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Abstract 

This thesis is dedicated to advancing the role of in silico modeling in pharmaceutical 

research, addressing the persistent challenges of late-stage failures and inefficiencies 

in drug development. ADMET (Absorption, Distribution, Metabolism, Elimination, 

and Toxicity) testing often occurs too late in the pipeline, driving up costs and delaying 

progress. To mitigate these issues, in silico modeling, particularly early ADMET 

(eADMET) prediction, has become essential for streamlining decision-making in early 

drug discovery. However, the complexity of human biology, evolving assays, and data 

inconsistencies necessitate predictive models that are not only accurate but also 

adaptable and interpretable. This thesis presents a systematic approach to refining 

eADMET modeling through data curation, multi-task learning, large-scale 

applicability, and human–machine collaboration. 

The first part of this work focuses on solubility modeling, emphasizing the challenges 

posed by assay variability and dataset inconsistencies regarding thermodynamic 

solubility. We also demonstrate that kinetic solubility data, contrary to common 

assumptions, can be reliably modeled when properly curated. A framework for 

solubility prediction is introduced, improving model accuracy and reproducibility. 

The second part investigates drug absorption modeling using multi-task learning 

(MTL). By leveraging shared patterns among related endpoints, MTL enhances 

predictive performance over single-task models. This approach is then expanded to 

ultra-large datasets encompassing ADMET and bioactivity measures. To further 

optimize lead selection, we explore collective intelligence strategies, comparing expert 

feedback to modeling at the late-stage optimization phase. Finally, the thesis examines 

the broader landscape of AI-driven drug discovery, critically assessing industry 

trends, overhyped claims, and the reality of AI’s impact on pharmaceutical R&D.  

The findings highlight the importance of high-quality data, rigorous validation, and 

interdisciplinary collaboration for sustainable AI adoption. This work underscores the 

necessity of flexible, interpretable, and data-driven in silico tools to enhance efficiency 

in modern drug discovery, ultimately aiding the search for safer and more effective 

medicines. 
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Chapter 1.   Résumé en Français 

1.1.   Introduction 

La découverte de nouveaux médicaments est un processus complexe et exigeant en 

ressources, impliquant plusieurs étapes allant de l'identification initiale de la cible aux 

essais cliniques. Une phase critique est l'optimisation des composés leads, où les 

structures chimiques sont révisées pour améliorer l'efficacité, la sélectivité et les 

propriétés pharmacocinétiques tout en minimisant la toxicité potentielle.1 Malgré des 

efforts considérables, les échecs liés aux propriétés ADMET (Absorption, Distribution, 

Métabolisme, Elimination et Toxicité) restent un obstacle majeur, avec des études 

récentes indiquant qu'environ 90 % des candidats-médicaments échouent lors du 

développement clinique en raison de problèmes d'efficacité et de sécurité.2,3 Ces échecs 

contribuent à l'escalade des coûts du développement de médicaments, estimés entre 

1,3 et 2,8 milliards de dollars par nouveau médicament.4 

Cette thèse contribue à répondre à ces défis grâce à des techniques d'apprentissage 

automatique (Machine Learning, ML) et d'intelligence artificielle (IA) permettant 

l'analyse de données complexes, facilitant la prédiction des propriétés moléculaires, 

des interactions ligand-cible et des effets secondaires potentiels.5,6 La prolifération de 

larges ensembles de données a certes révolutionné la découverte de médicaments, 

mais les prises de décision en découverte de médicaments sont d’autant plus 

impactées par les problématiques liées aux données, par exemple : les données 

incertaines ou incohérentes ou des modèles statistiques inadéquats.7 

Cette thèse se concentre sur l'amélioration du processus de sélection des données et 

l'amélioration des méthodes de décision en développant des modèles computationnels 

pour la prédiction des propriétés ADMET, en explorant l'espace chimique à travers la 

cartographie topographique générative (Generative Topographique Mapping, GTM) 

et en exploitant des approches d'intelligence collective. Par l’intégration de données 

de haute qualité à des modèles robustes, ces travaux contribuent à améliorer les 

processus décisionnels, réduisant les taux d'attrition et optimisant les ressources 

investies dans le développement de nouveaux médicaments. 
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1.2.   Méthodologies pour l’Apprentissage Automatique 

Les modèles d'apprentissage automatique développés au cours de la découverte de 

médicaments reposent souvent sur les relations quantitatives structure-propriété 

(QSPR), établissant une fonction Y=f(X), où X est la représentation d’une entité 

chimique par des descripteurs moléculaires et Y, une propriété d’intérêt telle que la 

solubilité. Ces travaux ajoutent deux approches complémentaires à ces modèles 

QSPR : l’exploration rationnelle de l’espace chimique à l’aide de cartes GTM8, et la 

définition de domaines d’applicabilité (Applicability Domain, AD) visant à estimer la 

pertinence des prédictions – Isolation Forest9, par exemple. 

Cette thèse présente par ailleurs, des approches récentes de modélisation QSPR 

reposant sur des réseaux de neurones artificiels basés sur des graphes (Graph Neural 

Network, GNN). Ces méthodes formulent des modèles dont les données chimiques 

utilisées en entrées se présentent sous forme de graphes moléculaires.10 Nos travaux 

illustrent l’intérêt de ces méthodes, pour leurs performances, leur capacité à traiter des 

grands ensembles de données et pour la facilité avec laquelle des concepts élaborés, 

comme l’apprentissage multi-tâches, sont formulés.11 

L'apprentissage multitâche (Multi Task Learning, MTL), est une extension de 

l’apprentissage monotâche (Single Task Learning, STL). La stratégie consiste à 

entrainer un unique modèle MTL sur plusieurs tâches connexes simultanément au lieu 

d’entraîner des modèles STL indépendants pour chacune de ces tâches. Un modèle 

multi-tâche est moins compliqué à entraîner car il ne faut fixer les valeurs des 

paramètres libres que de ce seul modèle MTL au lieu de devoir les fixer pour chaque 

modèle STL séparément.12 Au cours de nos travaux, nous avons constaté que des 

synergies entre les tâches sont assez fréquentes pour accroître, globalement, la 

généralisation des modèles, des antagonismes pouvant également être observés, se 

traduisant par la détérioration des performances pour certaines tâches. Dans cette 

thèse, nous appliquons des méthodes MTL basées sur GNN pour développer des 

modèles prédictifs (Figure 1). Les modèles sont entraînés sur des ensembles de 

données soigneusement nettoyés pour assurer la qualité des prédictions, et diverses 

métriques, sont utilisées pour évaluer leurs performances. 
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1.3.   Résultats & Discussions 

La thèse s’articule autour de quatre volets : (1) la modélisation de la solubilité des 

composés chimiques, (2) le développement d’une approche multitâche pour prédire 

l’absorption des petites molécules, (3) l’extension de cette approche à grande échelle 

pour le profilage des propriétés ADMET et de nombreuses activités biologiques, et (4) 

l’application des modèles prédictifs dans l’optimisation des leads en chimie 

médicinale, comparée aux méthodes d’intelligence collective. Chaque section explore 

des méthodes innovantes pour affiner la prédiction des propriétés ADMET, avec une 

attention particulière portée au nettoyage des données et aux techniques de 

modélisation. 

 

Figure 1 : Schéma du workflow de prédiction combinant un MTL GNN avec la GTM et l’évaluation 

du domaine d’applicabilité. Les structures d’entrée sont traitées via des couches de passage de 

messages (Message Passing), d’agrégation (Aggregation) et de propagation direct (Feed-Forward 

Network, FFN) pour prédire des propriétés telles que Papp (perméabilité apparente), PPB (liaison aux 

protéines plasmatiques) et LogS (log10 de la solubilité en molaire). L’AD garantit des prédictions dans 

un espace chimique valide, tandis que la GTM permet la visualisation et l’évaluation des 

caractéristiques des espaces chimique locaux. 
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Modélisation de la Solubilité des Composés Chimiques 

Solubilité Thermodynamique 

La prédiction précise de la solubilité aqueuse demeure un défi. Les modèles existants 

offrent souvent de bonnes performances sur les données d'entraînement mais 

échouent à se généraliser à de nouveaux composés. Nous avons compilé une liste 

exhaustive de jeux de données de solubilité, identifiant des sources négligées et des 

recouvrements. En nettoyant et en standardisant le jeu de données AqSolDB13, nous 

avons créé un jeu de données de haute qualité, AqSolDBc, pour l'entraînement des 

modèles. 

En utilisant à la fois des méthodes de forêts aléatoires (Random Forest, RF) et des 

GNN, nous avons développé des modèles prédictifs pour la solubilité aqueuse (Figure 

2a). L'utilisation de ces modèles pour prédire de nouvelles données a révélé 

l’importance de définir leurs domaines d'applicabilité ; expliquant les performances 

décevantes des modèles mis en production en négligeant cet aspect (Figure 2b). Ces 

conclusions soulignent l'importance de la qualité des données et les défis liés à 

l'extrapolation au-delà du domaine d’entraînement.14 
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Solubilité Cinétique 

Dans une perspective de criblage de molécules, la solubilité cinétique est plus 

pertinente que la solubilité thermodynamique car elle fixe les concentrations 

maximales auxquelles des échantillons peuvent être testées. L'analyse des données de 

solubilité cinétique et thermodynamique a confirmé les relations connues entre ces 

deux types de solubilité (Figure 2c). Les données de solubilité cinétique obtenues par 

différents protocoles se sont révélées cohérents, permettant ainsi de fusionner ces 

données en un jeu unique et exclusif pour entraîner des modèles prédictifs. Ces 

modèles renforcent la conclusion que la solubilité cinétique dépend moins de la 

méthode de mesure expérimentale que ce qui était initialement supposé (Figure 2a).15 

 

Figure 2 : Evaluation et analyses des modèles et valeurs de solubilité cinétique et thermodynamique. 

(a) Benchmark des performances des modèles public sur des données externes public et industrielles. 

Une zone grise définit les métriques nécessaires pour qu’un modèle soit considéré performant. (b) 

Performances en RMSE d’un modèle entrainé sur des données publiques et validé sur des données 

externes avec ou sans l’utilisation d’un domaine d’applicabilité. (c) Analyse comparative des valeurs de 

solubilité cinétiques et thermodynamiques. La couleur représente la densité des 186 composés du jeu 

de données de la Chimiothèque Nationale Essentielle, allant de faible (noir) à élever (jaune). La ligne 

pointillée orange indique la limite supérieure pour les mesures de solubilité cinétique (0,2 mM). 
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Approche Multitâche pour Prédire l’Absorption des Petites 

Molécules 

L’absorption d’une petite molécule, influencée par la perméabilité et la solubilité, est 

un défi majeur en optimisation de leads. Nous avons modélisé la perméabilité via des 

approches multitâches pour améliorer la précision des prédictions d'absorption. Nos 

résultats confirment les facteurs clés influençant l'absorption. En comparant des 

modèles MTL et STL basés sur des GNN, les modèles MTL se sont révélés supérieurs 

pour les petits jeux de données. Pour tester l’apprentissage multitâche, nous avons 

introduit une tâche « leurre », l’énergie libre d’hydratation (HFE), qui n’a pas profité 

des synergies MTL, perdant même en performance par rapport au STL (Figure 3). Par 

ailleurs, les modèles basés sur des données publiques se généralisent mal aux données 

industrielles, à cause de disparités dans l’espace chimique, les conditions 

expérimentales et la qualité des données. Les modèles GNN STL se montrent plus 

robustes pour les grands jeux de données. Ces travaux soulignent l'importance de 

regrouper des tâches connexes pour optimiser les modèles multitâches. 

 

Figure 3 : Analyse des effets de synergie et d'antagonisme dans les modèles GNN MTL versus STL 

(a) Données publiques (b) Données industrielles. La taille des points est proportionnelle à la taille du 

jeu de données. Les points rouges représentent les endpoints de perméabilité, les points bleus ceux de 

solubilité, et les points noirs représentent le HFE, tâche neutre.  
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Profilage des Propriétés ADMET et des Activités Biologiques 

Aujourd'hui, de nombreux jeux de données et serveurs web autorisent la modélisation 

des propriétés ADMET et de l’activité biologique, avec des benchmarks comme le 

Therapeutic Data Commons, démocratisant les thèmes de la découverte du 

médicament auprès des experts de l’apprentissage automatique. Les serveurs sont 

souvent redondants et mettent en œuvre des approches analogues. Pour contribuer à 

la production de modèles et de serveurs de prédictions plus fiables, nous avons 

travaillé un jeu de données de haute qualité spécifiquement orienté pour la découverte 

de médicaments, en compilant des données de BindingDB, OChem et ChEMBL. Nous 

avons méticuleusement nettoyé celles-ci en se basant sur les métadonnées 

expérimentales visant à améliorer leur cohérence et leur validité. Le modèle MTL GNN 

développé prédit simultanément plus de 2,000 activités biologiques et propriétés 

ADMET. Divers descripteurs moléculaires et algorithmes, dont la GNN, ont été 

évalués sur des données publiques et privées. Cette étude représente le modèle MTL 

de régression le plus large dans le domaine ADMET. Les performances sur chaque 

tâche sont comparables ou meilleures que celles des modèles mono-tâche. La Figure 4 

montre des performances représentatives, avec des améliorations notables, comme 

pour pIC50 IL8. Les tâches avec peu de données bénéficient particulièrement du MTL, 

car le réseau de tâches est assez dense pour éviter des tâches isolées. 

  

Figure 4 : Performance des différentes méthodes prédictives appliquées à un échantillon des 

propriétés modélisées. Les performances des modèles sur les données de tests sont représentées par le 

R2. Chaque barre indique le R2 moyen avec un intervalle d’erreur représentant la déviation standard. 
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L’Intelligence Collective et les Méthodes Automatisées dans 

l’Optimisation ADMET 

Les campagnes d'optimisation en chimie médicinale sont souvent basées sur des 

méthodes prédictives et l'intuition des chimistes, influencées par leurs expériences et 

biais personnels. Afin d'introduire l'intelligence collective dans ce domaine, nous 

avons recueilli les réponses de 92 chercheurs de Sanofi à des questions d'optimisation 

de leads. Cela nous a permis d’analyser comment l'expertise et la confiance affectent 

les choix en conception moléculaire. Nos résultats montrent que l'intelligence 

collective améliore les taux de réussite pour des tâches courantes telles que la 

prédiction de l’hydrophobicité, la perméabilité et la solubilité (Figure 5). Toutefois, 

pour des phénomènes moins familiers, comme l'inhibition du canal cardiaque hERG, 

l’efficacité diminue. Nos conclusions suggèrent que l'intelligence collective pourrait 

constituer une voie prometteuse pour renforcer le processus de décision dans la 

découverte de médicaments.16 

 

Figure 5 : Performances de l'intelligence collective par niveau d'expertise et propriétés ADMET. 

(Gauche) Diagrammes en violon du taux de succès (Success Rate, SR) par niveau d'expertise pour 

chaque groupe et tous les participants (en bleu). La médiane est représentée par ligne d’étranglement 

de la boite grise. Les SR collectifs sont montrés par des cercles pleins blancs. (Droite) Diagrammes en 

violon du SR pour chaque propriété. 
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1.4.   Conclusion Générale 

Cette thèse établit des bases solides pour l'intégration de l'apprentissage automatique 

dans la prédiction des propriétés ADMET, en proposant des contributions majeures à 

la modélisation moléculaire et à la réduction des échecs en recherche pharmaceutique. 

Les travaux mettent en avant l'importance du nettoyage des données et de la définition 

des domaines d'applicabilité pour garantir des prédictions fiables, en particulier pour 

des composés hors de l'espace chimique initial des modèles. 

Les approches multitâches se sont révélées particulièrement efficaces pour exploiter 

les synergies entre propriétés connexes, notamment sur des données limitées, 

améliorant ainsi la généralisation des modèles et leurs performances globales. 

L’intégration des réseaux de neurones sur graphes et des outils de visualisation, 

comme la cartographie topographique générative, a renforcé la précision des 

prédictions tout en offrant des moyens d’explorer l’espace chimique. 

Enfin, en associant modèles prédictifs et intelligence collective, cette thèse a démontré 

que l'expertise humaine peut complémenter les outils automatisés. Ces travaux posent 

les bases d’une modélisation ADMET hybride, combinant apprentissage profond et 

intelligence collective. 

Chaque partie du travail a contribué à une meilleure compréhension et optimisation 

des processus de décision et de découverte de médicaments, en fournissant des outils 

et des ressources accessibles pour la recherche. 
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Chapter 2.   General Introduction 

The pharmaceutical industry faces steep R&D costs and high late-stage failure rates. 

About 40% of attrition in the early 1990s was linked to poor pharmacokinetics. For a 

chemical to function as a drug, it must be absorbed, distributed to target areas, 

metabolized without losing activity, and eliminated effectively while limiting its 

toxicity (ADMET).17 ADMET has long been crucial in drug development and has 

gained increased attention over the past 10 years. Early ADMET assessments reduced 

project failures to under 10% by 2000, yet the number of novel therapeutics approved 

by the FDA has been declining, as roughly half of drugs in development still fail due 

to pharmacokinetic deficiencies, and even approved drugs often present toxicology 

issues (Figure 1).18,19 Hence, challenges persist, especially in areas like toxicology and 

clinical safety, necessitating improved and standardized toxicity testing methods. 

 

Figure 1: Main causes of failure in the drug development phase. 

Recently, several companies have integrated early ADMET considerations with 

systematic project management to address these challenges. By integrating early 

attrition strategies and lean modeling, the frameworks seek to reduce ADMET 

screening costs by preventing unnecessary investment in molecules with low 

probability of success.20 For instance, one framework currently used by AstraZeneca 

has led to a jump in overall success rates (from candidate nomination to Phase III) from 

4% to 19% and a shortening of optimization cycle times from 26 to 19 months.21 
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2.1.   Drug Discovery & Development 

Understanding how various properties affect drug candidates is crucial to improving 

their success rates. This chapter provides a comprehensive overview of the modern 

drug discovery and development process. 

Overview 

Drug discovery is a multi-phase process that spans over a decade and requires 

significant investments of time and money, often exceeding $2 billion.4 It begins with 

identifying potential drug candidates through rational design and properties 

optimization before advancing to preclinical and clinical trials. The actual model of 

drug discovery has led to a sharp increase in R&D costs but no significant rise in the 

number of FDA-approved new molecular entities (NMEs) since the 1990s.22 From 2009 

onward, the cost of bringing a new drug to market has risen by 10% annually. 

Meanwhile, the investment required has fluctuated between $314 million and $2.8 

billion, while the median market exclusivity period for first‐in‐class drugs has 

shortened from 10.2 years in the 1970s to 1.2 years in the late 1990s, highlighting the 

intensification of competition.4,23  

Early Discovery of Drugs 

The earliest forms of drug discovery relied on natural sources, with ancient 

civilizations utilizing plant extracts, minerals, and animal-derived substances for 

medicinal purposes. Natural products have been historically successful as antibiotics, 

chemotherapeutics, immunosuppressants, and crop protection agents.24 Traditional 

medicine systems such as Ayurveda, Traditional Chinese Medicine, and Greek 

pharmacopeia documented the effects of bioactive substancess.25 During the 

Renaissance and Enlightenment periods, the extraction and isolation of active 

ingredients became more refined. Advances in organic chemistry enabled the 

identification of alkaloids such as morphine, quinine, and strychnine. By the 19th 

century, Friedrich Wöhler's synthesis of urea in 1828 marked the advent of synthetic 

medicinal chemistry, proving that organic compounds could be artificially 

synthesized rather than solely derived from natural sources.26 
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Rise of Rational Design & High Throughput Screening 

Between 1990 and 2010, pharmaceutical companies shifted away from natural product 

discovery in favor of rational design.24  The 20th century ushered in a revolution in 

medicinal chemistry, transitioning from serendipity to systematic drug development. 

The introduction of X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, and cryo-electron microscopy (cryo-EM) provided unprecedented 

insights into drug-target interactions. Simultaneously, the birth of the pharmaceutical 

industry accelerated the synthesis and screening of chemical libraries. Hence, 

numerous “targets” linked to diseases where aimed, which some more or less 

“druggable” (e.g., capacity to be selectively influenced by therapeutics) than others. 

The emergence of combinatorial chemistry and high-throughput screening (HTS) in 

the late 20th century dramatically increased the efficiency of drug discovery. 

Automation and robotics enabled researchers to screen thousands of compounds 

against biological targets, leading to significant advancements in fields such as 

oncology and infectious diseases.27 

The Bid Data & Computational Drug Design Era 

The 21st century brought molecular biology, genomics, and bioinformatics. Genomic 

sequencing has unveiled numerous potential drug targets, while advancements in 

artificial intelligence (AI) have facilitated structure-based drug design. As drug 

discovery becomes standardized, more actors are focusing on the same targets, 

increasing competition and pushing research toward novel territories such as RNA 

targeting, with the recently FDA-approved Branaplam and Risdiplam.28 Moreover, the 

concept of “druggability” is becoming obsolete, as evidenced by RAS targets, 

considered undruggable during 30 years but have now seen approvals like Sotorasib.29 

As of today, the drug discovery and development process unfold in three key phases: 

(i) exploratory research to identify and optimize active compounds targeting a specific 

biological mechanism; (ii) preclinical and early clinical testing, first on animals and 

then on healthy humans; and (iii) clinical trials on patients to assess efficacy and safety. 

If deemed effective and safe, the compound undergoes regulatory approval by 

authorities such as the FDA, obtaining market authorization. The technical aspects of 

this process are outlined (Figure 2). 



25 2.1.   DRUG DISCOVERY & DEVELOPMENT 

 

From Diseases to Target Validation 

The high attrition rate in drug development means that the cost of a single successful 

drug must cover the expenses of numerous failed candidates, making drug discovery 

an expensive and resource-intensive process. To sustain innovation and profitability, 

the pharmaceutical industry must continuously replenish its pipeline with promising 

targets.30 This process begins with a molecular and cellular analysis of diseases, where 

researchers map dysregulated pathways to identify proteins or genes related to  

pathology. For example, targeting aberrant kinase signaling in cancer or excessive 

cytokine activity in autoimmune diseases has led to therapies like Tofacitinib, 

Ruxolitinib, and Osimertinib.31  

 

Figure 2: Drug Discovery and Development process. Schematic representation of the 

key stages in drug discovery and development. The process begins with Target 

Identification, selecting a biological target relevant to a disease. Hit Discovery 

identifies active compounds via high-throughput screening or computational 

methods. In Hit-to-Lead, candidates are refined for potency, selectivity, and drug-like 

properties. Lead Optimization enhances efficacy, safety, and pharmacokinetics. 

Preclinical Studies assess toxicity and pharmacodynamics in vitro and in vivo. Clinical 

Studies progress through Phase I (safety/dosage), Phase II (efficacy/side effects), and 

Phase III (confirmation/large-scale evaluation) before regulatory approval and market 

introduction. 
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Elucidating the Disease Mechanism 

Extensive molecular profiling of diseased tissues and experimental models has 

revolutionized our understanding of pathological mechanisms. This allowed to 

identify aberrant tau phosphorylation as cause of neuronal function disruption linked 

to Alzheimer's disease.32 Biomarkers (e.g., molecular indicators of disease presence or 

severity) has been employed to further validate the therapeutic relevance of pathways 

or protein families, enabling researchers to distinguish true disease drivers from 

incidental.31 

Many therapeutic targets are proteins which reside within protein families sharing 

structural and functional similarities.33 For instance, kinases are implicated in cancer, 

immunodeficiencies, viral infections, neurodegenerative diseases, diabetes, and 

inflammatory diseases with the RAS gene family.34,35 Other notable examples include 

G-Protein-Coupled Receptors (GPCRs), which account for roughly 34% of approved 

drugs and ion channels that have been the target of drug development for the past 50 

years (e.g., phenytoin, carbamazepine).36,37  

Focusing on these target families capitalizes on a wealth of existing data. Strategies 

vary and may include inhibitors that block activity at orthosteric or allosteric sites, 

activators that stabilize specific conformations, or compounds that induce structural 

shifts. Depending on the target’s nature and accessibility, the therapeutics may either 

be a small molecule, peptide, antibody, or nucleic acid (e.g., siRNA, antisense 

oligonucleotides). 

Target Identification & Validation 

Once the target is identified, the validation consolidates its potential by assessing its 

“druggability”. Validation typically involves in vitro assays or animal models to 

determine the therapeutic strategy at the molecular level.31 Without loss of generality 

and to fix ideas, the target can be a protein. The studies start from observations 

indicating the biological function, the role of the protein in a biological pathway or a 

physiological process. Endogenous or exogenous modulators can be discovered 

during this process, or mutations can indicate strategic molecular mechanisms that can 

be exploited.  
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Discovery of Potent Leads 

The target identification is followed by the search for active hits. This process typically 

involves three core steps: i) Compound screening, often in a HTS format, to evaluate 

thousands or even millions of molecules for potency; ii) Hit identification, which 

selects the most promising active compounds from the initial screen; and iii) Hit 

validation, during which potency and specificity are confirmed through secondary 

assays (Figure 3).38 

Hit Discovery 

Hit discovery typically begins with HTS to test large libraries of compounds against a 

biological target. Over the past two decades, small-molecule drug discovery has been 

driven by HTS, with estimated hit rates as low as 0.01–1.00%, depending on factors 

such as the definition of a “hit”, target nature, assay type, and the diversity of the 

compound pool.7,39,40 In this screening phase, a small fraction of compounds may 

display measurable activity, although false positives often arise from experimental 

artifacts or nonspecific binding. Subsequent counter-screens and orthogonal assays 

help confirm genuine activity, filtering out spurious results. 

 

 

Figure 3: Screening process from hit to lead. Schematic representation of the screening 

workflow and the progressive reduction in library size at each stage. The process 

begins with high-throughput and/or virtual screening, leveraging miniaturized and 

cost-effective assays. Hits are refined through more complex and informative models 

such as cell-based assays. Selected compounds proceed to Initial Synthesis before 

entering the Design-Make-Test-Analyze (DMTA) cycle. 
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Typical HTS libraries contain up to 106-107 compounds, and up to 1010 compounds with 

DNA-encoded libraries (DEL), which still represent a minute portion of the chemical 

space.41,42 As of 2015, 125 million compounds were commercial available; by 2025, this 

number exceeded 64.9 billion compounds, driven by the growth of the Enamine REAL 

collection.43 These campaigns rely on “screening libraries”. Commercial libraries 

typically contain millions of purchasable compounds covering diverse chemical 

scaffolds, while in-house libraries are curated from proprietary research efforts. 

Nevertheless, the development and maintenance of large in-house libraries remain 

costly and are typically restricted to the chemical space of past projects, with little to 

no emphasis on exploring uncharted regions. In response, newer strategies have 

emerged such as fragment-based screening, DEL, and combinatorial chemistry to 

create smaller, more diverse libraries that require fewer resources yet maintain broad 

chemical coverage.27,44 Regardless of the approach, screening efforts should ensure that 

hits show consistent activity, are not driven by assay artifacts or nonspecific effects, 

and do not bind closely related targets. Confirmation typically involves dose–response 

profiling and orthogonal assays.  Although a hit may possess moderate potency (e.g., 

micromolar IC₅₀ values when nanomolar is expected), it can still form the basis for a 

successful lead if it exhibits potential for on-target optimization and favorable ADMET 

characteristics (Figure 4).19 Yet, over time, a general trend has also emerged toward the 

synthesis of larger and more lipophilic compounds, a phenomenon referred to as 

“molecular obesity”.40,45,46 These compounds often exhibit high efficacy but poor 

pharmacokinetics and safety profiles.47 

 

Figure 4: Journey of xenobiotics from oral administration to elimination.  
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Hit-to-Lead 

Once a set of validated hits has been identified, the focus shifts to refining and 

optimizing the best candidates in an iterative optimization process, transforming hits 

into ”lead” compounds. Medicinal chemists structurally relate hits into congeneric 

series and analyze structure–activity relationships (SARs), the ways in which small 

structural modifications affect potency and selectivity (Figure 5). This stage initiates 

multiparametric optimization, a data-driven process aimed at simultaneously 

satisfying a set of predefined thresholds across several parameters (a.k.a. blueprint); 

including potency, selectivity, and ADMET properties.48 In parallel, structure–

property relationships (SPRs) examine eADMET endpoints to help identify liabilities 

before they become insurmountable in later development; for instance, screening for 

interactions with the hERG channel can mitigate the risk of QT prolongation, a 

common cause of drug monitoring and withdrawals (Terfénadine), similarly profiling 

unintended kinase inhibition can flag molecules with off-target toxicity, ensuring safer 

drug development pipelines. If such safety or pharmacokinetic issues cannot be 

resolved through structural modifications, the candidate will be discontinued. 49–51 

 

Figure 5: Structure-Activity Relationship (SAR) of the MRTX849 congeneric series. 

Illustrations of key molecular modifications and their impact on biological activity, 

highlighting structural features that contribute to potency and half-life. 
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Practically, hit-to-lead efforts follow a Design–Make–Test–Analyze (DMTA) cycle 

(Figure 6). In this cycle, chemists supported by modelers design structural 

modifications based on current SAR/SPR data, synthesize or acquire the new analogs, 

test them for biological activity and ADMET properties, and finally analyze the 

outcomes to inform the next design iteration. This method is an embodying application 

of active learning (AL).52 Consequently, medicinal chemists face challenging multi-

objective optimization (MOO) problems. This steps generally require support from 

medicinal chemists, chemical intuition, experimental data, and generative or 

predictive models. Despite its effectiveness, the DMTA cycle can be time-consuming, 

often taking weeks per iteration. Efforts to enhance efficiency include automated 

synthesis, simulations, active learning, computational profiling, organ-on-chip and 

ultimately automated laboratories, aiming to shorten cycles time that still exceed 4-8 

weeks with more cost-efficient methods.27,53 Compounds that balance potency, 

selectivity, and ADMET profiles emerge from this iterative optimization as ”leads”.  

 

Figure 6: Overview of the DMTA (Design-Make-Test-Analyze) cycle. The process 

involves iterative refinement of molecular structures, synthesis of candidate 

compounds, experimental evaluation, and computational analysis to guide 

subsequent design steps. Each phase contributes to optimizing properties such as 

ADMET and bioactivity, ensuring data-driven decision-making in drug discovery. 
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Identifying a New Drug  

Unlike earlier discovery phases, where the emphasis centered on finding any active 

compound, this stage places greater weight on the lead’s properties essential for 

clinical success.54 

Lead Optimization 

Optimization efforts begin as soon as active compounds are identified. As leads with 

promising on-target activity emerge, optimization intensifies and profiles become 

more complex, incorporating additional safety endpoints. These steps refine 

properties essential for success in preclinical models and, ultimately, in humans. 

Medicinal chemists leverage MOO techniques, recognizing that bolstering one 

characteristic, such as improving permeability, may inadvertently result in an 

undesired hERG binding.55 This optimization continues until a small number of 

compounds a.k.a. clinical candidates show maximal potential for efficacious, safe 

administration, at which point they transition to the more resource-intensive drug 

development stage. The late-stage transition from lead to preclinical and clinical 

candidates is subject to high attrition rates. They are usually due to toxicity, as 

preclinical models often lack translational relevance to humans. Hence, this requires 

mechanistic toxicology to understand and improve the transferability, with more than 

50% of experimental work conducted in-house to ensure speed and flexibility with 

large companies adopting tiered toxicity screening: combining in silico, in vitro, and 

in vivo approaches to reduce late-stage failures.56 

Drug Development 

Drug development follows a series of evaluations to confirm a compound’s 

therapeutic potential and safety before it can reach patients. Initially, preclinical 

studies use both in vitro assays and animal models to assess pharmacodynamics and 

pharmacokinetics, as well as short- and long-term toxicology. These tests characterize 

the compound’s safety margins such as dose–exposure relationships. It is estimated 

that less than 10% of the initial chemical entities reach the market.30  
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Clinical trials begin with Phase I, which typically involves a small group of healthy 

volunteers to establish basic safety, tolerability, and pharmacokinetic profiles. Phase II 

enrolls patients with the target disease to refine dosing, gather preliminary efficacy 

data, and further detail the safety profile in a more relevant clinical context. By 

Phase III, the study population expands significantly to confirm clinical efficacy, 

identify side effects, and compare the new compound against existing therapeutic 

standards. Data accumulated from these trials are compiled into a regulatory dossier, 

such as a New Drug Application (NDA) for the Food and Drug Administration (FDA) 

or a Marketing Authorization Application (MAA) for the European Medicines Agency 

(EMA). Regulatory authorities allow the market launch of the drug and mandate post-

marketing surveillance (pharmacovigilance) to monitor any long-term or low-

incidence adverse effects.57 

2.2.   Computational Approaches in Drug Discovery  

Data is the primary driver in drug discovery and development. In recent years, the 

acquisition of data has surged, not only in quantity, thanks to HTS and combinatorial 

chemistry, but also in quality, due to the standardization of assay protocols. This 

wealth has extended the application of AI. Breakthroughs such as AlphaFold, 

underscore its potential in supporting de novo design.58 However, the effectiveness of 

AI is dependent on the availability of vast amounts of precise, high-quality data. In the 

chemical context, if the data is noisy or of poor quality, AI-driven decisions may yield 

false positives, leading to suboptimal decisions. Hence, AI outputs must be evaluated. 

Integrating these computational insights with expert human judgment is essential to 

ensure that decisions in drug discovery are both accurate and reliable. 

Overview 

AI-driven chemoinformatics enables tasks such as predicting assay outcomes, 

mapping chemical space, generating novel compounds, and optimizing molecular 

structures. Computer-assisted drug design (CADD) refines these in silico approaches, 

offering more targeted searches than traditional SAR methods. By identifying key 

molecular interactions and suggesting modifications to enhance activity and ADMET 

properties, CADD offer higher success rate to hit discovery. 
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A key application of these computational methods is Virtual Screening (VS), which 

facilitates hit identification by exploring large chemical libraries. Depending on target 

structure availability, VS is categorized into structure-based and ligand-based 

approaches, with hybrid methods integrating both when applicable. The success of hit 

identification depends not only on the strategy but also on the quality of the library 

and the complexity of the target itself. By applying AI-driven methods with optimized 

approaches, drug discovery can be made more efficient and precise (Figure 7).  

Structure-based Drug Design 

Structure-based drug design (SBDD) enables the identification of bioactive 

compounds by leveraging the three-dimensional structure of biological targets. 

Typically, SBDD begins with molecular docking, where chemical compounds (ligands) 

are positioned within the binding site of a target protein.59 The binding affinity of each 

ligand is then approximated using empirical scoring functions. While this method can 

efficiently prioritize potential drug candidates, its success depends on the availability 

of high-resolution target structures and the accuracy of docking and scoring 

algorithms.60,61 

 

Figure 7: Key computational strategies in drug discovery. 
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Advances in Structural Data for SBDD 

The effectiveness of structure-based approaches relies on access to accurate 3D 

representations of target proteins (Table 1). High-resolution structural data are ideally 

obtained through X-ray crystallography, NMR spectroscopy, or cryo-EM. However, 

many pharmaceutically relevant targets lack experimentally resolved structures. To 

address this, computational techniques such as homology modeling can be used to 

construct 3D models based on known protein structures. 

Recent breakthroughs in protein structure prediction, particularly with AlphaFold and 

the newly introduced AlphaFold3 by Google DeepMind and Isomorphic Labs, have 

significantly expanded structural coverage. AF3 claims to outperform state-of-the-art 

docking tools in predicting protein-ligand interactions and offers superior accuracy in 

modeling protein-nucleic acid interactions compared to specialized predictors like 

RoseTTAFold. Additionally, recent advancements in structure resolution methods 

such as cryo-EM have provided unprecedented insights into previously elusive 

targets, further enhancing the potential of SBDD.62–64 

Computational Strategies for Ultra-Large Libraries 

The rapid growth of ultra-large chemical libraries, often exceeding billions of 

compounds, presents a computational challenge for traditional docking simulations. 

To overcome this, novel AL and deep docking workflows have been developed, 

integrating machine learning techniques with molecular docking to optimize 

compound selection and sampling efficiency. This allows for more targeted 

exploration of vast chemical spaces while maintaining computational feasibility.65,66  

To further refine hit selection, additional more computationally intensive techniques 

such as binding site water analysis, diversity selection, and absolute free energy 

perturbation (AB-FEP) scoring can be employed. AB-FEP, for instance, provides highly 

accurate free energy of binding (ΔΔG) estimations, improving the ranking of candidate 

molecules before experimental validation. 
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Table 1: Structure-based drug design (SBDD) methods.  

Method Description Pros Cons 

Molecular Docking 

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑙𝑖𝑔𝑎𝑛𝑑−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − (𝐸𝑙𝑖𝑔𝑎𝑛𝑑 + 𝐸𝑝𝑟𝑜𝑡𝑒𝑖𝑛) 

Predicts binding 

using scoring 

functions. 

(Hit discovery) 

Fast Poor accuracy 

Molecular Dynamics 

𝐹 = 𝑚𝑎 

Simulates ligand-

target dynamics 

Flexible 

Dynamic 

Slow 

Force fields 

Free Energy Perturbation (FEP) 

∆𝐺 = −𝑅𝑇 ln 𝐾 

Calculates binding 

free energy 

(Lead optimization) 

Accurate 
Expensive 

Force fields 

Fragment-Based Drug Design (FBDD) 

𝐿𝐸 =
∆𝐺

# ℎ𝑒𝑎𝑣𝑒𝑦 𝑎𝑡𝑜𝑚𝑠
 

Identifies/optimizes 

small fragments 

Novel 

scaffolds 

Weak binders 

Iterative 

Pharmacophore Modeling 

𝑑(𝐴, 𝐵) ≤ 𝑑∗ 

Defines key activity 

features 

Virtual 

screening 
Needs actives 

Where the variable, 

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is the binding energy estimation (kcal/mol or kJ/mol), 

∆𝐺 is the free energy change (binding affinity), 

𝑅 is the gas constant (1.987 cal/mol·K), 

𝑇 is the temperature (K, Kelvin), 

𝐾 is the binding constant (M⁻¹), 

𝐿𝐸 is the ligand efficiency (kcal/mol per heavy atom). 
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Ligand-based Drug Design  

Ligand-based drug design (LBDD) is a fundamental approach for VS that relies on 

known bioactive compounds rather than direct structural information of a target 

protein. This method is particularly valuable when high-resolution target structures 

are unavailable, allowing researchers to predict activity, toxicity, and other 

pharmacokinetic properties based on molecular similarity principles (Table 2). 

Two main ligand-based screening approaches exist, either based on (i) 2D similarity 

search and modeling or (ii) 3D shape search and pharmacophore modeling. 2D 

approaches are based on fingerprints, allowing rapid and scalable evaluation but 

lacking 3D information such as the binding poses. 3D methods are mainly employed 

to compare molecular conformations based on shape and volume. They are relevant 

to capture 3D signals such as chirality but suffer from inaccuracies of the physical 

models they are based on, and of their irrelevance when taking into account the 

complicated and unknown processes driving the interactions of the ligand to a target. 

LBDD typically starts with one or more reference compounds with known biological 

activity. These molecules serve as templates for computational searches across large 

chemical libraries using 2D or 3D similarity screening. The underlying assumption is 

that structurally similar compounds often exhibit similar biological activity, a principle 

known as ”chemical promiscuity”. Once SAR data are available, in silico models can 

be developed, validated, and used for compound selection.67 

These models rely on chemical representations to predict experimental endpoints 

through Quantitative Structure Activity/Property Relationship (QSAR/QSPR) 

modeling which has been essential in drug discovery for more than 60 years. QSAR 

relying on deep learning models a.k.a. Deep QSAR have emerged over the past 20 

years, enabled by advances in neural networks, computational power, and large 

molecular databases.  

  



37 2.2.   COMPUTATIONAL APPROACHES IN DRUG DISCOVERY 

 

Table 2: Ligand-based drug design (LBDD) methods.  

Method Description Pros Cons 

QSAR/QSPR 

𝑌 = 𝑓(𝑋) 

Model experimental data from 

molecular descriptors 
Predictive 

Data quality 

sensitive 

Similarity Searching 

𝑆 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

Finds compounds similar to actives Fast Lacks novelty 

Ligand-Based Virtual 

Screening (LBVS) 

Ranking & similarity scores 

Screens libraries by ligand similarity 
Quick 

filtering 

Needs known 

ligands 

Generative Models 

AI/ML-based molecule 

generation 

Generates molecules using deep 

learning or combinatorial approaches 

Novel 

scaffolds 

Outputs can 

be unusuable  

Where the variable, 

𝑋 is the molecular descriptor, 

𝑌 is the predicted biological activity. 

Machine Learning & QSAR 

Drug design is a sampling problem where medicinal chemists select promising 

candidates from an unimaginably large pool of compounds. Random selection is 

impractical due to unfavorable odds.52 Once SAR data are available, predictive models 

(e.g., Random Forest) and pharmacophore-based methods can be employed to 

virtually screen those libraries. Such strategies aim to avoid undesirable compounds 

and focus on ”activity islands” containing attractive entities for specific drug discovery 

projects. Machine learning (ML)-guided virtual screening offers a promising support 

by rapidly evaluating compounds in silico, enabling the exploration of chemical 

libraries orders of magnitude larger than those accessible by traditional HTS.68–71 
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De-Novo Generation 

Beyond screening existing libraries, generative models, viewed as a form of pattern 

matching in chemical design, allow the automated design of new compounds. Since 

the 1990s, computer-based de novo design methods have served as idea generators to 

support drug discovery.72,73 Unlike earlier molecular design engines that relied on 

explicit chemical transformations, such as virtual reaction schemes based on reaction 

and assembly rules like fragment growing and linking; generative models represent 

chemical knowledge implicitly through statistical probabilities derived from data 

distributions. This means the "language" of these models is not traditional textbook 

chemistry but learned from training data. Chemical language models are able to 

design novel molecules and optimize bioactivity when guided with Reinforcement 

Learning (RL) methods. For instance, deep QSAR-guided generative model where 

shown to produce a RORγ inverse agonist (IC₅₀ = 370 nM) and a PI3Kγ inhibitor (Kᵢ = 

63 nM).65,74 

Requirements for Improved Methods 

Despite significant scientific and technological progress, R&D productivity in drug 

discovery declined between 1950 and 2010, largely due to an over-reliance on high-

throughput screening and limited predictive models.75,76 These methods were 

hindered by restricted computational power, small and noisy datasets, and a narrow 

pool of available algorithms that failed to capture the complexity of biological systems. 

To address this, drug discovery is shifting from brute-force screening to intelligent, AI-

enhanced strategies. Deep learning-driven QSAR, generative AI, and advanced 

computational models, when coupled with high-quality data, offer a more efficient 

and predictive approach. By integrating these tools, researchers can refine candidate 

selection, reduce failure rates, and maximize success, making the process both faster 

and more cost-effective.40  
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Chapter 3.   Modeling for Drug Discovery  

In this chapter, we provide an overview of the core concepts and techniques that 

underpin this work. We begin by discussing how molecular data are transformed into 

learnable representations for machine learning models. Next, we review the principal 

source of data, their standardization, and the methods to apply them in a drug 

discovery context, with a special focus on graph neural networks, multitask methods, 

and applicability domains. 

3.1.   Compound Representation & Databases 

Training a predictive model requires a structured, tabular dataset that accurately 

describes each sample. Since molecules are composed of various atoms and bonds, 

specialized processing is necessary to render them compatible with machine learning 

algorithms. In this section, we review the common input formats in cheminformatics 

and the primary methods used for molecular featurization.  

 

Figure 8: Representations of MRTX849 across different feature dimensions. (0D) 

Scalar properties such as molecular weight; (1D) feature-based description; (2D) 

graph-based representation; (3D) spatial conformation; and (4D) dynamic 

representation incorporating molecular flexibility and conformational ensembles. 
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Levels of Information 

Molecular descriptions can be represented at varying levels of detail, ranging from 

coarse metrics (such as simple atom counts) to more precise multidimensional 

representations (e.g., 3D, 4D or 5D models). In the context of ligand-based modeling, 

we mainly focus on two-dimensional (2D) representations. The chosen level of detail 

involves a trade-off between the quantity of information provided, its distillation, and 

its overall accuracy (Figure 8).  

SMILES Representation  

The SMILES (Simplified Molecular Input Line Entry System) format is a one-

dimensional, token-based representation widely used in the community. SMILES 

encodes a molecule’s connectivity and bond types in a human-readable, lightweight 

string. It can also include annotations for stereochemistry, isotopic labels, or points of 

substitution. One limitation of SMILES is that a single compound can be represented 

by multiple valid strings, and small modifications to a SMILES string may result in an 

incorrect molecular structure. Canonical SMILES address this by applying 

deterministic rules to ensure a unique representation, using graph‐based atom 

ranking, lexicographic sorting, and a standardized traversal path.  

Graph-based Representation  

Alternatively, molecules can be naturally represented as graphs, where atoms are 

depicted as nodes and bonds as edges. In this formalism, a molecule is modeled as a 

graph G(V, E), where V denotes the set of  vertices, here atoms and E the set of edges, 

here bonds. Connectivity information is typically captured using an adjacency matrix, 

and atoms are assigned identifiers based on a chosen numbering scheme. Although 

graph-based representations provide an intuitive visualization and are well-suited for 

many machine learning applications, different numbering approaches may lead to 

variations in node labeling. Hence, variations exist across software implementations 

due to differences in ranking algorithms that can be answered using identifiers. 
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Chemical Identifiers 

The IUPAC International Chemical Identifier (InChI) encodes molecular structures in 

a layered, deterministic format, capturing atomic composition, connectivity, 

hydrogenation, stereochemistry, and isotopic information. Unlike SMILES, InChI 

ensures a unique, software‐independent representation for identical structures, 

enhancing data consistency. The InChI Key is a fixed-length, hashed version of InChI, 

optimized for fast indexing and searching. As a lossy transformation, it is non-

reversible, preventing structure reconstruction while ensuring efficient molecular 

identification. When used alongside SMILES, it provides a robust dual-check system 

for confirming the uniqueness of chemical entries across molecular registries. 

Synthesizable Compounds Libraries 

Hit identification relies on screening large, diverse, and synthetically accessible 

libraries which have over the years increased exponentially in size (Figure 9). Ultra-

large, make-on-demand collections now exceed 100 billion compounds.77 High-

throughput methods benefit from vast datasets, while computationally intensive 

approaches require smaller, curated selections. Larger screens explore broader 

chemical space but come with trade-offs in accuracy, cost, and efficiency.78,79  

 

Figure 9: Growth of synthesizable small molecule libraries (2013–2025). Evolution of 

the largest available small molecule libraries over time.  
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Commercial Libraries 

Commercial libraries like Enamine, ChemBridge, Life Chemicals, Asinex, Specs, 

Maybridge HitFinder, and Prestwick Chemical Library provide diverse, non-

annotated compounds essential for hit discovery. The Enamine collection contains 

several chemical libraries based on combinatorial reaction of building blockS. They 

represent one of the largest libraries, with compounds deliverable under 2 weeks with 

a probability of synthesis of 80% or more. For instance, Enamine REAL database now 

offers 5.5 billion unique compounds, expandable to ~38 billion. As of today, Enamine 

represent the main distributor of screening libraries for HTS.65  

ZINC  

The ZINC database is a publicly available chemical library containing nearly 2 billion 

compounds, sourced from repositories such as PubChem, ChEMBL, and commercial 

vendors.  The database grew from less than 1 million molecules in 2006 to more than 

37 billion in 2024, a 50,000-fold increase. Each molecule is annotated with 

purchasability details, vendor sources, and key physicochemical properties such as 

molecular weight, LogP, hydrogen bond donors/acceptors, and rotatable bonds. ZINC 

also provides pre-generated 3D conformations for docking and structure-based virtual 

screening.80  

Experimental Databases 

Measuring compound properties requires costly, time-consuming assays prone to 

variability. Additionally, in vitro testing is restricted to stable, water-soluble 

compounds, limiting chemical space exploration. To address these challenges, public 

databases aggregate and standardize experimental data from publications, patents, 

and large screening campaigns. With over 20,000 to 30,000 new compounds published 

annually, various digital repositories provide structured access to medicinal chemistry 

data. PubChem, ChEMBL, and BindingDB offer quantitative bioactivity data, while 

DrugBank and KEGG provide binary interaction data. ChEMBL features expert-

curated records, while BindingDB integrates data from literature and patents. 
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PubChem BioAssay 

PubChem is the largest publicly accessible bioactivity database, containing 

approximately 230 million bioactivity records covering over 320 million compounds.81 

The database is structured into three main components. PubChem Substance stores 

chemical substance data submitted by contributors. PubChem Compound 

consolidates multiple substance records into unique compound entries using 

automated processes to reduce redundancy. PubChem BioAssay compiles bioactivity 

results, primarily from HTS and confirmatory assays. Despite its vast coverage, 

PubChem data is not curated, meaning that inconsistencies and errors may exist.  

ChEMBL 

ChEMBL is a publicly available bioactivity database maintained by the European 

Bioinformatics Institute (EBI), part of the European Molecular Biology Laboratory 

(EMBL).82 Originally developed by Galapagos NV under the name StARlite, it was 

acquired by EBI in 2008 and has since evolved into one of the most widely used 

resources in drug discovery. As the second largest bioactivity database, ChEMBL 

contains over 15 million bioactivity records. Data is extracted from scientific literature, 

patents, and external databases. However, variability in experimental conditions 

necessitates further filtering before computational analysis.24 The database undergoes 

regular annual updates, ensuring the continuous integration of new data. ChEMBL 

has been extensively used during the past 15 years. Numerous studies have curated 

its measurements to deliver publicly available datasets ready for QSAR. 

BindingDB 

BindingDB is a publicly available database dedicated to experimentally measured 

binding affinities of small molecules interacting with protein targets.83 The database 

contains over 1 million binding affinity measurements, derived from both cell-based 

assays and isolated protein target assays. BindingDB provides data in 2D and 3D 

formats. 
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OChem 

OChem is a publicly available database primarily focused on ADMET properties.84 

OChem provides a richly annotated collection of physicochemical and 

pharmacokinetic data. Users can filter and customize datasets based on specific 

metadata. OChem’s dataset is partially orthogonal to ChEMBL, meaning it 

complements but does not entirely overlap with ChEMBL’s bioactivity-focused 

records.  

Benchmark Datasets 

In recent years, several benchmark datasets have been developed for the ML 

community to evaluate predictive models, including Tox21, Therapeutic Data 

Commons, and MoleculeNet.85–87 These datasets compile ADMET and bioactivity data 

obtained either from ChEMBL or from sources published over the past two decades. 

While they have been widely adopted for benchmarking by the machine learning and 

deep learning community, their quality and standardization remain suboptimal, 

limiting their direct applicability to real-world pharmaceutical challenges.88 

3.2.   Data Preprocessing & Featurization 

Building a predictive model starts with data acquisition, assembling a curated dataset 

of chemical compounds with experimentally measured activity values.  

Curation & Filtering 

Datasets tailored to specific properties often undergo modeling, ensuring prior quality 

checks. Reviewed and published datasets reduce reliability concerns, but many 

ADMET datasets compile data from varied sources with inconsistent experimental 

details. Limited assay information and missing references hinder data verification, 

affecting quality. While smaller datasets may offer higher accuracy, they restrict 

chemical space coverage, potentially limiting model applicability. 
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Data Caveats 

Obtaining homogeneous data remains a challenge due to the cost and time required 

for experimental measurements. When direct experimental determination is not 

feasible, researchers rely on public datasets, which vary in format and reliability. Some 

datasets are structured and tailored to specific biological activities, while others 

aggregate diverse experimental measurements from the literature. Regardless of the 

source, an ideal dataset must meet three essential criteria: reliability, homogeneity, and 

sufficient size. Reliable data minimizes errors introduced by transcription, structural 

misclassification, or inconsistencies between different sources. Errors can arise from 

automated structure conversion, manual transcription mistakes, or misclassification of 

molecular properties.88 Additionally, datasets often contain duplicates, mixtures, or 

undefined stereochemistry, which introduce biases into machine learning models. To 

address these challenges, researchers employ cross-validation of activity 

measurements for the same compound across different sources, detect outliers based 

on significant deviations in predicted activity, and standardize assay protocols to 

improve comparability.  

Good Practices  

ADMET data is limited in experimental quantity. Yet, the dataset size must be 

sufficient to meaningfully represent the desired chemical space. Global models aim to 

cover a broad chemical landscape, while local models focus on congeneric chemical 

series. While no universal rule exists, studies indicate that dataset size significantly 

impacts model performance. Tropsha highlighted that excessively large datasets 

complicate model construction, whereas small datasets risk random correlations and 

overfitting.89 To mitigate these risks, careful feature selection and validation 

techniques are necessary to prevent overfitting and ensure model reliability.  

Structure standardization begins with the removal of unwanted molecular 

components, such as fragments, solvent molecules, and counterions, ensuring that 

only the primary molecular structure is retained. Neutralization and tautomer 

standardization are performed to create uniform molecular representations. The 

dominant tautomer is selected based on predefined rules to ensure structural 

consistency across the dataset.  
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Table 3: Molecular descriptors across different dimension levels. 

Dim. Description Examples Pros Cons 

0D 
Basic properties 

and counts 

Molecular weight 

Atom/bond count 

Rings count 

Simple 

Fast 

Interpretable 

Can’t distinguish 

isomers 

1D 

Drug-likeliness 

Physchem 

features 

LogP, LogD, pKa 

Solubility 

Key for ADMET 

endpoints 

No structural 

context 

2D 

Graph-based 

Connectivity 

informations 

ECFP, MACCS keys, 

Wiener/Balaban index 

Encodes structures 

Key for QSAR 

No 3D info 

Sensible to hashing 

3D 

Spatial and 

electronic 

descriptors 

Volume, dipole 

HOMO-LUMO 

Show conformation 

Reactivity info 

Needs conformers 

Slow 

4D 

Dynamic and 

pharmacophore 

informations 

Molecular Dynamics 

Pharmacophoric keys 

Includes flexibility 

Realistic 
Compute intensive 

For datasets requiring pH-dependent ionization, tools are used to adjust structures at 

a physiological pH of 7.4 or specific pH depending on the assay conditions. Duplicate 

removal is then performed by generating canonical SMILES and InChI Key, allowing 

identification and elimination of redundant structures. To ensure high-quality 

predictive modeling, each compound in the dataset must have a unique value. A 

decision is made based on data reliability, either retaining the most experimentally 

validated value or using statistical aggregation (e.g., median value) if multiple valid 

measurements exist.  

Featurization 

The section below presents common featurization of chemical structures. The methods 

take as input a molecular graph and transform it in a vector of numerical information 

describing the physicochemical or structural properties of the molecules. In this study, 

we focus on 0D, 1D, and 2D descriptors, as the bioactive conformation of molecules is 

usually unknown. They are commonly used for similarity searches, virtual screening, 

and modeling (Table 3). 
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Structural Keys & Physicochemical Descriptors 

Structural keys are coded into fingerprints based on a predefined dictionary of 

fragments. Fingerprints are numerical vectors that encode molecular structures by 

representing the presence or absence of specific substructures by bits. One of the most 

widely used structural key-based fingerprints is MACCS (Molecular ACCess System) 

keys, introduced by Molecular Design Limited (MDL).90 This system defines 166 

structural keys, optimized for molecular similarity searches (Table 4).  An extended 

320-bit version is also used for broader substructure coverage. These fingerprints 

assign each bit to a specific chemical motif. Physicochemical descriptors capture 

medicinal chemistry properties. They include simple parameters such as hydrogen 

bond donors, as well as more complex engineered descriptors like topological polar 

surface area. While interpretable, they lack detail. 

Molecular Fingerprints 

Fingerprints can be categorized into linear connectivity-based and circular topology-

based representations. Linear Connectivity-Based Fingerprints enumerate all 

substructures by considering the shortest paths between connected atoms. Each path 

is hashed as a bit in the fingerprint. Circular fingerprints, also known as atom-centered 

fragments (ACF), define a sphere around a central atom and capture all neighboring 

atomic connections within a predefined radius. These are repeated for every atom. 

However, since a single bit can correspond to multiple fragments due to hash 

collisions, different substructures may be mapped to the same position. This 

redundancy introduce ambiguity, potentially misleading models. Some fingerprints 

go beyond binary encoding and track how often each substructure appears. These 

frequency-aware versions retain more structural information and improve 

performance in machine learning tasks by reducing ambiguity and enriching feature 

representation. 
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Table 4: Overview of molecular descriptor calculation tools. Summary of key 

computational tools for molecular descriptor calculation, categorized by license type, 

descriptor range, and features. 

Tool License Type Description 

RDKit91 
Open-source 

(BSD) 

~200 descriptors 

(0D-3D) 

Constitutional (MW, atom/bond counts), 

physicochemical (LogP, PSA, H-bond 

donors/acceptors), topological 

(connectivity indices), geometric (3D 

volume, shape), electronic (formal charge), 

fingerprints 

CDK92 
Open-source 

(LGPL) 

~100 descriptors 

(0D-2D) 

Constitutional, physicochemical, 

topological, substructure-based 

MORDRED93 
Open-source 

(MIT) 

~1800 descriptors 

(0D-3D) 

Constitutional, physicochemical, 

topological, electronic (HOMO-LUMO), 

geometric features 

ISIDA94 Proprietary 

Variable size  

(fragment-based, 

~100-10,000) 

 

Substructure descriptors including atom-

centered fragments, bond-centered 

fragments, connectivity matrices 

MOE95
. Proprietary 

~300 descriptors 

(0D-3D) 

Constitutional, physicochemical, 

topological, electronic, geometric, and 

pharmacophore-based descriptors 

Avalon96 Open-source 
Variable size  

(~1000-10,000) 

Topological, substructure-based, hashed 

fingerprints 

PubChem81 Open-source 
Large set 

(~700-1000) 

Constitutional, physicochemical, 

topological, fingerprints 

MACCS97 Open-source 166-bit 

SMARTS-based substructure keys 

encoding molecular fragments and 

functional groups 

AtomPairs98 Open-source 
Variable size  

(~1000-10,000) 
Connectivity , atom pairs, distance-based 

fragment pairs 
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The Morgan algorithm (1965) was initially developed to solve molecular isomorphism 

problems by iteratively assigning numerical identifiers to atoms. This laid the 

foundation for Extended Connectivity Fingerprints (ECFPs).99 ECFPs encode 

substructures in binary vectors. ISIDA fragment descriptors have been developed as 

refined topological fingerprints that count fragment occurrences rather than binary 

presence.94 ISIDA provides linear (sequence-based) and circular (ACF-based) 

fragmentation, offering. Various fingerprinting methods have emerged, including 

Avalon, PubChem and CDK fingerprints.92,100  

Model Embedding 

Molecular featurization can also be achieved through model embedding, where 

compounds are represented as continuous latent vectors generated from pretrained 

neural networks. Embeddings are learned representations optimized for predicting 

target endpoints (Figure 10). However, they typically have high dimensionality and 

non-linear relationships, making them harder to interpret.  Additionally, embedding 

may struggle with out-of-distribution molecules. Several popular architectures have 

been explored for molecular embedding, including Graph Neural Networks (GNNs), 

Variational Autoencoders (VAEs), and Transformer-based models. Examples include 

Mol2Vec101, which adapts word embeddings, and ChemBERTa102, a bidirectional 

Transformer-based molecular representation model  

 

Figure 10: From molecular graph to predictive applications methods. Representation 

of the transformation from a molecular graph to predictive applications. 
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3.3.   Chemical Space Cartography 

In this section, we discuss the various methods of representation of a chemical space 

on a 2D maps.  Chemical space, an abstract landscape where molecules are positioned 

on a map based on similarity.  

Linear 

Unsupervised methods like Principal Component Analysis (PCA) reduce 

dimensionality by transforming correlated descriptors into uncorrelated principal 

components. PCA optimally reconstructs the dataset using linear combinations of 

features and captures maximum variance along the first components. However, it does 

not exploit potentially simpler non-linear structures. The first principal components 

capture the maximum variance in the dataset, but its reliance on orthogonal 

transformations limits its ability to capture complex non-linear relationships.103  

Non-Linear 

t-SNE 

Non-linear dimensionality reduction methods are widely used to map high-

dimensional chemical spaces into interpretable 2D projections. t-SNE is a probabilistic, 

non-linear technique that projects high-dimensional data into lower dimensions while 

preserving local relationships. It converts Euclidean distances between molecules into 

conditional probabilities, representing the likelihood of two points being neighbors. 

The algorithm then minimizes the difference between probability distributions in the 

high- and low-dimensional spaces, ensuring that molecular neighbors remain close in 

the 2D map. While effective at capturing local structures, t-SNE can struggle with 

global relationships and is computationally expensive for large datasets.104 

UMAP 

UMAP constructs a graph-based representation of data, optimizing embeddings via 

Riemannian geometry and fuzzy simplicial sets. It preserves both local and global 

structures more effectively than t-SNE, offers faster computations, and supports out-

of-sample projections through a learned transformation function.105 
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Generative Topographic Mapping 

GTM is a probabilistic dimensionality reduction method introduced by Bishop et al. 

(1998) as an extension of Self-Organizing Maps (SOM).106,107 Unlike t-SNE and UMAP, 

which rely on stochastic neighbor embeddings, GTM models high-dimensional data 

as a continuous manifold embedded in a lower-dimensional space (Figure 11). GTM 

represents the high-dimensional descriptor space using a grid of nodes, where each 

node is assigned a set of Gaussian Radial Basis Functions (RBFs). These functions 

define a smooth, flexible surface that is trained to match the distribution of molecular 

data. The manifold is iteratively adjusted to fit the densest regions of the dataset, 

ensuring that molecules with similar properties remain close on the 2D projection. 

Once trained, molecules are mapped onto the manifold and subsequently unfolded 

into a readable 2D representation. Instead of direct point placement like in t-SNE or 

UMAP, GTM assigns responsibility scores to molecules, indicating their association 

with different nodes on the grid. However, it requires careful tuning of grid resolution 

and RBF parameters to achieve optimal performance.108 

 

Figure 11: Generative Topographic Mapping (GTM) training workflow. The GTM fits 

a manifold (a square bounded bidimensional geometric object) on the dataset 

embedded in high dimensional space. Each data point, corresponding to molecules, is 

explained as a sample of a normal distribution centered on the manifold. Conversely, 

each position on the manifold is associated to a density of molecules in the chemical 

space. Sampling on the GTM means sampling the chemical structures from a region of 

interest of the chemical space 
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3.4.   QSPR Modeling 

The SAR and SPR concepts originated in 1868 when Crum-Brown and Fraser109 

proposed that a compound's biological activity is directly linked to its chemical 

structure. This idea was further developed by Richet110, Meyer111, and Overton112, who 

demonstrated strong correlations between molecular properties and biological effects. 

The modern QSAR era began in 1964 with Hansch et al., who formulated the first 

mathematical model predicting partition coefficients using electronic descriptors, 

setting the foundation for systematic structure-activity modeling.113 

QSPR/QSAR models aim to predict a chemical property (Y) from molecular 

descriptors (X) using a mathematical function f(X). These models enable researchers to 

estimate biological activity, toxicity, or physicochemical properties of untested 

compounds. A functional QSAR model requires three essential components: (i) a 

dataset containing experimental values for the target property, (ii) a set of molecular 

descriptors that encode relevant structural and physicochemical features, and (iii) a 

statistical or machine learning approach to infer the relationship between X and Y. To 

ensure scientific rigor and regulatory acceptance, the OECD (Organisation for 

Economic Co-operation and Development) has proposed a set of five widely 

recognized principles for QSAR model validation. These principles emphasize the 

importance of: (1) a defined endpoint relevant to human or environmental health, (2) 

an unambiguous algorithm that is transparent and reproducible, (3) a clearly described 

domain of applicability indicating where the model makes reliable predictions, (4) 

robust performance metrics evaluated through internal and external validation 

procedures, and (5) mechanistic interpretability where possible. These guidelines have 

become a cornerstone in the development of regulatory-compliant predictive models 

for chemical safety assessment. 

While traditional QSPR models have proven valuable, their scope can be limited by 

the assumption of linear relationships between molecular descriptors and properties. 

This is where machine learning approaches such as decision tress come into play, 

offering a more flexible, non-linear approach to modeling that can better capture the 

complexities of structure-activity relationships.  
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Machine Learning 

Decision Trees 

Decision tree training follows a recursive partitioning approach.114 At each node, a 

descriptor (X) is selected as a splitting criterion, based on its ability to minimize the 

variance of the target property (Y) within each subset (Figure 12). This process 

continues until a stopping condition is met, such as a minimum number of data points 

per leaf or a threshold on variance reduction. The splitting threshold for each 

descriptor is determined by optimizing the sum of squared errors, ensuring that each 

branch maximally explains the variance in Y. To prevent overfitting, decision trees 

undergo pruning, where unnecessary branches that do not significantly improve 

prediction accuracy are removed. Overly complex trees can lead to models that fit 

noise rather than true relationships, reducing their generalizability. Conversely, trees 

that are too shallow may suffer from underfitting, failing to capture meaningful 

patterns in the data. Decision trees are valued for their interpretability and ability to 

handle non-linear relationships without requiring extensive data preprocessing. 

 

Figure 12: Decision tree structure for classification or regression. Input features X and 

Y are evaluated at the root node, where the first split occurs based on a decision 

criterion. Branches represent conditions leading to further nodes. At the end of each 

path, leaf nodes contain the final predictions or classifications. 
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Random Forest 

To overcome the limitations of single decision trees, ensemble learning techniques 

aggregate multiple models to improve predictive accuracy and reduce variance.115 

Random Forests use bootstrap aggregation (bagging), where multiple decision trees 

are trained on random subsets of the training data and molecular descriptors (Figure 

13). Each tree makes an independent prediction, and the final output is obtained by 

averaging the predictions (in regression) or taking a majority vote (in classification). 

The randomness introduced in feature selection and data sampling reduces 

overfitting, leading to better generalization. 

Gradient Boosting 

Unlike Random Forest, Gradient Boosting improves model performance through 

sequential training, where each tree corrects the errors of the previous one. Unlike 

bagging, which trains models independently, boosting assigns higher weights to 

mispredicted samples, ensuring that each subsequent tree focuses more on difficult 

cases. This makes boosting methods like AdaBoost116 and XGBoost117 highly effective 

for improving accuracy, especially in noisy datasets. Gradient Boosting models tend 

to outperform Random Forests in many regression tasks but are more computationally 

expensive and prone to overfitting if not properly regularized.  

 

Figure 13: Random Forest ensemble prediction. Each tree generates an individual 

prediction, the final output is obtained by aggregating the predictions from all trees. 
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Support Vector Machine 

Support Vector Machines (SVM) can effectively handle non-linearly separable 

problems using kernel functions, which project the input data into a higher-

dimensional space where a linear separation is possible. This transformation is known 

as the kernel trick, first introduced by Boser, Guyon, and Vapnik118 (1995) to extend the 

applicability of SVM to more complex datasets. By mapping the original descriptor 

space into a Hilbert space, SVMs can model intricate relationships between molecular 

descriptors and biological activity. A kernel function computes a similarity measure 

between data points in the transformed space without explicitly computing the high-

dimensional representation, making SVM computationally efficient, yet non-

parallelizable. Common kernel types include the linear kernel, the polynomial kernel, 

and the RBF kernel, which models complex non-linear relationships by emphasizing 

local descriptor similarities.  

k-Nearest Neighbors 

The k-Nearest Neighbors (k-NN) algorithm is a non-parametric method.119 It assigns a 

predicted value to a molecule based on the properties of its k most similar compounds 

in a multidimensional descriptor space (Figure 14). Molecular similarity is typically 

determined using Euclidean distance, or Tanimoto similarity, with the latter being 

more common for chemical fingerprints. In k-NN regression, the predicted activity of 

a molecule is computed as the weighted or unweighted average of its k-nearest 

neighbors’ activity values. In the weighted approach, closer neighbors have a greater 

influence, with weights typically inversely proportional to the distance.  

 

Figure 14: k-Nearest Neighbors (k-NN) prediction approach.  



57 3.4.   QSPR MODELING 

 

Deep Learning 

Neural networks are computational models inspired by the structure and function of 

biological neural networks in animal brains. These models consist of artificial neurons 

that process and transmit signals through weighted connections, like synapses in the 

human brain. Each neuron receives numerical inputs, applies a non-linear activation 

function, and transmits the output to the next layer. The strength of each connection is 

determined by trainable weights, which are adjusted during the learning process. 

Neurons are typically organized into three types of layers. The input layer receives 

raw data, such as molecular descriptors. The hidden layers process this data through 

multiple transformations, extracting meaningful representations, and the output layer 

produces the final predictions, such as the bioactivity of a molecule. 

Deep Neural Networks 

A neural network is considered deep when it contains two or more hidden layers. 

These Deep Neural Networks (DNNs) have become essential tools in drug discovery 

due to their capacity to learn complex, non-linear relationships from high-dimensional 

data.  

By stacking multiple layers of processing units, DNNs progressively extract 

increasingly abstract features from raw inputs, such as molecular descriptors, 

fingerprints, or physicochemical properties, transforming low-level information into 

high-level representations. 

Each layer in a DNN applies a learned affine transformation followed by a non-linear 

activation function, such as ReLU or tanh. This sequential structure implements a 

composition of functions, allowing the network to approximate intricate mappings 

between input and output spaces.120 The typical architecture includes an input layer, 

one or more hidden layers for intermediate representation learning, and an output 

layer that delivers the final prediction, for example, a molecular property or bioactivity 

score. 
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Training a DNN involves minimizing a loss function that quantifies the discrepancy 

between predicted and true values. This is achieved through a sequence of operations: 

forward propagation computes predictions across the network; the loss is then 

calculated using a function like Mean Squared Error for regression; and 

backpropagation computes gradients of the loss with respect to each parameter. These 

gradients guide weight updates through optimization algorithms such as stochastic 

gradient descent (SGD) descent121 or Adam122, repeated over multiple epochs until 

convergence or early stopping. 

DNNs have achieved state-of-the-art performance in several key areas of drug 

discovery, including molecular property prediction, de novo molecular generation, 

virtual screening, and ADMET profiling.123–125 

Graph Neural Networks 

Molecular compounds being described as graphs, calculated molecular descriptors or 

fingerprints are an intermediate step that can be integrated in an end-to-end modeling 

approach. In this frame, Graph Neural Networks (GNN) have emerged as an attractive 

technology since 2016.126–129 GNNs operate through several essential mechanisms. 

Node embeddings assign feature vectors to atoms representing properties such as 

atomic number and hybridization state. Message passing allows nodes to exchange 

information with their neighbors to refine representations. Aggregation functions such 

as mean pooling, sum pooling, or attention-based weighting combine node 

information. Graph convolutional layers extract structural features from the molecular 

graph.  

GNNs have outperformed traditional molecular fingerprints such as Morgan 

fingerprints in predicting molecular properties, bioactivity, and drug-likeness. A 

notable example is AttentiveFP, which achieves state-of-the-art performance by 

incorporating self-attention mechanisms, allowing the model to focus on relevant 

molecular substructures during learning.130 GNNs are now widely used in virtual 

screening for drug candidates, chemical space exploration for molecular diversity 

analysis, and ADMET property prediction. 



59 3.4.   QSPR MODELING 

 

Multi-Output 

Ensemble Modeling 

Predictive models trained on the same task often produce different outputs due to 

variations in training data, descriptor sets, hyperparameters, or learning algorithms. 

To improve accuracy, robustness, and generalization, ensemble modeling aggregates 

multiple predictions, reducing biases toward the dataset composition and model 

variance, integrating more values in the output. Two common approaches are majority 

voting for classification, where the most frequently predicted class is selected, and 

averaging predictions for regression, which smooths variations between models.  

Beyond these basic strategies, more advanced ensemble techniques exist. Bagging 

(Bootstrap Aggregating) improves stability by training multiple models on different 

bootstrapped subsets of data, as seen in Random Forests. Boosting iteratively adjusts 

model weights to enhance weak predictions, with popular implementations including 

Gradient Boosting and XGBoost. Stacking combines multiple models by training a 

meta-model on their predictions. These ensemble approaches are widely applied in 

QSAR modeling, molecular property prediction, and ADMET screening, where 

consensus models generally outperform individual models in terms of accuracy and 

reliability.131,132 

 

Figure 15: Comparative representation of a Single-Task to a Multi-Task predictive 

Graph Neural Network. 
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Multi-Task Learning 

Multi-Task Learning (MTL) is a machine learning paradigm where a model is trained 

to perform multiple related tasks simultaneously, leveraging shared representations 

to improve generalization across tasks. Instead of training separate models for each 

task, MTL introduces an inductive bias that allows knowledge transfer, particularly 

beneficial when tasks share underlying patterns (Figure 15). This approach is 

commonly used in various domains, where learning from related objectives enhances 

predictive performance and reduces overfitting. It has demonstrated improved 

accuracy against standard approach for QSAR modeling.65 

One of the key advantages of MTL is its ability to maximize the use of limited datasets. 

In domains such as ADMET prediction, QSAR modeling, and bioactivity profiling, 

data availability is often sparse. By training a model on multiple related objectives, 

MTL allows it to extract meaningful features even from small datasets, improving 

performance compared to single-task models. Studies have shown that MTL 

consistently outperforms single-task QSAR models when predicting related 

endpoints, such as different toxicity measures or multiple kinase inhibitions, by 

capturing common molecular features across tasks.133 

A critical aspect of MTL is determining the relative importance of tasks in the loss 

function: different tasks may have varying scales, convergence rates, or signal to noise 

ratio, for instance. We use task weighting to ensure that no single task dominates the 

optimization process. Here, the overall loss function in MTL is typically a weighted 

sum of individual task losses: 

𝐿𝑀𝑇𝐿 = ∑ 𝑤𝑖𝐿𝑖

𝑛

𝑖=1

 

where 𝐿𝑖 represents the loss for task i and 𝑤𝑖 is the weight assigned to that task. 

Choosing appropriate task weights is crucial because improper weighting can lead to 

model bias, where one task is prioritized over others, leading to suboptimal 

generalization. Proper task weighting significantly impacts model stability, 

convergence, and predictive performance, particularly when dealing with imbalanced 

datasets or tasks with different difficulty levels (Table 5).  
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Table 5: Loss weighting methods for multi-task modeling. 

Despite its advantages, MTL is not always beneficial. When tasks are too unrelated or 

exhibit conflicting learning objectives, negative transfer can occur, where the model’s 

performance degrades due to interference from irrelevant tasks. Proper task selection 

and dataset curation are crucial to prevent such issues. Additionally, designing an 

effective MTL model as an artificial neural network requires careful tuning of 

architectural components, such as shared vs. task-specific layers, weighting of 

different loss functions, and handling of imbalanced task distributions.12,138 

 

  

Method Description Advantages Limitations 

Fixed Weights134 
Manually assigned 

constant weights 

Simple 

Account for data scale 
Lacks adaptability 

Uncertainty-Based 

Weighting134 

Adjusts task weights 

based on uncertainty 
Prevents imbalance 

Sensitive to data scale  

Requires tuning 

GradNorm135 

Adjusts weights to 

equalize gradient 

magnitudes 

Dynamic learning Requires tuning 

Pareto 

Optimization136 

Finds an optimal balance 

between task losses 

Adaptative 

Learns trade-offs. 
Computation intensive 

Meta-Learning-

Based Weighting137 

Uses models to adjust task 

weights dynamically 
Adaptative 

Requires tuning  

Computation intensive 
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Model Validation 

A robust validation strategy is essential to ensure QSAR models are predictive and 

generalizable. Poor validation can lead to overfitting, underfitting, or spurious 

correlations, compromising model reliability. Ensuring the reliability of a QSAR model 

requires a rigorous validation strategy. A poorly validated model may appear accurate 

on training data but fail on new compounds due to overfitting, underfitting, or 

spurious correlations. To avoid these pitfalls, validation must assess both predictive 

accuracy and generalizability. 

External Validation & Cross-Validation 

The gold standard for evaluating model performance is testing on an independent 

external set, ensuring predictions are not biased by the training data. To maximize 

reliability, the test set should include structurally diverse compounds within the 

model’s applicability domain. When data is limited, cross-validation (CV) provides an 

estimate of model stability. The most common approach, k-fold CV, partitions data 

into k subsets, iteratively training on k-1 folds and testing on the remaining one. Leave-

one-out CV further maximizes data use but tends to over-estimate the generalization 

performances while being computationally intensive.  Stratified k-fold CV is 

recommended to control the instability of the performance measures in presence of 

imbalanced datasets. 

Bias, Variance, and Overfitting  

A model’s error stems from bias (systematic underestimation of complexity) and 

variance (excessive sensitivity to training data). Underfitting occurs when a model is 

too simplistic, failing to capture structure-activity relationships, mostly because of a 

lack of expressivity of the concept used to fit the data (too few molecular descriptors, 

for instance). Overfitting, in contrast, arises when a model memorizes training data 

rather than learning general patterns. This is common when the number of molecular 

descriptors exceeds the number of compounds, and the machine learning algorithm is 

insufficiently regularized. A practical guideline for multi-linear regression is 

maintaining a sample-to-descriptor ratio of at least 3:1 to reduce spurious 

correlations.139,140  
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Metrics 

Model evaluation relies on quantitative metrics that compare predicted values to 

experimental data, ensuring the accuracy of a model’s performance (Table 6). For 

regression models, several key indicators are used. The coefficient of determination 

(R²) measures how well the model explains the variance in experimental data, with 

values close to 1 indicating a strong fit. The Root Mean Squared Error (RMSE) assesses 

the dispersion of prediction errors, where lower RMSE values indicate better 

performance and a closer alignment between predicted and actual values. As RMSE is 

very sensitive to outliers, we supplement it with the Mean Absolute Error (MAE). 

Using both provides insight into the distribution of errors, offering an intuitive 

measure of the average deviation between predictions and experimental results. 

Table 6: Performance metrics for regression models. 

Metric Equation 

Mean Squared Error (MSE) 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Root Mean Squared Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

Mean Absolute Error  (MAE) 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

Coefficient of Determination (R2) 𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 

Where the variable, 

𝑛  is the total number of samples in the dataset. 

𝑦𝑖 is the actual value (ground truth) for the 𝑖𝑡ℎ sample. 

𝑦̂𝑖 is the predicted value for the 𝑖𝑡ℎ sample. 

𝑦̅  is the mean of the actual value. 
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Applicability Domain 

The applicability domain (AD) is a key concept in QSAR modeling, determining the 

chemical space where a model’s predictions remain reliable. Since models are trained 

on a limited set of molecules, their predictive accuracy depends on whether new 

compounds fall within the structural and property range covered. Predictions for 

molecules outside this domain tend to be unreliable due to a lack of learned patterns 

to generalize from. Various approaches exist to define the AD. 

Table 7 Main range-based applicability domain methods.  

Method Description Pros Cons 

Bounding Box141 

𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 

Defines AD by setting min 

and max limits for each 

descriptor. 

Simple 

Fast 

Intuitive 

Too rigid 

No variability 

Z-Score Method 

𝑋 ∈ [µ − 𝑘𝜎, µ + 𝑘𝜎] 

Defines AD based on 

standard deviations from 

the mean. 

 

Handles variability 

Assumes normality 

Skewness sensitive 

Percentile-Based Range 

𝑃𝑙𝑜𝑤 ≤ 𝑋 ≤ 𝑋ℎ𝑖𝑔ℎ 

Uses percentile cutoffs 

(e.g., 5th–95th) to define a 

feature-wise range. 

Outlier-resistant 
May exclude useful 

data 

Where the variable, 

𝑋𝑖 is the feature value of the sample. 

σ is the standard deviation of the feature. 

µ is the mean of the feature in training data. 

𝑘 is a defined threshold. 
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Table 8: Main distance-based applicability domain methods.  

Method Description Pros Cons 

Leverage Method 
Measures how influential a 

sample is in feature space 

Detects 

extrapolation 

Requires matrix inversion 

Assumes linearity 

Sensitive to collinearity 

Mahalanobis 

Distance 

Measures distance from 

mean 

Captures 

correlation 

Assumes Gaussian distribution 

 Computation intense 

Euclidean 

Distance 

Straight-line distance to 

mean 

Simple 

Interpretable 

Ignores correlation 

Scaling-sensitive 

Equal feature weighting 

Range-based 

Range-based methods establish the AD by setting minimum and maximum thresholds 

for molecular descriptors based on values observed in the training set (Table 7). A 

molecule is considered within the AD if all its descriptor values fall within these limits. 

The most common techniques in this category include bounding box and PCA 

bounding box approaches.142 These methods are computationally efficient and easy to 

implement. Additionally, they ignore sparsely populated regions in the descriptor 

space, increasing the risk of unreliable predictions. As a result, range-based methods 

tend to be highly restrictive. 

Distance-based 

Distance-based approaches define the AD by measuring the proximity of new 

molecules to those in the training set. These methods are widely used.143 One common 

approach is centroid-based distances, where molecules are compared to a central 

reference point of the training set. Several distance metrics are used in this context 

(Table 8). These methods establish a threshold beyond which molecules are 

considered outside the AD.  
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Model-based 

Model-based approaches define the AD by leveraging ML techniques that analyze 

patterns, anomalies, and outliers within the training dataset. Unlike geometric or 

distance-based methods, these approaches rely on statistical learning to determine 

whether a new molecule belongs to the known chemical space. Various methods exist 

to define the model. 

Isolation Forest 

The Isolation Forest (IF) method is designed for anomaly detection by constructing an 

ensemble of randomly partitioned decision trees  (Figure 16).9 The underlying 

principle is that outliers require fewer splits to be isolated, whereas inliers need more. 

The process involves randomly segmenting the dataset into decision trees and 

recording the depth at which each molecule is isolated. Molecules with shorter path 

lengths are considered outliers, and a predefined threshold determines whether a 

molecule belongs to the applicability domain. This method is efficient for large 

datasets, robust to irrelevant features, and non-parametric, making it flexible for 

different datasets. The AD based on IF are softer (accepting more compounds in the 

AD) or harder (refusing more compounds in the AD) depending on the contamination 

parameter. It defines the proportion of isolated instances in the training set.  

One -Class Support Vector Machine 

The One-Class Support Vector Machine (OcSVM) is an extension of SVM tailored for 

unsupervised anomaly detection.144 It learns a decision boundary around the training 

data, classifying new samples as inside or outside the applicability domain. The model 

constructs a hypersphere or hyperplane enclosing most training data points, using 

kernel functions such as the RBF to capture complex relationships between molecular 

descriptors. This method is particularly effective for high-dimensional data, for non-

vectorial data and non-linearly separable datasets. It is sensitive to kernel selection and 

is controlled by the kernel parameters, if any, as well as the cost, regularizing the 

boundary. The algorithm may be computationally expensive for large datasets because 

of the kernel estimation. 
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Local Outlier Factor 

The Local Outlier Factor (LOF) algorithm assesses whether a molecule lies within the 

applicability domain by comparing its local data density to that of its neighbors.145  

Unlike global distance-based methods, LOF focuses on the immediate chemical 

environment of each molecule. It begins by identifying the k nearest neighbors of a 

given molecule and computing the local density based on their proximity. This local 

density is then compared to the densities of the neighbors themselves. If the molecule 

resides in a much sparser region than its neighbors, it is flagged as an outlier. In AD 

applications, molecules with similar densities to the training data are considered in-

domain, while those with significantly lower densities are flagged as outside the 

domain. The choice of k is crucial: a smaller k allows for higher sensitivity to rare 

patterns but may increase noise, while a larger k stabilizes the assessment but may 

overlook subtle deviations. 

 

Figure 16: Mechanism of prediction by the Isolation Forest. The model consists of 

multiple randomly partitioned decision trees, where each tree recursively splits the 

data until individual points are isolated. Outliers are identified as compounds 

requiring fewer splits to be isolated, meaning they appear closer to the root in most 

trees. The final anomaly score is computed by aggregating the outputs across all trees, 

with compounds classified as outliers receiving consistently high anomaly scores. 
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Chapter 4.   Modeling of Solubility 

The ability of a drug candidate to dissolve in an aqueous environment is a critical 

factor influencing its development, formulation, and therapeutic success. Solubility 

dictates bioavailability, impacts pharmacokinetics, and directly affects dosing 

requirements. As illustrated by the Mayer-Overton Rule more the 100 years ago, the 

drug potency correlates with the oil solubility, supporting the importance of molecular 

solubility and its relation with drug solution and target interaction.33 

Poor aqueous solubility is a major cause of late-stage failures in drug development, as 

it can lead to suboptimal absorption, necessitate high-dose, and thus increase the risk 

of toxicity where high lipophilicity is usually linked with increased risk of hERG 

blocking (cardiotoxicity) and phospholipidosis. Consequently, solubility screening is 

an essential step in early-stage drug discovery. 

Despite its importance, solubility prediction remains a significant challenge. 

Experimental measurements vary across laboratories due to methodological 

differences, batch effects, and inconsistencies in reporting standards. Many solubility 

datasets result from iterative aggregation, often incorporating low-quality 

measurements, computational predictions, or data that do not adhere to OECD 

guidelines.146 This lack of standardization complicates the development of reliable 

predictive models.  

In this chapter, we investigate the challenges of modeling solubility. While 

thermodynamic solubility is crucial for late-stage development, kinetic solubility is 

widely used in early screening but suffers from high protocol sensitivity and 

interlaboratory variability. We analyze the relationship between these two solubility 

types, demonstrating their poor correlation and the need for separate predictive 

models. By benchmarking existing approaches, we reveal the limitations of current 

models is due to inconsistent data curation and measurement variability. Contrary to 

expectations, we find that kinetic solubility datasets show higher reproducibility than 

assumed, allowing for the development of accurate QSPR models. We propose a 

workflow to improve solubility predictions, providing curated datasets and models to 

enhance their reliability and utility in drug discovery. 
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4.1.   Thermodynamic Solubility 

Introduction 

Machine learning has shown promise in solubility 

prediction, with recent models achieving 

seemingly strong performance. However, their 

reliability in prospective applications is often 

overestimated. Many models rely on overlapping 

training sets, leading to overfitting rather than 

genuine generalizability. Additionally, the 

applicability domain of these models is rarely 

well-defined, further limiting their practical use in 

real-world drug discovery. In this section, we 

investigate these challenges by analyzing over 

two decades of thermodynamic solubility 

datasets, computational models, and acquisition 

methods (Figure 17). We explore historical 

dataset curation practices, evaluate data quality, 

and assess the generalization capacity of state-of-

the-art solubility prediction models. 

 

Figure 17: Thermodynamic solubility measurement using the shake flask method. The 

process begins with compound dissolution, where the molecule is introduced into a 

solvent (typically water or a buffer) and shaken to reach equilibrium. The solution is 

then filtered, followed by quantification of the dissolved compound using techniques 

such as UV-Vis spectroscopy, HPLC, or LC-MS.   

Main Terminology 

Thermodynamic solubility is 

the maximum concentration of 

a compound that dissolves in a 

solvent at equilibrium, 

typically used in late-stage 

drug development due to its 

reproducibility and relevance 

for formulation. 

Applicability domain is the 

descriptor space within which a 

predictive model is expected to 

provide reliable results, 

ensuring that predictions are 

made only for compounds 

similar to those in the training 

data. 
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Outline 

In this study we demonstrate that some widely used models fail to deliver robust 

predictions when applied to new data. To address these issues, we propose a workflow 

for curating high-quality aqueous solubility datasets and improving predictive 

reliability. Our findings underscore the need for rigorous dataset validation and 

highlight the impact of factors such as interlaboratory variability, ionic states, and data 

provenance. The curated datasets and trained models resulting from this study are 

made publicly available to facilitate further improvements in solubility modeling.  

This approach was applied in collaboration with Sanofi Frankfurt for the design and 

selection of soluble phosphines, leading to the successful proposition of novel water-

soluble phosphines (Figure 18). The collaboration resulted in a publication147, further 

validating the effectiveness of our methodology in real-world drug discovery 

applications. 
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Figure 18: Preparation of pegylated phosphines. (a) Synthesis of water-soluble 

pegylated phosphines. (b) Solubility of different triphenylphosphines in water (3 

mg/mL). 
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4.2.   Kinetic Solubility 

Introduction 

Machine learning has demonstrated potential in 

predicting solubility, but its application to kinetic 

solubility remains underexplored. Many existing 

models focus on thermodynamic solubility, assuming 

it can serve as a proxy for kinetic solubility, yet recent 

studies highlight their lack of correlation. Kinetic 

solubility, often used in early drug discovery, is 

known for its variability due to differences in 

experimental setups, solvent residues, and pH control. 

These factors have contributed to the perception that 

kinetic solubility is less reproducible, deterring efforts 

to develop predictive models. In this section, we 

investigate the acquisition, reproducibility and 

modelisability of kinetic solubility assays (Figure 19). 

We analyze large kinetic solubility datasets, compare 

their inter-laboratory consistency, and benchmark 

machine learning models trained on these datasets. 

 

Figure 19: Kinetic solubility measurement. The process begins with dilution of a 

compound from an organic stock solution (e.g., DMSO) into a buffer, potentially 

causing precipitation. After incubation, the solution is filtered or centrifuged, and the 

dissolved fraction is quantified. This method estimates solubility before equilibrium is 

reached, making it particularly useful for HTS. 

Main Terminology 

Nominal Concentration is 

the predefined 

concentration of a 

compound in solution at 

which kinetic solubility is 

measured. It serves as an 

upper limit for kinetic 

solubility values in assays. 

Precipitation onset is the 

point at which a 

compound begins to 

precipitate out of solution 

due to exceeding its kinetic 

solubility threshold, 

influenced by solvent and 

pH. 
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Outline 

Contrary to a common assumption, our findings indicate that kinetic solubility data 

from different protocols exhibit good agreement, supporting the feasibility of robust 

predictive modeling. We further show that thermodynamic solubility models fail to 

generalize to kinetic solubility, reinforcing the necessity for dedicated QSPR models to 

be used in the preparation of plates for HTS. To address these challenges, we present 

a workflow for curating high-quality kinetic solubility datasets and training reliable 

predictive models. The curated datasets and trained models from this study are made 

publicly available to support further improvements in solubility modeling.  
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Chapter 5.   Modeling of Drug Absorption 

5.1.   Multi-Task for Permeability Prediction 

Introduction 

The journey of a drug through the body involves 

multiple pharmacokinetic phases each determining 

therapeutic efficacy and safety.  

Passing the Absorption Barrier 

Absorption, the first step, encompasses the transfer of 

a xenobiotic from the gastrointestinal tract, primarily 

the small intestine, into systemic circulation. After the 

dosage form disintegrates and the active ingredient 

dissolves in digestive fluids, the compound must cross 

the epithelial cells either paracellularly (between cells) 

or transcellularly (through cells) (Figure 20). In any 

case, most drugs must first enter the systemic 

circulation before reaching their target. 

Many small-molecule drugs exert their effect by binding deep within the hydrophobic 

core of proteins. These buried sites are typically less accessible to water, making them 

difficult targets for polar compounds. Strong and selective binding at such interfaces 

often relies on hydrophobic interactions, which favor lipophilic ligands. While 

medicinal chemistry has emphasized reducing lipophilicity to improve solubility, 

metabolic stability, and overall pharmacokinetics, many clinically successful drugs 

still span a wide range of lipophilicity values. For instance, Desflurane binds within 

intrahelical transmembrane cavities of the GABAA receptor, and Propofol targets 

similar sites in the glycine receptor. Flecainide, an antiarrhythmic drug, reaches its site 

in the Nav1.5 sodium channel through lateral lipid-facing fenestrations.37 Yet, 

although increasing lipophilicity may enhance target binding, it often comes at the cost 

of reduced bioavailability, and higher risk of off-target effects. 

Main Terminology 

Xenobiotics are any 

foreign chemical substance 

within an organism.  

Therapeutic efficacy is the 

ability of a drug to 

produce the desired 

treatment effect.  

Recovery a.k.a mass-

balance is the efficiency 

with which a drug is 

retrieved or detected after 

a process. 
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To navigate this trade-off, medicinal chemists leverage structural features to control 

these endpoints. Fluorine or trifluoromethyl groups are often introduced not only to 

increase stability and fine-tune lipophilicity and binding kinetics. In some cases, drugs 

exploit internal hydrogen bonds, as intramolecular H-bonding in a hydrophobic 

pocket can act as a strong, directional anchor that reinforces binding affinity. This 

strategy is observed in Ivacaftor. Similarly, polar groups like sulfonamides can act as 

amphiphilic anchors at the protein–membrane interface, as seen with Fasiglifam.33 

To further characterize membrane permeation, permeability assays such as Caco-2 and 

PAMPA are commonly used. The Caco-2 assay models intestinal absorption through 

a monolayer of human epithelial cells, capturing both passive and active transport 

mechanisms. In contrast, the PAMPA assay focuses exclusively on passive diffusion 

by measuring a compound’s ability to cross an artificial lipid membrane. Comparing 

permeability between these two methods helps determine whether a molecule 

primarily relies on passive diffusion or engages in transporter-mediated processes 

(Figure 21).148 While comparing results from both assays can help identify transport 

route, such dual profiling is rarely performed in practice due to cost and resource 

constraints. 

 

Figure 20: Mechanisms of membrane permeation.  
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Although these assays focus on the membrane transport, oral delivery also depends 

on overcoming other barriers. To fully grasp a drug’s early fate, one must also consider 

degradation, metabolic transformation, and transporter-mediated efflux. A key 

limitation to absorption is enzymatic hydrolysis by enzymes such as peptidases and 

esterases. Interestingly, this liability can be turned into an advantage: prodrugs are 

often designed with cleavable substituents (e.g., phosphates) that enhance solubility 

or permeability and are selectively activated by hydrolases or cytochrome P450 

enzymes. Even when degradation is avoided and permeability is favorable, a 

compound may still be actively expelled from enterocytes by efflux transporters. P-

glycoprotein (P-gP). This process operates in concert with intestinal CYP enzymes 

further limiting systemic exposure through what is known as the “intestinal first-pass” 

effect, a barrier that acts in addition to hepatic first-pass metabolism and can 

substantially reduce the bioavailable fraction of orally administered drugs. 

Distribution in the System 

Once in systemic circulation, the distribution phase covers how a xenobiotic moves via 

the blood and partitions among different tissues. Blood is composed of red blood cells, 

white blood cells, and plasma. The plasma itself contains about plasma proteins, 

primarily albumins, α-1-acid glycoproteins (AGP), lipoproteins, and globulins. 

Albumin generally binds acidic or neutral drugs, while AGP binds basic or neutral 

compounds. These reversible bindings create an equilibrium between bound 

(reservoir) and free (active) fractions, with only the free fraction able to transit, exert 

therapeutic effects, be metabolized, or undergo elimination.  

 

Figure 21: Comparison of Caco-2 and PAMPA permeability assays.  
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Once a drug reaches systemic circulation, its distribution refers to the reversible 

transfer from blood into various tissues. Initially, the unbound fraction (𝑓𝑢) of the 

compound distributes within the extracellular space. Further penetration into cells or 

deep tissue compartments depends on the molecule’s physicochemical properties 

(e.g., lipophilicity, size, polarity) and the location of its pharmacological target. 

For example, lipophilic antibiotics such as Azithromycin show extensive tissue 

distribution, often accumulating in phagocytic cells and intracellular compartments. 

While this favors efficacy against intracellular pathogens, excessive sequestration can 

also limit the free concentration available to bind bacterial ribosomes, highlighting a 

delicate balance between distribution and target engagement. In contrast, hydrophilic 

compounds like aminoglycosides are largely restricted to extracellular fluids due to 

their polarity and poor membrane permeability.149  

A key pharmacokinetic parameter used to quantify the extent of tissue distribution is 

the volume of distribution (𝑉𝑑), defined as: 

𝑉𝑑 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦

𝑃𝑙𝑎𝑠𝑚𝑎 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

This parameter reflects the apparent, not anatomical, volume into which a drug 

disperses to yield the observed plasma concentration. High 𝑉𝑑 values typically 

indicate extensive tissue uptake and low plasma levels, often observed in lipophilic or 

weakly plasma protein-bound compounds. Low 𝑉𝑑 values suggest the drug is mostly 

confined to the bloodstream, commonly due to strong binding to plasma proteins or 

high polarity.150 Another fundamental parameter influencing distribution is the 

fraction unbound in plasma which determines the portion of drug that is free to leave 

the vascular space, interact with targets, undergo metabolism, or be eliminated. It is 

calculated as: 

𝑓𝑢 =
𝐶𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝐶𝑡𝑜𝑡𝑎𝑙
 

Where the variable, 

𝐶𝑢𝑛𝑏𝑜𝑢𝑛𝑑 is the free (unbound) drug concentration in plasma, 

 𝐶𝑡𝑜𝑡𝑎𝑙 is the total drug concentration in plasma (bound + unbound). 



CHAPTER 5.   MODELING OF DRUG ABSORPTION 116 

 

 

Only the unbound drug is pharmacologically active, able to cross membranes, interact 

with targets, undergo metabolism, or be excreted. Binding to plasma proteins, 

primarily albumin (for acidic and neutral drugs) and AGP (for basic and some neutral 

drugs), acts as a dynamic reservoir that reduces the 𝑓𝑢, thereby modulating both 

distribution and clearance. 

A low 𝑓𝑢 (e.g., ~1%) indicates that most of the drug is protein-bound, which typically 

limits distribution into tissues, results in a low 𝑉𝑑, slows clearance, and may prolong 

the drug’s half-life. In contrast, a high 𝑓𝑢 (e.g., >10%) means more drug is available in 

its free form, facilitating broader tissue distribution and often leading to a higher 𝑉𝑑 

and faster engagement with peripheral compartments. 

𝑓𝑢 is measured using equilibrium dialysis, ultrafiltration, or ultracentrifugation which 

are techniques that estimate the proportion of free versus bound drug in plasma, 

typically conducted in vitro using human or animal plasma (e.g., rat, dog). 

𝑉𝑑 is determined from in vivo pharmacokinetic studies, typically after intravenous 

dosing to avoid absorption bias. It is calculated from early plasma concentration-time 

profiles using non-compartmental or model-based methods. 

Understanding the relationship between 𝑓𝑢 and 𝑉𝑑 is essential when predicting tissue 

exposure, drug efficacy, and the potential for drug–drug interactions. For instance, 

displacement of a highly protein-bound drug by a co-administered compound can 

transiently increase 𝑓𝑢, elevate free plasma concentrations, and raise the risk of toxicity. 

However, even when 𝑓𝑢 is high and 𝑉𝑑 suggests favorable distribution, access to 

certain tissues may still be restricted by biological barriers. The most notable example 

is the blood–brain barrier (BBB). Formed by tightly connected endothelial cells, the 

BBB blocks paracellular diffusion and actively limits drug entry through a network of 

efflux transporters such as P-gP and BCRP. These features mean that only a narrow 

subset of compounds, typically small, lipophilic, non-ionized molecules that are not 

efflux substrates, can penetrate the CNS. Consequently, less than 2% of small 

molecules intended for central nervous system targets successfully achieve therapeutic 

brain concentrations, making BBB penetration a major challenge in 

neuropharmacology.151 
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Research Approach 

This chapter presents a large-scale analysis and predictive modeling of absorption data 

from both public and industrial sources, examining relationships between major 

permeability parameters and unveiling common misconceptions about transport 

routes. We employ MTL to develop predictive models for absorption and validate 

their performance across diverse datasets, underscoring the influence of protocol 

variations on model robustness. Recovery, distribution coefficients, and topological 

polar surface area emerge as critical factors in Multi-Parameter Optimization (MPO), 

offering clearer directions for lead selection. We also incorporate Generative 

Topographic Mapping for chemical space visualization, aiding the identification of 

absorption hurdles and refining lead optimization strategies.  
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Outline 

By integrating both public and proprietary data, this work spotlights the importance 

of tailored predictive tools in industrial drug development to curb applicability 

domain issues and fortify the reliability of absorption predictions. All developed 

models and curated datasets are made publicly available to fuel ongoing research and 

streamline the drug discovery pipeline.  
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Chapter 6.   Large-scale ADMET Profiling  

6.1.   From ADMET to Bioactivity Prediction 

Introduction 

After absorption and distribution, some molecules 

reach their targets unchanged, but many are subject to 

metabolic transformation, a key determinant of how 

long it remains in the body, how it is eliminated, and 

whether it will lead to toxic species. While distribution 

governs where a drug travels, metabolism determines 

what the body does to it: whether it is inactivated, 

bioactivated, or rendered hydrophilic for excretion. 

These transformations are crucial in clearance, 

impacting the duration of action and the risk profile. 

For orally administered drugs, the first major metabolic 

hurdle is the “first-pass effect”. Before reaching 

systemic circulation, a fraction of the absorbed dose 

may be metabolized in the intestinal wall or liver. 

Enzymes such as esterases and cytochromes can 

significantly reduce the concentration of parent drug 

that enters the bloodstream.  

Beyond first-pass metabolism, the drug may continue 

to undergo biotransformation in the liver, as well as in 

other compartments such as the intestine, lung, kidney, 

and even the plasma. These reactions govern not only 

how the compound is modified, but also how 

efficiently it can be cleared via hepatic or renal 

pathways. This phase dictates the pharmacokinetic 

profile, ultimately influencing dosing and formulation 

strategies. 

Main Terminology 

Off-target refers to 

unintended interactions 

between a drug and 

biological targets other 

than the intended 

receptor or enzyme, 

potentially causing 

adverse effects. 

Metabolic oxidation 

describes a Phase I 

process, typically 

involving cytochrome 

P450 enzymes, where a 

drug undergoes chemical 

modification (e.g., 

addition of oxygen) to 

increase its polarity. 

Metabolic conjugation is 

a Phase II process in 

which polar groups (such 

as glucuronic acid or 

sulfate) are attached to a 

drug or its metabolites, 

enhancing water 

solubility and promoting 

excretion. 
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Metabolism 

Metabolic oxidation and metabolic conjugation greatly 

affect a drug’s fate in the body by reducing its 

bioavailability and potentially generating reactive 

intermediates. These processes are categorized into 

Phase I and Phase II reactions.152 Phase I reactions, such 

as oxidation, dealkylation, hydroxylation, and 

deamination, introduce or expose functional groups, 

increasing a compound’s polarity. These 

transformations are primarily mediated by enzymes 

such as cytochrome P450 (CYP450), flavin-containing 

monooxygenases (FMO), and esterases. Many drugs 

are primarily metabolized by CYP450 isoenzymes, 

particularly CYP3A4, CYP2C9, CYP2C19, CYP2D6, 

and CYP1A2. Most of the 200 most frequently 

prescribed medications in the US rely on these 

isoforms.153 

Phase II reactions involve conjugation, where functional groups such as glucuronides, 

sulfates, or acetyl groups are added to enhance aqueous solubility, facilitating 

excretion via bile or urine. A compound may serve as a substrate for a metabolic 

enzyme, be an inhibitor that blocks enzyme function, or act as an inducer that increases 

enzyme expression, further complicating the metabolism profile (Figure 22). Metabolic 

stability assays assess a compound’s susceptibility to be metabolized. One of the most 

widely used assays is the liver microsomal stability test, where drug depletion over 

time is measured in microsomal fractions enriched with CYP enzymes. These assays 

help estimate intrinsic clearance by determining how rapidly a compound is 

metabolized under controlled conditions. On the other hand, inhibition assays target 

specific CYP isoforms, measuring whether a molecule inhibits a key metabolic 

pathway. These experiments are essential in predicting drug-drug interactions, as 

potent inhibitors can cause the perturbation of expected pharmacokinetics of co-

administrated drugs. 

Bioactivation is the 

enzymatic process where a 

non-toxic compound is 

converted into a reactive 

or toxic metabolite, often 

by cytochrome P450 

enzymes. 

Idiosyncratic reaction is 

an uncommon and 

unpredictable adverse 

response to a drug, arising 

from genetic or 

immunologic factors, and 

not related to its primary 

pharmacological action. 
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Elimination 

Elimination (a.k.a. Excretion) proceeds primarily through hepatic and renal routes. In 

the liver, drug molecules and their metabolites travel to hepatocytes via both the portal 

vein and the hepatic artery.154 Enzymes responsible for drug metabolism reside in 

reticulum endoplasmic and mitochondria of the hepatocytes. Once metabolized, the 

active compound or its metabolites are secreted into bile canaliculi, which are 

physically separate from the blood supply. Bile then carries these substances to the 

intestine, where they can either be excreted with feces or reabsorbed into the 

bloodstream (enterohepatic recirculation). Any fraction of the drug that remains 

unmetabolized in the hepatic circulation eventually leaves the liver via the hepatic vein 

and reenters systemic circulation.  

Clearance (𝐶𝐿) is a key parameter of xenobiotics elimination, representing the volume 

of plasma cleared of a drug per unit time. It provides insight into how efficiently the 

body eliminates a compound and directly influences drug dosing regimens. A higher 

clearance value indicates rapid elimination, often requiring more frequent 

administration, whereas lower clearance values suggest prolonged drug retention in 

the body. 

  

Figure 22: Drug metabolism and toxicity-related failures in Drug Development.  
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Different ways to express clearance exist, with the most fundamental equation being:  

𝐶𝐿 =
𝐷𝑜𝑠𝑒

𝐴𝑈𝐶
≈ 𝐶𝐿𝑡𝑜𝑡 = 𝐶𝐿ℎ𝑒𝑝 + 𝐶𝐿𝑟𝑒𝑛 

Where the variable, 

𝐷𝑜𝑠𝑒 is the amount of drug administered (e.g., mg or µmol), 

𝐴𝑈𝐶 (Area Under the Curve) is the total drug exposure over time (e.g., mg·h/L),  

𝐶𝐿𝑡𝑜𝑡 (Total clearance) is the sum of hepatic (𝐶𝐿ℎ𝑒𝑝) and renal clearance (𝐶𝐿𝑟𝑒𝑛).  

By combining these clearance pathways, a drug’s overall elimination efficiency can be 

evaluated, aiding in the prediction of pharmacokinetics across different patient 

populations. 

Intrinsic clearance (CLint), on the other hand, describes the liver’s inherent ability to 

metabolize a drug independent of hepatic blood flow. It is commonly measured using 

liver microsomes or hepatocytes in vitro. The relationship between intrinsic clearance 

and hepatic clearance  is described by the well-stirred liver model: 

𝐶𝐿ℎ𝑒𝑝 =
𝑓𝑢 ∗ 𝐶𝐿𝑖𝑛𝑡 ∗ 𝑄𝐻

𝑄𝐻 + 𝑓𝑢 ∗ 𝐶𝐿𝑖𝑛𝑡
 

Where the variable, 

𝑄𝐻 is the hepatic blood flow (e.g., L/min), 

𝑓𝑢 is the fraction of unbound drug in plasma (unitless), 

𝐶𝐿𝑖𝑛𝑡 is the intrinsic clearance (e.g., mL/min or L/h, typically normalized per mg of 

microsomal protein or per million cells in vitro). 

This equation differentiates between flow-limited clearance, where drug elimination 

is governed by hepatic perfusion (high 𝐶𝐿𝑖𝑛𝑡), and capacity-limited clearance, where 

enzyme activity is the rate-limiting step (low 𝐶𝐿𝑖𝑛𝑡). This distinction is essential for 

understanding the impact of physiological changes on drug metabolism.  
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Renal clearance (CLren) quantifies drug elimination through the kidneys. It is 

influenced by glomerular filtration, active tubular secretion, and passive reabsorption. 

Renal clearance is determined using the equation: 

𝐶𝐿𝑟𝑒𝑛 = 𝑓𝑒 ∗ 𝐶𝐿 

where 𝑓𝑒 is the fraction of the drug excreted unchanged in urine. This parameter helps 

assess whether renal elimination is a primary clearance route for a given compound. 

Another critical concept is the half-life (𝑡1

2

, in hours or minutes), which describes how 

long it takes for the plasma concentration of a drug to decrease by half.  

𝑡1
2

=
0.693 ∗ 𝑉𝑑

𝐶𝐿
 

where 𝑉𝑑 represents the volume of distribution (e.g., L or mL).  

Short half-lives indicate rapid clearance and necessitate frequent dosing, whereas long 

half-lives suggest prolonged drug activity and extended dosing intervals. 

Toxicity 

Toxicity can arise from multiple mechanisms, with metabolism and administered dose 

playing central roles. Off-target toxicity occurs when a drug interacts with unintended 

molecular targets, such as hERG potassium channels, leading to cardiac arrhythmias, 

or when it inhibits CYP450 enzymes, directly causing hepatotoxicity through enzyme 

inhibition or reactive intermediate accumulation.155,156 Although increased exposure 

due to drug–drug interactions can indirectly lead to toxicity, intrinsic toxicity generally 

arises from direct drug or metabolite-driven cellular damage, distinct from simple 

dose-dependent effects. Excessive dosing or prolonged exposure can therefore 

precipitate adverse effects.  

On-target toxicity arises when a drug engages its intended molecular target in 

unintended tissues, leading to adverse effects. For example, statins lower cholesterol 

by inhibiting HMG-CoA reductase in the liver, but can also inhibit the same enzyme 

in muscle tissue, contributing to myopathy and rhabdomyolysis in susceptible 

individuals.157  
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Many PIK inhibitors have on-target toxicities due to their role in essential cellular 

housekeeping functions.34 Hypersensitivity reactions occur if drugs or their reactive 

metabolites form covalent bonds with their target, generating haptens that can trigger 

antibody production and immunological responses. 

Drug metabolism can yield reactive intermediates (bioactivation) capable of binding 

to cellular components or eliciting immune responses. 158 Acetaminophen is a prime 

example; while the parent drug is safe at therapeutic concentrations, one of its minor 

metabolites (NAPQI) causes hepatotoxicity. Although drug discovery primarily 

evaluates parent molecules, identifying potential toxic metabolites remains crucial. 

Idiosyncratic reactions are especially problematic because they are highly individual 

(driven by genetic and immunological differences) and rarely detected in early animal 

models. Often, such reactions come to light only after extensive testing in humans. 

Consequently, toxicity evaluations are typically conducted in at least two mammalian 

species, usually starting with rodents due to their practicality and low cost, and 

complemented by non-rodents (e.g., dog or pig) when rodents insufficiently reflect 

human physiology. The route of administration tested usually aligns with intended 

clinical use, although alternative routes are occasionally employed to circumvent 

pharmacokinetic limitations (e.g., extensive first-pass metabolism). Modern toxicology 

studies prioritize maximum tolerated dose, no observed adverse effect level (NOAEL), 

and exposure margins, rather than routinely determining lethal doses (LD₅₀).159  

Application of ML 

Assessment strategies include in vivo toxicology studies of varying durations, in vitro 

assays, and computational modeling. QSAR methods correlate molecular descriptors 

with observed toxicity, in addition to molecular docking preferred to explore possible 

interactions with toxicologically relevant targets such as hERG channels160,161 or specific 

CYP isoforms.162–165 These in silico approaches, aligned with the European REACH 

framework, help reduce animal testing by embracing alternative methods and 

integrating the 3R principle (Reduction, Refinement, Replacement).166,167 Despite these 

advances, single-task QSAR models often fail to capture how metabolic 

transformations or clearance can shift toxicity profiles. This underscores the need to 

incorporate metabolism-related data into predictive models.168–170  
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In this chapter, we highlight MTL as a solution to broad pharmacokinetic profiling. By 

simultaneously modeling clearance, half-life, and various toxicity endpoints, MTL 

takes advantage of correlations among tasks. Recent work suggests that MTL 

outperforms single-task models for ADMET and potency predictions, paving the way 

for faster and more reliable drug development. Several open-source web services now 

leverage early ADMET (eADMET) strategies, but data sources and methods can be 

redundant or fragmented. To address these gaps, we have built a unified MTL model 

handling hundreds of continuous tasks in parallel and introduced the OneADMET 

dataset, a comprehensive curated repository merging diverse ADMET endpoints from 

public sources (Figure 23). This enables a single model to concurrently assess critical 

pharmacokinetic and toxicological parameters, streamlining early liability detection.  

 

Figure 23: Data Integration from ChEMBL and BindingDB. A pie chart illustrates the 

number of tasks per dataset, reflecting dataset diversity and scale. 
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Outline 

In this study we show that this multi-task framework rivals or surpasses conventional 

single-task models while simplifying large-scale deployment. We also propose a 

reference web service for ADMET and bioactivity predictions, giving researchers a 

one-stop solution to flag metabolic liabilities and toxicological red flags before 

incurring animal studies or clinical trials. Both the OneADMET dataset and the MTL 

model are released under an open-source license, offering a valuable resource for 

robust, cost-effective, and ethically responsible drug discovery. 
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Chapter 7.   Collective Intelligence 

7.1.   Industrial Application 

Introduction 

In 350 BCE, Aristotle proposed that groups often 

outperform lone experts when opinions are 

aggregated. This idea resurfaced in 1907 when 

Francis Galton observed that crowds at a livestock 

fair accurately guessed an ox’s weight, surpassing 

individual estimates.171 In the 1950s, the RAND 

Corporation formalized similar principles with the 

Delphi Method, using anonymous expert feedback in 

iterative rounds to predict events and reach 

consensus.172 By 1997, Pierre Lévy had coined the 

term “collective intelligence” in his book Collective 

Intelligence: Mankind’s Emerging World in Cyberspace, 

stressing how digital platforms could amplify human 

collaboration.173  

Advances in technology accelerated the spread of 

collective intelligence. Wikipedia’s founding in 2001 

demonstrated that cooperative editing could produce 

and maintain the world’s largest encyclopedia. In 

2004, James Surowiecki’s The Wisdom of Crowds 

further popularized the concept, using real-world 

examples to illustrate that organized groups can solve 

problems more effectively than isolated specialists.174 

The Good Judgment Project in the early 2010s used tournaments to show that pooled 

forecasts often outperformed top analysts in predicting geopolitical events.175 More 

recently, “digital swarms” and AI-assisted collaboration platforms have refined how 

groups share knowledge, distill insights, and reach consensus in real time. 

Main Terminology 

Wisdom of the crowd 

refers to how aggregated 

judgments from diverse, 

independent contributors 

can surpass individual 

expert decisions. 

Digital swarm and swarm 

intelligence describes 

decentralized and self-

organizing group behavior 

modeled on insect colonies, 

where simple actions at the 

individual level collectively 

solve complex problems. 

Peer production is a 

collaborative model in 

which volunteers (online) 

jointly create and refine 

content or products, 

typified by open-source 

software projects. 

 



267 7.1.   INDUSTRIAL APPLICATION 

 

Drug discovery has become a vital testing ground for collective intelligence. Since 

2008, the Foldit project developed by the Baker Laboratory has relied on crowdsourced 

puzzle-solving to unravel complex protein structures, proving that laypeople can 

sometimes provide breakthroughs that elude experts.176 Modern initiatives incorporate 

massive genomic databases, robotic HTS, and global discussion forums where 

researchers exchange insights on candidate molecules. In emergencies such as new 

pandemics or target-related health concerns, crowdsourced data analysis and AI-

driven approaches have the potential to accelerate drug design and testing. To address 

this, initiatives such as the Collaborative Modeling Project for Androgen Receptor 

Activity (CoMPARA) and the Collaborative Estrogen Receptor Activity Prediction 

Project (CERAPP) have applied large-scale predictive modeling to assess chemical 

risks. These projects, led by the U.S. Environmental Protection Agency (EPA), have 

leveraged global expertise, enlisting 25 international research groups to develop 

computational models for screening over 55,000 chemical structures.177 

In this chapter, we explore the intersection of collective intelligence and computational 

modeling in the context of drug discovery, with a specific focus on lead optimization. 

Building on prior research demonstrating the effectiveness of aggregated expert input, 

we conducted a study involving 92 Sanofi researchers from diverse scientific 

backgrounds. Participants provided anonymous feedback on lead compounds, 

enabling the construction of a collective intelligence agent whose predictive accuracy 

was then compared to an artificial intelligence model developed in parallel. 
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Outline 

In this study, we reveal that collective intelligence consistently outperforms individual 

decision-making in optimizing ADMET endpoints and, in most cases, surpasses AI-

driven predictions, except for hERG inhibition, where AI maintains an advantage. 

Moreover, we identify a complementary relationship between human expertise and 

machine learning, suggesting that hybrid approaches could enhance predictive 

accuracy for complex pharmacokinetic and toxicological assessments. This study 

represents a foundation for future drug discovery research in hybrid intelligence 

frameworks. 
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Chapter 8.   Conclusions & Perspectives 

As of today, modeling in drug discovery has reached a stage where the bottleneck is 

no longer the prediction method or the descriptors but rather the data itself. In other 

words, data now drives the choice of the most appropriate ML method based on its 

size, diversity, and quality. One of the main limitations is quality, which is affected by 

experimental bias, inherent noise in assays, human error, and a lack of condition 

homogeneity. 

In this thesis, we explored the limitations of modeling experimental data in an 

industrial drug discovery context. Driving the discovery and development of a drug 

requires navigating chemical space under multi-objective constraints, most of which 

are derived from experimental assays. These assays are interdependent, meaning that 

improving one property may lead to failure in several others. 

To evaluate and propose compounds with better potential, projects are supported by 

modelers and data scientists. As a result, the quality of decisions depends not only on 

human expertise but also on the accuracy of models, an accuracy that, ultimately, relies 

on the data bottleneck.  
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8.1.   Data Quality & Modeling in Drug Discovery 

Solubility 

In this thesis, we explored numerous ways to improve data curation and modeling 

approaches. These approaches were first applied to one of the most challenging 

endpoints to model accurately: solubility. Initial work on kinetic solubility revealed 

that different assays are more similar in measured values than expected. This insight 

led to the design and development of predictive models suited for early screening 

campaigns, where companies need to broadly screen large libraries and retain only 

compounds that may be soluble. This ensures that only testable compounds are used, 

preventing wasted resources on acquiring insoluble, dry-brick compounds. 

However, solubility is not merely a binary decision. During later-stage optimization, 

solubility, and particularly precise solubility estimation, becomes a key parameter in 

multi-objective optimization. To guide and validate such a framework, 

thermodynamic solubility is often estimated, favoring PBS 7.4 or pure water 

solubility. This assay provides a continuous estimation of a compound’s maximum 

concentration in solution. Despite its importance, it is highly susceptible to various 

sources of noise. Our work on water solubility exposed the flawed state of existing 

solubility data, a consequence of years of poor curation, aggregation, and 

reaggregation of overlapping datasets, along with the failure to adhere to OECD 

guidelines. Through multiple steps of curation, modeling, and validation, we 

identified the most error-prone and low-quality data sources and established a 

guideline for the proper curation of solubility data. 

Absorption 

Given the multi-objective nature of drug discovery, we explored the next major 

limitation in a drug’s journey: its absorption once solubilized. This process involves 

numerous interrelated assay properties. To model them accurately, we conducted an 

in-depth analysis of the factors influencing different permeability assays, including 

cell lines, inhibitors, and various assay-specific conditions. This research ultimately led 

us to compare the application of standard single-task ML approaches with GNN-based 

MTL models. 
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By leveraging multi-task models, we aimed to exploit task relationships to enhance 

information extraction from the model. Our study demonstrated a significant 

improvement in predictive performance with MTL, particularly for small datasets, 

while predictions on larger datasets remained as accurate as before. Moreover, these 

models not only delivered better generalization and performance but also provided 

high-quality representations of compounds. To illustrate this, we featurized thousands 

of compounds using the model’s graph embeddings and projected them onto a 

chemical space map. This highlighted the model’s ability to correctly represent highly 

related endpoints with fine granularity. Ultimately, this work contributed to the 

development of novel high-performance models and a highly curated dataset for 

absorption prediction. 

OneADMET 

Since decision-making in drug discovery extends beyond a drug’s transit from pill to 

bloodstream, we expanded our approach to account for distribution, metabolism, 

toxicity, and even activity and selectivity. This involved applying the MTL approach 

to thousands of endpoints. However, as ML models are highly sensitive to noise and 

data distribution, an initial round of thorough curation and standardization was 

necessary. This step led to the creation of OneADMET, the largest and most curated 

dataset of continuous ADMET and activity data. 

This dataset was then used to train a large-scale GNN-MTL model, which was 

rigorously benchmarked against popular ML approaches. The study demonstrated the 

broad applicability of MTL models, which not only matched the best optimized SVM 

on small datasets but also outperformed XGBoost on medium-sized data and 

remained competitive with single-task GNN models on large datasets. Beyond their 

power and versatility, these models are also highly efficient. With a single MTL model, 

we can generate predictions that would otherwise require thousands of individual 

models and tens of descriptor calculations per compound, not to mention the storage 

and computational costs of handling such extensive descriptors and models. As of 

today, GNN-MTL offers the best balance between cost, performance, speed, and 

applicability. It is not just a predictor but also a featurizer, an interpreter, and an 

uncertainty estimator for large-scale virtual screening with more reliable decisions. 
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Collective Intelligence 

Hence, these studies raise an important question: which strategies lead to the best 

decisions? Are they those fully driven by AI, made by a single expert, or decided by a 

group of individuals?  

To gain deeper insights into this problem, we applied the concept of collective 

intelligence to decision-making in late-stage lead optimization and compared it to 

decisions solely reliant on state-of-the-art ML models. Our findings revealed that 

groups composed of both experts and non-experts can make reliable decisions.  

When testing different sample sizes, we identified a threshold where cohort size no 

longer influenced success rates. A group of 10 to 20 individuals proved sufficient to 

enhance decision-making, often matching or even outperforming both expert-driven 

and ML-based approaches. However, this collective strategy had its limitations. Its 

application to complex endpoints, such as hERG inhibition, failed to yield significant 

advantages. Leading and collaborating within a target project team requires 

integrating diverse approaches and methods in a collective manner. The potential of 

collective intelligence is not confined to lead optimization, it can be applied across 

various stages of the drug discovery process due to its versatility. 

Beyond this, other strategies, such as swarm intelligence, ant colony optimization, and 

crowdsourcing, remain underexplored but have shown early promise. Understanding 

how to effectively integrate AI, human expertise, and collective strategies in drug 

discovery remains a critical challenge for the field. 

Research Perspectives 

Throughout this thesis, it has been made clear that the performance and reliability of 

predictive models in industrial drug discovery are tightly linked to the quality of input 

data, the robustness of curation workflows, and the sophistication of computational 

frameworks. While multi-task learning models have shown promise, further 

improvements in model performance will rely heavily on resolving persistent 

challenges in data annotation and fostering more productive, interactive forms of 

human-AI collaboration. Moving forward, advances in large language models (LLMs) 

and AI agents offer a compelling path to address these issues.  
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Enhancing Modeling with AI Agents 

A crucial bottleneck in model-driven drug discovery remains the time-consuming and 

error-prone process of data curation. Recent developments in LLMs provide a scalable 

solution to automate the extraction and annotation of chemical and biological 

knowledge from unstructured textual sources such as scientific articles, patents, and 

lab notebooks. By leveraging transformer-based architecture, LLMs can parse and 

organize complex domain-specific information with increasing accuracy. For instance, 

Schilling-Wilhelmi et et al.178 demonstrated workflows that combine automated 

annotation with human-in-the-loop corrections to ensure high fidelity, while Ai et al.179 

showcased how fine-tuned models can outperform traditional rule-based systems in 

extracting synthetic procedures. Similarly, Vangala et al.180 applied GPT-based models 

to patent mining, uncovering previously overlooked chemical reactions, and 

Kosonocky et al.181 highlighted the capacity of LLMs to infer functional-structural 

relationships hidden in patent corpora. 

Beyond annotation, LLMs hold potential for flagging inconsistencies within datasets 

through learned recognition of underlying chemical or biological patterns, thus 

improving overall data integrity. Embedding such tools into curation workflows can 

dramatically reduce manual overhead, enhance consistency, and accelerate the 

generation of high-quality datasets. 

Human-Agent Collaboration in Drug Discovery 

Beyond static annotation tasks, LLMs are starting to be deployed as dynamic, decision-

support tools that operate as digital co-scientists. These agents integrate reasoning, 

planning, and execution modules to autonomously perform and interpret tasks. 

However, general-purpose LLMs often underperform in generative tasks like multi-

step retrosynthesis. To overcome these limitations, purpose-built systems like 

ChemCrow182 and ChemLLM183 have been developed. ChemCrow extends GPT-4 with 

tool integration through LangChain and chain-of-thought prompting, enabling it to 

access and use autonomously chemistry-specific tools and reason across multiple steps 

to complete synthesis or design tasks.  
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Strategic Outlook & Integration into R&D Pipelines 

As drug discovery increasingly relies on large-scale computation, integrating LLM-

based annotation tools and autonomous scientific agents into R&D pipelines presents 

a compelling strategic opportunity. These systems could streamline manual 

workflows, enhance data integrity, and improve model generalization by reducing 

inconsistencies in input data. Yet, their current limitations, most notably a reliance on 

training data and lack of domain reasoning, mean expert oversight remains critical. 

LLMs should not replace human expertise, but rather augment it, provided their 

deployment is governed by rigorous standards for validation, transparency, and 

pharmacological relevance. 

Looking ahead, LLM-based agents could extend well beyond data curation to actively 

support ADMET prediction and decision-making. Acting as digital collaborators, they 

may assist medicinal chemists and modelers in tasks such as docking compounds into 

target pockets, summarizing SAR trends, flagging potential liabilities, or preparing 

compound sets filtered by metabolic or safety criteria. With growing multimodal 

capacities, these agents could synthesize structural data, bioassay results, and 

literature to generate context-aware recommendations and refine hypotheses in real 

time. 

To make this vision operational, workflows would need to be modularized into agent-

executable steps, domain constraints embedded via fine-tuning or chemical prompts, 

and predictive backends, such as docking engines or PBPK models, interfaced 

seamlessly. Crucially, expert feedback mechanisms must be built into interactive tools, 

allowing users to refine, validate, or redirect outputs on the fly. 

This trajectory outlines the rise of an agentic collective, a collaborative network of AI 

systems working in coordination with human scientists, not as isolated utilities but as 

contextual, task-specialized partners. Rather than replacing decision-making, these 

agents could serve to sharpen it, enhancing the pace, consistency, and creativity in 

early drug discovery. 
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8.2.   State of the field 

Even though QSAR is now celebrating its 60th anniversary, the field is only now 

entering its most prolific and active research period. As AI continues to integrate into 

drug discovery, it raises a critical tension: should these models serve merely as tools 

to assist experts, or are they gradually shaping a shift toward automation-driven 

strategies? The field stands at a crossroads where enthusiasm for AI-driven efficiency 

collides with the reality of its practical constraints. The next section explores how this 

dynamic is unfolding, tracing the trajectory of AI adoption in drug discovery, from 

initial breakthroughs to the recalibration of expectations. 

From Innovation to Disillusion 

The integration of AI into drug discovery follows a well-documented pattern, 

resembling the rise and fall of the internet boom of the 1990s, the social media 

explosion of the 2000s, and the blockchain craze of the 2010s.184,185 Each of these 

technologies followed a cycle of early innovation, rapid adoption, exaggerated claims, 

reality check, and eventually stabilization into practical applications.186 AI in 

pharmaceutical research is no exception. Initially heralded as game-changing for 

automation, data analysis, and predictive modeling, AI has been widely promoted as 

the future of drug discovery. But as with past trends, the enthusiasm has often been 

accompanied by overstatements, blurring the lines between science and marketing.187  

 The Marketing of Science 

The push to accelerate drug development has led pharma, biotech, and contract 

research organizations (CRO) to adopt AI/ML more widely. Though explored since 

the 1990s (e.g., AstraZeneca’s early infrastructure), recent gains in data, computing, 

and algorithms have expanded their practical use across the full drug discovery 

pipeline. In recent years, optimism has surged as AI was credited with revolutionizing 

drug discovery, from molecular design to toxicity prediction. This wave of enthusiasm 

has also made these companies prime targets for AI-driven biotech firms.188 Faced with 

the choice of building in-house expertise or partnering with external AI companies, 

pharmaceutical companies must navigate a landscape where true innovation and bold 

marketing claims, disguised as scientific papers, often mix. 
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Recently, in 2024, Google DeepMind’s AlphaFold 3189, following version of the 

successful and performant AlphaFold 2190, was published as a closed-source model in 

Nature, only five months after being received by the journal.191 Many criticized the 

release as a promotional maneuver rather than a scientific contribution. Mounting 

pressure eventually forced DeepMind to publish an open-source version months later, 

revealing tensions between academic transparency and corporate interests.192 In 

January 2025, In Silico Medicine reported using quantum computing to characterize 

KRAS inhibitors, a notoriously hard target under investigation since 1982, with over 

100 drug candidates already in development .193 Their approach combined ultra-large 

virtual screening with quantum-hybrid generative models, ultimately identifying 

weak hits (~5 µM IC50). While technically ambitious, the outcome was 

underwhelming in practical terms. Given the high computational cost and the still-

maturing state of quantum hardware, dismissed even by Nvidia CEO Jensen Huang 

as premature, the effort highlighted a broader issue: the growing gap between 

technological hype and meaningful pharmacological innovation. Raising the question 

of whether such methods offer real therapeutic advantage.194,195 

Earlier, in 2019, In Silico Medicine made bold claims about identifying potent kinase 

inhibitors within 21 days.196 The rational of the study was questioned by P. Walters 

and M. Murcko at the time, pointing out the strong similarity of the In Silico Medecine 

compounds with the marketed kinase inhibitor Iclusig (ponatinib), questioning the 

necessity of “fancy” software to substitute an isoxazole for an amide carbonyl, and the 

relevance of such publication.197 Meanwhile, they disclosed having reached Phase 1 

from target discovery in just 30 months with an AI-discovered drug in 2022. The 

compound shown some promise in the phase IIa results with a primary endpoint as 

safety but lacks definitive clinical success.198 

Similarly, in 2020, Exscientia declared that it had designed a cancer drug candidate 

(EXS-21546) in only 12 months, designated as the "the first AI-generated drug".199 

While these milestones were widely publicized, the actual clinical outcomes failed to 

fully meet expectations with two clinical candidates wiped. In 2024, the company was 

acquired by Recursion.200 Backed by Nvidia, Recursion, which initially aimed to 

develop 100 drugs in 10 years reported mixed results for its lead repurposed drug 

REC-994. While deemed safe, the drug failed Phase II clinical trials.201  
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Additional mentions goes to Atomwise, an AI-driven company founded in 2012 

advancing bold claims in 2015, it has yet to send a compound to clinic.202 Cassava 

Sciences, once hyped for its experimental Alzheimer’s candidate simufilam, failed to 

show clinical benefit in Phase III trials, leading to the discontinuation of its 

development in November 2024. Another major AI-driven biotech, BenevolentAI a 

company valued in 2018 at around $2 billion which stated to have created a “bioscience 

machine brain” have obtained deceiving results in 2024.203 Their AI-generated 

candidate for pan-Trk inhibitor (atopic dermatitis) failed in Phase II trials, performing 

no better than a placebo.204–206  

Despite advances in AI-driven drug discovery, its impact remains limited in clinical 

translation. While AI excels in early-stage tasks like virtual screening and multi-

objective optimization, it struggles with biological complexity, data quality issues, and 

clinical trial unpredictability. Overhyped claims often fail to materialize, as seen in AI-

driven biotech firms whose compounds underperform in clinical phases. The reliance 

on biased, noisy datasets constrains AI’s predictive power, making it a decision-

support tool rather than a standalone solution. Until AI can reliably address clinical 

challenges, its role in drug development remains promising but not yet transformative. 

Correction to a Reality Check 

As the reality check set in, many biotech startups struggled to meet their promises. The 

outcome has been an industry-wide correction, characterized by failed clinical trials, 

financial struggles, and large-scale layoffs rounds across the pharmaceutical sector 

surged by 281% (from 11 rounds in 2023 to 42 rounds in 2024).207  

In 2024, Exscientia was forced to cut 25% of its workforce, a direct result of financial 

underperformance and failed partnerships.208 BenevolentAI laid off 45% of its 

employees and an immediate unexplained departure of the CEO, only after one year 

on the job, citing a need to restructure and focus on fewer high-value projects.209 Other 

companies, including Atomwise and Recursion, have also reduced their workforce. In 

total, AI-driven biotech startups have seen over 2,500 job cuts in 2024, as investors and 

executives reevaluate the practical impact of AI in drug discovery.210 
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Large pharmaceutical companies have also undergone significant layoffs, though for 

different reasons. Unlike startups that faced direct failures, big pharma layoffs have 

been driven by two key factors: (i) the failure of AI-driven partnerships to yield 

expected results, and (ii) a shift in corporate strategy toward CRO to reduce costs. 

Bristol Myers Squibb announced a 2,200-employee reduction by the end of 2024. Pfizer 

eliminated 1,500 positions, including 285 roles at a vaccine R&D site in New York and 

120 in Washington. Takeda cut 641 jobs in Massachusetts.  

These layoffs in big pharma are indicative of a replacement of departments by 

experimental or AI-driven CROs. Boards of directors, often distant from the realities 

of experimental R&D, have embraced AI as a way to reduce expenses. However, this 

presents a paradox, while AI has not yet delivered on its promise of fully automated 

drug discovery and revenue are high, companies are already reducing human R&D 

expertise in favor of AI-driven cost efficiencies. 

Communication between R&D and Business Leadership 

Many of the layoffs in biotech and big pharma suggest that business executives, often 

motivated by short-term financial gains satisfying their Key Performance Indicator 

(KPI), are making decisions without sufficient input from R&D leaders who 

understand the true capabilities and limitations of AI.188,211 Strong alignment between 

Chief Scientific Officers (CSOs), Head of R&D and CEOs is critical to ensure that AI is 

integrated into drug discovery in a way that enhances, rather than replaces, essential 

scientific processes and experience-owned knowledges. Historically, successful 

pharmaceutical companies have maintained direct, science-focused communication 

between leadership and research divisions. However, as AI hype has taken center 

stage, some executives have made sweeping AI-driven restructuring decisions, often 

confusing AI’s role in core R&D functions, such as molecular design, predictive 

modeling, and target validation, with broader AI-driven digitalization efforts in 

logistics, marketing, and operational efficiency. For AI to contribute meaningfully to 

drug discovery, companies must adopt a balanced approach.22 
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Toward more Sustainable Approaches 

Many biotech firms have historically prioritized aggressive AI-driven narratives to 

attract and rapidly secure funding, while only a few have focused on incremental 

advancements supported by rigorous validation. As the industry corrects itself, a more 

structured approach to AI adoption is emerging. Public-Private Partnerships (PPPs) 

offer a promising safeguard while providing a mechanism for pooling resources to 

address shared challenges. PPPs in France, such as the CIFRE program, facilitate 

industry-academia collaboration by funding PhD students conducting research in 

private companies. Other key initiatives include PIA (Programme d’Investissements 

d’Avenir) and France 2030, which invest in AI, biotech, and deep-tech innovation. 

ANR collaborative programs and Carnot Institutes support joint R&D efforts, while 

BPI France’s DeepTech grants and i-Lab competition fund early-stage biotech startups. 

The AIChemist program, backed by Horizon Europe, exemplifies international PPPs 

focused on AI-driven drug discovery.40 

What comes next for AI in Drug Discovery? 

While expectations around AI in drug discovery require adjustment, its potential 

remains transformative, if applied correctly. The future of AI in pharmaceuticals will 

likely shift from ambitious claims to practical, results-driven applications. 

For investors, the most promising biotech companies prioritize strong datasets first, 

followed by computing power and, lastly, innovative methodologies. Data is the 

foundation; without high-quality, validated biological information, even the most 

advanced AI models will struggle to generate meaningful insights. This reality 

underscores a key advantage for Big Pharma, which leverages extensive proprietary 

datasets to enhance the reliability of AI-driven predictions. 

Rather than replacing medicinal chemists, AI is evolving into a powerful decision-

support system, assisting researchers in SAR modeling, toxicity prediction, and multi-

objective optimization. However, for computational predictions to translate into 

clinically relevant outcomes, AI models must undergo rigorous validation against real-

world biological data. 
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Emerging fields such as RNA-targeted therapeutics and personalized medicine offer 

promising opportunities for AI integration. In these low-data environments, AI can 

accelerate target identification and drug design, provided that robust validation 

methods are in place. 

Ultimately, AI’s impact on drug discovery will not be defined by hype but by its ability 

to enhance predictive accuracy, optimize decision-making, and drive clinically 

meaningful advancements. To realize its full potential, the industry must move 

beyond speculation and embrace transparent, science-driven innovation. 
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Chapter 9.   List of Abbreviations 

3R  Reduction, Refinement,  and Replacement  

AB-FEP  Absolute Free Energy Perturbation  

ACF  Atom-Centered Fragments  

AD  Applicability Domain 

ADMET  Absorption,  Distribution, Metabolism, Elimination, Toxicity 

AF3 AlphaFold 3 

AGP   α-1-acid glycoproteins  

AI  Artificial Intelligence 

AL  Active Learning 

ANR  Agence Nationale de la Recherche (French National Research Agency) 

ATP   Adenosine Tri-Phosphate 

BBB  Blood-Brain Barrier 

BIO  Biotechnology Innovation Organization  

BPI  Banque Publique d’Investissement  

Caco-2  Colorectal adenocarcinoma cells 

CADD  Computer-Aided Drug Design 

CDK  Chemistry Development Kit 

CEO  Chief Executive Officer 

CERAPP  Collaborative Estrogen Receptor Activity Prediction Project 

CFTR  Cystic Fibrosis Transmembrane Conductance Regulator 

ChemBERTa  Chemical Bidirectional Encoder Representations from Transformers 
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ChEMBL  Chemical Database at EMBL-EBI 

CIFRE  Convention Industrielle de Formation par la Recherche 

CNS  Central Nervous System 

CoMPARA  Collaborative Modeling Project for Androgen Receptor Activity 

Cp  Concentration in plasma 

CRO  Contract Research Organization 

Cryo-EM  Cryogenic electron microscopy 

CSO  Chief Scientific Officer 

CV  Cross-Validation 

CYP450  Cytochrome P450 

DEL  DNA-Encoded Library 

DMSO  Dimethylsulfoxide 

DMTA  Design, Make, Test, Analyze 

DNA  Deoxyribonucleic Acid 

DNN  Deep Neural Network 

eADMET  early ADMET 

EBI  European Bioinformatics Institute  

ECFP  Extended Connectivity Fingerprints  

EMA  European Medicines Agency 

EMBL  European Molecular Biology Laboratory  

EPA  Environmental Protection Agency 

FBDD  Fragment-Based Drug Design  

FCFP  Functional Class Fingerprints 
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FDA  Food and Drug Administration 

FEP   Free Energy Perturbation  

FFN  Feed-Forward Network 

FMO   Flavin-Containing Monooxygenase 

GAN  Generative Adversarial Network 

GNN  Graph Neural Network 

GPCR  G Protein-Coupled Receptor 

GTM  Generative Topographic Mapping 

hERG  Human Ether-A-go-go-Related Gene 

HFE  Hydration Free Energy 

HMG-CoA   Hydroxymethylglutaryl-Coenzyme A 

HOMO  Highest Occupied Molecular Orbital 

LUMO  Lowest Unoccupied  Molecular Orbital 

HPLC  High-Performance Liquid Chromatography 

HTS  High-Throughput Screening 

IA  Intelligence Artificielle (French for AI) 

IC₅₀   Half maximal inhibitory concentration 

IF   Isolation Forest 

IL8  Interleukin 8 

InChI  IUPAC International Chemical Identifier 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

Kᵢ   Inhibition constant 

k-NN  k-Nearest Neighbors 
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KPI  Key Performance Indicator 

LBDD  Ligand-Based Drug Design 

LBVS  Ligand-Based Virtual Screening 

LC-MS  Liquid chromatography–mass spectrometry 

LD50  Lethal Dose 50 

LE   Ligand Efficiency 

LLM Large Langage Model 

LOF  Local Outlier Factor 

LogD  Dissociation coefficient 

LogP  Partition coefficient 

MAA  Marketing Authorization Application 

MACCS  Molecular ACCess System 

MAE  Mean Absolute Error 

MD  Molecular Dynamics 

ML  Machine Learning 

MOE  Molecular Operating Environment 

MOO  Multi-Objective Optimization 

MPO  Multi-Parameter Optimization 

MSE  Mean Squared Error 

MTD  Maximum Tolerated Dose 

MTL  Multi-Task Learning 

MW  Molecular Weight 

NAT  N-Acetyltransferase 
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Nav1.5   alpha subunit of the voltage-gated sodium channel 

NDA  New Drug Application 

NME  New Molecular Entity 

NMR  Nuclear Magnetic Resonance 

NOAEL  No Observed Adverse Effect Level 

NPV  Net Present Value 

OChem  Online Chemistry Database 

OcSVM  One-Class Support Vector Machine 

OECD  Organisation for Economic Co-operation and Development 

PAMPA   Parallel Artificial Membrane Permeability Assay 

PBS  Phosphate-Buffered Saline 

PCA  Principal Component Analysis 

PD  Pharmacodynamics 

P-gP  P-Glycoprotein 

PI3K   Phosphoinositide 3-kinase 

PIA   Programme d’Investissements d’Avenir 

PBPK Physiologically based pharmacokinetic modeling 

PK  Pharmacokinetics 

pKa  acid dissociation constant 

PPB  Plasma Protein Binding 

PPP  Public-Private Partnerships  

QED  Quantitative Estimation of Drug-Likeness 

QSAR  Quantitative Structure Activity Relationship 
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QSPR  Quantitative Structure Property Relationship 

R&D  Research & Development 

R2  Coefficient of Determination 

RAND   Research And Development Corporation 

RBF  Radial Basis Function 

REACH  Registration 

RF  Random Forest 

RMSE  Root Mean Squared Error 

RNA  Ribonucleic Acid 

RNN  Recurrent Neural Network 

RORγ   Retinoic acid receptor-related Orphan Receptors 

SAR  Structure Activity Relationship 

SBDD  Structure-Based Drug Design 

SGD  Stochastic Gradient Descent 

siRNA  Small interfering RNA 

SMARTS  SMiles ARbitrary Target Specification 

SMILES  Simplified Molecular Input Line Entry System 

SOM  Self-Organizing Map 

SPR  Structure Property Relationship 

STL  Single-Task Learning 

SVM  Support Vector Machine 

TDC  Therapeutic Data Commons 

TPSA  Topological Polar Surface Area 
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t-SNE   t-Distributed Stochastic Neighbor Embedding 

UGT  UDP-Glucuronosyltransferase 

UMAP  Uniform Manifold Approximation and Projection 

UV-Vis   Ultraviolet–visible spectrophotometry 

VAE  Variational AutoEncoder 

Vd  Volume distribution 

VEGF  Vascular Endothelial Growth Factor 

VS  Virutal Screening 

XGBoost  eXtreme Gradient Boosting 
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Résumé 
Cette thèse vise à faire progresser le rôle de la modélisation in silico dans la recherche 
pharmaceutique, en abordant les défis persistants liés aux échecs tardifs et aux 
inefficacités du développement de médicaments. L’évaluation ADMET (Absorption, 
Distribution, Métabolisme, Élimination et Toxicité) intervient souvent trop tard dans le 
processus, augmentant ainsi les coûts et ralentissant la progression. Pour remédier à 
ces problèmes, la modélisation in silico, en particulier la prédiction précoce des 
propriétés ADMET (eADMET), est devenue essentielle pour rationaliser la prise de 
décision dès les premières étapes de la découverte de médicaments. Cependant, la 
complexité de la biologie humaine, l’évolution des modèles expérimentaux et les 
incohérences des données exigent des modèles prédictifs à la fois précis, adaptables 
et interprétables. Cette thèse propose une approche systématique pour l’amélioration 
de la modélisation eADMET, en s’appuyant sur le nettoyage des données, 
l’apprentissage multi-tâches, l’application à grande échelle et la collaboration humain-
machine. 

 

Résumé en anglais 

This thesis is dedicated to advancing the role of in silico modeling in pharmaceutical 
research, addressing the persistent challenges of late-stage failures and inefficiencies 
in drug development. ADMET (Absorption, Distribution, Metabolism, Elimination, and 
Toxicity) testing often occurs too late in the pipeline, driving up costs and delaying 
progress. To mitigate these issues, in silico modeling, particularly early ADMET 
(eADMET) prediction, has become essential for streamlining decision-making in early 
drug discovery. However, the complexity of human biology, evolving assays, and data 
inconsistencies necessitate predictive models that are not only accurate but also 
adaptable and interpretable. This thesis presents a systematic approach to refining 
eADMET modeling through data curation, multi-task learning, large-scale applicability, 
and human–machine collaboration. 


