UNIVERSITÉ DE STRASBOURG

FACULTÉ DE MÉDECINE, MAÏEUTIQUE ET SCIENCES DE LA SANTÉ

ANNÉE : 2021 N°:182

THÈSE

PRÉSENTÉE POUR LE DIPLÔME D'ÉTAT

DE DOCTEUR EN MÉDECINE

Diplôme d'État

Mention PNEUMOLOGIE

PAR

MIGUERES NICOLAS

Né le 19/11/1992 à Toulouse

Inflammation de type 2 dans l'asthme professionnel dans le cadre de la cohorte E-PHOCAS

Président de thèse : DE BLAY FRÉDÉRIC, Professeur

Directeur de thèse : DE BLAY FRÉDÉRIC, Professeur

UNIVERSITÉ DE STRASBOURG

FACULTÉ DE MÉDECINE, MAÏEUTIQUE ET SCIENCES DE LA SANTÉ

ANNÉE : 2021 N° :182

THÈSE

PRÉSENTÉE POUR LE DIPLÔME D'ÉTAT

DE DOCTEUR EN MÉDECINE

Diplôme d'État

Mention PNEUMOLOGIE

PAR

MIGUERES NICOLAS

Né le 19/11/1992 à Toulouse

Inflammation de type 2 dans l'asthme professionnel dans le cadre de la cohorte E-PHOCAS

Président de thèse : DE BLAY FRÉDÉRIC, Professeur

Directeur de thèse : DE BLAY FRÉDÉRIC, Professeur

FACULTÉ DE MÉDECINE (U.F.R. des Sciences Médicales)

PO218

Président de l'Université M. DENEKEN Michel
 Doyen de la Faculté M. SIBILIA Jean
 Assesseur du Doyen (13.01.10 et 08.02.11) M. GOICHOT Bernard
 Doyens honoraires : (1976-1983) M. DORNER Marc
 (1983-1984) M. MANTZ Jean-Marie
 (1983-1994) M. VINCENDON Guy
 (1994-2001) M. GERLINGER Pierre
 (2001-2011) M. LUDES Bertrand

Chargé de mission auprès du Doyen
 Responsable Administratif
 M. BITSCH Samuel

Edition OCTOBRE 2020 Année universitaire 2020-2021

HOPITAUX UNIVERSITAIRES DE STRASBOURG (HUS) **Directeur général :** M. GALY Michaël

A1 - PROFESSEUR TITULAIRE DU COLLEGE DE FRANCE

MANDEL Jean-Louis Chaire "Génétique humaine" (à compter du 01.11.2003)

A2 - MEMBRE SENIOR A L'INSTITUT UNIVERSITAIRE DE FRANCE (I.U.F.)

BAHRAM Séiamak Immunologie biologique (01.10.2013 au 31.09.2018)
DOLLFUS Hélène Génétique clinique (01.10.2014 au 31.09.2019)

A3 - PROFESSEUR(E)S DES UNIVERSITÉS - PRATICIENS HOSPITALIERS (PU-PH)

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-s	section du Conseil National des Universités
ADAM Philippe P0001	NRPô CS	Pôle de l'Appareil locomoteur Service d'Hospitalisation des Urgences de Traumatologie / HP	50.02	Chirurgie orthopédique et traumatologique
AKLADIOS Cherif P0191	NRPô CS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétriquel/ HP	54.03	Gynécologie-Obstétrique ; gynécologie médicale Option : Gynécologie-Obstétrique
ANDRES Emmanuel P0002	RP6 CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine Interne, Diabète et Maladies métaboliques / HC	53.01	Option : médecine Interne
ANHEIM Mathieu P0003	NRPô NCS	Pôle Tête et Cou-CETD Service de Neurologie / Hōpital de Hautepierre	49.01	Neurologie
ARNAUD Laurent P0186	NRPô NCS	Pôle MIRNED Service de Rhumatologie / Hôpital de Hautepierre	50.01	Rhumatologie
BACHELLIER Philippe P0004	RPô CS	Pôle des Pathologies digestives, hépatiques et de la transplantation Serv. de chirurgie générale, hépatique et endocrinienne et Transplantation / HP	53.02	Chirurgie générale
BAHRAM Seiamak P0005	NRPô CS	Pôle de Biologie Laboratoire d'Immunologie biologique / Nouvel Höpital Civil Institut d'Hématologie et d'Immunologie / Höpital Civil / Faculté	47.03	Immunologie (option biologique)
BALDAUF Jean-Jacques P0006	NRPô NGS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétrique / Hôpital de Hautepierre	54.03	Gynécologie-Obstétrique ; gynécologie médicale Option : Gynécologie-Obstétrique
BAUMERT Thomas P0007	NRPô CS	Pôle Hépato-digestif de l'Hôpital Civil Institut de Recherche sur les Maladies virales et hépatiques / Faculté	52.01	Gastro-entérologie ; hépatologie Option : hépatologie
Mme BEAU-FALLER Michèle M0007 / PO170	NRPô NCS	Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.03	Biologie cellulaire (option biologique)
BEAUJEUX Rémy P0008	NRPô CS	Pôle d'Imagerie - CME / Activités transversales Unité de Neuroradiologie interventionnelle / Hôpital de Hautepierre	43.02	Radiologie et imagerie médicale (option clinique)
BECMEUR François P0009	NRPô NCS	Pôle médico-chirurgical de Pédiatrie Service de Chirurgie Pédiatrique / Hôpital Hautepierre	54.02	Chirurgie infantile
BERNA Fabrice P0192	NRPô CS	Pôle de Psychiatrie, Santé mentale et Addictologie Service de Psychiatrie I / Hôpital Civil	49.03	Psychiatrie d'adultes ; Addictologie Option : Psychiatrie d'Adultes
BERTSCHY Gilles P0013	RPô CS	Pôle de Psychiatrie et de santé mentale Service de Psychiatrie II / Hôpital Civil	49.03	Psychiatrie d'adultes
BIERRY Guillaume P0178	NRPô NCS	Pôle d'Imagerie Service d'Imagerie II - Neuroradiologie-imagerie ostéoarticulaire-Pédiatrie / Hôpital Hautepierre	43.02	Radiologie et Imagerie médicale (option clinique)
BILBAULT Pascal P0014	RPô CS	Pôle d'Urgences / Réanimations médicales / CAP Service des Urgences médico-chirurgicales Adultes / Hôpital de Hautepierre	48.02	Réanimation ; Médecine d'urgence Option : médecine d'urgence
BLANC Frédéric P0213	NRPô NCS	- Pôle de Gériatrie - Service Evaluation - Gériatrie - Hôpital de la Robertsau	53.01	Médecine interne ; addictologie Option : gériatrie et biologie du vieillis- sement
BODIN Frédéric P0187	NRPô NCS	Pôle de Chirurgie Maxillo-faciale, morphologie et Dermatologie Service de Chirurgie Plastique et maxillo-faciale / Hôpital Civil	50.04	Chirurgie Plastique, Reconstructrice et Esthétique ; Brülologie
BONNEMAINS Laurent M0099 / PO215	NRPô NCS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie 1 - Hôpital de Hautepierre	54.01	Pédiatrie
BONNOMET François P0017	NRPô CS	Pôle de l'Appareil locomoteur Service d'Orthopédie-Traumatologie du Membre inférieur / HP	50.02	Chirurgie orthopédique et traumatologique
BOURCIER Tristan P0018	NRPô NCS	Pôle de Spécialités médicales-Ophtalmologie / SMO Service d'Opthalmologie / Nouvel Hôpital Civil	55.02	Ophtalmologie
BOURGIN Patrice P0020	NRPô CS	Pôle Tête et Cou - CETD Service de Neurologie - Unité du Sommeil / Hôpital Civil	49.01	Neurologie
Mme BRIGAND Cécile P0022	NRPô NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP	53.02	Chirurgie générale

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-se	ction du Conseil National des Universités
BRUANT-RODIER Catherine P0023	NRPô CS	Pôle de l'Appareil locomoteur Service de Chirurgie Plastique et Maxillo-faciale / HP	50.04	Option : chirurgie plastique, reconstructrice et esthétique
Mme CAILLARD-OHLMANN Sophie P0171	NRPô NCS	Pôle de Spécialités médicales-Ophtalmologie / SMO Service de Néphrologie-Transplantation / NHC	52.03	Néphrologie
CASTELAIN Vincent P0027	NRPå NCS	Pôle Urgences - Réanimations médicales / Centre antipoison Service de Réanimation médicale / Hôpital Hautepierre	48.02	Réanimation
CHAKFE Nabil P0029	NRPô CS	Pôte d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Vasculaire et de transplantation rénale / NHC	51.04	Chirurgie vasculaire ; médecine vasculaire / Option : chirurgie vasculaire
CHARLES Yann-Philippe M0013 / P0172	NRPô NCS	Pôle de l'Appareil locomoteur Service de Chirurgie du rachis / Chirurgie B / HC	50.02	Chirurgie orthopédique et traumatologique
Mme CHARLOUX Anne P0028	NRPô NCS	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie (option biologique)
Mme CHARPIOT Anne P0030	NRPô NCS	Pôle Tête et Cou - CETD Serv. d'Oto-rhino-laryngologie et de Chirurgie cervico-faciale / HP	55.01	Oto-rhino-laryngologie
Mme CHENARD-NEU Marie-Pierre P0041	NRPô CS	 Pôle de Biologie Service de Pathologie / Höpital de Hautepieπe 	42.03	Anatomie et cytologie pathologiques (option biologique)
CLAVERT Philippe P0044	NRPô CS	Pôle de l'Appareil locomoteur Service d'Orthopédie-Traumatologie du Membre supérieur / HP	42.01	Anatomie (option clinique, orthopédie traumatologique)
COLLANGE Olivier P0193	NRPô NCS	Pôle d'Anesthésie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthésiologie-Réanimation Chirurgicale / NHC	48.01	Anesthésiologie-Réanimation : Médecine d'urgence (option Anesthésio- logie-Réanimation - Type clinique)
CRIBIER Bernard P0045	NRPö CS	Pôle d'Urologie, Morphologie et Dermatologie Service de Dermatologie / Hôpital Civil	50.03	Dermato-Vénéréologie
de BLAY de GAIX Frédéric P0048	RPô CS	Pôle de Pathologie thoracique Service de Pneumologie / Nouvel Hōpital Civil	51.01	Pneumologie
de SEZE Jérôme P0057	NRPô CS	Pôle Tête et Cou - CETD Centre d'investigation Clinique (CIC) - AX5 / Hôpital de Hautepierre	49.01	Neurologie
DEBRY Christian P0049	RP6 CS	 Pôle Tête et Cou - CETD Serv. d'Oto-rhino-laryngologie et de Chirurgie cervico-faciale / HP 	55.01	Oto-rhino-laryngologie
DERUELLE Philippe P0199	RP6 NCS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétrique / Hôpital de Hautepierre	54.03	Gynécologie-Obstětrique; gynécologie médicale: option gynécologie-obstětrique
DIEMUNSCH Pierre P0051	NRPô NGS	Pôle d'Anesthésie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthésie-Réanimation Chirurgicale / Hôpital de Hautepierre	48.01	Anesthésiologie-réanimation (option clinique)
Mme DOLLFUS-WALTMANN Hélène P0054	NRPô CS	Pôle de Biologie Service de Génétique Médicale / Hôpital de Hautepierre	47.04	Génétique (type clinique)
EHLINGER Matthieu P0188	NRPô NCS	Pôle de l'Appareil Locomoteur Service d'Orthopédie-Traumatologie du membre inférieur / Hautepierre	50.02	Chirurgie Orthopédique et Traumatologique
Mme ENTZ-WERLE Natacha P0059	NRPô NCS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie III / Hôpital de Hautepierre	54.01	Pédiatrie
Mme FACCA Sybille P0179	NRPô CS	Pôle de l'Appareil locomoteur Service de Chirurgie de la Main - SOS Main / Hôpital de Hautepierrre	50.02	Chirurgie orthopédique et traumatologique
Mme FAFI-KREMER Samira P0060	NRPô CS	Pôle de Biologie Laboratoire (Institut) de Virologie / PTM HUS et Faculté	45.01	Bactériologie-Virologie ; Hygiène Hospitaliène Option Bactériologie-Virologie biologique
FAITOT François PO216	NRPō NCS	 Pôle de Pathologie digestives, hépatiques et de la transplantation Serv. de chirurgie générale, hépatique et endocrinienne et Transplantation / HP 	53.02	Chirurgie générale
FALCOZ Pierre-Emmanuel P0052	NRPô NCS	Pôle de Pathologie thoracique Service de Chirurgie Thoracique / Nouvel Hōpital Civil	51.03	Chirurgie thoracique et cardio-vasculaire
FORNECKER Luc-Matthieu P0208	NRPô NCS	Pôle d'Oncolo-Hématologie Service d'hématologie / ICANS	47.01	<u>Hématologie</u> ; Transfusion Option : Hématologie
GALLIX Benoit P0214	NCS	IHU - Institut Hospitalo-Universitaire - Hōpital Civil	43.02	Radiologie et imagerie médicale
GANGI Afshin P0062	RPô CS	Pôle d'Imagerie Service d'Imagerie A interventionnelle / Nouvel Hôpital Civil	43.02	Radiologie et imagerie médicale (option clinique)
GAUCHER David P0063	NRPô NGS	Pôle des Spécialités Médicales - Ophtalmologie / SMO Service d'Ophtalmologie / Nouvel Hôpital Civil	55.02	Ophtalmologie
GENY Bernard P0064	NRPô CS	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie (option biologique)
GEORG Yannick P0200	NRPå NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire - Service de Chirurgie Vasculaire et de transplantation rénale / NHC	51.04	Chirurgie vasculaire ; médecine vasculaire / Option : chirurgie vasculaire
GICQUEL Philippe P0065	NRPô CS	Pôle médico-chirurgical de Pédiatrie Service de Chirurgie Pédiatrique / Hôpital Hautepierre	54.02	Chirurgie infantile
GOICHOT Bernard P0066	NRPô CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine interne et de nutrition / HP	54.04	Endocrinologie, diabète et maladie métaboliques
Mme GONZALEZ Maria P0067	NRPô CS	Pôte de Santé publique et santé au travail Service de Pathologie Professionnelle et Médecine du Travail / HC	46.02	Médecine et santé au travail Travail
GOTTENBERG Jacques-Eric P0068	NRPô	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Physiotologie (Mirote) Policie de Physiotologie (Marietal Hautoniore)	50.01	Rhumatologie
	CS	- Service de Rhumatologie / Hôpital Hautepierre		

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-se	ction du Conseil National des Universités
HANNEDOUCHE Thierry P0071	NRPô CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Néphrologie - Dialyse / Nouvel Hôpital Civil	52.03	Néphrologie
HANSMANN Yves P0072	RP6 NCS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service des Maladies infectieuses et tropicales / Nouvel Hôpital Civil	45.03	Option : Maladies infectieuses
Mme HELMS Julie M0114 / P0209	NRPô NCS	Pôle Urgences - Réanimations médicales / Centre antipoison Service de Réanimation Médicale / Nouvel Hôpital Civil	48.02	Médecine Intensive-Réanimation
HERBRECHT Raoul P0074	NRPô CS	Pôle d'Oncolo-Hématologie Service d'hématologie / ICANS	47.01	Hématologie ; Transfusion
HIRSCH Edouard P0075	NRPô NCS	Pôle Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
IMPERIALE Alessio P0194	NRPō NCS	Pôle d'Imagerie Service de Médecine Nucléaire et Imagerie Moléculaire / ICANS	43.01	Biophysique et médecine nucléaire
ISNER-HOROBETI Marie-Eve P0189	RPô CS	Pôle de Médecine Physique et de Réadaptation Institut Universitaire de Réadaptation / Clémenceau	49.05	Médecine Physique et Réadaptation
JAULHAC Benoît P0078	NRPô CS	Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté de Méd.	45.01	Option : <u>Bactériologie</u> -virologie (biolo- gique)
Mme JEANDIDIER Nathalie P0079	NRPô CS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service d'Endocrinologie, diabète et nutrition / HC	54.04	Endocrinologie, diabète et maladies métaboliques
Mme JESEL-MOREL Laurence P0201	NRPö NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
KALTENBACH Georges P0081	RPô CS	Pôle de Gériatrie Service de Médecine Interne - Gériatrie / Hôpital de la Robertsau Secteur Evaluation - Gériatrie / Hôpital de la Robertsau	53.01	Option : gériatrie et biologie du vieillis- sement
Mme KESSLER Laurence P0084	NRP6 NCS	Pôle de Mêdecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service d'Endocrinologie, Diabète, Nutrition et Addictologie / Méd. B / HC	54.04	Endocrinologie, diabète et maladies métaboliques
KESSLER Romain P0085	NRPô NCS	Pôle de Pathologie thoracique Service de Pneumologie / Nouvel Hôpital Clvil	51.01	Pneumologie
KINDO Michel P0195	NRPô NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Cardio-vasculaire / Nouvel Hôpital Civil	51.03	Chirurgie thoracique et cardio-vasculaire
Mme KORGANOW Anne- Sophie P0087	NRPô CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Médecine Interne et d'Immunologie Clinique / NHC	47.03	Immunologie (option clinique)
KREMER Stéphane M0038 / P0174	NRPô CS	Pôle d'Imagerie Service Imagerie II - Neuroradio Ostéoarticulaire - Pédiatrie / HP	43.02	Radiologie et imagerie médicale (option clinique)
KUHN Pierre P0175	NRPô CS	Pôle médico-chirurgical de Pédiatrie Service de Néonatologie et Réanimation néonatale (Pédiatrie II) / HP	54.01	Pédiatrie
KURTZ Jean-Emmanuel P0089	RP6 NCS	Pôle d'Onco-Hématologie Service d'hématologie / ICANS	47.02	Option : Cancérologie (clinique)
Mme LALANNE-TONGIO Laurence P0202	NRPô CS	Pôle de Psychiatrie, Santé mentale et Addictologie Service de Psychiatrie I / Hôpital Civil	49.03	Psychiatrie d'adultes ; <u>Addictologie</u> (Option : Addictologie)
LANG Hervé P0090	NRPô NCS	Pôle de Chirurgie plastique reconstructrice et esthétique, Chirurgie maxillo- faciale, Morphologie et Dermatologie Service de Chirurgie Urologique / Nouvel Hôpital Civil	52.04	Urologie
LAUGEL Vincent	RPô CS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie 1 / Hôpital Hautepierre	54.01	Pédiatrie
Mme LEJAY Anne M0102 / PO217	NRPô NCS	Pôle d'activité médico-chirurgicale cardiovasculaire Service de Chirurgie vasculaire et de Tranplantation rénale / NHC	51.04	Option : Chirurgie vasculaire
LE MINOR Jean-Marie P0190	NRPô NCS	Pôle d'Imagerie Institut d'Anatomie Normale / Faculté de Médecine Service de Neuroradiologie, d'imagerie Ostéoarticulaire et interventionnelle/ Hôpital de Hautepierre	42.01	Anatomie
LESSINGER Jean-Marc P0	RPô CS	Pôle de Biologie Laboratoire de Biochimie générale et spécialisée / LBGS / NHC Laboratoire de Biochimie et de Biologie moléculaire / Hôp, de Hautepierre	82.00	Sciences Biologiques de Pharmacie
LIPSKER Dan P0093	NRPô NCS	Pôle de Chirurgie plastique reconstructrice et esthétique, Chirurgie maxillo- faciale, Morphologie et Dermatologie Service de Dermatologie / Hôpital Civil	50.03	Dermato-vénéréologie
LIVERNEAUX Philippe P0094	RPô NCS	Pôle de l'Appareil locomoteur Service de Chirurgie de la Main - SOS Main / Hōpital de Hautepierre	50.02	Chirurgie orthopédique et traumatologique
MALOUF Gabriel P0203	NRPô NCS	Pôle d'Onco-hématologie Service d'Oncologie médicale / ICANS	47.02	Cancérologie ; Radiothérapie Option : Cancérologie
MARK Manuel P0098	NRPô NCS	Pôle de Biologie Département Génomique fonctionnelle et cancer / IGBMC	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
MARTIN Thierry P0099	NRPô NCS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Médecine Interne et d'Immunologie Clinique / NHC	47.03	Immunologie (option clinique)
Mme MASCAUX Céline P0210	NRPô NCS	Pôle de Pathologie thoracique Service de Pneumologie / Nouvel Hôpital Civil	51.01	Pneumologie ; Addictologie
	NRPô	Pôle de Gynécologie-Obstétrique		Gynécologie-Obstétrique ; Gynécologie Médicale

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sour-re	ction du Conseil National des Universités
MAUVIEUX Laurent	NRPô	Pôle d'Onco-Hématologie	47.01	Hématologie ; Transfusion
P0102	CS	- Laboratoire d'Hématologie Biologique - Hōpital de Hautepierre - Institut d'Hématologie / Faculté de Médecine	47.01	Option Hématologie Biologique
MAZZUCOTELLI Jean-Philippe P0103	NRPô CS	 Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie Cardio-vasculaire / Nouvel Hôpital Civil 	51.03	Chirurgie thoracique et cardio-vasculaire
MERTES Paul-Michel P0104	RPô CS	Pôle d'Anesthésiologie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthésiologie-Réanimation chirurgicale / Nouvel Hôpital Civil	48.01	Option : Anesthésiologie-Réanimation (type mixte)
MEYER Nicolas P0105	NRPô NCS	Pôle de Santé publique et Santé au travail Laboratoire de Biostatistiques / Hôpital Civil Biostatistiques et Informatique / Faculté de médecine / Hôpital Civil	46.04	Biostatistiques, Informatique Médicale et Technologies de Communication (option biologique)
MEZIANI Ferhat P0106	NRPô CS	Pôle Urgences - Réanimations médicales / Centre antipoison Service de Réanimation Médicale / Nouvel Hôpital Civil	48.02	Réanimation
MONASSIER Laurent P0107	NRPô CS	Pôle de Pharmacie-pharmacologie Labo, de Neurobiologie et Pharmacologie cardio-vasculaire- EA7295 / Fac	48.03	Option : Pharmacologie fondamentale
MOREL Olivier P0108	NRPô NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
MOULIN Bruno P0109	NRPå CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Néphrologie - Transplantation / Nouvel Hōpital Civil	52.03	Néphrologie
MUTTER Didier P0111	RPô NCS	Pôle Hépato-digestif de l'Hôpital Civil Service de Chirurgie Viscérale et Digestive / NHC	52.02	Chirurgie digestive
NAMER Izzie Jacques P0112	NRPō CS	Pôle d'Imagerie Service de Médecine Nucléaire et Imagerie Moléculaire / ICANS	43.01	Biophysique et médecine nucléaire
NOEL Georges P0114	NRPö NCS	Pôle d'Imagerie Service de radiothérapie / ICANS	47.02	Cancérologie ; Radiothérapie Option Radiothérapie biologique
NOLL Eric M0111 / PO218	NRPô NCS	Pôle d'Anesthésie Réanimation Chirurgicale SAMU-SMUR Service Anesthésiologie et de Réanimation Chirurgicale - HP	48.01	Anesthésiologie-Réanimation
OHANA Mickael P0211	NRPô NCS	Pôle d'Imagerie Serv. d'Imagerie B - Imagerie viscérale et cardio-vasculaire / NHC	43.02	Radiologie et imagerie médicale (option clinique)
OHLMANN Patrick	RP6 CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
Mme OLLAND Anne P0204	NRPô NCS	Pôle de Pathologie Thoracique Service de Chirurgie thoracique / Nouvel Hōpital Civil	51.03	Chirurgie thoracique et cardio-vasculaire
Mme PAILLARD Catherine	NRPô CS	Pôle médico-chirurgicale de Pédiatrie Service de Pédiatrie III / Hôpital de Hautepierre	54.01	Pédiatrie
PELACCIA Thierry P0205	NRPô NCS	Pôle d'Anesthésie / Réanimation chirurgicales / SAMU-SMUR Centre de formation et de recherche en pédagogie des sciences de la santé / Faculté	48.05	Réanimation ; <u>Médecine d'urgence</u> Option : Médecine d'urgences
Mme PERRETTA Silvana P0117	NRPô NCS	Pôle Hépato-digestif de l'Hôpital Civil Service de Chirurgie Viscérale et Digestive / Nouvel Hôpital Civil	52.02	Chirurgie digestive
PESSAUX Patrick P0118	NRPô CS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie Viscérale et Digestive / Nouvel Hôpital Civil	52.02	Chirurgie Digestive
PETIT Thierry P0119	CDp	ICANS Département de mêdecine oncologique	47.02	Cancérologie ; Radiothérapie Option : Cancérologie Clinique
PIVOT Xavier P0206	NRPô NCS	ICANS Département de médecine oncologique	47.02	Cancérologie ; Radiothérapie Option : Cancérologie Clinique
POTTECHER Julien P0181	NRPô CS	Pôle d'Anesthésie / Réanimations chirurgicales / SAMU-SMUR Service d'Anesthésie et de Réanimation Chirurgicale / Hôpital de Hautepierre	48.01	Anesthésiologie-réanimation ; Médecine d'urgence (option clinique)
PRADIGNAC Alain P0123	NRPō NCS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine interne et nutrition / HP	44.04	Nutrition
PROUST François P0182	NRPô CS	Pôle Tête et Cou Service de Neurochirurgie / Hôpital de Hautepierre	49.02	Neurochirurgie
Pr RAUL Jean-Sébastien P0125	NRPå CS	Pôle de Biologie Service de Médecine Légale, Consultation d'Urgences médico-judiciaires et Laboratoire de Toxicologie / Faculté et NHC Institut de Médecine Légale / Faculté de Médecine	46.03	Médecine Légale et droit de la santé
REIMUND Jean-Marie P0126	NRPô NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service d'Hépato-Gastro-Entérologie et d'Assistance Nutritive / HP	52.01	Option : Gastro-entérologie
Pr RICCI Roméo P0127	NRPô NCS	Pôle de Biologie Département Biologie du développement et cellules souches / IGBMC	44.01	Biochimie et biologie moléculaire
ROHR Serge P0128	NRPô CS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP	53.02	Chirurgie générale
Mme ROSSIGNOL-BERNARD Sylvie PO196	NRPô NCS	Pôle médico-chirurgical de Pédiatrie Service de Pédiatrie I / Hôpital de Hautepierre	54.01	Pédiatrie
ROUL Gérald P0129	NRPô NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Cardiologie / Nouvel Hôpital Civil	51.02	Cardiologie
Mme ROY Catherine	NRPô	Pôle d'Imagerie	43.02	Radiologie et imagerie médicale (opt clinique)

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-se	ction du Conseil National des Universités
SANANES Nicolas P0212	NRPô NCS	Pôle de Gynécologie-Obstétrique Service de Gynécologie-Obstétriquel/ HP	54.03	Gynécologie-Obstétrique ; gynécologie médicale Option : Gynécologie-Obstétrique
SAUER Arnaud P0183	NRPō NCS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service d'Ophtalmologie / Nouvel Hôpital Civil	55.02	Ophtalmologie
SAULEAU Erik-André P0184	NRPô NCS	Pôle de Santé publique et Santé au travail Service de Santé Publique / Hôpital Civil Biostatistiques et Informatique / Faculté de médecine / HC	46.04	Biostatiques, Informatique médicale et Technologies de Communication (option biologique)
SAUSSINE Christian P0143	RP6 CS	Pôle d'Urologie, Morphologie et Dermatologie Service de Chirurgie Urologique / Nouvel Hôpital Civil	52.04	Urologie
Mme SCHATZ Claude P0147	NRPô CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service d'Ophtalmologie / Nouvel Hôpital Civil	55.02	Ophtalmologie
SCHNEIDER Francis P0144	NRPô CS	Pôle Urgences - Réanimations médicales / Centre antipoison - Service de Réanimation médicale / Hôpital de Hautepierre	48.02	Réanimation
Mme SCHRÖDER Carmen P0185	NRPō CS	Pôle de Psychiatrie et de santé mentale Service de Psychothérapie pour Enfants et Adolescents / Hôpital Civil	49.04	Pédopsychiatrie ; Addictologie
SCHULTZ Philippe P0145	NRPô NCS	Pôle Tête et Cou - CETD Serv. d'Oto-rhino-laryngologie et de Chirurgie cervico-faciale / HP	55.01	Oto-rhino-laryngologie
SERFATY Lawrence P0197	NRP6 CS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service d'Hépato-Gastro-Entérologie et d'Assistance Nutritive / HP	52.01	Gastro-entérologie ; Hépatologie ; Addictologie Option : Hépatologie
SIBILIA Jean P0146	NRP6 NCS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Rhumatologie / Hôpital Hautepierre	50.01	Rhumatologie
STEIB Jean-Paul P0149	NRPô CS	Pôle de l'Appareil locomoteur Service de Chirurgie du rachis / Hōpital de Hautepierre	50.02	Chirurgie orthopédique et traumatologique
STEPHAN Dominique P0150	NRPô CS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service des Maladies vasculaires - HTA - Pharmacologie clinique / NHC	51.04	Option : Médecine vasculaire
THAVEAU Fabien P0152	NRPô NCS	Pôle d'activité médico-chirurgicale Cardio-vasculaire Service de Chirurgie vasculaire et de transplantation rénale / NHC	51.04	Option : Chirurgie vasculaire
Mme TRANCHANT Christine P0153	NRPô CS	Pôle Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
VEILLON Francis P0155	NRPö CS	Pôle d'Imagerie Service d'Imagerie 1 - Imagerie viscérale, ORL et mammaire / HP	43.02	Radiologie et imagerie médicale (option clinique)
VELTEN Michel P0156	NRPô NCS	 Pôle de Santé publique et Santé au travail Département de Santé Publique / Secteur 3 - Epidémiologie et Economie de la Santé / Hôpital Civil Laboratoire d'Epidémiologie et de santé publique / HC / Fac de Médecine 	46.01	Epidémiologie, économie de la santé et prévention (option biologique)
VETTER Denis P0157	NRPô NCS	Pôle de Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, Diabétologie (MIRNED) Service de Médecine Interne, Diabète et Maladies métaboliques/HC	52.01	Option : Gastro-entérologie
VIDAILHET Pierre P0158	NRPô CS	Pôle de Psychiatrie et de santé mentale Service de Psychiatrie I / Hôpital Civil	49.03	Psychiatrie d'adultes
VIVILLE Stéphane P0159	NRPô NCS	Pôle de Biologie Laboratoire de Parasitologie et de Pathologies tropicales / Fac. de Médecine	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
VOGEL Thomas P0160	NRPô CS	Pôle de Génatrie Service de soins de suite et réadaptation gériatrique / Hôpital de la Robertsau	51.01	Option : Gériatrie et biologie du vieillissement
WEBER Jean-Christophe Pierre P0162	NRP6 CS	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Médecine Interne / Nouvel Hôpital Civil	53.01	Option : Médecine Interne
WOLF Philippe P0207	NRPô NCS	Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie Générale et de Transplantations multiorganes / HP Coordonnateur des activités de prélèvements et transplantations des HU	53.02	Chirurgie générale
Mme WOLFF Valérie P0001	NRPô CS	Pôle Tête et Cou - Unité Neurovasculaire / Hôpital de Hautepierre	49.01	Neurologie

HC: Hôpital Civil - HP: Hôpital de Hautepierre - NHC: Nouvel Hôpital Civil

*: CS (Chef de service) ou NCS (Non Chef de service hospitalier)

CSpi: Chef de service par intérim

CSp: Chef de service provisoire (un an)

CU: Chef d'unité fonctionnelle

RPô (Responsable de Pôle)

Cons: Consultanat hospitalier (poursuite des fonctions hospitalières sans chefferie de service)

Dir: Directeur

(1) En sumombre universitaire jusqu'au 31.08.2018

(3)

(5) En sumombre universitaire jusqu'au 31.08.2019

(8) Consultant hospitalier (pour un an) éventuellement renouvelable -> 31.08.2017

(9) Consultant hospitalier (pour une 2ème année) -> 31.08.2017 (7) Consultant hospitalier (pour un an) éventuellement renouvelable -> 31.08.2017 (8) Consultant hospitalier (pour une 2ème année) --> 31.08.2017 (9) Consultant hospitalier (pour une 3ème année) --> 31.08.2017

A4 - PROFESSEUR ASSOCIE DES UNIVERSITES

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-	section du Conseil National des Universités
CALVEL Laurent	NRP6 CS	Pôle Spécialités médicales - Ophtalmologie / SMO Service de Soins palliatifs / NHC	46.05	Médecine palliative
HABERSETZER François	CS	Pôle Hépato-digestif Service de Gastro-Entérologie - NHC	52.01	Gastro-Entérologie
MIYAZAKI Toru		Pôle de Biologie Laboratoire d'Immunologie Biologique / HC		
SALVAT Eric	CS	Pôle Tête-Cou Centre d'Evaluation et de Traitement de la Douleur / HP		

MO135 B1 - MAITRES DE CONFERENCES DES UNIVERSITES - PRATICIENS HOSPITALIERS (MCU-PH)

AGIN Arnaud	 Pôle d'Imagerie Service de Médecine nucléaire et Imagerie Moléculaire / ICANS 	43.01	Biophysique et Médecine nucléaire
Mme ANTAL Maria Cristina M0003	Pôle de Biologie Service de Pathologie / Hautepierre Institut d'Histologie / Faculté de Médecine	42.02	Histologie, Embryologie et Cytogénétique (option biologique)
Mme ANTONI Delphine M0109	Pôle d'Imagerie Service de Radiothérapie / ICANS	47.02	Cancérologie ; Radiothérapie
Mme AYME-DIETRICH Estelle M0117	Pôle de Parmacologie Unité de Pharmacologie clinique / Faculté de Médecine	48.03	Pharmacologie fondamentale; pharmacologie clinique; addictologie Option: pharmacologie fondamentale
Mme BIANCALANA Valérie M0008	Pôle de Biologie Laboratoire de Diagnostic Génétique / Nouvel Höpital Civil	47.04	Génétique (option biologique)
BLÖNDET Cyrille M0091	Pôle d'Imagerie Service de Médecine nucléaire et Imagerie Moléculaire / ICANS	43.01	Biophysique et médecine nucléaire (option clinique)
BOUSIGES Olivier M0092	Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.01	Biochimie et biologie moléculaire
Mme BUND Caroline MO129	Pôle d'Imagerie Service de médecine nucléaire et imagerie moléculaire / ICANS	43.01	Biophysique et médecine nucléaire
CARAPITO Raphaël M0113	Pôle de Biologie Laboratoire d'Immunologie biologique / Nouvel Hôpital Civil	47.03	Immunologie
CAZZATO Roberto M0118	Pôle d'Imagerie Service d'Imagerie A interventionnelle / NHC	43.02	Radiologie et imagerie médicale (option clinique)
Mme CEBULA Hélène M0124	Pôle Tête-Cou Service de Neurochirurgie / HP	49.02	Neurochirurgie
CERALINE Jocelyn M0012	Pôle de Biologie Département de Biologie structurale Intégrative / IGBMC	47.02	Cancérologie ; Radiothérapie (option biologique)
CHOQUET Philippe M0014	Pôle d'Imagerie UF6237 - Imagerie Préclinique / HP	43.01	Biophysique et médecine nucléaire
COLLONGUES Nicolas M0016	Pôle Tête et Cou-CETD Centre d'investigation Clinique / NHC et HP	49.01	Neurologie
DALI-YOUCEF Ahmed Nassim M0017	Pôle de Biologie Laboratoire de Biochimie et Biologie moléculaire / NHC	44.01	Biochimie et biologie moléculaire
DELHORME Jean-Baptiste MO130	 Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP 	53.02	Chirurgie générale
DEVYS Didier M0019	Pôle de Biologie Laboratoire de Diagnostic génétique / Nouvel Hôpital Civil	47.04	Génétique (option biologique)
Mme DINKELACKER Véra M0131	Pôle Tête et Cou - CETD Service de Neurologie / Hôpital de Hautepierre	49.01	Neurologie
DOLLÉ Pascal M0021	Pôle de Biologie Laboratoire de Biochimie et biologie moléculaire / NHC	44.01	Biochimie et biologie moléculaire
Mme ENACHE Irina M0024	Pôle de Pathologie thoracique Service de Physiologie et d'Explorations fonctionnelles / IGBMC	44.02	Physiologie
Mme FARRUGIA-JACAMON Audrey M0034	Pôle de Biologie Service de Médecine Légale, Consultation d'Urgences médico-judiciaires et Laboratoire de Toxicologie / Faculté et HC Institut de Médecine Légale / Faculté de Médecine	46.03	Médecine Légale et droit de la santé
FILISETTI Denis CS M0025	Pôle de Biologie Labo. de Parasitologie et de Mycologie médicale / PTM HUS et Faculté	45.02	Parasitologie et mycologie (option bio- logique)
FOUCHER Jack M0027	Institut de Physiologie / Faculté de Médecine Pôle de Psychiatrie et de santé mentale Service de Psychiatrie I / Hôpital Civil	44.02	Physiologie (option clinique)
GANTNER Pierre MO132	Pôle de Biologie Laboratoire (Institut) de Virologie / PTM HUS et Faculté	45.01	Bactériologie-Virologie ; Hygiène Hospitalière Option Bactériologie-Virologie biologique
GRILLON Antoine MO133	Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté de Méd.	45.01	Option : Bactériologie (biologique)
GUERIN Eric M0032	Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.03	Biologie cellulaire (option biologique)
GUFFROY Aurélien M0125	Pôle de Spécialités médicales - Ophtalmologie / SMO Service de Médecine interne et d'Immunologie clinique / NHC	47.03	Immunologie (option clinique)
Mme HARSAN-RASTEI Laura M0119	Pôle d'Imagerie Service de Médecine Nucléaire et Imagerie Moléculaire / ICANS	43.01	Biophysique et médecine nucléaire
HUBELE Fabrice M0033	Pôle d'Imagerie Service de Médecine nucléaire et Imagerie Moléculaire / ICANS Service de Biophysique et de Médecine Nucléaire / NHC	43.01	Biophysique et médecine nucléaire
JEHL François M0035	Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : <u>Bactériologie</u> -virologie (biolo- gique)
KASTNER Philippe M0089	Pôle de Biologie Département Génomique fonctionnelle et cancer / IGBMC	47.04	Génétique (option biologique)
			1 27

		8		
NOM et Prénoms	cs*		Sous-s	ection du Conseil National des Universités
Mme KEMMEL Véronique M0036		 Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP 	44.01	Biochimie et biologie moléculaire
KOCH Guillaume M0126		- Institut d'Anatomie Normale / Faculté de Médecine	42.01	Anatomie (Option clinique)
Mme KRASNY-PACINI Agata M0134		Pôle de Médecine Physique et de Réadaptation Institut Universitaire de Réadaptation / Clémenceau	49.05	Médecine Physique et Réadaptation
Mme LAMOUR Valérie M0040		Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.01	Biochimie et biologie moléculaire
Mme LANNES Béatrice M0041		 Institut d'Histologie / Faculté de Médecine Pôle de Biologie Service de Pathologie / Hôpital de Hautepierre 	42.02	Histologie, Embryologie et Cytogénétique (option biologique)
LAVAUX Thomas M0042		Pôle de Biologie Laboratoire de Biochimie et de Biologie moléculaire / HP	44.03	Biologie cellulaire
LENORMAND Cédric M0103		 Pôle de Chirurgie maxillo-faciale, Morphologie et Dermatologie Service de Dermatologie / Hôpital Civil 	50.03	Dermato-Vénéréologie
Mme LETSCHER-BRU Valérie M0045		Pôle de Biologie Laboratoire de Parasitologie et de Mycologie médicale / PTM HUS Institut de Parasitologie / Faculté de Médecine	45.02	Parasitologie et mycologie (option biologique)
LHERMITTE Benoît M0115		Pôle de Biologie Service de Pathologie / Hôpital de Hautepierre	42.03	Anatomie et cytologie pathologiques
LUTZ Jean-Christophe M0046		Pôle de Chirurgie plastique reconstructrice et esthétique, Chirurgie maxillo- faciale, Morphologie et Dermatologie Service de Chirurgie Plastique et Maxillo-faciale / Hôpital Civil	55.03	Chirurgie maxillo-faciale et stomatologie
MEYER Alain M0093		Institut de Physiologie / Faculté de Médecine Pôle de Pathologie thoracique		
		- Service de Physiologie et d'Explorations fonctionnelles / NHC	44.02	Physiologie (option biologique)
MIGUET Laurent M0047		 Pôle de Biologie Laboratoire d'Hématologie biologique / Hôpital de Hautepierre et NHC 	44.03	Biologie cellulaire (type mixte : biologique)
Mme MOUTOU Céline ép. GUNTHNER M0049	cs	Pôle de Biologie Laboratoire de Diagnostic préimplantatoire / CMCO Schiltigheim	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
MULLER Jean M0050		Pôle de Biologie Laboratoire de Diagnostic génétique / Nouvel Hôpital Civil	47.04	Génétique (option biologique)
Mme NICOLAE Alina M0127		Pôle de Biologie Service de Pathologie / Hôpital de Hautepierre	42.03	Anatomie et Cytologie Pathologiques (Option Clinique)
Mme NOURRY Nathalie M0011		Pôle de Santé publique et Santé au travail Service de Pathologie professionnelle et de Médecine du travail - HC	46.02	Médecine et Santé au Travail (option clinique)
PENCREAC'H Erwan M0052		 Pôle de Biologie Laboratoire de Biochimie et biologie moléculaire / Nouvel H	44.01	Biochimie et biologie moléculaire
PFAFF Alexander M0053		Pôle de Biologie Laboratoire de Parasitologie et de Mycologie médicale / PTM HUS	45.02	Parasitologie et mycologie
Mme PITON Amélie M0094		Pôle de Biologie Laboratoire de Diagnostic génétique / NHC	47.04	Génétique (option biologique)
Mme PORTER Louise MO135		Pôle de Biologie Service de Génétique Médicale / Hôpital de Hautepierre	47.04	Génétique (type clinique)
PREVOST Gilles M0057		Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : Bactériologie-virologie (biolo- gique)
Mme RADOSAVLJEVIC Mirjana M0058		Pôle de Biologie Laboratoire d'Immunologie biologique / Nouvel Hôpital Civil	47.03	Immunologie (option biologique)
Mme REIX Nathalie M0095		Pôle de Biologie Laboratoire de Biochimie et Biologie moléculaire / NHC Service de Chirurgie / ICANS	43.01	Biophysique et médecine nucléaire
ROGUE Patrick (cf. A2) M0060		Pôle de Biologie Laboratoire de Biochimie Générale et Spécialisée / NHC	44.01	Biochimie et biologie moléculaire (option biologique)
Mme ROLLAND Delphine M0121		Pôle de Biologie Laboratoire d'Hématologie biologique / Hautepierre	47.01	Hématologie ; transfusion (type mixte : Hématologie)
ROMAIN Benoît M0061		Pôle des Pathologies digestives, hépatiques et de la transplantation Service de Chirurgie générale et Digestive / HP	53.02	Chirurgie générale
Mme RUPPERT Elisabeth M0106		Pôle Tête et Cou Service de Neurologie - Unité de Pathologie du Sommeil / Hôpital Civil	49.01	Neurologie
Mme SABOU Alina M0096		Pôle de Biologie Laboratoire de Parasitologie et de Mycologie médicale / PTM HUS Institut de Parasitologie / Faculté de Médecine	45.02	Parasitologie et mycologie (option biologique)
Mme SCHEIDECKER Sophie M0122		Pôle de Biologie Laboratoire de Diagnostic génétique / Nouvel Hôpital Civil	47.04	Génétique
SCHRAMM Frédéric M0068		Pôle de Biologie Institut (Laboratoire) de Bactériologie / PTM HUS et Faculté	45.01	Option : Bactériologie-virologie (biolo- gique)
				24 - No. 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18

9

NOM et Prénoms	CS*	Services Hospitaliers ou Institut / Localisation	Sous-s	ection du Conseil National des Universités
Mme SOLIS Morgane M0123		e Biologie atoire de Virologie / Hôpital de Hautepierre	45.01	Bactériologie-Virologie ; hygiène hospitalière Option : Bactériologie-Virologie
Mme SORDET Christelle M0069	Diabét	e Médecine Interne, Rhumatologie, Nutrition, Endocrinologie, ologie (MIRNED) e de Rhumatologie / Hōpital de Hautepierre	50.01	Rhumatologie
TALHA Samy M0070		e Pathologie thoracique e de Physiologie et explorations fonctionnelles / NHC	44.02	Physiologie (option clinique)
Mme TALON Isabelle M0039		nédico-chirurgical de Pédiatrie e de Chirurgie Pédiatrique / Hôpital Hautepierre	54.02	Chirurgie infantile
TELETIN Marius M0071		e Biologie e de Biologie de la Reproduction / CMCO Schiltigheim	54.05	Biologie et médecine du développement et de la reproduction (option biologique)
VALLAT Laurent M0074		e Biologie atoire d'Immunologie Biologique - Hôpital de Hautepierre	47.01	Hématologie ; Transfusion Option Hématologie Biologique
Mme VELAY-RUSCH Aurélie M0128		e Biologie atoire de Virologie / Hôpital Civil	45.01	Bactériologie-Virologie ; Hygiène Hospitalière Option Bactériologie-Virologie biologique
Mme VILLARD Odile M0076		e Biologie de Parasitologie et de Mycologie médicale / PTM HUS et Fac	45.02	Parasitologie et mycologie (option bio- logique)
Mme WOLF Michèle M0010	Charg Direct	é de mission - Administration générale on de la Qualité / Hôpital Civil	48.03	Option : Pharmacologie fondamentale
Mme ZALOSZYC Ariane ép. MARCANTONI M0116		Nédico-Chirurgical de Pédiatrie e de Pédiatrie I / Hôpital de Hautepierre	54.01	Pédiatrie
ZOLL Joffrey M0077		e Pathologie thoracique e de Physiologie et d'Explorations fonctionnelles / HC	44.02	Physiologie (option clinique)

B2 - PROFESSEURS DES UNIVERSITES (monoappartenant)

Pr BONAH Christian P0166 Département d'Histoire de la Médecine / Faculté de Médecine 72. Epistémologie - Histoire des sciences et des techniques

B3 - MAITRES DE CONFERENCES DES UNIVERSITES (monoappartenant) Mr KESSEL Nils Département d'Histoire de la Médecine / Faculté de Médecine Epistémologie - Histoire des Sciences et des techniques Mr LANDRE Lionel ICUBE-UMR 7357 - Equipe IMIS / Faculté de Médecine 69 Neurosciences Mme THOMAS Marion Département d'Histoire de la Médecine / Faculté de Médecine Epistémologie - Histoire des Sciences et des techniques Epistémologie - Histoire des Sciences et des techniques Mme SCARFONE Marianna M0082 Département d'Histoire de la Médecine / Faculté de Médecine Mr ZIMMER Alexis Epistémologie - Histoire des sciences et des techniques Département d'Histoire de la Médecine / Faculté de Médecine 72.

10

C - ENSEIGNANTS ASSOCIES DE MEDECINE GENERALE C1 - PROFESSEURS ASSOCIES DES UNIVERSITES DE M. G. (mi-temps)

 Pr Ass. GRIES Jean-Luc
 M0084
 Médecine générale (01.09.2017)

 Pr GUILLOU Philippe
 M0089
 Médecine générale (01.11.2013 au 31.08.2016)

 Pr HILD Philippe
 M0090
 Médecine générale (01.11.2013 au 31.08.2016)

 Dr ROUGERIE Fabien
 M0097
 Médecine générale (01.09.2014 au 31.08.2017)

C2 - MAITRE DE CONFERENCES DES UNIVERSITES DE MEDECINE GENERALE - TITULAIRE

Dre CHAMBE Juliette Dr LORENZO Mathieu M0108

53.03 Médecine générale (01.09.2015)

C3 - MAITRES DE CONFERENCES ASSOCIES DES UNIVERSITES DE M. G. (mi-temps)

Dre BREITWILLER-DUMAS Claire
Dre GROS-BERTHOU Anne M0109
Dre SANSELME Anne-Elisabeth
Dr SCHMITT Yannick

Médecine générale (01.09.2016 au 31.08.2019) Médecine générale (01.09.2015 au 31.08.2018)

Médecine générale Médecine générale

D - ENSEIGNANTS DE LANGUES ETRANGERES D1 - PROFESSEUR AGREGE, PRAG et PRCE DE LANGUES

 Mme ACKER-KESSLER Pia
 M0085
 Professeure certifiée d'Anglais (depuis 01.09.03)

 Mme CANIDAS Peggy
 M0086
 Professeure agrégée d'Anglais (depuis le 01.09.99)

 Mme SIEBENBOUR Marie-Noëlle
 M0087
 Professeure certifiée d'Allemand (depuis 01.09.19)

 Mme JUNGER Nicole
 M0088
 Professeure certifiée d'Allemand (depuis 01.09.09)

 Mme MARTEN Susanne
 M0098
 Professeure certifiée d'Allemand (depuis 01.09.14)

E - PRATICIENS HOSPITALIERS - CHEFS DE SERVICE NON UNIVERSITAIRES

Dr ASTRUC Dominique	 Pôle médico-chirurgical de Pédiatrie Service de Réanimation pédiatrique spécialisée et de surveillance continue / Hôpital de Hautepierre
Dr DE MARCHI Martin	Pôle Oncologie médico-chirurgicale et d'Hématologie Service d'Oncologie Médicale / ICANS
Mme Dre GERARD Bénédicte	Pôle de Biologie Laboratoire de Diagnostic Génétique / Nouvel Hőpital Civil
Mme Dre GOURIEUX Bénédicte	Pôle de Pharmacie-pharmacologie Service de Pharmacie-Stérilisation / Nouvel Hôpital Civil
Dr KARCHER Patrick	 Pôle de Gériatrie Service de Soins de suite de Longue Durée et d'hébergement gériatrique / EHPAD / Hôpital de la Robertsau
Mme Dre LALLEMAN Lucie	Pôle Urgences - SAMU67 - Médecine Intensive et Réanimation Permanence d'accès aux soins de santé - La Boussole (PASS)
Dr LEFEBVRE Nicolas	Pôle de Spécialités Médicales - Ophtalmologie - Hygiène (SMO) Service des Maladies Infectieuses et Tropicales / Nouvel Hôpital Civil
Mme Dre LICHTBLAU Isabelle	Pôle de Biologie Laboratoire de biologie de la reproduction / CMCO de Schiltigheim
Mme Dre MARTIN-HUNYADI Catherine	Pôle de Gériatrie Secteur Evaluation / Hôpital de la Robertsau
Dr NISAND Gabriel	Pôle de Santé Publique et Santé au travail Service de Santé Publique - DIM / Hôpital Civil
Mme Dre PETIT Flore	Pôle de Spécialités Médicales - Ophtalmologie - Hygiène (SMO) UCSA
Dr PIRRELLO Olivier	Pôle de Gynécologie et d'Obstétrique - Service de Gynécologie-Obstétrique / CMCO
Dr REY David	Pôle Spécialités médicales - Ophtalmologie / SMO «Le trait d'union» - Centre de soins de l'infection par le VIH / Nouvel Hôpital Civil
Mme Dre RONDE OUSTEAU Cécile	Pôle Locomax Service de Chirurgie Séptique / Hôpital de Hautepierre
Mme Dre RONGIERES Catherine	Pôle de Gynécologie et d'Obstétrique Centre Clinico Biologique d'AMP / CMCO
Dr TCHOMAKOV Dimitar	Pôle Médico-Chirurgical de Pédiatrie Service des Urgences Médico-Chirurgicales pédiatriques / Hôpital de Hautepierre
Mme Dre WEISS Anne	 Pôle Urgences - SAMU67 - Médecine Intensive et Réanimation SAMU

F1 - PROFESSEURS ÉMÉRITES

- o de droit et à vie (membre de l'Institut)
 CHAMBON Pierre (Biochimie et biologie moléculaire)
 MANDEL Jean-Louis (Génétique et biologie moléculaire et cellulaire)
- o pour trois ans (1er septembre 2018 au 31 août 2021) Mme DANION-GRILLIAT Anne (Pédopsychiatrie, addictologie) GRUCKER Daniel (Institut de Physique Biologique)
- o pour trois ans (1er avril 2019 au 31 mars 2022) Mme STEIB Annick (Anesthésie, Réanimation chirurgicale)
- o pour trois ans (1er septembre 2019 au 31 août 2022)
 DUFOUR Patrick (Cancérologie clinique)
 NISAND Israël (Gynécologie-obstétrique)
 PINGET Michel (Endocrinologie, diabète et maladies métaboliques)
 Mme QUOIX Elisabeth (Pneumologie)
- o pour trois ans (1er septembre 2020 au 31 août 2023)
 BELLOCQ Jean-Pierre (Service de Pathologie)
 DANION Jean-Marie (Psychiatrie)
 KEMPF Jean-François (Chirurgie orthopédique et de la main)
 KOPFERSCHMITT Jacques (Urgences médico-chirurgicales Adultes)

F2 - PROFESSEUR des UNIVERSITES ASSOCIE (mi-temps)

M. SOLER Luc CNU-31 IRCAD (01.09.2009 - 30.09.2012 / renouvelé 01.10.2012-30.09.2015-30.09.2021)

F3 - PROFESSEURS CONVENTIONNÉS* DE L'UNIVERSITE

 Pr CHARRON Dominique
 (2019-2020)

 Pr KINTZ Pascal
 (2019-2020)

 Pr LAND Walter G.
 (2019-2020)

 Pr MAHE Antoine
 (2019-2020)

 Pr MSTELLI Antoine
 (2019-2020)

 Pr REIS Jacques
 (2019-2020)

 Pre RONGIERES Catherine
 (2019-2020)

(* 4 années au maximum)

12

G1 - PROFESSEURS HONORAIRES

ADLOFF Michel (Chirurgie digestive) / 01.09.94 KURTZ Daniel (Neurologie) / 01.09.98 BABIN Serge (Orthopédie et Traumatologie) / 01.09.01 BAREISS Pierre (Cardiologie) / 01.09.12 LANG Gabriel (Orthopédie et traumatologie) / 01.10.98 LANG Jean-Marie (Hématologie clinique) / 01.09.11 BATZENSCHLAGER André (Anatomie Pathologique) / 01.10.95
BAUMANN René (Hépato-gastro-entérologie) / 01.09.10
BERGERAT Jean-Pierre (Cancérologie) / 01.01.16
BERTHEL Marc (Gériatrie) / 01.09.18 LANGER Bruno (Gynécologie) / 01.11.19 LEVY Jean-Marc (Pédiatrie) / 01.10.95 LONSDORFER Jean (Physiologie) / 01.09.10 LUTZ Patrick (Pédiatrie) / 01.09.16 BIENTZ Michel (Hygiène Hospitalière) / 01.09.04 BLICKLE Jean-Frédéric (Médecine Interne) / 15.10.17 BLOCH Pierre (Radiologie) / 01.10.95 MAILLOT Claude (Anatomie normale) / 01.09.03 MAITRE Michel (Biochimie et biol. moléculaire) / 01.09.13
MANDEL Jean-Louis (Génétique) / 01.09.16
MANGIN Patrice (Médecine Légale) / 01.12.14
MANTZ Jean-Marie (Réanimation médicale) / 01.10.94 BOEHM-BURGER Nelly (Histologie) / 01.09.20 BOURJAT Pierre (Radiologie) / 01.09.03 BOUSQUET Pascal (Pharmacologie) / 01.09.19 BRECHENMACHER Claude (Cardiologie) / 01.07.99 MARESCAUX Christian (Neurologie) / 01.09.19 MARESCAUX Jacques (Chirurgie digestive) / 01.09.16 BRETTES Jean-Philippe (Gynécologie) / 01.07.99
BRETTES Jean-Philippe (Gynécologie)-Obstétrique) / 01.09.10
BURGHARD Guy (Pneumologie) / 01.10.86
BURSZTEJN Claude (Pédopsychiatrie) / 01.09.18
CANTINEAU Alain (Medecine et Santé au travail) / 01.09.15
CAZENAVE Jean-Pierre (Hématologie) / 01.09.15 MARK Jean-Joseph (Biochimie et biologie cellulaire) / 01.09.99 MESSER Jean (Pédiatrie) / 01.09.07 MEYER Christian (Chirurgie générale) / 01.09.13 MEYER Pierre (Biostatistiques, informatique méd.) / 01.09.10 MINCK Raymond (Bactériologie) / 01.10.93 CHAMPY Maxime (Stomatologie) / 01.10.95 CHAUVIN Michel (Cardiologue) / 01.09.18 MONTEIL Henri (Bactériologie) / 01.09.11 MORAND Georges (Chirurgie thoracique) / 01.09.09 CHELLY Jameleddine (Diagnostic génétique) / 01.09.20 CINQUALBRE Jacques (Chirurgie générale) / 01.10.12 CLAVERT Jean-Michel (Chirurgie infantile) / 31.10.16 COLLARD Maurice (Neurologie) / 01.09.00 MOSSARD Jean-Marie (Cardiologie) / 01.09.09 OUDET Pierre (Biologie cellulaire) / 01.09.13 PASQUALI Jean-Louis (Immunologie clinique) / 01.09.15
PATRIS Michel (Psychiatrie) / 01.09.15
Mme PAULI Gabrielle (Pneumologie) / 01.09.11
PINGET Michel (Endocrinologie) / 01.09.19
POTTECHER Thierry (Anesthésie-Réanimation) / 01.09.18 CONRAUX Claude (Oto-Rhino-Laryngologie) / 01.09.98
CONSTANTINESCO André (Biophysique et médecine nucléaire) /01.09.11
DIETEMANN Jean-Louis (Radiologie) / 01.09.17 DIETEMANN Jean-Louis (Radiologie) / 01.09.17
DOFFOEL Michel (Gastroentérologie) / 01.09.17
DUCLOS Bernard (Hépato-Gastro-Hépatologie) / 01.09.19
DUPEYRON Jean-Pierre (Anesthésiologie-Réa.Chir.) / 01.09.13
EISENMANN Bernard (Chirurgie cardio-vasculaire) / 01.04.10 REYS Philippe (Chirurgie générale) / 01.09.98 RITTER Jean (Gynécologie-Obstétrique) / 01.09.02 RUMPLER Yves (Biol. développement) / 01.09.10 SAIDNER Guy (Physiologie) / 01.09.14 SAUDER Phillippe (Réanimation médicale) / 01.09.20 SAUVAGE Paul (Chirurgie infantile) / 01.09.04 FABRE Michel (Cytologie et histologie) / 01.09.02 FISCHBACH Michel (Pédiatrie / 01.10.16) FLAMENT Jacques (Ophtalmologie) / 01.09.09 GAY Gérard (Hépato-gastro-entérologie) / 01.09.13 GERLINGER Pierre (Biol. de la Reproduction) / 01.09.04 SCHAFF Georges (Physiologie) / 01.10.95 SCHLAEDER Guy (Gynécologie-Obstétrique) / 01.09.01 SCHLIENGER Jean-Louis (Médecine Interne) / 01.08.11 GRENIER Jacques (Chirurgie digestive) / 01.09.97 GUT Jean-Pierre (Virologie) / 01.09.14 SCHRAUB Simon (Radiothérapie) / 01.09.12 SCHWARTZ Jean (Pharmacologie) / 01.10.87 HASSELMANN Michel (Réanimation médicale) / 01.09.18 HAUPTMANN Georges (Hématologie biologique) / 01.09.06 SICK Henri (Anatomie Normale) / 01.09.06 STIERLE Jean-Luc (ORL) / 01.09.10 HEID Emest (Dermatologie) / 01.09.04 IMBS Jean-Louis (Pharmacologie) / 01.09.09 IMLER Marc (Médecine interne) / 01.09.98 STOLL Claude (Génétique) / 01.09.09 STOLL-KELLER Françoise (Virologie) / 01.09.15 STORCK Daniel (Médecine interne) / 01.09.03 TEMPE Jean-Daniel (Réanimation médicale) / 01.09.06 TONGIO Jean (Radiologie) / 01.09.02 JACQMIN Didier (Urologie) / 09.08.17 JACCK Daniel (Chirurgie générale) / 01.09.11 JAECK Daniel (Chirurgie générale) / 01.09.11 JAEGER Jean-Henri (Chirurgie orthopédique) /01.09.11 JESEL Michel (Médecine physique et réadaptation) / 01.09.04 TREISSER Alain (Gynécologie-Obstétrique / 24.03.08 VAUTRAVERS Philippe (Médecine physique et réadaptation) / 01.09.16 KAHN Jean-Luc (Anatomie) / 01.09.18 KEHR Pierre (Chirurgie orthopédique) / 01.09.06 VETTER Jean-Marie (Anatomie pathologique) / 01.09.13 VINCENDON Guy (Biochimie) / 01.09.08 WILTER Paul (Anatomie Pathologique) / 01.09.09
WEITZENBLUM Emmanuel (Pneumologie) / 01.09.09
WEITZENBLUM Emmanuel (Pneumologie) / 01.09.11
WIHLM Jean-Marie (Chirurgie thoracique) / 01.09.13
WILK Astrid (Chirurgie maxillo-faciale) / 01.09.95
WILLARD Daniel (Pédiatrie) / 01.09.96 KEMPF Jules (Biologie cellulaire) / 01.10.95 KREMER Michel / 01.05.98 KRETZ Jean-Georges (Chirurgie vasculaire) / 01.09.18 KRIEGER Jean (Neurologie) / 01.01.07 KUNTZ Jean-Louis (Rhumatologie) / 01.09.08 KUNTZMANN Francis (Gériatrie) / 01.09.07 WOLFRAM-GABEL Renée (Anatomie) / 01.09.96

Légende des adresses :

FAC: Faculté de Médecine: 4, rue Kirschleger - F - 67085 Strasbourg Cedex - Tél.: 03.68.85.35.20 - Fax: 03.68.85.35.18 ou 03.68.85.34.67

FAC: Faculté de Médecine: 4, rue Kirschleger -F - 67085 Strasbourg Cedex - 161: 03.68.85.35.20 - Fax: 03.68.85.

HOPITAUX UNIVERSITAIRES DE STRASBOURG (HUS):

- NHC: Nouvel Hôpital Civil: 1, place de l'Hôpital - B.P. 426 - F - 67091 Strasbourg Cedex - Tél.: 03.88.11.67.68

- HP: Hôpital Civil: 1, Place de l'Hôpital - B.P. 426 - F - 67098 Strasbourg Cedex - Tél.: 03.88.11.67.68

- HP: Hôpital de Hautepierre: Avenue Molière - B.P. 49 - F - 67098 Strasbourg Cedex - Tél.: 03.88.12.80.00

- Hôpital de L'Rôpertsau: 83, rue Himmerich - F - 67015 Strasbourg Cedex - Tél.: 03.88.11.55.11

- Hôpital de l'Elsau: 15, rue Cranach - 67200 Strasbourg - Tél.: 03.88.11.67.68

- Hopital de l'Elsau: 15, rue Cranach - 67200 Strasbourg - 1el.: 103.88.11.67.68

CMCO - Centre Médico-Chirurgical et Obstétrical: 19, rue Louis Pasteur - BP 120 - Schiltigheim - F - 67303 Strasbourg Cedex - Tél.: 03.88.62.83.00

C.C.O.M. - Centre de Chirurgie Orthopédique et de la Main: 10, avenue Baumann - B.P. 96 - F - 67403 Illkirch Graffenstaden Cedex - Tél.: 03.88.55.20.00

E.F.S.: Etablissement Français du Sang - Alsace: 10, rue Spielmann - BP N*36 - 67065 Strasbourg Cedex - Tél.: 03.88.21.25.25

Centre Régional de Lutte contre le cancer "Paul Strauss" - 3, rue de la Porte de l'Hôpital - F-67085 Strasbourg Cedex - Tél.: 03.88.25.24.24

IURC - Institut Universitaire de Réadaptation Clemenceau - CHU de Strasbourg et UGECAM (Union pour la Gestion des Etablissements des Caisses d'Assurance Maladie) -45 boulevard Clemenceau - 67082 Strasbourg Cedex

RESPONSABLE DE LA BIBLIOTHÈQUE DE MÉDECINE ET ODONTOLOGIE ET DU DÉPARTEMENT SCIENCES, TECHNIQUES ET SANTÉ DU SERVICE COMMUN DE DOCUMENTATION DE L'UNIVERSITÉ DE STRASBOURG

Monsieur Olivier DIVE, Conservateur

LA FACUI TÉ A ARRETÉ QUE LES OPINIONS ÉMISES DANS LES DISSERTATIONS QUI LUI SONT PRÉSENTÉES DOIVENT ETRE CONSIDERÉES COMME PROPRES A LEURS AUTEURS ET QU'ELLE N'ENTEND NI LES APPROUVER, NI LES IMPROUVER

SERMENT D'HIPPOCRATE

En présence des maîtres de cette école, de mes chers condisciples, je promets et je jure au nom de l'Etre suprême d'être fidèle aux lois de l'honneur et de la probité dans l'exercice de la médecine. Je donnerai mes soins gratuits à l'indigent et n'exigerai jamais un salaire audessus de mon travail.

Admis à l'intérieur des maisons, mes yeux ne verront pas ce qui s'y passe.

Ma langue taira les secrets qui me seront confiés et mon état ne servira pas à corrompre les moeurs ni à favoriser les crimes.

Respectueux et reconnaissant envers mes maîtres je rendrai à leurs enfants l'instruction que j'ai reçue de leurs pères.

Que les hommes m'accordent leur estime si je suis resté fidèle à mes promesses. Que je sois couvert d'opprobre et méprisé de mes confrères si j'y manque.

À notre Président et Directeur de Thèse,

Monsieur le Professeur Frédéric de Blay

Nous vous remercions de nous avoir confié ce travail sur l'asthme professionnel, sachant bien le vif intérêt que vous portez au sujet, et la qualité de votre expertise. Nous vous exprimons toute notre reconnaissance pour votre encadrement tout au long de notre internat et espérons nous montrer dignes de la confiance que vous nous témoignez.

Aux membres du Jury de cette Thèse,

Monsieur le Professeur Olivier Vandenplas

Nous vous remercions de l'honneur que vous nous faites en acceptant de juger ce travail. Nous vous remercions de votre disponibilité, de votre compagnonnage et de nous avoir fait profiter de votre expérience.

Madame le Professeur Céline Mascaux

Nous vous remercions de l'honneur que vous nous faites en acceptant de juger ce travail.

Nous vous exprimons notre plus grande reconnaissance pour votre soutien renouvelé tout au long de notre parcours.

Madame le Professeur Gabrielle Pauli

Nous vous remercions de l'honneur que vous nous faites en acceptant de juger ce travail. Nous vous remercions de vos encouragements prodigués tout le long de ce travail de thèse.

Madame le Professeur Maria Gonzalez

Nous vous remercions de l'honneur que vous nous faites en acceptant de juger ce travail. Nous vous exprimons notre gratitude pour bienveillance et votre attention à notre égard.

Monsieur le Maître de Conférence Julien Godet

Nous vous remercions de l'honneur que vous nous faites en acceptant de juger ce travail. Nous vous exprimons notre reconnaissance pour votre écoute et votre confiance.

À mes collègues et maîtres,

À Carine Metz Favre, pour m'avoir appris à aimer mon métier et à me faire confiance, entre deux visites qui pouvaient être houleuses quelques fois. À Mme Quoix qui avait l'habitude de dire qu'il fallait soigner ses patients comme sa famille. À Sandrine Hirschi pour sa passion de la pathologie. À Naji pour son calme souverain, sa douceur et sa méticulosité.

Aux infirmières et aides soignantes,

Pour leur patience à mes débuts et leur confiance par la suite. À Magalie, Nada, Nathalie, Patricia et toutes les autres infirmières de l'étage sans oublier Mme Hermann, pour son énergie inépuisable, qui font que le service est plus qu'un lieu de travail.

À mes amis,

À Louise, mon allié indéfectible, depuis le premier jour d'internat jusqu'au COVID en réanimation.

J'admire ton indépendance, ta détermination, ton honnêteté. Cet internat n'aurait pas été le même sans toi. À Adrien, faux dilettante au grand cœur, au regard rieur avec qui tout devient léger. À Marc, Mathilde, Mathieu, Astrid, Benjamin, Manon, Maxime, Xavier et Nassim et et tous les autres pour avoir égayé mes journées.

À ma famille de Strasbourg, Basile, François-Joseph, Louis, Nicolas, Caroline et Emma Louise, dont la rencontre salvatrice m'a fourni un foyer et un certain sens du vivre ensemble.

À Cyrine, pour ton sourire et ta joie de vivre, source inépuisable de félicité.

À Raphael, pour avoir toujours été là pour moi, à Hugo, Théo et Boris qui restent présent malgré la distance.

À mes amis de toujours, Adrian, Marion, Ronan et Guillaume, qui restent à mes côtés en dépit des années.

À Clément et Mathilde, mes cointernes de Toulouse, sans qui je n'aurai jamais pu écrire cette thèse.

À ma famille,

À mes parents et mes sœurs, qui ont toujours cru en moi, même quand le courage manquait.

À mes cousins, mes tantes, et mes grandes mères qui ont fait le déplacement pour l'occasion.

À mes grands pères, mes modèles qui manquent en ce jour de soutenance.

1	ABRÉ	VIATION	21
2	INTRO	DDUCTION	23
2	2.1 Ast	thme professionnel, généralités et classification	23
	2.1.1	Définition de l'asthme professionnel et épidémiologie	23
	2.1.2	Figure 1 Asthme lié au travail, classification.	25
	2.1.3	Asthme professionnel par irritation	25
	2.1.4	Asthme professionnel immunologique ou par sensibilisation	27
	2.1.4.1	Définition et considérations diagnostiques	27
	2.1.4.2	2 Tests de provocation bronchique spécifique	28
	2.1.4.3	Figure 2 : Déroulement d'un test de provocation bronchique spécifique	29
	2.1.4.4	Classification de l'asthme professionnel immunologique par sensibilisation	30
2	2.2 L'i	nflammation T2, de l'asthme à l'asthme professionnel	32
	2.2.1	Du phénotype clinique à l'endotype	32
	2.2.2	Quels biomarqueurs ?	35
	2.2.3	L'inflammation bronchique dans l'asthme professionnel par sensibilisation	36
	2.2.3.1	L'inflammation bronchique dépend de l'exposition	36
	2.2.3.2	Le type d'inflammation est-il lié à un phénotype clinique ou à un type d'agent ?	37
	2.2.3.3	L'inflammation bronchique a -t- elle une valeur pronostique ?	38
2	2.3 Eta	t de la question	39
3	Matéri	el et méthode	40
3	3.1 Des	ssin de l'étude et population	40
3	3.2 Fig	ure 3 : Diagramme de flux	40
3	3.3 Étl	nique	41

	3.4	Caractéristiques cliniques et professionnels
	3.5	Evaluation de l'asthme
	3.6	Evaluation de la fonction pulmonaire
	3.7	Analyse de l'expectoration induite
	3.8	Critères de jugements
	3.9	Analyses statistiques
4	Rés	ultats45
	4.1	Prévalence et caractéristiques de l'inflammation éosinophilique45
	4.2	Prévalence et caractéristique de l'inflammation neutrophilique
	4.3	Inflammation et agents
5	Disc	cussion48
6	Cor	ıclusion53
7	Tab	oleaux56
	7.1	Tableau 1 Caractéristiques cliniques et physiologiques des sujets selon l'éosinophilie
	des ex	pectorations après provocation
	7.2	Tableau 2 Marqueurs biologiques de l'inflammation des voies aériennes dans le cadre
	de l'in	flammation éosinophilique57
	7.3	Tableau 3: Correlation croisées entre les différents biomarqueurs de l'inflammation T2
		58
	7.4	Tableau 4 : Régression logistique multiple pour une éosinophilie post TPBS ≥ 3% 58
	7.5	Tableau 5 : Analyse de régression logistique concernant l'asthme éosinophilique
	stratif	iée selon le type d'agent59

	7.6	Tableau 6 : Caractéristiques cliniques et physiologiques des sujets selon le taux de	
	neutro	ophiles dans les expectorations après provocation ≥ or <76%	. 60
	7.7	Tableau 7 : Marqueurs biologiques de l'inflammation des voies aériennes dans le cad	lre
	de l'in	flammation neutrophilique	. 61
	7.8	Tableau 8 : Analyse de régression logistique pour l'inflammation neutrophilique	. 62
	7.9	Tableau 9 : Type d'inflammation par agent	. 63
8	Bib	liographie :	.64
9	Doo	cument annexe : Conclusion signée par le Professeur Sibilia	.76

1 ABRÉVIATION

ATS: American Thoracic Society

BPM: Bas Poids Moléculaire

BCDA: Bronchodilatateur de Courte Durée d'Action

CSI: CorticoStéroïde Inhalé

CNRS: Centre National de la Recherche Scientifique

E-PHOCAS: The European network on phenotyping of Ocupational Asthma

EAACI: European Journal of Allergy and Clinical Immunology

FeNO: Fraction exhalé d'oxyde nitrique

GINA: Global Initiative for Asthma

GMRC : Groupe de Méthode de Recherche Clinique

HPM: Haut Poids Moléculaire

HRBNS: HyperRéactivité Bronchique Non Spécifique

IgE : Immunoglobuline de type E

IMC : Indice de Masse Corporelle

IQR : Intervalle inter - quartile

kDa: Kilodalton

ppm: Partie par million

RADS: Reactive Arways Dysfunction Syndrome

TPBS : Test de Provocation Bronchique Spécifique

T2: Type 2

VEMS: Volume expiratoire maximal en une seconde

2 INTRODUCTION

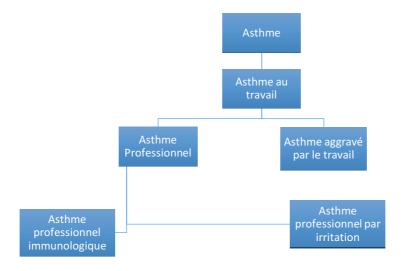
Le terme d'asthme fait sa première apparition dans l'*Iliade* (800av. J.C) pour décrire l'état de suffocation dont Hector avait été la proie lors du chant XV, après avoir subi l'assaut d'Ajax qui lui avait jeté un rocher sur la poitrine (1)(2). Le terme a été repris par Eschyle (525/526-456 av. J.-C.) au sens d'essoufflement, de souffle court. Par la suite l'asthme sera défini par un état de gêne respiratoire par accès paroxystiques et convulsifs par Hippocrate (460 – 370/356 av. J. –C.). Il note la présence d'asthme chez les travailleurs des métaux, des tailleurs, des fermiers, des cavaliers et des pêcheurs ce qui est considéré comme la première description d'asthme professionnel(1,3).

Depuis, l'histoire de l'asthme professionnel s'est développée aux dépens de celle de l'asthme non professionnel, de celle de la médecine du travail, de l'épidémiologie et de celle de l'immunologie.

Nous ferons tout d'abord un état des lieux des classifications de l'asthme professionnel pour nous concentrer dans un deuxième temps sur les dernières évolutions de l'histoire de l'asthme non professionnel afin d'explorer les pistes à venir de l'asthme professionnel.

2.1 Asthme professionnel, généralités et classification

2.1.1 Définition de l'asthme professionnel et épidémiologie


L'asthme professionnel est défini comme un asthme issu d'une exposition professionnelle et ne pouvant être attribué à des causes extérieures au lieu de travail (4).

Il doit être différencié de l'asthme aggravé par le travail qui correspond à une aggravation de l'asthme consécutivement aux conditions de travail, indépendamment de la durée de l'aggravation de l'asthme, et indépendamment d'une aggravation permanente ou non de ce dernier (5). Des critères diagnostiques pour l'asthme aggravé par le travail ont été proposés par l'American Thoracic Society (ATS) :

- La présence d'un asthme préexistant au travail.
- Une temporalité documentée entre l'aggravation des symptômes et l'exposition professionnelle.
- La mise en évidence d'une exposition pouvant expliquer l'aggravation sur le lieu de travail.
- L'absence d'argument pour un asthme professionnel (Asthme *causé* par le travail).

La prévalence de l'asthme chez l'adulte en 2006 était estimée à 6,7 % avec plus de 4 millions de personnes touchées et une mortalité liée à l'asthme d'environ 1000 décès par an (6,7). Le risque attribuable des expositions professionnelles à l'ensemble des cas d'asthme a été estimé à 16,3%(8). Deux types d'asthmes professionnels sont décrits. Le premier est induit par une sensibilisation à un agent présent sur le lieu de travail provoquant une réponse immunologique spécifique, le second est décrit comme étant lié à la présence d'un agent considéré comme irritant sans sensibilisation ou réaction immunologique spécifique (4,9). La part d'asthme professionnel par sensibilisation ou immunologique est estimée à 90% des asthmes professionnels (10).

2.1.2 Figure 1 Asthme lié au travail, classification

Adapté de (11)

2.1.3 Asthme professionnel par irritation

Le terme d'asthme professionnel par irritation a été introduit pour caractériser la survenue de symptômes d'asthme associés à une hyperréactivité bronchique et une inflammation bronchique secondaire à l'exposition à un agent irritant sans hyperréactivité spécifique à l'agent causal (12).

Historiquement il s'agit du syndrome de Brooks ou « reactive airways dysfunction syndrome » (RADS) qui décrit l'apparition de symptômes d'asthme survenant dans les 24 premières heures d'une exposition à des agents irritants à forte concentration avec l'apparition soit d'une obstruction bronchique associée à une réversibilité au béta 2 mimétique de courte durée d'action ou soit d'une hyperréactivité bronchique non spécifique, avec persistance des symptômes à distance de l'exposition

(plus de 3 mois), chez un patient ne présentant pas d'antécédent d'asthme ou de symptômes respiratoires antérieurs(12,13). Les patients présentant un syndrome de Brooks ne réagissent pas à la réexposition à l'agent causal à dose non toxique ce qui les distinguent des asthmes professionnels par sensibilisation.

Cependant les critères se sont assouplis après la constatation d'apparition insidieuse de symptômes d'asthme, à distance de l'exposition, chez des patients exposés à des concentrations élevées d'irritants sans antécédent d'asthme antérieur, notamment chez les pompiers exposés aux poussières inorganiques après la destruction des tours du *World Trade Center* le 11 septembre 2001(14).

De plus des études longitudinales ont montré que l'exposition à des substances irritantes pouvaient favoriser l'apparition d'asthme même à des niveaux d'exposition inférieurs au niveau de toxicité, et même pour des concentrations usuelles (15,16). Pour ces patients bien que la preuve d'un sur risque soit faite sur le plan épidémiologique, l'imputabilité à l'échelon individuel n'est pas vérifiable. C'est pour cela que l' *European Academy of Allergy and Clinical Immunology* (EAACI) a proposé une classification des asthmes professionnels par irritation selon le degré de confiance en l'imputabilité de l'exposition sur l'apparition de la pathologie asthmatique (12) :

- Les asthmes professionnels par irritation certains correspondant à des formes d'asthme survenant précocement après l'exposition à un ou plusieurs irritants à forte dose (syndrome de Brooks ou RADS).
- Les asthmes professionnels par irritation probables correspondant à des formes d'asthme survenant avec une période de latence par rapport à une exposition unique ou multiple à un irritant.
- Les asthmes professionnels par irritation possibles chez les patients exposés à des irritants à des concentrations modérées avec une période de latence entre l'exposition et l'apparition de l'asthme.

2.1.4 Asthme professionnel immunologique ou par sensibilisation

2.1.4.1 Définition et considérations diagnostiques

L'asthme professionnel immunologique ou par sensibilisation correspond à un asthme lié à une réaction immunologique spécifique à un agent causal (4). Il est caractérisé par une période de latence entre l'exposition à l'agent et le développement de la maladie pendant laquelle le patient est asymptomatique (17). Malgré le nombre élevé d'agents responsables d'asthme professionnel par sensibilisation (plus de 350) , une dizaine de substances sont responsables de la majorité des asthmes professionnels (60 à 92%) : farine de céréales, isocyanates, latex, bois, métaux, persulfates, aldéhydes, soudure, animaux et enzymes)(1).

Contrairement à l'asthme professionnel par irritation il va être possible de démontrer l'origine professionnelle de l'asthme par des moyens objectifs. Le test diagnostique de référence est le test d'exposition spécifique qui consiste à reproduire la réaction asthmatique dans les conditions réalistes(18). Cependant plusieurs méthodes diagnostiques, bien que moins performantes, sont utilisées du fait de la faible accessibilité de la procédure :

- Variation du débit expiratoire de pointe pendant les périodes d'exposition et de congés.
 Sensibilité 84 % (69-93%), Spécificité 48% (26-72%) (1,19).
- Variation de l'hyperréactivité bronchique non spécifique pendant les périodes d'exposition et de congés. Sensibilité 84% (69-93%) Spécificité 48% (26-72%) (1,19).
- Mise en évidence d'une sensibilisation à l'agent causal. Pour les agents de haut poids moléculaire : sensibilité 74% (66-80%) spécificité 71% (63-77%). Pour les agents de bas poids moléculaire : sensibilité 28% (18-40%) et spécificité 89% (77-95%) (20).

2.1.4.2 Tests de provocation bronchique spécifique.

L'objectif d'un test de provocation bronchique spécifique est la recherche, de manière empirique, de la réactivité spécifique des voies respiratoires à l'exposition à un agent présent dans l'environnement professionnel chez un patient présentant des symptômes d'asthme relié au travail(18).

Les premiers tests de provocation bronchique spécifique professionnels ont été réalisés dans les années 60 sous l'impulsion du Pr. Pepys (21) notamment pour différencier les asthmes professionnels immunologiques et non immunologiques et pour les caractériser selon le type de réaction (précoce, retardée et mixte).

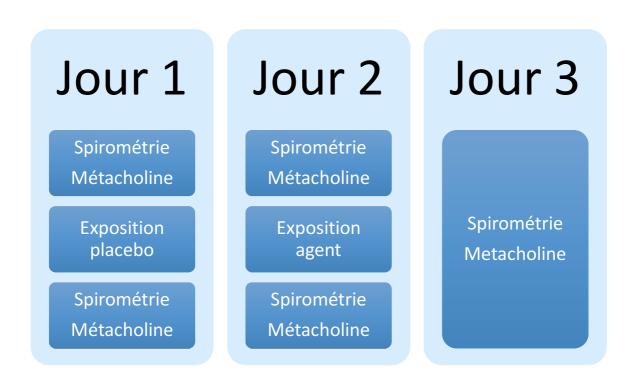
Des recommandations européennes pour harmoniser les pratiques ont été publiées par la *European* respiratory society(18). C'est le test le plus sensible pour réaliser le diagnostic d'asthme professionnel immunologique. Cependant il ne peut être réalisé que dans des centres référents pour des questions de sécurité et nécessite un équipement spécifique.

Le patient va être exposé selon un principe de représentativité à l'agent suspect d'hypersensibilité.

Les conditions d'exposition doivent être le plus semblable possible à celles correspondant à l'activité professionnelle avec la même voie d'exposition. Les critères de positivité du test sont :

- Une diminution du VEMS d'au moins 15 % à l'issue de l'exposition à l'agent
- Et /ou une diminution d'une dose doublante du seuil d'hyperréactivité bronchique entre avant et après le test de provocation bronchique spécifique.

Les contre indications à la réalisation du test de provocation bronchique spécifique sont le fait d'avoir un VEMS pré test < 70% de la valeur théorique, de présenter une maladie cardiovasculaire instable, une maladie épileptique non contrôlée, d'être en cours de grossesse ou de ne pas être en mesure de comprendre le déroulement du test.


Le déroulement du test est résumé via la figure 2. Un test d'exposition spécifique se déroule généralement sur trois jours en hospitalisation. Les traitements par corticostéroïdes inhalés doivent être interrompus 72 heures avant le test si possible.

Le premier jour une exposition à un placebo en simple aveugle est effectuée de durée croissante (10 secondes, 1 minute, 5 minutes, 10 minutes, 30 minutes et 60 minutes). Le placebo utilisé doit, si possible, avoir la même apparence que l'agent sensibilisant. Les substances les plus couramment utilisées sont par exemple de la poudre de lactose pour un test à la farine, des gants en vinyle pour un test au latex.

Une surveillance clinique entre 6 à 8 heures est réalisée ainsi qu'un monitorage du VEMS par spirométrie. Une diminution de plus de 10 % du VEMS lors de l'exposition au placebo contre indique la réalisation du test réaliste dans l'hypothèse d'une réaction non spécifique à un produit irritant ne permettant pas de conclure sur la positivité du test.

Le deuxième jour le patient est exposé à l'agent suspect avec le même protocole de surveillance clinique et spirométrique que précédemment.

2.1.4.3 Figure 2 : Déroulement d'un test de provocation bronchique spécifique

Adapté de (18)

Il est aussi possible de réaliser des mesures de FeNO et de pourcentage d'éosinophiles dans les expectorations induites avant et après exposition car leur augmentation a été proposée comme critère diagnostique. Nous détaillerons ce point durant la deuxième partie de l'introduction.

2.1.4.4 Classification de l'asthme professionnel immunologique par sensibilisation

Les agents responsables d'asthme professionnel sont habituellement différenciés en Bas Poids Moléculaire (BPM) et Haut Poids Moléculaire (HPM) selon que leur masse moléculaire est supérieure ou inférieure à 10 kiloDalton (kDa) (22)(23). Cette classification est basée sur l'hypothèse que seuls des agents d'une taille suffisante pourraient concourir à une réaction IgE médiée (22).

L'étude avec le plus grand nombre de patients inclus étudiant les différences entres les asthmes professionnels par HPM et BPM a été réalisée par le groupe E-PHOCAS (European network on phenotyping of Ocupational Asthma)(24,25). Le groupe E-PHOCAS est constitué de praticiens hospitaliers spécialisés dans la prise en charge de l'asthme professionnel provenant de 20 centres situés dans 11 pays européens. Il s'agit d'une étude comparative multicentrique et rétrospective mettant en opposition 544 asthmatiques sensibilisés à des agents de HPM et 635 patients asthmatiques sensibilisés à des agents de BPM, tous prouvés par un test de provocation bronchique spécifique, selon leurs caractéristiques sociodémographiques, cliniques et fonctionnelles. Il a été ainsi montré que les patients sensibilisés à des agents de HPM se distinguaient des patients sensibilisés à des agents de BPM par une probabilité plus élevée de développer une rhinite et une conjonctivite au travail, d'être atopiques, de présenter une obstruction bronchique et de développer une réaction précoce lors du test de provocation bronchique spécifique. De plus, les patients présentant un asthme professionnel induit par des agents de BPM présentaient plus souvent des symptômes d'oppression thoracique au travail, des expectorations quotidiennes au travail, des exacerbations sévères l'année précédant le test de provocation bronchique spécifique.

Cette division en asthme professionnel immunologique par HPM et BPM permet donc de différencier des patients selon des caractéristiques distinctes ce qui souligne sa pertinence.

Il existe néanmoins plusieurs limites à cette classification.

Premièrement, le postulat de départ qui énonce que les agents de HPM provoqueraient une réaction IgE médiée contrairement aux agents de BPM au mécanisme immunologique inconnu est partiellement erroné. En effet la notion d'haptène a été prouvée en 1935 par le Dr Landsteiner, en montrant que le formaldéhyde pouvait devenir antigénique si on le fixait préalablement sur de l'albumine(1,26). Le mécanisme Ig E médié pour des asthmes par sensibilisation à des agents de bas poids moléculaire a été prouvé (anhydrides acides, sel de platines)(27,28). Une récente méta-analyse étudiant la performance diagnostique de la réalisation des IgE spécifique dans l'asthme professionnel a mis en évidence une meilleure spécificité de la positivité des IgE spécifique dirigées contre des agents de BPM par rapport aux HPM (spécificité 89% contre 71%)(20).

De plus, il existe certains agents de BPM, pour lesquels un mécanisme IgE induit n'a pas été mis en évidence, mais qui présentent des caractéristiques cliniques et paracliniques similaires aux agents de haut poids moléculaires. Il s'agit pour exemple des acrylates, utilisés dans les vernis, colles et fixateurs, employés tant en milieu industriel qu'en cabinet esthétique (prothésiste ongulaire), et pour lesquels un mécanisme IgE médié n'a jamais été mis en évidence (29,30). Cependant une étude de l'équipe E-PHOCAS, comparant 55 patients asthmatiques aux acrylates à 418 patients présentant un asthme professionnel à un autre agent de BPM, a montré que les asthmes aux acrylates étaient significativement associés au développement de rhino conjonctivites au travail ainsi qu' à une augmentation du FeNO lors du test de provocation bronchique spécifique (31).

Pour finir, cette dichotomie ne semble pas apporter clairement d'éléments pronostiques.

Il a été évoqué la possibilité que les agents de BPM puissent être à l'origine d'asthmes professionnels plus sévères que ceux induits par des agents de HPM(32). Néanmoins une étude de la cohorte E-PHOCAS s'intéressant à l'asthme professionnel sévère n'a pas retrouvé ce déterminant (33) (bien que les asthmes induits par une agent de BPM présentaient une légère augmentation du taux d'exacerbation sévère et du nombre de patients sous haut niveau de traitement). L'asthme sévère était associé à la persistance de l'exposition, à une durée de la maladie plus importante, au faible niveau d'éducation, à un antécédent d'asthme dans l'enfance, aux expectorations quotidiennes au travail.

Une méta analyse portant sur l'évolution des patients asthmatiques professionnels après éviction de l'agent responsable a analysé 39 études avec une durée médiane de suivi de 31 mois (34). Seuls 31% des patients présentaient une résolution complète des symptômes à l'issue du suivi, la probabilité de guérison augmentait chez les patients ayant été employés moins de 76 mois et diminuait chez les patients plus âgés. Cependant la nature de l'agent, HPM ou BPM ne semblait pas avoir d'influence sur le taux de guérison. Néanmoins les patients atteints d'asthme à HPM présentaient plus souvent une hyperréactivité bronchique résiduelle.

Dans la suite de l'exposé, lorsqu'il sera fait mention d'asthme professionnel sans précision, cela correspondra, comme en pratique clinique, à un asthme professionnel immunologique ou par sensibilisation.

2.2 L'inflammation T2, de l'asthme à l'asthme professionnel

2.2.1 Du phénotype clinique à l'endotype

Un phénotype est défini comme l'ensemble des caractéristiques observables résultant de l'interaction des gènes et de l'environnement. Par abus de langage, le terme phénotype clinique désigne le regroupement de patients selon des caractéristiques cliniques dans le but de déterminer des sous groupes de patients ayant des facteurs pronostiques et prédictifs communs de par un même mécanisme physiopathologique.

La première description moderne d'asthme est attribuée à sir John Floyer en 1668(35). Il était atteint lui-même d'asthme allergique et avait imputé son affection à une maladie de l'humeur conditionnée par l'environnement. La notion d'environnement est de nouveau reprise dans la classification qu'en fait Rackeman dans les années 40 (36). L'asthme y est dichotomisé en asthme extrinsèque, lié à l'environnement et asthme intrinsèque de physiopathologie inconnue (37,38). L'asthme extrinsèque était défini comme associé à l'atopie, à un début précoce de la maladie, l'asthme intrinsèque était défini comme perannuel et de développement plus tardif.

Cette définition est remise en question par deux constations.

La première est épidémiologique : en 1989, on démontre que le taux d'IgE totales est associé au fait d'être asthmatique indépendamment du statut d'atopie (39).

La deuxième est physiopathologique, en 1996, l'expression cytokinique au niveau de biopsies bronchiques de patients asthmatiques intrinsèques et extrinsèques n'était pas significativement différente (40).

Une division selon des caractéristiques cliniques différentes ne permettait pas de mettre en évidence des mécanismes physiopathologiques distincts.

L'endotype (contraction de endo et phénotype) introduit par Anderson en 2008 (41) est défini par un sous type d'asthme caractérisé par un mécanisme physiopathologique ou par une réponse à un traitement donné.

Dès les années 50 a été mise en évidence une association entre la réponse à un traitement par corticothérapie systémique et la présence de polynucléaires éosinophiles dans les crachats (42). Plus tard, en 1990, un relation entre la sévérité de l'asthme et le taux d'éosinophiles sanguins et dans le lavage bronchiolo-alvéolaire est établie (43). En 1999, l'étude de biopsies bronchiques de 34 asthmatiques sévères a permis de différencier des patients éosinophiliques et non éosinophiliques selon les caractéristiques histologiques, et cliniques(44). Le groupe éosinophilique présentait une membrane basale plus épaisse, un VEMS plus altéré et avait plus d'antécédent d'intubation orotrachéale.

Depuis, beaucoup d'études se sont appliquées à décrire les caractéristiques cliniques des patients asthmatiques selon leur pattern d'inflammation bronchique. Une technique d'évaluation non invasive, reproductible et sans risque, de l'inflammation bronchique s'est développée : l'expectoration induite (45,46). Elle se déroule en deux étapes :

- L'induction de l'expectoration par l'inhalation d'un sérum salé hypertonique
- Le traitement de l'échantillon et la coloration des lames qui permettent la lecture du compte cellulaire différentiel.

Il est impossible d'obtenir des échantillons analysables dans 20% des cas (47).

Deux types d'inflammations ont été mis en évidence :

- L'inflammation T2 ou éosinophilique qui correspond à environ la moitié des asthme (48,49). Les études en population générale retrouvent des taux d'éosinophiles entre 0,2 et 2,4% ou entre 0 et 1,1% (10^{ème} et 90^{ème} percentile) selon les études (47,50). Le seuil d'un asthme éosinophilique varie selon les études entre 2 et 3% (51,52). L'inflammation éosinophilique a été associée à une plus grande obstruction bronchique, à une hyperréactivité bronchique non spécifique plus importante (51,53,54), à un plus grande probabilitée de réversibilité aux béta 2 mimétiques(51) et à une plus grande sévérité(53). Une étude randomisée a démontré qu'une stratégie thérapeutique monitorée par la réalisation d'expectoration induite en adaptant la posologie de corticoïdes inhalés au pourcentage d'éosinophiles permettait de diminuer le nombre d'exacerbations sévères (55). Sur le plan physiopathologique l'inflammation de type 2, est soit liée à la voie Th2, du système adaptatif, celle de l'allergie , soit issue de la voie des ILC 2, de par l'activation du système immunitaire inné (48).
- L'inflammation neutrophilique correspond à 15 à 22% des asthmes selon le seuil utilisé (51,56–59). Les études en population générale retrouvent une neutrophilie dans les expectorations induites entre 2 et 49,2% ou entre 11 et 64% (10ème et 90ème percentile) selon les études (47,50). Le seuil de l'asthme neutrophilique varie selon les publications entre 40 et 76%(60). L'asthme neutrophilique a été associé à une diminution du VEMS(51,53,61), un âge plus avancé (51), une moindre hyperréactivité bronchique non spécifique(53), une plus grande sévérité (53,62), une absence de réponse aux corticoïdes inhalés(57,63) et un mauvais contrôle de l'asthme (63). L'inflammation neutrophilique est associée à l'inflammation T1 et T17(60).
- L'inflammation granulocytique mixte est décrite, elle consiste à la coexistence d'inflammation de type éosinophilique et neutrophilique qui aurait indépendamment des deux autres types d'inflammation une plus grande chute du VEMS dans le temps et serait associée à un plus grand nombre d'exacerbations (52).

- A noter les asthmes paucigranulocytiques, qui ne présentent aucune des deux inflammations, qui se distinguent par leur plus faible niveau de sévérité et d'exacerbations.(51,59)

2.2.2 Quels biomarqueurs?

Du fait du manque d'accessibilité à la technique de l'expectoration induite, d'autres biomarqueurs de l'inflammation T2 ont été étudiés :

- La fraction exhalée en oxyde nitrique (FeNO) dont le seuil de positivité varie de 10 ppm à 50
 (64–66)
- La détermination du décompte absolu de polynucléaires éosinophiles dans le sang dont le seuil de positivité varie entre 150 et 400 élément par mm³.(67)
- Le taux d'IgE totales.

Plusieurs études ont essayé de prouver la concordance entre la positivité de ces biomarqueurs et celle de l'éosinophilie dans les expectorations induites. Une méta analyse en 2015 a étudié 32 études évaluant la performance diagnostique de ces trois biomarqueurs par rapport à la détermination d'éosinophiles dans les expectorations induites(66). Quel que soit le biomarqueur utilisé, la sensibilité, la spécificité et l'aire sous la courbe (courbe ROC, receiver operating characteristic) estimée pour reproduire une éosinophilie dans l'expectoration induite supérieure à 3 % étaient systématiquement inférieures à 80%. De plus l'utilité de la mesure du FeNO itérative dans la prise en charge thérapeutique de l'asthme reste controversée (68).

Cependant la détermination du FeNO et de l'éosinophilie sanguine sont mises en avant car ce sont des facteurs prédictifs de réponse à des biothérapies ciblant la voie T2 (69,70).

Par ailleurs la mesure du décompte des polynucléaires neutrophiles dans le sang, l'âge et le VEMS ont été envisagés pour prédire une augmentation des polynucléaires neutrophiles dans l'expectoration induite sans succès(61).

2.2.3 L'inflammation bronchique dans l'asthme professionnel par sensibilisation

2.2.3.1 L'inflammation bronchique dépend de l'exposition

En 1999, une étude est réalisée pour comparer l'éosinophilie dans l'expectoration induite en période de travail et de congés à 14 jours ou 1 mois d'intervalle (71). 10 sujets asthmatiques professionnels étaient comparées à 6 patients asthmatiques sans caractère professionnel. L'éosinophilie de l'expectoration induite mesurée 24 heures après le travail était significativement plus élevée chez tous les patients asthmatiques professionnels à l'exception d'un seul, et sans modification significative dans le groupe contrôle. Ce phénomène est aussi retrouvé dans l'asthme allergique où il a été montré que des médiateurs de l'inflammation T2 augmentent lors des saisons polliniques (72).

L'éosinophilie dans les expectorations induites dépend de l'exposition à l'agent causal. L'étude des expectorations induites avant et après test de provocation induite spécifique a pu confirmer cette assertion et a pu décrire une augmentation du taux de neutrophiles et d'éosinophiles chez les patients asthmatiques professionnels indépendamment du type d'agent (HPM/BPM) (73)(74). De plus l'exposition à des farines ou à du cyanoacrylate chez des sujets contrôle via un test d'exposition bronchique spécifique ne provoquait pas de changement dans la formule de l'expectoration induite, permettant d'exclure un phénomène irritatif (74).

De ce fait l'augmentation des biomarqueurs T2 avant et après le test de provocation bronchique spécifique a été envisagée comme test diagnostique :

- Une augmentation de 3% de l'éosinophilie dans les expectorations induites avant et après test de provocation bronchique spécifique a une sensibilité de 67% et une spécificité de 97% pour le diagnostic d'asthme professionnel (75)
- Une augmentation de 13 ppm de FeNO a une sensibilité de 51% et une spécificité de 90% pour le diagnostic d'asthme professionnel(76).

Alors que l'asthme professionnel a été considéré comme étant purement éosinophilique, la forte spécificité et la faible sensibilité de ces tests diagnostiques laissent présager la possibilité d'asthmes professionnels non éosinophiliques.

2.2.3.2 Le type d'inflammation est-il lié à un phénotype clinique ou à un type d'agent ?

Anees et al. ont étudié les caractéristiques cliniques et fonctionnelles de 38 patients asthmatiques professionnels, sensibilisés à des agents de BPM, exposés au travail, selon la présence ou non d'une inflammation éosinophilique définie par une éosinophilie supérieure à 2,2% dans les expectorations induites (77). Les patients éosinophiliques présentaient une plus grande probabilité d'être traités par corticoïdes inhalés, avaient un VEMS plus bas, une plus grande hyperréactivité bronchique. De plus, pour un type d'agent donné (ex : isocyanate), un type d'inflammation ne lui était pas spécifique.

Une étude du groupe E-PHOCAS, comparant 22 patients asthmatiques professionnels aux ammoniums quaternaires à des patients sensibilisés à d'autres agents de BPM (n= 289) mettait en évidence le caractère éosinophilique des patients sensibilisés aux ammoniums quaternaires (78). Dans cette étude les asthmatiques professionnels aux ammoniums quaternaires présentaient un VEMS et une CVF plus élevés, étaient moins souvent fumeurs, et étaient plus souvent de sexe féminin.

Lemiere et al. a conduit une étude de cluster afin de réaliser une classification sans à priori de 178 patients asthmatiques professionnels selon des données cliniques, fonctionnelles et d'inflammation bronchique par la mesure de la FeNO et de l'expectoration induite (79). Il en résulte 3 groupes, sans différence significative en terme d'éosinophilie dans les expectorations induites. Un des groupes était constitué exclusivement d'asthmatiques à agent de BPM avec un taux de FeNO après test de provocation moindre. Une augmentation de 17,5 ppm de NO au décours du test de provocation était associée à un asthme causé par un agent de HPM.

Il est donc difficile d'assimiler l'inflammation éosinophilique à un phénotype clinique précis ou de déterminer si un profil inflammatoire est spécifique d'un type d'agent en particulier.

Concernant l'inflammation neutrophilique chez les patients asthmatiques professionnels les études sont encore plus rares. Il a été montré une augmentation de l'IL8 dans les expectorations induites après

test de provocation chez des patients asthmatiques professionnels aux isocyanates (80). A notre connaissance il n'y a pas d'étude mettant en relation l'inflammation neutrophilique à un phénotype clinique chez les patients asthmatiques professionnels.

2.2.3.3 L'inflammation bronchique a -t- elle une valeur pronostique?

Les données sur l'apport pronostique de l'inflammation bronchique sont discordantes.

En 2010, une étude longitudinale sur 4 ans de 19 patients, catégorisés par la présence ou non d'une éosinophilie dans les expectorations induites ≥ 2% a observé un meilleur pronostic des patients éosinophiliques(81). L'absence d'éosinophilie au diagnostic, qui était associé à une plus grande neutrophilie dans les expectorations, était associée à une diminution persistante du VEMS, une absence de diminution des corticoïdes inhalés sans diminution du niveau d'hyperréactivité bronchique non spécifique par rapport aux patients éosinophiliques.

En 2014, une étude portant sur 44 patients montre que l'augmentation d'au moins 2% de l'éosinophilie dans les expectorations induites à l'issue du test de provocation bronchique spécifique était associée à un meilleur pronostic à 5 ans (82). A l'inverse l'absence d'augmentation > 2% était associée à une diminution du VEMS et à un traitement par forte dose de corticostéroïdes inhalés. Cependant aucune donnée sur l'exposition (persistante/réduction) n'était précisée.

Pour finir Talini et al. a réalisé en 2015 une étude longitudinale de 5 ± 7 ans afin de préciser les déterminants de la diminution du VEMS chez 39 patients, asthmatiques professionnels encore exposés au travail (83). Une éosinophilie \geq 3% dans l'expectoration induite réalisée lors du diagnostic était un facteur indépendant de diminution du VEMS ainsi que l'absence de réduction de l'exposition à l'agent causal.

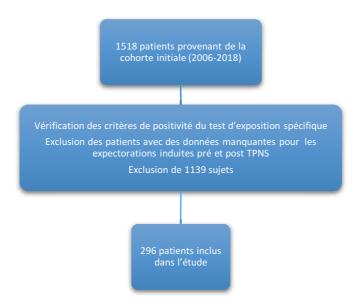
2.3 Etat de la question

Nous venons de déterminer que bien que la dichotomie de l'asthme professionnel par sensibilisation en asthme causé par les agents de HPM et de BPM permettait de différencier les patients selon des caractéristiques cliniques elle ne reflétait pas de mécanisme physiopathologique distinct et n'apportait pas d'éléments pronostiques. L'avènement de l'étude de l'inflammation bronchique dans l'asthme non professionnel, notamment par le développement de l'expectoration induite a permis de déterminer des endotypes, neutrophilique et éosinophilique, aux caractéristiques cliniques et pronostiques propres.

Dans l'asthme professionnel, la détermination du type d'inflammation bronchique est fortement liée à l'exposition, et la caractérisation clinique des types inflammatoires n'a pas été élucidée.

Il a été décidé de réaliser une étude multicentrique, comparative, rétrospective au sein de la cohorte E-PHOCAS avec comme objectifs :

- Déterminer si l'éosinophilie ou la neutrophilie bronchique estimées par l'expectoration induite permettaient de différencier les patients selon des caractéristiques cliniques distinctes.
- Caractériser l'inflammation bronchique selon le type d'agent causal.


3 Matériel et méthode

3.1 Dessin de l'étude et population

Cette étude observationnelle, rétrospective, réalisée au sein de la cohorte E-PHOCAS, répertorie l'ensemble des patients ayant été diagnostiqués asthmatiques professionnels par la réalisation d'un test de provocation bronchique spécifique entre 2006 et 2018 dans les 20 centres européens participants. Pour être éligibles à l'étude les patients devaient avoir bénéficié d'une expectoration induite avant et 24 heures après le test de provocation bronchique spécifique (figure 3).

Les informations concernant les données démographiques, cliniques, et paracliniques des patients étaient renseignées par chaque centre au travers d'un tableur standardisé. Ces bases de données locales étaient compilées après vérification puis centralisées à l'université de Strasbourg pour la réalisation des analyses statistiques.

3.2 Figure 3 : Diagramme de flux

3.3 Éthique

Chaque centre participant a obtenu l'approbation de son centre pour le recueil et l'analyse de ces données rétrospectives. Le protocole a été approuvé par le Comité d'Ethique Médicale du Centre Hospitalier Universitaire de Namur (numéro d'approbation B039201525769).

La base de données centrale a été analysée à Strasbourg avec approbation du Comité Consultatif sur le Traitement de l'Information en Matière de Recherche dans le Domaine de la Santé et de la Commission Nationale de l'Informatique et des Libertés. C'était une étude non interventionnelle selon la loi Jardé.

3.4 Caractéristiques cliniques et professionnels

Les informations demandées correspondaient aux items suivants : 1) agent causal et profession ; 2) caractéristiques démographiques ; 3) symptômes et médications anti asthmatiques ; 4) nature et chronologie de l'exposition à l'agent causal et des symptômes ; 5) comorbidités pouvant être reliée à l'exposition (rhinite au travail, dysphonie, urticaire et ou eczema et sinusites).

3.5 Evaluation de l'asthme

La sévérité de l'asthme était évaluée à postériori selon les paliers de traitement proposés par « the Global Initiative for Asthma » (GINA) 2015 (65) : non traité (palier 0) ; léger (palier 1-2) et sévère (palier 4-5).

La fréquence de l'utilisation des bronchodilatateurs de courte durée d'action (BCDA) était catégorisée en « jamais », « une fois ou moins par semaine », « une à deux fois par jour », ou « trois fois ou plus par jour » de la même façon que le questionnaire validé « Asthma Control Test » (ACT) (84). La fréquence de recours aux BCDA était utilisée comme un proxy pour évaluer le niveau de contrôle de l'asthme car la majorité des centres n'utilisaient pas de questionnaires validés pour estimer le contrôle de l'asthme. Dans le cadre de cette étude, la dénomination « mauvais contrôle de l'asthme » correspond à la prise de BCDA une fois ou plus par jour comme proposé par les recommandations de l'ATS de 2000 (85).

Une exacerbation sévère était définie par la prise de corticostéroïdes oraux pendant une durée d'au moins trois jours(86).

Le critère pour être défini comme asthme sévère était adapté des critères de l'ATS (87). Un patient était défini comme sévère s'il présentait un niveau de traitement élevé (palier GINA 4-5) associé à au moins un des critères suivants :

- Un mauvais contrôle de la maladie, ici défini par la prise de BDCA au moins une fois par jour.
- Une obstruction bronchique définie par un VEMS inférieur à 80 % de la valeur théorique.
- Plus de deux exacerbations sévères, comme définies ci dessus.

3.6 Evaluation de la fonction pulmonaire

Était réalisée une mesure de référence avant le test de provocation bronchique spécifique du VEMS, de la CVF ainsi que le niveau d'HyperRéactivité Bronchique Non Spécifique (HRBNS). Le niveau d'HRBNS de référence et 24 heures après le test de provocation bronchique spécifique était exprimé en tant que dose ou concentration de principe actif engendrant une diminution de 15 ou 20 % de chute du VEMS (PC/PD_{15-20%}) selon la méthode utilisée dans chaque centre. Le niveau d'HRBNS (absent, léger ou modéré à sévère) était défini selon les recommandations ou selon un consensus obtenu par méthode Delphi entre les différents investigateurs (24,88–90). Une augmentation significative de l'HRBNS était définie par une diminution d'un facteur supérieur ou égal à deux de la valeur du PC/PD_{15-20%} mesurée 24 heures après le test de provocation bronchique spécifique et celle mesurée au départ. Le niveau de FeNO était mesuré avant et 24 heures après le test de provocation bronchique spécifique selon les recommandations de l'ATS (91)

3.7 Analyse de l'expectoration induite

Les expectorations induites étaient recueillies avant le test de provocation bronchique spécifique et 24 heures après. La méthode d'induction de l'expectoration induite différait selon les centres : 1 centre

utilisait un sérum salé isotonique, 4 centres une concentration unique de sérum salé hypertonique (3% ou 4,5%) ou des concentrations croissantes de sérum salé hypertonique de 0,9 à 3,4 ou 5% (4 centres) ou de 10 à 20 % (1 centre) pour une durée maximale de 15 à 40 minutes(92). Il a été montré que l'utilisation de différentes concentrations de sérum salé ne modifiait pas significativement le décompte cellulaire (93,94). Deux méthodes étaient utilisées pour conditionner les échantillons : Soit en sélectionnant les portions visqueuses des expectorations (5 centres) (95) soit en utilisant l'ensemble des expectorations (5 centres)(96). L'homogénéisation du prélèvement était réalisée dans tous les centres par du dithiothreitol (0,1%). Tous les centres ont appliqué le même protocole basé sur la viabilité des cellules (au moins 40%) et le niveau de contamination par les cellules épithéliales (92). Le taux accepté de contamination par des cellules épithéliales était inférieur à 20 % dans 3 centres, 30% dans un centre et 50 % dans deux centres. Le pourcentage d'éosinophiles et de polynucléaires était mesuré avant et 24 heures après le test d'exposition.

3.8 Critères de jugements

Comme démontré précédemment, l'inflammation bronchique dépend de l'exposition (73,81)

Les sujets participant à l'étude n'étant pas tous exposés à l'agent causal au moment de la réalisation du test de provocation bronchique spécifique, le caractère éosinophilique et neutrophilique de l'inflammation bronchique était basé sur l'expectoration induite post test de provocation bronchique spécifique. Dans cette étude, le caractère éosinophilique d'un asthme était défini par un pourcentage d'éosinophiles ≥ 3% dans l'expectoration induite, un asthme neutrophilique était défini comme un asthme ayant un taux de neutrophiles dans l'expectoration induite ≥76%.

3.9 Analyses statistiques

Les données sont présentées en médiane et intervalle inter quartile pour les variables continues et en pourcentage pour les variables catégorielles. La comparaison entre les groupes de sujets a été réalisée en utilisant le test de Fisher pour les variables catégorielles et test de Wilcoxon ou Kruskal Wallis pour

les variables continues. Les coefficients de corrélation ont été obtenus en réalisant la méthode de Spearman, les variables étudiées ne présentant pas une distribution normale.

Les analyses de régressions logistiques multivariées ont été réalisées en utilisant un modèle linéaire généralisé. Le modèle le plus parcimonieux a été sélectionné par une procédure de sélection des variables pas à pas basées sur l'indice d'Akaike (utilisation de la fonction « stepAIC » package MASS) pour identifier les caractéristiques cliniques et physiologiques associées à un asthme professionnel éosinophilique ou neutrophilique. Les variables incorporées au modèle étaient soit des variables présentant une p valeur ≤ 0,1 en régression univariée ou des caractéristiques sociodémographiques incorporées d'office au modèle. Les analyses ont été réalisées en cas complet. Les analyses statistiques étaient réalisées en utilisant le logiciel R version 3.4.1 (www.r-project.org). Une p valeur inférieure à 0,05 était considérée comme significative.

4 Résultats

4.1 Prévalence et caractéristiques de l'inflammation éosinophilique

219 patients soit 75% de la population présentaient une inflammation éosinophilique.

Les données descriptives des patients selon l'inflammation éosinophilique figurent dans les tableaux 1 et 2.

Les patients éosinophiliques ne présentaient pas plus d'atopie que les patients non éosinophiliques. 67,1 % des patients éosinophiliques étaient associés à une sensibilisation à un agent de HPM. La rhinite au travail était plus fréquente chez les patients éosinophiliques.

Les patients éosinophiliques ne présentaient pas de différence en terme de délai de dernière exposition à l'agent causal.

Ils présentaient des posologies plus élevées de corticostéroïdes inhalés mais n'étaient pas plus sévères selon les critères ATS. En effet il n'y avait pas de différence significative en terme d'exacerbations sévères. Les patients éosinophiliques présentaient un meilleur contrôle de l'asthme. Le rapport VEMS/CVF était significativement plus bas dans le groupe éosinophilique sans différence au niveau du VEMS. La chute maximale du VEMS lors du TPBS était généralement plus importante dans le groupe éosinophilique. Le niveau d'HRBNS de base était plus important chez les patients éosinophiliques, le type de réaction après le TPBS n'était pas différent des patients non éosinophiliques.

L'éosinophilie sanguine et le FeNO étaient plus élevées chez les patients éosinophiliques (tableau 2). Cependant la corrélation de ces paramètres avec l'éosinophilie dans l'expectoration induite après TPBS était modeste (tableau 3). Seuls 49,8 % des patients qui présentaient une éosinophilie dans les expectorations induites après le TPBS \geq 3 % avaient déjà une éosinophilie de l'expectoration induite \geq 3% avant le TPBS. Le changement médian du pourcentage d'éosinophile dans l'expectoration induite était de 10%.

Les analyses mutivariées concernant l'éosinophilie bronchique ont mis en évidence une association indépendante de la dose de CSI, du niveau d'HRBNS (tableau 4). De plus le fait d'avoir un asthme non contrôlé était associé négativement avec le fait d'avoir une inflammation éosinophilique toutes choses étant égales par ailleurs.

Il a été mis en évidence une interaction entre le type d'agent (HPM/BPM) et la rhinite comme illustré dans les analyses stratifiées sur le type d'agent (tableau 5). La rhinite n'était associée à une inflammation éosinophilique que chez les patients sensibilisés à des agents de haut poids moléculaire.

4.2 Prévalence et caractéristique de l'inflammation neutrophilique

41 patients soit 13,9% des patients présentaient une inflammation bronchique de type neutrophilique (tableau 6). Ils ne différaient pas des patients non neutrophiliques en termes d'âge, de statut tabagique ou de type d'agent causal. Une majorité des patients neutrophiliques (58%) étaient sensibilisés à des agents de HPM. Les patients neutrophiliques présentaient plus souvent une dysphonie alors qu'ils étaient moins souvent traités par corticostéroïdes inhalés et correspondaient plus souvent à des paliers thérapeutiques plus bas.

Cependant, de façon surprenante, les asthmes neutrophiliques étaient plus souvent non contrôlés pour ce qui concerne les symptômes.

Aucune différence n'a été observée pour le VEMS et la CVF ou l'HRBNS de base, cependant les patients neutrophiliques augmentaient moins leur HRBNS à l'issue de l'exposition et présentaient plus souvent une réaction isolée précoce.

Concernant les biomarqueurs (tableau 7), les patients neutrophiliques présentaient un taux plus bas d'éosinophiles sanguins et de FeNO. 65,9% des patients présentant une neutrophilie ≥ 76% dans l'expectoration post TPBS présentaient déjà une neutrophilie ≥ 76% dans l'expectoration pré TPBS. Le changement médian du pourcentage de neutrophiles dans les expectorations induites durant le

TPBS était de 3%. 18 patients présentaient à la fois une éosinophilie \geq 3 % de l'expectoration induite post TPBS et une neutrophilie \geq 76%.

Les analyses multivariées mettaient en évidence une association indépendante entre l'âge et l'inflammation neutrophilique (tableau 8). Pour chaque augmentation d'un an, la probabilité d'avoir une réaction neutrophilique augmentait de 6%. L'asthme neutrophilique était associé à un mauvais contrôle indépendamment de la prise de corticostéroïdes inhalée. Toutes choses étant égales par ailleurs, l'asthme neutrophilique était associé à l'absence de traitement par corticostéroïdes inhalées, à une plus grande probabilité d'avoir présenté plus de deux exacerbations sévères lors de l'année précédant le TPBS et de développer une réaction précoce lors du TPBS.

4.3 Inflammation et agents

Nous nous sommes limités à une analyse descriptive des biomarqueurs par agents compte tenu du faible effectif par agent (tableau 9). Néanmoins on observe qu'un même agent était susceptible de générer les deux types d'inflammation. Les patients sensibilisés à la farine et au latex, dont le mécanisme IgE médié est prouvé, révélaient une inflammation de type neutrophilique dans 13 et 18% des cas respectivement. Une augmentation du FeNO ne semble pas non plus être systématiquement associée à une augmentation de l'éosinophilie dans l'expectoration induite après TPBS. Par exemple, le changement médian d'éosinophiles chez les patients sensibilisés aux ammoniums quaternaires était de 18%, celui de la FeNO de 5 ppm avec une FeNO post TPBS de 28 ppm ce qui est considéré comme bas.

Pour les isocyanates, le phénomène inverse semblait se produire : la valeur médiane de FeNO post TPBS était de 62 ppm avec une augmentation médiane de 30 ppm contre un changement médian de 4% d'éosinophile au cours du TPBS avec une valeur médiane post TPBS de 4%.

5 Discussion

Il a été mis en évidence à travers cette étude que la distinction en asthme professionnel éosinophilique et neutrophilique permettait de distinguer les patients selon des caractéristiques cliniques, fonctionnelles, et de sévérité distinctes. De plus il a été vérifié que le type d'inflammation bronchique pouvait varier pour un agent donné et était indépendant du type d'agent (HPM vs. BPM).

Il s'agit à notre connaissance de la seule étude avec un large effectif à étudier les caractéristiques de l'inflammation éosinophilique et neutrophilique dans l'asthme professionnel.

50,2 % des patients éosinophiliques définis de cette façon ne présentaient pas d'éosinophilie ≥ 3 % avant le TPBS. Cela souligne l'importance de la relation entre l'exposition et l'inflammation éosinophilique.

Dans notre étude les patients éosinophiliques ne présentaient pas de différence en terme de délai de dernière exposition à l'agent causal par rapport aux patients non éosinophiliques. Cela souligne l'importance des TPBS pour le phénotypage des patients asthmatiques professionnels.

Nous n'avons pas utilisé d'autres biomarqueurs pour définir l'inflammation éosinophilique ces derniers ayant une mauvaise corrélation avec les expectorations induites, ce qui est en accord avec les études portant sur l'asthme non professionnel (66).

Il n'a pas été réalisé d'étude spécifique sur les patients présentant à la fois une inflammation neutrophilique et eosinophilique (granulocytique mixte) du fait de leur faible effectif (18 patients), ni sur les patients dit paucigranulocytiques.

75% des patients asthmatiques professionnels étaient éosinophiliques ce qui semble être plus élevé que dans l'asthme non professionnel pour lequel il est dit que l'inflammation éosinophilique représenterait 50% des asthmatiques(48,49). Le Test de provocation bronchique spécifique, bien qu'étant le test

diagnostique de référence a été qualifié d'imparfait dans le cadre des recommandations de la fondation de la recherche de la médecin du travail britannique (97). Une étude de Moscato et al. portant sur 113 sujets exposés aux isocyanates rapportant des symptômes au travail, établissait que les sujets présentant la plus grande probabilité d'avoir un test d'exposition bronchique spécifique positif étaient ceux ayant été exposés le plus récemment à l'agent et ceux présentant une hyperréactivité bronchique non spécifique avant le test de provocation (98). Il a été aussi suggéré que le test de provocation bronchique spécifique ait une sensibilité diminuée pour les patients asthmatiques moins sévères avec des recensements de faux négatifs (97,99,100). On peut émettre l'hypothèse que la méthode diagnostique du test de provocation bronchique spécifique sélectionne des patients éosinophiliques plus sévères et d'exposition plus récente que par exemple la mesure itérative du débit expiratoire de pointe utilisée comme méthode diagnostique.

Une proportion importante d'asthmatiques professionnels sensibilisés à des agents de bas poids moléculaire présentait une inflammation éosinophilique. Ceci pourrait être expliqué par une récente étude sur modèle animal qui a mis en exergue le possible rôle de la voie de l'ILC 2 dans l'asthme induit par les isocyanates (101).

L'asthme éosinophilique professionnel était associé une plus grande hyperréactivité bronchique de base et des posologies de corticostéroïdes inhalés plus élevées à l'instar de l'asthme éosinophilique non professionnel.(53,54)

Nous n'avons pas mis en évidence de pattern de réponse bronchique spécifique à l'inflammation éosinophilique. De plus la rhinite n'était associée à une éosinophilie bronchique que chez les patients présentant un asthme par sensibilisation à un agent de haut poids moléculaire. La catégorie « éosinophilique » semble être trop large et incorporer des patients aux mécanismes physiopathologiques différents. Dans l'étude de cluster réalisée par Lemière et al. (79), il est mis en opposition deux clusters majoritairement composés de patients sensibilisés à des agents de HPM (respectivement 76 et 100%) présentant une rhinite associée au travail (respectivement 85 et 96%) et une augmentation du FeNO lors du TPBS à un troisième cluster composé de patients sensibilisés à des agents de bas poids moléculaire, avec un taux de rhinite plus bas(47%) et sans augmentation de FeNO

durant le TPBS. Les 3 clusters ne différaient pas en terme d'éosinophilie de l'expectoration induite post TPBS. Par ailleurs il a été montré que la rhinite allergique d'origine professionnelle pouvait indépendamment de l'asthme provoquer une augmentation de FeNO (102). La rhinite ne semble donc être associée à une inflammation éosinophilique que lorsqu'elle est d'origine allergique. Il est probable que les patients éosinophiliques allergiques aient des caractéristiques cliniques différentes des patients éosinophiliques possiblement en lien avec la mise en jeu de la voie de l'ILC 2. Il semble néanmoins difficile de différencier ces deux types de patients, notamment du fait du manque de standardisation des tests allergologiques (20). Il est possible que des études de cluster avec un plus grand nombre de sujets permettent de répondre à cette question.

Nous avons utilisé le seuil de 76% de neutrophiles dans les expectorations pour estimer l'inflammation neutrophilique. Comme énoncé précédemment il n'y a pas de consensus sur le seuil à adopter, c'est pourquoi nous avons retenu le seuil le plus élevé afin d'être le plus spécifique possible. Nous avons retrouvé une prévalence de 13,9 % chez les asthmatiques professionnels, ce qui est équivalent à ce qui est retrouvé dans la population non professionnelle pour ce seuil (58,59).

L'asthme neutrophilique n'était pas ici associé à un plus haut niveau de sévérité contrairement à ce qui a pu être retrouvé dans d'autres études (57,62). Cela pourrait être expliqué en partie par l'influence de l'âge qui est connu comme étant associé à la fois à l'inflammation neutrophilique et à la sévérité (51,61,103). Dans notre étude, bien que la relation entre l'âge et l'inflammation neutrophilique ait été retrouvée en analyse multivariée les populations neutrophiliques et non neutrophiliques ne différaient pas en terme d'âge.

Nous avons montré que dans l'asthme professionnel, l'inflammation neutrophilique était associée à un moins bon contrôle de l'asthme et à un plus grand nombre d'exacerbations sévères indépendamment de la prise de corticostéroïde inhalé, ce qui est en faveur d'une absence de réponse à la corticothérapie comme déjà énoncé dans l'asthme non professionnel (57).

Dans notre étude, l'inflammation neutrophilique était associée au sexe masculin. D'habitude il est observé un ratio en faveur du sexe féminin dans l'asthme neutrophilique non professionnel(57,60,62).

Une explication possible est l'exposition à des agents différents entre hommes et femmes. Malgré le fait qu'un même agent puisse conduire à des profils inflammatoires différents, on observe aussi des tendances par agents, comme l'illustre l'asthme aux ammonium quaternaires, de prédominance éosinophilique et féminin (78).

Les patients neutrophiliques étaient plus dysphoniques que les patients non neutrophiliques alors même qu'ils étaient moins souvent traités par corticostéroïdes inhalés. La dysphonie est une comorbidité fréquente chez le patient asthmatique dont la prévalence varie entre 10% et 60% selon les études et le mode d'évaluation de la dysphonie (104–106). Alors que l'hypothèse qui a longtemps prévalu était celle d'une inflammation locale induite par les corticoïdes inhalés (107), on évoque en hypothèse alternative l'hypothèse d'un syndrome d'hypersensibilité laryngé (108), incluant, en plus des patients présentant une dysphonie fonctionnelle, les patients tousseurs chroniques et les patients présentant des adductions paradoxales des cordes vocales. Ce syndrome, lorsqu'il est associé à une exposition professionnelle est dénommé « syndrome du larynx irritable associé au travail » (109,110). Il a été montré que le réflexe de toux, chez les asthmatiques, évalué par épreuve à la capsaïcine, était plus développé chez les patients non atopiques indépendamment du niveau de sévérité de l'asthme(111). Cela va dans le sens de notre observation, soutenant que les comorbidités laryngées des

L'inflammation neutrophilique était associée à un type de réaction immédiate dans notre étude. Les réactions de type immédiates sont normalement attribuées à des mécanismes IgE médiés, ou à des procédés irritatifs ou histamino-libérateurs (21). Il semble impropre de faire l'hypothèse d'un procédé irritatif car les TPBS étaient réalisés en condition réaliste, à des concentrations non irritatives.

Certaines réactions d'hypersensibilité seraient donc de mécanisme indéterminé. Notons toutefois que de récentes recherches ont souligné le rôle des polynucléaires neutrophiles dans la réaction allergique in vitro. Il a été montré que des souris préalablement exposées à de faibles doses de lipopolysaccharides ou à de faibles concentrations d'Ozone surexprimaient le récepteur CXCR4 des polynucléaires neutrophiles, provoquant la création de piège neutrophilique extracellulaire (neutrophil extracellular trap) et potentialisant la réaction allergique aux acariens (112). De plus, la sécrétion

patients asthmatiques pourraient être liées à une inflammation neutrophilique.

d'élastase neutrophile au stade précoce amplifie l'inflammation de type 2 chez les souris sensibilisées à l'ovalbumine (113).

L'analyse par agent a confirmé qu'à un agent donné, plusieurs types d'inflammation étaient retrouvées à l'instar des farines où le mécanisme IgE médié est avéré. Il a été montré que l'expression de cytokines liées à l'inflammation neutrophilique (MPO, IL 8 et TNF alpha) était plus importante chez des sujets exposés à des farines que chez des sujets contrôle (114). Une étude comparant des biopsies bronchiques de patients asthmatiques aux farines à des biopsies bronchiques de patients asthmatiques allergiques aux acariens retrouvait une augmentation de l'élastase neutrophile dans le premier groupe (115). Il est difficile de savoir la raison pour laquelle tel type d'exposition génère tel type d'inflammation, neutrophilique ou éosinophilique. Il est vraisemblable qu'aux modalités de l'exposition s'ajoutent des facteurs génétiques et épigénétiques. Il a été suggéré que le polymorphisme du gène du Toll-like recepteur 4 avait une incidence sur la probabilité de développer des symptômes liés au travail chez des boulangers(116).

Deux méthodes étaient utilisées pour conditionner les échantillons des expectorations induites : Soit en sélectionnant les portions visqueuses des expectorations (95) soit en utilisant l'ensemble des expectorations(96). La différence entre l'utilisation de chacune de ces deux méthodes sur le résultat final est toujours sujette à controverse (92), cependant il semble fortement improbable qu'il puisse y avoir un impact sur la comparaison intra individuelle du décompte cellulaire avant et après test de provocation bronchique spécifique.

Le design rétrospectif de l'étude nous limite quant à la détermination du caractère prédictif du type d'inflammation bronchique ce qui pourrait faire l'objet d'un prochain travail.

6 Conclusion

La composante professionnelle de l'asthme a jusqu'alors été largement méconnue ou sous estimée. Il apparaît en effet qu'un asthme sur quatre est soit aggravé soit induit par le travail.

L'asthme professionnel, qui correspond à un asthme qui n'aurait pas existé sans l'exposition professionnelle est soit la conséquence d'une réaction immunologique spécifique à un agent présent sur le lieu de travail (asthme professionnel immunologique ou par sensibilisation), soit la conséquence d'une irritation dans le cadre d'une exposition unique à dose toxique (RADS), ou à des expositions répétées à plus faible dose.

L'asthme professionnel immunologique est celui qui a été le plus étudié. Le critère diagnostique de référence est le test de provocation bronchique spécifique où l'on observe une diminution du VEMS ou une augmentation de l'hyperréactivité bronchique après exposition à l'agent causal.

La classification historique distingue les agents selon leur masse moléculaire, leur imputant de ce fait une inflammation selon leurs caractéristiques chimiques. Il est maintenant clair que le mécanisme physiopathologique ne dépend pas entièrement de la masse moléculaire de l'agent, comme par exemple les sels de platine qui peuvent se comporter comme des haptènes et déterminer un mécanisme allergique en dépit de leur faible poids moléculaire.

L'asthme est une pathologie hétérogène. Cette caractéristique a conduit à considérer l'importance de l'endotypage, c'est à dire de la mise en évidence de biomarqueurs, spécifiques d'un mécanisme physiopathologique, prédictifs d'une réponse à un traitement donné. L'éosinophilie de l'expectoration induite est le biomarqueur non invasif qui a apporté le plus de preuves en terme de prédiction de réponse à la corticothérapie dans l'asthme non professionnel.

Dans l'asthme professionnel, l'endotypage reste balbutiant. L'éosinophilie de l'expectoration induite a été proposée comme critère diagnostique lorsqu'augmentée après un test d'exposition spécifique, mais les études voulant caractériser les asthmes professionnels selon l'inflammation sont rares et de faibles

effectifs. Il a été néanmoins montré que l'éosinophilie pouvait être un biomarqueur d'exposition et qu'elle dépendait du délai de la dernière exposition à l'agent causal.

La cohorte E-PHOCAS (The European network on phenotyping of Ocupational Asthma) comprend un recueil de données rétrospectif des asthmatiques professionnels documentés par test d'exposition spécifique provenant de 20 centres situés dans 11 pays européens. Les patients ayant bénéficié d'une expectoration induite avant et après test d'exposition spécifique ont été inclus dans cette étude afin de les caractériser selon leur pattern inflammatoire.

Des analyses se concentrant sur les patterns inflammatoires après test d'exposition, indépendants du délai de la dernière exposition, ont été réalisées.

L'éosinophilie bronchique après test d'exposition était associée à une plus grande hyperréactivité bronchique non spécifique, à de fortes doses de corticothérapie inhalée comme dans l'asthme non professionnel. La rhinite au travail n'était associée à l'inflammation éosinophilique que chez les patients sensibilisés à des agents de haut poids moléculaire, laissant présager un phénotype allergique au sein des patients éosinophiliques.

La neutrophilie bronchique était quant à elle associée à un mauvais contrôle de l'asthme indépendamment de la prise de corticothérapie inhalée, cette dernière étant moins importante que chez les patients non neutrophiliques. La neutrophilie bronchique était associée à un âge plus important et au sexe masculin.

Il est apparu qu'un même agent pouvait être à l'origine de différents types d'inflammation bronchique, remettant en cause le dogme de l'affiliation systématique d'un mécanisme physiopathologique à un type d'agent.

L'asthme professionnel était majoritairement éosinophilique, ce qui pose la question d'une éventuelle sélection par la méthode de test de provocation bronchique spécifique de patients éosinophiliques et plus sévères ce qui sera à vérifier par de prochaines études.

Pour finir, la catégorisation en asthme éosinophilique semblait regrouper des patients présentant des mécanismes physiopathologiques différents. Une étude de cluster non supervisée de grande ampleur, associant les données des expectorations induites pourrait possiblement distinguer ces patients éosinophiliques au mécanisme IgE médié des patients éosinophiliques de mécanisme ILC2.

7 Tableaux

7.1 Tableau 1 Caractéristiques cliniques et physiologiques des sujets selon l'éosinophilie des expectorations après provocation.

Caractéristiques	NA	Eosinophilie dans expectoration post TPBS <3% (n=77)	Eosinophilie dans expectoration post TPBS ≥3% (n=219)	P value
Age, années*	0	45 (35-51)	43 (34-51)	0,774
Sexe, homme	0	47 (61,0)	147 (67,1)	0,774
Index de masse corporelle, kg/m ² *	0	27,8 (24,0-31,7)	27,1 (24,0-30,7)	0,573
Statut tabagique :	0	27,0 (21,0 31,7)	27,1 (21,0 30,7)	0,291
Tabagisme actif		22 (28,4)	49 (22,4)	0,271
Tabagisme sevré		24 (31,2)	60 (27,7)	
Non fumeur		31 (40,3)	110(50,2)	
Atopie [†]	1/1	38 (50,0)	106 (48,6)	0,894
Polypose naso-sinusienne	0	10 (13,2)	18 (8,2)	0,157
Asthme préexistant à l'exposition causale	0	10 (13,0)	15 (6,8)	0,101
Durée d'exposition avant l'apparition des symptômes, mois*	1/1	108 (36-212)	120 (58-216)	0,480
Durée des symptômes d'asthme au travail, mois*	1/2	36 (15-59)	36 (16-84)	0,077
Intervalle depuis la dernière exposition professionnelle mois*	0/1	3,0 (0,1-12,0)	3,0 (0,03-12,0)	0,300
Type d'agent causal, HPM	0/0	41 (53,2)	147 (67,1)	0,039
Rhinite au travail	0	51 (66,2)	178 (81,3)	0,011
Expectorations quotidiennes	0/4	24 (31,2)	53 (24,7)	0,292
Dysphonie	0/3	18 (17,8)	28 (10,8)	0,080
Urticaire	0	8 (10,4)	26 (11,9)	0,837
Dermatite de contact	0	10 (13,0)	18 (8,2)	0,257
Traitement de l'asthme au travail				
Sujets avec CSI	0	47 (61,0)	170 (77,6)	0,007
Dose quotidienne CSI* [‡]	0	500 (0-800)	500 (250-1000)	0,017
β2-agoniste de longue durée d'action	0	41 (54,5)	165 (75,3)	0,001
Antagoniste des récepteurs des leucotriènes	1/2	11 (14,5)	53 (24,4)	0,077
Asthme sévère (critères ATS)	0	13 (16,9)	40 (18,3)	0,64
Gravité de l'asthme au travail [§]	0			0,031
Aucun traitement		17 (22,1)	20 (9,1)	0,005
Faible (Traitement GINA palier 1-2)		15 (19,5)	34 (15,5)	0,476
Modéré à sévère (palier 3-5)		45 (58,4)	165 (75,3)	0,008
Asthme non contrôlé (BCDA ≥ une fois par jour) 1	0	29 (37,7)	50 (22,8)	0,016
≥1 exacerbation (dans les 12 mois)	0	13 (16,9)	47 (21,5)	0,510
≥2 exacerbation (dans les 12 mois)	0	3 (3,9)	20 (9,1)	0,214
Spiromètrie de base	0	102 (01 100)	102 (01 111)	0.505
CVF, % théorique* VEMS ₁ , % théorique*		102 (91-109) 92 (80-101)	102 (91-111)	0,587
VEMS ₁ /CVF*		76 (69-81)	89 (77-100) 73 (66-80)	0,176 0,035
Niveau de référence du HRBNS [‡]	4/16	70 (09-81)	73 (00-80)	0,030
Absent	7/10	22 (30,1)	32 (15,8)	0,050
Faible		35 (47,9)	109 (53,7)	
Modéré à sévère		16 (21,9)	62 (30,5)	
HRBNS après provocation	13/77			
Ratio d' HRBNS pré/post TPBS*		2,0 (1,0-4,5)	2,3 (1,4-4,3)	0,474
Ratio d' HRBNS pré/post TPBS >2	0.17	35 (54,7)	94 (66,2)	0,122
Durée d'exposition aux TPBS *	0/2	30 (25-120)	30 (20-60)	0,201
Chute maximum du VEMS ₁ , % référence* Profil de réponse bronchique au test de provocation [¶]	8/15 [¶]	22 (19-27)	24 (19-33)	0,006 0,406
Réaction précoce isolée	0/13	30 (43,5)	76 (37.3)	0,374
Réaction tardive isolée		14 (20,3)	76 (37,3)	0,5/4
Réaction mixte		25 (36,2)	35 (17,2) 92 (45,1)	
Réaction tardive (tardive isolé + mixte)		39/69 (56,5)	127/204 (62,3)	0,374
Treatment minister (minister inote / illinte)	1	57107 (50,5)	1277201 (02,3)	0,5/7

Légende: VEMS1, volume expiratoire maximum seconde ; CVF capacité vitale forcée; GINA, Global Initiative for Asthma; HPM, haut poids moléculaire; CSI, corticostéroïde inhalé; BLDA &2-agoniste de longue durée d'action ; HRBNS, hyperréactivité bronchique non spécifique ; BCDA, &2-agonist de courte durée d'action ; TPBS, test de provocation

bronchique spécifique, Données présentées sous la forme n (% des données disponibles) sauf indication contraire, les données en gras sont statistiquement significatives,

- * Valeur médiane avec intervalle interquartile (QR) entre parenthèses
- † Atopie définie par la présence d'au moins un résultat positif aux tests cutanés aux allergènes courants.
- ‡ La dose quotidienne de corticoïde inhalé est exprimée en équivalent de dipropionate de Béclométhasone
- § La sévérité de l'asthme a été classée selon les paliers thérapeutiques proposés par le GINA "sans traitement" (palier 0) ; "faible" (palier 1-2); "modéré à sévère" (palier 3-5).
- Le besoin d'un B2 agoniste à courte durée d'action une ou plusieurs fois par jour a été utilisé comme indicateur d'un mauvais contrôle des symptômes.
- ¥ Voir méthodes de notation de l'HRBNS
- ¶ Le TPBS a été considéré comme positif sur la base d'une augmentation significative du niveau HRBNS post provocation par rapport à la valeur de base (c'est à dire rapport HRBNS prè/post-provocation \geq 2) en l'absence d'une baisse \geq 15% du VEMS dans 8 des 77 sujets avec un nombre d'éosinophiles dans les expectorations \leq 3% et chez 15 des 219 sujets avec un nombre d'éosinophiles dans les expectorations \geq 3%.

7.2 Tableau 2 Marqueurs biologiques de l'inflammation des voies aériennes dans le cadre de l'inflammation éosinophilique

Caractéristiques	NA	Eosinophiles dans expectoration post TPBS <3% (n=77)	Eosinophiles dans expectoration post TPBS ≥3% (n=219)	P value
Eosinophiles sanguins	18/36			
Cellules/µl*		200 (100-296)	300 (200-410)	<0,001
$>300/\mu l$		15 (25,4)	98 (53,6)	<0,001
Taux basal FeNO, ppm*	30/142	17 (8-28)	25 (15-40)	0,020
FeNO après provocation	34/143			
ppm*		18 (12-44)	49 (28-83)	<0,001
Changement FeNO post TPBS, ppm* [†]	36/145	2 (0,2-13)	18 (5-46)	<0,001
Changement FeNO post TPBS >17.5 ppm [†]	36/145	7 (17,1)	38 (51,4)	<0,001
Taux basal d'éosinophiles dans expectoration				
0/0*	0	1,0 (0-1,5)	2,7 (1,0-7,0)	<0,001
≥3%	0	12 (15,6)	109 (49,8)	<0,001
Taux d'éosinophiles dans l'expectoration après provocation				
⁰ / ₀ *	0	1,0 (0,5-2,0)	10,0 (5,0-19,9)	<0,001
Changement post TPBS, %* [†]	0	0 (0-1,0)	5,5 (2,1-12,1)	<0,001
Changement post TPBS ≥2% [†]	0	7 (9,1)	183 (83,6)	<0,001
Taux basal de neutrophiles de l'expectoration				
0/0*	0	55,5 (37,0-79,0)	52,0 (37,0-68,2)	0,287
≥76%	0	24 (31,2)	38 (17,4)	0,014
Taux après TPBS des neutrophiles de				
l'expectoration				
%*	0	63,8 [43,0-80,5]	50,2 [36,0-64,0]	<0,001
≥76%	0	23 (29,9)	18 (8,2)	<0,001
Changement post TPBS, %*†	0	2,0 [-5,0-11,0]	-3,0 [-17,5-10,5]	0,005

<u>Légende</u> *FeNO*, fractional exhaled nitric oxide, TPBS: Test de provocation bronchique spécique. Données présentées sous la forme n (% des données disponibles) sauf indication contraire. Valeurs en gras sont statistiquement significatives (P < 0.05).

^{*} Valeur médiane avec intervalle interquartile (QR) entre parenthèses.

[†] Comparé aux valeurs de base.

7.3 Tableau 3: Corrélation croisées entre les différents biomarqueurs de l'inflammation T2

n=145	Éosinophilie dans les expectoration induites	FeNO	Éosinophilie sanguine
Éosinophilie dans les expectoration induites	1.0	0.31	0.34
FeNO	0.31	1.0	0.13
Éosinophilie sanguine	0.34	0.13	1.0

Toutes les p valeurs étaient <0,05

7.4 Tableau 4 : Régression logistique multiple pour une éosinophilie post TPBS \geq 3%

	Eosinophilie post TPBS expectoration≥ 3% (n=296)				
Caractéristiques	OR	(95% CI)	P valeur		
Model initiale: (n=275)					
Age, année	0,98	(0,95-1,01)	0,291		
Sexe, homme	1,04	(0,55-1,92)	0,909		
Indice de masse corporel ≥30 kg/m ²	0,76	(0,40-1,45)	0,395		
Agent causal, HPM vs. BPM	1,58	(0,80-3,10)	0,187		
Rhinite au travail	1,61	(0,79-3,29)	0,186		
Dose quotidienne de CSI par augmentation de 250 µg*	1,33	(1,12-1,60)	0,002		
Mauvais contrôle de l'asthme (BCDA≥1/jour)	0,25	(0,12-0,50)	<0,001		
Niveau d'HRBNS vs. absence					
Léger	2,28	(1,08-4,82)	0,031		
Modéré à sévère	2,59	(0,97-7,10)	0,059		
Chute maximale de VEMS pendant le TPBS par 10%	1,16	(0,88-1,54)	0,309		
Ratio VEMS/CVF	0,85	(0,55-1,31)	0,452		
Modèle final: (n=275)			·		
Agent causal, HPM vs, BPM	1,68	(0,87-3,24)	0,119		
Rhinite au travail	1,69	(0,83-3,41)	0,146		
Dose quotidienne de CSI par augmentation de 250 µg*	1,31	(1,11-1,55)	0,002		
Mauvais contrôle de l'asthme (BDCA≥1/jour)	0,28	(0,14-0,55)	<0,001		
Niveau d'HRBNS vs. absence			Í		
Léger	2,48	(1,21-5,08)	0,012		
Modéré à sévère	3,40	(1,44-8,29)	0,006		

Légende: VEMS₁, volume expiratoire maximum seconde; CVF, capacité vitale forcée; HPM, haut poids moléculaire; CSI, corticostéroïde inhalé; LABA, β2-agonist de longue durée d'action; HRBN,S hyperréactivité bronchique non spécifique;

BCDA, β2-agonist de courte durée d'action; TPBS, test de provocation bronchique spécifique. Les données en gras sont statistiquement significatives.

7.5 Tableau 5 : Analyse de régression logistique concernant l'asthme éosinophilique stratifiée selon le type d'agent

	Eosinop n=188)	hilie post TPBS≥3	5% (HPM,	Eosinophilie post TPBS ≥ 3% (BPM, n=108)		
Caractéristiques	OR	(95% CI)	P valeur	OR	(95% CI)	P valeur
	Modèle	initial: (n=171)		Modèle (n=104	e initial :)	
Age, année	0,96	(0,92-1,01)	0,105	1,01	(0,87-1,01)	0,08
Sexe, homme	0,99	(0,39-2,43)	0,989	0,91	(0,30-3,87)	0,916
Indice de masse corporel ≥30 kg/m ²	0,76	(0,32-1,84)	0,541	0,56	(0,46-5,92)	0,464
Rhinite au travail	4,21	(1,22-14,75)	0,002	0,87	(0,01-1,07)	0,096
Dose quotidienne de CSI par augmentation de 250 µg*	1,28	(0,97-1,72)	0,091	1,32	(0,79-1,58)	0,529
Mauvais contrôle de l'asthme (BCDA ≥1/jour)	0,21	(0,08-0,52)	<0,001	0,27	(0,02-0,57)	0,012
Niveau d'HRBNS vs, absence						
Léger	1,74	(0,59-5,03)	0,304	3,51	(0,64-29,46)	0,172
Modéré à sévère	1,10	(0,29-4,25)	0,883	10,41	(0,98-78,29)	0,066
Chute maximale de VEMS pendant le TPBNS par 10%	1,21	(0,84-1,79)	0,327	0,98	(0,79-1,99)	0,349
Ratio VEMS/CVF	0,95	(0,89-1,01)	0,099	1,02	(0,91-1,06)	0,678
	Modèle	final (n=171)		Modèle	e finale (n=104)	
Age, année	0,97	(0,93-1,01)	0,113			
Rhinite au travail	4,26	(1,33-13,68)	0,013			
Dose quotidienne de CSI par augmentation de 250 μg*	1,26	(0,97-1,69)	0,091	1,28	(1,03-1,65)	0,038
Mauvais contrôle de l'asthme (BCDA ≥1/jour)	0,23	(0,09-0,56)	0,001	0,27	(0,09-0,80)	0,021
FEV ₁ /FVC ratio	0,95	(0,90-0.99)	0,047			1
Niveau d'HRBNS vs, absence Léger Modéré à sévère				3,41 8,63	(1,16-10,56) (2,06-41,97)	0,028 0,005

Légende : $VEMS_1$, volume expiratoire maximum seconde; CVF, capacité vitale forcée;; HPM, haut poids moléculaire; CSI, corticostéroïde inhalé; LABA, $\beta 2$ -agonist de longue durée d'action; HRBN, S hyperréactivité bronchique non spécifique; BCDA, $\beta 2$ -agonist de courte durée d'action; TPBS, test de provocation bronchique spécifique. Les données en gras sont statistiquement significatives

7.6 Tableau 6 : Caractéristiques cliniques et physiologiques des sujets selon le taux de neutrophiles dans les expectorations après provocation ≥ or <76%

Caractéristiques	NA	Neutrophiles dans expectoration post TPBS <76% (n=255)	Neutrophiles dans expectoration post TPBS ≥76% (n=41)	P value
Age, années*	0	43 (34-51)	46 (37-55)	0.179
Sexe, homme	0	163 (63.9)	31 (75,6)	0,160
Index de masse corporelle, kg/m ² *	0	28 (24-31)	27 (22-31)	0,253
Statut tabagisme:	0			0,674
Tabagisme actif		60 (23,5)	11 (26,8)	
Tabagisme sevré Non fumeur		71 (27,8) 124 (48,6)	13 (31,7) 17 (41,5)	
Atopie [†]	2/0	120 (47,4)	24 (58,5)	0,238
Rhino-sinusite chronique	2/0	20 (7,9)	6 (14,6)	0,229
Asthme préexistant à l'exposition causale	0	18 (7,1)	7 (17,1)	0,061
Durée d'exposition avant l'apparition des symptômes, mois*	2/0	120 (48-204)	120 (48-240)	0,960
Durée des symptômes d'asthme au travail, mois*	2/0	36 (16-84)	36 (12-52)	0,329
Intervalle depuis la dernière exposition professionnelle, mois*	1/0	3,0 (0,03-11,00)	5 (0,1-15,00)	0,106
Type d'agent causal, HPM	0	164 (64,3)	24 (58,5)	0,488
Comorbidité en lien avec le travail				
Rhinite	0	201 (78,8)	28 (68,3)	0,159
Expectorations quotidiennes	4/0	62 (24,7)	15 (36,6)	0,127
Dysphonie	3/1	29 (11,5)	11 (27,5)	0,012
Urticaire	0	31 (12,2)	3 (7,3)	0,596
Dermatite de contact	0	21 (8,2)	7 (17,1)	0,085
Traitement de l'asthme au travail		,		
Prise de CSI	0	196 (76,9)	21 (51,2)	0,001
Dose quotidienne de CSI* [‡]	0	500 (250-1000)	250 (0-1000)	0,063
Prise de BLDA	0	187 (73,3)	20 (48,8)	0,003
Antagoniste des récepteurs des leucotriènes	1/2	59 (23,2)	5 (12,8)	0,210
Asthme sévère (critères de ATS)	0	43 (16,9)	10 (24,2)	0,272
Gravité de l'asthme au travail §				
Non traité	0	29 (11,4)	8 (19,5)	0,199
Faible (GINA palier 1-2)	0	37 (14,5)	12 (29,3)	0,024
Modéré à sévère (palier 3-5)	0	189 (74,1)	21 (51,2)	0,005
Utilisation de BCDA ≥ une fois par jour (mauvais contrôle) ¹	0	58 (22,7)	21 (51,2)	<0,001
≥1 exacerbation (les 12 derniers mois au travail)	0	52 (20,4)	8 (19,5)	1,000
≥2 exacerbation (les 12 derniers mois au travail)	0	17 (6,7)	6 (14,6)	0,108
Spiromètrie de base	0			
CVF, % pred*		102 (91-110)	103 (91-110)	0,936
VEMS ₁ , % pred* VEMS ₁ /CVF*		90 (79-98) 74 (67-80)	88 (73-96) 71 (65-78)	0,365 0,186
Niveau basal du HRBNS [¥]	18/2	/4 (67-80)	/1 (03-78)	0,180
Absent	10,2	48 (20,3)	6 (15,4)	0,020
faible		122 (51,5)	22 (56,4)	
Modéré-à-sévère	02/0	67 (28,3)	11 (28,2)	
HRBNS après provocation Ratio d' HRBNS pré/post TPBS * Ratio d' HRBNS pré/post TPBS >2	82/8	2,40 (1,30-4,90) 114 (65,9)	1,56 (1,14-3,00) 15 (45,5)	0,081 0,031
Durée d'exposition pendant le TPBS*	1/1	30 (23-60)	60 (14-121)	0,054
Chute maximum du VEMS ₁ , % référence*	0	24 (19-31)	25 (20-31)	0,810
Profil de réponse bronchique aux TPBS [¶]	16/8			0,031
Réaction isolée précoce		84 (35.1)	22 (66.7)	<0.001
Réaction isolée tardive Réaction mixte		47 (19.7) 108 (45.2)	2 (6.1) 9 (27.3)	
Réaction tardive (isolée tardive, + mixte)		155 (64.9%)	11 (33.3%)	<0.001

<u>Légende</u>: VEMS₁, volume expiratoire maximum seconde; CVF, capacité vitale forcée; GINA, Global Initiative for Asthma; HPM, haut poids moléculaire; CSI, corticostéroïde inhalé; BLDA, β2-agonist de longue durée d'action; HRBN,S hyperréactivité bronchique non spécifique; BCDA, β2-agonist de courte durée d'action; TPBS, test de provocation bronchique spécifique. Données présentées en % de données disponibles (n) sauf indication contraire, les données en gras sont statistiquement significatives, valeur médiane entre parenthèses,

7.7 Tableau 7 : Marqueurs biologiques de l'inflammation des voies aériennes dans le cadre de l'inflammation neutrophilique

Caractéristiques	NA	Neutrophiles dans expectoration post TPBS <76% (n=255)	Neutrophiles dans expectoration post TPBS ≥76% (n=41)	P value
Eosinophiles sanguins	47/7			
Cellule/µl*		292 (200-400)	207 (145-300)	0,060
$>300/\mu l$		102 (49,0)	11 (32,4)	0,094
Taux basal FeNO, ppb*	161/11	23 (10-37)	16 (9-38)	0,484
FeNO après TPBS	167/0			
ppm*		40 (23-75)	25 (12-65)	0,084
Changement après TPBS, ppm* [†]		13 (2-38)	4 (1-15)	0,057
Changement après TPBS>17,5 ppm [†]		39 (45,9)	6 (20,0)	0,016
Taux basal d'éosinophiles de l'expectoration				
⁰ / ₀ *	0	2,0 (1,0-6,0)	1,0 (0,5-2,0)	0,001
≥3%	0	113 (44,3)	8 (8 (19,5)	0,003
Taux d'éosinophiles de l'expectoration après provocation				
%*	0	8,0 (3,0-17,9)	2,5 (1,0-4,5)	<0,001
Changement après TPBS, %*†	0	4,0 (1,0-10,0)	1,2 (0-2,5)	<0,001
Changement après TPBS ≥2% [†]	0	174 (68,2)	16 (39,0)	0,001
Taux basal de neutrophiles de l'expectoration				
%	0	49,0 (34,5-66,1)	80,5 (68,0-86,2)	<0,001
≥76%	0	35 (13,7)	27 (65,9)	<0,001
Taux de neutrophiles de l'expectoration après provocation				
⁰ / ₀ *	0	48,0 (35,0-62,0)	82,5 (79,0-88,0)	<0,001
Changement après TPBS, %*†	0	-3,0 (-16,0-9,1)	3,0 (-3,0-19,0)	0,002

<u>Légende</u>: FeNO, oxyde nitrique exhalé fractionné,TPBS : test de provocation bronchique spécifique. Les données sont présentées sous la forme n (%des données disponibles), sauf indication contraire, Les valeurs en gras sont statistiquement significatives, (*P* <0.05)

^{*} Valeur médiane avec intervalle interquartile (QR) entre parenthèses

[†] Atopie définie par la présence d'au moins un résultat positif aux tests cutanés aux allergènes courants.

[‡] La dose quotidienne de corticoïde inhalé est exprimée en équivalent de dipropionate de Béclométhasone

[§] La sévérité de l'asthme a été classée selon les paliers thérapeutiques proposés par le GINA "sans traitement" (palier 0); "faible" (step 1-2); "modéré à sévère" (step 3-5)

Le besoin d'un BCDA une ou plusieurs fois par jour a été utilisé comme indicateur d'un mauvais contrôle des symptômes.

[¥]Voie méthodes de notation de l'HRBNS.

¹Le TPMS a été considéré comme positif sur la base d'une augmentation significative du niveau HRBNS post provocation par rapport à la valeur de base (c'est à dire rapport HRBNS prè/post-provocation≥2) en l'absence d'une baisse ≥15% du VEMS dans 8 des 41 sujets avec un nombre de neutrophiles dans les expectorations ≥76% et chez 16 des 255 sujets avec un nombre de neutrophiles dans les expectorations <76%.

^{*} Valeur médiane avec intervalle interquartile (IQR) entre parenthèses,

[†] Par rapport à la valeur de référence.

7.8 Tableau 8 : Analyse de régression logistique pour l'inflammation neutrophilique

	Neutrophili	e dans les expectorations po	st TPBS ≥76%
Independent variables	OR	(95% CI)	P value
Modèle initiale (n=267) :			
Age, années	1,06	(0,99-1,09)	0,023
Sexe, homme	4,55	(1,54-15,80)	0,010
Indice de masse corporel ≥30 kg/m ²	0,88	(0,30-2,40)	0,802
Statut tabagique vs. Non fumeur:			
Tabagisme sevré	0,92	(0,28-2,95)	0,884
Tabagisme actif	0,84	(0,27-2,47)	0,752
Asthme pré existant à l'exposition à l'agent	2,03	(0,52-7,20)	0,283
causal			
Dysphonie au travail	1,97	(0,63-5,82)	0,226
Traitement par CSI	0,19	(0,07-0,52)	0,002
Mauvais contrôle de l'asthme (BCDA ≥1/jour)	2,88	(1,12-7,44)	0,027
≥2 exacerbations sévères l'année précédente	5,74	(1,41-23,15)	0,013
Durée d'exposition pendant le TPBS par 15 min	1,09	(0,99-1,19)	0,074
Type de réaction précoce	5,74	(2,21-16,59)	<0,001
Modèle finale (n=267) :			
Age, années	1,06	(1,01-1,11)	0,020
Sexe, homme	4,03	(1,45-13,28)	0,012
Traitement par CSI	0,18	(0,06-0,48)	<0,001
Mauvais contrôle de l'asthme (BCDA ≥1/jour)	3,41	(1,38-8,55)	0,008
≥2 exacerbations sévères l'année précédente	4,88	(1,28-18,29)	0,018
Durée d'exposition pendant le TPBS par 15 min	1,09	(0,99-1,19)	0,075
Type de réaction précoce	5,53	(2,20-15,36)	<0,001

Légende : $VEMS_1$, volume expiratoire maximum seconde; CVF, capacité vitale forcée; HPM, haut poids moléculaire; CSI, corticostéroïde inhalé; LABA, $\beta 2$ -agonist de longue durée d'action; HRBNS hyperréactivité bronchique non spécifique; BCDA, $\beta 2$ -agonist de courte durée d'action; TPBS, test de provocation bronchique spécifique. Les données en gras sont statistiquement significatives

7.9 Tableau 9 : Type d'inflammation par agent

Caractéristiques	Acrylates	Farines	Isocyanates	Latex	Métaux	Sels de	Ammoniums	Poussières
	N = 6	N = 148	N = 28	N = 11	N = 11	persulfates N = 10	quaternaires N = 7	de bois N = 10
Eosinophiles sanguins								
Cellule/ul*	200 (200,340)	300 (200, 400)	245	200	200	249	379	221 (100, 400)
->300/μl	2 (40%)	62 (50%)	(200, 425) 11 (46%)	(136, 29) 3 (27%)	(188, 400) 3 (33%)	(171, 326) 3 (43%)	(240, 428) 3 (60%)	2 (40%)
FeNO post TPBS	2 (4070)	02 (3070)	11 (4070)	3 (2770)	3 (3370)	3 (4370)	3 (0070)	2 (4070)
ppm*	9 (9, 9)	19 (3, 47)	30 (10, 52)	32 (19, 33)	7 (1, 27)	6 (-2, 15)	5 (1, 6)	1 (1, 1)
Changement après TPBS, ppm* [†]	0 (0%)	24 (53%)	6 (55%)	2 (67%)	2 (33%)	2 (22%)	1 (14%)	0 (0%)
Changement après TPBS>17,5 ppm [†]	14 (14,14)	50 (24, 80)	62 (26, 76)	38 (25, 56)	33 (30, 42)	23 (18, 40)	28 (18, 38)	46 (27, 64)
Eosinophile expecto pré TPBS %*	7 (1, 12)	2 (1, 5)	2(1, 6)	1 (1, 3)	0 (0, 2)	1 (0, 2)	6 (2, 8)	2 (1, 6)
≥3%	4 (67%)	65 (44%)	11 (39%)	3 (27%)	3 (27%)	2 (20%)	4 (57%)	5 (50%)
Changement Eosinophilie expectoration								
Changement après TPBS, %* [†]	4 (3, 11)	4 (1, 10)	4 (0, 8)	10 (5, 17)	2 (0, 4)	2 (0, 4)	18 (7, 19)	2 (1, 4)
Changement après TPBS ≥2% [†]	5 (83%)	103 (70%)	16 (57%)	10 (91%)	6 (55%)	5 (50%)	7 (100%)	5 (50%)
Eosinophilie expectoration post TPBS								
%* ≥3%	10 (6, 20) 6 (100%)	8 (3, 17) 115 (78%)	6 (2, 11) 20 (71%)	13 (6, 22) 10 (91%)	2 (2, 6) 5 (45%)	3 (1, 10) 5 (50%)	22 (11, 28) 7 (100%)	4 (2, 7) 6 (60%)
Taux basal de neutrophiles de l'expectoration								
%*	44 (31, 58)	52 (38, 73)	53 (40, 66)	67 (58, 81)	51 (42, 64)	62 (31, 85)	47 (35, 63)	46 (42, 72)
≥76%	0 (0%)	33 (22%)	5 (18%)	4 (36%)	2 (18%)	4 (40%)	0 (0%)	2 (20%)
Taux après TPBS des neutrophiles de l'expectoration								
0/0*	45 (42, 46)	50 (35, 65)	56 (28, 70)	66 (48, 72)	61 (43, 67)	54 (35, 73)	52 (51, 61)	50 (44, 63)
≥76%	0 (0%)	19 (13%)	5 (18%)	2 (18%)	1 (9.1%)	2 (20%)	0 (0%)	0 (0%)
Changement post TPBS, %* [†]	-2 (-9, 3)	-3 (-14, 7)	2 (-17, 15)	0 (-20, 11)	5 (-4, 15)	6 (-17, 16)	4 (-2, 9)	-2 (-6, 10)

<u>Légende</u>: *FeNO*, oxyde nitrique exhalé fractionné,TPBS : test e provocation bronchique spécifique Les données sont présentées sous la forme n (%des données disponibles), sauf indication contraire, Les valeurs en gras sont statistiquement significatives, (*P* <0.05).

^{*} Valeur médiane avec intervalle interquartile (IQR) entre parenthèses,

[†] Par rapport à la valeur de référence.

8 Bibliographie:

- 1. Bessot J-C, Pauli G, Vandenplas O. L'asthme professionnel. 2e éd. Paris: Éd. Margaux orange; 2012.
- 2. Homère L'Iliade Chant XV Traduction de Leconte de Lisle (1866) [Internet]. [cited 2021 Aug 22]. Available from: https://mediterranees.net/mythes/troie/iliade/chant15.html
- 3. Quirce S, Bernstein JA. Old and New Causes of Occupational Asthma. Immunol Allergy Clin North Am. 2011 Nov;31(4):677–98.
- 4. Tarlo SM, Lemiere C. Occupational Asthma. N Engl J Med. 2014 Feb 13;370(7):640–9.
- 5. Henneberger PK, Redlich CA, Callahan DB, Harber P, Lemière C, Martin J, et al. An Official American Thoracic Society Statement: Work-Exacerbated Asthma. Am J Respir Crit Care Med. 2011 Aug;184(3):368–78.
- 6. Afrite A, Allonier C, Com-Ruelle L, Guen NL. L'asthme en France en 2006 : prévalence, contrôle et déterminants. :122.
- 7. Delmas M-C, Fuhrman C. L'asthme en France : synthèse des données épidémiologiques descriptives. Rev Mal Respir. 2010 Feb;27(2):151–9.
- 8. Torén K, Blanc PD. Asthma caused by occupational exposures is common A systematic analysis of estimates of the population-attributable fraction. BMC Pulm Med. 2009 Dec;9(1):7.
- 9. Tarlo SM. Irritant-Induced Asthma in the Workplace. Curr Allergy Asthma Rep. 2014 Jan;14(1):406.
- Labrecque M. Irritant-induced asthma: Curr Opin Allergy Clin Immunol. 2012
 Apr;12(2):140–4.
- 11. Trivedi V, Apala DR, Iyer VN. Occupational asthma: diagnostic challenges and management dilemmas. Curr Opin Pulm Med. 2017 Mar;23(2):177–83.
- 12. Vandenplas O, Wiszniewska M, Raulf M, de Blay F, Gerth van Wijk R, Moscato G, et al.

EAACI position paper: irritant-induced asthma. Allergy. 2014 Sep;69(9):1141–53.

- 13. Brooks SM, Weiss MA, Bernstein IL. Reactive Airways Dysfunction Syndrome (RADS). Chest. 1985 Sep;88(3):376–84.
- 14. Prezant DJ, Weiden M, Banauch GI, McGuinness G, Rom WN, Aldrich TK, et al. Cough and Bronchial Responsiveness in Firefighters at the World Trade Center Site. N Engl J Med. 2002 Sep 12;347(11):806–15.
- 15. Kogevinas M, Zock J-P, Jarvis D, Kromhout H, Lillienberg L, Plana E, et al. Exposure to substances in the workplace and new-onset asthma: an international prospective population-based study (ECRHS-II). The Lancet. 2007 Jul;370(9584):336–41.
- 16. Medina-Ramon M. Asthma symptoms in women employed in domestic cleaning: a community based study. Thorax. 2003 Nov 1;58(11):950–4.
- 17. Malo J-L, Vandenplas O. Definitions and Classification of Work-Related Asthma. Immunol Allergy Clin North Am. 2011 Nov;31(4):645–62.
- 18. Vandenplas O, Suojalehto H, Aasen TB, Baur X, Burge PS, de Blay F, et al. Specific inhalation challenge in the diagnosis of occupational asthma: consensus statement. Eur Respir J. 2014 Jun 1;43(6):1573–87.
- 19. Beach J, Russell K, Blitz S, Hooton N, Spooner C, Lemiere C, et al. A Systematic Review of the Diagnosis of Occupational Asthma. CHEST. 2007 Feb 1;131(2):569–78.
- 20. Lux H, Lenz K, Budnik LT, Baur X. Performance of specific immunoglobulin E tests for diagnosing occupational asthma: a systematic review and meta-analysis. Occup Environ Med. 2019 Feb 25;oemed-2018-105434.
- 21. Pepys J, Hutchcroft BJ. Bronchial Provocation Tests in Etiologic Diagnosis and Analysis of Asthma. Am Rev Respir Dis. 1975 Dec;112(6):829-59. doi: 10.1164/arrd.1975.112.6.829. PMID: 173214.

- 22. Maestrelli P, Boschetto P, Fabbri LM, Mapp CE. Mechanisms of occupational asthma. J Allergy Clin Immunol. 2009 Mar;123(3):531–42.
- 23. Tarlo SM. Standards of care for occupational asthma. Thorax. 2008 Mar 1;63(3):190–2.
- 24. Vandenplas O, Godet J, Hurdubaea L, Rifflart C, Suojalehto H, Wiszniewska M, et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational asthma? Allergy. 2019 Feb;74(2):261–72.
- 25. Quirce S, Sastre J. Occupational asthma: clinical phenotypes, biomarkers, and management. Curr Opin Pulm Med. 2019 Jan;25(1):59–63.
- 26. The Specificity of Serological Reactions [Internet]. Erscheinungsort nicht ermittelbar: Harvard University Press; 1945 [cited 2021 Aug 27]. Available from:

 http://www.degruyter.com/search?f 0=isbnissn&q 0=9780674184220&searchTitles=true
- 27. Biagini R, Bernstein I, Gallagher J, Moorman W, Brooks S, Gann P. The diversity of reaginic immune responses to platinum and palladium metallic salts. J Allergy Clin Immunol. 1985

 Dec;76(6):794–802.
- 28. Baur X, Czuppon A. Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol. 1995 Oct;96(4):489–94.
- 29. Savonius B, Keskinen H, Tuppurainen M, Kanerva L. Occupational respiratory disease caused by acrylates. Clin Htmlent Glyphamp Asciiamp Exp Allergy. 1993 May;23(5):416–24.
- 30. Helaskoski E, Suojalehto H, Kuuliala O, Aalto-Korte K. Prick testing with chemicals in the diagnosis of occupational contact urticaria and respiratory diseases. Contact Dermatitis. 2015 Jan;72(1):20–32.
- 31. Suojalehto H, Suuronen K, Cullinan P, Lindström I, Sastre J, Walusiak-Skorupa J, et al. Phenotyping Occupational Asthma Caused by Acrylates in a Multicenter Cohort Study. J Allergy Clin Immunol Pract. 2020 Mar;8(3):971-979.e1.

- 32. Meca O, Cruz M-J, Sánchez-Ortiz M, González-Barcala F-J, Ojanguren I, Munoz X. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents? Hoppin J, editor. PLOS ONE. 2016 Jun 9;11(6):e0156141.
- 33. Vandenplas O, Godet J, Hurdubaea L, Rifflart C, Suojalehto H, Walusiak-Skorupa J, et al. Severe Occupational Asthma: Insights From a Multicenter European Cohort. J Allergy Clin Immunol Pract. 2019 Sep;7(7):2309-2318.e4.
- 34. Rachiotis G, Savani R, Brant A, MacNeill SJ, Newman Taylor A, Cullinan P. Outcome of occupational asthma after cessation of exposure: a systematic review. Thorax. 2007 Feb 1;62(2):147–52.
- 35. Gauthier M, Ray A, Wenzel SE. Evolving Concepts of Asthma. Am J Respir Crit Care Med. 2015 Sep 15;192(6):660–8.
- 36. Rackemann FM. A working classification of asthma. Am J Med. 1947 Nov;3(5):601–6.
- 37. Rackemann FM.Other factors besides allergy in asthma. J Am Med Assoc. 1950 Feb 25;142(8):534.
- 38. Rackemann FM, Burrage WS, Irwin JW. Intrinsic Asthma. Postgrad Med. 1950 Aug;8(2):134–40.
- 39. Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG. Association of Asthma with Serum IgE Levels and Skin-Test Reactivity to Allergens. N Engl J Med. 1989 Feb 2;320(5):271–7.
- 40. Humbert M, Durham SR, Ying S, Kimmitt P, Barkans J, Assoufi B, et al. IL-4 and IL-5 mRNA and protein in bronchial biopsies from patients with atopic and nonatopic asthma: evidence against 'intrinsic' asthma being a distinct immunopathologic entity. Am J Respir Crit Care Med. 1996 Nov;154(5):1497–504.
- 41. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. The Lancet. 2008 Sep;372(9643):1107–19.
- 42. Morrow Brown H. Treatment of chronic asthma with prednisolone significance of eosinophils

- in the sputum. The Lancet. 1958 Dec;272(7059):1245-7.
- 43. Bousquet J, Chanez P, Lacoste JY, Barnéon G, Ghavanian N, Enander I, et al. Eosinophilic Inflammation in Asthma. N Engl J Med. 1990 Oct 11;323(15):1033–9.
- 44. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence That Severe Asthma Can Be Divided Pathologically into Two Inflammatory Subtypes with Distinct Physiologic and Clinical Characteristics. Am J Respir Crit Care Med. 1999 Sep;160(3):1001–8.
- 45. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med. 1996 Aug;154(2):308–17.
- 46. Fahy JV. A safe, simple, standardized method should be used for sputum induction for research purposes: Sputum induction for research purposes. Clin Exp Allergy. 1998 Sep;28(9):1047–9.
- 47. Belda J, Leigh R, Parameswaran K, O'Byrne PM, Sears MR, Hargreave FE. Induced Sputum Cell Counts in Healthy Adults. Am J Respir Crit Care Med. 2000 Feb;161(2):475–8.
- 48. McGregor MC, Krings JG, Nair P, Castro M. Role of Biologics in Asthma. Am J Respir Crit Care Med. 2019 Feb 15;199(4):433–45.
- 49. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma. Am J Respir Crit Care Med. 2009 Sep;180(5):388–95.
- 50. Spanevello A, Confalonieri M, Sulotto F, Romano F, Balzano G, Migliori GB, et al. Induced Sputum Cellularity: Reference Values and Distribution in Normal Volunteers. Am J Respir Crit Care Med. 2000 Sep;162(3):1172–4.
- 51. Schleich FN, Manise M, Sele J, Henket M, Seidel L, Louis R. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation.

 BMC Pulm Med. 2013 Feb 26;13:11.
- 52. Hastie AT, Mauger DT, Denlinger LC, Coverstone A, Castro M, Erzurum S, et al. Baseline

sputum eosinophil + neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort. J Allergy Clin Immunol. 2020 Jul;146(1):222–6.

- 53. Louis R, Lau LCK, Bron AO, Roldaan AC, Radermecker M, Djukanović R. The Relationship between Airways Inflammation and Asthma Severity. Am J Respir Crit Care Med. 2000 Jan;161(1):9–16.
- 54. Turner MO, Hussack P, Sears MR, Dolovich J, Hargreave FE. Exacerbations of asthma without sputum eosinophilia. Thorax. 1995 Oct;50(10):1057–61.
- 55. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. The Lancet. 2002 Nov;360(9347):1715–21.
- 56. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology. 2006 Jan;11(1):54–61.
- 57. Green RH. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002 Oct 1;57(10):875–9.
- 58. Seys SF, Lokwani R, Simpson JL, Bullens DMA. New insights in neutrophilic asthma. Curr Opin Pulm Med. 2019 Jan;25(1):113–20.
- 59. Demarche S, Schleich F, Henket M, Paulus V, Van Hees T, Louis R. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med. 2016 Dec;16(1):46.
- 60. Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-"Low" Asthma: Overview and Management Strategies. J Allergy Clin Immunol Pract. 2020 Feb;8(2):452–63.
- 61. Hastie AT, Moore WC, Li H, Rector BM, Ortega VE, Pascual RM, et al. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J

Allergy Clin Immunol. 2013 Jul;132(1):72-80.e12.

- 62. The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. Eur Respir J. 2003 Sep;22(3):470–7.
- 63. Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med. 2019 May;199(9):1076–85.
- 64. Jeppegaard M, Veidal S, Sverrild A, Backer V, Porsbjerg C. Validation of ATS clinical practice guideline cut-points for FeNO in asthma. Respir Med. 2018 Nov;144:22–9.
- 65. Archived Reports Global Initiative for Asthma [Internet]. Global Initiative for Asthma GINA. [cited 2020 May 27]. Available from: https://ginasthma.org/archived-reports/
- 66. Korevaar DA, Westerhof GA, Wang J, Cohen JF, Spijker R, Sterk PJ, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med. 2015 Apr;3(4):290–300.
- 67. Kuruvilla ME, Lee FE-H, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019 Apr;56(2):219–33.
- 68. Petsky HL, Cates CJ, Lasserson TJ, Li AM, Turner C, Kynaston JA, et al. A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax. 2012 Mar;67(3):199–208.
- 69. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018 Jun 28;378(26):2486–96.
- 70. Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N Engl J Med. 2017 Oct 26;377(17):1613–29.
- 71. Lemière C, Pizzichini MMM, Balkissoon R, Clelland L, Efthimiadis A, O'Shaughnessy D, et al. Diagnosing occupational asthma: use of induced sputum. Eur Respir J. 1999 Mar 1;13(3):482–8.

- de Blay F, Purohit A, Stenger R, Gries P, Hamberger C, David B, et al. Serum eosinophil cationic protein measurements in the manage- ment of perennial and periodic asthma: a prospective study. Eur Respir J. 1998 Mar;11(3):594-8. PMID: 9596108.
- 73. Prince P, Lemière C, Dufour M-H, Chaboillez S, Boulet L-P. Airway Inflammatory Responses Following Exposure to Occupational Agents. Chest. 2012 Jun;141(6):1522–7.
- 74. Lemière C, Chaboillez S, Malo J-L, Cartier A. Changes in sputum cell counts after exposure to occupational agents: What do they mean? J Allergy Clin Immunol. 2001 Jun;107(6):1063–8.
- 75. Vandenplas O, D'Alpaos V, Heymans J, Jamart J, Thimpont J, Huaux F, et al. Sputum eosinophilia: an early marker of bronchial response to occupational agents. Allergy. 2009 May;64(5):754–61.
- 76. Engel J, van Kampen V, Lotz A, Abramowski J, Gering V, Hagemeyer O, et al. An increase of fractional exhaled nitric oxide after specific inhalation challenge is highly predictive of occupational asthma. Int Arch Occup Environ Health. 2018 Oct;91(7):799–809.
- 77. Anees W. Occupational asthma due to low molecular weight agents: eosinophilic and non-eosinophilic variants. Thorax. 2002 Mar 1;57(3):231–6.
- 78. Migueres N, Debaille C, Walusiak-Skorupa J, Lipińska-Ojrzanowska A, Munoz X, van Kampen V, et al. Occupational Asthma Caused by Quaternary Ammonium Compounds: A Multicenter Cohort Study. J Allergy Clin Immunol Pract. 2021 Apr 30;S2213-2198(21)00503-1.
- 79. Lemiere C, NGuyen S, Sava F, D'Alpaos V, Huaux F, Vandenplas O. Occupational asthma phenotypes identified by increased fractional exhaled nitric oxide after exposure to causal agents. J Allergy Clin Immunol. 2014 Nov;134(5):1063–7.
- 80. Park, Jung, Kim, Nahm, Kang. Neutrophil activation following TDI bronchial challenges to the airway secretion from subjects with TDI-induced asthma: TDI bronchial challenges. Clin Exp Allergy. 1999 Oct;29(10):1395–401.
- 81. Lemiere C, Chaboillez S, Welman M, Maghni K. Outcome of Occupational Asthma after

Removal from Exposure: A Follow-Up Study. Can Respir J. 2010;17(2):61–6.

- 82. Lemiere C, Chaboillez S, Bohadana A, Blais L, Maghni K. Noneosinophilic responders with occupational asthma: A phenotype associated with a poor asthma prognosis. J Allergy Clin Immunol. 2014 Mar;133(3):883-885.e3.
- 83. Talini D, Novelli F, Bacci E, Bartoli M, Cianchetti S, Costa F, et al. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: results of an observational study. BMJ Open. 2015 Jan 5;5(1):e005748.
- 84. Schatz M, Sorkness CA, Li JT, Marcus P, Murray JJ, Nathan RA, et al. Asthma Control Test: Reliability, validity, and responsiveness in patients not previously followed by asthma specialists. J Allergy Clin Immunol. 2006 Mar;117(3):549–56.
- 85. Proceedings of the ATS Workshop on Refractory Asthma: Current Understanding, Recommendations, and Unanswered Questions. Am J Respir Crit Care Med. 2000 Dec;162(6):2341–51.
- 86. Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW, et al. An Official American Thoracic Society/European Respiratory Society Statement: Asthma Control and Exacerbations: Standardizing Endpoints for Clinical Asthma Trials and Clinical Practice. Am J Respir Crit Care Med. 2009 Jul;180(1):59–99.
- 87. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014 Feb 1;43(2):343–73.
- 88. Sovijärvi AR, Malmberg LP, Reinikainen K, Rytilä P, Poppius H. A rapid dosimetric method with controlled tidal breathing for histamine challenge. Repeatability and distribution of bronchial reactivity in a clinical material. Chest. 1993 Jul;104(1):164–70.
- 89. Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic

Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000 Jan;161(1):309–29.

- 90. Sterk PJ, Fabbri LM, Quanjer PH, Cockcroft DW, O'Byrne PM, Anderson SD, et al. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993 Mar;16:53–83.
- 91. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011 Sep 1;184(5):602–15.
- 92. Efthimiadis A, Spanevello A, Hamid Q, Kelly MM, Linden M, Louis R, et al. Methods of sputum processing for cell counts, immunocytochemistry and in situ hybridisation. Eur Respir J Suppl. 2002 Sep;37:19s–23s.
- 93. Popov TA, Pizzichini MM, Pizzichini E, Kolendowicz R, Punthakee Z, Dolovich J, et al. Some technical factors influencing the induction of sputum for cell analysis. Eur Respir J. 1995 Apr;8(4):559–65.
- 94. Bacci E, Cianchetti S, Paggiaro PL, Carnevali S, Bancalari L, Dente FL, et al. Comparison between hypertonic and isotonic saline-induced sputum in the evaluation of airway inflammation in subjects with moderate asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 1996

 Dec;26(12):1395–400.
- 95. Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, et al. Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax. 1992 Jan;47(1):25–9.
- 96. Fahy JV, Liu J, Wong H, Boushey HA. Cellular and biochemical analysis of induced sputum from asthmatic and from healthy subjects. Am Rev Respir Dis. 1993 May;147(5):1126–31.

- 97. Nicholson PJ. Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup Environ Med. 2005 May 1;62(5):290–9.
- 98. Moscato G, Dellabianca A, Vinci G, Candura SM, Bossi MC. Toluene Diisocyanate-Induced Asthma: Clinical Findings and Bronchial Responsiveness Studies in 113 Exposed Subjects with Work-Related Respiratory Symptoms: J Occup Environ Med. 1991 Jun;33(6):720–5.
- 99. Burge PS, O'Brien IM, Harries MG. Peak flow rate records in the diagnosis of occupational asthma due to isocyanates. Thorax. 1979 Jun 1;34(3):317–23.
- 100. Lin FJ, Chen H, Chan-Yeung M. New method for an occupational dust challenge test. Occup Environ Med. 1995 Jan 1;52(1):54–6.
- 101. Blomme EE, Provoost S, Bazzan E, Van Eeckhoutte HP, Roffel MP, Pollaris L, et al. Innate lymphoid cells in isocyanate-induced asthma: role of microRNA-155. Eur Respir J. 2020 Sep;56(3):1901289.
- 102. Baur X. Latex allergen exposure increases exhaled nitric oxide in symptomatic healthcare workers. Eur Respir J. 2005 Feb 1;25(2):309–16.
- 103. Ponte EV, Lima A, Almeida PCA, de Jesus JPV, Lima VB, Scichilone N, et al. Age is associated with asthma phenotypes: Age and asthma phenotype. Respirology. 2017 Nov;22(8):1558–63.
- 104. Park B, Choi HG. Association between asthma and dysphonia: A population-based study. J Asthma. 2016 Aug 8;53(7):679–83.
- 105. Ihre E, Zetterström O, Ihre E, Hammarberg B. Voice problems as side effects of inhaled corticosteroids in asthma patients—a prevalence study. J Voice. 2004 Sep;18(3):403–14.
- 106. Roy N. Functional dysphonia: Curr Opin Otolaryngol Head Neck Surg. 2003 Jun;11(3):144–8.
- 107. Williams AJ, Stableforth D, Cayton R, Shenoi P, Skinner C. Dysphonia caused by inhaled steroids: recognition of a characteristic laryngeal abnormality. :10.

- 108. Vertigan AE, Kapela SM, Kearney EK, Gibson PG. Laryngeal Dysfunction in Cough Hypersensitivity Syndrome: A Cross-Sectional Observational Study. J Allergy Clin Immunol Pract. 2018 Nov;6(6):2087–95.
- 109. Anderson JA. Work-associated irritable larynx syndrome: Curr Opin Allergy Clin Immunol. 2015 Apr;15(2):150–5.
- 110. Hoy RF, Ribeiro M, Anderson J, Tarlo SM. Work-associated irritable larynx syndrome. Occup Med. 2010 Oct 1;60(7):546–51.
- 111. Satia I, Tsamandouras N, Holt K, Badri H, Woodhead M, Ogungbenro K, et al. Capsaicinevoked cough responses in asthmatic patients: Evidence for airway neuronal dysfunction. J Allergy Clin Immunol. 2017 Mar;139(3):771-779.e10.
- 112. Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Maréchal P, Perin F, et al. Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol. 2019 Nov;20(11):1444–55.
- 113. Weng Q, Zhu C, Zheng K, Wu Y, Dong L, Wu Y, et al. Early recruited neutrophils promote asthmatic inflammation exacerbation by release of neutrophil elastase. Cell Immunol. 2020 Jun;352:104101.
- 114. Pham DL, Yoon M-G, Ban G-Y, Kim S-H, Kim M-A, Ye Y-M, et al. Serum S100A8 and S100A9 Enhance Innate Immune Responses in the Pathogenesis of Baker's Asthma. Int Arch Allergy Immunol. 2015;168(2):138–46.
- 115. Choi Y, Lee Y, Park H-S. Neutrophil activation in occupational asthma. Curr Opin Allergy Clin Immunol. 2019 Apr;19(2):81–5.
- 116. Cho HJ, Kim S-H, Kim J-H, Choi H, Son J-K, Hur G-Y, et al. Effect of Toll-like receptor 4 gene polymorphisms on work-related respiratory symptoms and sensitization to wheat flour in bakery workers. Ann Allergy Asthma Immunol. 2011 Jul;107(1):57–64.

9 Document annexe : Conclusion signée par le Professeur Sibilia

CONCLUSION:

La composante professionnelle de l'asthme a jusqu'alors été largement méconnue ou sous estimée. Il apparaît en effet qu'un asthme sur quatre soit aggravé ou induit par le travail.

L'asthme professionnel, qui correspond à un asthme qui n'aurait pas existé sans l'exposition professionnelle est soit la conséquence d'une réaction immunologique spécifique à un agent présent sur le lieu de travail (asthme professionnel immunologique), soit la conséquence d'une irritation en raison d'une exposition physique, chimique, ou organisationnelle.

L'asthme professionnel immunologique est l'asthme professionnel qui a été le plus étudié.

Le critère diagnostique de référence est le test d'exposition spécifique où l'on observe une diminution du VEMS ou une augmentation de l'hyperréactivité bronchique après exposition à l'agent causal.

La classification historique distingue les agents selon leur poids moléculaire, leur imputant de ce fait une inflammation selon leurs caractéristiques chimiques. Il est maintenant clair que le mécanisme physiopathologique ne dépend pas entièrement de la masse moléculaire de l'agent, exemple des sels de platine qui peuvent se comporter comme des haptènes et déterminer un mécanisme allergique en dépit de leur faible poids moléculaire.

L'asthme est une pathologie hétérogène. Cette caractéristique a conduit à considérer l'importance de l'endotypage, c'est à dire de la mise en évidence de biomarqueurs. spécifiques d'un mécanisme physiopathologique, prédictifs d'une réponse à un traitement donné. L'éosinophilie dans l'expectoration induite est le biomarqueur non invasif qui a apporté le plus de preuves en terme de prédiction de réponse à la corticothérapie dans l'asthme non professionnel.

Dans l'asthme professionnel, l'endotypage reste balbutiant. L'éosinophilie dans l'

expectoration induite a été proposée comme critère diagnostique lorsqu'augmentée après un test d'exposition spécifique, mais les études voulant caractériser les asthmes professionnels selon l'inflammation sont rares et de faibles effectifs.

La cohorte E-PHOCAS (The European network on phenotyping of Ocupational Asthma) comprend un recueil de données rétrospectif des asthmatiques professionnels documentés par test d'exposition spécifique provenant de 20 centres situés dans 11 pays européens. Les patients ayant bénéficié d'une expectoration induite avant et après test d'exposition spécifique ont été inclus dans cette étude afin de les caractériser selon leur pattern inflammatoire.

Tout d'abord nous avons observé que l'éosinophilie bronchique était largement conditionnée par le temps écoulé depuis la dernière exposition à l'agent causal et qu'elle était d'autant plus importante que ce délai d'exposition était court.

De ce fait l'éosinophilie dans l'expectoration induite peut être considérée comme un biomarqueur d'exposition de l'asthme professionnel. Cette constatation met en exergue le rôle important du test d'exposition spécifique qui permet de s'affranchir de l'aléa de l'exposition au travail en la reproduisant.

Des analyses se concentrant sur les pattern inflammatoires après test d'exposition, indépendants du délai de la dernière exposition, ont été réalisés, pour s'affranchir de cette contrainte.

L'éosinophilie bronchique après test d'exposition était associée à une plus grande sévérité ainsi qu'à une plus grande hyperréactivité bronchique comme dans l'asthme non professionnel. Cependant du fait de la nature rétrospective de l'étude il est impossible de savoir si l'éosinophilie est un facteur pronostique de l'asthme professionnel.

La neutrophilie bronchique était quant à elle associée à une plus grande proportion de perte de contrôle et de dysphonie.

Il est apparu enfin qu'un même agent pouvait être à l'origine de différents types d'inflammation bronchique, remettant en cause le dogme de l'affiliation systématique d'un mécanisme physiopathologique à un type d'agent ; de la même façon qu'un phénotype clinique d'asthme peux relever de plusieurs endotypes.

Strasbourg, le 3.7. 624 Le président du jury de thèse

Professeur de My

Vice-Doyen de la Faculté de Médecine, Maïeutique et

Sciences de la Santé

Professeur Philippe DERUELLE

DECLARATION SUR L'HONNEUR

Document avec signature originale devant être joint :

- à votre mémoire de D.E.S.
- à votre dossier de demande de soutenance de thèse

Nom :	MIGUERES	Prénom : Nic	das

Ayant été informé(e) qu'en m'appropriant tout ou partie d'une œuvre pour l'intégrer dans mon propre mémoire de spécialité ou dans mon mémoire de thèse de docteur en médecine, je me rendrais coupable d'un délit de contrefaçon au sens de l'article L335-1 et suivants du code de la propriété intellectuelle et que ce délit était constitutif d'une fraude pouvant donner lieu à des poursuites pénales conformément à la loi du 23 décembre 1901 dite de répression des fraudes dans les examens et concours publics.

Ayant été avisé(e) que le président de l'université sera informé de cette tentative de fraude ou de plagiat, afin qu'il saisisse la juridiction disciplinaire compétente,

Ayant été informé(e) qu'en cas de plagiat, la soutenance du mémoire de spécialité et/ou de la thèse de médecine sera alors automatiquement annulée, dans l'attente de la décision que prendra la juridiction disciplinaire de l'université

J'atteste sur l'honneur

Ne pas avoir reproduit dans mes documents tout ou partie d'œuvre(s) déjà existante(s), à l'exception de quelques brèves citations dans le texte, mises entre guillemets et référencées dans la bibliographie de mon mémoire.

<u>A écrire à la main</u>: « J'atteste sur l'honneur avoir connaissance des suites disciplinaires ou pénales que j'encours en cas de déclaration erronée ou incomplète ».

J'attente su l'honneur avoir connaissons des suites disciplinaires ou penole que j'encour en cas de chiclaration enence ou incomplète

Signature originale :

A Torbuse , 10 27/06/2

Photocopie de cette déclaration devant être annexée en dernière page de votre mémoire de D.E.S. ou de Thèse.

RÉSUMÉ:

L'asthme professionnel par sensibilisation ou immunologique est défini comme un asthme issu d'une exposition à un agent présent sur le lieu de travail, provoquant une réponse immunologique spécifique, et dont le test diagnostique de référence est le test de provocation bronchique spécifique.

Les agents responsables sont habituellement différenciés en Bas Poids Moléculaire (BPM) et Haut Poids Moléculaire (HPM) selon que leur masse moléculaire est supérieure ou inférieure à 10 kilodalton. Les agents de HPM et certains de BPM agissent par le biais de réactions Immunoglobuline E (IgE) médiées. Pour la majorité des agents de BPM les mécanismes en cause ne sont pas encore élucidés. Cette classification selon la masse moléculaire des agents, bien qu'arbitraire, est pertinente cliniquement. Cependant aucune différence n'a été mise en évidence quant aux profils d'inflammation bronchique entre ces deux catégories, profils d'inflammation qui sont devenus la pierre angulaire du phénotypage de l'asthme non professionnel avec l'avènement de nouveaux biomarqueurs.

La cohorte E-PHOCAS (*The European network on phenotyping of Ocupational Asthma*) comprend un recueil de données rétrospectif des asthmatiques professionnels documentés par test d'exposition spécifique provenant de 20 centres situés dans 11 pays européens. Une étude des caractéristiques démographiques, cliniques et fonctionnelles a été réalisée sur 296 patients en fonction du pattern inflammatoire éosinophilique ou neutrophilique des expectorations induites après test d'exposition spécifique.

La majorité des asthmatiques professionnels présentaient un pattern d'inflammation éosinophilique après test d'exposition spécifique. L'éosinophilie bronchique était associée à une plus grande sévérité et à une plus grande hyperréactivité bronchique. L'inflammation neutrophilique était associée à un moins bon contrôle de l'asthme, à des patients plus âgés, à plus d'exacerbation et à des réactions précoces. Pour un même agent, plusieurs patterns inflammatoires étaient possibles.

L'étude de l'inflammation bronchique est utile pour la caractérisation des patients asthmatiques professionnels par sensibilisation car elle permet de les distinguer selon des critères cliniques pertinents indépendamment de la nature de l'agent. Cela permet de confirmer que la physiopathologie de l'asthme professionnel ne dépend pas exclusivement de l'agent causal.

Rubrique de classement : PNEUMOLOGIE

Mots-clés: Asthme professionnel, expectoration induite, biomarqueurs

Président : Professeur De Blay

Assesseurs: Professeur Céline Mascaux, Professeur Olivier Vandenplas, Pr Maria Gonzalez, Dr Julien

Godet, Pr Gabrielle Pauli

Adresse de l'auteur : 35 rue des Flandres 31 500 Toulouse