drug candidates already in development .!®* Their approach combined ultra-large
virtual screening with quantum-hybrid generative models, ultimately identifying
weak hits (~5 uM IC50). While technically ambitious, the outcome was
underwhelming in practical terms. Given the high computational cost and the still-
maturing state of quantum hardware, dismissed even by Nvidia CEO Jensen Huang
as premature, the effort highlighted a broader issue: the growing gap between
technological hype and meaningful pharmacological innovation. Raising the question

of whether such methods offer real therapeutic advantage.!**1%

Earlier, in 2019, In Silico Medicine made bold claims about identifying potent kinase
inhibitors within 21 days.'® The rational of the study was questioned by P. Walters
and M. Murcko at the time, pointing out the strong similarity of the In Silico Medecine
compounds with the marketed kinase inhibitor Iclusig (ponatinib), questioning the
necessity of “fancy” software to substitute an isoxazole for an amide carbonyl, and the
relevance of such publication.’” Meanwhile, they disclosed having reached Phase 1
from target discovery in just 30 months with an Al-discovered drug in 2022. The
compound shown some promise in the phase Ila results with a primary endpoint as

safety but lacks definitive clinical success.!”®

Similarly, in 2020, Exscientia declared that it had designed a cancer drug candidate
(EXS-21546) in only 12 months, designated as the "the first Al-generated drug".’
While these milestones were widely publicized, the actual clinical outcomes failed to
fully meet expectations with two clinical candidates wiped. In 2024, the company was
acquired by Recursion.”?® Backed by Nvidia, Recursion, which initially aimed to
develop 100 drugs in 10 years reported mixed results for its lead repurposed drug
REC-994. While deemed safe, the drug failed Phase II clinical trials.?’!
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Additional mentions goes to Atomwise, an Al-driven company founded in 2012
advancing bold claims in 2015, it has yet to send a compound to clinic.?? Cassava
Sciences, once hyped for its experimental Alzheimer’s candidate simufilam, failed to
show clinical benefit in Phase III trials, leading to the discontinuation of its
development in November 2024. Another major Al-driven biotech, BenevolentAl a
company valued in 2018 at around $2 billion which stated to have created a “bioscience
machine brain” have obtained deceiving results in 2024.2% Their Al-generated
candidate for pan-Trk inhibitor (atopic dermatitis) failed in Phase II trials, performing

no better than a placebo.204-206

Despite advances in Al-driven drug discovery, its impact remains limited in clinical
translation. While AI excels in early-stage tasks like virtual screening and multi-
objective optimization, it struggles with biological complexity, data quality issues, and
clinical trial unpredictability. Overhyped claims often fail to materialize, as seen in Al-
driven biotech firms whose compounds underperform in clinical phases. The reliance
on biased, noisy datasets constrains Al’'s predictive power, making it a decision-
support tool rather than a standalone solution. Until Al can reliably address clinical

challenges, its role in drug development remains promising but not yet transformative.
Correction to a Reality Check

As the reality check set in, many biotech startups struggled to meet their promises. The
outcome has been an industry-wide correction, characterized by failed clinical trials,
financial struggles, and large-scale layoffs rounds across the pharmaceutical sector
surged by 281% (from 11 rounds in 2023 to 42 rounds in 2024).2”

In 2024, Exscientia was forced to cut 25% of its workforce, a direct result of financial
underperformance and failed partnerships.?® BenevolentAl laid off 45% of its
employees and an immediate unexplained departure of the CEO, only after one year
on the job, citing a need to restructure and focus on fewer high-value projects.?”? Other
companies, including Atomwise and Recursion, have also reduced their workforce. In
total, Al-driven biotech startups have seen over 2,500 job cuts in 2024, as investors and

executives reevaluate the practical impact of Al in drug discovery.2!
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Large pharmaceutical companies have also undergone significant layoffs, though for
different reasons. Unlike startups that faced direct failures, big pharma layoffs have
been driven by two key factors: (i) the failure of Al-driven partnerships to yield
expected results, and (ii) a shift in corporate strategy toward CRO to reduce costs.
Bristol Myers Squibb announced a 2,200-employee reduction by the end of 2024. Pfizer
eliminated 1,500 positions, including 285 roles at a vaccine R&D site in New York and

120 in Washington. Takeda cut 641 jobs in Massachusetts.

These layoffs in big pharma are indicative of a replacement of departments by
experimental or Al-driven CROs. Boards of directors, often distant from the realities
of experimental R&D, have embraced Al as a way to reduce expenses. However, this
presents a paradox, while Al has not yet delivered on its promise of fully automated
drug discovery and revenue are high, companies are already reducing human R&D

expertise in favor of Al-driven cost efficiencies.
Communication between R&D and Business Leadership

Many of the layoffs in biotech and big pharma suggest that business executives, often
motivated by short-term financial gains satisfying their Key Performance Indicator
(KPI), are making decisions without sufficient input from R&D leaders who
understand the true capabilities and limitations of AL!#211 Strong alignment between
Chief Scientific Officers (CSOs), Head of R&D and CEOs is critical to ensure that Al is
integrated into drug discovery in a way that enhances, rather than replaces, essential
scientific processes and experience-owned knowledges. Historically, successful
pharmaceutical companies have maintained direct, science-focused communication
between leadership and research divisions. However, as Al hype has taken center
stage, some executives have made sweeping Al-driven restructuring decisions, often
confusing Al’s role in core R&D functions, such as molecular design, predictive
modeling, and target validation, with broader Al-driven digitalization efforts in
logistics, marketing, and operational efficiency. For Al to contribute meaningfully to

drug discovery, companies must adopt a balanced approach.?
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Toward more Sustainable Approaches

Many biotech firms have historically prioritized aggressive Al-driven narratives to
attract and rapidly secure funding, while only a few have focused on incremental
advancements supported by rigorous validation. As the industry corrects itself, a more
structured approach to Al adoption is emerging. Public-Private Partnerships (PPPs)
offer a promising safeguard while providing a mechanism for pooling resources to
address shared challenges. PPPs in France, such as the CIFRE program, facilitate
industry-academia collaboration by funding PhD students conducting research in
private companies. Other key initiatives include PIA (Programme d’Investissements
d’Avenir) and France 2030, which invest in Al, biotech, and deep-tech innovation.
ANR collaborative programs and Carnot Institutes support joint R&D efforts, while
BPI France’s DeepTech grants and i-Lab competition fund early-stage biotech startups.
The AIChemist program, backed by Horizon Europe, exemplifies international PPPs

focused on Al-driven drug discovery.®
What comes next for Al in Drug Discovery?

While expectations around Al in drug discovery require adjustment, its potential
remains transformative, if applied correctly. The future of Al in pharmaceuticals will

likely shift from ambitious claims to practical, results-driven applications.

For investors, the most promising biotech companies prioritize strong datasets first,
followed by computing power and, lastly, innovative methodologies. Data is the
foundation; without high-quality, validated biological information, even the most
advanced AI models will struggle to generate meaningful insights. This reality
underscores a key advantage for Big Pharma, which leverages extensive proprietary

datasets to enhance the reliability of Al-driven predictions.

Rather than replacing medicinal chemists, Al is evolving into a powerful decision-
support system, assisting researchers in SAR modeling, toxicity prediction, and multi-
objective optimization. However, for computational predictions to translate into
clinically relevant outcomes, Al models must undergo rigorous validation against real-

world biological data.
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Emerging fields such as RNA-targeted therapeutics and personalized medicine offer
promising opportunities for Al integration. In these low-data environments, Al can
accelerate target identification and drug design, provided that robust validation

methods are in place.

Ultimately, Al's impact on drug discovery will not be defined by hype but by its ability
to enhance predictive accuracy, optimize decision-making, and drive clinically
meaningful advancements. To realize its full potential, the industry must move

beyond speculation and embrace transparent, science-driven innovation.
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ATP
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Résumé

Cette thése vise a faire progresser le réle de la modélisation in silico dans la recherche
pharmaceutique, en abordant les défis persistants liés aux échecs tardifs et aux
inefficacités du développement de médicaments. L’évaluation ADMET (Absorption,
Distribution, Métabolisme, Elimination et Toxicité) intervient souvent trop tard dans le
processus, augmentant ainsi les codts et ralentissant la progression. Pour remédier a
ces problemes, la modélisation in silico, en particulier la prédiction précoce des
propriétés ADMET (eADMET), est devenue essentielle pour rationaliser la prise de
décision dés les premiéres étapes de la découverte de médicaments. Cependant, la
complexité de la biologie humaine, I'évolution des modéles expérimentaux et les
incohérences des données exigent des modeles prédictifs a la fois précis, adaptables
et interprétables. Cette thése propose une approche systématique pour 'amélioration
de la modélisation eADMET, en s’appuyant sur le nettoyage des données,
'apprentissage multi-taches, I'application a grande échelle et la collaboration humain-
machine.

Résumeé en anglais

This thesis is dedicated to advancing the role of in silico modeling in pharmaceutical
research, addressing the persistent challenges of late-stage failures and inefficiencies
in drug development. ADMET (Absorption, Distribution, Metabolism, Elimination, and
Toxicity) testing often occurs too late in the pipeline, driving up costs and delaying
progress. To mitigate these issues, in silico modeling, particularly early ADMET
(eADMET) prediction, has become essential for streamlining decision-making in early
drug discovery. However, the complexity of human biology, evolving assays, and data
inconsistencies necessitate predictive models that are not only accurate but also
adaptable and interpretable. This thesis presents a systematic approach to refining
eADMET modeling through data curation, multi-task learning, large-scale applicability,
and human—-machine collaboration.




