UNIVERSITE DE STRASBOURG FACULTE DE MEDECINE DE STRASBOURG

ANNEE 2020

N°90

THESE PRESENTEE POUR LE DIPLOME DE DOCTEUR EN MEDECINE

Diplôme d'Etat Mention D.E.S. Ophtalmologie

par

Mathieu WURTZ

Né le 03/03/1990 à Strasbourg

La supplémentation en taurine limite l'amincissement rétinien induit par un diabète de type 1 chez la souris

Président de thèse : Madame la Professeure C. SPEEG-SCHATZ Directeur de thèse : Monsieur le Professeur D. GAUCHER

FACULTE DE MEDECINE (U.F.R. des Sciences Médicales)

• Président de l'Université M. DENEKEN Michel Doyen de la Faculté M. SIBILIA Jean Assesseur du Doyen (13.01.10 et 08.02.11) M. GOICHOT Bernard Directeur général : Doyens honoraires : (1976-1983) (1983-1989) M. DORNER Marc M. MANTZ Jean-Marie M. GAUTIER Christophe Faculté M. VINCENDON GUY M. GERLINGER Plene (1989-1994) (1994-2001) de médecine M. LUDES Bertrand M. VICENTE Gilbert M. BITSCH Samuel (3.10.01-7.02.11) Chargé de mission auprès du Doyen Responsable Administratif Université de Strasbourg

A1 - PROFESSEUR TITULAIRE DU COLLEGE DE FRANCE Chaire "Génétique humaine" (à compter du 01.11.2003) MANDEL Jean-Louis

A2 - MEMBRE SENIOR A L'INSTITUT UNIVERSITAIRE DE FRANCE (I.U.F.) BAHRAM Sélamak DOLLFUS Hélène

A3 - PROFESSEUR(E)S DES UNIVERSITÉS - PRATICIENS HOSPITALIERS (PU-PH)

Immunologie biologique (01.10.2013 au 31.09.2018) Génétique clinique (01.10.2014 au 31.09.2019)

P0214

NOM et Prénome	C.5*	Services Hospitaliers ou institut / Localisation	Sous-s	section du Consell National des Universités
ADAM Philippe P0001	NRP0 NCS	Pole de l'Appareil locomoteur Service de chirurgie orthopédique et de Traumatologie / HP	50.02	Chinargie orthopédique et traumatologique
AKLADIOS Cherif P0191	NRP0 CS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétrique// HP	54.03	Gynécologie-Obstétrique ; gynécologie médicale Option : Gynécologie-Obstétrique
ANDRES Emmanuel P0002	NRP0 CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine Interne, Diabète et Maladies métaboliques / HC	53.01	Option : médecine interne
ANHEIM Mathleu P0003	NRP0 NCS	Pole Tête et Cou-CETD Service de Neurologie / Hôpital de Hauteplerre	49.01	Neurologie
ARNAUO Laurent P0186	NRP0 NCS	Pole MIRNED Service de Rhumatologie / Höpital de Hautepierre	50.01	Rhumatologie
BACHELLIER Philippe P0004	RP0 CS	Pole des Pathologies digestives, hépatiques et de la transplantation Serv. de chirurgie générale, hépatique et endocrinienne et Transplantation / HP	53,02	Chinurgie générale
BAHRAM Selamak Potos	NRP0 CS	Pôle de Blologie Laboratoire d'immunologie biologique / Nouvel Hôpital Civil Institut d'Hématologie et d'immunologie / Hôpital Civil / Faculté	47.03	Immunologie (option biologique)
BALDAUF Jean-Jacques Potos	NRP0 NCS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétrique / Hôpital de Hauteplerre	54.03	Gynécologie-Obstétrique ; gynécologie médicale Option : Gynécologie-Obstétrique
BAUMERT Thomas P0007	NRP0 CU	Pôle Hépato-digestif de l'Hôpital Civil Unité d'Hépato-logs d'Hépato-Gastro-Entérologie / NHC	52.01	Gastro-entérologie ; hépatologie Option : hépatologie
Mme BEAU-FALLER Michèle M0007 / PO170	NRP0 NCS	Pôle de Biologie Laboratoire de Biologie moléculaire / HP	44.03	Biologie cellulaire (option biologique)
BEAUJEUX Rémy Poots	NRP0 Resp	Pôle d'Imagerie - CME / Activités transversales Unité de Neuroradiologie Interventionnelle / Höpital de Hautepierre	43,02	Radiologie et imagerie médicale (option clinique)
BECMEUR François P0009	RP0 NCS	Pôle médico-chirurgical de Pédiatrite Service de Chirurgie Pédiatrique / Höpital Hauteplerre	54.02	Chirurgie Infantie
BERNA Fabrice P0192	NRP0 CS	Pôle de Psychiatrie, Santé mentale et Addictologie Service de Psychiatrie I / Hópital Civil	49.03	Psychiatrie d'aduites : Addictologie Option : Psychiatrie d'Aduites
BERTSCHY Glies P0013	NRP0 CS	Pôle de Psychiatrie et de santé mentale Service de Psychiatrie II / Hópital Ch/I	49.03	Psychiatrie d'adultes
BIERRY Gullaume P0178	NRP0 NCS	POle d'Imagerie Service d'Imagerie II - Neuroradiologie-Imagerie ostécarticulaire-Pédiatrie / Hôpital Hautepierre	43,02	Radiologie et Imagerie médicale (option clinique)
BILBAULT Pascal P0014	NRP0 CS	Pôle d'Urgences / Réanimations médicales / CAP Service des Urgences médico-chirurgicales Aduites / Höpital de Hautepierre	48.02	Réanimation ; Médecine d'urgence Option ; médecine d'urgence
BLANC Frédéric P0213	NRP0 NCS	- Pôle de Gériatrie - Service de Médecine Interne - Gérietrie - Hópital de la Robertsau	53.01	Médecine interne ; addictologie Option : gértatrie et biologie du vieillis- sement
BODIN Frédéric P0187	NRP0 NCS	Pôle de Chirurgie Maxilio-faciale, morphologie et Demastologie Service de Chirurgie maxilio-faciale et réparatrice / Hôpital Chril	50.04	Chirurgie Plastique, Reconstructrice et Esthétique ; Brülologie
Mme BOEHM-BURGER Nelly P0016	NCS	Institut d'Histologie / Faculté de Médecine	42.02	Histologie, Embryologie et Cytogénétique (option biologique)
BONNOMET François P0017	NRP0 CS	Pôle de l'Appareil locomoteur Service de Chirurgie orthopédique et de Traumatologie / HP	50.02	Chirurgle orthopédique et traumatologique
BOURCIER Tristan P0018	NRP0 NCS	Pôle de Spécialités médicales-Ophtalmologie / SMO Service d'Opthalmologie / Nouvei Hôpital Ch/li	55.02	Ophtalmoiogle
BOURGIN Patrice P0020	NRP0 NCS	Pole Tête et Cou - CETD Service de Neurologie / Hôpital Civil	49.01	Neurologie
Mme BRIGAND Céclie P0022	NRP0 NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP	53.02	Chirurgie générale

NHC - Nouvel Hópital CMI HC - Hópital CMI HP - Hópital de Hautepierre PTM - Plateau technique de microbiologie

Année universitaire 2019-2020

HOPITAUX UNIVERSITAIRES DE STRASBOURG (HUS)

> Les Höpiteux Universitaires

NOM et Prénoma	C\$*	Services Hospitaliers ou Institut / Localisation	Sous-se	ection du Consell National des Universités
BRUANT-RODIER Catherine P0023	NRP0 CS	Pôle de l'Appareil locomoteur Service de Chirurgie Maxilio-faciale et réparatrice / HP	50.04	Option : chirurgie plastique, reconstructrice et esthétique
Mme CAILLARD-OHLMANN Sophle P0171	NRP0 NCS	Pôle de Spécialités médicales-Ophtalmologie / SMO Service de Néphrologie-Transplantation / NHC	52.03	Néphrologie
CASTELAIN Vincent P0027	NRP0 NCS	Pôle Urgences - Réanimations médicales / Centre antipoison Service de Réanimation médicale / Hôpital Hautepierre	48.02	Réanimation
CHAKFE Nabi P0029	NRP0 CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Vasculaire et de transplantation rénaie / NHC	51.04	Chinurgie vasculaire ; médeche vascu- laire / Option : chirurgie vasculaire
CHARLES Yann-Philippe M0013 / P0172	NRP0 NCS	Pôle de l'Appareil locomoteur Service de Chirurgie du rachis / Chirurgie B / HC	50.02	Chirurgie orthopédique et traumatologique
Mme CHARLOUX Anne P0028	NRP0 NCS	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie (option biologique)
Mme CHARPIOT Anne P0030	NRP0 NCS	Pôle Tête et Cou - CETD Serv. d'Oto-mino-laryngologie et de Chirurgie cervico-faciale / HP	55.01	Oto-rhino-laryngologie
CHELLY Jameleddine P0173	NRP0 CS	Pôle de Biologie Laboratoire de Diagnostic génétique / NHC	47.04	Génétique (option biologique)
Mme CHENARD-NEU Marle-Pierre P0041	NRP0 CS	Pôle de Blologie Service de Pathologie / Hôpital de Hautepierre	42.03	Anatomie et cytologie pathologiques (option biologique)
CLAVERT Philippe P0044	NRP0 CS	Pôle de l'Appareil locomateur Centre de Chirurgle du Membre supérieur / HP	42.01	Anatomie (option clinique, orthopédie traumatologique)
COLLANGE Olivier P0193	NRP0 NCS	POle d'Anesthèsie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthèsiologie-Réanimation Chirurgicale / NHC	48.01	Anesthésiologie Réanimation.: Médecine d'urgence (option Anesthésio- logie-Réanimation - Type clinique)
CRIBIER Bernard P0045	NRP0 CS	Pôle d'Urologie, Morphologie et Dermatologie Service de Dermatologie / Hôpital Civil	50.03	Dermato-Vénéréologie
DANION Jean-Marie P0046	NRP0 NCS	Pôle de Psychiatrie et de santé mentale Service de Psychiatrie 1 / Hôpital Civil	49.03	Psychiatrie d'aduites
de BLAY de GAIX Frédéric P0048	RP0 CS	Pôle de Pathologie thoracique Service de Pneumologie / Nouvel Hôpital Civil	51.01	Pneumologie
de SEZE Jérôme P0057	NRP0 NCS	Pôle Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
DEBRY Christian P0049	NRP0 CS	Pôle Tête et Cou - CETD Serv. d'Oto-mino-laryngologie et de Chirurgie cervloo-faciale / HP	55.01	Oto-rhino-laryngologie
DERUELLE Philippe P0198	NRP0 NCS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétrique / Hôpital de Hautepierre	54.03	Gynécologie-Obstétrique; gynécologie médicale: option gynécologie-obstétrique
DIEMUNSCH Plerre P0051	RP0 CS	Pôle d'Anesthésie / Réanimations chinurgicales / SAMU-SMUR Service d'Anesthésie-Réanimation Chinurgicale / Höpital de Hautepierre	48.01	Anesthésiologie-réanimation (option clinique)
Mme DOLLFUS-WALTMANN Hélène P0054	NRP0 CS	Pôle de Blologie Service de Génétique Médicale / Hôpital de Hautepierre	47.04	Génétique (type clinique)
EHLINGER Matthleu P0188	NRP0 NCS	Pôte de l'Appareil Locomoteur Service de Chirurgie Orthopédique et de Traumatologie Hópital de Hautepierre	50.02	Chirurgie Orthopédique el Traumatologique
Mme ENTZ-WERLE Natacha P0059	NRP0 NCS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie III / Hôpital de Hautepierre	54.01	Pédiatrie
Mme FACCA Sybile P0179	NRP0 NCS	Pôle de l'Apparell locomoteur Service de la Main et des Nerfs périphériques / HP	50.02	Chirurgie orthopédique el traumatologique
Mme FAFI-KREMER Samira P0060	NRP0 CS	Pôle de Biologie Laboratoire (institut) de Virologie / PTM HUS et Faculté	45.01	Bastériologie-Mitologia : Hygiène Hospitalière Option Bastériologie- <u>Witologia</u> biologique
FALCOZ Plerre-Emmanuel P0052	NRP0 NCS	Pôle de Pathologie thoracique Service de Chirurgie Thoracique / Nouvel Höpital Civil	51.03	Chirurgie thoracique et cardio-vasculaire
FORNECKER Luo-Matthieu P0208	NRP0 NCS	Pôle d'Onocio-Hématologie Service d'hématologie et d'Oncologie / Hôp. Hautepierre	47.01	Hématologie ; Transfusion Option : Hématologie
GALLIX Benolt P0214	NCS	IHU - Institut Hospitalo-Universitaire - Höpital Civit	43.02	Radiologie et Imagerie médicale
GANGI Afshin P0062	RP0 CS	Pôte d'imagerle Service d'imagerle A interventionnelle / Nouvel Höpital Civil	43.02	Radiologie et imagerie médicale (option clinique)
GAUCHER David P0063	NRP0 NCS	Pôle des Spécialités Médicales - Ophtalmologie / SMO Service d'Ophtalimologie / Nouvel Höpital Ctvl	55.02	Ophtaimologie
GENY Bernard P0064	NRP0 CS	Pole de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44,02	Physiologie (option biologique)
GEORG Yannick P0200	NRP0 NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire - Service de Chirurgie Vasculaire et de transplantation rénaie / NHC	51.04	Chirurgie vasculaire ; médecine vascu- laire / Option : chirurgie vasculaire
GICQUEL Philippe Pages	NRP0 CS	Pôle médico-chirurgical de Pédiatria Service de Chirurgie Pédiatrique / Hôpital Hautepierre	54.02	Chirurgie infantlie
GOICHOT Bernard P0066	RP0 CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine Interne et de nutrition / HP	54.04	Endocrinologie, diabète et maladies métaboliques
Mme GONZALEZ Marta P0067	NRP0 CS	Pôle de Santé publique et santé au travall Service de Pathologie Professionneile et Médecine du Travall / HC	45.02	Médecine et santé au travail Travail
		and the second		

NOM et Prénoms	C.5*	Services Hospitaliers ou Institut / Localisation	Sous-se	ction du Consell National des Universités
GOTTENBERG Jacques-Eric Pooes	NRP0 CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Rhumatologie / Hôpital Hautepierre	50.01	Rhumatologie
HANNEDOUCHE Thierry P0071	NRP0 CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Néphrologie - Dialyse / Nouvel Höpital Civil	52.03	Néphrologie
HANSMANN Yves P0072	NRP0 CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service des Maladies infectieuses et tropicales / Nouvel Höpital Civil	45.03	Option : Maladies infectieuses
Mme HELMS Julie M0114/P0209	NRP0 NCS	Pôle Urgences - Réanimations médicales / Centre antipolson Service de Réanimation Médicale / Nouvel Hôpital Ch/l	48.02	Médecine Intensive-Réanimation
HERBRECHT Raoul P0074	RP0 NCS	Pôle d'Oncolo-Hérnatologie Service d'hérnatologie et d'Oncologie / Hôp. Hautepierre	47.01	Hématologie ; Transfusion
HIRSCH Edouard P0075	NRP0 NCS	Pôle Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
IMPERIALE Alessio P0194	NRP0 NCS	Pôle d'imagerie Service de Biophysique et de Médecine nucléaire/Hôpitai de Hautepierre	43.01	Biophysique et médecine nucléaire
ISNER-HOROBETI Marle-Eve P0189		Pôle de Médecine Physique et de Réadaptation Institut Universitaire de Réadaptation / Clémenceau	49.05	Médecine Physique et Réadaptation
JAULHAC Benoît P0078	NRP0 CS	Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté de Méd.	45.01	Option : Bacteriologie-virologie (biolo gique)
Mme JEANDIDIER Nathaile P0075	NRP0 CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service d'Endocrinologie, diabète et nutrition / HC	54.04	Endocrinologie, diabète et maladie métaboliques
Mme JESEL-MOREL Laurence P0201	NRP0 NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
KALTENBACH Georges	RP0 CS	Pôle de Gérlatrie Service de Médecine Interne - Gérlatrie / Höpital de la Robertsau	53.01	Option : gériatrie et biologie du vieillis sement
KEMPF Jean-François P0083	RP0 CS	Pôle de l'Appareil locomateur Centre de Chirurgie Orthopédique et de la Main-CCOM / liikirch	50.02	Chinurgie orthopédique et traumatologiqu
Mme KESSLER Laurence P0084	NRP0 NCS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service d'Endocrinologie, Diabète, Nutrition et Addictologie / Méd. B / HC	54.04	Endocrinologie, diabète et maladie métaboliques
KESSLER Romain P0085	NRP0 NCS	Pôle de Pathologie thoracique Service de Pneumoiogie / Nouvel Hôpital Civil	51.01	Pneumologie
KINDO Michel P0195	NRP0 NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Cardio-vasculaire / Nouvel Hôpital Civil	51.03	Chirurgle thoracique et cardio-vasculaire
KOPFERSCHMITT Jacques P0086	NRP0 NCS	Pole Urgences - Réanimations médicales / Centre antipolson Service d'Urgences médico-chiruígicales adultes/Nouvel Hópital Civil	48.04	Thérapeutique (option clinique)
Mme Korganowanne- Sophie Pots7	NRP0 CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Médecine Interne et d'immunologie Clinique / NHC	47.03	immunologie (option clinique)
KREMER Stéphane M0038 / P0174	NRP0 CS	Pôle d'imagerie Service imagerie 2 - Neuroradio Ostécarticulaire - Pédiatrie / HP	43.02	Radiologie et imagerie médicale (option olinique)
KUHN Pierre P0175	NRP0 NCS	Pôle médioo-chirurgical de Pédiatrie Service de Néonatologie et Réanimation néonatale (Pédiatrie II) Hototal de Hauteolerre	54.01	Pédiatrie
KURTZ Jean-Emmanuel	NRP0 CS	Pôle d'Onco-Hématologie Service d'hématologie et d'Oncologie / Hôpital Hautepierre	47.02	Option : Cancérologie (clinique)
Mme LALANNE-TONGIO Laurence	NRP0 NCS	Pôle de Psychiatrie, Santé mentale et Addictologie Service de Psychiatrie I / Hópital Chvil	49.03	Psychiatrie d'aduites : <u>Addictologie</u> (Option : Addictologie)
LANG Hervé P0090	NRP0	Pôle de Chirurgie plastique reconstructrice et esthétique, Chirurgie maxilic- faciale, Morphologie et Dermatologie - Service de Chirurgie (Indonénie (Noruse) Hónital Chull	52.04	Urologie
LAUGEL Vincent	NRP6 CS	Pôle médico-chirurgical de Pédicatrie Service de Pédicatrie Service de Pédicatrie 1 / Hôntal Hauteolerre	54.01	Pédiatrie
LE MINOR Jean-Marle P0190	NRP0 NCS	Pôle d'imagerie Institut d'Anatomie Normale / Faculté de Médecine Service de Neuroradiologie, d'imagerie Ostécarticulaire et Interventionnelle/ Hôptal de Hautepiere	42.01	Anatomie
LIPSKER Dan P0093	NRP0 NCS	Pôle de Chirurgie plastique reconstructrice et esthélique, Chirurgie maxilic- factale, Morphologie et Dermatologie Service de Dermatologie / Hôpital Ch/II	50.03	Dermato-vénéréologie
LIVERNEAUX Philippe P0094	NRP0 CS	Pôle de l'Appareil locomoteur Service de Chirurgie orthopédique et de la main / HP	50.02	Chirurgie orthopédique et traumatologiqu
MALOUF Gabriel P0203	NRP0 NCS	Pôle d'Onco-hématologie Service d'Hématologie et d'Oncologie / Hôpital de Hautepierre	47.02	Cancérologie : Radiothérapie Option : Cancérologie
MARK Manuel P0098	NRP0 NCS	Pôle de Biologie Laboratoire de Cytogénétique, Cytologie et Histologie quantitative / Hôpital de Hautepierre	54.05	Biologie et médecine du développemer et de la reproduction (option biologique)
MARTIN Thierry P0099	NRP0 NCS	Pôle de Spécialités médicales - Opitalmologie / SMO Service de Médecine interne et d'immunologie Clinique / NHC	47.03	Immunologie (option cilnique)
Mme MASCAUX Céline	NRPÖ	Pôle de Pathologie thoracique	51.01	Pneumologie : Addictologie

NOM et Prénome	C3*	Services Hospitaliers ou Institut / Localisation	SOU8-86	ction du Consell National des Universities
Mme MATHELIN Carole P0101	NRP0 NCS	Pôle de Gynécologie-Obstétrique Unité de Sénologié - Hôpital Civil	54.03	<u>Gynécologie-Obeléfrique</u> : Gynécologie Médicale
MAUVIEUX Laurent P0102	NRP6 CS	Pôle d'Onco-Hématologie Laboratoire d'Hématologie Biologique - Hôpital de Hautepierre Institut d'Hématologie / Pacuité de Médecine	47.01	Hematologie : Transfusion Option Hematologie Biologique
MAZZUCOTELLI Jean-Philippe P0103	RP0 CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Cardio-vasculaire / Nouvel Hôpital Civil	51.03	Chirurgie thoracique et cardio-vasculaire
MERTES Paul-Michel P0104	NRP0 CS	Pôle d'Anesthésiologie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthésiologie-Réanimation chirurgicale / Nouvel Höpital CMI	48.01	Option : Anesthèsiologie-Réanimation (type mbte)
MEYER Nicolas P0105	NRP0 NCS	Pôle de Santé publique et Santé au travali Laboratoire de Biostatistiques / Hôpitai Civil Biostatistiques et informatique / Faculté de médecine / Hôpitai Civil	46.04	Biostalistiques, informatique Médicale el Tech- nologies de Communication (option biologique
MEZIANI Ferhat P0106	NRP0 NCS	Pôle Urgences - Réanimations médicales / Centre antipolson Service de Réanimation Médicale / Nouvel Hôpital Civil	48.02	Réanimation
MONASSIER Laurent P0107	NRP0 CS	Pôle de Pharmacie-pharmacologie Unité de Pharmacologie clinique / Nouvel Hôpital Civil	48.03	Option : Pharmacologie fondamentale
MOREL Olivier P0108	NRP6 NCS	Pôle d'activité médico-chinurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
MOULIN Bruno	NRP0 CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Néphrologie - Transplantation / Nouvel Höpital Civil	52.03	Néphrologie
MUTTER Didler	RP0 CS	Pôle Hépato-digestif de l'Hôpital Chrit Service de Chriungle Digestive / NHC	52.02	Chirurgie digestive
NAMER Izzle Jacques	NRP0 CS	Pôle d'imagerle Service de Biophysique et de Médecine nucléaire / Hautepierre / NHC	43.01	Biophysique et médecine nucléaire
NOEL Georges P0114	NCS	Centre Régional de Lutte Contre le Cancer Paul Strauss (par convention) Département de radiothéraple	47.02	Cancérologie - Radiothérapie Option Radiothérapie biologique
OHANA Mickael P0211	NRP0 CS	Pôle d'imagerie Serv. d'imagerie B - imagerie visoèrale et cardio-vasculaire / NHC	43.02	Radiologie et imagerie médicale (option Clinique)
OHLMANN Patrick	NRP0 CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
Mme OLLAND Anne	NRP0 NCS	Pôle de Pathologie Thoracique Service de Chirurgie thoracique / Nouvel Hôpital Civil	51.03	Chirurgie thoracique et cardio-vaaculaire
Mme PAILLARD Catherine	NRPO	Pôle médico-chirurgicale de Pédiatrie Service de Pédiatrie III / Hônital de Hauteoleme	54.01	Pédiatrie
PELACCIA Thierry	NRP0 NCS	POle d'Anesthèsie / Réanimation chirurgicales / SAMU-SMUR Sontre SAMU/SMUR / HP	48.05	Réanimation : Médecine d'urgence
Mme PERRETTA Silvana	NRPO	Polic Hépato-digestif de l'higital Civil Service d'Unrene de Chinimie Générale et Endoctinienne / NHC:	52.02	Chirurgle digestive
PESSAUX Patrick	NRPO	Pôle des Pathologies digestives, hépatiques et de la transplantation Service d'Umenne, de Chinimie Gébérale et Enricothienne, // H-C	53.02	Chirurgie Générale
PD118 PETIT Thleny	000	Centre Régional de Lutte Contre le Cancer - Paul Strauss (par convention) Dénatrice Régional de Lutte Contre le Cancer - Paul Strauss (par convention)	47.02	Cancérologie ; Radiothérapie
P0119 PIVOT Xavler	NBPO	· <u>Oepartement de medecine oncodogique</u> · <u>Oentre</u> Régional de Lutte Contre le Cancer - Paul Strauss (par convention)	47.02	Cancérologie : Radiothérapie
P0206 POTTECHER Julien	NCS	Departement de medecine oncologique Pôle d'Anesthésie / Réanimations chirurgicales / SAMU-SMUR.	192.5	Option : Cahoerologie Citrique
P0181	NCS	 Service d'Anesthésie et de Réanimation Chirurgicale / Hôpital de Hautepierre 	48.01	Anesthésiologie-résnimation : Médecine d'urgence (option clinique)
PRADIGNAC Alain P0123	NRP0 NCS	 Pole de Médeche Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine Interne et nutrition / HP 	44.04	Nuttion
PROUST François P0182	NRP0 CS	Pôle Tête et Cou Service de Neurochirurgie / Hôpital de Hautepierre	49.02	Neurochirurgie
Pr RAUL Jean-Sébastien P0125	NRP0 CS	Pôle de Biologie Service de Médecine Légale, Consultation d'Urgences médico-judiciaires et Laboratoire de Toxicologie / Faculté et NHC Institut de Médecine Légale / Faculté de Médecine	45.03	Médecine Légale et droit de la santé
REIMUND Jean-Marie	NRP0 NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service d'Hépato-Gastro-Entérologie et d'Assistance Nutritive / HP	52.01	Option : Gastro-entérologie
Pr RICCI Roméo P0127	NRP0 NCS	Pole de Biologie Laboratoire de Biologie moléculaire / HP	44.01	Biochimie et biologie moléculaire
ROHR Serge	NRP0 CS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP	53.02	Chirurgie générale
Mme ROSSIGNOL-BERNARD SyMe P0196	NRP0 CS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie I / Hôpital de Hautepierre	54.01	Pédiatrie
ROUL Géraid	NRP0 NCS	Pôle d'activité médico-chirurgicale Cardio-vasculatre Service de Cardiologie / Notivel Hópital Civil	51.02	Cardiologie
Mme ROY Catherine P0140	NRP0 CS	Pole d'imagerle Serv. d'imagerle B - Imagerle Viscèrale et cardio-vasculaire / NHC	43.02	Radiologie et imagerie médicale (opt olinique
SANANES Nicolas P0212	NRP0 CS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétriquei/ HP	54.03	Gynécologie-Obstétrique : gynécologi médicale Ordion - Gunécologie-Obstétrine

NOM et Prénoma	C\$*	Services Hospitaliers ou Institut / Localisation	\$0U8-86	ection du Consell National des Universités
SAUDER Philippe P0142	NRP0 CS	Pôle Urgences - Réanimations médicales / Centre antipolson Service de Réanimation médicale / Nouvel Hőpítai Civfi	48.02	Réanimation
SAUER Amaud P0183	NRP0 NCS	Pôle de Specialités médicales - Ophtaimologie / SMO Service d'Ophtaimologie / Nouvel Hôpital Ofili	55.02	Ophtalmologie
SAULEAU Erlk-André P0184	NRP0 NCS	Pôle de Santé publique et Santé au travail Laboratoire de Biostatistiques / Hôpital Civil Biostatistiques et Informatique / Faculté de médecine / HC	45.04	Biostatigliques, informatique médicale et Technològies de Communication (option biologique)
SAUSSINE Christian P0143	RP0 CS	Pôle d'Urologie, Morphologie et Dermatologie Service de Chirurgie Urologique / Nouvel Hôpital Civil	52.04	Urologie
Mme SCHATZ Claude P0147	RP0 CS	Pôle de Spécialités médicales - Ophtaimologie / SMO Service d'Ophtaimologie / Nouvel Hőpítal Civil	55.02	Ophtalmologie
SCHNEIDER Francis P0144	RP0 CS	Pôle Urgences - Réanimations médicales / Centre antipolson Service de Réanimation médicale / Hôpital de Hautepierre	48.02	Réanimation
Mme SCHRÖDER Carmen P0185	NRP0 CS	Pôle de Psychiatrie et de santé mentale Service de Psychothérapie pour Enfants et Adolescents / Hôpital Civil	49.04	Pédopeychiztrie : Addictologie
SCHULTZ Philippe P0145	NRP0 NCS	Pole Tête et Cou - CETD Serv. d'Oto-mino-laryngologie et de Chirurgie cervico-taciale / HP	55.01	Oto-rhino-laryngologie
SERFATY Lawrence P0197	NRP0 NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service d'Hépato-Gastro-Entérologie et d'Assistance Nutritive / HP	52.01	Gastro-entérologie ; Hépatologie ; Addictologie Option : Hépatologie
SIBILIA Jean P0145	NRP0 NCS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Rhumatologie / Hópital Hautepierre	50.01	Rhumatologie
STEIB Jean-Paul P0149	NRP0 CS	Pôle de l'Appareil locomoteur Service de Chirurgie du rachis / Hôpital de Hautepierre	50.02	Chirurgie orthopédique et traumatologique
STEPHAN Dominique P0150	NRP0 CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service des Maladies vasculaires - HTA - Pharmacologie clinique / Nouvel Hôpital CMI	51.04	Option : Médecine vasculaire
THAVEAU Fablen P0152	NRP0 NCS	Pôle d'activité médico-chinurgicale Cardio-vasculaire Service de Chirurgie vasculaire ét de transplantation rénale / NHC	51.04	Option : Chirurgle vasculaire
Mme TRANCHANT Christine P0153	NRP0 CS	Pole Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
VEILLON Francis P0155	NRP0 CS	Pôle d'Imagerie Service d'Imagerie 1 - Imagerie viscérale, ORL et mammaire 7 Hôpital Hauteplerre	43.02	Radiologie et imagerie médicale (option ĉimique)
VELTEN Michel Polss	NRP0 NCS CS	Pôle de Santé publique et Santé au travall Oepartement de Santé Publique / Secteur 3 - Epidémiologie et Economie de la Santé / Hôpital Chil Laboratoire d'Ecidémiologie et de santé publique / HC / Fac de Médeche Centre de Lutté contre le Cancer Paul Strausé - Serv. Epidémiologie et de biostatistiques	46.01	Epidémiologie, économie de la santé el prévention (option biologique)
VETTER Denis P0157	NRPå NCS	 Pôle de Médecine Interne, Rhumstologie, Nutrition, Endocrinologie, Disbétologie (MIRNED) Bervice de Médecine Interne, Diabète et Maladies métaboliques/HC 	52.01	Option : Gastro-entérologie
VIDAILHET Plerre P0158	NRP0 NCS	Pôle de Psychiatrie et de santé mentale Service de Psychiatrie I / Höpital Civil	49.03	Psychiatrie d'adultes
VIVILLE Stéphane P0159	NRP0 NCS	Pôle de Biologie Laboratoire de Parastiologie et de Pathologies tropicales / Fac. de Médecine	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
VOGEL Thomas P0160	NRP0 CS	 Pôle de Gériatrie Service de soins de suite et réadaptations gériatriques / Hôpital de la Robertsau 	51.01	Option : Gériatrie et biologie du vieillissement
WEBER Jean-Christophe Plerre P0162	NRP0 CS	Pôle de Spécialités médicales - Ophtaimologie / SMO Service de Médecine Interne / Nouvel Höpital Civil	53.01	Option : Médecine interne
WOLF Philippe P0207	NRP0 NCS	 Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie Générale et de Transplantations multiorganes / HP Coordonnateur des activités de prélèvements et transplantations des HU 	53,02	Chirurgie générale
Mme WOLFF Valérie P0001	NRP0 NCS	Pôle Têle et Cou Service de Neurochirurgie / Hôpital de Hauteplerre	49.01	Neurologie

HC : Höpital Civil - HP : Höpital de Hautepleire - NHC : Nouvel Höpital	e Civil
 CS (Chef de service) ou NCS (Non Chef de service hospitalier) 	Cspl : Chef de service par intérim CSp : Chef de service provisoire (un an)
På : Påle	RPő (Responsable de Pôle), ou NRPő (Non Responsable de Pôle)
Cons. : Consultanat hospitalier (poursuite des fonctions hospitalières	sans chefferie de service) Dir : Directeur
(1) En sumombre universitaire jüsqu'au 31.08.2018	(7) Consultant boardialise (nour up an) Aventualisment renouvelable
(5) En sumombre universitaire lusqu'au 31.08.2019	 (5) Consultant hospitalier (pour une 2ème année) -> 31.08.2017
(6) En sumombre universitaire jusqu'au 31.08.2017	(9) Consultant hospitaller (bour une 3ème année)> 31.08.2017

	NOM	et Prénoma	2
--	-----	------------	---

CS*

	1	44 - PROFESSEUR ASSOCIE DES U	NIVERSITE	S	
HABERSETZER François	cs	Pôle Hépato-digestif 4190 Service de Gastro-Entérologie - NHC	52.01	Gastro-Entérologie	
CALVEL Laurent	NRP0 CS	Pôle Spécialités médicales - Ophtalmologie / SMO Service de Solns palitatifs / NHC	55.02	Ophtalmologie	
SALVAT Eric		Centre d'Evaluation et de Traitement de la Douleur			

MO128 B1 - MAITRES DE CONFERENCES DES UNIVERSITES - PRATICIENS HOSPITALIERS (MCU-PH) NOM et Prénoms CS* Services Hospitaliers ou Institut / Localisation Sous-section du Conseil National des Universités

_

GV.0.00200000000000000000000000000000000			
AGIN Amaud M0001	Pôle d'Imagerie Service de Biophysique et de Médecine nucléaire/Hôpital de Hauteplerre	43.01	Biophysique et Médecine nucléaire
Mme ANTAL Marta Cristina M0003	Pôle de Biologie Service de Pathologie / Hautepierre Facuté de Médecine / Institut d'Histologie	42.02	Histologie, Embryologie et Cytogénétiqu (option biologique)
Mme ANTONI Delphine	Centre de lutte contre le cancer Paul Strauss	47.02	Cancérologie ; Radiothérapie
ARCEMI Xavler Nelliz (En disponibilité)	 Pôle de Spécialités médicales – Ophtalmologie / SNIO Service des Maladies Infectieuses et tropisales / Nouvel Hópital-GMI 	45.03	Maladics Interference - Maladics tropicale Option - Maladics Infootierusos
Mme AYME-DIETRICH Estelle M0117	Pôle de Parmacologie Unité de Pharmacologie clinique / Faculté de Médedine	48.03	Pharmacologie fondamentale : phar- macologie dinigue ; addictologie Option : pharmacologie fondamentale
Mme BARNIG Cindy M0110	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations Fonctionnelles / NHC	44.02	Physiologie
Mme BIANCALANA Valèrie M0008	Pôle de Biologie Laboratoire de Diagnostic Génétique / Nouvel Hôpital Civil	47.D4	Génétique (option biologique)
BLONDET Cyrlle V0091	Pôle d'Imagerie Service de Blophysique et de Médecine nucléaire/Hôpital de Hauteplerre	43.01	Biophysique et médecine nucléaire (option clinique)
BONNEMAINS Laurent M0099	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie cardio-vasculaire / Nouvel Hôpital Civil	54.01	Pédiatrie
BOUSIGES Olivier M0092	Pôle de Blologie Laboratoire de Blochimie et de Blologie moléculaire / HP	44.01	Biochimie et biologie moléculaire
CARAPITO Raphaél	Põle de Biologie Jaboratoire d'Immunologie biologique / Norvel Hõotal CMI	47.03	immunologie
CAZZATO Roberto	Pôle d'Imagerie	43.02	Radiologie et imagerie médicale (option
MD118	- Service d'imagerie A Interventionnelle / NHC	40.00	clinique)
MITIE GEBULA HEIETE ME124	- Service de Neurochirurgie / HP	49.02	Meurocharungie
CERALINE Jocelyn M0012	Pôle d'Oncologie et d'Hématologie Service d'Oncologie et d'Hématologie / HP	47.02	Cancérologie ; Radiothéraple (option biologique)
CHOQUET Philippe M0014	 Pôle d'imagerie Service de Blophysique et de Médecine nucléaire / HP 	43.01	Biophysique et médecine nucléaire
COLLONGUES NIcolas M0016	Pôle Tête et Cou-CETD Centre d'investigation Clinique / NHC et HP	49.01	Neurologie
DALI-YOUCEF Ahmed Nassim M0017	Pôle de Blologie Laboratoire de Blochimie et Blologie moléculaire / NHC	44.01	Biochimie et biologie moléculaire
Mme de MARTINO Sylvie M0018	Pôle de Biologie Laboratoire de Bactériologie / PTM HUS et Faculté de Médecine	45.01	Bactériologie-virologie Option bactériologie-virologie biologique
Mme DEPLENNE Christel wekee (En disponibilité) CS	- Pêle de Biologie - Laboratoire de Cytogénétique / HP	47.04	Génétique
DEVYS Didler M0019	Pôle de Blologie Laboratoire de Diagnostic génétique / Nouvel Hôpital Civil	47,04	Génétique (option biologique)
DOLLÉ Pascal N0021	Pôle de Biologie Laboratoire de Biochimie et biologie moléculaire / NHC	44.D1	Biochimie et biologie moléculaire
Mme ENACHE irina W0224	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie
Mme FARRUGIA-JACAMON Audrey M0034	Pôle de Blologie Service de Médecine Légale. Consultation d'Urgences médico-judiciaires et Laboratoire de Toxicologie / Faculté et HC institut de Médecine	46.03	Médecine Légaie et droit de la santé
FILISETTI Denis Noozs	Pôle de Blologie Labo. de Parasitologie et de Mycologie médicale / PTM HUS et Faculté	45.02	Parasitologie et mycologie (option bio- logique)
FOUCHER Jack M0027	Institut de Physiologie / Faculté de Médecine Pôle de Psychiatrie et de santé mentale Service de Psychiatrie I / Hôpital Civil	44.02	Physiologie (option clinique)
GUERIN Eric	Pôle de Biologie Jahoratorie de Biologie Jahoratorie de Biologie	44.02	Rinindia nali itaina (antina hininaiaus)
GUFFROY Aurelien	Pôle de Spécialités médicales - Ophtalmologie / SMO	47.03	Immunologie (option clinique)
M0125	- Service de Médecine Interne et d'immunologie clinique / NHC - ENe d'immande	o===412820	
NOTE CANADAMANA I EL LAURA NOTES	 Service de Biophysique et de Médecine nucléaire / Hópital de Hautepierre 	43.D1	Biophysique et médecine nucléaire
Mme HEIMBURGER Céline M0120	Pôle d'imagerie Service de Biophysique et de Médecine nucléaire/Hôpital de Hautepierre	43.D1	Biophysique et médecihe nucléaire
HUBELE Fabrice M0033	Pôle d'imagerie Service de Biophysique et de Médecine nucléaire / HP et NHC	43.01	Biophysique et médache nucléaire
JEGU Jérémie M0101	Pôle de Santé publique et Santé au travail Service de Santé Publique / Hópital Civil	45.01	Epidémiologie, Economie de la santé e Prévention (option biologique)

NUM et Prenoms	5.	Services Hospitaliers ou institut / Localisation	SOUS-S	ection du consei niational des Universites
JEHL François M0035		Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : <u>Bactériologie</u> -virologie (biol glque)
KASTNER Philippe M0089		 Pôle de Bloiogie Laboratoire de diagnostic génétique / Nouvel Hôpital Civil 	47.D4	Génétique (option biologique)
Mme KEMMEL Véronique Moose		Pôle de Bloiogie Laboratoire de Blochimie et de Bloiogie moléculaire / HP	44.01	Biochimie et biologie moléculaire
KOCH Gullaume M0125		- Institut d'Anatomie Normale / Faculté de Médecine	42.01	Anatomie (Option clinique)
Mme LAMOUR Valérie M0040		Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.01	Biochimie et biologie moléculaire
Mme LANNES Béatrice M0341		Institut d'Histologie / Facutté de Médecine Pôle de Biclogie Service de Pathologie / Hôpital de Hautepierre	42.02	Histologie, Embryologie et Cytogénét (option biologique)
LAWAUX Thomas M0042		Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.03	Biologie cellulaire
LAWIGNE Thierry M0043	CS	Pôle de Santé Publique et Santé au travail Service d'Hygiène hospitailère et de médecine préventive / PTM et HUS Equipe opérationnelle d'Hygiène	46.01	Epidémiologie, économie de la santé prévention (option biologique)
Mme LEJAY Anne M0102		Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie (Biologique)
LENORMAND Cédric		Pôle de Chirurgie maxilio-factale, Morphologie et Dermatologie Service de Dermatologie / Hôpital Civil	50.03	Dermato-Vénéréologie
Mme LETSCHER-BRU Valèrie M0045		Pôle de Biologie Laboratoire de Parasitologie et de Mycologie médicale / PTM HUS Institut de Parasitologie / Paculté de Médecine	45.02	Parasitologie et mycologie (option biologique)
LHERMITTE Benoît		Pôle de Biologie Service de Pathologie / Hôpital de Hautepierre	42.03	Anatomie et cytologie pathologiques
Mme LONSDORFER-WOLF Evelyne M0090		Institut de Physiologie Appliquée - Faculté de Médecine Pôle de Pathologie thoracique Service de Physiologie et d'Explorations forctionnelles / NHC	44.02	Physiologie
LUTZ Jean-Christophe M0046		Pôle de Chinurgie plastique reconstructrice et esthétique, Chinurgie maxilio- faciale, Morphologie et Dermatologie Serv. de Chinurgie Maxilio-faciale, plastique reconstructrice et esthétique/HC	55.03	Chirurgle maxilio-faciale et stornatol
MEYER Alain M0093		Institut de Physiologie / Faculté de Médecine Pôle de Pathologie thoracique Service de Dissiologie et d'Explorations frontionnelles (NHC	44.02	Dhysiologie (online biologie et)
MIGUET Laurent		Pôle de Biologie Laborative d'Hématologie biologique / Höpital de Hautegierre et NHC	44.03	Biologie cellulaire (type mide : biologique)
Mme MOUTOU Céllne ép. GUNTHNER M0049	CS	Pôle de Biologie Laboratoire de Diagnostic préimplantatoire / CMCD Schiltigheim	54.05	Biologie et médecine du développer et de la reproduction (option biologiq
MULLER Jean		Pôle de Biologie Laboratoire de Diagnostic génétique / Nouvel Högital Civil	47.D4	Génétique (option biologique)
Mme NICOLAE Alina		Pôle de Biologie Service de Pathologie / Hôpital de Hautepierre	42.03	Anatomie et Cytologie Pathologiques (Ontion Clinique)
NOLL Eric		Pôle d'Anesthèsie Réanimation Chirurgicale SAMU-SMUR Service Anesthèsiologie et de Réanimation Chirurgicale - Hootal Hauteoleme	48.01	Anesthésiologie Réanimation ; Ma cine d'urgence
Mme NOURRY Nathalle		Pôle de Santé publique et Santé au travail Sende de Pathologie professionnelle et de Médecine du travail - HC	45.02	Médecine et Santé au Travali (option clinique)
PENCREAC'H Erwan		Pôle de Biologie Laboratoire de Biochimie et biologie moléculaire / Nouvel Hônital Chill	44.01	Biochimie et biologie moléculaire
PFAFF Alexander		Pôle de Biologie Laboratoire de Parasitologie et de Mynologie médicais / PTM HUS	45.02	Parasitologie et mycologie
Mme PITON Amélie		Pôle de Biologie Johnstinie de Disconstile nénétimus (NHC)	47.D4	Génétique (option biologique)
PREVOST Gilles		Pole de Blologie Johnstein de Bantisiere / PTU La Col Excelle	45.01	Option : Bactériologie-virologie (bio
Mme RADOSAVLJEVIC Mirjana		Pole de Biologie Laboratoire d'immunologie biologique / Nouvel Hôpital Civil	47.03	Immunologie (option biologique)
Mme REIX Nathalie Mooss		Pôle de Biologie Labo, d'Explorations fonctionnelles par les lisotopes / NHC institut de Physique biologique / Faculté de Méderine	43.01	Biophysique et médiecine nucléaire
RIEGEL Philippe		Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : Bactériologie-virologie (bio plaue)
ROGUE Patrick (cf. A2)		Pôle de Biologie Laboratoire de Biochimie et biologie moléculaire / NHC	44.01	Biochimie et biologie moléculaire (ontion biologique)
		Pôle de Biologie	47.01	Hemstologie : transfusion
Mme ROLLAND Delphine		- Laboratoire d'Hérratoiogie biologique (Hautenierre	41.01	(type mighte ' Hémotolonie)

NOM et Prénoms	C5*	Services Hospitaliers ou Institut / Localisation	Sousis	ection du Conseil National des Universités
Mme RUPPERT Elisabeth M0106	• Pối - Ser	e Tête et Cou vice de Neurologie - Unité de Pathologie du Sommeil 7 Hôpital Civil	49.01	Neurologie
Mme SABOU Alina M0096	• Pôl - Lab • Insi	e de Biologie xoratoire de Parasitologie et de Mycologie médicale / PTM HUS titut de Parasitologie / Faculté de Médecine	45,02	Parasitologie et mycologie (option biologique)
Mme SCHEIDECKER Sophie M0122	• Pô - Lat	e de Blologie xoratoire de Diagnostic génétique / Nouvel Höpital Civil	47.04	Génétique
Mme SCHNEIDER Anne M0107	• Pði - Se	e médico-chirurgical de Pédiatrie rvice de Chirurgie pédiatrique / Hôpital de Hautepierre	54.02	Chirurgie infantlie
SCHRAMM Frédéric MODES	• Pôl - Insi	e de Blologie titut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : <u>Bactériologie</u> -virologie (biolo- glque)
Mme SOLIS Morgane M0123	• Pôl • Lat	e de Biologie orratoire de Virologie / Hôpital de Hautepierre	45.01	Bactériologie-Virologie ; hyglène hospitalière Option : Bactériologie-Virologie
Mme SORDET Christelle M0089	• Pôl Dia - Ser	e de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, bétologie (MIRNED) vice de Rhumatologie / Hópital de Hauteplerre	50.01	Rhumatologie
TALHA Samy Mooro	• Pô - Ser	e de Pathologie thoracique Vice de Physiologie et explorations fonctionnelles / NHC	44.02	Physiologie (option clinique)
Mme TALON isabelle M0039	• Pô - Ser	e médico-chirurgical de Pédiatrie Vice de Chirurgie Infantile / Höpital Hautepierre	54.02	Chirurgie infantile
TELETIN Marius M0071	• P0 - Ser	e de Biologie vice de Biologie de la Reproduction / CMCO Schiltigheim	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
Mme URING-LAMBERT Béatrice M0073	• ins • Põi - Lat	ttut d'immunologie / HC e de Biologie xoratoire d'immunologie biologique / Nouvel Hôpital Civil	47.03	Immunologie (option biologique)
VALLAT Laurent M0074	• Pôl - Lat	e de Blologie xoratoire d'Hématologie Blologique - Hôpital de Hautepierre	47.01	Hematologie : Transfusion Option Hematologie Biologique
Mme VELAY-RUSCH Aurélie M0128	• Pól - Lat	e de Biologie xoratoire de Virologie / Hôpital Civil	45.01	Bactériziogie-Witologie : Hygiène Hospitalière Option Bactériologie- <u>Vitologie</u> biologique
Mme VILLARD Odile M0076	• Põl - Lat	e de Biologie xo. de Parasitologie et de Mycologie médicale / PTM HUS et Pac	45.02	Parasitologie et mycologie (option bio- logique)
Mme WOLF Michèle Mooto	• Chi - Din	argè de mission - Administration générale ection de la Qualité / Hôpital Civil	48.03	Option : Pharmacologie fondamentale
Mme ZALOSZYC Arlane ép. MARCANTONI M0116	• P0 - Ser	e Médico-Chirurgical de Pédiatrie vice de Pédiatrie I / Hópital de Hauteplerre	54.01	Pediatrie
ZOLL Joffrey M0077	• Pô - Ser	e de Pathologie thoracique vice de Physiologie et d'Explorations fonctionnelles / HC	44.02	Physiologie (option clinique)

B2 - PROFESSEURS DES UNIVERSITES	(monoappartenant)
---	-------------------

Pr BONAH Christian Pones

Département d'Histoire de la Médecine / Faculté de Médecine 72. Ep

Mme la Pre RASMUSSEN Anne P0186

Département d'Histoire de la Médecine / Faculté de Médecine 72

 72. Epistémologie - Histoire des sciences et des techniques
 72. Existémologie - Histoire des Sciences et des

72. Epistémologie - Histoire des Sciences et des techniques

B3 - MAITRES DE CONFERENCES DES UNIVERSITES (monoappartenant)

Mr KESSEL Nils	Département d'Histoire de la Médecine / Facuité de Médecine	72.	Epistémologie - Histoire des Sciences et des techniques
Mr LANDRE Llonel	ICUBE-UMR 7357 - Equipe IMIS / Faculté de Médecine	69.	Neurosciences
Mme THOMAS Marion	Département d'Histoire de la Médecine / Faculté de Médecine	72,	Epistémologie - Histoire des Sciences et des techniques
Mme SCARFONE Marianna Moos2	Département d'Histoire de la Médecine / Faculté de Médecine	72.	Epistémologie - Histoire des Sciences et des techniques

B4 - MAITRE DE CONFERENCE DES UNIVERSITES DE MEDECINE GENERALE

Mme CHAMBE Juliette Motos

Département de Médecine générale / Faculté de Médecine

53.03 Médecine générale (01.09.15)

C - ENSEIGNANTS ASSOCIES DE MEDECINE GENERALE C1 - PROFESSEURS ASSOCIES DES UNIVERSITES DE M. G. (mi-temps) MDD84

Pr Ass. GRIES Jean-Luc Pr GUILLOU Philippe Pr HILD Philippe

Médecine générale (01.09.2017) Médecine générale (01.11.2013 au 31.08.2016) Médecine générale (01.11.2013 au 31.08.2016)

C2 - MAITRE DE CONFERENCES DES UNIVERSITES DE MEDECINE GENERALE - TITULAIRE M0108

M0089 M0090

Dre CHAMBE Juliette Dr LORENZO Mathleu

53.03 Médecine générale (01.09.2015)

C3 - MAITRES DE CONFERENCES ASSOCIES DES UNIVERSITES DE M. G. (mi-temps)

Dre BERTHOU anne M0109 Dr BREITWILLER-DUMAS Claire Dr ROUGERIE Fablen Dr SANSELME Anne-Elisabeth M0097

Médecine générale (01.09.2015 au 31.08.2018) Médecine générale (01.09.2016 au 31.08.2019) Médecine générale (01.09.2014 au 31.08.2017) Médecine générale

D - ENSEIGNANTS DE LANGUES ETRANGERES D1 - PROFESSEUR AGREGE, PRAG et PRCE DE LANGUES

Mme ACKER-KESSLER Pla M0085 MOOBE

MODES

MODRE

Mme CANDAS Peggy Mme SIEBENBOUR Marle-Noëlle M0087 Mme JUNGER Nicole Mme MARTEN Susanne

Professeure certifiée d'Anglais (depuis 01.09.03) Professeure agrégée d'Anglais (depuis le 01.09.99) Professeure certifiée d'Aliemand (depuis 01.09.11) Professeure certifiée d'Anglais (depuis 01.09.09) Professeure certifiée d'Aliemand (depuis 01.09.14)

E - PRATICIENS HOSPITALIERS - CHEFS DE SERVICE NON UNIVERSITAIRES

Dr ASTRUC Dominique	NRP0 CS	 Pôle médico-chirurgical de Pédiatrie Serv. de Néonatalogie et de Réanimation néonatale (Pédiatrie 2) / Hôpital de Hautepierre
Dr ASTRUC Dominique (par intérim)	NRP0 CS	 Pôle médico-chirurgical de Pédiatrie Service de Réanimation pédiatrique spécialisée et de surveillance continue / Hôpital de Hautepierre
Dr CALVEL Laurent	NRP0 CS	Pôle Spédalités médicales - Ophtaimologie / SMO Service de Soins Pallatifs / NHC et Höpital de Hautepierre
Dr DELPLANCQ Hervé	NRP0 CS	- SAMU-SMUR
Dr GARBIN Olivier	CS	- Service de Gynécologie-Obstétrique / CMCO Schiltigheim
Dre GAUGLER Elise	NRP0 CS	Põle Spédalítés médicales - Ophtalmologie / SMO UCSA - Centre d'addictologie / Nouvel Höpital CIVII
Dre GERARD Bénédicte	NRP0 CS	Pôle de Blologie Département de génétique / Nouvel Höpital Civil
Mme GOURIEUX Bénédicte	RP0 CS	Pôlé de Pharmacle-pharmacologie Service de Pharmacle-Stérilisation / Nouvel Höpital Civil
Dr KARCHER Patrick	NRP0 CS	Pôle de Gérlatrie Service de Soins de suite de Longue Durée et d'hébergement gérlatrique / EHPAD / Hôpital de la Robertsau
Pr LESSINGER Jean-Marc	NRP0 CS	Pôte de Blologie Laboratoire de Blologie et blologie moléculaire / Nouvel Hôpital Civil + Hautepierre
Mme Dre LICHTBLAU Isabelle	NRpő Resp	Pôle de Blologie Laboratoire de blologie de la reproduction / CMCO de Schiltigheim
Mme Dre MARTIN-HUNYADI Catherine	NRP0 CS	POle de Gériatrie Secleur Evaluation / Höpital de la Robertsau
Dr NISAND Gabriel	RP0 CS	Pôle de Santé Publique et Santé au travail Service de Santé Publique - DIM / Hôptal Civil
Dr REY David	NRP0 CS	 Pôle Spécialités médicales - Ophtalmologie / SMO «Le trait d'union» - Centre de soins de l'infection par le VIH / Nouvel Hôpital CMI
Dr TCHOMAKOV Dimitar	NRP6 CS	Pôte Médico-chinurgical de Pédiatrie Service des Urgences Médico-Chinurgicales pédiatriques - HP
Mme Dre TEBACHER-ALT Martine	NRP0 NCS Resp	Pôle d'Activité médico-chirurgicale Cardio-vasculaire Service de Maladies vasculaires et Hypertension Centre de pharmacovigilance / Nouvel Hôpital Civil
Mme Dre TOURNOUD Christine	NRP0 CS	Pôle Urgences - Réanimations médicales / Centre antipolson Centre Antipolson-Toxicov/gilance / Nouvel Hôpital Civil

F1 - PROFESSEURS ÉMÉRITES

- de droit et à vie (membre de l'institut)
 CHAMBON Pierre (Biochimie et biologie moléculaire)
 MANDEL Jean-Louis (Génétique et biologie moléculaire et cellulaire)
- o pour trols ans (1er septembre 2017 au 31 août 2020) BELLOCC Jean-Pierre (Anatomie Cytologie pathologique) CHRISTMANN Daniel (Maladies infectieuses et tropicales) MULLER Andre (Thérapeulique)
- pour trols ans (fer septembre 2018 au 31 août 2021) Mme DANION-GRILLIAT Anne (Pédopsychiatrie, addictologie)
- o pour trois ans (1er avril 2010 au 31 mars 2022) Mme STEIB Annick (Anesthèsie, Réanimation chirurgicale)
- o pour trois ans (1er septembre 2019 au 31 août 2022) DUFOUR Patrick (Cancérologie clinique) NISAND Israël (Gynécologie-obstétrique) PINGET Michel (Endocriniologie, diabéte et maladies métaboliques) Mme QUOIX Elisabeth (Pneumologie)

F2 - PROFESSEUR des UNIVERSITES ASSOCIE (mi-temps)

M. SOLER Luc CNU-31 IRCAD (D1.09.2009 - 30.09.2012 / renouvelé 01.10.2012-30.09.2015-30.09.2021)

F3 - PROFESSEURS CONVENTIONNÉS* DE L'UNIVERSITE

Dr BRAJN Jean-Jacques Pr CHARRON Dominique Mme Dre GRAS-VINCENDON Agnes Dr JENNY Jean-Yves Mme KIEFFER Brigitte Dr KINTZ Pascal Dr LANG Watter G. Dr LANG Jean-Philippe Dr LECOCQ Jehan Dr REIS Jacques Pr REN Guo Sheng Dr RCCO Jean-Baptiste

(* 4 années au maximum)

ORL (2012-2013 / 2013-2014 / 2014-2015 / 2015-2016) Université Paris Diderot (2016-2017 / 2017-2018) (Shaanxi/Chine) (2016-2017 / 2017-2012 / 2013-2014 / 2014-2015) Pédopsychiatrie (2010-2011 / 2017-2012 / 2013-2014 / 2014-2015) Chirurgie orthopédique (2014-2015 / 2015-2016 / 2016-2017 / 2017-2018) IGBMC (2014-2015 / 2015-2016 / 2016-2017) Médecine Légale (2016-2017 / 2017-2018) Immunologie (2013-2014 à 2015-2016 / 2016-2017) Psychiatrie (2015-2016 / 2016-2017 / 2017-2018) IURC - Olemenceau (2016-2017 / 2017-2018) IURC - Olemenceau (2016-2017 / 2017-2018) Neurologie (2017-2018) (Chongqing / Chine) / Oncologie (2014-2015 à 2016-2017) CHU Potters (2017-2018)

G1 - PROFESSEURS HONORAIRES

ADLOFF Michel (Chirurgie digestive) / 01.09.94 BABIN Serge (Orthopédie et Traumatologie) / 01.09.01 BAREISS Pierre (Cardiologie) / 01.09.12 BATZENSCHLAGER André (Anatomie Pathologique) / 01.10.95 BAUMANN René (Hépato-gastro-entérologie) / 01.05.10 BERGERAT Jean-Pierre (Cancérologie) / 01.01.16 BERTHEL Marc (Gerlatrie) / 01.09.18 BIENTZ Michel (Hyglène Hospitallère) / 01.09.04 BLICKLE Jean-Frédéric (Médecine Interne) / 15.10.17 BLOCH Plerre (Radiologie) / 01.10.95 BCUCH Plete (Radiologie) / 01.05.90 BOURUAT Plete (Radiologie) / 01.09.03 BOUSQUET Pasca (Pharmacologie) / 01.09.19 BRECHENMACHER Claude (Cardiologie) / 01.07.99 BRETTES Jean-Philippe (Gynécologie-Obstétrique) / 01.09.10 BROGARD Jean-Marie (Médecine Interne) / 01.09.02 BURGHARD Guy (Pneumologie) / 01.10.86 BURSZTEJN Claude (Pédopsychlatrie) / 01.09.18 CANTINEAU Alain (Medecine et Santé au travall) / 01.09.15 CAZENAVE Jean-Pierre (Hématologie) / 01.09.15 CHAMPY Maxime (Stomatologie) / 01.10.95 CHAUVIN Michel (Cardiologue) / 01.09.18 CINQUALBRE Jacques (Chirurgie générale) / 01.10.12 CLAVERT Jean-Michel (Chirurgie Infantile) / 31.10.16 COLLARD Maurice (Neurologie) / 01.09.00 CONRAUX Claude (Oto-Rhino-Laryngologie) / 01.09.98 CONSTANTINESCO André (Biophysique et médecine nucléaire) /01.09.11 DIETEMANN Jean-Louis (Radiologie) / 01.09.17 DOFFOEL Michel (Gastroentérologie) / 01.09.17 DUCLOS Bernard (Hépato-Gastro-Hépatologie) / 01.09.19 DUPEYRON Jean-Pierre (Anesthésiologie-Réa.Chir.) / 01.09.13 EISENMANN Bernard (Chirurgle cardio-vasculaire) / 01.04.10 FABRE Michel (Cytologie et histologie) / 01.09.02 FISCHBACH Michel (Pédiatrie / 01.10.16) FLAMENT Jacques (Ophtalmologie) / 01.09.09 GAY Gérard (Hépato-gastro-entérologie) / 01.09.13 GERLINGER Pierre (Biol. de la Reproduction) / 01.09.04 GRENIER Jacques (Chirurgle digestive) / 01.09.97 GROSSHANS Edouard (Dermatologie) / 01.09.03 GRUCKER Daniel (Biophysique) / 01.09.18 GRUDKER Dahlel (Bipplysique) / 01.09.18 GUT Jaan-Pierre (Mrologie) / 01.09.14 HASSELMANN Michel (Réanimation médicale) / 01.09.18 HAUPTMANN Georges (Hématologie biologique) / 01.09.05 HEID Ernest (Dermatologie) / 01.09.04 IMES Jean-Louis (Pharmacologie) / 01.09.09 IMLER Marc (Médocine Interne) / 01.09.09 IMLER Marc (Médocine Interne) / 01.09.09 IMLER Marc (Médocine Interne) / 01.09.09 JACQMIN Didler (Urologie) / 09.08.17 JAECK Daniel (Chirurgie générale) / D1.09.11 JAEGER Jean-Henri (Chirurgie orthopédique) /01.09.11 JESEL Michel (Médecine physique et réadaptation) / 01.09.04 KAHN Jean-Luc (Anatomie) / 01.09.18 KEHR Pierre (Chirurgle orthopédique) / 01.09.06 KEMPF Jules (Biologie cellulaire) / 01.10.95 KREMER Michel (Parasitologie) / 01.05.98 KRETZ Jean-Georges (Chirurgie vasculaire) / 01.09.18 KRIEGER Jean (Neurologie) / 01.01.07 KUNTZ Jean-Louis (Rhumatologie) / 01.09.08

KUNTZMANN Francis (Gériatrie) / 01.09.07 KURTZ Daniel (Neurologie) / 01.09.98 LANG Gabriel (Orthopèdie et traumatologie) / 01.10.98 LANG Jean-Marie (Hématologie clinique) / 01.09.11 LANGER Bruno (Gynécologie) / 01.11.19 LEVY Jean-Marc (Rédiatrie) / 01 10 95 LONSDORFER Jean (Physiologie) / 01.09.10 LUTZ Patrick (Pédiatrie) / 01.09.16 MAILLOT Claude (Anatomie normale) / 01.09.03 MAITRE Michel (Biochimie et biol. moléculaire) / 01.09.13 MANDEL Jean-Louis (Génétique) / 01.09.16 MANGIN Patrice (Médecine Légale) / 01.12.14 MANTZ Jean-Marie (Réanimation médicale) / 01.10.94 MARESCAUX Christian (Neurologie) / 01.09.19 MARESCAUX Jacques (Chirurgle digestive) / 01.09.16 MARK Jean-Joseph (Blochimie et blologie cellulaire) / 01.09.99 Melsoen Jean (Pediatrie) / 01.09.07 MESSER Jean (Pediatrie) / 01.09.07 MEYER Christian (Chirurgie générale) / 01.09.13 MEYER Pierre (Biostatistiques, Informatique méd.) / 01.09.10 MINCK Raymond (Bactériologie) / 01.10.93 MONTEIL Henri (Bactériologie) / 01.09.11 MORAND Georges (Chirurgle thoracique) / 01.09.09 MOSSARD Jean-Marie (Cardiologie) / 01.09.09 OUDET Plene (Blologie cellulaire) / 01.09.13 CODER Plane (biologie bardiate) / 013915 PASQUALI Jean-Louis (Immunologie clinique) / 01.09.15 PATRIS Michel (Psychiatrie / 01.09.15 Mme PAULI Gabrielle (Pneumologie) / 01.09.11 POTTECHER Thierry (Anesthésie-Réanimation) / 01.09.18 REYS Philippe (Chirurgie générale) / 01.09.98 RITTER Jean (Gynécologie-Obstétrique) / 01.09.02 RUMPLER Yves (Biol. développement) / 01.09.10 SANDNER Guy (Physiologie) / 01.09.14 SAUVAGE Paul (Chirurgie Infantile) / 01.09.04 SCHAFF Georges (Physiologie) / 01.10.95 SCHLAEDER Guy (Gynécologie-Obstétrique) / 01.09.01 SCHLIENGER Jean-Louis (Médecine Interne) / 01.08.11 SCHRAUB Simon (Radiothérapie) / 01.09.12 SCHWARTZ Jean (Pharmacologie) / 01.10.87 SICK Henri (Anatomie Normale) / 01.09.06 STIERLE Jean-Luc (ORL) / 01.09.10 STOLL Claude (Génétique) / 01.09.09 STOLL-KELLER Françoise (Mrologie) / 01.09.15 STORCK Daniel (Médecine Interne) / 01.09.03 TEMPE Jean-Daniel (Réanimation médicale) / 01.09.06 TONGIO Jean (Radiologie) / 01.09.02 TREISSER Alain (Gynécologie-Obstětrique / 24.03.08 VAUTRAVERS Philippe (Médecine physique et réadaptation) / 01.09.16 VETTER Jean-Marie (Anatomie pathologique) / 01.09.13 VINCENDON Guy (Blochimie) / 01.09.05 WALTER Paul (Anatomie Pathologique) / 01.09.09 WEITZENBLUM Emmanuel (Pneumologie) /01.09.11 WiHUM Jean-Marie (Chirungle thoradque) / 01.09.13 WILK Astrid (Chirungle maxilo-taciale) / 01.09.15 WILLARD Daniel (Pédiatrie) / 01.09.96 WOLFRAM-GABEL Renée (Anatomie) / 01.09.96

Légende des adresses :

FAC : Faculté de Médecine : 4, rue Kirschleger - F - 67085 Strasbourg Cedex - Tél. : 03.68.85.35.20 - Fax : 03.68.85.35.18 ou 03.68.85.34.67 HOPITAUX UNIVERSITAIRES DE STRASBOURG (HUS)

- NHC: Nouvel Hópital Civil: 1, place de l'Hópital BP 426 F 67091 Strasbourg Cedex Tél.: 03.69.55.07.08 HC: Hópital Civil: 1, Place de l'Hópital BP. 426 F 67091 Strasbourg Cedex Tél.: 03.88.11.67.68 HP: Hópital de Hautepierre : Avenue Molère B, P. 49 F 67096 Strasbourg Cedex Tél.: 03.88.12.60.00 Hópital de La Robertsau : 83, rue Himmertoh F 67015 Strasbourg Cedex Tél.: 03.88.11.55.11
- Hópixal de l'Elsau : 15, rue Cranach 67200 Strasbourg Tél. : 03.88 11.67.68

CMCO - Centre Médioo-Chinurgical et Obstétrical : 19, rue Louis Pasteur - BP 120 - Schlittigheim - F - 67303 Strasbourg Cedex - Tél. : 03.86.62.83.00 C.C.O.M. - Centre de Chinurgie Orthopédique et de la Main : 10, avenue Baumann - B.P. 96 - F - 67403 likitrch Graffenstaden Cedex - Tél. : 03.88.55.20.00

E.F.S. : Etablissement Français du Sang - Alsace : 10, rue Spleimann - BP N*36 - 67065 Strasbourg Cedex - Tél. : 03.88.21.25.25 Centre Régional de Lutte contre le cancer "Paul Strauss" - 3, rue de la Porte de l'Hópital - F-67085 Strasbourg Cedex - Tél. : 03.88.25.24.24

IURC - Institut Universitaire de Réadaptation Clemenceau - CHU de Strasbourg et UGECAM (Union pour la Gestion des Etablissements des Calsses d'Assurance Maladie) -45 boulevard Clemenceau - 67082 Strasbourg Cedex

RESPONSABLE DE LA BIBLIOTHÈQUE DE MÉDECINE ET ODONTOLOGIE ET DU DÉPARTEMENT SCIENCES, TECHNIQUES ET SANTÉ DU SERVICE COMMUN DE DOCUMENTATION DE L'UNIVERSITÉ DE STRASBOURG

Monsieur Olivier DIVE, Conservateur

LA FACULTÉ A ARRETÉ QUE LES OPINIONS ÉMISES DANS LES DISSERTATIONS QUI LUI SONT PRÉSENTÉES DOIVENT ETRE CONSIDERÉES COMME PROPRES A LEURS AUTEURS ET QU'ELLE N'ENTEND NI LES APPROUVER, NI LES IMPROUVER

SERMENT D'HIPPOCRATE

En présence des maîtres de cette école, de mes chers condisciples, je promets et je jure au nom de l'Etre suprême d'être fidèle aux lois de l'honneur et de la probité dans l'exercice de la médecine. Je donnerai mes soins gratuits à l'indigent et n'exigerai jamais un salaire au-dessus de mon travail.

Admis à l'intérieur des maisons, mes yeux ne verront pas ce qui s'y passe.

Ma langue taira les secrets qui me seront confiés et mon état ne servira pas à corrompre les mœurs ni à favoriser les crimes.

Respectueux et reconnaissant envers mes maîtres je rendrai à leurs enfants l'instruction que j'ai reçue de leurs pères.

Que les hommes m'accordent leur estime si je suis resté fidèle à mes promesses. Que je sois couvert d'opprobre et méprisé de mes confrères si j'y manque.

Remerciements

A Madame la Professeur SPEEG-SCHATZ,

Vous m'avez fait l'honneur de présider ce jury et je vous remercie de l'estime que vous portez à ce travail. Soyez assurée de mon respect pour vos compétences médicales ainsi que pour vos qualités humaines. Que ce travail soit l'expression de ma profonde gratitude.

A Monsieur le Professeur GAUCHER,

Vous m'avez fait l'honneur de diriger ce travail de thèse et je vous en remercie. Vous m'avez proposé ce sujet et guidé tout au long de son élaboration avec disponibilité et compétence. La rigueur de votre geste opératoire et l'étendue de vos connaissances resteront des exemples. Veuillez trouver ici le témoignage de mon profond respect.

A Monsieur le Professeur BOURCIER,

Vous m'avez fait l'honneur de juger ce travail et je vous remercie de l'estime que vous portez à ce travail. Vous m'avez fait partager vos connaissances médicales et chirurgicales avec enthousiasme. Que ce travail soit l'expression de mon profond respect.

A Monsieur le Professeur SAUER,

Vous m'avez fait l'honneur de juger ce travail et je vous en remercie. Vous m'avez enseigné la rigueur du raisonnement médical et vous m'avez fait partager vos qualités humaines. Veuillez trouver ici le témoignage de mon profond respect.

A Monsieur le Docteur ROUX,

Vous m'avez fait l'honneur de juger ce travail et je vous en remercie. Vous m'avez encadré avec disponibilité pour ce travail de thèse et vous m'avez initié à des techniques de recherche qui m'auront été utiles, tant pour ce travail de thèse que pour mener à bien mon Master 2. Veuillez trouver ici le témoignage de ma profonde gratitude.

A Monsieur le Docteur BALLONZOLI,

Vous m'avez fait partager votre sens clinique et vos qualités humaines. Veuillez trouver ici le témoignage de mon profond respect.

Aux Praticiens Hospitaliers, Aux Chefs de Clinique – Assistants des Hôpitaux qui ont contribué à notre formation médicale et chirurgicale.

A mes collègues internes

A Candice

A mes parents Régine et Bertrand

A ma sœur Aurélie

A mes grands-parents Lucie, Lina, Charles et Edouard

A mes amis

Table des matières

I.	Introduction	23
	A. La rétinopathie diabétique	
	1. Définition du diabète	
	2. Epidémiologie du diabète	
	3. Epidémiologie de la rétinopathie diabétique	
	4. Physiopathologie de la rétinopathie diabétique	
	a. Les AGE products	
	b. La protéine kinase C	
	c. La voie des polyols	
	d. La voie de la poly(ADP-ribose) polymérase	
	e. La voie des hexosamines	
	f. Le système rénine-angiotensine-aldostérone (SRAA)	
	g. Hormones	
	h. Neurotrophines	
	i. Apoptose	
	j. Excitotoxicité glutamatergique	
	k. Activation gliale	
	1. Stress oxydatif	
	m. Inflammation	
	B. La taurine	
	1. Propriétés physico-chimiques	
	2. Métabolisme normal de la taurine	
	3. Fonctions de la taurine	40
	a. Régulation osmotique	40
	b. Propriétés antioxydantes	41
	c. Régulation calcique	42
	d. Neurotransmission	43
	4. Pathologies rétiniennes liées à un déficit en taurine	43
	a. Photorécepteurs et déficit en taurine	43
	b. Cellules ganglionnaires et déficit en taurine	45
	C. Diabète et taurine	
	1. Effets du diabète sur le métabolisme de la taurine	
	2. Effets de la supplémentation en taurine sur le diabète	47
	3. Effets de la supplémentation en taurine sur la RD	48
	D. Objectif	50

II. Matériels et méthodes	51
A. Induction d'un diabète expérimental de type 1	
B. Electrorétinogrammes	
C. Rétinophotographies et angiographies à la fluorescéine	
D. Tomographies par cohérence optique	
E. Dosages rétiniens de taurine, de glutamate et de GABA	
F. Dosages plasmatiques de taurine	
G. Analyses statistiques	

III. Résultats
A. Suivi de la glycémie et du poids
B. La supplémentation en taurine augmente la concentration plasmatique et rétinienne de taurine chez les souris diabétiques
C. La supplémentation en taurine limite l'amincissement rétinien induit par le diabète chez la souris
D. Electrorétinogrammes
E. Rétinophotos
F. Angiographies à la fluorescéine 70
G. Taux rétiniens de glutamate et de GABA72

IV. Discussion	73
A. Profil glycémique	73
B. Concentrations plasmatiques et rétiniennes de taurine	74
C. Analyse morphologique de la rétine	75
1. Tomographies par cohérence optique	75
a. Comparaison aux études histologiques	75
b. Comparaison aux études utilisant l'OCT	76
2. Angiographies à la fluorescéine	79
D. Analyse fonctionnelle de la rétine	79
E. Taux rétiniens de glutamate et de GABA	81
V. Conclusion	83
Résumé	85
Bibliographie	86

Table des illustrations

Figure	1 : La transformation du glucose en sorbitol par l'aldose réductase	27
Figure	2 : Comparaison des structures chimiques des α -acides aminés et de la taurine	36
Figure	3 : Structure du zwitterion de taurine à pH physiologique	37
Figure	4 : Voies de synthèse de la taurine	39
Figure	5 : Système d'enregistrement des électrorétinogrammes chez la souris	52
Figure	6 : Système d'acquisition des OCT chez la souris	54
Figure	7 : Segmentation automatique des couches rétiniennes sur un B-scan d'OCT	54
Figure	8 : Correspondance entre les couches rétiniennes observées en histologie et en OCT-SD chez	5
	la souris C57Bl/6J	55
Figure	9 : Glycémies moyennes à jeun	58
Figure	10 : Poids moyens	59
Figure	11 : Concentrations plasmatiques de taurine et taux rétiniens de taurine	50
Figure	12 : Corrélation entre la concentration plasmatique de taurine et le taux rétinien de taurine 6	51
Figure	13 : Epaisseur rétinienne totale, épaisseur du complexe ganglionnaire, de la rétine interne, du	l
	complexe OPL-ONL et du complexe IS-OS-RPE6	53
Figure	14 : Corrélation entre le taux rétinien de taurine et l'épaisseur rétinienne totale, l'épaisseur de	u
	complexe ganglionnaire, de la rétine interne, du complexe OPL-ONL et du complexe IS	-
	OS-RPE	54
Figure	15 : Epaisseur des couches RNFL/GCL, IPL, INL, OPL, ONL, IS, OS et RPE	6
Figure	16 : Corrélation entre le taux rétinien de taurine et l'épaisseur de l'IPL et de l'ONL	57
Figure	17 : ERG photopiques et ERG flickers	58
Figure	18 : Photographies de la rétine et angiographies à la fluorescéine	71
Figure	19 : Taux rétiniens de glutamate et de GABA	72

Tableau 1 : Amplitudes moyennes et temps de latence moyens des ondes a et b enregistrées au cours	
des ERG photopiques et des ERG flickers	Э

Abréviations

ADN	Acide déoxyribonucléique
ADP	Adénosine diphosphate
AGE	Produits de glycation avancée
ARN	Acide ribonucléique
ARNt	Acide ribonucléique de transfert
АТ	Récepteur de l'angiotensine
АТР	Adénosine triphosphate
BDNF	Brain derived neurotrophic factor
BHR	Barrière hémato-rétinienne
CGR	Cellules ganglionnaires rétiniennes
CPMG	Carr-Purcell-Meiboom-Gill
CTNE	Ciliary neurotrophic factor
DAG	Diacylalycérol
ENING	Etude Nationale Nutrition Santá
EDD	Enthélium nicmontaire rétinion
EPK	Electrorétine errorme
EKU ET 1	Electroretinogramme
GABA	Acide gamma-aminobutyrique
GCL	Couche des cellules ganglionnaires retiniennes
GDNF	Glial derived neurotrophic factor
GES	Guandoéthane sulfonate
GFAP	Glial fibrillary acidic protein
GH	Hormone de croissance
GLAST	Glutamate-aspartate transporter
GSH	Glutathion réduit
HGPO	Hyperglycémie provoquée par voie orale
HOCI	Acide hydrochlorique
HRMAS	High Resolution Magic Angle Spinning
HSQC	Heteronuclear single quantum coherence
ICAM-1	Intercellular adhesion molecule 1
IGF-1	Insulin growth factor-1
IL	Interleukine
INL	Couche nucléaire interne
INVS	Institut National de Veille Sanitaire
IPL	Couche plexiforme interne
IS	Article interne des photorécepteurs
ISCEV	International Society for Clinical Electrophysiology of Vision
MCP-1	Monocyte chemoattractant protein 1
MPO	Mvéloperoxvdase
MPTP	Mitochondrial permeability transition pore
NAD	Nicotinamide adénine dinucléotide
NADPH	Nicotinamide adénine dinucléotide phosphate
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NGF	Nerve growth factor
NMDA	Acide N-méthyl-D-aspartique
NO	Oxyde d'azote
NOX	NADPH-oxydase
OCT	Tomographie par cohérence optique
OLM	Membrane limitante externe
OMS	Organisation Mondiale de la Santá
ONI	Couche pucléaire externe
OPI	Couche pleviforme externe
OF	Article externe des photoréconteurs
05	Arucie externe des photorecepteurs

PARP	Poly(ADP-ribose) polymérase
PAT-1	Proton-coupled amino-acid transporter-1
PDGF	Platelet-derived growth factor
PI3K	Phosphatidylinositol-3-kinase
PITC	Phénylisothiocyanate
РКС	Protéine kinase C
PTH	Phénylthiohydantoïne
RAGE	Récepteur des AGE products
RD	Rétinopathie diabétique
RDP	Rétinopathie diabétique proliférante
RMN	Résonnance magnétique nucléaire
RNFL	Couches des fibres optiques rétiniennes
RNS	Dérivés réactifs de l'azote
ROS	Dérivés réactifs de l'oxygène
RPE	Epithélium pigmentaire rétinien
SRAA	Système rénine-angiotensine-aldostérone
STZ	Streptozotocine
Tau-T	Transporteur de la taurine
TNF	Tumor necrosis factor
TOCSY	Total correlation spectroscopy
UDP	Uridine diphosphate
VEGF	Facteur de croissance endothélial vasculaire
XO	Xanthine oxydase

I. Introduction

A. La rétinopathie diabétique

1. Définition du diabète

Le diabète est une maladie chronique caractérisée par un trouble du métabolisme des glucides. Chez l'Homme, le diabète est défini par une glycémie à jeun $\ge 1,26$ g/L à 2 reprises, ou par une glycémie ≥ 2 g/L à n'importe quel moment de la journée associée à des symptômes d'hyperglycémie (polyurie, polydipsie, amaigrissement), ou par une glycémie $\ge 2g/L$ deux heures après un test d'hyperglycémie provoquée par voie orale (HGPO) avec ingestion de 75g de glucose.

2. Epidémiologie du diabète

Selon la dernière estimation réalisée par l'OMS en 2016, 422 millions d'individus sont atteints de diabète à l'échelle mondiale¹. En 1980, le nombre de sujets diabétiques n'était que de 180 millions d'individus. La prévalence du diabète a ainsi quasiment doublé depuis 1980, passant de 4,7% à 8% dans la population mondiale adulte. Cette hausse est le reflet d'une augmentation des facteurs de risque de diabète comme le surpoids et l'obésité.

En France, la prévalence du diabète a été estimée à 4,6% en 2012 et à 5% en 2016 par l'Institut National de Veille Sanitaire (INVS), ce qui correspond à 3,3 millions de patients diabétiques². La fréquence du diabète augmente avec l'âge. Un pic de prévalence est observé entre 70 et 85 ans chez les hommes et entre 75 et 85 ans chez les femmes². Un homme sur cinq âgé de 70 à 85 ans et une femme sur sept âgée de 75 à 85 ans sont traités pharmacologiquement pour un diabète².

A l'estimation de la prévalence du diabète traité pharmacologiquement, il faut ajouter les prévalences du diabète diagnostiqué non traité pharmacologiquement et du diabète non diagnostiqué. L'Etude Nationale Nutrition Santé (ENNS) a estimé que 0,6 % des personnes âgées de 18 à 74 ans vivant en France métropolitaine en 2006-2007 n'étaient pas traités pour

leur diabète alors que celui-ci était diagnostiqué³. Cette étude a également permis d'estimer que la fréquence du diabète non diagnostiqué s'élevait à 1 % des personnes âgées de 18 à 74 ans³. Cette valeur implique qu'un peu moins de 20 % des personnes diabétiques ne seraient pas diagnostiquées au sein de la classe d'âge 18-74 ans³. Cependant, la proportion de diabétiques non diagnostiqués diminue significativement avec l'âge, passant de 30 % chez les 30-54 ans à 12 % chez les 55-74 ans³.

3. Epidémiologie de la rétinopathie diabétique

La rétinopathie diabétique (RD) est l'atteinte microvasculaire liée au diabète la plus fréquente⁴. Une méta-analyse portant sur 35 études de prévalence menées de 1980 à 2008 a estimé la prévalence de la rétinopathie diabétique à 35,4%, et celle de la rétinopathie diabétique proliférante (RDP) à 7,5% des sujets diabétiques au niveau mondial⁵. La prévalence de l'œdème maculaire diabétique est évaluée entre 1,4% et 7,9%⁶. La cécité légale induite par le diabète, définie par une acuité visuelle du meilleur œil inférieure à 1/20, touche 850 000 individus à travers le monde⁷. Une baisse de vision modérée à sévère, définie par une acuité visuelle entre 1/20 et 3/10, affecte 3,6 millions de personnes diabétiques⁷. Dans les pays développés, la rétinopathie diabétique arrive, en termes de fréquence, au cinquième rang des causes de cécité ou de baisse visuelle modérée à sévère, après les erreurs réfractives non corrigées, la cataracte, les dégénérescences maculaires et le glaucome⁸. Dans les pays en voie de développement, la RD arrive au sixième rang des causes de cécité et de déficiences visuelles modérées à sévères, après les causes citées précédemment, auxquelles il faut ajouter le trachome⁹.

4. Physiopathologie de la rétinopathie diabétique

La rétinopathie diabétique est une pathologie complexe qui touche les neurones rétiniens, les cellules gliales, l'épithélium pigmentaire rétinien et l'endothélium vasculaire. La RD est d'origine multifactorielle et implique de nombreux mécanismes lésionnels. L'hyperglycémie

stimule les voies de la glycolyse et active ainsi la protéine kinase C. Elle induit l'activation de plusieurs voies de transduction intracellulaire : la voie des polyols, de la poly(ADP-ribose) polymérase (PARP), des hexosamines¹⁰. L'hyperglycémie chronique aboutit également à la formation de produits de glycation avancée (Advanced Glycation End Products ou AGE products)¹⁰. L'activation de ces différentes voies métaboliques conduit à un stress oxydatif rétinien, à une inflammation rétinienne, à l'apoptose des cellules rétiniennes et à la stimulation de l'angiogenèse.

a. Les AGE products

L'hyperglycémie chronique provoque une réaction chimique non enzymatique (réaction de Maillard) qui conduit à une glycation des résidus amines des protéines, des lipides et des acides nucléiques. Les molécules glyquées polymérisent sous forme de produits de glycation avancée ou AGE products. Les AGE products sont produits et s'accumulent dans le sérum, dans le vitré et dans la rétine des sujets diabétiques¹¹. Le récepteur des AGE products (RAGE) est exprimé dans la rétine à la surface des cellules neuronales, gliales et endothéliales¹². L'accumulation des AGE products dans les péricytes rétiniens, qui assurent l'homéostasie microvasculaire, provoque une perte de cellules endothéliales et une rupture de la barrière hémato-rétinienne interne¹¹. L'activation de RAGE par les AGE products induit une inflammation rétinienne en favorisant l'expression de cytokines inflammatoires comme le VEGF et MCP-1 (Monocyte Chemoattractant Protein-1), l'expression des molécules d'adhésion ICAM-1 (Intercellular adhesion molecule 1) et l'activation de la voie de transduction intracellulaire pro-inflammatoire NF-KB^{13,14}. L'axe AGE-RAGE stimule l'expression d'enzymes impliquées dans le stress oxydatif comme la NADPH-oxydase et conduit à la production de dérivés réactifs de l'oxygène (ROS) et à l'apoptose des péricytes¹⁴. L'activation de RAGE induit l'expression de la NO synthase, une enzyme impliquée dans le stress oxydatif dérivé de l'oxyde d'azote (NO), et aboutit à l'apoptose des neurones rétiniens¹².

b. La protéine kinase C

L'hyperglycémie chronique entraîne une élévation des métabolites dérivés de la glycolyse. L'un de ces produits de la glycolyse, le diacylglycérol (DAG), s'accumule dans la rétine ainsi que dans les autres organes cibles du diabète, comme le rein ou le cœur^{15,16}. Le DAG active plusieurs isoformes de la protéine kinase C (PKC) dans la rétine (PKC- α , - β , - δ , - ε). La PKC est une sérine/thréonine kinase qui régule de multiples voies de signalisation intracellulaire¹⁶. L'activation de la PKC dans les cellules endothéliales rétiniennes induit l'expression de VEGF et la production de NO, qui contribuent tous deux à la rupture de la barrière hémato-rétinienne¹⁷. Dans les péricytes, la PKC déclenche une production de ROS, active la voie de transduction pro-inflammatoire NF- κ B, et inhibe la synthèse du facteur anti-apoptotique PDGF¹⁷. Geraldes *et al.* ont montré que l'activation de la PKC conduit à l'apoptose des péricytes et à la formation de capillaires rétiniens acellulaires¹⁸. La PKC peut également entraîner un épaississement de la membrane basale vasculaire et favorise l'adhésion leucocytaire au niveau de l'endothélium vasculaire¹⁰.

c. La voie des polyols

En cas de diabète, une partie du glucose en excès est métabolisée par la voie des polyols¹⁰. L'aldose réductase est l'enzyme limitante de cette voie métabolique¹⁰. L'expression de cette enzyme est augmentée chez les sujets diabétiques dans les fibres optiques, dans les cellules ganglionnaires rétiniennes et dans les cellules de Müller¹⁹. L'aldose réductase catalyse la transformation du glucose en sorbitol, et utilise le NADPH comme cofacteur enzymatique au cours de la réaction (Figure 1)²⁰. Le NADPH possède des propriétés réductrices et assure la régénération du glutathion oxydé (G-S-S-G) en glutathion réduit (GSH)²⁰. Le glutathion maintient l'équilibre oxydation-réduction au sein de la cellule en réduisant les espèces chimiques réactives dérivées de l'oxygène²⁰. En cas d'hyperglycémie, la consommation du NADPH par la voie des polyols déstabilise l'équilibre rédox intracellulaire et augmente le stress

oxydatif²⁰. Obrosova *et al.* ont ainsi démontré chez des rats diabétiques que l'activation de la voie des polyols dans la rétine engendrait une peroxydation des lipides, une augmentation des protéines nitrées et une chute des enzymes antioxydantes²¹.

Figure 1 : La transformation du glucose en sorbitol par l'aldose réductase utilise le NADPH comme cofacteur enzymatique et majore ainsi le stress oxydatif²⁰.

d. La voie de la poly(ADP-ribose) polymérase

La poly(ADP-ribose) polymérase (PARP) est une enzyme nucléaire impliquée dans la détection et la réparation des cassures simple brin de l'ADN¹⁰. Les cassures de l'ADN peuvent être liées au stress oxydatif, à des radiations ionisantes, à des agents alkylants ou être spontanées¹⁰. L'expression de la PARP est augmentée dans la rétine en cas de diabète, probablement en raison d'un stress oxydatif plus important dans la rétine²². Plusieurs mécanismes lésionnels semblent être liés à la PARP au cours de la pathogénie de la rétinopathie diabétique. La PARP utilise le NAD⁺ comme cofacteur enzymatique dans la réparation des cassures simple brin de l'ADN¹⁰. Or, le NAD⁺ est un cofacteur essentiel de la glycolyse au cours de laquelle il permet l'oxydation du glucose¹⁰. En cas de diabète, l'activation de la PARP induit une déplétion du stock de NAD⁺¹⁰. La glycolyse est ralentie ce qui entraîne une chute de la synthèse d'ATP et la mort cellulaire¹⁰. Au cours du diabète chez le rat, Drel *et al.* ont démontré que la PARP déclenche un stress oxydatif dérivé de l'oxygène et de l'azote dans la rétine, ce qui aboutit à la mort des péricytes et des cellules endothéliales²². La PARP inhibe la glycéraldéhyde 3-phosphate déshydrogénase qui est une enzyme impliquée dans la glycolyse. L'inhibition de la glycolyse par la PARP provoque une redirection du glucose en excès vers d'autres voies métaboliques, comme la production d'AGE products, la voie des hexosamines et la voie de la PKC qui majorent le stress oxydatif rétinien²³. La PARP est à l'origine d'une inflammation rétinienne par le biais de l'activation de la voie NF- κ B. L'expression de gènes dépendant de cette cascade de transduction comme ICAM-1, MCP-1 et TNF- α , favorise la leucostase, l'adhésion leucocytaire à l'endothélium vasculaire et l'infiltration des leucocytes dans la rétine²². La PARP induit également une activation gliale qui participe à l'inflammation rétinienne²².

e. La voie des hexosamines

La voie des hexosamines assure la production des substrats (UDP-N-acétylglucosamine et UDP-N-acétylgalactosamine) nécessaires à la synthèse des chaînes glycosylées des protéines et des lipides¹⁰. Dans les conditions normales, environ 3% du glucose est dirigé vers cette voie métabolique¹⁰. Des modifications minimes du flux de glucose à travers la voie des hexosamines peut entraîner des modifications de la glycosylation des protéines et des lipides et altérer leur fonction¹⁰. En cas de diabète chez l'Homme et le rat, le taux rétinien d'hexosamines dans des conditions hyperglycémiques provoquait l'apoptose des neurones rétiniens²⁵. L'apoptose des neurones est liée à l'altération de la glycosylation de l'insuline²⁵. L'insuline joue en effet un rôle neuroprotecteur et anti-apoptotique dans la rétine via l'activation de la voie de signalisation intracellulaire PI3K/Akt et l'inhibition de la caspase 3²⁶. La glycosylation anormale de l'insuline modifie sa signalisation intracellulaire dans les neurones rétiniens et inhibe son effet protecteur anti-apoptotique²⁵.

f. Le système rénine-angiotensine-aldostérone (SRAA)

Une surexpression de la rénine et de l'angiotensine II a été mise en évidence dans le vitré de patients atteints de rétinopathie diabétique proliférante ou d'œdème maculaire diabétique²⁷. L'angiotensine II est un facteur de croissance, de prolifération et de différenciation cellulaire²⁸. Dans les rétines de rats diabétiques, l'inhibition pharmacologique des récepteurs de l'angiotensine II (AT-1 et AT-2) diminue l'expression rétinienne de VEGF, ce qui suggère que le SRAA est impliqué dans la rupture de la barrière hémato-rétinienne, la néo-angiogenèse et l'inflammation dans le diabète²⁹. Nagai et al. ont montré que le SRAA est responsable d'une inflammation rétinienne au cours de la rétinopathie diabétique, par le biais de l'activation de la cascade de transduction NF- κ B³⁰. La voie NF- κ B induit d'une part l'expression de VEGF qui augmente la perméabilité vasculaire, et d'autre part, l'expression de ICAM-1 et MCP-1 qui favorisent l'adhésion leucocytaire à l'endothélium vasculaire³⁰. En cas de rétinopathie hypertensive associée à la RD, l'angiotensine II majore l'expression du récepteur RAGE dans la rétine, ce qui potentialise l'effet toxique des AGE products produits au cours du diabète¹⁰. Dans un modèle de diabète chez le rat, le SRAA, via l'activation du récepteur de l'angiotensine 2 (AT-2), réduit l'expression rétinienne de BDNF (Brain Derived Neurotrophic Factor), un facteur neurotrophique présentant des fonctions neuroprotectrices pour les neurones rétiniens¹⁰.

g. Hormones

Les taux plasmatiques et rétiniens de plusieurs hormones sont perturbés au cours du diabète et notamment ceux de l'insuline, de l'IGF-1 (Insulin Growth Factor-1), de l'hormone de croissance (GH) et de l'endothéline-1 (ET-1).

L'insuline exerce un rôle anti-apoptotique sur les cellules rétiniennes. En cas de diabète chez l'Homme et le rat, on observe une augmentation du nombre de cellules apoptotiques dans la rétine³¹. Barber *et al.* ont montré que l'apoptose touchait principalement les cellules ganglionnaires rétiniennes (CGR) dans les rétines de rats diabétiques³¹. L'administration d'insuline chez les rats diabétiques permet de réduire le nombre de CGR apoptotiques, ce qui suggère que l'insuline exerce un effet neuroprotecteur vis-à-vis de la neurodégénérescence induite par le diabète³¹. L'étude des voies de transduction de l'insuline dans la rétine chez le rat a révélé que le diabète induit une répression de l'activité du récepteur de l'insuline et de la kinase Akt, qui initient la cascade intracellulaire de l'insuline³². Cette cascade exerce un signal anti-apoptotique dans les neurones rétiniens³². L'administration d'insuline permet de restaurer l'activité du récepteur de l'insuline et de la kinase Akt³². La chute du taux d'insuline dans le diabète semble entraîner la perte d'un signal de survie essentiel pour les neurones rétiniens et pourrait expliquer l'apparition des lésions neuronales précoces au cours de la RD³².

L'Insuline Growth Factor-1 (IGF-1) est un facteur de croissance impliqué dans la néoangiogenèse et l'inflammation. Le taux d'IGF-1 est augmenté dans le sérum et dans le vitré des patients diabétiques¹⁰. L'IGF-1 favorise la production de VEGF en activant la voie de transduction intracellulaire PI3K/Akt³³. La surexpression d'IGF-1 au cours du diabète pourrait avoir un rôle dans la néovascularisation rétinienne³³. L'IGF-1 semble être impliquée dans l'inflammation rétinienne au cours du diabète par le biais de l'activation de la voie pro-inflammatoire NF- κ B³³. L'IGF-1 favorise également la leucostase et l'adhésion leucocytaire via l'expression d'ICAM-1 (Intracellular Adhesion Molecule-1), ainsi que la rupture de la barrière hémato-rétinienne³³.

Le taux d'hormone de croissance (GH) est plus élevé dans le vitré et dans la rétine des sujets diabétiques que chez les sujets non diabétiques³⁴. Il est particulièrement augmenté en cas de rétinopathie diabétique proliférante, suggérant que ce facteur de croissance pourrait être impliqué dans la néovascularisation rétinienne au cours du diabète³⁴.

L'endothéline-1 (ET-1) est un peptide vasoconstricteur dont la concentration est augmentée dans le sérum et dans le vitré des sujets diabétiques³⁵. L'ET-1 entraîne une dysfonction endothéliale par le biais de son effet inhibiteur de la synthèse de NO¹⁰. Elle provoque une

diminution de la sensibilité du récepteur de l'insuline, ce qui favoriserait la dérégulation métabolique dans la rétine des sujets diabétiques¹⁰.

h. Neurotrophines

Les facteurs neurotrophiques assurent des fonctions anti-apoptotiques et de régénération neuronale dans la rétine. Le BDNF (Brain Derived Neurotrophic Factor), le CTNF (Ciliary Neurotrophic Factor), le GDNF (Glial Derived Neurotrophic Factor) et le NGF (Nerve Growth Factor) sont les principaux facteurs neurotrophiques rétiniens.

Le taux plasmatique de BDNF est abaissé chez les patients diabétiques de type 2³⁶. Chez le rat diabétique, la concentration de BDNF est abaissée à la fois dans le sérum et dans la rétine³⁷. Seki *et al.* ont montré que l'injection intravitréenne de BDNF chez le rat diabétique protège les cellules amacrines de l'apoptose³⁷. La chute du taux de BDNF en cas de diabète pourrait expliquer la dégénérescence neuronale précoce observée dans la rétinopathie diabétique³⁷. Chez les patients diabétiques de type 2, le BDNF plasmatique est un biomarqueur de l'insulinorésistance au niveau systémique³⁸. L'administration systémique de BDNF chez des souris diabétiques et obèses (souris db/db) permet d'améliorer le profil glycémique en réduisant la résistance systémique à l'insuline³⁹. La fonction neuroprotectrice du BDNF pourrait passer par un effet neurotrophique direct, mais également par une sensibilité accrue à l'insuline dans la rétine³⁹.

Le taux de NGF augmente dans le plasma des patients diabétiques. Il existe une corrélation positive entre la concentration plasmatique de NGF et le stade de sévérité clinique du diabète⁴⁰. Mantelli *et al.* ont mis en évidence une hausse précoce du taux rétinien de NGF après 7 semaines de diabète chez le rat⁴¹. Ces rats diabétiques présentent une apoptose des cellules ganglionnaires rétiniennes (CGR) liée au diabète⁴¹. L'inhibition du NGF chez les rats diabétiques par le biais de l'administration d'anticorps anti-NGF se traduit par une aggravation de l'apoptose des CGR⁴¹. A l'inverse, l'administration exogène de NGF exerce un effet anti-

apoptotique sur les CGR⁴¹. L'augmentation précoce du NGF dans la rétine des rats diabétiques semble constituer un mécanisme protecteur endogène favorisant la survie des CGR⁴¹.

i. Apoptose

La dégénérescence des neurones rétiniens est un événement précoce au cours de la rétinopathie diabétique et semble précéder l'apparition des lésions vasculaires^{31,42}. Barber *et al.* ont montré que l'apoptose neuronale touchait les cellules ganglionnaires rétiniennes au cours du diabète chez le rat³¹. Dans ce modèle, l'apoptose des cellules ganglionnaires rétiniennes semble liée à une perte du signal anti-apoptotique de l'insuline³¹. De nombreuses autres voies métaboliques sont activées au cours du diabète et peuvent être responsables d'apoptose. L'axe AGE-RAGE déclenche un important stress oxydatif dans la rétine qui conduit à l'apoptose des neurones rétiniens par le biais de l'activation de la caspase 3²⁵. La voie de la PKC induit l'apoptose des péricytes¹⁸. Kern *et al.* ont mis en évidence que l'expression de la protéine pro-apoptotique Bax dans la rétine des souris diabétiques entraînait l'apoptose des péricytes rétiniens⁴³. Les cellules gliales rétiniennes subissent également un phénomène d'apoptose lorsqu'elles sont cultivées dans des conditions hyperglycémiques⁴⁴.

j. Excitotoxicité glutamatergique

Le glutamate représente le neurotransmetteur majoritaire dans la rétine et plus de 90% des synapses rétiniennes sont des synapses glutamatergiques⁴⁵. Une stimulation glutamatergique excessive dans le système nerveux peut conduire à un phénomène d'excitotoxicité⁴⁶. En cas de forte concentration synaptique de glutamate, les récepteurs ionotropes NMDA post-synaptiques sont activés de manière prolongée et laissent entrer un important influx de calcium dans la cellule⁴⁶. Les mécanismes de régulation de l'homéostasie calcique intracellulaire sont

saturés et la forte concentration de Ca^{2+} aboutit à l'ouverture du MPTP (Mitochondrial Permeability Transition Pore) et à l'apoptose neuronale⁴⁶.

De multiples études chez le rat suggèrent que la dégénérescence neuronale précoce observée dans la rétinopathie diabétique pourrait être liée à une dysfonction du métabolisme du glutamate qui conduirait à une excitotoxicité glutamatergique^{47–49}. La concentration de glutamate est en effet augmentée dans les rétines des rats diabétiques^{48,50}. La hausse du taux de glutamate semble liée à une dysfonction du métabolisme du glutamate par les cellules gliales. Dans les conditions physiologiques, les cellules de Müller assurent la recapture du glutamate libéré dans la fente synaptique grâce au transporteur membranaire du glutamate (GLAST)⁵¹. Le glutamate est ensuite converti en glutamine par la glutamine synthase au sein des cellules de Müller⁵¹. La glutamine ainsi produite est alors transférée aux neurones pré-synaptiques où elle est transformée en glutamate⁵¹. Il s'agit du cycle du glutamate⁵¹. L'induction d'un diabète chez le rat diminue l'expression du transporteur du glutamate GLAST et réduit la recapture du glutamate par les cellules de Müller⁵². De plus, l'expression et l'activité de la glutamine synthase sont réduites dans les cellules de Müller en cas de diabète⁵². Tous ces mécanismes provoquent l'accumulation de glutamate dans la rétine⁵². L'excitotoxicité glutamatergique pourrait ainsi constituer l'une des principales causes de dégénérescence neuronale précoce observée au cours de la rétinopathie diabétique.

k. Activation gliale

Les cellules de Müller, les astrocytes et les cellules microgliales constituent les cellules gliales rétiniennes⁴⁷. Elles assurent des fonctions de soutien métabolique et structurel pour les neurones et les vaisseaux rétiniens⁴⁷. L'activation gliale correspond à un état réactionnel de stress cellulaire des cellules gliales caractérisé par la production de GFAP (Glial Fibrillary Acidic Protein)⁵³. A l'état basal, l'expression de la GFAP par les cellules gliales est très faible, voire absent⁵⁰. Dans les rétines de rats diabétiques, l'expression de GFAP est augmentée, traduisant l'apparition d'une gliose réactionnelle^{48,50}. L'activation gliale précède les altérations

vasculaires liées au diabète⁴⁷. Il s'agit d'un phénomène précoce qui survient après seulement 3 mois de diabète chez le rat⁴⁷. L'activation gliale s'accompagne d'une perturbation des fonctions métaboliques des cellules gliales. L'altération du cycle du glutamate entre les neurones et les cellules gliales peut conduire à une mort neuronale par excitotoxicité glutamatergique⁴⁷. De plus, les cellules de Müller et les astrocytes participent à l'intégrité de la barrière hémato-rétinienne interne grâce à des prolongements cellulaires qui entourent les capillaires rétiniens⁵⁴. Dans les rétines de rats diabétiques, l'état d'activation gliale s'accompagne d'une rupture de la barrière hémato-rétinienne⁵⁵. L'activation des cellules de Müller déclenche la synthèse de VEGF qui est impliqué dans la rupture de la barrière hématorétinienne et la néovascularisation rétinienne⁵⁶.

I. Stress oxydatif

Le stress oxydatif correspond à un état de déséquilibre entre les facteurs pro-oxydants et antioxydants. Les ROS (Reactive Oxygen Species) les plus abondamment produits sont le radical superoxyde (O₂⁻⁻), le peroxyde d'hydrogène (H₂O₂), et le radical hydroxyl (OH⁻), tandis que les RNS (Reactive Nitrogen Species) les plus fréquents sont l'oxyde d'azote (NO) et le peroxynitrite (ONOO⁻)⁵⁷. Les ROS sont produits par la chaîne de phosphorylation oxydative de la mitochondrie, mais aussi dans le cytoplasme par différentes enzymes du stress oxydatif, comme la NADPH oxydase (NOX), la xanthine oxydase (XO) ou la myéloperoxydase (MPO)⁵⁸. Les RNS dérivent de l'activation de la NO synthase⁵⁸. Les ROS et les RNS peuvent réagir avec une large variété de molécules biologiques : les protéines, les carbohydrates, les lipides, l'ADN et l'ARN⁵⁷. Une altération de la balance oxydation-réduction pourrait ainsi altérer certaines voies de la signalisation intracellulaire et être à l'origine d'une dégénérescence neuronale⁵⁹.

Chez le sujet diabétique, de nombreuses voies métaboliques semblent produire des ROS. L'hyperactivation de la voie de la glycolyse par l'hyperglycémie accélère le flux d'électrons vers la chaîne de phosphorylation oxydative de la mitochondrie, générant ainsi des radicaux superoxydes⁶⁰. D'autres sources de ROS proviennent de la voie des polyols, de la voie de la PKC et de l'activation de la PARP décrites précédemment^{17,21,22}. D'autre part, l'activation d'enzymes cytosoliques génératrices de ROS comme la NADPH-oxydase et la xanthine oxydase participent au stress oxydatif dans des conditions d'hyperglycémie⁶¹. En parallèle, la chute des mécanismes antioxydants d'origine enzymatique (superoxyde dismutase, catalase, glutathion peroxydase) et non enzymatique (glutathion) favorise l'apparition d'un environnement pro-oxydant dans la rétine du sujet diabétique⁶⁰.

m. Inflammation

L'inflammation est une réponse biologique non spécifique, secondaire à un stimulus lésionnel, dont l'objectif est la réparation tissulaire. Elle fait appel à des médiateurs moléculaires (cytokines, chémokines) et au recrutement de leucocytes. Le diabète est une maladie caractérisée par une inflammation chronique à bas bruit. L'activation de différentes voies métaboliques au cours du diabète telles que l'axe AGE-RAGE, la PKC, la PARP, le SRAA, la voie NF-κB aboutit à la synthèse de cytokines responsables d'une inflammation rétinienne¹⁰. L'expression des cytokines pro-inflammatoires comme l'IL-1 β , l'IL-6, le TNF- α , et le MCP-1 est augmentée dans le vitré et dans la rétine des sujets diabétiques^{10,62}. Ces cytokines entraînent la rupture de la barrière hémato-rétinienne et l'apoptose des cellules rétiniennes⁶³. Elles favorisent également le recrutement et l'infiltration rétinienne des leucocytes, en particulier des macrophages et des monocytes⁶³. Dans les rétines de souris diabétiques, les cellules endothéliales expriment ICAM-1 (Intercellular Adhesion Molecule 1), une molécule permettant l'adhésion leucocytaire à la paroi vasculaire⁶⁴. L'adhésion des leucocytes favorise leur diapédèse à travers la paroi vasculaire et entraîne l'infiltration des leucocytes dans la rétine⁶⁴. L'adhésion des leucocytes aux cellules endothéliales induit également une leucostase dans les capillaires rétiniens qui peuvent s'occlure et aboutir à une non-perfusion du lit capillaire⁶⁴.

B. La taurine

La taurine est l'un des acides aminés les plus abondants dans les tissus oculaires comme la cornée, le cristallin et le corps ciliaire⁶⁵. Mais c'est la rétine qui constitue le tissu de l'organisme le plus riche en taurine chez les Mammifères⁶⁵. Dans la rétine, la taurine représente l'acide aminé le plus abondant, avec des concentrations très supérieures à celles du glutamate⁶⁶.

1. Propriétés physico-chimiques

La taurine, aussi connue sous le nom d'acide 2-amino-éthanesulfonique, a été isolée pour la première fois dans la bile de bœuf (*Bos taurus*) en 1827. En termes phylogénétiques, la taurine est une molécule ancienne qui a été conservée au cours de l'évolution. Elle est présente dans les algues, les plantes et les champignons mais elle est absente de la plupart des bactéries et des virus. La taurine est présente en forte concentration chez les Mammifères et les Insectes⁶⁷. Bien que la taurine soit un acide aminé, elle n'est pas intégrée dans la séquence peptidique des protéines⁶⁸. La structure de la taurine ne correspond pas à la structure classique des acides aminés qui possèdent un groupement amine (-NH₂) et un groupement carboxylique (-COOH) liés au carbone alpha⁶⁹. La taurine est un β-acide aminé sulfuré dont le groupement amine est lié au carbone β (Figure 2)⁶⁹.

Figure 2 : Comparaison des structures chimiques des α -acides aminés et de la taurine (β -acide aminé)⁶⁹.
En raison de la présence du groupement sulfonique (pKa = 2) à la place du groupement carboxylique, et compte tenu du pKa du groupement amine (pKa = 9), la taurine se présente sous une forme de zwitterion électriquement chargé à pH physiologique (pH = 7,4) (Figure 3)⁶⁹. La structure chargée de la taurine la rend hautement soluble avec les molécules d'eau. La taurine est hydrophile et ne peut donc pas traverser les membranes cellulaires hydrophobes.

Figure 3 : Structure du zwitterion de taurine (2 charges électriques de nature opposée) à pH physiologique⁶⁹

2. Métabolisme normal de la taurine

La taurine est absorbée au niveau digestif (apport exogène) et peut être synthétisée par trois voies métaboliques (apport endogène)⁶⁸. Le transporteur membranaire Tau-T assure le transport de la taurine depuis la circulation sanguine vers les organes⁶⁸. Tau-T est notamment exprimé au niveau de l'épithélium pigmentaire rétinien⁷⁰.

Chez les Mammifères, la taurine endogène est principalement synthétisée dans le foie et dans le cerveau⁷¹. Trois voies de synthèse endogène permettent de synthétiser la taurine⁶⁸. La voie métabolique principale utilise la méthionine et la cystéine comme substrats initiaux. Une succession d'enzymes vont ensuite catalyser la transformation de ces deux acides aminés en taurine (Figure 4). Deux enzymes constituent des facteurs limitants à la synthèse de la taurine : la cystéine dioxygénase et la cystéine sulfonate-décarboxylase. La faible activité enzymatique de ces deux enzymes dans certaines espèces comme le chat, les primates ou l'Homme sont à l'origine d'une faible production endogène de taurine. Ces espèces sont donc particulièrement sensibles à une baisse des apports exogènes de taurine, leur métabolisme endogène ne leur

permettant pas de compenser une carence d'apport alimentaire de cette molécule⁷¹. A l'inverse, les rongeurs ou les chiens disposent d'excellentes capacités de synthèse endogène de taurine, ce qui les rend moins dépendants des apports exogènes⁷². Le phosphate de pyridoxal (vitamine B6) est un cofacteur enzymatique indispensable à l'activité de trois enzymes impliquées dans la synthèse de taurine : la cystathionine β -synthase, la γ -cystathionase et la cystéine désulfarase (Figure 4). Une carence d'apport en vitamine B6 peut ainsi se traduire par une baisse de la production de taurine et une carence en taurine⁷³.

Deux voies mineures de synthèse de taurine utilisent respectivement l'acide cystéique et la cystéamine comme substrats (Figure 4). La voie de l'acide cystéique est fonctionnelle dans le cerveau et le foie, tandis que la voie de la cystéamine est principalement active dans le rein mais est absente dans le cerveau⁶⁷.

Les deux enzymes limitantes de la synthèse de taurine (cystéine dioxygénase et cystéine sulfonate-décarboxylase) sont exprimées de manière fonctionnelle dans la rétine des Mammifères⁷⁴. Dans le cerveau, la taurine peut être produite à la fois par les neurones et les cellules gliales⁷⁵. Cependant, les neurones cérébraux ne peuvent produire de la taurine qu'à partir de l'hypotaurine, alors que les cellules gliales cérébrales expriment l'intégralité de la machinerie enzymatique nécessaire à la synthèse de taurine⁷⁵. Des interactions métaboliques étroites entre les cellules gliales et les neurones sont probablement en œuvre pour assurer le transfert de la taurine vers les neurones.

L'apport exogène de taurine provient de l'alimentation, notamment de la viande et du poisson⁶⁸. La taurine étant hydrophile, elle ne traverse pas les membranes plasmiques des cellules et nécessite un transporteur transmembranaire. La taurine située dans la lumière digestive est transportée à travers la barrière intestinale grâce à deux mécanismes. Le premier mécanisme fait appel à un transporteur membranaire actif dépendant du Na⁺ et spécifique de la taurine, le transporteur Tau-T⁶⁸. Le transporteur Tau-T présente une haute affinité pour la taurine mais de faibles capacités de transport⁶⁸.

Figure 4 : Voies de synthèse de la taurine (d'après Froger et al.⁶⁸)

Le second mécanisme correspond à un transporteur couplé aux protons, PAT-1 (Proton-coupled Amino-acid Transporter-1)⁷⁶. PAT-1 absorbe la majeure partie de la taurine intestinale mais il est non spécifique de la taurine⁷⁶. Il transporte en effet une large variété d'acides aminés différents, dont la taurine, avec une faible affinité mais de grandes capacités de transport⁷⁶. PAT-1 semble ainsi assurer l'absorption de grandes quantités de taurine lors des ingestions alimentaires, tandis que Tau-T semble davantage impliqué dans l'absorption spécifique de la taurine à faible concentration⁷⁶.

Outre son expression au niveau de l'épithélium intestinal, le transporteur Tau-T assure également le transfert de la taurine vers le milieu intracellulaire au sein des différents organes⁶⁸. Chez l'Homme, tous les tissus de l'organisme contiennent de la taurine⁶⁷. Les concentrations de taurine sont particulièrement élevées dans le système nerveux central, le cœur, le foie, les reins et les muscles striés⁶⁷. La distribution du récepteur Tau-T dans la rétine suggère que la taurine est absorbée par l'épithélium pigmentaire rétinien (EPR) dans la rétine externe, et par l'endothélium vasculaire des capillaires dans la rétine interne⁷⁰.

Le catabolisme de la taurine a lieu dans le foie et le rein⁶⁸. La taurine est éliminée principalement par le foie, par conjugaison avec l'acide cholique pour former les acides biliaires qui sont sécrétés dans le tube digestif⁶⁸. L'élimination rénale dans les urines est minoritaire et représente environ 25% de la taurine éliminée⁶⁸.

3. Fonctions de la taurine

La taurine présente des propriétés osmorégulatrices, antioxydantes, neuromodulatrices et de régulation calcique^{68,77–79}.

a. Régulation osmotique

La taurine représente 50% des osmolytes dans le cerveau⁷⁷. Elle assure le maintien du volume cellulaire en régulant l'osmolarité intracellulaire⁷⁷. Les cellules cérébrales peuvent adapter leur concentration en taurine en réponse à des fluctuations de l'osmolarité du milieu

extracellulaire⁸⁰. Ainsi, l'exposition de cellules gliales comme les astrocytes à des conditions hyperosmotiques déclenche la synthèse de taurine, via l'activation de la voie de synthèse endogène⁸⁰. Un mécanisme d'osmorégulation reposant sur la taurine semble être mis en œuvre dans la rétine⁸¹. En présence de conditions hyperosmotiques, les cellules de l'épithélium pigmentaire rétinien, les cellules de Müller et les cellules ganglionnaires rétiniennes sont capables d'augmenter l'expression et l'activité du transporteur Tau-T afin de transférer davantage de taurine vers le milieu intracellulaire⁸¹. Dans la cornée, la taurine assure également une fonction d'osmorégulation pour les cellules de l'épithélium cornéen⁸². La taurine favorise en effet la survie des cellules épithéliales cornéennes soumises à un environnement hypertonique en culture⁸².

b. Propriétés antioxydantes

Plusieurs mécanismes semblent être à l'origine de l'action antioxydante de la taurine. La taurine présente des propriétés directement réductrices sur les ROS⁶⁸. Elle serait aussi capable d'assurer le maintien d'un taux élevé de molécules antioxydantes dans la cellule⁸³. Enfin, l'action antioxydante de la taurine pourrait passer par une diminution de la synthèse des ROS mitochondriaux⁸⁴.

L'action antioxydante directe de la taurine pourrait être liée à son groupement sulfure, ce qui lui conférerait la possibilité de réduire les espèces réactives⁶⁸. La taurine est en effet capable de réduire l'acide hypochlorique (HOCl), l'oxyde nitrique (NO) et le peroxyde d'hydrogène (H₂O₂), mais elle n'exerce pas d'effet antioxydant direct vis-à-vis du radical superoxyde (O₂[•]) ou du radical hydroxyl (OH[•])^{84–86}. L'hypotaurine, un métabolite de la taurine, présente des propriétés antioxydantes comparables vis-à-vis du peroxyde d'hydrogène (H₂O₂) et du radical hydroxyl (OH[•])⁸⁷.

Le deuxième mécanisme anti-oxydant de la taurine passe par le maintien d'un stock élevé de molécules antioxydantes⁸³. Le glutathion réduit (GSH) est un antioxydant qui est capable de

réduire les espèces réactives oxydées en une forme réduite plus stable par transfert d'électrons⁸³. Le glutathion se trouve alors oxydé (G-S-S-G) par la réaction chimique⁸³. La taurine permet de recycler la forme oxydée du glutathion en forme réduite⁸³. De plus, la taurine induit l'expression de certaines enzymes antioxydantes comme la thiorédoxine réductase, la glutathion peroxydase et la superoxyde dismutase^{88–90}.

Le troisième mécanisme antioxydant de la taurine passe par la diminution de la synthèse de ROS par les mitochondries⁸⁴. La taurine est nécessaire au fonctionnement de la chaîne de phosphorylation oxydative mitochondriale⁸⁴. Elle est essentielle à la traduction des protéines formant la chaîne respiratoire mitochondriale. La taurine est en effet conjuguée à certains ARN de transfert (ARNt) dans la mitochondrie. Un déficit en taurine altère la traduction des protéines de la chaîne respiratoire. L'assemblage défectueux de ces protéines perturbe le transfert des électrons entre les différents complexes de la chaîne respiratoire. Les électrons sont alors déviés de la chaîne respiratoire vers l'O₂, ce qui génère des radicaux superoxydes (O₂^{*}) et un stress oxydatif⁸⁴.

c. Régulation calcique

La taurine régule la concentration calcique intracellulaire dans le cerveau, le cœur et la rétine⁷⁸. L'effet de la taurine sur le métabolisme calcique s'exerce en modulant l'influx de Ca²⁺ dans le compartiment intracellulaire^{91,92}. Dans les neurones, une forte stimulation des récepteurs glutamatergiques par le glutamate entraîne une entrée massive de Ca²⁺ dans la cellule⁹². La hausse du Ca²⁺ intracellulaire active le pore MPTP (pore de transition de perméabilité mitochondriale) et conduit à l'apoptose des neurones⁹². Il s'agit du phénomène d'excitotoxicité glutamatergique. La taurine exerce un effet neuroprotecteur sur les neurones en limitant l'entrée du Ca²⁺ dans la cellule et en inhibant ainsi l'excitotoxicité du glutamate⁹². La taurine inhibe aussi les canaux calciques voltage dépendants de type L, P, Q et N présents sur la membrane des neurones⁹¹.

d. Neurotransmission

Le glutamate est le principal neurotransmetteur excitateur de la rétine⁹³. La neurotransmission glutamatergique véhicule l'information visuelle selon un axe vertical, tout d'abord entre les photorécepteurs et les cellules bipolaires, puis entre les cellules bipolaires et les cellules ganglionnaires⁹³. Le GABA et la glycine, les deux neurotransmetteurs inhibiteurs majoritaires dans la rétine, sont produits par les cellules horizontales et les cellules amacrines. Ils assurent une inhibition latérale du signal excitateur principal et modulent l'information visuelle⁹³. La taurine est capable de moduler la neurotransmission dans la rétine, bien que l'existence d'un récepteur spécifique à la taurine n'ait encore jamais été mise en évidence⁶⁸. Dans les cellules bipolaires réteniennes, la taurine est un agoniste des récepteurs ionotropiques GABA_A et GABA_C et des récepteurs métabotropiques GABA_B⁷⁹. La taurine est également un agoniste des récepteurs à la glycine dans les cellules ganglionnaires rétiniennes et dans les cônes^{94,95}. L'activation des récepteurs GABAergiques et glycinergiques par la taurine suggère que la taurine pourrait avoir un rôle dans la modulation du signal visuel.

4. Pathologies rétiniennes liées à un déficit en taurine

Les conséquences d'un déficit en taurine sur les cellules rétiniennes ont été étudiées principalement dans des modèles animaux. Dans ces modèles, le déficit en taurine semble entraîner des altérations fonctionnelles et morphologiques rétiniennes⁹⁶. Seuls quelques rares cas de déficit en taurine ont été rapportés chez l'Homme et ont décrit des altérations rétiniennes semblables à celles observées dans les modèles animaux^{97,98}. Les atteintes rétiniennes liée au déficit en taurine affectent les photorécepteurs et les cellules ganglionnaires rétiniennes^{96,99}.

a. Photorécepteurs et déficit en taurine

Certaines espèces comme le chat, les primates ou l'Homme disposent de capacités de synthèse endogène de taurine très limitées⁷¹. Ces espèces sont fortement dépendantes de l'apport alimentaire en taurine. Hayes *et al.* ont montré qu'une carence en taurine peut être induite chez

des chats en leur fournissant un régime alimentaire dépourvu de taurine⁹⁶. La chute de la taurine plasmatique et rétinienne dans ce modèle animal entraîne une perte des photorécepteurs⁹⁶. Sur le plan fonctionnel, l'amplitude des réponses scotopiques et photopiques des cônes et des bâtonnets est réduite sur l'électrorétinogramme (ERG)⁹⁶. Sur le plan morphologique, la carence en taurine entraîne une atrophie focale puis généralisée des photorécepteurs, une désorganisation des couches externes de la rétine, et notamment des articles externes des photorécepteurs^{100–102}. Un modèle de primate nourri avec du lait de soja dépourvu de taurine a permis de confirmer le rôle indispensable de la taurine pour la survie des photorécepteurs¹⁰³. La carence en taurine provoque une désorganisation, une désorientation, un œdème et un raccourcissement des articles externes de photorécepteurs qui sont maximaux dans la région fovéale¹⁰³. Les cônes sont plus sévèrement atteints que les bâtonnets et certains cônes présentent des signes de nécrose¹⁰³. L'épithélium pigmentaire rétinien présente des modifications ultrastructurelles avec une redistribution des mélanosomes et un plus grand nombre de corps résiduels et de phagosomes¹⁰³. Chez l'Homme, des carences en taurine peuvent survenir en cas de nutrition parentérale prolongée ou en cas de régime végétalien strict^{97,98}. L'ERG de ces patients montre une diminution de l'amplitude de l'onde b et une augmentation de la latence de l'onde b en conditions scotopiques et photopiques^{97,98}.

D'autres espèces comme les rongeurs ou les chiens possèdent des capacités de synthèse endogène de taurine importantes qui leur permettent de ne pas être dépendantes des apports alimentaires⁷². Dans ces espèces, une déplétion en taurine peut être induite de manière pharmacologique, par l'administration d'un inhibiteur du transporteur Tau-T, comme la β -alanine ou le GES (guanidoéthane sulfonate)^{104–106}. Une autre méthode consiste à générer un knock-out du gène du transporteur Tau-T (Tau-T^{-/-}) ou d'une enzyme impliquée dans la synthèse endogène de taurine comme la cystéine sulfonate-décarboxylase^{72,107}. Dans la rétine de rat, le déficit en taurine induit par la β -alanine ou le GES provoque une altération de la structure des photorécepteurs caractérisée en microscopie électronique par un amincissement

de la couche des photorécepteurs, une déformation et un raccourcissement des segments externes, ainsi qu'une désorganisation des disques membranaires des photorécepteurs^{104,105}. Ces changements dégénératifs conduisent à la mort des photorécepteurs, notamment des bâtonnets¹⁰⁴. La perte des photorécepteurs se caractérise par un amincissement de la couche nucléaire externe (ONL) dû à la perte des noyaux des photorécepteurs¹⁰⁴. L'amincissement de la couche plexiforme externe (OPL) semble lié à une perte des synapses des photorécepteurs et à une rétraction des processus cellulaires des neurones rétiniens¹⁰⁴. La rétine interne présente également un amincissement significatif¹⁰⁴. Dans un modèle de souris supplémentées en GES, Gaucher et al. ont montré que le déficit en taurine entraînait une perte des cônes mais aussi des cellules ganglionnaires rétiniennes¹⁰⁶. Dans un modèle de souris Tau-T^{-/-}, Heller et al. ont observé une perte majeure des segments internes et externes des photorécepteurs, jusqu'à une disparition complète à 4 semaines de vie¹⁰⁷. L'ONL est fortement amincie et ne contient plus que les noyaux picnotiques des photorécepteurs¹⁰⁷. La rétine interne est amincie aux dépens de l'INL (couche nucléaire interne)¹⁰⁷. Sur le plan fonctionnel, l'ERG montrait une réduction marquée de l'amplitude de l'onde b en conditions scotopiques et photopiques, suivie par une extinction complète de l'ERG à 6 semaines de vie¹⁰⁷. La taurine semble ainsi être indispensable à la survie des photorécepteurs, aussi bien des cônes que des bâtonnets.

b. Cellules ganglionnaires et déficit en taurine

Le devenir des cellules ganglionnaires rétiniennes (CGR) en cas de déficit en taurine a été étudié de façon moins extensive que pour les photorécepteurs. Dans un modèle de rats traités par GES, Lake *et al.* ont mis en évidence une perte des CGR et de leurs axones⁹⁹. La mort des CGR en cas de déficit en taurine a été confirmée par Gaucher *et al.* dans les rétines de souris supplémentées en GES¹⁰⁶. Un modèle de déficit en taurine chez des rats traités par β -alanine a révélé non seulement une perte des CGR, mais également une altération du transport axoplasmique rétrograde au sein des axones des CGR¹⁰⁸. Le traitement par Vigabatrin, une

molécule antiépileptique, constitue un autre de modèle d'atteinte rétinienne par déficit en taurine¹⁰⁹. Cette molécule induit une baisse des taux plasmatiques et rétiniens de taurine¹¹⁰. Les patients traités par Vigabatrin au long cours présentent des altérations du champ visuel, de la vision des couleurs et de la perception des contrastes¹⁰⁹. Une perte des fibres ganglionnaires est objectivée sur l'OCT chez ces patients et des analyses histologiques *post-mortem* ont révélé une perte des CGR¹¹¹. Chez le rat, le Vigabatrin est responsable d'une perte des CGR et des cônes¹¹⁰. La supplémentation en taurine des rats traités par Vigabatrin permet de limiter la mort des CGR et des cônes¹¹⁰. Ainsi, comme pour les cônes et les bâtonnets, la taurine est nécessaire à la survie et à la fonction des CGR. Elle semble exercer un effet neuroprotecteur sur ces cellules en réduisant l'effet excitotoxique du glutamate¹¹². Froger *et al.* ont en effet démontré que l'ajout de taurine dans le milieu de culture des CGR diminue leur apoptose en cas d'exposition au NMDA, un agoniste glutamategique¹¹².

C. Diabète et taurine

1. Effets du diabète sur le métabolisme de la taurine

Dans les modèles animaux, le diabète induit une baisse des taux plasmatiques et rétiniens de taurine^{48,50}. Chez l'Homme, le diabète entraîne une baisse du taux plasmatique de taurine^{113–115}.

Le diabète perturbe le métabolisme de la taurine aussi bien chez l'Homme que dans les modèles animaux. En effet, l'hyperglycémie chronique est associée à une chute du taux de taurine dans le plasma et dans les plaquettes des sujets diabétiques de type 1, diabétiques de type 2 et chez les femmes ayant un diabète gestationnel^{113–115}. L'effet du diabète sur le métabolisme de la taurine a également été étudié chez des rats qui ont été rendus diabétiques par injection de streptozotocine. Dans ce modèle animal, le diabète induit une baisse de la concentration de taurine dans le plasma et dans la rétine^{48,50}. L'expression du transporteur Tau-T est également réduite dans la rétine des rats diabétiques⁴⁴. Dans un modèle d'épithélium pigmentaire rétinien

(EPR) en culture, des conditions hyperglycémiques réduisent l'expression et l'activité du transporteur Tau-T, et par conséquent l'absorption de taurine par l'EPR¹¹⁶. Outre la rétine, l'hyperglycémie chronique provoque la diminution de la concentration de taurine dans de multiples tissus comme le cristallin, les reins et les nerfs sciatiques chez le rat^{116–118}. La supplémentation en taurine semble ainsi constituer une piste thérapeutique à explorer dans la physiopathologie du diabète.

2. Effets de la supplémentation en taurine sur le diabète

Dans les modèles animaux de diabète, la supplémentation en taurine améliore le profil glycémique et exerce un effet protecteur sur l'atteinte des organes cibles du diabète^{119,120}. Chez l'Homme, les rares études de supplémentation en taurine menées chez des patients diabétiques ont montré des résultats contradictoires quant à l'amélioration du profil glycémique, avec un effet modéré sur l'atteinte des organes cibles^{121–123}.

L'administration de taurine à des rats diabétiques de type 2 améliore leur profil glycémique et diminue leur insulinorésistance¹¹⁹. La taurine favorise en effet l'absorption du glucose par les muscles et le cœur chez le rat^{124,125}. La taurine permet également d'améliorer le profil lipidique des rats diabétiques en diminuant les taux plasmatiques de cholestérol total, de triglycérides et de LDL-cholestérol¹²⁶. De plus, la supplémentation en taurine réduit la mortalité des rats diabétiques de type 1 suite à injection de streptozotocine¹²⁷.

Cependant, les effets bénéfiques de la supplémentation en taurine observés chez les rats diabétiques n'ont pas été confirmés chez l'Homme. La supplémentation en taurine chez des patients obèses prédisposés au diabète de type 2 ne permet pas d'augmenter l'insulinosécrétion, ni de diminuer l'insulinorésistance¹²⁸. L'administration de taurine n'améliore pas le profil lipidique de ces patients¹²⁸. Des résultats contradictoires ont été observés sur la régulation glycémique après supplémentation en taurine chez l'Homme. Une étude a rapporté une diminution de la glycémie à jeun après supplémentation en taurine chez des patients diabétiques

de type 2, tandis qu'une autre étude n'a retrouvé aucun effet sur l'hémoglobine glyquée et la glycémie à jeun^{121,122}.

Dans les modèles animaux, la taurine présente des effets protecteurs sur les organes cibles du diabète. La taurine réduit notamment la sévérité de la néphropathie diabétique chez le rat¹²⁰. Elle limite l'hypertrophie glomérulaire, la glomérulosclérose et la fibrose tubulo-interstitielle induite par le diabète¹²⁰. Sur le plan biologique, l'effet de la taurine se traduit par une baisse de la protéinurie et de l'albuminurie¹²⁰. L'effet protecteur de la taurine dans le rein semble passer par plusieurs mécanismes. La taurine réduit le stress oxydatif et la synthèse d'AGE products dans le rein du rat diabétique¹²⁰. Elle exerce un effet anti-inflammatoire par le biais de l'inhibition de la production de cytokines pro-inflammatoires¹²⁰. Elle possède un effet antiapoptotique en inhibant l'expression de protéines pro-apoptotiques (caspases-3/-9)¹²⁹. Dans le cœur des rats diabétiques, la supplémentation en taurine a une action antioxydante¹³⁰. Elle stimule la synthèse des défenses antioxydantes (enzymes antioxydantes, glutathion réduit) ce qui entraîne la chute du taux cardiaque de ROS¹³⁰. La taurine exerce une action antiinflammatoire dans le tissu cardiaque des rats diabétiques, en inhibant la synthèse des cytokines pro-inflammatoires (IL-6, TNF-α) et en empêchant l'activation de la voie de signalisation proinflammatoire NF-KB¹³⁰. La fonction contractile cardiaque est également améliorée par la supplémentation en taurine chez le rat diabétique¹³¹.

Chez l'Homme, peu d'études se sont intéressées à l'effet d'une supplémentation en taurine sur l'atteinte des organes cibles du diabète. Chez des patients diabétiques de type 1, Moloney *et al.* ont notamment montré que la taurine réduit la dysfonction endothéliale et limite la rigidité artérielle¹²³.

3. Effets de la supplémentation en taurine sur la RD

Dans les modèles animaux, la supplémentation en taurine semble exercer un effet protecteur sur l'atteinte rétinienne liée au diabète, en limitant notamment l'excitotoxicité glutamatergique, le stress oxydatif et l'apoptose^{48,50,52}. Aucune étude n'a jusqu'à présent été menée chez l'Homme pour évaluer l'effet d'une supplémentation en taurine sur la sévérité de la RD.

Chez le rat diabétique, Kilic *et al.* ont démontré que la supplémentation en taurine permet de réduire l'incidence de la cataracte diabétique, en limitant le stress oxydatif au sein du cristallin¹³². Dans la rétine de rat, le diabète induit une apoptose des neurones et des cellules gliales, principalement dans la couche nucléaire interne (INL)⁴⁴. La concentration plasmatique en taurine de ces rats est significativement réduite, ainsi que l'expression du transporteur Tau-T⁴⁴. La supplémentation en taurine des rats diabétiques permet de stimuler l'expression du transporteur Tau-T⁴⁴. La supplémentation en taurine des rats diabétiques permet de stimuler l'expression du transporteur Tau-T⁴⁴.

Le diabète induit une activation gliale dans la rétine des rats, caractérisée par une augmentation de l'expression de la GFAP dans le cytoplasme des cellules gliales^{48,50}. Les taux de taurine dans le plasma et dans la rétine de ces rats étaient abaissés. L'administration de taurine aux rats diabétiques permet de diminuer l'expression de GFAP, c'est-à-dire l'activation gliale^{48,50}. La taurine pourrait ainsi présenter un effet protecteur au cours du diabète en limitant l'apoptose et l'inflammation rétinienne induite par le diabète.

L'un des rôles des cellules gliales rétiniennes est de recapturer le glutamate présent dans la fente synaptique, afin d'éviter un phénomène d'excitotoxicité glutamatergique qui pourrait s'avérer néfaste pour les neurones adjacents. Dans les rétines de rats, le diabète favorise l'accumulation de glutamate dans la fente synaptique. L'expression du transporteur du glutamate (GLAST) est en effet réduite à la surface des cellules gliales et les enzymes impliquées dans la dégradation du glutamate (glutamine synthase, glutamate décarboxylase) sont moins exprimées dans les rétines de rats diabétiques^{48,50}. Zeng *et al.* ont montré que le diabète provoque ainsi l'augmentation de la concentration de glutamate dans la rétine chez le rat⁵⁰. La supplémentation en taurine des rats diabétiques augmente l'expression de GLAST, de la glutamine synthase, de la glutamate décarboxylase, et aboutit ainsi à la réduction du taux rétinien de glutamate^{48,50}.

Dans les cellules de Müller en culture, la taurine stimule la recapture du glutamate et l'activité de la glutamine synthase⁵². La taurine pourrait ainsi exercer un effet protecteur dans la rétine des rats diabétiques en limitant l'excitotoxicité glutamatergique^{48,50}.

La culture de cellules de Müller *in vitro* dans des conditions hyperglycémiques déclenche un stress oxydatif intracellulaire avec la production de ROS, de NO et une peroxydation des lipides⁵². L'hyperglycémie provoque également la chute des défenses antioxydantes des cellules de Müller, caractérisée par la baisse de l'expression de la superoxyde dismutase, de la catalase et de la glutathion peroxydase⁵². L'ajout de taurine dans le milieu de culture des cellules de Müller limite l'état de stress oxydatif induit par l'hyperglycémie⁵². La taurine entraîne une baisse des ROS, du NO, des lipides peroxydés et stimule l'expression des enzymes antioxydantes (superoxyde dismutase, catalase, glutathion peroxydase)⁵². La taurine pourrait ainsi exercer une action antioxydante dans les cellules gliales rétiniennes au cours du diabète. Outre le tissu neuroglial rétinien, la taurine présente également un effet protecteur pour les capillaires rétiniens. L'hyperglycémie induit l'activation de la caspase 3 et l'apoptose des péricytes⁴⁴.

D. Objectif

L'objectif de l'étude est d'évaluer l'effet de la supplémentation en taurine sur les atteintes morphologiques et fonctionnelles de la rétinopathie diabétique dans un modèle de souris diabétique de type 1.

II. Matériels et méthodes

A. Induction d'un diabète expérimental de type 1

Quarante souris mâles de la lignée C57Bl/6J (Charles River Laboratory), d'un poids moyen de $25,4 \pm 1,27$ g ont été élevées à une température de 25° C. Les expérimentations animales ont reçu l'autorisation du Ministère de l'Enseignement Supérieur et de la Recherche. L'effectif total des souris a été réparti en 4 groupes : un premier groupe contrôle (n=8) ; un deuxième groupe supplémenté en taurine (groupe taurine; n=8); un troisième groupe constitué de souris diabétiques (groupe diabète; n=12); et le dernier comportait des souris diabétiques supplémentées en taurine (groupe diabète + taurine ; n=12). Le diabète expérimental de type 1 a été induit par des injections intra-péritonéales de streptozotocine (STZ). La STZ a été diluée dans une solution de NaCl 0,9%. Cinq injections intra-péritonéales de STZ à la dose de 50 mg/kg ont été réalisées sur 5 jours consécutifs, comme précédemment décrit¹³³. Les souris supplémentées en taurine consommaient ad libitum de l'eau contenant 1% de taurine diluée. La recherche de glycosurie a été effectuée par bandelette urinaire. La glycémie à jeun a été mesurée par une glycémie capillaire après 10h de jeûne sur un prélèvement de sang réalisé au niveau de la queue de l'animal. La glycosurie et la glycémie à jeun ont été évaluées 5 jours après la dernière injection de STZ, puis une fois par semaine au cours du suivi. Le diabète chez la souris était défini par une glycémie à jeun supérieure à 2,50 g/L¹³⁴. Le poids des souris a été mesuré une fois par semaine. Les animaux avaient un accès libre à l'alimentation et à l'eau. Les souris ont été élevées pendant 3 mois après le diagnostic du diabète. Aucune supplémentation en insuline n'a été réalisée chez les souris diabétiques.

B. Electrorétinogrammes

Les électrorétinogrammes (ERG) ont été enregistrés après 3 mois d'évolution du diabète. Les animaux ont été anesthésiés par une injection intra-péritonéale d'une solution $(10\mu L/g)$ contenant de la kétamine (10%), de la médétomidine (12%) et du NaCl 0,9%. Les cornées ont

été anesthésiées par une goutte de chlorhydrate d'oxybuprocaïne (0,4%) et les pupilles ont été dilatées avec du tropicamide (0,5%). Les souris ont été placées sur un coussin chauffant et les paupières ont été rétractées afin de maintenir l'œil ouvert pendant les enregistrements. Une électrode cornéenne en or a été placée sur la cornée avec une goutte de carbomère 980 NF 0,2% (Lacrigel®). Les enregistrements ont été réalisés sur l'œil droit des animaux. L'électrode de référence a été placée au niveau de la tête de la souris. L'électrode neutre a été installée au niveau de la queue de l'animal. Les stimulations lumineuses ont été délivrées avec une source lumineuse plein champ (SIEM Biomedical, France) (Figure 5). L'ambiance lumineuse de fond était réglée à 30 cd.m⁻². Les réponses électrophysiologiques ont été enregistrées pour des stimulations lumineuses photopiques de 1 cd.s.m⁻², 3 cd.s.m⁻² et 10 cd.s.m⁻² et pour des flickers de 2 Hz, 5 Hz et 15 Hz. L'interprétation des ERG a été réalisée selon les recommandations de l'ISCEV (International Society for Clinical Electrophysiology of Vision). L'amplitude et les temps de latence des ondes a et b ont été mesurés respectivement au maximum des pics négatifs et positifs.

Figure 5 : Système d'enregistrement des électrorétinogrammes chez la souris.

C. Rétinophotographies et angiographies à la fluorescéine

Les photographies de la rétine et les angiographies à la fluorescéine ont été réalisées avec un ophtalmoscope à balayage laser après 3 mois d'évolution du diabète. Les pupilles ont été dilatées avec du tropicamide (0,5%). L'induction anesthésique a été effectuée au gaz dans une enceinte hermétique grâce à un mélange d'air (0,3 L/min), de dioxygène (0,3 L/min) et d'isoflurane (4 L/min). L'entretien anesthésique a été poursuivi au masque avec un mélange gazeux similaire dont le débit d'isoflurane était réduit à 2 L/min. La fluorescéine a été diluée à 1% avec du NaCl 0,9% avant injection sous-cutanée (4 μ L/g). Les rétinophotographies ont été prises avant injection de fluorescéine. Les images d'angiographie ont été acquises pour chaque œil à T = 0 min, 1 min, 2 min, 5 min et 10 min après injection de fluorescéine.

D. Tomographies par cohérence optique

Les tomographies par cohérence optique ont été réalisées après 3 mois d'évolution du diabète avec un OCT spectral-domain (Bioptigen, Spectral Domain Ophthalmic Imaging System[®]). L'OCT est une méthode d'imagerie *in vivo* non invasive, qui permet d'obtenir des coupes transversales de la rétine à haute résolution. Cette technique permet de mesurer l'épaisseur des couches rétiniennes. Elle permet de détecter des variations d'épaisseur qui ne seraient pas détectables en histologie en raison des artéfacts liés à la préparation technique des lames (fixation, coupe, coloration, montage)¹³⁵.

Les pupilles ont été dilatées avec du tropicamide (0,5%). L'induction anesthésique a été effectuée au gaz dans une enceinte hermétique grâce à un mélange d'air (0,3 L/min), de dioxygène (0,3 L/min) et d'isoflurane (4 L/min). L'entretien anesthésique a été poursuivi au masque avec un mélange gazeux similaire dont le débit d'isoflurane était réduit à 2 L/min. Les cornées ont été anesthésiées avec une goutte de chlorhydrate d'oxybuprocaïne (0,4%). Les coupes tomographiques rétiniennes ont été centrées sur le nerf optique. Les coupes ont été acquises pour les 2 yeux de chaque souris (Figure 6).

Figure 6 : Système d'acquisition des OCT chez la souris

L'épaisseur des différentes couches rétiniennes a été établie après segmentation automatique grâce au logiciel fourni par le fabricant de l'OCT (Figure 7).

Figure 7 : Segmentation automatique des couches rétiniennes sur un B-scan d'OCT centré par le nerf optique. A gauche, B-scan avant segmentation, à droite, B-scan après segmentation.

Il existe une correspondance entre les couches rétiniennes observées en histologie et celles visibles en OCT (Figure 8)¹³⁵. La couche la plus externe de la rétine correspond à l'épithélium pigmentaire rétinien (RPE). Le RPE repose sur la choroïde. Les articles internes (IS) et externes (OS) des photorécepteurs forment la couche IS-OS. La membrane limitante externe (OLM) sépare la couche IS-OS de la couche nucléaire externe (ONL). L'ONL correspond aux corps cellulaires des photorécepteurs. Dans la couche plexiforme externe (OPL) se forment les synapses entre les axones des photorécepteurs et les dendrites des cellules bipolaires, horizontales et amacrines. La couche nucléaire interne (INL) est constituée des noyaux de cellules bipolaires, des cellules horizontales et des cellules amacrines. Au niveau de la couche

plexiforme interne (IPL) se forment les synapses entre les dendrites de cellules ganglionnaires rétiniennes et les axones des cellules bipolaires, horizontales et amacrines. La couche des cellules ganglionnaires rétiniennes (GCL) est constituée par les corps cellulaires des cellules ganglionnaires rétiniennes. La couche la plus interne de la rétine correspond à la couche de fibres optiques (RNFL) qui est formée par les axones des cellules ganglionnaires rétiniennes. La couche la plus interne de la rétine correspond à la couche de fibres optiques (RNFL) qui est formée par les axones des cellules ganglionnaires rétiniennes. L'OCT permet de mesurer de manière précise les couches rétiniennes suivantes chez la souris : le complexe RNFL/GCL, IPL, INL, OPL, ONL, IS/OS et RPE¹³⁵. La couche RNFL est trop mince chez la souris pour être mesurée isolément de façon fiable. C'est pourquoi le complexe RNFL/GCL est plus fréquemment analysé¹³⁵. Une alternative consiste à mesurer le complexe ganglionnaire, qui englobe les couches RNFL, GCL et IPL. Celui-ci étant plus épais, il devient plus facilement mesurable en OCT. Par ailleurs, certaines structures non visibles en histologie, comme la membrane limitante externe, sont aisément identifiables en OCT¹³⁵.

Figure 8 : Correspondance entre les couches rétiniennes observées en histologie (coloration hématoxyline-éosinesafran) et en OCT-SD chez la souris C57Bl/6J (d'après Jagodzinska et al.¹³⁵). RNFL/GCL : couches des fibres optiques et des cellules ganglionnaires, IPL : couche plexiforme interne, INL : couche nucléaire interne, OPL : couche plexiforme externe, ONL : couche nucléaire externe, IS-OS : couche des articles internes et externes, RPE : épithélium pigmentaire rétinien, C : choroïde

E. Dosages rétiniens de taurine, de glutamate et de GABA

Une technique de spectroscopie par résonnance magnétique nucléaire (RMN) a été utilisée pour doser les taux rétiniens de taurine, de glutamate et de GABA, comme décrit précédemment¹³⁶. Chaque rétine a été placée dans un insert à usage unique de 25 µL. 10 µL d'oxyde de deutérium (²H₂O) ont été ajoutés dans l'insert. Après centrifugation à 5 000 g pendant 5 min, de l'oxyde de deutérium a été ajouté à nouveau pour remplir l'insert. Les analyses spectroscopiques RMN HRMAS (High Resolution Magic Angle Spinning) ont été réalisées à 4°C avec le spectromètre Bruker 500 MHz Avance III (Bruker BioSpin). Le spectromètre était équipé d'une sonde HRMAS à triple résonance (¹H, ¹³C, ³¹P). Les métabolites ont été identifiés grâce à plusieurs séquences d'acquisition : 1) la séquence TOCSY (Total Correlation Spectroscopy) homonucléaire à 2 dimensions (¹H-¹H) avec suppression du signal de l'eau ; 2) la séquence HSQC (Heteronuclear Single Quantum Coherence) hétéronucléaire à 2 dimensions (¹H-¹³C) avec découplage pendant l'acquisition ; 3) la séquence CPMG (Carr-Purcell-Meiboom-Gill) à 1 dimension permettant d'obtenir un spectre des protons (¹H). Les spectres ont été analysés avec le logiciel de quantification Chenomx[®] qui utilise le principe de déconvolution afin d'isoler les métabolites contenus dans un mélange complexe. Chenomx[®] permet d'établir une quantification des métabolites exprimée en nanomoles par milligramme de tissu. Ces analyses ont été effectuées par le Dr Elisa Ruhland au sein de la plateforme de spectroscopie RMN de l'Hôpital de Hautepierre.

F. Dosages plasmatiques de taurine

Un échantillon de sang de 500 μ L a été prélevé chez les souris par ponction intra-cardiaque après euthanasie. Dans une première étape, une centrifugation à 15 000 rpm a été réalisée pendant 15 min à température ambiante. L'échantillon a été soumis au séquençage protéique par la méthode de la dégradation d'Edman sur un séquenceur Procise[®]. La taurine réagit avec le phénylisothiocyanate (PITC) et produit un phénylthiohydantoïne (PTH) acide aminé qui est

élué avant les autres PTH-acides aminés. Sa quantification est effectuée par comparaison avec un contrôle de taurine de 10 picomoles. Les dosages de taurine plasmatique à partir des échantillons plasmatiques de souris ont été effectués au sein de l'unité Inserm UMR 1121 (Biomatériaux et Bioingénierie, Strasbourg, France) par Cosette Betscha sous la direction du Dr Marie-Hélène Metz-Boutigue.

G. Analyses statistiques

Les données issues des différents groupes ont été comparées par analyse de la variance (oneway ANOVA), suivie par un test *post-hoc* de Tukey. La recherche de corrélation entre les variables a été réalisée à l'aide d'un test de Pearson (logiciel GraphPad Prism 5). La significativité statistique était définie par un p < 0,05. Les résultats sont exprimés en moyenne \pm erreur standard à la moyenne.

III. Résultats

A. Suivi de la glycémie et du poids

Les glycémies à jeun des souris du groupe contrôle et du groupe taurine sont restées normales (< 250 mg/dL) tout au long du suivi (Figure 9). Les glycémies moyennes à jeun entre ces 2 groupes n'étaient pas significativement différentes (p > 0,05). Les souris du groupe diabète et du groupe diabète + taurine présentaient des glycémies à jeun élevées (> 250 mg/dL) entre 2 et 3 semaines après l'injection de STZ (Figure 9). Quinze jours après l'injection de STZ, les glycémies moyennes à jeun au sein de ces 2 groupes étaient significativement plus élevées par rapport à leurs contrôles respectifs non diabétiques (p < 0,05). Les glycémies moyennes à jeun n'étaient pas différentes entre les souris diabétiques et les souris diabétiques supplémentées en taurine tout au long du suivi (p > 0,05). La supplémentation en taurine des souris diabétiques n'a pas permis d'améliorer le contrôle glycémique par rapport aux souris diabétiques.

Figure 9 : Glycémies moyennes à jeun des souris dans les groupes contrôle, taurine, diabète et diabète + taurine. La ligne horizontale rouge représente le seuil glycémique de 250 mg/dL, au-delà duquel une souris est considérée comme diabétique. Moyenne \pm erreur standard à la moyenne.

Le poids des souris dans le groupe contrôle et dans le groupe taurine a augmenté en moyenne de 35,2% et de 34,8% au cours du suivi (Figure 10). Le poids moyen des souris n'était pas significativement différents entre ces 2 groupes (p > 0,05). Le poids des souris diabétiques et des souris diabétiques supplémentées en taurine a baissé en moyenne de 6,5% et de 13,3% respectivement au cours du suivi (Figure 10). Entre ces 2 groupes, le poids moyen des souris n'était pas significativement différent (p > 0,05). La différence de poids est devenue significative entre le groupe contrôle et le groupe diabète à partir de la 5^{ème} semaine (p < 0,05). La différence de poids est devenue significative entre le groupe taurine et le groupe diabète + taurine à partir de la 4^{ème} semaine (p < 0,01).

Figure 10 : Poids moyens des souris dans les groupes contrôle, taurine, diabète et diabète + taurine. Moyenne \pm erreur standard à la moyenne.

B. La supplémentation en taurine augmente la concentration plasmatique et rétinienne de taurine chez les souris diabétiques

La concentration plasmatique de taurine n'était pas significativement différente entre le groupe contrôle et le groupe diabète (192,8 ± 35,11 vs. 294,4 ± 27,82 µg/mL ; p > 0,05), ni entre le groupe contrôle et le groupe taurine (192,8 ± 35,11 vs. 298,3 ± 5,51 µg/mL ; p > 0,05) (Figure 11A). Cependant, la concentration plasmatique de taurine dans le groupe diabète + taurine était significativement augmentée par rapport au groupe diabète (1146 ± 194,2 vs.

294,4 ± 27,82 µg/mL; p < 0,001), par rapport au groupe taurine (1146 ± 194,2 vs. 298,3 ± 5,51 µg/mL; p < 0,01) et par rapport au groupe contrôle (1146 ± 194,2 vs. 192,8 ± 35,11 µg/mL; p < 0,001) (Figure 11A).

Le taux rétinien de taurine n'était pas significativement différent entre le groupe contrôle et le groupe diabète (19,07 ± 2,92 vs. 20,82 ± 1,88 nmol/mg de tissu rétinien ; p > 0,05), ni entre le groupe contrôle et le groupe taurine (19,07 ± 2,92 vs. 23,12 ± 3,29 nmol/mg ; p > 0,05) (Figure 11B). Mais le taux rétinien de taurine dans le groupe diabète + taurine était significativement plus élevé par rapport au groupe diabète (51,0 ± 13,42 vs. 20,82 ± 1,88 nmol/mg ; p < 0,05) et par rapport au groupe contrôle (51,0 ± 13,42 vs. 19,07 ± 2,92 nmol/mg ; p < 0,05) (Figure 11B). Le taux rétinien de taurine n'était pas significativement différent entre le groupe diabète + taurine était pas significativement différent entre le groupe diabète + taurine et le groupe taurine (51,0 ± 13,42 vs. 23,12 ± 3,29 nmol/mg ; p > 0,05) (Figure 11B).

La supplémentation des souris diabétiques avec 1% de taurine dans l'eau de boisson semble ainsi augmenter la concentration plasmatique et le taux rétinien de taurine. Cependant, la supplémentation en taurine des souris normoglycémiques dans le groupe taurine ne s'est pas traduite par une hausse significative de la concentration plasmatique en taurine, ni du taux rétinien de taurine.

Figure 11 : Concentrations plasmatiques de taurine (A) et taux rétiniens de taurine (B) dans les groupes contrôle, taurine, diabète et diabète + taurine. Moyenne \pm erreur standard à la moyenne. ns = non significatif ; * p < 0.05 ; ** p < 0.01 ; *** p < 0.001.

Nous avons ensuite cherché à établir s'il existait une corrélation entre les taux plasmatiques et rétiniens de taurine dans les groupes diabète et diabète + taurine. Une corrélation positive a été mise en évidence entre la concentration plasmatique de taurine et le taux rétinien de taurine $(R^2 = 0.316; p = 0.0049)$ (Figure 12).

Figure 12 : Corrélation entre la concentration plasmatique de taurine (en μg/mL) et le taux rétinien de taurine (en nmol/mg de tissu rétinien) dans les groupes diabète et diabète + taurine.

C. La supplémentation en taurine limite l'amincissement rétinien induit par le diabète chez la souris

L'acquisition des B-scans rétiniens avec la technique de l'OCT nous a permis de comparer l'épaisseur de la rétine chez les souris des groupes contrôle, taurine, diabète et diabète + taurine. L'épaisseur rétinienne totale était significativement réduite dans le groupe diabète par rapport au groupe contrôle (217,3 ± 0,91 vs. 221,5 ± 0,64 µm; p < 0,01) (Figure 13A). Ce résultat suggère que le diabète induit un amincissement global de la rétine.

Nous avons ensuite cherché à identifier les structures rétiniennes qui étaient concernées par l'amincissement au cours du diabète. Dans un premier temps, nous avons étudié l'épaisseur de 4 segments rétiniens aisément individualisables en OCT : le complexe ganglionnaire (RNFL + GCL + IPL), la rétine interne (RNFL + GCL + IPL + INL), le complexe OPL-ONL et le complexe IS-OS-RPE. Par rapport au groupe contrôle, les souris du groupe diabète présentaient un amincissement du complexe ganglionnaire ($65,26 \pm 0,27$ vs. $67,49 \pm 0,47$ µm ; p < 0,001) (Figure 13B), de la rétine interne ($90,32 \pm 0,45$ vs. $93,11 \pm 0,49$ µm ; p < 0,01) (Figure 13C) et du complexe OPL-ONL ($66,08 \pm 0,38$ vs. $69,86 \pm 0,45$ µm ; p < 0,001) (Figure 13D). Les souris du groupe diabète présentaient par ailleurs un épaississement du complexe IS-OS-RPE par rapport au contrôle ($60,97 \pm 0,64$ vs. $58,65 \pm 0,37$ µm ; p < 0,05) (Figure 13E). Ces résultats suggèrent que le diabète induit un amincissement rétinien aux dépens du complexe ganglionnaire, de la rétine interne et de la rétine externe.

Nous avons cherché à établir si une supplémentation en taurine pouvait limiter l'amincissement rétinien induit par le diabète. Le groupe diabète + taurine présentait une épaisseur rétinienne totale significativement plus élevée que le groupe diabète ($221,2 \pm 0.89$ vs. $217,3 \pm 0.91 \mu m$; p < 0.01) (Figure 13A). De plus, la rétine dans le groupe diabète + taurine retrouvait une épaisseur totale comparable à celle des rétines contrôles (221.2 ± 0.89 vs. 221.5 ± 0.64 µm : p > 0.05) (Figure 13A). Au sein du complexe OPL-ONL, l'amincissement était moins important dans le groupe diabète + taurine que dans le groupe diabète ($68,50 \pm 0,49$ vs. $66,08 \pm 0,38 \ \mu\text{m}$; p < 0,001) (Figure 13D). L'épaisseur du complexe OPL-ONL dans le groupe diabète + taurine n'était pas significativement différente de celle du groupe contrôle $(68,50 \pm 0,49 \text{ vs. } 69,86 \pm 0,45 \,\mu\text{m}; p > 0,05)$ (Figure 13D). L'épaisseur du complexe ganglionnaire n'était pas différente entre le groupe diabète + taurine et le groupe diabète $(65,72 \pm 0,47 \text{ vs.} 65,26 \pm 0,27 \text{ } \mu\text{m}; p > 0,05)$ (Figure 13B). De même, l'épaisseur de la rétine interne n'était pas différente entre le groupe diabète + taurine et le groupe diabète $(91,16 \pm 0,64)$ vs. $90,32 \pm 0,45 \ \mu\text{m}$; p > 0,05) (Figure 13C). En résumé, la supplémentation en taurine semble limiter l'amincissement du complexe OPL-ONL induit par le diabète au sein de la rétine externe. Elle ne semble cependant pas empêcher l'amincissement induit par le diabète dans le complexe ganglionnaire et dans la rétine interne.

Figure 13 : Epaisseur rétinienne totale (A), épaisseur du complexe ganglionnaire (B), de la rétine interne (C), du complexe OPL-ONL (D) et du complexe IS-OS-RPE (E) dans les groupes contrôle, taurine, diabète et diabète + taurine. Moyenne \pm erreur standard à la moyenne. ns = non significatif ; * p < 0.05 ; ** p < 0.01 ; *** p < 0.001.

L'analyse conjointe des groupes diabète et diabète + taurine a montré une corrélation positive entre le taux rétinien de taurine et l'épaisseur totale de la rétine ($R^2 = 0,279$; p = 0,015) (Figure 14A). Il existe également une corrélation positive entre le taux rétinien de taurine et l'épaisseur du complexe ganglionnaire ($R^2 = 0,218$; p = 0,030), entre le taux rétinien de taurine et l'épaisseur de la rétine interne ($R^2 = 0,213$; p = 0,031) et entre le taux rétinien de taurine et l'épaisseur du complexe OPL-ONL ($R^2 = 0,189$; p = 0,036) (Figure 14B-D). Il n'y avait pas de corrélation significative entre le taux rétinien de taurine et l'épaisseur du complexe IS-OS-

RPE ($R^2 = 0,127$; p = 0,080) (Figure 14E). Ces résultats montrent que, chez les souris diabétiques, l'épaisseur rétinienne totale, mais aussi celle du complexe ganglionnaire, de la rétine interne et du complexe OPL-ONL semblent corrélés au taux rétinien de taurine.

Figure 14 : Corrélation entre le taux rétinien de taurine et l'épaisseur rétinienne totale (A), l'épaisseur du complexe ganglionnaire (B), l'épaisseur de la rétine interne (C), l'épaisseur du complexe OPL-ONL (D) et l'épaisseur du complexe IS-OS-RPE (E) dans les groupes diabète et diabète + taurine.

Dans un deuxième temps, nous avons analysé individuellement l'épaisseur de chaque couche rétinienne afin d'identifier, au sein de la rétine interne et de la rétine externe, les couches qui sont concernées par l'amincissement au cours du diabète. Par rapport aux rétines contrôles, le diabète provoquait un amincissement significatif de l'IPL ($54,72 \pm 0,26$ vs. $56,64 \pm 0.45 \mu$ m; p < 0,01) (Figure 15B) et de l'ONL ($57,61 \pm 0,39$ vs. $61,80 \pm 0,51 \mu$ m; p < 0,001) (Figure 15E). Le diabète provoquait également un épaississement de la couche OS par rapport au groupe contrôle ($29,06 \pm 0,50$ vs. $26,58 \pm 0,37 \mu$ m; p < 0,01) (Figure 15G). Le diabète n'influençait pas l'épaisseur des autres couches rétiniennes (RNFL/GCL, INL, OPL, IS et RPE)

par rapport au groupe contrôle (p > 0,05). Ces résultats suggèrent que l'IPL au sein de la rétine interne et l'ONL au sein de la rétine externe sont les deux couches rétiniennes qui subissent un amincissement significatif au cours du diabète.

Nous avons évalué le rôle de la supplémentation en taurine sur l'épaisseur de l'IPL et de l'ONL. L'épaisseur de l'IPL n'était pas différente entre le groupe diabète et le groupe diabète + taurine $(54,72 \pm 0,26 \text{ vs.} 55,28 \pm 0,52 \text{ }\mu\text{m}; p > 0,05)$ (Figure 15B). Mais l'ONL était significativement plus épaisse dans le groupe diabète + taurine par rapport au groupe diabète $(60,17 \pm 0,50 \text{ vs.}$ $57,61 \pm 0,39 \text{ }\mu\text{m}; p < 0,001)$ (Figure 15E). L'épaisseur des autres couches rétiniennes (RNFL/GCL, INL, OPL, IS, OS et RPE) n'était pas différente entre le groupe diabète et le groupe diabète + taurine (p > 0,05). Ainsi, dans la rétine externe, la supplémentation en taurine semble limiter l'amincissement de l'ONL induit par le diabète. Dans la rétine interne, la supplémentation en taurine n'empêche pas l'amincissement de l'IPL induit par le diabète. Le rôle protecteur de la taurine vis-à-vis de l'amincissement rétinien induit par le diabète ne semble s'exercer que dans la rétine externe.

Figure 15 : Epaisseur des couches RNFL/GCL (A), IPL (B), INL (C), OPL (D), ONL (E), IS (F), OS (G) et RPE (H) dans les groupes contrôle, taurine, diabète et diabète + taurine. RNFL/GCL : couches des fibres optiques et des cellules ganglionnaires, IPL : couche plexiforme interne, INL : couche nucléaire interne, OPL : couche plexiforme externe, ONL : couche nucléaire externe, IS : couche des articles internes, OS : couche des articles externes, RPE : épithélium pigmentaire rétinien, Moyenne \pm erreur standard à la moyenne. ns = non significatif ; * p < 0.05 ; ** p < 0.01 ; *** p < 0.001.

66

L'analyse conjointe des groupes diabète et diabète + taurine a montré une corrélation positive entre le taux rétinien de taurine et l'épaisseur de l'IPL ($R^2 = 0,351$; p = 0,006) (Figure 16A). Il existe également une corrélation positive entre le taux rétinien de taurine et l'épaisseur de l'ONL ($R^2 = 0,251$; p = 0,017) (Figure 16B). Ces résultats suggèrent que, chez les souris diabétiques, l'épaisseur de l'IPL et de l'ONL semble corrélée au taux rétinien de taurine.

Figure 16 : Corrélation entre le taux rétinien de taurine et l'épaisseur de l'IPL (A) et de l'ONL (B) dans les groupes diabète et diabète + taurine.

D. Electrorétinogrammes

Les amplitudes et les temps de latence des ondes a et b enregistrés au cours des ERG photopiques et flickers n'étaient pas significativement différents entre les groupes contrôle, taurine, diabète et diabète + taurine (p > 0.05) (Figure 17 et Tableau 1).

Figure 17 : (A) ERG photopiques (1 Cd.s.m⁻², 3 Cd.s.m⁻², 10 Cd.s.m⁻²) et (B) ERG flickers (2 Hz, 5 Hz, 15 Hz) dans les groupes contrôle, taurine, diabète et diabète + taurine. La courbe sombre correspond à la moyenne des amplitudes (en μ V) dans chaque groupe. Le contour clair correspond à l'écart-type des amplitudes (en μ V) dans chaque groupe.

A ERG photopique

			Contrôle	Taurine	Diabète	Diabète + taurine
Onde a	Amplitude (µV)	1 Cd.s.m ⁻²	-14,1 ± 6,1	-14,9 ± 4,8	-18,3 ± 6,1	-18,5 ± 6,5
		3 Cd.s.m ⁻²	-46,9 ± 20	-33,6 ± 17,9	-52,9 ± 20,2	-44,2 ± 18,5
		10 Cd.s.m ⁻²	-91 ± 54,2	-59,3 ± 41,1	-97,5 ± 37,1	-88,5 ± 39,3
	Latence (msec)	1 Cd.s.m ⁻²	18 ± 1,6	17,6 ± 2	17,2 ± 2,7	17,9 ± 2,6
		3 Cd.s.m ⁻²	17 ± 1,9	16,9 ± 2,4	16,4 ± 1,9	16,5 ± 1,4
		10 Cd.s.m ⁻²	16 ± 2	14,9 ± 1,2	15,7 ± 0,5	15,4 ± 1
Onde b	Amplitude (µV)	1 Cd.s.m ⁻²	54,8 ± 7	55,1 ± 6,6	59,7 ± 6,6	52,5 ± 17,1
		3 Cd.s.m ⁻²	154,9 ± 16,5	137,9 ± 22,6	142,8 ± 20,8	125,5 ± 26,7
		10 Cd.s.m ⁻²	186,5 ± 39,3	171,1 ± 23	169,8 ± 23	157,8 ± 30
	Latence (msec)	1 Cd.s.m ⁻²	49,4 ± 3,2	48,3 ± 3	53 ± 5,5	52,3 ± 7
		3 Cd.s.m ⁻²	45,1 ± 3,3	43,8 ± 3,3	49,7 ± 5,3	48,9 ± 6,1
		10 Cd.s.m ⁻²	46,1 ± 3,9	43,4 ± 3,1	50,9 ± 5,4	49,6 ± 5,7

B Flicker

			Contrôle	Taurine	Diabète	Diabète + taurine
Onde a	Amplitude (µV)	2 Hz	-41,6 ± 21,6	-28,4 ± 14,5	-41 ± 17,3	-36,1 ± 13,4
		5 Hz	-37,1 ± 20	-26,6 ± 12,2	-38,3 ± 13,8	-33,4 ± 12,2
		15 Hz	-33,4 ± 13	-24,3 ± 3,5	-23,9 ± 6,6	-20,6 ± 6,2
	Latence (msec)	2 Hz	17,2 ± 3,8	14,7 ± 0,9	16,6 ± 1,5	16,3 ± 2,1
		5 Hz	17,1 ± 0,9	16,4 ± 1,3	16,8 ± 1,4	17,4 ± 2
		15 Hz	22 ± 4,2	19,3 ± 2	22,1 ± 4,5	21,2 ± 4,2
Onde b	Amplitude (µV)	2 Hz	152,4 ± 19,1	139,7 ± 12,6	129 ± 16,7	110,1 ± 23
		5 Hz	123,3 ± 13,9	111,1 ± 7,3	105,7 ± 13,1	92,2 ± 17,8
		15 Hz	66 ± 17,5	60,3 ± 3,5	61,5 ± 12,3	52 ± 13,3
	Latence (msec)	2 Hz	48,3 ± 4,3	45,9 ± 3,4	53,5 ± 5,4	51,4 ± 6,2
		5 Hz	48,9 ± 3,3	46,9 ± 1,6	52,3 ± 5	50,9 ± 2
		15 Hz	45,6 ± 5,4	41,8 ± 4,4	51 ± 5,1	48,7 ± 5,8

Tableau 1 : Amplitudes moyennes (en μ V) et temps de latence moyens (en msec) des ondes a et b enregistrés au cours des ERG photopiques (A) et des ERG flickers (B) dans les groupes contrôle, taurine, diabète et diabète + taurine. Moyenne ± écart-type.

E. Rétinophotos

Aucune anomalie n'a été objectivée sur les photographies de la rétine dans les groupes contrôle et taurine (Figure 18). Dans les groupes diabète et diabète + taurine, aucune anomalie n'a été mise en évidence, notamment aucun microanévrysme, aucune hémorragie et aucune néovascularisation (Figure 18).

F. Angiographies à la fluorescéine

L'intégrité de la barrière hémato-rétinienne a été évaluée par des angiographies à la fluorescéine. La rupture de la barrière hémato-rétinienne se traduit par une diffusion extravasculaire de fluorescéine chez la souris¹³⁷. Aucune anomalie n'a été observée dans les groupes contrôle et taurine (Figure 18). Dans les groupes diabète et diabète + taurine, aucun microanévrysme, aucune néovascularisation et aucune diffusion de fluorescéine n'ont été mis en évidence (Figure 18). La morphologie et la densité des capillaires rétiniens n'étaient pas altérées dans les groupes diabète et diabète + taurine (Figure 18). Ces résultats suggèrent que l'intégrité de la barrière hémato-rétinienne est maintenue après 3 mois de diabète chez la souris STZ.

Figure 18 : Photographies de la rétine (colonne de gauche) et angiographies à la fluorescéine 2 min après injection de fluorescéine (colonne de droite) dans les groupes contrôle, taurine, diabète et diabète + taurine.

G. Taux rétiniens de glutamate et de GABA

Les taux rétiniens de glutamate et de GABA n'étaient pas significativement différents entre les groupes contrôle, taurine, diabète et diabète + taurine (p > 0.05) (Figure 19).

Figure 19 : Taux rétiniens de glutamate (A) et de GABA (B) dans les groupes contrôle, taurine, diabète et diabète + taurine. Moyenne \pm erreur standard à la moyenne. ns = non significatif ; * p < 0.05 ; ** p < 0.01 ; *** p < 0.001.
IV. Discussion

A. Profil glycémique

Dans notre modèle, la supplémentation en taurine n'a pas amélioré le profil glycémique des souris diabétiques au cours des 3 mois de suivi. Ces résultats viennent confirmer l'absence d'effet de la taurine sur la glycémie qui a déjà été observée après 3 mois d'évolution du diabète chez des rats diabétiques après injection de STZ^{44,48,50}. Cependant, une étude de plus longue durée (6 mois) menée chez des rats diabétiques avec STZ a montré que la taurine pouvait améliorer le profil glycémique¹³⁸. Dans un modèle de souris obèses non diabétiques suivies pendant 3 mois, la supplémentation par 5 % de taurine dans l'eau de boisson s'est traduite par une amélioration de l'homéostasie glycémique et par une meilleure régulation de la sécrétion d'insuline et de glucagon¹³⁹.

Chez l'Homme, l'effet régulateur de la taurine sur la glycémie des patients diabétiques reste discuté. Chez des patients obèses non diabétiques mais génétiquement prédisposés au diabète de type 2 (antécédent de diabète de type 2 chez un apparenté au 1^{er} degré), l'administration de taurine (1,5 g/jour) n'a modifié ni la glycémie à jeun, ni la sécrétion d'insuline¹²⁸. Dans une autre étude menée chez des patients diabétiques de type 2, l'administration orale de 1 g de taurine par jour pendant 30 jours a permis de réduire significativement la glycémie à jeun¹²¹. Mais 2 études ultérieures de plus longue durée n'ont pas confirmé l'effet de la taurine sur l'équilibre glycémique^{113,122}. Dans la première étude, des patients diabétiques de type 2 étaient supplémentés par 3 g de taurine par jour pendant 4 mois. Dans la seconde étude, 1,5 g de taurine étaient administrés chaque jour à des patients diabétiques de type 2 pendant 90 jours. Aucune de ces deux études n'a montré d'amélioration du profil glycémique des patients diabétiques de type 2. En définitive, l'effet régulateur de la taurine sur l'équilibre glycémique dans les modèles animaux et chez les patients diabétiques reste controversé.

B. Concentrations plasmatiques et rétiniennes de taurine

Goodman et al. ont montré que la concentration de taurine est abaissée dans le plasma des rats diabétiques après injection de STZ¹⁴⁰. La supplémentation des rats diabétiques avec 0,1% de taurine dans l'eau de boisson a permis d'augmenter significativement leur concentration plasmatique de taurine¹⁴⁰. Dans notre étude, la concentration plasmatique de taurine n'était pas différente entre le groupe diabète et le groupe contrôle. La concentration plasmatique de taurine n'était pas différente entre le groupe taurine et le groupe contrôle. Mais dans le groupe diabète + taurine, la concentration plasmatique de taurine était significativement augmentée par rapport au groupe contrôle et par rapport au groupe diabète. La hausse du taux plasmatique de taurine dans le groupe diabète + taurine pourrait s'expliquer par la polydipsie induite par le diabète, ce qui a pu conduire à une absorption taurine plus importante que chez les souris du groupe taurine. Des études menées chez le rat après injection de STZ ont mis en évidence une baisse du taux de taurine rétinienne chez les rats diabétiques par rapport aux rats non diabétiques^{48,50}. Dans notre modèle de souris diabétiques, la concentration rétinienne de taurine n'était pas différente entre le groupe diabète et le groupe contrôle. La concentration rétinienne de taurine n'était pas différente entre le groupe taurine et le groupe contrôle. Mais dans le groupe diabète + taurine, le taux rétinien de taurine était significativement plus élevé par rapport au groupe contrôle et par rapport au groupe diabète. Comme pour le taux plasmatique, la hausse du taux rétinien de taurine dans le groupe diabète + taurine pourrait s'expliquer par une absorption taurine plus importante en raison de la polydipsie induite par le diabète.

Dans un modèle de rats diabétiques par injection de STZ, Zeng *et al.* ont étudié les effets d'une supplémentation en taurine (5%) dans l'alimentation sur les taux rétiniens de taurine. Les rats non diabétiques supplémentés en taurine et les rats diabétiques supplémentés en taurine présentaient tous deux des taux rétiniens de taurine plus élevés que leurs contrôles respectifs non supplémentés en taurine⁵⁰. Ainsi, la concentration de taurine relativement faible (1%) dans

notre étude pourrait également expliquer pourquoi le groupe taurine ne présentait pas de hausse significative du taux rétinien de taurine par rapport au groupe contrôle.

C. Analyse morphologique de la rétine

1. Tomographies par cohérence optique

Dans notre étude, nous avons cherché à analyser la rétine *in vivo* sur le plan morphologique grâce à l'OCT. Dans le groupe de souris contrôles, l'épaisseur des différentes couches rétiniennes (RNFL/GCL, IPL, INL, OPL, ONL, IS, OS, RPE) et des différents segments rétiniens (complexe ganglionnaire, rétine interne, complexe OPL-ONL, complexe IS-OS-RPE) correspondait aux valeurs mesurées dans de précédentes études utilisant le même appareil d'OCT et les mêmes souris C57BL/6J^{135,141}. La cohérence des épaisseurs mesurées dans notre étude avec les valeurs publiées dans la littérature pour les souris *wild-type* valide l'exactitude des épaisseurs rétiniennes estimées par notre technique de segmentation.

L'OCT nous a ainsi permis d'analyser sur le plan morphologique la rétine des souris diabétiques. Les souris diabétiques présentaient un amincissement global de l'épaisseur rétinienne. L'analyse des différents segments rétiniens nous a permis de conclure que l'amincissement rétinien concernait le complexe ganglionnaire, la rétine interne et le complexe OPL-ONL. De manière plus précise, l'amincissement rétinien touchait l'IPL dans la rétine interne et l'ONL dans la rétine externe. L'épaisseur des autres couches rétiniennes (RNFL/GCL, INL, OPL, IS, RPE) n'était pas altérée par le diabète.

a. Comparaison aux études histologiques

Dans un modèle similaire de souris C57BL/6J diabétiques par injection de STZ, Martin *et al.* ont analysé par une technique histologique l'épaisseur des couches rétiniennes sur des coupes transversales¹³⁴. L'épaisseur rétinienne totale n'était pas modifiée après 2, 4, 6 et 8 semaines de diabète¹³⁴. Mais après 10 et 12 semaines de diabète, l'épaisseur rétinienne totale était

significativement amincie chez les souris diabétiques¹³⁴. La mesure de l'épaisseur de chaque couche rétinienne a révélé que l'amincissement affectait 2 couches en particulier, l'INL et l'ONL¹³⁴. L'IPL et l'OPL ne présentaient pas d'amincissement significatif chez les souris diabétiques¹³⁴. Les souris diabétiques présentaient une diminution du nombre de cellules ganglionnaires rétiniennes (CGR) dans la GCL, en lien avec un phénomène d'apoptose des CGR¹³⁴. Ainsi, nous confirmons dans notre étude grâce à l'OCT in vivo l'amincissement de l'ONL décrit par Martin et al. en histologie post-mortem chez la souris diabétique¹³⁴. Les deux études divergent cependant sur un éventuel amincissement de l'IPL et de l'INL. Cette discordance pourrait être liée aux 2 techniques différentes qui ont été utilisées pour mesurer l'épaisseur des couches rétiniennes. L'amincissement des couches rétiniennes dans notre étude comme dans celle de Martin et al. ne portait que sur quelques microns d'épaisseur¹³⁴. Or, l'évaluation morphologique des couches rétiniennes en histologie est exposée aux nombreux artéfacts inhérents aux techniques de préparation tissulaire. En effet, la collecte, la fixation, la découpe, la coloration et le montage des tissus peuvent provoquer des variations d'épaisseur des échantillons tissulaires. A l'inverse, l'OCT est une technique d'imagerie de haute résolution, utilisable in vivo et qui de ce fait n'est pas exposée aux artéfacts techniques de l'histologie. Ces caractéristiques en font une méthode de choix pour l'étude morphologique de la rétine¹³⁵.

D'autres modèles animaux de diabète ont fait l'objet d'études morphologiques de la rétine par des techniques histologiques. Ces études, menées chez le rat diabétique après injection de STZ, s'accordent sur une atrophie des couches internes de la rétine (INL et IPL) mais sont discordantes quant à l'atrophie des couches externes de la rétine (ONL)^{31,142}.

b. Comparaison aux études utilisant l'OCT

Les études les plus récentes font appel à l'OCT pour étudier la morphologie de la rétine. Dans un modèle de souris diabétiques de type 1 après injection de STZ, Sohn *et al.* ont observé un amincissement de la couche RNFL/GCL après seulement 6 semaines d'évolution du diabète¹⁴³.

Cet amincissement s'est aggravé avec la durée du diabète et semble lié à une perte des cellules ganglionnaires rétiniennes¹⁴³. L'amincissement précoce de la couche RNFL/GCL a été confirmé après 8 semaines d'évolution du diabète par Sergeys *et al.* dans le modèle de souris C57BL/6J avec STZ¹⁴⁴. Cette dernière étude a également montré un amincissement de l'épaisseur rétinienne totale et du complexe ganglionnaire après 8 semaines d'évolution du diabète¹⁴⁴. Les anomalies étaient associées à une perte des cellules ganglionnaires rétiniennes¹⁴⁴. Ces 2 études n'ont cependant pas mentionné l'effet du diabète sur la morphologie des couches externes de la rétine.

La souris Ins2 Akita constitue un modèle génétique de diabète de type 1¹⁴⁵. L'analyse des couches rétiniennes en OCT après 12 semaines d'évolution du diabète chez les souris Akita a montré un amincissement de l'épaisseur rétinienne totale, de la rétine interne (RNFL+GCL+IPL+INL) et de la rétine externe (OPL+ONL+IS+OS)¹⁴⁵.

En résumé, l'amincissement observé au sein des couches et des segments rétiniens dans notre modèle de souris diabétique de type 1 semble en accord avec les altérations morphologiques décrites dans la littérature.

Les anomalies morphologiques rétiniennes observées en OCT dans les modèles de diabète de type 1 sont également présentes chez des animaux diabétiques de type 2. Les modèles de souris diabétiques de type 2 (souris db/db, souris ob/ob) ont montré un amincissement de l'épaisseur rétinienne totale en OCT¹⁴⁶. L'amincissement touche la rétine interne (couches RNFL/GCL et INL) mais aussi les couches externes de la rétine (ONL et IS-OS)^{143,147}. Chez les souris ob/ob, l'amincissement de l'INL et de l'ONL mesuré en OCT est associée, en histologie, à une diminution du nombre de noyaux cellulaires dans ces 2 couches rétiniennes¹⁴⁷. Cette observation suggère que l'atrophie de l'INL et de l'ONL serait secondaire à une perte neuronale au sein de ces couches rétiniennes¹⁴⁷. Dans notre modèle, l'amincissement rétinien observé chez les souris diabétiques pourrait ainsi traduire une perte cellulaire, notamment au sein de l'ONL. Les variations d'épaisseur des couches rétiniennes pourraient aussi être dues à des phénomènes

osmotiques, comme le suggère l'épaississement du complexe IS-OS-RPE chez les souris diabétiques.

Les patients diabétiques de type 1 sans rétinopathie diabétique (RD) ou atteints de RD minime présentent des altérations précoces de la morphologie rétinienne en OCT. Ces anomalies se traduisent par un amincissement du complexe GCL/IPL et de l'INL¹⁴⁸. La couche RNFL et les couches rétiniennes externes (OPL, ONL, IS, OS) ne sont pas amincies chez ces patients¹⁴⁸. L'amincissement des couches internes de la rétine a également été objectivé chez les patients diabétiques de type 2 sans RD ou avec RD minime¹⁴³. Il concerne la couche RNFL et le complexe GCL/IPL¹⁴³.

En définitive, l'atrophie des couches rétiniennes est observée dans les modèles animaux de diabète et chez les patients diabétiques, ce qui semble valider l'utilisation des animaux diabétiques pour l'étude des altérations neurodégénératives rétiniennes précoces au cours de la rétinopathie diabétique.

Dans notre modèle de souris, l'administration de taurine aux souris diabétiques a permis de limiter l'amincissement de l'épaisseur rétinienne totale induit par le diabète. La taurine a limité l'amincissement du complexe OPL-ONL, et en particulier de l'ONL qui contient les corps cellulaires de photorécepteurs. La taurine n'a cependant pas empêché l'amincissement de la rétine interne. L'effet d'une supplémentation en taurine a été étudié dans d'autres pathologies rétiniennes, notamment dans la rétinopathie pigmentaire (RP) chez la souris. Dans ce modèle, Tao *et al.* ont objectivé un amincissement de l'ONL en OCT qui était associé à la présence de cellules apoptotiques dans cette couche¹⁴⁹. L'administration de taurine aux souris atteintes de RP a permis de limiter l'apoptose cellulaire et l'amincissement de l'ONL¹⁴⁹. La taurine semble ainsi exercer un rôle protecteur sur les photorécepteurs au cours de la RP¹⁴⁹. Dans notre modèle, l'amincissement rétinien peu important chez les souris diabétiques supplémentées en taurine pourrait être lié à une moindre perte cellulaire que chez les souris diabétiques. Il pourrait aussi s'agir d'un effet osmotique de la taurine. La taurine possède en effet des propriétés anti-

apoptotiques et osmorégulatrices^{78,81}. L'analyse histologique des rétines permettra d'établir si le diabète induit une perte cellulaire et si la supplémentation en taurine permet de la limiter.

2. Angiographies à la fluorescéine

Dans notre modèle de souris STZ, l'intégrité de la barrière hémato-rétinienne ne semblait pas altérée sur les angiographies à la fluorescéine réalisées après 3 mois d'évolution du diabète. Ces résultats viennent confirmer de précédentes études qui n'ont pas mis en évidence de rupture de la barrière hémato-rétinienne (BHR) même après 20 semaines de diabète chez des souris STZ¹⁴⁴. Chez des souris diabétiques de type 1 après injection d'alloxan, Gaucher *et al.* n'ont pas objectivé de rupture de la BHR après 3 mois de diabète¹⁵⁰.

D'autres modèles de souris diabétiques présentent cependant des signes d'altération de la BHR. Chez les souris Ins2 Akita diabétiques de type 1, Barber *et al.* ont mis en évidence une rupture de la BHR après 12 semaines de diabète¹⁵¹. Les souris ob/ob diabétiques de type 2 présentent une perméabilité vasculaire rétinienne accrue à partir de 20 semaines de diabète¹⁴⁷. Les différences de perméabilité vasculaire observées entre les modèles animaux de diabète pourraient être liées aux différentes techniques utilisées pour évaluer la rupture de la BHR ou aux spécificités du fond génétique de chaque lignée.

D. Analyse fonctionnelle de la rétine

Chez les patients diabétiques, les anomalies électrorétinographiques les plus précoces sont observées sur l'ERG scotopique et se caractérisent par une diminution de l'amplitude et un allongement du temps de latence des potentiels oscillatoires¹⁵². Ces altérations de l'ERG traduisent un dysfonctionnement des cellules amacrines et peuvent apparaître à un stade préclinique de la rétinopathie diabétique (RD), c'est-à-dire avant l'apparition des lésions rétiniennes vasculaires typiques de la RD¹⁵². Sur le pattern-ERG, une diminution de l'amplitude ondulatoire a été décrite chez les patients diabétiques, témoignant d'une atteinte des cellules

ganglionnaires rétiniennes¹⁵³. Sur l'ERG flicker, une baisse de l'amplitude et un allongement de la latence de l'onde b ont été mises en évidence chez les patients diabétiques¹⁵⁴. Sur l'ERG scotopique, les paramètres de l'onde a (amplitude et latence) sont inchangés chez les sujets diabétiques, tandis que l'onde b présente une allongement du temps de latence, mais sans modification de son amplitude¹⁵⁴. Sur l'ERG photopique, les paramètres des ondes a et b ne sont pas altérés chez les sujets diabétiques¹⁵⁴.

Dans notre modèle de souris STZ, les paramètres des ondes a et b n'ont pas été modifiés de manière significative après 3 mois de diabète sur l'ERG photopique et l'ERG flicker. Nous n'avons pas pu enregistrer l'ERG scotopique de nos souris pour des raisons techniques, alors que les altérations les plus franches apparaissent en général sur ce type d'ERG. En effet, chez les souris diabétiques par injection de STZ, l'ERG scotopique montre des altérations de l'amplitude et du temps de latence des potentiels oscillatoires, de l'onde a et de l'onde b après seulement 6 semaines d'évolution du diabète¹⁵⁵. Chez les souris diabétiques de type 2 (souris ob/ob), l'ERG scotopique objective une diminution de l'amplitude des ondes a et b, et l'ERG photopique montre une diminution de l'amplitude de l'onde b et des potentiels oscillatoires après 6 semaines d'évolution du diabète¹⁴⁷. Chez des rats diabétiques STZ, l'ERG scotopique révèle un allongement de la latence des potentiels oscillatoires sans modification de leur amplitude et les paramètres des ondes a et b sont inchangés^{156,157}.

Dans notre modèle de souris, l'absence d'atteinte fonctionnelle électrorétinographique pourrait être liée au protocole d'ERG réalisé mais aussi au modèle de diabète sélectionné pour l'étude. Les futures études devront s'attacher à utiliser un modèle animal de diabète présentant des atteintes électrophysiologiques significatives, afin de pouvoir évaluer sur le plan fonctionnel l'effet d'une intervention pharmacologique, comme par exemple la supplémentation en taurine.

E. Taux rétiniens de glutamate et de GABA

Les neurotransmetteurs excitateurs et inhibiteurs semblent jouer un rôle dans la physiopathologie de la rétinopathie diabétique. Le glutamate est le principal neurotransmetteur excitateur dans la rétine. Dans notre modèle de souris, le taux rétinien de glutamate n'était pas altéré par le diabète et l'administration de taurine n'a pas modifié sa concentration dans la rétine des animaux diabétiques. D'autres études ont cependant suggéré que le cycle du glutamate pouvait être altéré par le diabète^{48,50}. L'expression du transporteur du glutamate (GLAST) dans les cellules gliales diminue chez les rats diabétiques après injection de STZ^{48,50}. De plus, l'expression de 2 enzymes impliquées dans la dégradation du glutamate (glutamine synthase et glutamate décarboxylase) est également abaissée en cas de diabète chez le rat^{48,50}. La diminution du transport et de la dégradation du glutamate chez les rats diabétiques entraîne une augmentation de la concentration rétinienne de glutamate^{48,50}. L'accumulation de glutamate peut conduire à un phénomène d'excitotoxicité glutamatergique dans la rétine et causer la mort des neurones rétiniens. Chez les rats diabétiques STZ, l'administration de taurine stimule l'expression de GLAST, de la glutamine synthase et de la glutamate décarboxylase, ce qui aboutit à une diminution du taux rétinien de glutamate^{48,50}. La taurine pourrait ainsi exercer un effet protecteur sur les cellules rétiniennes vis-à-vis de l'excitotoxicité glutamatergique.

La GABA est le principal neurotransmetteur inhibiteur dans la rétine. Dans notre modèle de souris diabétiques, la concentration de GABA dans la rétine n'était pas altérée par le diabète et l'administration de taurine aux souris diabétiques n'a pas modifié le taux de GABA dans la rétine. Chez le rat diabétique STZ, Zeng *et al.* ont montré que le taux de GABA est augmenté dans la rétine⁵⁰. L'accumulation de GABA dans la rétine au cours du diabète pourrait être liée d'une part à une baisse d'activité de l'enzyme responsable de sa dégradation, la GABA transaminase, et d'autre part à la perturbation du cycle de l'acide citrique dans les cellules de Müller^{50,158}. La supplémentation en taurine des rats diabétiques réduit le taux rétinien de

GABA⁵⁰. Ainsi, la supplémentation en taurine pourrait permettre de réguler la concentration des neurotransmetteurs rétiniens au cours du diabète.

V. Conclusion

La physiopathologie de la rétinopathie diabétique implique de nombreux mécanismes lésionnels, qui provoquent une inflammation, un stress oxydatif et une apoptose cellulaire dans la rétine. La taurine est un acide aminé dont le métabolisme est perturbé au cours du diabète, comme le suggère la chute du taux plasmatique de taurine chez les patients diabétiques. Du fait des propriétés antioxydantes, osmorégulatrices et anti-apoptotiques de la taurine, l'altération du métabolisme de la taurine pourrait être impliquée dans la physiopathologie de la rétinopathie diabétique.

Dans notre modèle, les taux rétiniens et plasmatiques de taurine n'étaient pas abaissés chez les souris diabétiques par rapport aux contrôles. Cela pourrait être dû à l'importante capacité de synthèse endogène de taurine chez les rongeurs. Ce résultat pourrait aussi être lié à un effectif de souris insuffisant dans chaque groupe ou au modèle murin que nous avons choisi. Notre seul résultat significatif porte sur l'amincissement rétinien plus important chez les souris diabétiques par rapport aux contrôles. Ces altérations morphologiques se traduisent en OCT par un amincissement de l'épaisseur rétinienne totale, et plus précisément par un amincissement de la rétine interne, du complexe ganglionnaire, de l'ONL et de l'IPL.

Les souris diabétiques supplémentées en taurine présentaient des taux plasmatiques et rétiniens de taurine plus élevés que ceux des souris diabétiques non supplémentées. La supplémentation en taurine a limité l'amincissement de la rétine externe induit par le diabète, en particulier celui de l'ONL. La taurine n'a cependant pas empêché l'amincissement de la rétine interne induit par le diabète.

L'intégrité de la barrière hémato-rétinienne a été confirmée par l'angiographie à la fluorescéine après 3 mois de diabète.

L'ERG photopique et l'ERG flicker n'ont révélé aucune anomalie fonctionnelle liée au diabète ou à la supplémentation en taurine. L'ERG scotopique n'a pas pu être réalisé en raison de difficultés d'ordre technique. Les taux rétiniens de glutamate et de GABA n'étaient pas modifiés par le diabète, ni par la supplémentation en taurine.

En définitive, la taurine semble limiter l'amincissement des couches rétiniennes externes induit par le diabète. L'effet trophique de la taurine se manifeste particulièrement au sein de l'ONL, qui contient les corps cellulaires des photorécepteurs. Cet effet protecteur de la taurine n'est pas retrouvé sur les couches rétiniennes internes.

Les pièces histologiques des souris diabétiques restent à analyser et permettront peut-être d'éclairer les mécanismes de ce possible effet neuroprotecteur de la taurine. L'étude de l'apoptose et le dénombrement des noyaux cellulaires au sein de l'ONL permettront de déterminer si la supplémentation en taurine permet de limiter la perte neuronale dans cette couche rétinienne.

VU Strasbourg, le. OUL Le président du Jury de Thèse Professeur Claude SPEEG-SCHATZ Professeur SPEEG - SCHATZ Claude HOPITAUX UNIVERSI ASBOURG Service d'Ochlair NHC : 03 69 55 02 70 - Fax 69 55 18 49 Nº RPPS : 100 VU et approuvé 07/05/2020 Strasbourg, le. Le Doyen de la Faculté de Médecine de Strasbourg Professeur Jean SIBIL FS:BILIA

Résumé

Introduction

Le diabète est une problématique majeure au niveau mondial en raison de l'augmentation constante de sa prévalence depuis plusieurs décennies, atteignant près de 422 millions d'individus à l'échelle mondiale (OMS, 2016). La rétinopathie diabétique touche un peu plus d'un tiers des patients diabétiques. L'un des mécanismes physiopathologiques de la rétinopathie diabétique semble impliquer la taurine, un acide aminé présentant des propriétés antioxydantes, osmorégulatrices et anti-apoptotiques.

Matériels et méthodes

Des souris C57BL/6J ont été rendues diabétiques de type 1 par injection de streptozotocine. Les souris diabétiques ont été supplémentées par 1% de taurine dans l'eau de boisson. La concentration plasmatique de taurine a été mesurée par une méthode de séquençage des acides aminés. Les taux rétiniens de taurine, de glutamate et de GABA ont été déterminés par spectroscopie en résonnance magnétique nucléaire. L'OCT-SD, l'angiographie à la fluorescéine et les rétinophotos ont permis d'analyser la rétine sur la plan morphologique après 3 mois de diabète. L'étude fonctionnelle de la rétine a été réalisée par des ERG.

Résultats

Les taux plasmatiques et rétiniens de taurine des souris diabétiques étaient comparables aux souris contrôles après 3 mois de diabète. La supplémentation en taurine a significativement augmenté les taux plasmatiques et rétiniens de taurine des souris diabétiques. Le diabète a induit un amincissement de l'épaisseur rétinienne totale, et plus précisément de la rétine interne, du complexe ganglionnaire, de l'ONL et de l'IPL. La supplémentation en taurine a limité l'amincissement de la rétine externe induit par le diabète, en particulier celui de l'ONL. La taurine n'a pas empêché l'amincissement des couches internes de la rétine. L'angiographie à la fluorescéine n'a pas détecté de rupture de la barrière hémato-rétinienne après 3 mois de diabète. Aucune atteinte fonctionnelle n'a été détectée sur l'ERG. Les taux rétiniens de glutamate et de GABA étaient comparables aux contrôles chez les souris diabétiques et chez les souris diabétiques supplémentées en taurine.

Conclusion

La taurine limite l'amincissement de la rétine externe induit par le diabète, et en particulier celui de l'ONL qui contient les noyaux des photorécepteurs. Les potentiels mécanismes neuroprotecteurs de la taurine restent à explorer sur le plan cellulaire et moléculaire.

Bibliographie

- 1. World Health Organization. Global Report on Diabetes (2016) [En ligne]. Disponible sur : https://www.who.int/diabetes/global-report/en/.
- 2. Santé publique France. Prévalence et incidence du diabète (2016) [En ligne]. Disponible sur : https://www.santepubliquefrance.fr/maladies-et-traumatismes/diabete/articles/prevalenceet-incidence-du-diabete.
- 3. Bonaldi, C. *et al.* A first national prevalence estimate of diagnosed and undiagnosed diabetes in France in 18- to 74-year-old individuals: the French Nutrition and Health Survey 2006/2007. *Diabet. Med. J. Br. Diabet. Assoc.* **28**, 583–589 (2011).
- 4. Deshpande, A. D., Harris-Hayes, M. & Schootman, M. Epidemiology of Diabetes and Diabetes-Related Complications. *Phys. Ther.* **88**, 1254–1264 (2008).
- 5. Yau, J. W. Y. *et al.* Global prevalence and major risk factors of diabetic retinopathy. *Diabetes Care* **35**, 556–564 (2012).
- 6. Lee, R., Wong, T. Y. & Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. *Eye Vis. Lond. Engl.* **2**, 17 (2015).
- 7. Bourne, R. R. A. *et al.* Causes of vision loss worldwide, 1990-2010: a systematic analysis. *Lancet Glob. Health* **1**, e339-349 (2013).
- 8. Bourne, R. R. A. *et al.* Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990-2010. *Br. J. Ophthalmol.* **98**, 629–638 (2014).
- 9. Naidoo, K. *et al.* Prevalence and causes of vision loss in sub-Saharan Africa: 1990-2010. *Br. J. Ophthalmol.* **98**, 612–618 (2014).
- 10. Ola, M. S., Nawaz, M. I., Siddiquei, M. M., Al-Amro, S. & Abu El-Asrar, A. M. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. *J. Diabetes Complications* **26**, 56–64 (2012).
- 11. Goh, S.-Y. & Cooper, M. E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. *J. Clin. Endocrinol. Metab.* **93**, 1143–1152 (2008).
- 12. Zong, H., Ward, M. & Stitt, A. W. AGEs, RAGE, and diabetic retinopathy. *Curr. Diab. Rep.* **11**, 244–252 (2011).
- 13. Ibrahim, A. S. *et al.* Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. *Diabetes* **60**, 1122–1133 (2011).
- 14. Yamagishi, S. & Matsui, T. Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy. *Curr. Pharm. Biotechnol.* **12**, 362–368 (2011).
- 15. Shiba, T. *et al.* Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. *Am. J. Physiol.* **265**, E783-793 (1993).
- 16. Geraldes, P. & King, G. L. Activation of Protein Kinase C Isoforms & Its Impact on Diabetic Complications. *Circ. Res.* **106**, 1319–1331 (2010).
- 17. Way, K. J., Katai, N. & King, G. L. Protein kinase C and the development of diabetic vascular complications. *Diabet. Med. J. Br. Diabet. Assoc.* **18**, 945–959 (2001).
- 18. Geraldes, P. *et al.* Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. *Nat. Med.* **15**, 1298–1306 (2009).
- 19. Dagher, Z. *et al.* Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. *Diabetes* **53**, 2404–2411 (2004).

- 20. Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. *Exp. Diabetes Res.* **2007**, 61038 (2007).
- 21. Obrosova, I. G. *et al.* Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. *Diabetes* **54**, 234–242 (2005).
- 22. Drel, V. R. *et al.* Poly(ADP-ribose)polymerase inhibition counteracts cataract formation and early retinal changes in streptozotocin-diabetic rats. *Invest. Ophthalmol. Vis. Sci.* **50**, 1778–1790 (2009).
- 23. Zheng, L. & Kern, T. S. Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. *Front. Biosci. Landmark Ed.* **14**, 3974–3987 (2009).
- 24. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. *Circ. Res.* **107**, 1058–1070 (2010).
- 25. Nakamura, M. *et al.* Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. *J. Biol. Chem.* **276**, 43748–43755 (2001).
- 26. Barber, A. J. *et al.* Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. *J. Biol. Chem.* **276**, 32814–32821 (2001).
- Noma, H., Funatsu, H., Mimura, T., Harino, S. & Hori, S. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion. *Ophthalmology* **116**, 87–93 (2009).
- 28. Otani, A., Takagi, H., Oh, H., Koyama, S. & Honda, Y. Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. *Diabetes* **50**, 867–875 (2001).
- 29. Zhang, X., Lassila, M., Cooper, M. E. & Cao, Z. Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. *Hypertens. Dallas Tex 1979* **43**, 276–281 (2004).
- 30. Nagai, N. *et al.* Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. *Invest. Ophthalmol. Vis. Sci.* **48**, 4342–4350 (2007).
- 31. Barber, A. J. *et al.* Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. *J. Clin. Invest.* **102**, 783–791 (1998).
- 32. Reiter, C. E. N. *et al.* Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. *Diabetes* **55**, 1148–1156 (2006).
- 33. Poulaki, V. *et al.* Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. *Am. J. Pathol.* **165**, 457–469 (2004).
- 34. Harvey, S., Parker, E., Macdonald, I. & Sanders, E. J. Growth hormone is present in the human retina and vitreous fluid. *Neurosci. Lett.* **455**, 199–202 (2009).
- 35. Adamiec-Mroczek, J., Oficjalska-Młyńczak, J. & Misiuk-Hojło, M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: Analysis of vitreous samples. *Cytokine* **49**, 269–274 (2010).
- 36. Krabbe, K. S. *et al.* Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. *Diabetologia* **50**, 431–438 (2007).
- 37. Seki, M. *et al.* Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. *Diabetes* **53**, 2412–2419 (2004).

- Fujinami, A. *et al.* Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: Relationship to glucose metabolism and biomarkers of insulin resistance. *Clin. Biochem.* 41, 812–817 (2008).
- 39. Ono, A. *et al.* Gene expression changes in the retina after systemic administration of aldosterone. *Jpn. J. Ophthalmol.* **62**, 499–507 (2018).
- 40. Park, K. S. *et al.* Serum and tear levels of nerve growth factor in diabetic retinopathy patients. *Am. J. Ophthalmol.* **145**, 432–437 (2008).
- 41. Mantelli, F. *et al.* NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes. *Eur. J. Ophthalmol.* **24**, 247–253 (2014).
- 42. Antonetti, D. A. *et al.* Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. *Diabetes* **55**, 2401–2411 (2006).
- 43. Kern, T. S., Du, Y., Miller, C. M., Hatala, D. A. & Levin, L. A. Overexpression of Bcl-2 in vascular endothelium inhibits the microvascular lesions of diabetic retinopathy. *Am. J. Pathol.* **176**, 2550–2558 (2010).
- 44. Zeng, K. *et al.* Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under diabetic conditions. *Neurochem. Res.* **35**, 1566–1574 (2010).
- 45. Kalloniatis, M., Sun, D., Foster, L., Haverkamp, S. & Wässle, H. Localization of NMDA receptor subunits and mapping NMDA drive within the mammalian retina. *Vis. Neurosci.* **21**, 587–597 (2004).
- 46. Bano, D. & Ankarcrona, M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. *Neurosci. Lett.* **663**, 79–85 (2018).
- 47. Lieth, E. *et al.* Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. *Diabetes* **47**, 815–820 (1998).
- Yu, X. *et al.* Dietary taurine supplementation ameliorates diabetic retinopathy via antiexcitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. *Neurochem. Res.* 33, 500–507 (2008).
- 49. Yu, X. *et al.* Time-dependent reduction of glutamine synthetase in retina of diabetic rats. *Exp. Eye Res.* **89**, 967–971 (2009).
- 50. Zeng, K. *et al.* Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. *Neurochem. Res.* **34**, 244–254 (2009).
- 51. Ehinger, B. Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. *Exp. Eye Res.* **25**, 221–234 (1977).
- 52. Zeng, K. *et al.* Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. *Mol. Cell. Neurosci.* **45**, 192–199 (2010).
- 53. Dyer, M. A. & Cepko, C. L. Control of Müller glial cell proliferation and activation following retinal injury. *Nat. Neurosci.* **3**, 873–880 (2000).
- 54. Tout, S., Chan-Ling, T., Holländer, H. & Stone, J. The role of Müller cells in the formation of the blood-retinal barrier. *Neuroscience* **55**, 291–301 (1993).
- 55. Barber, A. J., Antonetti, D. A. & Gardner, T. W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. *Invest. Ophthalmol. Vis. Sci.* **41**, 3561–3568 (2000).
- Le, Y.-Z. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. *Vision Res.* 139, 108–114 (2017).

- 57. Limongi, D. & Baldelli, S. Redox Imbalance and Viral Infections in Neurodegenerative Diseases. *Oxid. Med. Cell. Longev.* **2016**, 6547248 (2016).
- Groeger, G., Mackey, A. M., Pettigrew, C. A., Bhatt, L. & Cotter, T. G. Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. *J. Neurochem.* 109, 1544–1554 (2009).
- 59. Kamiya, T., Courtney, M. & Laukkanen, M. O. Redox-Activated Signal Transduction Pathways Mediating Cellular Functions in Inflammation, Differentiation, Degeneration, Transformation, and Death. *Oxid. Med. Cell. Longev.* **2016**, 8479718 (2016).
- Madsen-Bouterse, S. A. & Kowluru, R. A. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. *Rev. Endocr. Metab. Disord.* 9, 315–327 (2008).
- 61. Al-Shabrawey, M. *et al.* Role of NADPH oxidase in retinal vascular inflammation. *Invest. Ophthalmol. Vis. Sci.* **49**, 3239–3244 (2008).
- 62. Hernández, C. *et al.* Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. *Diabet. Med. J. Br. Diabet. Assoc.* **22**, 719–722 (2005).
- 63. Adamis, A. P. & Berman, A. J. Immunological mechanisms in the pathogenesis of diabetic retinopathy. *Semin. Immunopathol.* **30**, 65–84 (2008).
- 64. Joussen, A. M. *et al.* A central role for inflammation in the pathogenesis of diabetic retinopathy. *FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.* **18**, 1450–1452 (2004).
- 65. Ripps, H. & Shen, W. Review: taurine: a 'very essential' amino acid. *Mol. Vis.* **18**, 2673–2686 (2012).
- 66. Macaione, S., Ruggeri, P., De Luca, F. & Tucci, G. Free amino acids in developing rat retina. *J. Neurochem.* **22**, 887–891 (1974).
- 67. Huxtable, R. J. Physiological actions of taurine. *Physiol. Rev.* 72, 101–163 (1992).
- 68. Froger, N. *et al.* Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. *Prog. Retin. Eye Res.* **41**, 44–63 (2014).
- 69. Jacobsen, J. G. & Smith, L. H. Biochemistry and physiology of taurine and taurine derivatives. *Physiol. Rev.* **48**, 424–511 (1968).
- 70. Vinnakota, S., Qian, X., Egal, H., Sarthy, V. & Sarkar, H. K. Molecular characterization and in situ localization of a mouse retinal taurine transporter. *J. Neurochem.* **69**, 2238–2250 (1997).
- 71. Hayes, K. C. & Sturman, J. A. Taurine in metabolism. *Annu. Rev. Nutr.* **1**, 401–425 (1981).
- 72. Park, E., Park, S. Y., Cho, I. S., Kim, B. S. & Schuller-Levis, G. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Taurine Distribution in Various Tissues With and Without Taurine Supplementation. *Adv. Exp. Med. Biol.* **975 Pt 1**, 461–474 (2017).
- 73. Yamaguchi, K., Shigehisa, S., Sakakibara, S., Hosokawa, Y. & Ueda, I. Cysteine metabolism in vivo of vitamin B6-deficient rats. *Biochim. Biophys. Acta* **381**, 1–8 (1975).
- 74. Macaione, S., Tucci, G., De Luca, G. & Di Girorgio, R. M. Subcellular distribution of taurine and cysteine sulphinate decarboxylase activity in ox retina. *J. Neurochem.* **27**, 1411–1415 (1976).
- 75. Dominy, J., Eller, S. & Dawson, R. Building biosynthetic schools: reviewing compartmentation of CNS taurine synthesis. *Neurochem. Res.* **29**, 97–103 (2004).
- 76. Anderson, C. M. H., Howard, A., Walters, J. R. F., Ganapathy, V. & Thwaites, D. T. Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl(-)-dependent TauT (SLC6A6). J. Physiol. 587, 731–744 (2009).

- Trachtman, H., Barbour, R., Sturman, J. A. & Finberg, L. Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. *Pediatr. Res.* 23, 35–39 (1988).
- 78. Huxtable, R. J. Taurine in the central nervous system and the mammalian actions of taurine. *Prog. Neurobiol.* **32**, 471–533 (1989).
- 79. Jones, S. M. & Palmer, M. J. Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. *J. Neurophysiol.* **102**, 691–699 (2009).
- 80. Beetsch, J. W. & Olson, J. E. Taurine synthesis and cysteine metabolism in cultured rat astrocytes: effects of hyperosmotic exposure. *Am. J. Physiol.* **274**, C866-874 (1998).
- 81. El-Sherbeny, A. *et al.* Osmoregulation of taurine transporter function and expression in retinal pigment epithelial, ganglion, and müller cells. *Invest. Ophthalmol. Vis. Sci.* **45**, 694–701 (2004).
- 82. Shioda, R., Reinach, P. S., Hisatsune, T. & Miyamoto, Y. Osmosensitive taurine transporter expression and activity in human corneal epithelial cells. *Invest. Ophthalmol. Vis. Sci.* **43**, 2916–2922 (2002).
- 83. Seidel, U., Huebbe, P. & Rimbach, G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. *Mol. Nutr. Food Res.* e1800569 (2018) doi:10.1002/mnfr.201800569.
- 84. Schaffer, S. W., Azuma, J. & Mozaffari, M. Role of antioxidant activity of taurine in diabetes. *Can. J. Physiol. Pharmacol.* **87**, 91–99 (2009).
- Redmond, H. P., Wang, J. H. & Bouchier-Hayes, D. Taurine attenuates nitric oxide- and reactive oxygen intermediate-dependent hepatocyte injury. *Arch. Surg. Chic. Ill* 1960 **131**, 1280–1287; discussion 1287-1288 (1996).
- 86. Cozzi, R. *et al.* Taurine and ellagic acid: two differently-acting natural antioxidants. *Environ. Mol. Mutagen.* **26**, 248–254 (1995).
- 87. Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. *Biochem. J.* **256**, 251–255 (1988).
- 88. Yildirim, Z. *et al.* Effects of taurine in cellular responses to oxidative stress in young and middleaged rat liver. *Ann. N. Y. Acad. Sci.* **1100**, 553–561 (2007).
- Flora, S. J. S., Pande, M., Bhadauria, S. & Kannan, G. M. Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats. *Hum. Exp. Toxicol.* 23, 157–166 (2004).
- Nonaka, H., Tsujino, T., Watari, Y., Emoto, N. & Yokoyama, M. Taurine prevents the decrease in expression and secretion of extracellular superoxide dismutase induced by homocysteine: amelioration of homocysteine-induced endoplasmic reticulum stress by taurine. *Circulation* 104, 1165–1170 (2001).
- 91. Wu, H. et al. Mode of action of taurine as a neuroprotector. Brain Res. 1038, 123–131 (2005).
- 92. El Idrissi, A. & Trenkner, E. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. *J. Neurosci. Off. J. Soc. Neurosci.* **19**, 9459–9468 (1999).
- 93. Wu, S. M. & Maple, B. R. Amino acid neurotransmitters in the retina: a functional overview. *Vision Res.* **38**, 1371–1384 (1998).
- 94. Bulley, S. & Shen, W. Reciprocal regulation between taurine and glutamate response via Ca2+dependent pathways in retinal third-order neurons. *J. Biomed. Sci.* **17 Suppl 1**, S5 (2010).
- 95. Balse, E. *et al.* Glycine receptors in a population of adult mammalian cones. *J. Physiol.* **571**, 391–401 (2006).

- 96. Hayes, K. C., Carey, R. E. & Schmidt, S. Y. Retinal degeneration associated with taurine deficiency in the cat. *Science* **188**, 949–951 (1975).
- 97. Laidlaw, S. A., Shultz, T. D., Cecchino, J. T. & Kopple, J. D. Plasma and urine taurine levels in vegans. *Am. J. Clin. Nutr.* **47**, 660–663 (1988).
- Ament, M. E., Geggel, H. S., Heckenlively, J. R., Martin, D. A. & Kopple, J. Taurine supplementation in infants receiving long-term total parenteral nutrition. *J. Am. Coll. Nutr.* 5, 127–135 (1986).
- 99. Lake, N., Malik, N. & De Marte, L. Taurine depletion leads to loss of rat optic nerve axons. *Vision Res.* **28**, 1071–1076 (1988).
- 100. Aguirre, G. D. Retinal degeneration associated with the feeding of dog foods to cats. *J. Am. Vet. Med. Assoc.* **172**, 791–796 (1978).
- 101. Leon, A., Levick, W. R. & Sarossy, M. G. Lesion topography and new histological features in feline taurine deficiency retinopathy. *Exp. Eye Res.* **61**, 731–741 (1995).
- Schmidt, S. Y., Berson, E. L., Watson, G. & Huang, C. Retinal degeneration in cats fed casein. III. Taurine deficiency and ERG amplitudes. *Invest. Ophthalmol. Vis. Sci.* 16, 673–678 (1977).
- Imaki, H., Moretz, R., Wisniewski, H., Neuringer, M. & Sturman, J. Retinal degeneration in 3month-old rhesus monkey infants fed a taurine-free human infant formula. *J. Neurosci. Res.* 18, 602–614 (1987).
- 104. Lake, N. & Malik, N. Retinal morphology in rats treated with a taurine transport antagonist. *Exp. Eye Res.* **44**, 331–346 (1987).
- 105. Pasantes-Morales, H., Quesada, O., Cárabez, A. & Huxtable, R. J. Effects of the taurine transport antagonist, guanidinoethane sulfonate, and beta-alanine on the morphology of rat retina. J. Neurosci. Res. 9, 135–143 (1983).
- 106. Gaucher, D. *et al.* Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. *Amino Acids* **43**, 1979–1993 (2012).
- 107. Heller-Stilb, B. *et al.* Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. *FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.* **16**, 231–233 (2002).
- 108. García-Ayuso, D. et al. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Exp. Eye Res. 188, 107781 (2019).
- 109. Ruether, K. *et al.* Electrophysiologic evaluation of a patient with peripheral visual field contraction associated with vigabatrin. *Arch. Ophthalmol. Chic. Ill* 1960 **116**, 817–819 (1998).
- 110. Jammoul, F. *et al.* Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. *Mol. Cell. Neurosci.* **43**, 414–421 (2010).
- 111. Ravindran, J., Blumbergs, P., Crompton, J., Pietris, G. & Waddy, H. Visual field loss associated with vigabatrin: pathological correlations. *J. Neurol. Neurosurg. Psychiatry* **70**, 787–789 (2001).
- 112. Froger, N. *et al.* Taurine provides neuroprotection against retinal ganglion cell degeneration. *PloS One* **7**, e42017 (2012).
- Franconi, F. *et al.* Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. *Am. J. Clin. Nutr.* **61**, 1115–1119 (1995).
- 114. Seghieri, G. *et al.* Taurine in women with a history of gestational diabetes. *Diabetes Res. Clin. Pract.* **76**, 187–192 (2007).
- 115. De Luca, G. *et al.* Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. *Metabolism.* **50**, 60–64 (2001).

- 116. Stevens, M. J. *et al.* Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. *Am. J. Physiol.* **277**, E760-771 (1999).
- 117. Malone, J. I., Benford, S. A. & Malone, J. Taurine prevents galactose-induced cataracts. *J. Diabetes Complications* **7**, 44–48 (1993).
- 118. Trachtman, H., Futterweit, S. & Bienkowski, R. S. Taurine prevents glucose-induced lipid peroxidation and increased collagen production in cultured rat mesangial cells. *Biochem. Biophys. Res. Commun.* **191**, 759–765 (1993).
- 119. Harada, N. *et al.* Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats. *Obes. Res.* **12**, 1077–1084 (2004).
- 120. Trachtman, H. *et al.* Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. *Am. J. Physiol.* **269**, F429-438 (1995).
- 121. Elizarova, E. P. & Nedosugova, L. V. First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. *Adv. Exp. Med. Biol.* **403**, 583–588 (1996).
- 122. Chauncey, K. B. *et al.* The effect of taurine supplementation on patients with type 2 diabetes mellitus. *Adv. Exp. Med. Biol.* **526**, 91–96 (2003).
- 123. Moloney, M. A. *et al.* Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. *Diab. Vasc. Dis. Res.* **7**, 300–310 (2010).
- 124. Haber, C. A. *et al.* N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. *Am. J. Physiol. Endocrinol. Metab.* **285**, E744-753 (2003).
- 125. Lampson, W. G., Kramer, J. H. & Schaffer, S. W. Potentiation of the actions of insulin by taurine. *Can. J. Physiol. Pharmacol.* **61**, 457–463 (1983).
- 126. Kim, K. S. *et al.* Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. *Exp. Mol. Med.* **44**, 665–673 (2012).
- 127. Di Leo, M. a. S. *et al.* Long-term taurine supplementation reduces mortality rate in streptozotocin-induced diabetic rats. *Amino Acids* **27**, 187–191 (2004).
- Brøns, C., Spohr, C., Storgaard, H., Dyerberg, J. & Vaag, A. Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. *Eur. J. Clin. Nutr.* 58, 1239–1247 (2004).
- 129. Das, J. & Sil, P. C. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stressrelated signaling pathways and apoptosis in rats. *Amino Acids* **43**, 1509–1523 (2012).
- 130. Das, J., Vasan, V. & Sil, P. C. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. *Toxicol. Appl. Pharmacol.* **258**, 296–308 (2012).
- Tappia, P. S., Thliveris, J., Xu, Y.-J., Aroutiounova, N. & Dhalla, N. S. Effects of amino acid supplementation on myocardial cell damage and cardiac function in diabetes. *Exp. Clin. Cardiol.* 16, e17-22 (2011).
- 132. Kilic, F., Bhardwaj, R., Caulfeild, J. & Trevithick, J. R. Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity? *Exp. Eye Res.* **69**, 291–300 (1999).
- 133. Enríquez-Pérez, I. A. *et al.* Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck. *Neurosci. Lett.* **655**, 28–34 (2017).

- 134. Martin, P. M., Roon, P., Van Ells, T. K., Ganapathy, V. & Smith, S. B. Death of retinal neurons in streptozotocin-induced diabetic mice. *Invest. Ophthalmol. Vis. Sci.* **45**, 3330–3336 (2004).
- 135. Jagodzinska, J. *et al.* Optical Coherence Tomography: Imaging Mouse Retinal Ganglion Cells In Vivo. *J. Vis. Exp. JoVE* (2017) doi:10.3791/55865.
- 136. Ruhland, E., Bund, C., Outilaft, H., Piotto, M. & Namer, I.-J. A metabolic database for biomedical studies of biopsy specimens by high-resolution magic angle spinning nuclear MR: a qualitative and quantitative tool. *Magn. Reson. Med.* (2019) doi:10.1002/mrm.27696.
- 137. Rakoczy, P. E. *et al.* Enhanced recombinant adeno-associated virus-mediated vascular endothelial growth factor expression in the adult mouse retina: a potential model for diabetic retinopathy. *Diabetes* 52, 857–863 (2003).
- 138. Odetti, P. *et al.* Comparative trial of N-acetyl-cysteine, taurine, and oxerutin on skin and kidney damage in long-term experimental diabetes. *Diabetes* **52**, 499–505 (2003).
- 139. Santos-Silva, J. C. *et al.* Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β , α , and δ -cell masses in genetic obese mice. *Amino Acids* **47**, 1533–1548 (2015).
- 140. Goodman, H. O. & Shihabi, Z. K. Supplemental taurine in diabetic rats: effects on plasma glucose and triglycerides. *Biochem. Med. Metab. Biol.* **43**, 1–9 (1990).
- Ferguson, L. R., Dominguez, J. M., Balaiya, S., Grover, S. & Chalam, K. V. Retinal Thickness Normative Data in Wild-Type Mice Using Customized Miniature SD-OCT. *PloS One* 8, e67265 (2013).
- 142. Park, S.-H. *et al.* Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. *Diabetologia* **46**, 1260–1268 (2003).
- 143. Sohn, E. H. *et al.* Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E2655-2664 (2016).
- 144. Sergeys, J. *et al.* Longitudinal In Vivo Characterization of the Streptozotocin-Induced Diabetic Mouse Model: Focus on Early Inner Retinal Responses. *Invest. Ophthalmol. Vis. Sci.* **60**, 807–822 (2019).
- 145. Francis, A. W., Wanek, J. & Shahidi, M. Assessment of Global and Local Alterations in Retinal Layer Thickness in Ins2 (Akita) Diabetic Mice by Spectral Domain Optical Coherence Tomography. J. Ophthalmol. 2018, 7253498 (2018).
- 146. Yang, Q. *et al.* Retinal Neurodegeneration in db/db Mice at the Early Period of Diabetes. *J. Ophthalmol.* **2015**, (2015).
- Lee, V. K. *et al.* BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. *Diabetologia* 61, 2422– 2432 (2018).
- 148. van Dijk, H. W. *et al.* Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. *Invest. Ophthalmol. Vis. Sci.* **50**, 3404–3409 (2009).
- Tao, Y. *et al.* Systemic taurine treatment provides neuroprotection against retinal photoreceptor degeneration and visual function impairments. *Drug Des. Devel. Ther.* 13, 2689– 2702 (2019).
- 150. Gaucher, D. *et al.* Microglial changes occur without neural cell death in diabetic retinopathy. *Vision Res.* **47**, 612–623 (2007).
- 151. Barber, A. J. *et al.* The Ins2Akita mouse as a model of early retinal complications in diabetes. *Invest. Ophthalmol. Vis. Sci.* **46**, 2210–2218 (2005).

- 152. Shirao, Y. & Kawasaki, K. Electrical responses from diabetic retina. *Prog. Retin. Eye Res.* **17**, 59–76 (1998).
- 153. Caputo, S. *et al.* Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. *Diabetes Care* **13**, 412–418 (1990).
- 154. Holopigian, K., Seiple, W., Lorenzo, M. & Carr, R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. *Invest. Ophthalmol. Vis. Sci.* **33**, 2773–2780 (1992).
- 155. Sergeys, J. *et al.* Longitudinal In Vivo Characterization of the Streptozotocin-Induced Diabetic Mouse Model: Focus on Early Inner Retinal Responses. *Invest. Ophthalmol. Vis. Sci.* **60**, 807–822 (2019).
- 156. Sakai, H., Tani, Y., Shirasawa, E., Shirao, Y. & Kawasaki, K. Development of electroretinographic alterations in streptozotocin-induced diabetes in rats. *Ophthalmic Res.* **27**, 57–63 (1995).
- 157. Shinoda, K. *et al.* Early electroretinographic features of streptozotocin-induced diabetic retinopathy. *Clin. Experiment. Ophthalmol.* **35**, 847–854 (2007).
- 158. Ishikawa, A., Ishiguro, S. & Tamai, M. Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. *Curr. Eye Res.* **15**, 63–71 (1996).

iversité	
de Strasbourg	
	Faculté
	de médecine
DECLARA	TION SUR L'HONNEUR
Document avec signa - à votre mémoire	ture originale devant être joint : de D.E.S. de demande de soutenance de thèse

Ayant été informé(e) qu'en m'appropriant tout ou partie d'une œuvre pour l'intégrer dans mon propre mémoire de spécialité ou dans mon mémoire de thèse de docteur en médecine, je me rendrais coupable d'un délit de contrefaçon au sens de l'article L335-1 et suivants du code de la propriété intellectuelle et que ce délit était constitutif d'une fraude pouvant donner lieu à des poursuites pénales conformément à la loi du 23 décembre 1901 dite de répression des fraudes dans les examens et concours publics,

Ayant été avisé(e) que le président de l'université sera informé de cette tentative de fraude ou de plagiat, afin qu'il saisisse la juridiction disciplinaire compétente,

Ayant été informé(e) qu'en cas de plagiat, la soutenance du mémoire de spécialité et/ou de la thèse de médecine sera alors automatiquement annulée, dans l'attente de la décision que prendra la juridiction disciplinaire de l'université

J'atteste sur l'honneur

Ne pas avoir reproduit dans mes documents tout ou partie d'œuvre(s) déjà existante(s), à l'exception de quelques brèves citations dans le texte, mises entre guillemets et référencées dans la bibliographie de mon mémoire.

<u>A écrire à la main</u>: « J'atteste sur l'honneur avoir connaissance des suites disciplinaires ou pénales que j'encours en cas de déclaration erronée ou incomplète ».

J'atteste sur l'hanneur avoir connaissme des suite, disciplinaires ou penales que j'encours en cas de décloration wonnée ou incomplète.

Signature originale :

Strasbourg, 10 3/5/2020

Photocopie de cette déclaration devant être annexée en dernière page de votre mémoire de D.E.S. ou de Thèse.