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Directeurs de thèse: Prof. Dr. Christoph REICH, Full Professor, Institute for Data Science,
Cloud Computing & IT Security (IDACUS), Furtwangen University, Germany

Dr. Fabrice THEOLEYRE, Directeur de recherche, CNRS, France

Rapporteurs: Prof. Lyes KHOUKI, Full Professor, ENSICAEN, Université de Normandie
Dr. Valeria LOSCRI, Directrice de recherche, Inria, France

Examinateurs: Prof. Isabelle CHRISMENT, Full Professor, Telecom Nancy,
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Abstract

These days, Industrial Internet of Things (IIoT) systems are widely used in the
transportation, industrial, energy, and healthcare industries. They empower real-
time data collection, autonomous decision-making, and seamless connectivity. How-
ever, the increased scale of IIoT deployments and their mission-critical nature in-
troduce significant security and scalability challenges. Traditional perimeter-based
security approaches are not sufficient to cope with sophisticated attacks and highly
heterogeneous device ecosystems.

This thesis addresses the need for a robust, scalable, and adaptive security frame-
work that ensures trustworthiness and reliability in large-scale, distributed IIoT
environments. We suggest a unique combination of distributed approach and dy-
namic Zero Trust Architecture (ZTA) principles to safeguard device IDs, provide
access control, and immediately identify irregularities. Our approach integrates
advanced Identity Management (IdM) protocols, dynamic policy enforcement, and
context-aware anomaly detection models tailored for industrial processes. Addition-
ally, we introduce a lightweight blockchain solution to provide a tamper-proof record
of critical events and secure cross-domain collaboration key elements for enabling
distributed trust among multiple industrial stakeholders.

Through simulations and a real-world testbed, we demonstrate that our frame-
work offers enhanced security against both known and zero-day attacks, maintains
high throughput even in resource-constrained scenarios, and adapts to changes in the
network environment and threat landscape. Our findings underline the feasibility
of harmonizing ZTA concepts with blockchain technology to future-proof IIoT sys-
tems against evolving operational and security demands. We believe this combined
methodology can become a security layer for next-generation industrial networks,
improving both their resilience to cyber threats and their ability to scale seamlessly
as Industry 4.0 continues to evolve.
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Introduction

Contents
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . 1
1.2 The Challenge: Security and Scalability in IIoT . . . . . 2
1.3 Emerging Solutions: Zero Trust and Blockchain . . . . . 3
1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contributions of the Thesis . . . . . . . . . . . . . . . . . 5
1.7 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 6

1.1 Context and Motivation

The Industrial Internet of Things (IIoT) has emerged as an essential force in trans-
forming various sectors, including manufacturing, healthcare, energy, and trans-
portation. The ability to interconnect devices and sensors within industrial pro-
cesses has enabled unprecedented levels of automation, efficiency, and real-time
monitoring. IIoT solutions not only help improve operational efficiency but also
support early maintenance to prevent equipment failures, make production flows
more efficient, and enhance decision-making capabilities.

Despite these considerable advantages, the rapid expansion of IIoT infrastruc-
tures introduces significant security challenges. Historically, industrial networks
relied heavily on perimeter-based security mechanisms, presuming a clear separa-
tion between trusted internal devices and external threats [9]. However, traditional
security boundaries are undermined by the integration of many devices, services,
and stakeholders across different domains, resulting in a vast attack surface that is
difficult for traditional security methods to properly control [10].

Real-world incidents illustrate the severe consequences of compromised IIoT se-
curity. High-profile cyberattacks, such as the Stuxnet worm [11], the Triton malware
[12], or recent ransomware targeting industrial control systems, demonstrate how
vulnerabilities can lead to disruptions, financial losses, and risks to human safety
[13]. These events underscore the urgency of developing new approaches capable of

1



2 Chapter 1. Introduction

protecting interconnected, highly distributed, and resource-constrained industrial
environments.

Furthermore, IIoT environments typically feature a diverse mix of devices from
robust, powerful servers to small, resource limited sensors [14]. Traditional cy-
bersecurity mechanisms often impose significant computational overhead, which is
incompatible with lightweight IIoT devices [15]. Thus, securing these environments
requires innovative, efficient approaches that can maintain robust security without
sacrificing performance or scalability.

To address these inherent vulnerabilities and limitations, modern cybersecurity
paradigms are exploring adaptive strategies, such as Zero Trust Architecture (ZTA),
and decentralized, tamper-proof trust management systems, including blockchain.
While these concepts provide a foundation for improved resilience, many imple-
mentations lack context-awareness or remain too centralized to meet the demands
of dynamic, distributed industrial environments. While these emerging solutions
offer considerable promise, practical deployments face persistent challenges regard-
ing complexity, computational overhead, scalability, and real-time responsiveness,
particularly in cross-domain scenarios.

This thesis is motivated by the critical need to bridge these gaps by providing
practical, robust, and scalable security solutions tailored explicitly to IIoT ecosys-
tems. Specifically, this work aims to integrate context-awareness and the dynamic,
adaptive capabilities of ZTA with the decentralized, secure, and transparent fea-
tures of blockchain technologies, directly addressing the evolving security needs of
interconnected industrial environments.

1.2 The Challenge: Security and Scalability in IIoT

Securing the IIoT introduces unique challenges due to its inherent complexity, het-
erogeneity, and critical nature. For instance, a compromised IIoT system in a power
grid could lead to widespread outages or safety hazards, making security breaches
far more consequential than in traditional IT environments. Unlike conventional en-
terprise networks, IIoT systems must secure interactions across diverse operational
domains, each with distinct security and functional requirements. Consider, for
example, a smart factory environment that integrates robotic assembly lines, auto-
mated inventory management systems, predictive maintenance tools, and external
supplier interactions. Each subsystem represents a unique security domain, yet all
must collaborate seamlessly while maintaining robust security controls.

Traditional cybersecurity approaches primarily relied on perimeter-based de-
fenses, assuming a well-defined boundary between internal, trusted devices and ex-
ternal threats. However, this assumption is fundamentally invalid in modern indus-
trial contexts, where devices and processes span multiple administrative domains
and interconnect across open and potentially insecure networks, including the In-
ternet. This openness significantly expands the attack surface, making perimeter
defenses inadequate and obsolete.

Moreover, ensuring security in IIoT environments is complicated by the pres-
ence of resource-constrained devices. Industrial sensors and embedded controllers
frequently lack the computational power and memory resources necessary to imple-
ment conventional cryptographic algorithms or complex authentication mechanisms
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[16]. Efficient authentication is essential in industrial environments, where devices
must verify their identity without causing latency or overloading limited hardware.

Scalability further exacerbates these security challenges, as increasing the num-
ber of integrated devices significantly worsens security issues and quickly overwhelms
traditional centralized mechanisms.[17]. Centralized authentication and trust man-
agement systems can become performance bottlenecks and introduce single points
of failure, severely affecting the resilience and reliability of industrial operations.
Centralized security architectures lack the flexibility needed to quickly respond to
evolving threats and changing industrial conditions.

An additional layer of complexity is introduced by the necessity of real-time op-
erations within industrial contexts. Delays resulting from security mechanisms, such
as extensive cryptographic verification processes or frequent policy checks, could dis-
rupt sensitive processes, potentially resulting in downtime or even safety hazards.
Therefore, effective IIoT security must achieve a delicate balance, providing robust
protection without compromising real-time responsiveness or operational efficiency.

Addressing these intertwined challenges cross-domain interoperability, resource
constraints, scalability, and real-time requirements requires fundamentally rethink-
ing security approaches in industrial environments. Effective solutions must inte-
grate adaptive and context-aware mechanisms capable of dynamically managing se-
curity policies, efficiently authenticating diverse devices, and proactively mitigating
threats in real-time.

This thesis directly tackles these critical challenges by proposing and evaluating
a novel security framework specifically designed for distributed IIoT ecosystems,
balancing rigorous security requirements with practical considerations of scalability
and operational efficiency.

1.3 Emerging Solutions: Zero Trust and Blockchain

In response to the inherent challenges associated with security and scalability in
IIoT, two innovative paradigms have emerged prominently: ZTA and blockchain-
based solutions.

ZTA fundamentally shifts traditional security paradigms by adopting the prin-
ciple of “never trust, always verify” [18, 19]. Unlike conventional perimeter-based
approaches, ZTA continuously verifies every device, user, and data flow, regardless
of their location within or outside the network perimeter. This approach signifi-
cantly enhances security by requiring explicit and continuous authentication and
authorization based on dynamic contextual information such as identity, location,
device health, and behavioral analytics. While ZTA enforces continuous verification,
its policies are typically static. Making ZTA dynamic and context-sensitive remains
an open challenge particularly in resource-constrained IIoT environments.

However, implementing a pure ZTA solution in industrial environments poses
considerable challenges. Real-time adaptability requires comprehensive and contin-
uous context evaluation, introducing potential computational overhead and latency,
particularly for resource-constrained industrial devices. Moreover, managing dy-
namic trust relationships across multiple industrial domains can become complex,
demanding efficient mechanisms to ensure responsiveness and scalability without
compromising security.
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In parallel, blockchain technology has garnered significant attention as a comple-
mentary solution for securing distributed industrial environments. The decentral-
ized nature of blockchain provides inherent security benefits, including transparency,
immutability, and robust integrity verification. These features make blockchain
particularly suitable for scenarios involving multiple stakeholders who require se-
cure collaboration, such as supply chain management, device identity management,
and cross-domain authentication. Additionally, blockchain’s decentralized consensus
mechanisms eliminate the single points of failure associated with centralized trust
authorities, thus improving resilience and reducing vulnerability to attacks targeting
central control points [20].

Nevertheless, integrating blockchain into IIoT security solutions introduces its
own set of challenges. Traditional blockchain implementations often suffer from
significant computational and storage overhead, which is problematic for resource-
limited industrial devices [21]. The high latency associated with consensus mech-
anisms and blockchain transactions also poses difficulties in real-time operational
contexts. Hence, lightweight blockchain solutions specifically optimized for con-
strained environments are essential to practically leverage blockchain’s advantages
within IIoT settings.

Recognizing both the potential and limitations of these emerging paradigms,
this thesis proposes a novel integrated approach that enhances the traditionally
static and rigid ZTA by introducing dynamic, context-aware capabilities. By com-
bining these adaptations with the decentralized and transparent characteristics of
blockchain technology, the proposed solution provides a practical, scalable, and re-
silient security model tailored to the unique needs and constraints of distributed
industrial ecosystems.

1.4 Aims and Objectives

The primary aim of this thesis is to design, develop, and evaluate a security frame-
work specifically customized to address the unique challenges of securing distributed
IIoT environments. This is accomplished by integrating adaptive ZTA principles
and blockchain-based decentralized trust management to provide robust security,
scalability, and real-time responsiveness suitable for industrial applications.

To achieve this overarching goal, the research sets out the following specific
objectives:

• Develop and validate a cross-domain authentication mechanism to efficiently
manage secure interactions between diverse industrial devices and stakeholders
across different administrative domains.

• Create a dynamic and adaptive ZTA framework featuring context-aware se-
curity policies that continuously adapt based on real-time contextual infor-
mation, threat evaluations, and operational dynamics within heterogeneous
industrial networks.

• Establish a robust blockchain infrastructure optimized for industrial appli-
cations, facilitating decentralized and transparent trust relationships across
multiple domains without introducing significant computational overhead.
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• Introduce and implement advanced context-aware anomaly detection tech-
niques capable of proactively identifying, classifying, and mitigating emerging
cybersecurity threats with high accuracy and minimal false alarms.

• Conduct comprehensive evaluations to demonstrate the practicality, perfor-
mance, scalability, and adaptability of the proposed integrated ZTA-blockchain
security framework through realistic industrial scenarios.

By addressing these objectives, the thesis aims to significantly advance adaptive,
decentralized cybersecurity solutions in industrial contexts, contributing theoretical
innovations and practical enhancements to the security and resilience of IIoT ecosys-
tems.

1.5 Research Questions

Guided by the aims and objectives, the thesis addresses the following key research
questions:

RQ1. What are the challenges in integrating blockchain and Zero Trust principles
into a cohesive security framework for IIoT?

RQ2. How can hybrid and context-aware anomaly detection methods improve
the real-time identification and assessment of sophisticated security threats within
dynamic IIoT networks?

RQ3. How can scalable and secure identity management be achieved in distributed
IIoT networks?

RQ4. What are the limitations of traditional ZTA in dynamic IIoT environments,
and how can they be adapted for real-time security?

RQ5. How can blockchain address IIoT challenges of scalability, privacy, and
tamper-proofing?

RQ6. How can identity management, blockchain, and anomaly detection be inte-
grated into a cohesive Distributed ZTA framework for securing IIoT networks?

Through addressing these research questions, this thesis seeks not only theoret-
ical advancements in industrial cybersecurity but also tangible, practical solutions
directly applicable to real-world IIoT environments.

1.6 Contributions of the Thesis

This thesis provides significant advancements in securing distributed IIoT environ-
ments by synthesizing the adaptive security principles of ZTA with the decentralized
trust management capabilities of blockchain. Specifically, the following contribu-
tions are made:
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1. Integrated Identity Management for IIoT: We first introduce a cross-
domain authentication mechanism leveraging digital wallets to securely on-
board and manage industrial devices. This mechanism addresses the chal-
lenge of dynamically establishing trust relationships across multiple factories
or industry verticals.

2. Context-Aware Anomaly Detection: Building upon this secure identity
foundation, we develop advanced anomaly detection strategies that integrate
neural network architectures (autoencoders) with graph-based community de-
tection techniques. These methods dynamically adapt to changing opera-
tional contexts, minimizing false positives and robustly detecting previously
unknown threats.

3. Lightweight Blockchain and Digital Product Passports: To efficiently
support these security mechanisms in resource-constrained IIoT environments,
we propose a lightweight blockchain framework tailored specifically for indus-
trial applications. Furthermore, digital product passports are integrated to
facilitate secure lifecycle management and traceability of industrial assets.

4. Dynamic Zero Trust Architecture: Leveraging the established identity
management and anomaly detection capabilities, we design and implement an
extensible Zero Trust Architecture. This architecture continuously evaluates
threat levels using real-time risk assessments, ensuring robust access control
and seamless interoperability across heterogeneous industrial domains.

5. Fully Distributed Access Control Paradigm: Finally, we extend the
developed ZTA framework by introducing a decentralized policy negotiation
protocol. This advancement empowers multiple stakeholders to securely col-
laborate, significantly reducing reliance on centralized authorities and further
enhancing resilience and flexibility.

1.7 Structure of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 presents a review of relevant literature, covering IoT/IIoT archi-
tectures, identity management, anomaly detection, and blockchain approaches.
We highlight how conventional models fall short for large-scale, mission-critical
IIoT use cases.

• Chapter 3 analyzes the security challenges in a typical smart factory envi-
ronment, detailing the threat vectors and complexity inherent in distributed
control systems.

• Chapter 4 introduces advanced identity management and authentication
mechanisms for cross-domain collaboration, focusing on digital wallets and
secure bridging of trust across different domains.

• Chapter 5 elaborates on anomaly detection strategies. We present novel
context-aware and hybrid detection algorithms tailored to industrial environ-
ments that must handle unknown attacks in real time.
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• Chapter 6 discusses blockchain-based solutions for lightweight and privacy-
preserving shopfloor auditing, ensuring high throughput, data integrity, and
adaptability to resource constraints in IIoT.

• Chapter 7 proposes a dynamic Zero Trust Architecture, integrating the pre-
viously introduced concepts of identity management, distributed anomaly de-
tection, and blockchain. We also detail a robust risk assessment process.

• Chapter 8 extends the Zero Trust paradigm to a fully distributed model, im-
plementing policy negotiation and digital product passports for collaborative
manufacturing.

• Chapter 9 concludes the thesis, summarizing our main contributions and
outlining perspectives for future research in the domain of secure and scalable
IIoT.

Figure 1.1 illustrates the overall structure of the thesis and the interrelationship
between its key components. The arrows in the diagram represent the flow of de-
pendency, indicating that each element builds upon or utilizes the outputs of the
preceding elements.

The thesis is divided into several core modules, starting with the Network
Anomaly Detector and Context Anomaly Detector, which provide foundational
insights for Threat Assessment. These components, in turn, contribute to the
realization of advanced security and identity mechanisms such as Dynamic ZTA,
Lightweight BC, Distributed ZTA, DPP, Cross Authentication, and Wallet – Iden-
tity.

The white boxes denote the research topics from which peer-reviewed papers
have been published or submitted. These represent the primary academic contri-
butions of the thesis. In contrast, the gray boxes represent additional developed
components that support the broader architecture but were not individually turned
into standalone publications. This figure thus captures both the structural flow and
the academic output of the thesis work.



8 Chapter 1. Introduction

N
et

w
or

k
A

n
om

al
y

D
et

ec
to

r
A

dv
an

ci
ng

N
et

w
or

k
Su

rv
iv

ab
ili

ty
an

d
R

el
ia

bi
lit

y:
In

te
gr

at
in

g
X

A
I-

E
nh

an
ce

d
A

ut
oe

nc
od

er
s

an
d

L
D

A
fo

r
E

ffe
ct

iv
e

D
e-

te
ct

io
n

of
U

nk
no

w
n

A
tt

ac
ks

C
on

te
xt

A
n
om

al
y

D
et

ec
to

r
C

on
te

xt
-A

w
ar

e
A

no
m

al
y

D
et

ec
-

ti
on

by
C

om
m

un
it
y

D
et

ec
ti

on
in

th
e

In
te

rn
et

of
T

hi
ng

s

T
h
re

at
A

ss
es

sm
en

t
D

yn
am

ic
P
ol

ic
y

S
h
op

fl
oo

r
B

C
B

lo
ck

ch
ai

n-
B

as
ed

P
ri

va
cy

-
P

re
se

rv
in

g
Sh

op
F
lo

or
A

ud
it

in
g

A
rc

hi
te

ct
ur

e

D
yn

am
ic

Z
T
A

B
ey

on
d

St
at

ic
Se

cu
ri

ty
:

A
C

on
te

xt
-A

w
ar

e
an

d
R

ea
l-T

im
e

D
yn

am
ic

Ze
ro

T
ru

st
A

rc
hi

te
c-

tu
re

fo
r

II
oT

A
cc

es
s

C
on

tr
ol

L
ig

ht
w

ei
gh

t
B

C
Se

cu
ri

ng
th

e
Fu

tu
re

:
L
ig

ht
w

ei
gh

t
B

lo
ck

ch
ai

n
So

lu
ti

on
s

fo
r

II
oT

an
d

Io
T

N
et

w
or

ks

D
ig

it
al

P
ro

d
u
ct

P
as

sp
or

ts
B

lo
ck

ch
ai

n-
E

na
bl

ed
D

ig
it

al
P

ro
du

ct
P
as

sp
or

ts
fo

r
E

nh
an

ci
ng

Se
cu

ri
ty

an
d

L
ife

cy
cl

e
M

an
-

ag
em

en
t

in
H

ea
lt

hc
ar

e
D

ev
ic

es

C
ro

ss
A

u
th

en
ti

ca
ti

on
B

ri
dg

e
of

T
ru

st
:

C
ro

ss
D

o-
m

ai
n

A
ut

he
nt

ic
at

io
n

fo
r

In
du

st
ri

al
In

te
rn

et
of

T
hi

ng
s

(I
Io

T
)

B
lo

ck
ch

ai
n

ov
er

T
ra

ns
-

po
rt

L
ay

er
Se

cu
ri

ty
(T

L
S)

W
al

le
t

–
Id

en
ti

ty
D

ig
it

al
W

al
le

ts
an

d
Id

en
ti

ty
M

an
-

ag
em

en
t:

P
io

ne
er

in
g

A
dv

an
ce

s
fo

r
C

lo
ud

Se
rv

ic
e

E
vo

lu
ti

on
an

d
A

R
ev

ie
w

on
D

ig
it

al
W

al
-

le
ts

an
d

Fe
de

ra
te

d
Se

rv
ic

e
fo

r
Fu

tu
re

of
C

lo
ud

Se
r-

vi
ce

s
Id

en
ti

ty
M

an
ag

em
en

t

D
is

tr
ib

u
te

d
Z
T
A

D
is

tr
ib

ut
ed

Ze
ro

T
ru

st
A

rc
hi

te
c-

tu
re

B
as

ed
on

P
ol

ic
y

N
eg

ot
ia

ti
on

Se
cu

re
d

by
D

P
P

in
B

lo
ck

ch
ai

n

F
ig

ur
e

1.
1:

St
ru

ct
ur

e
of

T
he

si
s.



Chapter 2
Foundation & State of the Art

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 IoT and IIoT: Fundamentals and Challenges . . . . . . . 11

2.2.1 Defining IoT and IIoT . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Key Differences and Challenges in IIoT . . . . . . . . . . 11
2.2.3 Characteristics of IIoT Networks . . . . . . . . . . . . . . 12
2.2.4 Attack Vectors in IIoT Environments . . . . . . . . . . . 13

2.3 Identity and Access Management in IIoT . . . . . . . . . 13
2.3.1 What Is an Identity in IIoT? . . . . . . . . . . . . . . . . 14
2.3.2 Identity Lifecycle in IIoT . . . . . . . . . . . . . . . . . . 14
2.3.3 Authentication in IIoT . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Identity Management (IdM) in IIoT . . . . . . . . . . . . 15

2.4 Access Control and Policy Enforcement in IIoT . . . . . 16
2.4.1 Static Policies and Limitations . . . . . . . . . . . . . . . 17
2.4.2 Dynamic and Distributed Policy Enforcement in Collabo-

rative IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Negotiation Protocols in Collaborative IIoT . . . . . . . . 18
2.4.4 Access Control Models for IIoT . . . . . . . . . . . . . . . 18

2.5 Zero Trust Architecture (ZTA) . . . . . . . . . . . . . . . 19
2.5.1 Context Aware Policies . . . . . . . . . . . . . . . . . . . 20
2.5.2 ZTA for IIoT . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Limitations of Static ZTA . . . . . . . . . . . . . . . . . . 22

2.6 Network Anomaly Detection in IIoT . . . . . . . . . . . . 23
2.6.1 Knowledge-Based Techniques . . . . . . . . . . . . . . . . 23
2.6.2 Statistical-Based Anomaly Detection . . . . . . . . . . . . 24
2.6.3 Machine Learning-Based Anomaly Detection . . . . . . . 24
2.6.4 Deep Learning-Based Anomaly Detection . . . . . . . . . 24
2.6.5 Anomaly Detection With GNN . . . . . . . . . . . . . . . 26
2.6.6 Context-Aware Anomaly Detection . . . . . . . . . . . . . 27

2.7 Industrial Blockchain for IIoT . . . . . . . . . . . . . . . . 27

9



10 Chapter 2. Foundation & State of the Art

2.7.1 Properties of a Blockchain-based IIoT System . . . . . . . 28
2.7.2 Blockchain for Manufacturing and Industry 4.0 . . . . . . 29
2.7.3 Lightweight Blockchain . . . . . . . . . . . . . . . . . . . 30

2.8 Digital Product Passport (DPP) . . . . . . . . . . . . . . 32
2.8.1 Value of DPPs & Integration With Blockchain . . . . . . 33
2.8.2 Use Case: Privacy-Preserving DPPs . . . . . . . . . . . . 34

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Introduction

Our primary objective is to move from a broad overview of Internet of Things (IoT)
and its industrial specialization Industrial Internet of Things (IIoT), to a focused
examination of critical security foundations such as identity management, access
control, anomaly detection, and blockchain-based solutions. In this chapter, we
review the state-of-the-art research on security mechanisms and supporting tech-
nologies in the context of IIoT.

Chapter Organization: The following sections are structured to progressively
build a comprehensive understanding of securing IIoT environments, systematically
highlighting critical concepts and challenges:

• Section 2.2 distinguishes IoT from IIoT, highlighting the unique security
challenges specific to industrial environments. This foundational understand-
ing sets the stage for addressing security requirements tailored to industry.

• Building upon these industrial-specific challenges, Section 2.3 introduces
Identity and Access Management (IAM) in IIoT, emphasizing the im-
portance of scalable authentication and authorization mechanisms designed
explicitly for large-scale, real-time industrial operations.

• With identity management established, Section 2.4 explores Network Anomaly
Detection, detailing how proactive detection mechanisms serve as critical de-
fenses in protecting complex IIoT networks from evolving threats.

• To further enhance security, Section 2.5 examines the role of Industrial
Blockchain in decentralizing trust and maintaining data integrity. This dis-
cussion addresses not only its benefits but also the inherent challenges of
blockchain technology within industrial contexts.

• Extending the blockchain discussion, Section 2.6 presents Digital Prod-
uct Passports (DPP), demonstrating how blockchain technology facilitates
comprehensive product traceability, thereby supporting sustainable practices
and the circular economy in industrial operations.

• Finally, integrating these prior concepts, Section 2.7 discusses the Zero
Trust Architecture (ZTA) model, presenting it as an overarching mod-
ern security framework enforcing continuous verification of devices, users, and
data flows, essential for resilient IIoT infrastructures.
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2.2 IoT and IIoT: Fundamentals and Challenges

2.2.1 Defining IoT and IIoT

IoT is a network of interconnected devices that communicate and share data via net-
worked infrastructures [22]. The underlying technology involves embedded sensors,
microcontrollers, and actuators that enable data collection and remote actuation
through various wireless protocols (such as Wi-Fi, Bluetooth, Zigbee, and NB-IoT).
In terms of topology, IoT systems typically employ a layered architecture:

• A device layer (comprising the sensors and actuators),

• An edge or gateway layer (which may perform preliminary data processing
or protocol translation), and

• A cloud layer for centralized data storage and complex processing.

Additionally, alternative topologies like mesh networks are sometimes used to en-
hance connectivity and reliability in dynamic environments. Typical applications
of IoT include smart homes (for automation, energy management, and security),
wearable health devices, connected vehicles, and smart city solutions (such as envi-
ronmental monitoring and traffic management).

IIoT extends these principles to critical industrial sectors [23], employing industrial-
grade sensors, actuators, and control systems designed for harsh environments. It
leverages real-time communication protocols and often integrates edge computing
to satisfy the low-latency and high-reliability demands of industrial applications.
Typical IIoT networks utilize hierarchical, redundant architectures combining cen-
tralized control with local processing, ensuring continuous operation even during
faults. Common applications include automated manufacturing, predictive mainte-
nance, smart grid management, and process automation tasks prioritizing efficiency,
safety, and reliability.

2.2.2 Key Differences and Challenges in IIoT

Although both IoT and IIoT create intelligent networks by leveraging connected de-
vices, IIoT differs significantly in scale, criticality, and security requirements. These
differences, however, introduce several challenges that must be addressed for effec-
tive and safe deployment.

Mission-Critical Operation: Unlike typical IoT applications – where occa-
sional brief failures may be tolerable – IIoT systems operate in environments such
as manufacturing, power grids, and transportation, where even minimal downtime
can lead to add costs or safety risks. This mission-critical nature requires near-zero
tolerance for failures.

Strict Real-Time Constraints: Industrial processes demand deterministic
or low-latency responses to sensor data. To meet these real-time constraints, IIoT
architectures often rely on local processing using intelligent gateways or edge servers,
thereby avoiding delays associated with remote, centralized data processing.

Complexity in Legacy Integration: Many industrial organizations depend
on legacy systems such as Programmable Logic Controllers (PLCs) or Supervisory
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Control and Data Acquisition (SCADA) systems, which were not designed with
modern security measures in mind [24]. Upgrading or integrating these systems
frequently forces production lines to halt, placing stakeholders in a difficult position
between maintaining operations and mitigating cyber threats.

Scalability and Heterogeneity: IIoT networks involve thousands of devices
with diverse hardware and protocols, creating real-time bottlenecks and demanding
scalable, distributed architectures [25]. Moreover, the dynamic nature of industrial
environments requires security mechanisms that continuously update access policies
and risk assessments to adapt to rapidly changing device states and threat land-
scapes.

Stringent Security and Safety Requirements: IIoT systems must adhere
to strict standards (e.g., IEC 62443 [26]) to ensure data confidentiality, integrity, and
availability. This necessitates not only robust risk assessments, redundant fail-safes,
and continuous monitoring, but also dynamic security policies – such as automated
policy updates and adaptive access controls – that adjust to emerging vulnerabilities
and enable proactive anomaly detection and rapid response.

Data Privacy and Ownership: The industrial data, encompassing propri-
etary manufacturing techniques and sensitive sensor readings, must be rigorously
protected. Unauthorized access can lead to intellectual property theft and under-
mine the operational integrity of critical infrastructures.

2.2.3 Characteristics of IIoT Networks

IIoT networks consist of diverse devices and services covering multiple locations
or supply chains [27]. Traditional centralized architectures, which involve a sin-
gle control unit or data center, simplify management but create a critical single
point of failure. To mitigate these risks, many IIoT systems have shifted towards
distributed or decentralized architectures. Distributed systems delegate process-
ing and decision-making tasks to multiple nodes, such as intelligent gateways or
edge servers. This approach offers several advantages, including fault tolerance,
reduced latency, scalability, and redundancy. Distributed architectures facilitate
dynamic load balancing and redundancy, which is particularly beneficial for indus-
trial applications that operate around the clock and integrate legacy systems with
limited cybersecurity measures. By replicating and decentralizing control functions,
distributed architectures enhance overall system resilience and reliability, which is
critical in environments where downtime or system failures can lead to significant
financial and safety risks [24].

Industrial applications like predictive maintenance, automated quality control,
and real-time production monitoring require strict Service-Level Agreements (SLAs)
for continuous performance and reliability. These SLAs define key performance
metrics like uptime, response times, and operational thresholds. IIoT networks
require ongoing monitoring to ensure adherence to SLAs. Engineers use real-time
analytics and anomaly detection systems to assess network performance and security,
detecting accidental failures and malicious intrusions to maintain high availability
and resilience.
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2.2.4 Attack Vectors in IIoT Environments

Building on the unique characteristics of IIoT networks discussed in the previous
section such as high heterogeneity, real-time requirements, and increased connectiv-
ity, it becomes evident that these networks are especially vulnerable to a diverse
range of cyber threats. To ensure a secure and resilient industrial environment, it
is essential to identify and understand the relevant attack vectors that exploit these
characteristics. In this context, several major groups of attack vectors must be taken
into account when designing secure IIoT systems. Table 2.1 summarizes these attack
groups along with representative examples, based on findings from recent academic
research.

Table 2.1: Major Attack Groups in IIoT and Example Attack Types.

Attack Group Example Attack Types and Description

Social Engineering Attacks Phishing: Deceiving employees or operators into re-
vealing credentials or installing malware [28].

Malware Attacks Ransomware: Infecting systems to encrypt data or
disrupt operations; viruses/worms for data exfiltration
[29].

Network/Protocol Attacks MitM: Intercepting and modifying data in transit; Re-
play attacks: re-injecting captured traffic; DoS: ex-
hausting network or computing resources [30].

Physical/Hardware Attacks Side-Channel Attacks: Exploiting physical leak-
ages (e.g., timing, electromagnetic emanations); Device
Tampering and Hardware Trojans: altering hardware/-
firmware to introduce vulnerabilities [31].

Supply Chain Attacks Compromised Components: Injecting malicious
code or backdoors during manufacturing or software
updates [30].

Identity/Authentication Attacks Credential Abuse: Using stolen or weak credentials
to gain unauthorized access [31].

The design of IIoT network must incorporate robust security measures to reduce
risk from attack vectors. Key topics include IAM to ensure that only authorized en-
tities interact with the system. Access Control and Policy Enforcement mechanisms
restrict actions to authorized parties. Dynamic and Distributed Policy Enforce-
ment enables real-time policy adaptation. Network Anomaly Detection techniques
monitor traffic for suspicious activities. Industrial Blockchain ensures tamper-proof
transactions and secure device interactions. The DPP verifies component authentic-
ity. ZTA follows the principle of "never trust, always verify" [18, 19], continuously
authenticating every device and user within the network. These measures ensure
continuous protection even as network conditions evolve [32].

2.3 Identity and Access Management in IIoT

IAM is a discipline that ensures that only genuine entities can access to network
resources. This is essential to keeping the industrial network secure in case of inter-
actions, where disruptions can impact safety and productivity.
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2.3.1 What Is an Identity in IIoT?

An identity (ID) is a unique set of attributes that distinguishes one entity from an-
other. In an IIoT environment, a device’s identity might contain hardware identifiers
(e.g., serial numbers), network addresses (e.g., MAC or IP), cryptographic keys, or
manufacturer-issued certificates. These attributes not only identify the device but
also play a crucial role in authentication and authorization (Ad). Formally, we can
represent an identity for a device d as a tuple:

ID(d) =
(
Ud, Ad,Kd

)
, (2.1)

The structure of ID(d) includes universally unique attributes Ud, descriptive at-
tributes such as device type and firmware version Ad, and an optional cryptographic
key or certificate Kd. While ID(d) remains constant throughout the device’s lifecy-
cle, the access rights and authorization associated with it can change dynamically
to meet evolving security needs.

2.3.2 Identity Lifecycle in IIoT

Once assigned, a device’s identity progresses through several stages, known as the
identity lifecycle [33, 34]. Figure 2.1 depicts three key phases:

Beginning
 of Life

Middle
 of Life End of Life

Figure 2.1: Stages of a Device Identity Lifecycle in IIoT.

• Beginning of Life (BoL): At this initial phase, the device is built, certified,
and registered with management services. During BoL, the device’s iden-
tity ID(d) is established, with secure embedding of authentication elements
to prevent tampering. This static identity provides a trustworthy basis for
subsequent security processes.

• Middle of Life (MoL): The device maintains its core identity ID(d), but
dynamic conditions like firmware updates, credential rotations, and continuous
monitoring necessitate real-time updates of access control policies linked to
ID(d) be updated in real time. The authorization context adapts based on
current risk assessments and operational requirements.

• End of Life (EoL): As devices are decommissioned or repurposed, revoking
or suspending the associated ID(d) is crucial to prevent exploitation of stale
credentials. This ensures that outdated identities do not grant unauthorized
access, thereby maintaining the overall security integrity of the system.

Robust security measures like secure provisioning and real-time monitoring must
be synchronized with the IIoT lifecycle stages to avoid preventing minor lapses in
tracking or device identity revisions.
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Isolated
IdM

Centralized
IdM

Federated
IdM

User-Centric
IdM

Decentralized
IdM

Figure 2.2: Evolution of Identity Management Systems [40].

2.3.3 Authentication in IIoT

After defining and assigning identities, authentication verifies that an entity request-
ing access or data exchange is truly who or what it claims to be. Formally, given an
identity ID(d), authentication involves a procedure A such that:

A : (d, ID(d), credentials) 7−→ {true, false}, (2.2)

where A returns true if the presented credentials match the identity’s expected
attributes and false otherwise.

Common Authentication Approaches in IIoT devices vary widely in their compu-
tational resources and security requirements, leading to the use of multiple methods:

• Symmetric Cryptography-Based systems use shared secret keys. Devices
generate or store a pre-shared key, which is efficient for resource-constrained
endpoints [35].

• Asymmetric Cryptography-Based Public-Key Infrastructure (PKI) en-
hance security by allowing devices to hold private keys and publish public
keys in certificates. However, key generation and management require more
computational overhead [36]. Advanced variations like post-quantum cryptog-
raphy are explored for future-proofing industrial networks.

• Blockchain-Based decentralized ledgers, like BASA, enable device identity
storage and verification without a central certificate authority, but must ad-
dress scalability and privacy challenges for successful implementation [37].

• Physical Unclonable Functions (PUF) are used in industrial settings to
generate unique fingerprints from hardware variations, providing a tamper-
evident identification method [38].

2.3.4 Identity Management (IdM) in IIoT

Identity Management (IdM) is a key component of an IIoT network which guaran-
tees the authenticity and management of identities over time, scalability, and easy
connection with legacy systems. The three main roles in IdM are the Identity Holder
(device or user), the Service Provider (application or service holder), and the Iden-
tity Provider (authority that issues and vouches for identities) [39]. Depending on
how these roles are constructed, IdM models are developed:

1. Isolated IdMs: Early systems store credentials locally, with minimal coor-
dination, but this model is not scalable for large IIoT deployments [41].

2. Centralized IdMs: A dedicated Identity Provider efficiently validates re-
quests and issues credentials for multiple services, but it also creates a single
point of failure [41].
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3. Federated IdMs: Multiple IdMs establish trust, enabling Single Sign-On
(SSO) across organizations, such as in IIoT, where federations link multiple
factories or supply chain partners [42].

4. User-Centric IdMs: The approach of transferring control to the user or
device holder, who can manage attributes to reveal to each service, is suitable
for specific IIoT contexts [43].

5. Decentralized IdMs: Blockchain-based approaches, such as Self-Sovereign
Identity (SSI) frameworks, store and verify identities without a single control-
ling entity, using Decentralized Identifiers (DIDs) and Verifiable Credentials
to prove attributes without a centralized authority [44].

Table 2.2 summarized the pros and cons of these models. The choice of IdM
architecture in a IIoT environment can significantly impact scalability, security, and
administrative overhead, especially when integrating several industrial domains or
legacy systems.

Table 2.2: Comparison of Identity Management Models in IIoT Contexts.

Isol.
IdMS

Centr.
IdMS

Fed.
IdMS

User-C.
IdMS

Decent.
IdMS

Scalab. Lim. High Med. Natural High (DLT)
Sec. Prov.-Dep. SPoF Struct. Impr. User/Dev. Ctrl. Dist. Consensus
Data Prot. Prov.-Ctrl. Risky Cent. Multi-Providers Fine-Gr. Ctrl. Off-Ch. Privacy
Interop. None Low Cross-Dom. Higher if Stds. Net.-Struct.-Dep.
Admin Eff. Low (Small) Medium Shared Orgs Shift to User/Dev. Med. (Multi-Inst.)

Abbreviations: Isol. = Isolated, Centr. = Centralized, Fed. = Federated, User-C. = User-Centric,
Decent. = Decentralized, Scalab. = Scalability, Sec. = Security, Data Prot. = Data Protection, Interop.
= Interoperability, Admin Eff. = Administrative Effort, Prov.-Dep. = Provider-Dependent, SPoF = Single
Point of Failure, Dist. = Distributed, Off-Ch. = Off-Chain.

Overall, IIoT security is based on robust identification and authentication mech-
anisms that are critical for access control, anomaly detection, and data protection.
As IIoT settings develop in size and complexity, adopting properIdM techniques
becomes more critical for ensuring reliable, high-availability industrial operations.

2.4 Access Control and Policy Enforcement in IIoT

Having established the importance of robust identity management in IIoT ensur-
ing that every device and user is uniquely identified and authenticated, the next
critical layer of security is access control and policy enforcement. While identity
management verifies "who" is interacting with the system, access control and poli-
cies define and regulate "what" these identities are allowed to do once authenticated,
and "under what conditions" these actions are permitted.

Access control can be formally defined within the widely adopted Role-Based
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Access Control (RBAC) framework. Let:

RBAC = (U,R, P, S, UA, PA), (2.3)
U = {u1, u2, . . . , un}, (Set of users) (2.4)
R = {r1, r2, . . . , rm}, (Set of roles) (2.5)
P = {p1, p2, . . . , pk}, (Set of permissions) (2.6)
S = {s1, s2, . . . , sl}, (Set of system resources) (2.7)

UA ⊆ U ×R, (User-to-role assignment) (2.8)
PA ⊆ R× P. (Role-to-permission assignment) (2.9)

An access decision is made by evaluating whether a user u ∈ U has a role r ∈ R
that is assigned the permission p ∈ P to perform an operation on a resource s ∈ S.

Policies are high-level specifications that capture rules and constraints governing
system behavior [45]. In formal terms, a policy can be represented as a predicate over
tuples (u, s, a, t), where u is the user, s is the system resource, a is the action, and
t is the time of access. For example, a policy may enforce that "only maintenance
personnel may initiate system reboot commands", which restricts the action a based
on the identity u and context (time t, resource s).

2.4.1 Static Policies and Limitations

During the IIoT setup phase, administrators typically define access rules manually,
following traditional rule-based approaches. These static policies, once established,
are rarely updated and are not capable of handling real-time environmental changes
or unexpected device failures [46]. For instance, a manufacturing plant with a
designated set of operators controlling a robotic workstation may need to reconfigure
access rights manually, which can delay operations, introduce security gaps, and
undermine system efficiency.

2.4.2 Dynamic and Distributed Policy Enforcement in Collabora-
tive IIoT

Dynamic policies, in contrast, are designed to adapt automatically based on con-
textual information. In these systems, policies are defined using formal rule-based
frameworks that integrate real-time data (such as device location, operational state,
or threat alerts) into the access control decision process [47]. A typical rule might
be specified as follows:

(User Role = ’operator’) ∧(Time ∈ Operational Hours) ∧ (Device Status = ’secure’)
⇒ allow access.

(2.10)
In this formalism, the policy is a predicate over variables representing the identity

of the user, the temporal context, and the security state of the device. The dynamic
policy engine continuously monitors these contextual attributes by interfacing with
sensors and management systems.

The implementation of dynamic policies generally involves the deployment of
distributed components such as Policy Decision Points (PDPs) and Policy Enforce-
ment Pointss (PEPs), particularly at the network edge. These components work in
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concert: the PDP evaluates current context against formal policy rules, while the
PEP enforces the decisions locally – thereby reducing latency and ensuring that any
environmental changes are immediately reflected in access control decisions. More-
over, formal methods such as model checking with temporal logic are employed to
verify that these dynamic policies satisfy safety and operational constraints under
all conditions, including adversarial scenarios [48].

For example, if a sensor is detected to be running outdated firmware, the dy-
namic policy may automatically revoke its permission to send data to critical pro-
duction databases. This decision is made in real time by the PDP after evaluating
the device’s security posture against the defined policy rules, and it is enforced
immediately by the PEP. Such an approach minimizes manual intervention and en-
hances the resilience of IIoT systems by continuously adapting to both expected
and unforeseen changes in the operational environment.

2.4.3 Negotiation Protocols in Collaborative IIoT

To ensure security and privacy when multiple organizations interact, Trust Negoti-
ation Protocols progressively exchange credentials and partial disclosures [49, 50].
For example, if Factory A wishes to share real-time data with Factory B, both par-
ties can negotiate access based on each other’s policy constraints. Dynamic trust
management might dictate that certain data is only shared if Factory B’s equipment
meets a safety standard or confidentiality level. Trust Negotiation Protocols control
carefully designed interactions to avoid oversharing instead of immediately sharing
internal policies or credentials [51].

Karmakar et al. [52] presented a policy-driven framework for IoT devices that
automatically negotiates and updates trust rules among different administrative
domains, demonstrating how dynamic conditions (e.g., shifting production deadlines
or workforce changes) can trigger real-time policy revisions.

The immediate collaboration concept enables manufacturers to adjust policies
while maintaining operations. This approach balances security requirements with
operational needs for seamless inter-factory collaboration. As industrial ecosystems
grow, improved policy-based enforcement solutions become critical for ensuring re-
liable, efficient IIoT.

2.4.4 Access Control Models for IIoT

Policies specify which actions are permitted, but an access control model enforces
them at runtime [53, 54]. Three main models are frequently mentioned:

• RBAC: This model assigns privileges to roles (e.g., “Supervisor”, “Mainte-
nanceBot”) rather than individual users or devices [55]. It reduces adminis-
tration in stable organizations with hierarchical job functions but can lead to
role explosion in dynamic IIoT settings.

• Capability-Based Access Control (CapBAC): Access rights are encoded
in transferable tokens called capabilities [56]. For example, a device holding
a maintenance capability might be permitted to update firmware on a clus-
ter of sensors. While CapBAC naturally supports delegation, secure token
distribution and revocation can become complex at scale.
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• Attribute-Based Access Control (ABAC): Policies in ABAC reference
attributes of the subject (e.g., device location or user clearance), the resource
(e.g., sensor type), and context (e.g., time of day, production phase) [54]. This
fine-grained, context-aware approach is well-suited for dynamic policies, but
designing and managing attribute sets can be intricate.

2.5 Zero Trust Architecture (ZTA)

While traditional access control mechanisms and static policy enforcement have long
served as the backbone of IIoT network security, they often fall short in addressing
the evolving landscape of threats and the dynamic nature of industrial environments.
This limitation highlights the need for more adaptive and context-aware security
models. One such model is the Zero Trust Architecture (ZTA), which redefines how
trust and access are managed in modern networks.

The foundational principles of ZTA were first introduced by John Kindervag
[57] and further elaborated in NIST Special Publication 800-207 [58]. Evan Gilman’s
Zero Trust concept emphasizes five key factors: the Internet’s inherent insecurity, in-
ternal and external security threats, unreliable trust relationships, rigorous authen-
tication and authorization of all participants, and dynamic access control strategies
focusing on continuous monitoring and adaptive authorization [59].

The core principles of "never trust, always verify" [18, 19] emphasize strict secu-
rity measures like micro-segmentation and least privilege access, dividing networks
into smaller segments and ensuring minimal access for users and devices to perform
their functions [60].

However, static Zero Trust implementations, while crucial in introducing these
principles, have several limitations. Static policies struggle with inflexibility and
administrative overhead, making them ill-suited for real-time threats and changes
in device states [61]. Static, border-based security measures are ineffective against
internal threats once attackers bypass the perimeter, as they offer minimal oversight
within the network, which poses a critical vulnerability given the increasing mobility
of devices and cloud-based operations [62]. This static approach fails to address the
need for continuous trust evaluation, which assesses user behavior and dynamically
adjusts permissions based on context and risk levels [63].

The implementation of ZTA relies on a set of core logical components that work
together to enforce strict access control and continuous verification. As depicted in
Figure 2.3, these components [18] include:

• Policy Engine (PE): The PE (Policy Engine) is the component responsible
for making access decisions based on predefined enterprise policies and rules.
It issues allow or deny decisions for each access request, without relying on
implicit trust due to network location.

• Policy Administration (PA): The PA (Policy Administrator) is responsi-
ble for establishing or terminating communication sessions according to the
decisions from the Policy Engine. It passes configuration details to the PEPs
and may issue session-specific credentials or tokens.
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• PEP: The PEP (Policy Enforcement Point) is the system component that
enforces access decisions from the Policy Engine. It monitors, intercepts, and
controls all communications between subjects and resources, enforcing session
rules as defined by policy.
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Figure 2.3: Core Zero Trust Logical Components [58].

These components work together to reduce implicit trust and enforce a ZTA,
where access decisions are made per request based on predefined security policies,
identity verification, and resource sensitivity. Unlike traditional perimeter-based
models, ZTA assumes no user or device is inherently trustworthy, regardless of
network location.

2.5.1 Context Aware Policies

While static policies remain prevalent in most Zero Trust implementations, they
struggle to accommodate the dynamic contexts of user behavior, device posture, and
network integrity [47]. Recent research has begun to explore context-aware mech-
anisms within ZTA, including approaches such as behavioral monitoring, adaptive
trust scoring, and runtime policy updates. However, many of these approaches still
face challenges in terms of scalability, integration complexity, and responsiveness
(particularly in environments with resource-constrained devices or rapidly changing
threat conditions).

ZTSFC [64] introduces a dynamic approach where each Resource Access Request
is evaluated in real time through a chain of service functions. In this architecture,
network traffic is not routed along fixed paths; instead, it is dynamically steered
through a series of trusted intermediary nodes that serve as PDPs. These PDPs
assess various contextual factors including historical behavior, current network con-
ditions, and predefined risk metrics to deliver precise, context-aware access control
decisions. Complementing this traffic-steering paradigm, SYSFLOW [65] adopts
a system flow-based model that abstracts all system activities into flows. This
model provides a unified framework by separating the data plane from the control
plane, enabling developers to specify security intents, enforce micro-segmentation,
and manage flow rules both reactively and proactively. While ZTSFC focuses on
real-time trust assessments to guide access control, SYSFLOW offers a holistic view
of system operations and risk management. Together, these approaches enhance
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the adaptability and granularity of ZTA by addressing different layers of security
challenges.

Other studies have explored the integration of formal verification methods into
dynamic policy enforcement. Niu et al. [66] propose a runtime model checking
method that converts policy descriptions into logical representations using tools
such as TLA+ (formal specification language [67]). This approach involves a multi-
stage process policy abstraction, instantiation, pre-check, and post-check to ensure
that actual system behavior complies with the specified security policies. However,
its dependency on accurately pre-defined rules can limit its robustness in diverse
environments. In parallel, Yao et al. [68] introduce a Trust-Based Access Control
(TBAC) model that adjusts permissions according to the trust level derived primar-
ily from user behavior. Although TBAC enables adaptive permission changes, its
reliance on static thresholds and a narrow focus on user context (ignoring factors
such as device location or traffic patterns) suggests that it may not fully capture the
complexity of dynamic network environments. Together, these approaches illustrate
two evolving strategies: one that leverages formal verification to enforce dynamic
policies and another that adapts trust levels in real time, each with its own strengths
and limitations.

Additional complementary strategies have been proposed to address dynamic se-
curity in specific contexts. ZASH [69] targets smart home scenarios using a layered
security model that differentiates between user levels, device classes, and permitted
actions. By integrating edge computing, ZASH enhances authentication accuracy
and maintains local control, thereby reducing performance overhead. Similarly,
eZTrust [70] implements a perimeterization approach for microservices in data cen-
ters. Utilizing eBPF, eZTrust traces events and attaches context-based tags to
packets, which are then verified in real time through dual operational paths-fast
for known contexts and slow for unknown ones. Although both ZASH and eZTrust
contribute to dynamic security enforcement, they are designed for different environ-
ments (smart homes vs. data centers) and rely on an underlying assumption that
core infrastructural components remain uncompromised.

2.5.2 ZTA for IIoT

ZTA for Cyber-Physical Systems (ICPS) address challenges such as integrating het-
erogeneous and legacy devices, ensuring real-time operational responses, and main-
taining both cyber and physical safety. Multiple research works have proposed dy-
namic enforcement mechanisms that evolve from static, identity-centric approaches
toward comprehensive, context-aware frameworks.

Feng and Hu [71] propose a Cyber-Physical-ZTA that extends traditional Zero
Trust Architectures by incorporating physical context into security decisions. Their
approach employs a multi-layer control engine that collects and aggregates opera-
tional and security data from various hierarchical levels such as the physical layer
(sensors and actuators), the network layer (gateways and routers), and the applica-
tion layer (software modules and controllers) to evaluate trust scores for each com-
ponent. These aggregated scores enable the system to generate granular, context-
specific access policies in real time.

Complementing this concept, Zanasi et al. [72] and Federici et al. [73] demon-
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strate that dedicated enforcement mechanisms deployed at both network and edge
levels can improve the manageability and scalability of industrial control systems.
Their work introduces network micro-segmentation, whereby the network is parti-
tioned into small, isolated segments to prevent unauthorized lateral movement. This
micro-segmentation effectively limits the impact of any potential breach, working
in tandem with multi-layer control engines to ensure that trust is evaluated and
enforced at multiple points.

Paul and Rao [74] developed a Zero Trust model for smart manufacturing en-
vironments, which includes an identity and access management platform, a Privi-
lege Remote Access jump server, and an Enterprise Device Discovery System. The
model uses encryption, policy-based access control, and continuous compliance ver-
ification to secure both on-premises and cloud-hosted infrastructures. The model
emphasizes micro-segmentation, isolating manufacturing cells and critical infras-
tructure into distinct segments to limit lateral movement in case of a breach. This
dynamic segmentation transforms traditional network divisions into adaptable se-
curity zones that enforce granular, context-aware access policies in real time. The
model addresses the challenges of managing heterogeneous and legacy industrial
systems while ensuring only verified entities gain access. Complementary studies
integrate advanced context-aware risk assessment and automated policy adjustment
mechanisms.

Xiao et al. conducted a systematic review of context-aware and risk-based ac-
cess control models within Zero Trust systems, particularly in IoT and IIoT en-
vironments [75]. Their work surveys existing mechanisms that leverage real-time
contextual information (such as user identity, device posture, and behavioral risk)
to dynamically adapt access policies. The paper analyzes models based on ABAC,
RBAC, and hybrid schemes, as well as trust assessment techniques like fuzzy logic.
While comprehensive, the authors do not propose a concrete implementation, in-
stead highlighting unresolved issues such as reliance on accurate context data, inte-
gration complexity, and limitations in centralized control mechanisms.

2.5.3 Limitations of Static ZTA

Traditional Zero Trust implementations often rely on static, predefined policies,
which lack the flexibility needed to address rapidly evolving threats in dynamic and
distributed environments [47]. This rigidity is particularly problematic in cloud and
edge computing, where user behavior, device state, and resource allocation can shift
in real time [63, 76]. As a result, static ZTA models struggle to respond effec-
tively, prompting growing support for adaptive approaches better suited to modern
computing networks.

The maintenance of static ZTA policies imposes a significant administrative bur-
den, requiring manual updates to accommodate contextual changes. In dynamic
cloud environments, where services frequently change, maintaining static access
control lists becomes increasingly challenging [63]. Automated policy enforcement
significantly reduces the manual workload associated with static policies. The re-
liance on manual updates strains administrative resources and increases the risk of
misconfigurations and security gaps [77].

Static ZTA implementations often employ RBAC, which assigns access based
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on predefined roles. While RBAC simplifies access control, it lacks the granularity
needed in dynamic environments. Cloud and edge computing require access deci-
sions based on real-time attributes such as device health, location, and behavioral
patterns [78]. Traditional RBAC policies are too coarse for modern cloud security,
as they either over-provision or under-provision access. Alternative models such
as ABAC and continuous risk assessment integrate real-time context into access
decisions [79].

Static ZTA models authenticate and authorize users or devices only at the point
of access, often without subsequent re-evaluation. This approach creates security
vulnerabilities, as once an entity is authenticated, subsequent activities may not be
scrutinized. Attackers exploiting compromised sessions or privilege escalation can
bypass security measures if trust is not continuously reassessed [80]. Zero Trust re-
quires continuous authentication and re-validation of access rights to detect anoma-
lies in real time. Additionally, static trust parameters, such as fixed device IDs or
IP addresses, are susceptible to spoofing [81].

Modern computing environments demand a more flexible security approach than
static ZTA provides. Cloud and edge computing introduce dynamic scaling, where
workloads and devices frequently change. Static policies, originally designed for
stable on-premises architectures, struggle to accommodate such fluidity [82].

2.6 Network Anomaly Detection in IIoT

While robust IAM along with access control system are fundamental to securing IIoT
systems, these measures alone cannot eliminate all security risks. Even with strict
access control and well-defined policies, adversaries both internal and external can
exploit zero-day vulnerabilities, insider threats, or subtle misconfigurations to bypass
conventional defenses [83]. Thus, to complement these static and dynamic controls,
it is imperative to deploy anomaly detection systems that continuously monitor
network behavior for irregularities. This section categorizes the existing anomaly
detection methods into five distinct approaches: knowledge-based, statistical-based,
machine learning-based, deep learning-based, and graph neural networks (GNN)-
based techniques.

2.6.1 Knowledge-Based Techniques

Knowledge-based intrusion detection techniques use predefined rules or patterns of
known benign/malicious behavior to identify anomalies. These techniques include
heuristic analysis, signature matching, and payload statistical analysis. Heuristic
analysis uses expert-defined rules or thresholds to flag abnormal activity, such as
limits on command rates or sensor values [84]. Signature matching uses a database of
known attack signatures to trigger an alarm on matches, often yielding high accuracy
and few false alarms for previously seen attacks. However, in IIoT/OT networks
with proprietary or real-time protocols and diverse devices, purely signature-based
detection faces challenges [85]. Payload statistical analysis builds profiles of normal
packet payload content and detects anomalies as deviations from the learned profile.
Recent research has applied this idea to IIoT traffic, such as Zhou et al. proposing a
payload-based anomaly detector for industrial networks using an autoencoder GAN
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model to learn normal data patterns. This statistical payload inspection can catch
zero-days injecting unusual data without requiring pre-defined attack signatures [86].

2.6.2 Statistical-Based Anomaly Detection

Statistical-Based Anomaly Detection is established by analyzing traffic data’s statis-
tical properties, such as means, variances, and distribution shapes. Gaussian models
represent the normal distribution of network metrics, such as packet arrival times
and flow sizes, under typical operating conditions. Deviations are quantified using
metrics like z-score [87]. Histogram-based methods capture the frequency distribu-
tion of observed events and can flag statistically significant differences as anomalies
[88]. However, these methods have limitations in dynamic IIoT environments due
to the assumption of stationarity and linear models. Fluctuations in traffic patterns
due to production loads or time-of-day effects can cause baseline shifts, leading to
false alarms. Recent research has incorporated non-linear and hybrid modeling tech-
niques to overcome these challenges. Hybrid approaches integrate Gaussian mixture
models with clustering algorithms to adaptively update the baseline as traffic pat-
terns evolve, reducing false positives [89]. Non-linear statistical methods can capture
intricate interdependencies between network features, improving the detection of so-
phisticated anomalies in IIoT scenarios [90].

2.6.3 Machine Learning-Based Anomaly Detection

This method learns patterns directly from data and requires labeled datasets to train
models that classify normal and anomalous behavior effectively. For instance, the
Support Vector Machine technique can be used for classification [91]. It maps data
into a high-dimensional space and identifies a separating hyperplane that distin-
guishes normal data from potential anomalies. Fosic et al. [92] have assessed the de-
tection accuracy of various algorithms (Stochastic Gradient Descent (SGD), Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), Gaussian Naive Bayes (GNB),
Decision Tree (DT), Random Forest (RF), AdaBoost (AB)) with the UNSW-NB15
dataset. However, these methods rely on labeled datasets and struggle to detect
zero-day attacks previously unknown security vulnerabilities that attackers exploit
before they are identified or patched. In this context, Graph2vec+RF [53] introduces
a unique approach by constructing flow graphs from initial bidirectional network
packets. The system embeds these graphs and classifies them with a Random For-
est model. This lightweight method excels in early detection with minimal labeled
data, but may struggle to adapt to evolving attack patterns.

2.6.4 Deep Learning-Based Anomaly Detection

To detect sophisticated attacks, Deep Learning techniques may be particularly use-
ful. In particular, Variational Autoencoders (VAEs) can detect anomalies [93].
VAEs project input data into a lower-dimensional space. By subsequently mini-
mizing the reconstruction error, VAEs allow for selecting the most representative
projection of the original data. A significant reconstruction error is therefore as-
sumed to correspond to abnormal traffic. This method is particularly attractive
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since it does not require labeled data: the VAE is trained uniquely with normal
traffic, and can thus detect zero-day attacks.

Min et al. [94] reduce the memory consumption with a Memory-Augmented Deep
Auto-Encoder (MemAE). They implement memory networks to store and recall
normal data patterns, improving the accuracy of detecting deviations in network
traffic.

Packet transmissions can be represented as time series, with anomaly detection
focusing on identifying deviations within these series. Thus, Ullah et al. [95] model
each network flow as an individual time series using a Recurrent Neural Networ
(RNN). They compare Long Short-Term Memory (LSTM), BiLSTM, and Gated
Recurrent Unit (GRU) techniques to construct the RNN for flow-based anomaly
detection. Trinh et al. [96] train a stacked LSTM to model traffic in a cellular
network. The system can, for instance, detect a rapid growth of the number of
users, representing a DoS attack. However, the approach focuses uniquely on radio
access, with a reduced data dimensionality. Elsayed et al. [97] propose to use first a
LSTM autoencoder to construct a temporal representation of the time-series. Then,
a one-class SVM detects the boundaries of the normal data.

Hybrid approaches combine multiple detection methods, leveraging their strengths.
Tang et al. [98] combine a stacked autoencoder with One-Class SVM: the autoen-
coder reduces the data dimensionality before classification. Sahu et al. [99] use first
a Convolutional Neural Network (CNN) to extract features of interest locally, and
then use a collection of LSTM to classify the different behaviors. However, combin-
ing different techniques increases the complexity and requires more computational
resources. The complexity of deep learning techniques remains high. Thus, to re-
duce the data dimensionality, 3D-Intrusion Detection System (IDS) [100] integrates
feature disentanglement with dynamic graph diffusion to separate attack-specific
features from non-attack-specific ones. LUCID (Lightweight Deep Learning DDoS
Detection) [101] reduces the number of layers and parameters to reduce the compu-
tational complexity of a CNN.

Deep learning techniques have significantly influenced anomaly detection, with
autoencoders being particularly effective due to their ability to model complex non-
linear relationships within data. Autoencoders reconstruct input into a compressed
representation and decode it back to its original form, minimizing information loss.
The reconstruction error, the discrepancy between the original input and recon-
struction, is a crucial metric in anomaly detection. Samples deviating significantly
from learned patterns, as indicated by a high reconstruction error, are identified as
anomalies [102].

Wang et al. developed a hybrid approach for network anomaly detection by in-
tegrating the BIRCH clustering algorithm with autoencoders. Their study showed
improved computational efficiency and enhanced detection accuracy on four differ-
ent network security datasets. However, they acknowledged the need for further
refinement and the challenges of limited datasets [103].

Min et al. have developed a new network intrusion detection method using a
Memory-Augmented Deep Autoencoder (MemAE). This method addresses the over-
generalization issue of traditional autoencoders by learning normal input patterns
and reconstructing abnormal samples close to normal ones [94]. The approach’s
efficacy is demonstrated on the CICIDS2017 dataset, offering a new solution for
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handling high data dimensionality in cybersecurity.
Also, Yang et al. proposed a network intrusion detection system for Software-

defined Networks, utilizing unsupervised machine learning for the real-time detection
of both known and zero-day attacks. Griffin’s used Kitsune dataset [104] to train
and operate a set of autoencoders, achieving high accuracy with reduced complexity
and latency [105].

2.6.5 Anomaly Detection With GNN

Graphs are widely used to model communication networks [106]. Thus, it seems
natural to use the recently proposed Graph Neural Network (GNN) [107] technique,
that adapted Deep Learning to graph structures. GNNs rely on a message-passing
approach: the node embeddings are passed from one node to another through the
edges. The application of GNNs in anomaly detection involves analyzing network
transactions, social networks, or any system that can be represented as a graph to
identify irregular and potentially malicious activities. GNN can also be applied in-
versely to generate attacks more complex to detect [108]. GNNs have been employed
for anomaly detection in IIoT systems across a range of applications, including smart
transportation, smart energy, and smart factories [109]. Sec2graph [110] tries to de-
tect anomaly when constructing a graph structure of events from log files.

E-GraphSAGE [111] made a pioneering piece of work to adapt GNN for the
detection of IoT attacks. While classical GNNs are used for node’s classification,
E-GraphSAGE detects anomalous flows (edges). Thus, the authors modify the ag-
gregation function of the GNN: the node embedding is computed with the features
of all the edges with neighbors. By repeating the aggregation, E-GraphSAGE can
capture the dependencies farther away in the network. E-GRACL [112] extends the
GNN approach by improving the sampling strategy to enhance the feature repre-
sentation.

Altaf et al. [113] extend this approach to handle multigraph structures, where
multiple edges may exist between two IoT nodes due to distinct communication
flows. They propose a dual Graph Convolutional Network architecture, incorporat-
ing an attention mechanism to capture flow-specific dependencies between edges,
thereby improving traffic classification accuracy. Friji et al. [114] adopt a different
approach, where a node represents a flow. An edge exists between two flows if they
share the same source or destination. The weight of an edge is the similarity be-
tween the two corresponding flows. Thus, the GNN can be directly applied to the
flows, using the graph structure. An attention-based feature extractor in parallel
with a spatial feature extractor (i.e., a GNN) identifies anomalies.

Park et al. [115] integrate multiple graph types and refine embeddings through
attention mechanisms. Capturing the dynamics in the graph may be relevant to
detect anomalies. AnomRank [116] monitors abrupt changes in node importance
scores by counting the number of edge insertions or deletions associated with the
node’s significance in a social network.

Temporal Graph Networks (TGNs) [117] manage evolving graph structures, ap-
plied to social networks. The node embedding evolves, and an aggregator computes
average embedding to reduce the complexity. EULER [118] combines GNN and
RNN in a massively parallel architecture to make the detection faster. However, it
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still requires a huge amount of computational resources.

2.6.6 Context-Aware Anomaly Detection

Context-awareness is the capacity to improve actions or decision-making within a
particular context by leveraging pertinent environmental and situational informa-
tion, such as time, location, and user activity. It helps distinguish unusual but safe
activities from real dangers. SSDCM [119] learns the representation of a multi-layer
network, i.e., each layer representing a different context. This technique relies on
cluster and node embeddings to derive clusters in complex graph topologies, aggre-
gating the different contexts.

We can also consider uncertainability in context awareness [120]. We should as-
sess the quality of the context. Contextual belief correction (CBC) helps to capture
such uncertainty at the cost of a more complex model. Rullo et al. [121] also con-
siders the risk and exploits a taxonomy of attacks according to the manufacturer.
However, the framework remains conceptual and does not detect zero-day attacks.

Additional information can be used directly from the IoT applications to identify
a context. IoT-CAD [122] exploits the sensor’s values of each device. Their approach
clusters devices with similar values to generate fingerprints of sensors. Then, they
use a LSTM neural network and a Gaussian estimator to detect unexpected behav-
iors. In automotive scenarios, information on the speed may help to detect unex-
pected messages (e.g., open the door while the vehicle is moving) [123]. DyEdgeGAT
[124] exploits directly the signal of sensors to detect anomalies. However, these ap-
proaches depend strongly on the application and should be implemented at a higher
(application) level.

Table 2.3: Comparison of Different Anomaly Detection Approaches.

Paper IoT Network Context-Aware Graph-Based Real-Time

[111] ✓ ✗ ✓ ✓

[114] ✓ ✗ ✓ ✓

[124] ✓ ✓ ✓ ✗

[122] ✓ ✓ ✗ ✓

[120] ✗ ✓ ✗ ✗

[100] ✓ ✗ ✓ ✓

Ours ✓ ✓ ✓ ✓

2.7 Industrial Blockchain for IIoT

While network anomaly detection techniques are essential for identifying deviations
from normal behavior and detecting malicious activities in IIoT networks, they
primarily focus on the reactive identification of irregularities. However, ensuring
the integrity and trustworthiness of data exchanged among distributed devices is
equally critical in industrial settings [125]. In dynamic IIoT environments, even if
an anomaly is detected, it is vital to guarantee that the underlying data remains
unaltered and that its provenance can be verified.

To address this need for additional data integrity and non-repudiation guaran-
tees, researchers have explored the use of blockchain frameworks [126]. Industrial
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blockchain leverages a tamper-evident ledger and a decentralized trust model to se-
cure data exchanges, ensuring that every transaction is cryptographically verifiable
and immutable.

A blockchain is a decentralized, tamper-evident ledger in which data is stored
in blocks that are cryptographically linked to form a continuous chain [127]. Let Bi

denote the i-th block in the chain. Each block Bi contains a set of transactions and
includes the cryptographic hash H(Bi−1) of the previous block, ensuring that any
alteration in an earlier block invalidates the entire chain:

B1 → B2 → B3 → · · · → Bn. (2.11)

The use of secure hash functions (e.g., SHA-256) guarantees collision resistance
and immutability, as even a minor modification in a block’s data results in a vastly
different hash value [128].

In public blockchains such as Bitcoin or Ethereum, the network is open to anyone
who wishes to participate as a validator. These systems typically employ consensus
algorithms like Proof of Work (PoW)), in which validators (miners) must solve com-
putationally intensive puzzles to propose new blocks. This process not only secures
the network but also makes any attempt to alter previous transactions prohibitively
expensive [129].

Conversely, industrial or permissioned blockchains limit validation rights to a
set of trusted entities, such as manufacturing partners, thereby reducing the com-
putational overhead [130]. These systems often employ more efficient consensus
protocols like Practical Byzantine Fault Tolerance (PBFT) or Raft. PBFT, for ex-
ample, reaches consensus by allowing nodes to exchange messages in multiple rounds
to agree on the validity of a new block, tolerating a predefined number of malicious
nodes [131]. Raft, on the other hand, simplifies consensus by designating a leader
to coordinate the replication of log entries among nodes [132]. Such protocols offer
lower latency and higher throughput, which are essential for the real-time demands
of IIoT deployments.

In IIoT environments, where multiple stakeholders and heterogeneous devices in-
teract, the decentralized and immutable properties of blockchain mitigate the risks
associated with a single point of trust [133]. By combining cryptographic security
with distributed consensus, blockchain frameworks provide robust data integrity,
traceability, and resilience against tampering, thereby enhancing overall system re-
liability.

Integrating a blockchain layer into an IIoT architecture allows nodes to main-
tain a single source of truth, enforce device identity and traceability, and facilitate
secure multi-party collaboration. This is achieved by verifiable transactions or sen-
sor updates, reducing data manipulation, and enabling shared ledgers for factories,
suppliers, and regulatory bodies to exchange critical process information without
relying on a centralized intermediary [37].

2.7.1 Properties of a Blockchain-based IIoT System

An industrial blockchain can be conceived as an additional layer within the IIoT
stack, dedicated to ensuring data consistency, integrity, and auditable operations
[134]. Core properties relevant to IIoT include:
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• Immutability and Tamper-Evidence: The commit of a transaction to a
block and appended to the chain makes modifying that record computationally
infeasible, preventing malicious actors or insider threats from silently altering
production logs or sensor data [135].

• Decentralized Trust: Consensus protocols distribute trust across authorized
nodes, enhancing trust in multi-factory collaborations where no single entity
is universally trusted [133, 136].

• Auditability and Traceability: The ledger records every action chrono-
logically, allowing auditors or regulators to verify the chain of events without
relying on internal, potentially biased logs.

• Smart Contracts: Blockchain platforms enable smart contracts, autonomous
scripts that enforce custom rules, eliminating manual oversight and enabling
event-driven automation in IIoT processes, such as payment release upon prod-
uct delivery [137]. However, executing smart contracts, particularly on public
blockchains like Ethereum, can incur high transaction (gas) fees due to the
computational cost of processing these scripts, which may limit their practical
use in cost-sensitive IIoT applications [138].

2.7.2 Blockchain for Manufacturing and Industry 4.0

This section summarizes research papers on the impact of blockchain technology on
manufacturing and industrial operations.

Barenji et al. [133] develop a blockchain-enabled, multi-agent architecture to
support resource sharing and intelligent decision-making in smart factories. They
employ a decentralized network that allows devices to collaborate autonomously,
ensuring secure data exchange and reliable service provision. Liu et al. [139] tackle
bandwidth and latency issues in digital twin manufacturing by introducing a peer-
to-peer data exchange mechanism underpinned by blockchain, reducing reliance on
centralized cloud services while safeguarding security through distributed ledgers.

To improve blockchain performance in industrial networks, Kobzan et al. [140]
investigated its application through network simulation. Their work highlighted
blockchain’s ability to address heterogeneity and scalability challenges by evaluat-
ing transaction throughput, bandwidth utilization, and deterministic timing. De-
terministic timing, which ensures transactions are processed within a predictable
time frame, is critical for industrial processes where delays can disrupt operations.
While effective in demonstrating blockchain’s adaptability to industrial require-
ments, their simulation-based approach lacks a focus on real-world implementation
and lightweight scalability.

For secure data and knowledge management, Zhang et al. [136] highlight
blockchain’s potential in smart factories, underscoring its capacity for real-time
communication, adaptive decision-making, and secure data collection. They em-
phasize the need for refined production scheduling, supply chain coordination, and
quality control using a transparent, tamper-proof platform. In parallel, Schmid
et al. [141] propose a blockchain framework for digital twin manufacturing systems
that incorporates peer-to-peer data exchange and manufacturing edge pools, thereby
improving data synchronization and reducing network congestion.
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Overall, these studies demonstrate blockchain’s transformational impact in in-
dustrial and manufacturing processes by improving security, scalability, and relia-
bility, while also highlighting the importance of ongoing efforts to address interop-
erability, infrastructure optimization, and solution scalability.

2.7.3 Lightweight Blockchain

Efficiency within resource-constrained environments has become increasingly critical
in the rapidly evolving landscape of blockchain technology [142]. The lightweight
blockchain is characterized by its efficient consensus algorithms, reduced on-chain
storage through external storage solutions, and optimized cryptographic implemen-
tations features that collectively minimize computational and network overhead
while ensuring low-energy consumption and high throughput in resource-constrained
IoT environments [143]. This model’s design revolves around five crucial attributes
that distinguish it from conventional blockchain models. These attributes include
i) low computational burden, ii) minimal network overhead, iii) reduced storage
requirements, iv) enhanced throughput, and v) superior energy efficiency. In this
section, we will begin by discussing the constraints that need to be considered.
Following that, we will explore potential solutions to overcome these limitations.

Table 2.4: Comparison of Papers on Industrial Blockchain.

Study Low
Comp.

Min. Net. Red.
Storage

High
Tput

Energy
Eff.

Sec.&
Priv.

[144] ✗ ✗ ✗ ✗ ✓ ✓
[145] ✗ ✗ ✗ ✗ ✓ ✗
[146] ✗ ✗ ✓ ✗ ✓ ✗
[147] ✓ ✓ ✗ ✓ ✓ ✓
[148] ✓ ✗ ✗ ✓ ✓ ✓
[149] ✓ ✗ ✓ ✗ ✓ ✓
[150] ✗ ✓ ✗ ✗ ✓ ✗
[151] ✗ ✗ ✓ ✗ ✓ ✓
[152] ✓ ✗ ✓ ✗ ✓ ✓
[153] ✗ ✓ ✗ ✓ ✓ ✓
[154] ✓ ✓ ✗ ✓ ✓ ✗
[155] ✓ ✓ ✓ ✓ ✓ ✗
[156] ✓ ✓ ✗ ✓ ✓ ✗
Our ✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: Low Comp. = Low Computational Burden Min. Net. = Minimal Network Overhead
Red. Storage = Reduced Storage Requirements High Tput = High Throughput nergy Eff. = Superior

Energy Efficiency Sec.&Priv. = Security & Privacy Preserving

2.7.3.1 Limitations of Lightweight Blockchains

Kempa et al. propose "collapsing" as a technique to reduce computational power
required for cryptographic hashing and consensus algorithms in conventional
blockchain systems [157]. The collapsing method aggregates multiple cryptographic
hash operations by combining block headers into a single composite hash, reducing
the number of individual hash computations needed for consensus and block vali-
dation. It maintains cryptographic security through mathematical properties like
collision resistance and pre-image resistance, reducing energy consumption and ac-
celerating transaction verification, making blockchain systems suitable for resource-
constrained environments like IIoT deployments. In addition, blockchain systems
often experience significant network traffic as every node is required to download
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and verify all transactions. Network congestion and inefficiency can be a common
issue, especially in IIoT environment [150]. In addition, blockchains pose a challenge
for devices with limited storage capabilities as they require nodes to store the entire
ledger, which can grow significantly over time [151].

Transaction throughput is crucial for real-time applications. Unfortunately, tra-
ditional blockchains often experience low throughput because of the time required
for consensus and transaction validation [147]. It is worth noting that the energy
consumption of blockchain operations, particularly those utilizing PoW, is signifi-
cant and not ideal for low-power devices. This highlights the importance of finding
more energy-efficient solutions.

2.7.3.2 Addressing Constraints With Effective Solutions

Research on reducing the computational demands of blockchain systems has been
limited, but several innovative approaches have emerged that target both the com-
putational and communication overhead in resource-constrained environments. For
instance, Chaudhry et al. [158] focus on developing more efficient consensus algo-
rithms by redesigning the message exchange and voting processes. Their work intro-
duces variants of classical consensus protocols that reduce the number of redundant
validation steps and lower the overall communication complexity. By optimizing
these procedures, their approach achieves faster convergence and less computational
overhead, thereby laying a foundation for advanced, real-time blockchain solutions
in IIoT environments.

Bandara et al. [148] take a different angle by introducing Tikiri – a blockchain
platform tailored for IoT devices. Tikiri employs Apache Kafka as its underlying con-
sensus mechanism, where Kafka’s high-throughput, low-latency distributed messag-
ing system efficiently orders transactions. Additionally, Tikiri integrates functional
programming paradigms with actor-based smart contracts to enable concurrent and
lightweight execution of contract logic. While this innovative integration improves
throughput and reduces latency, it also introduces potential scalability challenges,
particularly in scenarios where Kafka may become a bottleneck under extreme load.

Dai et al. [153] propose the GradedDAG protocol to enhance the efficiency of
Byzantine Fault Tolerance (BFT) Directed Acyclic Graph (DAG) systems. Their
approach incorporates Reliable Broadcast (RBC) and Consistent Broadcast (CBC)
mechanisms to ensure that all honest nodes receive a consistent set of messages,
thereby reinforcing consensus without the heavy computational cost typical of tra-
ditional BFT schemes. Although GradedDAG markedly improves efficiency, its
inherent complexity could limit its applicability in environments with severely con-
strained resources.

Khan et al. [147] present AEchain, which employs a Proof of Authority (PoA)
consensus algorithm alongside lightweight authenticated encryption. By replacing
energy-intensive mining with a PoA-based approach, AEchain reduces the computa-
tional load while ensuring that transactions are cryptographically verified. However,
the reliance on a trusted set of validators and the intricacies of establishing and man-
aging these authorities introduce additional complexity during deployment.

Dai et al. [154] introduce LightDAG, a protocol designed to minimize network
overhead by streamlining the consensus process using Plain Broadcast and Con-
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sistent Broadcast mechanisms. This simplification results in reduced latency and
lower energy consumption, though it might compromise network robustness when
facing malicious activities, as the reduced validation rigor can potentially expose
the system to certain adversarial strategies.

Arun et al. [155] developed Shoal++, a protocol that balances high through-
put with reduced storage requirements by employing staggered DAG instantiation
and dynamic anchor scheduling. This dynamic architecture adjusts the frequency
of ledger updates based on current network conditions, optimizing resource usage.
However, the adaptive nature of Shoal++ poses challenges in maintaining consis-
tency across heterogeneous networks, where device capabilities can vary widely.

Spiegelman et al. [156] propose BullShark, an approach that optimizes perfor-
mance in BFT-DAG systems by reducing the number of consensus rounds. While
BullShark achieves significant computational savings, its heavy reliance on the in-
tegrity of the DAG structure raises safety concerns if the DAG is disrupted, the
entire consensus process may be compromised.

On the storage front, Alkhazaali et al. [150] integrate blockchain with a
lightweight fog computing solution to offload storage and computation tasks to
nearby fog nodes. This hybrid approach effectively alleviates the burden on IoT
devices, although it introduces new challenges related to scalability and network
management. Similarly, Wang et al. [151] address storage reduction via proxy re-
encryption, allowing sensitive data to be stored securely in the cloud while only a
hash is kept on-chain. This technique reduces on-chain storage but requires robust
key management strategies to ensure data availability and integrity.

Additional models, such as the Smart Food Chain (SFC) [149] and LightChain
[146], propose sub-blockchain architectures and minimized on-chain data approaches
to further lower storage requirements. While these solutions improve throughput
and reduce storage needs, their tailored design often limits their broader applica-
bility across different industrial domains. In parallel, the blockchain architectures
presented in [152] leverage advanced cryptographic primitives (e.g., Fabrik SDK and
Schnorr signatures) to further enhance security and efficiency, though at the cost of
increased deployment complexity.

Finally, frameworks targeting energy efficiency are also emerging. Kably et
al. [144] propose a cloud-based framework that offloads heavy computational tasks
to cloud servers, thereby reducing on-device energy consumption. Ekanayake et
al. [145] introduce the Proof of Equivalent Work (PeW) consensus mechanism as an
energy-efficient alternative to conventional PoW, promoting sustainability in indus-
trial applications by lowering the overall energy demand.

2.8 Digital Product Passport (DPP)

A DPP is a system designed to collect and store information throughout a prod-
uct’s lifecycle to support the circular economy [159]. The main goal is to promote
R-strategies (reuse, repair, refurbish, remanufacture, recycle) by maintaining trace-
ability from production to end-of-life [160]. Unlike traditional product labeling,
DPPs ensure a continuous and collaborative digital record rather than isolated life-
cycle snapshots [161].
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DPPs document product composition, manufacturing details, chemical proper-
ties, energy usage, CO2 emissions, and end-of-life handling instructions [159]. These
passports must be compatible with multi-tenant tracking systems, ensuring interop-
erability across stakeholders. However, an EU-wide standard is still pending [161].
The requirements for DPPs include legal, functional, security, accessibility, and
modifiability aspects [162].

Donetskaya et al. made efforts to elucidate the requirements for DPPs, con-
centrating on defining the different stages of the life cycle, operational procedures,
design choices integral to DPP frameworks, and their possible applications [163].
Standard practices, such as investigating co-contractor components and analyzing
previously developed components, are supplemented by evaluating the product’s re-
placeability in terms of materials and components when designing data management
within a DPP system.

In general, a DPP serves as a unique document containing life cycle data such
as product composition, manufacturing processes, materials, physical and chemical
properties, state of charge, substances of concern, usage data like repairs or re-
placed components, and instructions on how to handle product components at their
EoL [159]. The identification of various requirement categories from DPP-enabling
systems, including considerations regarding legal aspects, functionality, security, in-
teroperability, modifiability, accessibility, availability, and portability, underscores
the multifaceted nature of these systems [162].

Table 2.5: Comparative Analysis of Studies on Digital Product Passports.

Study BC Area of DPP Priv. Sec. Scal. Decent.

[164] ✓ Various Sectors N.S ✓ ✓ ✓

[161] N.S Sustainability N.S N.S N.S N.S
[165] ✓ Textile Industry N.S ✓ N.S ✓

[166] ✓ Recycling N.S ✓ ✓ ✓

[167] N.S Circular Economy N.S N.S N.S N.S
[8] ✓ Industry 4.0 ✓ ✓ ✓ ✓

Abbreviations: BC = Blockchain, DPP = Digital Product Passport, N.S= Not Specified, Priv. =
Privacy Preserving, Sec. = Secure, Scal. = Scalable, Decent. = Decentralized.

2.8.1 Value of DPPs & Integration With Blockchain

DPPs are a great innovation because they provide a centralized repository of in-
formation for transparency and traceability. However, integrating blockchain tech-
nology can significantly enhance their immutability and tamper resistance [166].
Blockchain ensures that once product data is recorded, it remains unchangeable,
preserving integrity over time.

Existing research on DPPs explores various implementations but reveals persis-
tent challenges in scalability and privacy protection. Falco et al. present a DLT-
based prototype designed to improve circular economy traceability, though they
acknowledge significant technical complexities and the absence of privacy mecha-
nisms [166]. Saleheen et al. investigate blockchain-integrated DPPs in the textile
industry, emphasizing enhanced transparency in supply chains but failing to intro-
duce concrete privacy solutions [165]. Voulgaridis et al. propose integrating DPPs
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with IoT technology to facilitate sustainability tracking; however, their framework
does not incorporate privacy considerations, which remain a key limitation [167].

Despite the advantages of DPPs, privacy remains a significant challenge. Current
approaches often neglect privacy-preserving mechanisms, leaving sensitive product
lifecycle data vulnerable to exposure. Ensuring compliance with privacy regulations
and protecting proprietary product information is crucial for widespread adoption.
Table 2.5 illustrates that most studies struggle with privacy concerns.

2.8.2 Use Case: Privacy-Preserving DPPs

Given these limitations, a privacy-focused DPP implementation can enhance se-
curity while maintaining data transparency and compliance. The integration of
privacy-preserving techniques in DPPs ensures that sensitive product lifecycle data
remains protected [8]. Figure 2.4 illustrates this approach.
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Figure 2.4: Overview of the Blockchain-Enabled DPP Use Case.

2.9 Summary

In this chapter, we illustrated the importance of identity management, access con-
trol, anomaly detection, blockchain technologies, and advanced architectures like
Zero Trust in ensuring robust IoT security. The dynamic and large-scale nature of
IIoT networks demands integrated, automated, and context-aware solutions. Key
findings include the distinction between IoT and IIoT, dynamic identity and access
management, evolving access control and policy enforcement, and the evolution of
ZTA.

Blockchain for IIoT provides decentralization, immutability, and traceability,
but scalability, energy consumption, storage overhead, and smart contract execution
costs remain barriers to widespread adoption. DPPs enhance product traceability
and facilitate circular economy objectives by securely managing lifecycle records.
However, interoperability, privacy, and standardization challenges persist.

Network anomaly detection uses various techniques, including knowledge-based,
statistical, machine learning, deep learning, and graph-based approaches. However,
several critical research gaps remain, such as real-time adaptability, seamless inte-
gration, scalability and interoperability, continuous trust evaluation, and universally



2.9. Summary 35

accepted metrics for evaluating dynamic Zero Trust implementations and lightweight
blockchain solutions.

The chapter sets the stage for subsequent chapters, which aim to address these
gaps through novel frameworks and enhancements introduced in the following six
chapters. These insights set the stage for further research and development in the
field of IIoT security.
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3.1 Introduction

Smart manufacturing uses advanced digital technologies, such as the Industrial In-
ternet of Things (IIoT), to improve industrial automation, efficiency, and responsive-
ness. IIoT integrates interconnected sensors, controllers, edge devices, and cloud-
based analytics to facilitate real-time data exchange, automated decision-making,
and improved process visibility across manufacturing operations. Despite these ben-
efits, the rapid adoption and integration of heterogeneous devices and systems in
smart manufacturing introduce serval security challenges.

Previous research has explored security aspects of IIoT systems, primarily focus-
ing on individual components, isolated scenarios, or theoretical models. However,
comprehensive, system-wide security assessments addressing interactions and de-
pendencies across multiple IIoT tiers remain limited. This chapter addresses this
gap by presenting a detailed smart factory use case to systematically identify and
analyze vulnerabilities arising from complex device interactions and data flows.

Specifically, this chapter investigates an IIoT communication scenario within a
smart factory environment, detailing network architectures, collaborative processes,
and interactions between edge devices, Internet of Things (IoT) gateways, and cloud
platforms. Using the STRIDE threat modeling approach, we systematically identify
vulnerabilities, potential attack vectors, and critical security gaps such as legacy

37
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system vulnerabilities, inadequate real-time monitoring, and data integrity threats.
The findings presented in this chapter not only highlight specific areas requiring at-
tention but also inform adaptive mitigation strategies necessary for building resilient
and secure smart factory infrastructures.

The contributions of this chapter directly support the thesis’s broader objective
of developing a robust, security-focused framework for IIoT deployments. By provid-
ing a comprehensive security analysis grounded in practical use cases, this chapter
enriches the overall understanding of IIoT security risks and sets the foundation for
subsequent chapters focusing on threat mitigation, adaptive security measures, and
real-time monitoring solutions.

3.2 Use Case Scenario: Smart Factory IIoT Communi-
cation

A smart factory integrates IIoT technologies such as industrial sensors, actuators,
IoT Gateways, Programmable Logic Controllers (PLCs), cloud-based analytics, and
enterprise dashboards to facilitate real-time data collection, automated processes,
and informed decision-making. Recent studies emphasize that the adoption of these
interconnected technologies significantly improves productivity and operational flex-
ibility; however, it also broadens the attack surface, introducing critical cybersecu-
rity challenges [168, 169, 170]. The smart factory architecture, illustrated in Fig-
ure 3.1, highlights the complex interaction among various IIoT components, struc-
tured into clearly defined tiers to manage both operational efficiency and security.

The architecture comprises the following tiers:

• Edge Tier: Contains sensors, actuators, PLCs, and IoT Gateways. These
components collect real-time data, execute localized control decisions, and
forward crucial operational data to upper tiers.

• Platform Tier: Provides cloud-based services, including data processing, an-
alytics, authentication, and security management. This tier facilitates compre-
hensive data analysis, ensuring both operational continuity and cybersecurity.

• Enterprise Tier: Hosts remote monitoring tools, Supervisory Control and
Data Acquisition (SCADA) systems, and analytical dashboards for high-level
decision-making and performance monitoring.

3.2.1 Communication and Data Flow in the IIoT System

The smart factory scenario illustrates continuous data exchange among IIoT com-
ponents, ensuring automation integrity, operational efficiency, and secure remote
access. As indicated by recent research [171], communication networks in smart
factories, especially when integrating technologies like Software-Defined Network-
ing (SDN), must address significant reliability and cybersecurity issues, including
network resilience, latency, and device heterogeneity.

The operational workflow begins with field sensors collecting environmental and
production data, which are then processed by PLCs performing immediate logic-
based decisions. An IoT Gateway forwards selected data to cloud storage and ana-
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Figure 3.1: Smart Factory IIoT System Architecture.

lytics platforms, satisfying industry demands for real-time responsiveness and robust
fault tolerance [168]. Remote maintenance engineers and supervisors use SCADA
systems and mobile dashboards to remotely diagnose issues, fine-tune production
settings, and ensure continuous operations. Secure cross-zone data exchange among
multiple factory sites via IoT gateways further enhances operational consistency and
resiliency across distributed production lines.

Recent academic findings highlight specific cybersecurity vulnerabilities intro-
duced by the increased connectivity within these IIoT-driven environments. For in-
stance, traditional security methods such as air-gapping have become ineffective due
to highly integrated and interconnected systems, necessitating comprehensive, adap-
tive security frameworks [169]. Emerging threats, including industrial espionage,
data theft, and malicious intrusions, underscore the need for robust, context-aware
intrusion detection and proactive defense strategies to secure critical factory oper-
ations [172, 173]. Consequently, this use case incorporates multi-tiered, zone-based
network segmentation as a core cybersecurity strategy, addressing vulnerabilities
identified in recent research.

Entities within each security zone include:

• Field Device Zone: PLCs, sensors, actuators, and IoT Gateways managing
data collection and local control.

• LAN Zone: SCADA systems and local servers providing immediate data
processing and storage capabilities.

• Cloud Zone: Brokers, access managers, analyzers, and cloud storage ensuring
secure remote accessibility, sophisticated data analysis, and robust storage
solutions.
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• Enterprise Service Zone: Dashboards for end-users, remote engineering
tools, and centralized storage systems supporting strategic insights and long-
term planning.

• Edge Mobile Zone: Mobile interfaces and tools utilized by supervisors and
connected workers for real-time oversight and control.

3.2.2 Operational Working and Cybersecurity Implications

The continuous operation of a smart factory mandates constant vigilance and proac-
tive management of cybersecurity risks. Real-time sensor data informs operational
decisions, while daily and weekly analytics reports underpin strategic assessments
and maintenance planning. Recent research identifies significant cybersecurity gaps
in current IIoT deployments, particularly the lack of systemic risk understanding,
unclear governance structures for cyber incidents, and low cybersecurity awareness
among factory personnel [168, 170]. Addressing these concerns requires compre-
hensive risk-reduction strategies, including enhanced cybersecurity training, clear
governance policies, adaptive network defenses, and improved anomaly detection
mechanisms based on machine learning [171].

3.3 STRIDE-Based Threat Model for Smart Factory
IIoT

We develop the threat model using STRIDE [174] in this section. This model helps
systematically identify and mitigate potential security threats across all tiers of
the IIoT architecture. We utilize Open Worldwide Application Security Project
(OWASP) Threat Dragon, an open-source tool designed for visualizing and analyz-
ing threat models [175]. Threat Dragon assists in mapping data flows, identifying
vulnerabilities, and applying STRIDE principles to ensure robust security measures
are embedded within the system design.

3.3.1 Identifying Key Components in the Threat Model

To systematically analyze potential threats, the STRIDE-based threat model eval-
uates security risks across:

• Actors, including Remote Engineers, On-Site Supervisors, Connected Work-
ers, and End Users.

• Processes, such as Cloud-Based Data Analysis, Remote Access Management,
SCADA Processing, and Actuator Control.

• Data Stores, including Local Servers, Cloud Storage, and SCADA logs.

• Data Flows, such as IoT Gateway Communication, Remote API Access, and
Factory Data Sharing.
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Figure 3.2: Threat Model for Smart Factory IIoT (STRIDE-Based).

3.3.2 STRIDE-Based Threat Analysis

The STRIDE threat model categorizes security risks into Spoofing, Tampering, Re-
pudiation, Information Disclosure, Denial-of-Service (DoS), and Elevation of Priv-
ilege (EoP). The following are the primary security risks identified in the smart
factory IIoT system:

Spoofing (S) – Unauthorized Identity Use: Attackers may impersonate au-
thorized users, devices, or services to gain control over industrial assets. For ex-
ample, a hacker may spoof the credentials of a remote engineer to access SCADA
systems and modify factory configurations. To mitigate this risk, implementing Mul-
tifactor Authentication (MFA), digital certificates Public-Key Infrastructure (PKI),
and Zero Trust authentication mechanisms is essential.

Tampering (T) – Data Manipulation: Threat actors may alter sensor read-
ings, PLC commands, or stored logs to disrupt industrial operations. An attacker
injecting false temperature data could cause the system to shut down a production
line unnecessarily. Countermeasures include data integrity verification (Hash-Based
Message Authentication Code (HMAC)), secure data transmission (TLS 1.3), and
anomaly detection algorithms.

Repudiation (R) – Denying Unauthorized Actions: Malicious insiders or
external attackers may erase logs or modify audit trails to conceal unauthorized
activities. A compromised connected worker device might alter SCADA settings
and later deny responsibility. To prevent repudiation attacks, blockchain-backed
logging and cryptographic event signing should be implemented.
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Information Disclosure (I) – Data Leakage: Unauthorized users may gain
access to sensitive production data, cloud analytics, or SCADA logs due to weak
access controls. Encrypting data in transit and at rest, enforcing Role-Based Access
Control (RBAC), and applying network segmentation mitigate these risks.

Denial of Service (D) – Disrupting IIoT Operations: Attackers can launch
DoS attacks on IoT gateways, APIs, and cloud storage, causing system failures.
Rate limiting, AI-based traffic filtering, and anomaly detection help prevent such
disruptions.

Elevation of Privilege (E) – Unauthorized Control: Exploiting misconfig-
ured permissions or unpatched firmware can allow attackers to gain administrative
access. Strict RBAC policies, firmware integrity verification, and segmented network
controls are necessary defenses.

3.4 Conclusion

This chapter has introduced the use case of Smart Factories within the IIoT, em-
phasizing the communication mechanisms and data flow integral to their operation.
By presenting a representative smart factory scenario, the chapter has underscored
the complex interplay between devices, networks, and data exchanges critical for
industrial productivity. The detailed STRIDE-based threat model highlights poten-
tial vulnerabilities in such interconnected environments, identifying key components
and systematically categorizing threats based on Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege.

This use case provides a concrete example of the challenges faced in real-world
industrial environments, helping to contextualize the security risks and operational
constraints unique to smart factories. Rather than serving as a continuous refer-
ence point, the scenario highlights typical vulnerabilities and limitations of existing
security models. By grounding abstract concepts in a familiar setting, the chapter
motivates the need for dynamic, decentralized, and adaptive security approaches
explored throughout the thesis.
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4.1 Introduction

Identity management is a foundational pillar of cybersecurity in IIoT environments.
As smart factories evolve into highly connected and decentralized ecosystems, en-
suring that only authorized devices and users can access critical industrial assets
becomes increasingly complex. Traditional Identity and Access Management (IAM)
models often rely on centralized infrastructures, which are ill-suited to the scalabil-
ity, interoperability, and dynamism of distributed IIoT networks.

In such environments, effective identity management must address not only au-
thentication and access control but also enable trust across independently managed
domains. Furthermore, these mechanisms must be lightweight and adaptable to
meet the resource constraints of IIoT devices while maintaining high security and
responsiveness.

To tackle these challenges, this chapter introduces two complementary contribu-
tions that collectively enhance identity management and authentication in dynamic
IIoT settings:

Digital Wallet-Based Identity Management (Section 4.2): This contribution
introduces a decentralized identity framework tailored for IIoT networks, leveraging
digital wallets to manage and verify device identities efficiently. Unlike earlier ap-
proaches based on Hyperledger Indy or Ethereum, which incur high computational
and operational costs, our design allows most verifications to occur off-chain. It
categorizes devices by security needs and supports scalable identity management,
ensuring interoperability and minimal overhead across industrial subsystems.

While digital wallet-based identity management offers a secure and decentral-
ized approach to credential handling, it faces challenges when devices must com-
municate across different organizational boundaries. Many IIoT deployments span
multiple industrial domains, each governed by its own trust rules, requiring seam-
less interoperability. To complement the strengths of digital wallets and address
these cross-organizational requirements, this chapter also introduces a cross-domain
authentication framework. Together, these two contributions form an integrated,
end-to-end solution that tackles both local identity management and broad inter-
domain trust in distributed IIoT ecosystems.

Cross-Domain Authentication for IIoT (Section 4.3): Addressing the chal-
lenge of trust across organizational boundaries, this contribution presents a
blockchain-enhanced authentication protocol integrated with Transport Layer Se-
curity (TLS). Prior approaches, such as the accumulator-based schemes, provide
strong revocation guarantees but suffer from high complexity and latency. Our
solution avoids such pitfalls by enabling fast, secure, and scalable cross-domain au-
thentication suitable for real-time IIoT interactions.

The originality of this chapter lies in integration of decentralized identity man-
agement and blockchain-enabled authentication into a unified, scalable framework.
By combining off-chain identity verification, role-aware access policies, and inter-
operable authentication, the proposed solutions enhance resilience, reduce latency,
and support automation across diverse industrial environments – key features for
securing next-generation smart factory networks.
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Addresses Research Questions:

• How can scalable and secure identity management be achieved in
distributed IIoT networks?

4.2 Advanced Digital Wallet Identity Management for
IIoT

IIoT environments require identity management solutions that securely and effi-
ciently handle device enrollment, authentication, and credential lifecycle manage-
ment. Traditional methods often struggle with scalability and centralized points of
failure.

This research specifically addresses these challenges by introducing a digital
wallet-based identity management architecture tailored to IIoT. Digital wallets offer
decentralized trust mechanisms, notably blockchain and federated identity proto-
cols, ensuring robust authentication, enhanced encryption, and efficient credential
management across diverse IIoT devices.

This section explicitly outlines the specific identity management challenges en-
countered in IIoT, proposes a detailed device categorization framework, and presents
a novel architecture leveraging digital wallets to securely manage device identities
throughout their lifecycle.

Existing studies on digital wallet-based identity management for IIoT have ex-
plored various approaches but suffer from significant limitations in scalability, se-
curity, and adaptability. Regueiro et al. [176] and Dixit et al. [177] rely on Hyper-
ledger Indy and Ethereum-based decentralized identity models, which introduce high
computational overhead and scalability issues due to their dependence on multiple
blockchain networks and off-chain storage layers.

Sahmim et al. [178] propose an edge-based identity wallet, improving local au-
thentication but lacking cross-domain interoperability and remaining vulnerable to
edge node compromises. Popa et al. [179] introduce ChainDiscipline, a multi-domain
decentralized identity model with trust scoring, but its complex blockchain consen-
sus mechanisms make it impractical for real-time IIoT operations.

In contrast, our hierarchical digital wallet-based identity management framework
addresses these challenges by reducing blockchain dependency and handling most
identity verifications off-chain. It categorizes IIoT devices based on their security
needs, enabling more targeted and efficient identity management.

Unlike previous works that rely on specific blockchain implementations (e.g.,
Hyperledger or Ethereum), our approach is ledger-agnostic, ensuring greater in-
teroperability and adaptability. Additionally, by integrating hardware-backed cre-
dentials (Trusted Platform Module (TPM)/Hardware Security Module (HSM)) for
high-security devices, our framework enhances resilience against attacks, even if edge
nodes are compromised

This adaptive and scalable architecture provides real-time authentication, de-
centralized trust, and seamless integration with industrial ecosystems, making it a
more practical and future-proof solution for IIoT identity management.
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4.2.1 Expected Properties

Effective identity management for IIoT must address several critical requirements
[180], as listed:

• R1 – Secure Storage of Identity-Related Data: Ensuring that IIoT
credentials remain protected from unauthorized access, breaches, or tamper-
ing. Secure storage mechanisms rely on strong cryptography, rigorous access
controls, and continuous monitoring [181].

• R2 – Effective Management of Identity-Related Data: Beyond secure
storage, identity data must be properly managed throughout its lifecycle. This
includes credential issuance, authentication, revocation, updates, and policy
enforcement to maintain security and compliance in dynamic IIoT environ-
ments [182].

• R3 – Secure Sharing of Identity-Related Data: Identity-related data
must be protected when transmitted across factories, partners, or cloud ser-
vices. Secure communication protocols and encryption techniques prevent
unauthorized interception [183].

• R4 – Secure Storage of Cryptographic Material: Protecting crypto-
graphic keys and certificates is essential for device authentication and secure
communication. Tamper-resistant hardware modules (e.g., TPM, HSM) can
help mitigate key exposure risks [184].

• R5 – Combining Identity Data Before Sharing: Administrators must be
able to merge or split identity attributes based on operational needs. This en-
sures privacy, access control, and compliance with data-sharing policies [185].

4.2.2 Proposed Architecture

The Identity Management Service (IMS) is the central entity in the framework,
responsible for issuing, updating, and revoking digital credentials. It ensures de-
vice credentials remain valid throughout their lifecycle. A blockchain-based ledger
within the Federated Layer records all identity-related events, enhancing trust and
system resilience. The Application and Service Layer enforces fine-grained access
control across various industrial applications, ensuring only devices with validated
credentials can access sensitive resources, maintaining strict security standards.

Effective access management is achieved by categorizing IIoT devices based on
their security and privacy requirements. As illustrated in Figure 4.1, devices can be
grouped into three categories:

1. Low-Security Devices: Environmental sensors handle non-critical data with
lightweight credentials and basic encryption, ensuring minimal identity at-
tributes are maintained in a digital wallet due to the low risk associated with
transit data.

2. Moderate-Security Devices: Moderately sensitive devices like production
line controllers and supervisory systems utilize enhanced security measures like



4.2. Advanced Digital Wallet Identity Management for IIoT 47

multifactor authentication and certificate-based methods, along with encryp-
tion, for better access control. Their digital wallets contain richer credential
sets, allowing for granular control.

3. High-Security Devices: Mission-critical devices like safety interlocks
require high-level protection through hardware-backed credentials, continu-
ous monitoring, and advanced authentication protocols. Digital wallets are
equipped with immutable credentials and integrated with real-time risk as-
sessment tools for enhanced security.

Low-Security Services

Moderate-Security Services

High-Security Services

Digital Wallet

Simple Identities

Stronger Identities

Robust Identities

Non-sensitive data,
minimal protection

Moderately sensitive data,
stronger protection

Highly sensitive data,
stringent protection

Identify by
digital wallet

Mapping

Mapping

Legend:
Low-Security Services
Moderate-Security Services
High-Security Services

Figure 4.1: Categorization of IIoT Devices and Identity Types.

This tiered approach enables the system to apply security mechanisms propor-
tionate to device criticality while maintaining operational efficiency. Overall, the
lifecycle of identity management in this framework is divided into three primary
phases: enrollment, authentication, and credential management (which includes up-
dates and revocations). Each phase is supported by dedicated algorithms that inter-
act seamlessly, ensuring that the system remains both adaptive to evolving threats
and efficient in its operation.

Phase 1: Enrollment and Credential Issuance Algorithm 1 outlines the se-
cure enrollment process for IIoT devices, ensuring strong authentication and tamper-
resistant credential storage.

First, the device undergoes hardware-backed attestation using a TPM verified
device identity key (Line 1), which is validated by the Edge Node to confirm the
device’s integrity (Line 2). If the attestation fails, enrollment is immediately rejected
(Lines 3-4) to prevent unauthorized device access. Upon successful attestation, the
device proceeds to registration with the IMS (Line 6).

The IMS then assigns a Decentralized Identifier (DID) and issues a Verifiable
Credential (VC), cryptographically binding the device identity (Lines 7-8). These
credentials are securely stored in the device’s digital wallet (Line 9), ensuring persis-
tent and verifiable authentication. Finally, an immutable record of the enrollment
event is written to the blockchain (Line 10), enhancing auditability and trust across
federated IIoT environments.
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Algorithm 1: Enrollment and Credential Issuance
Data: New IIoT Device
Result: Device Registered with Credentials in Digital Wallet

1 1. Device Attestation:
2 Device sends attestation evidence (e.g., TPM certificate) to the local Edge

Node;
3 Edge Node verifies the device’s secure hardware integrity;
4 if Attestation fails then
5 Reject enrollment and exit;
6 else
7 Proceed to registration;
8 end
9 2. Registration with IMS:

10 Device registers with the Identity Management Service (IMS);
11 IMS assigns a unique Decentralized Identifier (DID) and issues Verifiable

Credentials (VCs) based on device attributes;
12 Device securely stores the issued credentials in its Digital Wallet using

hardware-backed security;
13 Record the enrollment event on the Blockchain Ledger for auditability;
14 return Device successfully enrolled;

This layered approach mitigates spoofing, unauthorized access, and credential
tampering, providing a scalable and resilient identity management system for IIoT
deployments.

Phase 2: Authentication and Access Control Algorithm 2 defines the au-
thentication and access control process, ensuring that only verified IIoT devices can
access network services.

The device initiates an access request using mutual TLS (mTLS) and signs it
with credentials from its digital wallet (Lines 1-2). The Edge Node then validates
the device’s attestation evidence and stored credentials (Line 4), preventing unau-
thorized devices from gaining access. To ensure registration legitimacy, the Edge
Node queries the blockchain ledger (Line 5), confirming the device’s prior enrollment
and status.

Next, the IMS retrieves the device credentials from the digital wallet (Line 7)
and evaluates them against security policies and contextual risk factors (Line 8). If
the authentication and policy evaluation pass, the device is granted access (Line 9);
otherwise, access is denied (Line 10).

By integrating off-chain verification with blockchain-backed auditability, this
adaptive access control model ensures low-latency authentication, resistance to cre-
dential spoofing, and dynamic risk-aware authorization in IIoT environments.

Phase 3: Credential Update and Revocation Algorithm 3 outlines the cre-
dential update and revocation process, ensuring that the system remains resilient
to compromised or misbehaving devices.

The Edge Nodes and IMS continuously monitor device behavior and environ-
mental context (Line 1). If an anomaly or policy violation is detected, the system
triggers a credential update or revocation (Line 2), preventing unauthorized access.



4.2. Advanced Digital Wallet Identity Management for IIoT 49

Algorithm 2: Authentication and Access Control
Data: Access Request from an IIoT Device
Result: Access Granted or Denied

1 1. Access Request Initiation:
2 Device initiates an access request using mutual TLS (mTLS);
3 Device signs the request with credentials from its Digital Wallet;
4 2. Edge Node Validation:
5 Edge Node validates the attestation evidence and Digital Wallet credentials;
6 Edge Node queries the Blockchain Ledger to verify the device’s registration

status;
7 3. Context-Aware Authorization:
8 IMS retrieves the device’s credentials from the Digital Wallet;
9 IMS evaluates the credentials against current security policies and risk context

using smart contracts;
10 if Evaluation passes then
11 Grant access to the requested service;
12 else
13 Deny access;
14 end
15 return Access status based on evaluation;

Algorithm 3: Credential Update and Revocation
Data: Monitoring Alerts from Edge Nodes/IMS
Result: Updated Credential State in Digital Wallet and Blockchain Ledger

1 1. Continuous Monitoring:
2 Edge Nodes and IMS monitor device behavior and environmental context;
3 If an anomaly or policy violation is detected, trigger the update/revocation

process;
4 2. Credential Update/Revocation:
5 IMS initiates an update or revocation of the device’s credentials stored in the

Digital Wallet;
6 Record the update or revocation event on the Blockchain Ledger;
7 Propagate the change across federated networks to ensure global consistency;
8 return Updated device credential status;

Upon detection, the IMS updates or revokes the device’s credentials stored in
the digital wallet (Line 4) and records the event on the blockchain ledger (Line 5)
to ensure auditability and tamper-proof tracking. The update is then propagated
across federated networks (Line 6) to maintain consistency in distributed identity
verification.

By dynamically adapting credentials based on real-time risk assessment, this
mechanism prevents unauthorized access, mitigates insider threats, and maintains
trust across IIoT networks without disrupting legitimate operations.

4.2.3 Security Proof

In this section, we present a formal proof of the security properties of our proposed
digital wallet-based identity management framework. Our proof relies on two key
results: (i) a reduction showing that any successful forgery of device credentials
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would contradict the assumed security of the underlying digital signature scheme,
and (ii) an inductive argument demonstrating that the system’s security invariant
is maintained over time.

Definition 1 (Digital Signature Scheme). Let Σ = (KG, Sign,Verify) be a digital
signature scheme, where:

KG(1λ)→ (sk, pk),

Sign(sk,m)→ σ,

Verify(pk,m, σ) ∈ {0, 1}.

We assume that Σ is existentially unforgeable under chosen-message attacks (EUF-
CMA); that is, for any probabilistic polynomial-time adversary A, the probability of
producing a pair (m∗, σ∗) such that

Verify(pk,m∗, σ∗) = 1,

with m∗ not queried to the signing oracle, is negligible.

Definition 2 (Digital Credential). A digital credential for a device D is defined as
the tuple:

C = (D,m, σ),

where m contains identity and attribute information for D, and σ = Sign(sk,m) is
the signature binding the information to D.

Definition 3 (Enrollment). A device D is considered enrolled if it passes
hardware-backed attestation and is issued a credential C = (D,m, σ) by the Identity
Management Service (IMS). We denote the enrollment process by:

Enroll(D)→ C,

which also guarantees that the credential is stored securely in D’s digital wallet.

Definition 4 (System State and Invariant). Let St denote the state of the system at
time t, including all devices and their associated credentials. We define the security
invariant I(t) as:

I(t) : ∀D ∈ St, D is enrolled with a valid credential C = (D,m, σ), and Verify(pk,m, σ) = 1.

Theorem 1: Credential Unforgeability via Reduction

Theorem 1. Under the assumption that Σ is EUF-CMA secure, no probabilistic
polynomial-time adversary A can produce a valid forged credential

C∗ = (D∗,m∗, σ∗)

such that Verify(pk,m∗, σ∗) = 1, unless m∗ was generated by a legitimate execution
of the enrollment procedure.

Proof. Assume, for contradiction, that there exists an adversary A that can output
a forged credential C∗ = (D∗,m∗, σ∗) with non-negligible probability. We construct
an algorithm B that uses A as a subroutine to forge a signature under Σ as follows:
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1. B receives the public key pk from the digital signature challenger and is given
oracle access to a signing function Sign(sk, ·).

2. B simulates the enrollment process for A by answering any signing queries
using the signing oracle.

3. Eventually, A outputs a forged credential C∗ = (D∗,m∗, σ∗) such that
Verify(pk,m∗, σ∗) = 1 and m∗ was never queried.

By the EUF-CMA security of Σ, the probability that B successfully forges a sig-
nature is negligible. This contradicts our assumption that A can forge C∗ with
non-negligible probability. Hence, no such adversary exists, and the unforgeability
of credentials is assured.

Theorem 2: Maintenance of the Security Invariant via Induction

Theorem 2. The system’s security invariant I(t) is maintained for all time steps
t ≥ 0.

Proof. We prove this by induction on the time steps.
Base Case: At time t = 0, the system initializes with the enrollment process:

Enroll(D)→ C = (D,m, σ),

for every device D that is enrolled. By construction, Verify(pk,m, σ) = 1, hence
I(0) holds.

Inductive Step: Assume that at time t, the invariant I(t) holds, i.e., every
device D ∈ St is enrolled with a valid credential. At time t+1, one of the following
operations occurs:

1. Authentication: When a device D attempts to authenticate (see Algo-
rithm 2), its credential C = (D,m, σ) is re-verified by both the Edge Node and
the blockchain ledger. If the credential fails verification, access is denied and
a credential update/revocation is triggered, ensuring that only devices with
valid credentials remain active.

2. Credential Update/Revocation: When a credential update or revocation
occurs (see Algorithm 3), the IMS enforces that any change is recorded and
that compromised or invalid credentials are removed from the active set St+1.

In either case, the system ensures that every device in St+1 satisfies:

Verify(pk,m, σ) = 1.

Thus, I(t+ 1) holds.
By mathematical induction, the security invariant I(t) holds for all t ≥ 0.

Theorem 1 shows that any forgery of a digital credential directly contradicts the
Existential Unforgeability under Chosen Message Attack (EUF-CMA) security of
the underlying digital signature scheme. Theorem 2 establishes that the system’s
security invariant, ensuring all active devices possess valid and verifiable credentials,
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is maintained over time. Together, these results mathematically validate the cor-
rectness and robustness of the proposed digital wallet-based identity management
framework for IIoT.

In conclusion, digital wallets significantly enhance security and scalability by
decentralizing identity and credential management. Yet, in many IIoT deployments,
devices must engage with services managed by other entities or consortia. Relying
solely on digital wallets does not fully address the complexities of establishing trust
and secure interactions across multiple administrative domains. To fill this gap,
the next section presents an adaptable cross-domain authentication method that
extends these digital wallet principles, ensuring that verified identities can operate
safely across independently managed networks.

4.3 Cross-Domain Authentication

Building on the secure foundation provided by digital wallet-based identity man-
agement, the focus now shifts to cross-domain authentication essential for scenarios
where devices and services belong to separate administrative realms. While digital
wallets capably handle lifecycle management and credential issuance, cross-domain
interoperability demands an additional trust infrastructure. This section thus in-
troduces a blockchain-backed authentication scheme that bridges the gap between
isolated trust domains, offering a low-latency, highly secure mechanism for veri-
fying identities and permissions in complex IIoT settings. In Figure 4.2, we see
the problem model where multiple enterprises and organizations share resources
in a decentralized network environment. In this scenario, multiple enterprises and
organizations share resources, requiring multiple domains for services. A single
trust domain cannot provide numerous services, requiring users to visit multiple
domains. For example, a user from domain A needs to access a service in domain
B, which requires obtaining their root Certificate Authority (CA) certificate. This
method has drawbacks like complex authentication, frequent signature verification,
and certificate management complexity. Alternatively, domains can be certified by
a third-party body, but this can create single points of failure and privacy breaches.

Trusted third party

(third party

authentication)

Domain A Domain B

Request ServiceUser
A1

Mutual authenticationUser
A2

User B

Service B

Trusted third party Trusted third party

Figure 4.2: Cross Domain Problem Model.

Cross-domain authentication is crucial in IIoT environments, enabling secure
and efficient interaction among heterogeneous devices and services across multi-
ple administrative or operational domains. Existing approaches primarily leverage
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blockchain technologies, cryptographic accumulators, or hardware-based security
mechanisms to enhance authentication efficiency, security, and scalability. However,
these solutions have limitations impacting their practicality for real-time industrial
deployments.

Gao et al. [186] propose a blockchain-based identity management framework
using pseudonymous identities, maintained in decentralized ledgers for each domain.
While enhancing privacy, their solution incurs high computational overhead due to
frequent blockchain transactions, leading to processing delays and limited scalability.
Similarly, Cui et al. [187] introduce an anonymous authentication approach using
dynamic cryptographic accumulators for efficient revocation and identity updating.
Despite improved security and anonymity, their solution still experiences delays
from computationally intensive cryptographic operations, unsuitable for real-time
industrial scenarios.

Wang et al. [188] propose a blockchain-based lightweight message authentica-
tion framework leveraging Elliptic-Curve Cryptography (ECC) and edge-assisted au-
thentication to minimize computational overhead. Although performance improves,
dependency on edge nodes introduces potential single points of failure, impacting
overall security and reliability. Khalid et al. [189] utilize blockchain combined with
Physically Unclonable Function (PUF)-based keys for unclonable device identities.
Despite reduced computational requirements, their method mandates specialized
hardware compatibility, restricting scalability and posing risks related to key degra-
dation or recovery.

The secure exchange of data between field devices is critical for ensuring the
integrity and confidentiality of industrial communication networks. Field devices,
typically composed of a field bus application and a communication module, operate
in automation networks that often lack built-in security mechanisms. Existing solu-
tions usually focus on securing communication within local field bus environments,
yet cross-network communication, especially via the internet, requires additional
mechanisms to establish and maintain trust and data integrity. Traditional methods
often rely on TLS; however, directly applying TLS to field bus networks introduces
challenges, such as non-IP-based communication constraints and address translation
complexities.

In contrast to these existing approaches, our proposed solution addresses these
identified shortcomings by introducing a practical and scalable TLS-based cross-
domain authentication mechanism. Unlike blockchain-based or cryptographic accu-
mulator approaches, our method significantly reduces authentication latency, achiev-
ing real-time responsiveness essential for IIoT. It avoids reliance on edge nodes or
specialized hardware, eliminating associated security vulnerabilities and scalability
limitations. This makes our solution broadly applicable and readily deployable in
diverse real-world industrial settings.

The following subsections detail our assumptions and technical requirements,
cross-field bus communication and authentication models, and the formal proof val-
idating our approach.



54 Chapter 4. Identity Management, Authentication and Access Policy

4.3.1 Assumptions and Requirements

Cross-domain authentication in industrial networks, especially for traditional sys-
tems such as SCADA, is critical due to inherent vulnerabilities and exposure to
diverse security threats [190]. Authentication plays a central role in network secu-
rity by verifying device and user identities, thus limiting communication strictly to
authenticated entities and processes. This prevents unauthorized access and ensures
secure interactions between field devices utilizing industrial protocols [191].

While previous sections introduced general assumptions and requirements for
identity and access management, the context of cross-domain communication intro-
duces specific assumptions and technical requirements. Below, we explicitly clarify
the assumptions considered true in our approach and outline distinct technical re-
quirements necessary for implementing secure cross-domain authentication.

We assume the following conditions hold true in the industrial environment under
consideration:

• Existence of Internal Field Bus Communication: Native communication
between field devices and integrated controllers is already established and
functional within each domain.

• Presence of a Local Public Key Infrastructure (PKI): Each domain has
a functioning internal PKI limited specifically to the field bus area, managing
device keys and certificates securely throughout the lifecycle of each device.

• Existence of Trusty Full Nodes: Each domain has trustworthy blockchain
nodes (full nodes) responsible for blockchain authentication management, de-
vice management, and maintaining a trusted table of neighbor nodes.

Also, to realize effective cross-domain authentication, the following requirements
must be fulfilled:

1. End-to-end Secure Communication: Communication between two dis-
tinct domain endpoints must be secured through cryptographic keys or cer-
tificates for mutual authentication.

2. PKI Extension or Integration: The internal domain-specific PKI must
be capable of secure extension or integration into cross-domain authentication
scenarios. It must enforce strict monitoring to prevent unauthorized direct
connections from external domains.

3. Blockchain Management Nodes: Each participating domain requires
blockchain management nodes (trusty full nodes) to manage authentication
and facilitate blockchain operations within and between domains.

4. Trusty Neighbor Nodes Table: Each blockchain node must maintain an
updated and trusted list of neighboring nodes to ensure robust cross-domain
blockchain synchronization and authentication.

5. Use of TLS (Transport Layer Security): We specifically require using
the TLS protocol for securing cross-domain communication due to its proven
properties: it has minimal dependency on adjacent communication layers,
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ensuring broad applicability; it demonstrates maturity through widespread
deployment and intensive security testing; it offers high adaptability to diverse
operational requirements through configurable parameters; and it does not rely
strictly on IP-based networks, requiring only targeted packet delivery (TLS
records) capabilities.

These assumptions and requirements specifically address cross-domain aspects and
complement previously defined general security assumptions. They ensure robust
security mechanisms tailored explicitly for industrial cross-domain scenarios.

The cross-domain authentication mechanism developed reuses the Trust Man-
agement System (TMS) originally introduced in the "Schloss" architecture [192], a
prior publication by the author. The TMS leverages a game-theoretic reputation
model to dynamically assess node trustworthiness, facilitating decentralized trust
decisions based on feedback and behavioral history. Within the current framework,
this component is incorporated without modification to support cross-domain au-
thorization and ensure secure synchronization across industrial networks.

4.3.2 Cross-Field Bus Communication Model

Our cross-field bus communication model is specifically designed to address the
identified security and scalability limitations for cross-domain communication. The
model assumes a structured communication pattern in which field devices commu-
nicate through blockchain-managed authentication gateways. Each domain main-
tains internal field bus communication secured by local cryptographic mechanisms,
while cross-domain interactions are facilitated securely by leveraging a blockchain-
managed TLS-secured communication channel.

To enable secure and transparent cross-domain interactions, our model integrates
dedicated authentication gateways at each domain boundary. These gateways man-
age TLS sessions, handle secure address translations between domains, and interface
seamlessly with the blockchain-based identity verification system, ensuring robust
authentication and secure session management without disrupting native field bus
communication.

Figure 4.3 illustrates our cross-field bus communication model architecture,
clearly highlighting the role of blockchain nodes, domain-specific gateways, and
secure inter-domain communication channels.

4.3.3 Cross-Field Bus Authentication Model

In our approach, we aim to achieve secure, scalable, and reliable authentication
across field bus domains. Specifically, our authentication model focuses on:

• Robust Identity Verification: Ensuring the identities of communicating
entities are authentic and verifiable.

• Dynamic Trust Establishment: Allowing devices from different subnet-
works or domains to authenticate securely, even in environments with limited
direct certificate validation capabilities.
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• Reduced Computational Overhead: Minimizing computational and com-
munication costs inherent to traditional certificate validation processes, espe-
cially important for resource-constrained industrial devices.

• Resilience to Network Segmentation: Enabling secure cross-domain com-
munication despite network segmentation or address translation limitations.

Our proposed model utilizes X.509 certificates widely recognized for verifying iden-
tities and establishing secure communication in TLS-based exchanges [193]. While
effective, traditional TLS certificate validation introduces significant overhead, es-
pecially during the handshake phase involving computationally intensive operations
like certificate validation and key exchanges [194]. These overheads pose challenges
for real-time communication within resource-constrained IIoT environments.

To address these limitations, our authentication model integrates a blockchain-
based trust management mechanism alongside traditional X.509 certificates. This
hybrid solution significantly reduces dependence on centralized CAs and lengthy
certificate chains by dynamically managing trust through decentralized blockchain
nodes.

4.3.3.1 Intuitive Idea and Originality

Instead of relying exclusively on hierarchical certificate validation (traditional PKI),
our model uses blockchain-managed trust lists to dynamically and efficiently estab-
lish cross-domain trust. Blockchain nodes maintain decentralized trust value lists
representing device trustworthiness, enabling immediate authentication decisions
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Table 4.1: Description of Symbols.

Description Parameter

Device in domain A DA

Peer in domain A PA

Device in domain B DB

Peer in domain B PB

Trust value device i Ti

Blockchain BC
Certificate Cert
Signature Sig

even in environments lacking direct TLS connectivity. This unique integration of
blockchain-based decentralized trust with traditional X.509-based authentication in-
troduces practical benefits including reduced latency, increased resilience to node or
network failures, and higher scalability in complex industrial deployments.

4.3.3.2 Detailed Description and Justifications

The authentication workflow combines X.509 certificates with blockchain-managed
trust validation as follows:

• Each device in a domain (e.g., DA in domain A and DB in domain B) possesses
a unique X.509 certificate (Cert) initially issued by the domain’s internal CA.

• Blockchain nodes (BC) maintain dynamic trust values (Ti) associated with
each registered device. These trust values reflect historical behavior, device
legitimacy, and policy compliance over time.

• When devices from different domains initiate communication, they first at-
tempt a direct TLS handshake using their respective X.509 certificates. If
network constraints (segmentation or address translation issues) prevent di-
rect certificate validation, blockchain nodes provide a decentralized verification
of device trustworthiness based on stored trust values (Ti).

• The blockchain-based trust values allow devices to authenticate securely by
confirming each other’s legitimacy without direct CA involvement or complete
certificate chain verification, significantly reducing handshake complexity.

4.3.3.3 Trust Management Policies

In this context, “trust management policies” refer explicitly to predefined security
rules encoded in blockchain smart contracts. These policies specify conditions under
which trust values (Ti) are updated, managed, and used for authentication decisions,
ensuring compliance with organizational security standards and requirements.

Figure 4.4 illustrates the detailed authentication workflow. Table 4.1 provides a
concise summary of the symbols and parameters involved.

The authentication process aims to establish a secure and trusted connection
between two devices, DA and DB, across different domains while ensuring compli-
ance with trust management policies. This process consists of multiple steps to
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validate the legitimacy of the devices, verify trustworthiness, and enable encrypted
communication.

1. Validation of Registration Time and Trustworthiness: DA initiates
the authentication process by calling the function Valid(DB), which checks
whether DB’s registration time in domain B is still valid. This step is necessary
to prevent unauthorized or expired devices from participating in the network.
Additionally, PA, acting on behalf of DA, queries the consortium blockchain
to retrieve trust values associated with DB. The returned result contains PB’s
identity and its trust value Ti. If Ti does not meet the required threshold or
is invalid, PA refuses the request from DA to connect with DB, terminating
the session (steps 1–4 in Figure 4.4).

2. Trust Evaluation of the Requesting Device: Once DB has been vali-
dated, the next step involves verifying PA’s trustworthiness. PA requests per-
mission from PB to establish a connection with DB. Before granting access, PB

evaluates whether PA itself is trustworthy by checking the blockchain-stored
trust values. This verification step is crucial because it ensures that only
trusted entities can participate in authentication, thereby preventing unau-
thorized access. Based on the obtained trust value, PB decides whether to
continue the authentication process or terminate the session if PA does not
meet the trust requirements (steps 5–8 in Figure 4.4).

3. Final Approval and Certificate Signing: If the authentication proceeds,
PB then requests PA to validate DA by signing its certificate (cert(DA)). This
step establishes cryptographic proof of identity, ensuring that DA is not an
impersonator or a rogue device. Once PA signs and returns the certificate, DA

is officially approved to connect with DB. This stage prevents unauthorized
devices from gaining access to the system and ensures that every participant in
the communication is authenticated through verifiable credentials (steps 9–21
in Figure 4.4).

4. Mutual TLS Handshake for Secure Communication: Following suc-
cessful authentication, a secure session must be established between DA and
DB to enable confidential communication. To achieve this, DB initiates the
TLS handshake, transmitting a temporary public key to DA. This handshake
is essential as it negotiates encryption parameters and ensures data integrity.
DA responds by sending its own TLS handshake message, completing the key
exchange process and confirming mutual agreement on encryption standards
(steps 22–23 in Figure 4.4).

5. Establishing a Secure Session: Finally, once the TLS handshake is com-
plete, a secure and encrypted communication channel is established between
DA and DB. From this point onward, all exchanged information remains pro-
tected from eavesdropping, ensuring data confidentiality and integrity. The
successful authentication and secure session setup allow DA and DB to com-
municate across different domains without compromising security (step 24 in
Figure 4.4).
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4.3.4 Proof of Correctness for Cross-Domain Authentication

In this section, we formally prove the correctness and security guarantees provided
by our cross-domain authentication model. Specifically, we demonstrate two critical
security properties:

• Forgery Resistance: It is infeasible to produce a valid digital certificate
without possessing the CA’s private key.

• Session Security Maintenance: Once established securely, a cross-domain
session remains secure and resilient to unauthorized interference.

We present these proofs using: (i) A reductionist argument demonstrating that
forging a digital certificate contradicts the underlying digital signature scheme’s
security. (ii) An inductive argument proving that a secure session maintains its
security after the initial authentication.

Throughout this proof, we explicitly refer to the “Schloss system”, defined as our
blockchain-supported TLS-based cross-domain authentication framework previously
introduced in Sections 4.3.2 and 4.3.3.

Definition 5 (Digital Signature Scheme). (As defined previously in Chapter 2) We
rely explicitly on a digital signature scheme Σ that is Existentially Unforgeable under
Chosen-Message Attacks (EUF-CMA).

Definition 6 (Digital Certificate for Cross-Domain Authentication). While digi-
tal certificates were introduced earlier (Section 4.3.3), here we explicitly highlight
the incorporation of blockchain-managed trust values as a novel element: A digital
certificate for an entity E is:

CertE = (E,PKE , TE , σE),

where:

• E and PKE are previously defined (entity identity and public key),

• TE is the newly introduced trust value assigned by the blockchain-based Trust
Management System (TMS),

• σE = Sign(skCA, (E,PKE , TE)) is a digital signature computed by a trusted
CA over the tuple including trust values.

Novelty: Incorporating blockchain-managed trust values into the certificate struc-
ture enhances decentralized verification capability and resilience.

Definition 7 (Authentication Function). Building on prior authentication defini-
tions (4.3.3), we explicitly highlight the novel incorporation of the blockchain-derived
trust threshold (τ) into the verification condition:

Auth(CertA, CertB) =



1, if V erify(pkCA, (EA, PKA, TA), σA) = 1,

V erify(pkCA, (EB, PKB, TB), σB) = 1,

TA, TB ≥ τ,

0, otherwise.
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Novelty: This definition explicitly incorporates a minimum trust threshold, reflect-
ing real-time trust evaluations derived from blockchain-based trust management.
This ensures flexibility and dynamic adaptation to changing trust conditions.

Definition 8 (Secure Cross-Domain Session). We define explicitly a secure cross-
domain session as a session between authenticated entities DA and DB satisfying:

• Successful cross-domain authentication (Auth(CertA, CertB) = 1).

• Completion of a TLS handshake using ephemeral session keys derived from the
authenticated certificates.

Novelty: Clearly specifies the interplay between authentication and subsequent
session establishment, emphasizing secure session continuity post-authentication.

Theorem 3: Unforgeability of Digital Certificates

Theorem 3. Given that the digital signature scheme Σ is EUF-CMA secure, and
assuming the blockchain-based Trust Management System (TMS) correctly computes
and maintains trust values, no probabilistic polynomial-time adversary A can forge
a valid digital certificate

Cert∗ = (E,PK ,T ,σ)

such that Auth(Cert∗, CertB) = 1 for a legitimate certificate CertB, except with
negligible probability.

Proof. The proof follows by contradiction, similarly to classical EUF-CMA-based
proofs, with the key novelty explicitly being the trust value component (T ∗) man-
aged by the blockchain-based TMS: Suppose, for contradiction, an adversary A
produces a forged certificate

Cert∗ = (E,PK ,T ,σ)

such that Verify(pkCA, (E
,PK ,T ), σ) = 1 and the trust value T meets or exceeds the

authentication threshold (T≥τ).
Such a forgery would imply A successfully generated a valid signature on a tuple

including the blockchain-managed trust value, without access to the private signing
key (skCA).

This directly contradicts the EUF-CMA assumption of the digital signature
scheme Σ, as forging such a signature on arbitrary data (including trust values)
is infeasible without the private key. Consequently, the existence of A violates the
underlying assumption of the signature scheme’s security, and thus such forgery can
occur only with negligible probability.

Theorem 4: Session Security Invariant

Theorem 4. Let S(t) denote the state of an established cross-domain session at
time t. If at time t0, Auth(CertA, CertB) = 1 and the TLS handshake is success-
fully completed, then for all t ≥ t0, the session remains secure, provided that the
underlying cryptographic primitives (TLS and digital signatures) remain secure.
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Proof. We prove the theorem by induction on the session lifetime. Base Case:
At time t0, the session is established after a successful TLS handshake following
Auth(CertA, CertB) = 1. Hence, the session is secure at t0. Inductive Step:
Assume that at time t, the session remains secure; that is, all communications are
encrypted and integrity is maintained by TLS. At time t + 1, any new message
transmitted continues to be protected by the cryptographic guarantees of TLS.
An adversary attempting to intercept, alter, or impersonate messages would need
to break these guarantees. Since breaking TLS (or forging digital signatures) is
computationally infeasible under our assumptions, the session remains secure at
t+ 1.

By induction, the secure session invariant holds for all t ≥ t0.

Theorem 3 demonstrates that forging a valid digital certificate (and thereby by-
passing cross-domain authentication) is computationally infeasible under the EUF-
CMA security assumption of the digital signature scheme. Theorem 4 establishes
that once a cross-domain session is securely established, its security persists through-
out the session’s lifetime. Together, these results provide a rigorous mathematical
foundation for the security of the proposed cross-domain authentication scheme in
the Schloss system.

4.3.4.1 Security Analysis

We conduct a security study of the proposed strategy, taking the aforementioned
possible risks into consideration.

1. The Man-in-the-Middle: attack uses TLS session key encryption to sym-
metrically encrypt communication data between two parties, preventing data
leakage and preventing attackers from deciphering future ciphertexts to obtain
meaningful information, even if the data is stolen.[195].

2. 51% Attack: The blockchain consensus method limits attackers’ security to
51% of nodes or arithmetic power, making it unfeasible. To ensure authen-
tication, peers verify the trust value of each subsystem, reducing the risk of
connecting to a rogue node and ensuring a secure system [195].

3. Replay Attack: random values and a counter for nodes in each session are
used to guarantee that communication messages remain current across ses-
sions, avoiding replay attacks [195].

4. Spam Attack: Blockchain technology can protect against spam attacks by
handling communication as transactions with a time stamp indicating a con-
sensus phase. This prevents attackers from inserting spam messages, as they
would be rejected by the consensus process [196].

The proposed schema provides a verification layer for a distributed system using
blockchain authentication, enhancing security by enabling transparent communica-
tion between nodes. However, this mechanism can introduce new attack surfaces,
necessitating a comprehensive security analysis to identify vulnerabilities. The anal-
ysis should evaluate the system’s architecture, communication protocols, and access
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controls, as well as potential attacks on data confidentiality, integrity, and availabil-
ity. Implementing appropriate security measures and countermeasures can improve
network security and ensure reliable communication between nodes.

4.4 Conclusion

This chapter has presented two contributions aimed at enhancing security aspects –
identity management, authentication of IIoT environments. By addressing key gaps
identified in existing solutions, these contributions provide foundational advance-
ments essential for securing modern smart factories.

By combining digital wallet-based identity management with a blockchain-
enabled cross-domain authentication framework, this chapter addresses two major
hurdles in securing modern IIoT environments. Digital wallets decentralize and
streamline identity handling, reducing single points of failure and administrative
overhead. At the same time, cross-domain authentication ensures that trusted in-
teractions can span multiple industrial networks, overcoming prior limitations on in-
teroperability and scalability. Taken together, these two contributions form a more
comprehensive solution for robust security and operational agility in next-generation
smart factories.

Nevertheless, the cross-domain authentication framework also faces certain prac-
tical challenges:

• Performance and scalability management in blockchain networks, especially
for extensive industrial deployments, may result in latency or throughput con-
straints.

• Maintaining resilience against emerging blockchain-specific vulnerabilities
(e.g., consensus algorithm weaknesses and smart contract vulnerabilities) ne-
cessitates continuous monitoring and adaptation.

• Initial implementation complexity related to establishing decentralized trust
networks among independent industrial stakeholders.

In conclusion, the contributions described in this chapter improve existing iden-
tity management and authentication paradigms in IIoT contexts. Despite certain
operational complications, these contributions help to create the foundations for safe
identity management and cross-domain authentication by addressing significant se-
curity holes. Building on these foundations, the following chapter will improve the
entire security architecture by incorporating anomaly detection and evaluation tools.
This connection is critical for proactively recognizing and responding to threats, re-
sulting in full real-time security inside dynamic IIoT networks.
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5.1 Introduction

Ensuring robust security within IIoT environments remains a critical challenge due
to the highly dynamic, distributed, and heterogeneous nature of these systems.
As IIoT networks become increasingly interconnected and exposed to sophisticated
cyber threats, relying solely on identity management and static access control mech-
anisms is insufficient. Instead, proactive and adaptive security measures are needed
to detect and assess anomalous behavior in real time.

Traditional anomaly detection approaches often depend on predefined signatures
or simple behavioral baselines. While effective for known threats, such methods
struggle with detecting emerging or context-specific anomalies, including zero-day
attacks and subtle internal deviations. Furthermore, the complex interaction pat-
terns within IIoT systems frequently lead to high false-positive rates when conven-
tional techniques are applied.

This chapter introduces two complementary contributions that aim to address
these challenges by designing anomaly detection methods tailored to the specific
needs of IIoT environments:

• AE-LDA Hybrid Anomaly Detection (Section 5.3): This method com-
bines Autoencoders (AEs) for unsupervised feature extraction with Linear
Discriminant Analysis (LDA) for statistical classification. Unlike earlier ap-
proaches that employ isolated machine learning models [94], AE-LDA offers
enhanced detection accuracy by capturing nonlinear data patterns and ap-
plying discriminative class boundaries. It is particularly effective at identify-
ing novel and previously unseen attacks while maintaining low computational
complexity.

• Context-Aware Behavioral Anomaly Detection (Section 5.4): While
AE-LDA provides strong detection performance, it lacks contextual aware-
ness. This second contribution addresses that gap by modeling device interac-
tions as dynamic communities and analyzing temporal and structural changes
in communication patterns. By incorporating context (such as timing, ex-
pected communication flows, and operational roles) this approach improves
interpretability and reduces false positives, offering a fine-grained, behavioral
anomaly detection mechanism suited to the evolving nature of IIoT systems.

Together, these contributions form a comprehensive framework for anomaly de-
tection in IIoT networks. By integrating deep learning with graph-based context
modeling, the proposed methods enable real-time, scalable, and context-sensitive
security monitoring, aligning with the operational demands of modern industrial
systems.

Addresses Research Questions:

• How can hybrid and context-aware anomaly detection methods
improve the real-time identification and assessment of sophisti-
cated security threats within dynamic IIoT networks?
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5.2 Problem Statement

IIoT networks are inherently complex due to their heterogeneous components, dis-
tributed architecture, and the continuous exchange of large volumes of data. This
complexity significantly increases the attack surface, making IIoT systems vulnera-
ble to various security threats, both internal and external.

Ensuring the security of IIoT networks remains a significant challenge due to
their inherent complexity, heterogeneous nature, and continuous exposure to evolv-
ing internal and external threats [197, 198]. Traditional anomaly detection tech-
niques, such as signature-based methods, rely heavily on predefined patterns and
thus cannot effectively detect unknown or sophisticated threats, including zero-day
attacks [199]. Consequently, methods leveraging unsupervised deep learning, par-
ticularly autoencoder-based anomaly detection approaches, have gained attention
due to their ability to identify deviations from normal behaviors without relying on
labeled attack signatures [200, 201].

Nevertheless, current autoencoder-based anomaly detection techniques exhibit
critical limitations. Approaches combining autoencoders with One-Class Support
Vector Machines (OC-SVM) [98] demonstrate promising results, but their significant
computational complexity limits real-time applicability. Moreover, the performance
of OC-SVM deteriorates in high-dimensional IIoT datasets, often causing high false-
positive rates due to its dependence on a single-class data distribution.

Other methods, such as Memory-Augmented Autoencoders (MemAE) [94],
attempt to mitigate autoencoder overgeneralization through external memory
modules. However, these approaches introduce substantial memory overhead, mak-
ing them impractical for resource-constrained environments typical of industrial
settings. Additionally, memory-based methods may still overlook context-specific
anomalies due to insufficient consideration of contextual features.

Hence, an effective anomaly detection solution for IIoT systems must address
the following key challenges:

• Achieving computational efficiency suitable for real-time detection.

• Managing dimensionality effectively to handle high-dimensional IIoT data
streams.

• Maintaining low false-positive rates while enhancing the ability to detect
context-specific anomalies.

5.2.1 Context-Aware Anomaly Detection

IIoT networks typically consist of interconnected sensors, actuators, gateways, ma-
chines, and centralized monitoring systems, all operating under specific constraints
and operational policies (see Figure 5.1). Due to the tight integration of these net-
works with physical processes, even minor false alarms can severely disrupt critical
industrial workflows. Conventional anomaly detection methods frequently struggle
to differentiate between harmless operational variations (such as scheduled produc-
tion adjustments) and genuine security threats like malicious cyber-attacks.
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In this work, the term context specifically refers to supplementary information
related to the operational state and environmental conditions of the IIoT system,
which helps interpret and evaluate the significance of observed behaviors. More
concretely, contextual information includes attributes such as:

• Temporal Context: Operational schedules, time of day, periodic tasks, and
seasonal changes.

• Communication Context: Typical communication patterns, expected
sender-receiver pairs, message frequencies, and standard protocols.

• System State Context: Machine operational status, maintenance schedules,
known operational modes, or production phases.

Context-aware anomaly detection methods incorporate these contextual dimen-
sions to determine whether a detected deviation genuinely represents a security
threat or simply reflects normal system behavior under given circumstances. By
explicitly integrating such context, anomaly detection systems significantly reduce
false-positive rates and improve their capability to recognize subtle, context-specific
security threats [202].

Throughout this thesis, the term "context-aware" refers specifically to ap-
proaches that utilize these additional dimensions of information beyond basic sta-
tistical or signature-based metrics to enhance the accuracy of anomaly detection in
IIoT environments.

5.2.1.1 Types of Anomalies

Our proposed context-aware system detects two main categories of anomalies:

Attacks: Malicious entities attempt to infiltrate the system, either to steal data
or to compromise safety. For example, an attacker might force a machine to
operate outside its safety zone in a connected smart factory [203].

Misbehavior: The IIoT infrastructure exhibits unexpected behavior that does not
necessarily stem from a deliberate attack. Within a network, such misbehavior
might involve:

• Temporal Anomalies: Communication occurring at unusual times
(e.g., after work hours).

• Behavioral Anomalies: New or unexpected interactions between de-
vices.

• Statistical Anomalies: Significant deviations in metrics such as packet
sizes or flow duration.

In a typical IIoT network, sensor data flows from edge devices to a central Mon-
itoring System, while machines exchange operational commands within predefined
workflows. For instance, a packaging machine might only communicate with its
sensors or the Monitoring System during production hours. Any communication
outside of these patterns could indicate an anomaly.

Figure 5.1 provides a high-level view of a generic IIoT network, illustrating how
various devices and systems interconnect to support industrial operations.
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Figure 5.1: Generic IIoT Network and Attack Scenarios.

5.2.1.2 Example Anomaly Scenarios

Scenario 1: Unauthorized Device Access An attacker introduces a rogue
device that impersonates a legitimate node, attempting unauthorized actions such
as:

• Unexpected Communication Patterns: Sending commands to machines
that it is not authorized to control.

• Violation of Temporal Policies: Attempting to access the network or crit-
ical systems during non-production hours.

These deviations from established communication and time-based policies disrupt
the contextual integrity of the network. A context-aware detection system flags
such anomalies by comparing observed activities against known legitimate usage
patterns.

Scenario 2: Misconfigured or Compromised Device Behavior A legitimate
device (e.g., a machine or sensor) becomes compromised or is misconfigured, leading
to:

• Structural Anomalies: Interacting with devices it does not typically com-
municate with (e.g., a packaging machine suddenly contacting a finance
server).

• Temporal/Statistical Anomalies: Sending a high volume of data or oper-
ating during non-production hours.

Such deviations break known contextual norms for device behavior and can be au-
tomatically flagged for further investigation.

5.2.1.3 Why Context Matters

Contextual data such as when (time), how (protocol, volume), and with whom
(source/destination) a device communicates enables the anomaly detection system
to:
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• Reduce False Alarms: Legitimate production changes or maintenance ac-
tivities that appear unusual to a purely pattern-based system can be validated
through contextual checks (e.g., planned overnight maintenance).

• Improve Detection Accuracy: Threats become more apparent when they
deviate from real-world operational constraints (e.g., an unauthorized machine
controlling manufacturing equipment).

• Preserve Operational Continuity: By focusing on genuine threats, the
system avoids shutting down or raising alarms for benign operational shifts.

By integrating rich contextual insights into the detection process, context-aware
anomaly detection ensures a more adaptive and precise security mechanism that
distinguishes legitimate operational variations from true security threats. Graph
Neural Networks (GNNs) can further enhance detection by modeling the IIoT net-
work as a communication graph where nodes represent devices and edges represent
interactions. Because GNNs can learn structural, temporal, and statistical relation-
ships in these graphs, they can identify nodes or edges that deviate from expected
patterns enabling the system to flag malicious activities such as malware propaga-
tion or unauthorized access attempts.

5.2.2 Limitations Motivating GNN-Based Approach

GNNs have recently gained popularity in anomaly detection due to their inherent
capability of analyzing network topologies. However, current GNN-based anomaly
detection methods exhibit critical limitations that restrict their practical deployment
in dynamic IIoT environments.

For instance, E-GraphSAGE [111] extends node dependencies to capture dis-
tant network interactions but does so at the expense of significantly increased com-
putational complexity and response delays, hindering real-time anomaly detection
capabilities required in rapidly changing industrial scenarios.

Similarly, Altaf et al. [113] further developed the E-GraphSAGE model by in-
troducing sophisticated but memory-intensive sampling techniques, resulting in sub-
stantial resource consumption that makes such approaches unsuitable for large-scale,
resource-constrained IIoT deployments.

Temporal Graph Networks (TGNs) proposed by Rossi et al. [117] address the
evolving nature of graphs effectively; however, they are primarily designed and op-
timized for social networks, lacking straightforward applicability and efficient adap-
tation mechanisms needed specifically for industrial IoT contexts.

These limitations directly motivate the necessity of developing a context-aware,
efficient GNN-based anomaly detection approach specifically tailored for IIoT net-
works. In contrast, our proposed Context-Aware Behavioral Anomaly Detection
method leverages community structure analysis and explicitly incorporates context-
aware features. This enables efficient, real-time detection of context-driven anoma-
lies, significantly improving accuracy, scalability, and resource efficiency compared
to existing state-of-the-art methods.
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5.3 AE-LDA Hybrid Anomaly Detection

5.3.1 Design Goals and Assumptions

Our framework is strategically designed to provide a comprehensive and resilient
approach to network intrusion detection, addressing the following key goals and
assumptions:

• Enhancing Network Reliability With Real-Time Monitoring: System
designed for network reliability by incorporating real-time monitoring capabil-
ities. This approach manages continuous surveillance and intrusion detection
activities efficiently, minimizing performance impact. By providing a security
solution that operates within real-time constraints, we safeguard against intru-
sions and maintain network stability. This real-time aspect enables immediate
detection and response to potential threats, ensuring uninterrupted and stable
network functioning.

• Using Explainable AI (XAI) for Transparent Decision-Making for
selecting Features: System incorporates XAI to enhance transparency and
understanding in decision-making, enabling network administrators to better
understand system alerts, thereby promoting informed and effective security
management.

• Detection of Unknown and Evolving Threats: System focuses on iden-
tifying and mitigating non-conventional network threats, such as zero-day at-
tacks and novel malware types, by analyzing deviant network patterns, pro-
viding a robust defense against emerging security risks.

• Resilience Against Evasion Techniques: Recognizing the evolving nature
of cyber threats, our system is designed to remain effective against sophisti-
cated evasion tactics employed by attackers. This involves maintaining high
detection accuracy even as attackers modify their strategies to evade tradi-
tional security measures.

Our design approach aligns with key areas to create a robust, adaptable, and
efficient framework for network intrusion detection, addressing current security chal-
lenges and anticipating future threats for long-term network system resilience and
reliability.

Our proposed approach for anomaly detection, illustrated in Fig. 5.4, aims to im-
prove both the accuracy and interpretability of network security anomaly detection.
It consists of two core components: a feature extraction phase that preprocesses
and transforms raw network data into structured representations, and an anomaly
detection model that combines Autoencoders (AE) with Latent Dirichlet Allocation
(LDA) to capture both structural deviations and semantic patterns indicative of
abnormal behavior.

5.3.1.1 Feature Extraction

The preprocessing process involves extracting significant features from raw Packet
Capture (PCAP) files to condense network interactions into clear patterns and adapt
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Figure 5.2: The Process Workflow of Feature Selection.

the data for machine learning model training (see Fig 5.2). PCAP files provide a
holistic view of network traffic, allowing insights into network behavior, vulnera-
bilities, and malicious activities. The main challenge is to methodically identify
and categorize the crucial data within these packets. The approach focuses on de-
vising an efficient set of features for further analysis. The extracted features are
divided into five categories: Network Traffic Features, Session-related Information
Features, Network Flow Features, Protocol-specific Features, and Payload Charac-
teristics Features. This strategy lays the groundwork for a comprehensive network
traffic study.

Our feature extraction process combines meticulously the robustness of a Ran-
dom Forest algorithm with the detailed insights of SHapley Additive exPlanations
(SHAP) [204]. The SHAP value determines how a given feature explains (impacts)
the model’s prediction. We initiate with a Random Forest to identify key features,
where the Gini importance of each feature f is calculated as:

Gini Importance(f) =
1

N

N∑
i=1

Impurity Decreasei(f) (5.1)

Where N is the number of trees, and Impurity Decreasei(f) represents the de-
crease in impurity in the i-th tree due to feature f .

To further refine and understand the importance of these features, we employ
SHAP values. For a feature f , its SHAP value is determined by:

SHAP(f) =
1

M

M∑
j=1

Marginal Contributionj(f) (5.2)

Where M is the number of all possible permutations of features, and
Marginal Contributionj(f) denotes the change in the prediction outcome when in-
cluding feature f in the j-th permutation.

This combined approach of using Random Forest feature importance alongside
SHAP-based explanations ensures that our selected features are both statistically
robust and clearly interpretable. The choice of Random Forest for feature selec-
tion is justified by its proven stability and resilience against noise, as shown by
previous studies [205, 206]. Moreover, the integration of SHAP values provides de-
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Algorithm 4: Feature Extraction Algorithm
Input: Dataset, Random Forest model, importance threshold
Output: Reduced feature set and SHAP values for interpretation

1 Train a Random Forest model on the dataset;
2 foreach feature f in the dataset do
3 Calculate Gini importance of f using eq. (5.1);

4 Prune features based on the importance threshold to reduce model complexity;
5 foreach remaining feature f do
6 Compute SHAP values for f using eq. (5.2) to understand its contribution;

7 Utilize optimized TreeSHAP for large datasets to balance detail and efficiency;

tailed insight into how each feature impacts model predictions, enhancing model
transparency and interpretability [204, 207].

Compared to traditional feature selection methods relying solely on correla-
tion analysis or univariate statistical tests, our combined strategy systematically
addresses both predictive power and interpretability. Specifically, it balances
model complexity and comprehensibility, enabling the construction of more reli-
able anomaly detection models. Consequently, this method establishes a stronger
methodological foundation, as it directly contributes to improved predictive accu-
racy and clarity in decision-making processes – both crucial for effective anomaly
detection in sensitive industrial environments [207].

5.3.2 Anomaly Detection Model (AE-LDA)

Then, we have to detect anomalies in the traffic. We rely on an autoencoder with
LDA to characterize the usual network traffic, and thus, to detect anomalies.

Autoencoder for Anomaly Detection We train the autoencoder to capture
the normal behavior of network traffic. Thus, we train the model with all the data
which is i) generated by the network when we are sure that no attack occurs (i.e., at
the first stage of the deployment), ii) a training dataset without data labeled with
an attack. Very classically, the training objective of the autoencoder is to minimize
the Mean Squared Error (MSE) between the input vector x and its reconstruction
x̂, given by:

MSE =
1

n

n∑
i=1

(xi − x̂i)
2 (5.3)

where n is the number of features. Anomalies are identified when the reconstruction
error exceeds a predefined threshold θ.

The specific structure of the autoencoder is illustrated in Fig. 5.3. Its architec-
ture was carefully selected to capture the intricate patterns effectively inherent in
the network traffic data. The input layer comprises neurons corresponding to the
17 selected features, derived from the earlier feature-selection process.

The encoding part systematically reduces the input dimensionality to efficiently
identify essential traffic characteristics. Through a hyperparameter optimization
process using Optuna [208], we determined that employing two hidden encoding
layers one with 8 neurons and a subsequent layer with 4 neurons provided an opti-
mal balance between model complexity and representation capability. We adopted
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Figure 5.3: The Autoencoder Structure.

the Rectified Linear Unit (ReLU) activation function due to its ability to mitigate
the vanishing gradient problem and improve convergence speed, aligning with find-
ings from previous deep learning studies [209]. To enhance model generalization
and reduce the risk of overfitting, we incorporated dropout layers with a dropout
rate of 30%, which was selected based on experimental validation and hyperparam-
eter optimization results. Convolutional or deconvolutional layers were deliberately
omitted, given that network traffic features lack the spatial dependence character-
istic of image data, making convolutional methods less suitable for this scenario.
The bottleneck (latent space) of the autoencoder consists of two neurons, form-
ing a highly compressed representation that efficiently captures core traffic patterns
critical for anomaly detection. The decoding layers mirror the encoding structure,
systematically reconstructing the input data. The output layer utilizes a sigmoid
activation function to match the scale and bounded nature of the original input fea-
tures. For training, an Adam optimizer with a learning rate of 0.001 and MSE loss
function was used, selected based on experimental performance. An early stopping
strategy was applied to further prevent overfitting, limiting training to a maximum
of 50 epochs with shuffled mini-batches of size 256.

LDA for Attack Classification Our primary objective is not only detecting
anomalous network traffic but also effectively classifying detected anomalies into
specific threat categories. Such classification capability is crucial, as it provides se-
curity administrators actionable insights, facilitating targeted and efficient security
interventions. Merely identifying anomalies without categorization limits the prac-
tical effectiveness of the detection system, since appropriate countermeasures often
depend on the type of attack.

We selected LDA as our classification approach for several key reasons. First,
LDA inherently provides interpretable results due to its linear decision boundaries,
aligning with our overarching goal of achieving explainability in anomaly detec-
tion [207, 210]. Second, previous studies demonstrate that LDA maintains robust
classification performance even when training data is limited or imbalanced, con-
ditions frequently encountered in cybersecurity contexts [211]. Finally, empirical
results from our preliminary experiments confirmed that LDA offers an effective bal-
ance between computational simplicity and classification accuracy, especially when
integrated with autoencoder-based anomaly detection. In particular, recent liter-
ature emphasizes that LDA tends to require significantly lower computational re-
sources compared to alternative classifiers like Support Vector Machine (SVM) or
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Random Forest, while still maintaining competitive accuracy on structured tabular
datasets [212, 211].

LDA operates by identifying linear combinations of features that optimally sep-
arate predefined classes. In our scenario, we explicitly construct these classes from
labeled datasets representing normal network traffic as well as known attack types,
such as “Attack X,” “Attack Y,” and so forth. Thus, after detecting anomalies using
the autoencoder (trained on normal traffic data), the LDA model classifies these
anomalies into known threat categories.

This hybrid AE-LDA methodology specifically addresses a key limitation of
autoencoder-based detection: although autoencoders effectively detect novel anoma-
lies (e.g., zero-day attacks), they cannot inherently classify anomalies into known
attack types. Conversely, LDA cannot identify entirely unknown threats without
labeled training data but excels at differentiating among known categories. Thus,
combining these two complementary approaches achieves robust anomaly detection
and clear threat classification simultaneously.

Mathematically, the LDA classification decision is based on Bayes’ rule, which
calculates the posterior probability of an anomaly belonging to a specific category
given its observed features. The decision rule used by LDA is:

Decision Rule = log
P (y|x)
P (¬y|x)

(5.4)

where P (y|x) represents the posterior probability that the detected anomaly belongs
to a specific attack class y, given the feature vector x.

The integration of anomaly detection and classification in our AE-LDA frame-
work is summarized clearly in Algorithm 5.

Algorithm 5: AE-LDA Algorithm
Input: Trained autoencoder on normal network traffic data, new data points,

anomaly threshold θ
Output: Flagged anomalies and their categories

1 foreach new data point do
2 Calculate the reconstruction error;
3 if error exceeds θ then
4 Flag the data point as an anomaly;
5 Use LDA to classify the anomaly into a specific category;

The overall workflow for anomaly detection and classification using AE-LDA is
illustrated in Fig. 5.4.

5.3.3 Experimental Evaluation

The proposed approach’s performance is evaluated across various dimensions to
validate its effectiveness in detecting and classifying network anomalies, focusing
on accuracy and real-time responsiveness. We exploit two different datasets (i.e.,
CICIDS2017 [213], Kitsune [104]) to illustrate the genericity of our approach and
its robustness to detect anomalies in a wide range of network activities and attack
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Figure 5.4: The Process Workflow of Anomaly Detection.

scenarios. We measure usual key performance metrics expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

Precision =
TP

TP + FP
(5.6)

Recall =
TP

TP + FN
(5.7)

F1− Score =
2× Precision×Recall

Precision+Recall
(5.8)

Prediction time =
Ttotal

Npackets/Npackets per flows
(5.9)

Where TP, TN, FP, and FN stand for respectively True Positives, True Negatives,
False Positives and False Negatives. Furthermore, accuracy measures the proportion
of correct predictions (both true positives and true negatives) out of all predictions
made by a model.

5.3.3.1 Preliminary Performance Evaluation

The study evaluates a model’s ability to detect anomalies and unknown attacks,
using benign traffic only for training. The model’s proficiency in detecting unknown
attacks is crucial for real-world applications, with an F1-score of 0.9417 and an accu-
racy of 0.9590 observed in experiments. This demonstrates the model’s robustness
and adaptability to evolving security challenges. The model’s efficacy in recognizing
zero-day attacks underpins advanced anomaly detection techniques. The Receiver
Operating Characteristic (ROC) curve shows (see Fig. 5.5) the balance between
sensitivity and specificity across operational thresholds, indicating consistent per-
formance under different conditions.

5.3.3.2 Performance on CICIDS2017 Dataset

We compare our proposed AE-LDA approach against three baseline models fre-
quently cited in anomaly detection literature, specifically chosen for their represen-
tative capabilities and relevance to our scenario:
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• One-Class SVM (OCSVM) [91] serves as a classical baseline, widely used
in cybersecurity due to its simplicity, interpretability, and established perfor-
mance for anomaly detection scenarios [199].

• Autoencoder combined with One-Class SVM (AE) [98] represents re-
cent advancements by leveraging deep learning (autoencoder) for feature ex-
traction combined with the robust classification capabilities of a one-class SVM
in the latent space. This method is an established benchmark demonstrating
improved performance over classical anomaly detection methods.

• Memory-Augmented Autoencoder (MemAE) [94] further advances
deep learning-based anomaly detection by integrating a memory module to
prevent the autoencoder from overly generalizing and thereby achieving supe-
rior detection performance over traditional autoencoder-based models.

These methods collectively cover classical machine learning techniques, standard
deep learning approaches, and state-of-the-art memory-augmented deep learning
methods, providing a thorough comparative perspective against which to evaluate
our AE-LDA model.

We evaluate the models using complementary metrics to provide a holistic per-
formance evaluation:

• Area Under the ROC Curve (AUROC) assesses overall discriminative
power in differentiating normal traffic from attacks. AUROC is widely re-
garded as an essential measure for anomaly detection since it effectively cap-
tures the trade-off between true positive rate and false positive rate [214].

• MSE measures the accuracy of data reconstruction by the autoencoder, re-
flecting the model’s fidelity in representing normal traffic patterns. A lower
MSE indicates higher accuracy in learning normal behavior patterns and thus
improved anomaly detection performance.
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• Detection Time (latency) is crucial for practical deployment in real-time
Intrusion Detection System (IDS), as it directly influences system responsive-
ness and the ability to mitigate security threats immediately upon detection.

Together, these metrics ensure that our evaluation covers accuracy (AUROC),
quality of learned representations (MSE), and practical viability in terms of speed
(detection latency).

Table 5.1 and Figure 5.6 present the comparative AUROC results for all evalu-
ated models, demonstrating the effectiveness of our AE-LDA approach.

Table 5.1: Comparison of AUC Performance for CICIDS2017 for Different Models.

Model AUROC

OCSVM [91] 0.7684
AE [98] 0.8758

MemAE [94] 0.9101
AE-LDA (Our Model) 0.9800

Figure 5.6: Comparative ROC Curve Analysis on CICIDS2017 Dataset.

Table 5.2 provides detailed metrics of AE-LDA across specific DoS attacks from
CICIDS2017, clearly demonstrating robust and consistent performance in terms of
accuracy, reconstruction error threshold, MSE, AUROC, and notably low detection
latency (<12 ms).

Table 5.2: Detailed Performance Metrics of AE-LDA on CICIDS2017 Attacks.

DoS Attacks Accuracy Reconstr. Error Threshold MSE AUC Detection Time (ms)

Hulk 0.9811 31.1040 4.1459 0.99 11.99

Goldeneye 0.9800 31.0997 1.0230 0.9772 11.93

Slowloris 0.9800 31.2328 0.8357 0.93 11.77

SlowHttpTest 0.9873 31.1841 0.7761 0.95 12.04
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As evidenced by the results, AE-LDA significantly outperforms competing
models, including MemAE, across key performance metrics. Its superior AUROC
performance (0.98 vs. 0.91 for MemAE) demonstrates better discriminative
capability. Additionally, AE-LDA maintains consistently low detection latency,
ensuring practical real-time deployment. Such robust performance sets a new
benchmark in IDS research, providing clear motivation for further development of
integrated autoencoder-classifier frameworks in cybersecurity.

It is worth noting that Griffin [104] didn’t provide their implementation. Thus,
we are not able to compare AE-LDA with Griffin using the CICIDS2017 dataset.

We provide full access to our code [215] on GitHub to ensure that other re-
searchers and practitioners can validate, reproduce, and build upon our work. This
transparency is, to our mind, crucial in the field of cybersecurity.

5.3.3.3 Performance on Kitsune Dataset

We compare AE-LDA with Griffin [105] and the approaches already included in
the original paper using the Kitsune dataset [104]. Since the code of Griffin is
not available online, we can only compare our solution with Griffin using the same
dataset, extracting their original results directly from their paper.

As depicted in Fig. 5.7 and Tab. 5.3, our model, incorporating an autoencoder
and LDA, exhibits a strong average detection capability across various network
scenarios. Griffin outperforms AE-LDA only for the detection of the SSD Flood
attack, which is also well detected by other competitors.

Figure 5.7: Performance Evaluation on the Kitsune Dataset.

The model integrates LDA with autoencoder, demonstrating high AUROC val-
ues for classifying network anomalies. It maintains consistent performance across
various attack scenarios and is openly available, proving its practical applicability
and reliability in real-world security contexts, highlighting its practical applicability
and reliability.
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Table 5.3: Detection Accuracy Comparison on Kitsune Dataset.

Method AE-LDA Griffin pcStream2 F_SVM F_RF

ARP MitM 0.9487 0.8048 0.7219 0.7452 0.6512
Video Injection 0.9007 0.8237 0.5816 0.6718 0.6139
Active Wiretap 0.9669 0.9188 0.7413 0.9281 0.7634

OS Scan 0.9713 0.9281 0.7513 0.7517 0.7212
SSDP Flood 0.9945 0.9999 0.9971 0.9876 0.8674

5.4 Considering Context

Our primary objective in proposing a community-based approach is to effectively de-
tect anomalies in industrial networks by analyzing communication patterns among
devices. Industrial systems typically exhibit strict and predictable communication
structures, where only limited device interactions are permissible. Identifying de-
viations from these patterns is crucial for promptly detecting potential threats,
intrusions, or operational anomalies. Traditional anomaly detection methods often
ignore the relational and contextual aspects of communication patterns, leading to
increased false positives or missed threats.

To address this gap, our approach leverages community detection techniques
within multi-edge graphs, explicitly integrating contextual information about device
interactions. Such a graph-based approach facilitates detecting clusters of closely
interacting devices and allows monitoring their evolution over time. Changes in
these communication communities can signal anomalous or malicious behavior, thus
enhancing detection precision.

We specifically adopt a multi-edge graph approach for community detection be-
cause it naturally captures complex relationships among industrial network end-
points. Each edge type corresponds to a different dimension of interaction between
devices, enabling the representation of multi-faceted relationships, such as temporal
patterns, behavioral interactions, and policy constraints.

Importantly, we incorporate contextual information, defined as attributes de-
scribing the operational environment, timing, or situational circumstances influenc-
ing the behavior of network interactions. Contextual integration is essential since
normal communication patterns in industrial environments heavily depend on fac-
tors like production schedules, expected device roles, and predefined policies. By
explicitly modeling these contextual factors, our approach significantly improves
anomaly detection accuracy and reduces false alarms.

Our proposed multi-edge graph considers the following specific feature types:

• Network Communication Features: These include direct metrics from
packet flows, protocols, and header-level attributes (e.g., packet size, inter-
arrival times). These features reflect fundamental communication patterns
crucial for baseline traffic behavior identification.

• Contextual Features: Attributes capturing temporal and behavioral dy-
namics, such as operational schedules, interaction timing, or typical device
communication sequences. These features allow the detection algorithm to
distinguish routine operational variations from truly anomalous activities.
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• Knowledge-Based Features: These encode expected norms, logical con-
straints, and policy-driven rules governing permissible communications be-
tween devices. Examples include:

– Packet Size Averages (Pkt Size Avg, Fwd Seg Size Avg, Bwd Seg Size
Avg), which represent expected typical data transfer volumes.

– Flow Flags (e.g., SYN, ACK), representing expected protocol behaviors
aligned with operational rules and device roles.

We aggregate these features at both the packet and flow levels. Flow-level ag-
gregation provides higher-level insights into interaction patterns, effectively summa-
rizing behaviors over broader communication sequences. Features like inter-arrival
times and protocol flags specifically enhance our capacity to identify anomalous be-
haviors indicative of security threats, including unexpected traffic surges or misuse
of network protocols.

By combining graph-based community detection with contextual and knowledge-
driven insights, our method provides a robust anomaly detection approach tailored
specifically to industrial network constraints, significantly surpassing traditional
methods reliant solely on statistical deviations from baseline traffic.

5.4.1 Context-Aware Community-Based Multi-Graph Anomaly
Detection

This section introduces our pipeline for anomaly detection, integrating multi-edge
graph construction, community detection, and a HeteroGNN [216].
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Figure 5.8: Steps of Our Community-Based Anomaly Detection Approach.

5.4.1.1 Big Picture and Steps Orchestration

The pipeline, illustrated in Figure 5.8, combines temporal, contextual, and structural
data to detect anomalies in dynamic network environments. Algorithm 6 provides
an overarching view of how these components interact.

The pipeline begins with network traffic data collection, followed by preprocess-
ing to retain relevant features. The preprocessed data is used to construct a time-
evolving multi-edge graph Gt = (Vt, Et), where Vt represents the nodes (IP entities)
and Et denotes edges capturing multiple interaction types. Each edge type (commu-
nication, context, knowledge) is annotated with weights computed from normalized
features, ensuring a detailed representation of network interactions. Communities
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are then detected within Gt to identify clusters of nodes with similar patterns, pro-
viding contextual insights into network behavior.

The enriched graph, with annotated nodes and edges, is processed using a Het-
eroGNN for edge classification, flagging anomalous edges. The pipeline operates
in a sliding window framework [t −W, t], ensuring real-time updates as new data
arrives.

Algorithm 6: Sliding Window Orchestration
Input: W : window size, ∆t: frequency of updates, HeteroGNN model (trained or

partially trained), θ: anomaly threshold
Output: Anomalous edges flagged over time

1 Initialize B0 ← ∅ ; // Initial flow buffer
2 t← 0;
3 while True do
4 Wait until t+∆t;
5 t← t+∆t;
6 Update buffer: Remove flows older than t−W , add new arrivals ∆t;
7 Build Gt(Vt, Et) using Algorithm 7;
8 Run label propagation: Compute community labels πt;
9 foreach v ∈ Vt do

10 Xt(v).community_label← πt(v);

11 Convert (Vt, Et, Xt) to HeteroData structure;
12 Perform inference with HeteroGNN: Zt ← HeteroGNN(Xt, Et);
13 Detect anomalous edges:;
14 foreach (u, v, k) ∈ Et do
15 pattack ← Softmax(EdgeClassify(Zt(u), Zt(v)))[1];
16 if pattack > θ then
17 Flag edge (u, v, k) as anomalous;

5.4.1.2 Time-Dependent Multi-Graph Construction

To detect communities, we construct a graph representation of the network and the
different interactions between the different IP entities. More precisely, we rely on
the multigraph structure since we need to consider multiple edges between the same
pair of vertices, corresponding to different types of interaction.

The proposed framework is designed to model and analyze network dynamics by
integrating temporal and structural data derived from network traffic. The frame-
work captures the evolution of a graph Gt over time, resulting in a sequence of
graphs {Gt} that reflects the temporal evolution of the network communications.

We adopt a sliding window strategy over the network flows, ensuring that each
graph Gt(Vt, Et) reflects the most recent traffic within a chosen interval. At every
update:

1. Collect flows from the last window size W (e.g., one hour).

2. Rebuild or update the multi-edge graph Gt, adding nodes and edges as
described below.
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3. Run community detection (label propagation) to assign node labels.

4. Use a heterogeneous GNN to identify anomalies.

Constructing the Time-Evolving Multi-Edge Graph

To capture changes in network communications, we construct a sequence of multi-
edge graphs {Gt}, where each graph represents a time interval t.

Nodes: For each time t, Vt is the set of unique IP endpoints observed in the window
[t−W, t]. Formally,

Vt = {SrcIP,DstIP | flows in [t−W, t]}. (5.10)

Edges: Et is a multiset of edges, allowing multiple distinct relationships (e.g., com-
munication, context, knowledge) between the same pair of nodes (u, v). Each
edge is labeled by its type k, reflecting the nature of the interaction:

∀u, v ∈ Vt, Euv,t = { ek | ek = (u, v, k)∧k ∈ {comm, context, knowledge}}. (5.11)

Hence, Et =
⋃

u,v Euv,t.

At the beginning of each time interval, the multi-edge graph is constructed based
on the current flow records in the buffer. The rolling window mechanism ensures
that only flows within the window [t−W, t] are used. Algorithm 7 outlines the steps
to construct the time-evolving multi-edge graph.

Algorithm 7: Rolling Window Multi-Edge Graph Creation
Input: Bt: buffer of flow records in [t−W, t], W : window size, ∆t: newly arrived

flows in [t−∆t, t]
Output: Gt(Vt, Et): multi-edge graph for time t

1 Step 1: Update Buffer;
2 Remove records in Bt−∆t older than t−W ;
3 Bt ←

(
Bt−∆t \ {r | r.time < t−W}

)
∪∆t;

4 Step 2: Build Multi-Edge Graph;
5 Initialize Vt ← ∅, Et ← ∅;
6 foreach r ∈ Bt do
7 u← r.SrcIP, v ← r.DstIP;
8 Vt ← Vt ∪ {u, v};
9 Insert Edge: Et ← Et ∪ {(u, v, k)}, where k is based on flow characteristics:;

10 if flow represents Network communication then
11 set k = comm;
12 else if flow provides contextual data then
13 set k = context;
14 else if flow involves knowledge-based interactions then
15 set k = knowledge;

16 Define Gt(Vt, Et) as the multi-edge graph for time t;
17 return Gt(Vt, Et);
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Valuation Function and Edge Types

We define a valuation function W : Et → R to compute weights for the edges in the
multi-edge graph. The edges are partitioned into three types:

Ecomm, Econtext, Eknowledge.

The valuation function assigns a weight W (u, v, k) based on the edge type k, as
follows:

W (u, v, k) =


W (comm)(u, v, k), (u, v, k) ∈ Ecomm,

W (context)(u, v, k), (u, v, k) ∈ Econtext,

W (know)(u, v, k), (u, v, k) ∈ Eknowledge.

(5.12)

Each weight W (·) is computed as a weighted sum of normalized features, cap-
turing specific attributes of the edge:

W (X)(u, v, k) =

mX∑
i=1

αX
i ·Norm

(
xX
i (u, v, k)

)
, (5.13)

where:

• mX: Number of features for edges of the context X.

• xX
i (u, v, k): The i-th feature associated with the edge (u, v, k) of context X.

• Norm(·): A normalization function to scale features, such as min-max normal-
ization.

• αX
i : Coefficients representing the importance of each feature for context X.

This flexible weighting mechanism ensures that each edge type contributes mean-
ingfully to the analysis, reflecting the nature of interactions captured by the graph.

5.4.1.3 Community Detection in the Graph of Interactions

After the graph of interactions has been constructed, we need to detect communities,
i.e., nodes that form a cluster because they exhibit similar communication patterns.
The community detection algorithm has to provide near real-time calculation. We
discard spinglass [217] and walktrap [218] algorithms since they cannot handle un-
connected graphs. We compare the computation time of the following community
detection algorithms:

Louvain [219] applies a greedy approach to construct communities based on a mod-
ularity metric. This metric compares the density of edges inside vs. outside
the community.

Infomap [220] explores the graph with a random walk: a region where the random
walker stays longer as statistically expected is considered a community.

LPA [221] (Algo. 8) assigns each node a label, updating them based on neighboring
labels to form communities with strong internal connections.
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Table 5.4: Comparison of Community Detection Algorithms on TON-IoT Dataset.

Algorithm N. of Communities Detected Processing time

Louvain 31 14.65 sec
Infomap 72 3028.03 sec

Label Propagation 48 1.7 sec

Table 5.4 illustrates the computation time of the different community detection
algorithms with the TON-IoT dataset. The dataset includes diverse IoT traffic,
including both benign and attack scenarios. Infomap is slow, taking over 50 minutes
to identify communities. Louvain is faster but computationally expensive, taking
around 15 seconds. Only Label Propagation Algorithm (LPA) can work in real-
time, achieving close to 1s latency. The LPA technique is proposed as the best
trade-off between community detection performance and execution speed. However,
the approach is independent of the specific community detection algorithm used,
so others may opt for higher accuracy in complex graphs at the cost of increased
computational demands.

Community Detection via Label Propagation

For this task, we use LPA, which is well-suited for real-time applications and directed
graphs.

After constructing Gt, we apply the LPA to detect communities within the graph.
In our use case, the input to LPA includes the multi-edge graph Gt and initial labels
for each node, typically set as the node’s unique identifier.

The LPA updates node labels iteratively, adopting the most frequent label among
neighbors. In directed multi-edge graphs, edge directionality is considered for neigh-
bor relationships. The algorithm continues until labels stabilize, no further changes
occur, and communities are identified.

Algorithm 8 provides the pseudocode for our adaptation of LPA to handle di-
rected, multi-edge graphs efficiently.

The output of LPA is a set of community labels π(v) for each node v ∈ Vt. Nodes
sharing the same label are considered part of the same community. These labels are
critical for the rest of the pipeline:

The HeteroGNN algorithm uses community labels as node features to enhance
the graph’s structural and contextual information, enabling better capture of node-
edge relationships. The community structure provides insights into normal network
behavior, highlighting anomalies as edges deviating from expected patterns. This
step is crucial for improving the classification of edges as benign or anomalous,
ensuring a comprehensive understanding of both structural and behavioral network
patterns in the anomaly detection process.

5.4.1.4 Heterogeneous Graph Neural Network (HeteroGNN) for
Anomaly Detection

The final stage of our anomaly detection pipeline employs a Heterogeneous Graph
Neural Network (HeteroGNN) to classify network interactions (flows) as either be-



86 Chapter 5. Anomaly Detection and Anomaly Assessment in IIoT

Algorithm 8: Label Propagation Algorithm for Community Detection
Input: Graph Gt(Vt, Et); maximum iterations Mmax

Output: A labeling function π : Vt → C (community IDs)
1 Initialization:;
2 foreach v ∈ Vt do
3 π(v)← uniqueLabel(v);

4 Repeat up to Mmax times:;
5 changed← false;
6 foreach v ∈ Vt (in random order) do
7 Let InNeighbors(v) = {u : (u→ v, k) ∈ Et} ; // Collect inbound neighbors
8 if InNeighbors(v) is not empty then
9 ℓ← most frequent label among {π(u) : u ∈ InNeighbors(v)};

10 if ℓ ̸= π(v) then
11 π(v)← ℓ;
12 changed← true;

13 if changed = false then
14 break;

nign or anomalous. IIoT environments exhibit complex interactions involving di-
verse devices and contextual dependencies. Standard GNNs, which assume homoge-
neous relationships, fall short in capturing the distinct types of interactions typical
in IIoT networks. Therefore, a specialized heterogeneous graph approach is needed,
enabling the differentiation and independent processing of multiple edge types (com-
munication, context, and knowledge).

We specifically adopt a HeteroGNN due to its ability to independently process
and combine different edge types. Traditional GNNs treat all edges equally, losing
critical domain-specific distinctions. In contrast, HeteroGNNs use multiple convo-
lutional layers tailored explicitly for each edge type, effectively capturing unique
contributions of each relationship type [222]. By clearly distinguishing between dif-
ferent interactions, the model improves its anomaly detection accuracy, specifically
in complex environments like IIoT networks where both structural and contextual
anomalies occur.

Our heterogeneous graph Gt consists of nodes representing network hosts (de-
vices) and multiple types of edges representing distinct interaction categories:

• Communication Edges: Represent direct data exchanges between devices,
characterized by network traffic features (packet count, byte size, etc.).

• Context Edges: Encode contextual relationships based on temporal or op-
erational similarities, capturing conditions such as operational timing, shared
environmental conditions, or correlated behaviors.

• Knowledge Edges: Represent logical or policy-defined relationships between
devices, derived from predefined operational rules or configurations (e.g., al-
lowable protocol interactions, expected communication roles).

The HeteroGNN architecture applies edge-type-specific Graph Convolutional
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Network (GCN) layers [223]. Mathematically, a single GCN convolutional oper-
ation for node i and edge type r is expressed as:

h
(l+1,r)
i = σ

(∑
j∈Nr(i)

1√
|Nr(i)||Nr(j)|

W (l,r)h
(l)
j

)
,

where:

• h
(l,r)
i denotes the node embedding of node i for edge type r at layer l.

• Nr(i) denotes neighbors of node i connected by edges of type r.

• W (l,r) is a learnable weight matrix specific to edge type r at layer l.

• σ(·) is an activation function (e.g., ReLU).

Separate GCNConv layers compute embeddings independently for communication,
context, and knowledge edges. Each convolution captures the unique structural
information from its corresponding edge type.

The input node features include:

• Community Label: Identifies the device community or cluster, capturing
interaction patterns that are normal within communities but abnormal across
boundaries.

• Node Degrees (In-Degree and Out-Degree): Representing the number
of incoming and outgoing interactions, useful in detecting abnormal activities
or attacks that cause unusual changes in device activity levels.

These features enhance the sensitivity of the model to structural and temporal
anomalies, reflecting the dynamic nature of industrial IoT interactions.

As depicted in Figure 5.9, our model’s workflow is structured as follows:

1. Independent Convolutions: Each edge type (communication, context,
knowledge) is independently processed through dedicated GCN convolutional
layers, generating specialized embeddings.

2. Feature Refinement: The embeddings are normalized using batch normal-
ization layers and non-linear transformations (ReLU activation) to stabilize
training and introduce non-linearity.

3. Embedding Aggregation: Refined embeddings from all edge types are ag-
gregated through summation, forming comprehensive and unified node em-
beddings.

4. Dimension Reduction and Classification: A Multi-Layer Perceptron
(MLP) reduces embedding dimensionality and extracts discriminative features.
Edge classification is performed by concatenating source and destination node
embeddings and passing them through an edge-specific classification head.
The head outputs a probability indicating the likelihood of anomalous inter-
action.



88 Chapter 5. Anomaly Detection and Anomaly Assessment in IIoT

Input

Node and
Feature
matrix

Multi-edges
and Feature

matrix

Network
Edges

Conv 2

GCN

GCN

GCN

ReLU

ReLU

ReLU

Context
Edges

Knowledge
Edges

Aggregated
Embeddings

Aggregation

Unified
embedding that

combine all edge
type

Node Embeddings
(64-dim)

Node Embeddings
(64-dim)

Node Embeddings
(64-dim)

Node Embedding

Conv 1

GCN

GCN

GCN

Edge
Classification

Normal

Anomaly

Figure 5.9: Our Proposed GNN Model Architecture.

The model is trained using a focal loss function [224], specifically chosen for its
robustness in scenarios with class imbalance (common in anomaly detection tasks):
FocalLoss(pt) = −αt(1− pt)

γ log(pt), where pt represents the predicted probability
for the true class, αt balances class weights, and γ focuses training on harder-to-
classify samples.

Algorithm 9 summarizes our HeteroGNN model processing.

Algorithm 9: HeteroGNN for Edge Anomaly Detection
Input: Graph Gt(V,E), Node features (community labels, degrees),

Edge-type-specific adjacency matrices, Focal loss hyperparameters (α, γ)
Output: Edge anomaly predictions (probabilities)

1 foreach edge type r ∈ {communication, context, knowledge} do
2 Compute node embeddings with GCN convolution for type r using:

h
(l+1,r)
i = σ

 ∑
j∈Nr(i)

1√
|Nr(i)||Nr(j)|

W (l,r)h
(l)
j


3 Apply batch normalization and ReLU activation to embeddings of each edge type;
4 Aggregate embeddings from all edge types via summation to obtain unified node

embeddings;
5 Reduce dimensionality of embeddings using a Multi-Layer Perceptron (MLP);
6 foreach edge (u, v) ∈ E do
7 Concatenate embeddings of source node u and destination node v;
8 Compute anomaly probability with edge-specific classification head;

9 Compute focal loss:

FocalLoss(pt) = −αt(1− pt)
γ log(pt)

10 Backpropagate loss and update model parameters.

By leveraging multiple graph convolutional layers tailored to different inter-
action types and incorporating contextual and structural features explicitly, our
HeteroGNN approach significantly improves anomaly detection accuracy in com-
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plex industrial IoT environments. Unlike homogeneous GNN models, our heteroge-
neous approach effectively captures subtle patterns indicative of anomalous behav-
iors across multiple dimensions of interactions.

5.4.2 Evaluation

We first evaluate the performance of our approach in isolation, and then compare
our solution with the state-of-the-art techniques with two datasets. This evaluation
emphasizes both accuracy and real-time responsiveness. The model was trained us-
ing a mobile computing platform Apple M2 Pro with 10 CPU cores and 32 GB RAM.
To ascertain the robustness of our approach, the model underwent training over 50
epochs, allowing us to extensively evaluate its learning capability and performance
stability over time.

5.4.3 Method

We generate time-based snapshots of the network to capture temporal dynamics and
construct multi-edge graphs with distinct edge types (e.g., network communication,
context, knowledge). Each node is labeled based on the community it belongs to,
facilitating anomaly detection. Figure 5.10 illustrates our model, including all its
components. This approach not only enhances the detection of network anomalies
but also adapts to evolving traffic patterns, ensuring robust security in dynamic
network environments.

Traffic
Capture

Graph  for Test

Dataset
order by

Time

30% of
Flows

Graph for Train

Network info
Knowledge info

Context info

Update nodes with community label

Community
Detection

Community
Detection

Update nodes with community label

Train HeteroGNN Test HeteroGNN

Figure 5.10: Integrated Framework for HeteroGNN Anomaly Detection.

5.4.3.1 Dataset Preparation

Our performance evaluation relies on the popular CIC-ToN-IoT [225] and CIC-
IDS2017 [226] datasets. These datasets are widely used in the literature as they
regroup both benign traffic and simulated IoT specific attacks. They mimic a re-
alistic network environment by including telemetry data of IoT services, network
traffic, and operating system logs.

To clarify the scale and difficulty of the classification task, we explicitly report
the anomaly distribution in each dataset.
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CIC-IDS2017: This dataset comprises 2,830,743 bidirectional flow records gen-
erated using CIC-FlowMeter. Among these, 557,646 records (≈ 19.7%) are la-
beled as attacks. The remaining 2,273,097 records correspond to benign traffic.
The attack flows span diverse categories, with the most prevalent being PortScan
(≈ 158, 000), DDoS (≈ 162, 000), DoS-Hulk (≈ 128, 000), and Brute-force (FTP +
SSH, ≈ 13, 000), followed by Botnet (≈ 1, 900), and a small number of Web and
Infiltration attacks (fewer than 10,000 total).

CIC-ToN-IoT: We used the CIC-FlowMeter version of the dataset containing
1,846,373 bidirectional flow records. Of these, 461,934 records (25%) are labeled as
attacks, while 1,384,439 are benign. The attack traffic includes DDoS (193,252),
Scanning (105,699), Injection (72,534), Backdoor (19,126), DoS (19,243), Password
cracking (15,277), MITM (1,348), and Ransomware (149).

Stratified sampling was used to preserve class proportions during training and
testing splits (70/30), ensuring consistent evaluation conditions.

We chose these datasets to showcase our approach’s ability to handle large-scale
networks and process extensive data volumes in dynamic environments, effectively
addressing diverse and complex cyber threats. The CICIDS2017 dataset comprises
10,000 nodes and 2.8 million edges. TON-IoT, on the other hand, boasts 5,000
nodes and approximately 19.4 million edges.

We acknowledge that the baseline methods used differ slightly between the CIC-
IDS2017 and CIC-ToN-IoT evaluations. This decision was driven by compatibil-
ity constraints and implementation availability for certain models across specific
dataset formats. For instance, DyEdgeGAT is designed for multivariate sensor time-
series data and is not readily applicable to flow-based datasets such as CIC-IDS2017
without significant preprocessing or retraining. Despite this, we ensured that each
dataset comparison included both graph-based and non-graph-based state-of-the-art
models to support meaningful performance benchmarking.

5.4.3.2 Features Selection

In this study, we use the Gini index, a criterion in the Classification and Regression
Trees (CART) algorithm, to identify relevant features for anomaly detection. It
quantifies a node’s impurity in a decision tree, helping distinguish normal from
abnormal traffic. The features are ranked based on their importance to enhance the
model’s ability to recognize anomalies.

The Gini index for a set S containing classes C is formally defined as follows:

Gini(S) = 1−
C∑
i=1

p2i (5.14)

where pi is the proportion of samples in class i within the set S.

Relevant Features in the Dataset

The results presented in Figure 5.11 offer valuable insights into the key features for
anomaly detection. Using the Gini Index, the analysis ranked feature importance
from the CIC-ToN-IoT and CICIDS2017 datasets, identifying critical factors such
as source and destination ports, forward packet length mean, and protocol-specific
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Figure 5.11: Top 25 Features Importance Based on Their Gini Index.

flags. These features highlight the significance of service-level attributes and com-
munication patterns in distinguishing anomalous traffic. To enhance anomaly de-
tection, the features were grouped into three categories for constructing multi-edge
graphs:

1. Network Communication Features: Metrics like flow duration and packet
counts represent communication intensity and patterns.

2. Contextual Features: Variables such as inter-arrival times and idle periods
reveal behavioral and temporal anomalies.

3. Knowledge-Based Features: Attributes like packet size statistics and protocol
flags encode logical relationships and expected norms.

This structured categorization facilitated the integration of feature importance into
graph construction, improving the model’s ability to detect diverse attack vectors
across dynamic IoT networks.

5.4.3.3 Evaluation and Metrics

Table 5.5 summarizes the architecture and training parameters used for the het-
erogeneous GNN model. These parameters are derived from the implementation,
ensuring a balance between model complexity and computational efficiency. The
configuration, including the use of Focal Loss and Adam optimizer, is specifically
tailored to handle class imbalance and dynamic graph data, making the model ro-
bust for detecting anomalies in diverse IoT environments.

The model’s performance is evaluated using Area Under the Curve (AUC), ROC
curve as well as precision, recall and F1-Score.
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Table 5.5: Summary of GNN Architecture and Training Parameters.

Parameter Value

Hidden Channels 64
Activation ReLU
Learning Rate 0.001
Weight Decay 10−3

Optimizer Adam
Loss Function Focal Loss (with α = 0.25, γ = 2.0)
Epochs 70

(a) CIC-IDS2017 (b) CIC-ToN-IoT

Figure 5.12: Network Graph of Communities.

5.4.3.4 Communities

We first illustrate in Figures 5.12a and 5.12b the communities identified in the two
datasets used for the evaluation. In the CIC-IDS2017 dataset, the data is highly im-
balanced, and the network lacks diversity in communication patterns (Figure 5.12a).
The network exhibits a centralized structure, characterized by a small number of
highly connected hubs and limited interconnectivity among other nodes. Specifically,
only five communities in the network contain more than three nodes, indicating a
sparse and hierarchical communication pattern.

In contrast, the CIC-ToN-IoT dataset exhibits a more balanced structure, with
48 communities with three or more members, indicating a broader, distributed net-
work topology (Figure 5.12b). This network is characterized by more communities,
higher interconnectivity, and less reliance on centralized hubs, resulting in a more
decentralized and heterogeneous communication structure.

As it shows in Figures 5.16a and 5.16c the model’s accuracy in distinguishing
benign from attack edges is enhanced when community detection is included. This
includes richer node features and embeddings, as shown in Figures 5.16a confusion
matrix resulting in fewer false positives and false negatives. This leads to higher
precision and recall. However, removing community information reduces the model’s
ability to correctly classify attacks due to the loss of helpful structural context.
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Table 5.6: Comparison of Edge Configurations for Anomaly Detection.

Edge Configuration Precision Recall F1-Score Accuracy AUC

IDS2017 2 Edges 0.8996 1.0000 0.9472 0.9442 0.9973
IDS2017 3 Edges 0.9972 1.0000 0.9986 0.9986 0.9973
ToN 2 Edges 0.9778 1.0000 0.9888 0.9965 1.0000
ToN 3 Edges 0.9888 1.0000 0.9944 0.9982 1.0000
ToN No community 0.9615 0.8523 0.9036 0.9719 0.9922

5.4.3.5 Impact of the Number of Contexts

We first investigate the relevance of our context-aware design. Table 5.6 illustrates
the efficiency of the method to detect anomalies when considering only 2 types
of context (Network Communication, knowledge) vs. 3 types of context (Network
Communication, context, knowledge).

In the CICIDS2017 dataset, precision increases from 89.96% in the 2-edge con-
figuration to 99.72% in the 3-edge configuration, while the F1-score improves signif-
icantly from 94.72% to 99.86%. Similarly, for the CIC-ToN-IoT dataset, the preci-
sion improves from 97.78% to 98.88%, with the F1-score increasing from 98.88% to
99.44%. Importantly, recall remains consistently at 100% across all configurations,
indicating the model’s robustness in detecting true anomalies.

We can conclude that incorporating all contexts together enhances Precision,
F1-score, and Accuracy. This demonstrates the agility of our architecture in accom-
modating multiple contexts and highlights the importance of context-aware decision-
making in reducing false positives. Notably, this improvement in anomaly detection
capability is achieved without compromising recall.

(a) 3 Edges (b) 2 Edges

Figure 5.13: Comparative ROC Curve for CIC-IDS2017 Dataset.

Figures 5.13a and 5.13b show the comparative ROC curves for the CIC-IDS2017
dataset. To further analyze these outcomes, Figures 5.14a and 5.14b present the cor-
responding confusion matrices. The 3-edge model exhibits fewer false positives and
false negatives, illustrating its robust classification of normal versus attack traffic.
While the 2-edge model remains competent, its slightly higher number of misclas-
sifications underscores the benefit of leveraging a richer, more interconnected rep-
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(a) 3 Edges (b) 2 Edges

Figure 5.14: Comparative Confusion Matrix for CIC-IDS2017 Dataset.

resentation in the 3-edge scenario. Hence, for this more heterogeneous dataset, the
additional edge information clearly enhances the model’s ability to detect anomalies
accurately.

Both variants again perform well, with the 3-edge model achieving an F1 score of
0.9944 and the 2-edge model attaining an F1 score of 0.9888. Although the improve-
ment of the 3-edge approach is not as dramatic as in the CIC-IDS2017 case, this
narrower gap suggests that IoT traffic patterns in the CIC-ToN-IoT dataset are rel-
atively straightforward to model. Still, capturing additional structural relationships
through a third edge slightly strengthens the model’s discrimination capability.

(a) 3 Edges (b) 2 Edges

Figure 5.15: Comparative ROC Curve for CIC-ToN-IoT Dataset.

The confusion matrices in Figures 5.16a and 5.16b confirm these observations,
revealing that the 3-edge approach yields marginally fewer misclassifications than
the 2-edge approach. This translates to more consistent detection of intrusions
with minimal false alerts. Despite the reduced margin of difference, the results
demonstrate that expanding the network graph representation from two edges to
three edges can still confer measurable advantages in capturing subtle anomalies
inherent to IoT systems.

Thus, our findings reinforce that the proposed 3-edge model outperforms the 2-
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(a) 3 Edges. (b) 2 Edges.

(c) 3 Edges Without Considering
Community Detection.

Figure 5.16: Comparative Confusion Matrix for CIC-ToN-IoT Dataset.

edge version across both benchmarks. The performance benefit is more pronounced
in the CIC-IDS2017 dataset, which features a broader range of attack types and
traffic patterns, thereby amplifying the value of additional structural information
in the model. In contrast, the CIC-ToN-IoT dataset presents a narrower behavioral
spectrum, but still benefits from more extensive graph connections. These results
validate our hypothesis that incorporating a richer graph structure enables improved
anomaly detection, particularly in complex network environments.

5.4.3.6 Impact of the Time Scale

Based on the performance data provided (Figure 5.17), we can observe significant
improvements in the system’s efficiency when moving from larger time intervals
(weekly) down to smaller intervals (seconds). This suggests that the system is
highly optimized for real-time processing, particularly in scenarios requiring fre-
quent updates. The performance data reveals a clear trend of decreasing execution
times across various tasks as the time intervals shorten from weekly to secondly.
Graph creation time drops from 62.1417 seconds weekly to just 0.0152 seconds at
the secondly level. Similarly, label propagation time decreases from 0.052 seconds
to 0.00002 seconds, and graph update time reduces from 0.504 seconds to 0.00051
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Figure 5.17: Performance Trends Across Different Time Scales.

seconds.
A crucial measure is the test time of 0.0075 seconds, which represents the time

taken to run the GNN model and determine whether the given traffic is anomalous.
This demonstrates the system’s real-time capability in anomaly detection, processing
all operations swiftly and efficiently, making it well-suited for environments requiring
rapid, high-frequency updates with minimal delay.

5.4.3.7 Comparison With State-Of-The-Art Techniques

We compare our proposed AE-LDA model against existing state-of-the-art anomaly
detection methods evaluated on the CIC-ToN-IoT and CIC-IDS2017 datasets. To
ensure fairness and reproducibility, we did not re-implement competing methods,
but instead directly report their published performance metrics from existing peer-
reviewed studies.

Performance comparisons focus exclusively on AUROC scores, as they provide a
standardized and widely accepted measure for anomaly detection capability. While
hardware specifications, such as CPU and GPU details, are reported here for com-
pleteness and transparency regarding our own implementation environment (Intel
Xeon Gold 6330 @ 2.00 GHz, RTX 3090 GPU, and 24 GB of memory), these charac-
teristics do not directly affect our comparative analysis, since our primary objective
is evaluating predictive accuracy rather than computational efficiency.
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CIC-ToN-IoT Dataset

Figure 5.18b contrasts the F1 scores of multiple anomaly detection approaches ap-
plied to the CIC-ToN-IoT dataset. We incorporate results for Spatial [227], DL-
GNN [228], E-GRACLN [112], E-GraphSAGE [111], and Multigraph [113]. Notably,
E-GraphSAGE attains a commendable F1 score of 96.8%, highlighting the value of
graph-based message passing in capturing relationships among IoT nodes. Mean-
while, DLGNN (95.79%) and Spatial (92.37%) demonstrate robust but slightly lower
performance, suggesting that while these architectures handle IoT-related features
effectively, they may miss certain deeper relational or contextual cues. Multigraph
achieves a particularly high F1 score of 99.55%, indicating that additional layers of
graph abstraction can significantly boost detection capabilities in IoT settings.

(a) CIC-IDS2017
(b) CIC-ToN-IoT

Figure 5.18: Comparison of Different Methods.

CIC-IDS2017 Dataset

Figure 5.18a illustrates the F1 performance on the CIC-IDS2017 dataset for our
approach in comparison with FN-GNN [229], AnoGLA [230], and Sec2graph [110].
Both FN-GNN and AnoGLA surpass 99% F1, reflecting their sophisticated graph-
based learning and attention mechanisms tailored for cybersecurity data. By con-
trast, Sec2graph achieves 94.07%, which is competitive but indicates potential lim-
itations in capturing a broader range of threat behaviors within enterprise traffic.
Our approach reaches an F1 score of 99.86%, improving slightly over FN-GNN and
AnoGLA, and markedly exceeding Sec2graph.

While CIC-ToN-IoT traffic often displays more homogeneous, "community-like"
structures where device behaviors and protocols follow narrower patterns, the CIC-
IDS2017 dataset encompasses diverse enterprise traffic spanning multiple services,
protocols, and user behaviors. Such variability can make classification more chal-
lenging, as malicious flows might resemble legitimate but less common activities.
Nonetheless, our context-aware and community-enhanced graph construction proves
equally effective here. By identifying cohesive sub-networks and analyzing node-level
anomalies within these communities, our method achieves robust detection despite
the dataset’s more heterogeneous nature.
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In Figure 5.18a, the IoT-based dataset (CIC-ToN-IoT) shows more consistent,
community-like structures (see Figure 5.12) than the diverse enterprise-style traffic
in Figure 5.18b (CIC-IDS2017). This tighter distribution of “normal” IoT traffic
makes anomalies stand out more distinctly, leading to better classification perfor-
mance. By contrast, enterprise traffic encompasses various protocols and behaviors,
causing more overlap between benign and malicious samples. Additionally, the flow-
based time granularity in both figures, typically on the order of 1–5 seconds, ensures
that each node or point represents an aggregated snapshot of network activity, fur-
ther emphasizing the clear structural patterns in the IoT dataset.

Finally, the high F1 scores observed underscore how effectively our approach bal-
ances precision and recall. Particularly in security contexts, an accurate detection
system must not only identify threats but do so with minimal false alarms. Exces-
sive false positives can overwhelm analysts, while false negatives allow intrusions to
remain undetected. That our model consistently reports near-ideal F1 scores (above
99%) in two very different environments speaks to its versatility and potential readi-
ness for production environments. These outcomes lay a foundation for future work
aimed at extending the framework to more granular real-time intrusion detection,
cross-dataset transfer learning, or distributed implementations that further reduce
the computational overhead on any single node.

5.5 Conclusion

This chapter introduced two contributions aimed at addressing critical aspects of
anomaly detection and assessment within IIoT networks, emphasizing the impor-
tance of real-time detection to ensure robust security in industrial environments.
The first contribution, “Proposed Network Anomaly Detection,” combined deep-
learning autoencoders with linear discriminant analysis, significantly enhancing
anomaly detection by effectively identifying previously unknown network threats,
including zero-day attacks.

The second contribution, “Context-Aware Behavioral Anomaly Detection,” ad-
vanced the anomaly detection process by integrating contextual insights and
community-based graph detection techniques. Unlike traditional methods, this ap-
proach identifies anomalies by examining changes in device interactions, effectively
capturing complex behavioral patterns.

However, Despite demonstrating robust performance, the AE-LDA anomaly de-
tection approach is limited by its focus on network features alone – thereby neglect-
ing critical contextual cues needed for a comprehensive analysis. Additionally, the
context-aware behavioral approach relies heavily on the quality and availability of
accurate contextual data, which may pose challenges in dynamic or unpredictable
industrial settings.

This chapter introduced advanced anomaly detection methods tailored explicitly
to industrial IoT environments, demonstrating their effectiveness in reliably identi-
fying security threats and anomalies in complex network structures. By effectively
distinguishing normal operational variations from genuine attacks, these anomaly
detection approaches provide a crucial foundational layer of security.

Building upon this robust anomaly detection foundation, the next phases of this
thesis extend the scope of investigation to integrated and dynamic security solu-
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tions. Specifically, we explore how anomaly detection outcomes can be seamlessly
integrated with blockchain technologies for transparent, immutable security moni-
toring, and how zero trust principles can further enhance security by continuously
validating interactions within industrial networks. These advanced approaches aim
to provide comprehensive, resilient, and adaptable cybersecurity solutions suited for
evolving industrial environments.
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6.1 Introduction

Securing distributed industrial systems presents unique challenges due to their large-
scale, heterogeneous, and resource-constrained nature. While traditional security
mechanisms (such as centralized identity management and perimeter-based access
control) have played a crucial role in enterprise IT, they often fall short in IIoT
environments where decentralization, trust minimization, and auditability are es-
sential. In particular, the need for real-time response, secure data provenance, and
tamper-proof interactions among untrusted devices highlights the inadequacy of
conventional approaches.

Blockchain technology has emerged as a promising enabler for secure, transpar-
ent, and decentralized IIoT environments. Its inherent properties (immutability,
distributed consensus, and traceability) align well with the security and operational
demands of critical industrial systems. However, integrating blockchain into IIoT
ecosystems introduces new constraints, especially regarding scalability, energy ef-
ficiency, and support for low-power devices. Addressing these constraints requires
tailored architectures and lightweight consensus mechanisms.

This chapter introduces two complementary blockchain-based contributions that
aim to meet these challenges:

• Shopfloor Blockchain Approach (Section 6.3): This architecture pro-
vides privacy-preserving authentication and auditable data flows for indus-
trial shopfloor environments, using an attribute verification protocol and a
multi-tiered blockchain structure.

• Lightweight Blockchain Approach (Section 6.4): This contribution pro-
poses a scalable and energy-efficient blockchain solution for IIoT networks. It
overcomes the limitations of traditional blockchain implementations (such as
high computation, communication, and storage overhead) by using a Byzan-
tine Fault Tolerance (BFT)-Directed Acyclic Graph (DAG) and role-based
node architecture.

Together, these contributions address key research challenges related to scal-
ability, privacy, and real-time security assurance in IIoT networks. By tailoring
blockchain mechanisms to the constraints and needs of industrial settings, this work
advances the feasibility of secure, distributed, and privacy-preserving IIoT infras-
tructures.

Addresses Research Questions:

• How can blockchain address IIoT challenges of scalability, privacy,
and tamper-proofing?

6.2 Problem Statement

IIoT networks continue to face significant security challenges, largely due to their in-
herent complexity, distributed structure, and vulnerability to evolving threats [197,
198]. Traditional security frameworks frequently lack essential properties such as
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decentralization, transparency, and immutability, limiting their effectiveness in safe-
guarding industrial processes against sophisticated attacks [231].

Blockchain technology has emerged as a potential solution to address these short-
comings by offering decentralized, cryptographic security with transparent and im-
mutable records [232]. Nonetheless, integrating blockchain into IIoT introduces
substantial challenges that existing blockchain approaches have struggled to fully
address:

• Scalability and Real-Time Performance: Existing blockchain implemen-
tations often suffer from latency issues and computational overhead, limiting
real-time applicability in high-throughput industrial settings [133, 140].

• Privacy and Security: Many blockchain-based IIoT solutions lack privacy-
preserving mechanisms, potentially exposing sensitive data to unauthorized
access or privacy breaches [141].

• Resource Constraints: Typical blockchain solutions have substantial
computational and storage requirements, posing deployment challenges in
resource-constrained industrial environments [141].

• Resilience Against Adversarial Attacks: Existing implementations rarely
consider real-world industrial network conditions characterized by adversarial
threats, such as DoS attacks, and unpredictable network dynamics [140].

Therefore, a blockchain framework tailored explicitly to IIoT contexts must ef-
ficiently manage computational load distribution, provide privacy-preserving mech-
anisms, and ensure scalability under real-world industrial conditions. This chapter
proposes such an approach, introducing a hierarchical blockchain architecture com-
bined with a Practical Byzantine Fault Tolerance (PBFT)-based consensus mecha-
nism and attribute-based verification for privacy-preserving authentication.

Lightweight Blockchain for IIoT Networks and Existing Limitations:
IIoT environments are characterized by resource-constrained devices with strict com-
putational, storage, energy, and communication limitations. Consequently, standard
blockchain technologies, with their significant computational demands, large storage
requirements, and energy-intensive operations, are unsuitable for direct deployment
in these environments [147, 150]. Thus, implementing lightweight blockchain solu-
tions that minimize computational load, network overhead, and storage requirements
while ensuring high throughput and energy efficiency becomes crucial for industrial
scenarios [151].

However, current lightweight blockchain solutions still face several significant
challenges. Techniques such as block header collapsing, although reducing compu-
tational overhead, do not adequately address the network traffic and ledger-growth
issues intrinsic to industrial-scale IoT deployments [150, 157]. Furthermore, con-
sensus mechanisms like Proof of Work (PoW) are inherently unsuitable for energy-
sensitive IIoT devices, and existing alternatives such as Proof of Authority (PoA)
often compromise decentralization and introduce potential security risks [147].

To address these limitations, a viable lightweight blockchain architecture for IIoT
must fulfill several essential requirements. First, it should ensure reduced compu-
tational load, enabling lightweight processing suitable for devices with limited
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computing power. Second, it must provide minimal network overhead through
efficient data transmission protocols that reduce bandwidth consumption. Third,
storage efficiency is necessary, with strategies to control ledger growth and opti-
mize data storage on resource-constrained devices. Fourth, the system must support
high throughput to ensure scalability and responsiveness under industrial work-
loads. Fifth, it should promote energy efficiency, utilizing low-energy consensus
mechanisms that are compatible with energy-limited IIoT nodes. Finally, maintain-
ing decentralization and robustness is critical to resist node compromise and
adversarial threats without relying on centralized control.

This chapter introduces a novel lightweight blockchain framework specifically
designed to overcome these critical challenges, incorporating BFT consensus with
dynamically verifiable nodes, hierarchical node roles for task distribution, and opti-
mized ledger management strategies tailored explicitly for industrial IoT conditions.

6.3 Shopfloor Blockchain Approach

6.3.1 Preliminaries

6.3.1.1 Attribute Verification Protocol

Our blockchain architecture leverages an attribute verification protocol [233] as a
foundational mechanism for privacy-preserving authentication and verification. This
distributed protocol verifies participants based on their attributes without unnec-
essarily revealing sensitive information. Originally introduced for applications such
as data validation [234] and network security [235], this protocol consists of three
specific roles with clearly defined responsibilities:

• Issuer: An authoritative entity responsible for managing and distributing user
attributes. The issuer provides public keys to verifiers and securely delivers
attribute credentials to provers.

• Verifier: An entity that challenges provers to validate their claimed attributes
in a zero-knowledge setting without compromising privacy.

• Prover: A participant who must demonstrate ownership of specific attributes.
After successfully verifying ownership with the issuer, the prover receives a
secret key enabling it to respond securely to verification challenges.

The attribute verification protocol supports two primary modes of verification:

• 1-out-of-n Verification Mode: The verifier defines a set of acceptable at-
tributes. The prover successfully verifies its identity by demonstrating owner-
ship of at least one attribute from this set, preserving privacy by not disclosing
specific attribute details.

• n-out-of-n Verification Mode: All specified attributes must be verified.
This mode provides comprehensive verification when strict attribute validation
is required.
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The 1-out-of-n mode is particularly relevant for IIoT contexts, as it maintains
the privacy of industrial participants by minimizing attribute disclosure to only the
essential verification criterion.

6.3.1.2 Architecture Preliminaries

The architecture employs a multi-tiered network structure, each tier with distinct
roles and responsibilities:

• Local Nodess (LNs): Sensors and actuators with limited computational
capacity are used for data collection and actuation tasks, relying on Middle
Nodes (MNs) for secure communication and data storage. These devices op-
erate under low-power conditions and have limited storage capacity.

• Middle Nodes (MNs): MNs optimize network data processing and storage
by acting as bridges within subnetwork entities. Equipped with HSM, they
generate cryptographic keys, maintaining data security and privacy. Strategi-
cally placed, MNs balance load and optimize network traffic.

• Full Nodes (FNs): FNs are the backbone of the blockchain, responsible for
maintaining consensus and appending validated blocks. Strategically placed,
they execute the Practical Byzantine Fault Tolerance algorithm, ensuring
blockchain integrity and robustness. Their computational capability and reli-
ability are chosen.

6.3.2 Architecture Description

The proposed system uses a harmonious collaboration between FNs and MNs, with
MNs acting as local data keeper and facilitating computation offloading. A PBFT
consensus mechanism by FNs ensures transaction reliability and security. The se-
lection of FNs and MNs is based on computational capability, network connectivity,
and trust level based on historical performance. As shows in Fig. 6.1, the method
introduces "middle nodes" to interconnect isolated subnetworks, crucial for compu-
tational tasks and network efficiency.

The operation of the architecture can be understood as a series of coordinated
steps. First, in the data acquisition phase, LNs capture real-time data and for-
ward it to their corresponding MNs. Next, during secure storage, the MNs store
incoming data either directly or as cryptographic hashes to ensure data secrecy and
integrity, examples include machine operational hours or threshold-based indicators
such as temperature readings.

Following storage, the transaction lifecycle begins as middle nodes generate
transactions from the collected data, sign them cryptographically, and propagate
them to other MNs within the subnetwork to support redundancy and data avail-
ability. In the candidate block formation phase, these MNs compile verified
transactions into candidate blocks, preparing them for broader network verification.

The next phase is network-wide verification, where candidate blocks are
broadcast to all LNs and validated using a PBFT consensus mechanism to ensure
integrity and prevent data manipulation. Finally, during the blockchain append
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Figure 6.1: Shop Floor Blockchain Architecture.

phase, LNs combine the verified candidate blocks and add them to the blockchain,
making the data permanent and tamper-resistant.

The complex design of LNs, which may include simple sensors, ensures secure
and reliable data transfer. Meanwhile, MNs serve as buffering points, particularly
valuable during network instability, safeguarding data and preparing it for seamless
blockchain integration.

6.3.2.1 Architecture Workflow

The proposed architecture prioritizes participant privacy through an attribute ver-
ification protocol that operates in four phases: setup, registration, generation, and
validation. MNs handle data encryption using HSMs keys for secure transaction ini-
tiation. LNs provide hashed data to MNs, adding another layer of privacy. Before
participating in the subnetwork, participants must pass the preregistration step.

Setup Phase

The setup phase is a very critical pre-registration step in network configuration,
during which an IIoT node is identified and integrated into the network. In this
phase, and during registering a new node, the responsible LN assigns a unique
identifier to guarantee its unique location inside the network. This is a dual-faced
unique ID (IDn) derived from the node’s serial number (Sn) and MAC address
(MAC) as in Equation 6.1. Whereas the MAC address is unique and identifiable in
the digital world, the serial number is like an unchangeable imprint from genesis.

IDn = H(Sn ∥MAC) (6.1)
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Here, H represents a cryptographic hash function and ∥ denotes concatenation.
MAC, inherently unique and recognizable in the digital domain, serves as a reliable
hardware-based identifier. In contrast, Sn acts like an immutable tag assigned at the
time of manufacture. This dual-component approach to node identification enhances
security, as it couples a physically unalterable attribute Sn with a digitally unique
identifier MAC.

Algorithm 10: Setup Phase
Input: node: The node to be initialized
Output: node: The node with its unique ID

1 Function SetupPhase(node):
2 IDn ← HashFunction(node.Sn∥node.MAC);
3 node.unique_ID ← IDn;
4 return node;

The setup phase (see Algorithm 10) is rigorously conducted only once for each
node to maintain the integrity of these identifiers. During the identifier generation
process, MAC and Sn data are retrieved from the newly joined node, playing a
crucial role in the network’s security architecture. These unique and immutable
identifiers form a strong identification system for safe and effective network opera-
tions.

Registration Phase

During the setup phase, nodes are assigned a unique identity and are further char-
acterized by configurable attributes that dictate their operational behavior and net-
work interaction. Four primary attributes are discussed:

• Logical Network Sector (SEC): The attribute defines a node’s operational
scope within the network topology, determining its functional area and in-
teraction with other network segments, aiding in effective segmentation and
management.

• Installer Signature (INS): The INS is responsible for commissioning and
configuring the node, ensuring traceability and accountability by reliably log-
ging any modifications or installations.

• Power Consumption (POC): The LNs energy usage is crucial for network
sustainability and efficiency, and monitoring POC helps optimize energy con-
sumption and manage the environmental footprint of network operations.

• Transmission Pattern (TRA): The TRA is a crucial tool for managing
network traffic, load balancing, and optimizing bandwidth usage by predicting
and shaping the network’s data flow.

The attributes of a system are dynamic and can be updated or expanded by
MNs, making them crucial in a network environment that may evolve or require
adjustments due to new operational demands or technological advancements. The
n-out-of-n verification mode, as described in Section 6.3.1.1, is used for validation
and tokenization of nodes based on their attributes.
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1. Attribute Verification Function: we can represent the verification process
of a node’s attributes by the MNs as follows:

Vattr(LN) =

{
1 if SEC, INS, POC is valid
0 otherwise

(6.2)

Where Vattr(LN) represents the verification function for the LN attributes.
The function returns 1 if all the attributes (SEC, INS, POC, TRA) are suc-
cessfully verified by the MNs, and 0 otherwise.

2. Token Issuance Function: After the verification, tokens are issued to certify
the readiness of the LNs for network participation.

Tissue(LN) =

{
Token if Vattr(LN) = 1

No Token if Vattr(LN) = 0
(6.3)

In equation 6.3, Tissue(LN) represents the token issuance function. A token
is issued if the verification function Vattr(LN) returns 1, indicating successful
verification of the node’s attributes.

3. Dynamic Attribute Update Function: we can model the ability of MNs
to update the attributes of LNs over time:

Uattr(LN, new_attr) =

{
Updated Attr if update
Unchanged Attr otherwise

(6.4)

Here, Uattr(LN, new_attr) denotes the attribute update function, where
LN, new_attr represents the new attributes to be assigned to the LN. This
function reflects the dynamic adaptability of the network’s attributes.

The verification and tokenization of network attributes allows for granular con-
trol, enabling administrators to implement policies based on node characteristics,
enhance security protocols, and optimize network performance. The registration
phase (see Algorithm 11) is a crucial component in establishing a robust, efficient,
and secure network infrastructure.

Algorithm 11: Registration Phase
Input: node: The node to be registered
Output: node: The node with updated attributes

1 Function RegistrationPhase(node):
2 node.attributes←

{"SEC": None, "INS": None, "POC": None, "TRA": None};
3 UpdateNodeAttributes(node);
4 return node;

5 Function UpdateNodeAttributes(node):
6 // Update attributes based on network policies
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Figure 6.2: Generation and Validation Phases.

Generation Phase

The Generation Phase is a crucial stage in blockchain data management, involving
the creation and preparation of data for entry into the blockchain, ensuring data
integrity and security through sequential steps:

1. Data Generation: Initially, raw data is generated by LNs. This data could
represent transactions, sensor outputs, user actions, or any relevant informa-
tion that needs to be recorded on the blockchain.

D = GenerateData(Raw Inputs) (6.5)

Where D denotes the generated data from raw inputs.

2. Data Digest Creation: Each piece of data D is then processed to create a
cryptographic hash digest. This digest serves as a unique fingerprint of the
data.

H(D) = Hash(D) (6.6)

Here, H(D) is the hash digest of data D.

3. Attribute Digest Generation: Concurrently, all relevant attributes of the
data are hashed to ensure that every characteristic is accounted for and se-
cured.

H(A) = Hash(A1, A2, . . . , An) (6.7)

With H(A) representing the combined hash of attributes A1, A2, . . . , An.
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4. Double Hash Formation: To further enhance security, a double hash is
formed, which is the hash of the hash digest and the attribute digest.

H2(D,A) = Hash(H(D) ∥ H(A)) (6.8)

H2(D,A) symbolizes the double hash, where || denotes concatenation.

5. Commit to Public Blockchain: The final step is committing the double
hash to the public blockchain. This action immutably records the data and
its attributes, ensuring traceability and verifiability.

B = CommitToBlockchain(H2(D,A)) (6.9)

Where B is the blockchain record containing the double hash H2(D,A).

The Generation Phase (see Algorithm 12) involves repeatable and scalable steps,
ensuring the system can handle increased data generation without compromising
security or integrity. The process emphasizes repeatability, allowing for efficient
and secure data generation and recording in a consistent manner.

Algorithm 12: Generation Phase
Input: LN : Local Node containing raw inputs and attributes
Output: B: Blockchain commitment of the generated data

1 Function GenerationPhase(LN):
2 D ← GenerateData(LN.raw_inputs);
3 hash_digest← HashFunction(D);
4 attribute_hash← HashFunction(LN.attributes);
5 double_hash← HashFunction(hash_digest, attribute_hash);
6 B ← CommitToBlockchain(double_hash);
7 return B;

The Generation Phase of blockchain technology ensures data protection against
tampering and unauthorized modifications, upholding the principles of decentral-
ization and trust.

Validation Phase

The Validation Phase in a blockchain-based network is a critical multi-tiered process
that ensures data integrity, privacy, and compliance with network protocols. This
phase involves several key steps:

1. Initial Verification by MNs: MNs verify LNs properties against pre-
registered attributes to ensure each LN complies with network standards and
policies. The process can be represented as follows:

VMN (LN) =

{
1 match pre-registered values
0 otherwise

(6.10)

Where VMN (LN) is the validation function performed by the MNs on the
LNs.



6.3. Shopfloor Blockchain Approach 111

2. Consensus Process by FNs: To ensure the integrity and reliability of the
blockchain’s contents, FNs examine encrypted data blocks using the PBFT
consensus method. The consensus can be represented as:

CPBFT (Block) =

∑n
i=1 VFNi(Block)

n
(6.11)

Where CPBFT (Block) is the consensus function, VFNi(Block) is the validation
function performed by each FN on the block, and n is the total number of FNs
participating in the consensus process.

3. Random Audits for Data Integrity and Privacy: Independent auditors
conduct random checks post-verification to ensure data integrity and validate
privacy-preserving measures (see Fig. 6.2), adding an additional layer of secu-
rity and compliance verification.

The system combines privacy protocols with an efficient blockchain architec-
ture, providing a robust privacy framework without compromising network speed
and efficiency, a crucial aspect for adoption in sensitive environments like IIoT net-
works where data privacy and rapid processing are essential. The Validation Phase
algorithm (see Algorithm 13) is defined as:

Algorithm 13: Validation Phase
Input: LN : Local Node, MNs: Monitoring Nodes, FNs: Functional Nodes,

auditors: Auditing Nodes
Output: Validation result (True or False)

1 Function ValidationPhase(LN , MNs, FNs, auditors):
2 if not Verify(MNs, LN) then
3 return False;

4 block ← LN.generate_block();
5 if not PBFTConsensus(FNs, block) then
6 return False;

7 if not RandomAudit(auditors, LN) then
8 return False;

9 return True;

10 Function PBFTConsensus(FNs, block):
11 // Implement PBFT consensus mechanism
12 return True or False;

6.3.3 Analysis

The proposed architecture’s effectiveness, security, and performance were assessed
using an experimental research method, with an extensive analysis provided in this
section.

6.3.3.1 Implementation and Evaluation Overview

The study used the Charm framework [236], for attribute verification in a test envi-
ronment with a middle node and seven local nodes, each with a 1.8 GHz processing
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Figure 6.3: Implementation of the Proposed Framework.

unit, as illustrated in Figure 6.3. The evaluation focused on registration, generation,
and validation phases, aiming to measure efficiency and system resilience against se-
curity threats. During the registration phase, a single MN is responsible for issuing
tokens associated with four predefined attributes in the system: SEC, INS, POC,
and TRA. Consequently, each LN receives four tokens from the MN, which are later
used during the validation process.

The attributes and their associated components are defined as follows:

• Logical Network Sector (SEC): Identifies the logical segment to which the node
belongs.

• Installer Signature (INS): Represents the approval of a trusted installer; this
attribute is associated with both the network sector and the installer’s identity.

• Power Consumption (POC): Describes the typical power usage profile of the
node within its sector.

• Transmission Pattern (TRA): Defines the expected communication behavior
of the node, again within the context of its assigned network sector.

6.3.3.2 Implementation Details

The implementation specifics are as follows:

• Attribute Settings: Attributes for the nodes were set as SEC, INS, POC,
and TRA.

• Hashing Process: During the generation, the SHA-1 hash function has been
utilized.

• Token Issuance in Registration Phase: In the registration phase, each
Local Node (LN) received four tokens from the MN, corresponding to the
four attributes (SEC, INS, POC, and TRA), which were later used during the
validation phase.

• Performance Metrics: Key metrics, such as time taken for registration,
generation, and validation phases, were measured to assess the efficiency of
the system (Table 6.1).
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Table 6.1: Implementation Time.

Phases No. of Devices Time (ms)

Registration 7 LNs 138
Generation 1 LN 0.65
Validation – Challenge 1 LN 38
Validation – Response 1 LN 29

Table 6.2: Comparative Analysis of Consensus Mechanisms.

Mechanism Throughput Block Time Energy Security

POC Low ∼10 min High Very High
PoS Med-High Variable Low Med-High
PBFT High Seconds Mod Low-High
Our Proposal High Seconds Mod High / ABS

6.3.4 Security Analysis Justification

The proposed security framework addresses critical vulnerabilities inherent in IIoT
environments, such as privacy leakage, security flaws, and resource constraints. It
incorporates advanced encryption and robust key management mechanisms to safe-
guard user identities and transaction integrity, minimizing risks associated with
unauthorized data exposure and ensuring strong protection against privacy breaches.

Additionally, the framework’s resilience against both passive and active adver-
sarial threats, such as data interception and DoS attacks, is strengthened by em-
ploying redundancy and resilient architectural designs. These proactive measures
ensure continuous network functionality, even amidst targeted disruptions or node
failures, thereby significantly enhancing the operational robustness and reliability
of the IIoT ecosystem.

6.3.4.1 Performance Analysis

Consensus mechanisms play a crucial role in balancing transaction speed, energy
consumption, and system security in IIoT applications. We conducted a compar-
ative study of PoW [237], Proof of Stake (PoS) [238], and PBFT [239]. Our pro-
posed system, optimized for IIoT contexts, redefines the role of resource-limited
local nodes, allowing them to safely generate data while not being directly involved
in the consensus process.

The proposed system improves efficiency (Table. 6.2) by redefining the func-
tion of resource-limited local nodes, enhancing network security even if not directly
involved in the consensus process. Full nodes create blocks by consensus, includ-
ing stored information from local nodes. This system accommodates resource con-
straints in IIoT contexts while maintaining high throughput and low latency features
of PBFT.

The proposed architecture was analyzed for its performance, focusing on consen-
sus mechanisms. The approach uses the PBFT model, enhancing candidate block
formation by MNs, who pre-process higher-level information, which is then consoli-
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dated by FNs during block creation.
The modification in the design ensures that candidate blocks by FNs have al-

ready undergone a preliminary verification and secure storage by MNs, making the
process more secure and efficient. This design is particularly beneficial in IIoT con-
texts, where resource constraints are common. It maintains the high throughput
and low latency characteristics of traditional PBFT while optimizing it for IIoT
environments, ensuring swift and secure transaction validation.

Shopfloor blockchain solution offer secure and privacy-preserving industrial oper-
ations, but their applicability is limited by computational overhead and transaction
latency. Industrial environments require efficiency in real-time decision-making, es-
pecially when integrating blockchain at the IIoT device level. To achieve high trans-
action throughput with minimal resource consumption, a lightweight blockchain ar-
chitecture is needed. This lightweight approach allows IIoT devices to participate in
blockchain networks without excessive computational and storage burdens, enabling
practical and scalable deployment across industrial settings.

6.4 Lightweight Blockchain Approach

While the proposed shopfloor blockchain architecture effectively addresses scala-
bility, latency, and data processing inefficiencies in IIoT, it still poses challenges
regarding resource consumption and processing overhead, especially for highly con-
strained industrial devices. To overcome these limitations, this section introduces a
complementary lightweight blockchain approach. This new method enhances pro-
cessing speed by simplifying block validation and employing a streamlined attribute
verification mechanism. By integrating this lightweight approach with the previously
described architecture, the overall system achieves a balanced trade-off—combining
the security and fault tolerance benefits of the robust shopfloor solution with the
efficiency and rapid processing required for resource-limited industrial environments.

The design of the proposed architecture aims to address the limitations of current
blockchain solutions in IIoT settings, such as inability to scale, high latency, and
inefficiency in processing large amounts of data generated by industrial devices. The
proposed architecture combines the strengths of BFT and DAG, providing security
through attribute base verification and fault tolerance, while also offering weak
anonymity and secrecy by design.

• Weak Anonymity: The Transaction Verification Nodes (TVN) can perform
the verification process without knowing the generated data or the node’s ID,
except when the ID is sent as part of the verification process.

• Secrecy: The verification process does not involve Committee Nodes (CN) in
token usage by regular nodes or public key usage by transaction verification
nodes, including their usage and timing.

6.4.1 Network Architecture and Node Roles

Figure 6.4 illustrates our BFT-DAG architecture using attribute-based verification.
IIoT nodes work together seamlessly, using advanced protocols for efficient com-
munication and transaction processing, which is crucial for maintaining network
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Figure 6.4: Relationship Between Main Players in the Proposed Architecture.

integrity, security, and performance. The BFT-DAG architecture comprises a net-
work of nodes categorized into four types:

Regular Nodes (RNs): IIoT nodes, such as sensors and actuators, support the
network by creating validated data through edge computing nodes. They
have lower computational power and focus on data collection, generation, or
actuation within the IIoT environment. They play a role in the Prover role in
attribute verification protocol.

Edge Computing Nodes (ECNs): Data pre-processing is crucial for nodes close
to data sources, handling tasks like data aggregation, filtration, and prelimi-
nary analysis. These nodes reduce data volume for transmission and valida-
tion. They minimize latency by undertaking computational tasks, alleviating
load on core network components. They create transactions and send them to
the mempool, aligning with the Prover role, where they aggregate and process
attributes.

Committee Node (CN): Committee nodes are essential in maintaining the
ledger, verifying transactions, and carrying out the consensus mechanism in
the DAG. They ensure transactions are logically and securely linked, auto-
matically sorting them without explicit commit steps. This technique offers
a scalable and effective consensus mechanism suitable for changing network
conditions. During transaction validation, committee nodes perform power-
ful computations that may not be executable on regular nodes, increasing
throughput and decreasing latency.

Transaction Verification Nodess (TVNs): In the BFT-DAG system, nodes re-
validate transactions to ensure only valid nodes with valid tokens create trans-
actions, maintaining network security and integrity. This mirrors the Verifier
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role in attribute verification protocol, where the verifier challenges provers to
present valid tokens.

The network can have multiple subnetworks, each with 1 to n regular nodes, 1
to n − 1 edge computing nodes, at least 1 transaction verification node, and 0 to
n committee nodes. However, the total number of committee nodes in the network
must be at least 3 for reliable consensus.

6.4.1.1 Initialization Process

The initialization process is crucial for setting up the system, authenticating nodes,
and establishing the primary node for the committee. This process is detailed in
Algorithm 14 and involves several clearly defined steps:

Algorithm 14 starts by randomly selecting a primary node from the pool of CNs
(line 2). The selected primary node is then verified by other Committee Nodes
to ensure it meets required security and performance criteria (lines 3–6). If the
node fails verification, the selection process is repeated until a valid primary node
is identified.

Following this, the algorithm proceeds to authenticate nodes within each sub-
network (lines 8–18). Committee Nodes authenticate RNs (lines 9–11) and ECNs
(lines 12–14), verifying their attributes and confirming their validity and authoriza-
tion. Additionally, mutual authentication between ECNs and RNs is conducted to
establish secure communication channels within subnetworks (lines 15–18).

Finally, once the primary node has been successfully verified and all subnetworks
have completed node authentication, the algorithm finalizes the network initializa-
tion (lines 20–22). With all nodes authenticated, the blockchain network becomes
fully operational, enabling the system to begin normal transaction processing and
consensus mechanisms.

6.4.1.2 Transaction Creation and Validation Process

The system initiates the network and authenticates nodes before proceeding with
transaction creation and validation, detailing each step and its detailed algorithm.
Algorithm 15 proceeds as following:

1. Transaction Generation (Lines 1-7): RNs collect data from sensors or
actuators, format it into a transaction with a timestamp and unique identifier,
and sign it with a private key for authenticity and integrity, which is then sent
to an ECN.

2. Data Pre-Processing (Lines 8-13): ECNs receive transactions from RNs,
aggregate them, filter out redundant or irrelevant data, and perform a pre-
liminary analysis before adding processed transactions to the mempool for
validation.

3. Transaction Validation (Lines 14-21): TVNs verify transactions from
mempools using attribute tokens to ensure data validity and sender authen-
ticity. Once validated, transactions are forwarded to CN for inclusion in
the DAG, ensuring only legitimate transactions are added to the blockchain,
thereby maintaining the network’s integrity and security.
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Algorithm 14: Network Initialization
Input: List of CNs, RNs, ECNs
Output: Initialized blockchain network

1 // Step 0: Genesis bootstrap
2 Preselect an initial set of Committee Nodes (CNs);
3 Issue genesis X.509 certificates τ

(0)
CN to these CNs;

4 // Step 1: Candidate CN joins
5 Existing CNs jointly issue certificate τCN = gαiH(IDCN)

βi to candidate CN;
6 Candidate CN broadcasts τCN to all CNs;
7 // Step 2: AVP Proof for candidate CN
8 All CNs perform n-out-of-n Attribute Verifier Protocol (AVP) proof on τCN;
9 if AVP fails for any CN then

10 Quarantine the candidate CN;

11 // Step 3: Select and verify the primary node
12 primary_node ← Randomly select a node from CN;
13 if Verify(primary_node) = TRUE then
14 Set primary_node as the primary committee node;

15 else
16 Repeat step until a valid primary_node is found;

17 // Step 4: Authenticate nodes within each subnetwork
18 foreach CN in the network do
19 foreach RN in CN.subnetwork do
20 if Verify(RN ) = TRUE then
21 Authenticate RN;

22 foreach ECN in CN.subnetwork do
23 if Verify(EN ) = TRUE then
24 Authenticate ECN;

25 // Mutual authentication between ECN and RNs
26 foreach RN in EN.subnetwork do
27 if MutualAuthenticate(ECN, RN ) = TRUE then
28 Establish secure channel between ECN and RN;

29 // Step 5: Finalize initialization
30 if All nodes authenticated successfully then
31 Initialize network;
32 Start normal transaction processing;

6.4.1.3 Consensus and Inclusion in DAG

The proposed lightweight blockchain architecture utilizes a consensus mechanism
to ensure the integrity, security, and consistency of the distributed ledger. This
mechanism involves CN executing a BFT protocol to validate and order transactions,
providing a detailed explanation of transaction inclusion.

1. Transaction Propagation: A transaction is generated and pre-processed,
then propagated to the mempool for validation by the TVN for authenticity
and attribute validity before being picked up by Committee Nodes.

2. Proposal Phase: A CN, often the primary node, collects transactions from
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Algorithm 15: Transaction Creation and Validation
Input: Data from RN, ECN, TVN
Output: Validated transactions ready for inclusion in the DAG

1 // Step 1: Transaction Generation
2 foreach RN do
3 data ← Collect data from sensors/actuators;
4 transaction ← Create transaction with data, timestamp, and unique identifier;
5 signed_transaction ← Sign transaction with RN private key;
6 Send signed_transaction to ECN;

7 // Step 2: Data Pre-Processing
8 foreach ECN do
9 transactions ← Receive transactions from RNs;

10 aggregated_data ← Aggregate transactions;
11 filtered_data ← Filter redundant/irrelevant data from aggregated_data;
12 pre_processed_transactions ← Perform preliminary analysis on filtered_data;
13 Add pre_processed_transactions to mempool;

14 // Step 3: Transaction Validation
15 foreach TVN do
16 transactions ← Retrieve transactions from mempool;
17 foreach transaction in transactions do
18 if Validate(transaction) = TRUE then
19 if VerifyAttributeTokens(transaction) = TRUE then
20 validated_transaction ← transaction;
21 Send validated_transaction to CN;

the mempool and creates a proposal block, including these transactions and
references to previous vertices.

3. Voting Phase: The proposal block is broadcasted to all other CNs, who
independently verify the transactions against the current state of the DAG,
checking transaction validity, preventing double-spending, and confirming pro-
tocol rules adherence.

4. Pre-Commit Phase: After verification, each CN sends a pre-commit vote
to other CNs, which is aggregated to determine if a quorum (typically 2/3
majority) agrees on the proposal block.

5. Commit Phase: The proposal block is committed if all CNs receive enough
pre-commit votes, and each CN sends a commit vote, which is aggregated to
ensure consensus, and a quorum is reached.

6. Finalization: The committed block is added to the DAG, linking it to pre-
vious vertices, and the updated state is broadcasted to all network nodes,
updating their local ledgers.

Algorithm 16 begins with a proposal phase where a node from the CNs creates a
block with mempool transactions and references to previous vertices. In the voting
phase, each Committee Node verifies transactions against the current state of the
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Algorithm 16: BFT-DAG Consensus Mechanism
Input: Transactions from mempool
Output: Updated DAG with committed transactions

1 // Step 1: Proposal Phase
2 proposer ← Select a Committee Node to propose a block;
3 proposal_block ← Create block with transactions from mempool;
4 proposal_block.references ← References to previous DAG vertices;
5 Broadcast proposal_block to all Committee Nodes;
6 // Step 2: Voting Phase
7 foreach CN in Committee Nodes do
8 if Verify(proposal_block) = TRUE then
9 pre_commit_vote ← Generate pre-commit vote;

10 Broadcast pre_commit_vote to all Committee Nodes;

11 // Step 3: Pre-Commit Phase
12 pre_commit_votes ← Collect pre-commit votes;
13 if Quorum(pre_commit_votes) = TRUE then
14 foreach CN in Committee Nodes do
15 commit_vote ← Generate commit vote;
16 Broadcast commit vote to all Committee Nodes;

17 // Step 4: Commit Phase
18 commit_votes ← Collect commit votes;
19 if Quorum(commit_votes) = TRUE then
20 Add proposal_block to DAG;
21 Broadcast updated DAG to all nodes;

DAG to ensure transaction validity and protocol rules adherence. In the pre-commit
phase, eachCN sends a commit vote, which is aggregated and considered committed
if a quorum is reached. The committed block is added to the DAG, and the updated
state is broadcasted to all nodes in the network.

Inclusion in DAG

1. Vertex Creation: Each committed block creates a new vertex in the DAG,
referencing previous vertices, ensuring the chronological order of transactions.

2. Linking Vertices: Cryptographic hashes link new vertex transactions to
previous ones, preventing tampering and making the cryptographic chain im-
mediately detectable.

3. Updating the Ledger: Once a new vertex is added to the DAG, all nodes
update their local copies of the ledger. This update includes the latest state
of the DAG, ensuring consistency across the network.

The consensus method, depicted in Figure 6.5, demonstrates the interconnected
roles of different node types and their collaboration, illustrating the operational flow
from transaction generation to validation.
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Figure 6.5: Data Flow and Consensus Process Among Different Nodes Within a
BFT-DAG System.

6.4.2 Security Analysis

The BFT-DAG architecture focuses on security to protect IIoT systems from vul-
nerabilities. It addresses Replay, DoS, and Man-in-the-Middle (MitM) attacks, but
also considers broader models like node tampering, data forgery, Sybil attacks, Dis-
tributed Denial-of-Service (DDoS), and side-channel attacks. This comprehensive
approach ensures a robust evaluation of the architecture’s resilience.

6.4.2.1 Addressed Threats

Replay Attack

During the verification process, the TVN generates a challenge as follows:

challengeTV N = Enc(r||ts||PKTV N ) (6.12)

where r is a random parameter, ts is the timestamp, and PKTV N is the public key
of the corresponding transaction verification node. By including both a nonce value
r and the current timestamp ts, and assuming a cryptographically secure random
number generator and synchronized system time, replayed verification packets are
directly detected.
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Table 6.3: Comparison of Mitigation Strategies Against Common Attacks.

Attack Type Impact Mitigation Evaluation

Replay Data integrity Nonce, timestamp validation Mitigated
DoS Network availability Decentralized design Mitigated
MITM Data confidentiality Encrypted communication Mitigated
Data Forgery Data authenticity Cryptographic signatures Mitigated
DDoS Network availability Distributed processing Partially mitigated
Sybil Consensus reliability Attribute verification Partially mitigated
Side-Channel Confidentiality Secure hardware, randomization Partially mitigated

Denial of Service (DoS) Attack

The system’s decentralized design ensures that no single managing entity exists.
During the transaction verification process, external third-party nodes are not in-
volved, including issuing committee nodes. Consequently, a DoS attack targeting
the transaction verification process is ineffective, as there is no central point of
failure.

Man-in-the-Middle (MITM) Attack

Committee nodes generate tokens for each RN based on their attributes:

token(RN,attribute) = PK1 · IPK2 (6.13)

where PK1 and PK2 are the public keys of the issuing committee nodes, and I
is the identifier of the RN. With encrypted traffic during transaction creation and
verification, unauthorized interception or manipulation is effectively mitigated.

There are some additional vulnerabilities to address such as Data forgery, which
involves the malicious creation or modification of transactions, is mitigated by em-
ploying cryptographic signatures to ensure authenticity and using attribute-based
verification to restrict transaction creation to authorized nodes.

Similarly, DDoS attacks designed to overwhelm network resources are countered
through decentralized processing and consensus mechanisms that eliminate single
points of failure, with resource-intensive tasks delegated to Committee Nodes capa-
ble of handling high loads.

The architecture also addresses Sybil attacks by using attribute-based verifica-
tion to authenticate nodes before participation and by incorporating a reputation
system to penalize malicious behavior. In addition, side-channel attacks, which
exploit unintended information leakage such as timing or power consumption, are
mitigated by randomizing computational processes to obscure timing patterns and
by leveraging secure hardware to minimize such leakage.

Table 6.3 summarizes the architecture’s resilience against various attacks.

6.4.3 Implementation and Evaluation

This section outlines the methodology for implementing the proposed architecture,
which involves combining hardware and simulated network conditions to simulate
an IIoT environment.
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6.4.3.1 Implementation Methodology

The proposed BFT-DAG architecture was evaluated through a comprehensive hard-
ware implementation, allowing for a thorough exploration of its response to various
network scenarios. Our hardware setup is illustrated in Figure 6.6.

Figure 6.6: Hardware Network Demonstration for Test Architecture.

Three laptops serve as primary nodes or committee members in the BFT-DAG
network, responsible for proposing, validating, and committing transactions. One
laptop is designated as an ECN, responsible for data aggregation and computational
processing near data sources, reducing latency and offloading processing tasks from
the central network. The laptops communicate through a local network setup with
WLAN-Standard IEEE 802.11n (Wi-Fi 4), effectively simulating the network inter-
actions typical in IIoT deployments.

The Raspberry Pi acts as a gateway, enabling seamless communication between
environmental sensors and edge computing nodes. It manages the digital temper-
ature sensor (TMP102) and analog light sensor (MCP3008 ADC) via I2C and SPI
protocols, ensuring efficient pre-processing and transmission of real-time data for
further action. This ensures efficient data collection and processing. Table 6.4 re-
groups the specification of our hardware platform.

6.4.3.2 Results of the Evaluation

We measured performance evaluation of the architecture based on three key met-
rics: verification time, throughput, and latency. Verification time measures
the duration required to validate a transaction’s authenticity and integrity includ-
ing signature validation and data consistency checks with the current ledger state.
Throughput quantifies the number of Transactions Processed per Second (TPS), re-
flecting the network’s capacity to handle high volumes of transactions, while latency
captures the time elapsed from transaction initiation to its final confirmation and
inclusion in the blockchain ledger, thereby indicating the overall speed and efficiency
of the system.
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Table 6.4: Hardware Information for Testing the BFT-DAG Architecture.

Device Model Network Role Specifications

Lenovo IdeaPad 520 CN Intel i7 8550U, 16GB
RAM

Lenovo ThinkPad x230 CN Intel i3 3110M, 8GB RAM
Lenovo IdeaPad Flex 15 CN / ECN Intel i3 4010U, 4GB RAM
RP2040 Gateway Dual-core ARM Cortex

M0+ processor, 133 MHz,
264KB of SRAM, 2MB
on-board flash memory

Light Sensor GL5528 Data Collector Light Intensity
Measurement

Temperature Sensor DHT22 Data Collector Temperature and
Humidity Measurement

Table 6.5: Verification Time Across Different Devices.

Component Time (ms)

Prover for Response Creation Task (RN) 13.013
Verifier for Verification Task (CN) 10.74
Verifier for Lightweight Protocol Task (CN) 3.142

Verification Time

The verification time was evaluated on three laptops (Laptop 1, Laptop 2/Rasp-
berry Pi, and Laptop 3), focusing on the prover’s response generation time and the
verifier’s verification time. Table 6.5 summarizes these results.

The verification time of three devices was evaluated, focusing on the time taken
by the prover and verifier in different tasks. The prover, typically a RN, takes the
longest at 13.013 milliseconds due to cryptographic proof generation complexity.
The verifier, a CN, takes 10.74 milliseconds for standard verification. The lightweight
protocol verification is the quickest at 3.142 milliseconds, indicating efficiency with
fewer cryptographic checks or simpler algorithms.

Energy Consumption Evaluation

This section evaluates the energy efficiency of the proposed BFT-DAG architecture
using hardware specifications and throughput results from experiments. Energy
consumption is calculated based on power consumption of each node type and the
system’s TPS. Using the formula:

Energy per transaction (J) =
Power (W)

TPS

The study estimated energy usage for RNs, ECNs, and CNs, including authen-
tication overhead. The total energy per transaction was calculated, summarizing
energy consumption for each node type in Table 6.6.

The system’s total energy consumption per second, including authentication
overhead, is 55.05 Joules for a transaction throughput of 49,039 TPS, indicating its
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Table 6.6: Energy Consumption Per Transaction and Total Energy Per Second.

Node Type Power
(W)

Base Energy/-
Transaction (J)

Authentication
Overhead (J)

Total Energy/-
Transaction (J)

RN 2.5 0.000051 0.00000255 0.00005355
ECN 20 0.000408 0.0000204 0.0004284
CN 30 0.000612 0.0000306 0.0006426
Total 52.5 W 0.00107 J 0.00005355 J 0.00112355 J

Table 6.7: Benchmarking Results for Consensus Throughput and Latency.

Metric Result

Consensus TPS (Transactions Per Second) 49,439 tx/s
Consensus BPS (Bytes Per Second) 25,312,723 B/s
Consensus Latency 433 ms
End-to-End TPS 49,039 tx/s
End-to-End BPS 25,107,962 B/s
End-to-End Latency 577 ms

suitability for energy-efficient, high-throughput environments.

6.4.3.3 Benchmarking Results

The benchmark evaluates consensus throughput and latency across various transac-
tions and batch sizes. The consensus throughput achieves 49K TPS and 25 Mbps,
with a latency of 433 milliseconds, indicating high efficiency in transaction process-
ing within the consensus mechanism. The end-to-end system, including transaction
initiation to finalization, shows nearly the same throughput with a slight decrease
of less than 1%. Latency slightly increases to 577 milliseconds, attributed to cu-
mulative processing and network delays beyond the consensus layer. These results
demonstrate the system’s ability to handle high transaction volumes efficiently and
suggest areas for further optimization for improved performance.

6.4.3.4 Comparison With Related Works

The proposed architecture’s performance evaluation involves three comparisons: av-
erage TPS, consensus latency, and the balance between TPS and latency. These
metrics reveal the system’s strengths in rapid data processing and accurate consen-
sus. Verification and benchmarking tests confirm its high throughput and efficient
consensus capabilities, making it suitable for distributed environments requiring
reliable and low-latency consensus.

Figure 6.7 compares average TPS across several blockchain systems, revealing
the efficiency of the proposed architecture in high-throughput scenarios. Bitcoin,
known for its PoW mechanism, has high-energy consumption and slow transaction
processing, resulting in limited throughput. Ethereum, currently transitioning from
PoW to PoS with Ethereum 2.0, offers moderate throughput. Solana combines
Proof of History (PoH) with PoS, providing higher throughput and lower latency
compared to PoW systems. GradedDAG and Shoal++ excel in processing high
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Figure 6.7: Average TPS Comparison Across Blockchain Systems.
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Figure 6.8: Consensus Latency Comparison Across Blockchain Systems.

volumes of transactions with reduced latency, enhancing throughput significantly
over traditional blockchain systems.

IOTA’s Tangle uses a DAG instead of a traditional blockchain, making it better
suited for IoT applications with lower transaction fees and improved scalability.
IoT-Chain, designed specifically for IoT environments, focuses on low latency and
efficient consensus. Our architecture after Shoal achieves significantly higher TPS
compared to its competitors.

While throughput is crucial, achieving consensus promptly is equally important.
Figure 6.8 compares consensus latency across blockchain systems. The proposed
architecture’s latency of 433 milliseconds is markedly lower than that of systems
like Bitcoin, which suffer from long delays due to their PoW protocols. Bitcoin’s
approximately 10-minute latency range highlights the inefficiencies of these systems
for applications requiring prompt decision-making. Ethereum’s latency is 12–15
seconds, Solana, GradedDAG, Shoal++, and IOTA’s Tangle show better latency
but are still not as efficient as our system. IoT-Chain achieves lower latency due to
its design for IoT environments, but our architecture strikes a better balance between
high throughput and low latency, making it ideal for real-time applications.

Figure 6.9 illustrates the relationship between TPS and consensus latency. Our
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Table 6.8: Comparison of Energy Consumption Across Blockchain Systems.

System Energy/Transaction (J) Energy/Second (J)

Proposed BFT-DAG 0.00112355 055.05
Solana 0.01483200 740.82
Bitcoin 2,545,200 N/A
Ethereum (PoW) 225,000 N/A
Ethereum (PoS) 0.010800 N/A
IOTA 0.000001 N/A

system demonstrates a compelling balance, maintaining high throughput while en-
suring relatively low latency. Bitcoin achieves lower TPS with high latency due to
its PoW mechanisms. Ethereum, Solana, GradedDAG and IOTA’s Tangle improve
on this but still face trade-offs. Our architecture, optimized for both metrics, offers a
significant advantage for applications demanding rapid data processing and reliable,
low-latency consensus. This balance is essential for IoT applications, where quick
data processing and immediate consensus are critical for performance and reliability.

To provide context, we compare the estimated energy consumption of our system
with other blockchain systems, including Solana, Bitcoin, Ethereum, and IOTA
(Table 6.8).

Our system demonstrates superior energy efficiency compared to traditional
blockchain systems like Bitcoin and Ethereum (PoW). Although platforms like
Solana and IOTA also exhibit low-energy consumption, the proposed BFT-DAG
balances energy efficiency, high throughput, and robust security, making it particu-
larly suitable for IIoT environments.

6.5 Conclusion

This chapter introduced two original blockchain-based contributions aimed at sig-
nificantly enhancing security in distributed IIoT environments. These solutions
specifically address critical issues of data integrity, privacy, scalability, and efficient
resource management within complex industrial settings.
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The first contribution, the “Shopfloor Blockchain Approach,” provides an orig-
inal, secure, and privacy-preserving blockchain architecture uniquely tailored for
industrial auditing applications. Its novelty lies in integrating blockchain with ad-
vanced privacy-preserving mechanisms, directly addressing traditional auditing lim-
itations such as secure real-time data management, verifiable audit trails, and con-
fidentiality across geographically distributed shopfloor operations. The tailored de-
sign ensures that sensitive industrial data remains secure and traceable, specifically
benefiting audit-intensive environments requiring rigorous compliance and trans-
parency.

The second contribution, the “Lightweight Blockchain Approach,” presents an
original blockchain model specifically optimized for resource-constrained IIoT de-
vices, an essential requirement overlooked by traditional blockchain implementa-
tions. Its distinctive feature is the significant reduction in computational complexity
combined with an efficient consensus mechanism designed explicitly for industrial
contexts with limited processing power. This specialized approach markedly im-
proves transaction throughput and latency, ensuring the viability and practicality
of blockchain technology even on devices with constrained resources.

Despite these advancements, some limitations persist. The Shopfloor Blockchain
Approach relies on specialized hardware, limiting its applicability in scenarios de-
manding stringent real-time timing. Meanwhile, the Lightweight Blockchain Ap-
proach significantly improves scalability and efficiency but faces challenges in main-
taining strong anonymity and secrecy under highly dynamic network conditions,
indicating opportunities for further enhancements.

In conclusion, these innovative blockchain-based frameworks meaningfully ad-
vance security for distributed industrial environments by addressing specific opera-
tional constraints and data management requirements. Building upon these novel
foundations, the next chapter explores their integration into comprehensive, dy-
namic security frameworks, further progressing toward a cohesive and adaptive se-
curity ecosystem for IIoT.
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7.1 Introduction

Traditional Zero Trust Architectures (ZTAs) have played a key role in modern cy-
bersecurity by enforcing the principle of "never trust, always verify" [240]. However,
their static and predefined policy frameworks are increasingly inadequate in IIoT
environments, where security requirements change rapidly due to evolving device
interactions, operational states, and external threat conditions.

In dynamic and distributed industrial systems, access decisions must adapt con-
tinuously to contextual information such as user behavior, device status, network
conditions, and real-time threat intelligence. Static ZTA implementations, while
robust in controlled enterprise settings, often fail to reflect this situational aware-
ness, resulting in delayed responses, excessive privilege grants, or unnecessary access
denials.

To overcome these limitations, this chapter introduces a novel contribution that
integrates contextual intelligence into Zero Trust enforcement:

Dynamic Zero Trust Architecture (Dynamic ZTA)(Section 7.2): This framework
enables adaptive access control by continuously evaluating contextual data and dy-
namically adjusting access permissions in real time. Unlike prior ZTA models, such
as the static-policy-based architecture proposed by Paul and Rao [74], our approach
incorporates live context signals and continuous risk assessments to refine trust de-
cisions on the fly. This dynamic mechanism significantly enhances responsiveness
and reduces security blind spots caused by rigid policy enforcement.

The originality of this contribution lies in its combination of Zero Trust principles
with real-time context evaluation and threat-aware decision-making. This ensures
that IIoT systems maintain both fine-grained access control and high adaptability,
even in the face of changing conditions and adversarial activity. The proposed
architecture not only addresses key security gaps in traditional ZTA, but also serves
as a foundation for the more comprehensive distributed and blockchain-integrated
security solutions discussed in subsequent chapters.

Addresses Research Questions:

• What are the limitations of traditional Zero Trust architectures
in dynamic IIoT environments, and how can they be adapted for
real-time security?
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7.2 Dynamic Zero Trust Framework Overview

The dynamic ZTA design addresses complex security issues in network environments
by focusing on adaptive verification, continuous risk assessment, and dynamic policy
enforcement to ensure trust is dynamic and context-validated.

Our framework is unique in addressing contextual information and network seg-
ment criticality, unlike existing solutions that focus on specific aspects like user
behavior or device compliance. By integrating threat assessment with continuous
policy adaptation, we achieve a more granular and proactive security model, making
it a scalable and efficient solution for heterogeneous and evolving environments like
the IIoT.
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Figure 7.1: Integrated Framework for Dynamic Zero Trust Architecture.

The system operates as an interconnected framework as illustrated in Figure 7.1,
where each component collaborates to form a robust security posture. This ar-
chitecture ensures that every access request is carefully considered and managed
dynamically based on the context of the environment.

7.3 Architectural Components

7.3.1 Core Properties

We have designed our solution to provide the following characteristics:

• Dynamic Trust Adjustments: trust within the network is dynamic and
varies based on context, device compliance, and user behavior. The architec-
ture continuously assesses risk levels to adjust access permissions in real-time,
ensuring security responses are aligned with current conditions.

• Continuous Policy Adaptation: because static security policies are in-
adequate in a dynamic IIoT environment, our policy generator continuously
updates policies based on real-time assessments, ensuring the architecture re-
mains responsive to emerging risks.

• Core Infrastructure Integrity Assumption: the architecture assumes
core components are initially uncompromised, enabling reliable anomaly detec-
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tion. Any deviations are flagged, allowing the Policy Engine to adjust access
permissions proactively.

Identifiers and Access Workflow

The operational workflow begins when an access request is made by an entity (such
as a user, device, or application) seeking to access a network resource. Each entity is
assigned a unique identifier, referred to as an ID, which the system uses to manage
and authenticate access permissions. In this architecture:

• User ID identifies an individual or a group.

• Device ID identifies a device within the network.

• Flow ID Flow ID refers to a unique identifier for a network communication
session, typically derived from attributes such as source IP address, destination
IP address, source port, destination port, and protocol (5-tuple). It identifies a
data flow or session, especially useful for monitoring continuous data streams.

IDs are generated and distributed centrally by the Policy Administration mod-
ule during device onboarding or user registration. Device IDs are automatically
distributed upon device enrollment, user IDs are provisioned during account cre-
ation, and flow IDs are generated dynamically per communication session by net-
work monitoring components, then shared with the Policy Enforcement Point (PEP)
and Policy Engine (PE) for consistent reference throughout access control processes.

The ID plays a central role in the access control workflow. The Policy Enforce-
ment Points (PEP) verifies the entity’s ID against a list of authorized or restricted
entities when it receives an access request. In that way, only approved IDs can
proceed to the authentication stage. The Authenticator module then validates the
entity’s credentials, using the ID to confirm its identity and integrity. Verified IDs
are subsequently evaluated by the Policy Engine (PE) based on current security
policies, threat assessments, and contextual information to determine whether ac-
cess should be granted or denied.

Throughout the access request process, the ID serves as a consistent reference
for tracking, authentication, and decision-making, enabling the system to enforce
Zero Trust principles by verifying each unique user, device, and data flow within the
network.

Policy Enforcement Points

PEPs are strategically positioned gatekeepers that manage access at critical network
intersections [76]. The PEP plays an important role in processing access requests
from various entities. The PEP holds a list of banned IDs provided by the Policy
Administration (PA). When an access request is received, the PEP checks the re-
questing entity’s ID against this list. If the ID is not present in the banned list,
the PEP forwards the entity ID to the Authenticator and the PE. After receiving a
decision from the PE, which determines whether to grant or deny access, the PEP
completes the access process and logs all attempts and outcomes for audit purposes.
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The banned ID list is centrally maintained by the Policy Administration (PA)
and synchronized periodically or triggered by security events across all PEPs. IDs
can be removed (un-banned) either through administrative intervention after a re-
assessment of risk or automatically when anomaly detection indicates normal be-
havior has resumed. The list is synchronized frequently—typically event-driven—to
ensure consistency across all PEPs.

Authenticator

The authenticator validates the identity of users or devices by checking credentials,
certificates, and signatures to ensure authenticity. The resulting profile status (valid
or not valid) is essential for the PE’s decision-making and depends on factors such
as certificate validation time, installer signature verification, and approval signature
confirmation.

Anomaly Detection

Network Anomaly Detection monitors network traffic to detect deviations from es-
tablished patterns, indicating possibly a threat. We rely on our previous work [7]
for this component. Context-aware Anomaly Detection assesses user and device be-
havior against historical norms and context of environment such as time, location,
and user activities [241].

Policy Generator

This component updates or creates new policies based on findings from the Threat
Assessment module and the security status of entities within the system, ensuring
an adaptable security posture. The sum of these interactions guides the decision of
the PE to grant or deny access. If the decision is to deny access, the PEP enforces
it.

Policy Engine (PE)

The PE evaluates access requests based on real-time security data and adaptive mea-
sures. It relies on a Finite State Machine (FSM) to manage and transition between
logical states that represent the risk levels of entities. This integration provides
a structured approach to handling the dynamic nature of security management,
enabling the PE to respond effectively to changes in an entity’s behavior.

Within the PE, the FSM (Figure 7.2) defines states which each corresponding to
a specific security posture. Entities transition between these states based on triggers
generated by real-time threat assessments and contextual analysis. FSM states
include Normal, Alert, High Risk, Quarantined, and Compromised, transitioning
based on explicit triggers with specific security implications:

• Normal to Alert: Triggered by minor anomalies (Threat Risk score between
0.4-0.6), the Threat Risk Score is a quantitative metric aggregating normalized
contextual criteria to assess the current security risk associated with a device,
user, or network segment. , prompting increased monitoring.
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Figure 7.2: Finite State Machine for Policy Engine.

• Alert to High Risk: Significant anomalies detected (Threat Risk between
0.6-0.8), triggering heightened security measures and restricted access.

• High Risk to Quarantined: Critical threats detected (Threat Risk ≥ 0.8),
enforcing isolation and stringent access limitations.

• Alert/High Risk/Quarantined to Compromised: Confirmed security
breaches via investigation, mandating immediate isolation and remediation.

• Compromised to Recovery: Initiation of recovery procedures post-
investigation to restore secure operations.

• Recovery to Normal: Post-recovery verification and return to standard
operational status upon confirmed resolution.

For instance, detecting privilege escalation with a high confidence level prompts
the PE to transition the entity to a High Risk or Quarantined state, invoking stricter
access measures or isolation protocols. This structured state management enables
the PE to apply policy-driven actions tailored to each risk level, ensuring security
responses are proportionate and timely.

The FSM includes a feedback loop, explicitly involving continuous monitoring
and dynamic updates to authorized or banned entity IDs. If anomalous behavior is
detected, entity IDs may be flagged and transitions between states occur accordingly,
resulting in updates to the banned ID lists maintained by the Policy Enforcement
Point (PEP) and Policy Administration (PA). Conversely, when an entity previously
marked as risky demonstrates normal behavior, it transitions to a lower-risk state,
potentially resulting in its ID being removed from banned lists. This dynamic in-
terplay ensures robust security by continuously aligning the access control measures
with real-time assessments and evolving contextual information.
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The low computational complexity of employing a FSM further supports real-
time assessment and effective scalability in dynamic environments.

Threat Assessment

This module evaluates the potential risks associated with each access request within
ZTA. This module synthesizes inputs from Network and Context-aware Anomaly
Detection to derive an overall threat risk score. The assessment employs a structured
approach, incorporating statistical analysis and machine learning models to classify
threats and assess their severity. This comprehensive analysis informs the Policy
Engine (PE) and contributes to adaptive, context-aware decision-making.

Policy Administration (PA)

The Policy Administration (PA) component plays a central role in the proposed
ZTA framework, serving as the authority for managing and maintaining security
policies that govern access control across the network. It ensures that these policies
are effectively deployed and dynamically updated to respond to an evolving security
environment. Key responsibilities of the PA include the creation and management
of policies, as well as the enforcement of meta-policies that adapt to changing con-
textual factors. A meta-policy, in this context, refers to a higher-level template that
governs the creation and dynamic adjustment of specific access control rules.

Table 7.1: Summary of Variables Used in Threat Risk Calculation.

Symbol Description

C Confidence of Threat
A Attack Criticality
S Segment Criticality
P Past Anomalies
Cnorm Normalized Confidence of Threat
Anorm Normalized Attack Criticality
Snorm Normalized Segment Criticality
Pnorm Normalized Past Anomalies
wC Weight for Confidence of Threat
wA Weight for Attack Criticality
wS Weight for Segment Criticality
wP Weight for Past Anomalies

7.4 Threat Risk Scoring Model

Threat Assessment relies on a Threat Risk score calculated by combining four key
criteria:

1. Confidence of Threat (C) represents the model’s confidence level in iden-
tifying potential threats based on real-time data.

2. Attack Criticality (A) is a fixed value assigned based on the severity and
potential impact of the detected attack type.
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3. Segment Criticality (S) represents the importance or sensitivity of the
targeted network segment.

4. Past Anomalies (P ) reflects the historical frequency and severity of anoma-
lies associated with the entity (e.g., user or device).

Each criterion is computed and normalized to ensure consistency across different
scales before being combined into the overall Threat Risk score.

7.4.1 Confidence of Threat (C)

C is derived from real-time analysis using machine learning models or statistical
methods that detect anomalies or malicious activities. For example, an intrusion
detection system may assign a confidence score between 0 and 100% indicating the
likelihood that observed behavior is malicious. We apply a Min-Max Scaling for
normalization:

V arnorm =
V ar − V armin

V armax − V armin

where V armin and V armax are the minimum and maximum possible confidence
scores (typically 0 and 100) for a given variable V ar, and V arnorm is its normalized
value.

Min-Max Scaling is the most relevant here because the scores have a fixed range
and need to be mapped consistently to [0,1]. This approach preserves the propor-
tionality and interpretability of the data, which is critical for combining multiple
criteria in the risk assessment. Alternative methods, like Z-score normalization, are
less suitable as they distort the original scale.

7.4.2 Attack Criticality (A)

A is assigned based on the severity of the detected attack type, using standardized
threat intelligence sources like the MITRE ATT&CK framework [242]. Each attack
type is mapped to a criticality score reflecting its potential impact. Similar to C, A
is normalized using Min-Max Scaling.

7.4.3 Segment Criticality (S)

S represents the importance of the network segment being accessed. Segments
are assigned criticality scores based on factors like data sensitivity and business
impact. Examples of criticality scoring include assigning higher scores to segments
containing sensitive operational data (e.g., production control systems) or those
directly impacting safety and business continuity. Prior works such as [72] and
[75] provide methods for quantifying segment criticality. We still employ Min-Max
Scaling for normalization.

7.4.4 Past Anomalies (P )

P quantifies the historical frequency and severity of anomalies linked to the entity
requesting access. This includes prior incidents and behavioral deviations.
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A logarithmic transformation is applied to manage skewness due to outliers:

Plog = log(P + 1)

followed by robust scaling:

Pnorm =
Plog −Median(Plog)

IQR(Plog)

where Median(Plog) is the median and IQR(Plog) is the interquartile range of
the transformed data.

7.4.5 Threat Risk Calculation and Categorization

The risk assessment process combines anomaly scores obtained from both network
anomaly detection and context-aware anomaly detection modules. We compute a
unified threat risk score using a weighted linear combination method, ensuring a
clear and interpretable representation of the risk level for each entity:

Threat Risk =
∑

v∈{C,S,A,P}

wv · vnorm, where
∑

wv = 1 (7.1)

Here, the weights wC , wA, wS , and wP represent the relative significance assigned
to the criteria: Confidence of Threat (C), Attack Criticality (A), Segment Criticality
(S), and Past Anomalies (P ), respectively.

We selected this approach due to its inherent transparency and interpretability,
which allows stakeholders to clearly understand the contributions of each risk fac-
tor. The weighted combination model offers flexibility to dynamically adjust risk
criteria based on evolving threat landscapes and operational priorities within IIoT
environments.

Initial weights are expected to be configured by cybersecurity experts or system
administrators who possess contextual awareness of the industrial network’s oper-
ational priorities and the criticality of individual segments. Their domain-specific
insight ensures that weighting reflects the relative importance of each risk factor in
a real-world deployment.

In our experimental setup, these weights were manually assigned based on prede-
fined assumptions and simulated criticality of entities within the testbed. To reflect
realistic prioritization, we employed a contextual risk sensitivity tuning strategy.
For example, a simulated sensor managing core pressure in a real-time production
machine was treated as highly sensitive due to its immediate safety and operational
impact. Conversely, a robotic transporter operating in a non-critical post-assembly
stage (e.g., moving finished parts) was considered less sensitive, as it could be tem-
porarily replaced by manual labor without compromising system safety or integrity.

This prioritization was guided by domain-driven assessments rather than sta-
tistical tuning, ensuring that the calculated Threat Risk score reflected not only
the presence of anomalies but also the potential operational consequences of those
anomalies. Currently, weights (wC, wA, wS, wP) are manually configured based on
domain expertise, which provides clear interpretability but inherently limits adapt-
ability and introduces subjectivity. To strengthen robustness, future work will
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integrate dynamic weight adjustment through machine learning and optimization
methods. Approaches such as supervised learning or reinforcement learning could
optimize these weights based on empirical threat detection performance, while sen-
sitivity analysis will be used to evaluate how variations in these weights influence
the Threat Risk score.

Following the calculation, the Threat Risk score directly informs the entity’s
risk categorization, defining specific thresholds that translate numerical scores into
actionable risk levels. Algorithm 17 illustrates the categorization procedure clearly:

Algorithm 17: Risk Level Determination
Input: Entity identifier EntityID, threat score ThreatRisk from anomaly

detection
Output: Updated risk level for EntityID

1 // Determine the risk level based on threshold ranges
2 Function DetermineRiskLevelEntityID, ThreatRisk:
3 if ThreatRisk ≥ 0.8 then
4 UpdateRiskLevel(EntityID, “Critical Risk”);

5 else if ThreatRisk ≥ 0.6 then
6 UpdateRiskLevel(EntityID, “High Risk”);

7 else if ThreatRisk ≥ 0.4 then
8 UpdateRiskLevel(EntityID, “Low Risk”);

9 else
10 UpdateRiskLevel(EntityID, “Normal Risk”);

11 return CurrentRiskLevel(EntityID);

Risk levels are continuously updated based on real-time data inputs, ensuring
timely responsiveness to threat dynamics:

• Critical Risk (≥ 0.8): Triggers immediate restrictive actions due to high
threat confidence.

• High Risk (0.6 ≤ score < 0.8): Activates heightened monitoring and stricter
security controls.

• Low Risk (0.4 ≤ score < 0.6): Results in increased vigilance while preserv-
ing operational flexibility.

• Normal Risk (< 0.4): Indicates standard operating conditions without ad-
ditional restrictions.

The defined thresholds are based on empirical evaluations and industry-standard
cybersecurity practices, designed to effectively balance robust security measures and
operational performance. Organizations may adapt these thresholds to their specific
operational requirements and security policies, allowing customized responsiveness
to their particular security landscape.

The PE integrates a FSM to manage dynamic transitions between security states
based on event-driven triggers. The FSM operates by processing events such as mi-
nor_anomaly_detected, significant_issue_detected, and anomaly_resolved, which
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correspond to real-time security observations. These events dictate transitions be-
tween states such as Normal, Alert, High Risk, and Quarantined, allowing the system
to respond adaptively to changing conditions.

The FSM is defined as a tuple (S,Σ, δ, s0):

• S: A finite set of states: Normal, Alert, High Risk, Quarantined, Compromised,
Recovery .

• Σ: A finite set of events representing observed anomalies or resolutions.

• δ : S × Σ → S: A state transition function mapping the current state and
event to a new state.

• s0: The initial state, Normal.

An event-driven design empowers the PE to respond swiftly and effectively to
real-time threats. Although the Threat Risk score influences event generation, the
FSM transitions deterministically based on these events, ensuring consistent and
predictable state changes.

Figure 7.2 illustrates the Finite State Machine. In particular, when a minor
anomaly is detected, the FSM transitions from a normal state to an Alert state. On
the contrary, a critical threat forces the system to go in quarantine, where isolation
measures are enforced. The system returns to a normal state when anomalies are
resolved.

7.4.6 Finite State Machine (FSM) Event Generation

The FSM transitions between states based on events that are directly tied to the
calculated Threat Risk scores. Events such as minor_anomaly_detected, signifi-
cant_anomaly_detected, or critical_threat_detected are triggered when the Threat
Risk score surpasses predefined thresholds, determined as follows:

• Minor anomaly detected: Triggered when the Threat Risk score is ≥ 0.4
and < 0.6.

• Significant anomaly detected: Triggered when the Threat Risk score is
≥ 0.6 and < 0.8.

• Critical threat detected: Triggered when the Threat Risk score is ≥ 0.8.

Initial thresholds (0.4, 0.6, and 0.8) were established manually based on practical
judgment, influenced by industry-recognized best practices for anomaly severity clas-
sification and security response escalation. Specifically, guidance from frameworks
such as the NIST SP 800 series [nist-sp800-30r1] and the OWASP Risk Rat-
ing Methodology provided conceptual benchmarks [owasp-risk-rating] for defining
progressive threat levels from minor anomalies to critical threats requiring isolation.

While these thresholds were not derived from formal optimization or machine
learning, they were chosen to reflect common principles in risk management such
as prioritizing availability in safety-critical IIoT environments and avoiding over-
sensitization. Within our experimental setup, we qualitatively validated that these
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Figure 7.3: Threat Risk Score Mapping to FSM Events

thresholds produced FSM transitions aligned with expected security responses under
simulated benign and malicious behaviors.

We acknowledge that this manual, rule-based calibration is a simplification. Fu-
ture work will explore data-driven threshold refinement using operational telemetry
and feedback loops [wu2024physics] to improve precision and reduce false positives
in dynamic conditions.

As illustrated in Figure 7.3, each Threat Risk interval refers to a distinct event,
which drives FSM state transitions.

7.4.7 Policy Creation and Management

The Policy Administration (PA) facilitates the creation, modification, and storage
of security policies for various devices and entities within the network. Each pol-
icy includes conditions that reference the state of the entity as defined by the PE
(Normal, Alert, High Risk, Quarantined, Compromised, and Recovery).

For example, a policy rule may specify:

• Permit access to resource R if the entity state is Normal and the authenti-
cation level is sufficient.

• Deny access to sensitive resource S if the entity state is High Risk or higher.

• Require additional verification steps if the entity state is Alert.

These policies are stored in a centralized repository managed by the PA and are
retrieved by the PE during the access control decision process.

7.4.8 Meta-Policy Enforcement and Validation

A distinctive feature of the Policy Administration (PA) is its enforcement of meta-
policies, which are high-level rules governing the formulation and validation of new
or updated policies. These meta-policies ensure that all policies adhere to organi-
zational standards. The validation process considers both semantic correctness and
risk alignment.

Policy validation involves the following steps:

1. Semantic Analysis: The PA verifies that policies align with high-level objec-
tives and do not conflict with existing rules, ensuring their logical consistency.
Meta-policies are pre-compiled into a decision tree structure, where each node
represents a condition or constraint. The proposed policy is then abstracted
into a feature vector and traverses the decision tree for validation. Conflicts
are resolved based on predefined priority levels of meta-policies.
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2. Risk Alignment: Policies are validated against the organization’s risk man-
agement principles. Attributes such as entity states, segment sensitivity, and
access levels are evaluated to ensure alignment. For instance, higher risk states
(High Risk or Quarantined) correspond to stricter access controls, enforced
through meta-policies like no_write_access_high_risk.

Algorithm 18: Pre-Compiled Meta-Policy Validation
Input: Meta-policy set M, feature vector x, priority map P
Output: Validation result ValidationResult, list of violations Violations

1 // Validation process for a proposed policy
2 Function ValidatePolicyM,x,P:
3 Violations← ∅;
4 // Compile meta-policies into decision tree
5 T ← CompileToDecisionTree(M);
6 // Extract features from proposed policy
7 x← ExtractFeatures(p);
8 // Traverse decision tree and check conditions
9 foreach node n in T do

10 if EvaluateCondition(ϕn,x) = False then
11 Append n.meta-policy to Violations;

12 // Resolve conflicts based on priority
13 Violations ← SortByPriority(Violations,P);
14 Violations ← ResolveConflicts(Violations);
15 // Determine validation result
16 if Violations ̸= ∅ then
17 ValidationResult← False;

18 else
19 ValidationResult← True;

20 return ValidationResult,Violations;

Algorithm 18 formalizes the validation process, ensuring both semantic and risk-
based compliance. The meta-policy language is formally structured with clearly
defined syntax: each meta-policy comprises a name, type (any/all), and conditions.
Conditions are expressed as logical predicates involving entity attributes such as
state, access level, and segment sensitivity.

In algorithm 18,M represents the set of meta-policies, where each meta-policy m
includes a condition ϕm that must evaluate to True for compliance. x is the feature
vector extracted from the proposed policy p, containing relevant attributes such as
state or access_level. T denotes the decision tree constructed fromM, where each
node n represents a condition ϕn for validation. P is the priority map used to resolve
conflicts by assigning precedence to meta-policies. Violations is a list accumulating
the meta-policies violated by the proposed policy, and ValidationResult indicates
whether the policy complies (True) or fails (False). Logging mechanisms record
violations and outcomes for auditing and debugging purposes.

Conflicts from overlapping meta-policy conditions are resolved systematically
using a predefined priority map that ranks meta-policies according to organizational
security objectives. In cases of conflict, the highest-priority meta-policy is enforced,
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ensuring consistent and predictable policy decisions.

7.4.9 Complexity Analysis

Algorithm 18 addresses scalability through pre-compilation of meta-policies into a
decision tree, significantly reducing runtime validation complexity. This design en-
sures efficiency even as the number of meta-policies grows. Additionally, represent-
ing policies as compact feature vectors further minimizes computational overhead,
ensuring high scalability and responsiveness in large-scale, dynamic environments.
In the following, the complexity is discussed in more detail.

1. Preprocessing Complexity: Compiling meta-policies into a decision tree
involves parsing and restructuring conditions. Let |M| be the number of
meta-policies and a the average number of attributes per meta-policy. The
preprocessing complexity is O(|M| · a)

2. Runtime Validation Complexity: Traversing the decision tree has com-
plexity proportional to its depth d, which depends logarithmically on the num-
ber of meta-policies in a balanced tree, i.e., O(d) where d ≈ log(|M|)
Extracting the feature vector x from the policy has complexity O(k) where k
is the number of relevant attributes in the policy

Thus, the total runtime complexity is O(d+ k) ≈ O(log(|M|) + k)

3. Conflict Resolution Complexity: Sorting violations by priority involves a
complexity of O(v · log(v)) where v is the number of violations. In the worst
case, v = |M|, leading to a complexity of O(|M| · log(|M|))

The total complexity is finally to O(|M| · a+ log(|M|) + k + |M| · log(|M|)).

7.4.10 Example

Let us consider a meta-policy no_write_access_high_risk, which enforces that en-
tities in the High Risk state cannot have write access:

1 {
2 "name": "no_write_access_high_risk",
3 "type": "any",
4 "condition": "state != ’High Risk ’
5 or access_level != ’full ’"
6 }

In this policy, an entity with a High Risk must not have the full access, preventing
it from having a write access.

Let us now consider a proposed policy for iot_device1 that specificies:

1 {
2 "entity_id": "iot_device1",
3 "state": "High Risk",
4 "access_level": "full"
5 }

To validate this specific policy against the meta-policy:
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1. The feature vector is extracted: x = {state: ’High Risk’, access_level: ’full’}.

2. The decision tree evaluates ϕ = (state ̸=′ HighRisk′)∨(access_level ̸=′ full′).
This evaluates to False.

3. The violation is logged: "Policy violates meta-policy:
no_write_access_high_risk".

4. The algorithm returns ValidationResult = False and appends the violation
to the Violations list.

This approach ensures that all proposed policies are rigorously validated against
meta-policies, aligning with the principles of Zero Trust Architecture while optimiz-
ing resource efficiency.

7.5 Proof of Concept Implementation: a Qualitative
Evaluation

To validate our ZTA framework, we implemented a proof-of-concept (PoC) network
using a cluster of virtual machines (VMs) that simulate a controlled network envi-
ronment. This setup executes key components of the ZTA system, including policy
generation, enforcement, and risk assessment, in a small-scale network to analyze
access scenarios and policy effectiveness.

Table 7.2: Overview of VM Setup for ZTA Experiment.

Number Primary Func-
tion

Role in Archi-
tecture

Specifications

VM1 Policy Administra-
tion (PA) and Pol-
icy Generator

Manages and up-
dates security poli-
cies dynamically

4 CPU, 6 GB RAM, 12 GB disk

VM2 State Checking
(PE)

Enforces policies
based on device
state

4 CPU, 6 GB RAM, 12 GB disk

VM3 Authenticator and
Risk Assessment

Evaluates risk
based on anomaly
detection data

4 CPU, 4 GB RAM, 12 GB disk

VM4 Policy Enforce-
ment Points
(PEPs)

Executes updated
security policies

4 CPU, 4 GB RAM, 12 GB disk

VM5 Server Manages authenti-
cation status

1 CPU, 2 GB RAM, 12 GB disk

VM6 Simulated User
Device

Simulates user ac-
cess behavior

1 CPU, 2 GB RAM, 12 GB disk

VM7 Simulated IoT De-
vice

Simulates IoT data
transmission

1 CPU, 2 GB RAM, 12 GB disk

VM8 Simulated IoT De-
vice

Simulates addi-
tional IoT data
transmission

1 CPU, 2 GB RAM, 12 GB disk
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(a) No ZTA, Allows attacker access if credentials are stolen.

(b) Uses IP and context-aware rules to block unauthorized access attempts.

Figure 7.4: Comparison of Credential Theft Scenarios

Table 7.2 details the VMs used in this setup, outlining their primary functions,
roles within the architecture, and specifications.

This PoC setup allows testing interactions between the various ZTA compo-
nents, supporting simulated access and policy enforcement scenarios in a virtualized
environment [243]. We qualitatively evaluate the benefits of the ZTA framework by
analyzing the impact of possible attacks. We consider the following scenario:

1. The user has password-protected access to the server.

2. The user has read-only access to Device 1 but no access to Device 2.

3. Each IoT device can send data to the server at defined intervals.

7.5.1 Credential Theft and Unauthorized Server Access

Credential theft is a prevalent and critical attack vector where attackers exploit
stolen user credentials to gain unauthorized access to sensitive systems. This sce-
nario mimics real-world incidents like phishing attacks or brute-force credential com-
promises, which often bypass traditional password-based security systems. The lack
of contextual verification mechanisms exacerbates this vulnerability, allowing at-
tackers to leverage valid credentials undetected. Such breaches can lead to severe
consequences, including unauthorized data exfiltration, system compromise, or fur-
ther lateral movement within the network.

Without ZTA: The attacker can authenticate and gain full access to the server
(Figure 7.4a).

With ZTA: ZTA policies restrict access based on IP and user context, blocking
unauthorized attempts from unfamiliar locations (Figure 7.4b).

7.5.2 Insider Threat and Unauthorized Device Access

Insider threats pose significant risks to organizational security by exploiting legiti-
mate access to systems. In this scenario, a user with authorized access to Device
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(a) Without ZTA, allowing unauthorized access to sensitive devices

(b) Applies role- and context-based policies to limit access and block suspicious behavior.

Figure 7.5: Comparison of Insider Threat Scenarios

Figure 7.6: ZTA Reaction to DoS Attack Scenario

1 attempts to gain unauthorized access to Device 2, bypassing conventional net-
work controls. This scenario mimics real-world incidents where insiders abuse their
permissions or credentials to access sensitive resources, a critical challenge for tradi-
tional security architectures. The lack of fine-grained, context-aware access control
exacerbates the risk of exposing sensitive data or critical infrastructure to unautho-
rized users.

Without ZTA: Basic network security is bypassed, allowing access to Device 2
(Figure 7.5a). With ZTA: Role-based policies deny access to Device 2, and the
Policy Engine flags any anomalous access attempts (Figure 7.5b).

7.5.3 Compromised IoT Device and DoS Attack

In this scenario, an IoT device is compromised by an attacker and begins sending
excessive amounts of data to the server, resulting in a Denial-of-Service (DoS) attack.
This type of attack mimics real-world incidents where IoT devices, often lacking
robust security controls, are exploited to overwhelm critical infrastructure. Such
attacks are critical to address as they can cause server downtime, disrupt operations,
and impact the availability of services.

Without ZTA: The server becomes overwhelmed, leading to potential downtime.
With ZTA: Rate-limiting policies prevent excessive data from any IoT device,

mitigating the DoS attack.
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Figure 7.7: ZTA Reaction to Suspicious User Behavior

7.5.4 Suspicious User Behavior and Anomaly Detection

This scenario involves a compromised user account engaging in actions that deviate
significantly from its standard behavior patterns . Such behavior may include ac-
cessing sensitive resources, executing commands outside the user’s typical scope, or
initiating anomalous transactions. This scenario mimics real-world incidents where
compromised credentials or insider threats exploit legitimate access to cause harm.
Detecting these deviations is critical to preventing unauthorized activities and mit-
igating potential damage.

Without ZTA: Abnormal actions remain undetected, potentially causing damage.
With ZTA: Context-aware anomaly detection flags deviations, prompting the

Policy Engine to require multi-factor authentication or deny further access.

7.6 Quantitative Evaluation of Proposed ZTA

The PoC environment, detailed in Section 7.5, was configured to simulate typical
access scenarios within an IIoT context under normal network operations. The
implementation included critical ZTA components such as the PA, PE, and PEP
across a cluster of virtual machines.

It is important to clarify that our ZTA framework does not enforce policies at the
granularity of individual packets traversing the network. Instead, policy enforcement
occurs primarily at session initiation and at strategic checkpoints or upon detecting
anomalous behavior. Specifically, a lightweight probe passively inspects network
traffic without directly interfering with routing, collecting contextual information
and real-time threat indicators. Based on this information, the Policy Enforcement
Point (PEP) enforces security policies proactively at connection setup and reactively
when anomalies are detected. This approach minimizes computational overhead
and maintains high security standards without unnecessarily impacting network
performance.

The evaluation aimed to measure performance metrics, including latency, CPU
usage, and memory utilization, during normal network operations. These metrics
provide insights into the baseline performance of the ZTA framework, demonstrating
its efficiency and scalability in regular conditions.

7.6.1 Latency

Figure 7.8 shows the comparison of latency with and without ZTA across different
request rates. Latency was measured as the average time required to process access
requests under varying network loads. During normal operations, latency remained
within acceptable bounds. Without ZTA, latency was consistently low and averaged
approximately 45 ms across a range of request rates. With ZTA, latency increased
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Figure 7.8: Latency vs. Request Rate with and without ZTA

due to context validation and policy enforcement checks but remained well below the
threshold for near-real-time IIoT operation. The average latency under ZTA peaked
at approximately 141 ms at the highest simulated traffic levels. This controlled
rise in latency demonstrates the effectiveness of the ZTA framework in maintaining
operational responsiveness under increasing workload.

7.6.2 CPU and Memory Utilization

Figure 7.9 illustrates CPU consumption relative to the request rate, demonstrating
consistent and predictable scaling as traffic volume increases. To assess the compu-
tational efficiency of the ZTA framework under normal operation, CPU usage was
recorded across all major components of the PoC environment.

In deployments without ZTA, CPU utilization ranged from 1.5% to 7.0%, reflect-
ing minimal computational burden associated with basic access control mechanisms.
In contrast, the ZTA deployment began at approximately 16% and scaled linearly
with traffic, reaching a maximum of 26.4% at higher request rates. This increase
is primarily attributable to the additional workload introduced by real-time risk
assessment, policy lookup, and state-checking logic executed within the PEP and
PE.

To further clarify the distribution of load across system components, we con-
ducted per-VM profiling under typical traffic conditions. The observed 26.4% peak
represents a balanced workload across all CPU cores, avoiding saturation on any
single thread. Average CPU utilization per virtual machine was as follows:

• VM2 (PE and State Checking): 25.1%± 3.8%

• VM3 (Authenticator and Risk Assessment): 21.3%± 4.0%
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Figure 7.9: CPU Scaling With/Without ZTA

• VM4 (Policy Enforcement Points - PEPs): 26.4%± 5.1%

• VM5 (Server): 12.2%± 2.3%

• VM6 (Simulated User Device): 8.5%± 1.4%

• VM7 and VM8 (Simulated IoT Devices): 6.8%± 1.1%

The VMs simulating IoT endpoints (VM7 and VM8) executed lightweight scripts
that periodically generated and transmitted synthetic telemetry to the server, sim-
ulating typical IIoT sensor communication patterns. This emulation enabled us to
benchmark system behavior under realistic edge-to-core traffic flows without intro-
ducing unnecessary complexity at this stage. In future work, we intend to incorpo-
rate more representative IIoT simulators and heterogeneous device types to further
refine performance profiling across protocol stacks.

Memory usage remained stable throughout all test runs. Core ZTA components
particularly the PE and PEP used modest memory overhead to retain per-session
context and temporary policy caches. Overall memory consumption remained within
the 22–24% range across core components, indicating effective resource allocation.
These results confirm that the proposed framework provides scalable and context-
aware policy enforcement without imposing excessive resource demands, making it
suitable for deployment on mid-tier edge gateways and IIoT control nodes.

7.6.3 Performance Metrics and Threat Response

To comprehensively evaluate the operational overhead and dynamic threat response
capabilities of the proposed ZTA, we conducted a detailed performance analysis
across three distinct scenarios: (1) Normal Operation, representing standard con-
ditions; (2) High-Frequency Access, simulating elevated request rates; and (3) a
targeted Denial-of-Service (DoS) Attack, simulating adversarial behavior. We
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measured key performance metrics (CPU usage, memory consumption, latency, net-
work throughput, and packet loss) across critical system components: User, Server,
PEP, PE.

Table 7.3 summarizes the average performance metrics, while Figures 7.10-7.12
visually depict the system’s behavior under each scenario.

Table 7.3: Performance Metrics Across Scenarios.

Metric Entity Normal HighFreq DoS

CPU Usage (%)

User 14.2 22.3 27.5
Server 11.8 18.5 19.7
PEP 13.1 20.1 22.4
PE 12.7 19.2 21.1

Memory Usage (%)

User 23.5 28.6 31.2
Server 21.1 24.3 26.4
PEP 22.8 26.5 28.1
PE 21.7 25.8 27.9

Throughput (Mbps)
User 42.8 39.2 35.8
Server 42.8 39.2 35.8
PEP 41.7 37.5 34.6

Latency (ms) User 120.5 160.7 210.4
PEP 130.2 175.9 248.9

Packet Loss (%) User 2.1 8.5 16.5
PEP 3.4 9.8 18.3

Under Normal Operation, the ZTA framework exhibited stable and efficient
resource management. As shown in Figure 7.10, CPU usage remained modest across
components, averaging below 15%. Memory consumption followed a similar trend,
as illustrated in Figure 7.11, remaining around 22% on average. Network latency,
was low 120.5 ms for the User and 130.2 ms for the PEP while Figure 7.12 shows
throughput was high (42.8 Mbps for User and Server), with minimal packet loss
(2.1% for User, 3.4% for PEP). These results confirm that the system imposes
minimal overhead during standard IIoT operations.

In the High-Frequency Access scenario, the system experienced moder-
ate stress due to increased request rates. CPU usage increased noticeably (see
Figure 7.10), reaching 22.3% for the User and approximately 20% for the PEP.
Figure 7.11 shows memory usage rose to nearly 28.6% (User) and 26.5% (PEP).
Latency increased by about one-third, with Table 7.3 over latency showing a jump
to 160.7 ms (User) and 175.9 ms (PEP). As seen in Figure 7.12, throughput slightly
declined (8%), and packet loss increased to 8.5% and 9.8% respectively. Despite
these increases, system performance remained within operational limits.

During the simulated DoS Attack, the attacker generated traffic exceeding 30
requests per 10 seconds, overwhelming normal thresholds. The PEP’s anomaly
detection module promptly identified this pattern as a data flooding attack with
95% confidence. The resulting alert triggered a state transition in the FSM to High
Risk, activating strict access controls via the Risk Assessment module.

The attack’s impact on performance was substantial: as shown in Figure 7.10,
CPU usage surged to 27.5% (User) and 22.4% (PEP). Memory usage also spiked
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(Figure 7.11), reaching 31.2% (User) and 28.1% (PEP). Latency, illustrated in Ta-
ble 7.3 over latency, escalated sharply to 210.4 ms (User) and 248.9 ms (PEP).
Throughput, as shown in Figure 7.12, dropped to 35.8 Mbps (User and Server), and
packet loss rose to 16.5% (User) and 18.3% (PEP). Despite this degradation, the
Server and Policy Engine sustained stable performance, indicating effective contain-
ment of the compromised entity.

These comprehensive results confirm the ZTA framework’s capacity for real-time
threat detection, dynamic policy enforcement, and resilience under both elevated
workload and active adversarial conditions. The architecture isolates threats with-
out compromising the stability of the broader system.
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7.6.4 Scalability, Interoperability, and Edge Deployment Consid-
erations

To further enhance the practical deployment of the proposed ZTA framework in
IIoT environments, several key considerations have been identified for future work.

Edge Device Deployment Resource constraints, such as limited CPU, mem-
ory, and energy availability, are critical challenges for IIoT edge devices. While our
proof-of-concept focused on server-grade virtual machines, future work will involve
implementing lightweight PEPs and context probes on resource-constrained devices
such as Raspberry Pi and microcontrollers. Optimization strategies, including of-
floading intensive computations to nearby edge servers and minimizing local policy
enforcement overhead, will be investigated to ensure scalability to highly distributed,
resource-limited environments.

Multi-Tenancy Support In industrial ecosystems, multi-tenancy is often re-
quired where multiple independent organizations or operational domains coexist.
Scaling the ZTA framework to support multiple tenants will involve isolated policy
domains, federated risk assessments, and tenant-aware PEPs/PEs to ensure secure,
logical separation while sharing underlying infrastructure.

Protocol Interoperability Although our current implementation operates over
standard TCP/IP, real-world IIoT systems rely heavily on specific industrial proto-
cols such as MQTT and OPC UA. Future iterations of the framework will integrate
protocol adapters and semantic translators to support these standards natively,
allowing for dynamic, context-aware security policies across heterogeneous commu-
nication stacks.

Scale-Out of PEPs and PEs Supporting large-scale IIoT deployments requires
scalable PEP and PE architectures. Future designs will employ hierarchical or dis-
tributed control models to allow PEPs and PEs to scale horizontally, with mecha-
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nisms for distributed policy synchronization, context aggregation, and decentralized
anomaly detection to maintain performance and resilience across large, dynamic
networks.

7.7 Conclusion

This chapter introduced an advanced Dynamic ZTA, specifically designed to en-
hance security in dynamic and context-rich IIoT environments. The proposed dy-
namic ZTA framework significantly advances traditional static approaches by inte-
grating real-time context-awareness and continuous threat assessments into access
control mechanisms. By dynamically adapting security policies in real-time, the
presented ZTA effectively addresses critical vulnerabilities and limitations associ-
ated with rigid, static policy enforcement models, thus ensuring robust protection
against evolving threats.

The primary advantages of the proposed dynamic ZTA lie in its adaptability
and responsiveness, allowing IIoT systems to respond swiftly to emerging threats
and changes in operational context. It substantially enhances operational security
by integrating continuous monitoring and immediate policy adjustments, which are
crucial for complex industrial environments characterized by dynamic interactions
among multiple devices and users.

However, certain limitations persist, primarily related to the complexity and
resource demands of real-time data analysis and context assessment. Implementing
this dynamic architecture in highly resource-constrained environments may present
operational challenges, necessitating further optimization and targeted adaptation
strategies.

In conclusion, this chapter contributes significantly to developing a robust and
adaptable security framework that addresses key gaps in traditional access control
methodologies within IIoT networks. The dynamic ZTA model sets the foundation
for further enhancements presented in the next chapter, where Chapter 8 will ex-
plore distributed, blockchain-based mechanisms for secure policy negotiation. This
subsequent approach aims to complement and extend the capabilities introduced
here by adding further layers of decentralized, verifiable, and transparent security
management to the overall security ecosystem.
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8.1 Introduction

As IIoT ecosystems evolve into distributed and multi-stakeholder environments,
static or centrally managed trust frameworks struggle to meet the growing demands
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for scalability, autonomy, and interoperability. Secure collaboration across indepen-
dently administered industrial domains requires dynamic, verifiable trust mecha-
nisms that can adapt to contextual policies, varying operational goals, and regula-
tory constraints.

Traditional ZTA, even when extended with dynamic access control mechanisms,
often assume centralized control over policies and identities. In decentralized in-
dustrial settings, such assumptions break down. Trust must be established and
managed in a distributed, auditable, and transparent manner while also ensuring
security, privacy, and operational flexibility.

To address these challenges, this chapter introduces a novel contribution that
extends Zero Trust principles into a fully decentralized and blockchain-enhanced
trust negotiation framework:

This contribution builds upon and integrates the lightweight blockchain archi-
tecture and the dynamic Zero Trust model introduced in earlier chapters. It presents
a unified framework that enables secure, automated policy negotiation among dis-
tributed industrial entities. Our approach uniquely combines the immutability and
auditability of blockchain with the real-time policy adaptation capabilities of dy-
namic ZTAs.

Previous decentralized trust models exhibit various limitations. For instance,
DistriTrust [244] decentralizes policy decisions using threshold cryptography but
faces scalability issues and synchronization challenges across distributed Policy De-
cision Points (PDPs). Similarly, Xie et al.’s distributed ZTA [245] integrates fed-
erated learning and blockchain, enhancing resilience but introducing complexity
and scalability concerns for large industrial networks. Mahalle et al. [56] pro-
pose a capability-based model tailored for IoT access control but lack decentralized
decision-making.

Table 8.1 summarizes key differentiators between these methods and our pro-
posed framework, highlighting advancements in scalability, flexibility, privacy, and
transparency.

Table 8.1: Comparison of Key Capabilities in Distributed Policy Architectures

Capability [244] [245] [56] Our
Approach

Dynamic Policy Negotiation ✗ ✗ ✗ ✓
Privacy-Preserving Access Control ✗ ✓ ✓ ✓
Decentralized Policy Decision ✓ ✓ ✗ ✓
Adaptive Regulatory Compliance ✗ ✗ ✓ ✓
Attribute-Based Privacy Controls ✗ ✗ ✓ ✓
Fine-Grained Trust Evaluation ✗ ✓ ✗ ✓
Blockchain Consensus ✓ ✓ ✗ ✓
Multi-party Negotiation ✗ ✗ ✗ ✓
Quantitative Risk Assessment ✗ ✗ ✗ ✓
Smart Contract Anchoring ✗ ✓ ✗ ✓

In our framework, capabilities are utilized for system authorization, ensuring
requester and requestee permissions alignment.

At the core of this integration is the Digital Product Passports (DPP) mecha-
nism, which ensures that negotiated policies remain verifiable, context-aware, and
privacy-preserving. This synergy allows for transparent and adaptive trust negoti-
ation, even across independently governed industrial domains.
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By leveraging the strengths of both the lightweight blockchain infrastructure
and the dynamic ZTA introduced earlier, the proposed Distributed ZTA delivers a
robust, scalable, and context-sensitive trust architecture. It provides a foundation
for secure, cross-domain collaboration addressing one of the most critical challenges
in the future of industrial security.

Addresses Research Questions:

• What are the challenges in integrating blockchain and Zero Trust
principles into a cohesive security framework for IIoT?

• How can identity management, blockchain, and anomaly detec-
tion be integrated into a cohesive Distributed ZTA framework for
securing IIoT networks?

8.2 Proposed Distributed ZTA Framework

We propose to enable secure and privacy-preserving collaboration in dynamic and
cross-company environments (Figure 8.1). In such a situation, organizations period-
ically or spontaneously require data or service sharing while preserving their internal
policies and maintaining robust security. To achieve this, our framework integrates
the ZTA principles with a blockchain-enabled decentralized policy management sys-
tem.

Each participating organization operates its own ZTA system, with a PE and
PEPs managing local rules and access control. The hierarchical blockchain archi-
tecture mirrors the roles of ZTA components as follows:

1. Full Nodes (PEs): These nodes act as Policy Engines, responsible for policy
evaluation, decision-making, and storing immutable consensus data on the
blockchain. Full Nodes ensure decentralized management of policies across
organizations.

2. Middle Nodes (PEPs): These nodes function as Policy Enforcement Points,
enforcing access decisions and validating policy adherence. They aggregate
and process updates from Light Nodes and interact with Full Nodes for con-
sensus and enforcement.

3. Light Nodes (Entities): These nodes represent devices, users, or systems
that interact with the blockchain. They store DPPs and Data Access Passports
(DAPs) locally while submitting policy-related information to Middle Nodes
for processing.

DPPs encapsulate key metadata about devices, products, and entities in the
network such as configuration sets, maintenance schedules, and lifecycle data. They
also include a policy layer, the DAP, which defines access rules and constraints.
These passports preserve local policies and enable secure collaboration in distributed
environments. Additionally, policies regarding data access are stored in a dedicated
layer referred to as the DAP. These passports ensure local policies remain intact
and secure, enabling safe collaboration in dynamic and distributed environments.
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The DPPs are generated centrally within each organization’s network and pushed
to a blockchain, utilizing a privacy-preserving mechanism such as a viewing key.
Only authorized members can access the content of the DPP and DAP, ensuring
that sensitive policy information is secure. This design safeguards internal rules
while providing an immutable proof of negotiation and consensus for cross-company
collaboration.
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Figure 8.1: Proposed Method Data Flow.

8.2.1 Security Properties Provided by the Blockchain Architecture

The proposed blockchain-enhanced architecture provides the following core security
guarantees:

• Integrity and Authenticity of Policies: Every policy proposal or update is
signed by authorized PEs and committed to an immutable blockchain ledger.
This prevents tampering and allows for verification of origin.

• Confidentiality of Policy Data: Only metadata or encrypted policy ref-
erences are stored on-chain. Sensitive policy contents remain off-chain, en-
crypted using viewing keys and accessible solely to authorized peers.

• Non-Repudiation and Accountability: All proposals and consensus agree-
ments are signed and recorded on-chain. No participant can deny past actions
or falsely claim policy states.

• Availability of Policy State: Replication across nodes ensures that policy
history and current agreements remain accessible, even in cases of node failure
or network partitioning.

These security properties are essential to uphold the Zero Trust principles of
verifiability, transparency, and decentralization across organizations.

8.2.2 Decision-Making Functions

Quantifiable Objectives

To systematically assess and negotiate policy proposals across organizational bound-
aries, we define a set of quantifiable objectives. These objectives reflect the core
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requirements for secure, compliant, and trustworthy inter-organizational coopera-
tion, and are formulated in alignment with established best practices in security,
governance, legal compliance, and operational integrity.

Each objective is associated with a normalized metric in the [0, 1] range, facil-
itating integration into a multi-objective utility function. This structure supports
transparent policy comparison and optimization, while enabling risk-aware compli-
ance evaluation and adaptive trust negotiation.

1. Security Compliance Objective (fsecurity):

Measures adherence to baseline security practices derived from internationally
accepted standards such as ISO/IEC 27001 [246]. This objective evaluates
the extent to which a partner’s policy satisfies required technical and organi-
zational safeguards, such as access control, incident response, and encryption.

fsecurity(x) =
Number of implemented baseline security controls

Total baseline controls

2. Legal and Regulatory Compliance Objective (fregulatory):

Assesses the alignment of policy proposals with applicable legal and regula-
tory frameworks, such as GDPR for European data protection or CCPA for
Californian regulations. Compliance with these regulations is essential to en-
sure lawful processing, user rights assurance, and organizational accountability
[247].

fregulatory(x) =
Number of regulatory requirements met

Total applicable requirements

3. Corporate Governance Alignment Objective (fgovernance):

Evaluates conformity with internal governance directives including intellectual
property rules, organizational risk policies, and strategic control mechanisms.
Governance alignment is a key enabler of harmonized policy negotiation and
accountability [248].

fgovernance(x) =
Number of internal governance criteria met

Total governance criteria

4. Data Privacy and Sharing Control Objective (fprivacy):

Captures how effectively data handling practices align with privacy-preserving
principles, including encryption, data minimization, and access control. It
also reflects the granularity of control offered for sharing sensitive information
across organizations [247].

fprivacy(x) =
Number of protected sensitive fields

Total sensitive fields requested

5. Cultural and Trust-Related Objective (ftrust):

Quantifies interpersonal trust factors grounded in prior collaborations, trans-
parency practices, auditability, and partner reputation. Trust models are crit-
ical in federated or decentralized systems to reduce negotiation friction and
uncertainty [249].
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ftrust(x) =
Trust points scored from prior collaborations and audits

Maximum trust score achievable

6. Operational Efficiency Objective (fefficiency):

Represents adherence to performance guarantees such as uptime, response
time, or throughput, often dictated by service level agreements (SLAs). High
operational efficiency supports reliable execution of shared policies and dy-
namic workloads [250].

fefficiency(x) =
Achieved performance metric (e.g., uptime or throughput)

Target performance metric

Utility Function

To aggregate diverse policy evaluation criteria into a coherent decision-making
framework, we adopt a weighted sum utility function. This approach offers several
key advantages: it is interpretable, computationally efficient, and well-suited for
multi-objective scenarios with normalized metrics. It enables each PE to prioritize
objectives according to organizational preferences while preserving comparability
across proposals.

U =

n∑
i=1

wi · fi(xi) (8.1)

Where:

• U is the total utility of the proposal.

• wi is the weight assigned to objective i, reflecting its relative importance.

• fi(xi) is the normalized value of objective i, representing how well it is satisfied.

• n is the total number of objectives under consideration.

This additive model is chosen for its balance between simplicity and expressive-
ness. It allows decision-makers to transparently encode strategic trade-offs, adapt
to context-specific risk tolerances, and incorporate human-in-the-loop preferences.
Moreover, its linearity makes it compatible with optimization techniques and game-
theoretic analysis used in policy negotiation frameworks.

Security Rationale. The use of these decision-making functions (utility, risk, and
compliance) guarantees that only policy proposals meeting defined trust, security,
and regulatory thresholds are accepted. Any attempt to bypass requirements would
result in rejection during evaluation, with tamper-evident records created through
blockchain anchoring.



8.2. Proposed Distributed ZTA Framework 159

8.2.2.1 Risk Assessment Function

To complement the utility-based evaluation, a dedicated risk assessment function
is introduced to identify proposals that, while beneficial in terms of utility, may
still pose unacceptable security or compliance threats. Unlike the utility function,
which measures how well a proposal aligns with strategic or operational goals, the
risk score captures the potential for adverse consequences ensuring that high-utility
proposals are not accepted blindly without regard to their associated vulnerabilities.

Risk is quantified as a function of three parameters: the estimated likelihood of
a threat materializing, the potential impact of that threat, and the effectiveness of
existing mitigation strategies. These parameters are derived from historical incident
data, domain-specific threat models, and predefined control baselines. The risk
associated with a proposal is calculated as:

R =
ThreatLikelihood× Impact

MitigationFactor
(8.2)

Where:

• R is the computed risk score for the proposal.

• ThreatLikelihood denotes the probability of an adverse security event (e.g.,
data breach or policy violation).

• Impact quantifies the severity of such an event in terms of data sensitivity,
regulatory consequences, or service disruption.

• MitigationFactor reflects the effectiveness of protective controls in place, such
as encryption, multi-factor authentication, or network isolation.

This risk score plays a decisive role during the negotiation filtering stage: pro-
posals yielding high utility but with risk scores exceeding a predefined threshold are
automatically rejected or flagged for human review. This ensures that collaboration
does not come at the expense of security assurance or regulatory compliance.

8.2.2.2 Compliance Function

The compliance of a proposal is evaluated using:

C =
SatisfiedRequirements

TotalRequirements
(8.3)

Where:

• C is the compliance score of the proposal.

• SatisfiedRequirements is the number of compliance requirements met by the
proposal.

• TotalRequirements is the total number of compliance requirements.

A higher compliance score indicates better alignment with regulatory and orga-
nizational policies.

Algorithm 19 implements the negotiation process by orchestrating secure collab-
oration, dynamic policy evaluation, and iterative proposal refinement. It ensures



160 Chapter 8. Distributed Zero Trust Architecture

Algorithm 19: Cross-Company Policy Negotiation and Update
Input: Trigger for cross-company collaboration request
Output: Updated policies stored securely in local systems and blockchain

1 Phase 1: Initiation of Collaboration;
2 PEs of participating organizations initiate secure communication;
3 EstablishSecureConnection(); // e.g., mutual TLS handshake
4 Validate identities and ensure communication integrity;
5 Phase 2: Accessing Blockchain-Stored Policies;
6 PEs and PEPs connect to the blockchain;
7 RetrievePolicies(); // Obtain DAPs associated with relevant entities
8 VerifyPolicies(); // Verify policy integrity, signatures, and authorization

status
9 Phase 3: Negotiation Phase;

10 Initialize utility threshold τU , risk threshold τR, and timeout;
11 while Consensus not reached and timeout not exceeded do
12 foreach proposal received do
13 Compute utility: U =

∑n
i=1 wi · fi(xi);

14 Compute risk: R = ThreatLikelihood×Impact
MitigationFactor ;

15 if U ≥ τU and R ≤ τR then
16 Accept proposal;

17 else
18 GenerateCounterProposal(); // Adjust xi to improve U or reduce

R

19 if Consensus is reached then
20 Proceed to update policies;

21 else
22 Abort negotiation and optionally re-initiate;
23 return;

24 Phase 4: Updating Local Policies and Blockchain;
25 UpdateLocalPolicies(); // Apply final policies to PEs and PEPs
26 Update associated DAPs in DPP structure;
27 UpdateBlockchain(); // Record updated DPPs with access controls
28 Guarantee immutability and verifiability through blockchain ledger;
29 End of Process;

that each participating entity aligns proposals with its priorities while maintain-
ing acceptable risk levels and compliance standards. Upon successful convergence,
agreed policies are updated both locally and on-chain, preserving integrity and au-
ditability across the federation.

Resilience Rationale. The risk function protects the negotiation from reckless
or adversarial proposals. For example, a malicious peer offering overly permissive
access without adequate mitigations would produce a high risk score R > τR, causing
rejection. Risk assessments thus form a safeguard layer.
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Parameter Description

p number of PEs
k number of policies

per PE
r negotiation rounds
|pol| policy size in bytes

Table 8.2: Notation

Resource Component Asymptotic Complex-
ity (per PE)

Computational (CPU)
Phase 1: TLS handshake Θ(p)
Phase 2: Policy retrieval and verification Θ(k)
Phase 3: Policy negotiation rounds Θ(r · p)
Phase 4: BFT consensus commit Θ(p2)

Memory (Storage)
Working memory Θ(1)
Cached policies Θ(k · |pol|)
On-chain policy replicas Θ(k · |pol|) per node

Network Communication
TLS handshakes 2p(p−1) packets (constant

size)
Proposal broadcast Θ(p2 · |pol|)
Final consensus commit Equivalent to one proposal

Table 8.3: Computational, memory, and network complexity analysis

8.2.3 Computational, Space, and Network Complexity

Table 8.2 reminds our notation. For a typical supply-chain consortium scenario with
10 PEs (p), 100 policies per PE (k), 5 negociation rounds (r), and ≈ 1, kB per policy
(|pol|), the computational, memory, and network requirements remain modest:

• Computational Complexity: The most demanding phase (Phase 3) in-
volves r · p = 50 evaluations. With approximately six scalar operations per
evaluation, this remains computationally trivial and executes in under a mil-
lisecond on commodity hardware.

• Memory Requirements: Cached policy storage per PE totals around k ·
|pol| ≈ 100 kB, a negligible footprint manageable even on resource-constrained
devices such as a Raspberry Pi.

• Network Overhead: Negotiation traffic accumulates to r · p2 · |pol| = 5 ×
100×1 kB ≈ 0.5MB, a minimal amount when compared to standard firmware
updates.
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• Consensus Commit Overhead: An additional one-time burst of approxi-
mately p2 data transmissions (≈ 100 kB), paid only once and not per round,
ensuring negligible sustained overhead.

Therefore, as it shows in Table 8.3, the protocol maintains linear scalability rel-
ative to the number of participants per negotiation round and incurs only a single
quadratic overhead due to the inherent requirements of BFT consensus. Given typ-
ical consortium scales in industrial contexts (tens, rather than thousands, of organi-
zations), these complexity measures are sufficiently low and practically insignificant
compared to routine industrial IoT traffic.

8.2.3.1 Negotiation Process

To enable secure and policy-compliant inter-organizational cooperation, this frame-
work introduces a decentralized, iterative negotiation protocol. Its design supports
autonomous decision-making while promoting convergence toward mutually accept-
able policies.

Let each participating entity be modeled as a PE. At step t = 0, each PE gen-
erates a proposal P (0) composed of access parameters such as permission level, au-
thentication method, temporal validity, and usage quotas. These values are derived
from internal constraints and policies, without revealing sensitive internal logic.

Upon receiving a proposal P (t), each PE computes the following:

• The Utility score U(P (t)) =
∑n

i=1wi · fi(xi), where wi are preference weights
and fi(xi) are normalized objective satisfaction scores.

• The Risk score R(P (t)) = ThreatLikelihood·Impact
MitigationFactor , quantifying the expected harm

of accepting the proposal.

• The Compliance score C(P (t)) ∈ [0, 1], reflecting alignment with regulatory
and governance requirements.

A proposal is accepted if:

U(P (t)) ≥ τu ∧ R(P (t)) ≤ τr ∧ C(P (t)) ≥ τc

where τu, τr, τc are threshold values for utility, risk, and compliance respectively,
defined per entity. Each entity defines its own thresholds based on internal security
posture and regulatory exposure. For example, a highly regulated pharmaceutical
company might require τc = 0.95 for compliance, tolerate τr = 0.2 for risk, and
expect τu = 0.7 for utility. In contrast, a logistics provider may prioritize availability
and accept slightly higher risks in exchange for operational flexibility.

If the proposal fails to satisfy acceptance conditions, the receiving PE generates
a counter-proposal P (t+1) by modifying parameters that reduce risk or improve util-
ity. The Refine function is a local decision-making mechanism executed by each PE
when a received proposal does not meet predefined acceptance thresholds. Its role is
to systematically generate a new, counter-aligned proposal P (t+1), derived from the
previous version P (t), by modifying its parameters to improve alignment with inter-
nal objectives and constraints. These modifications may include tightening access
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permissions to reduce security risks, increasing authentication strength, shortening
temporal validity to limit exposure, or relaxing non-critical operational constraints
to increase overall acceptability. The refinement process relies on predefined orga-
nizational preferences, risk tolerance levels, and compliance priorities. While each
PE operates independently and without disclosing its internal utility function, the
refinement aims to converge toward mutually acceptable trade-offs. The function is
deterministic and context-aware, allowing organizations to iteratively adjust their
stance while respecting the negotiation protocol’s privacy and scalability constraints.

The negotiation continues iteratively:

P (t+1) = Refine(P (t))

until convergence is achieved or a termination condition is met (e.g., time-out or
maximum iterations).

By anchoring each proposal and response on a blockchain, the system ensures
tamper-proof, auditable negotiation logs. This approach enables privacy-preserving,
scalable, and trust-aware policy alignment without requiring full policy disclosure
or central coordination.

Security Guarantees in Negotiation. Each negotiation message is signed,
timestamped, and validated through mutual TLS. Replay attacks and message in-
jection are prevented through freshness and authentication checks. Blockchain an-
choring ensures proposals cannot be retroactively altered.

To operationalize this process in a decentralized and verifiable manner, the en-
tire negotiation protocol is designed to be executed as a smart contract deployed
on the blockchain. This smart contract functions as a distributed state machine
that governs the interaction between PPEs of the participating organizations. Each
PE interacts with the smart contract by submitting proposals, performing utility
and risk assessments, and issuing counter-proposals. The contract enforces tim-
ing constraints, manages the negotiation state, and finalizes the agreement once
consensus is reached. Importantly, this architecture keeps IIoT devices out of the
negotiation loop, relying instead on organizational PEs or intermediary nodes to
handle all blockchain interactions ensuring compatibility with resource-constrained
environments.

This process ensures privacy-preserving collaboration by maintaining the in-
tegrity of each organization’s local policies while enabling secure, transparent, and
auditable cross-company interactions. By leveraging the blockchain, the framework
provides a scalable and robust solution to the challenges of distributed policy man-
agement and negotiation.

8.3 Use Case: Policy Negotiation Workflow

The proposed methodology is applied in the context of a multinational supply chain
network, involving various stakeholders such as manufacturers, suppliers, logistics
providers, distributors, and retailers. Each organization operates under distinct
security standards, legal frameworks, and internal policies. These differences create
challenges for secure and compliant data sharing.
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Let us consider the scenario illustrated in Figure 8.2. Company A restricts access
to its machine data to devices within its office IP range. Company B allows machine
access only to operators directly involved in its operations. Company C treats data
related to its product X as confidential and non-shareable.

Product

Engineer

Factory B
PE

Factory C

PE

Company A
PE

DAP

DAP
DAP

Figure 8.2: Use Case Scenario.

8.3.1 Context Setup

As shown in Figure 8.2, each company operates a Policy Engine (PE) and maintains
DPPs encapsulating their DAPs. A blockchain provides immutable record-keeping
of finalized agreements. For example:

• Company A requires IP-based restrictions and multifactor authentication
(MFA) for engineers accessing external data;

• Company B restricts data based on operator roles, exposing only certain
diagnostic parameters from its machines;

• Company C protects product X-related data, insisting on anonymization
before sharing.

8.3.2 Initiating Negotiation and Policy Retrieval

The following narrative provides a step-by-step walkthrough of the collaboration
scenario depicted in Figure 8.3, detailing how each organization initiates, retrieves,
evaluates, and negotiates policy agreements within the proposed framework. Com-
pany A initiates a collaboration request, seeking access to certain operational and
product-related data. This "request for consensus" message propagates to Company
B and, subsequently, to Company C. All parties now must align their policies.

Each PE retrieves the current policies from the relevant DPP instances:

• Company A’s PE fetches its DAPs from the DPP engineer instance, confirming
that IP and MFA conditions apply.
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Figure 8.3: Sequence Diagram of the Negotiation and Policy Update Process.

• Company B’s PE queries the DPP machine instance to review operational
data-sharing rules.

• Company C’s PE checks the DPP product instance to enforce anonymization
of product X-related data.

The "Get policy" messages in the sequence diagram ensure that all negotiation
partners start from an up-to-date, accurate baseline.

8.3.3 Policy Priority Exchanges and Automated Negotiation

After retrieving the policies, the PEs exchange multiple "Policy priority" messages,
representing the iterative negotiation process. Each PE evaluates proposals using:

• Utility and Risk Assessment: Determining whether the proposed terms
meet operational needs while minimizing security risks.

• Compliance Checks: Ensuring adherence to legal, regulatory, and corporate
governance mandates.

During this iterative phase:

• Company A may reconfigure its IP filtering policies to permit external access
under stricter authentication requirements, such as mandatory MFA.

• Company B agrees to reveal limited diagnostic parameters while withholding
sensitive operational data.

• Company C insists on data anonymization procedures to protect product X
information.
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These back-and-forth exchanges continue until the PEs find a mutually accept-
able set of policies or a predefined timeout occurs. The sequence diagram’s repeated
"Policy priority" messages reflect these negotiation loops.

8.3.4 Updating Policies and Committing to Blockchain

Once consensus is reached, each PE sends "Update policy" commands to its local
DAPs, ensuring that the PEPs reflect the newly agreed-upon terms. For example:

• Company A’s updated policy now grants Company B’s engineers access to
certain machine data under MFA and IP constraints.

• Company B enforces a filtered subset of diagnostic parameters for Company
A and C.

• Company C finalizes the anonymization rules to ensure no identifying product
X data leaves its domain.

The final step is recording these updated policies in the DPPs and pushing the
changes to the blockchain. While no raw data is stored on-chain, the blockchain’s
immutable ledger preserves the final policy state, enabling:

• An irrefutable audit trail of the negotiation.

• Future verification of compliance and resolution of disputes.

• Maintenance of trust among all parties, as no unilateral changes can be made
without renegotiation.

8.3.5 Post-Agreement Operations and Security Rationale

With policies aligned, subsequent data requests and sharing activities proceed
smoothly. Data is exchanged off-chain and encrypted on-demand using the re-
quester’s public key, ensuring that even if certain keys are compromised, the
blockchain record remains secure and only policy conditions (not raw data) are
at risk.

Continuous monitoring detects any non-compliance, triggering alerts or new ne-
gotiations if necessary. The combination of secure communication, cryptographic
protections, and blockchain-based immutability upholds:

• Confidentiality: Sensitive data never resides on-chain, reducing exposure.

• Integrity and Non-Repudiation: Immutable records verify that all parties
adhere to agreed terms.

• Dynamic Adaptability: Policies can be renegotiated as business require-
ments evolve, with each update permanently logged on the blockchain.

This scenario showcases how automated negotiation, supported by robust policy
retrieval, iterative priority-based adjustments, and reliable blockchain records, can
foster secure, trusted, and regulation-compliant data sharing in complex multina-
tional supply chains.
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8.4 Security Guarantees and Discussion

This section evaluates how the architectural mechanisms introduced in Section 8.2.1
translate into practical security guarantees under realistic operational and adversar-
ial conditions. Rather than re-stating implementation details, the focus here is
on interpreting the security properties they enable, alongside their limitations and
underlying assumptions.

8.4.1 Achieved Guarantees in Context

The integration of cryptographic enforcement, decentralized policy validation, and
immutable blockchain logging leads to a number of foundational guarantees:

• Confidentiality: Sensitive policy content remains encrypted and off-chain.
Access is mediated through authenticated channels and governed by strict Zero
Trust enforcement.

• Integrity and Authenticity: All policy records are digitally signed and
immutably committed to the blockchain. Any tampering or forgery attempts
are immediately detectable.

• Non-Repudiation: Every negotiation action is logged with cryptographic
signatures, providing a verifiable audit trail and ensuring participant account-
ability.

• Availability and Resilience: A replicated, distributed ledger ensures that
policy data remains accessible even in the presence of node failures or partial
network outages.

• Regulatory Compliance: Compliance checks are embedded directly into
the policy evaluation process and enforced during negotiation, with results
permanently logged for auditing.

These guarantees are not derived from abstract theoretical models, but rather
from concrete mechanisms embedded in the system’s architecture and protocol logic.

8.4.2 Discussion of Remaining Risks and Assumptions

These guarantees hold under several key assumptions, which must be maintained
operationally:

• Cryptographic Soundness: The design presumes the security of underlying
primitives such as encryption schemes, digital signatures, and hash functions.
Attacks on these components (e.g., side channels or faulty key storage) are
considered out of scope.

• Authenticated Communication: Secure communication channels (e.g.,
mutual TLS with certificate pinning) between nodes are assumed. A breach
at this layer could compromise enforcement and trust boundaries.
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• Threshold Trust in BFT Consensus: The blockchain’s consensus proto-
col requires that fewer than one-third of participating nodes are malicious.
Breaching this assumption may impact liveness and, in extreme cases, consen-
sus safety.

• Operational Diligence: Participating organizations must maintain secure
key management, policy evaluation modules, and node uptime. Misconfigura-
tions or human error could bypass intended security safeguards.

• Privacy-Utility Considerations: The architecture emphasizes privacy
through cryptographic isolation and off-chain data storage. While this limits
visibility into policy content, it ensures regulatory compliance and data con-
fidentiality. Real-time enforcement is handled at the edge via pre-evaluated
policies and cached decisions, mitigating latency introduced by encrypted data
access. Network administrators retain visibility into metadata flows, logs, and
audit trails without exposing sensitive content. A full quantitative assess-
ment of tradeoffs (e.g., latency vs. confidentiality) is planned as part of future
performance evaluation.

In addition, we assume initial trust is established via pre-distributed crypto-
graphic identities tied to organizational certificates, managed through a permis-
sioned blockchain framework. These credentials enable secure bootstrapping and
authenticated communication (e.g., mutual TLS). The system leverages BFT con-
sensus and thus tolerates up to f < n/3 malicious nodes in a network of n partici-
pants. While not directly addressed in this work, known blockchain-specific threats
such as eclipse attacks, and physical tampering of IIoT endpoints, remain significant
vectors and will be considered in future extensions of the security model.

Finally, the use of blockchain infrastructure introduces non-negligible perfor-
mance and resource costs. These include latency introduced by consensus, increased
bandwidth usage, and long-term storage overhead. While acceptable in many in-
dustrial settings, such overhead must be considered carefully in latency-sensitive or
resource-constrained IIoT deployments.

8.5 Conclusion

This chapter presented the "Distributed ZTA based on Policy Negotiation Secured
by DPP in Blockchain", an innovative approach designed explicitly for securing
distributed, interconnected IIoT environments. By uniquely integrating blockchain
technology with Digital Product Passport mechanisms, the proposed architecture
enables decentralized, secure, and fully verifiable policy negotiation and enforcement
across multiple independently managed industrial domains.

The key advantage of this architecture lies in its ability to provide transpar-
ent, tamper-resistant policy management and secure interoperability among diverse
stakeholders without reliance on centralized trust authorities. This approach signif-
icantly advances previous decentralized trust solutions by ensuring real-time adapt-
ability, improved operational transparency, and robust security against policy ma-
nipulation.
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However, despite these advancements, certain challenges remain. Implementing
blockchain-based policy negotiations can introduce additional complexity and com-
putational overhead, particularly in resource-constrained IIoT environments. Addi-
tionally, maintaining high performance and scalability as networks expand remains
a critical operational consideration, requiring careful optimization and ongoing re-
search.

In conclusion, this chapter contributes a scalable, transparent, and adaptable
trust management system that strengthens the overall IIoT security framework de-
veloped throughout the thesis. While the architecture offers a holistic approach to
secure collaboration in distributed environments, its full implementation lies beyond
the scope of this work due to resource constraints. As such, it remains a strong can-
didate for future industrial deployment and cross-organizational collaboration, with
the next phase of research focusing on integration challenges, performance evalua-
tion, and real-world adoption.
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Chapter 9
Conclusion and Future Research
Directions

In this thesis, we investigated how a combination of ZTA, blockchain-based integrity
frameworks, and context-aware anomaly detection can can enable adaptive and in-
telligent security mechanisms for critical IIoT deployments. We first underscored
the complexity of industrial networks through a smart factory use-case analysis.
Next, we introduced mechanisms for cross-domain identity management, emphasiz-
ing federated authentication and digital wallets. We proposed anomaly detection
solutions that integrate neural networks and graph-based clustering to identify un-
known threats effectively. We then introduced a lightweight blockchain mechanism
specifically adapted for industrial scale, focusing on auditing and DPPs. Finally,
we synthesized these findings into a Dynamic and then a Distributed Zero Trust
Architecture, demonstrating how multi-stakeholder collaboration can be achieved
securely in a truly decentralized manner. The main achievements can be summa-
rized as follows:

• Foundational Identity Management and Authentication: A thorough
exploration of digital wallet identity schemes and cross-domain authentication
protocols led to an architecture that unifies identity verification processes in
IIoT environments. The proposed methods reduce bottlenecks and latency
commonly encountered in centralized identity management systems, meeting
industrial requirements for low-overhead operation and continuous trust veri-
fication.

• Context-Aware Anomaly Detection: By combining graph-based autoen-
coders, Linear Discriminant Analysis (LDA), and community detection, the
research highlights how IIoT devices’ contextual relationships can be lever-
aged to detect and classify anomalies in real time. Empirical evaluations in
both simulation and testbeds demonstrate not only the robustness of these
approaches against a range of cyberattacks, but also the adaptability to dy-
namically shifting process parameters in industrial environments.

• Lightweight Blockchain Solutions: Recognizing the limited computational
resources of certain IIoT nodes, the thesis proposed and validated lightweight
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blockchain designs tailored to shop-floor environments. These solutions em-
phasize fast consensus, minimized storage footprints, and selective confiden-
tiality thereby preserving key blockchain benefits such as immutability and
decentralization, while introducing minimal performance trade-offs.

• Dynamic and Distributed Zero Trust Architectures: Building on fun-
damental Zero Trust Architecture (ZTA) concepts, the work introduces a dy-
namic Zero Trust framework that iteratively refines trust scores and policies
based on ongoing risk assessments, device context, and anomaly alerts. A
distributed version of this ZTA leverages blockchain to negotiate and enforce
security policies across domain boundaries, reducing single points of failure
and fostering collaborative trust management among industrial stakeholders.

• Holistic Security Perspective: By tightly coupling identity-centric con-
trols, real-time anomaly detection, and decentralized trust, the thesis offers a
multidimensional security approach that can scale with the evolving complex-
ity of Industry 4.0. The integrated viewpoint ensures that mitigating actions
(such as blocking compromised devices) are triggered quickly and precisely,
balancing security rigor with operational continuity.

9.1 Revisiting and Answering the Research Questions

In this section, we revisit the research questions initially outlined in Chapter 1
(Section 1.5) and concisely summarize how each question was addressed through
the methodologies and approaches developed throughout this thesis.

RQ1: What are the challenges in integrating blockchain and Zero
Trust principles into a cohesive security framework for IIoT

This thesis identified several integration challenges, including balancing security
robustness with resource constraints (Chapter 6), managing trust relationships dy-
namically across distributed domains (Chapter 4 and Chapter 8), and handling
the computational and latency overhead associated with blockchain and Zero Trust
mechanisms (Chapter 7). Solutions proposed include a lightweight blockchain im-
plementation tailored for IIoT environments and the adoption of context-aware dy-
namic policies within a decentralized Zero Trust framework.

RQ2: How can hybrid and context-aware anomaly detection meth-
ods improve the real-time identification and assessment of sophisti-
cated security threats within dynamic IIoT networks?

Chapters 5 and 7 demonstrated that hybrid anomaly detection methods combining
deep-learning autoencoders (AE) and linear discriminant analysis (LDA), along-
side context-aware community-based graph detection, significantly improve real-
time threat identification and assessment. These approaches effectively distinguish
genuine threats from benign anomalies, achieving high accuracy and reducing false
positives, thus enhancing the security posture in dynamic IIoT settings.
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RQ3: How can scalable and secure identity management be achieved
in distributed IIoT networks?

Secure and scalable identity management was addressed through a novel digital wal-
let approach (Chapter 4), providing decentralized, secure management of identities
across multiple industrial domains. This solution leveraged blockchain-backed iden-
tity validation mechanisms, enabling efficient cross-domain authentication without
central bottlenecks, ensuring scalability, interoperability, and resilience to identity-
related threats.

RQ4: What are the limitations of traditional Zero Trust architec-
tures in dynamic IIoT environments, and how can they be adapted
for real-time security?

Limitations identified in traditional Zero Trust models included static policy con-
straints, latency issues in real-time environments, and the challenges of continuous
trust verification in dynamic contexts (Chapters 7 and 8). To overcome these lim-
itations, a dynamic Zero Trust framework was developed, incorporating real-time
risk scoring, continuous authentication, and adaptive policies informed by anomaly
detection results, thus enabling real-time security adaptation in industrial networks.

RQ5: How can blockchain address IIoT challenges of scalability,
privacy, and tamper-proofing?

Blockchain solutions presented in Chapter 6, specifically the Shopfloor and
Lightweight Blockchain approaches, successfully addressed these challenges. The
lightweight blockchain framework achieved reduced computational complexity and
enhanced transaction throughput, tailored explicitly for resource-constrained IIoT
devices. Simultaneously, privacy-preserving techniques embedded in the blockchain
ensured robust tamper-proofing and confidentiality, thus meeting IIoT operational
demands.

RQ6: How can identity management, blockchain, and anomaly de-
tection be integrated into a cohesive Distributed ZTA framework
for securing IIoT networks?

The integration of these elements into a cohesive security framework was detailed
in Chapters 7 and 8. The Distributed ZTA framework combines digital wallet-
based identity management for scalable cross-domain authentication, lightweight
blockchain to manage decentralized trust, and advanced context-aware anomaly de-
tection for proactive threat assessment. The resulting integrated framework demon-
strated robust security enforcement, scalability, and adaptability suitable for dis-
tributed, heterogeneous, and dynamic industrial environments.
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9.2 Short-Term Perspectives

The proposed multi-layered security framework comprehensively addresses several
fundamental challenges in securing distributed IIoT systems. Throughout the re-
search and prototyping process, three short-term critical challenges emerged as cru-
cial factors shaping the architectural direction of this thesis: (1) resource constraints
devices, (2) heterogeneous security requirements across different industrial sectors,
and (3) the continuously evolving and unpredictable nature of the threat landscape.
Each of these challenges required distinct solutions, leading to the development of
three complementary security layers: a lightweight blockchain infrastructure, a mod-
ular identity and access control design, and a dynamic, risk-aware ZTA framework.
The following subsections describe these challenges in depth and explain how they
guided the layered contributions in this thesis.

9.2.1 Resource-Constrained Devices

A central technical challenge addressed in this thesis is the integration of security
mechanisms in legacy and low-power industrial devices that lack the computational,
memory, or energy capacity to execute standard cryptographic protocols. These
constraints are especially problematic in the context of blockchain-based models,
which traditionally depend on computationally intensive operations such as consen-
sus, signing, and hashing.

In response, the thesis introduced two key mechanisms tailored for constrained
environments: a lightweight attribute verification protocol and a lightweight
blockchain architecture (Chapter 6.4). The attribute verification protocol enables
devices to prove possession of authorized attributes using minimal cryptographic op-
erations, avoiding the need for heavy signature checks or zero-knowledge proofs. In
parallel, the blockchain architecture decouples core functions and distributes them
across a hierarchy of roles. This allows limited devices to participate in the sys-
tem without performing costly computations, while relying on higher-tier nodes for
validation and consensus.

The research challenge that emerged during this work is the need to adapt cryp-
tographic protocols themselves to operate reliably on constrained hardware while
remaining compatible with distributed infrastructures. Adapting cryptography in
this context involves more than using faster algorithms; it requires rethinking pro-
tocol flows, key management, and secure data handling to minimize state, reduce
packet size, and tolerate hardware limitations.

The approach proposed in this thesis involves leveraging device classification
and provisioning profiles to dynamically determine cryptographic responsibilities.
By tailoring security tasks to device capabilities, the system preserves end-to-end
trust without uniformly imposing heavy cryptographic loads. Lightweight devices
verify their eligibility through efficient attribute proofs, while heavier blockchain
roles handle consensus and auditability.

What makes this approach original is the combination of lightweight crypto-
graphic delegation with attribute-based verification, all embedded within a scal-
able, distributed architecture. This ensures that constrained devices are not ex-
cluded from secure participation, but are instead integrated through role-aware,



9.2. Short-Term Perspectives 175

resource-sensitive security mechanisms that maintain the integrity of the overall
trust infrastructure.

9.2.2 Heterogeneous Security Requirements

Industrial systems operate in vastly different contexts—ranging from smart manu-
facturing to critical infrastructure and healthcare, each with specific security goals
and compliance obligations. This diversity results in heterogeneous requirements
for confidentiality, availability, data integrity, and accountability, often dictated by
sectoral regulations such as IEC 62443, ISO 27001, or GDPR.

The thesis addressed this heterogeneity by introducing a modular, policy-based
security framework (Chapters 4, 7, and 8) in which devices and domains are treated
as individually classifiable entities, each associated with its own policy context.
This allowed different access and trust configurations to coexist within the same
architecture.

The underlying research challenge, however, is not only about modularity, but
about how to formally link high-level regulatory requirements with runtime policy
enforcement. While the framework supports per-device customization, the transla-
tion of compliance constraints into enforceable logic remains a complex and under-
explored problem, especially in dynamic, multi-tenant environments.

This thesis proposes a partial solution by embedding relevant compliance at-
tributes within digital wallets and using them to influence policy evaluation and
decision-making. This allows identity credentials to carry contextual information
(such as sector classification or device criticality) that can be used to align enforce-
ment with external requirements.

The originality of this approach lies in the integration of regulatory semantics
into the identity layer. Rather than configuring policies manually for each domain,
the system uses credential metadata to drive security adaptation, creating a dynamic
bridge between operational enforcement and formal compliance categories.

9.2.3 Dynamic Threat Landscape

The evolving nature of cybersecurity threats presents a constant challenge for IIoT
environments, where static protection models quickly become outdated. The rise
of zero-day exploits, supply chain attacks, and behaviorally evasive malware has
demonstrated that predefined access control rules and traditional detection systems
are insufficient to protect industrial networks.

To address this, the thesis introduced a Dynamic Zero Trust Architecture (Chap-
ter 7) that integrates real-time anomaly detection with policy enforcement. Anomaly
detection methods based on temporal patterns and graph-based machine learning
(Chapter 5) were used to recognize suspicious behavior and adjust device-level poli-
cies accordingly.

The research challenge is how to ensure this adaptation happens continuously,
accurately, and safely. Reacting to emerging threats requires detection systems
to generalize beyond known attack signatures and requires policy layers to react
without destabilizing operations or opening new vulnerabilities.

This thesis approaches the problem by linking anomaly classification to the state
transitions of a finite-state machine-based policy engine. This allows the system to
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respond to threats in a controlled and predictable way, adjusting the trust level of
devices and triggering appropriate mitigation steps.

The originality of this contribution lies in the integration of detection and en-
forcement into a single feedback loop. Unlike traditional architectures where policy
and monitoring are decoupled, this system continuously evaluates trust and adapts
policy using live context. This approach ensures not only more timely responses,
but also tighter coupling between what is observed and what is enforced.

9.3 Long-Term Research Challenges and Scientific Out-
look

Challenge 1: Trust Coordination Without Central Policy Anchors

This thesis introduced a decentralized policy negotiation protocol that enables au-
tonomous organizations in IIoT ecosystems to exchange and evaluate access policies
without relying on a central authority or pre-defined trust anchor (Chapter 8). The
protocol allows independently managed actors (such as suppliers, operators, and
regulators) to negotiate access rights based on verifiable claims and contextual trust
signals. This represents a significant step forward in enabling secure collaboration
across administrative boundaries while preserving autonomy and policy ownership.

However, a critical challenge remains unresolved: how can such policy nego-
tiations remain effective and verifiable when participants do not share a common
vocabulary, classification schema, or semantic model for roles, attributes, and de-
vice categories? In real-world deployments, stakeholders define trust and security
policies based on different operational, regulatory, or business contexts. Even if
the protocol enables the exchange of policies and claims, misalignment in meaning
can lead to incorrect trust assumptions or rejected negotiations, not due to security
conflicts, but due to semantic mismatches.

The long-term research problem is therefore not about designing the negotiation
protocol itself (this thesis solution) but about enabling semantic interoperability
within that protocol. In other words, how can two IIoT entities negotiate trust when
they describe their requirements and capabilities using different terms, structures,
and implicit assumptions?

Addressing this problem requires a rethinking of how policy knowledge is repre-
sented, translated, and reconciled across domains. A future research direction would
explore the use of self-descriptive policy representations, where each domain’s se-
curity policies include embedded semantic metadata. This would allow policies to
be interpreted contextually, supporting negotiation even in the absence of a pre-
agreed vocabulary. Such representations could build on semantic web technologies
or domain-specific ontologies, but would need to be designed for real-time, privacy-
preserving negotiation environments.

To ensure trustworthiness, future work could also explore the use of zero-
knowledge proof mechanisms within the negotiation protocol. While this thesis does
not implement such cryptographic techniques, it proposes their potential to preserve
the privacy of internal policy structures and prevent unauthorized manipulation of
the negotiation process. Zero-knowledge techniques could allow a party to prove
that it complies with an externally defined policy—without revealing its own access
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logic or credentials. Furthermore, these proofs could enforce strict bounds on what
is verified, reducing the risk of policy injection or scope creep during negotiation.

Challenge 2: Machine-Led Security Reasoning in Dynamic Contexts

Industrial systems are increasingly exposed to complex, evolving threats that ex-
ploit structural and behavioral vulnerabilities in unpredictable ways. Zero-day at-
tacks, lateral movements, firmware manipulations, and multi-stage exploits often
defy traditional defense models. In such environments, security mechanisms must
go beyond static rules or known patterns—they must detect the unfamiliar, infer
the unexpected, and respond intelligently.

This thesis addressed this challenge through two complementary anomaly de-
tection methods (Chapter 5). The first approach used an autoencoder to model
the normal behavior of network traffic. By learning typical communication pat-
terns, the model was able to flag deviations—especially those caused by novel or
stealthy attacks that had never been seen during training. This makes it well-suited
to detecting zero-day threats without relying on labeled data. The second method
modeled the IIoT network as a graph and applied community detection and graph-
based metrics to identify suspicious relational patterns and contextual anomalies,
such as unexpected interactions between devices or shifts in community structure.
Together, these approaches allow the system to detect both low-level behavioral
deviations and higher-order structural anomalies.

While these methods represent an important advancement beyond traditional
detection, the next research challenge is to develop systems that can go further: not
only identifying that something abnormal is happening, but also reasoning about
why it might be happening, how it could evolve, and what action should be taken.
The problem is no longer just detection, it is autonomous, machine-led security
reasoning in dynamic and partially observable environments.

The long-term research goal is to design IIoT systems capable of generating
structured, interpretable explanations for unfamiliar behaviors, simulating possi-
ble attack progressions, and proactively adjusting policies or triggering mitigations
based on inferred intent. For example, a system could detect a subtle change in
device communication, infer that it resembles early-stage lateral movement, and
adjust access controls preemptively—before the attacker escalates privileges.

This direction builds on the existing contributions of this thesis by proposing
the integration of generative models and causal inference into the detection and
decision loop. Generative models could simulate possible threat variations or attack
paths, extending detection coverage into hypothetical spaces that the system has
not observed by game theory methods. Causal inference techniques would help
explain which behaviors contribute to anomalies and estimate their likely origins or
consequences. These capabilities would not replace anomaly detection, but rather
enhance its output with interpretability, anticipation, and actionability.

Feasibility could be evaluated through simulation environments containing re-
alistic IIoT topologies and multi-stage attack scenarios. Metrics would include not
only detection accuracy, but also explanation quality, response time, and the effec-
tiveness of automated mitigations. Reasoning outputs would need to be auditable
and verifiable to ensure they support both human oversight and policy adaptation.
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9.4 Concluding Remarks

This thesis reinforces the need for a cohesive, automated, and multi-layered security
strategy tailored to the operational realities of modern IIoT environments. By in-
tegrating identity management, dynamic policy evaluation, context-aware anomaly
detection, and decentralized trust mechanisms, the proposed framework addresses
the inherent complexity, heterogeneity, and evolving threat landscape of industrial
systems.

Rather than relying on static controls or perimeter-based assumptions, this work
emphasizes the shift toward adaptive and risk-informed decision-making. It demon-
strates how Zero Trust principles can be operationalized in a dynamic and context-
sensitive manner without central coordination while maintaining low overhead suit-
able for industrial deployments.

Looking ahead, this contribution lays the foundation for scalable, autonomous
security infrastructures capable of continuous adaptation. Future research can build
upon this by refining the underlying trust negotiation logic, optimizing lightweight
cryptographic protocols, and extending real-time contextual integration. These di-
rections will be critical to advancing secure, resilient, and self-regulating cybersecu-
rity architectures that align with the demands of Industry 4.0.
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Appendix A
Résumé en français

Introduction

L’Internet industriel des objets (IIoT) accroît l’automatisation et le suivi en temps
réel dans de nombreux secteurs, mais élargit fortement la surface d’attaque. Les
défenses périmétriques ne tiennent plus dans des usines multi-domaines connectées
à Internet. Les dispositifs à ressources limitées ne peuvent supporter des mécanismes
cryptographiques lourds ; la confiance centralisée devient un goulot d’étranglement
et un point de défaillance unique ; et les opérations temps réel ne tolèrent pas la
latence induite par la sécurité. La thèse plaide pour une sécurité adaptative et
sensible au contexte, à la fois scalable et réactive en temps réel.

La ZTA renforce l’assurance via le principe « ne jamais faire confiance, toujours
vérifier », mais ses déploiements restent souvent statiques et coûteux pour l’IIoT.
La blockchain apporte décentralisation, intégrité et auditabilité pour la confiance
inter-parties, mais les conceptions naïves induisent des surcoûts de calcul/stockage
et de la latence. Ce travail propose une intégration pratique : une ZTA dynamique
et contextuelle combinée à une blockchain légère adaptée à l’IIoT.

Objectifs.

• Authentification inter-domaines.

• Politiques ZTA adaptatives au contexte.

• Confiance décentralisée efficace via une blockchain légère.

• Détection d’anomalies contextuelle avec faible taux de faux positifs.

• Évaluation complète dans des scénarios réalistes.

Questions de recherche. Intégrer blockchain + ZTA ; concevoir une détection
hybride et contextuelle ; assurer une gestion d’identités scalable ; adapter la ZTA
au temps réel de l’IIoT ; étudier le rôle de la blockchain pour l’évolutivité, la confi-
dentialité et l’inaltérabilité ; unifier le tout dans une ZTA distribuée.

187



188 Appendix A. Résumé en français

Contributions. Cette thèse apporte des avancées significatives dans la sécuri-
sation des environnements IIoT distribués. Les contributions spécifiques sont les
suivantes :

1. Gestion Intégrée de l’Identité pour l’IIoT : Nous introduisons un mécan-
isme d’authentification inter-domaines exploitant les portefeuilles numériques
pour intégrer et gérer en toute sécurité les appareils industriels.

2. Détection d’Anomalies Sensible au Contexte : Nous développons des
stratégies avancées de détection d’anomalies qui intègrent des architectures de
réseaux de neurones avec des techniques de détection de communautés basées
sur des graphes.

3. Blockchain Légère et Passeports Numériques de Produits : Nous
proposons un framework de blockchain légère adapté aux applications indus-
trielles et intégrons les passeports numériques de produits pour la gestion du
cycle de vie des actifs.

4. Architecture Zero Trust Dynamique : Nous concevons une Architecture
Zero Trust extensible qui évalue continuellement les niveaux de menace en
utilisant des évaluations de risque en temps réel.

5. Paradigme de Contrôle d’Accès Entièrement Distribué : Nous éten-
dons le framework ZTA en introduisant un protocole de négociation de poli-
tiques décentralisé pour la collaboration multi-acteurs.

Structure. Le document progresse de l’état de l’art et de l’analyse de scénario
vers l’identité, la détection d’anomalies, une blockchain légère, la ZTA dynamique,
son extension distribuée, puis la conclusion.

A.1 État de l’Art

Ce chapitre passe d’un panorama de l’IoT à une analyse ciblée des fondations de
la sécurité pour l’IIoT : gestion d’identité et des accès, politiques dynamiques, dé-
tection d’anomalies, blockchain industrielle et passeports numériques de produit.
L’objectif est d’identifier les exigences spécifiques des environnements industriels
(échelle, hétérogénéité, temps réel, intégration d’héritage) et les limites des ap-
proches statiques, afin de motiver des solutions adaptatives et distribuées.

IoT vs IIoT, caractéristiques et menaces. L’IIoT étend l’IoT à des domaines
critiques (usine, énergie, transport) avec contraintes de latence déterministe, haute
disponibilité et sûreté. Les architectures tendent vers l’edge/distribué pour réduire
la latence et augmenter la résilience. Les vecteurs d’attaque majeurs incluent in-
génierie sociale, malwares (dont ransomware), attaques réseau/protocole (MitM,
rejeu, DoS), compromission physique/supply chain et abus d’identifiants.
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Identité et authentification. Une identité d’appareil agrège identifiants
uniques, attributs descriptifs et clés/certificats ID(d) = (Ud, Ad,Kd). Son cy-
cle de vie couvre Beginning of Life (BoL), Middle of Life (MoL) et End of Life
(EoL) (provisionnement sécurisé, mises à jour/rotation, révocation). Les méthodes
d’authentification vont des schémas symétriques et PKI aux approches blockchain
et PUF. Les modèles d’Identity Management (IdM) (isolé, centralisé, fédéré, centré
utilisateur, décentralisé/Self-Sovereign Identity (SSI) via DIDs/VC) se comparent
en scalabilité, sécurité, interopérabilité et effort d’administration.

Contrôle d’accès et politiques. Le contrôle d’accès est formalisé (p. ex. RBAC)
et complété par des politiques qui tiennent compte de l’identité, des ressources, des
actions et du temps. Les politiques statiques ne suivent ni l’état des dispositifs ni les
menaces en évolution. Les politiques dynamiques s’appuient sur des PDPs/PEPs
distribués à l’edge et sur la négociation de confiance inter-domaines. Les mod-
èles RBAC, Capability-Based Access Control (CapBAC) et Attribute-Based Access
Control (ABAC) sont positionnés pour des usages industriels.

Zero Trust Architecture (ZTA). Le ZTA est un changement de paradigme par
rapport à la sécurité périmétrique traditionnelle. Il fonctionne sur le principe de
"ne jamais faire confiance, toujours vérifier", ce qui signifie qu’aucun utilisateur ou
appareil n’est approuvé par défaut, quel que soit son emplacement sur le réseau.
Chaque demande d’accès est authentifiée et autorisée de manière dynamique, en se
basant sur des politiques qui tiennent compte de l’identité de l’utilisateur, de l’état
de l’appareil, de la localisation et d’autres facteurs contextuels. Les composants clés
d’un ZTA incluent le Moteur de Politiques (PE), l’Administrateur de Politiques (PA)
et le Point d’Application des Politiques (PEP). Le PE est le cerveau de l’architecture,
prenant des décisions d’accès basées sur les politiques définies par le PA. Le PEP
est le composant qui applique ces décisions.

Détection d’anomalies réseau. Cinq familles sont passées en revue : à base
de connaissances, statistiques, machine learning supervisé, deep learning (au-
toencodeurs, LSTM, hybrides) et graphes/GNNs (y compris graphes temporels et
approches contextuelles). Les compromis portent sur faux positifs, adaptation temps
réel, empreinte calculatoire et intégration aux politiques.

Blockchain industrielle et variantes légères. La blockchain est un registre
distribué, immuable et transparent. Ses principales caractéristiques sont la décen-
tralisation, la transparence, l’immuabilité et la sécurité via la cryptographie. Dans
l’IIoT, la blockchain peut être utilisée pour la gestion sécurisée des identités, la
traçabilité de la chaîne d’approvisionnement et la création de pistes d’audit invi-
olables. Les contrats intelligents, des programmes auto-exécutables stockés sur la
blockchain, peuvent automatiser l’application des politiques et des accords. Cepen-
dant, les implémentations de blockchain traditionnelles comme le Proof-of-Work
(PoW) sont gourmandes en ressources, ce qui motive le développement de solutions
de blockchain légères pour l’IIoT, telles que celles basées sur le Proof-of-Stake (PoS)
ou des structures de graphes acycliques dirigés (DAG).
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Passeport Numérique de Produit (DPP). Le DPP agrège les données de
cycle de vie pour la circularité (R-stratégies). Couplé à la blockchain, il renforce
intégrité et traçabilité, mais pose des enjeux d’interopérabilité, de scalabilité et
surtout de protection de la vie privée ; des approches préservent la confidentialité
tout en maintenant l’auditabilité.

Synthèse. Les besoins de l’IIoT exigent des capacités intégrées et contextuelles
: IAM robuste, politiques dynamiques distribuées, ZTA adaptative, détection
d’anomalies temps réel et registres décentralisés légers. Des lacunes persistent (adap-
tation en ligne, interopérabilité, évaluation continue de la confiance, métriques nor-
malisées), préparant les contributions et cadres proposés dans les chapitres suivants.

A.2 Scénario : Usine Intelligente

Description du Scénario Nous considérons une usine intelligente comme un
cas d’utilisation représentatif de l’IIoT. Ce scénario implique plusieurs domaines
opérationnels interconnectés, tels que les lignes d’assemblage robotisées, la gestion
automatisée des stocks et les outils de maintenance prédictive. Chaque domaine a
des exigences de sécurité distinctes mais doit interagir de manière transparente avec
les autres pour assurer une production efficace et ininterrompue. Par exemple, les
données des capteurs d’une ligne de production peuvent être nécessaires au système
de gestion des stocks pour commander automatiquement de nouvelles pièces, tandis
que les techniciens de maintenance ont besoin d’un accès à distance aux machines
pour le diagnostic.
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Figure A.1: Cas d’utilisation industriel.
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Modèle de Menace Le modèle de menace pour l’usine intelligente (Figure A.2)
identifie plusieurs vecteurs d’attaque potentiels :

• Attaques Externes : Acteurs non autorisés tentant de pénétrer le réseau
de l’usine via Internet, par exemple en exploitant des vulnérabilités dans les
services exposés ou par des attaques de phishing ciblant les employés.

• Menaces Internes : Employés ou appareils compromis abusant de leurs
privilèges d’accès pour saboter les opérations, voler des données sensibles ou
introduire des logiciels malveillants dans le réseau.

• Attaques de la Chaîne d’Approvisionnement : Compromission de com-
posants ou de logiciels avant leur intégration dans l’usine. Un attaquant pour-
rait insérer une porte dérobée dans un appareil ou un logiciel fourni par un
tiers.

• Attaques Physiques : Accès non autorisé à des appareils physiques pour les
manipuler, par exemple en connectant un appareil malveillant au réseau local
ou en altérant les capteurs.New STRIDE diagram
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Figure A.2: Modèle de menace pour l’usine intelligente.

A.3 Gestion de l’Identité, Authentification et Politique
d’Accès

Gestion Avancée de l’Identité par Portefeuille Numérique pour l’IIoT
Cette section présente une architecture de gestion de l’identité basée sur des porte-
feuilles numériques, conçue pour l’IIoT. Elle classe les appareils en trois caté-
gories de sécurité (faible, modérée, élevée) et gère le cycle de vie des identités à
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travers les phases d’enrôlement, d’authentification et de gestion des informations
d’identification. Cette approche permet une gestion des identités plus granulaire
et adaptée aux risques, tout en étant plus évolutive que les systèmes centralisés
traditionnels.

Beginning
 of Life

Middle
 of Life End of Life

Figure A.3: Cycle de vie de la gestion de l’identité.

Phases de la Gestion de l’Identité Le cycle de vie de la gestion de l’identité
dans ce framework est divisé en trois phases principales :

A.3.0.1 Phase 1 : Enrôlement et Émission des Informations
d’Identification

Le processus d’enrôlement sécurisé pour les appareils IIoT garantit une authentifica-
tion forte et un stockage des informations d’identification résistant à la falsification.
L’appareil subit une attestation matérielle à l’aide d’une clé d’identité de dispositif
vérifiée par TPM, qui est validée par le Nœud Périphérique pour confirmer l’intégrité
de l’appareil. En cas de succès, l’appareil s’enregistre auprès du Service de Gestion
de l’Identité (IMS), qui attribue un Identifiant Décentralisé (DID) unique et émet
des Informations d’Identification Vérifiables (VC). Ces informations sont stockées de
manière sécurisée dans le portefeuille numérique de l’appareil, et un enregistrement
immuable de l’événement d’enrôlement est écrit sur la blockchain.

A.3.0.2 Phase 2 : Authentification et Contrôle d’Accès

Le processus d’authentification et de contrôle d’accès garantit que seuls les ap-
pareils IIoT vérifiés peuvent accéder aux services du réseau. L’appareil initie une
demande d’accès en utilisant le TLS mutuel (mTLS) et la signe avec les informa-
tions d’identification de son portefeuille numérique. Le Nœud Périphérique valide
les preuves d’attestation et les informations d’identification, et interroge le registre
de la blockchain pour vérifier le statut d’enregistrement de l’appareil. L’IMS évalue
ensuite les informations d’identification par rapport aux politiques de sécurité et au
contexte de risque. Si l’évaluation est positive, l’accès est accordé.

A.3.0.3 Phase 3 : Mise à Jour et Révocation des Informations
d’Identification

Le processus de mise à jour et de révocation des informations d’identification garantit
que le système reste résilient face aux appareils compromis ou se comportant mal.
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Les Nœuds Périphériques et l’IMS surveillent en permanence le comportement des
appareils. Si une anomalie ou une violation de politique est détectée, le système
déclenche une mise à jour ou une révocation des informations d’identification. L’IMS
met à jour ou révoque les informations d’identification dans le portefeuille numérique
et enregistre l’événement sur le registre de la blockchain. La mise à jour est ensuite
propagée à travers les réseaux fédérés pour maintenir la cohérence.

A.4 Authentification Inter-Domaines

Pour relever le défi de la confiance entre les frontières organisationnelles, cette con-
tribution présente un protocole d’authentification amélioré par la blockchain et in-
tégré au TLS. Notre modèle combine les certificats X.509 avec une validation de
la confiance gérée par la blockchain. Les nœuds de la blockchain maintiennent des
valeurs de confiance dynamiques pour chaque appareil, permettant une authentifi-
cation rapide et sécurisée même sans validation directe de l’AC. Cette approche est
particulièrement utile dans les scénarios où les appareils de différents fabricants ou
organisations doivent collaborer en toute sécurité.
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Figure A.4: Diagramme de séquence de l’authentification inter-domaines.

A.5 Détection d’anomalies & évaluation des anomalies
dans l’IIoT

Motivation & périmètre Se reposer uniquement sur l’identité et le contrôle
d’accès est insuffisant dans des IIoT hétérogènes et contraints en temps. Nous
présentons deux détecteurs complémentaires, conçus pour le temps réel et l’échelle
: (i) un modèle hybride AE–LDA (§5.3) pour détecter les zero-day avec affec-
tation de classe interprétable ; et (ii) une méthode sensibles au contexte, basée
communautés & multi-graphe avec un HeteroGNN (§5.4) exploitant le contexte
temporel/structurel pour réduire les faux positifs.
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Problème en bref Les signatures manquent les menaces nouvelles et génèrent des
faux positifs dans des ateliers dynamiques. Les AE seuls surgénéralisent ; l’OC-SVM
est fragile en haute dimension ; les AE à mémoire ajoutent de la charge. Besoins
: (a) caractéristiques efficaces ; (b) détection robuste + classification ; (c) contexte
pour distinguer les changements opérationnels bénins des vraies intrusions.
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Figure A.5: Le flux de travail du processus de détection d’anomalies.
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Figure A.6: Étapes de notre approche de détection d’anomalies basée sur la
communauté.

Choix de conception clés (très bref) Caract./explicabilité : importance
Random Forest + SHAP pour des jeux de caractéristiques compacts et transpar-
ents. AE–LDA : AE entraîné sur flux bénins (seuil MSE) signale l’anomalie ; LDA
assigne une classe connue à faible coût. Contexte : graphes multi-arêtes évolutifs
; communautés via LPA ; HeteroGNN traite séparément comm/contexte/connais-
sance ; focal loss pour le déséquilibre de classes.

A.5.1 Résultats — AE–LDA (anomalies réseau)

Table A.1: CICIDS2017 : AUROC vs bases (plus haut = meilleur).

Modèle AUROC

OCSVM [91] 0.7684
AE (AE+OCSVM latent) [98] 0.8758
MemAE [94] 0.9101
AE–LDA (nous) 0.9800
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Table A.2: AE–LDA en zero-day (entraînement bénin uniquement).

Métrique Valeur Remarque

Exactitude 0.9590 entraîné sur bénin seul
F1-score 0.9417 robuste aux attaques nouvelles
Latence (sous-ensemble DoS) < 12 ms cf. Table 5.2

Table A.3: Kitsune : AE–LDA vs Griffin (exactitude par scénario).

Scénario AE–LDA Griffin [105]

ARP MitM 0.9487 0.8048
Injection Vidéo 0.9007 0.8237
Active Wiretap 0.9669 0.9188
Scan OS 0.9713 0.9281
SSDP Flood 0.9945 0.9999

À retenir (AE–LDA). AUROC systématiquement supérieur aux bases sur CI-
CIDS2017 ; compétitif face à Griffin sur Kitsune (meilleur sur 4/5 tâches), avec une
inférence en millisecondes adaptée à l’IDS en ligne.

Résultats — HeteroGNN sensible au contexte

Table A.4: Impact des contextes (arêtes) et des communautés.

Configuration Précision Rappel F1 Exact. AUC

IDS2017 (2 arêtes) 0.8996 1.0000 0.9472 0.9442 0.9973
IDS2017 (3 arêtes) 0.9972 1.0000 0.9986 0.9986 0.9973
ToN (2 arêtes) 0.9778 1.0000 0.9888 0.9965 1.0000
ToN (3 arêtes) 0.9888 1.0000 0.9944 0.9982 1.0000
ToN (3 arêtes, sans communautés) 0.9615 0.8523 0.9036 0.9719 0.9922

À retenir (Contexte). Ajouter les arêtes de contexte et les communautés
augmente nettement la précision/F1 (moins de faux positifs) avec une orchestration
sous-seconde et ≈7,5 ms d’inférence : défenses temps réel pour réseaux industriels.

Apports de chaque contribution

• AE–LDA : détecte le trafic inédit via AE, puis assigne des catégories con-
nues via LDA pour une triage actionnable ; caractéristiques transparentes
(RF+SHAP).

• HeteroGNN sensible au contexte : encode qui/quand/comment com-
munique (multi-arêtes, communautés) pour distinguer maintenance vs intru-
sion ; améliore la précision sans sacrifier le rappel et conserve le débit temps
réel.
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Table A.5: Comportement temporel (fenêtre glissante).

Intervalle Création du
graphe

Détection de com-
munautés (LPA)

Mise à jour du
graphe

Test GNN

Hebdomadaire 62.14 s 0.052 s 0.504 s 0.0075 s
Horaire 1.87 s 0.0041 s 0.0319 s 0.0075 s
Seconde 0.015 s 0.00002 s 0.00051 s 0.0075 s

Limites & adéquation AE–LDA se concentre sur des caractéristiques réseau
(pas de contexte procédé) ; la méthode contexte dépend de la qualité/disponibilité
du contexte. Ensemble, elles offrent sensibilité zero-day et faible taux de faux
positifs, alignées avec l’exploitation IIoT.

A.6 Approche blockchain pour sécuriser des environ-
nements industriels distribués

section*Contexte et objectif Les systèmes IIoT mêlent hétérogénéité, distribution
et forte exposition aux menaces. Les approches classiques (annuaire central, ACL
périmétriques) peinent à fournir décentralisation, traçabilité et inaltérabilité
sous contraintes d’énergie, calcul et latence. Nous présentons deux contributions
blockchain complémentaires et adaptées à ces contraintes : (i) une blockchain
d’atelier (Shopfloor) qui apporte authentification préservant la vie privée et piste
d’audit infalsifiable ; (ii) une blockchain légère BFT-DAG offrant haut débit,
faible latence et faible coût énergétique pour des nœuds contraints.

Problématique

Les solutions existantes souffrent d’au moins un de ces points : latence/échelle
insuffisantes, absence de mécanismes de confidentialité, empreinte calcul/stockage
trop élevée, résilience limitée face aux DoS et fautes byzantines. Il faut donc (1) dé-
porter calcul et stockage loin des nœuds faibles, (2) vérifier finement des attributs
en limitant la divulgation, (3) consensuer rapidement et sobrement.

Contribution 1 — Shopfloor Blockchain (authentification
privée + traçabilité)

L’architecture est multi-niveaux : LN (capteurs/actionneurs) ne gèrent que
la capture et l’empreinte des données ; MN (nœuds intermédiaires) chiffrent,
tamponnent et agrègent via HSMs; FN (nœuds complets) assurent le consensus
PBFT et l’immutabilité. La pré-inscription d’un nœud forge une identité forte
IDn = H(Sn∥MAC) (numéro de série + MAC). L’accès et les transactions sont
ensuite conditionnés par des jetons d’attributs (SEC/INS/POC/TRA) délivrés
après une preuve n-sur-n : le nœud prouve qu’il possède tous les attributs requis
sans les dévoiler inutilement. Les MN bâtissent des blocs candidats signés et hors
charge LN ; les FN finalisent par PBFT. Effet clé : les LN restent ultra-légers
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(hachage/empreinte + réponse à défi), tandis que la confidentialité (attributs) et
l’auditabilité (chaîne) sont garanties par des rôles plus capacitaires.
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Figure A.7: Architecture Blockchain pour l’atelier de production.

Contribution 2 — Blockchain légère BFT-DAG (débit,
latence, sobriété)

Pour les environnements à très forte cadence, nous séparons RN (nœuds
réguliers, prover), ECN (edge, agrégation/filtrage), TVN (vérificateurs
d’attributs/transactions) et CN (comité, BFT-DAG). Le pipeline est le suivant
: RN signe → ECN agrège/filtre et pousse en mempool → TVN valide signatures
et jetons d’attributs (sans connaître la donnée) → CN ordonne et engage dans un
DAG par BFT (proposition, pré-commit, commit). L’ordonnancement partiel du
DAG autorise une forte parallélisation et des finalités rapides. Effet clé : haut
débit et faible latence sans faire porter le coût aux RN ; l’anonymat est volon-
tairement faible (traçabilité industrielle), mais la secrecy d’usage des jetons/clefs
est préservée.

Sécurité (synthèse)

Replay : défi TVN avec nonce et timestamp, rendant toute réinjection détectable.
MITM/falsification : chiffrement bout-à-bout et signatures ; TVN refusent toute
transaction sans jeton d’attribut valide. DoS/DDoS : pas de point central de con-
trôle dans la vérification ; tâches réparties (ECN/TVN/CN). Sybil : enrôlement par
preuves d’attributs et sanctions réputationnelles côté comité. Canaux auxiliaires
: aléatoirisation et matériel sûr (HSMs) limitent les fuites temporelles/énergétiques.
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Figure A.8: Relation entre les principaux acteurs de l’architecture proposée.

Évaluation (messages principaux)

Banc Shopfloor : sur un groupe d’essai (7 LN), l’enregistrement reste sub-seconde
; les échanges défi/réponse sont de l’ordre de dizaines de ms et la génération
d’empreinte est sous-milliseconde. Le consensus PBFT s’exécute côté FN/MN, sans
bloquer l’atelier. Banc BFT-DAG : sur un montage hybride (3 laptops comité, 1
ECN, passerelle capteurs), nous atteignons ∼49k TPS avec ∼0.43–0.58 s de latence
(consensus vs bout-en-bout). L’énergie par transaction est ≈1.1 mJ, soit un bon
compromis débit/latence/sobriété pour l’IIoT.

Limites et adéquation

Shopfloor suppose des MN/FN dotés d’HSM et de liens fiables ; excellent pour
l’audit d’atelier et l’edge offload. BFT-DAG vise l’efficacité (débit/latence/én-
ergie) avec un anonymat faible assumé pour la conformité et l’investigation. Les
deux se combinent : attributs privés, LN minimaux, finalité rapide et registre infal-
sifiable, au rythme de l’atelier.

A.7 Architecture Zero Trust dynamique (ZTA)

Le chapitre soutient que les modèles Zero Trust statiques, fondés sur des politiques
figées, sont mal adaptés aux conditions changeantes de l’IIoT. Il propose une ZTA
dynamique qui ajuste les décisions d’accès en temps réel en fusionnant des signaux
contextuels (posture utilisateur/appareil, contexte de flux, criticité de segment) avec
une évaluation continue de la menace.
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Table A.6: Synthèse des résultats expérimentaux (plateformes de test).

Approche Indicateur Résultat

Shopfloor Enregistrement (7 LN) 138 ms
Shopfloor Génération empreinte (1 LN) 0.65 ms
Shopfloor Validation — défi 38 ms
Shopfloor Validation — réponse 29 ms

BFT-DAG Débit consensus 49,439 tx/s (25.31 MB/s)
BFT-DAG Latence consensus 433 ms
BFT-DAG Débit bout-en-bout 49,039 tx/s (25.11 MB/s)
BFT-DAG Latence bout-en-bout 577 ms
BFT-DAG Énergie/transaction ∼0.00112 J (∼1.1 mJ)

Idée clé

La ZTA dynamique applique « ne jamais faire confiance, toujours vérifier » via :

• Ajustements dynamiques de confiance : l’accès est recalculé en continu
selon le risque courant.

• Adaptation continue des politiques : les règles sont régénérées à partir
du contexte et de la menace.

• Hypothèse d’intégrité de base : les composants cœur sont supposés sains
pour permettre une détection d’anomalies fiable.

Architecture et flux d’accès

Chaque entité (utilisateur, appareil, flux) possède un ID unique émis par
l’Administration des Politiques (PA). Lors d’une demande d’accès :

1. Le PEP vérifie l’ID (liste d’interdiction synchronisée), puis relaie vers
l’Authentificateur et le Policy Engine (PE).

2. L’Authentificateur valide certificats/identifiants.

3. La Détection d’anomalies (réseau et contextuelle) fournit des signaux.

4. Le Générateur de politiques met à jour les règles selon l’évaluation de la
menace.

5. Le PE statue (autoriser/refuser) et le PEP applique; tous les événements sont
journalisés.

Policy Engine avec machine à états (FSM)

Le PE exécute une FSM pour refléter la posture de risque : Normal → Alerte
→ Risque élevé → Quarantaine → Compromis → Rétablissement. Les
transitions sont guidées par un score de Risque de Menace quantitatif et des
événements (anomalie mineure/significative, menace critique, résolution). La FSM
rétroalimente les listes d’ID (ban/déban) pour fermer la boucle.
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Figure A.9: Framework intégré pour l’architecture Zero Trust dynamique.

Modèle de score de risque

Le risque combine quatre critères normalisés et pondérés w : Confiance (C) des
détecteurs, Criticité de l’attaque (A) (p. ex. cartographie MITRE ATT&CK),
Criticité du segment (S) (impact métier/sécurité) et Anomalies passées (P)
(log-transformées et robust-scaled).

Risque =
∑

v∈{C,A,S,P}

wv vnorm

Seuils→ actions : Normal (< 0,4), Faible (0,4–0,6), Élevé (0,6–0,8), Critique (≥
0,8). Pondérations/seuils initialement définis par experts; futur travail : ajustement
data-driven.

Administration des politiques & méta-politiques

La PA gère les politiques et des méta-politiques (gabarits de haut niveau) et valide
les règles via un arbre de décision précompilé, pour cohérence sémantique et risk
alignment (p. ex. no_write_access_high_risk). Les conflits sont tranchés par
priorité. Complexité maîtrisée : prétraitement O(|M| a), exécution ≈ O(log |M|+
k).

PoC & scénarios

Un PoC sur VMs (PA/PE/PEPs/Authentificateur/Serveur/clients/IoT) montre :

• Vol d’identifiants : bloqué par politiques IP/contexte.

• Escalade interne : refus par règles rôle+état; anomalie signalée.

• IoT compromis / DoS : rate limiting et élévation d’état isolent
l’équipement.

• Comportement utilisateur suspect : MFA ou refus déclenché sur dévia-
tion.
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Évaluation quantitative

L’application des politiques se fait à l’établissement de session et aux points de
contrôle, pas par paquet. Sous charge :

• Latence : ∼ 45ms (sans ZTA) → ≤ 141ms (avec ZTA), compatible IIoT.

• CPU : montée prévisible (pic ∼ 26,4%); mémoire ∼ 22–24%.

• En DoS : CPU/mémoire/latence augmentent, le débit baisse; le PE et le
serveur restent stables, le PEP contient la source. Perte de paquets accrue
en périphérie.

Déploiement

Pistes : PEP légers en edge, multi-tenant, interop protocoles (MQTT/OPC
UA), scaling horizontal PEP/PE avec synchronisation distribuée et détection
décentralisée.

Conclusion

La ZTA dynamique apporte un Zero Trust fin, contextuel et réactif pour l’IIoT,
supérieur aux modèles statiques. Les défis restants concernent le coût opérationnel
sur dispositifs contraints et le réglage manuel; le chapitre suivant étend l’approche
via une négociation de politiques distribuée et vérifiable par blockchain
pour une sécurité inter-domaine.

A.8 Architecture Zero Trust distribuée (DZTA)

Le chapitre étend les principes Zero Trust vers des environnements multi-acteurs et
décentralisés de l’IIoT, où des organisations autonomes doivent partager données et
services sans autorité centrale. Il propose une DZTA qui combine une négociation
automatique de politiques et une blockchain permissionnée, en s’appuyant sur
des Digital Product Passports (DPP) contenant des Digital Access Policies
(DAP). L’ancrage sur chaîne apporte traçabilité et auditabilité, tandis que le con-
tenu sensible reste chiffré off-chain via des viewing keys. La DZTA complète la ZTA
dynamique du chapitre précédent en la rendant inter-organisationnelle, vérifiable et
transparente.

Idée clé et apports

• Négociation décentralisée de politiques entre domaines indépendants,
avec ancrage immuable des accords.

• Préservation de la confidentialité : seules des métadonnées et des
références chiffrées sont écrites sur la chaîne; les politiques détaillées restent
locales.

• Interopérabilité et adaptabilité : décisions alignées sur le contexte, les
objectifs métiers et les contraintes réglementaires, sans divulguer la logique
interne.



202 Appendix A. Résumé en français

• Capacités supérieures aux approches existantes (scalabilité, négociation
multi-parties, évaluation quantitative du risque/utilité, smart contracts).

Architecture et rôles

Chaque organisation exécute sa propre ZTA (PE/PEP) et participe à une blockchain
hiérarchique:

• Nœuds complets (Full Nodes = PE) : évaluent les politiques, prennent
des décisions et enregistrent l’état consensuel.

• Nœuds intermédiaires (Middle Nodes = PEP) : appliquent les décisions,
valident l’adhérence et interagissent avec les nœuds complets.

• Nœuds légers (Light Nodes = entités) : appareils/utilisateurs conservent
localement leurs DPP/DAP et soumettent des informations vers les nœuds
intermédiaires.

Les DPP encapsulent des métadonnées (configuration, maintenance, cycle de vie)
et une couche DAP (règles d’accès). Les DPP/DAP sont gérés localement puis
ancrés sur la chaîne via références chiffrées; seules les parties autorisées peuvent en
lire le contenu.

Peer-to-Peer
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Policy
Discovery

Initiate
Negotiation

No

YesAgreement
Reached?

Proposal
Creation

Utility and
Risk Scoring

Yes

NoProposal
 Accepted?

Finalize 
Proposal

Secure
Enforcement Monitoring

Generate
Counter-
Proposal

Figure A.10: Flux de données de la méthode proposée.

Garanties de sécurité offertes par la blockchain

• Intégrité & authenticité des politiques (signatures, registre immuable).

• Confidentialité des contenus (stockage off-chain chiffré, contrôle d’accès par
clés de visualisation).

• Non-répudiation & responsabilité (journalisation signée de toute propo-
sition/acceptation).

• Disponibilité de l’historique & de l’état courant (réplication).
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Décision, risque et conformité

La négociation s’appuie sur des objectifs quantifiables normalisés dans [0, 1] : sécu-
rité (contrôles ISO 27001), réglementaire (p. ex. RGPD/CCPA), gouvernance in-
terne, vie privée (minimisation/chiffrement), confiance (historique/audits) et effi-
cacité opérationnelle (SLA).

Fonction d’utilité.

U =

n∑
i=1

wi fi(xi)

où wi reflète l’importance de l’objectif i et fi(xi) son niveau de satisfaction nor-
malisé.

Évaluation du risque.

R =
Vraisemblance× Impact
Facteur d’atténuation

Les propositions à forte utilité mais risque excessif (R > τR) sont rejetées ou
soumises à revue humaine.

Conformité.
C =

Exigences satisfaites
Exigences totales

L’acceptation exige U ≥ τU , R ≤ τR et C ≥ τC .

Protocole de négociation (vue d’ensemble)

1. Initialisation (mTLS, identité, intégrité du canal).

2. Récupération/validation des DAP ancrées (intégrité, signatures, autorisa-
tions).

3. Boucle de négociation : chaque proposition est notée (U,R,C); si
non conforme aux seuils, un contre-projet ajustant permissions, preuve
d’authentification, durée, quotas, etc. est émis.

4. Convergence : mise à jour locale des DAP/PEP et ancrage on-chain de
l’accord (immutabilité, audit).

Un smart contract orchestre états, délais, signatures et finalisation; les objets IIoT
restent hors de la boucle blockchain via leurs PEs ou nœuds intermédiaires.

Complexité et scalabilité

Par négociation, le coût dominant vient des échanges quadratiques inhérents au
consensus BFT; l’évaluation utilité/risque est légère (quelques opérations scalaires
par proposition). Les empreintes mémoire et trafic restent modestes (politiques kilo-
octets, quelques tours de négociation), compatibles avec des consortiums d’ordre de
dizaines d’organisations.
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Cas d’usage — chaîne d’approvisionnement

Trois entreprises aux politiques hétérogènes:

• A : accès borné par IP et MFA.

• B : exposition limitée de paramètres de diagnostic par rôle.

• C : données du produit X soumises à anonymisation.

Le flux: requête de collaboration → récupération des DPP/DAP → échanges de
priorités/projets→ consensus→mise à jour locale (PE/PEP) & ancrage. Résultats:
accès d’A aux données de B sous MFA & IP filtrées; B fournit un sous-ensemble
de diagnostics; C impose anonymisation. Partage des données chiffré off-chain;
violations détectées déclenchent alertes ou renégociation.

Analyse de sécurité et hypothèses

Garanties ancrées dans: signatures, mTLS, journalisation immuable, threshold BFT
(f < n/3 malveillants), et hygiène opérationnelle (gestion de clés, disponibilité des
nœuds). Limites: attaques hors périmètre sur primitives crypto, compromission de
canaux, erreurs de configuration, menaces spécifiques blockchain (p. ex. eclipse) et
coûts de performance/storage.

Limites et perspectives

La blockchain introduit latence de consensus et surcoûts réseau/stockage, sensibles
pour des IIoT contraints; la montée en échelle exige un réglage fin. Pistes: opti-
misation des PEP en périphérie, politiques locatives multi-tenant, interopérabilité
protocoles (MQTT/OPC UA), et synchronisation distribuée.

Conclusion

La DZTA propose un cadre fiable, transparent et adaptable pour la coopération
inter-domaine en IIoT, alliant blockchain (immutabilité, responsabilité) et ZTA
dynamique (contexte, réactivité). Malgré des coûts opérationnels liés au consensus,
l’approche renforce la confiance, la conformité et la sécurité, et constitue une base
crédible pour un déploiement industriel et des travaux futurs sur l’intégration et
l’évaluation de performance in situ.

A.9 Conclusion et Perspectives de Recherche Future

Récapitulation et Réponse aux Questions de Recherche

Cette thèse a abordé avec succès les principaux défis de la sécurisation des en-
vironnements IIoT distribués. En intégrant la gestion de l’identité, la détection
d’anomalies, la blockchain et le ZTA, nous avons développé un framework de sécurité
complet, adaptatif et évolutif. Les questions de recherche concernant l’intégration de
la blockchain et du ZTA, la détection d’anomalies en temps réel, la gestion d’identité
évolutive, les limitations du ZTA traditionnel et l’applicabilité de la blockchain dans
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l’IIoT ont toutes été traitées à travers les contributions de cette thèse. Le frame-
work intégré qui en résulte offre une défense multicouche qui est à la fois robuste et
flexible.

Remarques Finales

Le framework proposé fait progresser l’état de l’art en offrant une stratégie de sécu-
rité cohésive et automatisée pour l’IIoT. Il met l’accent sur la prise de décision
adaptative et informée par les risques, s’éloignant des contrôles statiques basés sur
le périmètre. Les recherches futures peuvent s’appuyer sur cette base pour affiner
davantage les protocoles de négociation de la confiance, optimiser les mécanismes
cryptographiques légers et améliorer l’intégration contextuelle en temps réel, ou-
vrant la voie à des architectures de cybersécurité autonomes et autorégulées pour
l’Industrie 4.0.
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