

Université de Strasbourg FACULTÉ DE PHARMACIE DE STRASBOURG

N°	ď	ordre				

MÉMOIRE DU DIPLÔME D'ÉTAT DE DOCTEUR EN PHARMACIE

ÉTUDE DES MUTATIONS D'IDH1 ET D'IDH2 DANS UNE COHORTE STRASBOURGEOISE, MISE EN PLACE D'UNE MÉTHODE DE RECHERCHE CIBLÉE DANS LES LAM PAR DDPCR

Présenté par DEPIERREUX Mathilde

Soutenu le 17 octobre 2023 devant le jury constitué de

Présidente du jury : Madame la Pr. Pauline SOULAS-SPRAUEL

Directeur de thèse : Monsieur le Dr. Laurent MIGUET

Membres du jury : Monsieur le Pr. Laurent MAUVIEUX

Madame la Dr. Célestine SIMAND Madame la Dr. Delphine ROLLAND

Approuvé par le Doyen et le Président de l'Université de Strasbourg

Doyen Eather KELLENBERGER

Directeurs adjoints Julien GODET

Séatrice HEURTAULT

Emilie SIEK

Directeur adjoint étudiant Léo FERREIRA-MOURIAUX

LISTE DU PERSONNEL ENSEIGNANT

fesseu	

Philippe BOUCHER Physiologia Mathalie BOULANGER Carasitologie Line BOUREL Chimie thérapeutique Pascal DIDIER Biophotonique ENNAHAR Said Chimie analytique GEOFFROY Valerie Microbialogie philippe GEORGEL Sactériologie, Virologie Jean-Dierre cies pharmacologie moléculaire Béatrice HEURTAULT Pharmacie galénique Euther WELLENBERGER Bio-Informatique Maxime LEHMANN Siologie cellulaire Eric MARCHION Chimie analytique Francia MEGERIN Droit et économie pharm. Yves MELY Physique et Biophysique Jean-Wes DARST Droit Economie pharm. Françoise DONS Toxicologie Valerie SCHINI-KERTH Pharmacologie Florence TOTAL Pharmacologie Thierry VANDAMME Biogalénique Catherine VONTHRON Pharmacognosie Dascal Pharmacie galenique WEHRLE

Professeurs-praticiens hospitaliers

Julien GODET Biostatistiques - science des données
Jean-Marc LESSINGER Biochimie
Bruno MICHEL Pharm. Clinique santé publique
Pauline SOULAS-SPRAUEL Immunologie
Geneviève UBEAUD-SÉQUIER Pharmacocinétique

Enseignants contractuels

Alexandra CHAMPERT Pharmacie d'officine

Matthieu FOHRER Pharmacie d'officine

Philippe GALAIS Droit et économie pharm.

Philippe NANDE Ingéniérie pharmaceutique

Caroline WILLER - WEHRLE Pharmacie d'officine

Maîtres de Conférences :

Nicolas ANTON Pharmacie biogalénique Fareeha BATOOL Biochimie Martine BERGAENTZLÊ Chimie analytique Elisa BOMBARDA Biophysique Aurélle BOURDERIOLOG Pharmacochimie BOUTANT Emmanuel Virologie et Microbiologie Véronique BRUBAN Physiologie et physiopath. CASSET Toxicalogie Anne Thierry CHATAIGNEAU Pharmacologie Manuela CHIDER Pharmacle biogalénique Guillaume CONZATTI Pharmacie galénique Marcella DE GIORGI Pharmacochimie Serge DUMONT Biologie cellulaire HAAN-ARCHIPOFF Gizèle Diantes médicinales réllen JACQUEMARD Chémoinformatique Julie KARPENKO Pharmacochimie Sonia LORDEL Chimie analytique Chimie physique Clariese MAECHLING Rachel MATZ-WESTPHAL Dharmacologie Cherifa MEHADJI Chimie Mathalia WIEDERHOESER **Pharmacologie** Sergio ORTIZ AGUIRRE Pharmacognosie Sylvi∈ DERROTEY parasitologie Romain PERTSCHI Chimie en flux Frédéric PRZYBILLA Biostatistiques : Detrice RASSAM Microbialogie Eléanore REAL Biochimie Andreas REISCH Biophysique Ludivine RIFFAULT-VALOIS Analyse du médicament Carole RONZANI Toxicologie Emilie SIEW Pharmacologie Pharmacognosie Vacoba SOUAIBOU

Maîtres de conférences - praticiens hospitaliers

SPANEDDA

TERRAND

TOUNS

DERAIN

ZENIOU

VAN DVERLOOD

Julie BRUNET Parasitologie

Nelly ÉTIENNE-SELLOUM Pharmacologie- pharm. clinique

Chimie thérapeutique

Physiopathologie

Chimie physique

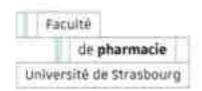
Pharmacognosie

Physiologie Chimiogénomique

Assistant hospitalier universitaire

Maria-Vittoria

Jérôme


Nassera

Aurélie

Bruno

Maria

Damien REITA Biochimie

SERMENT DE GALIEN

JE JURE,

en présence des Maîtres de la Faculté, des Conseillers de l'Ordre des Pharmaciens et de mes condisciples :

D'honorer ceux qui m'ont instruit dans les préceptes de mon art et de leur témoigner ma reconnaissance en restant fidèle à leur enseignement;

D'exercer, dans l'intérêt de la santé publique, ma profession avec conscience et de respecter non seulement la législation en vigueur, mais aussi les règles de l'honneur, de la probité et du désintéressement;

> De ne dévoiler à personne les secrets qui m'auront été confiés et dont j'aurai eu connaissance dans la pratique de mon art.

Si j'observe scrupuleusement ce serment, que je sois moi-même honoré et estimé de mes confrères et de mes patients.

REMERCIEMENTS

À ma présidente de jury :

Madame la Professeure Pauline SOULAS-SPRAUEL

Je tiens à vous adresser mes sincères remerciements pour avoir accepté de présider ce jury.

À mon directeur de thèse :

Monsieur le Docteur Laurent-Yannick MIGUET

Je tiens à vous remercier tout particulièrement pour m'avoir encadrée lors de ce travail de thèse. Je vous suis infiniment reconnaissante pour votre professionnalisme, votre disponibilité et vos précieux enseignements, sans oublier pour votre gentillesse, vos bons conseils, votre soutien et votre engagement. Je souhaite également vous remercier pour m'avoir accueillie lors de ce semestre. Soyez persuadé d'avoir tout mon respect et ma profonde gratitude.

À mes membres du jury:

Monsieur le Professeur Laurent MAUVIEUX

Je vous remercie d'avoir accepté de juger ce travail. Je tiens également à vous exprimer ma reconnaissance pour m'avoir accueillie au sein de votre laboratoire durant ces différents semestres.

Madame la Docteure Delphine ROLLAND

Je vous remercie d'avoir acceptée de faire partie de ce jury. Je tiens également à vous remercier pour vos enseignements lors de mon semestre au laboratoire d'hématologie.

Madame la Docteure Célestine SIMAND

Je tiens également à vous remercier vivement d'avoir accepté de faire partie de mon jury.

À ma famille :

A ma mère, mon père et à ma sœur :

Je ne vous remercierai jamais assez pour le soutien inconditionnel que vous m'avez offert pendant toutes ces années. Aucune phrase ne peut être à la hauteur de la reconnaissance que j'éprouve pour tout l'amour et toute la confiance que vous m'accordez.

Je tenais également à remercier ma grand-mère Marguerite et le reste de ma famille pour leur soutien, leur amour et leur optimisme à toute épreuve.

J'ai également une pensée toute particulière à mon grand-père qui a malheureusement manqué cet évènement de quelques mois. Je ferai tout pour te rendre fière.

À mes amis:

Je tiens également à montrer ma reconnaissance particulière à mes amies, sœurs du cœur, Amélie et Claudie, pour leur soutien sans faille, leur gentillesse et le bonheur qu'elles m'apportent au quotidien. Je ne vous en remercierai jamais assez.

Enfin, je remercie également Eloi, Fiona, Juliette, Mélissa, Clara, Éloïse, Morgane, Pierre-Edouard, Lucas et Charlotte d'avoir toujours su me redonner confiance en moi et de n'avoir jamais failli à me faire rire.

À mes co-internes et amis :

Je tiens tout particulièrement à remercier Chloé, pour ton amitié et pour toute ton aide dans cette dernière année haute en émotion, ainsi qu'Anne et Chaimae, vous avez toutes été d'un grand soutien. Merci pour ces trois belles années passées à vos côtés.

Je remercie également mes autres co-internes, pour ces beaux moments passés ensemble aux cours de ces dernières années. Merci à Samih, pour ton soutien lors de ces derniers mois tant sur le plan sportif qu'émotionnel. A Yannick, Loup et Nico, je vous remercie pour cette bonne humeur dont vous avez le secret. A Margaux, je te remercie pour ta gentillesse et pour ces bons moments.

Enfin, je tiens également à remercier Antoine et Léa, pour leur soutien lors de la rédaction de ce mémoire.

Pour finir, je remercie le Dr Thomas LAVAUX pour son aide à la réalisation de certaines figures. Je remercie également l'ensemble des techniciennes qui ont pu me guider techniquement lors de ces travaux et tout le long de mon cursus, ainsi que pour leur joie et leur bonne humeur.

TABLE DES MATIERES

Remerciements	
Table des matières	•••••
Abréviations	• • • • • • • • •
Liste des tableaux et figures	•••••
I. Introduction	1
A. Leucémie aiguë myéloïde	1
1. Hémopathies malignes	1
2. Oncogenèse des LAM	2
a) Hématopoïèse	2
b) Leucémogenèse	3
c) Architecture clonale	4
3. Prise en charge	7
B. IDH1/2	13
1. Général	13
2. Rôle pathologique	13
3. Les mutations d'IDH1/2 dans les LAM	16
C. Droplet Digital Polymerase Chain Reaction (ddPCR)	18
D. Objectif	22
II. Matériel & Méthode	23
A. Cohorte	23
B. Échantillons analysés par ddPCR	24
C. Analyse de données	24
D. Technique ddPCR	25
1. Kits ddPCR multiplex	25
2. Protocole technique	26
3. Validation de méthode	30
a) Limite de détection et de quantification	30

b) Sensibilité et spécificité
III. Résultats
A. Étude de la cohorte strasbourgeoise
1. Analyse descriptive
2. Etude du terrain mutationnel des LAM mutées <i>IDH1/2</i>
a) Caractérisation des LAM mutées <i>IDH1/2</i>
b) Hétérogénéité du terrain mutationnel des LAM mutées IDH2 ^{R172} contre IDH1 ^{R132} et IDH2 ^{R140}
B. Mise en place de la technique ddPCR41
1. Limite de Détection LOD et de Quantification LOQ41
2. Linéarité
3. Sensibilité, spécificité et taux d'échec
4. Corrélation avec la méthode par NGS
IV. Discussion51
1. Caractérisation de la cohorte strasbourgeoise
a) Terrain mutationnel des LAM mutées <i>IDH1/2</i>
b) Hétérogénéité entre IDH1 ^{R132} , IDH2 ^{R140} et IDH2 ^{R172} 54
2. Performances de la ddPCR
V. Conclusion
Bibliographie58
Annexes63
Fiche signalétique

ABREVIATIONS

1D: Une Dimension

2D: Deux Dimensions

5hmc: 5-hydroxymethylcytosine

5mc: 5-methylcytosine

ADN: Acide Désoxyribonucléique

AMM: Autorisation de Mise sur le Marché

ARN: Acide Ribonucléique

CHIP: Hématopoïèse Clonale de Potentiel

Indéterminé

CHU: Centre Hospitalier Régional Universitaire

CMF: Cytométrie en Flux

CNV: Variation du Nombre de Copie

CR: Rémission Complète

CRh: CR avec réponse hématologique partielle

CRi: Rémission Incomplète

CSH: Cellule Souche Hématopoïétique

ddPCR: droplet digital Polymerase Chain

Reaction

ELN: European Leukemia Network

GO: Gemtuzumab-Ozogamicine

HCST: Greffe de Cellule Souche

Hématopoïétique

ICC: International Consensus Classification

IDH: Isocitrate Déshydrogénase

LAM: Leucémie aiguë myéloïde

LAM-dn: LAM de novo

LAM-MR: LAM reliée à la myélodysplasie

LAM-R/R: LAM Réfractaire ou en Rechute

LAM-s: LAM secondaire

LAM-t: LAM post-thérapie

LMMC: Leucémies Myélomonocytaires

Chroniques

LOD: Limite de Détection

LOQ: Limite de Quantification

MRD: Mesure de la Maladie Résiduelle

NAD: Nicotinamide Adénine Dinucléotide

NADP: Nicotinamide Adénine Dinucléotide

Phosphate

NGS: Séquençage Nouvelle Génération

NTC: No Template Control

OMS: Organisation Mondiale de la Santé

PCR: Réaction de Polymérase en Chaine

PNN: Polynucléaire Neutrophile

R-2-HG: R-2-Hydroxyglutarate

ROS: Espèces Réactives de l'Oxygène

SMD: Syndrome Myélodysplasique

SMP: Syndrome Myéloprolifératif

VAF: Variant Allele Frequency

WT: Wild Type

α-CG: Alpha Cétoglutarate

LISTE DES TABLEAUX ET FIGURES

Figure 1: Organisation schématique de l'hématopoïèse à partir d'une Cellule Souche Hématopoïétique CSH	3
Figure 2 : Évolution clonale linéaire et branchée (C. S. Grove et G. S. Vassiliou et al., 2014)	4
Figure 3: Schéma résumant les différentes voies intracellulaire majeures perturbées dans la leucémogenèse (T. Naoe e	
2013)	
Figure 4 : Association et ordre d'acquisition des lésions génétiques dans les LAM de novo, secondaires et liées au traite.	
(J. A. Martignoles et al., 2018)	
Figure 5: Classification des LAM selon l'OMS 2022 (J. D. Khoury et al., 2022)	
Figure 6: Différentes évolution de la maladie résiduelle dans les LAM (C. Preudhomme et al.,2020)	
Figure 7 : Prévalence des mutations d'IDH1/2 dans différents cancers (C. J. Pirozzi et al, 2021)	
Figure 8 :Les mutations d'IDH1/2 inhibent la déméthylation des histones et de l'ADN et altèrent la régulation épigéné	
(H. Yang et al., 2012)	
Figure 9 : Fractionnement d'un échantillon en 20 000 gouttelettes, étape préliminaire de la ddPCR (Guide Applic	
BioRad®)	
Figure 10 : Avantage du partitionnement dans les PCR digitales en gouttelettes (A. S. Basu et al., 2017)	
Figure 11: Principe de fonctionnement d'une sonde TaqMan (Guide Application BioRad®)	
Figure 12 : Principe binaire de la ddPCR (R. Verheul et al., 2016)	
Figure 13 : Représentation 1D (A) et 2D (B) de chaque gouttelette selon leur intensité de fluorescence dans les diffé	rents
canaux de détection FAM et HEX (Guide Application BioRad®)	21
Figure 14 : Exemple de correction de la concentration en molécules d'ADN par la loi de Poisson en technique ddPCR (C	Guide
Application Biorad®)	21
Figure 15: Mise en place du complexe support métallique – cartridge – gasket lors de l'étape de l'émulsion d'une ddPC	CR. 27
Figure 16 : Photographie de l'aspect blanchâtre des puits lors du contrôle visuel de l'étape d'émulsion de la ddPCR	27
Figure 17: Artéfacts négatifs en représentation 2D lors d'une analyse par ddPCR	29
Figure 18 : Circles plots représentant les co-mutations d'IDH1 et IDH2 dans les SMD (A.) et dans les LAM au diagnostic	
Simura 40 . Circles plate représentant les différentes es montetiens associées que montetiens d'IDN4/2 dans les IA	
Figure 19 : Circles plots représentant les différentes co-mutations associées aux mutations d'IDH1/2 dans les LAI	
diagnostic de novo (A.), dans le diagnostic secondaire à d'hémopathie myéloïde pré-existante (B.) et dans les SMD (C.)	
Figure 20 : Circles plots représentant les différentes co-mutations dans les LAM au diagnostic selon le hotspot mutation	
d'IDH1/2 : R132 d'IDH1 (A.), R140 d'IDH2 (B.) et R172 d'IDH2 (C.)	
Figure 21 : Représentation graphique en « co-mutation plot » des co-mutations associées aux LAM mutées IDH1/2	
Figure 22 : Droite de linéarité pour la détection de la mutation IDH1 ^{R132C} par ddPCR	
Figure 23 : Droite de linéarité pour la détection de la mutation IDH2 ^{R140Q} par ddPCR	
Figure 24 : Droite de linéarité pour la détection de la mutation IDH2 ^{R172K} par ddPCR	
Figure 25 : Représentation en 2D d'un puit non analysable : image en "pluie"	
Figure 26: Représentation 2D d'un puit non analysable du fait du mauvais positionnement du nuage de point par ra	
aux positions témoins des nuages de points. Echantillon WT pour la mutation recherchée	45

Figure 27 : Cas exceptionnel : mutation c.418C>G:p.R140G d'IDH2, non ciblé par la ddPCR et créant une double population
dans le nuage WT d'IDH246
Figure 28: Cas exceptionnel : c.516_517delinsGC>TA:p.Arg172_His173delinsSerAsn d'IDH2 créant une double population
dans le nuage WT d'IDH246
Figure 29: Profils des profondeur des séquençages par technique amplicon de l'exon 4 d'idh1 du patient BBB au diagnostic
et à l'acutisation, et des patients des séries correspondantes
Figure 30 : Corrélation des fréquences alléliques (en %) obtenues par NGS et ddPCR des trois différentes positions IDH1 ^{R132} ,
IDH2 ^{R140} et IDH2 ^{R172}
Figure 31 : Diagramme de Bland-Altman représentant la différence des VAF(%) entre NGS et la moyenne des deux réplicats
en ddPCR par rapport aux fréquences alléliques déterminées par NGS50
Tableau 1: Récapitulatif des différentes mutations retrouvées dans les LAM ainsi que de leur fréquence, fonction et classe
dans la leucémogenèse (T. Naoe et al.,2013) :6
Tableau 2: Anomalies génétiques définissant les LAM-RM (reliées à la myélodysplasie) (J. D. Khoury et al., 2022) :8
Tableau 3: Concordance entre les deux classifications des LAM selon l'ICC et l'OMS (M. Pizzi et al.,2023) :9
Tableau 4: Catégories pronostics dans les LAM selon l'ELN (H. Döhner et al., 2022) :
Tableau 5 : Liste des mutations IDH1 ^{R132} recherchées par le kit (dHsaEXD61571942) (Bio-Rad® 2018) :25
Tableau 6 : Liste des mutations IDH2 ^{R140} recherchées par le kit (dHsaEXD35841715) (Bio-Rad® 2018) :25
Tableau 7 : Liste des mutations IDH2 ^{R172} recherchées par le kit (dHsaEXD10111488) (Bio-Rad® 2018) :25
Tableau 8 : Volumes recommandés pour la préparation du mélange amorces/sondes-échantillon :26
Tableau 9 : Programme de PCR utilisé lors de la technique de ddPCR :28
Tableau 10 : Indications des prélèvements ayant subi un séquençage d'IDH1 et d'IDH2 dans un contexte de LAM, SMD et de
syndrome frontière SMD/SMP du 01/01/2014 au 01/12/2022 dans la cohorte étudiée :
Tableau 11 : Prévalence des mutations d'IDH1 et d'IDH2 selon les indications, le stade clinique et le hotspot mutationnel
dans la cohorte strasbourgeoise :
Tableau 12 : Description des différents variants des hotspots mutationnels d'IDH1/2 observés dans la cohorte et les
intervalles minimum et maximum de leur fréquence allélique :
Tableau 13 : Association mutationnelle dans les LAM mutées IDH1 et/ou IDH2 au diagnostic par rapport aux LAM non
mutées IDH1/2 :
Tableau 14 : Seuils de détection et de quantification déterminés par les kits ddPCR multiplex visant les positions IDH1 ^{R132} ,
IDH2 ^{R140} et IDH2 ^{R172} :
Tableau 15 : Tableau récapitulatif des limites de quantification des variants plus rares d'IDH1/2 :42
Tableau 16 : Performance de la ddPCR dans la détection des mutations d'IDH1/2 :

I. Introduction

A. Leucémie aiguë myéloïde

1. Hémopathies malignes

Les hémopathies malignes constituent un groupe hétérogène de cancers atteignant les cellules de la moelle osseuse. Elles sont caractérisées par la transformation maligne de cellules sanguines entraînant leur prolifération incontrôlée et/ou un blocage de leur maturation. Elles aboutissent à un envahissement du compartiment médullaire jusqu'au compartiment sanguin. Cet envahissement peut avoir des répercussions cliniques gravissimes et peut entrainer le décès du patient. Elles peuvent concerner toutes les cellules hématopoïétiques dérivant d'une cellule souche multipotente de la moelle osseuse, ainsi elles peuvent toucher la lignée myéloïde, lymphoïde, mastocytaire, histiocytaire et dendritique.

Les hémopathies malignes représentent 12% de l'ensemble des nouveaux cancers par an en France soit environ 45 000 nouveaux cas en 2018 (24 600 hommes pour 19 600 femmes), avec une incidence qui ne cesse d'augmenter pour toutes les tranches d'âge [1]. Elles seraient responsables d'environ 14 000 décès en 2016 soit 9% des décès par cancers [2].

Parmi celles-ci, la leucémie aigüe myéloïde (LAM) est une hémopathie particulièrement agressive. Malgré sa définition de maladie rare, elle représente la cinquième plus fréquente des hémopathies malignes et la troisième en termes de mortalité. La LAM correspond à une prolifération incontrôlée de cellules immatures myéloïdes, dites blastes, bloquées à un stade de différenciation variable. Pouvant atteindre toutes les tranches d'âges, la LAM représente un groupe très hétérogène dans le plan biologique, clinique et génétique nécessitant une prise en charge adaptée. Hors de rare sous type telle la LAM promyélocytaire (LAM-3), elles sont de mauvais pronostics [3].

Un des enjeux actuels dans la prise en charge des LAM est de mieux caractériser les patients afin d'y associer la prise en charge la plus appropriée, et donnant ainsi, les meilleures chances de survie. Pour cela, il est nécessaire de continuellement approfondir nos connaissances sur la physiopathologie de cette maladie et d'améliorer les caractérisations biologiques, génétiques et cytogénétiques.

2. Oncogenèse des LAM

a) Hématopoïèse

L'hématopoïèse est un processus physiologique permettant le maintien du pool de cellules sanguines nécessaires à l'organisme d'un individu. Elle consiste en la production des différentes cellules matures du sang (hématies, thrombocytes, leucocytes) à partir des Cellules Souches Hématopoïétiques (CSH). La CSH est une cellule souche dite multipotente se trouvant dans des niches hématopoïétiques de la moelle osseuse. Elles sont capables de régénérer le pool cellulaire via leur capacité d'autorenouvellement et de différenciation. Ces deux caractéristiques lui permettent de maintenir un nombre constant de CSH et de produire tous les types cellulaires de l'hématopoïèse. Le nombre de division cellulaire de ces cellules est faible afin de protéger leurs informations génétiques.

L'hématopoïèse est un processus en cascade constituée de différentes étapes de divisions cellulaires et de différenciations à partir des CSH. La première étape est l'activation de la cellule souche qui va subir une division asymétrique. Cette mitose va entrainer la production de deux cellules légèrement différentes par leur environnement. La première sera équivalente à la cellule souche alors que la deuxième pourra rentrer dans un processus de différenciation. Cette cellule en différenciation va tout d'abord devenir un progéniteur hématopoïétique, ces progéniteurs vont s'engager dans les différentes lignées hématopoïétiques et perdre progressivement leur capacité d'autorenouvellement au profit de la différenciation cellulaire. Ce processus de différenciation se continue vers les précurseurs hématopoïétiques, puis vers les cellules matures (Figure 1).

L'hématopoïèse est régulée par de nombreux et divers mécanismes. Ces processus qu'ils soient extrinsèques (via des facteurs de croissance, cytokines, etc.) ou intrinsèques (régulation épigénétique, etc.) sont capables d'engager la cellule vers des processus aboutissant à la prolifération et à la différenciation cellulaire. Pour éviter l'emballement de ce procédé et la production excessive de cellule, le maintien de l'équilibre entre oncogènes et gènes suppresseurs de tumeurs est nécessaire. Les oncogènes sont des gènes capables de stimuler la prolifération cellulaire et de favoriser la survie de la cellule (généralement régulés par des mécanismes inhibiteurs), leur dérégulation peut entrainer une croissance incontrôlée des cellules. Les gènes suppresseurs de tumeur ont pour fonction de contrôler le cycle cellulaire et d'induire l'apoptose en cas de détection de dommage irréparable de l'Acide Désoxyribonucléique (ADN) pouvant contribuer au processus tumoral.

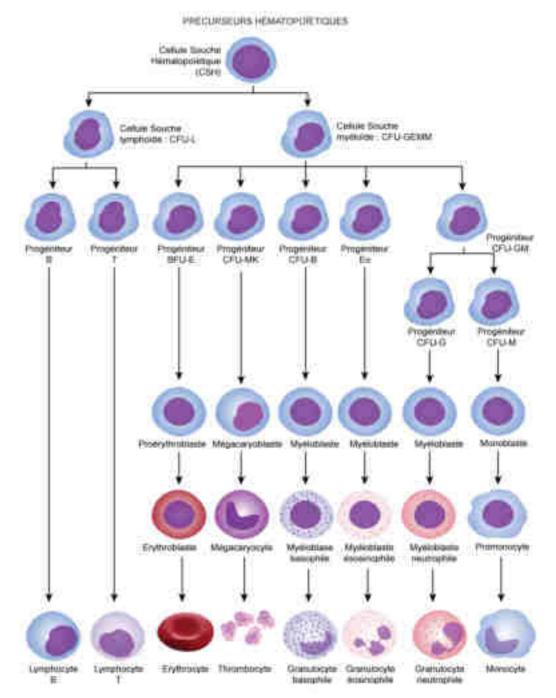


Figure 1: Organisation schématique de l'hématopoïèse à partir d'une Cellule Souche Hématopoïétique CSH.

CFU: Colony Forming Unit, GEMM: Granulocyte Erythrocyte Monocyte Mégacaryocyte, BFU-E: Burst Forming Unit-Erythroïde, MK: Mégacaryocyte, Eo: Eosinophile, GM: Granulocyte-Macrophage.

b) Leucémogenèse

L'oncogenèse est un processus biologique complexe aboutissant à la transformation d'une cellule normale en cellule cancéreuse. Ce phénomène implique des dérèglements génétiques et épigénétiques de la cellule aboutissant, *in fine*, à un déséquilibre entre « l'envie de prolifération » et « le contrôle de la

prolifération » ainsi qu'à un blocage de la maturation. Par conséquent, une prolifération incontrôlée de cellule immature se met en place, c'est le stade diagnostic de la LAM.

En effet quand cet équilibre se rompt, le pool de cellules peut alors proliférer sans contrôle et provoquer un envahissement de la moelle osseuse qui peut finir par se déverser dans le compartiment sanguin. Cet envahissement médullaire va bloquer le reste des cellules saines dans leur hématopoïèse et provoquer des cytopénies voir des pancytopénies et ainsi expliquer les divers signes cliniques.

c) Architecture clonale

La physiopathologie de la leucémogenèse suit un modèle d'évolution clonale complexe. Un clone est une population de cellules issues d'une même cellule d'origine et partageant les mêmes altérations génétiques. L'évolution clonale des LAM suit un modèle darwinien où chaque clone se verra sélectionné selon l'avantage procuré par ses anomalies génétiques. Ces lésions sont dites « drivers », à l'inverse des anomalies dites « passagères » qui, elles, ne provoquent pas d'avantage sélectif.

Ainsi, la leucémogenèse découle de l'accumulation d'anomalies génétiques. Plusieurs modèles sont avancés concernant la cinétique d'évolution des clones. Le dynamisme clonal linéaire correspond à une évolution d'un clone possédant un avantage sélectif supérieur dominant le clone précédent. Le modèle clonal ramifié, quant à lui, décrit un clone dominant avec la présence de plusieurs clones issus de différentes évolutions mutationnelles (Figure 2)[4].

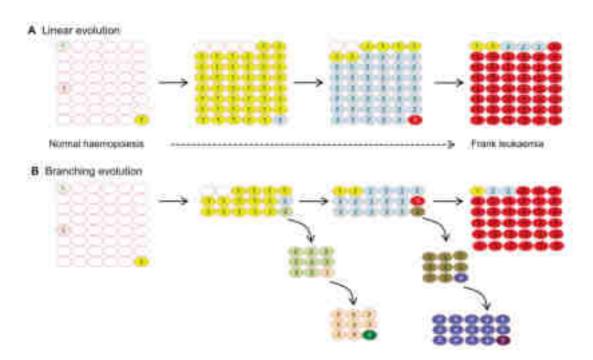


Figure 2 : Évolution clonale linéaire et branchée (C. S. Grove et G. S. Vassiliou et al., 2014).

(A) Évolution linéaire : un clone possédant un avantage sélectif supérieur prend la place du clone précédent. (B) Évolution branchée : leucémie dominée par un clone majoritaire avec la persistance de multiples petits clones secondaires.

Des anomalies génétiques récurrentes ont été mises en évidence dans les LAM, et sont regroupées selon leur conséquence fonctionnelle spécifique. On retrouve notamment des impacts sur la méthylation de l'ADN, des modifications chromatiniennes via la régulation des histones, de l'épissage de l'Acide Ribonucléique (ARN), du complexe des cohésines, de NPM1, des facteurs de transcription, des gènes suppresseurs de tumeur ou des voies de signalisation (Figure 3)[5].

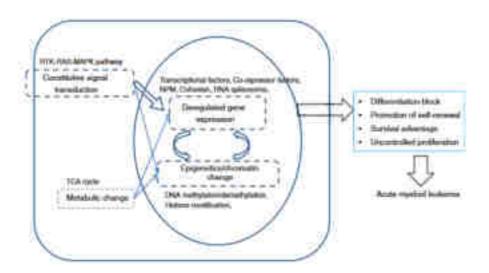


Figure 3: Schéma résumant les différentes voies intracellulaire majeures perturbées dans la leucémogenèse (T. Naoe et al., 2013).

Ces mutations peuvent aussi être caractérisées en trois classes selon leur conséquence fonctionnelle, on retrouve les mutations de (Tableau 1)[6] :

- Classe I : conférant un avantage prolifératif ou de survie,
- Classe II : conférant un blocage de la différenciation,
- Classe III : perturbant l'épigénétique.

L'association et l'ordre d'acquisition de ces différentes lésions impacteraient la cinétique de développement des LAM et, associés aux données cliniques, permettraient une classification selon trois schémas d'apparition : LAM *de novo* (LAM-*dn*) dont l'apparition n'est pas lié à une hémopathie préexistante, LAM secondaire (LAM-s) dont l'apparition suit un contexte d'hémopathie (syndrome myélodysplasique (SMD) ou myéloprolifératif (SMP)) et LAM post-thérapie (LAM-t) se développant après une exposition à un produit cytotoxique ou aux traitements par radiations (Figure 4)[5].

Tableau 1: Récapitulatif des différentes mutations retrouvées dans les LAM ainsi que de leur fréquence, fonction et classe dans la leucémogenèse (T. Naoe et al., 2013) :

Classe I : mutation conférant un avantage prolifératif ou de survie / Classe II : mutation conférant un blocage de maturation / Classe III : mutation perturbant l'épigénétique.

Punction	Gené	Mutation Programsy	Gempag
Tyrpaine kinase	FLT3	ITD: 30-28 %	Class I
		KDM: 5-10 %	
	KIT	25-30 % in CRF-AML	
	JAKI	1-3 %	
	JAKS	1-2%	
RAS puthway	NHAS	9-14-5	
	KRA5	5-17-%	
Protein phosphatase	PERMIT	4.5%	
Ubiquitin pultway	CBE.	2.7%	
Nuclear-cytophianic shutting phosphoponois	NPMI	25-35 %	Class fi
Transcription factor	CERPA	10-20 %	
	MUNX1	5-43 %	
	GATA2	3-5 %	
	MUNICIPAL PRUNICITY	10-15 %	
	CHEH-MYHT1	3.4%	
	PML-RAKA	5-10.%	
	MLL furion	544	
	DEK-NUP214	3.56	
DNA hydrocymethylamen	33072	8-27%	Class BP (mototions is
	IDHI:	6.9%	epigenetis modifirm)
	IDH2	9-12-5	
DNA merbylation	DNMTJA	DF-23 %	
Himore 5 K27 merbylation	112312	Rare in AMI. 8-12 % of MPN-BC	
Humae 5 K4 methylanos	MLL:	5-4%	
		PTD: 5-13 W	
Unione 3 K27 to earthylation	ASSOLI	3-11.%	
Transcriptional coregressor	RCION:	4.5%	7
W	DCORL1	4.16	
Calterin complex	STAGE	2%	
Grand March	SMCC	35	
	SMC1A	3.5	
	MADES	15	
Tumor suppressor	7753	3-12 %	
0-0-11	WTI	10-13 %	

Ainsi les trois gènes « drivers » mutés les plus fréquents dans les LAM sont *FLT3*, *NPM1*, *DNMT3A*. Ils sont plus spécifiquement associés au LAM-dn. Les mutations de *SRSF2*, de *SF3B1*, d'*U2AF1* ou encore de *BCOR* sont plutôt retrouvées dans les LAM-s. Enfin les mutations de *TP53*, majoritairement associées à un caryotype complexe, sont généralement retrouvées dans les LAM-t. Les mutations de *DNMT3A*, *TET2* et *ASXL1* ont été caractérisées comme pouvant apparaître tôt dans l'évolution clonale, soit au stade pré-leucémique, et serait associées à l'Hématopoïèse Clonale de Potentiel Indéterminé (CHIP). A l'inverse des mutations de *NPM1* ou des voies de signalisation de la prolifération (*FLT3*, *KIT*, *NRAS*, *KRAS*), qui sont plutôt caractérisées comme des évènements tardifs de la leucémogenèse [5].

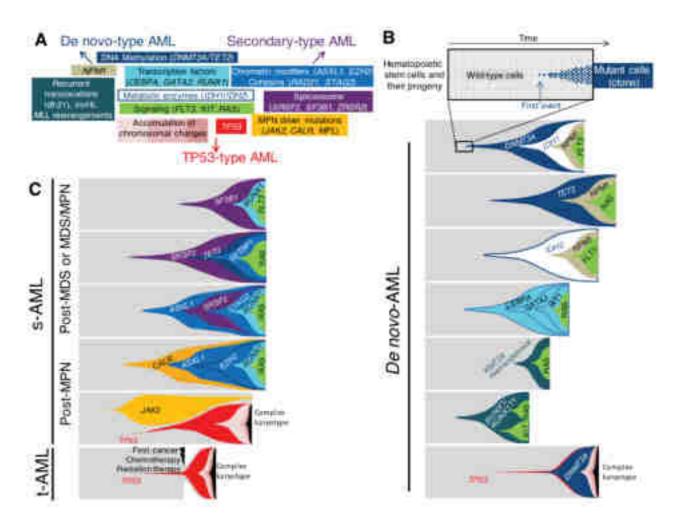


Figure 4 : Association et ordre d'acquisition des lésions génétiques dans les LAM de novo, secondaires et liées au traitement (J. A. Martignoles et al., 2018).

(A) Représentation schématique des lésions génétiques récurrentes par catégories de LAM-dn, LAM-s et LAM-t. Les encadrés centraux sont partagés dans les types de LAM, tandis que les catégories représentées en périphérie sont plus spécifiques d'une catégorie de LAM. Représentation d'évolutions clonales dans les LAM-dn (B) et dans les LAM-s et LAM-t (C) en fonction du temps, avec apparition de clone (cellules colorées). La partie grise représente les cellules normales de l'hématopoïèse.

3. Prise en charge

Des nouvelles recommandations concernant le diagnostic et la prise en charge des LAM ont été récemment émises. Celles-ci prennent désormais en compte les dernières avancées dans la compréhension des LAM concernant, principalement, la valeur clinique du terrain génétique des LAM pour le diagnostic, le pronostic et le suivi de ces maladies. Ainsi la classification actualisée des LAM selon l'Organisation Mondiale de la Santé (OMS), parue en 2022, se base sur les anomalies génétiques récurrentes des LAM [7]. Elle regroupe les LAM en plusieurs entités : LAM avec anomalie génétique récurrente et LAM définit morphologiquement lorsqu'aucune anomalie génétique n'est retrouvée (Figure 5).

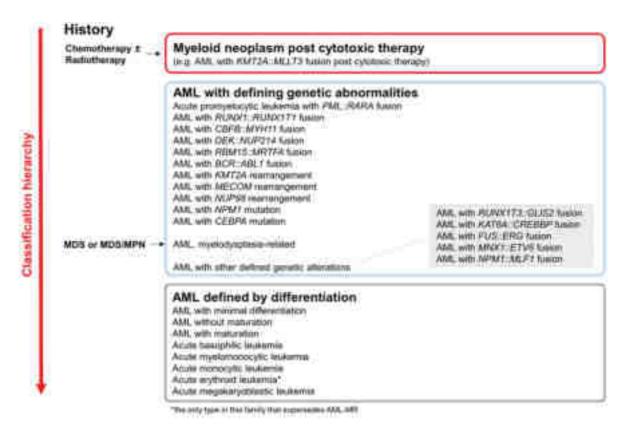


Figure 5: Classification des LAM selon l'OMS 2022 (J. D. Khoury et al., 2022).

Classification des LAM selon l'OMS 2022 en grandes entités selon l'histoire de la pathologie, les anomalies génétiques identifiées et en dernier cas la morphologie blastique. Pas de seuil blastique nécessaire pour les LAM définit par anomalie génétique excepté les LAM-RM, LAM avec fusion BCR :: ABL1 et les LAM avec mutation de CEBPA (biallélique et mutation bZIP), seuil alors à 20%.

Selon l'OMS, les LAM reliées à la myélodysplasie (LAM-MR) sont définies par les anomalies génétiques listées dans le tableau si dessous (Tableau 2) [7] :

Tableau 2: Anomalies génétiques définissant les LAM-RM (reliées à la myélodysplasie) (J. D. Khoury et al., 2022) :

Il existe une autre classification, réalisée par l'International Consensus Classification (ICC). Cette classification a été reprise par l'European Leukemia Network (ELN) en 2022 et présente quelques différences avec celle émise par l'OMS (Tableau 3). Cette dernière incorpore également le terrain génétique comme principale indication pour la classification. Les principaux points différents entre ces deux classifications concernent: les données rapportant l'historique du patient qui sont données à titre indicatif dans la classification de l'ICC (antécédent de SMD, SMD/SMP, secondaire à un traitement cytoxique, prédisposition génétique), les seuils de blastoses au diagnostic définissant une LAM qui sont fixés à supérieur ou égale à 10% dans le sang ou la moelle osseuse uniquement pour les catégories de LAM avec anomalie génétique récurente (excepté les LAM avec fusion BCR::ABL1), les mutations CEBPA qui concernent uniquement les mutations in frame bZIP (basic leucine zipper) (mono ou biallélique), les mutations de RUNX1 qui rentrent dans les anomalies définissant les « LAM avec mutation des gènes reliées à la myélodysplasie » et la présence d'une nouvelle catégorie de LAM qui est définie par la présence d'une mutation de TP53 à une fréquence allélique minimum de 10% [8][9].

Ces deux classifications se basent désormais sur l'influence du terrain génétique des LAM montrant l'importance du contexte génétique. Elles montrent également la nécessité de continuer à approfondir nos connaissances sur le domaine mutationnel des LAM pour en affiner la classification.

Tableau 3: Concordance entre les deux classifications des LAM selon l'ICC et l'OMS (M. Pizzi et al.,2023) :

ICC~2022~LAM-MR: mutation d'ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2; anomalies génétiques: caryotype complexe, del(5q)/t(5q)/add(5q), -7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) ou del(17p), del(20q), idic(X)(q13).

Secretarial Communic Clarettinian (ICC)	4.00	Mari Will Classification		
AND AND PROVIDED ASSOCIATION OF THE PROPERTY AND AND PROPERTY OF THE PROPERTY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AARI with deficing generally phonocalities Acting proteins with believes with PMF. SARA Associated proteins with PMF. SARA Associated points of the PMF. SARA Associated points of the PMF. SARA Associated proteins of the PMF. SARA ASSOCIATED PARTY Research proteins of the PMF. SARA ASSOCIATED ASSO	Alleman * ser the effects ser the effects	
AME with multiple high high and a drill 2 AME with multiple APMS AME with the reservation of the second and the second are second as a second and the second are second as a second and the second and th	3:30% 3:30% 3:30%	AND with RCT: AREA towns AND with APAD variation AND with CERNI washing	as Hambuid 3 Mh	
MI, with moderal TPUI =	20%	ANT. enthalpolation false	-	
CML selb myeledysytatia-minted gree mutations? CML selb myeledysytimia-minted sympositic absorpatitios?	2,000	Art. agrang quantitative		
All, and otherwise agentified	3396	AMI, defined by differentiation	295	
Myelinid minima	2.4	Machini anima	0.0	

L'ELN a émis une répartition en plusieurs catégories de risque concernant l'évolution des patients (Tableau 4) : catégorie à risque favorable, intermédiaire et défavorable. Cette classification à visée pronostic conditionne les différentes prises en charge proposées aux patients afin d'obtenir les meilleures chances de survie par la stratégie thérapeutique la plus adaptée.

Tableau 4: Catégories pronostics dans les LAM selon l'ELN (H. Döhner et al., 2022) :

Risk Catopary	Genetic Abnormality		
Faverable	t (8:21) (q22:q22.1); REDNX3-REDNX3T1 inv (16) (p13-lq22) or t (16:36) (p13-l;q22); CBF9-MYHT1 Mutanesh NPM3 without FET3-ETX) b2TP in-frame mutanol CEBPA		
Interspediate	Mutated NPM3 with FET3-ITI3 Wild-type NPM3 with FET3-ITI3 t (9:31) (p21.3:q23.3); AELET3-KMT2A Cytogorietic abnormalities not classified as Severable or adverse		
Attense	f (6,9) (p23;q34.1); DEC NUP214 f (v;11q23.3); KMT7A mirrangul f (9,22) (q34.5;q31.2); DCR-Aft.1 mvC0 (q21.3;q26.2) or f COD (q21.3;q26.2); GATA2; MECOMIEVII) f (5q26.2); MECOM HIVID command —5 is del (5q) —7. —17/abn (17p) Complex karyotype, monesomal karyotype Mutahal ASXL1, BCOR, EZHZ, RUNX1, SEIRI, SRSF2, STAG2; UZAFT, or ZE5R2 Mutahal TP53		

La stratégie thérapeutique dans les LAM est de contrôler et d'éradiquer la pathologie afin d'atteindre le stade de rémission complète (CR), définit comme un pourcentage de blastes inférieur à 5% dans la moelle osseuse et la résolution des cytopénies (polynucléaires neutrophiles PNN > 1G/L, thrombocytes > 100 G/L). Lorsque le pourcentage de blastes limite est atteint mais sans la résolution des cytopénies, on parle de rémission incomplète CRi. Pour accéder à cet objectif, il existe plusieurs stratégies prenant en compte l'âge du patient, les comorbidités, la capacité à tolérer une chimiothérapie intensive, le type de LAM, son groupe pronostic et la présence de mutations activatrices [8][10][11].

En conséquence, pour les patients capables de supporter un traitement d'induction intensif (appelés patients « fits »), on cherchera la rémission complète par une combinaison standard d'une anthracycline (daunorubicine ou idarubicine) et de cytarabine selon un modèle 7+3. Il est possible de personnaliser ce schéma selon le contexte mutationnel, en y associant, par exemple, de la midostaurine (anti-FLT3) si présence de mutation activatrice de *FLT3*, de l'association gemtuzumab-ozogamicine (GO) (molécule cytotoxique couplée à un anticorps anti-CD33) pour les LAM de groupe pronostic favorable et intermédiaire mais immunophénotypée CD33+, ou encore d'utiliser le CPX531 (forme liposomale associant cytarabine et daunorubicine à un ratio 5:1) pour les LAM secondaires.

Après l'induction, la stratégie thérapeutique varie en fonction de la catégorie pronostic, de l'atteinte ou non de la rémission complète et de la Mesure de la Maladie Résiduelle (MRD). La phase de consolidation est alors soit basée sur une chimiothérapie par cytarabine (plus ou moins associée à de

la midostaurine ou GO), CPX531 ou, si éligible, sur une Greffe de Cellule Souche Hématopoïétique (HCST) pour les groupes de pronostic défavorable ou intermédiaire (pas de supériorité dans le groupe à pronostic favorable au vu de la mortalité de la HCST).

Pour les patients inéligibles au traitement par induction (patients « unfit »), du fait de la pauvre tolérance de cette approche, il est recommandé, en première intention, un traitement par azacitidine (agent hypométhylant) associé au vénétoclax (inhibiteur de Bcl-2). Si la présence de mutation activatrice tel *FLT3*, est mise en évidence, alors une association molécule anti-FLT3 – azacitidine est envisageable. De même pour les mutations activatrices d'*IDH1*, l'ivosidénib (anti-IDH1) seul ou en association avec azacitidine peut être considéré [8][10][11]. Du fait du pauvre pronostic de cette catégorie de patient, la recherche de nouvelle solution thérapeutique et l'inclusion dans des essais cliniques est essentielle.

20 à 40% des patients seront réfractaires à l'induction (définit par la non atteinte de la CR après 2 cycles d'induction), de même 30 à 50% des CR1 (CR au premier cycle) rechuteront en consolidation par chimiothérapie et 20 à 30% par HCST. Pour améliorer la détection précoce des LAM réfractaires ou en rechutes (LAM-R/R), il est recommandé de réaliser un suivi cytologique, cytogénétique et moléculaire médullaire répété lorsque cela est possible. La MRD dans les LAM a pour but de quantifier plus profondément l'état de rémission, de prédire au plus tôt les risques de rechute ou d'état réfractaire et d'analyser plus finement la réponse au traitement (Figure 6)[12]. Actuellement, il existe deux méthodes pour l'évaluation de la MRD, l'une basée sur la détection d'un phénotype aberrant de clone par Cytométrie En Flux (CMF), l'autre basée sur l'étude moléculaire de la MRD par détection de différents transcrits de fusion ou des mutations de *NPM1* par PCR quantitative. L'évaluation des techniques de Séquençage Nouvelle Génération (NGS) et de Réaction de Polymérase en Chaine digital (digital PCR) dans la MRD est en cours.

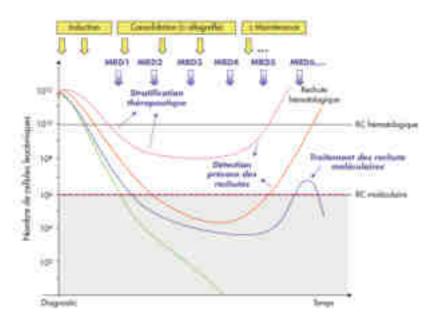


Figure 6: Différentes évolution de la maladie résiduelle dans les LAM (C. Preudhomme et al., 2020).

Lors des LAM-R/R, une réévaluation génétique est nécessaire. Elle permet d'obtenir des informations sur l'évolution clonale ainsi que sur l'apparition éventuelle de mutations activatrices, telles que la perte ou le gain de *FLT3* en R/R ou l'acquisition d'*IDH1/2* bien que rare en rechute. Les LAM-R/R seront traitées par chimiothérapie selon la présence de mutations activatrices (*FLT3*, *IDH1/2*), par HCST ou par l'inclusion dans des essais cliniques [8][10][11].

Ainsi, la prise en charge des LAM est aujourd'hui basée majoritairement sur la composante génétique qu'il est donc essentiel de caractériser au plus tôt lors du diagnostic. Dans l'optique d'une caractérisation du pronostic, de l'éligibilité au thérapie ciblée et au suivi par MRD, une analyse cytogénétique et moléculaire est requise. De la sorte, l'examen initial au diagnostic nécessite :

- un examen cyto-morphologique de la blastose,
- des informations cliniques de l'historique du patient (secondaire à un SMD, SMD/SMP, préexposition à un traitement cytotoxique, prédisposition génétique germinale),
- un immunophénotypage par CMF de la blastose,
- une analyse cytogénétique,
- une analyse moléculaire.

Ainsi l'analyse moléculaire prend désormais un rôle central dans la gestion des LAM. L'ELN recommande une recherche par une technique ciblée et rapide des mutations de *NPM1*, *FLT3* et *IDH1/2* en 3 à 5j et des mutations *CEBPA*, *DDX41*, *TP53*, *ASXL1*, *BCOR*, *EZH2*, *RUNX1*, *SF3B1*, *SRSF2*, *STAG2*, *U2AF1*, *ZRSR2* au minimum lors du premier cycle de traitement.

B. IDH1/2

1. Général

Les Isocitrate Déshydrogénases (IDH) sont des enzymes impliquées dans le métabolisme énergétique cellulaire. Chez l'Homme, trois isoformes ont été mis en évidence, l'IDH1, homodimère codé par le gène *IDH1* (2q34), elle se retrouve dans le cytosol et dans les peroxysomes, l'IDH2, homodimère codé par le gène *IDH2* (15q26.1), est d'emplacement mitochondriale. Enfin, l'IDH3, hétérotétramère composé de trois sous-unités; IDH3A, IDH3B, IDH3G, est de localisation mitochondriale. Ce dernier n'est pas à ce jour impliqué dans des pathologies tumorales [13]. IDH1 et IDH2 sont des enzymes NADP+ dépendante (Nicotinamide Adénine Dinucléotide Phosphate), tandis que IDH3 est NAD+ dépendante (Nicotinamide Adénine Dinucléotide).

Les IDH catalysent la décarboxylation oxydative de l'isocitrate en alpha cétoglutarate α-CG et libèrent du NADPH via la réduction de NADP+ (NADH pour IDH3) [14][15]. Le NADPH est impliqué dans la protection contre les ROS (Espèces Réactives de l'Oxygène) par son rôle dans la réduction du glutathion. L'α-CG est également nécessaire dans le fonctionnement de nombreuses dioxygénases (α-CG dépendantes), telles les enzymes déméthylases des histones et la famille des TET d'hydroxylases de l'ADN. Ces enzymes sont impliquées dans la régulation épigénétique et de l'expression des gènes.

2. Rôle pathologique

Les premières caractérisations des mutations d'*IDH1/2* en pathologie tumorale ont été réalisées en 2006 pour *IDH1* et en 2009 pour *IDH2* [13] . Par la suite, les mutations d'*IDH1/2* ont été observées dans de nombreuses catégories de cancer, notamment les gliomes (80%), les chondrosarcomes (80%), les LAM (20 à 30%), les cholangiocarcinomes (20%) ou encore les lymphomes T angio-immunoblatiques (32%) (Figure 7)[16]. Ces mutations sont aussi présentes, à plus faible fréquence, dans d'autres hémopathies telles les SMD (de 4 à 12%) ou bien plus rarement dans les SMP (2-4%) [14].

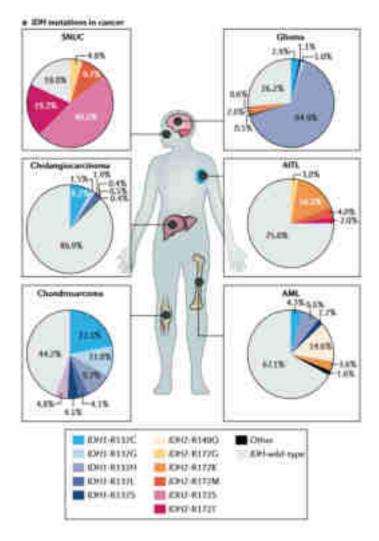


Figure 7 : Prévalence des mutations d'IDH1/2 dans différents cancers (C. J. Pirozzi et al, 2021).

SNUC: sinonasal undifferentiated carcinoma.

Les mutations d'*IDH1/2* sont restreintes à trois hotspots mutationnels, à savoir le résidu arginine en position 132 d'*IDH1*, *IDH1*^{R132}, l'arginine en position 140 d'*IDH2*, *IDH2*^{R140}, et l'arginine en position 172 d'*IDH2*, *IDH2*^{R172}, ce dernier étant l'homologue structurale d'*IDH1*^{R132}. Une certaine disparité est néanmoins connue concernant les nucléotides impactés par codon hotpsot mais aussi par la prévalence de ces différentes variations selon la pathologie rencontrée (Figure 7).

Ces mutations correspondent à une substitution d'une arginine impactant le site catalytique de l'enzyme et occasionnant un gain de fonction. En effet, ces mutations engendrent un changement biochimique et conformationnel et favorisent la conformation fermée, catalytiquement active, d'IDH1/2 ainsi qu'une diminution de l'affinité de l'enzyme envers l'isocitrate et d'une augmentation de l'affinité à l'α-CG et au NAPDH. Il en découle une nouvelle activité enzymatique, la réduction de l'α-CG en l'énantiomère R du 2-hydroxyglutarate (R-2-HG), et la consommation de NAPDH au lieu de le produire [14][16][17].

L'oncométabolite 2-HG produit possède une structure similaire, excepté l'état d'oxydation en carbone C2, avec l'α-CG et inhibe de manière compétitive les di-oxygènases α-CG-dépendante (histone déméthylases et DNA déméthylases) [13][15][18]. Ainsi l'augmentation du taux de 2-HG et la diminution de l'α-CG engendrent une perturbation épigénétique via un profil hyperméthylation de l'ADN et des histones aberrant et un blocage de la différenciation (Figure 8) [19][20][21].

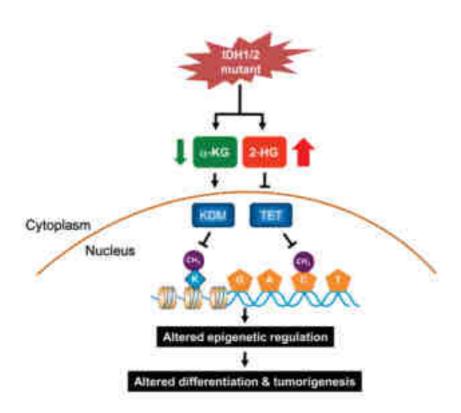


Figure 8 :Les mutations d'IDH1/2 inhibent la déméthylation des histones et de l'ADN et altèrent la régulation épigénétique (H. Yang et al., 2012).

KDM: Histone Lysine Déméthylase.

Parmi la famille des di-oxygènases TET, TET2 est une enzyme α-CG dépendante possédant un important rôle dans la régulation épigénétique et dans la différenciation des cellules immatures de la lignée myéloïde et est fréquemment retrouvée mutée dans les hémopathies myéloïdes. TET2 promeut la déméthylation de l'ADN via la conversion de 5-methylcytosine 5mc en 5-hydroxymethylytosine 5hmc [16]. Les mutations provoquant une perte de fonction de TET2 engendrent une hyperméthylation de l'ADN des CSH et une répression transcriptionnelle bloquant la différenciation cellulaire [13]. Un profil d'hyperméthylation aberrant est observé dans les LAM mutées *IDH1/2*, ce profil est similaire avec les LAM présentant une perte de fonction de TET2 supportant l'inhibition de TET2 par le 2-HG [22][23].

3. Les mutations d'IDH1/2 dans les LAM

Les mutations d'*IDH1/2* sont retrouvées dans environ 20% des LAM et plus particulièrement chez les patients plus âgés [24]. Elles sont plus fréquemment identifiées dans les LAM du groupe cytogénétique de pronostic intermédiaire (51,6%) et sont associées à un caryotype normal (62,6%) ainsi qu'aux mutations de *NPM1* (47,3%) [14][22][24], à 1'exception des mutations IDH2^{R172} qui sont retrouvées mutuellement exclusives de *NPM1* [25]. Elles présentent également une exclusivité avec les mutations de *TET2*, ce qui est compatible avec 1'argument de leur impact fonctionnel commun [22].

Les mutations d'*IDH1* représentent 6 à 16% des LAM. On retrouve principalement les variants IDH1^{R132C}, IDH1^{R132H} et IDH1^{R132S}. Les mutations d'*IDH2* sont présentes à hauteur de 8 à 19% avec 6,3% pour IDH2^{R140Q} et 2,3% pour IDH2^{R172K} [14][22]. Les mutations d'*IDH1/2* sont quasi exclusivement retrouvées à l'état hétérozygote [14]. En effet, elle nécessite la persistance d'un allèle sauvage (*wild-type* WT) pour la production résiduelle d'α-CG [16][26].

Les mutations d'*IDH1/2* correspondent plutôt à des évènements précoces dans la leucémogenèse [27] mais pas exclusivement, ainsi elles peuvent aussi être retrouvées à l'état sous-clonal dans les LAM [19].

Malgré la fréquence élevée des mutations d'*IDH1/2* dans les LAM, le rôle pronostic de ces mutations reste controversé et aucun consensus n'est aujourd'hui obtenu [14][24].

Depuis quelques années, de nouvelles thérapies ciblées sont apparues avec notamment l'émergence de molécules inhibitrices ciblant les mutations d'*IDH1/2*. Cependant, il est encore nécessaire d'affiner pleinement leur place dans la prise en charge des LAM.

L'ivosidénib (AG-120), ciblant les mutations d'*IDH1*, et l'énasidénib (AG-221), visant les mutations d'*IDH2*, sont des inhibiteurs allostériques se liant au site catalytique de l'enzyme IDH1/2 mutée la stabilisant, ainsi, en conformation ouverte soit inactive [19]. Cette inhibition diminue le taux de 2-HG au sein des cellules leucémiques et provoque la reprise de la différenciation. Cette reprise de la maturation permet de réduire le taux de blastes et d'augmentant celui des cellules matures [28]. Ainsi, ces molécules n'étant pas des éléments cytotoxiques, possèdent une meilleure tolérance chez les populations âgées. Une vigilance particulière doit, cependant, être entrepris envers un syndrome de différenciation qui peut découler de la reprise de la maturation de ces blastes.

Le recours à l'ivosidénib est maintenant possible en association avec azacitidine chez les patients non éligibles à la thérapie intensive. Une survie globale moyenne de 24 mois a été obtenue chez les patients traités par cette association (contre 7,9 mois pour azacitidine-placebo) selon l'essai AGILE [29].

Cette molécule possède désormais un accès précoce post AMM (Autorisation de Mise sur le Marché) avec comme indication « le traitement en association avec l'azacitidine des patients adultes ayant une LAM nouvellement diagnostiquée avec une mutation de IDH1^{R132}, non éligibles à la chimiothérapie d'induction standard et aux alternatives disponibles ». Aussi, elle est également étudiée dans les LAM-R/R où elle possédait un accès compassionnel en « monothérapie des patients adultes atteints de LAM avec la mutation IDH1^{R132} en rechute à partir de la 3ème ligne ou 2ème ligne pour les patients non éligibles à une chimiothérapie intensive de rattrapage, ou réfractaires ».

Concernant l'énasidénib, sa place thérapeutique est, aujourd'hui, toujours en cours d'évaluation.

Par ailleurs de nombreux essais sont actuellement en cours concernant différentes associations des inhibiteurs IDH1/2, notamment avec le vénétoclax (molécule anti-bcl2), ainsi que des études expérimentant de nouvelles molécules inhibitrices pan-IDH comme le vorasidénib (AG-881).

Des formes de résistances à l'ivosidénib ont cependant été rapportées avec notamment le rétablissement de la production de 2-HG par un « switch d'isoforme » qui correspond à une forme de résistance souvent secondaire et est défini par l'apparition d'une mutation gain de fonction à l'hotspot mutationnel d'*IDH2*. D'autres mutations du site catalytique d'IDH1 empêchant la fixation de la molécule inhibitrice ont également été rapportées comme des formes de résistance [19]. Ces résistances ont été observés chez 35% (9/26) des LAM en rechute après CR/CRh (CR avec réponse hématologique partielle) d'après l'étude de S. Choe et al. publiée en 2019. Celles-ci renforcent la justification de l'utilisation de l'ivosidénib en association plutôt qu'en monothérapie [19].

Ainsi la place des thérapies ciblées anti-IDH1/2 est toujours pleinement en cours d'évaluation. Cependant sa disponibilité en première ligne pour les patients non éligibles à la thérapie intensive par induction et son accès aux différents essais cliniques renforcent l'importance d'une recherche rapide et ciblée des mutations d'IDH1/2. La recherche de ces mutations au diagnostic, avec des délais de réponse courts, est actuellement une priorité des laboratoires d'hématologie.

C. Droplet Digital Polymerase Chain Reaction (ddPCR)

La Droplet Digital Polymerase Chain Reaction (ddPCR), ou PCR digitale en gouttelettes, est une technique d'amplification PCR en point final basée sur un système d'émulsion eau-huile et permettant une quantification rapide et sensible des acides nucléiques. Fondamentalement, un échantillon d'extrait d'ADN va être émulsionné, générant environ 20 000 gouttelettes de taille nanométrique (Figure 9). Chaque gouttelette renfermera alors théoriquement une molécule d'ADN associée à l'ensemble du matériel nécessaire pour la réalisation des amplifications par PCR et des hybridations avec différentes sondes couplées aux fluorochromes. Ainsi, chacune de ces gouttelettes sera le lieu d'une amplification par PCR d'un gène d'intérêt. L'analyse de l'amplification, soit de la fluorescence générée par chaque gouttelette, est mesurée et analysée. Elle permettra d'obtenir le nombre de molécules cibles (sauvages ou mutées) présentes dans l'échantillon et d'en calculer une fréquence allélique (nombre de molécules mutées sur le nombre de molécules cibles totales) [30].

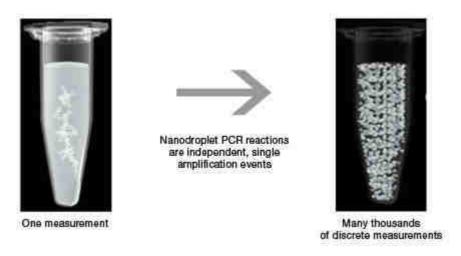


Figure 9 : Fractionnement d'un échantillon en 20 000 gouttelettes, étape préliminaire de la ddPCR (Guide Application BioRad®).

Cette technique peut être utilisée dans de nombreuses applications, notamment la quantification de séquences cibles dans un échantillon (sans nécessité de recourir à une courbe de calibration), l'analyse des variations du nombre de copies (CNV) ou encore la détection de séquences mutées de faible abondance par rapport aux séquences sauvages.

La capacité de détection d'évènements rares de la ddPCR est particulièrement intéressante en oncologie. Le principe de fractionnement de l'échantillon permet d'analyser les molécules d'ADN de façon individuelle. Chaque gouttelette est alors considérée comme un puit échantillon à part entière et est analysée en elle-même, augmentant ainsi la sensibilité lors de la détection du signal et réduit les éventuelles interférences (Figure 10).

L'amplification d'un gène d'intérêt avec la mise en place de sondes détectant la séquence sauvage et la ou les séquences mutées, permet la détection des mutations cibles présentes au sein des cellules tumorales, dans un milieu de cellule saine, même à faible fréquence. En effet, la séquence cible est alors présente dans chaque gouttelette à plus forte concentration que dans la solution initiale (Figure 10) [31].

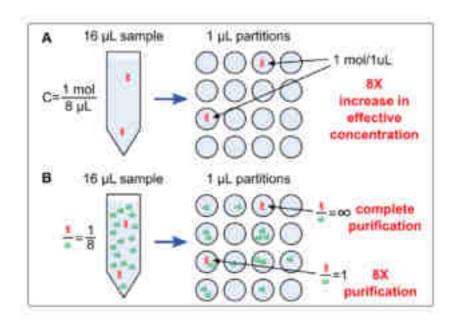


Figure 10: Avantage du partitionnement dans les PCR digitales en gouttelettes (A. S. Basu et al., 2017).

A : Concentration en molécule d'ADN supérieur par gouttelette que dans le milieu d'origine.

B : Réduction des interférences dans chaque gouttelette par rapport au milieu initial.

Lors de la création de l'émulsion, chaque molécule d'ADN se répartit aléatoirement dans les gouttelettes néoformées (Figure 11)[32]. L'amplification par PCR dans chaque gouttelette correspond à une PCR classique en point final, utilisant une sonde d'hydrolyse TaqMan couplée avec des fluorophores FAM ou HEX, dont le principe est schématisé en Figure 12.

La fluorescence libérée par l'hydrolyse de la sonde TaqMan dans chaque gouttelette est alors mesurée selon les deux canaux de détection correspondant au signal FAM et HEX. Cette mesure de l'intensité de fluorescence permet de positionner chaque gouttelette dans une représentation une Dimension (1D) et deux Dimensions (2D) (Figure 13). Le seuil de positivité est déterminé en fonction de l'ensemble des entités représentées. Une gouttelette est alors dite « positive » (générant un signal de fluorescence) ou « négative » (sans signal de fluorescence), lorsque sa fluorescence est détectée audessus ou en-dessous de ce seuil d'intensité.

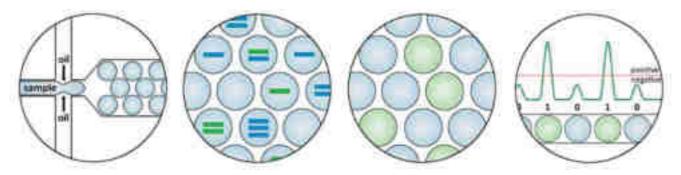


Figure 12: Principe binaire de la ddPCR (R. Verheul et al., 2016).

Création de gouttelettes uniformes en taille et volume au sein d'un QX200 droplet generator. Répartition aléatoire des molécules d'ADN lors du fractionnement. Fluorescence finale après hydrolyse des sondes TaqMan après PCR. Mesure de la fluorescence par gouttelette et caractérisation de chaque gouttelette comme « positive » ou « négative » selon un seuil d'intensité de fluorescence.

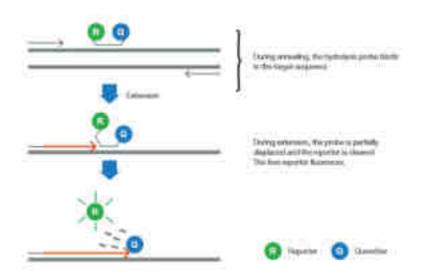


Figure 11: Principe de fonctionnement d'une sonde TaqMan (Guide Application BioRad®).

La représentation 2D permet de catégoriser les données obtenues en quatre populations en confrontant l'intensité de chaque fluorescence en fonction de l'autre. En considérant le canal FAM comme détectant les séquences mutées et le canal HEX détectant les séquences sauvages, on obtient les nuages de points suivant (Figure 13) :

- Canal FAM négative et HEX négative (représenté en gris) : gouttelettes double-négatives, ne contenant pas de séquence d'intérêt,
- Canal FAM positive et HEX négative (représenté en bleu) : gouttelettes contenant des séquences mutées,
- Canal FAM négative et HEX positive (représenté en vert) : gouttelettes contenant des séquences sauvages,
- Canal FAM positive et HEX positive (représenté en orange) : gouttelettes double-positives, contenant les deux séquences sauvages et mutées.

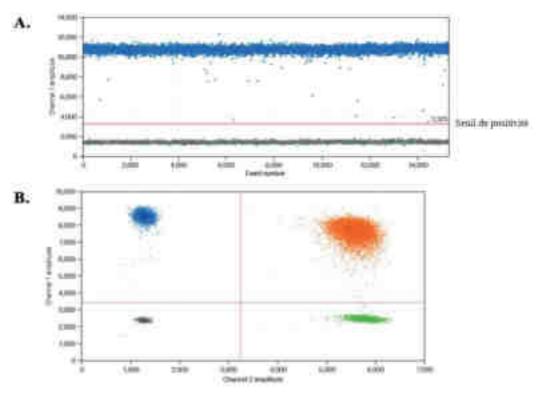


Figure 13 : Représentation 1D (A) et 2D (B) de chaque gouttelette selon leur intensité de fluorescence dans les différents canaux de détection FAM et HEX (Guide Application BioRad®).

Canal 1: fluorescence FAM, sonde(s) de(s) séquence(s) mutante(s).

Canal 2 : fluorescence HEX, sonde de la séquence sauvage.

La répartition des gouttelettes suit un schéma aléatoire, ainsi chaque gouttelette peut alors contenir soit zéro molécule d'ADN soit une soit plusieurs. Le résultat final étant exprimé en nombre de gouttelettes « positives » ou « négatives », il est alors nécessaire de corriger le nombre de molécules d'ADN détectées, car certaines gouttelettes peuvent initialement contenir plusieurs molécules d'ADN. Cette correction est approchée par la loi de Poisson qui régit la loi de répartition des évènements rares au sein d'une grande population. Elle se base sur la proportion de gouttelettes vides. En effet, plus le nombre de molécules d'ADN est important, plus la proportion de gouttelettes vides diminue, tandis que la proportion de gouttelettes porteuses de plus d'une molécule augmente (Figure 14).

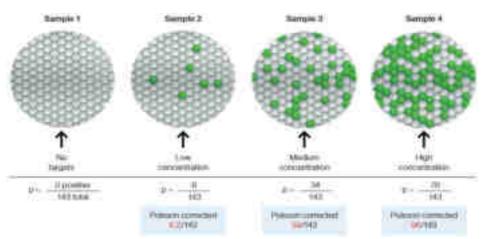


Figure 14 : Exemple de correction de la concentration en molécules d'ADN par la loi de Poisson en technique ddPCR (Guide Application Biorad®).

D. Objectif

La LAM est une hémopathie particulièrement agressive dont la prise en charge est en nécessité constante d'amélioration. Récemment, l'apparition de thérapies ciblées visant les mutations d'*IDH1/2* a ouvert un nouvel axe thérapeutique. Le groupe European LeukemiaNet (ELN) a émis de nouvelles recommandations en 2022, notamment en ce qui concerne la recherche ciblée des mutations activatrices d'*IDH1/2* dans un délai de 3 à 5 jours [8]. L'objectif de ce délai de recherche est de permettre de statuer au plus tôt sur l'éligibilité à la thérapie ciblée. Malheureusement, l'approche préexistante pour la détection de ces mutations au laboratoire de Strasbourg ne permet pas de respecter ces délais. En effet, à l'heure actuelle, ces mutations sont identifiées grâce à une approche par séquençage haut débit nécessitant un délai de réalisation et d'analyse d'environ 3 semaines. De plus, cette approche NGS présente une sensibilité relativement faible (de l'ordre de quelques pour cent de fraction allélique) et un coût de production élevé, limitant ainsi son utilisation pour répondre à ce nouveau besoin. Une nouvelle technique de recherche des mutations d'*IDH1/2* est donc nécessaire.

Ainsi, nous nous sommes tournés vers la recherche ciblée par ddPCR utilisant les kits multiplexés commerciaux BioRad® ciblant les positions IDH1^{R132}, IDH2^{R140} et IDH2^{R172} et avons voulu évaluer ses performances dans cette indication.

Pour ce faire, nous nous sommes appuyés sur la cohorte strasbourgeoise constituée depuis 2014, date à laquelle le séquençage haut débit a été mis en place en routine au Centre Hospitalier Régional Universitaire (CHRU) de Strasbourg. L'établissement de cette cohorte nous a permis, dans un premier temps, d'étudier le contexte mutationnel des variants *IDH1* et *IDH2*. Cette étude permettra de mieux caractériser les patients et, peut-être à l'avenir, d'acquérir une meilleure connaissance de la physiopathologie des LAM, de leur classification et de leur pouvoir pronostic. Et dans un second temps, d'évaluer la mise en place de cette nouvelle technique ddPCR dans le diagnostic et le suivi des mutations *IDH1/2* des patients pris en charge au CHRU de Strasbourg.

II. Matériel & Méthode

A. Cohorte

Pour ce travail, nous avons étudié une cohorte de patients adressés initialement sur Strasbourg pour différentes indications à la réalisation d'un NGS entre 2014 et 2022. Ces patients avaient été prélevés dans le cadre de suspicion, de diagnostic, de suivi, de rechute ou de diagnostic différentiel de différentes hémopathies telles que des LAM, des SMD, des SMP, des syndromes frontières SMD/SMP (Leucémies Myélomonocytaires Chroniques LMMC), etc. (détails en annexe). Cette cohorte et cette étude bénéficient du CPP de la faculté de médecine et du CHRU de Strasbourg (CE-2021-42).

La cohorte de patients de ce projet rapporte les résultats d'analyses NGS réalisées au laboratoire du premier janvier 2014 au premier décembre 2022 dans le cadre de la prise en charge classique des patients (aucun prélèvement supplémentaire n'a été réalisé). Elle comprend les indications, les détails et les résultats de séquençage rendus pour chaque prélèvement.

Ces séquençages ont été réalisés à partir d'ADN extrait de cellules en suspension provenant de prélèvements sanguins ou de prélèvements médullaires, prélevés sur EDTA puis extraits en utilisant un kit Qiagen®. La quantification a été réalisée par technique fluorimétrique Qubit®.

La préparation des librairies utilisait une technique d'enrichissement amplicon jusqu'en juin 2021 puis par capture jusqu'aujourd'hui. Les librairies ont été préparées avec le kit *TruSight Myeloid Sequencing Panel* (Illumina®) lors des techniques d'enrichissement par amplicons et avec le kit *SureSelect XT HS* (Agilent®) lors des techniques d'enrichissement par capture. Elles ont été préparées par technique manuelle ou automatisée sur l'automate de préparation des librairies : le système *Magnis Dx NGS Prep System* (Agilent®), puis séquencées en séquençage paired-end 2x150pb sur séquenceurs *Nextseq* ou *Miseq* (Illumina®). La préparation des librairies et le séquençage ont été réalisés en accord avec les recommandations du fabriquant. Les analyses bio-informatiques ont été réalisées à l'aide du pipeline STARK.

La liste des gènes et régions étudiées au minimum par ces deux techniques d'enrichissement est la suivante: ASXL1 (NM 015338 exon4-6), BRAF(NM 004333 exon15), CALR(NM 004343 exon9), CBL (NM 005188 exon8,9), CSF3R (NM 000760 exon14-17), DNMT3A (NM 175629), ETV6 (NM 001987), EZH2 (NM_004456), FLT3 (NM_004119_exon14,15,20), GATA2 (NM 032638 exon2-6), *IDH1* (NM 005896 exon4), *IDH2* (NM 002168 exon4), JAK2 (NM 004972 exon12,14), KIT (NM 000222 exon2,8-11,13,17), KRAS (NM 033360 exon2,3), MPL (NM 005373 exon10), NPM1 (NM 002520 exon11), NRAS (NM 002524 exon2,3), PHF6 (NM 032458), (NM 000314 exon5,7), PTPN11 (NM 002834 exon3,13), PTEN*RUNX1* (NM 001754), SETBP1 (NM 015559 exon4partiel), SF3B1 (NM 012433 exon13-16), SRSF2 (NM 003016 exon1), TET2 (NM 001127208 exon3-11), TP53 (NM 000546 exon2-11), U2AF1 (NM 006758 exon2,6).

B. Échantillons analysés par ddPCR

Pour la mise en place de la technique par ddPCR, des extraits d'ADN issus de la cohorte de patient séquencée par NGS ont été utilisés.

Ces extraits d'ADN ont été conservés à +4°C, certains à -20°C, par le laboratoire d'hématologie dans le cadre du département de génétique moléculaire des cancers du CHRU de Strasbourg. La quantification a été réalisée par technique spectrométrique Nanodrop®.

C. Analyse de données

Les données ont été analysées en utilisant le logiciel Excel®.

Les analyses statistiques ont été réalisées sur le logiciel GraphPad Prism® (v10.0.1) par test t de Student bilatéral à un risque α de 5%. Les figures en circle plot ont été obtenues grâce au site internet développé par Martin Krzywinski : <u>Circos Table Viewer</u> v0.63-10 ©.

D. Technique ddPCR

1. Kits ddPCR multiplex

Les échantillons ont été analysés par technique ddPCR développée par BioRad®. Les kits correspondaient à des mélanges amorces-sondes de PCR multiplex, directement prêts à l'usage, IDH1^{R132} développés pour détecter six mutations position en (dHsaEXD61571942)(NM 005896)(Tableau mutations position $IDH2^{R140}$ 5), trois position IDH2^{R172} en (dHsaEXD35841715)(NM 002168)(Tableau 6) et six mutations (dHsaEXD10111488)(NM 002168)(Tableau 7).

 $Tableau\ 5: Liste\ des\ mutations\ IDH1^{R132}\ recherchées\ par\ le\ kit\ (dHsaEXD61571942)\ (Bio-Rad \&\ 2018):$

CDS:	Séquence	codante.
------	----------	----------

Viviant hisme	COS Mutabon	coamic in	Fluorophone	Amplicon Length
IDHI RYARE	C3940-7	COSM287A7	FAM	78
IDH1 #1325	1386647	COSMOTIVIO	FAN	78.
IDH1 F7335	6.894CA	CO5M28748	FAM	79.
IOH+ F1320	£3964	COSNI28749	FAM	76
iOHI RTIZH	CHE4	COSMULTAE	FAM	78
EHT#133V	C394_3860-07	COSM28751	1333	78
IDH1 WT	N/A	N/A	HEX	TW

Tableau 6 : Liste des mutations $IDH2^{R140}$ recherchées par le kit (dHsaEXD35841715) (Bio-Rad® 2018) :

Variant Name	CDS Mutation	COSMIC ID	Flumphore	Ampicun Langth
WHI RIAUL	(4,4199)(1	COSMITETS	FAM	66
IDH23140W	1.0007	GOSM41877	FAM	66
IDN2 R140G	1.4130=A	COSMATSIO	FAM	65
IDH2 WT -	5614	N/A	HEX	65

Tableau 7 : Liste des mutations IDH2^{R172} recherchées par le kit (dHsaEXD10111488) (Bio-Rad® 2018) :

Variant Frame	CDS Mutation	COSMIC ID	Floorophore	Amplican Length
(0HQ R172S	⊆\$18G>T	CO6M34090	FAM	63
IDH2 R1725	£518G>C	CO5M133672	FAM	63
IDH2 R172W	€514A>T	CQ5M34009	FAM	63
Юна R172M	=.919G>T	CQ5M33732	FAM	63
IOHO N172K	E.515G+A	CCI5M23733	FAM	63
DH2 R172G	E.514AHG	COSM33731	FAM	63
IDH7 WY	N/A	N/A:	HEX	63

2. Protocole technique

• Préparation du mix-échantillon :

Les échantillons de départ sont des extraits d'ADN conservés à +4°C ou à -20°C selon leur ancienneté. Quantifiés par Nanodrop®, ils sont ensuite dilués à 5 ng/µl avec de l'eau ultra-pure (obtenue à partir d'un système de purification MiliQ®). Cette même eau sera utilisée pour notre témoin de contamination (*No Template Control* NTC). Les échantillons des patients sont déposés en duplicat et si possible sur des colonnes différentes. Selon les recommandations de la société BioRad® : les quantités pour le mix de la PCR sont indiquées ci-dessous (Tableau 8). Un volume mort de 15% soit de 3 µl est prévu pour l'étape de l'encapsulement, soit au final une prise d'essai d'ADN de 40 ng.

Tableau 8 : Volumes recommandés pour la préparation du mélange amorces/sondes-échantillon :

	Volume par	Volume par réaction +
Composant	réaction (μl)	15% de volume mort (μl)
ddPCR Supermix for probes (No dUTP)	11	12.65
Amorces/sondes cible muté (FAM) / WT (HEX)	1	1.15
Échantillon ADN ou eau MiliQ	8	9.2
Volume total	20	23

Un volume de 13,8 µl du mix, obtenu après mélange du *Supermix for probe (No dUTP)* et de la solution commerciale amorces/sondes, est réparti, après centrifugation et homogénéisation, en pipetage inverse, dans des barrettes de huit puits. Il est préférable de prévoir un peu plus de quantité de mix au préalable en raison de la viscosité du *Supermix for probe (No dUTP)*. Les puits non utilisés doivent être complétés par un *buffer ddPCR contrôle*, afin qu'il ne reste pas de puits vides lors de l'étape de la génération des gouttelettes. Un volume de 9,2 µl d'ADN est ensuite transféré dans chaque puit, ce volume est remplacé par de l'eau ultra-pure MiliQ® pour le NTC. Les barrettes sont ensuite homogénéisées et centrifugées.

• Génération des gouttelettes :

Concernant l'étape de l'émulsion, la génération des gouttelettes est réalisée barrette par barrette. Une « cartridge » est nécessaire, correspondant à un support en plastique de la marque BioRad®, de huit puits et de trois lignes ; une ligne pour le dépôt du mix-échantillon, une pour l'huile et la dernière pour le produit émulsionné final. Cette « cartridge » est fixée dans un support métallique adéquate (Figure

15). Grâce à une pipette multicanaux Rainini®, un volume de 20µl du mix-échantillon, préalablement vortexé et centrifugé, est prélevé et déposé dans la ligne du milieu, dénommée ligne « Sample ». De même, un volume de 70µl d'huile (*Droplet generation oil for probes - BioRad*®) est prélevé et déposé dans la ligne dénommée « oil », en veillant à rejeter l'huile avec un biais de 15° et à ne pas former de bulle d'air en s'arrêtant au premier cran de la pipette. La « cartridge » est recouverte d'un « gasket » (plastique souple orange), permettant d'éviter les contaminations inter-puits lors de l'émulsion. L'ensemble support métallique-« cartridge »-« gasket » est placé dans le *QX200 droplet generator*. Il réalise la formation d'environ 20 000 gouttelettes en deux à trois minutes.

Figure 15: Mise en place du complexe support métallique – cartridge – gasket lors de l'étape de l'émulsion d'une ddPCR.

A gauche : schéma représentant les différentes étapes de préparations de l'ensemble support métallique-cartridge-gasket (BioRender®).

A droite: représentation graphique du QX200 Droplet Generator (BioRad®).

A la sortie de l'automate, la vérification de la bonne émulsion des puits se fait par contrôle visuel de la ligne dénommé « droplets » contenant le produit final. L'aspect blanchâtre des puits générés confirme la fabrication des gouttelettes (Figure 16).

Figure 16 : Photographie de l'aspect blanchâtre des puits lors du contrôle visuel de l'étape d'émulsion de la ddPCR.

• <u>PCR</u>:

40μl du produit d'émulsion sont prélevés et déposés dans une plaque pour PCR de 96 puits. Ce pipetage ne doit pas casser les gouttelettes nouvellement générées. Pour cela, l'aspiration et le rejet doivent être lents, au minimum de cinq secondes, avec un angle de 30 à 45° et ne doivent pas rencontrer ni une paroi ni le fond du puit. La plaque de PCR est recouverte de ruban adhésif au fur et à mesure de l'avancement, idéalement dès la réalisation de deux colonnes, afin d'éviter les contaminations et l'évaporation du produit de l'émulsion.

La plaque de PCR est ensuite scellée avec une feuille d'aluminium à 180°C pendant 5 secondes à l'aide du *Bio-Rad's PXI*TM *PCR plate sealer*. A cette étape, le produit de l'émulsion est stable 2h à 5°C, selon les recommandations du fournisseur. Le programme du thermocycleur est le suivant (Tableau 9) :

Tableau 9 : Programme de PCR utilisé lors de la technique de ddPCR :

Étape	Température	Temps	Nombre de cycle c	Accroissement
Dénaturation	95°C	10 min	1c	
A	94°C	30 sec	40 -	2°C/s
Amplification	55°C	1 min	40c	
Inactivation de l'enzyme	98°C	10 min	1c	
Fin (optimal)	10°C	∞		

• Analyses des gouttelettes :

L'analyse des échantillons se réalise par l'automate QX200 droplets reader (BioRad®) qui détecte le nombre de gouttelettes et leur l'intensité de fluorescence. Chaque passage est analysé par le logiciel Quantasoft (BioRad®).

Le logiciel Quantasoft répertorie la taille, la fluorescence et la forme de chaque gouttelette lors de leur passage devant les canaux de détection, il exclut les gouttelettes n'adhérant pas aux qualités métriques requises. Un seuil de 9 000 gouttelettes acceptées par puit a été instauré comme critère de qualité de l'émulsion. Un résultat obtenu avec un seuil inférieur est à interpréter avec précaution ou à rejeter des analyses selon l'appréciation du lecteur.

Les résultats bruts apparaissent sous forme de graphiques à une et deux dimensions et prennent en compte la loi de Poisson. Le seuil de positivité est fixé manuellement pour chaque échantillon en référence avec le NTC, les témoins négatifs et les échantillons contrôles de la même série. Une superposition des résultats de l'analyse de chaque puit (overlay) par rapport au témoin positif et négatif est nécessaire pour juger du bon positionnement des nuages de points.

Les résultats ont été considérés comme positifs lorsque plus de 10 gouttelettes étaient au-dessus du seuil de positivité du canal 1 (Ch1 FAM: canal de fluorescence pour les sondes de la séquence mutée) et dont au moins une gouttelette dont la fluorescence était supérieure au seuil de positivité du canal 1 mais en dessous du seuil de positivité du canal 2 (Ch1+Ch2-) (Ch2 HEX: canal de fluorescence pour la sonde de la séquence sauvage). Les gouttelettes des échantillons ne rencontrant pas ces critères ont étés considérées comme des artéfacts négatifs (Figure 17).

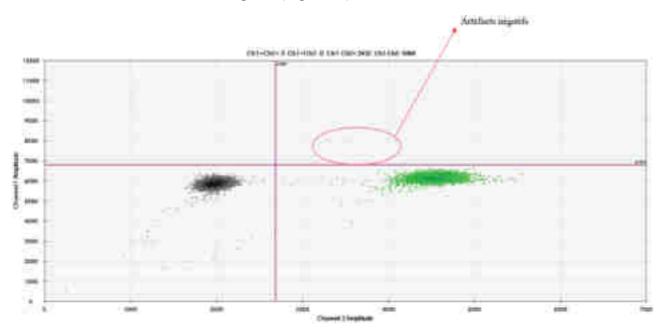


Figure 17: Artéfacts négatifs en représentation 2D lors d'une analyse par ddPCR.

Analyse ne remplissant pas les critères de positivité des 10 gouttelettes positives en Ch1 FAM dont au minimum 1 est négative en Ch2 HEX.

Les résultats sont exprimés en abondance fractionnelle (Variant Allele Frequency VAF), selon le calcul suivant :

$$\% VAF = \frac{copies IDH mut\'e}{(copies IDH mut\'e + copies IDH WT)} \times 100$$

Lorsqu'une analyse a échoué, pour cause fréquemment d'un problème lors de la génération des gouttelettes, on observe alors une représentation en 2D dite « en pluie », ces résultats ont alors été exclus.

3. Validation de méthode

a) Limite de détection et de quantification

Pour déterminer la Limite de Détection (LOD) et la Limite de Quantification (LOQ) de chaque kit, ciblant IDH1^{R132}, IDH2^{R140} et IDH2^{R172}, respectivement, 30, 26 et 29 échantillons *WT* de la position ciblée ont été analysés. Les formules suivantes ont été appliquées :

$$LOD = m_b + 3 * s_b$$

$$LOQ = m_b + 10 * s_b$$

 m_b : moyenne des échantillons WT

S_b: écart type de la moyenne des échantillons WT

Une approche de la limite de quantification et la réalisation de droite de régression ont été produites à partir de dilutions successives d'un échantillon de la mutation la plus fréquente pour chaque kit, à savoir de 18,6% à 0.1% pour IDH1^{R132C}, de 13,6% à 0.1% pour IDH2^{R140Q} et de 15% à 0.1% pour IDH2^{R172K}. Chaque point étant la moyenne de cinq réplicats.

Pour les cibles moins fréquentes, à savoir, IDH1^{R132H}, IDH1^{R132S}, IDH1^{R132G}, IDH1^{R132L}, IDH2^{R140W} et IDH2^{R140U}, la limite de quantification a été vérifiée par analyse d'échantillon de chaque position à une VAF cible en dessous de la limite de quantification déterminée.

Les autres positions rares n'ont pas pu être contrôlées en raison du manque d'échantillon présentant ces mutations dans notre cohorte de patients.

b) Sensibilité et spécificité

Afin de valider la détection de toutes les différentes variations ciblées par les kits, des échantillons de chaque position ont été analysés, à l'exception des variants IDH1^{R132V} (c.394_395CG>GT), IDH2^{R172G} (c.514A>G) et IDH2^{R172S} (c.516G>C) par manque d'échantillon disponible présentant ces mutations.

Certains variants étant plus rares dans les hémopathies myéloïdes, tels IDH2^{R172S} (c.516G>T), IDH2^{R172W} (c.514A>T) et IDH2^{R172M} (c.515G>T), ils ont été testés sur des extraits d'ADN issus de biopsie de tumeurs solides.

III. Résultats

A. Étude de la cohorte strasbourgeoise

1. Analyse descriptive

Entre le 1^{er} janvier 2014 et le 1^{er} décembre 2022 plus de 6 000 séquençages ont été réalisés par la plateforme de biologie moléculaire du CHRU de Strasbourg. Parmi ceux-ci, 2 362 (38.8%) séquençages adressés pour des hémopathies présentaient un résultat pour les gènes *IDH1* et *IDH2*, dont 1077 (45.6%, 1077/2362) prélèvements adressés dans un contexte de LAM (non-M3), 568 (24.0%, 568/2362) dans un contexte de SMD et 192 (8.1%, 192/2362) dans un contexte de syndrome frontière SMD/SMP (Tableau 10) (détails en annexe). C'est à partir de cette cohorte de 1837 prélèvements que nous avons réalisé nos analyses.

Tableau 10 : Indications des prélèvements ayant subi un séquençage d'IDH1 et d'IDH2 dans un contexte de LAM, SMD et de syndrome frontière SMD/SMP du 01/01/2014 au 01/12/2022 dans la cohorte étudiée :

Indication	LAM (n=1077)	SMD (n=568)	Syndrome frontière SMD/SMP (n=192)	Total
Diagnostic dn	653	447	156	1256
Diagnostic secondaire à une précédente hémopathie	118			118
Suivi	197	116	36	349
Rechute	103	5		108
Réfractaire	6			6
Total	1077	568	192	1837

En examinant les indications des prélèvements mutés *IDH1/2*, on retrouve principalement ces mutations dans un contexte de LAM, de SMD ou de syndrome frontière SMD/SMP. Ainsi au sein de ces trois populations, 267 (15%, 267/1837) présentaient une mutation d'*IDH1/2*. Si l'on regarde de façon plus spécifique les pathologies, on observe 19.3% (208/1077) des LAM présentant une mutation d'*IDH1* et/ou d'*IDH2*, ainsi que 7.9% (45/568) des SMD et 7.3% (14/192) des syndromes frontières SMD/SMP. Parmi les LAM, on retrouve 20.2% (132/653) des patients au diagnostic de LAM-*dn* et 15.2% (18/118) au diagnostic de LAM-s présentant une mutation d'*IDH1/2*, ainsi nous ne mettons pas en évidence une différence dans la prévalence de ces mutations entre le diagnostic de LAM-*dn* et LAM-s (p>0.20).

Les mutations retrouvées étaient concentrées sur les trois hotspots mutationnels connus à savoir IDH1^{R132}, IDH2^{R140} et IDH2^{R172}. Les mutations IDH2^{R140} ont été les plus fréquemment retrouvées, à l'inverse des mutations IDH2^{R172} (7.6% (140/1837) contre 1.7% (32/1837)) (Tableau 11). Une différence de prévalence est également remarquée entre les trois mutations dans les LAM, en effet, 7.6% (82/1077), 9.4% (101/1077) des prélèvements étaient mutées IDH1^{R132}, IDH2^{R140} contre 2.7% (29/1077) IDH2^{R172}.

En s'intéressant plus particulièrement aux mutations IDH2^{R172}, on observe une quasi-absence de ces mutations dans les SMD (0.2%, 1/447) à l'inverse d'IDH1^{R132} (2.7%, 12/447) et d'IDH2^{R140} (5.1%, 23/447). De même concernant les LAM-s, avec la présence d'une mutation d'IDH2^{R172} sur 118 (0.8%, 1/118) contre 9 d'IDH1^{R132} (7.6%, 9/118) et 10 d'IDH2^{R140} (8.5%, 10/118). Ces plus faibles fréquences des mutations IDH2^{R172} dans les SMD et les LAM-s montrent une différence avec les deux autres variants.

Ainsi, nous retrouvons les mutations d'*IDH1/2* à hauteur de 19,3% dans LAM et seulement à 8% dans les SMD. Nous observons également une présence majoritaire des mutations IDH1^{R132}, IDH2^{R140} par rapport à IDH2^{R172} qui semble, elle, plus spécifique des LAM-*dn*.

Tableau 11 : Prévalence des mutations d'IDH1 et d'IDH2 selon les indications, le stade clinique et le hotspot mutationnel dans la cohorte strasbourgeoise :

				IDH1/2	IDH1		IDH2	Présence de co-
LAM (n=1077)	208	19%	Diagnostic dn (n=653)	132	49	65	20	dont 2 co-mutations
			Diagnostic secondaire (n=118)	18	9	10	1	dont 2 co-mutations
			Suivi (n=197)	34	12	20	2	
			Rechute (n=103)	24	12	6	6	
SMD (n=568)	45	8%	Diagnostic (n=447)	36	12	23	1	
			Suivi (n=116)	9	2	6	2	dont 1 co-mutation
SMD/SMP syndro	ome 14	7%	Diagnostic (n=156)	12	5	8		dont 1 co-mutation
frontière (n=192)			Suivi (n=36)	2		2		
Total (n=1927)	267	15%		267	101	140	32	dont 6 co-mutations
Total (n=1837)	207	1370		(15%)	(5.4%)	(7.6%)	(1.7%)	dont o co-mutations

Nous nous sommes, par la suite, intéressés à la cinétique d'apparition des mutations d'*IDH1/2* dans les LAM. Pour cela, nous avons regardé si les mutations retrouvées dans les catégories des LAM secondaires, des suivis et des rechutes étaient déjà présentes lors de précédents séquençages. Ainsi, peu d'apparitions de ces mutations ont été observées à ces stades. En effet, la majorité des mutations d'*IDH1/2* étaient déjà présentes dans un prélèvement antérieur soit 33% (6/18), 83% (20/24) et 91% (31/34) lors d'acutisation, de suivi et de rechute des LAM, contre 17% (3/18), 4% (1/24) et 6% (2/34) des patients avec une apparition d'une mutation d'*IDH1/2* à ces stades (et de 9, 4 et 1 patients sans antériorité), suggérant une apparition plutôt précoce de ces mutations dans les mécanismes oncogéniques.

Nous avons également remarqué la présence de six patients présentant une co-mutation *IDH1-IDH2* dans notre cohorte. Deux concernaient IDH1^{R132C}, deux IDH1^{R132H}, une IDH1^{R132L} et une

IDH1^{R132S}. Toutes étaient associées à une mutation IDH2^{R140Q}. Cependant aucun schéma récurrent au sujet de l'apparition ou de l'évolution des mutations, de la pathologie ou du stade clinique n'a été observé sur ces 6 dossiers.

Tableau 12 : Description des différents variants des hotspots mutationnels d'IDH1/2 observés dans la cohorte et les intervalles minimum et maximum de leur fréquence allélique :

IDH1 R132 (n=10		IDH2 R140 (IDH2 R172 (n=32)	
c.394C>T:p.R132C	56	c.419G>A:p.R140Q	134	c.515G>A:p.R172K	31
c.395G>A:p.R132H	31	c.418C>T:p.R140W	3	c.516_517delinsGC>TA:p.Ar	1
c.394C>A:p.R132S	10	c.418C>G:p.R140G	1	g172_His173delinsSerAsn	
c.395G>T:p.R132L	3	c.419G>T:p.R140L	1		
c.394C>G:p.R132G	2	c.419G>A:p.R140Q	/ 1		
		c.418C>T:p.R140W	bi-		
		allélique			
		1			
VAF [min-max] (en %)	[2-54]		[3-65]		[5-50]

Enfin, nous avons répertorié les différentes variations rencontrées aux trois hotspots d'IDH1/2 (Tableau 12). Ainsi, la mutation la plus fréquente en position IDH1^{R132} était p.Arg132Cys(c.394C>T) à 55% (56/101), suivie par p.Arg132His(c.395G>A) à 31% (31/101) et p.Arg132Ser(c.394C>A) à 10% (10/101). Concernant les mutations d'IDH2^{R140} et d'IDH2^{R172}, on retrouve le plus fréquemment p.Arg140Gln(c.419G>A) à 96% (134/140) et quasi exclusivement p.Arg172Lys(c.515G>A) à 97% (31/32).

2. Étude du terrain mutationnel des LAM mutées *IDH1/2*

Dans le but de mieux caractériser le groupe des LAM mutées *IDH1/2*, nous nous sommes intéressés à leur profil mutationnel, ainsi nous avons comparés les fréquences des mutations associées selon différents contextes. Dans un premier temps, pour décrire les LAM mutées *IDH1/2*, nous avons comparé le terrain mutationnel de ces LAM contre ceux des LAM *IDH1/2 WT*. Dans un second temps, nous nous sommes intéressés aux différences entre le caractère *de novo* et secondaire des LAM que nous avons comparé aux SMD mutés *IDH1/2*. Enfin, nous avons voulu caractériser l'hétérogénéité des profils des mutations d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172} en les comparant entre elles.

a) Caractérisation des LAM mutées IDH1/2

• LAM mutées *IDH1/2* vs LAM *IDH1/2 WT* :

Afin de caractériser le profil mutationnel des LAM mutées *IDH1/2*, nous avons comparés la prévalence des différentes mutations contre celles des LAM *IDH1/2 WT* de notre cohorte. Cette analyse

montre une association supérieure avec les mutations de *NPM1* (33.3% contre 20.2%, p=0,0003), de *SRSF2* (36% contre 11%, p<0,0001) et de *DNMT3A* (39.3% contre 18.7%, p<0,0001) dans la population de LAM *IDH1/2* mutée. A l'inverse, on note une prévalence inférieure des mutations de *TET2* (12% contre 25.8%, p=0,0004), de *TP53* (4.7% contre 19.2%, p<0,0001) et de *SF3B1* (1.3% contre 5.3%, p=0,0314) par rapport à la population LAM *IDH1/2 WT* (Tableau 13). Ainsi les mutations d'*IDH1/2* semblent être associées préférentiellement aux LAM mutées *NPM1* et aux LAM-s avec mutations liées à la myélodysplasie (*SRSF2*). Ces données sont présentées dans le Tableau 13 où les mutations associées aux mutations d'*IDH1/2* sont représentées en vert et où celles associées aux LAM *IDH1/2 WT* sont représentées en rouge.

Tableau 13 : Association mutationnelle dans les LAM mutées IDH1 et/ou IDH2 au diagnostic par rapport aux LAM non mutées IDH1/2 :

En vert : prévalence supérieure dans le groupe des LAM IDH1/2 mutées par rapport aux LAM IDH1/2 WT p<0.05. En rouge : prévalence inférieure dans le groupe des LAM IDH1/2 mutées par rapport aux LAM IDH1/2 WT p<0.05.

0 1	, e	1	1 11			1
	LAM IDH1/2 mutée	e (n=150)	LAM IDH1/2 WT	(n=619)	P value	
ASXL1	26	17,3%	95	15,3%		p>0,20
BRAF	0	0,0%	3	0,5%		p>0,20
CALR	1	0,7%	6	1,0%		<i>p</i> >0,20
CBL	3	2,0%	26	4,2%		0,1886
CSF3R	2	1,3%	4	0,6%		<i>p</i> >0,20
DNMT3A	59	39,3%	116	18,7%	<0,0001	
ETV6	4	2,7%	11	1,8%		p>0,20
EZH2	2	1,3%	25	4,0%		0,0978
FLT3	25	16,7%	115	19,7%		p>0,20
GATA2	1	0,7%	17	2,7%		0,1230
JAK2	8	5,3%	38	6,1%		<i>p</i> >0,20
KIT	2	1,3%	16	2,6%		p>0,20
KRAS	6	4,0%	37	6,0%		p>0,20
MPL	1	0,7%	4	0,6%		p>0,20
NPM1	50	33,3%	125	20,2%	0,0003	
NRAS	19	12,7%	68	11,0%		p>0,20
PHF6	5	3,3%	30	4,8%		p>0,20
PTEN	0	0,0%	0	0,0%		p>0,20
PTPN11	13	8,7%	39	6,3%		p>0,20
RUNX1	30	20,0%	94	15,2%		0,1362
SETBP1	1	0,7%	22	3,6%		0,0579
SF3B1	2	1,3%	33	5,3%	0,0314	
SRSF2	54	36,0%	68	11,0%	<0,0001	
TET2	18	12,0%	160	25,8%	0,0004	
TP53	7	4,7%	119	19,2%	<0,0001	
U2AF1	6	4,0%	28	4,5%		<i>p</i> >0,20

• LAM (de novo et secondaire) mutée IDH1/2 versus SMD muté IDH1/2 :

Au vu de l'association des mutations d'*IDH1/2* aux mutations de *SRSF2*, mutations plutôt retrouvées dans les LAM-s associées à la myélodysplasie, il nous semblait intéressant de regarder les différences avec le profil mutationnel des SMD mutées *IDH1/2*. L'étude comparative de la prévalence des mutations associées à *IDH1/2* entre les LAM et les SMD (comprenant également les syndromes frontières SMD/SMP) a mis en évidence une surreprésentation significative dans les LAM des mutations de *DNMT3A* (39.3% contre 8.5%, p<0,0001), de *NPM1* (33.3% contre 1.7%, p<0,0001) et de *FLT3* (16.7% contre 0%, p<0,0001). D'une autre manière, les SMD mutés *IDH1/2* sont eux plutôt associés aux mutations de *SRSF2* (69.5% contre 36.0%, p<0,0001) et d'*ASXL1* (44.1% contre 17.3%, p<0,0001) (Figure 18, détails en annexe).

Cependant, 12% des LAM mutées *IDH1/2* analysées étaient connues issues d'une acutisation d'une hémopathie préexistante (majoritairement des SMD). Nous avons alors extrait ce sous-groupe et les avons comparés aux LAM *de novo* et qu'à la population SMD (Figure 19, détails en annexe). Ainsi une surreprésentation ou sous-représentation d'une mutation dans les LAM-s pourrait éventuellement être associée à un signe d'évolution (transformation en LAM) ou de non évolution (maintien en SMD).

De manière similaire, une association plus fréquente a été observée concernant les mutations de *DNMT3A* (38.9% contre 8.5%, p=0.0010), de *NPM1* (16.7% contre 1.7%, p=0.0378) et de *FLT3* (16.7% contre 0%, p=0.0112) dans le groupe des LAM-s par rapport aux SMD. Aucune différence significative n'a été observée dans la fréquence mutationnelle avec *ASXL1* (33.3% contre 44.1%, p>0.20) et *SRSF2* (77.8% contre 69.5%, p>0.20). Cependant, de manière particulièrement intéressante, une surreprésentation des mutations de *RUNX1* (38.9% contre 11.9%, p=0.0156) et de *NRAS* (27.8% contre 3.4%, p=0.0066) est observée dans les LAM-s pouvant possiblement représenter des marqueurs d'évolution.

Par opposition aux LAM-*dn* mutées *IDH1/2*, les LAM-s mutées *IDH1/2* sont plus fréquemment associées aux mutations de *SRSF2* (77.8% contre 31.8%, p=0,0003) et de *JAK2* (27.8% contre 2.3%, p=0.0006) mais sans différence significative quant aux mutations de *NPM1*, de *DNMT3A* ni de *FTL3*.

En résumé, dans cette cohorte, les mutations d'*IDH1/2* dans les LAM ont été plutôt observées associées aux mutations de *NPM1*, de *DNMT3A* et de *SRSF2*. En revanche, elles ont été retrouvées plutôt exclusives des mutations de *TET2* et de *TP53*. Enfin, il est intéressant de noter la plus forte proportion de mutations de *RUNX1* et de *NRAS* dans les LAM secondaires par rapport à la population de SMD. Ainsi, les mutations d'*IDH1/2* associées aux mutations de *NPM1*, *FLT3*, *DNMT3A*, *RUNX1* ou *NRAS* semblent orienter plutôt vers un profil LAM. Les mutations de *SRSF2* et d'*ASXL1* ressortent plutôt sans influence sur le passage en LAM.

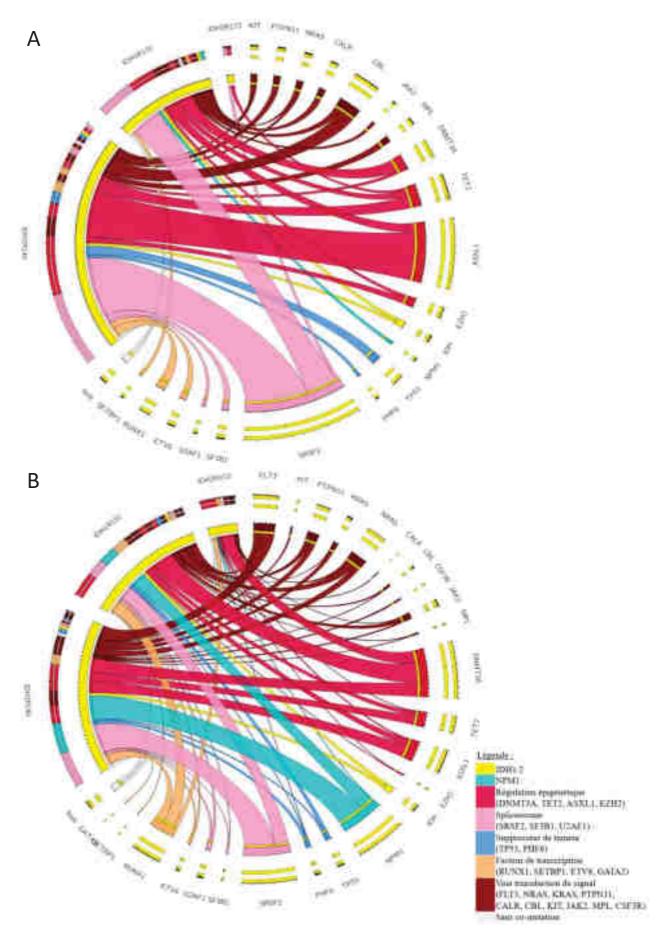
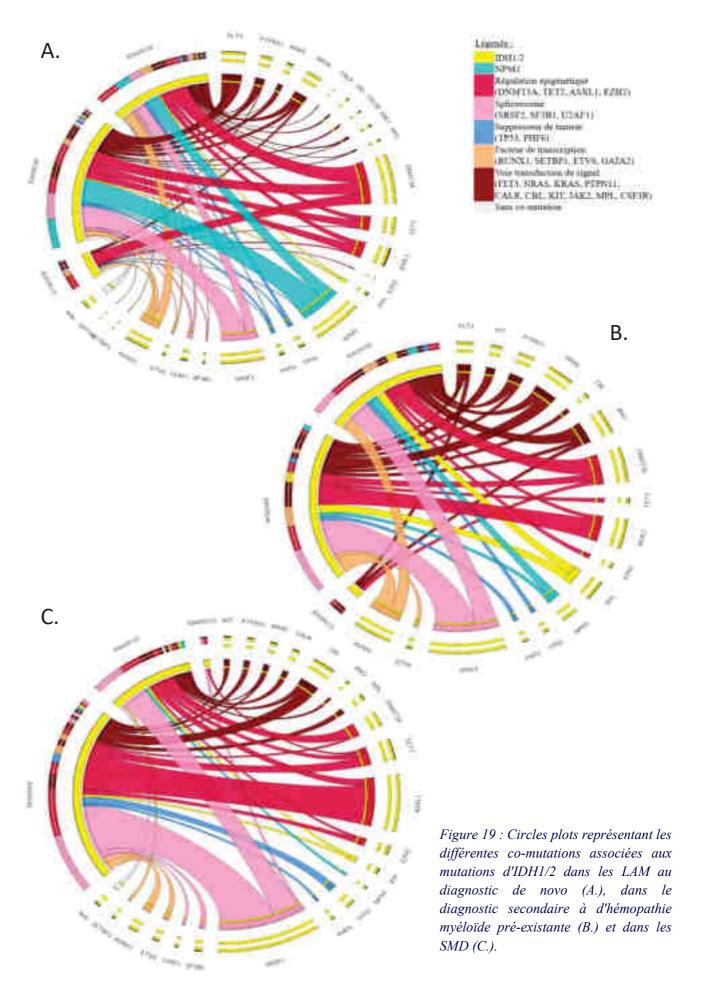



Figure 18 : Circles plots représentant les co-mutations d'IDH1 et IDH2 dans les SMD (A.) et dans les LAM au diagnostic (B.).

b) Hétérogénéité du terrain mutationnel des LAM mutées $IDH2^{R172}$ contre $IDH1^{R132}$ et $IDH2^{R140}$

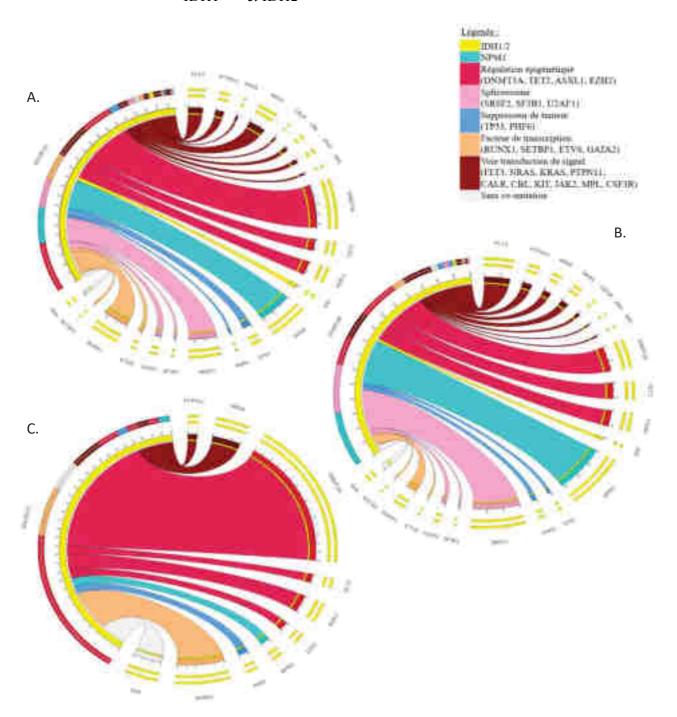


Figure 20 : Circles plots représentant les différentes co-mutations dans les LAM au diagnostic selon le hotspot mutationnel d'IDH1/2 : R132 d'IDH1 (A.), R140 d'IDH2 (B.) et R172 d'IDH2 (C.).

Lors de l'étude de cette cohorte, la mutation hotspot IDH2^{R172} s'est distinguée des deux autres hotspots mutationnels d'*IDH1/2* sur différents aspects. En effet, comme mentionné précédemment, cette mutation est présente à une fréquence plus faible dans les LAM que d'IDH1^{R132} et d'IDH2^{R140}. De plus, elle est quasiment absente des SMD et des LAM secondaires, à l'inverse des mutations IDH1^{R132} et IDH2^{R140} (voir Tableau 11,III.A.1.).

En comparant les mutations associées à la mutation IDH2^{R172}, on observe un profil unique avec une différence significative pour trois mutations. Ainsi, en opposition aux mutations IDH1^{R132} et IDH2^{R140}, on note une association supérieure aux mutations de *DNMT3A* à 76,2% (contre 44.8% p=0,0207, et 25.3% p<0,0001), un appauvrissement en mutation de *NPM1* (contre 31.0% p=0,0169 et 44% p=0,0015) et aucune co-mutation de *SRSF2* (contre 31.0% p=0,0045 et 50.7% p<0,0001) (Figure 20) (détails en annexe).

Concernant IDH1^{R132} et IDH2^{R140}, on note un enrichissement en mutation de *DNMT3A* pour IDH1^{R132} (p = 0.0481), tandis qu'IDH2^{R140} est plutôt associée aux mutations de *SRSF2* (p = 0.0134).

L'analyse de la fréquence des associations des co-mutations d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172} ne nous fournit pas une vue complète du paysage mutationnel des LAM telles les associations des co-mutations entre-elles. Pour visualiser ces relations, nous avons réalisé un « co-mutation plot » où chaque colonne représente les résultats d'un séquençage (Figure 21).

Ainsi, la différence entre le profil mutationnel d'IDH2^{R172} et ceux d'IDH1^{R132} et d'IDH2^{R140} devient plus évidente. On discerne un terrain mutationnel d'IDH2^{R172} ainsi isolé avec une forte association aux mutations de *DNMT3A* et l'absence des mutations de *SRSF2* et de *NPM1* à l'inverse des profils d'IDH1^{R132} et d'IDH2^{R140}. Cependant on note également l'absence, dans un contingent, d'autres mutations drivers que *DNMT3A*. De même, on observe une part de séquençage avec mutation de *DNMT3A* mais sans autre mutation driver dans les LAM mutées IDH1^{R132}. Enfin même si les mutations d'*IDH1/2* apparaissent majoritairement dans les LAM à caryotype normale, il conviendrait de renseigner les données cytogénétique pour explorer totalement ces profils.

En définitive, les LAM présentant une mutation d'IDH2^{R172} présentent un profil différent de ceux d'IDH1^{R132} et d'IDH2^{R140}, caractérisé par leur plus forte association à *DNMT3A* et l'absence des mutations drivers *NPM1* et *SRSF2* pourtant fréquemment associées chez les LAM mutées IDH1^{R132} et IDH2^{R140}.

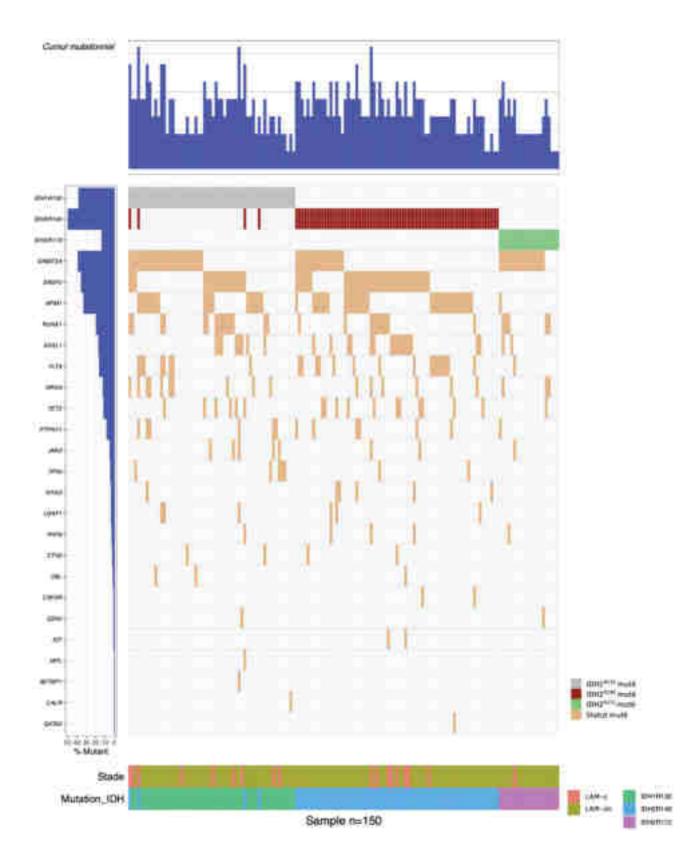


Figure 21 : Représentation graphique en « co-mutation plot » des co-mutations associées aux LAM mutées IDH1/2.

Chaque colonne représente les résultats d'un séquençage, qui, alignés ensemble, permettent une visualisation du terrain mutationnel des LAM mutées IDH1/2.

B. Mise en place de la technique ddPCR

Avec pour objectif de suivre les nouvelles recommandations de l'ELN et de répondre aux attentes des cliniciens concernant la recherche du statut mutationnel d'*IDH1/2* dans les LAM en réponse rapide. Nous nous sommes tournées vers la ddPCR, correspondant à une technique ciblée et rapide. Pour mettre en place cette nouvelle technique, nous avons voulu évaluer ses performances. Pour cela, nous avons commencé par déterminer une limite de détection (LOD) et une limite de quantification (LOQ), puis nous avons estimé la linéarité des résultats de cette méthode. Enfin nous avons évalué la sensibilité et la spécificité. Et, pour finir, nous avons corrélés les résultats par ddPCR à la technique par NGS.

1. Limite de Détection LOD et de Quantification LOQ

Pour évaluer les performances de la ddPCR dans la détection des mutations hotspots d'*IDH1/2*, nous avons calculé les limites de détection et de quantification pour les trois positions d'*IDH1/2*. Pour ce faire, nous avons calculé la moyenne et l'écart-type des résultats obtenus pour 30, 26 et 29 échantillons *WT* de chaque position (respectivement IDH1^{R132}, IDH2^{R140} et IDH2^{R172}). La LOD correspond à la moyenne des échantillons WT obtenus plus 3 fois l'écart-type de cette moyenne, 10 fois pour la LOQ. Les résultats sont indiqués dans le tableau ci-dessous (Tableau 14). Ainsi, la limite de détection est estimée à 0.20%, soit la valeur la plus élevée des trois positions. La limite de quantification est, quant à elle, déterminée à 0.50%.

Tableau 14 : Seuils de détection et de quantification déterminés par les kits ddPCR multiplex visant les positions $IDH1^{R132}$, $IDH2^{R140}$ et $IDH2^{R172}$:

	IDH1 ^{R132}	IDH2 ^{R140}	IDH2 ^{R172}
	(n=30)	(n=26)	(n=29)
Moyenne des échantillons WT mb (%)	0,08	0,05	0,03
Écart-type des échantillons WT sb	0,04	0,04	0,04
LOD (%)	0,20	0,18	0,14
LOQ (%)	0,49	0,47	0,38

2. Linéarité

Pour évaluer la linéarité des résultats obtenus par ddPCR, nous avons analysé une série de dilutions en cascade pour les variations majeures en chaque position, à savoir IDH1^{R132C}, IDH2^{R140Q} et IDH2^{R172K}. Cette étude a permis de démontrer une linéarité (r² de 0.9993, 0.9997 et 0.9994) et une quantification jusque 0.20%, 0.14% et 0.18% respectivement, pour les positions IDH1^{R132}, IDH2^{R140} et IDH2^{R172} (Figures 22, 23, 24, données brutes en annexe). Ces valeurs sont compatibles avec les seuils limites de détection et de quantification déterminés précédemment.

Pour les mutations moins fréquentes d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172}, la quantification a été assurée en testant un point de gamme en dessous de la valeur théorique de quantification. Ainsi nous avons obtenu un point quantifiable jusque 0.4%, au maximum pour le variant R132G d'IDH1. Elle est assurée jusque 0,3%, 0,29% 0,346%, 0,254% et 0,242% respectivement pour les mutations IDH1^{R132H}, IDH1^{R132S}, IDH1^{R132L} et IDH2^{R140W} et IDH2^{R140L} (Tableau 15). Les autres variants n'ont pas pu être analysés car ils n'étaient pas présents au sein de la cohorte disponible.

Tableau 15 : Tableau récapitulatif des limites de quantification des variants plus rares d'IDH1/2 :

Variant	Moyenne (en %)	Écart-type
IDH1 ^{R132H}	0,3	0,073
IDH1 ^{R132S}	0,29	0,028
IDH1 ^{R132G}	0,398	0,059
IDH1 ^{R132L}	0,346	0,088
IDH2 ^{R140W}	0,254	0,027
IDH2 ^{R140L}	0,242	0,073

Ces résultats confirment la limite de détection à 0.2% de fréquence allélique et de quantification à 0.5% de fréquence allélique de la ddPCR multiplex ciblant IDH1^{R132}, IDH2^{R140} et IDH2^{R172}.

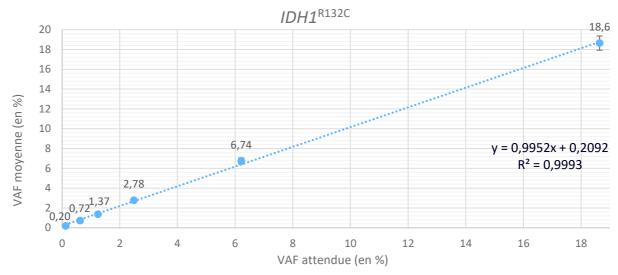


Figure 22 : Droite de linéarité pour la détection de la mutation IDH1^{R132C} par ddPCR.

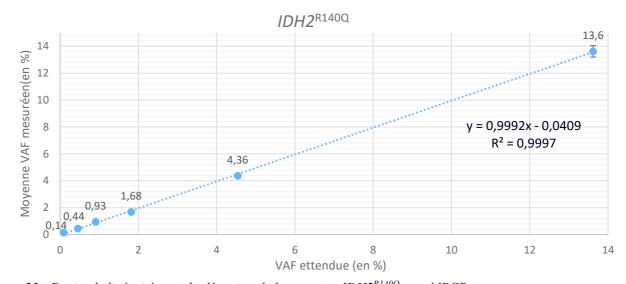


Figure 23 : Droite de linéarité pour la détection de la mutation $IDH2^{R140Q}$ par ddPCR.

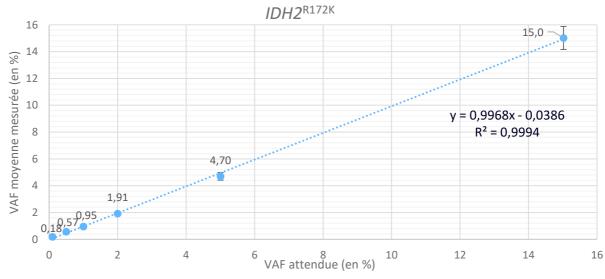


Figure 24 : Droite de linéarité pour la détection de la mutation IDH2^{R172K} par ddPCR.

3. Sensibilité, spécificité et taux d'échec

Pour déterminer la sensibilité et la spécificité de la technique ddPCR, nous avons analysé toutes les différentes formes des mutations disponibles au sein des archives du laboratoire de Strasbourg. Pour les mutations non disponibles sur du matériel issu de prélèvements sanguins ou médullaires, les analyses ont été réalisées sur des extraits d'ADN issus de matériel paraffiné provenant de tumeurs solides. Les variants IDH1^{R132V} (c.394_395CG>GT), IDH2^{R172G} (c.514A>G) et IDH2^{R172S} (c.516G>C) n'ont pas pu être testés par manque d'échantillon présentant ces mutations.

Tous les différents variants disponibles ont été détectés avec succès par la technique en ddPCR (détails en annexe). Sur 312 puits analysés, seulement 3 sont apparus non analysables soit 0.96% des analyses. Les raisons de ces échecs étaient soit pour un nombre de gouttelettes formées insuffisantes (5 804 gouttelettes acceptées), soit un diagramme en « pluie » ou soit pour un mauvais positionnement des nuages de points par rapport aux témoins. Aucune discordance dans le statut attendu muté/non muté n'a été observée à l'exception d'un patient n°BBB, faisant l'objet d'une explication plus détaillé cidessous, et de deux échantillons dont les mutations ne se sont pas comprises dans le panel des mutations détectées par les kits. Ainsi la sensibilité et la spécificité calculées sont, respectivement de 93% et 100% (Tableau 16).

Tableau 16 : Performance de la ddPCR dans la détection des mutations d'IDH1/2 :

	Échantillons mutés IDH1/2	Échantillons <i>IDH1</i> et <i>IDH2</i> WT	Total
Résultats ddPCR mutés	42	0	42
Résultats ddPCR non mutés	3	44	47
Total	45	44	89

• <u>Limites techniques</u>:

Parmi les puits revenus non analysables, l'étape d'émulsion s'est avérée être l'étape la plus critique. Elle entraine une diminution de l'efficacité de la PCR et ainsi une diminution de l'intensité de fluorescence. Dans ce cas, l'image obtenue ne permettra pas d'établir des seuils de positivité adéquates et incitera à un résultat erroné, telle la Figure 25 représentant une image dite « en pluie ».

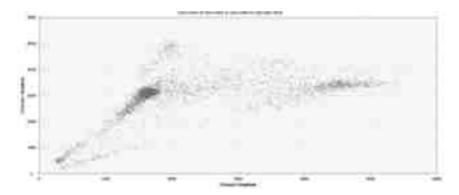


Figure 25 : Représentation en 2D d'un puit non analysable : image en "pluie".

Lors de l'analyse des représentations en 2D, une superposition des graphiques sur celui du témoin positif est réalisée. Lors de cette démarche, il est possible d'observer un décrochage du positionnement des nuages de points par rapport à la population de contrôle (Figure 26). Un problème d'interprétation peut alors survenir. Si des gouttelettes du puit en décrochage sont positionnées à l'emplacement du nuage doublement négatif de l'échantillon témoin (en noir sur la Figure 26), alors il est impossible de déterminer si elles contiennent ou non des séquences mutées. Deux interprétations sont possibles. Elles peuvent être positionner, soit au-dessus du nuage doublement négatif de l'échantillon, donc contiendraient des séquences mutées, soit à l'emplacement des gouttelettes vides des autres puits analysés dans la même série, dans ce cas elles ne contiendraient alors pas de séquence ciblée. En l'occurrence, cette représentation provient d'un échantillon WT de la mutation recherchée.

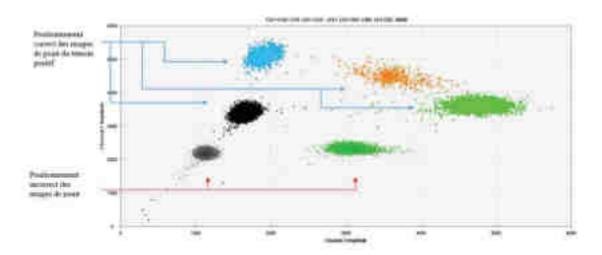


Figure 26: Représentation 2D d'un puit non analysable du fait du mauvais positionnement du nuage de point par rapport aux positions témoins des nuages de points. Échantillon WT pour la mutation recherchée.

• Faux négatifs :

Parmi les trois faux négatifs identifiés, mutations cas retrouve les on c.516 517delinsGC>TA:p.Arg172 His173delinsSerAsn et c.418C>G:p.R140G d'IDH2. La technique par ddPCR n'a pas pu mettre en évidence un statut muté de ces prélèvements. Ces résultats étaient en réalité attendus, en effet, aucune des deux variations ne se trouve dans le panel de gènes recherchés par ddPCR. Cependant une double population au sein du nuage de points représentant les IDH2 WT a été observée (Figures 27 et 28), témoignant d'une difficulté de la sonde sauvage à s'hybrider aux séquences mutées et provoquant un affaiblissement de l'intensité de fluorescence. Lors de l'obtention de ce type de profil, une investigation par NGS est alors nécessaire à la recherche d'un variant non ciblé par la ddPCR.

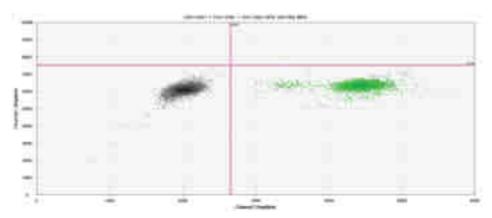


Figure 27 : Cas exceptionnel : mutation c.418C>G:p.R140G d'IDH2, non ciblé par la ddPCR et créant une double population dans le nuage WT d'IDH2.

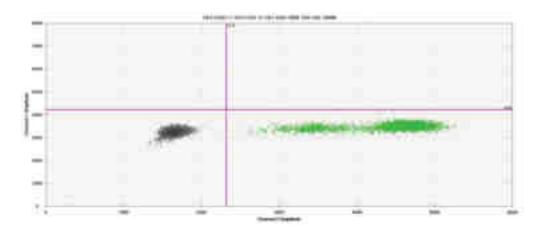


Figure 28: Cas exceptionnel : c.516_517delinsGC>TA:p.Arg172_His173delinsSerAsn d'IDH2 créant une double population dans le nuage WT d'IDH2.

Concernant le troisième cas faux-négatif, l'échantillon n°BBB est un prélèvement médullaire reçu pour une analyse par séquençage dans un contexte de LMMC. Le NGS par technique amplicon rapporte une mutation c.419G>A:p.R140Q d'*IDH2* à une fréquence allélique de 50% et une mutation sous clonale c.394C>A:p.R132S d'*IDH1* à une fréquence allélique de 7%. Lors de l'analyse par ddPCR

de cet échantillon, la mutation IDH2^{R140Q} est effectivement retrouvée à une fréquence allélique moyenne de 45%. Cependant la mutation IDH1^{R132S} sort aux alentours de notre limite de détection à 0.2%.

En s'intéressant au dossier du patient, un autre séquençage (par technique amplicon), lors de l'acutisation de sa LMMC, a été réalisé trois ans plus tard. On retrouve les mêmes mutations (*CBL*, *IDH2*, *KIT* et *SRSF2*) cependant on note l'apparition d'une insertion au sein d'*ASXL1* et la disparition de la mutation d'IDH1^{R132S}, suggérant une évolution clonale avec apparition de la mutation d'*ASXL1* et la disparition du sous clone muté IDH1^{R132S}.

Une explication à cette discordance entre ddPCR et séquençage amplicon pourrait être une modification de séquence en amont ou en aval du gène d'*IDH1* qui empêcherait la fixation des amorces.

Afin d'explorer cette hypothèse, un séquençage par capture a été réalisé sur un culot de cellules cultivées par le laboratoire de cytogénétique mais prélevé au même moment que le diagnostic. De manière inattendue, le séquençage NGS ne détecte pas la mutation IDH1^{R132S} (seuil de détection à 5%). Aucune perturbation de séquence dans la zone proche du codon 132 n'a été observée.

Pour éclaircir cette discordance, nous avons alors re-analysé les profils obtenus lors du séquençage par amplicon et avons alors constaté une différence dans les profils des profondeurs des reads par amplicons de ce patient, au diagnostic et en rechute par rapport aux patients de la même série (Figure 29). Ceux-ci rapportent une diminution de la profondeur de séquençage de l'exon 4 d'*IDH1* par rapport aux autres prélèvements de la même série. Ce type de profil n'est pas retrouvé sur le reste des données NGS de ce patient. Le séquençage par amplicon utilise des amorces déterminées, une perturbation en amont ou en aval de la séquence permettrait d'expliquer la diminution de la profondeur de séquençage. Il y aurait alors une possible perturbation de la fixation des amorces lors du séquençage par amplicon qui aurait alors crée un biais de sélection des séquences d'*IDH1* notamment une diminution du séquençage des séquence *WT*.

Au final, l'hypothèse la plus probable pour nous reste une présence de la mutation à une VAF proche de la LOD de la ddPCR avec un biais de sélection des séquences d'*IDH1* par technique amplicon ayant donc grandement surestimé la VAF d'IDH1^{R132S}.

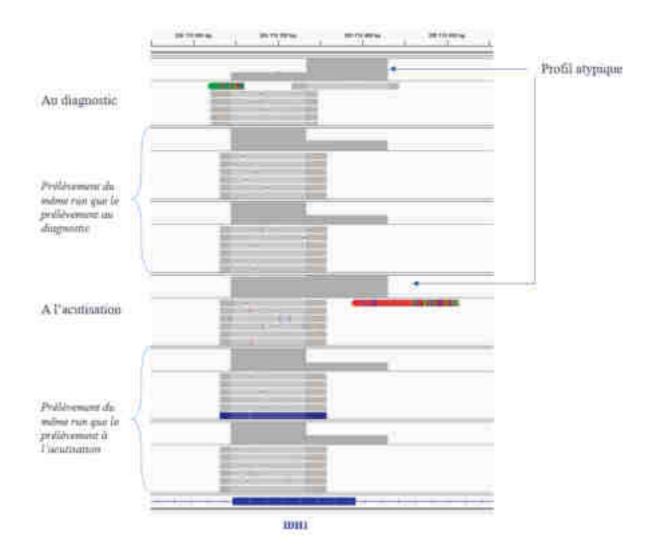


Figure 29: Profils des profondeur des séquençages par technique amplicon de l'exon 4 d'idh1 du patient BBB au diagnostic et à l'acutisation, et des patients des séries correspondantes.

Finalement, cette analyse des performances de la ddPCR, nous a permis de déterminer une sensibilité à 93% et une spécificité à 100%. Cependant les deux mutations non ciblées par le panel de gène peuvent être considérées comme des résultats attendus négatifs, alors la sensibilité peut être recalculée à 98%.

4. Corrélation avec la méthode par NGS

Lors du diagnostic des LAM, outre la recherche ciblée des mutations d'*IDH1/2*, une analyse NGS est réalisée, dans un second temps, afin de caractériser le profil mutationnel et répondre de la présence d'autres mutations. Cette analyse NGS rend, entre autres, un résultat pour l'exon 4 d'*IDH1* et d'*IDH2*. Pour vérifier la cohérence entre ces deux techniques, nous avons étudié la corrélation entre les fréquences alléliques rendues par NGS et par ddPCR. Les fréquences alléliques analysées étaient dispersées de 16 à 54% pour IDH1^{R132}, de 4 à 50% pour IDH2^{R140} et de 7 à 47% pour IDH2^{R172}. Ainsi la comparaison des VAF obtenues par ddPCR à celles obtenues par NGS permet d'obtenir une corrélation acceptable avec un r² respectivement de 0,91, 0,97 et 0,99 pour les positions IDH1^{R132}, IDH2^{R140} et IDH2^{R172} (Figure 30).

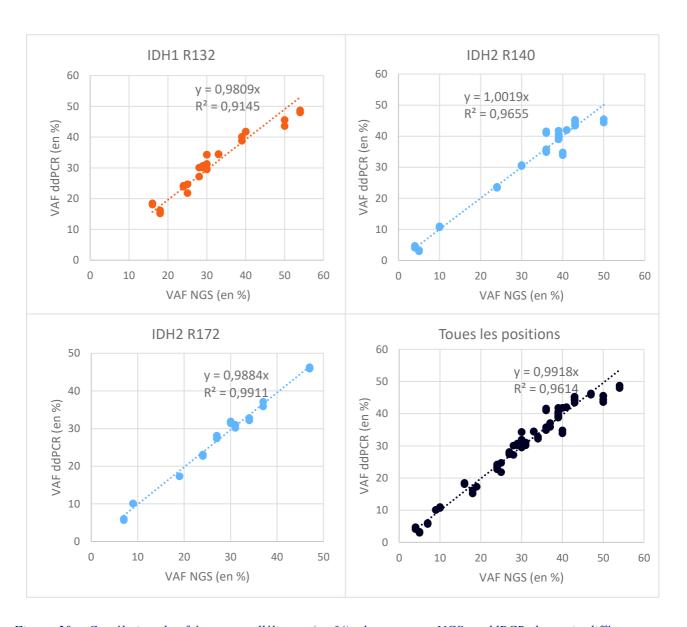


Figure 30 : Corrélation des fréquences alléliques (en %) obtenues par NGS et ddPCR des trois différentes positions $IDH1^{R132}$, $IDH2^{R140}$ et $IDH2^{R172}$.

La dispersion des différences entre les résultats de fréquence allélique par NGS et ddPCR a été représentée sous forme d'un diagramme de Bland-Altamn (Figure 31). Ce diagramme montre une dispersion correcte des VAF entre ddPCR et NGS et sans de sur ou sous-estimation par une des deux techniques. La variation de la VAF étant, ici, représentée en valeur absolue, les points représentant une plus grande dispersion dans les valeurs hautes de fréquence allélique en NGS et sortant de l'intervalle [m+/-1.96SD] sont acceptables, et par ailleurs n'interférent pas avec la signification clinique.

Ainsi, cette analyse met en évidence une corrélation entre les résultats de fréquence allélique concernant les mutations d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172} entre le NGS et la ddPCR.

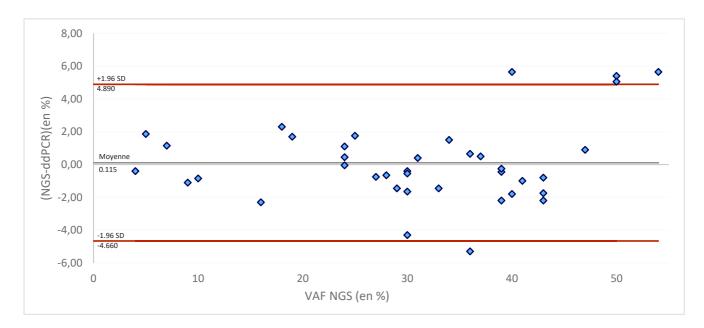


Figure 31 : Diagramme de Bland-Altman représentant la différence des VAF(%) entre NGS et la moyenne des deux réplicats en ddPCR par rapport aux fréquences alléliques déterminées par NGS.

IV. Discussion

Les LAM sont des pathologies particulièrement agressives dont la prise en charge est en constante quête d'amélioration. Récemment, l'apparition de thérapies ciblées visant les mutations d'*IDH1/2* a ouvert un nouvel axe thérapeutique. Ainsi, l'ELN recommande désormais de connaitre le statut mutationnel d'*IDH1/2*, préférentiellement, en 3 à 5 jours suivant le diagnostic de LAM [8]. Afin de répondre à cette nouvelle demande, l'installation d'une nouvelle technique ciblée, rapide, sensible et spécifique est nécessaire au laboratoire d'hématologie du CHRU de Strasbourg. Notre choix s'est porté sur la ddPCR et les kits multiplexés BioRad® ciblant les positions IDH1^{R132}, IDH2^{R140} et IDH2^{R172}.

Dans l'objectif de mettre en place cette nouvelle technique, nous avons étudié une cohorte regroupant les résultats de séquençages haut-débit réalisés du 1^{er} janvier 2014 au 1^{er} décembre 2022 au laboratoire d'hématologie du CHRU de Strasbourg. L'établissement de cette cohorte nous a permis, dans un premier temps de caractériser les LAM mutées *IDH1/2*, notamment via l'étude de leur contexte mutationnel, et, dans un second temps, d'évaluer les performances de la technique ddPCR dans cette indication.

1. Caractérisation de la cohorte strasbourgeoise

La caractérisation des mutations d'*IDH1/2* dans les LAM est importante puisqu'elles représentent près de 20% des cas de LAM. Ainsi, le terrain des LAM mutées *IDH1/2* fait actuellement l'objet de nombreuses investigations. Ces informations pourraient contribuer à une meilleure catégorisation des LAM, d'approfondir notre compréhension de la leucémogenèse ou encore d'améliorer la prédiction de l'évolution de ces patients et ainsi de leur prise en charge. Effectivement, cette caractérisation pourrait servir à affiner les groupes susceptibles de bénéficier de la thérapie ciblée ou même de déterminer un potentiel intérêt du suivi par MRD d'*IDH1/2*. Enfin malgré l'impact pronostic controversé des mutations d'*IDH1/2* [14][24][33], la recherche d'un potentiel rôle pronostic au sein de sous-catégorisation de LAM est, encore et toujours, un enjeu actuel. Ainsi, pour améliorer notre compréhension des LAM mutées *IDH1/2*, nous avons étudié la prévalence des mutations d'*IDH1/2* selon les différents contextes et avons analysé leur terrain mutationnel.

La cohorte Strasbourgeoise étudiée ici reprend plus de 6 000 résultats de séquençages NGS dont 2 362 présentaient un résultat concernant les gènes *IDH1* et *IDH2*. Parmi ceux-ci, des mutations d'*IDH1/2* ont été retrouvées dans 19.3% des LAM, 7.9% des SMD et 7.3% des syndromes frontières SMD/SMP de notre cohorte. Ces prévalences sont en accord avec les données de la littérature [14][23][34][35][36]. Cependant, de manière étonnante, nous ne mettons pas en évidence de différence significative entre les fréquences des mutations d'*IDH1/2* dans les LAM-*dn* et les LAM-s (20% contre

15%). Ces résultats nous suggèrent ainsi une prévalence équivalente des mutations d'*IDH1/2* dans les LAM *de novo* et secondaires.

Ces mutations ont été identifiées sur les trois codons hotspots connus d'IDH1/2 à savoir IDH1^{R132}, IDH2^{R140} et IDH2^{R172}. Ainsi, 7.6% des LAM présentaient une mutation IDH1^{R132}, 9.4% une mutation IDH2^{R140} et 2.7% une mutation IDH2^{R172}. Alors, les mutations d'IDH2^{R140} ont été les plus fréquentes, à l'inverse des mutations d'IDH2^{R172}. Cette tendance est également connue de la littérature [14][22].

Par ailleurs, les variants les plus fréquemment rencontrés pour le codon IDH1^{R132} était p.R132C à 55%, suivis par p.R132H à 31% et p.R132S à 10%, et pour IDH2^{R140} et IDH2^{R172}, on retrouve majoritairement p.R140G à 96% et p.R172K à 97%. De manière étonnante, ces fréquences ne sont pas uniformes dans la littérature avec certaines études rapportant le variant R132C comme le plus fréquent des variants du codon 132 d'IDH1 [37][38], alors que d'autres rapportent le variant R132H comme le plus fréquent [24][39]. De fait, ce point est assez intéressant car il est reporté dans certaines études que les mutations IDH1^{R132H} et IDH1^{R132C} ne présentent pas le même profil mutationnel, avec IDH1^{R132H} plus associé à *NPM1* et *FLT3-ITD* [38][40]. Cette hétérogénéité de prévalence pourrait impacter les études pronostics et être un des points à l'origine des différences de ces études.

Nous nous sommes également intéressés à la cinétique d'apparition de ces mutations dans les LAM. De manière intéressante, nous avons trouvé que la majorité des mutations d'*IDH1/2* observées lors de l'acutisation d'une hémopathie préexistante, de rechute ou de suivi de LAM, étaient déjà mises en évidence dans un prélèvement antérieur. Ainsi, l'apparition secondaire de ces mutations ne concerne que 17%, 4% et 6% des mutations d'*IDH1*^{R132}, d'*IDH2*^{R140} et d'*IDH2*^{R172}. Ces résultats sont en faveur de la considération des mutations d'*IDH1/2* comme des évènements plutôt précoces dans la genèse des LAM [27].

Pour finir, nous avons également mis en évidence 6 co-mutations d'*IDH1* et d'*IDH2* au sein de cette cohorte. Elles ont toutes concerné les codons IDH1^{R132} et IDH2^{R140}. Quatre ont été observées dans des LAM et deux dans des SMD. Cependant aucun schéma intéressant n'a pu être dégagé de ces 6 patients.

a) Terrain mutationnel des LAM mutées IDH1/2

Pour caractériser les LAM mutées *IDH1/2*, nous avons aussi étudié le terrain co-mutationnel associé aux mutations d'*IDH1/2* dans notre cohorte. Tout d'abord, nous avons opposé les LAM mutées *IDH1/2* aux les LAM *IDH1/2 WT* et en avons ressorti un enrichissement en mutations de *DNMT3A*, de *NPM1* et de *SRSF2* et un appauvrissement en mutations de *TET2* et de *TP53* dans la population des LAM *IDH1/2* mutées. Ce qui est en accord avec la littérature où les mutations de *DNMT3A* et *NPM1*

sont les plus fréquentes, suivies de *SRSF2* [38][41]. L'exclusion des mutations d'*IDH1/2* aux mutations de *TET2* est connu du fait de leur impact épigénétique commun [22][42]. Ainsi, les mutations d'*IDH1/2* sont bien connues pour être associées aux LAM mutées *NPM1* [22][28]. Nous mettons également en évidence une forte relation avec les LAM mutées *SRSF2* soit de type secondaire relié à la myélodysplasie.

Au vu de la forte prévalence des associations des mutations d'*IDH1/2* à celles de *SRSF2*, nous avons voulu explorer plus en détail les différences entre LAM-*dn* et LAM-s. Pour ce fait, nous avons extrait du groupe des LAM mutées *IDH1/2* celles faisant parties des LAM-s et les avons comparées, d'abord, avec les profils des SMD puis avec ceux des LAM-*dn*. Comme attendu, on retrouve une association des mutations *NPM1*, *FLT3* et *DNMT3A* avec le profil des LAM [5]. A l'inverse des mutations de *SRSF2* et d'*ASXL1*, plutôt associées aux profils SMD [43][44].

De manière intéressante, on note une augmentation des mutations de *RUNXI* et de *NRAS* dans les LAM-s par rapport aux profils SMD. A l'inverse, les taux de mutations de *SRSF2* et d'*ASXL1* n'ont pas évolué significativement entre les SMD et les LAM-s, n'indiquant pas, ici, ces mutations comme des potentiels éléments déclencheurs de transformation. Les mutations de *RUNXI* et de *NRAS* pourraient, quant à elles, être associées à l'acutisation.

Ainsi, ces résultats montrent une présence majoritaire des mutations d'*IDH1/2* dans deux catégories bien distinctes des LAM : celles avec mutation de *NPM1* et celles associées aux mutations des LAM secondaires reliées à la myélodysplasie (ici *SRSF2* majoritairement). Il serait important d'étudier le pronostic de ces mutations de manière distincte au sein de chaque groupe. En effet, ces deux catégories de LAM ont des pronostics bien opposés et pourraient biaiser l'interprétation pronostic des mutations d'*IDH1/2* [8].

Il est important de souligner que les catégories *de novo* et secondaires ont été définies à partir d'informations cliniques lorsqu'elles étaient disponibles (renseignements sur la prescription et séquençages antérieurs) et non pas par définition génétique. Cette classification peut engendrer une sous-estimation du taux de LAM secondaires dans notre cohorte. Il serait maintenant intéressant d'analyser le terrain mutationnel en fonction des anomalies génétiques définissant les LAM-s. Pour cela, même si les mutations d'*IDH1/2* sont majoritairement retrouvées au sein d'un caryotype normal [14], il serait nécessaire d'associer les données cytogénétiques pour compléter pleinement cette analyse.

b) Hétérogénéité entre IDH1^{R132}, IDH2^{R140} et IDH2^{R172}

Lors de l'étude de cette cohorte, nous avons pu observer une différence de prévalence des trois hotspots selon les catégories cliniques. En effet, les mutations IDH2^{R172} étaient largement moins représentées dans la catégorie des SMD et des LAM secondaires par rapport à IDH1^{R132} et IDH2^{R140}. De même, la fréquence plus élevée des mutations d'IDH2^{R140}, par rapport à IDH2^{R172}, pose la question d'une similarité de l'impact biologico-clinique entre ces mutations.

De là, nous avons comparé les différents profils mutationnels des trois hotspots mutationnels d'*IDH1/2* et mis en évidence un terrain mutationnel différent dans les LAM mutées IDH2^{R172}. En effet, elles présentent une plus grande association avec les mutations de *DNMT3A*, à 76%, mais sont quasiment exclusives des mutations *NPM1* [24], des mutations de *SRSF2* et des co-mutations d'*IDH1/2*. Tandis que les mutations IDH1^{R132} et IDH2^{R140} présentent des profils plus similaires à l'exception des mutations de *DNMT3A* plutôt associées à IDH1^{R132} et de *SRSF2* plutôt associées à IDH2^{R140} [38][41].

Ces résultats s'accordent avec la littérature récente qui classerait même provisoirement les LAM mutées IDH2^{R172}, sans la présence d'autres anomalies classantes, comme un sous-groupe à part entière, représentant 1 à 2% des LAM [27][39][45]. Ce sous-groupe ne serait pas associé à d'autres anomalies définissant actuellement les catégories des LAM [27]. Ces études mettent en évidence une forte association aux mutations de *DNMT3A*, et certaines de *BCOR* (non étudiée ici), des LAM mutées IDH2^{R172} ainsi qu'une exclusivité des mutations *NPM1*, *FLT3* et *SRSF2* [24][38][41]. La catégorisation pronostic de ce sous-groupe est en cours d'investigation, certaines études rapportent une évolution plus favorable parfois proche de celle des LAM mutées *NPM1* [27][41][45], cependant certaine expertises font l'état d'un plus faible taux de CR [39] ou d'une absence de différences entre les trois variants [24][46].

Ces résultats orientent vers une nécessité d'étudier les mutations d' $IDH2^{R172}$ de manière indépendante des autres mutations d'IDH1/2.

2. Performances de la ddPCR

Afin de mettre la recherche des mutations d'*IDH1/2* en cohérence avec les nouvelles recommandations clinico-biologiques, nous avons évalué les performances de la ddPCR, pour la détection de ces mutations dans le diagnostic et le suivi des LAM, dans l'objectif de déterminer l'éligibilité à la mise sous thérapie ciblée anti-IDH1/2.

Ainsi, lors de cette étude, toutes les différentes mutations ciblées par la technique ddPCR et disponibles dans les archives du laboratoire ont bien été mises en évidence. Ces trois panels de gènes permettent de couvrir 97.9% des mutations d'*IDH1* et 97.1% des mutations d'*IDH2* retrouvées dans les LAM selon le site COSMIC. De manière plus ciblée, cela correspond à 99.4%, 99.3% et 96.7% des mutations hotspots touchant les codons IDH1^{R132}, IDH2^{R140} et IDH2^{R172}.

Il est important d'évoquer que la technique par ddPCR multiplex ne permet pas de connaître l'exacte mutation rencontrée mais seulement le statut sauvage ou muté du codon ciblé, pour 6, 3 et 6 variations différentes respectivement d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172}. La qualification de la mutation sera alors donnée lors de l'analyse secondaire par NGS.

Au cours de ce travail, nous avons établi une sensibilité de 93% et une spécificité de 100% de cette technique dans la détection des mutations d'*IDH1/2*. Ainsi trois cas faux négatifs ont été rapportés dans ce travail. Ils consistaient en deux variants ne faisant pas partie du panel de gènes cibles des kits commerciaux et d'un cas inexpliqué dont la positivité initiale du prélèvement est discutable. La sensibilité peut néanmoins être recalculée à 98% si l'on considère ces deux variants hors panel comme attendus négatifs. Toutefois, un aspect de décrochage du nuage de point représentant les séquences sauvages est observé et doit alerter. Ces images nécessitent alors une exploration plus poussée par NGS à la recherche d'un variant non ciblé par la ddPCR.

Par ailleurs, lors de nos analyses, seuls 3 puits soit 0.96% des analyses sont revenus non analysables. Ces analyses ont été ininterprétables pour cause d'une représentation graphique en pluie, d'un nombre de gouttelettes générées insuffisant et d'un décalage dans la position des nuages de points. Néanmoins, grâce aux passages des prélèvements en duplicats, ces échecs n'auraient pas empêchés le rendu de résultat pour ces échantillons.

Enfin, nous avons déterminé une limite de détection pour chaque kit à 0.20%, 0.18% et 0.14% de fréquence allélique pour les positions IDH1^{R132}, IDH2^{R140} et IDH2^{R172} soit une LOD fixée pour l'ensemble des kits à 0.20% et une LOQ à 0.50%. Ces résultats s'accordent avec l'étude de Favre et al., publiée en 2022, qui avaient étudié les performances de la ddPCR multiplex avec ces mêmes kits et qui avaient conclu à une LOD de 0.4-0.5%, 0.3-0.4% et 0.1-0.2% pour des extraits d'ADN issus de prélèvements sanguins et médullaires (tissus non paraffinés) [47]. Ces seuils permettent de répondre de façon adéquate au statut mutationnel d'*IDH1/2* au diagnostic et en rechute de LAM.

Lors du diagnostic de LAM, une analyse NGS est aussi réalisée en parallèle afin de caractériser le profil mutationnel complet. Cette analyse NGS rend également le statut mutationnel des hotspots d'*IDH1/2*. Ainsi nous avons pu montrer une corrélation entre les fréquences alléliques obtenues par technique ddPCR et NGS et donc vérifier la cohérence entre ces deux techniques.

La technique de recherche par ddPCR peut aussi permettre la détection de certaines résistances à l'ivosidénib. En effet, il a été mis en évidence que les co-mutations d'*IDH1-IDH2* généraient une résistance à l'ivosidénib par le rétablissement de la production de 2-HG par *IDH2* [19]. Ainsi il serait possible de déconseiller l'utilisation de cette molécule dans ce cas de figure.

La possibilité d'utiliser les mutations d'IDH1/2 comme marqueur de MRD est toujours en cours d'investigation. Les mutations d'IDH1/2 sont considérées comme des évènements précoces dans le processus de la leucémogenèse, au même titre que DNMT3A. Cependant, à l'inverse de celui-ci, qui n'est pas recommandé dans la MRD car fréquemment présent au stade pré-leucémique, certaines études les caractériseraient d'adaptées dans le suivi de la MRD [48][49]. L'étude de Petrova et al. publiée en 2018 rapporte que le suivi de la MRD par NPM1 serait de meilleure sensibilité dans la prédiction des rechutes face au suivi par IDH1/2 mais que ces dernières possèderaient tout de même les qualités d'un bon marqueur de MRD. Ainsi elles seraient capables de refléter la réponse au traitement et de prévenir le début de rechute, elles pourraient donc s'avérer utiles dans le cas des LAM sans autre marqueur de MRD disponible [50]. Néanmoins, certains cas ont montré une persistance des mutations d'IDH1/2 en CR [51][52][53]. Selon l'étude de Ferret et al. publiée en 2018, 71% des patients présentant une persistance d'hématopoïèse clonale associée aux mutations d'IDH1/2 après thérapie d'induction ont rechutés ou progressés en SMD moins de 4 ans après le diagnostic. L'impact pronostic des persistances des mutations d'IDH1/2 reste à pleinement étudié mais pourrait être prédictif d'une mauvaise évolution [54]. Il serait alors intéressant d'étudier le bénéfice d'un ajout d'un inhibiteur d'IDH1/2 en consolidation chez ces patients présentant une persistance des mutations d'IDH1/2 en RC après induction. De manière intéressante, ces profils n'ont pour l'instant pas été rapportés dans des LAM mutées IDH2^{R172}, cependant au vu de la faible prévalence de cette mutation, des recherches sont encore nécessaires.

Ainsi, l'utilité du suivi de la MRD des mutations d'*IDH1/2* nécessite encore des approfondissements mais semblerait prometteur. Si son bénéfice est vérifié, alors le suivi de la MRD par technique ddPCR serait possible à hauteur d'une fréquence allélique limite de 0.2%.

V. Conclusion

Récemment, l'apparition de thérapie ciblée visant les mutations d'*IDH1/2* a offert un nouvel axe de prise en charge dans les LAM. Le groupe European LeukemiaNet (ELN) a émis des nouvelles recommandations de prise en charge en 2022, incluant notamment la recherche ciblée des mutations activatrices d'*IDH1/2* en 3 à 5 jours [8]. Une nouvelle technique de recherche des mutations d'*IDH1/2* est nécessaire au laboratoire de Strasbourg. En effet, la technique actuelle par NGS utilisée au laboratoire du CHRU de Strasbourg ne permet pas de répondre à ce besoin. Notre choix s'est tourné vers la ddPCR et les kits multiplexés BioRad® ciblant la position IDH1^{R132}, IDH2^{R140} et IDH2^{R172}.

Pour mettre en place cette nouvelle technique, nous avons étudié une cohorte regroupant les résultats de séquençages haut-débit réalisés du 1^{er} janvier 2014 au 1^{er} décembre 2022 au laboratoire de Strasbourg. L'établissement de cette cohorte nous a permis, dans un premier temps de caractériser les LAM mutées *IDH1/2* notamment via l'étude de leur contexte mutationnel, et, dans un second temps, d'évaluer les performances de la technique ddPCR dans cette indication.

Ainsi l'étude du terrain mutationnel des LAM mutées *IDH1/2* montre une forte association avec les mutations de *NPM1*, *DNMT3A* et de *SRSF2* et une faible association aux mutations de *TET2* et de *TP53* par rapport aux LAM *IDH1/2 WT*. Cette étude nous a permis de caractériser les mutations d'IDH1^{R132} et d'IDH2^{R140} comme des mutations rencontrées majoritairement dans les groupes des LAM mutées *NPM1* et des LAM associées aux mutations du spliceosome (*SRSF2*) soit les LAM secondaires reliées à la myélodysplasie, à l'inverse des LAM mutées IDH2^{R172} qui, elles, sont caractérisées par un contexte de survenu et un terrain co-mutationnel différent. Ces informations sont essentielles pour l'interprétation des études pronostics et des réponses aux traitements et évoquent la nécessité, d'une part, d'étudier les mutations d'IDH2^{R172} de manière indépendante des autres mutations d'*IDH1/2*, et d'autres part, d'étudier les mutations d'IDH1^{R132} et d'IDH2^{R140} en fonction des catégories de LAM (*de novo* et secondaires).

Enfin, nous avons pu qualifier la recherche ciblée par ddPCR utilisant les kits multiplexés commerciaux BioRad® ciblant la position IDH1^{R132}, IDH2^{R140} et IDH2^{R172} comme apportant un résultat rapide, sensible et fiable quant au statut muté *IDH1/2*. Ainsi elle permet la détection de 99.4%, 99.3% et 96.7% des mutations d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172} dans les LAM avec un taux d'échec de 0.96%. A l'exception d'un cas complexe, toutes les mutations attendues ont été détectées par cette technique, permettant d'obtenir une sensibilité de 98% et une spécificité de 100%. La LOD et la LOQ ont été déterminées à 0,20% et à 0,50%. Ces résultats montrent une place adéquate de la ddPCR dans la détection des mutations hotspots d'*IDH1/2* lors de diagnostic ou de rechute de LAM.

BIBLIOGRAPHIE

- [1] G. Defossez, « Estimations nationales de l'incidence et de la mortalité par cancer en France métropolitaine entre 1990 et 2018. Étude à partir des registres des cancers du réseau Francim », juill. 2019.
- [2] M. TELLE-LAMBERTON, K. NDIAYE, et I. GRÉMY, «HÉMOPATHIES MALIGNES, Évolutions et comparaisons en France et en Île-de-France », Rapport et enquête, juin 2020.
- [3] G. COUREAU, « Survie des personnes atteintes de cancer en France métropolitaine 1989-2018 SYNTHÈSE DES RÉSULTATS : TUMEURS SOLIDES ET HÉMOPATHIES MALIGNES », SPF, FRANCIM, HCL, juill. 2021.
- [4] C. S. Grove et G. S. Vassiliou, « Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? », *Dis. Model. Mech.*, vol. 7, n° 8, p. 941-951, août 2014, doi: 10.1242/dmm.015974.
- [5] J.-A. Martignoles, F. Delhommeau, et P. Hirsch, « Genetic Hierarchy of Acute Myeloid Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease », *Int. J. Mol. Sci.*, vol. 19, n° 12, p. 3850, déc. 2018, doi: 10.3390/ijms19123850.
- [6] T. Naoe et H. Kiyoi, « Gene mutations of acute myeloid leukemia in the genome era », *Int. J. Hematol.*, vol. 97, n° 2, p. 165-174, févr. 2013, doi: 10.1007/s12185-013-1257-4.
- [7] J. D. Khoury *et al.*, «The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms », *Leukemia*, vol. 36, n° 7, p. 1703-1719, juill. 2022, doi: 10.1038/s41375-022-01613-1.
- [8] H. Döhner *et al.*, « Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN », *Blood*, vol. 140, n° 12, p. 1345-1377, sept. 2022, doi: 10.1182/blood.2022016867.
- [9] M. Pizzi, C. Gurrieri, et A. Orazi, « What's New in the Classification, Diagnosis and Therapy of Myeloid Leukemias », *Hemato*, vol. 4, n° 2, Art. n° 2, juin 2023, doi: 10.3390/hemato4020011.
- [10] R. Stubbins, A. Francis, F. Kuchenbauer, et D. Sanford, «Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology », *Curr. Oncol.*, vol. 29, p. 6245-6259, août 2022, doi: 10.3390/curroncol29090491.
- [11] NCCN, « NCCN guidelines Version 4.2023 AML ». 2023.
- [12] C. Preudhomme, A. Plesa, et C. Roumier, « Maladie résiduelle dans les leucémies aiguës myéloïdes: aspects biologiques », *Hématologie*, vol. 26, n° 1, p. 5-18, avr. 2020, doi: 10.1684/hma.2020.1521.
- [13] Y. Liu *et al.*, «The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer », *Acta Pharm. Sin. B*, vol. 13, n° 4, p. 1438-1466, avr. 2023, doi: 10.1016/j.apsb.2022.12.019.

- [14] A. P. Im *et al.*, « DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies », *Leukemia*, vol. 28, n° 9, p. 1774-1783, sept. 2014, doi: 10.1038/leu.2014.124.
- [15] G. Montalban-Bravo et C. D. DiNardo, « The role of IDH mutations in acute myeloid leukemia », *Future Oncol. Lond. Engl.*, vol. 14, n° 10, p. 979-993, avr. 2018, doi: 10.2217/fon-2017-0523.
- [16] C. J. Pirozzi et H. Yan, «The implications of IDH mutations for cancer development and therapy », *Nat. Rev. Clin. Oncol.*, vol. 18, no 10, p. 645-661, oct. 2021, doi: 10.1038/s41571-021-00521-0.
- [17] P. S. Ward *et al.*, « The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate », *Cancer Cell*, vol. 17, n° 3, p. 225-234, mars 2010, doi: 10.1016/j.ccr.2010.01.020.
- [18] W. Xu *et al.*, « Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases », *Cancer Cell*, vol. 19, n° 1, p. 17-30, janv. 2011, doi: 10.1016/j.ccr.2010.12.014.
- [19] S. Choe *et al.*, « Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML », *Blood Adv.*, vol. 4, n° 9, p. 1894-1905, mai 2020, doi: 10.1182/bloodadvances.2020001503.
- [20] H. Yang, D. Ye, K.-L. Guan, et Y. Xiong, «IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives », *Clin. Cancer Res.*, vol. 18, n° 20, p. 5562-5571, oct. 2012, doi: 10.1158/1078-0432.ccr-12-1773.
- [21] C. Lu *et al.*, « IDH mutation impairs histone demethylation and results in a block to cell differentiation », *Nature*, vol. 483, n° 7390, p. 474-478, févr. 2012, doi: 10.1038/nature10860.
- [22] M. E. Figueroa *et al.*, « Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation », *Cancer Cell*, vol. 18, n° 6, p. 553-567, déc. 2010, doi: 10.1016/j.ccr.2010.11.015.
- [23] Cancer Genome Atlas Research Network *et al.*, « Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia », *N. Engl. J. Med.*, vol. 368, n° 22, p. 2059-2074, mai 2013, doi: 10.1056/NEJMoa1301689.
- [24] S. Zarnegar-Lumley *et al.*, « Characteristics and prognostic impact of IDH mutations in AML: a COG, SWOG, ECOG analysis », *Blood Adv.*, p. bloodadvances.2022008282, juin 2023, doi: 10.1182/bloodadvances.2022008282.
- [25] J. M. Byun *et al.*, « IDH1/2 mutations in acute myeloid leukemia », *Blood Res.*, vol. 57, n° 1, p. 13-19, mars 2022, doi: 10.5045/br.2021.2021152.

- [26] P. S. Ward *et al.*, «The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization», *J. Biol. Chem.*, vol. 288, nº 6, p. 3804-3815, févr. 2013, doi: 10.1074/jbc.M112.435495.
- [27] E. Papaemmanuil *et al.*, « Genomic Classification and Prognosis in Acute Myeloid Leukemia », *N. Engl. J. Med.*, vol. 374, n° 23, p. 2209-2221, juin 2016, doi: 10.1056/NEJMoa1516192.
- [28] D. Padmakumar *et al.*, « A concise review on the molecular genetics of acute myeloid leukemia », *Leuk. Res.*, vol. 111, p. 106727, déc. 2021, doi: 10.1016/j.leukres.2021.106727.
- [29] P. Montesinos *et al.*, « Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia », *N. Engl. J. Med.*, avr. 2022, doi: 10.1056/NEJMoa2117344.
- [30] BioRad, « Droplet DigitalTM PCR Applications Guide ».
- [31] A. S. Basu, « Digital Assays Part I: Partitioning Statistics and Digital PCR », *SLAS Technol.*, vol. 22, n° 4, p. 369-386, août 2017, doi: 10.1177/2472630317705680.
- [32] R. Verheul, J. Deutekom, et N. Datson, « Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy », *PloS One*, vol. 11, p. e0162467, sept. 2016, doi: 10.1371/journal.pone.0162467.
- [33] Q. Xu *et al.*, « Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis », *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.*, vol. 23, no 15, p. 4511-4522, août 2017, doi: 10.1158/1078-0432.CCR-16-2628.
- [34] O. Kosmider *et al.*, « Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms », *Leukemia*, vol. 24, n° 5, p. 1094-1096, mai 2010, doi: 10.1038/leu.2010.52.
- [35] J. Rocquain *et al.*, « Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias », *BMC Cancer*, vol. 10, p. 401, août 2010, doi: 10.1186/1471-2407-10-401.
- [36] « NCCN Myelodysplastic syndromes Guidelines Version 1.2023 September 12, 2022 ».
- [37] R. J. Molenaar *et al.*, « Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms », *Leukemia*, vol. 29, n° 11, p. 2134-2142, nov. 2015, doi: 10.1038/leu.2015.91.
- [38] M. Duchmann *et al.*, « Prognostic significance of concurrent gene mutations in intensively treated patients with IDH-mutated AML: an ALFA study », *Blood*, vol. 137, n° 20, p. 2827-2837, mai 2021, doi: 10.1182/blood.2020010165.
- [39] G. Marcucci *et al.*, « IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study », *J.*

- Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., vol. 28, nº 14, p. 2348-2355, mai 2010, doi: 10.1200/JCO.2009.27.3730.
- [40] B. Falini *et al.*, « IDH1-R132 changes vary according to NPM1 and other mutations status in AML », *Leukemia*, vol. 33, n° 4, p. 1043-1047, 2019, doi: 10.1038/s41375-018-0299-2.
- [41] M. Meggendorfer *et al.*, «IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies », *Leukemia*, vol. 32, n° 5, p. 1249-1253, mai 2018, doi: 10.1038/s41375-018-0026-z.
- [42] M. Fernandez-Mercado *et al.*, « Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics », *PloS One*, vol. 7, n° 8, p. e42334, 2012, doi: 10.1371/journal.pone.0042334.
- [43] R. C. Lindsley *et al.*, « Acute myeloid leukemia ontogeny is defined by distinct somatic mutations », *Blood*, vol. 125, n° 9, p. 1367-1376, févr. 2015, doi: 10.1182/blood-2014-11-610543.
- [44] A. Murati, M. Brecqueville, R. Devillier, M.-J. Mozziconacci, V. Gelsi-Boyer, et D. Birnbaum, « Myeloid malignancies: mutations, models and management », *BMC Cancer*, vol. 12, p. 304, juill. 2012, doi: 10.1186/1471-2407-12-304.
- [45] J.-S. Ahn *et al.*, « Assessment of a new genomic classification system in acute myeloid leukemia with a normal karyotype », *Oncotarget*, vol. 9, n° 4, p. 4961-4968, janv. 2018, doi: 10.18632/oncotarget.23575.
- [46] M. Messina *et al.*, «Prevalence and Prognostic Role of IDH Mutations in Acute Myeloid Leukemia: Results of the GIMEMA AML1516 Protocol », *Cancers*, vol. 14, n° 12, p. 3012, juin 2022, doi: 10.3390/cancers14123012.
- [47] L. Favre *et al.*, « Evaluation of two new highly multiplexed PCR assays as an alternative to next-generation sequencing for IDH1/2 mutation detection », *Mol. Oncol.*, sept. 2022, doi: 10.1002/1878-0261.13311.
- [48] H. Debarri *et al.*, « IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association », *Oncotarget*, vol. 6, n° 39, p. 42345-42353, oct. 2015, doi: 10.18632/oncotarget.5645.
- [49] C. Brambati *et al.*, « Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation », *Haematologica*, vol. 101, n° 4, Art. n° 4, avr. 2016, doi: 10.3324/haematol.2015.135467.
- [50] L. Petrova, F. Vrbacky, M. Lanska, A. Zavrelova, P. Zak, et K. Hrochova, « IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? », *Clin. Biochem.*, vol. 61, p. 34-39, nov. 2018, doi: 10.1016/j.clinbiochem.2018.08.012.

- [51] I. Jeziskova *et al.*, « Quantitative detection of IDH2 mutation for minimal residual disease monitoring in patients with acute myeloid leukemia and its comparison with mutations in NPM1 gene », *Leuk. Lymphoma*, vol. 54, n° 4, p. 867-870, avr. 2013, doi: 10.3109/10428194.2012.727414.
- [52] W.-C. Chou *et al.*, « Persistence of mutant isocitrate dehydrogenase in patients with acute myeloid leukemia in remission », *Leukemia*, vol. 26, n° 3, Art. n° 3, mars 2012, doi: 10.1038/leu.2011.215.
- [53] Y. Ferret, « Impact pronostique de la maladie résiduelle par quantification des mutations d'IDH1/2 par PCR digitale dans les leucémies aiguës myéloïdes incluses dans les protocoles alfa-0701 et 0702 », Thèse, 2016.
- [54] Y. Ferret *et al.*, « Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group », *Haematologica*, vol. 103, n° 5, p. 822-829, mai 2018, doi: 10.3324/haematol.2017.183525.

Annexe: Descriptif de la cohorte de prélèvement avec séquençage d'IDHI/2 par NGS du 01/01/2014 au 01/12/2022 au laboratoire de Strasbourg par hypothèse diagnostic

Clemification		Spécialité		Diagnostic	Suitel	itecliate	Ministence/ Hitractains	Acidisation secondaire à une himografice	teginine	Author	Tartuna
£A.	1112	LAM	3077	606	107	1 9898.		238			ims.
		CAL	14	6	3	\$2					14:
		LA arritagea	- 21	1.84	T):			V.			21
5840	790	SARU	.524	854	1002	1					124
		MD/SMF syndrome funding	386	157	31						1200
		SMD at lymphome	61	30	50	20					44
		SMD/SMF syndrome Translation of Symphomic	*		ě						*
		SWOJESKE	18.	¥ (1
SAVEY	134	300	194	111	20		1.				154
54.9	18	107	3.0	32	1	1					28
Auton	12	1097	18	31							
		poc Judes	-	2						7	4
		Attention de Jetopolgoettechs	.6.							î	á
Fagneric d'Institution	323	5640	320.						176		278
		SMD/SMF syndrame . Southles	22						588		.12
		MW	29						36		28
		Cytopone	81						žt		81
		14174									
		684	4								4
		11.7	10						- 1		i
		31F 9436FF	10						3.5		4
		SVD/SHP syndrome frontiers at lymphoner	10						4		i
Total	2362		2388	180	182	tie		2.19	833	4.0	2000

8 autres : Suspicion de lymphome T dans un contexte de cancer pulmonaire récidivant ; 2 sarcome myéloïde ; hépatosplénomégalie ; sarcome histiocytaire ; sarcome granulocytaire ; donneur greffe.

$\frac{\text{Annexe: Nombre et prévalence des séquençages présentant une co-mutation d'}{\text{IDH1/2 par gène, dans les LAM}}}{\text{contre les SMD}}$

En vert : prévalence supérieure dans le groupe LAM IDH1/2 mutée par rapport aux SMD IDH1/2 mutés p < 0.05En rouge : prévalence inférieure dans le groupe LAM IDH1/2 mutée par rapport aux SMD IDH1/2 mutés p < 0.05

	LAM IDH1/2	? muté	SMD IDH1	/2 muté	
	(n=150)		(n=59)	
ASXL1	26	17,3%	26	44,1%	<0,0001
BRAF	0	0,0%	0	0,0%	>0,20
CALR	1	0,7%	2	3,4%	0,1912
CBL	3	2,0%	6	10,2%	0,0161
CSF3R	2	1,3%	0	0,0%	>0,20
DNMT3A	59	39,3%	5	8,5%	<0,0001
ETV6	4	2,7%	2	3,4%	>0,20
EZH2	2	1,3%	3	5,1%	0,1362
FLT3	25	16,7%	0	0,0%	0,0007
GATA2	1	0,7%	2	3,4%	0,1912
IDH1/2	4	2,7%	2	3,4%	>0,20
JAK2	8	5,3%	2	3,4%	>0,20
KIT	2	1,3%	1	1,7%	>0,20
KRAS	6	4,0%	0	0,0%	0,1881
MPL	1	0,7%	3	5,1%	0,0681
NPM1	50	33,3%	1	1,7%	<0,0001
NRAS	19	12,7%	2	3,4%	0,0699
PHF6	5	3,3%	3	5,1%	>0,20
PTEN	0	0,0%	0	0,0%	>0,20
PTPN11	13	8,7%	2	3,4%	>0,20
RUNX1	30	20,0%	7	11,9%	>0,20
SETBP1	1	0,7%	1	1,7%	>0,20
SF3B1	2	1,3%	2	3,4%	>0,20
SRSF2	54	36,0%	41	69,5%	<0,0001
TET2	18	12,0%	9	15,3%	>0,20
TP53	7	4,7%	3	5,1%	>0,20
U2AF1	6	4,0%	1	1,7%	>0,20
Sans mutation associée	9	6,0%	2	8,5%	>0,20

	LA	M de novo	(n=132)	<u>LAM</u>	secondair	e (n=18)		SMD (n=	<u>=59)</u>
			<i>p value</i> LAM- <i>dn</i> vs LAM-s			<i>p value</i> LAM-s vs SMD			<i>p value</i> LAM- <i>dn</i> vs SMD
ASXL1	20	15,2%	0,0894	6	33,3%	<i>p</i> >0,20	26	44,1%	<0,0001
BRAF	0	0,0%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20
CALR	1	0,8%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	2	3,4%	<i>p</i> >0,20
CBL	2	1,5%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	6	10,2%	0,0115
CSF3R	2	1,5%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20
DNMT3A	54	40,9%	p>0,20	7	38,9%	0,0010	5	8,5%	<0,0001
ETV6	3	2,3%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	2	3,4%	<i>p</i> >0,20
EZH2	1	0,8%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	3	5,1%	0,0883
FLT3	23	17,4%	p>0,20	3	16,7%	0,0112	0	0,0%	0,0004
GATA2	1	0,8%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	2	3,4%	<i>p</i> >0,20
IDH1/2	4	3,0%	0,0077	4	22,2%	0,0243	2	3,4%	<i>p>0,20</i>
JAK2	3	2,3%	0,0006	5	27,8%	0,0066	2	3,4%	<i>p</i> >0,20
KIT	0	0,0%	0,0137	2	11,1%	0,1346	1	1,7%	<i>p</i> >0,20
KRAS	6	4,5%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	0	0,0%	0,1796
MPL	2	1,5%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	3	5,1%	<i>p</i> >0,20
NPM1	49	37,1%	0,1146	3	16,7%	0,0378	1	1,7%	<0,0001
NRAS	16	12,1%	0,1376	5	27,8%	0,0066	2	3,4%	0,0636
PHF6	5	3,8%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	3	5,1%	<i>p</i> >0,20
PTEN	0	0,0%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20
PTPN11	11	8,3%	<i>p</i> >0,20	3	16,7%	0,0802	2	3,4%	<i>p</i> >0,20
RUNX1	24	18,2%	0,0598	7	38,9%	0,0156	7	11,9%	<i>p</i> >0,20
SETBP1	1	0,8%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	1	1,7%	<i>p</i> >0,20
SF3B1	2	1,5%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	2	3,4%	<i>p</i> >0,20
SRSF2	42	31,8%	0,0003	14	77,8%	<i>p</i> >0,20	41	69,5%	<0,0001
TET2	18	13,6%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	9	15,3%	<i>p</i> >0,20
TP53	6	4,5%	<i>p</i> >0,20	1	5,6%	<i>p</i> >0,20	3	5,1%	<i>p</i> >0,20
U2AF1	6	4,5%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	1	1,7%	<i>p</i> >0,20
Sans mutation associée	9	6,8%	<i>p</i> >0,20	0	0,0%	<i>p</i> >0,20	2	3,4%	<i>p</i> >0,20

$\frac{Annexe: Tableau\ comparant\ les\ proportions\ d'association\ mutationnelle\ dans\ les\ trois\ populations\ présentant}{une\ mutation\ dans\ un\ hotspot\ mutationnell\ d'$IDH1/2$}$

	<u>IDH1</u>	R132 (n=	<u>=58)</u>	<u>IDH2</u>	R140 (n	<u>=75)</u>	IDH2	R172 (n=	<u>=21)</u>
			P value			P value			P value
			132vs140			140vs172			132vs172
ASXL1	8	13,8%	>0,20	16	21,3%	>0,20	2	9,5%	>0,20
BRAF	0	0,0%	>0,20	0	0,0%	>0,20	0	0,0%	>0,20
CALR	1	1,7%	>0,20	0	0,0%	>0,20	0	0,0%	>0,20
CBL	2	3,4%	>0,20	1	1,3%	>0,20	0	0,0%	>0,20
CSF3R	0	0,0%	>0,20	2	2,7%	>0,20	0	0,0%	>0,20
DNMT3A	26	44,8%	0,0262	19	25,3%	<0,0001	16	76,2%	0,0207
ETV6	2	3,4%	>0,20	2	2,7%	>0,20	0	0,0%	>0,20
EZH2	1	1,7%	>0,20	0	0,0%	>0,20	1	4,8%	>0,20
FLT3	8	13,8%	>0,20	17	22,7%	0,0628	1	4,8%	>0,20
GATA2	0	0,0%	>0,20	1	1,3%	>0,20	0	0,0%	>0,20
IDH1/2	4	6.9%	>0,20	4	5.3%	>0,20	0	0.0%	>0,20
JAK2	5	8,6%	>0,20	2	2,7%	>0,20	1	4,8%	>0,20
KIT	0	0,0%	>0,20	2	2,7%	>0,20	0	0,0%	>0,20
KRAS	1	1,7%	>0,20	5	6,7%	>0,20	0	0,0%	>0,20
MPL	1	1,7%	>0,20	1	1,3%	>0,20	0	0,0%	>0,20
NPM1	18	31,0%	0,1518	33	44,0%	0,0015	1	4,8%	0,0169
NRAS	10	17,2%	>0,20	8	10,7%	>0,20	3	14,3%	>0,20
PHF6	1	1,7%	>0,20	4	5,3%	>0,20	1	4,8%	>0,20
PTEN	0	0,0%	>0,20	0	0,0%	>0,20	0	0,0%	>0,20
PTPN11	6	10,3%	>0,20	7	9,3%	>0,20	1	4,8%	>0,20
RUNX1	15	25,9%	0,1256	11	14,7%	>0,20	5	23,8%	>0,20
SETBP1	1	1,7%	>0,20	0	0,0%	>0,20	0	0,0%	>0,20
SF3B1	1	1,7%	>0,20	1	1,3%	>0,20	0	0,0%	>0,20
SRSF2	18	31,0%	0,0332	38	50,7%	<0,0001	0	0,0%	0,0045
TET2	6	10,3%	>0,20	12	16,0%	>0,20	1	4,8%	>0,20
TP53	5	8,6%	>0,20	2	2,7%	>0,20	0	0,0%	>0,20
U2AF1	3	5,2%	>0,20	3	4,0%	>0,20	0	0,0%	>0,20
Sans mutation associée	2	3,4%	>0,20	4	5,3%	>0,20	3	14,3%	0,1139

Annexe : Caractéristiques des échantillons analysés par ddPCR

Mo : Moelle, Sg : Sang, PV : Polyglobulie de Vaquez, AREB : Anémie Réfractaire avec Excès de Blastes, LMMC : Leucémie MyéloMonocytaire Chronique, ANDc : ADN complémentaire, SNC : Système nerveux Central, T.: Tissus,

Référen	ce Matériel	Concen-	Indication	Mutation IDH1 R132	2 (VAF	Mutation IDH2 R140	0 (VAF	Mutation IDH2 R172	(VAF en
		tration (ng/µl)		en %)		en %)		%)	
1	Мо	154	SMD?	WT		WT		WT	
2	Sg	61	SMP?	WT		WT		WT	
3	Sg	49	PV	WT		WT		WT	
4	Мо	121	Neutropénie	WT		WT		WT	
5	Мо	361	Aplasie	WT		WT		WT	
			médullaire						
6	Мо	141	LAM rechute	c.394C>T :p.R132C	29%	WT		WT	
7	Мо	259	LAM rechute	c.394C>T :p.R132C	30%	WT		WT	
8	Мо	34	LAM	c.395G>A :p.R132H	24%	WT		WT	
9	Мо	65	LAM	c.394C>A :p.R132S	30%	WT		WT	
10	Мо	189		c.394C>A :p.R132S	33%	WT		WT	
			post-greffe						
11	Мо		SMP/SMD	c.394C>G :p.R132G	50%	WT		WT	
12	Мо	90	AREB-2 acutisée	c.394C>G :p.R132G	54%	WT		WT	
13	Мо	47	LAM	c.395G>T :p.R132L	28%			WT	
14	Мо	359	AREB-2	c.395G>T :p.R132L	40%	WT		WT	
15	Мо	81	LAM ?	c.395G>A :p.R132H	25%	c.419G>A :p.R140Q	5%	WT	
16	Мо	198	LAM	c.394C>T :p.R132C	39%	c.419G>A :p.R140Q	4%	WT	
17	Мо	370	LAM	c.395G>A :p.R132H	18%	c.419G>A :p.R140Q	24%	WT	
18	Мо	100	LMMC	c.394C>A :p.R132S	8%	c.419G>A :p.R140Q	50%	WT	
19	Мо	53	SMD suivi	c.395G>T :p.R132L	16%	c.419G>A :p.R140Q	43%	WT	
20	Sg	52	SMD AREB_2 sous VIDAZA	WT		c.419G>A :p.R140Q	36%	WT	
21	Mo (ADNc)	70	LAM/SMD	WT		c.419G>A :p.R140Q	36%	WT	
22	Мо	294	LAM	WT		c.419G>A :p.R140Q	39%	WT	
23	Мо	215	SMD	WT		c.419G>A :p.R140Q	41%	WT	
24	Мо	381	SMD	WT		c.419G>A :p.R140Q	43%	WT	
25	Мо	268	rechute LAM	WT		c.419G>A :p.R140Q	43%	WT	
26	Sg	24	SMP	WT		c.418C>T :p.R140W	30%	WT	
27	Мо	79	LAM	WT		c.418C>T :p.R140W	40%	WT	
28	Мо	47	LAM rechute	WT		c.418C>T :p.R140W	10%	WT	
29	ВОМ	60	LAM	WT		c.419G>T :p.R140L	39%		
30	Мо	330	AREB-2	WT		c.419G>A :p.R140Q	6%/6	WT	
						c.418C>T :p.R140W	%		
31	D.4 -	1.47	Catantaina	NA/T		Bi-allélique	10%	NA/T	
32	Mo Mo	147 156	Cytopénies bicytopénie	WT		c.418C>G :p.R140G WT	10%		7%
32	IVIO	130	macrocytaire,	VVI		VVI		c.515G>A :p.R172K	/ 70
			blastes, post						
			allogreffe LAM						
33	Мо	75	LAM2	WT		WT		c.515G>A :p.R172K	24%
34	Мо	90	LAM2 diagnostic	WT		WT		c.515G>A :p.R172K	27%
35	Мо	133	SMD	WT		WT		c.515G>A :p.R172K	30%
36	Мо	120	Rechute LAM	WT		WT		c.515G>A :p.R172K	31%
37	Мо	123	Rechute LAM	WT		WT		c.515G>A :p.R172K	34%
38	Мо	76	LAM	WT		WT		c.515G>A :p.R172K	37%
39	Мо	71	LAM ? SMD ?	WT		WT		c.515G>A :p.R172K	9%
40	Sg	174	Rechute post	WT		WT		c.515G>A :p.R172K	47%
41	Мо	116	greffe LAM secondaire à SMD	WT		WT		c.515G>A :p.R172K	19%

42	Мо	399	LAM WT	W	Т	c.516_517delinsGC>T 44%
						A :p.Arg172_His173de
						insSerAsn
43	Biopsie-exérèse SNC (région prérolandique droite) T.parafiné / 40% de cellules tumorales	70	Astrocytome diffus sans mutation IDH1 R132H, OMS grade II. / a visée thérapeutique	-	,	c.516G>T :p.R172S
			/ stade diagnostic			
44	Biopsie-exérèse SNC (lobe frontal gauche) : T.parafiné / 90% de cellules tumorales	386	Oligodendrogliome anaplasique avec co- délétion des chromosomes 1p/19q, OMS grade III: / a visée thérapeutique / stade diagnostic			c.515G>A :p.R172K
45	Pièce d'hépatectomie / T. paraffiné / 90% de cellule tumorale	710	Cholangiocarcinome intra-hépatique / a visée thérapeutique / stade diagnostic	-	,	c.514A>T :p.R172W
46	Biopsie tumeur frontale gauche / T. paraffiné / 80% de cellules tumorales	74	Gliome diffus de haut grade sans mutation IDH1 R132H / a visée thérapeutique / stade diagnostic			c.515G>T :p.R172M
47	Pièce opératoire Foie (segments III, IV, V, VI et I) (après chimiothérapie néo-adjuvante) / T. paraffiné / 90% de cellule tumorale	794	Cholangiocarcinome intra-hépatique. / a visée thérapeutique / stade diagnostic		,	c.516G>T :p.R172S

Annexe : Tableaux récapitulatifs des moyennes et écart-types obtenus en fonction de la VAF attendue pour la détermination des droites de linéarité pour IDH1^{R132C}, IDH2^{R140Q} et IDH2^{R172K}

	IDH1 ^{R132C}	
VAF attendue (en %)	Moyenne [min-max] (en %) (n=5)	Écart-type
18,64	18,64 [17,6-19,3]	0,72
6,21	6,74 [6,2-7]	0,31
2,49	2,78 [2,59-2,89]	0,13
1,24	1,37 [1,1-1,55]	0,18
0,62	0,72 [0,62-0,83]	0,09
0,12	0,20 [0,12-0,26]	0,05

	IDH2 ^{R140Q}	
VAF attendue (en %)	Moyenne [min-max] (en %) (n=5)	Écart-Type
13,62	13,62 [13,1-14,4]	0,43
4,54	4,36 [4,2-4,55]	0,14
1,82	1,68 [1,49-1,79]	0,12
0,91	0,93 [0,84-1,08]	0,09
0,45	0,44 [0,3-0,49]	0,08
0,09	0,14 [0,11-0,19]	0,03

	IDH2 ^{R172K}	
VAF attendue (en %)	Moyenne [min-max] (en %) (n=5)	Écart-Type
15,02	15,02 [13,8-15,9]	0,86
5,01	4,70 [4,49-5,1]	0,29
2,00	1,91 [1,74-2,1]	0,13
1,00	0,95 [0,83-1,04]	0,10
0,50	0,57 [0,44-0,73]	0,13
0,10	0,18 [0,13-0,22]	0,04

<u>Annexe</u>: Données brutes obtenues lors de la détermination de la LOD et LOQ par calcul de la moyenne et de <u>l'écart type des VAF des échantillons WT de la position R132 d'IDH1</u>

		Concen-	Copies Per			Ch1+			Accepted	VAF	
N°	Cible	tration	20uL Well		Négatives			Ch2+		(en %)	Seuil
A01	IDH1 R132 mute	0,21	4,2	5165	10988	2	0	5163	10990	0,029	7375
A01 A02	IDH1 WT IDH1 R132 mute	747 0,23	14940 4,6	5165 2	5825 10128	2	0	5163 3935	10990 10130	0,029 0,04	2695 7702
A02	IDH1 K132 mule	579	11580	3937	6193	2	0	3935	10130	0,04	2988
A05	IDH1 R132 mute	0,25	5	2	9267	2	0	3143	9269	0,04	8668
A05	IDH1 WT	488	9760	3145	6124	2	0	3143	9269	0,05	2948
A06	IDH1 R132 mute	0,35	7	3	10176	3	0	3847	10179	0,06	8442
A06	IDH1 WT	559	11180	3850	6329	3	0	3847	10179	0,06	2864
A07	IDH1 R132 mute	0,8	16	6	9301	6	0	3696	9307	0,13	7990
A07	IDH1 WT	597	11940	3702	5605	6	0	3696	9307	0,13	2881
A09	IDH1 R132 mute	0,8	16	8	11358	8	0	4351	11366	0,15	7921
A09	IDH1 WT	569	11380	4359	7007	8	0	4351	11366	0,15	3027
B01	IDH1 R132 mute	0,8	16	8	11310	8	0	5301	11318	0,11	7694
B01	IDH1 WT	745	14900	5309	6009	8	0	5301	11318	0,11	2661
B02	IDH1 R132 mute	0,19	3,8	2	12083	2	0	4521	12085	0,035	8355
B02	IDH1 WT	552	11040	4523	7562	2	0	4521	12085	0,035	2892
B05	IDH1 R132 mute IDH1 WT	0,5 500	10 10000	3247	9381 6138	4	0	3243 3243	9385 9385	0,1	8290
B05 B06	IDH1 W1 IDH1 R132 mute	0,8	16	3247 8	11449	8	0	4284	11457	0,1 0,15	3010 7863
B06	IDH1 WT	552	11040	4292	7165	8	0	4284	11457	0,15	2629
B07	IDH1 R132 mute	0,15	3	1	7816	1	0	3170	7817	0,025	8242
B07	IDH1 WT	612	12240	3171	4646	1	0	3170	7817	0,025	2831
B09	IDH1 R132 mute	0,9	18	8	10590	8	0	3960	10598	0,16	8717
B09	IDH1 WT	552	11040	3968	6630	8	0	3960	10598	0,16	2747
C01	IDH1 R132 mute	0,41	8,2	4	11434	4	0	3548	11438	0,09	8305
C01	IDH1 WT	437	8740	3552	7886	4	0	3548	11438	0,09	2865
C05	IDH1 R132 mute	0,47	9,4	4	10094	4	0	2889	10098	0,12	8719
C05	IDH1 WT	397	7940	2893	7205	4	0	2889	10098	0,12	2790
C06	IDH1 R132 mute	0,6	12	6	11366	6	0	4307	11372	0,11	8384
C06	IDH1 WT	561	11220	4313	7059	6	0	4307	11372	0,11	2820
D01	IDH1 R132 mute	0,22	4,4	2214	10610	2	0	3312	10612	0,05	8887
D01 D05	IDH1 WT IDH1 R132 mute	0,42	8800 8,4	3314 4	7298 11265	2	0	3312 3093	10612 11269	0,05 0,11	3014 9360
D05	IDH1 WT	378	7560	3097	8172	4	0	3093	11269	0,11	2979
D05	IDH1 R132 mute	0,69	13,8	10	17079	10	0	6278	17089	0,13	8887
D06	IDH1 WT	540	10800	6288	10801	10	0	6278	17089	0,13	2875
E01	IDH1 R132 mute	0,5	10	5	10706	5	0	3125	10711	0,13	9001
E01	IDH1 WT	407	8140	3130	7581	5	0	3125	10711	0,13	2785
E05	IDH1 R132 mute	0,08	1,6	1	14704	0	1	4509	14705	0,019	9705
E05	IDH1 WT	431	8620	4509	10196	0	1	4509	14705	0,019	3029
E06	IDH1 R132 mute	0,38	7,6	5	15327	5	0	3739	15332	0,12	9209
E06	IDH1 WT	329	6580	3744	11588	5	0	3739	15332	0,12	3004
F01	IDH1 R132 mute	0	0	0	10961	0	0	3265	10961	0	9353
F01	IDH1 WT	416	8320	3265	7696	0	0	3265	10961	0.0=	3885
F05	IDH1 R132 mute	0,28	5,6	3	12554	3	0	3797	12557	0,07	9966
F05 F06	IDH1 WT IDH1 R132 mute	424 0,18	8480	3800	8757 12924	3 2	0	3797 3070	12557	0,07	3503 9701
F06	IDH1 K132 mute	319	3,6 6380	3072	9854	2	0	3070	12926 12926	0,06	2984
G01	IDH1 R132 mute	0,37	7,4	3072	9614	3	0	3857	9617	0,06	9341
G01	IDH1 WT	604	12080	3860	5757	3	0	3857	9617	0,06	3129
G04	IDH1 R132 mute	0,26	5,2	2	8981	2	0	2599	8983	0,07	10213
G04	IDH1 WT	402	8040	2601	6382	2	0	2599	8983	0,07	3284
G05	IDH1 R132 mute	0,24	4,8	2	9715	2	0	3321	9717	0,05	9682
G05	IDH1 WT	492	9840	3323	6394	2	0	3321	9717	0,05	3139
G06	IDH1 R132 mute	0,7	14	7	12487	7	0	4043	12494	0,14	10137
G06	IDH1 WT	461	9220	4050	8444	7	0	4043	12494	0,14	3144
H01	IDH1 R132 mute	0,25	5	2	9497	2	0	3830	9499	0,04	9834
H01	IDH1 WT	608	12160	3832	5667	2	0	3830	9499	0,04	3288
H04	IDH1 R132 mute	0,27	5,4	2560	8839	2	0	2567	8841	0,07	9777
H04	IDHI WT	404	8080	2569	6272	2	0	2567	8841	0,07	3218
H05 H05	IDH1 R132 mute IDH1 WT	0,14 502	2,8	2925	8418 5494	1	0	2924 2924	8419	0,028	10345 3492
H06	IDH1 W1 IDH1 R132 mute	0,32	10040	3	10878	2	1	3499	8419 10881	0,028	9661
H06	IDH1 WT	457	9140	3501	7380	2	1	3499	10881	0,07	3104
1100	11/11/1/1	TJ /	7140	3301	1300		1	ンサノノ	10001	0,07	3104

<u>Annexe</u> : <u>Données brutes obtenues lors de la détermination de la LOD et LOQ par calcul de la moyenne et de l'écart type des VAF des échantillons WT de la position R140 d'IDH2</u>

N°	Cible	Concen- tration	Copies Per 20uL Well	Positives	Négatives	Ch1+ Ch2+	Ch1+ Ch2-	Ch1- Ch2+	Accepted Droplets	VAF (en %)	Seuil
A08	IDH2 140 mute	0,15	3	1	7779	1	0	3261	7780	0,024	7831
A08	IDH2 WT	639	12780	3262	4518	1	0	3261	7780	0,024	2705
A02	IDH2 140 mute	0,1	2	1	11217	1	0	3085	11218	0,028	7656
A02	IDH2 WT	378	7560	3086	8132	1	0	3085	11218	0,028	2696
G06	IDH2 140 mute	0,11	2,2	1	10940	1	0	2701	10941	0,03	7137
G06	IDH2 WT	334	6680	2702	8239	1	0	2701	10941	0,03	2579
H05	IDH2 140 mute	0,16	3,2	1	7406	1	0	2460	7407	0,03	7288
H05	IDH2 WT	475	9500	2461	4946	1	0	2460	7407	0,03	2593
F06	IDH2 140 mute	0,21	4,2	2	11314	2	0	4328	11316	0,037	7250
F06	IDH2 WT	567	11340	4330	6986	2	0	4328	11316	0,037	2683
C06	IDH2 140 mute	0,27	5,4	2	8860	1	1	3790	8862	0,04	7162
C06	IDH2 WT	657	13140	3791	5071	1	1	3790	8862	0,04	2679
B05	IDH2 140 mute	0,3	6	2	7860	1	1	3221	7862	0,05	7532
B05	IDH2 WT	620	12400	3222	4640	1	1	3221	7862	0,05	2675
C05	IDH2 140 mute	0,34	6,8	3	10386	3	0	4348	10389	0,05	7162
C05	IDH2 WT	638	12760	4351	6038	3	0	4348	10389	0,05	2675
E01	IDH2 140 mute	0,21	4,2	2	11256	2	0	3526	11258	0,05	7503
E01	IDH2 WT	442	8840	3528	7730	2	0	3526	11258	0,05	2805
F05	IDH2 140 mute	0,27	5,4	2	8618	2	0	3293	8620	0,05	7432
F05	IDH2 WT	567	11340	3295	5325	2	0	3293	8620	0,05	2618
H04	IDH2 140 mute	0,25	5	2	9427	2	0	3433	9429	0,05	7134
H04	IDH2 WT	533	10660	3435	5994	2	0	3433	9429	0,05	2686
H06	IDH2 140 mute	0,28	5,6	2	8359	2	0	2995	8361	0,05	7238
H06	IDH2 WT	522	10440	2997	5364	2	0	2995	8361	0,05	2593
C01	IDH2 140 mute	0,25	5	2	9436	2	0	2663	9438	0,06	7656
C01	IDH2 WT	390	7800	2665	6773	2	0	2663	9438	0,06	2696
B06	IDH2 140 mute	0,4	8	2	6056	2	0	2019	6058	0,08	6013
B06	IDH2 WT	478	9560	2021	4037	2	0	2019	6058	0,08	2276
E02	IDH2 140 mute	0,39	7,8	4	12179	4	0	3848	12183	0,09	7645
E02	IDH2 WT	447	8940	3852	8331	4	0	3848	12183	0,09	2748
H03	IDH2 140 mute	0,5	10	3	7034	2	1	2720	7037	0,09	7603
H03	IDH2 WT	575	11500	2722	4315	2	1	2720	7037	0,09	2705
D01	IDH2 140 mute	0,33	6,6	3	10857	3	0	2714	10860	0,1	7375
D01	IDH2 WT	339	6780	2717	8143	3	0	2714	10860	0,1	2696
D05	IDH2 140 mute	0,7	14	6	10032	6	0	4061	10038	0,11	7375
D05	IDH2 WT	611	12220	4067	5971	6	0	4061	10038	0,11	2666
G05	IDH2 140 mute	0,35	7	3	10030	3	0	2392	10033	0,11	7304
G05	IDH2 WT	321	6420	2395	7638	3	0	2392	10033	0,11	2705
B01	IDH2 140 mute	0,5	10	4	8936	4	0	2785	8940	0,12	7631
B01	IDH2 WT	440	8800	2789	6151	4	0	2785	8940	0,12	2804
C02	IDH2 140 mute	0,7	14	6	10817	5	1	3099	10823	0,16	7656
C02	IDH2 WT	398	7960	3104	7719	5	1	3099	10823	0,16	2696
A07	IDH2 140 mute	0	0	0	7856	0	0	3360	7856		7303
A07	IDH2 WT	657	13140	3360	4496	0	0	3360	7856		2682
B02	IDH2 140 mute	0	0	0	11338	0	0	3573	11338		7656
B02	IDH2 WT	445	8900	3573	7765	0	0	3573	11338		2696
D02	IDH2 140 mute	0	0	0	11694	0	0	2822	11694		7642
D02	IDH2 WT	325	6500	2822	8872	0	0	2822	11694		2683
D06	IDH2 140 mute	0	12000	2645	8655	0	0	3645	8655		7566
D06	IDH2 WT	643	12860	3645	5010	0	0	3645	8655		2660
E05	IDH2 140 mute	0	0	2250	9258	0	0	2250	9258		8881
E05	IDH2 WT	328	6560	2250	7008	0	0	2250	9258		3346

Annexe : Données brutes obtenues lors de la détermination de la LOD et LOQ par calcul de la moyenne et de l'écart type des VAF des échantillons WT de la position R172 d'IDH2

A02 IDH2 R172 mute	% 3cm 0,03 421 0,03 230 0,06 426 0,06 231 0,09 416 0,09 221 0 435 0 226 0,26 414 0,26 225 0,019 415 0,027 420 0,027 224 0,07 409 0,07 235 0 452 0 238 0,05 423 0,05 233 0,014 432 0,014 432 0,041 218 0,04 401 0,04 224
AO2 IDH2 R172 mute	0,06 426- 0,06 231- 0,09 416 0,09 221 0 435- 0 226 0,26 414 0,26 225- 0,019 415- 0,019 222- 0,027 420- 0,027 224 0,07 409- 0,07 235- 0 452- 0 220- 0 418- 0 0 238- 0,05 420- 0,05 233- 0,014 432- 0,014 253- 0,041 420- 0,041 218-
AOC IDH2 ITZ WIT	0,06 2311 0,09 416 0,09 221 0 4353 0 226 0,26 414 0,26 2253 0,019 415 0,019 2220 0,027 4200 0,027 224 0,07 4090 0,07 2353 0 4522 0 2200 0 418 0 238 0,05 4200 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,044 401
A06 IDH2 R172 mute	0,09 416 0,09 221 0 435 0 226 0,26 414 0,26 225 0,019 415 0,027 420 0,027 224 0,07 409 0,07 235 0 452 0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,041 253 0,041 218 0,04 401
A06 IDH2 172 WT	0,09 221 0 435 0 226 0,26 414 0,26 225 0,019 415 0,027 420 0,027 224 0,07 409 0,07 235 0 452 0 220 0 418 0 0 0,05 420 0,05 233 0,014 432 0,014 253 0,041 218 0,041 218 0,044 401
AO7 IDH2 R172 mute O	0 435: 0 226. 0,26 414. 0,26 225: 0,019 415: 0,019 222: 0,027 420: 0,027 224 0,07 409: 0,07 235: 0 452: 0 220: 0 418: 0 238: 0,05 420: 0,05 233: 0,014 432: 0,014 253: 0,041 420: 0,041 218:
A08 IDH2 IT2 WT	0 226. 0,26 414. 0,26 225. 0,019 415. 0,027 420. 0,027 224. 0,07 409. 0,07 235. 0 452. 0 238. 0,05 233. 0,05 233. 0,014 432. 0,014 253. 0,041 218. 0,041 218. 0,044 401.
A08 IDH2 IT2 mute 1,2 24 13 12389 13 0 4157 12402	0,26 414 0,26 225 0,019 415 0,019 222 0,027 420 0,027 224 0,07 409 0,07 235 0 452 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 218 0,04 401
A08 IDH2 172 WT	0,26 225. 0,019 415. 0,019 222. 0,027 420. 0,027 224. 0,07 409. 0,07 235. 0 452. 0 220. 0 418. 0 238. 0,05 420. 0,05 233. 0,014 432. 0,014 253. 0,041 420. 0,041 218. 0,04 401.
B01 IDH2 R172 mute 0,08	0,019 415. 0,019 222. 0,027 420. 0,027 224. 0,07 409. 0,07 235. 0 452. 0 220. 0 418. 0 238. 0,05 233. 0,014 432. 0,014 253. 0,041 420. 0,041 218. 0,04 401.
B01 IDH2 I72 WT	0,019 222: 0,027 420: 0,027 224: 0,07 409: 0,07 235: 0 452: 0 220: 0 418: 0 238: 0,05 420: 0,05 233: 0,014 432: 0,041 420: 0,041 218: 0,04 401:
B02 IDH2 R172 mute 0,12 2,4 1 9488 1 0 3082 9489 0 B02 IDH2 I72 WT 462 9240 3083 6406 1 0 3082 9489 0 B05 IDH2 R172 mute 0,47 9,4 5 12590 5 0 5521 12595 B05 IDH2 I72 WT 680 13600 5526 7069 5 0 5521 12595 B06 IDH2 R172 mute 0 0 0 12059 0 0 5135 12059 B06 IDH2 R172 mute 0 0 0 13608 0 0 5135 12059 B06 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 R172 mute 0,2 4 2 11695 2 3524 11697 C02 IDH2 R172 mute 0,2 4 2	0,027 420 0,027 224 0,07 409 0,07 235 0 452 0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,04 401
B02 IDH2 172 WT 462 9240 3083 6406 1 0 3082 9489 0 B05 IDH2 R172 mute 0,47 9,4 5 12590 5 0 5521 12595 B05 IDH2 172 WT 680 13600 5526 7069 5 0 5521 12595 B06 IDH2 R172 mute 0 0 0 12059 0 0 5135 12059 B06 IDH2 172 WT 653 13060 5135 6924 0 0 5135 12059 C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C05 IDH2 R172 mute 0,0 9 1,8	0,027 224 0,07 409 0,07 235 0 452 0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,04 401
B05 IDH2 R172 mute 0,47 9,4 5 12590 5 0 5521 12595 B05 IDH2 I72 WT 680 13600 5526 7069 5 0 5521 12595 B06 IDH2 R172 mute 0 0 0 12059 0 0 5135 12059 B06 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,2 4 2 1695 2 0 3524 11697 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,27 5,4 3	0,07 409 0,07 235 0 452 0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,04 401
B05 IDH2 172 WT 680 13600 5526 7069 5 0 5521 12595 B06 IDH2 R172 mute 0 0 0 12059 0 0 5135 12059 B06 IDH2 172 WT 653 13060 5135 6924 0 0 5135 12059 C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 172 WT 416 8320 4057 9551 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,9 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 <	0,07 235: 0 452: 0 220: 0 418: 0 238: 0,05 420: 0,05 233: 0,014 432: 0,014 253: 0,041 420: 0,041 218:
B06 IDH2 R172 mute 0 0 12059 0 5135 12059 B06 IDH2 172 WT 653 13060 5135 6924 0 0 5135 12059 C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 172 WT 416 8320 4057 9551 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 172 WT 657 13140 5552	0 452' 0 220' 0 418' 0 238: 0,05 420' 0,05 233' 0,014 432' 0,014 253' 0,041 420' 0,041 218: 0,044 401'
B06 IDH2 172 WT 653 13060 5135 6924 0 0 5135 12059 C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 R172 mute 0 0 0 4057 9551 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 R172 mute <td>0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,044 401</td>	0 220 0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,044 401
C01 IDH2 R172 mute 0 0 0 13608 0 0 4057 13608 C01 IDH2 172 WT 416 8320 4057 9551 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 R172 mute 0,027 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 R172 mute	0 418 0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,044 401
C01 IDH2 172 WT 416 8320 4057 9551 0 0 4057 13608 C02 IDH2 R172 mute 0,2 4 2 11695 2 0 3524 11697 C02 IDH2 R172 WT 422 8440 3526 8171 2 0 3524 11697 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 172 WT 639 12780 5397 7487 1 0 5396 12884 0 C06 IDH2 172 wt 639 12780 5397 7487 1 0 5396 12884 0 C06 IDH2 172 wt 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 172 wt 588 11760 5929 9136 3 0 5926 <td>0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,04 401</td>	0 238 0,05 420 0,05 233 0,014 432 0,014 253 0,041 420 0,041 218 0,04 401
C02 IDH2 172 WT 422 8440 3526 8171 2 0 3524 11697 C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 172 WT 639 12780 5397 7487 1 0 5396 12884 0 C06 IDH2 172 WT 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 172 WT 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 172 WT 658 11760 5929 9136 3 0 5926 15065 D01 IDH2 172 WT 588 11760 5929 9136 3 0 5926 15065 D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 17	0,05 2330 0,014 4320 0,014 2530 0,041 4200 0,041 2180 0,04 4010
C05 IDH2 R172 mute 0,09 1,8 1 12883 1 0 5396 12884 0 C05 IDH2 172 WT 639 12780 5397 7487 1 0 5396 12884 0 C06 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 R172 mute 0 0 0 13319 0 4816 12319 D05 IDH2 R172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 R172 mute 0 0<	0,014 432 0,014 253 0,041 420 0,041 218 0,04 401
C05 IDH2 172 WT 639 12780 5397 7487 1 0 5396 12884 0 C06 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 172 WT 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D05 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D05 IDH2 R172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0	0,014 253 0,041 420 0,041 218 0,04 401
C06 IDH2 R172 mute 0,27 5,4 3 12971 3 0 5549 12974 0 C06 IDH2 172 WT 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 172 WT 588 11760 5929 9136 3 0 5926 15065 D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D05 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 </td <td>0,041 420 0,041 218 0,04 401</td>	0,041 420 0,041 218 0,04 401
C06 IDH2 172 WT 657 13140 5552 7422 3 0 5549 12974 0 D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 172 WT 588 11760 5929 9136 3 0 5926 15065 D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 <td>0,041 218. 0,04 4019</td>	0,041 218. 0,04 4019
D01 IDH2 R172 mute 0,23 4,6 3 15062 3 0 5926 15065 D01 IDH2 172 WT 588 11760 5929 9136 3 0 5926 15065 D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389	0,04 401
D01 IDH2 172 WT 588 11760 5929 9136 3 0 5926 15065 D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 R172 mute 0,19 3,8 2 12489	,
D02 IDH2 R172 mute 0 0 0 12319 0 0 4816 12319 D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 R172 mute 0 0 0	0,04 224
D02 IDH2 172 WT 583 11660 4816 7503 0 0 4816 12319 D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 R172 mute 0 0 0	0 404
D05 IDH2 172 WT 615 12300 5654 8228 0 0 5654 13882 D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 R172 mute 614 12280 5479 7996 0 0 5479 13475 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 R172 mute 0 0 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 I72 WT 439 8780	0 494
D05 IDH2 R172 mute 0 0 0 13882 0 0 5654 13882 D06 IDH2 172 WT 614 12280 5479 7996 0 0 5479 13475 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 172 WT 526 10520 4830 8563 4 0 4826 13393 E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 I72 WT 439 8780 4185 9244 0 0 4185 13429	0 284 0 282
D06 IDH2 172 WT 614 12280 5479 7996 0 0 5479 13475 D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 172 WT 526 10520 4830 8563 4 0 4826 13393 E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 I72 WT 439 8780 4185 9244 0 0 4185 13429	0 423
D06 IDH2 R172 mute 0 0 0 13475 0 0 5479 13475 E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 172 WT 526 10520 4830 8563 4 0 4826 13393 E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0 228
E01 IDH2 R172 mute 0,35 7 4 13389 4 0 4826 13393 E01 IDH2 172 WT 526 10520 4830 8563 4 0 4826 13393 E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0 416
E01 IDH2 172 WT 526 10520 4830 8563 4 0 4826 13393 E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0,07 400
E02 IDH2 R172 mute 0,19 3,8 2 12489 2 0 4515 12491 0 E02 IDH2 172 WT 528 10560 4517 7974 2 0 4515 12491 0 E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0,07 251
E05 IDH2 R172 mute 0 0 0 13429 0 0 4185 13429 E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0,036 399:
E05 IDH2 172 WT 439 8780 4185 9244 0 0 4185 13429	0,036 231
	0 423
E06 IDH2 R172 mute 0.09 1.8 1 13510 1 0 4150 13511	0 232
, ,	0,02 426
	0,02 233
	0,017 421
	0,017 229
	0,018 416
	0,018 220° 0,017 270°
	0,01 7 2700 0,017 4190
G06 IDH2 172 WT 554 11080 4626 7697 0 0 4626 12323	0 228
G06 IDH2 R172 mute 0 0 12323 0 0 4626 12323	0 417
H03 IDH2 I72 WT 526 10520 4782 8492 0 0 4782 13274	0 296
H03 IDH2 R172 mute 0 0 13274 0 0 4782 13274	0 460
	0,034 238
	0,034 394
	0,021 246:
	0,021 401
	0,04 238
H06 IDH2 R172 mute 0,2 4 2 11988 2 0 3866 11990	0.04 402

Annexe : Données brutes obtenues lors des essais de quantification par ddPCR de la position R132C d'IDH1

N°	Nom	Cible	Concentration	Copies Per 20uL Well	Positives	Négatives	Ch1+ Ch2+	Ch1+ Ch2-	Ch1- Ch2+	Accepted Droplets	VAF (en %)	Seuil
F01	IDH1 0.1 x1	IDH1 mute	0,52	10,4	6	13568	4	2	4321	13574	0,12	10291
F01	IDH1 0.1 x1	IDH1 WT	451,00	9020,00	4325	9249	4	2	4321	13574	0,12	3268
B03 H03	IDH1 0.1 x3 IDH1 0.1 x4	IDH1 mute IDH1 mute	1,00	20,00 18,00	12 11	14491 13619	9	8	4898 4614	14503 13630	0,2	10802 11285
B03	IDH1 0.1 x3	IDH1 WT	486,00	9720,00	4907	9596	9	3	4898	14503	0,19	3243
H03	IDH1 0.1 x4	IDH1 WT	487,00	9740,00	4617	9013	3	8	4614	13630	0,19	3258
F04	IDH1 0.1 x5	IDH1 mute	0,9	18,00	12	15009	8	4	4827	15021	0,21	11182
F04	IDH1 0.1 x5	IDH1 WT	457,00	9140,00	4835	10186	8	4	4827	15021	0,21	3256
D02		IDH1 mute	1,2	24,00	17	16421	13	4	5440	16438	0,26	10717
D02	IDH1 0.1 x2	IDH1 WT IDH1 mute	474,00	9480,00	5453 39	10985	13 19	4	5440	16438	0,26	3243
G03 G03	IDH1 0.5 x4 IDH1 0.5 x4	IDH1 mute IDH1 WT	3,00 473,00	9460,00	5119	15420 10340	19	20	5100 5100	15459 15459	0,62	11182 3256
A03	IDH1 0.5 x3	IDH1 WT	475,00	9500,00	4906	9858	17	22	4889	14764	0,65	3256
A03	IDH1 0.5 x3	IDH1 mute	3,1	62,00	39	14725	17	22	4889	14764	0,65	11182
C02	IDH1 0.5 x2	IDH1 mute	3,4	68,00	42	14538	13	29	4882	14580	0,7	11030
C02	IDH1 0.5 x2	IDH1 WT	481,00	9620,00	4895	9685	13	29	4882	14580	0,7	3258
E01	IDH1 0.5 x1	IDH1 mute	3,6	72,00	47	15248	23	24	4871	15295	0,79	10433
E01	IDH1 0.5 x1	IDH1 WT	454,00	9080,00	4894	10401	23	24	4871	15295	0,79	3321
E04 E04	IDH1 0.5 x5 IDH1 0.5 x5	IDH1 mute IDH1 WT	3,8 456,00	76,00 9120,00	43 4241	13160 8962	17 17	26 26	4224 4224	13203 13203	0,83	11182 3256
H02	IDH1 0.3 x3	IDH1 mute	5,2	104,00	63	14173	16	47	4677	14236	1,1	11182
H02	IDH1 1 x3	IDH1 WT	471,00	9420,00	4693	9543	16	47	4677	14236	1,1	3256
D01	IDH1 1 x1	IDH1 mute	6,2	124,00	72	13706	30	42	4493	13778	1,3	10433
D01	IDH1 1 x1	IDH1 WT	468,00	9360,00	4523	9255	30	42	4493	13778	1,3	3321
F03	IDH1 1 x4	IDH1 mute	6,6	132,00	81	14397	20	61	4775	14478	1,38	11182
F03	IDH1 1 x4	IDH1 WT	473,00	9460,00	4795	9683	20	61	4775	14478	1,38	3256
B02	IDH1 1 x2	IDH1 WT	454,00	9080,00	5030	10695	35	57	4995	15725	1,5	3168
B02 D04	IDH1 1 x2 IDH1 1 x5	IDH1 mute IDH1 mute	6,9 7,1	138,00	92 82	15633 13612	35 26	57 56	4995 4317	15725 13694	1,5 1,55	10689 11182
D04	IDH1 1 x5	IDH1 WT	449,00	8980,00	4343	9351	26	56	4317	13694	1,55	3256
G02	IDH1 2 x3	IDH1 mute	12,2	244,00	153	14638	58	95	4734	14791	2,59	11182
G02	IDH1 2 x3	IDH1 WT	461,00	9220,00	4792	9999	58	95	4734	14791	2,59	3256
C01	IDH1 2 x1	IDH1 WT	461,00	9220,00	4766	9947	51	109	4715	14713	2,72	3308
C01	IDH1 2 x1	IDH1 mute	12,9	258,00	160	14553	51	109	4715	14713	2,72	10267
E03	IDH1 2 x4	IDH1 WT	466,00	9320,00	5448	11224	66	124	5382	16672	2,82	3256
E03 A02	IDH1 2 x4	IDH1 mute IDH1 WT	13,5	270,00	190	16482 9525	66 59	124	5382	16672	2,82	11182
A02	IDH1 2 x2 IDH1 2 x2	IDH1 W1 IDH1 mute	464,00 13,70	9280,00 274,00	4600 164	13961	59	105 105	4541 4541	14125 14125	2,88 2,88	3178 10547
C04	IDH1 2 x2	IDH1 WT	454,00	9080,00	4452	9444	57	102	4395	13896	2,89	3256
C04	IDH1 2 x5	IDH1 mute	13,5	270,00	159	13737	57	102	4395	13896	2,89	11182
D03	IDH1 5 x4	IDH1 WT	467,00	9340,00	4996	10266	126	266	4870	15262	6,2	3256
D03	IDH1 5 x4	IDH1 mute	30,6	612,00	392	14870	126	266	4870	15262	6,2	11182
B04	IDH1 5 x5	IDH1 WT	441,00	8820,00	3954	8694	120	221	3834	12648	6,8	3256
B04	IDH1 5 x5	IDH1 mute	32,2	644,00	341	12307	120	221	3834	12648	6,8	11182
B01 B01	IDH1 5 x1 IDH1 5 x1	IDH1 WT IDH1 mute	454,00 33,5	9080,00 670,00	4481 393	9525 13613	139 139	254 254	4342 4342	14006 14006	6,9	3318 10298
H01	IDH1 5 x1	IDH1 mute	34,1	682,00	386	13143	139	255	4342	13529	6,8	10298
H01	IDH1 5 x2	IDH1 WT	463,00	9260,00	4404	9125	131	255	4273	13529	6,8	3129
F02	IDH1 5 x3	IDH1 WT	462,00	9240,00	4601	9578	140	274	4461	14179	7,00	3256
F02	IDH1 5 x3	IDH1 mute	34,9	698,00	414	13765	140	274	4461	14179	7,00	11182
A04	IDH1 15 x5	IDH1 WT	424,00	8480,00	3974	9157	322	648	3652	13131	17,6	3256
A04	IDH1 15 x5	IDH1 mute	90,00	1800,00	970	12161	322	648	3652	13131	17,6	11182
E02	IDH1 15 x3	IDH1 mute	97,00	1940,00	1142	13285	340	802	4103	14427	18,3	10772
E02 G01	IDH1 15 x3 IDH1 15 x2	IDH1 WT IDH1 mute	433,00 96,1	8660,00 1922,00	4443 1149	9984 13500	340 361	802 788	4103	14427 14649	18,3 18,7	3238 10433
G01	IDH1 15 x2	IDH1 WT	418,00	8360,00	4380	10269	361	788	4019	14649	18,7	3321
C03	IDH1 15 x2	IDH1 WT	422,00	8440,00	4700	10878	391	888	4309	15578	19,3	3258
C03	IDH1 15 x4	IDH1 mute	101,00	2020,00	1279	14299	391	888	4309	15578	19,3	10866
A01	IDH1 15 x1	IDH1 WT	410,00	8200,00	3931	9422	325	746	3606	13353	19,3	3301
A01	IDH1 15 x1	IDH1 mute	98,00	1960,00	1071	12282	325	746	3606	13353	19,3	10235

Annexe : Données brutes obtenues lors des essais de quantification par ddPCR de la position R140Q d'IDH2

N°	Nom	Cible	Concentration	Copies Per 20uL Well	Positives	Négatives	Ch1+ Ch2+	Ch1+ Ch2-	Ch1- Ch2+	Accepted Droplets	VAF (en %)	Seuil
D02	R140Q 0.1 x2	IDH2R140 mute	0,52	10,4	8	18251	5	3	6093	18259	0,11	8376
D02	R140Q 0.1 x2	IDH2 WT	478	9560	6098	12161	5	3	6093	18259	0,11	2095
B03	R140Q 0.1 x3	IDH2R140 mute	0,59	11,8	8	15995	7	1	5374	16003	0,12	8300
B03	R140Q 0.1 x3	IDH2 WT	482	9640	5381	10622	7	1	5374	16003	0,12	2275
F04	R140Q 0.1 x5	IDH2R140 mute	0,59	11,8	9	17874	6	3	5907	17883	0,13	8205
F04	R140Q 0.1 x5	IDH2 WT	472	9440	5913	11970	6	3	5907	17883	0,13	2238
F01	R140Q 0.1 x1	IDH2R140 mute	0,68	13,6	9	15555	4	5	5137	15564	0,14	8358
F01	R140Q 0.1 x1	IDH2 WT	472	9440	5141	10423	4	5 4	5137	15564	0,14	2149
H03 H03	R140Q 0.1 x4 R140Q 0.1 x4	IDH2R140 mute IDH2 WT	1 492	20 9840	11 4634	13557 8934	7	4	4627 4627	13568 13568	0,19 0,19	8508 2354
E01	R140Q 0.1 x4	IDH2R140 mute	1,4	28	19	15539	7	12	5166	15558	0,19	8026
E01	R140Q 0.5 x1	IDH2 WT	476	9520	5173	10385	7	12	5166	15558	0,3	2099
E04	R140Q 0.5 x5	IDH2R140 mute	1,8	36	27	17165	17	10	5695	17192	0,39	8262
E04	R140Q 0.5 x5	IDH2 WT	475	9500	5712	11480	17	10	5695	17192	0,39	2354
A03	R140Q 0.5 x3	IDH2 WT	478	9560	5592	11163	13	21	5579	16755	0,5	2164
A03	R140Q 0.5 x3	IDH2R140 mute	2,4	48	34	16721	13	21	5579	16755	0,5	8243
G03	R140Q 0.5 x4	IDH2R140 mute	2,5	50	31	14615	15	16	4957	14646	0,51	8433
G03	R140Q 0.5 x4	IDH2 WT	488	9760	4972	9674	15	16	4957	14646	0,51	2324
C02	R140Q 0.5 x2	IDH2R140 mute	2,8	56	44	18440	17	27	6115	18484	0,59	8451
C02	R140Q 0.5 x2	IDH2 WT	474	9480	6132	12352	17	27	6115	18484	0,59	2264
B02	R140Q 1 x2	IDH2 WT	471	9420	5739	11647	24	35	5715	17386	0,84	2167
B02	R140Q 1 x2	IDH2R140 mute	4	80	59	17327	24	35	5715	17386	0,84	8115
H02	R140Q 1 x3	IDH2R140 mute	4,1	82	50	14288	25	25	4758	14338	0,85	8054
H02	R140Q 1 x3	IDH2 WT	477	9540	4783	9555	25	25	4758	14338	0,85	2152
D04	R140Q 1 x5	IDH2R140 mute	4,3	86	67	18342	27	40	6034	18409	0,9	8414
D04	R140Q 1 x5	IDH2 WT	470	9400	6061	12348	27	40	6034	18409	0,9	2373
D01	R140Q 1 x1	IDH2 WT	464	9280	4864	10056	22	37	4842	14920	0,99	2149
D01	R140Q 1 x1	IDH2R140 mute	4,7	94	59	14861	22	37	4842	14920	0,99	8358
F03	R140Q 1 x4	IDH2R140 mute	5,3	106	70	15606	26	44	5250	15676	1,08	8414
F03 A02	R140Q 1 x4 R140Q 2 x2	IDH2 WT IDH2 WT	483 453	9660 9060	5276 6012	10400 12790	26 32	44 77	5250 5980	15676 18802	1,08 1,49	2388 2096
A02	R140Q 2 x2	IDH2R140 mute	6,8	136	109	18693	32	77	5980	18802	1,49	8092
G02	R140Q 2 x3	IDH2R140 mute	6,8	136	88	15223	27	61	4590	15311	1,58	8205
G02	R140Q 2 x3	IDH2 WT	422	8440	4617	10694	27	61	4590	15311	1,58	2105
E03	R140Q 2 x4	IDH2R140 mute	8,4	168	110	15430	43	67	5071	15540	1,75	8601
E03	R140Q 2 x4	IDH2 WT	470	9400	5114	10426	43	67	5071	15540	1,75	2335
C01	R140Q 2 x1	IDH2 WT	473	9460	5286	10693	54	62	5232	15979	1,78	2145
C01	R140Q 2 x1	IDH2R140 mute	8,6	172	116	15863	54	62	5232	15979	1,78	8269
C04	R140Q 2 x5	IDH2 WT	441	8820	5562	12233	43	78	5519	17795	1,79	2361
C04	R140Q 2 x5	IDH2R140 mute	8	160	121	17674	43	78	5519	17795	1,79	8451
H01	R140Q 5 x2	IDH2R140 mute	19,1	382	222	13531	78	144	4171	13753	4,2	8358
H01	R140Q 5 x2	IDH2 WT	435	8700	4249	9504	78	144	4171	13753	4,2	2149
F02	R140Q 5 x3	IDH2R140 mute	20	400	309	18052	105	204	5730	18361	4,25	8262
F02	R140Q 5 x3	IDH2 WT	450	9000	5835	12526	105	204	5730	18361	4,25	2141
B01	R140Q 5 x1	IDH2 WT	445	8900	4878	10602	90	170	4788	15480	4,3	2149
B01 D03	R140Q 5 x1 R140Q 5 x4	IDH2R140 mute IDH2 WT	19,9 469	398 9380	260 4825	15220 9856	90	170 183	4788 4735	15480 14681	4,3 4,5	8358 2328
D03	R140Q 5 x4	IDH2 W I IDH2R140 mute	22,1	9380 442	273	14408	90	183	4735	14681	4,5	8446
B04	R140Q 5 x5	IDH2 WT	440	8800	5654	12464	103	217	5551	18118	4,55	2388
B04	R140Q 5 x5	IDH2R140 mute	21	420	320	17798	103	217	5551	18118	4,55	8224
G01	R140Q 15 x2	IDH2 WT	386	7720	4250	10960	207	528	4043	15210	13,1	2149
G01	R140Q 15 x2	IDH2R140 mute	58,3	1166	735	14475	207	528	4043	15210	13,1	8358
A04	R140Q 15 x5	IDH2 WT	380	7600	4929	12922	240	636	4689	17851	13,5	2320
A04	R140Q 15 x5	IDH2R140 mute	59,2	1184	876	16975	240	636	4689	17851	13,5	8035
E02	R140Q 15 x3	IDH2 WT	390	7800	5272	13395	279	667	4993	18667	13,5	2134
E02	R140Q 15 x3	IDH2R140 mute	61,2	1224	946	17721	279	667	4993	18667	13,5	8269
C03	R140Q 15 x4	IDH2 WT	391	7820	4449	11287	222	579	4227	15736	13,6	2298
C03	R140Q 15 x4	IDH2R140 mute	61,5	1230	801	14935	222	579	4227	15736	13,6	8468
A01	R140Q 15 x1	IDH2 WT	384	7680	4171	10805	233	565	3938	14976	14,4	2149
A01	R140Q 15 x1	IDH2R140 mute	64,4	1288	798	14178	233	565	3938	14976	14,4	8358

Annexe : Données brutes obtenues lors des essais de quantification par dd PCR de la position R172K d'IDH2

N°	Nom	Cible	Concen- tration	Copies Per 20uL Well	Positives	Négatives	Ch1+ Ch2+	Ch1+ Ch2-	Ch1- Ch2+	Accepted Droplets	VAF (en %)	Seuil
B03	R172K 0.1 x3	R172 mute	0,57	11,4	8	16486	3	5	5275	16494	0,13	5394
B03	R172K 0.1 x3	R172 WT	454	9080	5278	11216	3	5	5275	16494	0,13	2215
F04	R172K 0.1 x5	R172 mute	0,63	12,6	9	16745	1	8	5321	16754	0,14	5295
F04	R172K 0.1 x5	R172 WT	450	9000	5322	11432	1	8	5321	16754	0,14	2122
H03	R172K 0.1 x4		0,9	18	11	14598	8	3	4625	14609	0,2	5217
H03	R172K 0.1 x4	R172 WT	449	8980	4633	9976	8	3	4625	14609	0,2	2218
D02		R172 mute	1	20	15	17637	7	8	5880	17652	0,21	5504
D02	R172K 0.1 x2	R172 WT	477	9540	5887	11765	7	8	5880	17652	0,21	2203
F01	R172K 0.1 x1		1 472	20	13	14648 9806	9	4	4846	14661	0,22 0,22	5582
F01 A03	R172K 0.1 x1	R172 WT R172 WT	473 452	9460 9040	4855 5119	10935	11	16	4846 5108	14661 16054	0,22	2185 2215
A03		R172 w1	2	40	27	16027	11	16	5108	16054	0,44	5372
G03	R172K 0.5 x3	R172 mute	2,2	44	28	15161	13	15	4955	15189	0,44	5308
G03	R172K 0.5 x4	R172 WT	466	9320	4968	10221	13	15	4955	15189	0,46	2280
C02	R172K 0.5 x2	R172 mute	2,5	50	38	18075	21	17	5861	18113	0,53	5504
C02	R172K 0.5 x2	R172 WT	462	9240	5882	12231	21	17	5861	18113	0,53	2203
E04	R172K 0.5 x5	R172 mute	3,1	62	45	17231	13	32	5523	17276	0,67	5306
E04	R172K 0.5 x5	R172 WT	454	9080	5536	11740	13	32	5523	17276	0,67	2237
E01	R172K 0.5 x1	R172 mute	3,5	70	43	14582	20	23	4791	14625	0,73	5571
E01	R172K 0.5 x1		469	9380	4811	9814	20	23	4791	14625	0,73	2222
H02	R172K 1 x3	R172 mute	3,9	78	51	15399	12	39	5045	15450	0,83	5394
H02	R172K 1 x3	R172 WT	466	9320	5057	10393	12	39	5045	15450	0,83	2211
D01	R172K 1 x1	R172 mute	4	80	51	14903	20	31	4918	14954	0,85	5527
D01	R172K 1 x1	R172 WT	472	9440	4938	10016	20	31	4918	14954	0,85	2215
B02	R172K 1 x2	R172 WT	457	9140	5549	11691	25	41	5524	17240	0,98	2203
B02	R172K 1 x2	R172 mute	4,5	90	66	17174	25	41	5524	17240	0,98	5504
F03	R172K 1 x4	R172 mute	4,7	94	61	15101	23	38	4855	15162	1,03	5460
F03	R172K 1 x4	R172 WT	457	9140	4878	10284	23	38	4855	15162	1,03	2220
D04	R172K 1 x5	R172 WT	461	9220	5368	11203	19	49	5349	16571	1,04	2226
D04	R172K 1 x5	R172 mute	4,8	96	68	16503	19	49	5349	16571	1,04	5339
C01	R172K 2 x1	R172 WT	448	8960	4810	10376	34	68	4776	15186	1,74	2185
C01	R172K 2 x1	R172 mute	7,9	158	102	15084	34	68	4776	15186	1,74	5615
E03	R172K 2 x4	R172 mute	8,5	170	110	15172	38	72	4789	15282	1,87	5350
E03	R172K 2 x4	R172 WT	447	8940	4827	10455	38	72	4789	15282	1,87	2207
G02	R172K 2 x3	R172 mute	8,8	176	133	17645	44	89	5616	17778	1,92	5433
G02	R172K 2 x3	R172 WT	451	9020	5660	12118	44	89	5616	17778	1,92	2227
C04	R172K 2 x5	R172 WT	452	9040	5526	11798	42	89	5484	17324	1,94	2218
C04	R172K 2 x5	R172 mute	8,9	178	131	17193	42	89	5484	17324	1,94	5328
A02	R172K 2 x2	R172 WT	445	8900	5267	11458	47	88	5220	16725	2,1	2203
A02	R172K 2 x2	R172 mute	9,5	190	135	16590	47	172	5220	16725	2,1	5504
	R172K 5 x4	R172 WT	427	8540	4777	10919	95	173	4682	15696		2196
F02	R172K 5 x3	R172 WT	436 20,5	8720 410	5537 309	12327	102	207 207	5435 5435	17864 17864	4,49	2218 5416
F02	R172K 5 x3	R172 mute			268	17555 15428	102 95		4682	17864		
D03 H01	R172K 5 x4	R172 mute	20,3	406	268	13428	59	173 164	3741	12720	4,5	5350 5482
H01	R172K 5 x2 R172K 5 x2	R172 mute	418	8360	3800	8920	59	164	3741	12720	4,7	2192
B04	R172K 5 x2 R172K 5 x5	R172 WT	432	8640	5144	11581	86	239	5058	16725	5,1	2319
B04	R172K 5 x5	R172 w 1	23,1	462	325	16400	86	239	5058	16725	5,1	5339
A01	R172K 5 X5	R172 WT	380	7600	3579	9382	192	459	3387	12961	13,8	2270
A01		R172 w1	60,6	1212	651	12310	192	459	3387	12961	13,8	5596
A04		R172 WT	363	7260	4517	12479	228	640	4289	16996	14,5	2233
	R172K 15 x5	R172 mute	61,7	1234	868	16128	228	640	4289	16996	14,5	5184
G01	R172K 15 x2	R172 WT	379	7580	4015	10571	241	582	3774	14586	15,3	2263
G01	R172K 15 x2	R172 mute	68,3	1366	823	13763	241	582	3774	14586	15,3	5445
E02	R172K 15 x3	R172 WT	367	7340	4825	13187	267	740	4558	18012	15,6	2196
E02	R172K 15 x3	R172 mute	67,7	1354	1007	17005	267	740	4558	18012	15,6	5470
C03	R172K 15 x4	R172 WT	371	7420	4232	11404	240	666	3992	15636	15,9	2274
C03	R172K 15 x4	R172 mute	70,2	1404	906	14730	240	666	3992	15636	15,9	5438
	- '-										.,,	

<u>Annexe</u> : <u>Données brutes obtenues lors de l'analyse en ddPCR pour les vérifications des limites de quantification des mutations moins fréquentes d'*IDH1* et d'*IDH2*</u>

				Copies								
			Concen-	Per 20uL	Posi-	Néga-	Ch1+	Ch1+	Ch1-	Accepted	VAF	
N°	Nom	Cible	tration	Well	tives	tives	Ch2+	Ch2-	Ch2+	Droplets	(en %)	Seuil
A01	R132H x1	IDH1 mute	1,7	34	21	14409	5	16	4522	14430	0,39	11056
A01	R132H x1	IDH1 WT	443	8860	4527	9903	5	16	4522	14430	0,39	2904
A02	R132H x2	IDH1 mute	1	20	14	16146	6	8	5370	16160	0,21	10393
A02	R132H x2	IDH1 WT	476	9520	5376	10784	6	8	5370	16160	0,21	2914
A03	R132H x3	IDH1 mute	1,7	34	22	15553	16	6	5170	15575	0,35	10709
A03	R132H x3	IDH1 WT	476	9520	5186	10389	16	6	5170	15575	0,35	2825
A04	R132H x4	IDH1 mute	1,4	28	20	16868	9	11	5521	16888	0,3	11119
A04	R132H x4	IDH1 WT	467	9340	5530	11358	9	11	5521	16888	0,3	2979
A05	R132H x5	IDH1 mute	1,2	24	18	17631	10	8	5806	17649	0,25	11119
A05	R132H x5	IDH1 WT	470	9400	5816	11833	10	8	5806	17649	0,25	2979
B01	R132S x1	IDH1 mute	1,3	26	17	15919	11	6	5224	15936	0,27	11119
B01	R132S x1	IDH1 WT	469	9380	5235	10701	11	6	5224	15936	0,27	2979
B02	R132S x2	IDH1 mute	1,3	26	17	15634	7	10	5164	15651	0,27	11119
B02	R132S x2	IDH1 WT	472	9440	5171	10480	7	10	5164	15651	0,27	2979
B03	R132S x3	IDH1 mute	1,4	28	20	16333	9	11	5370	16353	0,31	11119
B03	R132S x3	IDH1 WT	469	9380	5379	10974	9	11	5370	16353	0,31	2979
B04	R132S x4	IDH1 mute	1,6	32	23	17232	13	10	5698	17255	0,33	11119
B04	R132S x4	IDH1 WT	473	9460	5711	11544	13	10	5698	17255	0,33	2979
B05	R132S x5	IDH1 mute	1,2	24	19	17911	11	8	5790	17930	0,27	11119
B05	R132S x5	IDH1 WT	460	9200	5801	12129	11	8	5790	17930	0,27	2979
C01	R132G x1	IDH1 mute	1,6	32	20	14891	11	9	4906	14911	0,33	10267
C01	R132G x1	IDH1 WT	471	9420	4917	9994	11	9	4906	14911	0,33	2954
C02	R132G x2	IDH1 mute	2,1	42	30	16916	20	10	5554	16946	0,44	10677
C02	R132G x2	IDHI WT	469 1,9	9380	5574 26	11372	20 14	10 12	5554	16946	0,44	2845
C03	R132G x3	IDH1 mute	481	38 9620		15913	•	12	5338	15939	0,4	11119
C03	R132G x3 R132G x4	IDH1 WT IDH1 mute	2,1	42	5352 33	10587 18148	14 16	17	5338 5803	15939 18181	0,4	2979 11119
C04	R132G x4	IDH1 mule IDH1 WT	454	9080	5819	12362	16	17	5803	18181	0,47	2979
C04	R132G x5	IDH1 mute	1,7	34	25	17687	17	8	5790	17712	0,47	11119
C05	R132G x5	IDH1 mule IDH1 WT	467	9340	5807	11905	17	8	5790	17712	0,35	2979
D01	R132G x5	IDH1 mute	1,6	32	21	15435	14	7	5123	15456	0,34	9950
D01	R132L x1	IDH1 WT	475	9500	5137	10319	14	7	5123	15456	0,34	2984
D01	R132L x2	IDH1 WT	452	9040	5254	11213	6	10	5248	16467	0,34	2974
D02	R132L x2	IDH1 mute	1,1	22	16	16451	6	10	5248	16467	0,25	10614
	R132L x2	IDH1 WT	464	9280	5133	10431	12	5	5121	15736	0,23	2979
D03	R132L x3	IDH1 mute	1,3	26	17	15719	12	5	5121	15736	0,27	11119
D03	R132L x4	IDH1 mute	2,1	42	32	18099	17	15	5905	18131	0,44	11119
D04	R132L x4	IDH1 WT	465	9300	5922	12209	17	15	5905	18131	0,44	2979
D05	R132L x5	IDH1 mute	2,1	42	30	17014	17	13	5660	17044	0,43	11119
D05	R132L x5	IDH1 WT	477	9540	5677	11367	17	13	5660	17044	0,43	2979
E01	ADN T- R132	IDH1 WT	462	9240	4990	10379	4	0	4986	15369	0,43	2989
E01	ADN T- R132	IDH1 mute	0,31	6,2	4	15365	4	0	4986	15369	0,07	10412
E02	NTC R132	IDH1 mute	0,51	0,2	0	16564	0	0	0	16564	·,··	9915
E02	NTC R132	IDH1 WT	0	0	0	16564	0	0	0	16564		1792
F01	R140W x1	IDH2 R140 WT	475	9500	5229	10521	8	9	5221	15750	0,27	2066
F01	R140W x1	IDH2 R140 mute	1,3	26	17	15733	8	9	5221	15750	0,27	8357
F02	R140W x2	IDH2 R140 WT	485	9700	5362	10498	8	11	5354	15860	0,29	2066
F02	R140W x2	IDH2 R140 mute	1,4	28	19	15841	8	11	5354	15860	0,29	8357
F03	R140W x3	IDH2 R140 WT	500	10000	4983	9415	6	9	4977	14398	0,24	2066
F03	R140W x3	IDH2 R140 mute	1,2	24	15	14383	6	9	4977	14398	0,24	8357
F04	R140W x4	IDH2 R140 WT	502	10040	6034	11327	8	8	6026	17361	0,22	2066
F04	R140W x4	IDH2 R140 mute	1,1	22	16	17345	8	8	6026	17361	0,22	8357
F05	R140W x5	IDH2 R140 WT	488	9760	5829	11344	8	10	5821	17173	0,25	2066
F05	R140W x5	IDH2 R140 mute	1,2	24	18	17155	8	10	5821	17173	0,25	8357
G01	R140L x1	IDH2 R140 WT	490	9800	5429	10513	5	5	5424	15942	0,15	2066
											, -	

	ID III2 D I 10	0.54	440	1.0	1.5022	-	-	5 40 A			00.55
R140L x1	IDH2 R140 mute	0,74	14,8	10	15932	5	5	5424	15942	0,15	8357
R140L x2	IDH2 R140 WT	482	9640	5925	11707	15	9	5910	17632	0,33	2066
R140L x2	IDH2 R140 mute	1,6	32	24	17608	15	9	5910	17632	0,33	8357
R140L x3	IDH2 R140 WT	495	9900	5408	10329	8	12	5400	15737	0,3	2066
R140L x3	IDH2 R140 mute	1,5	30	20	15717	8	12	5400	15737	0,3	8357
R140L x4	IDH2 R140 WT	480	9600	6020	11934	9	8	6011	17954	0,23	2066
R140L x4	IDH2 R140 mute	1,1	22	17	17937	9	8	6011	17954	0,23	8357
R140L x5	IDH2 R140 WT	502	10040	5972	11230	10	5	5962	17202	0,2	2066
R140L x5	IDH2 R140 mute	1	20	15	17187	10	5	5962	17202	0,2	8357
ADN T- R140	IDH2 R140 WT	481	9620	4338	8579	6	2	4332	12917	0,15	2066
ADN T- R140	IDH2 R140 mute	0,7	14	8	12909	6	2	4332	12917	0,15	8357
NTC R140	IDH2 R140 mute	0	0	0	15657	0	0	0	15657		8357
NTC R140	IDH2 R140 WT	0	0	0	15657	0	0	0	15657		2066
	R140L x2 R140L x3 R140L x3 R140L x4 R140L x4 R140L x5 R140L x5 ADN T- R140 NTC R140	R140L x2	R140L x2 IDH2 R140 WT 482 R140L x2 IDH2 R140 mute 1,6 R140L x3 IDH2 R140 WT 495 R140L x3 IDH2 R140 mute 1,5 R140L x4 IDH2 R140 WT 480 R140L x4 IDH2 R140 mute 1,1 R140L x5 IDH2 R140 WT 502 R140L x5 IDH2 R140 mute 1 ADN T- R140 IDH2 R140 WT 481 ADN T- R140 IDH2 R140 mute 0,7 NTC R140 IDH2 R140 mute 0	R140L x2 IDH2 R140 WT 482 9640 R140L x2 IDH2 R140 mute 1,6 32 R140L x3 IDH2 R140 WT 495 9900 R140L x3 IDH2 R140 mute 1,5 30 R140L x4 IDH2 R140 WT 480 9600 R140L x4 IDH2 R140 mute 1,1 22 R140L x5 IDH2 R140 WT 502 10040 R140L x5 IDH2 R140 mute 1 20 ADN T- R140 IDH2 R140 WT 481 9620 ADN T- R140 IDH2 R140 mute 0,7 14 NTC R140 IDH2 R140 mute 0 0	R140L x2 IDH2 R140 WT 482 9640 5925 R140L x2 IDH2 R140 mute 1,6 32 24 R140L x3 IDH2 R140 WT 495 9900 5408 R140L x3 IDH2 R140 mute 1,5 30 20 R140L x4 IDH2 R140 WT 480 9600 6020 R140L x4 IDH2 R140 mute 1,1 22 17 R140L x5 IDH2 R140 WT 502 10040 5972 R140L x5 IDH2 R140 mute 1 20 15 ADN T- R140 IDH2 R140 WT 481 9620 4338 ADN T- R140 IDH2 R140 mute 0,7 14 8 NTC R140 IDH2 R140 mute 0 0 0	R140L x2 IDH2 R140 WT 482 9640 5925 11707 R140L x2 IDH2 R140 mute 1,6 32 24 17608 R140L x3 IDH2 R140 WT 495 9900 5408 10329 R140L x3 IDH2 R140 mute 1,5 30 20 15717 R140L x4 IDH2 R140 WT 480 9600 6020 11934 R140L x4 IDH2 R140 mute 1,1 22 17 17937 R140L x5 IDH2 R140 WT 502 10040 5972 11230 R140L x5 IDH2 R140 mute 1 20 15 17187 ADN T- R140 IDH2 R140 wute 0,7 14 8 12909 NTC R140 IDH2 R140 mute 0 0 0 15657	R140L x2 IDH2 R140 WT 482 9640 5925 11707 15 R140L x2 IDH2 R140 mute 1,6 32 24 17608 15 R140L x3 IDH2 R140 WT 495 9900 5408 10329 8 R140L x3 IDH2 R140 mute 1,5 30 20 15717 8 R140L x4 IDH2 R140 WT 480 9600 6020 11934 9 R140L x4 IDH2 R140 mute 1,1 22 17 17937 9 R140L x5 IDH2 R140 WT 502 10040 5972 11230 10 R140L x5 IDH2 R140 mute 1 20 15 17187 10 ADN T- R140 IDH2 R140 WT 481 9620 4338 8579 6 ADN T- R140 IDH2 R140 mute 0,7 14 8 12909 6 NTC R140 IDH2 R140 mute 0 0 0 15657 0	R140L x2 IDH2 R140 WT 482 9640 5925 11707 15 9 R140L x2 IDH2 R140 mute 1,6 32 24 17608 15 9 R140L x3 IDH2 R140 WT 495 9900 5408 10329 8 12 R140L x3 IDH2 R140 mute 1,5 30 20 15717 8 12 R140L x4 IDH2 R140 WT 480 9600 6020 11934 9 8 R140L x4 IDH2 R140 mute 1,1 22 17 17937 9 8 R140L x5 IDH2 R140 WT 502 10040 5972 11230 10 5 R140L x5 IDH2 R140 mute 1 20 15 17187 10 5 ADN T- R140 IDH2 R140 WT 481 9620 4338 8579 6 2 ADN T- R140 IDH2 R140 mute 0,7 14 8 12909 6 2 NTC R140	R140L x2 IDH2 R140 WT 482 9640 5925 11707 15 9 5910 R140L x2 IDH2 R140 mute 1,6 32 24 17608 15 9 5910 R140L x3 IDH2 R140 WT 495 9900 5408 10329 8 12 5400 R140L x3 IDH2 R140 mute 1,5 30 20 15717 8 12 5400 R140L x4 IDH2 R140 WT 480 9600 6020 11934 9 8 6011 R140L x4 IDH2 R140 mute 1,1 22 17 17937 9 8 6011 R140L x5 IDH2 R140 WT 502 10040 5972 11230 10 5 5962 R140L x5 IDH2 R140 mute 1 20 15 17187 10 5 5962 ADN T- R140 IDH2 R140 mute 0,7 14 8 12909 6 2 4332 NTC R140	R140L x2 IDH2 R140 WT 482 9640 5925 11707 15 9 5910 17632 R140L x2 IDH2 R140 mute 1,6 32 24 17608 15 9 5910 17632 R140L x3 IDH2 R140 WT 495 9900 5408 10329 8 12 5400 15737 R140L x3 IDH2 R140 mute 1,5 30 20 15717 8 12 5400 15737 R140L x4 IDH2 R140 WT 480 9600 6020 11934 9 8 6011 17954 R140L x4 IDH2 R140 mute 1,1 22 17 17937 9 8 6011 17954 R140L x5 IDH2 R140 WT 502 10040 5972 11230 10 5 5962 17202 R140L x5 IDH2 R140 mute 1 20 15 17187 10 5 5962 17202 ADN T- R140 IDH2 R140 mute <	R140L x2 IDH2 R140 WT 482 9640 5925 11707 15 9 5910 17632 0,33 R140L x2 IDH2 R140 mute 1,6 32 24 17608 15 9 5910 17632 0,33 R140L x3 IDH2 R140 WT 495 9900 5408 10329 8 12 5400 15737 0,3 R140L x3 IDH2 R140 mute 1,5 30 20 15717 8 12 5400 15737 0,3 R140L x4 IDH2 R140 WT 480 9600 6020 11934 9 8 6011 17954 0,23 R140L x4 IDH2 R140 mute 1,1 22 17 17937 9 8 6011 17954 0,23 R140L x5 IDH2 R140 WT 502 10040 5972 11230 10 5 5962 17202 0,2 R140L x5 IDH2 R140 mute 1 20 15 17187 10

<u>Annexe : Résultats attendus et obtenus pour les différentes mutations d'IDH1 et d'IDH2 ciblées par les trois</u> <u>différents kits en ddPCR</u>

					Obtenus	
				WT	Muté	Échec
		30 IDH1 R1:	32 WT	30	-	-
	6		6 R132C	-	6	-
	R13;		6 R132H	-	6	-
	IDH1 R132	28 IDH1 R132 muté	6 R132S	2	4	-
			4 R132G	-	4	-
			6 R132L	-	6	-
		28 IDH2 R1	40 WT	27	-	1
	140	2 IDH2 R140G (hors panel)	2	-	-
Attendus	IDH2 R140	30 IDH2 R140 muté	22 R140Q	-	22	-
Atter	IDH		6 R140W	-	6	-
			2 R140L	-	2	-
		30 IDH2 R1	72 WT	29	-	1
			20 R172K	-	19	1
	172	28 IDH2 R172 muté	4 R172S	-	4	-
	DH2 R172	20 1D112 K1/2 mute	2 R172W	-	2	-
	IDE		2 R172M	-	2	-
		2 IDH2 muté c.516_51 p.Arg172_His1730		2	-	-

Annexe : Données brutes obtenues pour la corrélation ddPCR-NGS d'IDH1 R132

				Copies							X/AE		VAF
			Concen-	Per 20uL	Posi-	Néga-	Ch1+	Ch1+	Ch1-	Accepted	VAF		NGS attendus
N°	Nom	Cible	tration	Well	tives	tives	Ch2+	Ch2-	Ch1-	Droplets 1	(en %)	Seuil	(en %)
C02	R132C	IDH1 R132 mute	162	3240	1603	10872	445	1158	2952	12475	30,2	8548	29
C02	R132C	IDH1 WT	374	7480	3397	9078	445	1158	2952	12475	30,2	3584	2)
D02	R132C	IDH1 R132 mute	166	3320	1725	11348	436	1289	3145	13073	30,7	8777	29
D02	R132C	IDH1 WT	377	7540	3581	9492	436	1289	3145	13073	30,7	3631	27
E02	R132C	IDH1 R132 mute	207	4140	2086	10834	576	1510	3125	12920	34,3	9021	30
E02	R132C	IDH1 WT	397	7940	3701	9219	576	1510	3125	12920	34,3	3726	
E08	R132C	IDH1 R132 mute	133	2660	837	7014	141	696	1139	7851	38,8	9375	39
E08	R132C	IDH1 WT	209	4180	1280	6571	141	696	1139	7851	38,8	3706	
F02	R132C	IDH1 R132 mute	216	4320	1806	8946	530	1276	2666	10752	34,3	9085	30
F02	R132C	IDH1 WT	415	8300	3196	7556	530	1276	2666	10752	34,3	3885	
F08	R132C	IDH1 R132 mute	135	2700	980	8060	152	828	1272	9040	40,1	10132	39
F08	R132C	IDH1 WT	202	4040	1424	7616	152	828	1272	9040	40,1	3934	
A04	R132G	IDH1 R132 mute	472	9440	2352	4768	829	1523	1625	7120	48,7	7709	54
A04	R132G	IDH1 WT	497	9940	2454	4666	829	1523	1625	7120	48,7	3346	
B04	R132G	IDH1 R132 mute	488	9760	3041	5911	1122	1919	2123	8952	48	8214	54
B04	R132G	IDH1 WT	530	10600	3245	5707	1122	1919	2123	8952	48	3245	
G03	R132G	IDH1 R132 mute	288	5760	2135	7708	561	1574	2107	9843	43,6	9451	50
G03	R132G	IDH1 WT	372	7440	2668	7175	561	1574	2107	9843	43,6	3567	
H03	R132G	IDH1 R132 mute	285	5700	2232	8150	577	1655	2028	10382	45,6	9488	50
H03	R132G	IDH1 WT	340	6800	2605	7777	577	1655	2028	10382	45,6	3509	
A03	R132H	IDH1 R132 mute	125	2500	968	8641	299	669	2739	9609	21,8	7584	25
A03	R132H	IDH1 WT	447	8940	3038	6571	299	669	2739	9609	21,8	3119	
B03	R132H	IDH1 R132 mute	137	2740	1193	9659	350	843	2894	10852	24,7	7885	25
B03	R132H	IDH1 WT	418	8360	3244	7608	350	843	2894	10852	24,7	3084	
G02	R132H	IDH1 R132 mute	137	2740	818	6617	281	537	1993	7435	24,2	9767	24
G02	R132H	IDH1 WT	429	8580	2274	5161	281	537	1993	7435	24,2	3660	
G08	R132H	IDH1 R132 mute	29,2	584	209	8329	42	167	1062	8538	15,2	9780	18
G08	R132H	IDH1 WT	163	3260	1104	7434	42	167	1062	8538	15,2	3951	
H02	R132H	IDH1 R132 mute	140	2800	916	7224	275	641	2304	8140	23,9	9350	24
H02	R132H	IDH1 WT	448	8960	2579	5561	275	641	2304	8140	23,9	3512	
H08	R132H	IDH1 R132 mute	38	760	260	7927	45	215	1214	8187	16,2	10132	18
H08	R132H	IDH1 WT	196	3920	1259	6928	45	215	1214	8187	16,2	3643	
C04	R132L	IDH1 R132 mute	96	1920	622	7305	108	514	1265	7927	30,1	8971	28
C04	R132L	IDH1 WT	224	4480	1373	6554	108	514	1265	7927	30,1	3324	
C09	R132L	IDH1 R132 mute	102	2040	745	8187	261	484	2654	8932	18,1	8516	16
C09	R132L	IDH1 WT	465	9300	2915	6017	261	484	2654	8932	18,1	3213	
D04	R132L	IDH1 R132 mute	86	1720	741	9739	136	605	1735	10480	27,2	8643	28
D04	R132L	IDH1 WT	231	4620	1871	8609	136	605	1735	10480	27,2	3223	
D09	R132L	IDH1 R132 mute	104	2080	1097	11923	355	742	3836	13020	18,5	9097	16
D09	R132L	IDH1 WT	457	9140	4191	8829	355	742	3836	13020	18,5	3293	
E04	R132L	IDH1 R132 mute	260	5200	3142	12727	806	2336	3392	15869	41,8	9021	40
E04	R132L	IDH1 WT	361	7220	4198	11671	806	2336	3392	15869	41,8	3168	40
F04	R132L	IDH1 R132 mute	255	5100	2774	11453	746	2028	2959	14227	41,8	9375	
F04	R132L	IDH1 WT	355	7100	3705	10522	746	2028	2959	14227	41,8	3293	
C03	R132S	IDH1 R132 mute	203	4060	1770	9377	615	1155	3153	11147	29,5	8163	30
C03	R132S	IDH1 WT	485	9700	3768	7379	615	1155	3153	11147	29,5	3348	
D03	R132S	IDH1 R132 mute	213	4260	2132	10738	675	1457	3548	12870	31,3	8946	30
D03	R132S	IDH1 WT	468	9360	4223	8647	675	1457	3548	12870	31,3	3462	
E03	R132S	IDH1 R132 mute	177	3540	1776	10924	395	1381	2779	12700	34,4	9097	33
E03	R132S	IDH1 WT	338	6760	3174	9526	395	1381	2779	12700	34,4	3397	
F03	R132S	IDH1 R132 mute	182	3640	1990	11914	487	1503	3047	13904	34,5	9249	33
F03	R132S	IDH1 WT	345	6900	3534	10370	487	1503	3047	13904	34,5	3597	

Annexe : Données brutes obtenues pour la corrélation ddPCR-NGS d'IDH2 R140

													VAF
			Concen-	Copies Per	Posi-	Néga-	Ch1+	Ch1+	Ch1-	Accepted			NGS (en
N°	Nom	Cible	tration	20uL Well	tives	tives	Ch2+	Ch2-	Ch2+	Droplets	VAF (en %)	Seuil	%)
A03	R140Q	IDH2 140 mute	192	3840	1578	8911	322	1256	1794	10489	42	7303	41
A03	R140Q	IDH2 140 WT	265	5300	2116	8373	322	1256	1794	10489	42	2682	4.1
A04 A04	R140Q R140Q	IDH2 140 mute IDH2 140 WT	182 251	3640 5020	1621 2178	9711 9154	316 316	1305 1305	1862 1862	11332 11332	42	7202 2650	41
A04	R140Q	IDH2 140 w 1 IDH2 140 mute	18,7	374	138	8621	54	84	3180	8759	3,3	7296	5
A05	R140Q	IDH2 140 WT	542	10840	3234	5525	54	84	3180	8759	3,3	2642	
A06	R140Q	IDH2 140 mute	17,9	358	149	9732	56	93	3809	9881	2,97	7278	5
A06	R140Q	IDH2 140 WT	584	11680	3865	6016	56	93	3809	9881	2,97	2507	
B03	R140Q	IDH2 140 mute	229	4580	1920	8915	431	1489	1858	10835	45,1	7303	43
B03	R140Q	IDH2 140 WT	279	5580	2289	8546	431	1489	1858	10835	45,1	2682	42
B04 B04	R140Q R140Q	IDH2 140 mute IDH2 140 WT	233 281	4660 5620	2116 2501	9666 9281	454 454	1662 1662	2047 2047	11782 11782	45,3 45,3	7303 2682	43
C03	R140Q	IDH2 140 w 1	226	4520	1720	8103	375	1345	1727	9823	44,4	7303	43
C03	R140Q	IDH2 140 WT	283	5660	2102	7721	375	1345	1727	9823	44,4	2682	
C04	R140Q	IDH2 140 mute	242	4840	2105	9204	489	1616	2019	11309	45,1	7303	43
C04	R140Q	IDH2 140 WT	295	5900	2508	8801	489	1616	2019	11309	45,1	2682	
D03	R140W	IDH2 140 mute	89	1780	756	9566	127	629	1522	10322	30,4	7090	30
D03	R140W	IDH2 140 WT	205	4100	1649 756	8673	127	629 628	1522	10322	30,4	2955	30
D04 D04	R140W R140W	IDH2 140 mute IDH2 140 WT	89 202	1780 4040	1632	9610 8734	128 128	628	1504 1504	10366 10366	30,7 30,7	6885 2790	30
E03	R140W	IDH2 140 mute	175	3500	1621	10104	378	1243	2479	11725	34,8	6948	40
E03	R140W	IDH2 140 WT	329	6580	2857	8868	378	1243	2479	11725	34,8	2707	
E04	R140W	IDH2 140 mute	170	3400	1401	9020	367	1034	2189	10421	33,9	6806	40
E04	R140W	IDH2 140 WT	331	6620	2556	7865	367	1034	2189	10421	33,9	2690	
E07	R140Q	IDH2 140 mute	17,5	350	140	9337	34	106	2454	9477	4,7	7153	4
E07	R140Q	IDH2 140 WT	358	7160	2488 105	6989 8376	34 40	106	2454 2081	9477	4,7	2690	4
E08 E08	R140Q R140Q	IDH2 140 mute IDH2 140 WT	14,7 339	294 6780	2121	6360	40	65	2081	8481 8481	4,1 4,1	7303 2682	4
F01	R140Q	IDH2 140 mute	250	5000	1607	6794	430	1177	1737	8401	41,6	7334	36
F01	R140Q	IDH2 140 WT	351	7020	2167	6234	430	1177	1737	8401	41,6	2855	- 20
F02	R140Q	IDH2 140 mute	257	5140	2202	9030	583	1619	2439	11232	41	7391	36
F02	R140Q	IDH2 140 WT	369	7380	3022	8210	583	1619	2439	11232	41	2833	
F03	R140W	IDH2 140 mute	48,1	962	529	12686	159	370	3568	13215	11	7020	10
F03	R140W	IDH2 140 WT	390	7800	3727	9488	159 128	370	3568	13215	11	2809	10
F04 F04	R140W R140W	IDH2 140 mute IDH2 140 WT	49 411	980 8220	439 3170	10322 7591	128	311 311	3042 3042	10761 10761	10,7 10,7	6836 2746	10
F07	R140W	IDH2 140 w 1	71	1420	516	8284	99	417	1457	8800	23,7	7145	24
F07	R140Q	IDH2 140 WT	229	4580	1556	7244	99	417	1457	8800	23,7	2686	
F08	R140Q	IDH2 140 mute	71	1420	475	7611	93	382	1364	8086	23,4	7261	24
F08	R140Q	IDH2 140 WT	234	4680	1457	6629	93	382	1364	8086	23,4	2750	
G01	R140Q	IDH2 140 mute	145	2900	1184	9010	252	932	1770	10194	35,8	7258	36
G01	R140Q	IDH2 140 WT	260	5200	2022	8172	252	932	1770	10194	35,8	2846	26
G02 G02	R140Q R140Q	IDH2 140 mute IDH2 140 WT	145 271	2900 5420	1395 2467	10597 9525	289 289	1106 1106	2178 2178	11992 11992	34,9	7296 2907	36
G02	R140L	IDH2 140 w 1	182	3640	1692	10128	378	1314	2178	11820	39	7145	39
G03	R140L	IDH2 140 WT	284	5680	2536	9284	378	1314	2158	11820	39	2816	
G04	R140L	IDH2 140 mute	186	3720	1767	10292	398	1369	2197	12059	39,5	7126	39
G04	R140L	IDH2 140 WT	285	5700	2595	9464	398	1369	2197	12059	39,5	2731	
G07	R140Q	IDH2 140 mute	226	4520	1370	6465	294	1076	1318	7835	45,5	7303	50
G07	R140Q	IDH2 140 WT	271	5420	1612	6223	294	1076	1318	7835	45,5	2682	£0.
G08 G08	R140Q R140Q	IDH2 140 mute IDH2 140 WT	225 282	4500 5640	1634 1999	7742 7377	363 363	1271 1271	1636 1636	9376 9376	44,4	7303 2682	50
H01	R140Q	IDH2 140 w 1 IDH2 140 mute	218	4360	1406	6919	318	1088	1575	8325	41,8	7253	39
H01	R140Q	IDH2 140 WT	304	6080	1893	6432	318	1088	1575	8325	41,8	2851	37
H02	R140Q	IDH2 140 mute	214	4280	1874	9411	434	1440	2203	11285	40,6	7164	39
H02	R140Q	IDH2 140 WT	313	6260	2637	8648	434	1440	2203	11285	40,6	2675	
H07	R140Q	IDH2 140 mute	265	5300	1721	6800	425	1296	1685	8521	44,2	7334	43
H07	R140Q	IDH2 140 WT	335	6700	2110	6411	425	1296	1685	8521	44,2	2955	42
H08 H08	R140Q R140Q	IDH2 140 mute IDH2 140 WT	264 344	5280 6880	1717 2169	6831 6379	440 440	1277 1277	1729 1729	8548 8548	43,4 43,4	7105 2821	43
1100	VITU	11111111111111111	344	0000	2109	03/9	++0	14//	1/49	0340	43,4	2021	

Annexe : Données brutes obtenues pour la corrélation ddPCR-NGS d'IDH2 R172

				Copies									VAF
				Per							VAF		NGS
			Concen-	20uL	Posi-	Néga-	Ch1+	Ch1+	Ch1-	Accepted	(en		(en
N°	Nom	Cible	tration	Well	tives	tives	Ch2+	Ch2-	Ch2+	Droplets	%)	Seuil	%)
A03	R172K	IDH2 R172 mute	172	3440	1669	10611	436	1233	2855	12280	31,9	431	11 30
A03	R172K	IDH2 R172 WT	367	7340	3291	8989	436	1233	2855	12280	31,9	255	;8
A04	R172K	IDH2 R172 mute	181	3620	1851	11123	510	1341	3199	12974	31,4	40	17 30
A04	R172K	IDH2 R172 WT	396	7920	3709	9265	510	1341	3199	12974	31,4	231	9
B03	R172K	IDH2 R172 mute	127	2540	1256	10996	275	981	2436	12252	30,2	419	96 31
B03	R172K	IDH2 R172 WT	294	5880	2711	9541	275	981	2436	12252	30,2	244	1
B04	R172K	IDH2 R172 mute	123	2460	1333	12075	294	1039	2498	13408	31	402	27 31
B04	R172K	IDH2 R172 WT	275	5500	2792	10616	294	1039	2498	13408	31	25	2
C03	R172K	IDH2 R172 mute	152	3040	1420	10289	360	1060	2368	11709	32,8	403	36 34
C03	R172K	IDH2 R172 WT	312	6240	2728	8981	360	1060	2368	11709	32,8	250	50
C04	R172K	IDH2 R172 mute	144	2880	1527	11757	341	1186	2665	13284	32,2	398	36 34
C04	R172K	IDH2 R172 WT	302	6040	3006	10278	341	1186	2665	13284	32,2	244	1
D03	R172K	IDH2 R172 mute	194	3880	1914	10670	480	1434	2726	12584	35,9	395	51 37
D03	R172K	IDH2 R172 WT	346	6920	3206	9378	480	1434	2726	12584	35,9	240	53
D04	R172K	IDH2 R172 mute	200	4000	2124	11488	527	1597	2872	13612	37,1	400)8 37
D04	R172K	IDH2 R172 WT	338	6760	3399	10213	527	1597	2872	13612	37,1	240	53
E03	R172K	IDH2 R172 mute	51	1020	553	12477	167	386	3991	13030	10,1	397	70 9
E03	R172K	IDH2 R172 WT	452	9040	4158	8872	167	386	3991	13030	10,1	27	6
E04	R172K	IDH2 R172 mute	48,6	972	564	13386	157	407	4142	13950	10,1	392	23 9
E04	R172K	IDH2 R172 WT	433	8660	4299	9651	157	407	4142	13950	10,1	254	1
F01	R172K	IDH2 R172 mute	31,2	624	346	12886	136	210	4386	13232	6	400)8 7
F01	R172K	IDH2 R172 WT	492	9840	4522	8710	136	210	4386	13232	6	242	13
F02	R172K	IDH2 R172 mute	30	600	302	11701	118	184	4011	12003	5,7	394	12 7
F02	R172K	IDH2 R172 WT	496	9920	4129	7874	118	184	4011	12003	5,7	248	39
F03	R172K	IDH2 R172 mute	196	3920	2163	11948	390	1773	2084	14111	46,3	394	12 47
F03	R172K	IDH2 R172 WT	227	4540	2474	11637	390	1773	2084	14111	46,3	241	.5
F04	R172K	IDH2 R172 mute	200	4000	2341	12643	441	1900	2274	14984	45,9	386	66 47
F04	R172K	IDH2 R172 WT	235	4700	2715	12269	441	1900	2274	14984	45,9	234	15
G01	R172K	IDH2 R172 mute	200	4000	2040	11012	872	1168	4768	13052	23,1	383	38 24
G01	R172K	IDH2 R172 WT	666	13320	5640	7412	872	1168	4768	13052	23,1	239)3
G02	R172K	IDH2 R172 mute	193	3860	1796	10060	743	1053	4338	11856	22,7	387	70 24
G02	R172K	IDH2 R172 WT	658	13160	5081	6775	743	1053	4338	11856	22,7	248	34
G03	R172K	IDH2 R172 mute	83	1660	814	11084	231	583	3186	11898	17,3	390	51 19
G03	R172K	IDH2 R172 WT	398	7960	3417	8481	231	583	3186	11898	17,3	243	4
H01	R172K	IDH2 R172 mute	81	1620	900	12694	139	761	2121	13594	27,4	380	00 27
H01	R172K	IDH2 R172 WT	214	4280	2260	11334	139	761	2121	13594	27,4	247	1
H02	R172K	IDH2 R172 mute	89	1780	799	10155	150	649	1779	10954	28,1	394	12 27
H02	R172K	IDH2 R172 WT	228	4560	1929	9025	150	649	1779	10954	28,1	230	7

FICHE SIGNALÉTIQUE

NOM : DEPIERREUX Prénom : Mathilde Née le 02/04/1997 à REIMS

ÉTUDE DES MUTATIONS D'IDH1 ET D'IDH2 DANS UNE COHORTE STRASBOURGEOISE, MISE EN PLACE D'UNE MÉTHODE DE RECHERCHE CIBLÉE DANS LES LAM PAR DDPCR

Sous la direction du Dr MIGUET Laurent-Yannick Soutenu le 17 octobre 2023 à Strasbourg

N° ordre :.....

Résumé

L'apparition de nouvelles thérapies ciblées visant les mutations d'*IDH1/2* a offert un nouvel axe thérapeutique dans la LAM. Pour s'aligner avec les nouvelles recommandations de l'ELN, préconisant une caractérisation du statut mutationnel d'*IDH1/2* en 3 à 5 jours, nous avons mis en place une nouvelle technique de recherche ciblée par ddPCR multiplex. Pour cela, nous avons caractérisé les LAM mutées *IDH1/2* par l'étude de leur terrain mutationnel à partir d'une cohorte des séquençages réalisés depuis 2014 et avons étudié les performances de la ddPCR dans cette indication. Ainsi, nous mettons en évidence une différence du terrain mutationnel entre les différents variants d'*IDH1/2* dans les LAM, avec les mutations d'IDH1^{R132} et IDH2^{R140} majoritairement associées aux LAM mutées *NPM1* et aux LAM secondaires reliées à la myélodysplasie (mutations du spliceosome (*SRSF2*)), à l'inverse des LAM mutées IDH2^{R172} caractérisées par un contexte de survenu et un terrain mutationnel distinct. Pour finir, la recherche ciblée par ddPCR permet de répondre de manière adéquate à la caractérisation de 99.4%, 99.3% et 96.7% des mutations d'IDH1^{R132}, d'IDH2^{R140} et d'IDH2^{R172} dans les LAM avec une LOD à 0.2% et une LOQ à 0.5% ainsi qu'une sensibilité et une spécificité de 98% et 100%.

The appearance of new-targeted therapy against *IDH1/2* mutations offered a new therapeutic axis in AML. To align with the new recommendations of the ELN group which recommend having the mutational status of *IDH1/2* in 3 to 5 days, we set up a new research technique by multiplexed ddPCR. For this, we characterized the mutated *IDH1/2* AML by studying their mutational landscape from a cohort of sequencing performed since 2014 and studied the performance of ddPCR in this indication. Thus, we highlight a difference in the mutational landscape between the different variants of *IDH1/2* in AML, with IDH1^{R132} and IDH2^{R140} mainly associated with *NPM1* mutated AML and secondary AML related to myelodysplasia (spliceosome mutations (*SRSF2*)), unlike IDH2^{R172} which characterized by a context of occurrence and a distinct mutational field. Finally, the targeted technique by ddPCR allows to respond adequately to the characterization of 99.4%, 99.3% and 96.7% of IDH1^{R132} mutations, of IDH2^{R140} and IDH2^{R172} in AML with a detection limit at 0.2% and a quantification limit at 0.5% along with a sensitivity and specificity of 98% and 100% each.

Mots clés: (IDH1/2), (LAM), (ddPCR)