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Abstract (English)

B-mode ultrasound (US) is a preferred imaging modality for screening early-
stage abdominal pathologies due to its cost-effectiveness and non-invasive nature.
Many deep learning-based methods for abdominal US computer-aided diagnosis
(CAD) have been proposed to reduce the elevated level of expertise needed for
these tasks. While these methods show promising performance, they are typically
trained on manually curated datasets consisting of high-quality, expert-selected
images, which are accepted as ground truth without further validation. However,
these methods have not been proven effective on raw (untrimmed) US video
data, which presents greater challenges due to a larger proportion of low-quality
images.

This work addresses the challenge of training deep learning models for use in
US-based CAD of liver and kidney pathologies, covering the entire process from
annotation to real-time inference in untrimmed videos. In our first contribution
chapter, we compare human visual annotations with histological examinations
and develop a method to improve the accuracy of visual annotations by 10%
(F1-Score) using a combination of Learning to Rank with pairwise comparative
annotations. In the second chapter, we focus on the problem of ultrasound diag-
nostics with untrimmed video data. We propose a novel solution to train video
transformer models with the guidance of an external Relevant Frame Assessor
(FRA), which automatically scores high-relevance frames according to contents
and image quality. In the final contribution chapter, we replace the need for
external guidance with a novel network architecture that learns relevance scores
end-to-end solely based on video-level labels. We achieved a 0.90 ROC-AUC for
diagnosing liver pathologies on untrimmed videos using only video-level diagnos-
tic labels. Additionally, decision explainability is provided by identifying the most
contributing frames used in the diagnosis, which can facilitate autonomous report
generation.
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Résumé (Français)

L’échographie b-mode (US) est une modalité d’imagerie privilégiée pour le
dépistage des pathologies abdominales à un stade précoce en raison de son
rapport coût/efficacité et de son caractère non-invasif. De nombreuses méthodes
basées sur l’apprentissage profond pour le diagnostic assisté par ordinateur (CAD)
des échographies abdominales ont été proposées afin de réduire le niveau élevé
d’expertise nécessaire pour réaliser ces tâches. Bien que ces méthodes montrent
des performances prometteuses, elles sont généralement entraînées sur des en-
sembles de données soigneusement sélectionnées, composées d’images de
haute qualité choisies par des experts, qui sont acceptées comme vérité fonda-
mentale sans validation supplémentaire. Cependant, ces méthodes n’ont pas
démontré leur efficacité sur les données vidéo brutes (non-découpées) d’écho-
graphie, qui présentent des défis plus importants en raison d’une proportion plus
élevée d’images de faible qualité.

Ce travail aborde le défi de l’entraînement de modèles d’apprentissage
profond pou l’automation du diagnostic par échographique des pathologies du
foie et du rein, couvrant l’ensemble du processus, de l’annotation à l’inférence
en temps réel sur des vidéos non-découpées. Dans notre premier chapitre de
contribution, nous comparons les annotations classiques réalisées par des an-
notateurs aux examens histologiques et développons une méthode permettant
d’améliorer la précision des annotations visuelles de 10% (F1-Score) en utilisant
une combinaison de l’apprentissage au classement (Learning to Rank) avec
des annotations comparatives par paires. Dans le deuxième chapitre, nous nous
concentrons sur le problème du diagnostic échographique à partir de données
vidéo non-découpées. Nous proposons une solution innovante pour entraîner
des modèles du type Transformer vidéo avec l’aide d’un évaluateur de qualité
des images (Relevant Frame Assessor, FRA), qui attribue automatiquement des
scores aux images de grande pertinence en fonction de leur contenu et de leur
qualité. Dans le chapitre final, nous remplaçons le besoin d’un agent externe pour
l’évaluation de la qualité des images par une nouvelle architecture de réseau
de neurones capable d’apprendre des scores de pertinence de bout en bout
en utilisant uniquement d’étiquettes au niveau de la vidéo. Nous avons atteint
un ROC-AUC de 0.90 pour le diagnostic des maladies du foie sur des vidéos non
non-découpées en utilisant uniquement des étiquettes diagnostiques au niveau
de la vidéo. De plus, l’identification automatique des images les plus contributives
pour le diagnostic permet la génération autonome de rapports.
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1. Introduction

Context and problem motivation
Medical imaging has revolutionized healthcare by enabling practitioners to

visualize internal structures and diagnose conditions that were previously undetec-
table. While modalities like Computed Tomography (CT) andMagnetic Resonance
Imaging (MRI) offer precise diagnostic capabilities, their high costs and radiation
exposure make them impractical for large-scale screening.

In contrast, b-mode ultrasound (US) stands out as amore practical and advan-
tageous alternative for the early detection and screening of various abdominal
pathologies. Its unique benefits make it particularly well-suited for large-scale
use, offering significant advantages over other imaging modalities. These benefits
include :

1. Real-Time Imaging : US provides real-time visualization of internal structures,
allowing assessment during the examination. Unlike CT or MRI, it does not
require lengthy setup or acquisition times.

2. Non-invasiveness : b-mode US is a non-invasive modality, and does not
require contrast agents or ionizing radiation, ensuring a safer experience for
patients.

3. Cost-Effectiveness : Compared to other imaging modalities such as CT and
MRI, US is more affordable and widely accessible. Additionally, the growing
availability of portable ultrasound devices in the market can further reduces
costs and expands access to care.

4. High Sensitivity for Certain Pathologies : US is highly effective in detecting cer-
tain pathologies, particularly those involving soft tissues and fluid collections,
making it a valuable tool for targeted diagnostic tasks.

While the benefits of US screening are evident, several challenges still limit its
widespread usability, including :

1. Low Image Quality : US images generally have reduced quality compared
to other imaging modalities, with significant noise and artifacts such as
shadowing and motion blur.
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2. Operator Dependent : The quality of image acquisition heavily depends on
the operator’s skill in probe positioning, angle adjustment, and parameter
settings.

3. Subjectivity in Diagnosis : The diagnosis of US data is inherently subjective
and relies on the expertise of the practitioner. Even experienced radiologists
can disagree on a diagnosis

4. Diversity in Human Anatomy : Variations in internal organ structures among
individuals can complicate image acquisition and diagnosis. Additionally,
certain pathologies may further challenge the process, making both tasks
even more difficult.

All these challenges highlight the critical reliance on highly skilled professio-
nals for both the acquisition and interpretation of US images. This dependency,
aggravated by the global shortage of experienced radiologists, significantly res-
tricts access to screening and early-stage pathology detection, particularly in
low-resource settings where the need for affordable and accessible healthcare
solutions is most needed.

A promising solution to this challenge is the integration of Computer-Aided
Diagnosis (CAD) methods into ultrasound systems. CAD-assisted screening can
enhance diagnostic accuracy and reduce reliance on expert radiologists, making
it particularly useful for enabling less experienced healthcare professionals to
identify suspicious cases that require further evaluation by an expert radiologist. This
approach helps alleviate bottlenecks in the clinical workflow by improving the initial
screening process and optimizing the use of radiologists’ expertise. Consequently
improving access to early detection and treatment of pathologies on a global
scale.

This work addresses these challenges by proposing a CAD-based system to
assist healthcare professionals in diagnosing liver and kidney pathologies using
b-mode US acquisitions. In doing so, the system allows practitioners to benefit from
all the advantages of B-mode ultrasound while minimizing its drawbacks.

Given the video nature of US acquisitions, such a system should support
operators in two key aspects : identifying diagnostically relevant frames and auto-
matically indicating suspicious findings. The first aspect involves helping practitio-
ners recognize frames that are suitable for diagnostic purposes, while the second
focuses on providing automated diagnostic assistance.

2



CHAPITRE 1. INTRODUCTION

Limitations in the State-of-the-art
While CAD methods for assisting in the screening of abdominal pathologies

have been proposed since the 2010s [2] and have demonstrated promising per-
formance, these approaches are typically developed under highly controlled
conditions. They rely on datasets that are manually curated by experts, with most
focusing on single-image analysis. As a result, these datasets fail to represent the
true distribution of raw, untrimmed ultrasound videos, which often include nume-
rous non-diagnostic frames captured during the search for diagnostically relevant
ones. Consequently, while these single-frame methods have shown impressive
accuracy, their usability is limited (particularly for inexperienced operators) since
the operator is still required to manually identify diagnostically relevant frames, a
task that is itself one of the key challenges in ultrasound diagnostics.

In this context, video classification models present a clear and effective solu-
tion to the problem. These models are trained to classify video inputs, represented
as ordered collections of image frames, using only video-level annotations. By re-
lying on pathology reports as ground truth, video classification eliminates the need
for manual image annotation, significantly reducing effort and avoiding subjective
decisions about the identification of diagnostically relevant frames. Moreover,
it can profit from multi-frame context during training and inference, enhancing
performance, while ensuring alignment with the data distribution encountered
during inference.

Most video classification models have been demonstrated primarily on short,
time-cropped video clips, commonly referred to as trimmed videos. These clips are
typically spatiotemporally centered around the pathological findings of interest.
In contrast, real-world untrimmed videos present a more complex challenge, as
the findings may appear at any point in time and are often not centered within
the frame. An alternative to address this challenge involves in adopting external
guidance agents, such as object detectors or segmentation networks, to extract
trimmed clips from untrimmed videos. However, these methods requires substantial
extra supervision, making them less practical for widespread use.

Additionally, the common reliance on radiologists’ visual labeling as an an-
notation method compromises the reliability of ultrasound datasets. This is due
to the inherent subjectivity of ultrasound interpretation, which introduces label
uncertainty, potentially impacting the performance of CAD models trained on
this type of data. Although alternatives such as histopathology analysis or MRI-
based labeling could offer more objective annotations, their high costs and limited
accessibility make them impractical for large-scale dataset acquisition.
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Objectives and Contributions
Objectives

Our research aims to address these challenge by developing deep learning
models for US-based CAD targeting liver and kidney pathologies in untrimmed
b-mode ultrasound videos. Our objective is to propose novel methods capable of
training and performing real-time inference with minimal supervision and annota-
tion effort. We aim to design generalizable approaches that can be extended to
other pathologies with ease, while providing insights into the feasibility of diagnos-
tics based on the acquired data.

Additionally, we propose an approach to improve the reliability of visual
annotations performed by annotators, which are themost commonly usedmethod
for obtaining labeled datasets. Given the inherent challenges in interpreting b-
mode ultrasound data, these annotations are prone to errors that can negatively
impact the training of deep learning models trained on such data. Addressing this
issue is critical to ensuring the robustness and accuracy of CAD systems.

Contributions

Our objectives are translated into our three methodological contributions :

1. CVL+RankNet : A New Approach to Label Images for Computer-Assisted
Diagnosis : In our first contribution, We propose an annotation method based
on Comparative Visual Labeling (CVL) combined with a Learning-to-Rank
framework to improve annotation reliability, called CVL+RankNet. We de-
monstrate that our proposed method, improve annotation accuracy by 10%
when compared to standard Single-image Visual Labeling (SVL) approaches,
which underestimates pathological levels by 20% when compared to the
actual ground truth from histopathological labels.

2. DR-Clips : A novel frame-guidance approach for computer-assisted diagno-
sis with untrimmed ultrasound video : In our second contribution, we highlight
the significant limitations of single-image-based methods in diagnosing liver
and kidney pathologies from untrimmed ultrasound videos. To address these
challenges, we introduce DR-Clips, a novel solution for assessing ultrasound
pathologies in untrimmed videos using video-level annotations and an ex-
ternal Frame Relevance Assessor (FRA) to guide the video diagostic neural
network. DR-Clips uses the FRA network to identify and sample diagnostically
relevant clips from untrimmed ultrasound videos, employing these clips as a
data augmentation tool during training and as guidance during inference.
This innovative approach enables video classificationmodels to be trained di-
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rectly on untrimmed data, achieving results comparable with models trained
on manually curated single-image datasets.

3. KeyFrameDiagFormer : A Weakly-Supervised Transformer Model for Keyframe
Localization and Diagnosis in Untrimmed Ultrasound Videos In our final contri-
bution, we advance our previous work by eliminating the reliance on an
external agent to guide the video diagnostic model. Our proposed archi-
tecture is inspired by weakly-supervised action localization, enabling the
localization of diagnostically relevant frames (analogous to actions) in time
using only video-level labels. The model incorporates several key features : a
memory-bank frame encoder to handle large video sequences, a local self-
attention block for identifying organ-specific diagnostically relevant frames
and distinguishing them from background frames, and a hierarchical classifi-
cation head with organ-specific self-attention for pathology diagnosis based
solely on relevant organ images. This approach demonstrates a strong abi-
lity to localize diagnostically relevant keyframes while also indicating when
insufficient information is available to make a diagnosis.

Structure of the Thesis
This thesis is structured as follows :

— Chapter 1 — Introduction : This chapter presents the motivation, objectives,
and key concepts underlying our work.

— Chapter 2 — State of the Art : A comprehensive review of the literature
on single-image and video-based CAD methods using machine learning.
Additionally, we discuss deep learning approaches that can serve as external
guidance and quality control mechanisms for image and video models.

— Chapter 3 — CVL+RankNet : Comparative Visual Labeling : This chapter
introduces our annotation method based on comparative visual labeling, as
described in the Contribution 1.

— Chapter 4 — DR-Clips : Guided Video Diagnosis : This chapter described
our DR-Clip guided untrimmed video diagnostic model, as described in the
Contribution 2.

— Chapter 5 — KeyFrameDiagFormer : Unguided Video Diagnosis : This chapter
described our unguided untrimmed video diagnostic model, as described
in the Contribution 3.

— Chapter 6—Conclusion : This chapter summarizes our contributions, discusses
the implications of our findings, and suggests directions for future research.
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2. Literature Review

This literature review explores various approaches to developing CAD systems
for ultrasound, ranging from single-image methods to video-based techniques,
while also discussing the integration of auxiliary guidance systems to improve
diagnostic accuracy.

1. Single-Image-Based Method : These techniques utilize machine learning
methods to analyze individual ultrasound frames. While effective in controlled
settings, they often fail to capture the full diagnostic potential of an ultrasound
exam, which typically requires contextual and temporal information across
multiple planes. We also discuss about single-image selection and image
quality control methods, which are used as external agents in combination
with diagnosis methods.

2. Video-Based Methods : Video-based CAD models address the limitations
of single-image approaches by incorporating temporal and spatial context
fromultrasound video sequences. Thesemethods process consecutive frames
to improve diagnostic accuracy and reliability, using deep learning archi-
tectures to model temporal dependencies and spatial relationships. They
also reduce annotation efforts by allowing video-level labeling rather than
frame-by-frame annotation.

3. Research Gaps : Despite advancements, several challenges persist :

— Human annotation subjectivity reduces data reliability.
— The processing of untrimmed ultrasound videos remains a significant

challenge and is relatively underexplored in the existing literature.
— Current CAD systems lack the automation and usability needed for

seamless integration into diverse clinical workflows.

2.1 Single-Image Ultrasound
Computer-Assisted Diagnosis

These methods use manually curated single-image datasets, which are for-
med from snapshots taken from the clinician during US procedures or manually
curating ultrasound videos acquired retrospectively.

6



CHAPITRE 2. LITERATURE REVIEW

2.1.1 Methods using Image Classification and
Regression

For the diagnosis of ultrasound images, one of the most straightforward ap-
proaches is using single-image classification and regression models. These models
take an ultrasound image as input and output either a continuous value score,
indicating the severity of the condition, or a categorical class, representing the
stage of the condition.

Historically, these methods have utilized handcrafted features based on tex-
ture, color, and shape, which are then applied to train classical bayesian models
[228]. However, since the development of modern convolutional neural networks
(CNNs) with the introduction of AlexNet [137], most single-image approaches
have shifted toward CNN-based models. A diverse range of CNN architectures
is available, such as Inception-ResNet-v2 [96], GoogLeNet [234], AlexNet [137],
ResNet-101 [97], MobileNet v2 [211], Xception [49], and VGG-19 [224]. Despite dif-
ferences in their architectures, these models share a fundamental approach : they
use convolutional layers combined with pooling operations to progressively reduce
the dimensionality of the input image. This compression simplifies the data into a
manageable form, which is then passed into fully connected (dense) layers. The
output from these dense layers is then designed to suit the specific task, aligning
with the structure of the training labels and the training loss function, as detailed in
Table 2.1.

Table 2.1 – Configuration Details for CNN Model Architectures Based on Task Type.
While other configurations of neurons in the last layer, activation functions, and
loss functions can be used, these are the most common.

Problem Neurons Activation Loss Function torch.nn function

Binary Classification 1 Sigmoid Binary Cross Entropy Loss BCELoss()

Multiclass Classification class number Softmax Cross Entropy Loss CrossEntropyLoss()

Regression 1 None L1/L2 Loss (or others) L1Loss(), torch.nn.MSELoss()

Notably in Table 2.1, binary classification and regression models may have
more than a single neuron in the output layer when handling multi-label problems
where multiple outputs are expected. In this case, an individual loss is computed
for each output and them combined. This approach can also be extended to
multiclass classification by applying the loss individually to each set of outputs,
although this is less commonly encountered.

While CNN models continue to evolve, the emergence of Vision Transformers
(ViTs) [64] in the 2020s has positioned them as potential successors to CNNs. While
ViT models consistently dominate image classification leaderboards nowadays [9,
180], it remains unclear whether ViTs consistently outperform CNNs in ultrasound
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diagnosis. Evidence suggests that ViTs may indeed surpass CNNs in performance,
but this advantage appears significant only when large datasets are available.
Under low-data conditions, common in the medical field, CNNs often demonstrate
superior performance due to their inductive bias, making them more efficient with
limited training data [14, 248]. This explains why most single-image classification
and regression methods remain CNN-based, as CNNs have consistently shown
reliable performance, leading to less interest in exploring transformer models.

Given that ultrasound acquisitions typically produce videos or a set of snap-
shot images as output, this data first need to be curated to be analyzed on a
single-image basis. This step is typically performed manually and can incorporate
anatomical and medical prior knowledge to aid in solving the problem, although
this comes at the cost of increased data curation effort. Below, we list groups of
methods identified in our literature review, categorized by the level of curation and
the nature of data available for single-image neural networks :

— Region of Interest (ROI)-Based Diagnosis : This approach focuses on speci-
fic regions within the organ, such as the liver parenchyma, to simplify the
localization of relevant structures. By targeting these specific areas, the me-
thods aim to enhance diagnostic accuracy while reducing computational
complexity.

— Whole Image Diagnosis : this method utilizes entire ultrasound images for
analysis. While it captures more contextual information about the organ and
surrounding tissues, it adds complexity in localizing the regions of interest
within the image.

— Multiview Diagnosis : these methods incorporate multiple ultrasound views
of the organ to enhance diagnostic performance. By using images from
different planes, they provide a more comprehensive understanding of the
organ’s anatomy by incorporating complementary information, making it
easier to achieve reliable results.

— Additional Modalities Diagnosis : some approaches integrate other imaging
modalities or data types, such as radiofrequency (RF) signals or quantitative
ultrasound (QUS), to improve diagnostic accuracy. By combining different
types of data, these methods can capture additional tissue characteristics
not visible in b-mode images.

Below, we present the most relevant works within these categories, organized
by the specific pathologies being diagnosed.
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2.1.1.1 ROI-Based Diagnosis

Region of Interest (ROI)-based methods are among the most widely used
approaches for pathology detection in ultrasound and continue to be a focus
in recent research. The strength of these methods lies in simplifying the machine
learning task by narrowing down the area of analysis, thereby reducing the effort
needed to identify highly discriminative regions.

Although various approaches and protocols are used, the general process
for ROI-based diagnosis includes the following steps (illustrated in Figure 2.1) :

1. ROI Extraction : In this initial step, one ormore ROIs (also referred to as patches)
are selected to delimit the organ or structure of interest, typically through ma-
nual or semi-automatic means. These ROIs may be defined using bounding
boxes or segmentation masks.

2. Feature Extraction from Patches : Next, mathematical descriptors are com-
puted from each patch to form feature vectors, which capture aspects such
as color, shape, and texture. Common feature extraction techniques include
CNNs, GLCM, wavelet transforms, and Gabor filters.

3. Patch Processing or Feature Fusion : At this stage, two main approaches are
possible : each patch can be processed independently, generating a predic-
tion for each, or the feature vectors from all patches can be concatenated
or fused to form a unified input for further processing.

4. Final Image Classification : In the final step, predictions from the previous step
are combined to produce an overall classification for the entire image. This
may involve majority voting among individual patch predictions or applying
machine learning to the fused features, resulting in a final image class or
score.

Below, we describe key methods for autonomous diagnosis of various organs
in ultrasound images. Although ROI-based methods date back to 1996 [121], we
focus on approaches from 2017 onward, which build on earlier advancements.

ROI-Based Diagnosis : Liver

Beginningwith the research developed in [159], the authors propose amethod
for the automatic diagnosis of liver cirrhosis using the features extracted from the
liver capsules in ultrasound images. The liver capsule, also known as Glisson’s
capsule, refers to the boundary separating the liver parenchyma from surrounding
structures. In healthy subjects, it appears thin and uniform; however, in patients
with cirrhosis, it can become thickened and uneven due to fibrotic changes. To

9
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Figure 2.1 – Overview of a Region of Interest (ROI)-based approach for pathology
detection in ultrasound images. The process begins with ROI extraction, where spe-
cific areas of interest are defined, typically using bounding boxes or segmentation
masks. Features are then extracted from each ROI, capturing relevant patterns
such as texture and shape. In the next step, these features are either individually
processed or fused into a unified feature set. Finally, the image classification stage
combines the individual or fused predictions to produce a final pathology classifi-
cation, which may be in the form of a categorical label or a continuous score.

detect the liver capsule, they first apply feature descriptor operations around a
30×30 pixel sliding window across the ultrasound image and classify these windows
using depth-2 decision trees. They then filter out false positives by retaining only
the ROIs that contribute to forming a liver capsule-like shape, effectively isolating
the capsule for analysis.

The detected liver capsules are used to define a ROI containing the entire
capsule boundary within the image, which is used for the classification of liver
cirrhosis. They employ a CNN to compute features from the extracted ROI, followed
by a SVM classifier to achieve the final classification scores. Using this method, they
achieved an AUC of 0.951, indicating high accuracy in diagnosing cirrhosis.

A well-know work using ROI-based approach for the classification of liver
steatosis is [20]. In their work, the authors propose a custom 22-layer CNN to classify
liver images as either normal or steatotic. In their work, they manually define a
ROI comprising all the liver parenchyma pixels, removing all the rest from the
image. Their dataset consists of images from the right lobe of the liver, which were
manually curated from a cohort of 63 patients (36 with steatosis and 27 diagnosed
as normal). Ground-truth labels were obtained from biopsy reports. The model
was evaluated using 10-fold cross-validation, achieved a perfect AUC score of 1.0,
underscoring the effectiveness and promise of region-based diagnostic methods
as early as 2018.

Following their work, in [285] the authors developed a custom CNN trained
on liver patches to classify varying degrees of steatosis. For each of the four
classes representing the severity stages, they collected 500 patches for training
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and evaluation, although the specific labeling protocol was not detailed. The
model achieved a classification accuracy of 90%. Similarly, [56] extracted visual
features frommanually defined ROIs within the liver using specialized software [215,
232] and applied classical machine learning techniques for steatosis classifica-
tion in pediatric patients. Labeling was performed by a board-certified pediatric
radiologist, and the method yielded AUC scores exceeding 0.933.

In 2020, the authors [44] applied a VGG-16 network [224] to diagnose hepatic
steatosis by analyzing manually selected patches of liver parenchyma. The model
achieved AUC scores of 0.71, 0.75, and 0.88 for distinguishing mild, moderate, and
severe steatosis, respectively. Additionally, they incorporated Shannon entropy-
based imaging to quantify microstructural variations in the tissue from ultrasound
backscatter signals, which enhanced the diagnostic performance. With this me-
thod, the model’s AUC scores improved to 0.68, 0.85, and 0.9 for mild, moderate,
and severe steatosis classifications, respectively.

In their 2022 work [76], the authors combine ROI-based feature extraction with
genetic algorithms to enhance steatosis classification in ultrasound images. They
employ a genetic algorithm [268] to identify optimal ROIs by adjusting the position,
size, and classification thresholds specific to each ROI. At each iteration, GLCM
[206] and statistical features are extracted and used to train independent Extreme
Learning Machine (ELM) classifiers [32]. The genetic algorithm’s fitness function
minimizes the number of incorrectly classified ROIs, while the classifier’s objective
function maximizes correct classifications through majority voting across ROIs. Their
dataset consists of 300 ultrasound images from different patients, with diagnostic
labels and initial ROI positions for the genetic algorithm manually annotated by
three experienced radiologists. Achieving 95.71% accuracy, this approach de-
monstrates the potential of dynamically optimized ROI placement, inspiring future
advancements in adaptive ROI-based diagnostic models.

Lastly, various other studies adopt similar approaches in one or more aspects
for the classification of liver pathologies [2, 201, 184, 6, 203, 139, 225, 1, 208]. Inter-
ested readers are encouraged to refer to these publications for further details.

ROI-Based Diagnosis : Kidney

Starting with the method proposed by [138] in 2019, the authors trained
regression and classification neural networks to diagnose patients with CKD. They
developed a model to estimate glomerular filtration rate (eGFR), a key indicator of
CKD. The eGFR is a clinical metric calculated using formulas that measure kidney
function by quantifying the amount of waste products in the blood. Additionally,
eGFR can be used to generate binary labels for CKD classification, with values
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less than 60 mL/min/1.73m2 indicating the presence of the disease. The authors
collected a dataset of 37697 ultrasound images and manually selected those
containing the whole kidney with kidney length annotations, resulting in a final set
of 4505 high-quality kidney ultrasound images. These images were then cropped
to obtain kidney ROIs for training the neural networks. eGFR values were obtained
within four weeks before or after ultrasound acquisition.

They used a ResNet-101 backbone [97], freezing the initial layers and mo-
difying the final layer to a single neuron with linear activation for estimating
continuous-valued eGFR scores. Additionally, they applied an eXtreme Gradient
Boosting (XGBoost) model [47] using features extracted from the backbone to
train a binary classifier for CKD. This approach achieved a Pearson correlation
coefficient of 0.741 between predicted and actual eGFR values, with a Mean
Absolute Error (MAE) of 17.605 mL/min/1.73m2. The binary classification yielded an
AUC score of 0.904, demonstrating the method’s precision.

In [294], the authors developed a deep learning approach to detect conge-
nital abnormalities of the kidney and urinary tract (CAKUT) in children. The input
ultrasound images are first segmented using a graph cuts method [295], a feature-
based segmentation technique optimized for kidney segmentation in ultrasound
images by utilizing color, shape, and texture features extracted with Gabor filters
[165, 58].Although this approach avoids manual ROI selection, it relies on a highly
specialized hyper-parametrization that requires meticulous and labor-intensive
feature engineering. Their kidney-ROI classification method combines features
extracted fromCNNs [137] with conventional imaging features such as geometrical
features and Histogram of Oriented Gradients (HOG) [55]. These combined fea-
tures are then used to train a Support Vector Machine (SVM) classifier to distinguish
between pathological and healthy kidneys. The study cohort included 50 healthy
subjects and 50 patients with CAKUT, with labels obtained from medical records.
The proposed method achieved AUC scores of 0.92 for the left kidney and 0.88 for
the right kidney, showcasing its effectiveness.

Similarly, [42] used ROIs defined by manually segmented kidney masks (whole
kidney, kidney parenchyma, and central sinus) to extract GLCM features [93]
specific to eachmask structure. These features were combinedwith morphological
and statistical characteristics features to create the input vector for an SVM model.
However, using a dataset of 798 ultrasound images, the model achieved a modest
accuracy of 80%.

In [128], the authors propose a method for CKD diagnosis using features
extracted from specific kidney ROIs. They define three distinct ROIs within the
kidney : the Renal Cortex, the Cortex-Medulla boundary, and the Renal Medulla.
From each ROI, 19 GLCM features [93] are extracted, resulting in a total of 57 kidney
features per image. These features are forwarded into a 10-layer dense CNN with a
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softmax output layer to classify images into three categories : normal kidney, mild
CKD, and severe CKD. Ground-truth labels were based on eGFR measurements,
and using a dataset of 741 ultrasound images, the model achieved an accuracy
of 95.4%

Lastly, in [3], a similar method was developed, focusing on a single kidney ROI
and extracting 14 GLCM features [93]. Using a dataset of 700 ultrasound images
with eGFR-based ground-truth labels, this approach achieved an accuracy of
97.56%.

2.1.1.2 Whole Image for Diagnosis

Whole-image methods offer a straightforward approach for automatic abnor-
mality detection in ultrasound images. By using entire ultrasound images as input
and leveraging standard neural network architectures, these methods are easy
to implement, significantly reducing development time. However, this reduction
in engineering workload comes at the cost of requiring larger training datasets
compared to ROI-based methods. This is because the neural network must learn
not only to identify relevant regions but also to ignore irrelevant areas within the
image, making effective training more data-intensive.

The general process for Whole-image methods includes the following steps
(illustrated in Figure 2.2) :

1. Backbone Feature Extraction : A neural network backbone is used to extract
features from the entire image. The most commonly used architectures for
this purpose are CNNs and Transformers. Given the high complexity of these
models, which typically have millions of parameters, pretrained backbones
on large datasets such as ImageNet [59] are often used to enhance per-
formance. In many cases, the initial backbone layers are frozen (i.e., kept
unchanged during training), allowing only the last layers to be trained.

2. Classification/Regression Head : After feature extraction, a classification
or regression head transforms the high-dimensional feature map into either
categorical or real-valued outputs depending on the training task. Popular
choices for this stage include dense (fully connected) layers, as well as SVM
or logistic regression, depending on the task. In some Transformers models
they can use one of the input tokens for the classification, called the "[CLS]"
token (classification token).

Below, we present the most relevant works within these categories, organized
by the specific pathologies being diagnosed.
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Figure 2.2 –Workflow forwhole-imagemethods in ultrasoundabnormality detection.
These methods use a backbone network (e.g., CNN or Transformer) to extract
global image features, followed by a classification or regression head that outputs
a diagnosis, such as a categorical label or real value.

Whole Image for Diagnosis : Liver

A landmark 2018 contribution in this category for the assessment of steatosis
through single-image analysis is Byra’s study [29], notable for introducing a publicly
accessible steatosis dataset. The authors utilized an Inception-ResNet-v2 model
[96], pre-trained on the ImageNet dataset [59], to extract relevant image features
from ultrasound scans. These features were then used to train a SVM to classify liver
ultrasound images as either healthy or pathological.

The dataset consists of images from 55 patients, all captured in the liver-
kidney plane using standard ultrasound machines with medium-quality resolution.
Ground-truth labels were obtained via histopathological analysis, where steatosis
was defined as the percentage of hepatocytes exhibiting fatty infiltration. Despite
the relatively small dataset size, the study reported near-optimal performance,
achieving an impressive AUC score of 0.977, highlighting the efficacy of their
approach. This dataset has since become a valuable resource, used widely by
other researchers, including ourselves..

Building on this foundation, another notable study from 2018 [194] applied a
similar approach using a VGG-16 model [224] for steatosis prediction. The model
was trained on a dataset comprising 81 normal liver images and 76 images from
patients with steatosis, acquired at multiple planes. These images were labeled by
two experienced radiographers, and the trained model achieved an accuracy of
90.6%.

In 2021, Zamanian et al. [278] advanced Byra’s methodology by combining
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multiple neural networks for feature extraction. Each image was processed by four
different pre-trained models : Inception-ResNet-v2 [96], GoogLeNet [234], AlexNet
[137], and ResNet-101 [97]. The features from each model’s output were aggrega-
ted and normalized before being used to train an SVM for steatosis classification.
Using the same dataset as Byra’s study, they significantly improved the AUC score
from 0.977 to 0.999, demonstrating the effectiveness of combining multiple feature
extractors.

Similarly, [50] explored the application of several single-image neural networks
to classify the severity of steatosis (normal, mild, moderate and severe) using
b-mode ultrasound images. Their dataset consisted of 21855 images from 2080
patients, with ground-truth diagnoses confirmed by at least two gastroenterologists.
The authors evaluated various CNN architectures, including VGG-19 [224], ResNet-
50 v2 [96], MobileNet v2 [211], Xception [49], and Inception v2 [112]. ResNet-50 v2
emerged as the top-performing model, surpassing the others and achieving AUC
scores of 0.974 (mild steatosis vs. others), 0.971 (moderate steatosis vs. others), 0.981
(severe steatosis vs. others), 0.985 (any severity vs. normal), and 0.996 (moderate-
to-severe vs. normal-to-mild).

Building on the success of previous ROI-based diagnosis methods, the authors
in [200] propose a three-step approach to classify hepatic steatosis in ultrasound
images by automatically isolating the liver-kidney (sagittal) ROI. To automate the
selection of the ROI, they employ a DeepLabv3+ semantic segmentation network
[45] to isolate and crop the liver and kidney regions. The model, trained on 2650
manually annotated segmentation masks, achieves precise segmentation within
the sagittal plane.

After segmentation, two Inception V3-based neural networks [235] are used
to further refine the dataset. The first network classifies ultrasound images into
parasagittal or non-sagittal planes, while the seconddetects a ring-shapedcontour
surrounding the kidney cortex (a defining feature of parasagittal images). Using
these two networks, the authors ensure that only high-quality images from the
liver-kidney plane are selected, what also filters erroneous segmentation masks
from the previous step. The result is a curated dataset of ultrasound images that
contain only the liver and kidney regions.

This dataset is then used to train their final model, nammed SteatosisNet,
their final classification network. SteatosisNet, a modified version of Inception V3,
classify steatosis severity into four levels : normal, mild, moderate, and severe.
The method flowchart is presented in Figure 2.3. The authors report a perfect
classification accuracy (100%), sensitivity, and specificity. However, despite this
impressive performance, the approach has several limitations, such as the need
for extensive manual annotations and its reliance on consistently capturing the
liver-kidney plane during ultrasound exams. Additionally, the method’s heavy
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reliance on specialized design choices tailored for steatosis classification reduces
its generalizability to other liver diseases or different medical imaging tasks. This
specificity, while beneficial for steatosis diagnosis, limits its broader applicability
without significant modifications.

Figure 2.3 – Simplified flowchart of the proposed method : (a) Liver and kidney (L-K)
detection yielding 1st parasagittal and non-parasagittal images. (b) Ring detection
to double-check the 1st nonparasagittal image, producing 2nd parasagittal and
non-parasagittal images. (c) Grading of the 1st and 2nd parasagittal images using
SteatosisNet according to the level of steatosis. Figure and description from the
authors [200]

In [120], the authors investigate the use of multiple image classification net-
works to classify the severity of liver fibrosis using ultrasound images. They evaluated
the performance of VGG-16 [224], ResNet-50 [96], DenseNet-121 [103], EfficientNet-
B0 [236], and ViT [64]. The training dataset included 766 patients, with each image
manually labeled by an expert radiologist into one of five classes : no fibrosis
(F0), portal fibrosis (F1), periportal fibrosis (F2), septal fibrosis (F3), and cirrhosis (F4).
ResNet-50 achieved the highest accuracy, with 85.92% for five-level classification
(F0-F4) and 87.92% for three-level classification (combining F1, F2, and F3 into one
class). These results demonstrate that ResNet-50 remains competitive with more
modern architectures like ViT and EfficientNet. An ablation study further showed
that models trained on images from specific ultrasound machines developed
biases toward those machines, impacting generalizability.

In [66], the authors propose an ensemble neural network approach for clas-
sifying two types of liver lesions in US images : hemangioma and hepatocellular
carcinoma (HCC). The training dataset includes 350 US images from 59 patients,
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Vision Transformer (ViT)

Figure 2.4 – ViT Model Overview

The ViT model [64] transforms an input
image into a collection of tokens, ana-
logous to text inputs in language mo-
dels. The image is divided into N non-
overlapping patches of size P ×P , which
are flattened (pi) and mapped to an
embedding dimension d using a linear
layer :

Ei = piWE + bE , E ∈ RN×d (2.1)

Positional embeddings are then added
based on patch location :

X = E + Ppos, X ∈ RN×d (2.2)

The attention mechanism follows the
same principle as in text processing. The
input X is projected using learnable ma-
trices WQ, WK , and WV for queries,
keys, and values :

Q = XWQ, K = XWK , V = XWV

(2.3)

These projections compute the Attention
Weights (Att) :

Att = softmax
(

QK⊤
√

dhead

)
(2.4)

The weights are used to combine patch
values :

z = Att · V (2.5)

For Multi-Head Attention, the input X is
split into n heads processed in parallel.
The outputs are concatenated and pro-
jected by a linear layer Wo to match the
original dimension d.

(X) = Concat(z1, . . . , zn)WO (2.6)

After multiple transformer blocks, the fi-
nal features are used for vision tasks.
Transformers excel by combining infor-
mation from different image regions,
which is critical for tasks requiring global
context [248, 281, 166].

consisting of 202 images of HCC and 148 of hemangioma. Multiple CNN-based ar-
chitectures were evaluated, including VGG-16/19 [224], DenseNet [103], Inception
[235], InceptionResNet, ResNet [96], and EfficientNet B0-B7 [236], with the entire
image used for classification without cropping around the lesion. The three best-
performing networks (DenseNet201, DenseNet169, and ResNet152V2) were then
combined in an ensemble model by averaging their outputs. This ensemble model
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achieved an AUC score of 0.944, demonstrating that effective lesion classification
is achievable without the need for lesion cropping.

Lastly, various other studies uses Whole Images for the classification of liver
pathologies [87, 222, 52, 33, 40, 170]. Interested readers are encouraged to refer
to these publications for further details.

Whole Image for Diagnosis : Kidney

In [229], the authors propose an ensemble neural network model to classify
kidney pathologies and differentiate them from healthy kidneys. To ensure to
forward only high-quality images to the deep learning model, they use the PIQUE
score [253] to select only images havinga noise score below 50, indicating lownoise
levels. While the PIQUE score doesn’t guarantee anatomical feature presence, it
does ensure minimal image degradation. This method was use to obtain a dataset
of 4940 b-mode kidney ultrasound images from retrospective data, being 10%
reserved for evaluation and 90% for training. Labels were assigned through visual
inspection by expert radiologists, categorizing each image as either a normal
kidney, renal cyst, renal stone, or renal tumor ; which are presented in the Figure
2.5.

Figure 2.5 – Examples of kidney abnormalities as categorized by [229] : (a) Normal
kidney, (b) Kidney with cysts, (c) Kidney with stones, (d) Kidney with tumor. Figure
extracted from their article.

Their strategy involves an ensemble approach utilizing pre-trained CNN mo-
dels : ResNet-101 [97], MobileNet v2 [211], and ShuffleNet [289]. Each CNN extracts
features that are used to train independent SVM classifiers. The final classification
is determined by majority voting across the three CNN-based SVM outputs. This
method achieved an accuracy of 95.58%, highlighting the effectiveness of their
approach.
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2.1.1.3 Multiview Diagnosis

Single-view automatic diagnosis methods in ultrasound (US) have shown
promising results ; however, they may underperform if the selected image lacks
distinctive or sufficient diagnostic features. To address this limitation, many resear-
chers have introduced approaches that use multiple pre-defined ultrasound views
(or planes) as input to machine learning models. By combining information from
different views, these methods enhance diagnostic accuracy by analyzing dis-
tinct structures and examining a larger portion of the organ. This approach is an
intermediate step toward fully volumetric (3D or video) ultrasound data, although
it typically relies on manually selected planes.

The overall process for Multiview Diagnosis has many parallels with that of
ROI-Based Diagnosis, where pre-defined ROIs correspond to pre-defined views.
The steps are as follows (illustrated in Figure 2.6) :

Figure 2.6 – Multiview diagnosis approach for ultrasound, where multiple pre-
defined views are processed by backbone networks to extract features. These
features are either classified individually or combined through methods like ave-
raging or neural layers to produce a final diagnosis, leveraging complementary
information across views.

1. Feature Extraction from Views : In this initial step, each view is processed by
a backbone network model, typically a CNN, to extract relevant features.
Each view model can either have independent weights or share weights
across all views.

2. View Processing or Feature Fusion : Next, features from each view are either
passed independently to a classification/regression head (end-to-end trai-
ning), concatenated, or transformed through methods like Graph Neural
Networks for enhanced information sharing.

3. Final Diagnosis : In this final step, view-specific predictions can be combined
through majority voting or averaging, or the concatenated/transformed
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features can be fed into a final classification/regression head to generate
the final diagnosis.

Below, we present the most relevant works within these categories, organized
by the specific pathologies being diagnosed.

Multiview Diagnosis : Liver

In the study by Colantonio et al. [51], a custom multiview CNN is introduced,
designed to predict continuous-valued steatosis scores using two input branches.
These branches correspond to two different scan views : the oblique subcostal view
(AR) and the supine/left lateral view (HR). Ground-truth labels for model training
were obtained using Hydrogen Magnetic Resonance Spectroscopy (H-MRS), a
highly accurate method that measures the ratio of fat to water by detecting
hydrogen atoms in liver tissues.

It is important to note that H-MRS and Magnetic Resonance Imaging Proton
Density Fat Fraction (MRI-PDFF) are distinct techniques. While MRI-PDFF quanti-
fies the proton density of fat relative to water across the entire liver, providing a
whole-liver fat percentage, H-MRS offers localized measurements by analyzing
the chemical composition of fat and water in specific regions. Both methods are
highly accurate, but H-MRS provides more detailed spectroscopic analysis. In a
comparative study [62], the authors evaluated both techniques using histopatho-
logical results as the ground truth, demonstrating that H-MRS slightly outperformed
MRI-PDFF in terms of sensitivity (92.6% vs. 89%), specificity (95.7% vs. 88%), and
Pearson correlation (0.68 vs. 0.63).

The method proposed by the authors achieved promising results, with a root
mean square error (RMSE) of 1.11 and a standard deviation of 0.77, underscoring
the utility of multiview inputs in improving hepatic fat quantification accuracy.

Similarly, Byra et al. [28] expanded upon their previous research [29] by im-
plementing a multiview approach for hepatic steatosis classification. In this study,
they analyzed four distinct liver views : three in the transversal plane (hepatic
veins, portal vein, and right posterior portal vein) and one in the sagittal plane
(liver-kidney interface). A sample set of images for each view, shown in Figure 2.7, is
drawn from their study. The dataset consists of 135 patients diagnosed with NAFLD,
with ground-truth labels derived from MRI-PDFF, different from their previous work
they used histopathology results as ground-truth.

The authors designed regression and classification view-specific models and
an ensemblemodel for the combined views, utilizing the same Inception-ResNet-v2
architecture [96] used in their previous work. To fuse the information from different
views, the authors averaged the outputs from each view-specific model to gene-
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Figure 2.7 – Ultrasound images of livers with different PDFF values (7%, 19%, and
39%), corresponding to increasing fat accumulation. The blurring of veins and the
liver/kidney interface becomes more pronounced as fat accumulation increases.
White arrows indicate blood vessels and the kidney region. Image and description
adapted from [28].
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rate a multiview prediction. The best performing single-view model was the right
posterior portal vein, achieving an AUC score of 0.90 and a Pearson correlation
coefficient of 0.78. The multiview ensemble method offered a marginal improve-
ment, raising the AUC to 0.91 and the Pearson correlation to 0.81, indicating the
value of combining multiple views for enhanced steatosis classification accuracy.

Following a similar approach, Li et al. [144] present a deep learning framework
designed for multiview liver steatosis prediction. The authors retrospectively collec-
ted ultrasound images from various anatomical regions of the liver, focusing on the
following key views : left liver lobe (longitudinal and transverse views), right liver lobe
(right lobe intercostal view), liver-kidney contrast (lower right lobe intercostal view),
and subcostal view (with kidney and hepatic veins). This comprehensive image
collection enabled the development of a robust training set for their predictive
model. They employed a ResNet18 [97] architecture, configured for single-image
multiclass classification, to categorize liver steatosis into four degrees of severity.
For view-specific predictions, the authors averaged the prediction scores across
all images associated with each view. To generate a multiview prediction, they
further averaged the scores across the individual views.

The training dataset consists of ultrasound images from 2899 patients, with
visual diagnoses for steatosis used as the training labels. For testing, the authors
employed histopathology-proven diagnoses to validate their model. The AUC
scores for classifying mild, moderate, and severe steatosis were 0.85, 0.91, and
0.93, respectively. When compared to FibroScan, the proposed solution either
outperformed or matched the performance of FibroScan’s Controlled Attenuation
Parameter (CAP) scores.

In their latest work [94], Li et al. revisit a limitation from their earlier research
[144], where they relied exclusively on histology-proven diagnoses as the evaluation
ground truth. This strategy, however, may introduce selection bias since biopsies
are recommended primarily for patients with suspicious conditions. To address this
issue, they leveraged the correlation between liver steatosis and body weight to
introduce a new cohort of patients who underwent significant weight changes.
Their findings revealed a clear correlation between weight gain and AI predicted
steatosis values, with a coefficient of determination (R2) of 0.62. By using body
weight, considering it a strong indicator of steatosis, the authors were able to
validate their approach more broadly and demonstrate its applicability to the
general population.

Many other works assessing liver lesions with a multiview paradigm exists in
b-mode [130] and others with Contrast-Enhanced Ultrasound (CEUS) data [283,
282, 91, 72, 254]. Interested readers are encouraged to refer to these publications
for further details.
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Multiview Diagnosis : Kidney

Building on the work of [294] in classifying CAKUT in children, [274] proposes a
multiview deep learning approach using Multiple Instance Learning (MIL). In this
framework, multiple images from the kidney of the same patient are analyzed, with
ground truth labeled as normal only if all images are normal, and as pathological
if at least one image exhibits pathological signs. The authors first extract image
features using a custom 3-layered CNN model and then construct a Graph Neural
Network (GNN) by representing each image’s features as a node. The graph
edge weights are assigned based on the Euclidean distance between nodes
(image features), creating an undirected graph optimizedwith theGNN framework
[132]. An attention layer is then applied to the resulting node features to assign
higher weights to relevant nodes. Additionally, a single-image classification loss is
computed from features obtained from images with reliable individual ground truth
labels, including all normal images and manually selected pathological ones. The
entire network was trained on a dataset of 105 infants with CAKUT and 120 children
with mild hydronephrosis as a control group. The model achieved a sensitivity of
85.82% and a specificity of 83.81%, which corresponding to an approximate AUC
score of 0.85, using the single operating point formula.

In their subsequent work [273], the authors propose a simplified version of
their approach, replacing the custom CNN and GNN with pretrained CNNs and
predefined kidney views. Two VGG-16 models [224] were trained independently :
one for sagittal view images and another for transverse view images. For diagnosis,
a CAKUT prediction is made if at least one view is classified as pathological ; for
a control diagnosis, both views must be classified as normal. This study used a
dataset of 86 infants with CAKUT and 71 children with mild hydronephrosis as a
control group. By applying this multiview approach, they significantly improved
the AUC score from 0.815 to 0.961 compared to the single-view method.

Yin’s progression in this work illustrates how leveraging robust, pretrained off-
the-shelf CNNmodels and refining the problemwith additional information (such as
specific views) can dramatically enhance the accuracy of deep learning models
while reducing engineering complexity.

2.1.1.4 Additional Modalities for Diagnosis

Multiview methods bring the innovation of processing images from multiple
views throughdedicatedbranches, combining view-specific features in later stages
of the network. While this approach enhances deep learning models with com-
plementary visual data, it remains limited to the information available in b-mode
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ultrasound images. To expand beyond this, researchers have integrated additional
modalities like elastography, FibroScan, Doppler, and patient clinical data aiming
to incorporate unique insights beyond standard ultrasound. For example, Doppler
is particularly useful for assessing vascular characteristics in liver lesions to help
identify malignancy, while FibroScan and elastography excels for evaluating fibrosis
and cirrhosis. By incorporating these diverse modalities, models benefit from richer
multimodal data, what can lead to more precise and comprehensive diagnoses.

The general process for multimodal diagnosis methods is similar to that of
multiview diagnosis, with the key distinction being the use of distinct neural network
architectures specific to the data type of each input branch. The steps are as
follows (illustrated in Figure 2.8) :

1. Feature Extraction from Modalities : In this step, each input modality is pro-
cessed by an independent branch, where a dedicated backbone network
extracts relevant features to a common space. Depending on the input data
type (image, text, 1D signal, etc.), preprocessing and network architectures
may vary across branches.

2. Modality Feature Fusion : The extracted features from each branch are com-
bined to create a multimodal feature array, providing a highly informative
feature representation for the next stage.

3. Final Diagnosis : The fused features are then forwarded into a final network
followed by a classification or regression head to generate the final diagnosis.

Figure 2.8 – Overview of multimodal diagnosis methods incorporating additional
data types such as clinical records, elastography, and Doppler signals, processed
through dedicated network branches to improve diagnostic accuracy.

Below, we present the most relevant works within these categories, organized
by the specific pathologies being diagnosed.
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Additional Modalities for Diagnosis : Liver

Starting by [90], the authors developed a one-dimensional convolutional neu-
ral network (1D CNN) to predict hepatic steatosis using ultrasound radiofrequency
(RF) signals as input. They collected data from a cohort of 204 patients, comprising
140 diagnosed with NAFLD and 64 control participants without liver disease. The
labels for training were derived from MRI-PDFF measurements.

To acquire the set of 1D RF signals from the liver, they first defined a ROI using
b-mode ultrasound images as a reference. This ROI was intended to include as
much as possible of the liver parenchyma below the liver capsule as possible
while avoiding tissues outside the liver. They then acquired RF scan lines within this
ROI ; each patient had 10 ultrasound frames, each containing 256 RF scan lines,
resulting in a total of 2560 samples per patient. They trained two custom 1D CNN
models : one for binary classification between pathological and normal liver tissue,
and another for continuous-valued fat fraction estimation. The models achieved
an AUC score of 0.98 for binary classification and a Pearson correlation coefficient
of 0.85 for fat fraction estimation.

In [271], the authors used transfer learning to stage liver fibrosis utilizing two
different ultrasound modalities : b-mode images and elastogram images from
two-dimensional shear wave elastography. They studied a cohort of 466 patients,
with histological examination of liver tissue serving as the ground truth for fibrosis
staging. Images were acquired from the right liver lobe. On the elastogram images,
they defined a ROI on the liver parenchyma used for stiffness measurement, avoi-
ding lesions and the liver border. The same ROI was automatically applied to the
corresponding b-mode images to ensure both modalities analyzed the exact
same liver region.

They employedapretrained Inception-V3 network [235], fine-tuning the higher-
level layers to adapt to their specific task (independent models having b-mode
and stiffness imaging as input for categorical fibrosis staging). To combine both
modalities, they extracted 2048-dimensional feature vectors from each modality
using the corresponding fine-tuned CNNs. These feature vectors were concatena-
ted to form a 4096-dimensional feature vector, which was then input into three fully
connected layers acting as the final classifier. Using this method, they achieved
AUC scores consistently above 0.93 for predicting different stages of liver fibrosis.

In [60], the authors propose a machine learning framework for the classifica-
tion of three liver pathologies : steatosis, inflammation, and fibrosis. The framework
involves first delineating a ROI within the liver and then extracting quantitative
ultrasound (QUS), elastography, and RF data from that. From the selected ROI, 11
features are extracted : Point Shear Wave Elasticity, Normalized Mean Intensity
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Mean, Normalized Mean Intensity IQR, Scatterer Clustering Parameter Mean, Scat-
terer Clustering Parameter IQR, Coherent-to-Diffuse Signal Ratio Mean, Coherent-
to-Diffuse Signal Ratio IQR, Diffuse-to-Total Signal Power Ratio Mean, Diffuse-to-Total
Signal Power Ratio IQR, Total Attenuation Coefficient Slope, and Local Attenuation
Coefficient Slope.

The extracted features were then used to train a Random Forest model, with
histopathology-proven diagnoses serving as the ground truth. Using this approach,
the authors achieved AUC scores of 0.90 for steatosis, 0.75 for inflammation, and
0.77 for fibrosis, significantly outperforming elastography alone in all classification
tasks.

Following a similar approach, in [210], the authors evaluated different CNN
architectures (1D, 2D, and 3D CNNs) to process raw RF ultrasound data in combina-
tion with B-mode images. The RF data allowed for the computation of additional
ultrasound features, such as spectral and phase representations. Their findings
revealed that models using RF data achieved significantly higher accuracy than
the ones using b-mode images alone, with AUC scores of 0.994 and 0.938, res-
pectively. The study included 31 patients, with ground-truth labels derived from
magnetic resonance imaging proton-density fat fraction (MRI-PDFF). The deep
learning models also surpassed the accuracy of radiologists’ annotations when
compared against MRI-PDFF values, achieving an accuracy of 0.989 versus 0.914.

Finally in [115], the authors predict real-valued liver fat fraction percentages
using multiple US image modalities, with MRI PDFF serving as the reference fat
percentage labels. Their network is designed as a multi-branch CNN, where each
branch is dedicated to processing a different modality, as shown in Figure 2.9. The
first branch handles b-mode ultrasound images, similar to previously discussed
CNNs. The second branch processes tissue attenuation imaging (TAI), a pixel-by-
pixel map of tissue attenuation properties [150, 171]. The third branch uses tissue
scatter-distribution imaging (TSI), which reflects the arrangement and concen-
tration of scatterers within the tissue [171, 99]. The results were evaluated on 173
patients, 126 of whom had steatosis. Themodel demonstrated strong performance,
with a Pearson correlation of 0.86 (p < 0.001) when compared to MRI PDFF, and
an AUC of 0.97 in distinguishing steatosis from healthy patients. However, the main
limitations of the proposed method are the long acquisition times required for TAI
and TSI images, as well as the high cost of MRI PDFF for dataset annotation.

Additional Modalities for Diagnosis : Kidney

In [221], the authors designed a method to predict Acute Kidney Injury (AKI)
using a combination of ultrasound imaging and patient data (including demo-
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Figure 2.9 – The schematic illustrates the development of a two-dimensional convo-
lutional neural network algorithm for estimating hepatic fat fraction. Input data
include B-mode images, tissue attenuation imaging (TAI) maps, and tissue scatter-
distribution imaging (TSI) maps, all derived from radiofrequency data analysis.
These three input datasets (B-mode image, TAI map, and TSI map) generate a
single output : the deep learning–estimated US fat fraction (USFF). The network
consists of convolutional layers (C), pooling layers (P), and fully connected layers
(FC). Figure and description from the authors [115]

graphics, vital signs, and key laboratory results). The proposed hybrid model has
two input branches : one processes numeric patient data, while the other pro-
cesses b-mode US imaging data. The numeric data is first processed through 1D
convolutions and then reshaped to match the dimensions required for a ResNet-34
model [96]. The image branch uses a ResNet-50 model [96]. The features from
both branches are concatenated, processed through an additional CNN block,
followed by two fully connected layers, and finally a softmax layer, yielding a
binary output.

Given that their dataset contains both paired and unpaired data (numeric
and image data from different patients), the model is trained with each branch
separately when only unpaired data is available. This approach allowed them
to expand their dataset, incorporating 612 cases with paired data and 2532
additional cases containing numeric data only. The proposedmethodachievedan
AUC score of 0.95, marking a significant advancement in AKI diagnosis accuracy.

To integrate multiple sources of input information, the authors of [300] pro-
posed a framework for diagnosing CKD, with a particular focus on kidney fibrosis.
Their machine learning model combines features from several imaging modalities.
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From Shear Wave Elastography (SWE), mean and median elasticity values were
measured at multiple positions ; from B-mode ultrasound, kidney length, width, and
thickness were measured ; from color Doppler flow imaging, blood flow parameters
and resistance indices were obtained ; and finally, clinical variables such as age,
sex, body mass index (BMI), and medical history were included. All features were
concatenated, and a Random Forest algorithm was used for feature selection and
dimensionality reduction [227]. An SVM model was then trained on data from 117
patients, with ground-truth labels obtained via kidney biopsy. The model achieved
an overall AUC score of 0.83 for predicting kidney fibrosis, performing less effectively
in early stages (AUC 0.64) compared to moderate to severe fibrosis (AUC 0.94).

Using an innovative approach, [86] utilizes cardiac ultrasound imaging to
predict CKD, supporting the hypothesis that changes observable in four-chamber
heart ultrasound images can be used for CKD staging. They begin by extracting
local texture and contour features using steerable filters (similar to Gabor Filters
[190]) at different orientations, which are then averaged to create a feature repre-
sentation image. Next, within a predefined grid of non-overlapping blocks, they
compute multiple entropy measures [78, 219, 198, 19] for each block, generating
a local feature for each. To incorporate spatial information for the final classifica-
tion, they apply supervised neighborhood preserving embedding (SNPE) [98, 85],
resulting in a new low-dimensional feature representation. Finally, a classical SVM
model is used to estimate CKD stages. The study was conducted on a cohort of
220 patients, including 120 with CKD, with ground-truth labels derived from eGFR
values. This method achieved 97.27% accuracy in staging CKD (distinguishing
between healthy and CKD stages 3, 4, and 5), demonstrating the effectiveness
of echocardiographic images in diagnosing kidney diseases. However, despite
the high accuracy, the method appears sensitive to hyperparameter tuning and
dataset curation, which may limit its applicability in real-world scenarios where
data variability is significant.

2.1.2 Image selection and quality control in
ultrasound diagnosis

In previous sections, we discussed single-image machine learning methods
that perform classification and regression tasks to achieve automatic diagnosis
in ultrasound imaging. These approaches have demonstrated impressive perfor-
mance, often reaching AUC values above 0.95 across all categories (ROI-Based
Diagnosis, Whole Image Analysis, Multiview, and Multimodal Diagnosis).

However, the vast majority of these methods are trained and evaluated on
manually curated ultrasound datasets. This curated data can vary in form : selected
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images from one or more pre-defined standard planes, images with minimal noise
and artifacts, or images specifically cropped to focus on annotated bounding
boxes or segmentation masks around organs and their internal structures.

To automate the image selection and quality control process, deep lear-
ning models can be developed to ensure that input images meet the necessary
diagnostic standards. In this context, two key factors influencing the suitability of
ultrasound images are identified : recognizability of anatomical structures and
levels of noise and artifacts.

1. recognizability of anatomical structures : this factors refers to the clear
presence of the organ and relevant anatomical structures for diagnosis. It can
be assessed through classification tasks (e.g., standard plane classification)
or localization tasks (e.g., object detection or semantic segmentation), which
can also be used to define ROIs and measure organ dimensions.

2. levels of noise and artifacts : This factor addresses the presence of noise,
shadows, and other ultrasound artifacts in the image. While the organ may
still be identifiable in degraded images, excessive artifacts can compromise
diagnostic accuracy.

To evaluate these factors, various deep learning strategies have been propo-
sed. We have grouped these strategies into the following categories :

1. Object Detection : This approach involves detecting and localizing the struc-
tures of interest by predicting bounding boxes around them.Object detection
can be used to define ROIs for cropping or further analysis and to measure
organ dimensions, such as the length of the principal axis.

2. Semantic Segmentation : In this method, each pixel in the image is assigned
a label indicating whether it belongs to the structure of interest. Semantic
segmentation enables precise isolation of anatomical structures from the
background and can be utilized in methods requiring detailed structural
delineation. It also allows for the measurement of organ dimensions and
morphological features.

3. Standard Plane Recognition : This strategy focuses on classifying images
according to predefined standard planes that are considered optimal for
diagnosis. Standard plane recognition can be formulated as a categorical
classification task or as predicting continuous scores representing the degree
of conformity to the standard plane criteria.

4. Image Quality Assessment : This involves evaluating and quantifying the level
of noise and artifacts present in ultrasound images. Methods in this category
may output a real-valued quality score, perform binary classification to indi-
cate whether the image meets quality standards, or generate segmentation
masks that highlight areas affected by noise or artifacts.
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Specifically, segmentation and object detection techniques enable the iso-
lation of the organ’s ROI from the image, so simplifying the diagnostic task, as
demonstrated in Section 2.1.1.1. Similarly, standard plane recognition has significant
potential to reduce variance in whole image diagnosis (Section 2.1.1.2) and is
essential for the automation of multiview diagnostic (Section 2.1.1.3).

In the following sections, we present a selection of methods for each category.
Since object detection and semantic segmentation are not the primary focus
of this thesis, we will highlight only the works most pertinent to our research. For
readers interested in a more extensive examination of these methodologies, we
provide references to additional literature.

2.1.2.1 Methods using Object Detection

Object detection aims to identify and localize specific structures within an
image by outputting bounding boxes around them.In the context of this work,
object detection networks take a 2D ultrasound image as input and output a set
of bounding boxes, each labeled with a predicted class

Training these networks involves supervised learning on manually annotated
images where each object’s bounding box and class label are provided. The loss
function typically combines twomain terms : a localization term and a classification
term. The localization term, often using L1 or IoU loss, evaluates the accuracy of
the predicted bounding box coordinates. While the classification term uses cross-
entropy loss, as defined in the previous section.

In a 2021 study by [243], the authors trained a RetinaNet model [153] with
a ResNet-50 backbone [96] to detect and categorize liver focal lesions (LFFs) in
ultrasound images. This multi-class detection and classification problem included
the following lesion types : Hepatocellular Carcinoma (HCC), cysts, hemangiomas,
focal fatty sparing (FFS), and focal fatty infiltration (FFI). They extracted a total of
65,510 images from a cohort of 4808 patients, including 22472 images with LFF’s
positions and diagnostic annotated by radiologis with support of other clinical
data. The RetinaNet was initially pre-trained on the Microsoft Common Objects in
Context (MS-COCO) [154] dataset and then fine-tuned on the ultrasound dataset,
using 72% of the data for training.

The model achieved decent localization metrics, with a detection rate of 87%
and an IoU of 0.788, and performed well in classification, with 95.4% accuracy,
83.9% sensitivity, and 97.1% specificity. The error analysis revealed that the model’s
sensitivity was notably lower for small lesions (50% for lesions under 2 cm) but
improved significantly for larger lesions (92.3% for those over 3 cm). Sensitivity was
also reduced in patients with cirrhosis (79.5% vs. 89.7% in non-cirrhotic patients).
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In [53] published in 2022, the authors compared a mixed CNN/transformer-
based object detector (DETR [36]) with Faster R-CNN [197] for the detection and
categorization of LFFs. From a cohort of 1026 patients, they curated a dataset
of 2551 B-mode ultrasound images with visible lesions. Experienced radiologists
annotated each image with bounding boxes for the following structures : liver
parenchyma (classified as either healthy or with LFFs), benign LFFs (cysts, angioma,
focal nodular hyperplasia, or adenoma), andmalignant LFFs (metastasis and HCC).
During annotation, the radiologists had access to additional imaging modalities
such as contrast-enhanced ultrasound, CT, and MRI to ensure accurate labeling.
Examples of these bounding boxes are illustrated in Figure 2.10.

Both models (DETR and Faster R-CNN) were trained using standard data aug-
mentation techniques at the image and bounding box levels. Evaluation was
conducted in four categories : Lesion Detection within the Liver Parenchyma,
Lesion Localization, Lesion Characterization (Benign vs. Malignant), and Subcha-
racterization into Specific Lesion Types. For lesion detection and localization, both
networks performed similarly, achieving an accuracy range of 93-96%, compa-
rable to that of expert radiologists. However, in the lesion characterization and
subcharacterization tasks, DETR excelled with 81% and 76% accuracy, respectively,
surpassing both Faster R-CNN (76% and 72%) and the expert radiologists (59-61%
and 50-52%). For lesion localization, there was no statistically significant difference
between the performance of the networks and radiologists, whereas in lesion cha-
racterization, DETR was significantly superior to the experts (p <0.05), though not
significantly better than Faster R-CNN (p = 0.18). Although not statistically significant,
these findings suggest the potential of transformer-based models in enhancing
ultrasound CAD.

In [124], the authors propose a combined detection and segmentation ap-
proach for automatically locating and measuring renal cysts in ultrasound images.
The dataset consists of 2,664 B-mode ultrasound images from 1,444 patients, all
featuring renal cysts measurable by radiologists. Annotations involve placing two
landmarks (points) from which cyst length is calculated as the distance between
them. The authors first fine-tuned a YOLOv5 model [119] using bounding boxes
created from the cyst landmarks. These output masks were then used to crop
cyst regions of interest (ROIs), which served as inputs for a segmentation network
designed to pinpoint cyst landmarks. The segmentation model, UNet++ [298] with
a DenseNet121 backbone [103], was trained using saliency maps of the landmark
positions as ground truth. During inference, the network generated saliency maps,
and the lowest saliency coordinates were identified as landmark points following
post-processing adjustments. The system was evaluated against two experienced
sonographers, achieving 85% precision (compared to 86% and 83%), 86% recall
(compared to 87% and 84%), a position error of 3.22 mm (vs. 2.56 mm and 2.34
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Figure 2.10 – (A) A liver without lesions (green box) and (B) a liver with lesions
(orange box). (C) A benign lesion (focal nodular hyperplasia [small purple box])
and (D) a malignant lesion (hepatocellular carcinoma [small blue box]). (C, D)
show that benign and malignant lesions exhibit differences in texture and size. (E)
A benign lesion (cyst [purple box]) with a circular shape and dark pixel intensities,
and (F) a malignant lesion (metastasis [blue box]) with similar characteristics. These
images highlight the challenges of distinguishing malignant from benign lesions.
Figure adapted from [53].
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mm), and a diameter length error of 1.09 mm (vs. 1.21 mm and 0.95 mm). Ove-
rall, the system demonstrated competitive performance against human experts,
highlighting its potential for clinical application.

2.1.2.2 Methods using Semantic Segmentation

Semantic segmentation aims to identify and localize specific structures within
an image at the pixel level, assigning a categorical label to each pixel. In our
context, neural networks performing semantic segmentation receive a 2D ultra-
sound image as input and output a categorical mask, where the value of each
pixel in this mask indicates the predicted class (e.g., organ, structure).

The annotation effort required for training these networks is more intensive than
for previous methods, as it requires precise pixel-level annotations in the form of
segmentation masks. The choice of loss function can vary significantly but typically
includes pixel-wise classification losses (e.g., Cross-Entropy Loss), shape similarity
losses (e.g., Dice or IoU), or a combination of both.

Starting by the diagnosis of kidney diseases, to which the useful of semantic
segmentation for CAD has already been demonstrated in the ROI-Based Section
(2.1.1.1). It is also also supported in [37] back in 2016, where the authors demons-
trated that accurate kidney segmentation in b-mode ultrasound images can be
used for the diagnosis of kidney pathologies. In this early study, the authors ex-
tracted shape descriptors from manually segmented kidneys and trained an SVM
model, achieving an impressive AUC score of 0.98. Although reliant on manual
segmentation, this work provided early evidence that kidney segmentation could
be effectively leveraged for accurate diagnostic purposes.

Also, many methods try to solve the segmentation problem using the ap-
proach of region descriptors and machine learning. In [218], the authors segment
renal ultrasound images using K-means clustering and extract GLCM texture fea-
tures, which are then used with a meta-heuristic SVM classifier to diagnose renal
calculi with 98.8% accuracy.

A similar approach is used in [177], where the authors adopt a two-step
approach : first, they classify kidney images into normal kidney, kidney stones, and
kidney tumors, followed by segmentation of abnormal images. They extract 22
GLCM features [93] from the input images and select the most discriminative ones
using the Crow Search Optimization Algorithm (CSOA) [12]. These features are
then used to train a 3-layer dense neural network. For segmentation, they apply a
multi-kernel k-means algorithm, which combines a quadratic loss with the linear loss
used in classical k-means, applied solely to pixel intensity with manual identification
of pathological clusters. The authors report a classification accuracy of 93.45% and
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a segmentation accuracy of 99.61%. Although these high values indicate strong
performance, they may be due to extensive manual curation, optimal parameter
tuning, and manual cluster selection, potentially limiting the method’s scalability.

Today, end-to-end Deep Learning approaches are the preferred method for
automatic segmentation of ultrasound images. Most of these networks used or are
inspired by U-Net, which is well known model first introduced in 2015 [205]. These
architectures capture meaningful latent image features by downsampling the
input through an encoder block, which are then upsampled in a decoder block.
Skip connections link corresponding encoder and decoder layers to help produce
the final segmentation mask. The Figure 2.11 illustrate this process.

Figure 2.11 – U-Net architecture for image segmentation, featuring an encoder-
decoder structure with skip connections. Figure extracted from [205].

In [13],using a standard U-Net model the authors generate kidney segmen-
tation masks, which are then used to crop and isolate the kidney from the rest of
the image. The cropped kidney image is then passed through a VGG-19 model
[224] to extract discriminative features, which are subsequently used to train an
XGBoost model [47] for CKD diagnosis. The segmentation network was trained
on 500 images, while the diagnostic model was trained on 5122 images from 352
patients. With a segmentation IoU score of 91%, the model achieved a diagnostic
accuracy of 89%.

Building on the U-Net model in [156], the authors employ an attention-based
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U-Net [205] to segment the kidney for the diagnosis of hydronephrosis. The seg-
mentation network identifies both the kidney and the dilated pelvicalyceal system
containing fluid, allowing computation of the fluid-to-kidney area ratio. This ratio
serves as a biomarker for hydronephrosis, achieving an approximate AUC score of
0.91 using the single operating point formula.

In [107], the authors also introduce an Attention U-Net segmentation network
for detecting pleural effusion in ultrasound images. Pleural effusion, the abnormal
buildup of fluid in the pleural cavity surrounding the lungs, often indicates under-
lying conditions that require prompt treatment. The dataset comprises 800 images
with pleural effusion and 640 without, all manually annotated by two experienced
radiologists. These images were used to train a fully supervised U-Net [205] enhan-
ced with Attention Gates (AGs) [179]. The model achieved AUC scores between
0.95 and 1.0 for pleural effusion detection and Dice coefficients ranging from 0.83
to 0.90 for the segmentation task.

Finally in [43], the authors introduce a Multi-branch Aware Network (MBANet)
for kidney segmentation, designed to process images across multiple resolution
branches. This architecture shares several principles with DeepLabv3 [45], where
the network process images at different scales ; the readers may refer to the
original article for in-depth architectural details. A innovative image quality based
staged pre-training strategy is used to initialize the network weights, by exploiting
a dataset of 450 images manually annotated into classes by clarity and kidney
integrity : ideal (T1), good (T2), and normal (T3). The network is then pre-trained
progressively, starting training with the dataset T1, then using T1-trained model
weights to initialize training on T2, and so forth, concluding with fine-tuning on the
full dataset (T1+T2+T3). This approach enhances MBANet’s IoU scores from 91.51%
to 92.38%, outperforming all baseline methods.

While the staged pre-training strategy does not achieve statistical significance,
it effectively addresses the challenges of variable image quality and visibility that
arise when ultrasound images are acquired at scale by radiologists of differing
experience levels. This method exemplifies a proactive solution to standardize results
across variable data quality, suggesting potential improvements with automated
quality classification models to further enhance efficiency and consistency in
clinical applications.

Many studies also employ semantic liver segmentation, primarily focusing on
localization to support subsequent diagnostic tasks. An example of this is the work
from [200] explained in the previous section, as well as many ROI-based methods
in Section 2.1.1.1.

Starting by [168] published in 2018, where the authors trained a model based
on FCNN [164] for the segmentation of liver Blood vessels and liver focal lesions, in b-
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mode and contrast-enhanced ultrasound. Annotations were performed manually
by expert radiologists, achieving a total of 350 images for the vessel segmentation
task nd 152 images for the lesion segmentation task. Their method achieved 0.83
and 0.87 IoU scores over the vessel and lesion tasks, surpassing U-net which is the
second best-performing model with 0.81 and 0.84 IoU.

Starting by [168], published in 2018, the authors trained amodel based on Fully
Convolutional Neural Networks (FCNN) [164] to segment liver blood vessels and liver
focal lesions in b-mode and contrast-enhanced ultrasound images, respectively.
Expert radiologists manually annotated the dataset, resulting in 350 images for
vessel segmentation and 152 images for lesion segmentation. This dataset is split
for training and evaluation, achieving IoU scores of 0.83 for vessel segmentation
and 0.87 for lesion segmentation, outperforming U-Net, which achieved IoU scores
of 0.81 and 0.84 for the respective tasks.

In 2023, the authors of [8] introduceda liver segmentationmodel called Dense-
PSP-UNet, which combines a Dense-UNet backbone [279] with a Pyramid Scene
Parsing (PSP) module [293]. The Dense-UNet architecture optimizes model size
and inference speed, while the PSP module enhances performance by providing
both local and global contextual features. Trained on a cohort of healthy patients,
each contributing 300 frames annotated by three radiologists, the proposedmodel
achieved aDice coefficient of 0.913, outperforming the baseline U-Net [205], which
achieved 0.889. Even more notably, the model achieved a real-time inference
speed of 37 FPS, being suitable for integration in clinical applications.

In 2024, the authors of [265] introduced a lightweight liver segmentation
network called Boundary-Aware Convolutional Attention Network (BACANet), built
on a ResNet10t backbone [262] for feature extraction with explicit liver boundary
supervision. The model includes several novel modules : the Selective Large Kernel
Convolution Module (designed to capture boundary features), the Enhanced
Attention Gate (an attention mechanism to reduce the semantic gap between
the encoder and decoder), and the Multi-scale Dilated Convolutional Attention
Module (which provides global context using multi-scale dilated convolutions in
the encoder). Comparing their model with Dense-PSP-UNet on the same dataset,
BACANet achieved a Dice score of 0.921, an improvement over the previous score
of 0.913.

2.1.2.3 Standard Plane Recognition

Standard Plane Recognition involves classifying 2D ultrasound images into one
or more predefined ultrasound planes (views) or identifying them as background.
This task is typically performed usingmulticlass classification neural networks, trained
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in the same manner as outlined previously in Section2.1.1.

Similar to object detection and semantic segmentation models, these net-
works can assist in dataset curation and simplify the learning process by filtering
or categorizing images. Below, we discuss some key studies in this area that are
relevant to our research.

Starting by [212], where the authors develop a multiclass classification neural
network to distinguish among abdominal organs (Kidney, Liver, Pancreas, Spleen,
Urinary Bladder), a model that can aid in image quality assessment by confirming
that the current image corresponds to the target organ for diagnosis. They train and
compare several single-image classification neural networks [137, 224, 234, 235, 96],
using a dataset of 1906 organ-specific images. Despite achieving an impressive
AUC score above 0.99, themodel was trained and evaluated onmanually selected
images containing only the organs of interest (no null class). Consequently, the
model’s performance on real b-mode ultrasound videos remains uncertain due
to the likely presence of numerous of low quality frames, which could impact its
reliability in practical settings.

Subsequently in [284], the authors proposed an attention-based neural net-
work to automatically classify standard liver ultrasound planes. They hypothesize
that Transformer-based networks may be particularly effective for this task, as
identifying standard planes relies on global context rather than localized regions.
Ground truth labels were manually annotated by a radiologist with over 10 years
of experience. The list of standard planes is provided below and illustrated in Figure
2.12.

a - LSFLS : Left liver and stomach fundus longitudinal section
b - LAALS : Left liver–abdominal aorta longitudinal section
c - SVCLS : Subhepatic vena cava longitudinal section
d - HTSPH : High transverse section at the level of the second porta hepatis
e - MTFPH : Median transverse section at the level of the first porta hepatis
f - LTSH : Low transverse section at the level of the hepatopancreas
g - HOTSP : High oblique transverse section of the second porta hepatis
h - MOTFP : Median oblique transverse section of the first porta hepatis
i - LOTGK : Low oblique cross section at the level of gallbladder and kidney
j - LAFH : Long-axis view of the first hepatic portal vein
k - LGLS : Liver and gallbladder longitudinal section
l - LKLS : Liver and kidney longitudinal section

m - 67OLS : Sixth and seventh intercostal oblique longitudinal section

To preprocess the images, the authors cropped each image to isolate the field
of view (FOV) and remove extraneous content such as device model details. Their
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Figure 2.12 – Standard liver ultrasound planes illustrated in clinical sweep order
(A-M, a-m), adapted from [284]. Identified sections include : (a) LSFLS, (b) LAALS,
(c) SVCLS, (d) HTSPH, (e) MTFPH, (f) LTSH, (g) HOTSP, (h) MOTFP, (i) LOTGK, (j) LAFH,
(k) LGLS, (l) LKLS, (m) 67OLS. Each plane highlights specific anatomical features,
marked by yellow rectangles (not used by the neural network).
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proposed Ultra-Attention network, similar to Vision Transformer (ViT) [64], introduces
several innovations to optimize training. First, they add a class vector ([CLS]) to
each Transformer block, rather than only in the first block, as is standard in ViT.
Additionally, Focal Loss [153] is applied to address class imbalance, with the use of
customized layer freezing, transfer learning techniques, and a hyperbolic tangent
activation before the softmax layer.

The Ultra-Attention model achieved a classification accuracy of 93.2%, out-
performing other networks in their comparison, including AlexNet [137], GoogLeNet
[234], ResNet variants [96], MobileNet-v2 [211], DenseNet-121 [103]. It also outperfor-
med DeepCNN [266], another work performing liver standard plane classification
based on the VGG-16 network [224]. While the proposed architecture demonstra-
ted superior performance, it is highly similar to ViT [64], which was not compared
with.

2.1.2.4 Image Quality Assessment

Ultrasound acquisitions are highly operator-dependent, with variables like
probe position, angle, contact pressure, and imaging settings greatly impacting
image quality. As a result, images acquired from the same patient and probe can
vary significantly in terms of organ visibility, the presence of visual artifacts, and
image noise.

To address this issue, many studies have proposed the development of au-
tomatic image quality assessment methods. These methods typically estimate a
real-valued score from 2D images, reflecting the overall quality or organ visibility
(absence of noise and artifacts) of the image. Some approaches also frame this
as a categorical classification problem, where quality intervals are represented by
classes.

Classically the methods of ultrasound quality estimation can be grouped
in two main groups : Full Reference Image Quality Assesment (FR-IQA) and No-
Reference/Blind Image Quality Assesment (NR-IQA).

1. Full-Reference Image Quality Assessment (FR-IQA) : These methods use a set
of high-quality reference images for comparison. Image quality is assessed
by comparing query images against these high-quality references.

2. No-Reference/Blind Image Quality Assessment (NR-IQA) : These methods
do not rely on reference images for quality assessment. Instead, they typically
apply custommodel designs to evaluate quality based on features extracted
from the image itself.

We also consider methods that use human-annotated quality labels for super-
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vised training as part of the FR-IQA group, where annotations serve as the quality
references. Complementary, unsupervised approaches for quality assessment are
included within the NR-IQA group.

Full Reference Image Quality Assesment (FR-IQA)

In [226] the authors first propose an IQA network to estimate the quality of
breast ultrasound images. In their work they train a fully-supervised BCNN (Bilinear
CNN) [155] which outputs real-valued quality score. They train a fully supervised
Bilinear CNN (BCNN) [155] to output a real-valued quality score. Training labels are
derived from visual assessments by multiple radiologists, with each image assigned
a categorical score ranging from 1 (low quality) to 5 (high quality). These scores
are then averaged across radiologists to produce the real-valued quality score
used as the training target. The trained network achieved 0.842 correlation with
the groubd-truth labels.

In a subsequent publication [259], the authors propose a global-local IQA
approach, where the quality of healthy images is assessed using their previous
global IQA network from [226], while the IQA score for breast images containing
lesions is estimated by a novel branch. This new branch first applies a U-Net [205]
network to obtain the lesion ROI, from which local lesion features are extracted.
These features are then used to predict a local IQA score, which serves as the IQA
for pathological images. Figure 2.13 illustrate their method. This dedicated branch
improved the performance for pathological cases, raising the Pearson correlation
from 0.6606 to 0.8412.

Figure 2.13 – Global–local integrated breast ultrasound IQA framework from [259].

In [31], the authors developed a prostate IQA model for ultrasound. In this
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work, they created a one-class regressor using DenseNet [103] with a Gaussian
Process [125] at the output, trained exclusively on images labeled as high quality by
experienced radiologists. During inference, the Gaussian Process indicates whether
the query image falls within the distribution of high-quality images, achieving 94%
accuracy compared to human experts.

Several other notable studies using supervised data for IQA in ultrasound exist
in the literature [288, 46, 89]. In [288], the authors trained a supervised regression
CNN to predict IQA scores. Conversely, [46] utilized the ResNet model [96] to train a
multiclass classification network, with each class representing a quality score. Lastly,
[89] addressed fetal plane IQA by training a regression network on pseudo-labels,
where these labels are computed based on the distance to manually annotated
high-quality frames, facilitating the development of quality assessment for fetal
imaging.

No-Reference Blind Quality Assessment (NR-IQA)

Traditionally, these methods evaluate the level of noise in an input image
through feature extract . For instance, a ROI-based approach cited in this work
([229]) employed the Perceptual Image Quality Evaluator (PIQUE) metric [253],
which uses predefined models to assess noise, blurring, and distortions. Other more
commonly used metrics include the Natural Image Quality Evaluator (NIQE) [169]
and the Blind ImageQuality Evaluation System (BIQES) [209]. NIQE evaluates image
quality by calculating the distance between features extracted from the query
image and those from distortion-free images, while BIQES measures dissimilarities
between the query image and its low-resolution versions. A 2016 study on corrupted
ultrasound images [181] suggests that among these methods, NIQE is the most
suitable for assessing medical data.

Another approach for measuring image quality without references is to per-
form image denoising or artifact removal [129, 30, 126, 109], and them measuring
the dissimilarities between the original image and the enhanced one. In [129] the
authors use a non-local means (NLM) noise-reduction approach [23] to reduce
image noise, which basically average correlated pixels locally.

In [30, 126, 109], the authors use Generative Adversarial Networks (GANs) to
reduce image noise. These methods involve a Generator Network that enhances
the quality of noisy input images, aiming to deceive a Discriminator Network into
classifying the generated images as realistic high-quality . A key challenge in these
approaches lies in obtaining paired datasets of the same image in both low and
high quality—for effective training. In [30] the authors utilize the Pix2Pix network [113]
and generate high-quality images for training by denoising low-quality images
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using the Weighted Nuclear Norm Minimization (WNNM) algorithm [84]. While this
approach replicates the performance of WNNM, the main improvement lies in the
real-time inference, otherwise impossible with WNNM.

To address the lack of paired data, some authors use CycleGAN networks
[299], which are trained on unpaired datasets using a cycle-consistency loss. This
loss ensures that transforming a low-quality image into a high-quality one and then
back to low-quality, enabling training without paired datasets. In [126] the authors
built low-quality and high-qualiyt dataset by controlling acquisition parameters
and filters used, which are used to train a CycleGan Network that effectively im-
prove image quality. Similarly, in [109], the authors proposed using a CycleGAN
for acoustic shadowing removal, with unpaired datasets obtained through ma-
nual selection of images with and without shadowing. Results from this study are
illustrated in Figure 2.14.

While GAN-based methods for improving image quality carry the risk of com-
promising diagnostic reliability by introducing or masking medical findings, they
can still be reliably used for image quality assessment by comparing the input and
the generated high-quality image.

2.1.3 Annotation Subjectivity
All the works discussed previously rely on ground-truth data, which can be

obtained from various sources. While histopathology analysis and clinical measure-
ments such as eGFR represent the gold standard for diagnosing many pathologies,
they are not always readily available. This limitation can hinder the development
of reliable CAD systems.

In such cases, researchers often depend on manual visual annotations provi-
ded by experienced radiologists. Despite adherence to clinical guidelines, anno-
tations are inherently subjective, varying with radiologist expertise and sensitivity.
Radiologists often vary in sensitivity to certain pathologies, complicating the stan-
dardization of annotation protocols without extensive cross-validation. This issue is
particularly pronounced in ultrasound examinations, where image quality is highly
operator-dependent, and identifying organs and internal structures can be chal-
lenging. For example, this variability contributes to a 20% underestimation rate for
steatosis cases during ultrasound screenings [127, 142], a bias that is perpetuated
to deep learning models trained on these annotations.

Some studies have addressed the issue of annotation subjectivity in ultra-
sound [143, 34, 114, 244]. A common strategy among these works [34, 114, 244]
involves a two-step approach. The first step detects noisy label candidates, often
through out-of-distribution analysis. The second step addresses these noisy labels,
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Figure 2.14 – Experimental results : (a) input image that has shadowing artifact, (b)
result of the proposed method, (c) line profile of shadowing line, which is marked
as a yellow line on the input and proposed image, (d) difference map between
input and output. All B-mode images are visualized at 60 dB dynamic range and
the difference map is shown in pseudo colors normalized from 0 to 255. Figure and
description extracted from [109].
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either by correcting them or by employing robust loss functions and architecture
modifications to mitigate their impact.

Adopting a different approach, in [143] the authors propose a steatosis clas-
sification neural network featuring a dedicated annotator embedding branch,
called Auto-Decoded Deep Latent Embedding (ADDLE). This ADDLE block takes
annotator identifiers as input and learns an annotator-specific latent space re-
presentation. This representation is then integrated into intermediate layers of the
ResNet-18 [96] model, acting as a learned prompt to enhance ultrasound image
classification. A key advantage of this approach is that it does not require multiple
annotations for the same image, making it suitable for mixing datasets from diverse
centers and annotators. The model was trained with data from 65 different anno-
tators, with the ability to simulate or average the embeddings during inference.
The inclusion of the ADDLE block improved steatosis classification accuracy by
10.5%. An overview of the proposed framework is presented in Figure 2.15.

Figure 2.15 – Overview of the proposed ADDLE-based framework for steatosis
classification, which incorporates annotator-specific latent embeddings into the
ResNet-18 architecture to improve accuracy. Figure extracted from [143].

2.2 Video-Based Ultrasound
Computer-Assisted Diagnosis

In the previous section, we extensively discussed single-image-based me-
thods. While these approaches have demonstrated strong performance in recent
years, their results are often reliant on curated datasets or controlled conditions.
Furthermore, single-image diagnosis typically relies on only one or a few ultrasound
planes, which may not fully capture the comprehensive nature of a complete
ultrasound screening exam.

In this section, we introduce CAD models that utilize video-based neural net-
works. Thesemodels process spatial-temporal volumes (a sequence of consecutive
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2D ultrasound frames) and generate a diagnosis, either as a real-valued score
(video regression neural networks) or a categorical class (video classification neural
networks).

These models also provide significant advantages in terms of label reliability
and the effort required to annotate datasets. Since annotators have access to
spatial-temporal context during the annotation process, they are likely to feel more
confident in their decisions [65]. Additionally, the workload is reduced as each
video requires only a single label, rather than annotating individual frames.

Unlike the more established single-image methods, which leverage mature
and widely adopted off-the-shelf architectures like ResNet [96], VGG [224], or
Inception [112], video-based deep learning lacks a clear consensus on optimal
architectures for ultrasound analysis. These architectures differ significantly not
only in layer parameters and design choices but also in how they process spatial-
temporal information. Frames can be handled independently, as a 3D volume,
or through strategies designed to capture temporal dynamics, such as motion
tracking.

Based on our research, we categorize video classification methods according
to how their neural network architectures process spatial-temporal frames and
how temporal information is modeled. The following groups emerged from our
analysis :

1. Independent Singe-Image Network with Late Fusion : These methods rely on
single-image networks (as discussed in previous chapters) trained indepen-
dently on individual frames. Video-level diagnosis is obtained by aggregating
the outputs (features or predictions) from all frames using techniques like
averaging, max pooling, or more advanced fusion strategies.

2. Single-Image Feature Extraction with Temporal Modeling : These methods
process frames individually using a dedicated neural network (typically a
CNN) to extract frame-level features, which are then passed to a temporal
modeling module for video-level diagnosis. The system is trained end-to-end.
Temporal modeling approaches include :

a) Recurrent Neural Networks (RNN) : Frame features are input to recurrent
layers (e.g., LSTM) that model temporal dependencies by combining
the current frame with video history.

b) Attention Mechanisms : Uses attention layers to focus on key frames or
regions within the sequence that are most relevant for diagnosis.

c) Self-Attention (Transformer Blocks) : Encodes each frame feature as a
token and applies Transformer blocks to capture relationships between
frames for a comprehensive diagnosis.
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d) Graph Neural Networks (GNN) : Treats each frame as a node in a graph,
optimizing node and edge interactions to understand complementary
information across frames.

3. Two-StreamNetworks : These architectures use two parallel streams to process
spatial and temporal information separately. One streamhandles RGB frames,
while the other processes motion (e.g., optical flow).

4. 3D Neural Networks : These networks treat videos as 3D volumes, processing
spatial and temporal dimensions simultaneously using 3D convolutions or
specialized Transformer architectures.

Another important aspect is the incorporation of external information during
training and inference. Standard video classification models are typically trained
end-to-end, relying solely on video-level annotations or annotations from a mini-
mal number of frames used in the loss function. Conversely, video classification
models can also be designed to integrate guidance from external agents, such as
networks for image selection and quality control described in Section 2.1.2. These
approaches are categorized as End-to-End Video-Based Diagnosis Models and
Guided Video-Based Diagnosis Models, respectively.

Given the limited number of studies in this category focused on diagnosing
abdominal pathologies, we also include ultrasound-based research addressing
pathologies in other regions of the body, such as cardiac and lung diseases.
Finally, we do not explicitly describe models utilizing the Independent Single-Image
Network with Late Fusion approach, as it is not a true video classification model
and can be derived by adapting several works already discussed in the previous
section.

2.2.1 End-to-End Video-Based Diagnosis
Models

2.2.1.1 Spatiotemporal Processing

Recurrent Networks

A widely established approach for modeling temporal dependencies in se-
quences is the use of Recurrent Neural Networks (RNNs). These networks maintain
and update an internal memory state, allowing them to influence how new input
information is processed, enabling the generation of time-dependent predic-
tions. Among these, Long Short-Term Memory (LSTM) [100] networks are the most
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well-known, which use capturing long-range dependencies to improve training
stability.

features extracted from individual frames by a Frame Encoder serve as inputs
to LSTM blocks. These blocks are specifically designed to retain and update an
internal state that captures relevant information from previous frames, enabling
time-aware predictions for each step in the sequence. To generate a final video-
level diagnosis, aggregation techniques such as averaging, max pooling, or fully
connected layers are often applied. This process is illustrated in Figure 2.16.

Figure 2.16 – Overview of LSTM-based video processing, where frame features are
extracted by a Frame Encoder and processed through LSTM blocks for time-aware
predictions.

The LSTM blocks are designed to maintain an internal state, denoted as Ct,
which is used in combination with the input xt to produced an output ht. The
architectures choices can vary significantly from one study to another, but overall
architecture is presented in the Figure 2.17.

It contains a forget gate layer, which analyzes xt and ht−1 to determine which
parts of the previous state Ct−1 should be retained and which should be discarded
for the current state.

ft = σ (Wf · [ht−1, xt] + bf ) (2.7)

Similarly, the input gate layer decides which new information from the input xt

(Equation 2.2.1.1), while a tanh layer generates new candidate values to integrate
into the current state (Equation 2.2.1.1).
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Figure 2.17 – Detailed architecture of an LSTM block.

it = σ (Wi · [ht−1, xt] + bi) (2.8)

Ĉt = tanh (WC · [ht−1, xt] + bC) (2.9)

The current state is created taking in account the previous state Ct−1 and the
current candidates Ĉt.

Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.10)

Finally, the output of the current stage, ht, is determined by a layer that
computes ot to filtered by the current state Ct, as defined in Equations 2.2.1.1 and
2.2.1.1.

ot = σ (Wo · [ht−1, xt] + bo) (2.11)

ht = ot ∗ tanh (Ct) (2.12)
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The learnable weights in the LSTM includeWf ,Wi,WC , andWo. The video-level
output is computed from the sequence {h0, h1, · · · , hn}, as previously discussed.
The entire system (Frame Encoder, LSTM blocks and aggregation layer) is trained in
an end-to-end manner.

Some works have used LSTM models in order to model temporal dependen-
cing in the automatic diagnosis of ultrasound video data for lung pathologies [15,
17, 220, 57], CEUS lesions [214, 296], fetal pathology assessment [192] and heart
diseases [110].

In [57], the authors proposed a CNN+LSTM architecture to predict the severity
of COVID-19 across four severity scores ranging from 0 to 3. They utilized a DenseNet
[103], pre-trained as an autoencoder for denoising, in combination with a network
employing Separable Convolutions [49] as the Frame Encoder, followed by LSTM
blocks. The approach in other works is similar, with [17] using the VGG-19 model
[224] as the Frame Encoder, [15] employing Inception V3 [235], and [220] also
utilizing VGG-19 [224]. In all these studies, the output of the final LSTM unit is passed
through a softmax layer for video classification.

In [296], the authors propose a similar approach, utilizing ResNet-18 [96] as
the Frame Encoder. Rather than processing the entire video input, they sample
frames at equal time intervals, filtering out those with low quality due to respiratory
motion. The features extracted by the LSTM block are then used to predict the
malignancy of liver lesions in CEUS.

Attention-based Networks

Before the development of Self-Attention and Transformer blocks introduced
in Attention is All You Need [251], attention mechanisms were already applied
to the classification of video data. Unlike the Self-Attention mechanism, which
computes attention weights for all possible combinations of input frame features,
the classical attentionmechanism computes attention weights using a single query
vector and the input features.

In this context, given an input video containing N frames, from which frame
features are extracted independently from each other using a Frame Encoder
x = {x1, x2, · · · , xn}. So, a query vectorqcanbeeither be learned (Wq) or provided
by a custom method.

q = α (Wq · x + bq) (2.13)

where α is a non-linear function. This query vector is then used to compute
attention scores for each frame feature, one way to do so is with the dot product :
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et = q · xt (2.14)

These scores are normalized using the softmax function and used to combine
features from all frames to produce a video-level representation xvideo, which
can then be used for downstream tasks, such as video classification or action
recognition.

xvideo =
N∑
t

etxt (2.15)

This approach is applied to ultrasound imaging for detecting Atrial Septal
Defects in children, as described in [160]. The proposed model utilizes a ResNet18
[97] as a frame feature extractor. The extracted features are then processed
through two separate branches : one employs the previously described attention
layer, while the other applies 3D convolutions. The outputs from both branches are
concatenated to generate the final video-based diagnosis.

Another approach is introduced in [230], where single-image annotated data
is utilized to assist in training attention weights for ultrasound video classification
models. The authors use a ResNet-50 [96] as a frame encoder to extract features
from video frames, which are subsequently passed through an aggregation at-
tention layer. The same frame encoder is also employed to extract features from
a still image dataset, enabling the computation of class-wise feature centers.
These centers are integrated into a coherence loss to guide the attention module,
ensuring the assignment of reliable attention weights to individual frames.

Transformer-Based Networks

With the remarkable success of Transformer neural networks and self-attention
mechanisms, initially introduced for text data by [251], numerous researchers have
proposed adaptations to deploy it for video data.

In this context, video frames can be compared to words in a sentence. With
effective tokenization of video frames, classical Transformer blocks can be directly
applied to video analysis without structural alterations. However, the high dimen-
sionality of video frames necessitates additional preprocessing steps to make
this approach computationally feasible, what may limit the applications due to
memory limits.

The common approach to address this challenge is to utilize a dedicated CNN
to extract features from each frame, which serve as input tokens for the Transformer
block [199, 4]. These tokens are augmented with positional embeddings and then
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passed through a standard Transformer block with self-attention operations. To
generate the final diagnostic prediction, either the features corresponding to the
[CLS] token (noted as 0 in Figure 2.18) or the aggregated output features are
passed through linear layers. Figure 2.18 illustrates this process.

Figure 2.18 – A typical pipeline where CNN-extracted frame features, combined
with positional embeddings, are processed by a Transformer block to produce
diagnostic predictions.

In the UVT model [199], the authors utilized the encoder portion of a ResNet
autoencoder [96] to extract frame-level features, which were then fed into a
BERT encoder [61]. This architecture effectively predicted EF values while also
identifying keyframes of critical importance. Similarly, [4] employed a ResNet-
18 [96] to extract frame features, which were subsequently passed through a
custom self-attention block designed to assign higher weights to regions around
pre-determined reference frames.

Despite their successes, a notable limitation of these methods is the absence
of a self-supervised pre-training step, a technique that has significantly advanced
language models by enabling them to adapt to new tasks with minimal labeled
data.

Graph Neural Network

Graph Neural Networks (GNNs) are designed to capture temporal dependen-
cies between frames in a video by representing them as a graph. In this structure,
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frames are modeled as graph nodes, while edges represent the relationships
between these frames.

In GNNs, after extracting frame features using the neural network C, each
frame It in a video V with N frames is represented as zt = C (It). Thus, the entire
video V can be described as a set of features Z = {z1, z2, · · · , zN}, where zi ∈ Rd,
and d denotes the dimensionality of the extracted features

GNNs model video analysis as a graph G = (V, E), where each vertex vi

corresponds to a frame Ii of the input video, and each edg ei,j represents the
relationship between frame Ii and Ij . The frame embeddings (zi) are used as
node features of H = {h1, h2, · · · , hN}, typically represented as H ∈ RN×d.

The primary objective of GNNs is to transform the initial node feature repre-
sentation, H0 = {h0

1, h0
2, · · · , h0

N} = Z into a more informative one tailored for the
specific video analysis task. At each step, the node features H t = {ht

1, ht
2, · · · , ht

N}
are updated to H t+1 =

{
ht+1

1 , ht+1
2 , · · · , ht+1

N

}
, as illustrated in Figure 2.19.

Figure 2.19 – An example of a GNN architecture applied to video analysis, showing
node feature updates through layers.

While multiple strategies exists to transform H t in H t+1, one concise approach
is described in [252]. This method applies a learnable linear transformation via a
weight matrix W ∈ Rd×d to each graph node. Then, an attention mechanism
a : Rd × Rd → R is applied to model relationships between nodes :

ei,j = a
(
Wht

i, Wht
i

)
(2.16)

This attention mechanism can be implemented as a simple feedforward
neural network (as in [252]) or as a dot product. To constrain the graph connections

52



CHAPITRE 2. LITERATURE REVIEW

(focusing only on neighboring frames, for example), a masking operation Ni can
be applied.Additionally, normalization is performed using the softmax function :

αij = softmaxj(eij) = exp(eij)∑
k∈Ni

exp(eik) (2.17)

The updated node features are computed as a weighted sum of connected
node features in the graph, followed by a non-linear activation function σ :

ht+1
i = σ

∑
j∈Ni

αijWht
j

 (2.18)

Finally, after processing the graph through l GNN layers, the final node features
h

(l)
i are used for video assessment. These features can be combined using a linear

model Wout ( a linear neural network, averaging, or attention mechanisms) to
perform the desired video diagnosis task.

ŷ = f
(
WoutH

(l)
)

(2.19)

A groundbreaking application of GNNs to ultrasound video diagnosis is pre-
sented in [173], where the authors estimate Ejection Fraction (EF) from echocar-
diography videos. The proposed framework, EchoGNN, begins by using a custom
3D CNN Video Encoder to extract features from individual frames. These frame
features serve as node embeddings in a complete graph structure, where a neural
message-passing GNN [79] updates the node features in a single step. Finally, the
updated node features are passed to a Graph Regressor to produce real-valued
EF predictions. The detailed architecture is illustrated in Figure 2.20.

Their work achieved comparable performance to other EF estimation models,
with the added advantage of explainability through the analysis of graph nodes,
which remain unaltered by the 3D Video Encoder.

Other works also utilize GNNs for EF estimation in echocardiography videos
[241, 242]. Similar to previous approaches, thesemethods first extract frame features
using backbone networks such as MobileNet v2 [211] and ResNet-based 3D CNNs
[92]. However, unlike [173], where graph nodes represent individual frames, these
methods model graph nodes as myocardial border points for each frame. This
design allows the GNN to focus on optimizing node features for accurate left-
ventricle segmentation, facilitating the identification of key frames and improving
EF estimation.

In [241], the authors take this a step further by feeding the GNN outputs into
a large language model, which generates natural-language explanations for
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Figure 2.20 – EchoGNN has three main components. (1) Video Encoder : encodes
video frames into vector embeddings while preserving the temporal dimension ;
(2) Attention Encoder : infers weights over the nodes (video frames) and edges
(relationships among frames) of the echo-graph ; (3) Graph Regressor : estimates
EF using the inferred weighted graph. Figure and description extracted from [173].

the neural network’s EF estimations, enhancing model interpretability and clinical
applicability.

2.2.1.2 Two-Stream Networks

Two-stream neural networks, initially introduced in 2015 [223, 277], are a signi-
ficant approach in video understanding. These architectures are characterized
by two separate input branches (streams) : one dedicated to processing spatial
information and the other focused on temporal information from video inputs.

In the context of ultrasound video analysis, the spatial branch typically pro-
cesses b-mode video inputs (sequences of 2D images), extracting spatial feature
representations using neural networks such as 3D CNNs, 2D CNNs combined with
LSTMs, or attention-based models. Meanwhile, the temporal branch processes
optical flow images, using similar network architectures to generate motion feature
representations. Finally, the spatial and temporal features are fused or concatena-
ted to estimate the video-level diagnosis.

In [73], the authors adopted this exact approach for classifying echocardio-
graphy videos, as depicted in Figure 2.21. To compute robust optical flow maps to
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use as input for the temporal stream, they utilized FlowNet2 [111], a neural network
trained to extract optical flow from videos. Both streams (spatial and temporal)
processes features extracted by a custom 2D CNN autoencoder, processed by
LSTMs and combined using attention blocks. Finally, the features from the two
streams (spatial and temporal) are concatenated to provide the final video-level
diagnosis.

Figure 2.21 – Architecture of the two-stream neural network proposed in [73]. B-
mode ultrasound frames and optical flow images are processed in separate spatial
and temporal branches to extract features. These features are fused to produce
the video-level diagnosis.

Another well-established two-stream neural network architecture is the Slow-
Fast model [70]. This model utilizes frame rate sampling to define two streams : a
slow stream (low frame rate) for processing spatial information and a fast stream
(high frame rate) for processing temporal dynamics. Both streams are built using
modified 3D ResNet encoders [71], with lateral connections enabling information
sharing between the streams at multiple resolutions. This architecture was applied
to ultrasound videos by [151] for classifying lung tumors with data acquired using
a radial probe.

Other studies in ultrasound video analysis replace the motion stream with
additional ultrasound modalities, similar to the approaches discussed for single-
image cases in Section 2.1.1.4. For example, in [88, 145], the authors replaced
the temporal stream with a CEUS stream to diagnose breast and renal lesions,
respectively. Similarly, [264] employed two-streamneural networks for the automatic
diagnosis of prostate cancer, replacing the temporal stream with an SWE video
stream.

[54] while not a true two-stream network, the authors integrate it in R2+1D
ResNet [247] by introducing a segmentation mask to it, which is used as a teacher
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for a student network which receives solely the rgb video as input.

2.2.1.3 3D Neural Networks

Another approach to processing a sequence of ultrasound images is to treat
it as 3D volumetric data, concatenating 2D frames to form a 3D volume with
dimensions (W, H, C, F ), where W and H represent the image width and height,
C denotes the number of channels, and F corresponds to the number of frames.
These models process spatial-temporal data simultaneously, normally with 3D
Convolutions or specialized Transform-based architectures.

The most established architecture of this type consists of networks utilizing
3D convolutions, commonly referred to as 3D CNNs [246, 247]. These networks
closely resemble traditional CNNs but employ layers composed of 3D convolutional
filters. These filters operate across the W , H , and F dimensions with a sliding
window, allowing the network to reason about spatial and temporal information
simultaneously. The final fully connected dense layers and loss functions remain
the same as those used in traditional 2D CNN-based networks. Figure 2.22 illustrates
the core principle of 3D convolutions.

Figure 2.22 – Illustration of 3D Convolutions, inspired from [185].

Several authors have proposed CAD systems utilizing volumetric ultrasound
data and 3D CNNs to address a wide range of pathologies [297, 292, 101, 152].
For example, in [292], the authors employ a 3D ResNet-50 [247] to detect lesions
in breast ultrasound videos, demonstrating the superiority of video-based mo-
dels compared to single-image approaches. Similarly, in [101], a self-supervised
pretraining strategy using the same 3D ResNet-50 architecture [247] is proposed,
significantly enhancing diagnostic performance in echocardiography video ana-
lysis.

Transformer-based neural networks have also been applied to volumetric data
analysis, showcasing their potential in tasks such as echocardiography and thyroid
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diagnosis [5, 68, 174, 104]. As previously discussed, adapting Transformer models
for imaging data primarily involves converting the input into a suitable sequence
of tokens compatible with the Transformer architecture. In earlier sections, we
highlighted methods that generate independent tokens for each video frame.
Alternatively, tokens can be extracted from 3D patches of the input video, enabling
the model to capture spatial and temporal relationships from the first layers of the
model.

For example, in [5], the authors addressed the echocardiography EF esti-
mation problem using a variant of the ViViT model [11]. Their approach involves
extracting input tokens from tubelets, which are non-overlapping spatiotempo-
ral patches spanning consecutive frames of the input video. These patches are
then projected into the desired embedding dimension using a linear layer. Positio-
nal embeddings are added to the tokens, and the remainder of the Transformer
architecture closely follows the ViT architecture [64]. Figure 2.23 illustrate the tube-
lets/token strategy.

Figure 2.23 – Extraction of spatiotemporal tokens from tubelets in the video model
proposed by [5], based on the ViViT architecture.

A similar approach is adopted in [174] for EF estimation, employing a video
regression architecture based on the Uniformer [146]. This model combines the
capabilities of 3D convolutions for capturing local spatiotemporal context and
Transformers for modeling global dependencies. In this architecture, video tubelets
are processed using 3D convolutional layers, transforming spatiotemporal patches
into feature tokens. The Uniformer then uses these tokens in its hybrid Transformer-
CNN architecture to produce the final EF estimation.

Another notable Transformer model for analyzing volumetric data is the Video
Swin Transformer [163], which was adapted for EF prediction in ultrasound by [68].
The core principle of this model is that self-attention is computed locally within
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spatial-temporal window neighboring tokens, which are extracted from 3D patches
of the input video using linear layers. To improve efficiency and enable multi-
scale representation, a Patch Merging Layer is used after each Transformer block.
This layer concatenates and downsamples neighboring tokens, reducing spatial-
temporal dimensions. While attention is restricted to tokens within a local window,
the Shifted Windows mechanism offsets the windows between layers, allowing the
model to capture relationships across new regions. Figure 2.24 illustrates the Patch
Merging and Shifted Windows mechanisms.

Figure 2.24 – Patch Merging and Shifted Windows mechanisms in the Video Swin
Transformer. Patch Merging downsamples spatial-temporal dimensions, while Shif-
ted Windows ensure expanded attention regions across Transformer layers. Figure
extracted from [68]

Other approaches have explored combining 3DCNNs and Transformer blocks
for the analysis of ultrasound video data. In [104], the authors integrate a 3D ResNet
[71] with the Video Swin Transformer [163] to diagnose thyroid nodules. Similarly,
[186] incorporates a modified 3D ResNet architecture, replacing certain layers with
self-attention mechanisms, to predict fetal birth weight from ultrasound videos.

2.2.2 Guided Video-Based Diagnosis Models
All the end-to-end models discussed in the previous section rely exclusively

on video-level labels for training. While these models have demonstrated strong
performance as reported in their respective studies, they often don’t consider va-
luable auxiliary information that could guide the learning process more effectively.
Integrating additional data (like frame-level annotations, segmentation masks, or
clinical data) has the potential to enhance both training efficiency and inference
accuracy, leading to more robust and interpretable models.
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The guided video-based diagnosis models typically consist of a video classifi-
cation or regression neural network (as discussed in the previous section) and an
auxiliary neural network trained on an external dataset. This auxiliary neural network
is used either as a frame-selection tool (as discussed in Section 2.1.2 regarding
image selection) or as a source of additional information fed to the video classifier
during training, inference, or both.

A good example that incorporates both aspects was introduced by [270],
where the authors proposed a guided approach for diagnosing liver lesions in
ultrasound. Their framework provide guidance from three DeepLabv3 models [200],
which perform segmentation of the scan region, liver, and lesions in still images.
Only frames containing detected lesions are forwarded to the next step, while the
segmentation masks are used to exclude pixels that do not correspond to the liver
parenchyma or lesions.

The filtered images are then processed independently by a Frame Extractor
CNN (DenseNet121 [103]), and the resulting features are passed through LSTM
blocks to incorporate temporal information. Additionally, the lesion segmentation
masks are used to estimate mass sizes, which are used for generating a mass-
attention guidance signal. Finally, this attention signal is applied to the outputs of
the LSTM layers, giving higher weights to larger lesions, and the combined features
are passed through MLP layers to produce the final lesion diagnosis. The second
part of the system (without the segmentation models) is illustrated in the Figure
2.25.

Figure 2.25 – Illustration of the second part of the guided liver lesion diagnosis
system proposed by [270]. Features extracted by a DenseNet121 from filtered
frames are passed through LSTM blocks for temporal modeling. A mass-attention
guidance signal, generated using lesion segmentation masks and size estimates,
is applied to the LSTM outputs, prioritizing larger lesions. The combined features
are processed by MLP layers to produce the final diagnosis. Image extracted from
[270].
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In [258], the authors perform the diagnosis of breast lesions in ultrasound
videos using a lesion detector and a keyframe localization model as guidance.
The lesion detector is based on Faster R-CNN [197]. Given a video input, features
are extracted from the detected lesion ROIs in individual frames and fed into an
LSTM model. This model is connected to fully connected layers to output a single
score indicating whether the current frame is a keyframe. Since each input video
contains only one keyframe, pseudo-labels are generated for the remaining frames
based on their proximity to the annotated keyframe. The entire guidance system is
trained end-to-end. Finally, the authors sample a clip around it and perform lesion
diagnosis using a modified 3D CNN (C3D [246]).

Other works in this category include [134], where the authors employ breast
lesion segmentation maps to support the diagnosis of breast ultrasound lesion
characterization in videos. In [133], the authors introduce a method for detecting
cardiac abnormalities in fetal ultrasound videos. Their approach is trained exclusi-
vely on healthy cases and integrates a YOLO object detector [195] to guide the
detection process.

2.3 Research Gaps
Limitations of Human-Annotated Data

The first point to address is the challenge of acquiring high-quality datasets
necessary for training and evaluating AI-based CAD systems in ultrasound. Gold-
standard diagnostic labeling techniques, such as histopathology from biopsies
or MRI, are impractical for large-scale use due to their invasiveness and associa-
ted costs. As an alternative, most studies rely on visual annotations provided by
radiologists or other healthcare practitioners.

Interpreting ultrasound images visually is inherently challenging, introducing
a significant degree of subjectivity in annotation labels. Even among radiologists
with similar levels of expertise, their labels can vary substantially. This variability can
hinder the development of deep learning models, which depend on consistent
and reliable annotated data for training. An open challenge remains in finding
effective methods to reduce subjectivity in visual annotations, minimizing the
impact of annotator bias.

Challenges in Untrimmed Video Training and Inference

A significant challenge in developing AI-based CAD systems capable to be
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deployed in untrimmed ultrasound video data. Unlike single-image or trimmed
video datasets, untrimmed ultrasound videos contain a high amount of diagnosti-
cally irrelevant frames, including frames affected by artifacts, noise, or background
content. Existing methods either require strong supervision, such as frame-level
annotations or segmentation masks, or rely on external guidance systems to iden-
tify diagnostically relevant frames. These approaches are labor-intensive and are
difficul to be extended to new pathologies, requiring careful design.

Additionally, current methods face difficulties in balancing computational
efficiency with the requirement to process long video sequences while preserving
both spatial and temporal resolution. Developingmodels capable of automatically
identifying diagnostically relevant frames with minimal or no explicit guidance,
while also enabling real-time inference, remains an open challenge.

Integration in Real-World Applications

To democratize access to ultrasound screening, CAD methods must provide
enough automation to be operable with ease by non-experts. These systems
should guide operators during the screening process by automatically identifying
diagnostically relevant information, thus eliminating the need for specialized ex-
pertise. Furthermore, the system must be capable of indicating when a diagnosis
is not feasible, prompting the user to capture higher-quality images or seek further
assistance.

While various works in the literature address some of these functionalities
individually, they often lack integration into a comprehensive system. Developing
a unified CAD framework that meets these requirements, while being trainable
under medical data constraints and adaptable to a wide range of pathologies or
conditions in b-mode ultrasound, remains an open research challenge.

61



3. CVL+RankNet : A New
Approach to Label Images for
Computer-Assisted Diagnosis

Chapter summary
A substantial amount of annotated data is essential to develop AI-based

Computer-Assisted Diagnosis (CAD) systems, which largely rely on deep learning
models. This data is used not only for training but also for testing and performance
monitoring as demanded for certification as a medical device. The challenge
of obtaining accurate and representative labeled datasets to train such models
imposes significant limitations to advancing CAD with abdominal ultrasound. Addi-
tionally, access to patient records is often restricted due to stringent data protection
laws, such as the General Data Protection Regulation (GDPR) in Europe. Conse-
quently, the labeling task is typically performed by specialized annotators relying
on visual inspection.

Under these conditions, annotators often struggle to determine the stage or
severity of the pathology by visually inspecting ultrasound images. For instance, a
pathology regularly diagnosed visually using US is non-alcoholic fatty liver disease
(NAFLD), also called liver steatosis, which is characterized by the accumulation
of fat tissue in the liver and can lead to various complications if not addressed.
The difficulty of obtaining objective visual annotations that convey not only the
presence or absence of the disease but also the severity hinders the development
of AI-based solutions to assist in early diagnosis and to track the progression after
clinical treatments.

In this chapter, we assess the reliability of visual annotations for labeling liver
steatosis cases in abdominal ultrasound images. Wemeasure the precision of visual
annotations by comparing them to histopathological examinations, and study the
reasons behind the errors in visual annotations. We then propose a new annotation
method for CAD, called Comparative Visual Labeling (CVL), based on relative
annotations. They significantly improve annotation accuracy and consistency
between annotators, while also providing continuous-valued labels that correlate
very well with disease progression measured by histopathology.
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3.1 Additional background

3.1.1 Our case study application : Liver
steatosis detection in B-mode
ultrasound :

Liver steatosis is a common condition characterized by fat accumulation
within liver cells. It is particularly prevalent, affecting approximately 25% of the
global population [10], with a higher prevalence in developing countries [275].
Steatosis is associated with either alcohol consumption or metabolic conditions,
known as Non-Alcoholic Fatty Liver Disease (NAFL), and the latter may develop
chronic conditions such as type 2 diabetes and metabolic syndrome [16]. If HAFL
is not identified and treated early, it can initiate an inflammatory process known as
Non-Alcoholic SteatoHepatitis (NASH), and causes liver injury, leading to scaring
produced by the response of hepatic stellate cells and then liver fibrosis fibrosis. If
this process continues, it can evolve into liver cirrhosis, which severely impairs liver
function and may lead to liver cancer like hepatocellular carcinoma (HCC) [38,
202, 136, 39]. Figure 3.1 illustrates this process. As a consequence, early detection
of liver steatisis is essential, as well as severity grading for treatment monitoring.

As stated in the background section, B-mode ultrasound (US) screening is the
preferred imaging modality to diagnose many abdominal conditions due to its
convenience, low cost, and non-invasiveness [29]. Liver steatosis is one of various
conditions regularly detected with B-mode abdominal ultrasound.

In general, although b-mode US visual examination for steatosis is convenient
and harmless to the patient, it requires a skilled clinician to operate the US probe
and produce an accurate diagnosis. As with US-based diagnosis in general, in-
terpreting US images and anatomical/pathological features requires significant
expertise, is highly operator-dependent, and necessitates years of training to
achieve confidence and accurate diagnosis skills [63].

Another significant challenge in US-based liver steatosis diagnosis is the fact
that a clinician’s mental decision boundary when differentiating between healthy
and pathological subjects differs among clinicans. In the early stages of hepatic
steatosis, distinguishing between healthy and pathological imaging characteristics
can be particularly challenging, often relying heavily on the radiologist’s expe-
rience, which can vary widely, and there may be up to 20% underestimation of liver
steatosis [127]. In the study by [140], an 87% agreement was observed between
MRI-PDFF (defined below) and B-mode ultrasound annotations by radiologists, with
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ultrasound diagnostics showing a notable tendency to underestimate the severity
of steatosis.

Due to the above issues, the need for skilled clinicians to perform a US exa-
mination has led to a global shortage of access to care, and many people are
screened less frequently than necessary or not at all. This lack of early liver steatosis
screening leads to fewer patients being diagnosed at the early stages of the di-
sease, where timely intervention could significantly improve outcomes and reduce
the costs associated with intensive care.

The above limits have motivated research in the past few years in AI-assisted
liver steatosis detection in B-mode ultrasound images presented in section 2.1. An
important consideration in all such methods is how to obtain ground-truth labels,
required for training and validating CAD systems

3.1.2 Obtaining ground-truth labels for liver
steatosis : Approaches and open
challenges

Three methods have so far been used to obtain ground-truth labels for liver
steatosis CAD : 1) Histopathological labeling, 2) MRI labeling and 3) visual assess-
ment of ultrasound images (referred to as ‘Visual labeling’). We briefly discuss each
method and the limitations we aim to overcome with comparative visual labeling.

Histopathological labeling. Histopathological examination is the gold standard
method used in clinical practice to precisely quantify the severity of liver steatosis.
This method involves extracting a liver sample via fine-needle aspiration biopsy,
which is then microscopically analyzed in a laboratory [18, 238]. The standard
biomarker is the Percentage of Fatty Hepatocytes (PFH), giving the proportion
of liver cells (hepatocytes) that contain excessive fat deposits. Patients with PFH
below 5% are classified as healthy (Figures 3.2(a) and 3.2(b)), whereas those with
a PFH of 5% or more are classified as pathological (images 3.2(c) to 3.2(h)).

However, histopathological labeling presents various practical and ethical
challenges. First, it is an invasive procedure requiring image-guided biopsy, which
carries risks of complications and is generally avoided unless necessary. Second, it
is costly, requiring medical intervention for sample collection and the expertise of
a histopathologist for diagnosis. Thirdly, since a biopsy is typically performed only
when there is a suspicion of liver abnormalities, there is an inherent population bias
towards pathological patients, whichmay affect the accuracy and generalizability
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of models trained with such data [250].

Additionally, there is a risk of label misalignment, where the ultrasound data
may be acquired at a different location to the biopsy sample. When the disease is
in its early stage and not well diffused through the liver, this can result in systematic
labeling errors.

MRI labeling. An alternative method to obtain labels is with Magnetic Resonance
Imaging Proton Density Fat Fraction (MRI-PDFF). MRI-PDFF is a quantitative liver
fat concentration biomarker obtained during a magnetic resonance (MRI) scan,
making it a non-invasive option. It is calculated as the fraction of liver proton
density attributable to fat, derived from the ratio of fat to water images acquired
during the MRI procedure. Several studies have demonstrated a strong correlation
between MRI-PDFF and histopathology. In [82], 635 participants underwent MRI-
PDFF and histological examination. The study reported that the sensitivity and
specificity of MRI-PDFF for classifying liver steatosis were 0.93 and 0.94 for healthy vs.
Grade 1–3, 0.74 and 0.90 for healthy vs. Grade 2–3, and 0.74 and 0.87 for healthy
vs. Grade 3. In addition, a meta-analysis of 24 studies with 2,979 NAFL patients,
reported in [83], confirms the accuracy of MRI-PDFF. The study found that MRI-PDFF
had high diagnostic accuracy with a Hierarchical Summary Receiver Operating
Characteristic (HSROC) of 0.97 for detecting steatosis at Grade 1 or higher, 0.91 for
Grade 2 or higher, and 0.90 for Grade 3 or higher.

However, using MRI to obtain labels presents two main challenges : the high
costs associated with MRI and the need to enroll patients for MRI scans that are not
required in their standard clinical pathway. Additionally, similarly to histopathology,
MRI-based labeling may also result in label misalignment.

Visual labeling. In this approach, clinicans or trained annotators label the US
data by directly inspecting the US data according to clinical guidelines. In the
literature, one form of visual labeling has been attempted, where a binary label
is assigned to each image according to the visual evidence presented in each
image. We refer to this visual labeling method as Single-image labeling (SVL). Table
3.1 shows three cues that have been used for SVL : the echogenicity of the liver
parenchyma, the visibility of the liver diaphragm, and the visibility of the hepatic
vessels, with the echogenicity of the liver parenchyma being the most informative
cue.

In practice, these cues cannot be used to reliably obtain continuous labels to
quantify pathology severity, unlike PFH. Nevertheless, there exist some guidelines
to use the cues in Table 3.1 to coarsely categorize severity into three grades as
follows :
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1. Mild liver steatosis (Grade 1) : This occurs when the PFH is between 5% and
33%. In ultrasound images, this is chacterized by aminimal increase in hepatic
echogenicity, with normal visualization of the diaphragm and intra-hepatic
vessel borders

2. Moderate liver steatosis (Grade 2) : This occurs when the PFH is between 34%
and 66%. In ultrasound images, this corresponds to a moderate increase in
hepatic echogenicity and slightly impaired visualization of the intra-hepatic
vessels and diaphragm

3. Severe steatosis (Grade 3) : This occurs when the PFH above 66%. In ultra-
sound images, this is marked by a significant increase in echogenicity and
poor or non-visualization of the hepatic vessels and diaphragm.

Given the practical constraints of histopathology and MRI-PDIFF labeling, SVL
is an attractive approach for generating large-scale datasets without misalign-
ment issues. However, labeling errors caused by inconsistency in US-based visual
assessment of the disease could result in suboptimal CADmodels and/or unreliable
performance evaluation and monitoring—critical aspects when deploying CAD
models as medical devices. These errors and uncertainties may arise from the
subtle and difficult-to-distinguish pathological differences in B-mode ultrasound
images, making consistent and accurate labeling particularly challenging. The
challenges of SVL are illustrated in Figure 3.2, which shows examples from subjects
in the Byra Dataset [29] with varying degrees of liver steatosis, from 3% PFH (healthy)
to 80% PFH (severe) fat infiltration. The differences between pathological findings
in neighboring images, particularly between healthy livers and those in the earlier
stages of steatosis, are subtle, and they may be severely obscured by variable
image quality.

In summary, visual labeling offers huge practical advantages for acquiring
datasets necessary to train and evaluate AI models for liver steatosis CAD. However,
an open and important research question is how to reduce the errors and biases
associated with SVL?

3.2 Methodology

3.2.1 Section overview
To address the challenges of SVL, we propose a new visual labelingmethod for

assessing pathologies in medical image data, based on comparative assessment.
We refer to this as Comparative Visual Labeling (CVL). In the case of ultrasound
image labeling, we propose to label the images in pairs, where the annotator
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Figure 3.1 – Progression of NAFLD from liver steatosis to cirrhosis and potential
hepatocellular carcinoma [35].

(a) 3% fat (b) 4% fat (c) 5% fat (d) 10% fat

(e) 15% fat (f) 25% fat (g) 40% fat (h) 80% fat

Figure 3.2 – Images extracted from the Byra Dataset [29] showcasingmultiple stages
of hepatic steatosis. These images demonstrate different levels of fat accumulation
in the liver, as verified through histopathological examination of fine-needle biopsy
samples. The dataset provides visual evidence of steatosis progression, ranging
from early to advanced stages.
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Table 3.1 – Guidelines for diagnosing steatosis using b-mode ultrasound images.
The primary visual indicator of pathology is increased echogenicity of the liver
parenchyma. Images from our property ’Dataset 2’, described in detail in Section
3.2.5.2. Diagnosis is typically performed in the liver-kidney view, where the echoge-
nicity of the liver is compared relative to the kidney parenchyma. Figures edited
using GIMP’s crop and draw tools with GIMP 2.10.28 [240].

Visual Feature Description Healthy Pathological

Liver
parenchyma
echogenicity

In pathological cases, the
echogenicity (brightness) of
the liver parenchyma is in-
creased, appearing whiter
on ultrasound images. This
enhancement is most effecti-
vely assessed by comparing
it to the echogenicity of the
kidney parenchyma.

Liver
diaphragm
visibility

In healthy cases, the liver
diaphragm is well-defined
and appears with a strong
white color. However, the pre-
sence of fat in the liver can
cause the diaphragm to be-
come blurry or even non-
visible.

Liver
vessels
visibility

The identification of well-
defined blood vessels is a
sign of a healthy liver. The pre-
sence of fat in the liver re-
duces their visibility, serving
as an indicator of steatosis.

assesses which of the images has a greater indication of the pathology. In principle,
CVL can be applied to various pathologies, but here, it demonstrates its value
for steatosis CAD. We hypothesize that Comparative Visual Labeling (CVL), which
focuses on annotating the relative severity of the disease between image pairs
rather than determining absolute disease presence or absence, can provide more
objectivity and reduce variability and sensitivity biases in labeling. We also propose
a way to easily convert these relative annotations into a single continuous-valued
label for each image, we use a Learning To Rank (LTR) approach implemented
with RankNet [24].

We propose amethod to transformComparative Visual Labels into continuous-
valued per-image pathological scores, using a Learning to Rank approach. In
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the experimental validation section, we show that the pathological scores cor-
relate extremely well with the gold standard (cell fact percentage assessed with
histopathology). The results show, for the first time, that a continuous score can
be produced from visual labeling of US data that reflects disease severity. We
also show how to utilized CVL to train neural networks for single-image steatosis
estimation.

3.2.2 Learning-to-Rank (LTR) and RankNet
Learning-to-Rank (LTR) is a general class of methods to rank data based on

comparative relevance measurements. LTR has received much attention in web
search engines, where the user inputs a query, and the LTR algorithm ranks and
outputs the most relevant web pages. In this context, the goal of an LTR algorithm
is to score the web pages according to relevance while ensuring that relevance
aligns with the user’s goal of obtaining the information they seek on the most
relevant pages. LTR is also widely used in e-commerce to rank products according
to user behavior. For instance, when a user clicks on a product over others, the
system interprets this as a preference, ranking that product higher in future searches.
This data helps the LTR algorithm provide personalized results for the user based on
their behavior. A similar process occurs on social networks, where LTR ranks content
and advertisements, ensuring users see more relevant posts and ads based on
their previous interactions. Figure 3.3 illustrate some of these examples.

The objective of an LTR model is as follows. We denote as xq a query (for
example, a keyword search) and a set of input features as X = {x1, · · · , xn},
where each vector xi represents features extracted from the ith input. For example,
the features could be the word frequencies extracted from a webpage whose
relevance is to be computed. LTR finds a scalar relevance functionΦ that computes
the relevance of each input with respect to xq. We denote as si the relevance
score for the ith, computed using Φ with the following expression :

si = Φ (xi; θ; xq) (3.1)

and where θ denotes the learnable parameters of Φ that are optimized during
training.

In the LTR literature, learning normally involves fitting θ to labeled training data,
by optimizing a loss function of the following form :

θ̂ = argmin
θ

L (θ; xq, X, Y ) (3.2)

where L denotes a loss function, and Y denotes a set of labels. Unlike standard
supervised learning, where labels correspond to the models’ expected outputs,
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(a) Google Search (b) Amazon Marketplace

Figure 3.3 – Example Applications of Learn to Rank (LTR) Algorithms. 3.3(a) aGoogle
web search for the query "Learning to Rank," displaying the most relevant results,
and 3.3(b) recommended products on the Amazon Marketplace homepage.
Both sites were accessed on September 26, 2024, using a Pixel 7a. The figures were
edited using GIMP 2.10.28’s crop and draw tools[240].

in LTR, such labels may not always be available. This can result from the inherent
difficulty in having users objectively assess the relevance of an input as a scalar
function.

As a consequence, several labeling methods have been considered in the
LTR literature, grouped into three categories :

1. Pointwise labels : The labels are defined for each training example, providing
the example’s continuous-valued relevance score with respect to xq.

2. Pairwise labels : The labels are defined for pairs of training examples. Each
label states which member of the pair has higher relevance with respect to
xq.

3. Listwise labels : This extends pairwise labels to multiple training examples. The
labels provide the order of relevance of the examples with respect to the
query xq.

The choice of label method determines the type of loss function that can
be used. For Pointwise labels, a regression loss is normally used, and commonly
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implemented with the sum of squared error loss :

LSSE (θ; xq, X, Y ) =
∑

i∈[1,N ]
(Φ (xi; θ, xq) − yi)2 (3.3)

where yi ∈ Y denotes the continuous-valued label for the ith input.

For Pairwise labels, the loss is normally based on variants of the loss proposed
in RankNet [24, 26, 25] as follows. We define as P (i ≻ j) the probability that the
model predicts that training example i should be ranked higher than example j.
This is evaluated via Φ using the Sigmoid function σ as follows :

P (i ≻ j) = σ (Φ (xi; θ, xq) − Φ (xj; θ, xq)) (3.4)

We define as yij the label associated to the pair (i, j) where yij = 1 if the
ith input should be ranked higher than j, and yij = 0 otherwise. The pairwise loss
evaluates the difference between the predicted probabilities P (i ≻ j) and the
labels using binary cross entropy as follows :

LP W (θ; xq, X, Y ) = −
∑

(i,j)∈C

yij log (P (i ≻ j)) + (1 − yij) log (1 − P (i ≻ j)) (3.5)

where C ⊂ [1, N ] × [1, N ] denotes the set of pairs for which a label yij exists. It is
not necessary, or desirable in practice, to obtain labels for all possible pairs. Various
methods exist for selecting pairs, including random subset selection, or selection
based on minimum spanning trees. We note that, ignoring pais with no difference
yij = 0, the input pairs can be reordered a priorir so that the pairwise labels are
always positive : yij = +1. This reordering simplifies the loss to the following :

L′
P W (θ; xq, X, Y ) = −

∑
(i,j)∈C

log (P (i ≻ j)) (3.6)

For Listwise labels, several different loss functions have been proposed, based
on either Normalized Discounted Cumulative Gain (NDCG) or Mean Average
Precision (MAP). NDCG considers the relevance of training examples, while penali-
zing incorrect orderings more heavily for items ranked near the top. It also uses a
normalized loss to make balance the loss when training with multiple ranked lists or
queries. One of the main challenges of NDCG is that, in its original form, it is non-
differentiable. This has been overcome using either a differentiable approximation
such as SoftRank [239], or using iterative optimization such as LambdaRank [25] or
LambdaMART [26].

Additionally, losses based on NDCG tend to favor highly-ranked training
examples because, in many applications such as web search, a user is mainly
only concerned with the most relevant web pages. This can be a drawback for
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non-traditional applications like ours, where the most challenging patients to diag-
nose are those in the early stages, who are not top-ranked with respect the visual
extent of the pathology. Additionally, listwise labels may take more time to label
compared to pairwise comparisons because of the need to sort items.

3.2.3 Comparative Visual Labeling (CVL)
In CVL, we assign a pairwise label to a pair of medical images, where the label

conveys which of the two images shows greater pathology severity. Consequently,
these labels express the relative pathology severity of the image pair. We then
transform the set of Comparative Visual Labels to absolute, continuous pathology
severity scores by training a RankNet. This contrasts SVL, where each image is
annotated individually with absolute labels.

The differences between CVL and SVL are illustrated in Figures 3.4 and B.1. We
recall that in SVL, binary labels are defined as follows :

Di =

1, if Ii appears pathological
0, if Ij appears healthy

(3.7)

Figure 3.4 – Illustration of the Single-Image Visual Labeling (SVL) annotation process.
The annotator assigns a binary label {0, 1} (healthy versus pathological) to the
image based on the visual findings listed in Table 3.1 and their own experience.

In CVL, we define as S = {Ii,j | i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, i ̸= j},
a set of image pairs that are to be annotated with CVL. One can view S as a
graph where each member is a connection between two images, which are the
graph’s nodes. In practice, S does not need to include all possible pairs, which
would be prohibitively expensive to annotate. However, S must have a single
connected component. That is, every image can be linked to every other image,
by traversing the edges in the graph. This is important because it is necessary to
convert pairwise annotations (which can be seen as attributes on the graph’s
edges), to pathological score, using a RankNet as described in Section. We discuss
two methods to generate S, as used in our experiments, in Section 3.2.5.3.
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Figure 3.5 – Illustration of theComparative Visual Labeling (CVL) annotation process.
The annotator assigns a binary label the annotator assigns labels belonging to
Di,j ∈ {1, −1, 0+, 0−} to the image pair Ii,j based on which image is perceived as
having a higher degree of pathology severity. In our case study of liver steatosis,
this assessment is determined by comparing the evidence for the visual indicators
given in Table 3.1.

Each image pair {Ii,j} ∈ S, has an associated Comparative Visual Label that
we define as follows :

Di,j =



1, if Ii appears more pathological than Ij
−1, if Ij appears more pathological than Ii
0−, if both Ii and Ij are healthy

0+, if both Ii and Ij are pathological and indistinguishable

(3.8)

We used the label 0+ to avoid situations where an annotator would be forced
to distinguish disease severity when, in practice, they cannot due to insufficient
visual evidence. Table 3.2 shows some examples of Comparative Visual Labels.

3.2.4 Transforming Comparative Visual Labels
to continuous pathology severity scores
with RankNet

We now present our approach to transform a set of Comparative Visual Labels
into per-image, continuous pathology scores, by adapting and training an LTR
model implemented with RankNet. We refer to this approach as CVL+RankNet,
and it is motivated by two important uses. Firstly, the continuous pathology scores
are effectively continuous labels that, as shown in the experimental results section
for liver steatosis, correlate well with PFH values in its early stage (which is the most
clinically relevant range for screening with CAD). Secondly, the scores can be
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Image 1 Image 2 Label (y12)

0−

−1

0+

1

Table 3.2 – Examples of Comparative Visual Labels for ’Dataset 1’. The labels are
defined in Equation 3.8.

binarized (dichotomized) at any desired specificity/sensitivity threshold, to meet
according to the specific application. Unlike SVL, such binarization does not need
to be set in stone at the time of annotation, and an adjustment of the threshold
does not require any re-annotation by humans.

Term Semantics : LTR for search engines Semantics : LTR for
Image-based CAD

Datatype Webpage Medical image
Relevance score Webpage relevance Perceived severity of pathology

P (i ≻ j) Probability that webpage i
is more relevant than i

Probability that image i
shows greater pathology severity

than i

Query User search input Type of pathology

Table 3.3 – Mapping of key terms from Learning-to-Rank (LTR) literature in web
search to their application in computer-aided diagnosis (CAD).

The LTR problem. We define our LTR problem as follows : Given a dataset of
medical images I = {Ii | i ∈ {1, 2, . . . , N}}, where xi denotes the features
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associated to the ith image, our objective is to estimate a relevance score si ∈ R+

associated with each image, for a query pathology xq.

In our context, the relevance score corresponds to the severity of the patho-
logy, and it is determined by a function Φ as introduced in Equation 3.1. In Table
3.3, we map the key terminology used in the prior LTR literature focused on web
search to the new application of CAD.

We propose to model Φ using a small neural network based on RankNet [135,
24], and trained from Comparative Visual Labels, as depicted in Figure 3.6.

Although other alternative LTR models to RankNet exist, such as LambdaRank
[25] and LambdaMART [26], RankNet was chosen for its satisfaction in other ranking
tasks and its open-source implementation. RankNet has also shown relatively stable
performance without requiring significant hyper-parameter turning, such as the
number of hidden layers and other architectural choices.

It is important to emphasize that this approach is not intended to train amodel
that produces pathology severity scores for unseen images (not contained in the
training dataset). Rather, its purpose is only to transform Comparative Visual labels
into pathology scores for each image in the training dataset via Φ.

RankNet training methodology. We illustrate the RankNet in Figure 3.6. During
training, each training image Ii is assigned to a unique binary string xi ∈ {0, 1}N

using one-hot encoding, where N is the total number of images. Consequently,
xi = [0, . . . , 1, . . . , 0] where 1 appears in the ith position in xi. The string xi is passed
into a RankNet with N neurons in its input layer (connected to each bit xi). The
RankNet has one output neuron, producing the pathology score si. The training
forward pass operates as follows. For each image pair (i, j) with a CVL label,
the binary strings (xi, xj) are passed through the RankNet, which outputs their
respective scores si and sj . The pair’s rank probability P (i ≻ j) is then evaluated
from si and sj , using Equation 3.4. The rank probabilities of all pairs are then
compared against the ground-truth rank probabilities (determined from the pairs’
Comparative Visual Labels), using a loss function, detailed in the following section.
Once the RankNet is trained, we obtain the real-valued pathological score of
each training image, referred to as its CVL+RankNet score, as si = Φ

(
xi; θ̂, xq

)
,

where θ̂ denotes the RankNet’s trained parameters.

The RankNet can be trained byminimizing the loss functionwith backpropaga-
tion and a suitable optimizer such as Adam [131]. We provide our implementation
details used for the experiments of this chapter, including training parameter set-
tings, and the hidden layer architecute in 3.4, which were fixed for all experiments.
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Loss function. Recall that we propose using 4 comparative visual labels : Two of
the labels (+1 and −1) indicate a perceivable difference in pathology severity. For
these labels, we apply the pairwise Binary Cross Entropy loss as defined in Equation
3.5. In contrast, the other label values (0− and 0+) correspond to no perceivable
pathology difference. We have considered different options to handle these labels.
The first option was to add a loss that encourages the relevance score of each
image in the pair to be the same. A naive way to approach this is to add an
equality loss for the 0− and 0+ labels, such as a sum of squared differences :

L0
P W (θ; xq, X, Y ) =

∑
(i,j)∈C

1(yij = 0) (Φ (xi; θ, xq) − Φ (xj; θ, xq))2 (3.9)

where 1 denotes the indicator function. The losses may be combined using a
weighting term λR+ L = LP W + λL0

P W where λ balances the influence of pairs
with no perceivable pathology difference. During training, each training image Ii

is assigned to a unique binary string xi ∈ {0, 1}N using one-hot encoding, where N

is the total number of images. Consequently, xi = [0, . . . , 1, . . . , 0] where 1 appears
in the ith position in xi.

However, in our experiments, we noticed that using a positive λ generally
resulted in worse performance than λ = 0. This can be explained by the fact that
zero labels are used when an annotator cannot confidently perceive, among two
images, a difference in the pathology severity. However, this does not necessarily
imply that there is no pathology difference. As such, we view the assignment of
the label 0 as a case of missing data, and in our experimental results, we use only
LP W as the loss function.

Figure 3.6 – Scheme of our implementation of RankNet [24], a LTR neural network
trained with pairwise comparison data.

Dichotomizing pathology severity scores. Per-image binary classification labels
(healthy vs. pathological) can be produced from the CVL+RankNet scores by
applying a threshold τ , as described in Equatioin (3.10). An annotator can decide
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this threshold as follows : Firstly, the images are presented to the annotator in order
of CVL+RankNet score. The annotator selects the first Ia and last Ib image between
which they believe the boundary exists between healthy and pathological cases.
We then compute τ as τ = 1

2(Φ
(
xa; θ̂, xq

)
+ Φ

(
xb; θ̂, xq

)
). In our results section,

discuss this method to select τ in greater detail.

yi =

1, if si ≥ τ

0, if si < τ
(3.10)

3.2.5 Implementation of CVL+RankNet for
labeling and classifying liver steatosis in
ultrasound images

3.2.5.1 Section overview

We now describe our implementation of CVL+RankNet for labeling liver stea-
tosis in ultrasound image sets.This section is organized as follows. First, we describe
the datasets used for training and validation. Next, we describe the cohort of
annotators used to label the data with CVL and SVL. Next, we describe the Rank-
Net implementation and training hyper-parameters (which have been fixed for
all experiments). Finally, we describe the AI models trained using to automatically
detect liver steatosis from US images, using CVL+RankNet scores as labels.

3.2.5.2 Datasets

Two datasets were used. The first dataset was the Byra Dataset [29] 1, referred
herin as Dataset 1. This was the first, and to this date, the only, publicly available
dataset consisting of US images paired with ground-truth PFH values from histopa-
thology. The dataset was collected anonymously with written informed consent at
the Department of Internal Medicine, Hypertension, and Vascular Diseases at the
Medical University of Warsaw in Poland [123, 29], and comprises 55 severely obese
patients (mean age 40.1 ± 9.1 years, mean BMI 45.9 ± 5.6, 20% male) collected
within two days before bariatric surgery. The B-mode ultrasound data was obtained
using the GE Vivid E9 Ultrasound System (GE Healthcare INC, Horten, Norway),
equipped with a convex abdominal 2.5 MHz probe with harmonic imaging. Ten
B-mode US images of the liver and kidney were captured for each patient in the

1. The dataset is available for download at : https://zenodo.org/records/1009146.
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liver-kidney sagittal plane, at a resolution of 434x636 pixels (550 images in total). The
images were very similar, and captured with the probe in the same position. Conse-
quently, intra-patient image variability was small, with only noticeable changes in
speckle patterns and mild organ movement due to respiration. Figures 3.8(a) and
3.8(b) showcase examples of healthy and pathological cases, respectively. A liver
biopsy was performed on each patient using the subcapsular part of the left liver
lobe for histopathological examination. The distribution of liver steatosis in Dataset
1 is provided in Figure 3.7.

The second dataset, referred to as Dataset 2, was collected anonymously with
written informed consent at the MIM clinic in Strasbourg, France, and comprises 54
patients collected during routine abdominal examinations. The B-mode ultrasound
data was obtained using a Canon Aplio a450 system (Canon Medical Systems,
Ōtawara, Tochigi, Japan), equipped with a convex abdominal probe. One US
image was collected for each patient, showing the liver and kidney in the liver-
kidney sagittal plane, at a resolution of 434x636 pixels. Figures 3.8(c) and 3.8(d)
showcase examples of healthy and pathological cases, respectively.

Datasets 1 and 2 differed in three important ways. Firstly, Dataset 1 had ground
truth from histopathology, whereas Dataset 2, which represented images from rou-
tine ultrasound abdominal procedures, did not. Secondly, the images came from
different devices, and thirdly, Dataset 1 consisted of obese patients admitted for
bariatric surgery using a prospective data collection protocol. In contrast, Dataset
2 consisted of patients from routine abdominal examinations (not specifically for
the purposes of bariatric surgery). As a result, there was strong class distribution
difference between datasets, where Dataset 1 had a much higher proportion of
pathological cases (69%) compared to Dataset 2 (33% - estimated using SVL as
described in the following section).

3.2.5.3 Image pair selection and annotation

For a datset of N images, the number of possible image pairs is N(N − 1) / 2
(quadratic in N ). Consequently, it was important to apply a pair selection strategy
to reduce the amount of annotation effort. As discussed in Section 3.2.3, the
image pair set can be viewed as a graph whose nodes are images and edges
are labels. This graph must have one connected component ; otherwise, it is
impossible to transform the labels to continuous pathology severity scores with
any LTR method, including RankNet, where RankNet training would otherwise be
an ill-posed problem. For Dataset 1, where images from the same patient were
extremely similar, only the first image of each patient was used for annotation
(N = 55 images). For Dataset 2, all images were used for annotation (N = 54
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Figure 3.7 –Distribution of Percentage of Fatty Hepatocytes (PFH) values for patients
in Dataset 1, determined fromhistopathological examination of liver biopsy samples
[29]. 69% of patients had steatosis (PFH > 5%), and there was a broad range of
steatosis severity, ranging from mild to severe.

images).

For both datasets, we used a simple technique of pair selection, which pro-
duced a single connected component and graphs with redundancy (i.e. edges
could be removed while maintaining a single connected component). We ex-
ploited this redundancy to assess the impact of reducing the number of image
pair annotations using edge pruning, as described later in Section 3.3.3. Pairs were
established by taking each image and pairing it with 0 < p ≤ N other images in
the dataset using random selection. In our experiments, we used p = 18, represen-
ting a large amount of redundancy and generating graphs with one connected
component.

Each image pair was then annotated independently by three experienced
radiographers from IRCAD’s annotation team. The annotator profiles were as fol-
lows :

— Annotator A : Team leader radiographer with 11 years of experience in
ultrasound image analysis.

— Annotator B : Radiographer with 7 years of experience in ultrasound analysis.
— Annotator C : Radiographer with 6 years of experience in ultrasound analysis.

To perform the annotation tasks, the image pairs were horizontally concatenated
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and presented to each annotator in random order using the CVAT annotation tool
[216]. The concatenated images were annotated with the CVL labels as defined
in Equation (3.8) using CVAT.

To measure the potential benefit of label fusion (i.e. combining labels from
different annotators), we created additional labels (’Fused Labels’) using the
majority vote from the annotators. Because we used 4 label classes as defined in
Equation 3.8, if eachannotator labeledapair differently, therewould be nomajority.
However, this did not occur. The images of each dataset were also annotated
independently by each annotator with SVL. This was performed to analyze label
quality of both techniques. Like CVL, label fusion was also performed, creating a
fourth set of labels per dataset, using majority voting.

(a) (b) (c) (d)

Figure 3.8 – Sample images from Datasets 1 and 2 used to train and evaluate
CVL+RankNet. (a) and (b) show healthy and pathological cases from Dataset 1, res-
pectively. (c) and (d) show health and pathological cases from Dataset 2, respectively. To
improve visibility, the brightness of the images has been increased by 150% using GIMP’s
exposure filter (GIMP 2.10.28) [240].

3.2.5.4 RankNet training

We trained eight RankNets, with four RankNets per dataset. The first three
RankNets were trained using the Comparative Visual Labels from Annotators A, B
and C. The fourth RankNet was trained using Fused Comparative Visual Labels.
For each RankNet, the same architecture and training hyper-parameters were
used. The architecture involves a single hidden layer, presented in Table 3.4. In the
results section, we show that performance was relatively insensitive to three key
architecture hyper-parameters.

The RankNets were implemented in Python 3.8 using Keras 2.6, and trained
with Adam optimization [131]. This took approximately one minute per RankNet
using a standard workstation PC with a consumer-grade GPU (NVidia RTX 3090).
Once training was finished, the associated CVL+RankNet scores were computed
for each RankNet, by forward passing the training images through the RankNets.
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Model : "RankNet_CVL"
Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 55) 0
input_2 (InputLayer) (None, 55) 0

Sequential (Sequential) (None, 1) 6,617 Input_1[0][0]
Input_2[0][0]

Subtract (Subtract) (None, 1) 0
Sequential[0][0]
Sequential[1][0]

activation (Activation) (None, 1) 0 subtract[0][0]
Total params : 6,617
Trainable params : 6,617
Non-trainable params : 0

Table 3.4 – The RankNet architecture used to transform Comparative Visual Labels
to continuous pathology severity scores.

3.2.5.5 Using CVL+RankNet scores for automatic liver
steatosis detection

By pairing the CVL+RankNet scores with their associated images, we could
train two kinds of liver steatosis detection models, as shown in Figure 3.9. They were
as follows :

— Regression models : These models were trained to predict pathology severity
from an ultrasound image, using CVL+RankNet scores as training labels.

— Binary classification models : Thesemodels were trained to classify ultrasound
images into two classes : healthy or pathological. The training labels were
established by thresholding the CVL+RankNet scores as described in Section
3.2.4.

These models could be implemented and trained using any state-of-the-art
approach. We chose the Inception-ResNet-v2 model [233] for its strong perfor-
mance in image classification, though other competitive network architectures
are also suitable.

We configured Inception-ResNet-v2 for binary classification by replacing its
final layer with two neurons (one for each class) with Softmax activation. It was
trained using the Binary Cross Entropy Loss and class weighting to handle class
imbalance. We configured Inception-ResNet-v2 for regression by removing the
classification head and replacing it with a regression head. This was implemented
using amax pooling layer, then a flattening layer, followed by three fully connected
layers with 512, 16, and 1 neurons, respectively. The regression model was trained
with the Sooth L1 Loss [80] with β = 1.
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Both models were pre-trained on ImageNet and trained using a standard
workstation equipped with a GeForce RTX 3090 GPU and PyTorch 1.7.1. To improve
generalization, data augmentation was applied as a pre-processing step, invol-
ving random geometric and photometric perturbations of the training images.
The same augmentation parameters were used for both networks, and the com-
plete list of image pre-processing operations is provided in Table 3.5. The training
hyper-parameters of both models are listed in Table 3.6. Training typically took
approximately 20 minutes for each model.

Figure 3.9 – Illustration of two neural network models trained to detect liver steatosis
from a B-mode ultrasound image using CVL+RankNet scores. Top-right : binary
classification (predicting whether an ultrasound image shows the presence or
absence of steatosis (pathological vs. healthy). Bottom-right : regression (predicting
a continuous-valued pathology severity score from an ultrasound image).

Table 3.5 – List of image pre-processing operations with value ranges (where appli-
cable) and application probabilities. All operations have were implemented using
Albumentations 1.1.0 [27].

Operation Value Range Probability
Crop Ultrasound ROI — 100%
Rand. horizontal Flip — 50%
Rand. rotation [-15º, +15º] 100%
Rand. horizontal Translation [-10%, +10%] 100%
Rand. vertical Translation [-10%, +10%] 100%
Rand. scaling [95%, 105%] 100%
Rand. Gaussian Blur [0, 2.0] 50%
Rand. Erasing [2%, 33%] 50%
Resize [299, 299] 100%
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Table 3.6 – Training hyperparameters for our three proposed architectures : classifi-
cation and regression.

Parameter Value (classification) Value (regression)
Learning rate auto lr find auto lr find
Gradient accumulation true true
Class balance inverse frequency none
Batch size 64 64
Min. epochs 50 200
Max. epochs 400 400
Early stop min. delta 0.00001 0.00001
Early stop count 7 7
Backbone Inception-ResNet-v2 Inception-ResNet-v2

3.3 Results

3.3.1 Section overview
We now present our experimental validation of the methodology described

in the previous section. This section is organized as follows. First, we analyzing the
quality of Single-image Visual Labels and Comparative Visual Labels, against
ground truth from histopathology. For both labeling methods, we quantify each
annotator’s error rates and the Fused Label error rates (established by majority
voting). Next, we analyze the quality of CVL+RankNet scores compared to ground
truth and measure statistical agreement (correlation) in different severity bands.
Next, we present an experiment to study the influence of the number of pairwise
comparisons on the quality of CVL+RankNet scores. Finally, we analyze the perfor-
mance of classification and regression models trained using CVL+RankNet scores
as labels.

3.3.2 SVL and CVL error analysis
This analysis involved only Dataset 1 for which ground truth labels were avai-

lable. The distribution of label errors using SVL is illustrated in Figure 3.10, showing the
percentage of mislabeled images, grouped into four categories (severity bands) :
healthy (≤ 5% fatty hepatocytes), mild (grade 1, 5 − 33%), moderate (grade 2,
33 − 66%) and severe (grade 3, > 66%) liver steatosis. For all annotators, most
errors occured in the mild band, indicating the difficulty in labeling mild cases,
which, however, are the most clinically relevant cases for early disease detection.
The results showed a tendency of annotators B and C to label mild liver steatosis
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as healthy using SVL, reflecting previous findings showing liver steatosis can be
underestimated by as much as 20% [127, 142].

Figure 3.10 – SVL error rates of each annotator and Fused Labels. Error rates are
grouped into four categories, corresponding to error rates for healthy images and
error rates for pathological images in three severity bands (grades) as defined in
Section 3.1.2 - Histopathology labeling. Each bar group has 4 bars, representing
the error rates of the annotators and also that of Fused Labels (computed using
the annotators’ majority vote).

Figure 3.11 shows the CVL error rates when annotators used labels +1 and −1
(i.e., when they perceived a difference in pathology severity when, according to
ground truth, there was no difference). We grouped the errors into five categories
(shown by the five groups of bar plots), to highlight that CVL errors depend on the
actual difference in pathology severity. To this end, we used five categories : 1)
image pairs with PFH differences 1) below 15%, 2) between 15-30%, 3) between
30-50%, 4) between 45-60%, and 5) above 60%. For each category, three error bars
are shown, giving the error frequency of each annotator.

The highest error rates occurred in category 1, when the difference in liver
steatosis severity was smallest. This was expected, given that this interval contained
the most similar pathological grading, which can be hard to distinguish. None-
theless, the error rates were nevertheless relatively low in category 1, and below
< 3.5% for all annotators. We observed a general trend to lower error rates from
categories 1 to 5. There were no errors in category 5.

Figure 3.12 shows the distribution of CVL errors when annotators used labels
0− and 0+ (the equality labels). For these labels, an error occurred when they
perceived no pathology difference, when, according to ground truth, there was a
difference. Concretely, the figure shows the probability of label errors on the y-axis,
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Figure 3.11 – Distribution of CVL errors using Dataset 1 for labels +1 and −1. The
error rates of each annotator are shown, as well as the error rates of Fused Labels
using majority voting. To reflect the fact that the error rate depends on the actual
difference in pathology severity (measured by the absolute difference in PFH
values), we grouped the misclassified image pairs into 5 categories (shown by the
five groups of barplots), ranging from a small difference (category 1 : < 15%) to a
very large difference (category 5 : > 60%). Solid black horizontal bars represent
an error rate of 0.

where a label was considered an error if the difference in PFH values exceeded a
threshold τGT . We ranged τGT from 1 to 100% (representing the maximum possible
difference in PFH values.). For example, with τGT = 20% (which, in practice, is a
substantial difference in liver steatosis severity), the label error rates were approxi-
mately 0.22 for all annotators. In contrast, with τGT = 10%, the label error rates
increased to approximately 0.56 for all annotators. For τGT > 73%, there were no
labeling errors for any annotator. The figure also shows the probability of label errors
was remarkably similar between annotators.

The results indicate that when the annotators used equality labels, they were
often notable differences in PFH values. Nevertheless, we recall that the annotators
used the equality labels when they could not perceive a difference in pathology
severity. Therefore, these errors may be explained due to limited visual evidence.
This finding also justifies our decision to exclude equality labels in the RankNet loss
function (Section 3.2.4 - Loss function).
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Figure 3.12 – Probability of equality label errors for eachannotator.An error occurred
when they perceived no pathology difference, when, according to ground truth,
there was a difference. Concretely, the figure shows the probability of label errors
on the y-axis, where a label was considered an error if the difference in PFH
values exceeded a threshold τGT . We ranged τGT from 1 to 100% (representing
the maximum possible difference in PFH values).

3.3.3 CVL+RankNet performance for binary
labeling

F1 and ROC-AUC performance metrics. We compared the per-image labels
produced by CVL+RankNet against ground truth labels using F1 (the harmonic
mean of sensitivity and specificity), and ROC-AUC (area under the receiving
operating curve) metrics. Ground truth labels were established by thresholding the
image’s PFH value at 5% according to clinical guidelines [29]. The CVL+RankNet
scoreswere thresholdedby the annotators using the approachdescribed in Section
3.2.4 - Dichotomizing pathology severity scores. We generated ROC curves (and
consequently ROC-AUC) for CVL+RankNet, by interpreting the CVL+RankNet
scores as detection confidence values. As such, ROCcurves could be produced by
varying the decision threshold τ (discussed in Section 3.2.4) from 0 (corresponding
to 100% sensitivity where all images are classified as pathological) to the maximal
value of 100 (corresponding to 100% specificity where all images are classified as
healthy).
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We used SVL was used as the baseline labeling method. We note that in
contrast to CVL+RankNet, it was impossible to assess ROC-AUC with SVL because
it produced only a set of binary labels (from which it was impossible to generate a
ROC curve). This also highlights a key virtue of CVL+RankNet compared to SVL :
the threshold may be adjusted to achieve a desired label sensitivity/specificity
without requiring the annotators to relabel images.

Table 3.7 – Label quality metrics (F1 and ROC-AUC) evaluated on Dataset 1 with
SVL and CVL+RankNet. The lower 2.5% and upper 97.5% confidence intervals (CIs)
are shown in brackets.

Method
Annotator Annotator A Annotator B Annotator C Fused labels

SVL (F1) 0.92 [0.85, 0.98] 0.83 [0.72, 0.92] 0.85 [0.75, 0.93] 0.87 [0.77, 0.94]
CVL+RankNet (F1) 0.99 [0.96, 1.00] 0.93 [0.86, 0.98] 0.93 [0.86, 0.98] 0.97 [0.93, 1.00]
CVL+RankNet (AUC) 0.99 [0.90, 1.00] 0.97 [0.88, 0.99] 0.95 [0.88, 0.99] 0.99 [0.89, 1.00]

The results are shown in Table 3.7 where we observe the following. The F1
performance of SVL varied considerably between annotator A and the other two
annotators, and SVL with Fused Labels had a lower F1 performance than Annotator
A. This result could be attributed to the lower performance of Annotators B and C,
which negatively influenced the fused labels. Compared to SVL, F1 performance
of CVL+RankNet was substantially higher for all annotators and Fused Labels.

We assessed statistical significance using the 95% CI of paired differences
between SVL and CVL+RankNet labels (implemented with bootstrap resampling
with 5000 samples). Significance was found for Annotators A, B and Fused Labels.
McNemar’s test at (α = 0.05) was also performed to assess, for each annotator,
whether the differences between their SVL and CVL+RankNet labels were signifi-
cant. The p-values were p = 0.059 (significant), p = 0.034 (significant), p = 0.096
(not significant), and p = 0.020 (significant) for Annotators A, B, C, and Fused Labels,
respectively. Table 3.7 shows very strong ROC-AUC performance for all annotators
and Fused Labels, with the lowest performance from Annotator C (0.95). However,
the ROC-AUC differences were not statistically significant.

Fleiss’ Kappa performance metric. We also assessed label quality in terms of
inter-rater agreement. This was measured using the Fleiss’ Kappa method [74],
which determined whether the observed agreement among individual raters was
statistically significant or merely due to chance. Fleiss’ Kappa was calculated as :

κ = Po − Pe

1 − Pe

(3.11)

where Po represented the observed label agreement and Pe, represented the
label agreement that could be expected by chance. The Fleiss’ Kappa value was
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0.75 for SVL (considered ‘substantial agreement’) and 0.84 with CVL+RankNet
(considered ‘almost perfect agreement’). Consequently, not only did the binary
label quality improve using CVL+RankNet, but so did the agreement between
annotators. Both of these are important virtues of CVL+RankNet.

Figure 3.13 – The range of CVL+RankNet thresholds yielding a better F1-score
compared to SVL. The pink rectangle shows the range, and the red cross shows
the CVL+RankNet threshold selected by the annotators).

Decision threshold sensitivity. We also studied how CVL+RankNet performance
was affected by the choice of the decision threshold τ . For brevity, we studied
this using only Fused Labels, and the results are shown in Figure 3.13. The range of
τ yielding a higher F1 score compared to SVL (also using Fused Labels) is shown
in the pink rectangle. Considering that the CVL+RankNet scores ranged from
0 (healthy) to 100 (maximum pathology severity), one can see a relatively wide
range of thresholds where CVL outperformed SVL. The red cross shows the threshold
selected by the annotators, which was very close to the optimum threshold.

RankNet architecture sensitivity. CVL+RankNet performance is affectedby choices
in the RenkNet architecture, and consequently a performance sensitivity analysis
was performed for 3 key hyper-parameters (the number of hidden layers H , the
number of neurons per hidden layer K, and the dropout rate d. We evaluated
performance using Fused Labels by conducting a hyper-parameter grid sampling,
ranging H from 1 → 5, K from 32 → 512, and d from 0 → 0.9). We found that
dropout had the strongest influence, but when it was kept below 0.7, the F1-score
were relatively stable across all configurations (mean F1 of 0.976 and standard
deviation of 0.0089).
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Sensitivity to the number of pairwise comparisons A drawback of CVL+RankNet
compared to SVL is that it requires more labels (one per image pair, versus one per
image). Therefore, we studied the relationship between label quality (measured
with the F1metric) as a function of the average number M of pairwise comparisons
per image. We started with the original set of image pairs, and we then pruned
image pairs using the method described in Section 3.3.3 until M = 6. We then
trained the RankNet using the labels of the pruned image pair set and measured
its F1 performance. We continued the process of pruning, RankNet training, and
performance measurement until M = 1, which represented an extremely sparse
set of image pairs. To account for the fact that the label pruning process was
stochastic due to randomized image pair selection, we repeated the process 10
times, allowing us to measure the distribution of F1 scores for each M . We recall
that to measure F1 performance, a decision threshold τ was required at each
repetition. It was infeasible to have the annotators manually perform this, so we
set the threshold automatically as the one with the maximal F1 score among all
possible thresholds via an exhaustive search.

The results are shown in Figure 3.15, which shows four graphs. Each graph
shows the F1 distribution as a function of M , for each annotator (graphs (a)-(c))
and with Fused Labels (graph (d)). The horizontal lines in each graph show the
F1 performance of the corresponding annotator using SVL. The blue line shows
the mean F1 score of CVL+RankNet, and the light blue zone shows one standard
deviation from the mean. We notice the following. Firstly, with only 2 pairwise
comparisons per image, the average CVL+RankNet F1 scores exceeded the
CVL F1 scores for all annotators. Secondly, CVL+RankNet performance appeared
to level off at approximately M = 5.5. Thirdly, beyond M = 5.5, CVL+RankNet
performance tended to a similar value in all graphs (F1 score of approximately
0.975). This indicated that CVL+RankNet resulted in highly consistent binary labels,
of superior quality to SVL, with only 5.5 comparisons per image.

3.3.4 CVL+RankNet performance for
continuous pathology severity
assessment

Wealso investigated the correlation between the raw (non-binarized)CVL+RankNet
scores, and PFH values. The results are shown in Figure 3.14 as a scatter plot. Each
point represents an image from Dataset 1, with its PFH value on the x-axis and its
CVL+RankNet score (computed from Fused Labels) on the y-axis.

The figure shows 4 horizontal bands representing normal and three liver stea-
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Figure 3.14 – Relationship between CVL+RankNet scores computed using fused
CVL labels (y-axis), and ground truth PFH values (x-axis). The colored regions in-
dicate the steatosis severity bands : Healthy (green), Grade 1 (yellow), Grade
2 (orange), and Grade 3 (light pink). The red line represents the CVL+RankNet
score threshold, selected by the annotators, to separate healthy from pathological
images.

tosis severity grades. The horizontal red line shows the CVL+RankNet threshold
selected by the annotators (39.78). We observed the following from the graph : 1)
CVL+RankNet scores differentiated healthy cases from pathological (Grade 1 or
above) with almost perfect separation (1 false positive, 1 false negative, indicated
by the red cross. 2) CVL+RankNet scores could not differentiate pathology grades.
Nevertheless, in clinical practice, the ability to differentiate healthy patients from
those with mild steatosis (grade 1) is substantially more important for disease scree-
ning and early detection with ultrasound, compared to differentiating severity
grade with ultrasound.

The graph also showed a non-linear relationship between CVL+RankNet
scores and PFH values. This was expected because the CVL+RankNet scores
were not specifically calibrated [249] against PFH values. Non-linear correlation
was assessed with Spearman’s rank correlation coefficient ρ [189], measuring the
strength and direction of a monotonic relationship between two variables, as
follows :

ρ =
∑

i (si − s̄)
(
hi − h̄

)
√∑

i (si − s̄)2∑
i

(
hi − h̄

)2
(3.12)

where si represents the CVL+RankNet score for image i, and hi represents its PFH
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value. Strong correlation was observed with ρ = 0.87 and correlation was highly
statistically significant (p = 7.6e−18).

3.3.5 Using CVL+RankNet for training liver
steatosis detection models

Using Dataset 1, we trained and validated regression and classificationmodels
as described in Section 3.2.5.5. Due to the relatively small number of patients in Da-
taset 1 (55), leave-one-out cross-validation (LOOCV) was used, and performance
was evaluated using ROC-AUC.

The results are presented in Table 3.8, where each row represents a model
configuration and each column represents the source of training labels. There
were four configurations : Classification : SVL (classification trained with SVL labels),
Classification : CVL+RankNet (classification trained with CVL+RankNet labels),
Regression : GT (regression trained with PFH values as labels) and Regression :
CVL+RankNet (regression trained with CVL+RankNet scores). Consequently, there
were 5 sources of labels : (labels from each annotator (CVL and SVL), Fused Labels
(CVL and SVL), and PFH values (ground-truth)). For a fair comparison, the same
architecture (Inception-ResNet-v2) was used for all configurations, the training
parameters were the same as described in Section 3.2.5.5.

From Table 3.8, one can see that all configurations achieved similar ROC-
AUC scores. We recall that the CVL+RankNet labels were more accurate than
SVL labels as shown previously in Table 3.7. However, that did not translate to
significantly better model model performance in terms of ROC-AUC. This indicated
that the models had some inherent robustness to training label errors in this task.
However, the limited size of Dataset 1 made it difficult to draw firm conclusions
about the impact of label errors on model performance, requiring further research.
The regression and classification models also performed similarly.

Table 3.8 – ROC-AUC scores of classification and regression model configurations.
GT represents the histopathological results.

Config.
Training labels Annot. A Annot. B Annot. C Fused labels. GT

Classification : SVL 0.93 0.93 0.95 0.93 0.93
Classification : CVL+RankNet 0.92 0.95 0.92 0.91 0.93

Regression : GT - - - - 0.92
Regression : CVL+RankNet 0.92 0.94 0.89 0.91 0.92

Wealso performed a cross-dataset performance comparison, using histogram
equalization as an image pre-processing step to reduce the domain gap [200].
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(a) Annotator A

(b) Annotator B

(c) Annotator C

(d) Fused labels

Figure 3.15 – F1 Performance of CVL+RankNet (blue curve) as a function of the
number of pairwise comparisons. The red line is the reference value for single-
image annotations and the blue zone represents 1 standard deviation.
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Using Dataset 2, two classifier models were trained using SVL and CVL+RankNet
labels. Inference was then performed on Dataset 1, and ROC-AUC was measured
using its ground-truth labels. ROC-AUCs were 0.89 (CVL+RankNet) and 0.86 (SVL),
and the difference was not statistically significant (p = 0.34). This result agreed with
the findings described earlier using Dataset 1 and LOOCV.

To verify the models learned appropriate task features, visual explanation
maps generatedbyGrad-CAM [217]were produced forClassificationCVL+RankNet
(Figure 3.16). Pixels with higher influence on the classification decision are illustrated
in red (positive influence) and blue (negative influence). The model generally
assigned greater influence to the liver parenchyma and the liver/kidney interface,
agreeing with the regions that human experts focus on when diagnosing liver
steatosis. This suggests that the model effectively learned the task and identified
visual features were consistent with experts.

(a) #27 (TP) (b) #55 (TP) (c) #5 (TN) (d) #8 (TN)

Figure 3.16 – Representative explanation maps using Grad-CAM [217]. Two true positive
(TPs) images are shown, as well as two true negatives (TNs). Pixels with higher influence on
the model’s output are illustrated in red (positive influence) and blue (negative influence).

3.4 Conclusion and Future Work
In this chapter, we explored the challenges of acquiring high-quality visually-

labeled data for training, testing, and monitoring deep learning models in medical
image-based diagnosis, which remains a major barrier to the clinical adoption
of AI-based CAD systems in ultrasound. We presented a novel and simple labe-
ling technique for diagnostic image labeling using Comparative Visual Labeling
(CVL) and RankNet (CVL+RankNet). This method demonstrated a significant en-
hancement in label quality, particularly for the early detection of steatosis, a
critical global health issue, in ultrasound images, compared to Single-image Visual
Labeling (CVL). Various benefits of CVL+RankNet have been revealed in our expe-
rimental validation, that included very strong ROC-AUC performance and strong
correlation with PFH values in healthy and mild steatosis cases, making it not only
a method for model training but also, a practical and scalable method to obtain
ground-truth labels for model validation, without the need for biopsy sampling
and histopathology. We showed that regression and classification models could
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be trained using these labels, and their performance was very similar to training
using PFH values as labels. Additionally, agreement between different annotators
was found to be very high using CVL+RankNet compared to SVL using the Fleiss’
Kappa metric.

Figure 3.17 – Ranking problem in myopic maculopathy diagnosis using retinal
fundus images [231]. Figure reproduced from their publication.

This research was published and presented at the 2022 Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI) international conference
in Singapore. While we have presented an innovative solution to the challenge
of visual labeling for medical image diagnosis, there are several limitations and
avenues for future research. The main ones are as follows :

— Validation was limited to a single disease : We evaluated the method only for
liver steatosis, but further validation is necessary for other imaging diagnosis
tasks and other modalities, including video.

— Increased annotation effort compared to SVL : Despite edge pruning, CVL
required more annotations compared to SVL (one per image pair versus one
per image).

— CVL+RankNet score calibration : An important future step is to calibrate the
scores, especially in the healthy/mild range, with PFH values.

— Liver steatosis detection models performance : Their performance was not
shown to be superior when trained using CVL+RankNet scores compared to
SVL, despite CVL+RankNet scores having fewer labeling errors.

Considering the first item, some recent articles have built on our research
and extended the use of CVL for other pathologies. Specifically, for diagnosing
myopic maculopathy in retinal fundus images [178], illustrated in Figure 3.17, and
to estimate the severity of ulcerative colitis in endoscopic images [122]. These
extensions indeed show great promise for applying the method to other diseases.
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[178] also proposed some novel methodology extensions that included leveraging
the rank relationship between reference images and new query images through
a network with self-attention blocks. Additionally, they implement a loss function in
the latent space to align the latent representations with the severity scores of the
pathology.

Figure 3.18 – Deep Bayesian active learning-to-rank for relative severity estimation ;
step 1 (green arrows) : generating a small number of pairs using randomly selected
images from an unlabeled image set and annotating these pairs for the initial
training ; step 2 (red arrow) : training the Bayesian CNN using the labeled image pair
set ; step 3 (blue arrows) : selecting high-uncertainty images from the unlabeled
image set to create pairs and attaching relative labels to the pairs. Figure and
description extracted from [122].

Considering the second item, [122] employed an active learning framework
with Monte Carlo Dropout (MCD) to select image pairs for annotation. A Bayesian
CNNwas trained using CVL with a loss function similar to the one described in Equa-
tion 3.5. Once trained, the network was applied to individual images to estimate
uncertainty, which was then used to generate new image pairs for annotation.
The process iterated to progressively refine the model’s performance. Figure 3.18
illustrates the authors’ scheme for these steps from [122].

Considering the third item, model calibration would be an essential next step
in using CVL+RankNet as an alternative method to quantify fat cell percentage
compared to biopsy and histopathology. While this has huge potential as a clinical
tool in its own right, accurate calibrationmust be performed, whichmay potentially
be achieved using a simple regression approach.

In conclusion, by introducingCVL, andaway to convert its labels to continuous
pathology severity scores with RankNet, we have shown a promising approach
for enhancing label quality in early disease detection. This was demonstrated in
this chapter using liver steatosis, and extended to other diseases in follow-up works.
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We believe the advancements discussed here will contribute meaningfully to the
ongoing development and evaluation of CAD models using visual labeling.
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4. DR-Clips : A novel
frame-guidance approach for
computer-assisted diagnosis with
untrimmed ultrasound videos

4.1 Chapter summary
In the previous chapter, we addressed a key challenge in ultrasound CAD :

enhancing the quality and objectivity of visual diagnostic labels. In this chapter,
we focus on another critical challenge : training video classification models using
untrimmed videos paired with video-level diagnostic labels. Unlike image-level
labels, which correspond to information in a specific image or video frame, video-
level labels describe the overall content of a video and are not aligned with
individual frames. Unlike trimmed videos, which are manually edited to isolate
specific segments displaying pathology, untrimmed videos retain their full duration,
including segments with limited or no diagnostic relevance.

Video classifiers designed for untrimmed videos offer several notable ad-
vantages. These include reducing annotation effort, utilizing more diagnostically
relevant information from training and testing videos, enabling cross-modal training
labels, and supporting real-time inference without requiring clinicians to manually
select relevant segments. While state-of-the-art video classifiers are theoretically
capable of processing untrimmed ultrasound videos with video-level labels, they
are highly susceptible to overfitting and face significant challenges in generalizing
effectively, particularly when applied to the small datasets commonly encountered
in CAD research.

To address these limitations, this chapter introduces DR-Clips, a novel metho-
dology that enhances the performance and generalization of ultrasound video
classifiers trained on untrimmed videos with video-level labels. At the core of
DR-Clips is a neural network called the Frame Relevance Assessor (FRA), which
automatically identifies a set of diagnostically relevant frames and sorts them in
relevance order, forming what we term a diagnostically relevant clip (DR-Clip).
Importantly, the FRA does not need to be perfect, and to achieve robustness and
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generalization, we train the video classifier using randomized DR-Clip selection. This
approach significantly improves performance, demonstrating the effectiveness
of DR-Clips in overcoming the challenges associated with untrimmed videos and
small datasets in CAD research.

We apply DR-Clips to liver and kidney pathology classification in abdominal
ultrasound. However, a major challenge in this area is the lack of publicly avai-
lable video datasets. To address this, we describe a new dataset that extends
Dataset 2 from the previous chapter to include video data and video-level labels.
The methods and results presented in this chapter using this dataset have been
submitted to the International Journal of Computer-Assisted Radiology and are
currently under major revision.

4.2 Additional background in
pathology classification with
abdominal ultrasound

4.2.1 Benefits of video classification
In computer-assisted diagnosis (CAD) with abdominal ultrasound data, three

main categories of pathology classification models have been proposed :

1. Supervised image classification : Models are trained to perform pathology
classification from single images, using training datasets comprising images
and image-level labels. Labels relate to the visual content of each image.

2. Supervised trimmed video classification : Models are trained to perform
pathology classification from trimmed videos (sections of ultrasound videos
that have been manually cropped to moments that confirm the presence or
absence of a pathology). They are trained on datasets comprising trimmed
videos and video-clip-level labels. Labels relate to the visual content of each
trimmed video.

3. Supervised untrimmed video classification : Models are trained to perform
pathology classification from untrimmed videos (ultrasound videos that have
not been manually cropped to diagnostically relevant segments). They are
trained on datasets comprising untrimmed videos and video-level labels.
Labels relate to the visual content of an entire video.

Most previous approaches in abdominal ultrasound CAD used category 1)
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(image classification models trained with image-level labels) [29, 237, 213, 53,
267, 50, 269]. These models were predominantly designed for liver pathology
classification, especially for tasks such as liver steatosis detection [29, 237, 213]
and focal liver lesion analysis [53, 267]. Models have also been developed for
kidney pathology classification, including detecting chronic kidney disease and
other renal pathologies such as cystic or obstructive nephropathy [229, 138, 294,
221, 177]. Other abdominal organs such as the gallbladder and spleen have
been explored to differentiate of pathological conditions like cholecystitis for the
gallbladder and splenic abnormalities [116, 117, 245, 157].

The above works depended on manually curated training and test datasets
of high-quality, diagnostically relevant images selected by experts. For example, in
liver steatosis classification [29], the datasets were composed of images captured
in standardized (canonical) views, ensuring clear visualization of both the liver and
kidney parenchyma. However, this dependency has four key limitations concerning
(i) annotation effort, (ii) domain gap, (iii) limited exploitation of video data, and (iv)
label alignment. We discuss each limitation below and how video classifiers trained
on video-level labels can significantly help. Figure 4.3 illustrates video classification
at a high level.

Annotation effort. Creating ultrasound datasets can be accomplished either
prospectively or retrospectively. In prospective data collection, operators acquire
data specifically for annotation and model development purposes. This approach
typically yields higher-quality data that may be easier to annotate ; however, it
requires adherence to a specific acquisition protocol, which can be challenging to
implement in clinical settings. In contrast, retrospective data collection uses data
recorded during routine clinical practice, which is later analyzed and annotated.
The primary advantage of retrospective collection is its scalability. However, it often
results in large volumes of frames with limited or no diagnostic value, as illustrated
in Figure 4.2. Maneuvering the proof to obtain clear imaging windows to either
confirm the presence or absence of pathology is challenging due to the high
variance in patient anatomy and varying degrees of operator competence. This
leads to many frames with limited or no diagnostic information. Consequently, only
a few frames may be diagnostically relevant in retrospectively collected videos,
leading to a needle-in-a-haystack problem. To generate image-level labels from
retrospective data, it is necessary to manually sift through the data to identify
diagnostically relevant frames—a time-intensive process.

In contrast, video-level labels significantly reduce this annotation burden by
eliminating the need for manual frame selection. Annotators no longer need to
evaluate individual frames to confirm diagnostic relevance or ensure that selec-
ted frames adequately capture intra-patient variability (e.g., probe positioning,
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breathing states, or applied pressure). By streamlining such decisions, which are
often subjective and nuanced, video-level labeling provides a more efficient and
practical alternative.

Domain gap. When building single-image datasets from prospectively or retros-
pectively collected data, a significant domain gap often exists between the
curated image distribution and those captured during live ultrasound procedures.
For instance, a single-image steatosis detector trained on Dataset 1 [29] might fail
when applied to images lacking clear kidney visibility, as it was exclusively trained
on liver-kidney plane images. This domain gap arises because curated datasets,
typically composed of diagnostic-quality images, fail to capture the variability
and challenges encountered in real clinical practice. As a result, this mismatch
can lead to out-of-domain errors, where a classifier makes incorrect predictions
with high confidence on unseen or mismatched data [272].

In contrast, video datasets naturally capture a broader variability that better
aligns with live procedure videos, potentially mitigating out-of-domain errors. Video
data enables models to learn from diverse contexts and conditions, improving
their robustness and real-world applicability.

Label alignment. Image-level labels are inherently tied to the specific diagnostic
indications present in individual frames. In contrast, diagnostic labels derived
from other modalities (e.g., histopathology, laboratory results, or electronic health
records) typically pertain to a patient or case as a whole, rather than to specific
frames in an ultrasound video. Training single-image classifiers with these inter-
modal labels requires labor-intensive manual selection of frames to align the
labels accurately. By treating inter-modal labels as video-level labels, models can
be trained directly on entire ultrasound videos, bypassing the need for manual
frame selection and label alignment, while preserving the diagnostic information
embedded across the video.

Exploitation of video Data. Image classifiers are inherently limited to the informa-
tion present in the individual frames used for training, often missing the broader
diagnostic context. In contrast, video classifiers can exploit the full temporal and
spatial data present in videos. By aggregating information across frames, video-
level models can account for temporal dynamics and contextual details, which
may improve diagnostic performance by incorporating insights that single-image
models are unable to capture.
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4.2.2 Benefits of untrimmed video
classification

Trimmed videos involve selecting diagnostically relevant time windows, which
offers improvements over single-frame selection. For instance, it reduces the an-
notation burden by removing the need to select individual frames precisely and
allowing for more video data and temporal context to be exploited. However, it
introduces new challenges and does not fully address the above limitations.

Trimming videos still requires manual effort and subjective judgment to identify
relevant time windows. Additionally, focusing exclusively on diagnostically relevant
segments creates a domain gap, as models trained on trimmed videos may
struggle to reason about non-relevant segments or contextual information present
in the full video.

In contrast, leveraging untrimmed video data bypasses the need for manual
clip selection. Instead, the model is trained to automatically identify and prioritize
diagnostically relevant regions within the entire video. This approach captures
the natural variability of ultrasound data and eliminates the reliance on manual
video trimming, potentially providing a more robust, scalable solution for real-world
applications by enabling the model to learn from both relevant and non-relevant
video segments.

4.2.3 Relevant prior art in trimmed and
untrimmed ultrasound video
classification

Various ultrasound video classification models have been investigated for
numerous clinical applications [68, 199, 173, 172, 21, 77, 17, 186, 258, 230, 270].

The prior work on ultrasound video classification can be divided along three
axes : 1) clinical tasks, 2) model architecture, and 3) the method used (if any) to
handle untrimmed videos.

Clinical tasks. The majority of works have focused on cardiac and lung diseases,
which were fundamentally stimulated by two recent public datasets : the EchoNet-
Dynamic Dataset [182] for cardiac diagnosis, and lung datasets [21, 207] for COVID
diagnosis. A range of papers apply andadapt existing video classifiers to ultrasound
video classification using these datasets [68, 199, 173, 95, 118, 102, 172, 21, 77, 17,
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151, 67]. Ultrasound video classification has also been explored for fetal biometry
[188, 186, 187, 193], thyroid nodule analysis [258], breast lesions detection [230,
108] and liver lesion detection [270].

Model architectures. Various model architectures have been explored in the
above papers, either as direct applications from the general computer vision
literature or as adaptations tailored to specific use cases. These include Graph
Neural Networks [173], 3D Convolutional Neural Networks (CNNs) [77], 2D CNNs
combined with Long Short-Term Memory (LSTM) to capture temporal context [17],
and CNNs-based feature extraction combined with transformers to also capture
temporal context [199, 186]. Vision transformers have also been considered, es-
pecially Video Swin Transformers [68]. Currently, there is no consensus on the best
architecture for ultrasound video classification.

Method to handle untrimmed videos. Only three of the above methods have
been demonstrated to work on untrimmed videos [270, 258, 77]. They all use a
mechanism to filter out non-diagnostically relevant frames called a ‘guidance
algorithm.’ The guidance algorithms were different and trained with varying de-
grees of human supervision. We go into further details of these methods and their
limitations, as they represent the closest research to our proposed methodology.

Xu et al. [270] implemented a frame-guidance algorithm for focal liver lesion
detection and malignancy/benign classification. A three-step cascaded pipeline
was proposed, where each step filtered out non-relevant ultrasound images from
the previous step. In step 1, each image was automatically segmented into three
regions : ultrasound liver pixels, non-ultrasound pixels, and ‘other’. Existing segmen-
tation models were evaluated for this task, including FCN, U-Net, and DeepLabV3,
and trained using ground-truth segmentation masks from radiologists. In step 2, the
segmented images containing segmented liver pixels were passed to a 2D image
classifier (DenseNet121), which was trained to distinguish between liver images
containing focal liver masses and those without masses. In step 3, images with
detected masses were passed to another segmentation network that segmented
the mass. Finally, images with segmented masses from step 3 were passed to a
video classification network (LMC-Net) to distinguishmalignant from benignmasses.
The LMC-Net was fed the images, the segmentation masks, and (optionally) other
clinical variables from the patient’s electronic health record. The results in Xu et al.
[270] demonstrated significant improvements in focal liver lesion detection and
malignancy classification compared to prior methods, making a compelling case
for frame-guided inference. However, the pipeline was complex, requiring multiple
levels, and it was trained using pixel-level (segmentation) and image-level labels.
Furthermore, a limitation of a cascaded pipeline like this is its vulnerability to errors
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at each step. The weakest link in the sequence constrains the overall performance.
For example, if liver segmentation failed in step 1 due to low ultrasound image
contrast, subsequent steps could not compensate for this failure.

Wang et al. [258] implemented frame guidance in a two-step approach
for thyroid nodule detection and malignancy/benign classification. In the first
step, a 2D object detector (Faster-RCNN) was trained to detect thyroid nodules
in 2D ultrasound images using bounding-box labels. This was trained on images
containing thyroid nodules, selected by radiologists. In the second step, images
with detected nodules were inputted into an LSTM-based model and trained to
classify those that were highly diagnostically relevant (‘keyframe images’). Finally,
a temporal window of 32 frames was extracted about each detected keyframe,
and passed to a 32-frame video classification model (a simplified C3D CNN [246]),
trained to classify malignant versus benign nodules. The labels for the C3D CNN
came from the patient’s clinical diagnosis in their electronic health record. The
results of [258] were encouraging, however, similarly to [270], frame-guidance was
implemented with multiple stages and trained with multiple levels of supervision :
bounding-box level labels for mass detection, and image-level labels for keyframe
selection.

Figure 4.1 – Example of a trimmed ultrasound video from the EchoNet-Dynamic
Dataset [182], illustrating a sequence where most frames are relevant for
the diagnostic task. Frames are sampled at a 6-frame interval from video
’0X1A0A263B22CCD966.avi’ and resized to 256x256 using OpenCV [22].
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Figure 4.2 – Example of an untrimmed ultrasound video from an abdominal scree-
ning from our ’MIM-US-107 Video Dataset’ (resized to 256x256 using OpenCV [22]),
highlighting the challenge of non-relevant frames. In this sequence, only a few
frames are pertinent to diagnosing liver pathologies, while the majority are irrele-
vant.

Figure 4.3 –Diagram illustrating the integration of a Frame Relevance Assessor (FRA)
into video classification for ultrasound (US) CAD. The FRA evaluates the diagnostic
relevance of each frame in untrimmed video data, guiding the video classification
model during training and inference.
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4.3 Methodology

4.3.1 Overview of DR-Clips
The key challenge addressed by the proposed methodology is adapting

state-of-the-art video classifiers to handle untrimmed ultrasound training videos,
supporting inference on untrimmed videos, and reducing the supervision required
for frame guidance.

Figure 4.3 provides a high-level overview of our method, which integrates two
deep neural networks : the Frame Relevance Assessor (FRA) and a Diagnostic
Classifier. The FRA is an image regressor that predicts the diagnostic relevance of
individual ultrasound frames, assigning scores on a scale from 0 (not relevant) to 1
(highly relevant).

The Diagnostic Classifier functions as a video classifier, processing a set of
frames identified as diagnostically relevant by the FRA. These frames are provided
to the Diagnostic Classifier as a DR-Clip, where the frames are in ordered by
relevance, enabling the Diagnostic Classifier to focus on diagnosis rather than
simultaneously handling diagnosis and frame relevance evaluation. The Diagnostic
Classifier is trained using video-level labels, which can be obtained through visual
annotation or cross-modal sources. In this chapter, we implement DR-Clips for
binary diagnostic tasks (distinguishing between healthy and pathological cases).
However, the method is flexible and can be extended to more complex scenarios,
such as employing a multi-class Diagnostic Classifier to grade disease severity or
a multi-label Diagnostic Classifier to detect multiple pathologies within a single
model. Our approach employs a single frame-guidance step via the FRA, resulting
in a streamlined pipeline that can be implemented using most state-of-the-art
video classifier models for the Diagnostic Classifier and state-of-the-art image
regression models for the FRA.

The concept of relevance in ultrasound CAD is complex and multifaceted. It
encompasses factors such as image quality, probe position, presence of artifacts,
organ visibility, and pathology indicators. Pathology indicators can be direct (e.g.,
the visibility of a solid mass) or indirect (e.g., dilation of the intrahepatic portal vein,
indicative of cirrhosis). However, relevance is not limited to positive diagnoses ;
it also includes factors that support a negative (healthy) diagnosis. Importantly,
these may not simply be the absence of pathology indicators. For example, the
absence of ultrasound signal attenuation in the liver does not necessarily indicate
a healthy liver. Poor visibility due to factors like visceral fat can obscure the organ
and confound diagnosis, even in the absence of pathology.
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Designing the Frame Relevance Assessor (FRA) presents a critical trade-off.
On one hand, a high-precision FRA aims to select only the most diagnostically
relevant frames, reducing the burden on the downstream video classifier (which we
recall, processes only the frames selected by the FRA). On the other hand, a lower-
precision FRA requires less supervised training but relies on a video classifier robust
enough to handle DR-Clips that include irrelevant frames. We hypothesize that this
trade-off can be mitigated by pairing a lower-precision FRA with a robust video
classifier trained to tolerate irrelevant frames within DR-Clips, thereby achieving
strong overall diagnostic performance.

To achieve this, we design the FRA to evaluate general-purpose features
such as image quality, probe position, presence of artifacts, and organ visibility.
These attributes are common across many abdominal pathologies, allowing the
FRA to generalize effectively. This approach minimizes the need for extensive
pathology-specific annotations and may avoid retraining the FRA when the system
is expanded to include new pathologies. The details of how FRA training data was
acquired and labeled are provided later in Section 4.3.4.3.

4.3.2 Model training
The FRA is implemented as a standard image regression deep neural network,

trained using supervised learning on a dataset comprising ultrasound images and
associated relevance labels. In contrast, the Diagnostic Classifier uses a novel
training methodology described in this section and summarised in Figure 4.4(a).

Training the Diagnostic Classifier starts with a trained FRA and a dataset of V

untrimmed training videos with associated video-level diagnostic labels. There are
two main steps : 1) DR-Clip generation, which extracts DR-Clips from the training
videos, and 2) Model training, where the Diagnostic Classifier is trained using DR-
Clips and the video labels associated with each DR-Clip. We now present these
steps using italic fonts method hyper-parameters, including their default values
fixed in all experiments.

The Diagnostic Classifier can be implemented with a state-of-the-art video
classification deep neural network, such as Video Swin Transformer [163], without
modification to its architecture.

4.3.2.1 DR-Clip generation

First, the frames in each training video are passed through the FRA, generating
per-frame diagnostic relevance scores r̂v

k ∈ [0, 1] where v indexes over training
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videos and k indexes over the video’s frames. A set of L=500 DR-Clips are then ran-
domly sampled fromeach training video, denoted as the setCv = {Cv

1 , Cv
2 , . . . Cv

L}.
Each member of Cv is a DR-Clip, comprising a set of frames drawn from the vth vi-
deo, sorted in descending frame relevance score. Each DR-Clips Cv

k has a random
length N v

k drawn uniformly from the range of Nmin = 1 to Nmax = 32. This variability
makes the network robust to clips of different lengths at inference time. The frames
in each DR-Clip are randomly selected with uniform probability and without repla-
cement. We do not filter out low-relevance frames as a pre-processing step before
assembling DR-Clips. This is to ensure the video classifier is trained on DR-Clips with
variations in frame relevance to tolerate imperfect relevance predictions from the
FRA. We define as yv the diagnostic label of the vth video. Each DR-Clip Cv

k∈[1,2,...L]
shares the same diagnostic label of the video from which it is generated.

We then assign a weight wv
k ∈ R+ to each DR-Clip, used to prune the inital

pool of DR-Clips before training the Diagnostic Classifier. It is also used in the
Diagnostic Classifier’s loss function. The weight is computed in two steps ; First, the
relevance scores of the frames within the DR-Clip are normalized using a Shifted
Sigmoid function σ(·, a, b) with parameters a = 10 and b = 0.5 as

σ(x, a, b) = 1
1 + e−a(x−b) (4.1)

The weight of the DR-Clip is then calculated as the average of its normalized
relevance scores :

wv
k = 1

N v
j

Nv
j∑

i=1
σ(r̂v

i,j, a, b) (4.2)

where r̂v
i,j denotes the estimated relevance of the ith frame in the kth DR-Clip

generated from the vth training video. The purpose of the normalization step is to
attribute higher weights to DR-Clips that contain highly relevant frames, even if
there are only a few such frames in the DR-Clip.

The final step in DR-Clip generation is clip pruning, which removes DR-Clips with
low weights. This step is important to address the sparsity of diagnostically relevant
frames, a key challenge in untrimmed training video data. Without pruning, the
training dataset may become cluttered with an abundance of irrelevant DR-Clips.
This can undermine the training process for theDiagnosticClassifier in two significant
ways. First, DR-Clips that contain no relevant frames are inherently unclassifiable,
providing no meaningful signal for the classifier to learn. Second, forcing the model
to process such clips may divert its focus from learning effectively from meaningful
DR-Clips. Clip pruning mitigates this by ensuring that training is concentrated on
DR-Clips with relevance.

DR-Clip pruning can be implemented in various ways. In our experiments,
we adopt top-k pruning, where, for each video, only the DR-Clips with the top K
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(a) Training Pipeline

(b) Inference Pipeline

Figure 4.4 – Proposed pipeline : Video classifiers for US CAD using Diagnostically-
Relevant Clips (DR-Clips).

weights are retained for training. The choice of K involves a critical trade-off. If K

is set too low, intra-video variability may be reduced, which could lead to model
overfitting and increase reliance on the FRA’s recall. Conversely, if K is set too high,
the dataset may include too many irrelevant DR-Clips, diluting the quality of the
training data. To balance these considerations, we use K = 10 as the default in
our experiments, resulting in KV DR-Clips available for training.

4.3.2.2 Diagnostic Classifier training

The Diagnostic Classifier is implemented as a DR-Clip video classifier. For
binary classification tasks, the binary cross-entropy loss can be used. Drawing
inspiration from Curriculum Learning [257], we propose to adapt it by weighting
the loss contribution from each training DR-Clip by its average relevance, wv

k.
Curriculum Learning involves training a model on examples in a structured order,
usually starting with simpler cases and gradually progressing to more complex
ones. This approach has been shown to enhance learning efficiency, improve
generalization, and accelerate convergence [257].

In our context, the weight wv
k, derived from FRA scores, reflects the ease of

classifying a DR-Clip, with higher weights assigned to simpler DR-Clips. By weighting
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the loss of a DR-Clip with wv
k, we bias the learning process toward focusing on

easier DR-Clips during the early stages of training. The resulting loss function called
the DR-Clip loss is written as :

LDR-Clip (Θ) =
V∑

v=1

K∑
k=1

wv
kL
(
Θ(Cj

v), yv

)
(4.3)

where Θ(Cj
v) denotes the models classification prediction for the DR-Clip Cj

v .

Most video classifier models, such as a Video Swin Transformer [163], require
input videos to have a fixed number of frames. To this end, as a pre-processing
step, zero padding is applied to the end of any DR-Clip with fewer than Nmax

frames. Zero padding is applied at the end since, by definition, they are the
least relevant frames in the DR-Clip (containing no visual information). We go into
specific configurations and training details of the Video Swin Transformer used in
our experiments in Section 4.3.4.4.

4.3.3 Model inference
Inference consists of two steps, as shown in Figure 4.4(b). First, each frame in

the test video is processed by the FRA, giving a set of frames and their associated
relevance scores : I = {(I1, r̂1), (I2, r̂2), . . . , (IM , r̂M)} where M is the number of
frames in the test video. Then the top-N most relevant frames are selected to form
an inference DR-Clip Cinfer, as :

Cinfer = {Ik | k ∈ argsortM
i=1(ri)[1 : N ]}, (4.4)

where argsortM
i=1(ri)[1 : N ] represents the indices of the N highest relevance scores

sorted in descending order. Next, we pass Cinfer through the Diagnostic Classifier
to generate the diagnostic prediction in a single forward pass.

ŷv = Θ
(
Cinf

v

)
(4.5)

The method can be applied to two kinds of test videos. The first kind (batch)
is when the video has a fixed duration. The second kind (online) is for real-time
inference with live video streamed from an ultrasound device, where M increases
over time. In this scenario, Cinfer functions as a buffer that stores the most relevant
frames encountered up to the current moment. Since Cinfer has a fixed size, the
inference time of the video classifier remains constant regardless of the stream’s
duration

109



CHAPITRE 4. DR-CLIPS : A NOVEL FRAME-GUIDANCE APPROACH FOR COMPUTER-ASSISTED
DIAGNOSIS WITH UNTRIMMED ULTRASOUND VIDEOS

4.3.3.1 Combining the FRA with an image classifier

We also present a variant of the approach using an image classifier as the
Diagnostic Classifier, such as Inception-ResNet-v2 [233]. In this setup, the Diagnostic
Classifier performs classification on individual images, rather than on DR-Clips. We
propose this variant for two main reasons. Firstly, to investigate whether the FRA
can be used to train an image-level diagnostic classifier on untrimmed training
videos, using frames automatically extracted by the FRA. Secondly, to compare its
performance against a video classifier using DR-Clips, as described above.

In the training step, the image classifier is trained on all images whose rele-
vance, as predicted by the FRA, exceeds a threshold τr = 0.6.

During inference, each frame in a test video is first processed through the
FRA. Frames with a relevance score exceeding the threshold τr are passed to the
classifier. The resulting frame-level predictions are then aggregated using one of
two fusion methods :

— Max Fusion : The final prediction is the classification label with the highest
confidence score among all selected frames.

— Mean Fusion : For each label, the mean confidence score across all selected
frames is calculated, and the label with the highest mean confidence is
chosen as the final prediction.

Any image classification neural network architecture can be used, and we
present our choice and implementation details used in our experiments in Section
4.3.4.4.

4.3.4 Abdominal ultrasound datasets and
model training details

4.3.4.1 Datasets

This study used anonymized US B-mode abdominal data obtained retros-
pectively from the Saint-Anne MIM Clinic (Strasbourg, France) during routine US
abdominal examinations from January 2022 to January 2023. All patients who
underwent abdominal ultrasound examinations as part of their routine care were
included. The acquisitions were acquired using a Canon Aplio a450 device and
collected with written informed patient consent. The data comprised two cate-
gories - video recordings and still images. We constructed two datasets for each
category :

110



CHAPITRE 4. DR-CLIPS : A NOVEL FRAME-GUIDANCE APPROACH FOR COMPUTER-ASSISTED
DIAGNOSIS WITH UNTRIMMED ULTRASOUND VIDEOS

The MIM-US-107 Video Dataset

Source data. This dataset contained 107 abdominal B-mode ultrasound videos,
with one video per patient. Videos that included Contrast-Enhanced Ultrasound
(CEUS) or Doppler imaging where excluded. The clinician typically recorded more
than one video throughout their procedure (an average of 6.6 videos per patient,
standard deviation : 3.5). We concatenated all patient videos to form a single
video file per patient. The average number of video frames per patient was 339.8
(standard deviation : 182.2). The videos were annotated as described in

Annotation. The videos were annotated by the same teamof three radiographers
(Annotators A, B, and C) from the previous chapter, each with 10-17 years of
experience in ultrasound image analysis. Annotations were performed using the
CVAT annotation platform [216]. An independent radiographer reviewed the
annotations, and any disagreements were discussed to reach an annotation
consensus.

The radiographers carefully inspected each video and assigned video-level
labels according to established liver, kidney, or biliary system pathologies that are
detectable in b-mode ultrasound. In total fourteen labels were used in this dataset :

— Six labels were used for positive liver pathology findings : Liver steatosis, Liver
solid masses, Liver cystic masses, Liver metastases, Liver fibrosis, and Hepato-
megaly.

— Four labels were used for positive kidney pathology findings : Kidney cystic
mass, Hydronephrosis, Chronic kidney disease, and Nephrolithiasis.

— Two labels were used for positive biliary system pathology findings : Gallstones
(cholelithiasis) and Bile duct dilation.

— Two labels (Healthy liver and, Healthy kidney) —were used when the liver or
kidney appeared healthy in the video, respectively.

The positive pathology labels were not mutually exclusive (since a patient
could have multiple pathologies).

Whenever one of the above labels was assigned, the radiographer was also
instructed to select up to five keyframes per video, corresponding to images they
considered highly relevant in their decision to assign a label. Radiographers were
asked to supply diverse keyframes where possible. We used these keyframes to
compare baseline methods requiring image-level supervision. They were not used
to train our proposed method.
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Task definitions. Figure 4.5 provides the frequency of each label, and Figure 4.6
shows representative keyframes of each label. Due to the limited dataset size, as
shown in Figure 4.5, most pathologies appeared in only a few videos. As such,
training models to detect each pathology as a separate class was not feasible.
Instead, we combined labels to generate two diagnostic tasks :

— The Liver Task, which involved video classification with two labels : healthy
liver versus liver damage (steatosis or fibrosis), which is a key indicator of
underlying conditions, especially nonalcoholic fatty liver disease (NAFLD) or
viral hepatitis.

— The Kidney Task, which involved video classification with two labels : healthy
kidney versus renal structural abnormality (kidney cystic masses or hydrone-
phrosis).

Figure 4.5 – Class distribution MIM-US-107 Video Dataset. Each bar represents a
pathology, showing the number of videos containing each pathology.

The MIM-US-473 Still Image Dataset

Source data. This retrospective dataset comprised anonymized still-image snap-
shots routinely captured during standard clinical practice as part of patients’
electronic health records. These images, a regular component of medical do-
cumentation, were used by clinicians to support their findings and document
examinations. A total of 7,924 B-mode images were from 473 patients. No patient
featured in both the still image dataset and the video dataset. This dataset was
used exclusively to train the FRA.

Annotation. The radiographers evaluated each image by assigning an ordinal
relevance score on a scale from 0 to 3, where 0 being irrelevant and 3 being highly
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(a) Healthy Liver (b) Healthy Liver (c) Liver damage (d) Liver damage

(e) Healthy Kidney (f) Healthy Kidney (g) Renal structural ab-
normality (cyst)

(h) Renal structural ab-
normality (hydronephro-
sis)

Figure 4.6 – Labeled videos from the MIM-US-107 Video Dataset, showing the
keyframes selected by a radiographer to support their diagnosis.

relevant. As explained in Section 4.3.1, these relevance scores were based on
general diagnostic criteria, combining two aspects :

— Organ Visibility : How much of the liver or kidney is visualized clearly in the
image.

— Presence of Artifacts : Distortions or obstructions that could interfere with
interpretation.

The specific relevance criteria for the Liver and Kidney Tasks are outlined in Table
4.1. Figures 4.7 and 4.8 show representative examples of annotations corresponding
to each relevance score defined in Table 4.1. These examples illustrate significant
variability in organ visibility due to the viewpoint, shape, and size of the respec-
tive organs. Additionally, it is important to note that an image categorized as
’Score 0’ for one organ might be annotated as ’Score 3’ for the other organ. As a
consequence, the relevance criteria are task-specific.

4.3.4.2 Dataset labeling

In this section, we describe the datasets used for exploring and evaluating
video classification models on untrimmed abdominal B-mode ultrasound data.
Two distinct datasets, both anonymized and sourced from our partner hospital,
are employed. The first dataset, referred to as the ’MIM-US-107 Video Dataset’,
consists of untrimmed ultrasound screening videos from 107 patients. It serves as
the foundation for training and evaluating video-based diagnostic models. The
seconddataset, knownas the ’MIM-US-473 Still ImageDataset’, includes ultrasound
snapshot images from 473 patients, captured in an unstructured manner during
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Table 4.1 – Image relevance definitions and criteria for The Liver and Kidney Tasks
(Section 4.3.4.1). The scores are ordinal and divided into four categories based
on standard practice in US examination : 0 (not relevant) - indicates insufficient
visual information, 1 - (mildly relevant) indicates some relevant visual information
but likely insufficient for a healthy or pathological diagnosis, 2 (relevant) - indicates
sufficient information, and 3 (highly relevant) indicates near-optimal information.
NL and NK provide the number of times the score was assigned for the Liver and
Kidney tasks.

Score Definition for Liver Task NL Definition for Kidney Task NK

Score 3

Artefacts : non-existing or mi-
nimal in liver parenchyma
Organ Visibility :
1. Liver-Kidney plane (liver at
least 30 % image), or
2. Visible liver (at least 50% of
the US), visible portal vein

151

Artefacts : non-existing or mi-
nimal in kidney parenchyma
1. Kidney centered screen,
2. Long and short axis visible,
3. Clear visualization of the re-
nal pelvis and renal calyces,
4. Well-defined contours of
the dilated collecting sys-
tem,
5. Contrast between the fluid-
filled structures and normal
kidney tissue

204

Score 2

Artefacts : small amount in li-
ver parenchyma
Organ Visibility :
1. Liver-Kidney plane (liver
bigger than kidney) , or
2. Visible liver (at least 50% of
the US)

580

Artefacts : small amount in
kidney parenchyma
1. Good visualization of the
kidney (at least 50% of the
US window)
2. Long and short axis seen,
and
3. Partial visualization of the
renal pelvis and renal ca-
lyces

428

Score 1

Artefacts : can be significant
Organ Visibility :
1. Partial part of the liver
being identifiable

458

Artefacts : can be significant
Organ Visibility :
1. Partial part of the kidney
being identifiable

286

Score 0

Artefacts : can be significant,
limiting diagnosis
Organ Visibility :
1. No or poor visualization of
liver parenchyma

2200

Artefacts : can be significant,
limiting diagnosis
Organ Visibility :
1. No or poor visualization of
kidney parenchyma

2473
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(a) Liver Score 3 (b) Liver Score 2 (c) Liver Score 1 (d) Liver Score 0

(e) Liver Score 3 (f) Liver Score 2 (g) Liver Score 1 (h) Liver Score 0

Figure 4.7 – Examples of relevance score annotations for the Liver Task. The images
illustrate relevance scores ranging from ’Score 0’ (not relevant) to "(highly relevant).

(a) Kidney Score 3 (b) Kidney Score 2 (c) Kidney Score 1 (d) Kidney Score 0

(e) Kidney Score 3 (f) Kidney Score 2 (g) Kidney Score 1 (h) Kidney Score 0

Figure 4.8 – Examples of relevance score annotations for the kidney. The images
illustrate diagnostic relevance scores ranging from ’Score 0’ (not relevant) to "(highly
relevant).

routine abdominal examinations. This dataset is used to train the Relevant Frame
Assessor (FRA), enabling the automatic generation of diagnostic relevance scores.

4.3.4.3 FRA Implementation and training

In our experiments, we modeled the FRA with a fine-tuned Inception-ResNet-
v2 backbone [233]. This was mainly motivated based on its strong performance
in the previous chapter. It was adapted by replacing the classifier head with a
regression head. Two FRAs were trained : one for each task, using all images in the
MIM-US-473 Still Image Dataset as training data. The ordinal labels of each image
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were linearly rescaled to regression targets {r1, r2, . . . , rN} in the range 0.0 to 1.0,
where N denotes the number of training images. The models were trained with
the Mean Smooth L1 loss function :

LF RA = 1
N

N∑
i

SmoothL1 (ΦRF A (Ii) , ri) (4.6)

where Ii denotes the ith training image, ΦRF A (Ii) denotes the model’s predicted
relvance score, and SmoothL1 is the Smooth L1 function :

SmoothL1 (x, y) =

0.5(x − y)2/β, if |x − y| < β

|x − y| − 0.5 ∗ β, otherwise
(4.7)

The term β is a smoothing parameter set to the standard value of β = 1. Following
best practice, geometric and photometric data augmentation were applied to
increase generalization. However, we limited it to mild augmentation because
strong changes, such as pronounced image cropping, may significantly affect
the image’s relevance. The training hyperparameters, including augmentation
parameters, are presented in Table 4.2.

Table 4.2 – Frame Relevance Assessor (FRA) training hyperparameters

Network Parameter Value

Pre-trained imagenet

Backbone inceptionresnetv2

Dense Layers [512, 16, 1]

Learning Rate 10−5

Training Epochs 116

Training Loss Smooth L1 Loss

Early Stop Patient Epochs 10

Min. Epochs 100

Max. Epochs 1000

4.3.4.4 Diagnostic Classifier implementation and
training

Video classifiers. In our experiments, two Video Swin Transformer models were
trained (small variant, pre-trained on ImageNet 22k [59]), referred to as Video Swin
+ DR-Clips. One model was trained per task, using the Adam optimizer and the
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DR-Clip loss as defined in Equation 4.3. Class imbalance reweighting was applied
to handle the higher proportion of healthy versus pathological videos, as illustrated
in Figure 4.6. Geometric and photometric data augmentation techniques were
applied to improve model generalization, and, like the FRE, it was limited to mild
augmentation. The augmentation parameters were randomized at the DR-Clip
level (all frames in a DR-Clip received the same augmentation parameters). Full
details on the training hyperparameters used in our experiments, including data
augmentation parameters, optimization schedule, and early stopping criteria, are
provided in Table A.1 in the appendix.

Single-image classifiers. The single-image versions of the Diagnositic classifer,
discussed in Section 4.3.3.1), were implemented as follows. For each of the two
tasks, two models were trained : an Inception-ResNet-v2 image classifier [233],
referred to as Resnet (Auto), and a Swin Transformer using a video size of 1 frame,
referred to as Swin (Auto).

4.4 Results
In this section, we present our experimental results. We compare our method

against several competitive baselines, including both single-image and video-
based models. Additionally, we provide a dedicated performance analysis of
the FRA. All models were trained on a task-by-task basis (Liver Task and Kidney
Task) using 10-fold cross-validation. Fold splits were generated randomly and on a
per-patient basis (so no patient appeared in training and test splits simultaneously).
The main performance metric was ROC-AUC (Receiver Operating Characteristic -
Area Under the Curve).

4.4.1 Baseline methods
We compared our method against two categories of baselines :

— Unguided Video Classifiers : These were existing video classifiers that were
trained and evaluated directly on the untrimmed videos from theMIM-US-107
Video Dataset. Similar to our proposed methodology, these classifiers did not
have access to annotated video keyframes in the dataset. They were used
as baselines to evaluate the impact of incorporating automatic video frame
guidance via our FRA on video classification performance.

— Manually-Guided Single-Image Classifiers : These models were trained and
evaluated using manually selected keyframes from the videos. The keyframe
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selection process followed the methodology described in Section 4.3.4.1 -
The MIM-US-107 Video Dataset : Annotation. These baselines were used to
assess the performance gap between classifiers that relied on automatic
keyframe selection (via the FRA) and those that used manually selected
keyframes.

Unguided Video Classifiers. Seven state-of-the-art video classifiers were evalua-
ted using the authors’ publicly available code. They have have been presented
in more detail in the Background Chapter. Four of the methods - Video Swin [68],
VideoMAE V2 [256], MViT V2 [148], and X3D [69] — were selected from the general
computer vision literature. These models have demonstrated strong performance
in video classification across various domains. The remaining three methods —
BabyNet [186], EchoGNN [173], and UVT [199] — were specifically designed for
ultrasound video classification.

Because some of the methods were not tested in the binary classification
setting, some minor adaptations were required. In BabyNet [186], only one view is
considered. In UVT the output is adapted for binary classification.

All the above methods perform inference on untrimmed videos by dividing
the videos into fixed-sized clips. The clip predictions are then combined with a
fusionmethod. For a fair comparison, clip sizes of 32 frames were used for all models,
which is the most common size used in the above methods. We compared two
fusion methods : max fusion, where final video classification is computed from the
clip with the highest classification confidence, and mean fusion, where final video
classification is computed from the mean classification confidence of all video
clips. The models were trained using the authors’ code with their default training
hyperparameter, reproduced in Table A.1 of the appendices.

Manually-guided single-image classifiers. These classifiers were trained on key-
frames from the MIM-US-107 Video Dataset, which were manually selected by
radiographers as described in Section 4.3.4. Inference was performed on untrim-
med test videos, with final predictions aggregated, where we compared max
fusion and mean fusion. To ensure a fair comparison with our approach detailed in
Section 4.3.4.4, the same image classifier model was used (ResNet) and we refer
to this baseline as ResNet (Manual). It was trained in the same conditions and
training hyperparameters as ResNet (Auto).
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4.4.1.1 Main results

The results are summarized in Table 4.3, which shows each method’s ROC-
AUC score, averaged over each fold, alongside the ROC-AUC standard deviation
across folds (bracketed). Considering the Single-image models, we observe the
following :

1. Strong performance of Resnet (Manual) : We recall this is a single-image
approach trained on manually selected healthy/pathological keyframe
images. It performed relatively in both the Liver and Kidney Tasks, consistently
achieving AUC scores above 0.91 with either fusion strategy. This finding
indicates that when a single-image classifier is trained on carefully selected
keyframe images, it can perform well on the tasks, which implies there is
limited benefit in temporal video features (which are not exploited by a
single-image approach).

2. Performance differences of Max and Min Fusion with Resnet (Manual) : The
fusion strategies for the Liver Task yielded very similar performance (mean
ROC-AUCs of 0.96 and 0.95 formean andmax fusion respectively). In contrast,
Max Fusion yielded a higher mean ROC-AUC for the Kidney Task than Mean
Fusion (0.98 versus 0.91). The performance difference can be attributed to the
nature of the pathologies. In the Liver Task, the pathology is generally diffuse
(liver damage due to steatosis or fibrosis typically affects a large proportion
of the liver), so most frames showing the liver consistently represent the same
class. This uniformity allows both Mean Fusion and Max Fusion to perform well,
as Mean Fusion benefits from averaging consistent predictions across frames,
while Max Fusion reliably identifies the correct class from the most confident
frame. In the Kidney Task, kidney cysts are spatially localized and appear only
in specific frames. The lower performance of Mean Fusion can be explained
by the fact that it averages classifications from frames without the pathology,
diluting the confidence of the correct class. Max Fusion, however, focuses
on the frame with the highest pathology confidence, which is more likely to
capture the localized nature of the pathology.

3. Performance difference of ResNet (Auto) and Swin (Auto) across tasks, due
to noisy image-level labels : These models achieved similar performance on
the Liver Task using Mean Fusion, with ROC-AUCs of 0.94. However, on the
Kidney Task, although Swin (Auto) outperformed ResNet (Auto), both models
underperformed compared to ResNet (Manual). This disparity is primarily
due to the issue of noisy labels. In the Kidney Task, ResNet (Auto) is trained
with many noisy labels because the FRA selects frames that include the
kidney, regardless of whether it appears healthy or pathological. Since the
pathological label is applied to all selected frames during training, frames

119



CHAPITRE 4. DR-CLIPS : A NOVEL FRAME-GUIDANCE APPROACH FOR COMPUTER-ASSISTED
DIAGNOSIS WITH UNTRIMMED ULTRASOUND VIDEOS

depicting healthy regions of the kidney are mislabeled, introducing noise
and degrading the model’s inference performance. In contrast, this issue is
substantially less significant in the Liver Task. The pathology in the Liver Task is
diffuse, meaning that the FRA predominantly selects frames that consistently
represent the pathological label. As a result, the training labels for the Liver
Task are less noisy, enabling better model performance.

Considering the video models, including our proposed approach (DR-Clips),
we observe the following :

4. Strong performance of some unguided video classifier baselines in the Liver
Task : The unguided video classifiers MViTv2, Video Swin, and X3D, using Max
Fusion, achieved mean ROC-AUCs of 0.90, 0.91, and 0.94, respectively. The
best results are comparable to those of ResNet (Auto) and ResNet (Manual),
which achieved ROC-AUCs of 0.94 and 0.95, respectively.

5. Weak performance of unguided video classifier baselines in the Kidney Task :
In the Kidney Task, none of the methods produced strong results comparable
to Resnet (Manual). The three strongest methods (Video Swin, MViTv2 and
X3D) produced mean ROC-AUCs between 0.72-0.74.

6. Potential reasons for the performance gap : The stronger performance in the
Liver Task suggests that untrimmed video classification is inherently easier for
this task compared to the Kidney Task. This can be attributed to the diffuse
nature of liver pathology, which is detectable across many frames within a
video. In this case, the abundance of frames with consistent features reduces
the risk of learning irrelevant patterns and enables classifiers to generalize
effectively, even without precise frame selection. In the Kidney Task, however,
the pathology is localized and may only appear in a small subset of frames.
As described above, the majority of frames may lack pathological features
or even show healthy tissue, leading to a higher proportion of irrelevant data.
This may increase the risk of overfitting, where classifiers learn spurious or
irrelevant patterns from the abundance of unrelated frames. Additionally,
the smaller size of the kidney as an organ could exacerbate this problem
by further reducing the visibility and frequency of pathological features,
making it harder for unguided classifiers to focus on diagnostically relevant
information. Ultimately, the diffuse pathology in the Liver Task makes the
problem more forgiving, while the Kidney Task requires better focus and
better handling of irrelevant data.

7. Strong performance of Video Swin + DR-Clips in both tasks : The combination
of DR-Clips and Video Swin achieved mean ROC-AUCs of 0.97 for the Liver
Task and 0.92 for the Kidney Task, demonstrating substantial improvement over
Video Swin, particularly for the Kidney Task. The model achieved results very
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close to ResNet (Manual), highlighting the effectiveness of frame guidance
provided by DR-Clips.

Video Swin + DR-Clips outperformed Swin (Auto) in the Kidney Task, with
mean ROC-AUCs of 0.92 compared to 0.81. This highlights the limitations of single-
image classifiers trained with automatic relevance filtering. Both Video Swin +
DR-Clips and Swin (Auto) use the same classification model and rely on the same
relevance filtering model (the FRA) to identify diagnostically important frames.
However, Video Swin + DR-Clips may outperform Swin (Auto) for two plausible
reasons :

Firstly, Video Swin + DR-Clips processes batches of frames, potentially enabling
the model to leverage relationships among frames and draw on collaborative
information. This allows the model to capture patterns and context shared across
multiple frames, which may improve its ability to distinguish pathological features.
In contrast, Swin (Auto) treats each frame independently, which prevents it from
utilizing inter-frame consistency or contextual information.

Secondly, as discussed in Item 3, while relevance filtering reduces irrelevant
data, treating each frame independently as fully representative of the target
label (as in Swin (Auto) increases the likelihood of label noise. This noise can arise
when selected frames from pathological cases depict healthy tissue or ambiguous
features, leading to incorrect labeling during training. In contrast, Video Swin +
DR-Clips processes batches of frames selected by DR-Clips. For a DR-Clip to be
mislabeled in a pathological case, all frames within the batch would need to
depict healthy tissue, which is statistically less likely. This batch-based approach
likely reduces the overall probability of label noise, enabling the model to learn the
underlying task more effectively. The video capabilities of DR-Clips, combined with
our proposed training strategy, effectively overcome the state-of-the-art limitations
for training and inference with untrimmed abdominal ultrasound videos.

4.4.2 Secondary Analysis
In our secondary analysis, we conduct a feature correlation analysis to eva-

luate the effectiveness of the FRA, and we we examine the effect of DR-Clips
length on performance.

4.4.2.1 How effective is the Frame Relevance Assessor?

Quantifying the performance of the FRA poses a challenge, as it is trained to
generate continuous relevance scores. Since we do not have continuous valued
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Table 4.3 – Comparison of the proposed method (DR-Clips) against state-of-the-art
single-image and video classification models. Fold-averaged values are presented
with standard deviations in brackets.

Model Category Model name

Liver ROC-AUC (std) Kidney ROC-AUC (std)

mean
fusion

max
fusion

mean
fusion

max
fusion

Single-image
Resnet (Manual) [233] 0.96 (0.11) 0.95 (0.15) 0.91 (0.25) 0.98 (0.05)
Resnet (Auto) [233] 0.94 (0.17) 0.94 (0.13) 0.71 (0.26) 0.53 (0.24)
Swin (Auto) [162] 0.94 (0.17) 0.89 (0.16) 0.81(0.21) 0.69 (0.22)

Video

BabyNet [186] 0.89 (0.25) 0.87 (0.30) 0.61 (0.21) 0.59 (0.31)
EchoGNN [173] 0.82 (0.29) 0.77 (0.30) 0.55 (0.19) 0.60 (0.24)
UVT [199] 0.80 (0.29) 0.74 (0.24) 0.68 (0.17) 0.67 (0.16)
Video Swin [68] 0.89 (0.30) 0.91 (0.17) 0.70 (0.29) 0.72 (0.22)
VideoMAE V2 [256] 0.80 (0.37) 0.87 (0.26) 0.56 (0.25) 0.60 (0.20)
MViTv2 [148] 0.88 (0.30) 0.90 (0.26) 0.74 (0.19) 0.64 (0.26)
X3D [69] 0.85 (0.24) 0.94 (0.13) 0.73 (0.23) 0.69 (0.26)

DR-Clips Video Swin + DR-Clips 0.97 (0.09)1 0.92 (0.13)1

test labels, we cannot used standard regression metrics such as Mean Absolute
Error. Instead, we present results qualitatively, as well as quantitatively with feature
correlation analysis.

Qualitative results are presented in Figures 4.9 and 4.10. These figures were
generated using the predicted relevance scores of the first video in the MIM-US-
107 Video Dataset, having a diagnosis of liver steatosis. Its frames were binned 5
categories in the range of 0.0 to 1.0 in intervals of 0.1. Then 5 random frames of each
bin were selected and shown in relevance descending order in the figures. One
can see that higher-relevance images consistently displayed better organ visibility,
with minimal shadows and artifacts, making them more suitable for diagnosis.

Figure 4.11 shows the distribution of normalized relevance scores predicted
by the FRA for the Liver and Kidney tasks, for every frame in the MIM-US-107 Video
Dataset. The distributions were stratified into healthy and pathological patients.
One can see there were a substantial amount of low relevance frames for the
Kidney task (a normalized relevance score of 0.3 corresponds to Label 1 (low
relevance) according to the annotation criteria in Table 4.1. This likely contributed
to the difficulty of the kidney Task, compared to the Liver Task, as reflected in
our experiments. The proportion of irrelevant healthy kidney images was greater
compared the proportion of irrelevant pathological kidneys. This may reflect the
fact that in pathological cases, more video time was spent inspecting the kidney,
compared to healthy case.

In our feature correlation analysis, we evaluated whether frames with visual
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(a) #1; si = 0.92 (b) #2; si = 0.89 (c) #4; si = 0.84 (d) #9; si = 0.81

(e) #14; si = 0.79 (f) #24; si = 0.72 (g) #25; si = 0.69 (h) #34; si = 0.64

(i) #40; si = 0.58 (j) #44; si = 0.53 (k) #47; si = 0.49 (l) #55; si = 0.43

(m) #62; si = 0.39 (n) #68; si = 0.34 (o) #83; si = 0.29 (p) #96; si = 0.23

(q) #112; si = 0.19 (r) #157; si = 0.15 (s) #244; si = 0.08 (t) #302; si = 0.04

Figure 4.9 – Frames from patient PID1 in our video dataset, displaying normalized
relevance scores (si) estimated by our FRA on the Kidney Task. These scores reflect
the algorithm’s evaluation of the clinical relevance of each frame for diagnosing
healthy and pathological kidneys.

123



CHAPITRE 4. DR-CLIPS : A NOVEL FRAME-GUIDANCE APPROACH FOR COMPUTER-ASSISTED
DIAGNOSIS WITH UNTRIMMED ULTRASOUND VIDEOS

(a) #1; si = 0.70 (b) #2; si = 0.64 (c) #6; si = 0.61 (d) #11; si = 0.57

(e) #12; si = 0.55 (f) #15; si = 0.47 (g) #19; si = 0.42 (h) #24; si = 0.40

(i) #28; si = 0.39 (j) #47; si = 0.35 (k) #82; si = 0.29 (l) #92; si = 0.28

(m) #133; si = 0.24 (n) #178; si = 0.21 (o) #207; si = 0.18 (p) #216; si = 0.17

(q) #243; si = 0.15 (r) #301; si = 0.11 (s) #344; si = 0.09 (t) #395; si = 0.06

Figure 4.10 – Frames from patient PID1 in our video dataset, displaying the nor-
malized relevance scores (si) predicted by our FRA on the Liver Task. These scores
reflect the algorithm’s evaluation of the clinical relevance of each frame for diag-
nosing healthy and pathological livers.
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(a) Probability Distribution of Liver Relevance Scores

(b) Probability Distribution of Kidney Relevance Scores

Figure 4.11 – Distribution of normalized relevance scores estimated by the FRA for
the Liver and Kidney tasks.

features similar to the manually selected keyframes in the video dataset were
assigned higher relevance scores by the FRA. Image similarity was measured
based on distances in a reduced visual feature space, as outlined below in three
steps.

1. Feature Extraction : Each frame in the video dataset was processed through a
pre-trained Inception-ResNet-v2model [233], whichwas trainedon ImageNet-
22k [59]. We extracted the outputs of the first dense layer as high-dimensional
visual features.

2. Dimensionality Reduction : Principal Component Analysis (PCA) was applied
to reduce the dimensionality of these features, resulting in a compact visual
feature representation for each frame.

3. Distance Calculation : In the reduced feature space, we calculated the
nearest neighbor distances between all video frames and the manually
selected keyframes, representing how visually similar each frame is to the
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keyframe set.
Figure 4.12 presents a scatter plot, where each point corresponds to a frame

in the video dataset. The x-axis shows the FRA-predicted relevance score for the
frame, and the y-axis shows its distance to the keyframe set in the feature space.
A strong inverse correlation would indicate that frames deemed highly relevant by
the FRA are visually similar to those selected by human experts.

The Pearson correlation coefficients for this relationship were -0.84 for the Liver
Task and -0.70 for the Kidney Task, demonstrating a strong negative correlation. This
suggests that the FRA effectively identifies frames with features closely resembling
those of the manually selected keyframes, with particularly high agreement for
the Liver Task.

4.4.2.2 Effect of DR-Clip length at inference

The Video Swin model supports variable clips size at inference time. Figure 4.13
shows the ROC-AUC scores for video classification, where we varied the length of
the DR-Clips, passed to the Video Swin model, during inference. It generally shows
superior performance with smaller clips. The results indicate that at inference time,
the both tasks can be solved effectively with only a small number of relevant frames.
Furthermore, increasing the size of the inference clips may harm performance,
likely due to the increased proportion of irrelevant frames.

This effect is more pronounced for the Kidney Task, likely due to the localized
nature of the lesions, which are adjacent to healthy-looking frames. The effect is
less strong for the liver class due to the diffuse nature of the conditions studied,
being visible in most of the liver.

4.5 Conclusion and Future Work
In this chapter, we addressed a critical question in ultrasound video computer-

aided diagnosis (CAD) : Can video classifiers be effectively trained on untrimmed
abdominal ultrasound videos by leveraging predictions from a model that assesses
the general relevance of each frame?

Our findings reveal a significant performance gap between image classifiers
trained onmanually selected keyframe images and state-of-the-art video classifiers
trained on untrimmed videos that include these keyframes. This gap, previously
not exposed due to the lack of abdominal ultraound video datasets, is primarily
caused by the presence of non-relevant frames in untrimmed video data. This
hampers the training and inference performance of video classifiers, especially in
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(a) Liver Relevance

(b) Kidney Relevance

Figure 4.12 – Scatter plots showing the relationship between a frame’s similarly with
respect to the keyframe set, and its predicted relevance by the FRA. Two plots are
shown, corresponding to the Liver and Kidney Tasks (above and below). The x-axis
shows the FRA-predicted relevance score for the frame, and the y-axis shows its
nearest-neighbor distance to the keyframe set in the feature space. Points are
coloured according to whether the frame came from video labeled as healthy or
pathological.
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(a) Liver Classification

(b) Kidney Classification

Figure 4.13 – ROC-AUC of our trained model (Video Swin + DR-Clips) improves with
smaller window sizes during inference, particularly with 4 or fewer frames.

the context of medical data constraints where uncurated ultrasound videos are
not yet fully exploited for salable model training.

To address this challenge, we proposed DR-Clips, a novel approach that
leverages a FrameRelevanceAssessor (FRA) to guide the selection of diagnostically
relevant frames. DR-Clips effectively narrows the performance gap between highly
supervised single-image models, using image-level lables, and less supervised
video-based approaches, using video-level labels. Our approach uses frame
relevance scores to facilitate training and inference, making it especially effective
for tasks involving localized or hard-to-detect pathologies.

Our results demonstrate the promise of DR-Clips and FRA in improving video
classification performance : For the Liver Task (diffuse pathology), DR-Clips achie-
ved ROC-AUC scores comparable to those obtained with image classifiers trained
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on manually selected keyframes. For the Kidney Task (localized pathology), DR-
Clips significantly reduced the performance gap, although challenges remained
when the size of DR-Clips for inference was enlarged, resulting in less relevant
frames being passed to the viode classifier.

While DR-Clips substantially improves the performance of video classifiers,
several areas require further exploration :

— Generalizability : A key question is how well the FRA, and DR-Clips can gene-
ralize especially to other pathologies, devices and centers. Future research is
required to broaden the evaluation presented in this Chapter.

— Application with other video classifiers : We used DR-Clips with Video Swin,
however, it is important to understand whether similar performance improve-
ments are obtained across different competitive video classifiers.

— Video classifier model improvement : Our observation that inference per-
formance could ultimately degrade if the clip length at inference time was
too large. This suggests the model is not sufficiently robust to handle a large
amount of low-relevance frames at inference time.

— Supervised Learning Dependency : The reliance on a supervised FRA may
limit the applicability in scenarios with limited labeled data. To address this,
follow-up research should explore weakly supervised learning approaches
for frame relevance estimation, reducing the dependency on ultrasound
data with frame-level relevance annotations. We explore this direction in the
next chapter.
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5. KeyFrameDiagFormer :
Weakly-Supervised Keyframe
Localization and Diagnosis
Transformer Model for
Untrimmed Ultrasound Videos

Chapter summary
In the preceding chapter, we introduced a video diagnostic method that

uses external guidance to enable accurate automated diagnosis in untrimmed
ultrasound videos. Despite its effectiveness, this reliance on an externsl, supervised
relecance assessment methods poses a limitation for broader application, as
extending the method to other pathologies with substantially different relevance
criteria would necessitate a customized frame guidance system for each case.

In this section, we introduce an ultrasound video CAD method trained ex-
clusively on video-level labels, which has not been done before with untrimmed
abdominal ultrasound videos.This innovation has far-reaching implications : (1) it
enhances scalability by enabling training with video-level labels, which can be
sourced from other modalities like patient records, reducing the burden of detailed
annotation ; (2) it improves explainability by identifying diagnostically relevant
keyframes automatically ; (3) it mitigates selection bias, as the system indepen-
dently identifies informative frames without explicit guidance ; and (4) it supports
procedural video documentation through automated keyframe extraction, which
could streamline clinical workflows and improve record-keeping.

The proposedarchitecture comprises four fundamental components : a Frame
Encoder, a Frame-Memory Module, a Video Self-Attention Module, and a Hierar-
chical Multi-Label Classification Module.

The Frame Encoder, a 2D neural network, extracts representative frame fea-
tures independently from the input ultrasound video. To efficiently process long
videos while maintaining spatial resolution, we include a Frame-Memory Module
that utilizes a memory bank to store frame features. During training, the Frame
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Encoder is trained using only a subset of randomly selected frames, which update
the respective frame features in the Frame-Memory Module, ensuring a balance
between accuracy and computational efficiency. The frame features are then
forwarded to the Video Self-Attention Module, which adds local and global organ-
specific context into the feature representation. Finally, the Hierarchical Multi-Label
Classification Module introduces a hierarchical structure to the prediction process.

For each frame, the system determines organ-specific relevance scores or
background scores. The final video diagnosis detects one or more pathologies
simultaneously, addressing a multi-label classification problem. This is achieved
using an organ-specific global self-attention block, which enables features from
frames containing a specific organ to interact with each other while ignoring back-
ground frames. For each pathology, a multi-label classification head aggregates
the predictions, with the final predicted class obtained by averaging the top-N
frame prediction scores for each class.

Compared to state-of-the-art, this approach offers several key advantages :

1. Efficient Training and Inference : The combination of the Frame Encoder
and Frame-Memory Module enables frames to be processed in real-time
during inference. It also maintains a favorable trade-off between spatial and
temporal resolution for the video classification model during training.

2. Keyframe Identification : Inspired by weakly-supervised action localization,
our system automatically identifies healthy and pathological frames in un-
trimmed videos, without requiring image-level labels. Additionally, it provides
organ-specific relevance scores, explicitly distinguishing diagnostically rele-
vant frames from background frames.

3. Diagnostic Feasibility : Leveraging a multi-label setup with specific output
heads for healthy and diverse pathologies, our system can determine when
a diagnosis for a particular organ is infeasible due to insufficient information.

The remainder of this chapter is organized as follows : Section 5.1 provides
additional background that inspired our work. Section 5.2 details our methodology
and database. Finally, Section 5.3 presents our results.
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5.1 Additional background

5.1.1 Insights from Weakly-supervised Action
Localization in the general computer
vision literature

Weakly-supervised Temporal Action Localization (WTAL) involves identifying
the temporal boundaries (start and end) of actions within a video and classifying
those actions into predefined classes using weak annotations for training. These
weak annotations typically consist of video-level action labels, significantly redu-
cing the annotation effort compared to fully-supervised methods, which require
frame-level supervision for training.

To produce a localization output, WTAL models typically generate an indivi-
dual score for each frame and each class. These scores create class-temporal
signals that are processed by post-processing modules to detect class-action
boundaries, such as action start and end points.

WTAL shares similarities with the problem of diagnosing pathologies in untrim-
med ultrasound videos. Specifically, a parallel can be made between action and
background frames in WTAL to diagnostically relevant and non-relevant frames
in US videos. Inspired by WTAL, an open research question that we answer is as
follows : Can a neural network, that was originally designed to solve WTAL, be
adapted to effectively identify diagnostically relevant frames within untrimmed
ultrasound videos, without frame-level annotations or external guidance?

A key mechanism employed by WTAL methods [158, 255, 141, 149, 75, 105, 81,
204, 196] is the explicit modeling of the background by distinguishing it from speci-
fied action classes. This concept is well explored in [158], where the background
is treated as a separate action class present in all videos. Ground-truth labels for
WTAL are thus composed of the actions present in the video combined with the
background class. By using this approach, background scores are learned through
the dissimilarities between videos containing different actions.

Another challenge in action localization is the high computational complexity
associated with processing long video sequences. This arises from the need for
most methods to maintain a temporally localized frame feature representation
extracted by one (or more) Frame Encoder neural networks, which are themselves
computationally demanding. Classical solutions to this problem typically constrain
the models by reducing spatial-temporal resolution, employing simpler Frame
Encoder backbones, or freezing the encoder weights.
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A promising solution for efficient memory management is presented by [48],
where the authors introduce a long-term memory module. This module first ex-
tracts frame representations from all clips in the input video using a clip encoder
and stores them in a feature memory without retaining gradients. During training,
randomly selected clips are fed to the encoder, and the extracted features are
used to update the feature memory. The full feature memory, including the clip
encoder, is trained, with gradients computed based on the randomly selected
clips. This approach enables end-to-end training on long video sequences, making
it particularly useful for analyzing untrimmed ultrasound videos.

However, the parallel between WTAL and the automatic diagnosis of patho-
logies in untrimmed ultrasound videos is not so straightforward. A key difference
between the correspondence of WTAL action frames and diagnostically relevant
frames in US videos lies in their temporal distribution. WTAL actions are typically
temporally contiguous, whereas diagnostically relevant frames in US videos are
sparsely distributed over time.

This is why many WTAL methods adopt a two-stream architecture, leveraging
both RGB and optical flow inputs to model temporal dynamics effectively [158, 280,
141, 149, 105, 81, 204, 196, 175]. However, the temporal sparsity of diagnostically
relevant frames in US videos, combined with the inherent challenges of generating
reliable optical flow in ultrasound [183], significantly limits the applicability of this
approach to US video diagnosis. Consequently, while WTAL methods provide a
valuable foundation, their architectures require significant adaptation to address
the unique temporal and imaging characteristics of US video diagnosis.

In summary, key insights from WTAL are incorporated into the development of
ourmodel.Wedraw inspiration from twocore aspects : BackgroundModeling [158],
where the background is treated as a separate class to enhance discrimination
between diagnostically relevant and non-relevant frames, and Long-Term Memory
[48], which enables efficient end-to-end training on long video sequences. These
strategies are adapted to address the unique challenges posed by the temporal
sparsity and imaging characteristics of untrimmed ultrasound videos, ensuring the
relevance and effectiveness of our approach.

5.1.2 Multi-Label Learning with Missing Labels
In the previous chapter, we intentionally designed individual neural networks to

analyze the kidney and liver pathologies, optimizing them under the condition that
the null class was not considered. The null class, in this context, refers to scenarios
where diagnosis is not feasible, either because the organ does not appear in
the video or because its appearance is heavily obscured by noise and artifacts,
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making diagnosis unfeasible. However, to provide diagnostic feasibility feedback
to the user, the inclusion of the null class is essential, as it is intrinsically linked to the
Background Modeling discussed in the previous section.

One effective method for this could be Multi-Label Learning with Missing
Labels [263, 276, 291, 290, 106, 147], which allows each video to simultaneously
belong to multiple classes. For example, an abdominal ultrasound video may
exhibit liver lesions, liver steatosis, and kidney lesions at the same time, and the
objective is to identify all these conditions during a single forward pass.

Among the various methods available for handling Multi-Label problems,
Problem Transformation Methods, which convert Multi-Label problems into multiple
single-label problems, are the easiest to adapt to neural network architectures. One
such method is Binary Relevance [287], which transforms a Multi-Label problem
into multiple independent single-label classification problems, where each label
indicates the presence (1) or absence (0) of a specific condition. Because these
are treated as independent classification tasks, the Cross-Entropy Loss used in
multiclass classification is replaced with Binary Cross-Entropy Loss.

The concept of Missing Labels refers to cases where an ultrasound video lacks
a diagnosis for a given organ, corresponding to the null class. For instance, a video
may contain liver labels but no kidney label, indicating missing information for the
latter. A common approach to handle this challenge is to consider only observable
labels during training [276].

5.1.3 Hierarchical Classification
The diagnosis of ultrasound videos can be framed as a Hierarchical Classi-

fication Problem [260, 286, 41, 7, 167]. Hierarchical classification is a subtype of
multi-label classification where classes are organized in a structured hierarchy.
For example, to determine whether a frame indicates a pathological or healthy
liver, the presence of the liver in the frame must first be confirmed; otherwise, the
diagnosis is infeasible. In Figure 5.1 we show the hierarchy we use for the analysis of
ultrasound videos in this chapter.

A common approach to solving Hierarchical Classification problems is to use
flat classification, where only the classes at the leaf nodes are used as training
labels (highlighted by the dotted lines in Figure 5.1). This method is well-suited to
our case, given the nature of our data and the inclusion of the background class.
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Figure 5.1 – The hierarchical structure used for the diagnosis of ultrasound videos in
this chapter. Highlighted paths (dotted lines) indicate the labels used for training
in the flat classification approach. During inference, only level 3 leaf nodes (blue
ones) are used to provide an output.

5.2 Methodology

5.2.1 Section overview
Given an untrimmed ultrasound video Vi = {It}T

t=1 ∈ RC×T ×H×W , our goal
is to predict one or more diagnoses attributed to the video. We denote these
predictions as Ŷi = {ŷk}Ni , where Ni is the number of diagnoses detected in
video i.

We state it as a multi-label classification problem as follows, where O =
{o1, · · · , on} represents the set of organs being considered and each organ o has
a healthy label ho and a set of pathological labels

{
p0
o, p1

o, · · · , pk
o

}
.

Yi =
{
ho, p0

o, p1
o, · · · , pk

o

∣∣∣ ∀o ∈ O
}

∈ {0, 1}Nc (5.1)

The number of diagnosis classes is defined as Nc, comprising all ho and pk
o for

all organs in O. To maintain label consistency between healthy and pathological
diagnoses for each organ o, we apply the following rules :

If ho = 1, then pk
o = 0, ∀k.

If pk
o = 1 for any k, then ho = 0.

Multiple pk
o can be 1 simultaneously.

(5.2)
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If no labels are estimated for a given organ o, this indicates that a diagnosis is
not feasible for that organ based on the information available in Vi.

Finally, for each diagnosis label present in Ŷi, we want to output a list of R

diagnostically relevant frames Kŷk
to support the diagnosis made.

Kŷk
= {It | t ∈ T k, It supports the diagnosis of ŷk} , |T k| = R (5.3)

By doing this, we can perform we diagnosis of multiple pathologies at multiple
organs, indicating which frames were used to perform the diagnosis. Our proposed
architecture is illustrated in Figure 5.2.

Figure 5.2 – The hierarchical classification structure used for diagnosing ultrasound
videos.

5.2.2 Proposed Video Classification Network
Our proposed neural network is composed of the following modules :
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5.2.2.1 Long-memory Frame Embedding Bank

Considering a collection of video frames Vi = {It}T
t=1 ∈ RC×T ×H×W , we first

utilize a still image neural network to extract image features, which are then stored
in amemory bank. This 2D neural network is defined as F : RH×W ×C → RC1×C2×fdim ,
followed by the following operations : layer normalization, a max polling layer over
C1 and C2 and flattening operation.The entire process can be formally expressed
as :

F : RH×W ×C → Rfdim , It 7→ ft (5.4)

Finally, the extracted features are used to construct the memory bank for the
video Vi = {It}T

t=1 ∈ RC×T ×H×W , represented as f i = {ft}T
t=1 ∈ RT ×fdim .

During each training epoch, a random temporal window Tw = [tstart, tend],
with a predefined size Tepoch, is uniformly sampled from each video Vi. From this
window, B frames It are randomly selected and processed by the 2D neural
network F , being used to update f i and produce a feature representation for the
temporal window Tw, denoted as f i

epoch = {ft}tend
tstart ∈ RTw×fdim .

It is important to note that only the B sampled frames are used to compute
gradients for F , the features from other frames in the memory bank are exclusively
utilized for training subsequent blocks in the pipeline. Additionally, there is a trade-
off between B, the video batch size, and the spatial resolution of the video. While
a sufficiently large B is essential for effectively training the Frame Encoder F , setting
B too high can negatively impact either the spatial resolution or the video batch
size used to train the entire network.

Our Frame Encoder F is implemented using the Swin Transformer v2 [161],
specifically the swin_small_patch4_window7_224.ms_in22k variant from the timm
library [261].

5.2.2.2 Video Self-Attention Module

Local Self-Attention

The Frame Encoder extracts frame features independently from one another.
To combine information across these features, we first deploy an organ-specific
diagnostic relevance module as defined by our hierarchical architecture.

This is achieved using features transformed by local self-attention multi-head
transformer block, which incorporates a masking operation to restrict frame feature
interactions to their immediate neighbors.
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The operations performed are described below, where f i
epoch is expressed as

X0 ∈ RTw×fdim to simplify notation :

Q = X0WQ, K = X0WK , V = X0WV (5.5)

with dimensions adjusted for the h attention heads, where dk = fdim
h

.

WQ, WK , WV ∈ Rfdim×dk , Q, K, V ∈ RTw×dk (5.6)

To constrain interactions between frames, a local attention matrix Mlocal is
introduced. This mask assigns 0 to allowed positions, comprised of the lw frames,
and −∞ (a very large negative value) to masked positions, restricting attention to
neighboring frames. An example of this mask is shown in Figure 5.3(a).

AttHeadi = softmax
(

QK⊤ + Mlocal√
dk

)
V (5.7)

The outputs of the attention heads are concatenated, followed by the addi-
tion of a residual connection, layer normalization (omitted here for clarity), and
projection through a linear layer WO ∈ Rfdim×fdim to produce a new feature repre-
sentation :

X1 = [Concat (AttHead0, · · · ,AttHeadh) + X0] WO (5.8)

This new representation X1 ∈ RTw×fdim encodes localized knowledge about
each frame’s surroundings while minimizing the differences between new features
and features retrieved from the memory bank.

Organ Diagnostic Relevance Branch

To compute diagnostic relevance scores for each frame and differentiate
them from non-relevant frames (background), a linear projection followed by a
softmax operation is applied :

Srel = softmax(X1Wrel + brel), (5.9)

where On is the number of organs represented in O, with dimensions defined
as follows :

Wrel ∈ Rfdim×(On+1), brel ∈ R(On+1), Srel ∈ RTw×(On+1) (5.10)

The first On output channels in Srel represent the relevance of each frame
for diagnosing the corresponding organs, while the final channel represents the
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non-relevant (background) class. This configuration, combined with the softmax
function, ensures that frames classified as non-relevant do not contribute to diag-
nosis estimation in subsequent steps.

(a) Local Attention Mask (b) Organ Attention Mask

Figure 5.3 – Illustration of the various attention masks employed in this work. Blue
cells represent permitted positions (assigned a value of zero), while white cells
denote restricted positions (assigned a value of −∞).

Organ-specific Self-Attention

To ensure the network focuses on all organ-specific frames while ignoring low-
quality frames and frames belonging to other organs, we design an organ-specific
attention mask using the organ diagnostic relevance scores Srel obtained in the
previous step.

For each organ o, excluding background dimension, we apply a threshold τ ,
resulting in a binary vector vo, where values 0 indicate the temporal position of
organ-relevant frames for organ o, and 1 otherwise.

vo = Srel [:, o] > τ, vo ∈ {0, 1}Tw (5.11)

We compute an organ-specific attention mask, Mo, by calculating the dya-
dic product (outer product) of the vectors vo, with ones inverted to zeros (not
shown in the equation below).

Mo = vo ⊗ vo = vovo
⊤ (5.12)

The matrices Mo (one for each organ o) are then combined with element-
wise multiplication (◦ operator), and multiplied element-wise by a diagonal matrix
DTw×Tw with 0 in the principal diagonal and 1 elsewhere. finally, the resulting ma-
trix Morgan is multiplied by −∞ (a very large negative number). This operation is
illustrated in the Figure 5.3(b).
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Morgan = −∞ ·
(
M0 ◦ M1 ◦ · · · ◦ Mn ◦ DTw×Tw

)
(5.13)

In summary, Morgan forward individual frame features while allowing them to
interact with all other frames belonging to the same organ (if any).

Finally, this masked is used in a new transformer block following the same
equations describes in Equations 5.5 to 5.8.

X2 = TransformerBlock (X1, Morgan) (5.14)

5.2.2.3 Hierarchical Classification Module

Finally, the frame features X2 are used to compute frame-level diagnosis for
all Nc diagnosis defined in Equation 5.1. This is done by using a dedicated linear
classifier for each combination of organ o diagnosis

{
ho, p0

o, p1
o, · · · , pk

o

}
weighted

by the relevance scores Srel.

Ŷframes
o = softmax(X2Wo + bo) ◦ Srel [:,o] (5.15)

The organ diagnosis scores for individual frames are concatenate, including
the non-relevant/background scores Srel [:, −1].

Ŷframes = Concat
(
Ŷframes

o | ∀o ∈ O, Srel [:, −1]
)

(5.16)

Finally, the final video diagnosis score for each class c (including non-relevant
or background) is computed as the mean of the top-R scores for that class.

Ŷi (c) = 1
R

∑
t∈top-R(Ŷframes[:,c])

Ŷframes [t, c] (5.17)

This hierarchical classification strategy comprises several components that
enable training the entire system in a weakly supervised manner :

— It explicitly uses the R highest contributing diagnosis scores to make a pre-
diction for each class c, allowing these scores to be used as diagnostically
relevant frames Kŷk to support the diagnosis.

— All frame-level diagnosis estimations are weighted by the organ-relevance
scores Srel, ensuring that frames not predicted as belonging to a specific
organ are unlikely to contribute to the final diagnosis.
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— It generates a video-level non-relevant (background) class estimation by
averaging the top−R values in Srel [:, −1]. This serves as guidance for training
the non-relevant class, which is expected to be present in all videos.

— By relying solely on the top R frames from each video to make the final
prediction, it is particularly well-suited for the classification of untrimmed
videos, where only a limited number of frames are diagnostically useful.

5.2.3 Inference
To perform real-time inference from a video input, we extract frame features

ft using the Frame Encoder F and store them in a memory bank. Inference can
be initiated at any time ; however, if the number of frames is fewer than the prede-
fined Tw, zero-padding with temporal attention (−∞ for padded frames) must be
applied.

For sequences longer than Tw, and to maintain a fixed-size feature memory
f , when the (Tw + 1)-th frame arrives, it replaces the feature representation of the
frame with the highest non-relevance score Srel [:, −1]. This allow us to keep the
size of f fixed, while keeping the most relevant frames in the video.

Given that the Frame Encoder can operate in real-time—for example, using
a RTX3090 TI, swin_small_patch4_window7_224.ms_in22k achieves inference in just
5 ms per image, and the transformer blocks and classification head require an
average of 60 ms. This allows our system to perform near-real-time inference for
live ultrasound CAD applications.

5.2.4 Dataset
Our dataset is an updated version of theMIM-US-107 Video Dataset described

in Section 4.3.4.1, incorporating new videos acquired at our partner hospital. The
updated distribution of video-level diagnoses is illustrated in Figure 5.4.

In this chapter, we grouped pathologies into the following classes to ensure
an adequate number of samples in each class, given the availability of training
data. This grouping is illustrated in Figure 5.1.

Class 0 (hL) : Label for :

— liver_normal

Class 1 (p0
L ) : Label for :

— liver_steatosis
— liver_fibrosis
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Figure 5.4 – Distribution of the video diagnosis dataset used in this study.

Class 2 (p1
L ) : Label for :

— liver_cystic_mass
— liver_solid_mass
— liver_metastases

Class 3 (hK) : Label for :

— kidney_normal

Class 4 (p0
K) : Label for :

— kidney_cystic_mass
— kidney_solid_mass
— chronic_kidney_disease
— nephrolithiasis
— hydronephrosis

The labels are grouped and assigned a value of 1 if the diagnosis is present
in the video, and 0 otherwise. Additionally, for training purposes, we include the
non-relevant class at the last position, which always has a label of 1 to indicate
that all videos contain some non-relevant frames. Thus, the training labels for a
video Vi are defined as follows :

Yi =
{
hL, p0

L , p1
L , hK, p0

K, 1
}

(5.18)

We used 80% of the dataset for training and 20% for testing, ensuring an equal
distribution of labels.
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5.2.5 Training

5.2.5.1 Training Loss

The training loss used for our problem is the BCEWithLogitsLoss (Binary Cross
Entropy with logits), which combines the binary cross-entropy loss with a sigmoid
activation layer (σ). This loss is computed independently for each class and is
defined as :

ℓ(ŷc, yc) = Lc = {l1,c, . . . , lN,c}⊤,

ln,c = −
[
pc · yn,c · log σ(ŷn,c) + (1 − yn,c) · log(1 − σ(ŷn,c))

] (5.19)

where ŷc and yc represent the predicted and ground-truth values for class c,
respectively. The weight value pc is used to balance positive and negative samples,
computed as the ratio of negative to positive instances.

The final loss is computed as the average of Lc across all classes, including
the non-relevant class. Since lesions typically appear in only a few frames while
the same video may also contain healthy-looking frames, we exclude the loss
calculation for the healthy class in videos containing lesions for the respective
organ.

5.2.5.2 Training parameters

Our proposed architecture includes some parameters specific to its design.
The most important ones are listed below :

— B : The number of frames sampled from each video to update the memory
bank. In our experiments, we set this value to 24.

— R : The predefined number of relevant frames per video. This value must
balance two factors : it cannot be too large due to the limited number of
diagnostically relevant frames per video, but if it is too small, it may affect
training stability. In our experiments, we set R to 10 for all classes.

— fdim : The dimension of the frame-feature space, determined by the Frame
Encoder used. In our case, it was set to 768.

— Tw : The maximum number of frames stored in the memory bank. We set this
parameter to 512.

— lw : The size of the local-attention window. We used a window size of 3 in our
experiments.
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— τ : The threshold used to compute the organ-attention mask. In our experi-
ments, we set this value to 0.2, though it requires further investigation.

In addition, the image resolution was set to 224x224 pixels, and we applied the
same image data augmentations described in the previous chapter. The network
was trained with a learning rate of 10−5, and early stopping was implemented
after 200 epochs without improvement, with a minimum training duration of 300
epochs. Typically, training stops after approximately 1000 epochs, which takes
around 48 hours on a RTX 3090 TI.

5.3 Results

5.3.1 Section overview
In this section, we present the results of our study. We focus on the following

key aspects of our work :

1. Video Diagnosis Classification : Evaluating the performance of the proposed
neural network in correctly estimating video-level diagnoses.

2. Video Diagnosis Keyframe Localization : Assessing the neural network’s ability
to identify keyframes that provide explainability for the diagnosis.

3. Video Diagnosis Feasibility : Determining the neural network’s capability to
assess whether the organ is visible with sufficient quality to enable reliable
diagnosis estimation.

5.3.2 Video Diagnosis Performance and
Keyframe Localization

Table 5.1 presents the numerical metrics for video diagnosis, while Figures 5.5
to 5.9 display the located keyframes supporting the diagnosis of each identified
pathology. It is important to emphasize that, although the proposed model always
outputs a set of supporting keyframes for each pathology, these keyframes are only
meaningful when they correspond to pathologies with a high enough predicted
score (denoted as "pred" in the figures). For instance, in Figure 5.5, the only valid
keyframes are those for liver steatosis and a healthy kidney.

Additionally, the non-relevant class consistently has a predicted value of 1,
which indicates low-quality frames, an inevitable occurrence during ultrasound
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acquisition. As shown in the figures, themodel effectively detects ultrasound frames
that either do not contain any organs or are heavily affected by shadows and
artifacts.

Regarding the evaluation of video diagnosis performance, metrics such as
Accuracy, Precision, Recall, and F1-Score require a threshold to convert continuous
predicted scores into binary labels. These thresholds are computed by optimizing
the F1-Score, as it provides a balanced trade-off between Precision and Recall.

Table 5.1 – Performance metrics for video diagnosis across different classes, inclu-
ding ROC-AUC, Accuracy, Precision, Recall, and F1-Score. The results highlight the
model’s strong performance for liver steatosis and reasonable outcomes for other
liver conditions, with lower performance for kidney-related classes.

Class ROC-AUC Acc. Precision Recall F1

Liver Healthy (hL) 0.82 0.83 0.84 0.81 0.82
Liver steatosis (p0

L ) 0.97 0.94 0.92 0.85 0.88
Liver Lesion (p1

L ) 0.89 0.90 0.71 0.62 0.67
Kidney Healthy (hK) : 0.66 0.69 0.80 0.57 0.67
Kidney Abnormal (p0

K) 0.79 0.85 0.57 0.44 0.50

The results demonstrate that the network performs particularly well in detecting
steatosis, achieving a ROC-AUC of 0.97 and an accuracy of 0.94. It is important to
note that these values differ fundamentally from those reported in the previous
chapter, as the evaluation in this case distinguishes between liver steatosis and
non-steatosis cases, rather than liver steatosis versus healthy liver.

In the second rowof Figures 5.5 and 5.9, we present the automatically selected
keyframes used to support the diagnosis of liver steatosis from untrimmed ultrasound
videos. As observed, both sets of selected images display a bright liver parenchyma
and attenuation of the ultrasound wave, which are common findings associated
with the diagnosis of steatosis.

The network demonstrated promising performance for the liver healthy and
liver lesion classes, achieving ROC-AUC and accuracy values between 0.82 and
0.90. Figure 5.6 illustrates the automatically detected support keyframes for identi-
fying a liver mass (third row), while Figure 5.7 presents the keyframes supporting
the diagnosis of a healthy liver. Although there remains significant room for im-
provement, the approach produces reasonable results and effectively localizes
lesions.

However, the model underperformed for the kidney classes, achieving AUC
values of 0.79 and 0.66 for the kidney abnormal and kidney healthy classes, res-
pectively. A well-performing example is shown in Figure 5.7.
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We hypothesize that the unsatisfactory performance for the kidney classes is
due to three main reasons. First, as shown in Figure 5.8, there is confusion between
shadowing artifacts and kidney lesions. Dense lesions, such as solid masses and
kidney stones (nephrolithiasis), can produce shadowing similar to that caused
by artifacts. Second, some kidney frames were not identified by the radiologist
during the examination, as illustrated in Figure 5.9. Finally, in an effort to increase
the number of samples in the pathological classes, we grouped a wide range of
kidney pathologies with different anatomical findings into the kidney abnormal
class. This may have introduced excessive variability within the class, negatively
impacting performance.

5.3.3 Diagnostic Feasibility Performance
To compute the feasibility of a diagnosis for a given organ, we combine the

ground-truth labels and predicted scores for all diagnoses associated with that
organ. Specifically, if the radiologists were able to make a diagnosis for the organ,
the feasibility ground-truth label is assigned a value of 1. The predicted feasibility
score is then calculated as the average of all diagnosis predicted scores for that
organ.

Table 5.2 – Diagnostic feasibility results for liver and kidney, demonstrating satisfac-
tory performance and supporting the hierarchical classification structure.

Class ROC-AUC Acc. Precision Recall F1

Liver Diagnostic Feasibility 0.90 0.94 0.98 0.96 0.97
Kidney Diagnostic Feasibility 0.91 0.85 0.89 0.89 0.89

The results for liver and kidney diagnostic feasibility are presented in Table
5.2. Both provide satisfactory outcomes, with liver feasibility scores excelling. These
results indirectly indicate that our hierarchical classification structure for predicting
liver and kidney diagnostically relevance scores functions as intended.

Figure 5.8 illustrates a case where feasibility scores are particularly useful. In
this example, the video does not contain liver images, resulting in a liver diagnostic
feasibility score of 0. This informs the operator that additional images are required
to produce a precise diagnosis.
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Figure 5.5 – Diagnostic keyframes localized in a weakly-supervised manner by the
proposed network, highlighting a patient with liver steatosis and a healthy kidney.
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Figure 5.6 – Diagnostic keyframes localized in a weakly-supervised manner by
the proposed network, focusing on a patient with a liver lesion and insufficient
information for a kidney diagnosis.
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Figure 5.7 – Diagnostic keyframes localized in a weakly-supervised manner by the
proposed network, focusing on a patient with kidney abnormalities and a healthy
liver detected with low confidence.
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Figure 5.8 – Diagnostic keyframes localized in a weakly-supervised manner by
the proposed network, highlighting the negative effect of shadowing, which is
confused with kidney abnormalities.
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Figure 5.9 – Diagnostic keyframes localized in a weakly-supervised manner by the
proposed network, highlighting kidney frames which were not identified by the
radiologist during annotation.
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5.4 Conclusion and Future Work
In this chapter, we introduced KeyFrameDiagFormer, a novel weakly-supervised

keyframe localization and diagnosis transformer model designed for untrimmed
ultrasound videos. Trained exclusively on video-level labels, the model autono-
mously identifies diagnostically relevant keyframes to support diagnosis, aligning
seamlessly with standard clinical practices. This approach could also potentially
uncover new pathological visual findings in ultrasound by training the model with
labels derived from other diagnostic modalities, such as biopsy, CT, or MRI.

Through its hierarchical multi-label classification framework and the integration
of backgroundmodeling, organ-specific attentionmechanisms, and long-memory
frame embedding, KeyFrameDiagFormer demonstrates robust performance in
diagnosing pathologies and identifying diagnostically relevant frames. The model
excels in detecting liver steatosis and other liver pathologies, showcasing its effec-
tiveness in complex diagnostic tasks. Although its performance on kidney-related
conditions is less consistent, it highlights opportunities for refinement and further
optimization.

While our approach showed promising results, there are multiple areas which
required further investigation :

— Optimization of KeyFrameDiagFormer Parameters : Time constraints limited
our ability to comprehensively explore the parameter space of KeyFrame-
DiagFormer, including variations in the Frame Encoder design, the number
and configuration of Transformer blocks, and the optimal number of frames
for video diagnosis. Determining the best configuration is essential, espe-
cially for scaling the model to include more organs or pathologies. Future
work should prioritize systematic tuning of these parameters and assess their
scalability for broader diagnostic tasks.

— Incorporating Loss Functions from WTAL : Weakly supervised action locali-
zation commonly utilizes diverse loss functions to enhance the distinction
between background and action frames. Exploring how these loss functions
interact with our model on ultrasound data could yield valuable insights and
performance improvements.

— Leveraging Multimodal Training Data : The independent frame feature repre-
sentations in KeyFrameDiagFormer enable training with single-image data,
expanding its flexibility. Furthermore, the temporal feature representations
in the transformer blocks allow the model to incorporate labels from other
modalities, such as text or patient clinical records. Future research could
investigate training or pre-training with multimodal data to improve access to
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labeled datasets and enhance the model’s generalization across diagnostic
tasks.
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6. Conclusion

In this work we addressed key challenges associated with developing deep
learning models for US-based CAD targeting liver and kidney pathologies in untrim-
med b-mode ultrasound videos. This effort is crucial given the global shortage of
experienced radiologists and the inherent difficulties in acquiring and diagnosing
ultrasound data. To address these issues, we focused on creating fully automated
solutions that are user-friendly for novices and non-expert healthcare providers,
thereby alleviating critical bottlenecks in the medical care pipeline.

In the literature, most automated diagnosis methods rely on single-image
classification approaches. While these methods demonstrate promising perfor-
mance, they fail to represent the true data distribution of real-world ultrasound
videos. As a result, such systems require operators to manually select high-quality
frames compatible with the model, a task that demands significant expertise in
ultrasound examination. This limitation restricts the democratization of ultrasound
diagnosis, making these methods inaccessible to non-experts. Furthermore, the
few studies that utilize video classification models for diagnosing abdominal pa-
thologies often depend on trimmed videos, which suffer from similar limitations.
Some approaches attempt to overcome these issues by employing strong super-
vision, such as segmentation masks or bounding boxes. However, creating these
annotations is time-consuming and resource-intensive, further hindering scalability
and widespread adoption.

Another problem addressed in this work is the evaluation of the reliability of
standard visual annotations provided by annotators, which are commonly used for
training and developing CAD systems in ultrasound. Due to the inherent challenges
of ultrasound diagnosis, these annotations often involve a degree of subjectivity,
which can negatively affect the performance and robustness of deep learning
models trained on such data.

We have proposed several methods to overcome these challenges, which
we summarize below :

Key Contributions

In our first contribution, presented in Chapter 3 and titled CVL+RankNet, we
introduced a novel methodology for labeling diagnoses in medical images. This
approach improves upon traditional single-image visual labeling (SVL) by incorpo-
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rating comparative annotations, where annotators indicate which of two images
exhibits a higher perceived degree of pathology. This comparative process reduces
subjectivity in labeling, as it eliminates the need to establish explicit boundaries
between healthy and pathological diagnoses, a task that often varies significantly
among annotators. Furthermore, by employing a Learn-to-Rank formulation, we
can rank images from the most to the least pathological, generating real-valued
pathological scores that show strong correlation with histopathological findings.

In our experiments, presented in Table 3.7, we demonstrate that our proposed
method significantly improves annotation reliability for all annotators compared to
the standard single-image visual labeling (SVL) approach when using histopatho-
logy labels as ground-truth. When evaluating fused labels, our method achieves
a 10% superiority over SVL, highlighting its effectiveness in enhancing consistency
and accuracy in diagnostic labeling in ultrasound. This work addresses a critical
issue regarding the accuracy of visual labels, which are typically considered the
gold standard and used as ground truth in training and evaluation. Developing
methods to reduce labeling errors is essential for advancing AI-based CAD systems
in ultrasound, as reliable annotations are foundational to their effectiveness.

In our second contribution, presented in chapter 4 and named DR-Clips, we
proposed a method for classifying untrimmed ultrasound videos using a pragmatic
external guidance agent. This was achieved by developing an external frame-
guidance neural network capable of assigning diagnostic relevance scores to
individual ultrasound frames extracted from input videos. These relevance scores
were then utilized to create DR-Clips, which are clips composed of sequential,
highly diagnostically relevant frames. These DR-Clips are used both for inference
and as an effective data augmentation tool, enhancing the performance and
robustness of the classification model.

Our approach outperformed traditional end-to-end video classification mo-
dels and guided single-image classification models, achieving performance com-
parable to models trained on manually selected images curated by expert radio-
logists. This highlights the limitations of these models when applied to untrimmed
ultrasound data, an issue that may go unnoticed in video diagnosis research.
Developing methods to enable the deployment of such models on untrimmed
ultrasound data is a crucial area of study, as it bridges the gap between expe-
rimental settings and real-world applications, ensuring these video classification
networks can be effectively utilized in clinical practice.

In our final contribution, presented in Chapter 5 and titled KeyFrameDiagFor-
mer, we introduced a model capable of performing diagnosis on untrimmed ultra-
sound videos while simultaneously identifying diagnostically relevant keyframes in
a weakly supervised manner. Our approach incorporated several novel insights for
the diagnosis of ultrasound videos, including the design as multi-label problem, the
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adoption of background class, a concept commonly used in weakly supervised
action recognition, a memory bank for processing long sequences efficiently, and
a hierarchical structure. These designs choices allow the model to indicate when
there is not enough frames with sufficient image quality to realize the diagnosis
of a given organ by providing organ-specific frame relevance scores which are
trained indirect from pathological labels.

The proposed approach achieved impressive results in diagnosing liver steato-
sis and satisfactory performance in diagnosing liver lesions, successfully identifying
keyframes where pathologies are clearly visible and offering valuable support for
clinical diagnoses. While there is still room for refinement, the method provides
several significant advantages that establish it as a strong candidate for general-
purpose video diagnosis in ultrasound. First, the model is trained exclusively on
video-level labels, which can often be derived automatically from patient clinical
records, reducing the need for extensive manual annotation. Second, it effectively
highlights keyframes containing anatomical features that align closely with those
used by radiologists in standard screening practices. Third, the model can assess
diagnosis feasibility, providing real-time feedback when a video lacks sufficient
high-quality frames tomake a reliable diagnosis. Lastly, the integration of amemory
bank ensures efficient real-time inference, a crucial feature for deploying video
diagnosis models in practical clinical settings.

The contributions presented in this work are designed to serve as a foundation
for the diagnosis of abdominal pathologies in real-world conditions. Our proposed
methods address critical challenges in real-world data, either by reducing the
inherent errors in visual annotations or by enabling diagnosis in untrimmed ultra-
sound videos, which often contain a high proportion of non-relevant frames. We
hope that this work inspires further research focused on developing robust solutions
adapted to real-world ultrasound data, ultimately advancing the field of AI-based
CAD.

Implications

Our contributions support the democratization of ultrasound screening by
reducing the expertise required to perform and interpret examinations, thereby
increasing the frequency with which patients can be screened. This enables ex-
pert radiologists to focus on suspicious or complex cases, optimizing healthcare
workflows and enhancing the overall efficiency of diagnostic processes.

This is the proposition of the Disrumpere Project, developed by the R&D teams
of IRCAD France and IRCAD Rwanda. The goal is to leverage affordable portable
ultrasound devices and artificial intelligence to expand access to diagnostic
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imaging, particularly in underserved regions. By automating key aspects of image
acquisition, interpretation, and diagnosis, the project aims to empower non-experts
and healthcare providers with limited training to perform reliable screenings. This
approach not only addresses the scarcity of skilled radiologists but also ensures
timely detection and monitoring of common pathologies, ultimately reducing
healthcare disparities and improving outcomes globally.

In the context of the Disrumpere Project, we have integrated a simplified
version of our models for the automatic diagnosis of liver steatosis into the IRCAD
Therapus software, utilizing a low-cost ultrasound probe. Figures 6.1 and 6.2 illustrate
examples of AI-powered steatosis screening performedby non-experts, showcasing
a pathological and a healthy case, respectively.

At the beginning of the screening (Figures 6.1(a) and 6.2(a)), the system de-
termines that there are not yet enough diagnostically relevant images of sufficient
quality to provide a diagnosis. Once the first diagnostically relevant frames are
automatically identified, the system generates an initial low-confidence diagno-
sis (Figures 6.1(b) and 6.2(b)). As additional high-quality, diagnostically relevant
images are detected, the system’s confidence in the diagnosis increases, resulting
in a final, reliable diagnosis (Figures 6.1(c) and 6.2(c)).

These experiments highlight the potential implications of our contributions
, which can reduce healthcare costs through early pathology detection and
expand access to screening for individuals in underserved or low-resource settings.

Limitations and Future Research Directions

While our research contributions efficiently address the challenges of develo-
ping deep learningmodels for diagnosis of ultrasound data, some limitations persist,
highlighting areas for refinement and potential directions for future research.

A primary limitation across our methods is the need for validation on a broa-
der range of pathologies, datasets, and devices. Expanding this scope would
enhance the generalizability and robustness of our findings. Below, we outline spe-
cific limitations and future research directions related to the use of CVL annotations
and the diagnosis of untrimmed ultrasound videos :

Concerning the use of Comparative Visual Labeling described in Chapter 3 :

— Annotation Effort and Active Learning : CVL requires a greater number of
annotations compared to standard single-image visual labeling (SVL). Leve-
raging active learning techniques [176, 122] could help reduce this burden
by prioritizing the most informative samples for labeling.

— Siamese Network Potential : Our research work focused on using CVL to
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(a) Ultrasound Exploration

(b) Initial Steatosis Diagnosis

(c) Final Steatosis Diagnosis

Figure 6.1 –AI-powered liver steatosis screening in a pathological case, showcasing
the progression from (a) initial ultrasound exploration, (b) low-confidence diagnosis,
to (c) final diagnosis as diagnostically relevant frames are identified. Images are
generated using IRCAD’s proprietary software, Therapus.
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(a) Ultrasound Exploration

(b) Initial Steatosis Diagnosis

(c) Final Steatosis Diagnosis

Figure 6.2 – AI-powered liver steatosis screening in a healthy case, illustrating the
process from (a) initial ultrasound exploration, (b) low-confidence diagnosis, to
(c) final confirmation as diagnostically relevant frames are analyzed. Images are
generated using IRCAD’s proprietary software, Therapus.
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enhance single-image annotations, but CVL could also be applied directly
to train siamese neural networks with contrastive loss. This could enable
continuous-valued pathological scoring, offering fine-grained information,
allowing to predicted the evolution of the condition.

— Video-Level CVL : In our work, CVL was not applied to video-level data due
to the lack of histopathological results for validation. Future research could
explore inter-video and intra-video CVL strategies to enhance video model
training.

Concerning the diagnosis of untrimmed ultrasound videos discussed in Chap-
ters 4 and 5 :

— Video Classifier in DR-Clips and Inference : While DR-Clips were tested with
the Video Swin Transformer, evaluating their impact on other video classifiers
remains important. Additionally, we observed performance degradation
with large DR-Clips during inference, suggesting difficulties in handling low-
relevance clips. Addressing these challenges and proposing solutions are
crucial areas for future research.

— Parameters in KeyFrameDiagFormer :Due to time constraints, wewere unable
to fully explore the design space of KeyFrameDiagFormer, including variations
in the Frame Encoder architecture, the number and configuration of Transfor-
mer blocks, and the optimal number of frames used for final video diagnosis.
Identifying the ideal configuration is crucial, particularly when scaling the
model to accommodate additional organs or pathologies. Future research
should focus on systematically tuning these parameters and evaluating their
adaptability to broader diagnostic tasks.

— Pre-training of Ultrasound Video Transformer Models : Self-supervised pre-
training is crucial for maximizing the potential of Transformer models [191].
Incorporating this step into our framework could enhance performance and
enable the use of deeper Transformer architectures.

— Exploration of other losses from WTAL : Weakly supervised action localization
often employs multiple loss functions to better distinguish between back-
ground and action frames. Investigating how these loss functions interact
with our proposed model in ultrasound data could provide valuable insights.

— Training with Multimodal data : KeyFrameDiagFormer’s independent frame
feature representations allow it to be trained using single-image data, increa-
sing its versatility. Additionally, the temporal feature representations genera-
ted in the final transformer blocks allow the model to use other modalities of
labels, such as text data or patient clinical records. This capability could be
explored for model training or pre-training, potentially improving access to
labeled data and enhancing the model’s generalizability.
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Final Thoughts

This thesis has addressed key challenges in the development of deep learning-
based CAD systems for ultrasound data, emphasizing the development of models
capable to be deployed in real-world untrimmed video data. By reducing re-
liance on extensive annotations and external guidance, and enabling diagnosis
in untrimmed videos, our contributions aim to bridge the gap between experimen-
tal research and clinical practice. We hope this work not only enhances current
methodologies but also motivates future research to focus on fully automated
solutions for ultrasound diagnostics. Ultimately, these advancements have the
potential to democratize healthcare, reduce disparities, and significantly improve
patient outcomes, particularly in developing and underserved regions.
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Table A.1 – Training hyperparameters of our proposed model and others baselines.

Model name Hyperparameter Value

Video Swin
+

DR-Clips (ours)

pretrained_model swin_small_patch4_window7_224_22k.pth
patch_size [4, 4, 4]
embed_dim 96
depths [2, 2, 18, 2]
num_heads [3, 6, 12, 24]
mlp_ratio 4
qkv_bias True
drop_rate 0
attn_drop_rate 0.1
batch_size 12
learning_rate 10−6

Resnet (Manual)

pretrained ImageNet
dropout 0.5
batch_size 96
learning_rate 10−5

Resnet (Auto)

pretrained ImageNet
dropout 0.5
batch_size 48
learning_rate 10−4

Swin (Auto)
pretrained_model swin_small_patch4_window7_224_22k.pth
batch_size 80
learning_rate 10−6

BabyNet
Resnet (Manual) 0.96 (0.11)
msha3D True
batch_size 8
learning_rate 10−5

EchoGNN

video_encoder out_channels [ 16, 32, 64, 128, 256 ]
video_encoder kernel_sizes 3
video_encoder pool_sizes 2
video_encoder output_dim 256
video_encoder cnn_dropout_p 0.1
video_encoder fc_dropout_p 0.5
attention_encoder fc_dropout_p 0.5
attention_encoder hidden_dim 128
graph_regressor gnn_hidden_dims [128, 64, 32]
graph_regressor fc_hidden_dim 16
graph_regressor dropout_p 0.5
batch_size 32
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learning_rate 10−5

UVT

latent_dim 1024
intermediate_size 1024
num_hidden_layers 1
attention_heads 4
batch_size 8
learning_rate 10−6

Video Swin

pretrained_model swin_small_patch4_window7_224_22k.pth
patch_size [4, 4, 4]
embed_dim 96
depths [2, 2, 18, 2]
num_heads [3, 6, 12, 24]
mlp_ratio 4
qkv_bias True
drop_rate 0
attn_drop_rate 0.1
batch_size 12
learning_rate 10−6

VideoMAE V2
model_name vit_small_patch16_224
pretrained_model vit_s_k710_dl_from_giant.pth
batch_size 8
learning_rate 2 ∗ 10−6

MViTv2
mvit_version mvit_v2
batch_size 8
learning_rate 10−5

X3D
mvit_version x3d_m
batch_size 18
learning_rate 4 ∗ 10−6
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Introduction
L’imagerie médicale joue un rôle primordial dans la détection et la sur-

veillance de nombreuses pathologies, qu’il s’agisse d’infections, de lésions tu-
morales ou de maladies chroniques. Parmi les différentes modalités existantes,
l’échographie (en particulier l’échographie b-mode) se démarque par plusieurs
avantages qui en font un outil de choix pour un dépistage à large échelle :

— Coût réduit et accessibilité : L’équipement échographique est généralement
bien moins onéreux que la tomodensitométrie (CT) ou l’IRM, et la portabilité
croissante des dispositifs d’échographie permet de réaliser des examens
hors des centres hospitaliers traditionnels.

— Visualisation en temps réel : L’observation directe et instantanée des struc-
tures internes est particulièrement précieuse pour guider certaines interven-
tions (biopsies, pose d’aiguille, etc.).

— Sécurité pour le patient :Contrairement à d’autres techniques, l’échographie
n’expose pas à des rayonnements ionisants et ne requiert qu’exceptionnel-
lement l’injection d’un produit de contraste, minimisant ainsi les risques et
effets secondaires.

— Efficacité pour les tissus mous : Dans le cadre de pathologies hépatiques
ou rénales, l’échographie offre souvent une sensibilité élevée pour détecter
des anomalies, masses ou fluides.

Malgré ces avantages, l’échographie présente également des limites et des
défis qui restreignent son adoption à grande échelle :

— Qualité d’image limitée : L’omniprésence d’artefacts (ombrage, bruit, flou
de mouvement, etc.) complique l’interprétation et réduit la fiabilité diagnos-
tique.

— Forte dépendance à l’opérateur : Le résultat de l’examen dépend largement
de l’habileté et de l’expérience de la personne manipulant la sonde.

— Subjectivité du diagnostic : Les radiologues, même expérimentés, peuvent
interpréter différemment les mêmes images selon leur formation et leur expé-
rience clinique.
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— Variabilité anatomique : Les différences morphologiques d’un patient à
l’autre complexifient la standardisation de l’examen et rendent parfois le
diagnostic plus difficile.

— Pénurie de spécialistes : Dans de nombreuses régions, le manque de radio-
logues formés restreint considérablement l’accès à l’échographie.

Face à ces limites, le développement de méthodes d’aide au diagnostic
(CAD) se révèle essentiel pour renforcer la détection et l’analyse automatique
de pathologies abdominales, en particulier dans le foie et les reins. Bien que
plusieurs approches se soient révélées prometteuses, elles reposent souvent sur
des ensembles de données méticuleusement sélectionnés ou des annotations
spécialisées coûteuses et parfois approximatives (dû à la subjectivité des experts ou
à la qualité variable des images). Par ailleurs, un grand nombre de ces travaux se
concentrent uniquement sur des images fixes ou de courtes séquences vidéo dites
« trimmed », alors que les données échographiques cliniques sont fréquemment
constituées de longues vidéos non recadrées, dont une grande partie peut ne
pas contenir d’informations pertinentes pour le diagnostic.

Pour répondre à ces enjeux, cette thèse propose trois contributions majeures :

— CVL+RankNet (Amélioration de la fiabilité de l’annotation) : Une méthode
d’annotation comparative (Comparative Visual Labeling, CVL), associée
à un cadre d’apprentissage par classement (RankNet). Ce protocole fait
appel à des comparaisons visuelles entre paires d’images plutôt qu’à l’assi-
gnation d’étiquettes absolues, réduisant ainsi la subjectivité et améliorant la
cohérence des labels.

— DR-Clips (Approche guidée pour l’analyse de vidéos non recadrées) : Un
modèle de classification vidéo intégrant un Frame Relevance Assessor (FRA),
capable de détecter et de sélectionner automatiquement les images ou
segments essentiels au diagnostic dans de longues séquences. Cette ap-
proche exploite ces sous-clips à la fois comme forme d’augmentation de
données et comme guide à l’inférence, tout en épargnant un fastidieux
recadrage manuel.

— KeyFrameDiagFormer (Diagnostic sans module externe) : Un réseau inspiré
de la localisation d’actions en contexte faiblement supervisé, reposant sur un
encodeur à mémoire et un mécanisme d’attention hiérarchique. Il permet
d’identifier automatiquement les images pertinentes pour le diagnostic
sans supervision spécifique sur leur position temporelle, tout en se basant
uniquement sur des étiquettes globales (niveau vidéo) pour la classification
et la localisation.

Ensemble, ces approches visent à accroître l’efficacité de l’échographie
b-mode pour le dépistage précoce de pathologies hépatiques et rénales, tout
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en limitant la dépendance à l’opérateur, l’exigence en annotations exhaustives
et la subjectivité inhérente à l’interprétation humaine. Les chapitres qui suivent
détaillent la conception de ces méthodes, leur validation expérimentale et leurs
perspectives d’évolution.

Revue de la littérature
Cette section propose un panoramades recherches existantes sur les systèmes

d’aide au diagnostic (CAD) en échographie. Nous commençons par présenter les
approches qui analysent des images isolées, puis passons auxméthodes tirant parti
de séquences vidéo, avant de discuter l’utilisation demodules externes (détection,
segmentation, etc.) pour affiner la qualité des données. Enfin, nous mettons en
évidence les principaux verrous scientifiques et opportunités de recherche liés à
l’imagerie échographique.

Analyse d’images isolées
Les méthodes à image unique consistent à sélectionner (manuellement ou

automatiquement) une vue considérée comme pertinente, puis à recourir à un
réseau de neurones convolutifs (souvent appelé CNN) pour en extraire un score
diagnostique. Elles se distinguent essentiellement par :

— Zone d’intérêt (ROI) ou image entière : Certaines approches se focalisent
sur une région spécifique du parenchyme (lorsqu’elle est identifiable), ce
qui diminue la variabilité et peut accroître la précision. D’autres exploitent
l’intégralité de l’image, mais exigent alors davantage de données pour
apprendre à ignorer les zones non pertinentes.

— Multiplicité des vues (multivue) :Afindemieux cerner la pathologie, certaines
études combinent diverses projections anatomiques (par exemple, plusieurs
plans du foie ou du rein).

— Utilisation de modalités complémentaires : L’élastographie, le Doppler ou les
signaux radiofréquence (RF) peuvent être incorporés dans une architecture
multi-branches, afin d’enrichir la représentation de l’organe.

Bien que ces méthodes puissent atteindre des performances très élevées
(souvent AUC > 0,95), elles reposent presque toujours sur un tri manuel des images
pour ne retenir que les vues de qualité. Cela limite l’automatisation et rend délicate
l’extension à d’autres contextes cliniques, où la disponibilité d’images parfaitement
cadrées n’est pas garantie.
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Extension à l’analyse vidéo
Pour dépasser les limites de l’approche à image unique, de nombreuses

recherches s’intéressent à la dimension temporelle et considèrent la vidéo écho-
graphique dans son ensemble (ou de longs segments). L’objectif est d’exploiter
non seulement le contenu spatial de chaque image, mais aussi la dynamique
de la sonde et du patient (respiration, déplacement de l’organe, etc.). Parmi les
stratégies les plus courantes :

— Réseaux convolutifs avec modélisation temporelle (RNN, LSTM, attention) :
On commence par extraire des descripteurs dans chaque image (à l’aide
d’un réseau convolutif), puis on capture la dimension séquentielle grâce à
des blocs récurrents (LSTM) ou un mécanisme d’attention (souvent désigné
par “transformer”).

— Réseaux 3D (3D-CNN, ViViT, Swin Transformer vidéo) : Les images sont com-
binés pour former un volume spatio-temporel. Les filtres convolutifs ou les
mécanismes d’auto-attention s’appliquent directement à cette structure
3D, au prix d’une charge de calcul plus élevée.

— Modèles à deux flux : Un flux dédie l’analyse à la structure spatiale (b-mode),
tandis que l’autre se consacre à la composantemouvement (p. ex. calcul du
flux optique). Les sorties sont ensuite fusionnées pour produire un diagnostic
tenant compte à la fois de la texture et de la dynamique.

L’adoption de labels au niveau vidéo (ex. “présence ou absence de patholo-
gie”) simplifie la création de bases d’apprentissage, mais la plupart des séquences
cliniques demeurent longues, hétérogènes, et renferment de nombreux images
n’apportant aucune information diagnostique.

Approches guidées par modules externes
Plusieurs auteurs proposent des modules complémentaires pour filtrer ou

annoter automatiquement la séquence avant le diagnostic :

— Réseaux de segmentation ou de détection : On isole d’abord la structure
cible (foie, rein, lésion), ce qui permet aumodule diagnostique de se concen-
trer sur la zone identifiée. Lesmasques ou bounding boxes exigent cependant
des annotations détaillées.

— Évaluation de la qualité : Un réseau peut estimer la netteté ou la lisibilité de
chaque image, ne conservant que ceux qui respectent un seuil qualitatif.
Cette étape améliore la pertinence des données mais suppose un modèle
entraîné à cet effet (et donc un effort de labellisation supplémentaire).
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Ces approches guidées offrent des gains de précision non négligeables mais
accroissent la complexité et la dépendance à des annotations plus riches.

Fiabilité et défis de la vidéo échographique
non recadrée

L’échographie est sujette à une forte variabilité, tant en termes de qualité
d’image que d’expertise humaine :

— Subjectivité et hétérogénéité des annotations : L’interprétation dépend du
spécialiste, et l’on constate des désaccords fréquents sur l’existence ou la
sévérité d’une pathologie. Les techniques d’apprentissage doivent donc
composer avec des labels parfois incohérents ou imprécis.

— Vidéos non recadrées : Dans la pratique, on collecte de longues séquences,
dont une fraction significative est inexploitée (bruit, artéfacts, parties hors-
champ). Les modèles actuels sont souvent évalués sur des extraits déjà
nettoyés ou de courte durée, ce qui limite leur généralisation.

— Accès restreint aux références cliniques solides : Les étiquettes basées sur la
biopsie ou l’IRM constituent l’étalon-or diagnostique, mais sont coûteuses et
invasives, freinant l’acquisition de grandes bases annotées.

Bien que certaines recherches proposent des stratégies pour détecter les
labels douteux ou intégrer la variabilité entre annotateurs, la question de la fiabilité
demeure entière, en particulier pour l’échographie où l’opérateur conditionne
grandement la qualité et le contenu des données acquises.

Verrous actuels et pistes d’avenir
Plusieurs points demeurent problématiques :

— Gestion des annotations incertaines : Réduire la subjectivité et définir des
protocoles robustes pour la labellisation échographique sont des priorités
pour fiabiliser les modèles.

— Automatisation et temps réel : Les systèmes destinés à un large dépistage
doivent être capables de traiter des vidéos entières, de façon rapide et sans
intervention humaine pour éliminer les images non pertinents.

— Généralisation et robustesse : L’implémentation clinique nécessite des al-
gorithmes assez souples pour supporter une large variété de machines, de
réglages et de situations anatomiques.
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— Identification automatique de images utiles : La sélection ou la pondération
automatique des segments clés, dans une séquence pouvant compter
plusieurs milliers de images, reste largement ouverte.

En définitive, les solutions d’apprentissage profond ont fait leurs preuves sur des
échantillons soigneusement triés, mais il reste à concevoir des systèmes capables
de traiter l’échographie dans toute son hétérogénéité, afin d’offrir un réel appui
au dépistage précoce et à la standardisation du diagnostic.

CVL+RankNet : une nouvelle approche
d’annotation des images pour l’aide
au diagnostic

Résumé
Le succès des systèmes d’aide au diagnostic (CAD) basés sur l’intelligence

artificielle dépend en grande partie de la disponibilité de données annotées à
grande échelle, et de manière fiable. En échographie abdominale, l’obtention
de tels jeux de données reste particulièrement difficile : d’une part, les méthodes
de référence (biopsies hépatiques, IRM) sont coûteuses et peu accessibles, et
d’autre part, l’annotation visuelle par des experts s’avère subjective et souvent
imprécise, notamment lors de l’évaluation de la sévérité d’une pathologie comme
la stéatose hépatique.

Afin de pallier ces limites, nous proposons Comparative Visual Labeling (CVL),
une méthode d’annotation par comparaisons relatives. Plutôt que d’attribuer un
label binaire (« pathologique » ou « sain ») à chaque image, on compare deux
images à la fois : l’annotateur juge laquelle présente le degré pathologique le plus
prononcé. Nous convertissons ensuite ces comparaisons en scores numériques
continus à l’aide de RankNet, un algorithme d’apprentissage par classement
(Learning-to-Rank). De fait, chaque image reçoit un score de sévérité cohérent
avec l’ensemble des comparaisons.
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Contexte de la stéatose hépatique en
échographie

La stéatose hépatique se caractérise par une accumulation de graisse dans
le parenchyme du foie, fréquemment liée à des facteurs métaboliques ou à la
consommation d’alcool. À un stade avancé, elle peut évoluer en cirrhose ou en
carcinome hépatocellulaire. L’échographie b-mode, bien qu’elle soit unmoyen de
dépistage non invasif et abordable, souffre d’une forte variabilité liée à l’opérateur
et à la qualité des images, rendant le diagnostic parfois incertain.

Dans ce cadre, CVL+RankNet propose une solution pour générer un grand
nombre de labels exploitables (scores de sévérité) à partir d’annotations relatives.
L’objectif est de surmonter la subjectivité de l’annotation directe (Single-Image
Visual Labeling, SVL), où chaque image est jugée isolément.

Méthodologie de CVL+RankNet
Comparative Visual Labeling (CVL).
Dans CVL, l’annotateur reçoit des paires d’images échographiques{

(Ii, Ij) | i ̸= j
}

et doit décider laquelle des deux images apparaît la plus pathologique. Plus
formellement, on définit quatre types de labels :

Di,j ∈ { +1, −1, 0+, 0−},

avec :

— Di,j = +1 : l’image Ii semble plus pathologique que l’image Ij ,
— Di,j = −1 : l’image Ij semble plus pathologique que l’image Ii,
— Di,j = 0+ : les deux images sont perçues comme pathologiques mais

indiscernables en termes de sévérité,
— Di,j = 0− : les deux images sont jugées saines et indiscernables.

Cette approche s’avère souvent plus robuste que l’annotation binaire clas-
sique, car l’être humain discerne plus aisément une différence relative de sévérité
qu’un seuil absolu. La Figure B.1 illustre ce principe.

Transformation en scores continus (RankNet).
La deuxième étape convertit ces labels de paires en un score de sévérité réel
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Figure B.1 – Processus d’annotation en Comparative Visual Labeling (CVL). Chaque
paire (Ii, Ij) reçoit un label dans {1, −1, 0+, 0−} d’après l’impression visuelle de sévérité
pathologique.

pour chaque image. On formalise cela comme un problème d’apprentissage
par classement (Learning-to-Rank). Soit Φ(xi; θ, xq) la fonction (paramétrée par
θ) qui assigne un score si ∈ R à chaque image Ii. Ici, xi désigne le vecteur de
caractéristiques associé à l’image Ii et xq peut représenter la pathologie d’intérêt
(ici, la stéatose).

RankNet [24] apprend Φ à partir des comparaisons sous forme probabiliste :
la probabilité que Ii soit plus pathologique que Ij est

P (i ≻ j) = σ
(

Φ(xi; θ, xq) − Φ(xj; θ, xq)
)

, (B.1)

où σ est la fonction sigmoïde. Pour chaque paire annotée (i, j), on associe
un label binaire yij (par exemple, yij = 1 si Ii est jugé plus pathologique que Ij , et
0 dans le cas contraire). Le réseau cherche alors à minimiser la perte :

L′
P W (θ) = −

∑
(i,j)∈C

yij log
(
P (i ≻ j)

)
, (B.2)

où C est l’ensemble des paires comparées. Au terme de l’entraînement,
on obtient un score continu si par image. La Figure B.2 donne un aperçu du
fonctionnement global de RankNet.

Seuils et calibration.
Une fois les scores obtenus, on peut définir un seuil τ afin de distinguer par exemple
« sain » (si < τ ) versus « pathologique » (si ≥ τ ). L’avantage est de pouvoir ajuster
τ pour privilégier la sensibilité ou la spécificité, sans recommencer l’annotation.
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Figure B.2 – Schéma d’implémentation de RankNet, un réseau de neurones (apprentis-
sage par classement) entraîné sur des comparaisons de paires (+1 ou -1). Chaque image
reçoit à la fin un score réel si, reflétant son degré de pathologie.

Principaux résultats et observations
Réduction du taux d’erreur.
Nous avons évalué CVL+RankNet sur un jeu de données échographiques conte-
nant 55 patients, pour lesquels des analyses histopathologiques (pourcentage de
cellules graisseuses, PFH) servent de référence. Comme le montre le Tableau B.1,
les taux d’erreur (F1 et AUC) s’améliorent sensiblement par rapport à l’annotation
image-par-image (SVL), surtout pour les formes modérées (“mild steatosis”) où le
risque de sous-estimation est élevé.

Table B.1 – Qualité des labels (F1 et ROC-AUC) sur le Dataset 1, comparant SVL et
CVL+RankNet. Les intervalles de confiance (2,5% et 97,5%) sont indiqués entre crochets.

Méthode
Annotateur A B C Fusion (majority vote)

SVL (F1) 0.92 [0.85, 0.98] 0.83 [0.72, 0.92] 0.85 [0.75, 0.93] 0.87 [0.77, 0.94]
CVL+RankNet (F1) 0.99 [0.96, 1.00] 0.93 [0.86, 0.98] 0.93 [0.86, 0.98] 0.97 [0.93, 1.00]
CVL+RankNet (AUC) 0.99 [0.90, 1.00] 0.97 [0.88, 0.99] 0.95 [0.88, 0.99] 0.99 [0.89, 1.00]

Meilleure cohérence inter-annotateurs.
L’indice de Fleiss’ Kappa augmente quand on passe de SVL (0.75, « accord sub-
stantiel ») à CVL+RankNet (0.84, « accord quasi parfait »). Autrement dit, les obser-
vateurs sont plus en phase lorsqu’ils comparent deux images plutôt que quand ils
jugent chaque image isolément.

Corrélation avec la sévérité réelle.
La Figure B.3 illustre la concordance entre les scores CVL+RankNet (axe y) et le PFH
issu de l’histopathologie (axe x). La corrélation de Spearman atteint 0,87, preuve
que CVL+RankNet reflète efficacement la progression de la stéatose, notamment
dans les stades légers et modérés.
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Figure B.3 – Relation entre les scores CVL+RankNet obtenus par fusion d’annotations (y)
et la valeur de PFH (x) mesurée par histologie. Les zones colorées indiquent la sévérité :
sain (vert), Grade 1 (jaune), Grade 2 (orange) et Grade 3 (rose). La ligne rouge marque le
seuil choisi pour séparer « sain » et « pathologique ».

Annotation flexible et extensible.
Même avec un nombre de comparaisons modéré (5 à 6 paires par image),
CVL+RankNet garde un net avantage sur SVL. De plus, ce principe peut s’appli-
quer à d’autres maladies (myopie sévère, colite ulcéreuse) et potentiellement à
d’autres modalités d’imagerie (IRM, endoscopie, etc.), comme le montrent des
travaux récents dans la littérature.

Perspectives et travaux futurs
— Réduction de l’effort d’annotation : Des stratégies d’apprentissage actif

(active learning) permettraient de sélectionner de manière plus optimale les
paires à annoter, diminuant la charge pour l’expert.

— Extension à d’autres maladies et modalités : CVL a déjà montré son intérêt
pour la myopie sévère et la colite ulcéreuse. Les mêmes principes (compa-
raison, classement) peuvent s’étendre à d’autres applications médicales.

— Intégration dans des CAD vidéo : À ce jour, CVL+RankNet concerne surtout
des images fixes. Son adaptation aux séquences échographiques longues
et non recadrées (avec repérage automatique de images pertinents) consti-
tuerait un prolongement naturel.
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Conclusion
En associant Comparative Visual Labeling (CVL) et un apprentissage par

classement (RankNet), il est possible d’augmenter sensiblement la fiabilité des
annotations visuelles en échographie. L’approche est particulièrement adaptée
à la détection précoce de la stéatose hépatique, où l’expertise humaine tend à
sous-estimer les cas modérés. Elle représente un compromis prometteur entre la
facilité d’utilisation (comparaison par paires) et la production de scores continus
permettant un diagnostic plus fin. Cette démarche ouvre la voie à des systèmes
d’aide au diagnostic plus robustes et mieux adaptés à la pratique clinique, avec
une meilleure sensibilité dans les premiers stades et un potentiel d’extension vers
d’autres contextes (multimodalité, séquences vidéo, etc.).

DR-Clips : une approche guidée pour
la classification vidéo en échographie
non recadrée

Contexte et motivation
Dans le chapitre précédent, nous nous sommes concentrés sur l’amélioration

de la qualité des annotations visuelles en échographie. Nous abordons ici un
second défi majeur : entraîner des modèles de classification vidéo à partir de
séquences échographiques non recadrées (untrimmed videos), pour lesquelles
seuls des labels globaux (diagnostics au niveau vidéo) sont disponibles. Contrai-
rement aux images statiques ou aux clips strictement recadrés sur des moments
clés, les vidéos non recadrées comportent de nombreux segments peu ou pas
utiles pour le diagnostic. Cela complique l’apprentissage et accroît le risque de
surapprentissage (overfitting), notamment lorsque la base de données est de taille
modeste.

Méthodologie DR-Clips
Synthèse de la méthode Pour relever ce défi, nous proposons DR-Clips, une mé-
thodologie visant à améliorer la performance et la robustesse de classifieurs vidéo
en échographie. L’originalité tient dans l’utilisation d’un Frame Relevance Assessor
(FRA), réseau de neurones de régression qui attribue un score de pertinence à
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chaque image. Les images estimées pertinentes (selon la qualité visuelle, l’angle
de la sonde, l’absence d’artéfacts, la présence éventuelle d’indices patholo-
giques, etc.) sont alors ordonnées pour constituer des « clips diagnostiquement
pertinents » (DR-Clips).

Un réseau de neurones vidéo est ensuite entraîné sur ces DR-Clips (avec labels
au niveau vidéo), apprenant à ignorer les images non pertinentes. Pour éviter de
dépendre entièrement d’un FRA « parfait », nous introduisons un échantillonnage
aléatoire au sein des clips, ce qui renforce la robustesse du classifieur même en
présence de images peu informatives.

Dataset Pour démontrer l’efficacité de DR-Clips, nous considérons deux tâches
binaires en échographie abdominale :

— Tâche Foie : détection de dommages hépatiques (stéatose ou fibrose) vs.
foie sain,

— Tâche Rein : détection d’anomalies structurelles (kystes, hydronéphrose, etc.)
vs. rein sain.

Nous avons construit un nouveau jeu de données, MIM-US-107 Video Dataset,
constitué de 107 vidéos échographiques non recadrées (une par patient), labelli-
sées globalement (sain vs. pathologique) par un radiologue. Chaque vidéo peut
contenir de nombreux segments inutiles et seulement quelques images pertinentes.
En complément, nous disposons du MIM-US-473 Still Image Dataset (7 924 images
fixes, annotées par un score de pertinence).

Frame Relevance Assessor (FRA) Le FRA est entraîné via une fonction de coût
de type Smooth L1 Loss :

LossF RA = 1
N

N∑
i=1

SmoothL1
(
ΦFRA(Ii), ri

)
,

où Ii est l’image d’entraînement, ΦFRA(Ii) la valeur prédite par le FRA et ri ∈ [0, 1]
la note de pertinence normalisée (du moins pertinent au plus pertinent).

Principe d’apprentissage de DR-Clips Une fois le FRA entraîné, on segmente
chaque vidéo en images associées à un score r̂k. Puis on génère plusieurs DR-
Clips :

1. Extraction de clips aléatoires : Pour chaque vidéo, on échantillonne L=500
sous-séquences (1 à 32 images), chacune étant triée par ordre décroissant
de pertinence.

2. Pondération par la pertinence : Chaque DR-Clip hérite d’un poids wk égal à
la moyenne de ses scores (passés dans une sigmoïde décalée).
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3. Pruning : On ne conserve que les top-K DR-Clips les plus pertinents (ici K =
10).

4. Entraînement du classifieur vidéo : on applique une loss de type DR-Clip
(inspirée du Curriculum Learning) qui pénalise davantage les clips les mieux
notés :

LDR-Clip(Θ) =
V∑

v=1

K∑
k=1

wv
k L
(
Θ(Cv

k), yv

)
,

où yv est le label de la vidéo (foie sain vs. foie pathologique, etc.).
À l’inférence, on retient uniquement lesN images les plus pertinentes (N ≤ 32)

pour constituer un DR-Clip unique, que le réseau vidéo transforme en prédiction
diagnostique.

Résultats expérimentaux
Nous comparons DR-Clips à plusieurs approches :

— Classifieurs vidéo non guidés (ex. Video Swin [68], MViTv2, X3D. . .), entraînés
sans filtrage particulier et exploitant une fusion (moyenne ou max) sur des
clips de taille fixe (32 images).

— Classifieurs single-image guidés manuellement (ResNet (Manual)), utilisant
des images-clés choisies par l’expert.

— Classifieurs single-image guidés automatiquement (ResNet (Auto), etc.),
utilisant des images-clés proposées par le FRA.

Table B.2 – Comparaison DR-Clips vs. baselines (ROC-AUC moyen sur 10 folds, écart-type
entre parenthèses).

Cat. de ModèleNom
Foie (AUC) Rein (AUC)

moy. fusionmax fusionmoy. fusionmax fusion

Single-image
ResNet (Manual) 0.96 (0.11) 0.95 (0.15) 0.91 (0.25) 0.98 (0.05)
ResNet (Auto) 0.94 (0.17) 0.94 (0.13) 0.71 (0.26) 0.53 (0.24)
Swin (Auto) 0.94 (0.17) 0.89 (0.16) 0.81 (0.21) 0.69 (0.22)

Vidéo

BabyNet 0.89 (0.25) 0.87 (0.30) 0.61 (0.21) 0.59 (0.31)
EchoGNN 0.82 (0.29) 0.77 (0.30) 0.55 (0.19) 0.60 (0.24)
UVT 0.80 (0.29) 0.74 (0.24) 0.68 (0.17) 0.67 (0.16)
Video Swin 0.89 (0.30) 0.91 (0.17) 0.70 (0.29) 0.72 (0.22)
VideoMAE V2 0.80 (0.37) 0.87 (0.26) 0.56 (0.25) 0.60 (0.20)
MViTv2 0.88 (0.30) 0.90 (0.26) 0.74 (0.19) 0.64 (0.26)
X3D 0.85 (0.24) 0.94 (0.13) 0.73 (0.23) 0.69 (0.26)

DR-Clips Video Swin + DR-Clips 0.97 (0.09)† 0.92 (0.13)†

† Le modèle produit une seule valeur par vidéo, indépendamment de la fusion mean ou max.

Comme le montre le tableau B.2 :
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— Foie (NAFLD/fibrose, pathologie diffuse) : Les classifieurs vidéo non guidés
(Video Swin, MViTv2, etc.) atteignent 0.94. ResNet (Manual) avoisine 0.95–0.96.
DR-Clips dépasse légèrement (0.97).

— Rein (kyste/hydronéphrose, pathologie localisée) : Les méthodes vidéo non
guidées chutent (0.70–0.74). Les approches single-image guidées manuelle-
ment plafonnent jusqu’à 0.98, et DR-Clips réduit fortement l’écart (0.92).

— Interprétation : Pour le foie, la pathologie s’observe dans presque toutes
les images, facilitant l’apprentissage. Au contraire, pour le rein, la lésion
n’apparaît que dans un nombre restreint de images. Les modèles non guidés
noyent alors la classe pathologique parmi trop de images saines.

— DR-Clips vs. single-image auto (Swin/ResNet Auto) : Sur la Tâche Rein, l’éti-
quetage image-par-image est plus bruyant : des images saines reçoivent un
label pathologique. Les DR-Clips vidéo s’avèrent plus robustes, car il est peu
probable qu’un lot entier de images soit faux.

Analyses complémentaires
Qualité du FRA : Nous avons mesuré la corrélation entre le score r̂ du FRA et la
proximité visuelle d’une image avec les images-clés manuelles (dans un espace
PCA). On obtient une forte corrélation négative (−0.84 sur la Tâche Foie), indiquant
que le FRA valorise davantage les images proches des images-clés expertes.

Longueur du DR-Clip : À l’inférence, conserver un grand nombre de images
(au-delà de 4) peut dégrader la performance, surtout pour le rein, en raison des
images non pertinentes qui diluent l’information utile.

Conclusion et perspectives
Notre méthode DR-Clips concilie deux points :

— un Frame Relevance Assessor, formé sur des scores de visibilité/artéfacts,
— un classifieur vidéo (ex. Video Swin) traitant des clips de images jugées perti-

nentes, avec échantillonnage aléatoire et pondération par la pertinence.

Les résultats montrent qu’en échographie abdominale non recadrée, DR-
Clips surpasse les classifieurs vidéo classiques pour la Tâche Rein et fait jeu égal
(ou légèrement mieux) sur la Tâche Foie. Plusieurs améliorations sont envisagées :

— Généralisation : Vérifier la robustesse du FRA et de DR-Clips à d’autres pa-
thologies et d’autres machines d’échographie.
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— Autres architectures : Évaluer DR-Clips avec différents classifieurs vidéo (3D-
CNN, Transformers, etc.).

— Robustesse aux clips longs : Ajuster la gestion des images peu pertinentes
lors d’inférences longues.

— Réduction de la supervision : Se passer d’annotations explicites de perti-
nence (approche auto-supervisée ou faiblement supervisée).

En somme, DR-Clips apporte une réponse au problème du « bruit » dans les vidéos
non recadrées, atteignant un niveau de performance proche de l’extraction
manuelle d’images-clés. Son intégration à large échelle promet des diagnostics
plus automatisés et plus fiables en pratique clinique.

KeyFrameDiagFormer : Transformer
pour la Localisation de images Clés et
le Diagnostic Faiblement Supervisé
dans les Vidéos Échographiques
Non-Découpées

Dans ce dernier chapitre, nous proposons KeyFrameDiagFormer, un modèle
de classification vidéo faiblement supervisé, dédié à l’analyse d’échographies
abdominales non découpées (untrimmed videos). Contrairement au chapitre
précédent, où l’identification de images pertinentes s’appuyait sur un module
externe pré-entraîné (FRA), KeyFrameDiagFormer apprend intégralement à partir
de simples labels uniquement au niveau de la vidéo, sans besoin d’annotations
fines (par images ou via un module externe).

L’idée directrice est d’adapter certaines techniques de Weakly-supervised
Temporal Action Localization (WTAL) issues de la vision par ordinateur classique,
afin de repérer automatiquement, dans la séquence échographique, les images
présentant un réel intérêt diagnostique (détection de pathologie ou confirmation
du statut sain). À partir de ces images-clés (keyframes), le système délivre un
diagnostic multi-label au niveau de la vidéo complète, tout en fournissant un
score de faisabilité (dans le cas où l’organe est mal visible).
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Contexte et motivation
Les échos vidéos non recadrées (p. ex. un enregistrement complet d’examen

abdominal) contiennent inévitablement de nombreuses images non pertinentes :
organes hors champ, artéfacts, passages de recherche du point d’intérêt, etc.
Les approches précédentes (DR-Clip) ont montré que l’ajout d’un guidage (FRA)
améliorait nettement la performance, mais nécessitait un entraînement supervisé
de ce module. Dès lors, pour généraliser à d’autres pathologies (par ex. pancréas,
rate, prostate. . .), il faudrait personnaliser ce guidage.

Ici, on vise à s’affranchir de ce guidage externe en recourant à un schéma
faiblement supervisé : seuls des labels globaux (pathologies présentes ou non
dans la vidéo) sont utilisés, ce qui ouvre la voie à un apprentissage à partir de
données plus nombreuses (y compris labels issus de dossiers médicaux).

Méthodologie KeyFrameDiagFormer
Architecture globale
Le réseau se décompose en quatre blocs :

1. Frame Encoder : un réseau 2D (Swin Transformer v2) encode chaque image
indépendamment, générant une représentation compacte (feature).

2. Frame-Memory Module : une “banque de mémoire” stocke les features des
images précédentes. À chaque itération d’entraînement, seuls les features
de quelques images sont recalculés, ce qui allège les contraintes mémoire et
permet d’entraîner le image encoder efficacement sur de longues séquences.

3. Video Self-Attention Module : des blocs Transformers intègrent un local self-
attention (pour la cohérence temporelle de voisinage) et un global organ-
specific attention (pour agréger les images d’un organe tout en excluant les
autres ou le bruit).

4. Hierarchical Multi-Label Classification : enfin, un module de classification multi-
label hiérarchique produit (1) un score de “fond” (background class), (2) un
score d’organe sain (healthy), et (3) les scores de pathologies (lésions, stéa-
tose, etc.). Les images les plus discriminantes (top-R) deviennent de facto les
keyframes identifiées pour justifier le diagnostic.

Entraînement faiblement supervisé
Le modèle exploite uniquement des étiquettes au niveau de la vidéo : un vecteur
multi-label (ex. : {foie sain=0, stéatose=1, lésion hépatique=2, . . . }) et applique
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une Binary Cross Entropy par classe, en ignorant les classes “saines” lorsqu’une
pathologie est confirmée pour l’organe correspondant. Par ailleurs, la classe “non
pertinente” est supposée toujours présente, pour refléter la majorité des images
inexploitables.

Diagnostic en temps réel
Lors de l’inférence, on encode chaque nouvelle image pour mettre à jour la
mémoire, puis on applique le Transformer avec un nombre maximal de images
(Tw). Les images estimées comme peu pertinentes sont évincées si on dépasse
Tw. Ce procédé autorise une utilisation quasi temps-réel en contexte clinique.

Principaux résultats et observations
Performances de classification vidéo
Sur un jeu de données élargi (> 107 vidéos), KeyFrameDiagFormer obtient d’ex-
cellents scores pour la stéatose hépatique (ROC-AUC à 0,97), et des résultats
satisfaisants sur les lésions du foie (ROC-AUC ≈ 0,89). Les tâches rénales se révèlent
plus complexes (AUC 0,66–0,79). La Table B.3 illustre les performances globales
de classification vidéo. Les illustrations montrent que le réseau localise correc-
tement, sans supervision fine, les images présentant des indices pathologiques
ou confirmant le caractère sain, tout en écartant la majorité des segments non
pertinents.

Table B.3 – Performance metrics for video diagnosis across different classes, inclu-
ding ROC-AUC, Accuracy, Precision, Recall, and F1-Score. The results highlight the
model’s strong performance for liver steatosis and reasonable outcomes for other
liver conditions, with lower performance for kidney-related classes.

Class ROC-AUC Acc. Precision Recall F1

Liver Healthy (hL) 0.82 0.83 0.84 0.81 0.82
Liver steatosis (p0

L ) 0.97 0.94 0.92 0.85 0.88
Liver Lesion (p1

L ) 0.89 0.90 0.71 0.62 0.67
Kidney Healthy (hK) 0.66 0.69 0.80 0.57 0.67
Kidney Abnormal (p0

K) 0.79 0.85 0.57 0.44 0.50

Évaluation de la faisabilité diagnostique
Grâce à sa structure multi-label hiérarchique, le réseau est capable d’indiquer
un score de faisabilité pour un organe donné (ex. : aucune image de bonne
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qualité pour le rein). Cette fonctionnalité prévient l’utilisateur qu’un examen com-
plémentaire ou des images supplémentaires sont requis pour poser un diagnostic
certain.

Limites pour le rein
Les pathologies rénales sont variées (kystes, lithiases, hydronephrose. . .) et parfois
difficiles à distinguer d’artéfacts (zones d’ombre). On note une performance
moindre sur ces classes, accentuée par le fait que plusieurs lésions rénales sont
regroupées en une seule étiquette kidney abnormal, augmentant l’hétérogénéité
de la classe.

Conclusion et perspectives
KeyFrameDiagFormer illustre la possibilité de former un classifieur vidéo écho-

graphique sans guidage externe, tout en localisant de façon autonome les images
déterminantes (keyframes). La démarche s’appuie sur :

— Un masquage du bruit (background) inspiré de l’action localization,
— Une Structure multiclass hiérarchique pour distinguer les images de différents

organes et le background,
— Une banque mémoire de images pour un entraînement scalable.

Les résultats sont particulièrement solides pour la stéatose hépatique et en-
couragent l’intégration de cette méthode sur d’autres organes/pathologies. Les
travaux futurs portent sur :

— Affinage et tuning de l’architecture : nombre de blocs Transformers, taille de
batch, hyperparamètres comme τ , top-R, etc.

— Exploration de nouvelles fonctions de pertes (WTAL) : des fonctions de coût
spécifiques à la localisation d’actions pourraient améliorer la séparation images
utiles/background.

— Apprentissage multimodal : la structure indépendante des images permet d’in-
tégrer d’autres données (texte, IRM, CT), y compris pour un pré-entraînement
à large échelle.

En conclusion, KeyFrameDiagFormer propose un cadre faiblement supervisé
prometteur, permettant d’analyser des vidéos échographiques non recadrées,
d’identifier automatiquement des images-clés et de gérer la diversité anatomique
via une classification hiérarchique.
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Conclusion
Dans ce travail, nous nous sommes concentrés sur le développement de

modèles de deep learning dédiés au diagnostic assisté par ordinateur (CAD) pour
l’échographie abdominale, ciblant spécifiquement les pathologies hépatiques et
rénales dans des vidéos non découpées (untrimmed). L’objectif était d’élaborer
des solutions plus complètes, capables de traiter la variabilité et la complexité de
l’imagerie échographique, tout en réduisant la dépendance à des annotations
coûteuses ou à l’expertise d’opérateurs confirmés. Nous présentons ci-dessous un
résumé de nos principales contributions.

Réduire l’erreur d’annotation avec CVL+RankNet
Dans un premier temps, nous avons introduit CVL+RankNet pour améliorer la fiabi-
lité des annotations en échographie. Plutôt que de s’appuyer sur des labels visuels
classiques, plus sensibles à la subjectivité, nous avons adopté une méthode de
Comparative Visual Labeling (CVL). Celle-ci invite les annotateurs à comparer
deux images pour déterminer celle présentant un degré plus marqué de patholo-
gie, ce qui réduit la variabilité inter-annotateurs. La formulation en Learn-to-Rank
génère des scores pathologiques continus, validés empiriquement, et montre une
amélioration notable de la fiabilité de l’annotation. Cette approche contribue à
la création de jeux de données de haute qualité, condition essentielle pour des
systèmes de diagnostic assisté efficaces.

Diagnostiquer des vidéos échographiques non découpées avec DR-Clips
Ensuite, nous avons proposé DR-Clips, une méthode de classification vidéo qui
repose sur un module de guidage externe évaluant la pertinence diagnostique
de chaque image. Les images les plus utiles sont regroupées pour former des
séquences courtes, servant à la fois pour l’apprentissage et l’inférence. Cette ap-
proche a démontré de bonnes performances, comparables à celles de modèles
entraînés sur des images sélectionnées par des experts, tout en offrant la possi-
bilité d’exploiter des vidéos non découpées. Elle met en évidence l’importance
d’un filtrage des images non pertinentes pour traiter efficacement des données
échographiques en conditions réelles.

Une approche faiblement supervisée avec KeyFrameDiagFormer
Enfin, nous avons introduit KeyFrameDiagFormer, un modèle capable de diag-
nostiquer des vidéos échographiques non découpées sans guidance externe. Il
s’appuie uniquement sur des labels de haut niveau (présence ou absence de
pathologie), en s’inspirant des méthodes de weakly-supervised action localization.
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Lemodèle apprend à extraire des keyframes pertinentes pour la pathologie, grâce
à une classification multi-label hiérarchique. Les résultats sont particulièrement pro-
metteurs, notamment pour la détection de la stéatose hépatique. Le modèle peut
également indiquer un score de faisabilité lorsqu’un organe est mal représenté,
fournissant un retour en temps réel sur la qualité diagnostique de la séquence.
Cette approche faiblement supervisée présente un fort potentiel d’extensibilité et
un coût d’annotation réduit.

Intégration et implications pratiques
Les travaux s’inscrivent dans la logique du Disrumpere Project, développé par
l’IRCAD, qui vise à démocratiser l’échographie via des sondes portables et des
algorithmes d’IA. Une version simplifiée de nos modèles a été intégrée dans un
logiciel clinique pour le dépistage automatisé de la stéatose hépatique. Les
premiers retours indiquent que des opérateurs peu expérimentés peuvent effectuer
un dépistage fiable, optimisant l’emploi des spécialistes et rendant l’échographie
plus accessible, en particulier dans les régions sous-équipées.

Limites et perspectives
Plusieurs pistes d’amélioration restent à explorer. Premièrement, la généralisa-
tion doit être étendue à un éventail plus large de pathologies et de dispositifs
échographiques. Deuxièmement, la méthode CVL pourrait être appliquée à des
annotations au niveau vidéo ou servir directement à l’entraînement de réseaux
siamois. Troisièmement, KeyFrameDiagFormer bénéficierait de techniques de self-
supervised pre-training pour améliorer encore ses performances. De même, il
serait judicieux d’envisager des fonctions de coût plus complexes issues duweakly-
supervised temporal action localization. Enfin, l’intégration de données multimo-
dales (texte, IRM, dossiers cliniques) offre une opportunité de renforcer la robustesse
et la précision du diagnostic.

Conclusion générale
Les méthodes présentées dans ce travail contribuent à améliorer la fiabilité des
annotations (grâce à CVL+RankNet) et à développer des réseaux capables de
gérer des données échographiques non découpées, que ce soit en recourant
à un module de guidage (DR-Clips) ou via un apprentissage faiblement super-
visé (KeyFrameDiagFormer). Ces avancées ouvrent la voie à des systèmes de
diagnostic échographique plus scalables, limitant la dépendance à l’expertise
et aux annotations minutieuses. À terme, elles participent à une démocratisation
de l’échographie, susceptible de réduire les inégalités d’accès aux soins, et de
répondre aux besoins toujours croissants en imagerie médicale.
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